ARM: KVM: disable KVM in Kconfig on big-endian systems
[deliverable/linux.git] / arch / arm / kvm / mmu.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
342cd0ab
CD
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
ad361f09 22#include <linux/hugetlb.h>
45e96ea6 23#include <trace/events/kvm.h>
342cd0ab 24#include <asm/pgalloc.h>
94f8e641 25#include <asm/cacheflush.h>
342cd0ab
CD
26#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
45e96ea6 28#include <asm/kvm_mmio.h>
d5d8184d 29#include <asm/kvm_asm.h>
94f8e641 30#include <asm/kvm_emulate.h>
d5d8184d
CD
31
32#include "trace.h"
342cd0ab
CD
33
34extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
5a677ce0 36static pgd_t *boot_hyp_pgd;
2fb41059 37static pgd_t *hyp_pgd;
342cd0ab
CD
38static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
5a677ce0
MZ
40static void *init_bounce_page;
41static unsigned long hyp_idmap_start;
42static unsigned long hyp_idmap_end;
43static phys_addr_t hyp_idmap_vector;
44
9b5fdb97 45#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
ad361f09 46
48762767 47static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
d5d8184d 48{
d4cb9df5
MZ
49 /*
50 * This function also gets called when dealing with HYP page
51 * tables. As HYP doesn't have an associated struct kvm (and
52 * the HYP page tables are fairly static), we don't do
53 * anything there.
54 */
55 if (kvm)
56 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
d5d8184d
CD
57}
58
d5d8184d
CD
59static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
60 int min, int max)
61{
62 void *page;
63
64 BUG_ON(max > KVM_NR_MEM_OBJS);
65 if (cache->nobjs >= min)
66 return 0;
67 while (cache->nobjs < max) {
68 page = (void *)__get_free_page(PGALLOC_GFP);
69 if (!page)
70 return -ENOMEM;
71 cache->objects[cache->nobjs++] = page;
72 }
73 return 0;
74}
75
76static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
77{
78 while (mc->nobjs)
79 free_page((unsigned long)mc->objects[--mc->nobjs]);
80}
81
82static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
83{
84 void *p;
85
86 BUG_ON(!mc || !mc->nobjs);
87 p = mc->objects[--mc->nobjs];
88 return p;
89}
90
979acd5e
MZ
91static bool page_empty(void *ptr)
92{
93 struct page *ptr_page = virt_to_page(ptr);
94 return page_count(ptr_page) == 1;
95}
96
d4cb9df5 97static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
342cd0ab 98{
ad361f09
CD
99 if (pud_huge(*pud)) {
100 pud_clear(pud);
101 kvm_tlb_flush_vmid_ipa(kvm, addr);
102 } else {
103 pmd_t *pmd_table = pmd_offset(pud, 0);
104 pud_clear(pud);
105 kvm_tlb_flush_vmid_ipa(kvm, addr);
106 pmd_free(NULL, pmd_table);
107 }
4f728276
MZ
108 put_page(virt_to_page(pud));
109}
342cd0ab 110
d4cb9df5 111static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
4f728276 112{
ad361f09
CD
113 if (kvm_pmd_huge(*pmd)) {
114 pmd_clear(pmd);
115 kvm_tlb_flush_vmid_ipa(kvm, addr);
116 } else {
117 pte_t *pte_table = pte_offset_kernel(pmd, 0);
118 pmd_clear(pmd);
119 kvm_tlb_flush_vmid_ipa(kvm, addr);
120 pte_free_kernel(NULL, pte_table);
121 }
4f728276
MZ
122 put_page(virt_to_page(pmd));
123}
124
d4cb9df5 125static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
4f728276
MZ
126{
127 if (pte_present(*pte)) {
128 kvm_set_pte(pte, __pte(0));
129 put_page(virt_to_page(pte));
d4cb9df5 130 kvm_tlb_flush_vmid_ipa(kvm, addr);
342cd0ab
CD
131 }
132}
133
d4cb9df5
MZ
134static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
135 unsigned long long start, u64 size)
000d3996
MZ
136{
137 pgd_t *pgd;
138 pud_t *pud;
139 pmd_t *pmd;
4f728276
MZ
140 pte_t *pte;
141 unsigned long long addr = start, end = start + size;
d3840b26 142 u64 next;
000d3996 143
4f728276
MZ
144 while (addr < end) {
145 pgd = pgdp + pgd_index(addr);
146 pud = pud_offset(pgd, addr);
56041bf9 147 pte = NULL;
4f728276 148 if (pud_none(*pud)) {
a3c8bd31 149 addr = kvm_pud_addr_end(addr, end);
4f728276
MZ
150 continue;
151 }
000d3996 152
ad361f09
CD
153 if (pud_huge(*pud)) {
154 /*
155 * If we are dealing with a huge pud, just clear it and
156 * move on.
