Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
623eefa8 23#include <linux/bsearch.h>
7c8c5e6a 24#include <linux/kvm_host.h>
c6d01a94 25#include <linux/mm.h>
7c8c5e6a 26#include <linux/uaccess.h>
c6d01a94 27
7c8c5e6a
MZ
28#include <asm/cacheflush.h>
29#include <asm/cputype.h>
0c557ed4 30#include <asm/debug-monitors.h>
c6d01a94
MR
31#include <asm/esr.h>
32#include <asm/kvm_arm.h>
9d8415d6 33#include <asm/kvm_asm.h>
c6d01a94
MR
34#include <asm/kvm_coproc.h>
35#include <asm/kvm_emulate.h>
36#include <asm/kvm_host.h>
37#include <asm/kvm_mmu.h>
ab946834 38#include <asm/perf_event.h>
1f3d8699 39#include <asm/sysreg.h>
c6d01a94 40
7c8c5e6a
MZ
41#include <trace/events/kvm.h>
42
43#include "sys_regs.h"
44
eef8c85a
AB
45#include "trace.h"
46
7c8c5e6a
MZ
47/*
48 * All of this file is extremly similar to the ARM coproc.c, but the
49 * types are different. My gut feeling is that it should be pretty
50 * easy to merge, but that would be an ABI breakage -- again. VFP
51 * would also need to be abstracted.
62a89c44
MZ
52 *
53 * For AArch32, we only take care of what is being trapped. Anything
54 * that has to do with init and userspace access has to go via the
55 * 64bit interface.
7c8c5e6a
MZ
56 */
57
58/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
59static u32 cache_levels;
60
61/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
62#define CSSELR_MAX 12
63
64/* Which cache CCSIDR represents depends on CSSELR value. */
65static u32 get_ccsidr(u32 csselr)
66{
67 u32 ccsidr;
68
69 /* Make sure noone else changes CSSELR during this! */
70 local_irq_disable();
1f3d8699 71 write_sysreg(csselr, csselr_el1);
7c8c5e6a 72 isb();
1f3d8699 73 ccsidr = read_sysreg(ccsidr_el1);
7c8c5e6a
MZ
74 local_irq_enable();
75
76 return ccsidr;
77}
78
3c1e7165
MZ
79/*
80 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
81 */
7c8c5e6a 82static bool access_dcsw(struct kvm_vcpu *vcpu,
3fec037d 83 struct sys_reg_params *p,
7c8c5e6a
MZ
84 const struct sys_reg_desc *r)
85{
7c8c5e6a
MZ
86 if (!p->is_write)
87 return read_from_write_only(vcpu, p);
88
3c1e7165 89 kvm_set_way_flush(vcpu);
7c8c5e6a
MZ
90 return true;
91}
92
4d44923b
MZ
93/*
94 * Generic accessor for VM registers. Only called as long as HCR_TVM
3c1e7165
MZ
95 * is set. If the guest enables the MMU, we stop trapping the VM
96 * sys_regs and leave it in complete control of the caches.
4d44923b
MZ
97 */
98static bool access_vm_reg(struct kvm_vcpu *vcpu,
3fec037d 99 struct sys_reg_params *p,
4d44923b
MZ
100 const struct sys_reg_desc *r)
101{
3c1e7165 102 bool was_enabled = vcpu_has_cache_enabled(vcpu);
4d44923b
MZ
103
104 BUG_ON(!p->is_write);
105
dedf97e8 106 if (!p->is_aarch32) {
2ec5be3d 107 vcpu_sys_reg(vcpu, r->reg) = p->regval;
dedf97e8
MZ
108 } else {
109 if (!p->is_32bit)
2ec5be3d
PF
110 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
111 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
dedf97e8 112 }
f0a3eaff 113
3c1e7165 114 kvm_toggle_cache(vcpu, was_enabled);
4d44923b
MZ
115 return true;
116}
117
6d52f35a
AP
118/*
119 * Trap handler for the GICv3 SGI generation system register.
120 * Forward the request to the VGIC emulation.
121 * The cp15_64 code makes sure this automatically works
122 * for both AArch64 and AArch32 accesses.
123 */
124static bool access_gic_sgi(struct kvm_vcpu *vcpu,
3fec037d 125 struct sys_reg_params *p,
6d52f35a
AP
126 const struct sys_reg_desc *r)
127{
6d52f35a
AP
128 if (!p->is_write)
129 return read_from_write_only(vcpu, p);
130
2ec5be3d 131 vgic_v3_dispatch_sgi(vcpu, p->regval);
6d52f35a
AP
132
133 return true;
134}
135
b34f2bcb
MZ
136static bool access_gic_sre(struct kvm_vcpu *vcpu,
137 struct sys_reg_params *p,
138 const struct sys_reg_desc *r)
139{
140 if (p->is_write)
141 return ignore_write(vcpu, p);
142
143 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
144 return true;
145}
146
7609c125 147static bool trap_raz_wi(struct kvm_vcpu *vcpu,
3fec037d 148 struct sys_reg_params *p,
7609c125 149 const struct sys_reg_desc *r)
7c8c5e6a
MZ
150{
151 if (p->is_write)
152 return ignore_write(vcpu, p);
153 else
154 return read_zero(vcpu, p);
155}
156
0c557ed4 157static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
3fec037d 158 struct sys_reg_params *p,
0c557ed4
MZ
159 const struct sys_reg_desc *r)
160{
161 if (p->is_write) {
162 return ignore_write(vcpu, p);
163 } else {
2ec5be3d 164 p->regval = (1 << 3);
0c557ed4
MZ
165 return true;
166 }
167}
168
169static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
3fec037d 170 struct sys_reg_params *p,
0c557ed4
MZ
171 const struct sys_reg_desc *r)
172{
173 if (p->is_write) {
174 return ignore_write(vcpu, p);
175 } else {
1f3d8699 176 p->regval = read_sysreg(dbgauthstatus_el1);
0c557ed4
MZ
177 return true;
178 }
179}
180
181/*
182 * We want to avoid world-switching all the DBG registers all the
183 * time:
184 *
185 * - If we've touched any debug register, it is likely that we're
186 * going to touch more of them. It then makes sense to disable the
187 * traps and start doing the save/restore dance
188 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
189 * then mandatory to save/restore the registers, as the guest
190 * depends on them.
191 *
192 * For this, we use a DIRTY bit, indicating the guest has modified the
193 * debug registers, used as follow:
194 *
195 * On guest entry:
196 * - If the dirty bit is set (because we're coming back from trapping),
197 * disable the traps, save host registers, restore guest registers.
198 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
199 * set the dirty bit, disable the traps, save host registers,
200 * restore guest registers.
201 * - Otherwise, enable the traps
202 *
203 * On guest exit:
204 * - If the dirty bit is set, save guest registers, restore host
205 * registers and clear the dirty bit. This ensure that the host can
206 * now use the debug registers.
207 */
208static bool trap_debug_regs(struct kvm_vcpu *vcpu,
3fec037d 209 struct sys_reg_params *p,
0c557ed4
MZ
210 const struct sys_reg_desc *r)
211{
212 if (p->is_write) {
2ec5be3d 213 vcpu_sys_reg(vcpu, r->reg) = p->regval;
0c557ed4
MZ
214 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
215 } else {
2ec5be3d 216 p->regval = vcpu_sys_reg(vcpu, r->reg);
0c557ed4
MZ
217 }
218
2ec5be3d 219 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
eef8c85a 220
0c557ed4
MZ
221 return true;
222}
223
84e690bf
AB
224/*
225 * reg_to_dbg/dbg_to_reg
226 *
227 * A 32 bit write to a debug register leave top bits alone
228 * A 32 bit read from a debug register only returns the bottom bits
229 *
230 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
231 * hyp.S code switches between host and guest values in future.
