MIPS: KVM: Restore host EBase from ebase variable
[deliverable/linux.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
60b0d655 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
2a0b24f5 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
b08a9c95 13 * Copyright (C) 2014, Imagination Technologies Ltd.
1da177e4 14 */
ed2d72c1 15#include <linux/bitops.h>
8e8a52ed 16#include <linux/bug.h>
60b0d655 17#include <linux/compiler.h>
c3fc5cd5 18#include <linux/context_tracking.h>
ae4ce454 19#include <linux/cpu_pm.h>
7aa1c8f4 20#include <linux/kexec.h>
1da177e4 21#include <linux/init.h>
8742cd23 22#include <linux/kernel.h>
f9ded569 23#include <linux/module.h>
1da177e4 24#include <linux/mm.h>
1da177e4
LT
25#include <linux/sched.h>
26#include <linux/smp.h>
1da177e4
LT
27#include <linux/spinlock.h>
28#include <linux/kallsyms.h>
e01402b1 29#include <linux/bootmem.h>
d4fd1989 30#include <linux/interrupt.h>
39b8d525 31#include <linux/ptrace.h>
88547001
JW
32#include <linux/kgdb.h>
33#include <linux/kdebug.h>
c1bf207d 34#include <linux/kprobes.h>
69f3a7de 35#include <linux/notifier.h>
5dd11d5d 36#include <linux/kdb.h>
ca4d3e67 37#include <linux/irq.h>
7f788d2d 38#include <linux/perf_event.h>
1da177e4 39
a13c9962 40#include <asm/addrspace.h>
1da177e4
LT
41#include <asm/bootinfo.h>
42#include <asm/branch.h>
43#include <asm/break.h>
69f3a7de 44#include <asm/cop2.h>
1da177e4 45#include <asm/cpu.h>
69f24d17 46#include <asm/cpu-type.h>
e50c0a8f 47#include <asm/dsp.h>
1da177e4 48#include <asm/fpu.h>
ba3049ed 49#include <asm/fpu_emulator.h>
bdc92d74 50#include <asm/idle.h>
b0a668fb 51#include <asm/mips-r2-to-r6-emul.h>
340ee4b9
RB
52#include <asm/mipsregs.h>
53#include <asm/mipsmtregs.h>
1da177e4 54#include <asm/module.h>
1db1af84 55#include <asm/msa.h>
1da177e4
LT
56#include <asm/pgtable.h>
57#include <asm/ptrace.h>
58#include <asm/sections.h>
3b143cca 59#include <asm/siginfo.h>
1da177e4
LT
60#include <asm/tlbdebug.h>
61#include <asm/traps.h>
62#include <asm/uaccess.h>
b67b2b70 63#include <asm/watch.h>
1da177e4 64#include <asm/mmu_context.h>
1da177e4 65#include <asm/types.h>
1df0f0ff 66#include <asm/stacktrace.h>
92bbe1b9 67#include <asm/uasm.h>
1da177e4 68
c65a5480 69extern void check_wait(void);
c65a5480 70extern asmlinkage void rollback_handle_int(void);
e4ac58af 71extern asmlinkage void handle_int(void);
86a1708a
RB
72extern u32 handle_tlbl[];
73extern u32 handle_tlbs[];
74extern u32 handle_tlbm[];
1da177e4
LT
75extern asmlinkage void handle_adel(void);
76extern asmlinkage void handle_ades(void);
77extern asmlinkage void handle_ibe(void);
78extern asmlinkage void handle_dbe(void);
79extern asmlinkage void handle_sys(void);
80extern asmlinkage void handle_bp(void);
81extern asmlinkage void handle_ri(void);
5b10496b
AN
82extern asmlinkage void handle_ri_rdhwr_vivt(void);
83extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
84extern asmlinkage void handle_cpu(void);
85extern asmlinkage void handle_ov(void);
86extern asmlinkage void handle_tr(void);
2bcb3fbc 87extern asmlinkage void handle_msa_fpe(void);
1da177e4 88extern asmlinkage void handle_fpe(void);
75b5b5e0 89extern asmlinkage void handle_ftlb(void);
1db1af84 90extern asmlinkage void handle_msa(void);
1da177e4
LT
91extern asmlinkage void handle_mdmx(void);
92extern asmlinkage void handle_watch(void);
340ee4b9 93extern asmlinkage void handle_mt(void);
e50c0a8f 94extern asmlinkage void handle_dsp(void);
1da177e4
LT
95extern asmlinkage void handle_mcheck(void);
96extern asmlinkage void handle_reserved(void);
5890f70f 97extern void tlb_do_page_fault_0(void);
1da177e4 98
1da177e4
LT
99void (*board_be_init)(void);
100int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
101void (*board_nmi_handler_setup)(void);
102void (*board_ejtag_handler_setup)(void);
103void (*board_bind_eic_interrupt)(int irq, int regset);
6fb97eff 104void (*board_ebase_setup)(void);
078a55fc 105void(*board_cache_error_setup)(void);
1da177e4 106
4d157d5e 107static void show_raw_backtrace(unsigned long reg29)
e889d78f 108{
39b8d525 109 unsigned long *sp = (unsigned long *)(reg29 & ~3);
e889d78f
AN
110 unsigned long addr;
111
112 printk("Call Trace:");
113#ifdef CONFIG_KALLSYMS
114 printk("\n");
115#endif
10220c88
TB
116 while (!kstack_end(sp)) {
117 unsigned long __user *p =
118 (unsigned long __user *)(unsigned long)sp++;
119 if (__get_user(addr, p)) {
120 printk(" (Bad stack address)");
121 break;
39b8d525 122 }
10220c88
TB
123 if (__kernel_text_address(addr))
124 print_ip_sym(addr);
e889d78f 125 }
10220c88 126 printk("\n");
e889d78f
AN
127}
128
f66686f7 129#ifdef CONFIG_KALLSYMS
1df0f0ff 130int raw_show_trace;
f66686f7
AN
131static int __init set_raw_show_trace(char *str)
132{
133 raw_show_trace = 1;
134 return 1;
135}
136__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 137#endif
4d157d5e 138
eae23f2c 139static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
f66686f7 140{
4d157d5e
FBH
141 unsigned long sp = regs->regs[29];
142 unsigned long ra = regs->regs[31];
f66686f7 143 unsigned long pc = regs->cp0_epc;
f66686f7 144
e909be82
VW
145 if (!task)
146 task = current;
147
81a76d71 148 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
87151ae3 149 show_raw_backtrace(sp);
f66686f7
AN
150 return;
151 }
152 printk("Call Trace:\n");
4d157d5e 153 do {
87151ae3 154 print_ip_sym(pc);
1924600c 155 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 156 } while (pc);
f66686f7
AN
157 printk("\n");
158}
f66686f7 159
1da177e4
LT
160/*
161 * This routine abuses get_user()/put_user() to reference pointers
162 * with at least a bit of error checking ...
163 */
eae23f2c
RB
164static void show_stacktrace(struct task_struct *task,
165 const struct pt_regs *regs)
1da177e4
LT
166{
167 const int field = 2 * sizeof(unsigned long);
168 long stackdata;
169 int i;
5e0373b8 170 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
1da177e4
LT
171
172 printk("Stack :");
173 i = 0;
174 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
175 if (i && ((i % (64 / field)) == 0))
70342287 176 printk("\n ");
1da177e4
LT
177 if (i > 39) {
178 printk(" ...");
179 break;
180 }
181
182 if (__get_user(stackdata, sp++)) {
183 printk(" (Bad stack address)");
184 break;
185 }
186
187 printk(" %0*lx", field, stackdata);
188 i++;
189 }
190 printk("\n");
87151ae3 191 show_backtrace(task, regs);
f66686f7
AN
192}
193
f66686f7
AN
194void show_stack(struct task_struct *task, unsigned long *sp)
195{
196 struct pt_regs regs;
1e77863a 197 mm_segment_t old_fs = get_fs();
f66686f7
AN
198 if (sp) {
199 regs.regs[29] = (unsigned long)sp;
200 regs.regs[31] = 0;
201 regs.cp0_epc = 0;
202 } else {
203 if (task && task != current) {
204 regs.regs[29] = task->thread.reg29;
205 regs.regs[31] = 0;
206 regs.cp0_epc = task->thread.reg31;
5dd11d5d
JW
207#ifdef CONFIG_KGDB_KDB
208 } else if (atomic_read(&kgdb_active) != -1 &&
209 kdb_current_regs) {
210 memcpy(&regs, kdb_current_regs, sizeof(regs));
211#endif /* CONFIG_KGDB_KDB */
f66686f7
AN
212 } else {
213 prepare_frametrace(&regs);
214 }
215 }
1e77863a
JH
216 /*
217 * show_stack() deals exclusively with kernel mode, so be sure to access
218 * the stack in the kernel (not user) address space.