157 */
158 clear_pud_entry(kvm, pud, addr);
a3c8bd31 159 addr = kvm_pud_addr_end(addr, end);
ad361f09
CD
160 continue;
161 }
162
4f728276
MZ
163 pmd = pmd_offset(pud, addr);
164 if (pmd_none(*pmd)) {
a3c8bd31 165 addr = kvm_pmd_addr_end(addr, end);
4f728276
MZ
166 continue;
167 }
000d3996 168
ad361f09
CD
169 if (!kvm_pmd_huge(*pmd)) {
170 pte = pte_offset_kernel(pmd, addr);
171 clear_pte_entry(kvm, pte, addr);
172 next = addr + PAGE_SIZE;
173 }
4f728276 174
ad361f09
CD
175 /*
176 * If the pmd entry is to be cleared, walk back up the ladder
177 */
56041bf9 178 if (kvm_pmd_huge(*pmd) || (pte && page_empty(pte))) {
d4cb9df5 179 clear_pmd_entry(kvm, pmd, addr);
a3c8bd31 180 next = kvm_pmd_addr_end(addr, end);
979acd5e 181 if (page_empty(pmd) && !page_empty(pud)) {
d4cb9df5 182 clear_pud_entry(kvm, pud, addr);
a3c8bd31 183 next = kvm_pud_addr_end(addr, end);
4f728276
MZ
184 }
185 }
186
d3840b26 187 addr = next;
4f728276 188 }
000d3996
MZ
189}
190
9d218a1f
MZ
191static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
192 phys_addr_t addr, phys_addr_t end)
193{
194 pte_t *pte;
195
196 pte = pte_offset_kernel(pmd, addr);
197 do {
198 if (!pte_none(*pte)) {
199 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
200 kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
201 }
202 } while (pte++, addr += PAGE_SIZE, addr != end);
203}
204
205static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
206 phys_addr_t addr, phys_addr_t end)
207{
208 pmd_t *pmd;
209 phys_addr_t next;
210
211 pmd = pmd_offset(pud, addr);
212 do {
213 next = kvm_pmd_addr_end(addr, end);
214 if (!pmd_none(*pmd)) {
215 if (kvm_pmd_huge(*pmd)) {
216 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
217 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
218 } else {
219 stage2_flush_ptes(kvm, pmd, addr, next);
220 }
221 }
222 } while (pmd++, addr = next, addr != end);
223}
224
225static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
226 phys_addr_t addr, phys_addr_t end)
227{
228 pud_t *pud;
229 phys_addr_t next;
230
231 pud = pud_offset(pgd, addr);
232 do {
233 next = kvm_pud_addr_end(addr, end);
234 if (!pud_none(*pud)) {
235 if (pud_huge(*pud)) {
236 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
237 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
238 } else {
239 stage2_flush_pmds(kvm, pud, addr, next);
240 }
241 }
242 } while (pud++, addr = next, addr != end);
243}
244
245static void stage2_flush_memslot(struct kvm *kvm,
246 struct kvm_memory_slot *memslot)
247{
248 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
249 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
250 phys_addr_t next;
251 pgd_t *pgd;
252
253 pgd = kvm->arch.pgd + pgd_index(addr);
254 do {
255 next = kvm_pgd_addr_end(addr, end);
256 stage2_flush_puds(kvm, pgd, addr, next);
257 } while (pgd++, addr = next, addr != end);
258}
259
260/**
261 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
262 * @kvm: The struct kvm pointer
263 *
264 * Go through the stage 2 page tables and invalidate any cache lines
265 * backing memory already mapped to the VM.
266 */
267void stage2_flush_vm(struct kvm *kvm)
268{
269 struct kvm_memslots *slots;
270 struct kvm_memory_slot *memslot;
271 int idx;
272
273 idx = srcu_read_lock(&kvm->srcu);
274 spin_lock(&kvm->mmu_lock);
275
276 slots = kvm_memslots(kvm);
277 kvm_for_each_memslot(memslot, slots)
278 stage2_flush_memslot(kvm, memslot);
279
280 spin_unlock(&kvm->mmu_lock);
281 srcu_read_unlock(&kvm->srcu, idx);
282}
283
d157f4a5
MZ
284/**
285 * free_boot_hyp_pgd - free HYP boot page tables
286 *
287 * Free the HYP boot page tables. The bounce page is also freed.