232 */
281243cb
MZ
233static void reg_to_dbg(struct kvm_vcpu *vcpu,
234 struct sys_reg_params *p,
235 u64 *dbg_reg)
84e690bf 236{
2ec5be3d 237 u64 val = p->regval;
84e690bf
AB
238
239 if (p->is_32bit) {
240 val &= 0xffffffffUL;
241 val |= ((*dbg_reg >> 32) << 32);
242 }
243
244 *dbg_reg = val;
245 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
246}
247
281243cb
MZ
248static void dbg_to_reg(struct kvm_vcpu *vcpu,
249 struct sys_reg_params *p,
250 u64 *dbg_reg)
84e690bf 251{
2ec5be3d 252 p->regval = *dbg_reg;
84e690bf 253 if (p->is_32bit)
2ec5be3d 254 p->regval &= 0xffffffffUL;
84e690bf
AB
255}
256
281243cb
MZ
257static bool trap_bvr(struct kvm_vcpu *vcpu,
258 struct sys_reg_params *p,
259 const struct sys_reg_desc *rd)
84e690bf
AB
260{
261 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
262
263 if (p->is_write)
264 reg_to_dbg(vcpu, p, dbg_reg);
265 else
266 dbg_to_reg(vcpu, p, dbg_reg);
267
eef8c85a
AB
268 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
269
84e690bf
AB
270 return true;
271}
272
273static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
274 const struct kvm_one_reg *reg, void __user *uaddr)
275{
276 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
277
1713e5aa 278 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
279 return -EFAULT;
280 return 0;
281}
282
283static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
284 const struct kvm_one_reg *reg, void __user *uaddr)
285{
286 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
287
288 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
289 return -EFAULT;
290 return 0;
291}
292
281243cb
MZ
293static void reset_bvr(struct kvm_vcpu *vcpu,
294 const struct sys_reg_desc *rd)
84e690bf
AB
295{
296 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
297}
298
281243cb
MZ
299static bool trap_bcr(struct kvm_vcpu *vcpu,
300 struct sys_reg_params *p,
301 const struct sys_reg_desc *rd)
84e690bf
AB
302{
303 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
304
305 if (p->is_write)
306 reg_to_dbg(vcpu, p, dbg_reg);
307 else
308 dbg_to_reg(vcpu, p, dbg_reg);
309
eef8c85a
AB
310 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
311
84e690bf
AB
312 return true;
313}
314
315static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
316 const struct kvm_one_reg *reg, void __user *uaddr)
317{
318 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
319
1713e5aa 320 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
321 return -EFAULT;
322
323 return 0;
324}
325
326static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
327 const struct kvm_one_reg *reg, void __user *uaddr)
328{
329 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
330
331 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
332 return -EFAULT;
333 return 0;
334}
335
281243cb
MZ
336static void reset_bcr(struct kvm_vcpu *vcpu,
337 const struct sys_reg_desc *rd)
84e690bf
AB
338{
339 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
340}
341
281243cb
MZ
342static bool trap_wvr(struct kvm_vcpu *vcpu,
343 struct sys_reg_params *p,
344 const struct sys_reg_desc *rd)
84e690bf
AB
345{
346 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
347
348 if (p->is_write)
349 reg_to_dbg(vcpu, p, dbg_reg);
350 else
351 dbg_to_reg(vcpu, p, dbg_reg);
352
eef8c85a
AB
353 trace_trap_reg(__func__, rd->reg, p->is_write,
354 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
355
84e690bf
AB
356 return true;
357}
358
359static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
360 const struct kvm_one_reg *reg, void __user *uaddr)
361{
362 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
363
1713e5aa 364 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
365 return -EFAULT;
366 return 0;
367}
368
369static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
370 const struct kvm_one_reg *reg, void __user *uaddr)
371{
372 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
373
374 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
375 return -EFAULT;
376 return 0;
377}
378
281243cb
MZ
379static void reset_wvr(struct kvm_vcpu *vcpu,
380 const struct sys_reg_desc *rd)
84e690bf
AB
381{
382 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
383}
384
281243cb
MZ
385static bool trap_wcr(struct kvm_vcpu *vcpu,
386 struct sys_reg_params *p,
387 const struct sys_reg_desc *rd)
84e690bf
AB
388{
389 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
390
391 if (p->is_write)
392 reg_to_dbg(vcpu, p, dbg_reg);
393 else
394 dbg_to_reg(vcpu, p, dbg_reg);
395
eef8c85a
AB
396 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
397
84e690bf
AB
398 return true;
399}
400
401static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
402 const struct kvm_one_reg *reg, void __user *uaddr)
403{
404 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
405
1713e5aa 406 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
407 return -EFAULT;
408 return 0;
409}
410
411static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
412 const struct kvm_one_reg *reg, void __user *uaddr)
413{
414 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
415
416 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
417 return -EFAULT;
418 return 0;
419}
420
281243cb
MZ
421static void reset_wcr(struct kvm_vcpu *vcpu,
422 const struct sys_reg_desc *rd)
84e690bf
AB
423{
424 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
425}
426
7c8c5e6a
MZ
427static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
428{
1f3d8699 429 vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
7c8c5e6a
MZ
430}
431
432static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
433{
4429fc64
AP
434 u64 mpidr;
435
7c8c5e6a 436 /*
4429fc64
AP
437 * Map the vcpu_id into the first three affinity level fields of
438 * the MPIDR. We limit the number of VCPUs in level 0 due to a
439 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440 * of the GICv3 to be able to address each CPU directly when
441 * sending IPIs.
7c8c5e6a 442 */
4429fc64
AP
443 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
7c8c5e6a
MZ
447}
448
ab946834
SZ
449static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
450{
451 u64 pmcr, val;
452
1f3d8699
MR
453 pmcr = read_sysreg(pmcr_el0);
454 /*
455 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
ab946834
SZ
456 * except PMCR.E resetting to zero.
457 */
458 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
459 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
460 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
461}
462
d692b8ad
SZ
463static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
464{
465 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
466
467 return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
468}
469
470static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
471{
472 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
473
474 return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
475 || vcpu_mode_priv(vcpu));
476}
477
478static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
479{
480 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
481
482 return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
483 || vcpu_mode_priv(vcpu));
484}
485
486static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
487{
488 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
489
490 return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
491 || vcpu_mode_priv(vcpu));
492}
493
ab946834
SZ
494static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
495 const struct sys_reg_desc *r)
496{
497 u64 val;
498
499 if (!kvm_arm_pmu_v3_ready(vcpu))
500 return trap_raz_wi(vcpu, p, r);
501
d692b8ad
SZ
502 if (pmu_access_el0_disabled(vcpu))
503 return false;
504
ab946834
SZ
505 if (p->is_write) {
506 /* Only update writeable bits of PMCR */
507 val = vcpu_sys_reg(vcpu, PMCR_EL0);
508 val &= ~ARMV8_PMU_PMCR_MASK;
509 val |= p->regval & ARMV8_PMU_PMCR_MASK;
510 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
76993739 511 kvm_pmu_handle_pmcr(vcpu, val);
ab946834
SZ
512 } else {
513 /* PMCR.P & PMCR.C are RAZ */
514 val = vcpu_sys_reg(vcpu, PMCR_EL0)
515 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
516 p->regval = val;
517 }
518
519 return true;
520}
521
3965c3ce
SZ
522static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
523 const struct sys_reg_desc *r)
524{
525 if (!kvm_arm_pmu_v3_ready(vcpu))
526 return trap_raz_wi(vcpu, p, r);
527
d692b8ad
SZ
528 if (pmu_access_event_counter_el0_disabled(vcpu))
529 return false;
530
3965c3ce
SZ
531 if (p->is_write)
532 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
533 else
534 /* return PMSELR.SEL field */
535 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
536 & ARMV8_PMU_COUNTER_MASK;
537
538 return true;
539}
540
a86b5505
SZ
541static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
542 const struct sys_reg_desc *r)
543{
544 u64 pmceid;
545
546 if (!kvm_arm_pmu_v3_ready(vcpu))
547 return trap_raz_wi(vcpu, p, r);