219 */
220 set_fs(KERNEL_DS);
f66686f7 221 show_stacktrace(task, &regs);
1e77863a 222 set_fs(old_fs);
1da177e4
LT
223}
224
e1bb8289 225static void show_code(unsigned int __user *pc)
1da177e4
LT
226{
227 long i;
39b8d525 228 unsigned short __user *pc16 = NULL;
1da177e4
LT
229
230 printk("\nCode:");
231
39b8d525
RB
232 if ((unsigned long)pc & 1)
233 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
1da177e4
LT
234 for(i = -3 ; i < 6 ; i++) {
235 unsigned int insn;
39b8d525 236 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
1da177e4
LT
237 printk(" (Bad address in epc)\n");
238 break;
239 }
39b8d525 240 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
1da177e4
LT
241 }
242}
243
eae23f2c 244static void __show_regs(const struct pt_regs *regs)
1da177e4
LT
245{
246 const int field = 2 * sizeof(unsigned long);
247 unsigned int cause = regs->cp0_cause;
37dd3818 248 unsigned int exccode;
1da177e4
LT
249 int i;
250
a43cb95d 251 show_regs_print_info(KERN_DEFAULT);
1da177e4
LT
252
253 /*
254 * Saved main processor registers
255 */
256 for (i = 0; i < 32; ) {
257 if ((i % 4) == 0)
258 printk("$%2d :", i);
259 if (i == 0)
260 printk(" %0*lx", field, 0UL);
261 else if (i == 26 || i == 27)
262 printk(" %*s", field, "");
263 else
264 printk(" %0*lx", field, regs->regs[i]);
265
266 i++;
267 if ((i % 4) == 0)
268 printk("\n");
269 }
270
9693a853
FBH
271#ifdef CONFIG_CPU_HAS_SMARTMIPS
272 printk("Acx : %0*lx\n", field, regs->acx);
273#endif
1da177e4
LT
274 printk("Hi : %0*lx\n", field, regs->hi);
275 printk("Lo : %0*lx\n", field, regs->lo);
276
277 /*
278 * Saved cp0 registers
279 */
b012cffe
RB
280 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
281 (void *) regs->cp0_epc);
b012cffe
RB
282 printk("ra : %0*lx %pS\n", field, regs->regs[31],
283 (void *) regs->regs[31]);
1da177e4 284
70342287 285 printk("Status: %08x ", (uint32_t) regs->cp0_status);
1da177e4 286
1990e542 287 if (cpu_has_3kex) {
3b2396d9
MR
288 if (regs->cp0_status & ST0_KUO)
289 printk("KUo ");
290 if (regs->cp0_status & ST0_IEO)
291 printk("IEo ");
292 if (regs->cp0_status & ST0_KUP)
293 printk("KUp ");
294 if (regs->cp0_status & ST0_IEP)
295 printk("IEp ");
296 if (regs->cp0_status & ST0_KUC)
297 printk("KUc ");
298 if (regs->cp0_status & ST0_IEC)
299 printk("IEc ");
1990e542 300 } else if (cpu_has_4kex) {
3b2396d9
MR
301 if (regs->cp0_status & ST0_KX)
302 printk("KX ");
303 if (regs->cp0_status & ST0_SX)
304 printk("SX ");
305 if (regs->cp0_status & ST0_UX)
306 printk("UX ");
307 switch (regs->cp0_status & ST0_KSU) {
308 case KSU_USER:
309 printk("USER ");
310 break;
311 case KSU_SUPERVISOR:
312 printk("SUPERVISOR ");
313 break;
314 case KSU_KERNEL:
315 printk("KERNEL ");
316 break;
317 default:
318 printk("BAD_MODE ");
319 break;
320 }
321 if (regs->cp0_status & ST0_ERL)
322 printk("ERL ");
323 if (regs->cp0_status & ST0_EXL)
324 printk("EXL ");
325 if (regs->cp0_status & ST0_IE)
326 printk("IE ");
1da177e4 327 }
1da177e4
LT
328 printk("\n");
329
37dd3818
PG
330 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
331 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
1da177e4 332
37dd3818 333 if (1 <= exccode && exccode <= 5)
1da177e4
LT
334 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
335
9966db25
RB
336 printk("PrId : %08x (%s)\n", read_c0_prid(),
337 cpu_name_string());
1da177e4
LT
338}
339
eae23f2c
RB
340/*
341 * FIXME: really the generic show_regs should take a const pointer argument.
342 */
343void show_regs(struct pt_regs *regs)
344{
345 __show_regs((struct pt_regs *)regs);
346}
347
c1bf207d 348void show_registers(struct pt_regs *regs)
1da177e4 349{
39b8d525 350 const int field = 2 * sizeof(unsigned long);
83e4da1e 351 mm_segment_t old_fs = get_fs();
39b8d525 352
eae23f2c 353 __show_regs(regs);
1da177e4 354 print_modules();
39b8d525
RB
355 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
356 current->comm, current->pid, current_thread_info(), current,
357 field, current_thread_info()->tp_value);
358 if (cpu_has_userlocal) {
359 unsigned long tls;
360
361 tls = read_c0_userlocal();
362 if (tls != current_thread_info()->tp_value)
363 printk("*HwTLS: %0*lx\n", field, tls);
364 }
365
83e4da1e
LY
366 if (!user_mode(regs))
367 /* Necessary for getting the correct stack content */
368 set_fs(KERNEL_DS);
f66686f7 369 show_stacktrace(current, regs);
e1bb8289 370 show_code((unsigned int __user *) regs->cp0_epc);
1da177e4 371 printk("\n");
83e4da1e 372 set_fs(old_fs);
1da177e4
LT
373}
374
4d85f6af 375static DEFINE_RAW_SPINLOCK(die_lock);
1da177e4 376
70dc6f04 377void __noreturn die(const char *str, struct pt_regs *regs)
1da177e4
LT
378{
379 static int die_counter;
ce384d83 380 int sig = SIGSEGV;
1da177e4 381
8742cd23
NL
382 oops_enter();
383
e3b28831 384 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
dc73e4c1 385 SIGSEGV) == NOTIFY_STOP)
10423c91 386 sig = 0;
5dd11d5d 387
1da177e4 388 console_verbose();
4d85f6af 389 raw_spin_lock_irq(&die_lock);
41c594ab 390 bust_spinlocks(1);
ce384d83 391
178086c8 392 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 393 show_registers(regs);
373d4d09 394 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
4d85f6af 395 raw_spin_unlock_irq(&die_lock);
d4fd1989 396
8742cd23
NL
397 oops_exit();
398
d4fd1989
MB
399 if (in_interrupt())
400 panic("Fatal exception in interrupt");
401
99a7a234 402 if (panic_on_oops)
d4fd1989 403 panic("Fatal exception");
d4fd1989 404
7aa1c8f4
RB
405 if (regs && kexec_should_crash(current))
406 crash_kexec(regs);
407
ce384d83 408 do_exit(sig);
1da177e4
LT
409}
410
0510617b
TB
411extern struct exception_table_entry __start___dbe_table[];
412extern struct exception_table_entry __stop___dbe_table[];
1da177e4 413
b6dcec9b
RB
414__asm__(
415" .section __dbe_table, \"a\"\n"
416" .previous \n");
1da177e4
LT
417
418/* Given an address, look for it in the exception tables. */
419static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
420{
421 const struct exception_table_entry *e;
422
423 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
424 if (!e)
425 e = search_module_dbetables(addr);
426 return e;
427}
428
429asmlinkage void do_be(struct pt_regs *regs)
430{
431 const int field = 2 * sizeof(unsigned long);
432 const struct exception_table_entry *fixup = NULL;
433 int data = regs->cp0_cause & 4;
434 int action = MIPS_BE_FATAL;
c3fc5cd5 435 enum ctx_state prev_state;
1da177e4 436
c3fc5cd5 437 prev_state = exception_enter();
70342287 438 /* XXX For now. Fixme, this searches the wrong table ... */
1da177e4
LT
439 if (data && !user_mode(regs))
440 fixup = search_dbe_tables(exception_epc(regs));
441
442 if (fixup)
443 action = MIPS_BE_FIXUP;
444
445 if (board_be_handler)
28fc582c 446 action = board_be_handler(regs, fixup != NULL);
1da177e4
LT
447
448 switch (action) {
449 case MIPS_BE_DISCARD:
c3fc5cd5 450 goto out;
1da177e4
LT
451 case MIPS_BE_FIXUP:
452 if (fixup) {
453 regs->cp0_epc = fixup->nextinsn;
c3fc5cd5 454 goto out;
1da177e4
LT
455 }
456 break;
457 default:
458 break;
459 }
460
461 /*
462 * Assume it would be too dangerous to continue ...