288 */
289void free_boot_hyp_pgd(void)
290{
291 mutex_lock(&kvm_hyp_pgd_mutex);
292
293 if (boot_hyp_pgd) {
d4cb9df5
MZ
294 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
295 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
296 kfree(boot_hyp_pgd);
297 boot_hyp_pgd = NULL;
298 }
299
300 if (hyp_pgd)
d4cb9df5 301 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
302
303 kfree(init_bounce_page);
304 init_bounce_page = NULL;
305
306 mutex_unlock(&kvm_hyp_pgd_mutex);
307}
308
342cd0ab 309/**
4f728276 310 * free_hyp_pgds - free Hyp-mode page tables
342cd0ab 311 *
5a677ce0
MZ
312 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
313 * therefore contains either mappings in the kernel memory area (above
314 * PAGE_OFFSET), or device mappings in the vmalloc range (from
315 * VMALLOC_START to VMALLOC_END).
316 *
317 * boot_hyp_pgd should only map two pages for the init code.
342cd0ab 318 */
4f728276 319void free_hyp_pgds(void)
342cd0ab 320{
342cd0ab
CD
321 unsigned long addr;
322
d157f4a5 323 free_boot_hyp_pgd();
4f728276 324
d157f4a5 325 mutex_lock(&kvm_hyp_pgd_mutex);
5a677ce0 326
4f728276
MZ
327 if (hyp_pgd) {
328 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
d4cb9df5 329 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
4f728276 330 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
d4cb9df5
MZ
331 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
332
4f728276 333 kfree(hyp_pgd);
d157f4a5 334 hyp_pgd = NULL;
4f728276
MZ
335 }
336
342cd0ab
CD
337 mutex_unlock(&kvm_hyp_pgd_mutex);
338}
339
340static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
6060df84
MZ
341 unsigned long end, unsigned long pfn,
342 pgprot_t prot)
342cd0ab
CD
343{
344 pte_t *pte;
345 unsigned long addr;
342cd0ab 346
3562c76d
MZ
347 addr = start;
348 do {
6060df84
MZ
349 pte = pte_offset_kernel(pmd, addr);
350 kvm_set_pte(pte, pfn_pte(pfn, prot));
4f728276 351 get_page(virt_to_page(pte));
5a677ce0 352 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
6060df84 353 pfn++;
3562c76d 354 } while (addr += PAGE_SIZE, addr != end);
342cd0ab
CD
355}
356
357static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
6060df84
MZ
358 unsigned long end, unsigned long pfn,
359 pgprot_t prot)
342cd0ab
CD
360{
361 pmd_t *pmd;
362 pte_t *pte;
363 unsigned long addr, next;
364
3562c76d
MZ
365 addr = start;
366 do {
6060df84 367 pmd = pmd_offset(pud, addr);
342cd0ab
CD
368
369 BUG_ON(pmd_sect(*pmd));
370
371 if (pmd_none(*pmd)) {
6060df84 372 pte = pte_alloc_one_kernel(NULL, addr);
342cd0ab
CD
373 if (!pte) {
374 kvm_err("Cannot allocate Hyp pte\n");
375 return -ENOMEM;
376 }
377 pmd_populate_kernel(NULL, pmd, pte);
4f728276 378 get_page(virt_to_page(pmd));
5a677ce0 379 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
342cd0ab
CD
380 }
381
382 next = pmd_addr_end(addr, end);
383
6060df84
MZ
384 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
385 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 386 } while (addr = next, addr != end);
342cd0ab
CD
387
388 return 0;
389}
390
6060df84
MZ
391static int __create_hyp_mappings(pgd_t *pgdp,
392 unsigned long start, unsigned long end,
393 unsigned long pfn, pgprot_t prot)
342cd0ab 394{
342cd0ab
CD
395 pgd_t *pgd;
396 pud_t *pud;
397 pmd_t *pmd;
398 unsigned long addr, next;
399 int err = 0;
400
342cd0ab 401 mutex_lock(&kvm_hyp_pgd_mutex);
3562c76d
MZ
402 addr = start & PAGE_MASK;
403 end = PAGE_ALIGN(end);
404 do {
6060df84
MZ
405 pgd = pgdp + pgd_index(addr);
406 pud = pud_offset(pgd, addr);
342cd0ab
CD
407
408 if (pud_none_or_clear_bad(pud)) {
6060df84 409 pmd = pmd_alloc_one(NULL, addr);
342cd0ab
CD
410 if (!pmd) {
411 kvm_err("Cannot allocate Hyp pmd\n");
412 err = -ENOMEM;
413 goto out;
414 }
415 pud_populate(NULL, pud, pmd);
4f728276 416 get_page(virt_to_page(pud));
5a677ce0 417 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
342cd0ab
CD
418 }
419
420 next = pgd_addr_end(addr, end);
6060df84 421 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
342cd0ab
CD
422 if (err)
423 goto out;
6060df84 424 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 425 } while (addr = next, addr != end);
342cd0ab
CD
426out:
427 mutex_unlock(&kvm_hyp_pgd_mutex);
428 return err;
429}
430
40c2729b
CD
431static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
432{
433 if (!is_vmalloc_addr(kaddr)) {
434 BUG_ON(!virt_addr_valid(kaddr));
435 return __pa(kaddr);
436 } else {
437 return page_to_phys(vmalloc_to_page(kaddr)) +
438 offset_in_page(kaddr);
439 }
440}
441
342cd0ab 442/**
06e8c3b0 443 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
342cd0ab
CD
444 * @from: The virtual kernel start address of the range
445 * @to: The virtual kernel end address of the range (exclusive)
446 *
06e8c3b0
MZ
447 * The same virtual address as the kernel virtual address is also used
448 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
449 * physical pages.