548
549 BUG_ON(p->is_write);
550
d692b8ad
SZ
551 if (pmu_access_el0_disabled(vcpu))
552 return false;
553
a86b5505 554 if (!(p->Op2 & 1))
1f3d8699 555 pmceid = read_sysreg(pmceid0_el0);
a86b5505 556 else
1f3d8699 557 pmceid = read_sysreg(pmceid1_el0);
a86b5505
SZ
558
559 p->regval = pmceid;
560
561 return true;
562}
563
051ff581
SZ
564static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
565{
566 u64 pmcr, val;
567
568 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
569 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
570 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
571 return false;
572
573 return true;
574}
575
576static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
577 struct sys_reg_params *p,
578 const struct sys_reg_desc *r)
579{
580 u64 idx;
581
582 if (!kvm_arm_pmu_v3_ready(vcpu))
583 return trap_raz_wi(vcpu, p, r);
584
585 if (r->CRn == 9 && r->CRm == 13) {
586 if (r->Op2 == 2) {
587 /* PMXEVCNTR_EL0 */
d692b8ad
SZ
588 if (pmu_access_event_counter_el0_disabled(vcpu))
589 return false;
590
051ff581
SZ
591 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
592 & ARMV8_PMU_COUNTER_MASK;
593 } else if (r->Op2 == 0) {
594 /* PMCCNTR_EL0 */
d692b8ad
SZ
595 if (pmu_access_cycle_counter_el0_disabled(vcpu))
596 return false;
597
051ff581
SZ
598 idx = ARMV8_PMU_CYCLE_IDX;
599 } else {
600 BUG();
601 }
602 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
603 /* PMEVCNTRn_EL0 */
d692b8ad
SZ
604 if (pmu_access_event_counter_el0_disabled(vcpu))
605 return false;
606
051ff581
SZ
607 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
608 } else {
609 BUG();
610 }
611
612 if (!pmu_counter_idx_valid(vcpu, idx))
613 return false;
614
d692b8ad
SZ
615 if (p->is_write) {
616 if (pmu_access_el0_disabled(vcpu))
617 return false;
618
051ff581 619 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
d692b8ad 620 } else {
051ff581 621 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
d692b8ad 622 }
051ff581
SZ
623
624 return true;
625}
626
9feb21ac
SZ
627static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
628 const struct sys_reg_desc *r)
629{
630 u64 idx, reg;
631
632 if (!kvm_arm_pmu_v3_ready(vcpu))
633 return trap_raz_wi(vcpu, p, r);
634
d692b8ad
SZ
635 if (pmu_access_el0_disabled(vcpu))
636 return false;
637
9feb21ac
SZ
638 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
639 /* PMXEVTYPER_EL0 */
640 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
641 reg = PMEVTYPER0_EL0 + idx;
642 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
643 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
644 if (idx == ARMV8_PMU_CYCLE_IDX)
645 reg = PMCCFILTR_EL0;
646 else
647 /* PMEVTYPERn_EL0 */
648 reg = PMEVTYPER0_EL0 + idx;
649 } else {
650 BUG();
651 }
652
653 if (!pmu_counter_idx_valid(vcpu, idx))
654 return false;
655
656 if (p->is_write) {
657 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
658 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
659 } else {
660 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
661 }
662
663 return true;
664}
665
96b0eebc
SZ
666static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
667 const struct sys_reg_desc *r)
668{
669 u64 val, mask;
670
671 if (!kvm_arm_pmu_v3_ready(vcpu))
672 return trap_raz_wi(vcpu, p, r);
673
d692b8ad
SZ
674 if (pmu_access_el0_disabled(vcpu))
675 return false;
676
96b0eebc
SZ
677 mask = kvm_pmu_valid_counter_mask(vcpu);
678 if (p->is_write) {
679 val = p->regval & mask;
680 if (r->Op2 & 0x1) {
681 /* accessing PMCNTENSET_EL0 */
682 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
683 kvm_pmu_enable_counter(vcpu, val);
684 } else {
685 /* accessing PMCNTENCLR_EL0 */
686 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
687 kvm_pmu_disable_counter(vcpu, val);
688 }
689 } else {
690 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
691 }
692
693 return true;
694}
695
9db52c78
SZ
696static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
697 const struct sys_reg_desc *r)
698{
699 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
700
701 if (!kvm_arm_pmu_v3_ready(vcpu))
702 return trap_raz_wi(vcpu, p, r);
703
d692b8ad
SZ
704 if (!vcpu_mode_priv(vcpu))
705 return false;
706
9db52c78
SZ
707 if (p->is_write) {
708 u64 val = p->regval & mask;
709
710 if (r->Op2 & 0x1)
711 /* accessing PMINTENSET_EL1 */
712 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
713 else
714 /* accessing PMINTENCLR_EL1 */
715 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
716 } else {
717 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
718 }
719
720 return true;
721}
722
76d883c4
SZ
723static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
724 const struct sys_reg_desc *r)
725{
726 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
727
728 if (!kvm_arm_pmu_v3_ready(vcpu))
729 return trap_raz_wi(vcpu, p, r);
730
d692b8ad
SZ
731 if (pmu_access_el0_disabled(vcpu))
732 return false;
733
76d883c4
SZ
734 if (p->is_write) {
735 if (r->CRm & 0x2)
736 /* accessing PMOVSSET_EL0 */
737 kvm_pmu_overflow_set(vcpu, p->regval & mask);
738 else
739 /* accessing PMOVSCLR_EL0 */
740 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
741 } else {
742 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
743 }
744
745 return true;
746}
747
7a0adc70
SZ
748static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
749 const struct sys_reg_desc *r)
750{
751 u64 mask;
752
753 if (!kvm_arm_pmu_v3_ready(vcpu))
754 return trap_raz_wi(vcpu, p, r);
755
d692b8ad
SZ
756 if (pmu_write_swinc_el0_disabled(vcpu))
757 return false;
758
7a0adc70
SZ
759 if (p->is_write) {
760 mask = kvm_pmu_valid_counter_mask(vcpu);
761 kvm_pmu_software_increment(vcpu, p->regval & mask);
762 return true;
763 }
764
765 return false;
766}
767
d692b8ad
SZ
768static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
769 const struct sys_reg_desc *r)
770{
771 if (!kvm_arm_pmu_v3_ready(vcpu))
772 return trap_raz_wi(vcpu, p, r);
773
774 if (p->is_write) {
775 if (!vcpu_mode_priv(vcpu))
776 return false;
777
778 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
779 & ARMV8_PMU_USERENR_MASK;
780 } else {
781 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
782 & ARMV8_PMU_USERENR_MASK;
783 }
784
785 return true;
786}
787
0c557ed4
MZ
788/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
789#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
790 /* DBGBVRn_EL1 */ \
791 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
84e690bf 792 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
0c557ed4
MZ
793 /* DBGBCRn_EL1 */ \
794 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
84e690bf 795 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
0c557ed4
MZ
796 /* DBGWVRn_EL1 */ \
797 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
84e690bf 798 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
0c557ed4
MZ
799 /* DBGWCRn_EL1 */ \
800 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
84e690bf 801 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
0c557ed4 802
051ff581
SZ
803/* Macro to expand the PMEVCNTRn_EL0 register */
804#define PMU_PMEVCNTR_EL0(n) \
805 /* PMEVCNTRn_EL0 */ \
806 { Op0(0b11), Op1(0b011), CRn(0b1110), \
807 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
808 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
809
9feb21ac
SZ
810/* Macro to expand the PMEVTYPERn_EL0 register */
811#define PMU_PMEVTYPER_EL0(n) \
812 /* PMEVTYPERn_EL0 */ \
813 { Op0(0b11), Op1(0b011), CRn(0b1110), \
814 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
815 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
816
7c8c5e6a
MZ
817/*
818 * Architected system registers.
819 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
7609c125 820 *
0c557ed4
MZ
821 * Debug handling: We do trap most, if not all debug related system
822 * registers. The implementation is good enough to ensure that a guest
823 * can use these with minimal performance degradation. The drawback is
824 * that we don't implement any of the external debug, none of the
825 * OSlock protocol. This should be revisited if we ever encounter a
826 * more demanding guest...
7c8c5e6a
MZ
827 */
828static const struct sys_reg_desc sys_reg_descs[] = {
829 /* DC ISW */
830 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
831 access_dcsw },
832 /* DC CSW */
833 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
834 access_dcsw },
835 /* DC CISW */
836 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
837 access_dcsw },
838
0c557ed4
MZ
839 DBG_BCR_BVR_WCR_WVR_EL1(0),
840 DBG_BCR_BVR_WCR_WVR_EL1(1),
841 /* MDCCINT_EL1 */
842 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
843 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
844 /* MDSCR_EL1 */
845 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
846 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
847 DBG_BCR_BVR_WCR_WVR_EL1(2),
848 DBG_BCR_BVR_WCR_WVR_EL1(3),
849 DBG_BCR_BVR_WCR_WVR_EL1(4),