463 */
464 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
465 data ? "Data" : "Instruction",
466 field, regs->cp0_epc, field, regs->regs[31]);
e3b28831 467 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
dc73e4c1 468 SIGBUS) == NOTIFY_STOP)
c3fc5cd5 469 goto out;
88547001 470
1da177e4
LT
471 die_if_kernel("Oops", regs);
472 force_sig(SIGBUS, current);
c3fc5cd5
RB
473
474out:
475 exception_exit(prev_state);
1da177e4
LT
476}
477
1da177e4 478/*
60b0d655 479 * ll/sc, rdhwr, sync emulation
1da177e4
LT
480 */
481
482#define OPCODE 0xfc000000
483#define BASE 0x03e00000
484#define RT 0x001f0000
485#define OFFSET 0x0000ffff
486#define LL 0xc0000000
487#define SC 0xe0000000
60b0d655 488#define SPEC0 0x00000000
3c37026d
RB
489#define SPEC3 0x7c000000
490#define RD 0x0000f800
491#define FUNC 0x0000003f
60b0d655 492#define SYNC 0x0000000f
3c37026d 493#define RDHWR 0x0000003b
1da177e4 494
2a0b24f5
SH
495/* microMIPS definitions */
496#define MM_POOL32A_FUNC 0xfc00ffff
497#define MM_RDHWR 0x00006b3c
498#define MM_RS 0x001f0000
499#define MM_RT 0x03e00000
500
1da177e4
LT
501/*
502 * The ll_bit is cleared by r*_switch.S
503 */
504
f1e39a4a
RB
505unsigned int ll_bit;
506struct task_struct *ll_task;
1da177e4 507
60b0d655 508static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
1da177e4 509{
fe00f943 510 unsigned long value, __user *vaddr;
1da177e4 511 long offset;
1da177e4
LT
512
513 /*
514 * analyse the ll instruction that just caused a ri exception
515 * and put the referenced address to addr.
516 */
517
518 /* sign extend offset */
519 offset = opcode & OFFSET;
520 offset <<= 16;
521 offset >>= 16;
522
fe00f943 523 vaddr = (unsigned long __user *)
b9688310 524 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4 525
60b0d655
MR
526 if ((unsigned long)vaddr & 3)
527 return SIGBUS;
528 if (get_user(value, vaddr))
529 return SIGSEGV;
1da177e4
LT
530
531 preempt_disable();
532
533 if (ll_task == NULL || ll_task == current) {
534 ll_bit = 1;
535 } else {
536 ll_bit = 0;
537 }
538 ll_task = current;
539
540 preempt_enable();
541
542 regs->regs[(opcode & RT) >> 16] = value;
543
60b0d655 544 return 0;
1da177e4
LT
545}
546
60b0d655 547static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
1da177e4 548{
fe00f943
RB
549 unsigned long __user *vaddr;
550 unsigned long reg;
1da177e4 551 long offset;
1da177e4
LT
552
553 /*
554 * analyse the sc instruction that just caused a ri exception
555 * and put the referenced address to addr.
556 */
557
558 /* sign extend offset */
559 offset = opcode & OFFSET;
560 offset <<= 16;
561 offset >>= 16;
562
fe00f943 563 vaddr = (unsigned long __user *)
b9688310 564 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
565 reg = (opcode & RT) >> 16;
566
60b0d655
MR
567 if ((unsigned long)vaddr & 3)
568 return SIGBUS;
1da177e4
LT
569
570 preempt_disable();
571
572 if (ll_bit == 0 || ll_task != current) {
573 regs->regs[reg] = 0;
574 preempt_enable();
60b0d655 575 return 0;
1da177e4
LT
576 }
577
578 preempt_enable();
579
60b0d655
MR
580 if (put_user(regs->regs[reg], vaddr))
581 return SIGSEGV;
1da177e4
LT
582
583 regs->regs[reg] = 1;
584
60b0d655 585 return 0;
1da177e4
LT
586}
587
588/*
589 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
590 * opcodes are supposed to result in coprocessor unusable exceptions if
591 * executed on ll/sc-less processors. That's the theory. In practice a
592 * few processors such as NEC's VR4100 throw reserved instruction exceptions
593 * instead, so we're doing the emulation thing in both exception handlers.
594 */
60b0d655 595static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
1da177e4 596{
7f788d2d
DCZ
597 if ((opcode & OPCODE) == LL) {
598 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 599 1, regs, 0);
60b0d655 600 return simulate_ll(regs, opcode);
7f788d2d
DCZ
601 }
602 if ((opcode & OPCODE) == SC) {
603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 604 1, regs, 0);
60b0d655 605 return simulate_sc(regs, opcode);
7f788d2d 606 }
1da177e4 607
60b0d655 608 return -1; /* Must be something else ... */
1da177e4
LT
609}
610
3c37026d
RB
611/*
612 * Simulate trapping 'rdhwr' instructions to provide user accessible
1f5826bd 613 * registers not implemented in hardware.
3c37026d 614 */
2a0b24f5 615static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
3c37026d 616{
dc8f6029 617 struct thread_info *ti = task_thread_info(current);
3c37026d 618
2a0b24f5
SH
619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620 1, regs, 0);
621 switch (rd) {
622 case 0: /* CPU number */
623 regs->regs[rt] = smp_processor_id();
624 return 0;
625 case 1: /* SYNCI length */
626 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
627 current_cpu_data.icache.linesz);
628 return 0;
629 case 2: /* Read count register */
630 regs->regs[rt] = read_c0_count();
631 return 0;
632 case 3: /* Count register resolution */
69f24d17 633 switch (current_cpu_type()) {
2a0b24f5
SH
634 case CPU_20KC:
635 case CPU_25KF:
636 regs->regs[rt] = 1;
637 break;
638 default:
639 regs->regs[rt] = 2;
640 }
641 return 0;
642 case 29:
643 regs->regs[rt] = ti->tp_value;
644 return 0;
645 default:
646 return -1;
647 }
648}
649
650static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
651{
3c37026d
RB
652 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
653 int rd = (opcode & RD) >> 11;
654 int rt = (opcode & RT) >> 16;
2a0b24f5
SH
655
656 simulate_rdhwr(regs, rd, rt);
657 return 0;
658 }
659
660 /* Not ours. */
661 return -1;
662}
663
7aa70471 664static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
2a0b24f5
SH
665{
666 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
667 int rd = (opcode & MM_RS) >> 16;
668 int rt = (opcode & MM_RT) >> 21;
669 simulate_rdhwr(regs, rd, rt);
670 return 0;
3c37026d
RB
671 }
672
56ebd51b 673 /* Not ours. */
60b0d655
MR
674 return -1;
675}
e5679882 676
60b0d655
MR
677static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
678{
7f788d2d
DCZ
679 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
680 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 681 1, regs, 0);
60b0d655 682 return 0;
7f788d2d 683 }
60b0d655
MR
684
685 return -1; /* Must be something else ... */
3c37026d
RB
686}
687
1da177e4
LT
688asmlinkage void do_ov(struct pt_regs *regs)
689{
c3fc5cd5 690 enum ctx_state prev_state;
e723e3f7
MR
691 siginfo_t info = {
692 .si_signo = SIGFPE,
693 .si_code = FPE_INTOVF,
694 .si_addr = (void __user *)regs->cp0_epc,
695 };
1da177e4 696
c3fc5cd5 697 prev_state = exception_enter();
36ccf1c0
RB
698 die_if_kernel("Integer overflow", regs);
699
1da177e4 700 force_sig_info(SIGFPE, &info, current);
c3fc5cd5 701 exception_exit(prev_state);
1da177e4
LT
702}
703
304acb71 704int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
515b029d 705{
304acb71
MR
706 struct siginfo si = { 0 };
707
708 switch (sig) {
709 case 0:
710 return 0;
ad70c13a 711
304acb71 712 case SIGFPE:
515b029d
DD
713 si.si_addr = fault_addr;
714 si.si_signo = sig;
304acb71
MR
715 /*
716 * Inexact can happen together with Overflow or Underflow.