342cd0ab
CD
450 */
451int create_hyp_mappings(void *from, void *to)
452{
40c2729b
CD
453 phys_addr_t phys_addr;
454 unsigned long virt_addr;
6060df84
MZ
455 unsigned long start = KERN_TO_HYP((unsigned long)from);
456 unsigned long end = KERN_TO_HYP((unsigned long)to);
457
40c2729b
CD
458 start = start & PAGE_MASK;
459 end = PAGE_ALIGN(end);
6060df84 460
40c2729b
CD
461 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
462 int err;
6060df84 463
40c2729b
CD
464 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
465 err = __create_hyp_mappings(hyp_pgd, virt_addr,
466 virt_addr + PAGE_SIZE,
467 __phys_to_pfn(phys_addr),
468 PAGE_HYP);
469 if (err)
470 return err;
471 }
472
473 return 0;
342cd0ab
CD
474}
475
476/**
06e8c3b0
MZ
477 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
478 * @from: The kernel start VA of the range
479 * @to: The kernel end VA of the range (exclusive)
6060df84 480 * @phys_addr: The physical start address which gets mapped
06e8c3b0
MZ
481 *
482 * The resulting HYP VA is the same as the kernel VA, modulo
483 * HYP_PAGE_OFFSET.
342cd0ab 484 */
6060df84 485int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
342cd0ab 486{
6060df84
MZ
487 unsigned long start = KERN_TO_HYP((unsigned long)from);
488 unsigned long end = KERN_TO_HYP((unsigned long)to);
489
490 /* Check for a valid kernel IO mapping */
491 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
492 return -EINVAL;
493
494 return __create_hyp_mappings(hyp_pgd, start, end,
495 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
342cd0ab
CD
496}
497
d5d8184d
CD
498/**
499 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
500 * @kvm: The KVM struct pointer for the VM.
501 *
502 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
503 * support either full 40-bit input addresses or limited to 32-bit input
504 * addresses). Clears the allocated pages.
505 *
506 * Note we don't need locking here as this is only called when the VM is
507 * created, which can only be done once.
508 */
509int kvm_alloc_stage2_pgd(struct kvm *kvm)
510{
511 pgd_t *pgd;
512
513 if (kvm->arch.pgd != NULL) {
514 kvm_err("kvm_arch already initialized?\n");
515 return -EINVAL;
516 }
517
518 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
519 if (!pgd)
520 return -ENOMEM;
521
d5d8184d 522 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
c62ee2b2 523 kvm_clean_pgd(pgd);
d5d8184d
CD
524 kvm->arch.pgd = pgd;
525
526 return 0;
527}
528
d5d8184d
CD
529/**
530 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
531 * @kvm: The VM pointer
532 * @start: The intermediate physical base address of the range to unmap
533 * @size: The size of the area to unmap
534 *
535 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
536 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
537 * destroying the VM), otherwise another faulting VCPU may come in and mess
538 * with things behind our backs.
539 */
540static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
541{
d4cb9df5 542 unmap_range(kvm, kvm->arch.pgd, start, size);
d5d8184d
CD
543}
544
545/**
546 * kvm_free_stage2_pgd - free all stage-2 tables
547 * @kvm: The KVM struct pointer for the VM.
548 *
549 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
550 * underlying level-2 and level-3 tables before freeing the actual level-1 table
551 * and setting the struct pointer to NULL.
552 *
553 * Note we don't need locking here as this is only called when the VM is
554 * destroyed, which can only be done once.