850 DBG_BCR_BVR_WCR_WVR_EL1(5),
851 DBG_BCR_BVR_WCR_WVR_EL1(6),
852 DBG_BCR_BVR_WCR_WVR_EL1(7),
853 DBG_BCR_BVR_WCR_WVR_EL1(8),
854 DBG_BCR_BVR_WCR_WVR_EL1(9),
855 DBG_BCR_BVR_WCR_WVR_EL1(10),
856 DBG_BCR_BVR_WCR_WVR_EL1(11),
857 DBG_BCR_BVR_WCR_WVR_EL1(12),
858 DBG_BCR_BVR_WCR_WVR_EL1(13),
859 DBG_BCR_BVR_WCR_WVR_EL1(14),
860 DBG_BCR_BVR_WCR_WVR_EL1(15),
861
862 /* MDRAR_EL1 */
863 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
864 trap_raz_wi },
865 /* OSLAR_EL1 */
866 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
867 trap_raz_wi },
868 /* OSLSR_EL1 */
869 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
870 trap_oslsr_el1 },
871 /* OSDLR_EL1 */
872 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
873 trap_raz_wi },
874 /* DBGPRCR_EL1 */
875 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
876 trap_raz_wi },
877 /* DBGCLAIMSET_EL1 */
878 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
879 trap_raz_wi },
880 /* DBGCLAIMCLR_EL1 */
881 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
882 trap_raz_wi },
883 /* DBGAUTHSTATUS_EL1 */
884 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
885 trap_dbgauthstatus_el1 },
886
0c557ed4
MZ
887 /* MDCCSR_EL1 */
888 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
889 trap_raz_wi },
890 /* DBGDTR_EL0 */
891 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
892 trap_raz_wi },
893 /* DBGDTR[TR]X_EL0 */
894 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
895 trap_raz_wi },
896
62a89c44
MZ
897 /* DBGVCR32_EL2 */
898 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
899 NULL, reset_val, DBGVCR32_EL2, 0 },
900
7c8c5e6a
MZ
901 /* MPIDR_EL1 */
902 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
903 NULL, reset_mpidr, MPIDR_EL1 },
904 /* SCTLR_EL1 */
905 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
3c1e7165 906 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
7c8c5e6a
MZ
907 /* CPACR_EL1 */
908 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
909 NULL, reset_val, CPACR_EL1, 0 },
910 /* TTBR0_EL1 */
911 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
4d44923b 912 access_vm_reg, reset_unknown, TTBR0_EL1 },
7c8c5e6a
MZ
913 /* TTBR1_EL1 */
914 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
4d44923b 915 access_vm_reg, reset_unknown, TTBR1_EL1 },
7c8c5e6a
MZ
916 /* TCR_EL1 */
917 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
4d44923b 918 access_vm_reg, reset_val, TCR_EL1, 0 },
7c8c5e6a
MZ
919
920 /* AFSR0_EL1 */
921 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
4d44923b 922 access_vm_reg, reset_unknown, AFSR0_EL1 },
7c8c5e6a
MZ
923 /* AFSR1_EL1 */
924 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
4d44923b 925 access_vm_reg, reset_unknown, AFSR1_EL1 },
7c8c5e6a
MZ
926 /* ESR_EL1 */
927 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
4d44923b 928 access_vm_reg, reset_unknown, ESR_EL1 },
7c8c5e6a
MZ
929 /* FAR_EL1 */
930 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
4d44923b 931 access_vm_reg, reset_unknown, FAR_EL1 },
1bbd8054
MZ
932 /* PAR_EL1 */
933 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
934 NULL, reset_unknown, PAR_EL1 },
7c8c5e6a
MZ
935
936 /* PMINTENSET_EL1 */
937 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
9db52c78 938 access_pminten, reset_unknown, PMINTENSET_EL1 },
7c8c5e6a
MZ
939 /* PMINTENCLR_EL1 */
940 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
9db52c78 941 access_pminten, NULL, PMINTENSET_EL1 },
7c8c5e6a
MZ
942
943 /* MAIR_EL1 */
944 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
4d44923b 945 access_vm_reg, reset_unknown, MAIR_EL1 },
7c8c5e6a
MZ
946 /* AMAIR_EL1 */
947 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
4d44923b 948 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a
MZ
949
950 /* VBAR_EL1 */
951 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
952 NULL, reset_val, VBAR_EL1, 0 },
db7dedd0 953
6d52f35a
AP
954 /* ICC_SGI1R_EL1 */
955 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
956 access_gic_sgi },
db7dedd0
CD
957 /* ICC_SRE_EL1 */
958 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
b34f2bcb 959 access_gic_sre },
db7dedd0 960
7c8c5e6a
MZ
961 /* CONTEXTIDR_EL1 */
962 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
4d44923b 963 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
7c8c5e6a
MZ
964 /* TPIDR_EL1 */
965 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
966 NULL, reset_unknown, TPIDR_EL1 },
967
968 /* CNTKCTL_EL1 */
969 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
970 NULL, reset_val, CNTKCTL_EL1, 0},
971
972 /* CSSELR_EL1 */
973 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
974 NULL, reset_unknown, CSSELR_EL1 },
975
976 /* PMCR_EL0 */
977 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
ab946834 978 access_pmcr, reset_pmcr, },
7c8c5e6a
MZ
979 /* PMCNTENSET_EL0 */
980 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
96b0eebc 981 access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
7c8c5e6a
MZ
982 /* PMCNTENCLR_EL0 */
983 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
96b0eebc 984 access_pmcnten, NULL, PMCNTENSET_EL0 },
7c8c5e6a
MZ
985 /* PMOVSCLR_EL0 */
986 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
76d883c4 987 access_pmovs, NULL, PMOVSSET_EL0 },
7c8c5e6a
MZ
988 /* PMSWINC_EL0 */
989 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
7a0adc70 990 access_pmswinc, reset_unknown, PMSWINC_EL0 },
7c8c5e6a
MZ
991 /* PMSELR_EL0 */
992 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
3965c3ce 993 access_pmselr, reset_unknown, PMSELR_EL0 },
7c8c5e6a
MZ
994 /* PMCEID0_EL0 */
995 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
a86b5505 996 access_pmceid },
7c8c5e6a
MZ
997 /* PMCEID1_EL0 */
998 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
a86b5505 999 access_pmceid },
7c8c5e6a
MZ
1000 /* PMCCNTR_EL0 */
1001 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
051ff581 1002 access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
7c8c5e6a
MZ
1003 /* PMXEVTYPER_EL0 */
1004 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
9feb21ac 1005 access_pmu_evtyper },
7c8c5e6a
MZ
1006 /* PMXEVCNTR_EL0 */
1007 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
051ff581 1008 access_pmu_evcntr },
d692b8ad
SZ
1009 /* PMUSERENR_EL0
1010 * This register resets as unknown in 64bit mode while it resets as zero
1011 * in 32bit mode. Here we choose to reset it as zero for consistency.
1012 */
7c8c5e6a 1013 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
d692b8ad 1014 access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
7c8c5e6a
MZ
1015 /* PMOVSSET_EL0 */
1016 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
76d883c4 1017 access_pmovs, reset_unknown, PMOVSSET_EL0 },
7c8c5e6a
MZ
1018
1019 /* TPIDR_EL0 */
1020 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1021 NULL, reset_unknown, TPIDR_EL0 },
1022 /* TPIDRRO_EL0 */
1023 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1024 NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44 1025
051ff581
SZ
1026 /* PMEVCNTRn_EL0 */
1027 PMU_PMEVCNTR_EL0(0),
1028 PMU_PMEVCNTR_EL0(1),
1029 PMU_PMEVCNTR_EL0(2),
1030 PMU_PMEVCNTR_EL0(3),
1031 PMU_PMEVCNTR_EL0(4),
1032 PMU_PMEVCNTR_EL0(5),
1033 PMU_PMEVCNTR_EL0(6),
1034 PMU_PMEVCNTR_EL0(7),
1035 PMU_PMEVCNTR_EL0(8),
1036 PMU_PMEVCNTR_EL0(9),
1037 PMU_PMEVCNTR_EL0(10),
1038 PMU_PMEVCNTR_EL0(11),
1039 PMU_PMEVCNTR_EL0(12),
1040 PMU_PMEVCNTR_EL0(13),
1041 PMU_PMEVCNTR_EL0(14),
1042 PMU_PMEVCNTR_EL0(15),
1043 PMU_PMEVCNTR_EL0(16),
1044 PMU_PMEVCNTR_EL0(17),
1045 PMU_PMEVCNTR_EL0(18),
1046 PMU_PMEVCNTR_EL0(19),
1047 PMU_PMEVCNTR_EL0(20),
1048 PMU_PMEVCNTR_EL0(21),
1049 PMU_PMEVCNTR_EL0(22),
1050 PMU_PMEVCNTR_EL0(23),
1051 PMU_PMEVCNTR_EL0(24),
1052 PMU_PMEVCNTR_EL0(25),
1053 PMU_PMEVCNTR_EL0(26),
1054 PMU_PMEVCNTR_EL0(27),
1055 PMU_PMEVCNTR_EL0(28),
1056 PMU_PMEVCNTR_EL0(29),
1057 PMU_PMEVCNTR_EL0(30),
9feb21ac
SZ
1058 /* PMEVTYPERn_EL0 */
1059 PMU_PMEVTYPER_EL0(0),
1060 PMU_PMEVTYPER_EL0(1),
1061 PMU_PMEVTYPER_EL0(2),
1062 PMU_PMEVTYPER_EL0(3),
1063 PMU_PMEVTYPER_EL0(4),
1064 PMU_PMEVTYPER_EL0(5),
1065 PMU_PMEVTYPER_EL0(6),
1066 PMU_PMEVTYPER_EL0(7),
1067 PMU_PMEVTYPER_EL0(8),
1068 PMU_PMEVTYPER_EL0(9),
1069 PMU_PMEVTYPER_EL0(10),
1070 PMU_PMEVTYPER_EL0(11),
1071 PMU_PMEVTYPER_EL0(12),
1072 PMU_PMEVTYPER_EL0(13),
1073 PMU_PMEVTYPER_EL0(14),
1074 PMU_PMEVTYPER_EL0(15),
1075 PMU_PMEVTYPER_EL0(16),
1076 PMU_PMEVTYPER_EL0(17),
1077 PMU_PMEVTYPER_EL0(18),
1078 PMU_PMEVTYPER_EL0(19),
1079 PMU_PMEVTYPER_EL0(20),
1080 PMU_PMEVTYPER_EL0(21),
1081 PMU_PMEVTYPER_EL0(22),
1082 PMU_PMEVTYPER_EL0(23),
1083 PMU_PMEVTYPER_EL0(24),
1084 PMU_PMEVTYPER_EL0(25),
1085 PMU_PMEVTYPER_EL0(26),
1086 PMU_PMEVTYPER_EL0(27),
1087 PMU_PMEVTYPER_EL0(28),
1088 PMU_PMEVTYPER_EL0(29),
1089 PMU_PMEVTYPER_EL0(30),
1090 /* PMCCFILTR_EL0
1091 * This register resets as unknown in 64bit mode while it resets as zero
1092 * in 32bit mode. Here we choose to reset it as zero for consistency.