717 * Respect the mask to deliver the correct exception.
718 */
719 fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
720 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
721 if (fcr31 & FPU_CSR_INV_X)
722 si.si_code = FPE_FLTINV;
723 else if (fcr31 & FPU_CSR_DIV_X)
724 si.si_code = FPE_FLTDIV;
725 else if (fcr31 & FPU_CSR_OVF_X)
726 si.si_code = FPE_FLTOVF;
727 else if (fcr31 & FPU_CSR_UDF_X)
728 si.si_code = FPE_FLTUND;
729 else if (fcr31 & FPU_CSR_INE_X)
730 si.si_code = FPE_FLTRES;
731 else
732 si.si_code = __SI_FAULT;
515b029d
DD
733 force_sig_info(sig, &si, current);
734 return 1;
304acb71
MR
735
736 case SIGBUS:
737 si.si_addr = fault_addr;
738 si.si_signo = sig;
739 si.si_code = BUS_ADRERR;
740 force_sig_info(sig, &si, current);
741 return 1;
742
743 case SIGSEGV:
744 si.si_addr = fault_addr;
745 si.si_signo = sig;
746 down_read(&current->mm->mmap_sem);
747 if (find_vma(current->mm, (unsigned long)fault_addr))
748 si.si_code = SEGV_ACCERR;
749 else
750 si.si_code = SEGV_MAPERR;
751 up_read(&current->mm->mmap_sem);
752 force_sig_info(sig, &si, current);
753 return 1;
754
755 default:
515b029d
DD
756 force_sig(sig, current);
757 return 1;
515b029d
DD
758 }
759}
760
4227a2d4
PB
761static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
762 unsigned long old_epc, unsigned long old_ra)
763{
764 union mips_instruction inst = { .word = opcode };
304acb71
MR
765 void __user *fault_addr;
766 unsigned long fcr31;
4227a2d4
PB
767 int sig;
768
769 /* If it's obviously not an FP instruction, skip it */
770 switch (inst.i_format.opcode) {
771 case cop1_op:
772 case cop1x_op:
773 case lwc1_op:
774 case ldc1_op:
775 case swc1_op:
776 case sdc1_op:
777 break;
778
779 default:
780 return -1;
781 }
782
783 /*
784 * do_ri skipped over the instruction via compute_return_epc, undo
785 * that for the FPU emulator.
786 */
787 regs->cp0_epc = old_epc;
788 regs->regs[31] = old_ra;
789
790 /* Save the FP context to struct thread_struct */
791 lose_fpu(1);
792
793 /* Run the emulator */
794 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
795 &fault_addr);
304acb71 796 fcr31 = current->thread.fpu.fcr31;
4227a2d4 797
443c4403
MR
798 /*
799 * We can't allow the emulated instruction to leave any of
800 * the cause bits set in $fcr31.
801 */
802 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
4227a2d4
PB
803
804 /* Restore the hardware register state */
805 own_fpu(1);
806
304acb71
MR
807 /* Send a signal if required. */
808 process_fpemu_return(sig, fault_addr, fcr31);
809
4227a2d4
PB
810 return 0;
811}
812
1da177e4
LT
813/*
814 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
815 */
816asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
817{
c3fc5cd5 818 enum ctx_state prev_state;
304acb71
MR
819 void __user *fault_addr;
820 int sig;
948a34cf 821
c3fc5cd5 822 prev_state = exception_enter();
e3b28831 823 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
dc73e4c1 824 SIGFPE) == NOTIFY_STOP)
c3fc5cd5 825 goto out;
64bedffe
JH
826
827 /* Clear FCSR.Cause before enabling interrupts */
828 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
829 local_irq_enable();
830
57725f9e
CD
831 die_if_kernel("FP exception in kernel code", regs);
832
1da177e4 833 if (fcr31 & FPU_CSR_UNI_X) {
1da177e4 834 /*
a3dddd56 835 * Unimplemented operation exception. If we've got the full
1da177e4
LT
836 * software emulator on-board, let's use it...
837 *
838 * Force FPU to dump state into task/thread context. We're
839 * moving a lot of data here for what is probably a single
840 * instruction, but the alternative is to pre-decode the FP
841 * register operands before invoking the emulator, which seems
842 * a bit extreme for what should be an infrequent event.
843 */
cd21dfcf 844 /* Ensure 'resume' not overwrite saved fp context again. */
53dc8028 845 lose_fpu(1);
1da177e4
LT
846
847 /* Run the emulator */
515b029d
DD
848 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
849 &fault_addr);
304acb71 850 fcr31 = current->thread.fpu.fcr31;
1da177e4
LT
851
852 /*
853 * We can't allow the emulated instruction to leave any of
443c4403 854 * the cause bits set in $fcr31.
1da177e4 855 */
eae89076 856 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1da177e4
LT
857
858 /* Restore the hardware register state */
70342287 859 own_fpu(1); /* Using the FPU again. */
304acb71
MR
860 } else {
861 sig = SIGFPE;
862 fault_addr = (void __user *) regs->cp0_epc;
ed2d72c1 863 }
1da177e4 864
304acb71
MR
865 /* Send a signal if required. */
866 process_fpemu_return(sig, fault_addr, fcr31);
c3fc5cd5
RB
867
868out:
869 exception_exit(prev_state);
1da177e4
LT
870}
871
3b143cca 872void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
df270051 873 const char *str)
1da177e4 874{
e723e3f7 875 siginfo_t info = { 0 };
df270051 876 char b[40];
1da177e4 877
5dd11d5d 878#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
e3b28831
RB
879 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
880 SIGTRAP) == NOTIFY_STOP)
5dd11d5d
JW
881 return;
882#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
883
e3b28831 884 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
dc73e4c1 885 SIGTRAP) == NOTIFY_STOP)
88547001
JW
886 return;
887
1da177e4 888 /*
df270051
RB
889 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
890 * insns, even for trap and break codes that indicate arithmetic
891 * failures. Weird ...
1da177e4
LT
892 * But should we continue the brokenness??? --macro
893 */
df270051
RB
894 switch (code) {
895 case BRK_OVERFLOW:
896 case BRK_DIVZERO:
897 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
898 die_if_kernel(b, regs);
899 if (code == BRK_DIVZERO)
1da177e4
LT
900 info.si_code = FPE_INTDIV;
901 else
902 info.si_code = FPE_INTOVF;
903 info.si_signo = SIGFPE;
fe00f943 904 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
905 force_sig_info(SIGFPE, &info, current);
906 break;
63dc68a8 907 case BRK_BUG:
df270051
RB
908 die_if_kernel("Kernel bug detected", regs);
909 force_sig(SIGTRAP, current);
63dc68a8 910 break;
ba3049ed
RB
911 case BRK_MEMU:
912 /*
1f443779
MR
913 * This breakpoint code is used by the FPU emulator to retake
914 * control of the CPU after executing the instruction from the
915 * delay slot of an emulated branch.
ba3049ed
RB
916 *
917 * Terminate if exception was recognized as a delay slot return
918 * otherwise handle as normal.