555 */
556void kvm_free_stage2_pgd(struct kvm *kvm)
557{
558 if (kvm->arch.pgd == NULL)
559 return;
560
561 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
562 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
563 kvm->arch.pgd = NULL;
564}
565
ad361f09
CD
566static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
567 phys_addr_t addr)
d5d8184d
CD
568{
569 pgd_t *pgd;
570 pud_t *pud;
571 pmd_t *pmd;
d5d8184d 572
d5d8184d
CD
573 pgd = kvm->arch.pgd + pgd_index(addr);
574 pud = pud_offset(pgd, addr);
575 if (pud_none(*pud)) {
576 if (!cache)
ad361f09 577 return NULL;
d5d8184d
CD
578 pmd = mmu_memory_cache_alloc(cache);
579 pud_populate(NULL, pud, pmd);
d5d8184d 580 get_page(virt_to_page(pud));
c62ee2b2
MZ
581 }
582
ad361f09
CD
583 return pmd_offset(pud, addr);
584}
585
586static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
587 *cache, phys_addr_t addr, const pmd_t *new_pmd)
588{
589 pmd_t *pmd, old_pmd;
590
591 pmd = stage2_get_pmd(kvm, cache, addr);
592 VM_BUG_ON(!pmd);
d5d8184d 593
ad361f09
CD
594 /*
595 * Mapping in huge pages should only happen through a fault. If a
596 * page is merged into a transparent huge page, the individual
597 * subpages of that huge page should be unmapped through MMU
598 * notifiers before we get here.
599 *
600 * Merging of CompoundPages is not supported; they should become
601 * splitting first, unmapped, merged, and mapped back in on-demand.
602 */
603 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
604
605 old_pmd = *pmd;
606 kvm_set_pmd(pmd, *new_pmd);
607 if (pmd_present(old_pmd))
608 kvm_tlb_flush_vmid_ipa(kvm, addr);
609 else
610 get_page(virt_to_page(pmd));
611 return 0;
612}
613
614static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
615 phys_addr_t addr, const pte_t *new_pte, bool iomap)
616{
617 pmd_t *pmd;
618 pte_t *pte, old_pte;
619
620 /* Create stage-2 page table mapping - Level 1 */
621 pmd = stage2_get_pmd(kvm, cache, addr);
622 if (!pmd) {
623 /*
624 * Ignore calls from kvm_set_spte_hva for unallocated
625 * address ranges.
626 */
627 return 0;
628 }
629
630 /* Create stage-2 page mappings - Level 2 */
d5d8184d
CD
631 if (pmd_none(*pmd)) {
632 if (!cache)
633 return 0; /* ignore calls from kvm_set_spte_hva */
634 pte = mmu_memory_cache_alloc(cache);
c62ee2b2 635 kvm_clean_pte(pte);
d5d8184d 636 pmd_populate_kernel(NULL, pmd, pte);
d5d8184d 637 get_page(virt_to_page(pmd));
c62ee2b2
MZ
638 }
639
640 pte = pte_offset_kernel(pmd, addr);
d5d8184d
CD
641
642 if (iomap && pte_present(*pte))
643 return -EFAULT;
644
645 /* Create 2nd stage page table mapping - Level 3 */
646 old_pte = *pte;
647 kvm_set_pte(pte, *new_pte);
648 if (pte_present(old_pte))
48762767 649 kvm_tlb_flush_vmid_ipa(kvm, addr);
d5d8184d
CD
650 else
651 get_page(virt_to_page(pte));
652
653 return 0;
654}
655
656/**
657 * kvm_phys_addr_ioremap - map a device range to guest IPA
658 *
659 * @kvm: The KVM pointer
660 * @guest_ipa: The IPA at which to insert the mapping
661 * @pa: The physical address of the device
662 * @size: The size of the mapping
663 */
664int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
665 phys_addr_t pa, unsigned long size)
666{
667 phys_addr_t addr, end;
668 int ret = 0;
669 unsigned long pfn;
670 struct kvm_mmu_memory_cache cache = { 0, };
671
672 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
673 pfn = __phys_to_pfn(pa);
674
675 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
c62ee2b2 676 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
d5d8184d
CD
677
678 ret = mmu_topup_memory_cache(&cache, 2, 2);
679 if (ret)
680 goto out;
681 spin_lock(&kvm->mmu_lock);
682 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
683 spin_unlock(&kvm->mmu_lock);
684 if (ret)
685 goto out;
686
687 pfn++;
688 }
689
690out:
691 mmu_free_memory_cache(&cache);
692 return ret;
693}
694
9b5fdb97
CD
695static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
696{
697 pfn_t pfn = *pfnp;
698 gfn_t gfn = *ipap >> PAGE_SHIFT;
699
700 if (PageTransCompound(pfn_to_page(pfn))) {
701 unsigned long mask;
702 /*
703 * The address we faulted on is backed by a transparent huge
704 * page. However, because we map the compound huge page and
705 * not the individual tail page, we need to transfer the
706 * refcount to the head page. We have to be careful that the
707 * THP doesn't start to split while we are adjusting the
708 * refcounts.