1093 */
1094 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1095 access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
051ff581 1096
62a89c44
MZ
1097 /* DACR32_EL2 */
1098 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1099 NULL, reset_unknown, DACR32_EL2 },
1100 /* IFSR32_EL2 */
1101 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1102 NULL, reset_unknown, IFSR32_EL2 },
1103 /* FPEXC32_EL2 */
1104 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1105 NULL, reset_val, FPEXC32_EL2, 0x70 },
1106};
1107
bdfb4b38 1108static bool trap_dbgidr(struct kvm_vcpu *vcpu,
3fec037d 1109 struct sys_reg_params *p,
bdfb4b38
MZ
1110 const struct sys_reg_desc *r)
1111{
1112 if (p->is_write) {
1113 return ignore_write(vcpu, p);
1114 } else {
4db8e5ea
SP
1115 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1116 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
28c5dcb2 1117 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
bdfb4b38 1118
2ec5be3d
PF
1119 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1120 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1121 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1122 | (6 << 16) | (el3 << 14) | (el3 << 12));
bdfb4b38
MZ
1123 return true;
1124 }
1125}
1126
1127static bool trap_debug32(struct kvm_vcpu *vcpu,
3fec037d 1128 struct sys_reg_params *p,
bdfb4b38
MZ
1129 const struct sys_reg_desc *r)
1130{
1131 if (p->is_write) {
2ec5be3d 1132 vcpu_cp14(vcpu, r->reg) = p->regval;
bdfb4b38
MZ
1133 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1134 } else {
2ec5be3d 1135 p->regval = vcpu_cp14(vcpu, r->reg);
bdfb4b38
MZ
1136 }
1137
1138 return true;
1139}
1140
84e690bf
AB
1141/* AArch32 debug register mappings
1142 *
1143 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1144 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1145 *
1146 * All control registers and watchpoint value registers are mapped to
1147 * the lower 32 bits of their AArch64 equivalents. We share the trap
1148 * handlers with the above AArch64 code which checks what mode the
1149 * system is in.
1150 */
1151
281243cb
MZ
1152static bool trap_xvr(struct kvm_vcpu *vcpu,
1153 struct sys_reg_params *p,
1154 const struct sys_reg_desc *rd)
84e690bf
AB
1155{
1156 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1157
1158 if (p->is_write) {
1159 u64 val = *dbg_reg;
1160
1161 val &= 0xffffffffUL;
2ec5be3d 1162 val |= p->regval << 32;
84e690bf
AB
1163 *dbg_reg = val;
1164
1165 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1166 } else {
2ec5be3d 1167 p->regval = *dbg_reg >> 32;
84e690bf
AB
1168 }
1169
eef8c85a
AB
1170 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1171
84e690bf
AB
1172 return true;
1173}
1174
1175#define DBG_BCR_BVR_WCR_WVR(n) \
1176 /* DBGBVRn */ \
1177 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1178 /* DBGBCRn */ \
1179 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1180 /* DBGWVRn */ \
1181 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1182 /* DBGWCRn */ \
1183 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1184
1185#define DBGBXVR(n) \
1186 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
bdfb4b38
MZ
1187
1188/*
1189 * Trapped cp14 registers. We generally ignore most of the external
1190 * debug, on the principle that they don't really make sense to a
84e690bf 1191 * guest. Revisit this one day, would this principle change.
bdfb4b38 1192 */
72564016 1193static const struct sys_reg_desc cp14_regs[] = {
bdfb4b38
MZ
1194 /* DBGIDR */
1195 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1196 /* DBGDTRRXext */
1197 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1198
1199 DBG_BCR_BVR_WCR_WVR(0),
1200 /* DBGDSCRint */
1201 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1202 DBG_BCR_BVR_WCR_WVR(1),
1203 /* DBGDCCINT */
1204 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1205 /* DBGDSCRext */
1206 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1207 DBG_BCR_BVR_WCR_WVR(2),
1208 /* DBGDTR[RT]Xint */
1209 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1210 /* DBGDTR[RT]Xext */
1211 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1212 DBG_BCR_BVR_WCR_WVR(3),
1213 DBG_BCR_BVR_WCR_WVR(4),
1214 DBG_BCR_BVR_WCR_WVR(5),
1215 /* DBGWFAR */
1216 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1217 /* DBGOSECCR */
1218 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1219 DBG_BCR_BVR_WCR_WVR(6),
1220 /* DBGVCR */
1221 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1222 DBG_BCR_BVR_WCR_WVR(7),
1223 DBG_BCR_BVR_WCR_WVR(8),
1224 DBG_BCR_BVR_WCR_WVR(9),
1225 DBG_BCR_BVR_WCR_WVR(10),
1226 DBG_BCR_BVR_WCR_WVR(11),
1227 DBG_BCR_BVR_WCR_WVR(12),
1228 DBG_BCR_BVR_WCR_WVR(13),
1229 DBG_BCR_BVR_WCR_WVR(14),
1230 DBG_BCR_BVR_WCR_WVR(15),
1231
1232 /* DBGDRAR (32bit) */
1233 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1234
1235 DBGBXVR(0),
1236 /* DBGOSLAR */
1237 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1238 DBGBXVR(1),
1239 /* DBGOSLSR */
1240 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1241 DBGBXVR(2),
1242 DBGBXVR(3),
1243 /* DBGOSDLR */
1244 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1245 DBGBXVR(4),
1246 /* DBGPRCR */
1247 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1248 DBGBXVR(5),
1249 DBGBXVR(6),
1250 DBGBXVR(7),
1251 DBGBXVR(8),
1252 DBGBXVR(9),
1253 DBGBXVR(10),
1254 DBGBXVR(11),
1255 DBGBXVR(12),
1256 DBGBXVR(13),
1257 DBGBXVR(14),
1258 DBGBXVR(15),
1259
1260 /* DBGDSAR (32bit) */
1261 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1262
1263 /* DBGDEVID2 */
1264 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1265 /* DBGDEVID1 */
1266 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1267 /* DBGDEVID */
1268 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1269 /* DBGCLAIMSET */
1270 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1271 /* DBGCLAIMCLR */
1272 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1273 /* DBGAUTHSTATUS */
1274 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
72564016
MZ
1275};
1276
a9866ba0
MZ
1277/* Trapped cp14 64bit registers */
1278static const struct sys_reg_desc cp14_64_regs[] = {
bdfb4b38
MZ
1279 /* DBGDRAR (64bit) */
1280 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1281
1282 /* DBGDSAR (64bit) */
1283 { Op1( 0), CRm( 2), .access = trap_raz_wi },
a9866ba0
MZ
1284};
1285
051ff581
SZ
1286/* Macro to expand the PMEVCNTRn register */
1287#define PMU_PMEVCNTR(n) \
1288 /* PMEVCNTRn */ \
1289 { Op1(0), CRn(0b1110), \
1290 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1291 access_pmu_evcntr }
1292
9feb21ac
SZ
1293/* Macro to expand the PMEVTYPERn register */
1294#define PMU_PMEVTYPER(n) \
1295 /* PMEVTYPERn */ \
1296 { Op1(0), CRn(0b1110), \
1297 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1298 access_pmu_evtyper }
1299
4d44923b
MZ
1300/*
1301 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1302 * depending on the way they are accessed (as a 32bit or a 64bit
1303 * register).