919 */
920 if (do_dsemulret(regs))
921 return;
922
923 die_if_kernel("Math emu break/trap", regs);
924 force_sig(SIGTRAP, current);
925 break;
1da177e4 926 default:
df270051
RB
927 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
928 die_if_kernel(b, regs);
3b143cca
MR
929 if (si_code) {
930 info.si_signo = SIGTRAP;
931 info.si_code = si_code;
932 force_sig_info(SIGTRAP, &info, current);
933 } else {
934 force_sig(SIGTRAP, current);
935 }
1da177e4 936 }
df270051
RB
937}
938
939asmlinkage void do_bp(struct pt_regs *regs)
940{
f6a31da5 941 unsigned long epc = msk_isa16_mode(exception_epc(regs));
df270051 942 unsigned int opcode, bcode;
c3fc5cd5 943 enum ctx_state prev_state;
078dde5e
LY
944 mm_segment_t seg;
945
946 seg = get_fs();
947 if (!user_mode(regs))
948 set_fs(KERNEL_DS);
2a0b24f5 949
c3fc5cd5 950 prev_state = exception_enter();
e3b28831 951 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
2a0b24f5 952 if (get_isa16_mode(regs->cp0_epc)) {
f6a31da5
MR
953 u16 instr[2];
954
955 if (__get_user(instr[0], (u16 __user *)epc))
956 goto out_sigsegv;
957
958 if (!cpu_has_mmips) {
b08a9c95 959 /* MIPS16e mode */
68893e00 960 bcode = (instr[0] >> 5) & 0x3f;
f6a31da5
MR
961 } else if (mm_insn_16bit(instr[0])) {
962 /* 16-bit microMIPS BREAK */
963 bcode = instr[0] & 0xf;
964 } else {
965 /* 32-bit microMIPS BREAK */
966 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 967 goto out_sigsegv;
f6a31da5
MR
968 opcode = (instr[0] << 16) | instr[1];
969 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5
SH
970 }
971 } else {
f6a31da5 972 if (__get_user(opcode, (unsigned int __user *)epc))
2a0b24f5 973 goto out_sigsegv;
f6a31da5 974 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5 975 }
df270051
RB
976
977 /*
978 * There is the ancient bug in the MIPS assemblers that the break
979 * code starts left to bit 16 instead to bit 6 in the opcode.
980 * Gas is bug-compatible, but not always, grrr...
981 * We handle both cases with a simple heuristics. --macro
982 */
df270051 983 if (bcode >= (1 << 10))
c9875032 984 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
df270051 985
c1bf207d
DD
986 /*
987 * notify the kprobe handlers, if instruction is likely to
988 * pertain to them.
989 */
990 switch (bcode) {
40e084a5
RB
991 case BRK_UPROBE:
992 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
993 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
994 goto out;
995 else
996 break;
997 case BRK_UPROBE_XOL:
998 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
999 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1000 goto out;
1001 else
1002 break;
c1bf207d 1003 case BRK_KPROBE_BP:
dc73e4c1 1004 if (notify_die(DIE_BREAK, "debug", regs, bcode,
e3b28831 1005 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1006 goto out;
c1bf207d
DD
1007 else
1008 break;
1009 case BRK_KPROBE_SSTEPBP:
dc73e4c1 1010 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
e3b28831 1011 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1012 goto out;
c1bf207d
DD
1013 else
1014 break;
1015 default:
1016 break;
1017 }
1018
3b143cca 1019 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
c3fc5cd5
RB
1020
1021out:
078dde5e 1022 set_fs(seg);
c3fc5cd5 1023 exception_exit(prev_state);
90fccb13 1024 return;
e5679882
RB
1025
1026out_sigsegv:
1027 force_sig(SIGSEGV, current);
c3fc5cd5 1028 goto out;
1da177e4
LT
1029}
1030
1031asmlinkage void do_tr(struct pt_regs *regs)
1032{
a9a6e7a0 1033 u32 opcode, tcode = 0;
c3fc5cd5 1034 enum ctx_state prev_state;
2a0b24f5 1035 u16 instr[2];
078dde5e 1036 mm_segment_t seg;
a9a6e7a0 1037 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1da177e4 1038
078dde5e
LY
1039 seg = get_fs();
1040 if (!user_mode(regs))
1041 set_fs(get_ds());
1042
c3fc5cd5 1043 prev_state = exception_enter();
e3b28831 1044 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
a9a6e7a0
MR
1045 if (get_isa16_mode(regs->cp0_epc)) {
1046 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1047 __get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 1048 goto out_sigsegv;
a9a6e7a0
MR
1049 opcode = (instr[0] << 16) | instr[1];
1050 /* Immediate versions don't provide a code. */
1051 if (!(opcode & OPCODE))
1052 tcode = (opcode >> 12) & ((1 << 4) - 1);
1053 } else {
1054 if (__get_user(opcode, (u32 __user *)epc))
1055 goto out_sigsegv;
1056 /* Immediate versions don't provide a code. */
1057 if (!(opcode & OPCODE))
1058 tcode = (opcode >> 6) & ((1 << 10) - 1);
2a0b24f5 1059 }
1da177e4 1060
3b143cca 1061 do_trap_or_bp(regs, tcode, 0, "Trap");
c3fc5cd5
RB
1062
1063out:
078dde5e 1064 set_fs(seg);
c3fc5cd5 1065 exception_exit(prev_state);
90fccb13 1066 return;
e5679882
RB
1067
1068out_sigsegv:
1069 force_sig(SIGSEGV, current);
c3fc5cd5 1070 goto out;
1da177e4
LT
1071}
1072
1073asmlinkage void do_ri(struct pt_regs *regs)
1074{
60b0d655
MR
1075 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1076 unsigned long old_epc = regs->cp0_epc;
2a0b24f5 1077 unsigned long old31 = regs->regs[31];
c3fc5cd5 1078 enum ctx_state prev_state;
60b0d655
MR
1079 unsigned int opcode = 0;
1080 int status = -1;
1da177e4 1081
b0a668fb
LY
1082 /*
1083 * Avoid any kernel code. Just emulate the R2 instruction
1084 * as quickly as possible.
1085 */
1086 if (mipsr2_emulation && cpu_has_mips_r6 &&
4a7c2371
MR
1087 likely(user_mode(regs)) &&
1088 likely(get_user(opcode, epc) >= 0)) {
304acb71
MR
1089 unsigned long fcr31 = 0;
1090
1091 status = mipsr2_decoder(regs, opcode, &fcr31);
4a7c2371
MR
1092 switch (status) {
1093 case 0:
1094 case SIGEMT:
1095 task_thread_info(current)->r2_emul_return = 1;
1096 return;
1097 case SIGILL:
1098 goto no_r2_instr;
1099 default:
1100 process_fpemu_return(status,
304acb71
MR
1101 &current->thread.cp0_baduaddr,
1102 fcr31);
4a7c2371
MR
1103 task_thread_info(current)->r2_emul_return = 1;
1104 return;
b0a668fb
LY
1105 }
1106 }
1107
1108no_r2_instr:
1109
c3fc5cd5 1110 prev_state = exception_enter();
e3b28831 1111 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
b0a668fb 1112
e3b28831 1113 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
dc73e4c1 1114 SIGILL) == NOTIFY_STOP)
c3fc5cd5 1115 goto out;
88547001 1116
60b0d655 1117 die_if_kernel("Reserved instruction in kernel code", regs);
1da177e4 1118
60b0d655 1119 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1120 goto out;
3c37026d 1121
3d50a7fb 1122 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1123 if (unlikely(get_user(opcode, epc) < 0))
1124 status = SIGSEGV;
60b0d655 1125
2a0b24f5
SH
1126 if (!cpu_has_llsc && status < 0)
1127 status = simulate_llsc(regs, opcode);
1128
1129 if (status < 0)
1130 status = simulate_rdhwr_normal(regs, opcode);
1131
1132 if (status < 0)
1133 status = simulate_sync(regs, opcode);
4227a2d4
PB
1134
1135 if (status < 0)
1136 status = simulate_fp(regs, opcode, old_epc, old31);
3d50a7fb
MR
1137 } else if (cpu_has_mmips) {
1138 unsigned short mmop[2] = { 0 };
1139
1140 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1141 status = SIGSEGV;
1142 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1143 status = SIGSEGV;
1144 opcode = mmop[0];
1145 opcode = (opcode << 16) | mmop[1];
1146
1147 if (status < 0)
1148 status = simulate_rdhwr_mm(regs, opcode);
2a0b24f5 1149 }
60b0d655
MR
1150
1151 if (status < 0)
1152 status = SIGILL;
1153
1154 if (unlikely(status > 0)) {
1155 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1156 regs->regs[31] = old31;
60b0d655
MR
1157 force_sig(status, current);
1158 }
c3fc5cd5
RB
1159
1160out:
1161 exception_exit(prev_state);
1da177e4
LT
1162}
1163
d223a861
RB
1164/*
1165 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1166 * emulated more than some threshold number of instructions, force migration to
1167 * a "CPU" that has FP support.
1168 */
1169static void mt_ase_fp_affinity(void)
1170{
1171#ifdef CONFIG_MIPS_MT_FPAFF
1172 if (mt_fpemul_threshold > 0 &&
1173 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1174 /*
1175 * If there's no FPU present, or if the application has already
1176 * restricted the allowed set to exclude any CPUs with FPUs,
1177 * we'll skip the procedure.