709 *
710 * We are sure this doesn't happen, because mmu_notifier_retry
711 * was successful and we are holding the mmu_lock, so if this
712 * THP is trying to split, it will be blocked in the mmu
713 * notifier before touching any of the pages, specifically
714 * before being able to call __split_huge_page_refcount().
715 *
716 * We can therefore safely transfer the refcount from PG_tail
717 * to PG_head and switch the pfn from a tail page to the head
718 * page accordingly.
719 */
720 mask = PTRS_PER_PMD - 1;
721 VM_BUG_ON((gfn & mask) != (pfn & mask));
722 if (pfn & mask) {
723 *ipap &= PMD_MASK;
724 kvm_release_pfn_clean(pfn);
725 pfn &= ~mask;
726 kvm_get_pfn(pfn);
727 *pfnp = pfn;
728 }
729
730 return true;
731 }
732
733 return false;
734}
735
94f8e641 736static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
ad361f09 737 struct kvm_memory_slot *memslot,
94f8e641
CD
738 unsigned long fault_status)
739{
94f8e641 740 int ret;
9b5fdb97 741 bool write_fault, writable, hugetlb = false, force_pte = false;
94f8e641 742 unsigned long mmu_seq;
ad361f09
CD
743 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
744 unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
745 struct kvm *kvm = vcpu->kvm;
94f8e641 746 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
ad361f09
CD
747 struct vm_area_struct *vma;
748 pfn_t pfn;
94f8e641 749
7393b599 750 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
94f8e641
CD
751 if (fault_status == FSC_PERM && !write_fault) {
752 kvm_err("Unexpected L2 read permission error\n");
753 return -EFAULT;
754 }
755
ad361f09
CD
756 /* Let's check if we will get back a huge page backed by hugetlbfs */
757 down_read(&current->mm->mmap_sem);
758 vma = find_vma_intersection(current->mm, hva, hva + 1);
759 if (is_vm_hugetlb_page(vma)) {
760 hugetlb = true;
761 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
9b5fdb97
CD
762 } else {
763 /*
136d737f
MZ
764 * Pages belonging to memslots that don't have the same
765 * alignment for userspace and IPA cannot be mapped using
766 * block descriptors even if the pages belong to a THP for
767 * the process, because the stage-2 block descriptor will
768 * cover more than a single THP and we loose atomicity for
769 * unmapping, updates, and splits of the THP or other pages
770 * in the stage-2 block range.
9b5fdb97 771 */
136d737f
MZ
772 if ((memslot->userspace_addr & ~PMD_MASK) !=
773 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
9b5fdb97 774 force_pte = true;
ad361f09
CD
775 }
776 up_read(&current->mm->mmap_sem);
777
94f8e641
CD
778 /* We need minimum second+third level pages */
779 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
780 if (ret)
781 return ret;
782
783 mmu_seq = vcpu->kvm->mmu_notifier_seq;
784 /*
785 * Ensure the read of mmu_notifier_seq happens before we call
786 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
787 * the page we just got a reference to gets unmapped before we have a
788 * chance to grab the mmu_lock, which ensure that if the page gets
789 * unmapped afterwards, the call to kvm_unmap_hva will take it away
790 * from us again properly. This smp_rmb() interacts with the smp_wmb()
791 * in kvm_mmu_notifier_invalidate_<page|range_end>.