1304 */
62a89c44 1305static const struct sys_reg_desc cp15_regs[] = {
6d52f35a
AP
1306 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1307
3c1e7165 1308 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
4d44923b
MZ
1309 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1310 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1311 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1312 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1313 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1314 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1315 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1316 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1317 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1318 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1319
62a89c44
MZ
1320 /*
1321 * DC{C,I,CI}SW operations:
1322 */
1323 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1324 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1325 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 1326
7609c125 1327 /* PMU */
ab946834 1328 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
96b0eebc
SZ
1329 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1330 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
76d883c4 1331 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
7a0adc70 1332 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
3965c3ce 1333 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
a86b5505
SZ
1334 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1335 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
051ff581 1336 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
9feb21ac 1337 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
051ff581 1338 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
d692b8ad 1339 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
9db52c78
SZ
1340 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1341 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
76d883c4 1342 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
4d44923b
MZ
1343
1344 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1345 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1346 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1347 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
db7dedd0
CD
1348
1349 /* ICC_SRE */
f7f6f2d9 1350 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
db7dedd0 1351
4d44923b 1352 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
051ff581
SZ
1353
1354 /* PMEVCNTRn */
1355 PMU_PMEVCNTR(0),
1356 PMU_PMEVCNTR(1),
1357 PMU_PMEVCNTR(2),
1358 PMU_PMEVCNTR(3),
1359 PMU_PMEVCNTR(4),
1360 PMU_PMEVCNTR(5),
1361 PMU_PMEVCNTR(6),
1362 PMU_PMEVCNTR(7),
1363 PMU_PMEVCNTR(8),
1364 PMU_PMEVCNTR(9),
1365 PMU_PMEVCNTR(10),
1366 PMU_PMEVCNTR(11),
1367 PMU_PMEVCNTR(12),
1368 PMU_PMEVCNTR(13),
1369 PMU_PMEVCNTR(14),
1370 PMU_PMEVCNTR(15),
1371 PMU_PMEVCNTR(16),
1372 PMU_PMEVCNTR(17),
1373 PMU_PMEVCNTR(18),
1374 PMU_PMEVCNTR(19),
1375 PMU_PMEVCNTR(20),
1376 PMU_PMEVCNTR(21),
1377 PMU_PMEVCNTR(22),
1378 PMU_PMEVCNTR(23),
1379 PMU_PMEVCNTR(24),
1380 PMU_PMEVCNTR(25),
1381 PMU_PMEVCNTR(26),
1382 PMU_PMEVCNTR(27),
1383 PMU_PMEVCNTR(28),
1384 PMU_PMEVCNTR(29),
1385 PMU_PMEVCNTR(30),
9feb21ac
SZ
1386 /* PMEVTYPERn */
1387 PMU_PMEVTYPER(0),
1388 PMU_PMEVTYPER(1),
1389 PMU_PMEVTYPER(2),
1390 PMU_PMEVTYPER(3),
1391 PMU_PMEVTYPER(4),
1392 PMU_PMEVTYPER(5),
1393 PMU_PMEVTYPER(6),
1394 PMU_PMEVTYPER(7),
1395 PMU_PMEVTYPER(8),
1396 PMU_PMEVTYPER(9),
1397 PMU_PMEVTYPER(10),
1398 PMU_PMEVTYPER(11),
1399 PMU_PMEVTYPER(12),
1400 PMU_PMEVTYPER(13),
1401 PMU_PMEVTYPER(14),
1402 PMU_PMEVTYPER(15),
1403 PMU_PMEVTYPER(16),
1404 PMU_PMEVTYPER(17),
1405 PMU_PMEVTYPER(18),
1406 PMU_PMEVTYPER(19),
1407 PMU_PMEVTYPER(20),
1408 PMU_PMEVTYPER(21),
1409 PMU_PMEVTYPER(22),
1410 PMU_PMEVTYPER(23),
1411 PMU_PMEVTYPER(24),
1412 PMU_PMEVTYPER(25),
1413 PMU_PMEVTYPER(26),
1414 PMU_PMEVTYPER(27),
1415 PMU_PMEVTYPER(28),
1416 PMU_PMEVTYPER(29),
1417 PMU_PMEVTYPER(30),
1418 /* PMCCFILTR */
1419 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
a9866ba0
MZ
1420};
1421
1422static const struct sys_reg_desc cp15_64_regs[] = {
1423 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
051ff581 1424 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
6d52f35a 1425 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
4d44923b 1426 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
7c8c5e6a
MZ
1427};
1428
1429/* Target specific emulation tables */
1430static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1431
1432void kvm_register_target_sys_reg_table(unsigned int target,
1433 struct kvm_sys_reg_target_table *table)
1434{
1435 target_tables[target] = table;
1436}
1437
1438/* Get specific register table for this target. */
62a89c44
MZ
1439static const struct sys_reg_desc *get_target_table(unsigned target,
1440 bool mode_is_64,
1441 size_t *num)
7c8c5e6a
MZ
1442{
1443 struct kvm_sys_reg_target_table *table;
1444
1445 table = target_tables[target];
62a89c44
MZ
1446 if (mode_is_64) {
1447 *num = table->table64.num;
1448 return table->table64.table;
1449 } else {
1450 *num = table->table32.num;
1451 return table->table32.table;
1452 }
7c8c5e6a
MZ
1453}
1454
623eefa8
MZ
1455#define reg_to_match_value(x) \
1456 ({ \
1457 unsigned long val; \
1458 val = (x)->Op0 << 14; \
1459 val |= (x)->Op1 << 11; \
1460 val |= (x)->CRn << 7; \
1461 val |= (x)->CRm << 3; \
1462 val |= (x)->Op2; \
1463 val; \
1464 })
1465
1466static int match_sys_reg(const void *key, const void *elt)
1467{
1468 const unsigned long pval = (unsigned long)key;
1469 const struct sys_reg_desc *r = elt;
1470
1471 return pval - reg_to_match_value(r);
1472}
1473
7c8c5e6a
MZ
1474static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1475 const struct sys_reg_desc table[],
1476 unsigned int num)
1477{
623eefa8
MZ
1478 unsigned long pval = reg_to_match_value(params);
1479
1480 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
7c8c5e6a
MZ
1481}
1482
62a89c44
MZ
1483int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1484{
1485 kvm_inject_undefined(vcpu);
1486 return 1;
1487}
1488
72564016
MZ
1489/*
1490 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1491 * call the corresponding trap handler.
1492 *
1493 * @params: pointer to the descriptor of the access
1494 * @table: array of trap descriptors
1495 * @num: size of the trap descriptor array
1496 *
1497 * Return 0 if the access has been handled, and -1 if not.
1498 */
1499static int emulate_cp(struct kvm_vcpu *vcpu,
3fec037d 1500 struct sys_reg_params *params,
72564016
MZ
1501 const struct sys_reg_desc *table,
1502 size_t num)
62a89c44 1503{
72564016 1504 const struct sys_reg_desc *r;
62a89c44 1505
72564016
MZ
1506 if (!table)
1507 return -1; /* Not handled */
62a89c44 1508
62a89c44 1509 r = find_reg(params, table, num);
62a89c44 1510
72564016 1511 if (r) {
62a89c44
MZ
1512 /*
1513 * Not having an accessor means that we have
1514 * configured a trap that we don't know how to
1515 * handle. This certainly qualifies as a gross bug
1516 * that should be fixed right away.
1517 */
1518 BUG_ON(!r->access);
1519
1520 if (likely(r->access(vcpu, params, r))) {
1521 /* Skip instruction, since it was emulated */
1522 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
6327f35a
SZ
1523 /* Handled */
1524 return 0;
62a89c44 1525 }
72564016
MZ
1526 }
1527
1528 /* Not handled */
1529 return -1;
1530}
1531
1532static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1533 struct sys_reg_params *params)
1534{
1535 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
40c4f8d2 1536 int cp = -1;
72564016
MZ
1537
1538 switch(hsr_ec) {
c6d01a94
MR
1539 case ESR_ELx_EC_CP15_32:
1540 case ESR_ELx_EC_CP15_64:
72564016
MZ
1541 cp = 15;
1542 break;
c6d01a94
MR
1543 case ESR_ELx_EC_CP14_MR:
1544 case ESR_ELx_EC_CP14_64:
72564016
MZ
1545 cp = 14;
1546 break;
1547 default:
40c4f8d2 1548 WARN_ON(1);
62a89c44
MZ
1549 }
1550
72564016
MZ
1551 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1552 cp, *vcpu_pc(vcpu));
62a89c44
MZ
1553 print_sys_reg_instr(params);
1554 kvm_inject_undefined(vcpu);
1555}
1556
1557/**
7769db90 1558 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
62a89c44
MZ
1559 * @vcpu: The VCPU pointer
1560 * @run: The kvm_run struct
1561 */
72564016
MZ
1562static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1563 const struct sys_reg_desc *global,
1564 size_t nr_global,
1565 const struct sys_reg_desc *target_specific,
1566 size_t nr_specific)
62a89c44
MZ
1567{
1568 struct sys_reg_params params;
1569 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d 1570 int Rt = (hsr >> 5) & 0xf;
62a89c44
MZ
1571 int Rt2 = (hsr >> 10) & 0xf;
1572
2072d29c
MZ
1573 params.is_aarch32 = true;
1574 params.is_32bit = false;
62a89c44 1575 params.CRm = (hsr >> 1) & 0xf;
62a89c44
MZ
1576 params.is_write = ((hsr & 1) == 0);
1577
1578 params.Op0 = 0;
1579 params.Op1 = (hsr >> 16) & 0xf;
1580 params.Op2 = 0;
1581 params.CRn = 0;
1582
1583 /*
2ec5be3d 1584 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
62a89c44
MZ
1585 * backends between AArch32 and AArch64, we get away with it.