1178 */
8dd92891 1179 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
d223a861
RB
1180 cpumask_t tmask;
1181
9cc12363
KK
1182 current->thread.user_cpus_allowed
1183 = current->cpus_allowed;
8dd92891
RR
1184 cpumask_and(&tmask, &current->cpus_allowed,
1185 &mt_fpu_cpumask);
ed1bbdef 1186 set_cpus_allowed_ptr(current, &tmask);
293c5bd1 1187 set_thread_flag(TIF_FPUBOUND);
d223a861
RB
1188 }
1189 }
1190#endif /* CONFIG_MIPS_MT_FPAFF */
1191}
1192
69f3a7de
RB
1193/*
1194 * No lock; only written during early bootup by CPU 0.
1195 */
1196static RAW_NOTIFIER_HEAD(cu2_chain);
1197
1198int __ref register_cu2_notifier(struct notifier_block *nb)
1199{
1200 return raw_notifier_chain_register(&cu2_chain, nb);
1201}
1202
1203int cu2_notifier_call_chain(unsigned long val, void *v)
1204{
1205 return raw_notifier_call_chain(&cu2_chain, val, v);
1206}
1207
1208static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
70342287 1209 void *data)
69f3a7de
RB
1210{
1211 struct pt_regs *regs = data;
1212
83bee792 1213 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
69f3a7de 1214 "instruction", regs);
83bee792 1215 force_sig(SIGILL, current);
69f3a7de
RB
1216
1217 return NOTIFY_OK;
1218}
1219
9791554b
PB
1220static int wait_on_fp_mode_switch(atomic_t *p)
1221{
1222 /*
1223 * The FP mode for this task is currently being switched. That may
1224 * involve modifications to the format of this tasks FP context which
1225 * make it unsafe to proceed with execution for the moment. Instead,
1226 * schedule some other task.
1227 */
1228 schedule();
1229 return 0;
1230}
1231
1db1af84
PB
1232static int enable_restore_fp_context(int msa)
1233{
c9017757 1234 int err, was_fpu_owner, prior_msa;
1db1af84 1235
9791554b
PB
1236 /*
1237 * If an FP mode switch is currently underway, wait for it to
1238 * complete before proceeding.
1239 */
1240 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1241 wait_on_fp_mode_switch, TASK_KILLABLE);
1242
1db1af84
PB
1243 if (!used_math()) {
1244 /* First time FP context user. */
762a1f43 1245 preempt_disable();
1db1af84 1246 err = init_fpu();
c9017757 1247 if (msa && !err) {
1db1af84 1248 enable_msa();
e49d3848 1249 init_msa_upper();
732c0c3c
PB
1250 set_thread_flag(TIF_USEDMSA);
1251 set_thread_flag(TIF_MSA_CTX_LIVE);
c9017757 1252 }
762a1f43 1253 preempt_enable();
1db1af84
PB
1254 if (!err)
1255 set_used_math();
1256 return err;
1257 }
1258
1259 /*
1260 * This task has formerly used the FP context.
1261 *
1262 * If this thread has no live MSA vector context then we can simply
1263 * restore the scalar FP context. If it has live MSA vector context
1264 * (that is, it has or may have used MSA since last performing a
1265 * function call) then we'll need to restore the vector context. This
1266 * applies even if we're currently only executing a scalar FP
1267 * instruction. This is because if we were to later execute an MSA
1268 * instruction then we'd either have to:
1269 *
1270 * - Restore the vector context & clobber any registers modified by
1271 * scalar FP instructions between now & then.
1272 *
1273 * or
1274 *
1275 * - Not restore the vector context & lose the most significant bits
1276 * of all vector registers.
1277 *
1278 * Neither of those options is acceptable. We cannot restore the least
1279 * significant bits of the registers now & only restore the most
1280 * significant bits later because the most significant bits of any
1281 * vector registers whose aliased FP register is modified now will have
1282 * been zeroed. We'd have no way to know that when restoring the vector
1283 * context & thus may load an outdated value for the most significant
1284 * bits of a vector register.
1285 */
1286 if (!msa && !thread_msa_context_live())
1287 return own_fpu(1);
1288
1289 /*
1290 * This task is using or has previously used MSA. Thus we require
1291 * that Status.FR == 1.
1292 */
762a1f43 1293 preempt_disable();
1db1af84 1294 was_fpu_owner = is_fpu_owner();
762a1f43 1295 err = own_fpu_inatomic(0);
1db1af84 1296 if (err)
762a1f43 1297 goto out;
1db1af84
PB
1298
1299 enable_msa();
1300 write_msa_csr(current->thread.fpu.msacsr);
1301 set_thread_flag(TIF_USEDMSA);
1302
1303 /*
1304 * If this is the first time that the task is using MSA and it has
1305 * previously used scalar FP in this time slice then we already nave
c9017757
PB
1306 * FP context which we shouldn't clobber. We do however need to clear
1307 * the upper 64b of each vector register so that this task has no
1308 * opportunity to see data left behind by another.
1db1af84 1309 */
c9017757
PB
1310 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1311 if (!prior_msa && was_fpu_owner) {
e49d3848 1312 init_msa_upper();
762a1f43
PB
1313
1314 goto out;
c9017757 1315 }
1db1af84 1316
c9017757
PB
1317 if (!prior_msa) {
1318 /*
1319 * Restore the least significant 64b of each vector register
1320 * from the existing scalar FP context.
1321 */
1322 _restore_fp(current);
b8340673 1323
c9017757
PB
1324 /*
1325 * The task has not formerly used MSA, so clear the upper 64b
1326 * of each vector register such that it cannot see data left
1327 * behind by another task.
1328 */
e49d3848 1329 init_msa_upper();
c9017757
PB
1330 } else {
1331 /* We need to restore the vector context. */
1332 restore_msa(current);
b8340673 1333
c9017757
PB
1334 /* Restore the scalar FP control & status register */
1335 if (!was_fpu_owner)
d76e9b9f
JH
1336 write_32bit_cp1_register(CP1_STATUS,
1337 current->thread.fpu.fcr31);
c9017757 1338 }
762a1f43
PB
1339
1340out:
1341 preempt_enable();
1342
1db1af84
PB
1343 return 0;
1344}
1345
1da177e4
LT
1346asmlinkage void do_cpu(struct pt_regs *regs)
1347{
c3fc5cd5 1348 enum ctx_state prev_state;
60b0d655 1349 unsigned int __user *epc;
2a0b24f5 1350 unsigned long old_epc, old31;
304acb71 1351 void __user *fault_addr;
60b0d655 1352 unsigned int opcode;
304acb71 1353 unsigned long fcr31;
1da177e4 1354 unsigned int cpid;
597ce172 1355 int status, err;
304acb71 1356 int sig;
1da177e4 1357
c3fc5cd5 1358 prev_state = exception_enter();
1da177e4
LT
1359 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1360
83bee792
J
1361 if (cpid != 2)
1362 die_if_kernel("do_cpu invoked from kernel context!", regs);
1363
1da177e4
LT
1364 switch (cpid) {
1365 case 0:
60b0d655
MR
1366 epc = (unsigned int __user *)exception_epc(regs);
1367 old_epc = regs->cp0_epc;
2a0b24f5 1368 old31 = regs->regs[31];
60b0d655
MR
1369 opcode = 0;
1370 status = -1;
1da177e4 1371
60b0d655 1372 if (unlikely(compute_return_epc(regs) < 0))
27e28e8e 1373 break;
3c37026d 1374
10f6d99f 1375 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1376 if (unlikely(get_user(opcode, epc) < 0))
1377 status = SIGSEGV;
1378
1379 if (!cpu_has_llsc && status < 0)
1380 status = simulate_llsc(regs, opcode);
2a0b24f5 1381 }
60b0d655
MR
1382
1383 if (status < 0)
1384 status = SIGILL;
1385
1386 if (unlikely(status > 0)) {
1387 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1388 regs->regs[31] = old31;
60b0d655
MR
1389 force_sig(status, current);
1390 }
1391
27e28e8e 1392 break;
1da177e4 1393
051ff44a
MR
1394 case 3:
1395 /*
2d83fea7
MR
1396 * The COP3 opcode space and consequently the CP0.Status.CU3
1397 * bit and the CP0.Cause.CE=3 encoding have been removed as
1398 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1399 * up the space has been reused for COP1X instructions, that
1400 * are enabled by the CP0.Status.CU1 bit and consequently
1401 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1402 * exceptions. Some FPU-less processors that implement one
1403 * of these ISAs however use this code erroneously for COP1X
1404 * instructions. Therefore we redirect this trap to the FP
1405 * emulator too.
