Merge remote-tracking branch 'vfio/next'
[deliverable/linux.git] / Documentation / driver-model / devres.txt
CommitLineData
9ac7849e
TH
1Devres - Managed Device Resource
2================================
3
4Tejun Heo <teheo@suse.de>
5
6First draft 10 January 2007
7
8
91. Intro : Huh? Devres?
102. Devres : Devres in a nutshell
113. Devres Group : Group devres'es and release them together
124. Details : Life time rules, calling context, ...
135. Overhead : How much do we have to pay for this?
146. List of managed interfaces : Currently implemented managed interfaces
15
16
17 1. Intro
18 --------
19
20devres came up while trying to convert libata to use iomap. Each
21iomapped address should be kept and unmapped on driver detach. For
22example, a plain SFF ATA controller (that is, good old PCI IDE) in
23native mode makes use of 5 PCI BARs and all of them should be
24maintained.
25
26As with many other device drivers, libata low level drivers have
27sufficient bugs in ->remove and ->probe failure path. Well, yes,
28that's probably because libata low level driver developers are lazy
29bunch, but aren't all low level driver developers? After spending a
30day fiddling with braindamaged hardware with no document or
31braindamaged document, if it's finally working, well, it's working.
32
33For one reason or another, low level drivers don't receive as much
34attention or testing as core code, and bugs on driver detach or
01dd2fbf 35initialization failure don't happen often enough to be noticeable.
9ac7849e
TH
36Init failure path is worse because it's much less travelled while
37needs to handle multiple entry points.
38
39So, many low level drivers end up leaking resources on driver detach
40and having half broken failure path implementation in ->probe() which
41would leak resources or even cause oops when failure occurs. iomap
42adds more to this mix. So do msi and msix.
43
44
45 2. Devres
46 ---------
47
48devres is basically linked list of arbitrarily sized memory areas
49associated with a struct device. Each devres entry is associated with
50a release function. A devres can be released in several ways. No
51matter what, all devres entries are released on driver detach. On
52release, the associated release function is invoked and then the
53devres entry is freed.
54
55Managed interface is created for resources commonly used by device
56drivers using devres. For example, coherent DMA memory is acquired
57using dma_alloc_coherent(). The managed version is called
58dmam_alloc_coherent(). It is identical to dma_alloc_coherent() except
59for the DMA memory allocated using it is managed and will be
60automatically released on driver detach. Implementation looks like
61the following.
62
63 struct dma_devres {
64 size_t size;
65 void *vaddr;
66 dma_addr_t dma_handle;
67 };
68
69 static void dmam_coherent_release(struct device *dev, void *res)
70 {
71 struct dma_devres *this = res;
72
73 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
74 }
75
76 dmam_alloc_coherent(dev, size, dma_handle, gfp)
77 {
78 struct dma_devres *dr;
79 void *vaddr;
80
81 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
82 ...
83
84 /* alloc DMA memory as usual */
85 vaddr = dma_alloc_coherent(...);
86 ...
87
88 /* record size, vaddr, dma_handle in dr */
89 dr->vaddr = vaddr;
90 ...
91
92 devres_add(dev, dr);
93
94 return vaddr;
95 }
96
97If a driver uses dmam_alloc_coherent(), the area is guaranteed to be
98freed whether initialization fails half-way or the device gets
99detached. If most resources are acquired using managed interface, a
100driver can have much simpler init and exit code. Init path basically
101looks like the following.
102
103 my_init_one()
104 {
105 struct mydev *d;
106
107 d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
108 if (!d)
109 return -ENOMEM;
110
111 d->ring = dmam_alloc_coherent(...);
112 if (!d->ring)
113 return -ENOMEM;
114
115 if (check something)
116 return -EINVAL;
117 ...
118
119 return register_to_upper_layer(d);
120 }
121
122And exit path,
123
124 my_remove_one()
125 {
126 unregister_from_upper_layer(d);
127 shutdown_my_hardware();
128 }
129
130As shown above, low level drivers can be simplified a lot by using
131devres. Complexity is shifted from less maintained low level drivers
132to better maintained higher layer. Also, as init failure path is
133shared with exit path, both can get more testing.