1586 */
1587 if (params.is_write) {
2ec5be3d
PF
1588 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1589 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
62a89c44
MZ
1590 }
1591
72564016
MZ
1592 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1593 goto out;
1594 if (!emulate_cp(vcpu, &params, global, nr_global))
1595 goto out;
1596
1597 unhandled_cp_access(vcpu, &params);
62a89c44 1598
72564016 1599out:
2ec5be3d 1600 /* Split up the value between registers for the read side */
62a89c44 1601 if (!params.is_write) {
2ec5be3d
PF
1602 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1603 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
62a89c44
MZ
1604 }
1605
1606 return 1;
1607}
1608
1609/**
7769db90 1610 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
62a89c44
MZ
1611 * @vcpu: The VCPU pointer
1612 * @run: The kvm_run struct
1613 */
72564016
MZ
1614static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1615 const struct sys_reg_desc *global,
1616 size_t nr_global,
1617 const struct sys_reg_desc *target_specific,
1618 size_t nr_specific)
62a89c44
MZ
1619{
1620 struct sys_reg_params params;
1621 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d 1622 int Rt = (hsr >> 5) & 0xf;
62a89c44 1623
2072d29c
MZ
1624 params.is_aarch32 = true;
1625 params.is_32bit = true;
62a89c44 1626 params.CRm = (hsr >> 1) & 0xf;
2ec5be3d 1627 params.regval = vcpu_get_reg(vcpu, Rt);
62a89c44
MZ
1628 params.is_write = ((hsr & 1) == 0);
1629 params.CRn = (hsr >> 10) & 0xf;
1630 params.Op0 = 0;
1631 params.Op1 = (hsr >> 14) & 0x7;
1632 params.Op2 = (hsr >> 17) & 0x7;
1633
2ec5be3d
PF
1634 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1635 !emulate_cp(vcpu, &params, global, nr_global)) {
1636 if (!params.is_write)
1637 vcpu_set_reg(vcpu, Rt, params.regval);
72564016 1638 return 1;
2ec5be3d 1639 }
72564016
MZ
1640
1641 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
1642 return 1;
1643}
1644
72564016
MZ
1645int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1646{
1647 const struct sys_reg_desc *target_specific;
1648 size_t num;
1649
1650 target_specific = get_target_table(vcpu->arch.target, false, &num);
1651 return kvm_handle_cp_64(vcpu,
a9866ba0 1652 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
72564016
MZ
1653 target_specific, num);
1654}
1655
1656int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1657{
1658 const struct sys_reg_desc *target_specific;
1659 size_t num;
1660
1661 target_specific = get_target_table(vcpu->arch.target, false, &num);
1662 return kvm_handle_cp_32(vcpu,
1663 cp15_regs, ARRAY_SIZE(cp15_regs),
1664 target_specific, num);
1665}
1666
1667int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1668{
1669 return kvm_handle_cp_64(vcpu,
a9866ba0 1670 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
72564016
MZ
1671 NULL, 0);
1672}
1673
1674int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1675{
1676 return kvm_handle_cp_32(vcpu,
1677 cp14_regs, ARRAY_SIZE(cp14_regs),
1678 NULL, 0);
1679}
1680
7c8c5e6a 1681static int emulate_sys_reg(struct kvm_vcpu *vcpu,
3fec037d 1682 struct sys_reg_params *params)
7c8c5e6a
MZ
1683{
1684 size_t num;
1685 const struct sys_reg_desc *table, *r;
1686
62a89c44 1687 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1688
1689 /* Search target-specific then generic table. */
1690 r = find_reg(params, table, num);
1691 if (!r)
1692 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1693
1694 if (likely(r)) {
1695 /*
1696 * Not having an accessor means that we have
1697 * configured a trap that we don't know how to
1698 * handle. This certainly qualifies as a gross bug
1699 * that should be fixed right away.
1700 */
1701 BUG_ON(!r->access);
1702
1703 if (likely(r->access(vcpu, params, r))) {
1704 /* Skip instruction, since it was emulated */
1705 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1706 return 1;
1707 }
1708 /* If access function fails, it should complain. */
1709 } else {
1710 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1711 *vcpu_pc(vcpu));
1712 print_sys_reg_instr(params);
1713 }
1714 kvm_inject_undefined(vcpu);
1715 return 1;
1716}
1717
1718static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1719 const struct sys_reg_desc *table, size_t num)
1720{
1721 unsigned long i;
1722
1723 for (i = 0; i < num; i++)
1724 if (table[i].reset)
1725 table[i].reset(vcpu, &table[i]);
1726}
1727
1728/**
1729 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1730 * @vcpu: The VCPU pointer
1731 * @run: The kvm_run struct
1732 */
1733int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1734{
1735 struct sys_reg_params params;
1736 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d
PF
1737 int Rt = (esr >> 5) & 0x1f;
1738 int ret;
7c8c5e6a 1739
eef8c85a
AB
1740 trace_kvm_handle_sys_reg(esr);
1741
2072d29c
MZ
1742 params.is_aarch32 = false;
1743 params.is_32bit = false;
7c8c5e6a
MZ
1744 params.Op0 = (esr >> 20) & 3;
1745 params.Op1 = (esr >> 14) & 0x7;
1746 params.CRn = (esr >> 10) & 0xf;
1747 params.CRm = (esr >> 1) & 0xf;
1748 params.Op2 = (esr >> 17) & 0x7;
2ec5be3d 1749 params.regval = vcpu_get_reg(vcpu, Rt);
7c8c5e6a
MZ
1750 params.is_write = !(esr & 1);
1751
2ec5be3d
PF
1752 ret = emulate_sys_reg(vcpu, &params);
1753
1754 if (!params.is_write)
1755 vcpu_set_reg(vcpu, Rt, params.regval);
1756 return ret;
7c8c5e6a
MZ
1757}
1758
1759/******************************************************************************
1760 * Userspace API
1761 *****************************************************************************/
1762
1763static bool index_to_params(u64 id, struct sys_reg_params *params)
1764{
1765 switch (id & KVM_REG_SIZE_MASK) {
1766 case KVM_REG_SIZE_U64:
1767 /* Any unused index bits means it's not valid. */
1768 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1769 | KVM_REG_ARM_COPROC_MASK
1770 | KVM_REG_ARM64_SYSREG_OP0_MASK
1771 | KVM_REG_ARM64_SYSREG_OP1_MASK
1772 | KVM_REG_ARM64_SYSREG_CRN_MASK
1773 | KVM_REG_ARM64_SYSREG_CRM_MASK
1774 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1775 return false;
1776 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1777 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1778 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1779 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1780 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1781 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1782 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1783 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1784 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1785 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1786 return true;
1787 default:
1788 return false;
1789 }
1790}
1791
1792/* Decode an index value, and find the sys_reg_desc entry. */
1793static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1794 u64 id)
1795{
1796 size_t num;
1797 const struct sys_reg_desc *table, *r;
1798 struct sys_reg_params params;
1799
1800 /* We only do sys_reg for now. */
1801 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1802 return NULL;
1803
1804 if (!index_to_params(id, &params))
1805 return NULL;
1806
62a89c44 1807 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1808 r = find_reg(&params, table, num);
1809 if (!r)
1810 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1811
1812 /* Not saved in the sys_reg array? */
1813 if (r && !r->reg)
1814 r = NULL;
1815
1816 return r;
1817}
1818
1819/*
1820 * These are the invariant sys_reg registers: we let the guest see the
1821 * host versions of these, so they're part of the guest state.
1822 *
1823 * A future CPU may provide a mechanism to present different values to
1824 * the guest, or a future kvm may trap them.
1825 */
1826
1827#define FUNCTION_INVARIANT(reg) \
1828 static void get_##reg(struct kvm_vcpu *v, \
1829 const struct sys_reg_desc *r) \
1830 { \
1f3d8699 1831 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
7c8c5e6a
MZ
1832 }
1833
1834FUNCTION_INVARIANT(midr_el1)
1835FUNCTION_INVARIANT(ctr_el0)
1836FUNCTION_INVARIANT(revidr_el1)
1837FUNCTION_INVARIANT(id_pfr0_el1)
1838FUNCTION_INVARIANT(id_pfr1_el1)
1839FUNCTION_INVARIANT(id_dfr0_el1)
1840FUNCTION_INVARIANT(id_afr0_el1)
1841FUNCTION_INVARIANT(id_mmfr0_el1)
1842FUNCTION_INVARIANT(id_mmfr1_el1)
1843FUNCTION_INVARIANT(id_mmfr2_el1)
1844FUNCTION_INVARIANT(id_mmfr3_el1)
1845FUNCTION_INVARIANT(id_isar0_el1)
1846FUNCTION_INVARIANT(id_isar1_el1)
1847FUNCTION_INVARIANT(id_isar2_el1)
1848FUNCTION_INVARIANT(id_isar3_el1)
1849FUNCTION_INVARIANT(id_isar4_el1)
1850FUNCTION_INVARIANT(id_isar5_el1)
1851FUNCTION_INVARIANT(clidr_el1)
1852FUNCTION_INVARIANT(aidr_el1)
1853
1854/* ->val is filled in by kvm_sys_reg_table_init() */
1855static struct sys_reg_desc invariant_sys_regs[] = {
1856 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1857 NULL, get_midr_el1 },
1858 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1859 NULL, get_revidr_el1 },
1860 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1861 NULL, get_id_pfr0_el1 },
1862 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1863 NULL, get_id_pfr1_el1 },
1864 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1865 NULL, get_id_dfr0_el1 },
1866 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1867 NULL, get_id_afr0_el1 },
1868 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1869 NULL, get_id_mmfr0_el1 },
1870 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1871 NULL, get_id_mmfr1_el1 },
1872 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1873 NULL, get_id_mmfr2_el1 },
1874 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1875 NULL, get_id_mmfr3_el1 },
1876 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1877 NULL, get_id_isar0_el1 },
1878 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1879 NULL, get_id_isar1_el1 },
1880 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1881 NULL, get_id_isar2_el1 },
1882 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1883 NULL, get_id_isar3_el1 },
1884 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1885 NULL, get_id_isar4_el1 },
1886 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1887 NULL, get_id_isar5_el1 },
1888 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1889 NULL, get_clidr_el1 },
1890 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1891 NULL, get_aidr_el1 },
1892 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1893 NULL, get_ctr_el0 },
1894};
1895
26c99af1 1896static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
7c8c5e6a 1897{
7c8c5e6a
MZ
1898 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1899 return -EFAULT;
1900 return 0;
1901}
1902