792 */
793 smp_rmb();
794
ad361f09 795 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
94f8e641
CD
796 if (is_error_pfn(pfn))
797 return -EFAULT;
798
ad361f09
CD
799 spin_lock(&kvm->mmu_lock);
800 if (mmu_notifier_retry(kvm, mmu_seq))
94f8e641 801 goto out_unlock;
9b5fdb97
CD
802 if (!hugetlb && !force_pte)
803 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
ad361f09
CD
804
805 if (hugetlb) {
806 pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
807 new_pmd = pmd_mkhuge(new_pmd);
808 if (writable) {
809 kvm_set_s2pmd_writable(&new_pmd);
810 kvm_set_pfn_dirty(pfn);
811 }
2d58b733 812 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
ad361f09
CD
813 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
814 } else {
815 pte_t new_pte = pfn_pte(pfn, PAGE_S2);
816 if (writable) {
817 kvm_set_s2pte_writable(&new_pte);
818 kvm_set_pfn_dirty(pfn);
819 }
2d58b733 820 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
ad361f09 821 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false);
94f8e641 822 }
ad361f09 823
94f8e641
CD
824
825out_unlock:
ad361f09 826 spin_unlock(&kvm->mmu_lock);
94f8e641 827 kvm_release_pfn_clean(pfn);
ad361f09 828 return ret;
94f8e641
CD
829}
830
831/**
832 * kvm_handle_guest_abort - handles all 2nd stage aborts
833 * @vcpu: the VCPU pointer
834 * @run: the kvm_run structure
835 *
836 * Any abort that gets to the host is almost guaranteed to be caused by a
837 * missing second stage translation table entry, which can mean that either the
838 * guest simply needs more memory and we must allocate an appropriate page or it
839 * can mean that the guest tried to access I/O memory, which is emulated by user
840 * space. The distinction is based on the IPA causing the fault and whether this
841 * memory region has been registered as standard RAM by user space.
842 */
342cd0ab
CD
843int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
844{
94f8e641
CD
845 unsigned long fault_status;
846 phys_addr_t fault_ipa;
847 struct kvm_memory_slot *memslot;
848 bool is_iabt;
849 gfn_t gfn;
850 int ret, idx;
851
52d1dba9 852 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
7393b599 853 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
94f8e641 854
7393b599
MZ
855 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
856 kvm_vcpu_get_hfar(vcpu), fault_ipa);
94f8e641
CD
857
858 /* Check the stage-2 fault is trans. fault or write fault */
1cc287dd 859 fault_status = kvm_vcpu_trap_get_fault(vcpu);
94f8e641 860 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
52d1dba9
MZ
861 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
862 kvm_vcpu_trap_get_class(vcpu), fault_status);
94f8e641
CD
863 return -EFAULT;
864 }
865
866 idx = srcu_read_lock(&vcpu->kvm->srcu);
867
868 gfn = fault_ipa >> PAGE_SHIFT;
869 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
870 if (is_iabt) {
871 /* Prefetch Abort on I/O address */
7393b599 872 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
94f8e641
CD
873 ret = 1;
874 goto out_unlock;
875 }
876
877 if (fault_status != FSC_FAULT) {
878 kvm_err("Unsupported fault status on io memory: %#lx\n",
879 fault_status);
880 ret = -EFAULT;
881 goto out_unlock;
882 }
883
cfe3950c
MZ
884 /*
885 * The IPA is reported as [MAX:12], so we need to
886 * complement it with the bottom 12 bits from the
887 * faulting VA. This is always 12 bits, irrespective
888 * of the page size.
889 */
890 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
45e96ea6 891 ret = io_mem_abort(vcpu, run, fault_ipa);
94f8e641
CD
892 goto out_unlock;
893 }
894
895 memslot = gfn_to_memslot(vcpu->kvm, gfn);
94f8e641 896
ad361f09 897 ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
94f8e641
CD
898 if (ret == 0)
899 ret = 1;
900out_unlock:
901 srcu_read_unlock(&vcpu->kvm->srcu, idx);
902 return ret;
342cd0ab
CD
903}
904
d5d8184d
CD
905static void handle_hva_to_gpa(struct kvm *kvm,
906 unsigned long start,
907 unsigned long end,
908 void (*handler)(struct kvm *kvm,
909 gpa_t gpa, void *data),
910 void *data)
911{
912 struct kvm_memslots *slots;
913 struct kvm_memory_slot *memslot;
914
915 slots = kvm_memslots(kvm);
916
917 /* we only care about the pages that the guest sees */
918 kvm_for_each_memslot(memslot, slots) {
919 unsigned long hva_start, hva_end;
920 gfn_t gfn, gfn_end;
921
922 hva_start = max(start, memslot->userspace_addr);
923 hva_end = min(end, memslot->userspace_addr +
924 (memslot->npages << PAGE_SHIFT));
925 if (hva_start >= hva_end)
926 continue;
927
928 /*
929 * {gfn(page) | page intersects with [hva_start, hva_end)} =
930 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
931 */
932 gfn = hva_to_gfn_memslot(hva_start, memslot);