134
135
136 3. Devres group
137 ---------------
138
139Devres entries can be grouped using devres group. When a group is
140released, all contained normal devres entries and properly nested
141groups are released. One usage is to rollback series of acquired
142resources on failure. For example,
143
144 if (!devres_open_group(dev, NULL, GFP_KERNEL))
145 return -ENOMEM;
146
147 acquire A;
148 if (failed)
149 goto err;
150
151 acquire B;
152 if (failed)
153 goto err;
154 ...
155
156 devres_remove_group(dev, NULL);
157 return 0;
158
159 err:
160 devres_release_group(dev, NULL);
161 return err_code;
162
01dd2fbf 163As resource acquisition failure usually means probe failure, constructs
9ac7849e
TH
164like above are usually useful in midlayer driver (e.g. libata core
165layer) where interface function shouldn't have side effect on failure.
166For LLDs, just returning error code suffices in most cases.
167
168Each group is identified by void *id. It can either be explicitly
169specified by @id argument to devres_open_group() or automatically
170created by passing NULL as @id as in the above example. In both
171cases, devres_open_group() returns the group's id. The returned id
172can be passed to other devres functions to select the target group.
173If NULL is given to those functions, the latest open group is
174selected.
175
176For example, you can do something like the following.
177
178 int my_midlayer_create_something()
179 {
180 if (!devres_open_group(dev, my_midlayer_create_something, GFP_KERNEL))
181 return -ENOMEM;
182
183 ...
184
3265b545 185 devres_close_group(dev, my_midlayer_create_something);
9ac7849e
TH
186 return 0;
187 }
188
189 void my_midlayer_destroy_something()
190 {
19f59460 191 devres_release_group(dev, my_midlayer_create_something);
9ac7849e
TH
192 }
193
194
195 4. Details
196 ----------
197
198Lifetime of a devres entry begins on devres allocation and finishes
199when it is released or destroyed (removed and freed) - no reference
200counting.
201
202devres core guarantees atomicity to all basic devres operations and
203has support for single-instance devres types (atomic
204lookup-and-add-if-not-found). Other than that, synchronizing
205concurrent accesses to allocated devres data is caller's
206responsibility. This is usually non-issue because bus ops and
207resource allocations already do the job.
208
209For an example of single-instance devres type, read pcim_iomap_table()
2c19c49a 210in lib/devres.c.
9ac7849e
TH
211
212All devres interface functions can be called without context if the
213right gfp mask is given.
214
215
216 5. Overhead
217 -----------
218
219Each devres bookkeeping info is allocated together with requested data
220area. With debug option turned off, bookkeeping info occupies 16
221bytes on 32bit machines and 24 bytes on 64bit (three pointers rounded
222up to ull alignment). If singly linked list is used, it can be
223reduced to two pointers (8 bytes on 32bit, 16 bytes on 64bit).
224
225Each devres group occupies 8 pointers. It can be reduced to 6 if
226singly linked list is used.
227
228Memory space overhead on ahci controller with two ports is between 300
229and 400 bytes on 32bit machine after naive conversion (we can
230certainly invest a bit more effort into libata core layer).