26c99af1 1903static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
7c8c5e6a 1904{
7c8c5e6a
MZ
1905 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1906 return -EFAULT;
1907 return 0;
1908}
1909
1910static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1911{
1912 struct sys_reg_params params;
1913 const struct sys_reg_desc *r;
1914
1915 if (!index_to_params(id, &params))
1916 return -ENOENT;
1917
1918 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1919 if (!r)
1920 return -ENOENT;
1921
1922 return reg_to_user(uaddr, &r->val, id);
1923}
1924
1925static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1926{
1927 struct sys_reg_params params;
1928 const struct sys_reg_desc *r;
1929 int err;
1930 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1931
1932 if (!index_to_params(id, &params))
1933 return -ENOENT;
1934 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1935 if (!r)
1936 return -ENOENT;
1937
1938 err = reg_from_user(&val, uaddr, id);
1939 if (err)
1940 return err;
1941
1942 /* This is what we mean by invariant: you can't change it. */
1943 if (r->val != val)
1944 return -EINVAL;
1945
1946 return 0;
1947}
1948
1949static bool is_valid_cache(u32 val)
1950{
1951 u32 level, ctype;
1952
1953 if (val >= CSSELR_MAX)
18d45766 1954 return false;
7c8c5e6a
MZ
1955
1956 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1957 level = (val >> 1);
1958 ctype = (cache_levels >> (level * 3)) & 7;
1959
1960 switch (ctype) {
1961 case 0: /* No cache */
1962 return false;
1963 case 1: /* Instruction cache only */
1964 return (val & 1);
1965 case 2: /* Data cache only */
1966 case 4: /* Unified cache */
1967 return !(val & 1);
1968 case 3: /* Separate instruction and data caches */
1969 return true;
1970 default: /* Reserved: we can't know instruction or data. */
1971 return false;
1972 }
1973}
1974
1975static int demux_c15_get(u64 id, void __user *uaddr)
1976{
1977 u32 val;
1978 u32 __user *uval = uaddr;
1979
1980 /* Fail if we have unknown bits set. */
1981 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1982 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1983 return -ENOENT;
1984
1985 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1986 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1987 if (KVM_REG_SIZE(id) != 4)
1988 return -ENOENT;
1989 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1990 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1991 if (!is_valid_cache(val))
1992 return -ENOENT;
1993
1994 return put_user(get_ccsidr(val), uval);
1995 default:
1996 return -ENOENT;
1997 }
1998}
1999
2000static int demux_c15_set(u64 id, void __user *uaddr)
2001{
2002 u32 val, newval;
2003 u32 __user *uval = uaddr;
2004
2005 /* Fail if we have unknown bits set. */
2006 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2007 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2008 return -ENOENT;
2009
2010 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2011 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2012 if (KVM_REG_SIZE(id) != 4)
2013 return -ENOENT;
2014 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2015 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2016 if (!is_valid_cache(val))
2017 return -ENOENT;
2018
2019 if (get_user(newval, uval))
2020 return -EFAULT;
2021
2022 /* This is also invariant: you can't change it. */
2023 if (newval != get_ccsidr(val))
2024 return -EINVAL;
2025 return 0;
2026 default:
2027 return -ENOENT;
2028 }
2029}
2030
2031int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2032{
2033 const struct sys_reg_desc *r;
2034 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2035
2036 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2037 return demux_c15_get(reg->id, uaddr);
2038
2039 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2040 return -ENOENT;
2041
2042 r = index_to_sys_reg_desc(vcpu, reg->id);
2043 if (!r)
2044 return get_invariant_sys_reg(reg->id, uaddr);
2045
84e690bf
AB
2046 if (r->get_user)
2047 return (r->get_user)(vcpu, r, reg, uaddr);
2048
7c8c5e6a
MZ
2049 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2050}
2051
2052int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2053{
2054 const struct sys_reg_desc *r;
2055 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2056
2057 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2058 return demux_c15_set(reg->id, uaddr);
2059
2060 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2061 return -ENOENT;
2062
2063 r = index_to_sys_reg_desc(vcpu, reg->id);
2064 if (!r)
2065 return set_invariant_sys_reg(reg->id, uaddr);
2066
84e690bf
AB
2067 if (r->set_user)
2068 return (r->set_user)(vcpu, r, reg, uaddr);
2069
7c8c5e6a
MZ
2070 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2071}
2072
2073static unsigned int num_demux_regs(void)
2074{
2075 unsigned int i, count = 0;
2076
2077 for (i = 0; i < CSSELR_MAX; i++)
2078 if (is_valid_cache(i))
2079 count++;
2080
2081 return count;
2082}
2083
2084static int write_demux_regids(u64 __user *uindices)
2085{
efd48cea 2086 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
2087 unsigned int i;
2088
2089 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2090 for (i = 0; i < CSSELR_MAX; i++) {
2091 if (!is_valid_cache(i))
2092 continue;
2093 if (put_user(val | i, uindices))
2094 return -EFAULT;
2095 uindices++;
2096 }
2097 return 0;
2098}
2099
2100static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2101{
2102 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2103 KVM_REG_ARM64_SYSREG |
2104 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2105 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2106 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2107 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2108 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2109}
2110
2111static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2112{
2113 if (!*uind)
2114 return true;
2115
2116 if (put_user(sys_reg_to_index(reg), *uind))
2117 return false;
2118
2119 (*uind)++;
2120 return true;
2121}
2122
2123/* Assumed ordered tables, see kvm_sys_reg_table_init. */
2124static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2125{
2126 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2127 unsigned int total = 0;
2128 size_t num;
2129
2130 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 2131 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
2132 end1 = i1 + num;
2133 i2 = sys_reg_descs;
2134 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2135
2136 BUG_ON(i1 == end1 || i2 == end2);
2137
2138 /* Walk carefully, as both tables may refer to the same register. */
2139 while (i1 || i2) {
2140 int cmp = cmp_sys_reg(i1, i2);
2141 /* target-specific overrides generic entry. */
2142 if (cmp <= 0) {
2143 /* Ignore registers we trap but don't save. */
2144 if (i1->reg) {
2145 if (!copy_reg_to_user(i1, &uind))
2146 return -EFAULT;
2147 total++;
2148 }
2149 } else {
2150 /* Ignore registers we trap but don't save. */
2151 if (i2->reg) {
2152 if (!copy_reg_to_user(i2, &uind))
2153 return -EFAULT;
2154 total++;
2155 }
2156 }
2157
2158 if (cmp <= 0 && ++i1 == end1)
2159 i1 = NULL;
2160 if (cmp >= 0 && ++i2 == end2)
2161 i2 = NULL;
2162 }
2163 return total;
2164}
2165
2166unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2167{
2168 return ARRAY_SIZE(invariant_sys_regs)
2169 + num_demux_regs()
2170 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2171}
2172
2173int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2174{
2175 unsigned int i;
2176 int err;
2177
2178 /* Then give them all the invariant registers' indices. */
2179 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2180 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2181 return -EFAULT;
2182 uindices++;
2183 }
2184
2185 err = walk_sys_regs(vcpu, uindices);
2186 if (err < 0)
2187 return err;
2188 uindices += err;
2189
2190 return write_demux_regids(uindices);
2191}
2192
e6a95517
MZ
2193static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2194{
2195 unsigned int i;
2196
2197 for (i = 1; i < n; i++) {
2198 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2199 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2200 return 1;
2201 }
2202 }
2203
2204 return 0;
2205}
2206
7c8c5e6a
MZ
2207void kvm_sys_reg_table_init(void)
2208{
2209 unsigned int i;
2210 struct sys_reg_desc clidr;
2211
2212 /* Make sure tables are unique and in order. */
e6a95517
MZ
2213 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2214 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2215 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2216 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2217 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2218 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
7c8c5e6a
MZ
2219
2220 /* We abuse the reset function to overwrite the table itself. */
2221 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2222 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2223
2224 /*
2225 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2226 *
2227 * If software reads the Cache Type fields from Ctype1
2228 * upwards, once it has seen a value of 0b000, no caches
2229 * exist at further-out levels of the hierarchy. So, for
2230 * example, if Ctype3 is the first Cache Type field with a
2231 * value of 0b000, the values of Ctype4 to Ctype7 must be
2232 * ignored.
2233 */
2234 get_clidr_el1(NULL, &clidr); /* Ugly... */
2235 cache_levels = clidr.val;
2236 for (i = 0; i < 7; i++)
2237 if (((cache_levels >> (i*3)) & 7) == 0)
2238 break;
2239 /* Clear all higher bits. */
2240 cache_levels &= (1 << (i*3))-1;
2241}
2242
2243/**
2244 * kvm_reset_sys_regs - sets system registers to reset value
2245 * @vcpu: The VCPU pointer
2246 *
2247 * This function finds the right table above and sets the registers on the
2248 * virtual CPU struct to their architecturally defined reset values.
2249 */
2250void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2251{
2252 size_t num;
2253 const struct sys_reg_desc *table;
2254
2255 /* Catch someone adding a register without putting in reset entry. */
2256 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2257
2258 /* Generic chip reset first (so target could override). */
2259 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2260
62a89c44 2261 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
2262 reset_sys_reg_descs(vcpu, table, num);
2263
2264 for (num = 1; num < NR_SYS_REGS; num++)
2265 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2266 panic("Didn't reset vcpu_sys_reg(%zi)", num);
2267}
This page took 0.306117 seconds and 5 git commands to generate.