051ff44a 1406 */
2d83fea7 1407 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
27e28e8e 1408 force_sig(SIGILL, current);
051ff44a 1409 break;
27e28e8e 1410 }
051ff44a
MR
1411 /* Fall through. */
1412
1da177e4 1413 case 1:
1db1af84 1414 err = enable_restore_fp_context(0);
1da177e4 1415
304acb71
MR
1416 if (raw_cpu_has_fpu && !err)
1417 break;
1da177e4 1418
304acb71
MR
1419 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1420 &fault_addr);
1421 fcr31 = current->thread.fpu.fcr31;
1422
1423 /*
1424 * We can't allow the emulated instruction to leave
1425 * any of the cause bits set in $fcr31.
1426 */
1427 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1428
1429 /* Send a signal if required. */
1430 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1431 mt_ase_fp_affinity();
1da177e4 1432
27e28e8e 1433 break;
1da177e4
LT
1434
1435 case 2:
69f3a7de 1436 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
27e28e8e 1437 break;
1da177e4
LT
1438 }
1439
c3fc5cd5 1440 exception_exit(prev_state);
1da177e4
LT
1441}
1442
64bedffe 1443asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
2bcb3fbc
PB
1444{
1445 enum ctx_state prev_state;
1446
1447 prev_state = exception_enter();
e3b28831 1448 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
64bedffe 1449 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
e3b28831 1450 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
64bedffe
JH
1451 goto out;
1452
1453 /* Clear MSACSR.Cause before enabling interrupts */
1454 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1455 local_irq_enable();
1456
2bcb3fbc
PB
1457 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1458 force_sig(SIGFPE, current);
64bedffe 1459out:
2bcb3fbc
PB
1460 exception_exit(prev_state);
1461}
1462
1db1af84
PB
1463asmlinkage void do_msa(struct pt_regs *regs)
1464{
1465 enum ctx_state prev_state;
1466 int err;
1467
1468 prev_state = exception_enter();
1469
1470 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1471 force_sig(SIGILL, current);
1472 goto out;
1473 }
1474
1475 die_if_kernel("do_msa invoked from kernel context!", regs);
1476
1477 err = enable_restore_fp_context(1);
1478 if (err)
1479 force_sig(SIGILL, current);
1480out:
1481 exception_exit(prev_state);
1482}
1483
1da177e4
LT
1484asmlinkage void do_mdmx(struct pt_regs *regs)
1485{
c3fc5cd5
RB
1486 enum ctx_state prev_state;
1487
1488 prev_state = exception_enter();
1da177e4 1489 force_sig(SIGILL, current);
c3fc5cd5 1490 exception_exit(prev_state);
1da177e4
LT
1491}
1492
8bc6d05b
DD
1493/*
1494 * Called with interrupts disabled.
1495 */
1da177e4
LT
1496asmlinkage void do_watch(struct pt_regs *regs)
1497{
3b143cca 1498 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
c3fc5cd5 1499 enum ctx_state prev_state;
b67b2b70 1500
c3fc5cd5 1501 prev_state = exception_enter();
1da177e4 1502 /*
b67b2b70
DD
1503 * Clear WP (bit 22) bit of cause register so we don't loop
1504 * forever.
1da177e4 1505 */
e233c733 1506 clear_c0_cause(CAUSEF_WP);
b67b2b70
DD
1507
1508 /*
1509 * If the current thread has the watch registers loaded, save
1510 * their values and send SIGTRAP. Otherwise another thread
1511 * left the registers set, clear them and continue.
1512 */
1513 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1514 mips_read_watch_registers();
8bc6d05b 1515 local_irq_enable();
3b143cca 1516 force_sig_info(SIGTRAP, &info, current);
8bc6d05b 1517 } else {
b67b2b70 1518 mips_clear_watch_registers();
8bc6d05b
DD
1519 local_irq_enable();
1520 }
c3fc5cd5 1521 exception_exit(prev_state);
1da177e4
LT
1522}
1523
1524asmlinkage void do_mcheck(struct pt_regs *regs)
1525{
cac4bcbc 1526 int multi_match = regs->cp0_status & ST0_TS;
c3fc5cd5 1527 enum ctx_state prev_state;
55c723e1 1528 mm_segment_t old_fs = get_fs();
cac4bcbc 1529
c3fc5cd5 1530 prev_state = exception_enter();
1da177e4 1531 show_regs(regs);
cac4bcbc
RB
1532
1533 if (multi_match) {
3c865dd9
JH
1534 dump_tlb_regs();
1535 pr_info("\n");
cac4bcbc
RB
1536 dump_tlb_all();
1537 }
1538
55c723e1
JH
1539 if (!user_mode(regs))
1540 set_fs(KERNEL_DS);
1541
e1bb8289 1542 show_code((unsigned int __user *) regs->cp0_epc);
cac4bcbc 1543
55c723e1
JH
1544 set_fs(old_fs);
1545
1da177e4
LT
1546 /*
1547 * Some chips may have other causes of machine check (e.g. SB1
1548 * graduation timer)
1549 */
1550 panic("Caught Machine Check exception - %scaused by multiple "
1551 "matching entries in the TLB.",
cac4bcbc 1552 (multi_match) ? "" : "not ");
1da177e4
LT
1553}
1554
340ee4b9
RB
1555asmlinkage void do_mt(struct pt_regs *regs)
1556{
41c594ab
RB
1557 int subcode;
1558
41c594ab
RB
1559 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1560 >> VPECONTROL_EXCPT_SHIFT;
1561 switch (subcode) {
1562 case 0:
e35a5e35 1563 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
1564 break;
1565 case 1:
e35a5e35 1566 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
1567 break;
1568 case 2:
e35a5e35 1569 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
1570 break;
1571 case 3:
e35a5e35 1572 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
1573 break;
1574 case 4:
e35a5e35 1575 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
1576 break;
1577 case 5:
f232c7e8 1578 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
41c594ab
RB
1579 break;
1580 default:
e35a5e35 1581 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
1582 subcode);
1583 break;
1584 }
340ee4b9
RB
1585 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1586
1587 force_sig(SIGILL, current);
1588}
1589
1590
e50c0a8f
RB
1591asmlinkage void do_dsp(struct pt_regs *regs)
1592{
1593 if (cpu_has_dsp)
ab75dc02 1594 panic("Unexpected DSP exception");
e50c0a8f
RB
1595
1596 force_sig(SIGILL, current);
1597}
1598
1da177e4
LT
1599asmlinkage void do_reserved(struct pt_regs *regs)
1600{
1601 /*
70342287 1602 * Game over - no way to handle this if it ever occurs. Most probably
1da177e4
LT
1603 * caused by a new unknown cpu type or after another deadly
1604 * hard/software error.
1605 */
1606 show_regs(regs);
1607 panic("Caught reserved exception %ld - should not happen.",
1608 (regs->cp0_cause & 0x7f) >> 2);
1609}
1610
39b8d525
RB
1611static int __initdata l1parity = 1;
1612static int __init nol1parity(char *s)
1613{
1614 l1parity = 0;
1615 return 1;
1616}
1617__setup("nol1par", nol1parity);
1618static int __initdata l2parity = 1;
1619static int __init nol2parity(char *s)
1620{
1621 l2parity = 0;
1622 return 1;
1623}
1624__setup("nol2par", nol2parity);
1625
1da177e4
LT
1626/*
1627 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1628 * it different ways.