933 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
934
935 for (; gfn < gfn_end; ++gfn) {
936 gpa_t gpa = gfn << PAGE_SHIFT;
937 handler(kvm, gpa, data);
938 }
939 }
940}
941
942static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
943{
944 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
d5d8184d
CD
945}
946
947int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
948{
949 unsigned long end = hva + PAGE_SIZE;
950
951 if (!kvm->arch.pgd)
952 return 0;
953
954 trace_kvm_unmap_hva(hva);
955 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
956 return 0;
957}
958
959int kvm_unmap_hva_range(struct kvm *kvm,
960 unsigned long start, unsigned long end)
961{
962 if (!kvm->arch.pgd)
963 return 0;
964
965 trace_kvm_unmap_hva_range(start, end);
966 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
967 return 0;
968}
969
970static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
971{
972 pte_t *pte = (pte_t *)data;
973
974 stage2_set_pte(kvm, NULL, gpa, pte, false);
975}
976
977
978void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
979{
980 unsigned long end = hva + PAGE_SIZE;
981 pte_t stage2_pte;
982
983 if (!kvm->arch.pgd)
984 return;
985
986 trace_kvm_set_spte_hva(hva);
987 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
988 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
989}
990
991void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
992{
993 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
994}
995
342cd0ab
CD
996phys_addr_t kvm_mmu_get_httbr(void)
997{
342cd0ab
CD
998 return virt_to_phys(hyp_pgd);
999}
1000
5a677ce0
MZ
1001phys_addr_t kvm_mmu_get_boot_httbr(void)
1002{
1003 return virt_to_phys(boot_hyp_pgd);
1004}
1005
1006phys_addr_t kvm_get_idmap_vector(void)
1007{
1008 return hyp_idmap_vector;
1009}
1010
342cd0ab
CD
1011int kvm_mmu_init(void)
1012{
2fb41059
MZ
1013 int err;
1014
4fda342c
SS
1015 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1016 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1017 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
5a677ce0
MZ
1018
1019 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1020 /*
1021 * Our init code is crossing a page boundary. Allocate
1022 * a bounce page, copy the code over and use that.
1023 */
1024 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1025 phys_addr_t phys_base;
1026
1027 init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
1028 if (!init_bounce_page) {
1029 kvm_err("Couldn't allocate HYP init bounce page\n");
1030 err = -ENOMEM;
1031 goto out;
1032 }
1033
1034 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1035 /*
1036 * Warning: the code we just copied to the bounce page
1037 * must be flushed to the point of coherency.
1038 * Otherwise, the data may be sitting in L2, and HYP
1039 * mode won't be able to observe it as it runs with
1040 * caches off at that point.
1041 */
1042 kvm_flush_dcache_to_poc(init_bounce_page, len);
1043
4fda342c 1044 phys_base = kvm_virt_to_phys(init_bounce_page);
5a677ce0
MZ
1045 hyp_idmap_vector += phys_base - hyp_idmap_start;
1046 hyp_idmap_start = phys_base;
1047 hyp_idmap_end = phys_base + len;
1048
1049 kvm_info("Using HYP init bounce page @%lx\n",
1050 (unsigned long)phys_base);
1051 }
1052
2fb41059 1053 hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
5a677ce0
MZ
1054 boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
1055 if (!hyp_pgd || !boot_hyp_pgd) {
d5d8184d 1056 kvm_err("Hyp mode PGD not allocated\n");
2fb41059
MZ
1057 err = -ENOMEM;
1058 goto out;
1059 }
1060
1061 /* Create the idmap in the boot page tables */
1062 err = __create_hyp_mappings(boot_hyp_pgd,
1063 hyp_idmap_start, hyp_idmap_end,
1064 __phys_to_pfn(hyp_idmap_start),
1065 PAGE_HYP);
1066
1067 if (err) {
1068 kvm_err("Failed to idmap %lx-%lx\n",
1069 hyp_idmap_start, hyp_idmap_end);
1070 goto out;
d5d8184d
CD
1071 }
1072
5a677ce0
MZ
1073 /* Map the very same page at the trampoline VA */
1074 err = __create_hyp_mappings(boot_hyp_pgd,
1075 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1076 __phys_to_pfn(hyp_idmap_start),
1077 PAGE_HYP);
1078 if (err) {
1079 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1080 TRAMPOLINE_VA);
1081 goto out;
1082 }
1083
1084 /* Map the same page again into the runtime page tables */
1085 err = __create_hyp_mappings(hyp_pgd,
1086 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1087 __phys_to_pfn(hyp_idmap_start),
1088 PAGE_HYP);
1089 if (err) {
1090 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1091 TRAMPOLINE_VA);
1092 goto out;
1093 }
1094
d5d8184d 1095 return 0;
2fb41059 1096out:
4f728276 1097 free_hyp_pgds();
2fb41059 1098 return err;
342cd0ab 1099}
This page took 0.124212 seconds and 5 git commands to generate.