231
232
233 6. List of managed interfaces
234 -----------------------------
235
d8e1e012
GU
236CLOCK
237 devm_clk_get()
238 devm_clk_put()
4143804c 239 devm_clk_hw_register()
d8e1e012
GU
240
241DMA
242 dmam_alloc_coherent()
243 dmam_alloc_noncoherent()
244 dmam_declare_coherent_memory()
245 dmam_free_coherent()
246 dmam_free_noncoherent()
247 dmam_pool_create()
248 dmam_pool_destroy()
249
250GPIO
251 devm_gpiod_get()
252 devm_gpiod_get_index()
253 devm_gpiod_get_index_optional()
254 devm_gpiod_get_optional()
255 devm_gpiod_put()
38115ead
LD
256 devm_gpiochip_add_data()
257 devm_gpiochip_remove()
77ae582c
LD
258 devm_gpio_request()
259 devm_gpio_request_one()
260 devm_gpio_free()
543f43ce 261
224b995a
OK
262IIO
263 devm_iio_device_alloc()
264 devm_iio_device_free()
8caa07c0
SK
265 devm_iio_device_register()
266 devm_iio_device_unregister()
780103fe
KW
267 devm_iio_kfifo_allocate()
268 devm_iio_kfifo_free()
d8e1e012
GU
269 devm_iio_trigger_alloc()
270 devm_iio_trigger_free()
e21a294d
LD
271 devm_iio_channel_get()
272 devm_iio_channel_release()
273 devm_iio_channel_get_all()
274 devm_iio_channel_release_all()
224b995a 275
2ea2dc87
AK
276INPUT
277 devm_input_allocate_device()
278
9ac7849e 279IO region
9ac7849e 280 devm_release_mem_region()
d8e1e012 281 devm_release_region()
8d38821c 282 devm_release_resource()
d8e1e012
GU
283 devm_request_mem_region()
284 devm_request_region()
8d38821c 285 devm_request_resource()
9ac7849e
TH
286
287IOMAP
288 devm_ioport_map()
289 devm_ioport_unmap()
290 devm_ioremap()
291 devm_ioremap_nocache()
34644524 292 devm_ioremap_wc()
75096579 293 devm_ioremap_resource() : checks resource, requests memory region, ioremaps
d8e1e012 294 devm_iounmap()
9ac7849e 295 pcim_iomap()
9ac7849e 296 pcim_iomap_regions() : do request_region() and iomap() on multiple BARs
d8e1e012
GU
297 pcim_iomap_table() : array of mapped addresses indexed by BAR
298 pcim_iounmap()
070b9079 299
d8e1e012
GU
300IRQ
301 devm_free_irq()
ea05166a 302 devm_request_any_context_irq()
d8e1e012 303 devm_request_irq()
ea05166a 304 devm_request_threaded_irq()
a8a97db9 305
ca1bb4ee
BA
306LED
307 devm_led_classdev_register()
308 devm_led_classdev_unregister()
309
d8e1e012
GU
310MDIO
311 devm_mdiobus_alloc()
312 devm_mdiobus_alloc_size()
313 devm_mdiobus_free()
314
315MEM
316 devm_free_pages()
317 devm_get_free_pages()
bef59c50 318 devm_kasprintf()
d8e1e012
GU
319 devm_kcalloc()
320 devm_kfree()
321 devm_kmalloc()
322 devm_kmalloc_array()
323 devm_kmemdup()
54270354 324 devm_kstrdup()
bef59c50 325 devm_kvasprintf()
d8e1e012
GU
326 devm_kzalloc()
327
3698283b
LD
328MFD
329 devm_mfd_add_devices()
330
d8e1e012
GU
331PCI
332 pcim_enable_device() : after success, all PCI ops become managed
333 pcim_pin_device() : keep PCI device enabled after release
334
335PHY
336 devm_usb_get_phy()
337 devm_usb_put_phy()
3d1482fe 338
6d4ca1fb
SW
339PINCTRL
340 devm_pinctrl_get()
341 devm_pinctrl_put()
1f8dd72f
LD
342 devm_pinctrl_register()
343 devm_pinctrl_unregister()
6354316d 344
c1a9634f
BA
345POWER
346 devm_reboot_mode_register()
347 devm_reboot_mode_unregister()
348
6354316d
AC
349PWM
350 devm_pwm_get()
351 devm_pwm_put()
2202d4e8 352
d8e1e012
GU
353REGULATOR
354 devm_regulator_bulk_get()
355 devm_regulator_get()
356 devm_regulator_put()
357 devm_regulator_register()
0244d84f 358
8d5b5d5c
MY
359RESET
360 devm_reset_control_get()
361 devm_reset_controller_register()
362
0244d84f
AS
363SLAVE DMA ENGINE
364 devm_acpi_dma_controller_register()
666d5b4c
MB
365
366SPI
367 devm_spi_register_master()
83fbae5a
NA
368
369WATCHDOG
370 devm_watchdog_register_device()
This page took 0.574166 seconds and 5 git commands to generate.