1629 */
1630static inline void parity_protection_init(void)
1631{
10cc3529 1632 switch (current_cpu_type()) {
1da177e4 1633 case CPU_24K:
98a41de9 1634 case CPU_34K:
39b8d525
RB
1635 case CPU_74K:
1636 case CPU_1004K:
442e14a2 1637 case CPU_1074K:
26ab96df 1638 case CPU_INTERAPTIV:
708ac4b8 1639 case CPU_PROAPTIV:
aced4cbd 1640 case CPU_P5600:
4695089f 1641 case CPU_QEMU_GENERIC:
4e88a862 1642 case CPU_I6400:
1091bfa2 1643 case CPU_P6600:
39b8d525
RB
1644 {
1645#define ERRCTL_PE 0x80000000
1646#define ERRCTL_L2P 0x00800000
1647 unsigned long errctl;
1648 unsigned int l1parity_present, l2parity_present;
1649
1650 errctl = read_c0_ecc();
1651 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1652
1653 /* probe L1 parity support */
1654 write_c0_ecc(errctl | ERRCTL_PE);
1655 back_to_back_c0_hazard();
1656 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1657
1658 /* probe L2 parity support */
1659 write_c0_ecc(errctl|ERRCTL_L2P);
1660 back_to_back_c0_hazard();
1661 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1662
1663 if (l1parity_present && l2parity_present) {
1664 if (l1parity)
1665 errctl |= ERRCTL_PE;
1666 if (l1parity ^ l2parity)
1667 errctl |= ERRCTL_L2P;
1668 } else if (l1parity_present) {
1669 if (l1parity)
1670 errctl |= ERRCTL_PE;
1671 } else if (l2parity_present) {
1672 if (l2parity)
1673 errctl |= ERRCTL_L2P;
1674 } else {
1675 /* No parity available */
1676 }
1677
1678 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1679
1680 write_c0_ecc(errctl);
1681 back_to_back_c0_hazard();
1682 errctl = read_c0_ecc();
1683 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1684
1685 if (l1parity_present)
1686 printk(KERN_INFO "Cache parity protection %sabled\n",
1687 (errctl & ERRCTL_PE) ? "en" : "dis");
1688
1689 if (l2parity_present) {
1690 if (l1parity_present && l1parity)
1691 errctl ^= ERRCTL_L2P;
1692 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1693 (errctl & ERRCTL_L2P) ? "en" : "dis");
1694 }
1695 }
1696 break;
1697
1da177e4 1698 case CPU_5KC:
78d4803f 1699 case CPU_5KE:
2fa36399 1700 case CPU_LOONGSON1:
14f18b7f
RB
1701 write_c0_ecc(0x80000000);
1702 back_to_back_c0_hazard();
1703 /* Set the PE bit (bit 31) in the c0_errctl register. */
1704 printk(KERN_INFO "Cache parity protection %sabled\n",
1705 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
1706 break;
1707 case CPU_20KC:
1708 case CPU_25KF:
1709 /* Clear the DE bit (bit 16) in the c0_status register. */
1710 printk(KERN_INFO "Enable cache parity protection for "
1711 "MIPS 20KC/25KF CPUs.\n");
1712 clear_c0_status(ST0_DE);
1713 break;
1714 default:
1715 break;
1716 }
1717}
1718
1719asmlinkage void cache_parity_error(void)
1720{
1721 const int field = 2 * sizeof(unsigned long);
1722 unsigned int reg_val;
1723
1724 /* For the moment, report the problem and hang. */
1725 printk("Cache error exception:\n");
1726 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1727 reg_val = read_c0_cacheerr();
1728 printk("c0_cacheerr == %08x\n", reg_val);
1729
1730 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1731 reg_val & (1<<30) ? "secondary" : "primary",
1732 reg_val & (1<<31) ? "data" : "insn");
9c7d5768 1733 if ((cpu_has_mips_r2_r6) &&
721a9205 1734 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
6de20451
LY
1735 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1736 reg_val & (1<<29) ? "ED " : "",
1737 reg_val & (1<<28) ? "ET " : "",
1738 reg_val & (1<<27) ? "ES " : "",
1739 reg_val & (1<<26) ? "EE " : "",
1740 reg_val & (1<<25) ? "EB " : "",
1741 reg_val & (1<<24) ? "EI " : "",
1742 reg_val & (1<<23) ? "E1 " : "",
1743 reg_val & (1<<22) ? "E0 " : "");
1744 } else {
1745 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1746 reg_val & (1<<29) ? "ED " : "",
1747 reg_val & (1<<28) ? "ET " : "",
1748 reg_val & (1<<26) ? "EE " : "",
1749 reg_val & (1<<25) ? "EB " : "",
1750 reg_val & (1<<24) ? "EI " : "",
1751 reg_val & (1<<23) ? "E1 " : "",
1752 reg_val & (1<<22) ? "E0 " : "");
1753 }
1da177e4
LT
1754 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1755
ec917c2c 1756#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1757 if (reg_val & (1<<22))
1758 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1759
1760 if (reg_val & (1<<23))
1761 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1762#endif
1763
1764 panic("Can't handle the cache error!");
1765}
1766
75b5b5e0
LY
1767asmlinkage void do_ftlb(void)
1768{
1769 const int field = 2 * sizeof(unsigned long);
1770 unsigned int reg_val;
1771
1772 /* For the moment, report the problem and hang. */
9c7d5768 1773 if ((cpu_has_mips_r2_r6) &&
b2edcfc8
HC
1774 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1775 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
75b5b5e0
LY
1776 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1777 read_c0_ecc());
1778 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1779 reg_val = read_c0_cacheerr();
1780 pr_err("c0_cacheerr == %08x\n", reg_val);
1781
1782 if ((reg_val & 0xc0000000) == 0xc0000000) {
1783 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1784 } else {
1785 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1786 reg_val & (1<<30) ? "secondary" : "primary",
1787 reg_val & (1<<31) ? "data" : "insn");
1788 }
1789 } else {
1790 pr_err("FTLB error exception\n");
1791 }
1792 /* Just print the cacheerr bits for now */
1793 cache_parity_error();
1794}
1795
1da177e4
LT
1796/*
1797 * SDBBP EJTAG debug exception handler.
1798 * We skip the instruction and return to the next instruction.
1799 */
1800void ejtag_exception_handler(struct pt_regs *regs)
1801{
1802 const int field = 2 * sizeof(unsigned long);
2a0b24f5 1803 unsigned long depc, old_epc, old_ra;
1da177e4
LT
1804 unsigned int debug;
1805
70ae6126 1806 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1807 depc = read_c0_depc();
1808 debug = read_c0_debug();
70ae6126 1809 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1810 if (debug & 0x80000000) {
1811 /*
1812 * In branch delay slot.
1813 * We cheat a little bit here and use EPC to calculate the
1814 * debug return address (DEPC). EPC is restored after the
1815 * calculation.
1816 */
1817 old_epc = regs->cp0_epc;
2a0b24f5 1818 old_ra = regs->regs[31];
1da177e4 1819 regs->cp0_epc = depc;
2a0b24f5 1820 compute_return_epc(regs);
1da177e4
LT
1821 depc = regs->cp0_epc;
1822 regs->cp0_epc = old_epc;
2a0b24f5 1823 regs->regs[31] = old_ra;
1da177e4
LT
1824 } else
1825 depc += 4;
1826 write_c0_depc(depc);
1827
1828#if 0
70ae6126 1829 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1830 write_c0_debug(debug | 0x100);
1831#endif
1832}
1833
1834/*
1835 * NMI exception handler.
34bd92e2 1836 * No lock; only written during early bootup by CPU 0.
1da177e4 1837 */
34bd92e2
KC
1838static RAW_NOTIFIER_HEAD(nmi_chain);
1839
1840int register_nmi_notifier(struct notifier_block *nb)
1841{
1842 return raw_notifier_chain_register(&nmi_chain, nb);
1843}
1844
ff2d8b19 1845void __noreturn nmi_exception_handler(struct pt_regs *regs)
1da177e4 1846{
83e4da1e
LY
1847 char str[100];
1848
7963b3f1 1849 nmi_enter();
34bd92e2 1850 raw_notifier_call_chain(&nmi_chain, 0, regs);
41c594ab 1851 bust_spinlocks(1);
83e4da1e
LY
1852 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1853 smp_processor_id(), regs->cp0_epc);
1854 regs->cp0_epc = read_c0_errorepc();
1855 die(str, regs);
7963b3f1 1856 nmi_exit();
1da177e4
LT
1857}
1858
e01402b1
RB
1859#define VECTORSPACING 0x100 /* for EI/VI mode */
1860
1861unsigned long ebase;
878edf01 1862EXPORT_SYMBOL_GPL(ebase);
1da177e4 1863unsigned long exception_handlers[32];
e01402b1 1864unsigned long vi_handlers[64];
1da177e4 1865
2d1b6e95 1866void __init *set_except_vector(int n, void *addr)
1da177e4
LT
1867{
1868 unsigned long handler = (unsigned long) addr;
b22d1b6a 1869 unsigned long old_handler;
1da177e4 1870
2a0b24f5
SH
1871#ifdef CONFIG_CPU_MICROMIPS
1872 /*
1873 * Only the TLB handlers are cache aligned with an even
1874 * address. All other handlers are on an odd address and
1875 * require no modification. Otherwise, MIPS32 mode will
1876 * be entered when handling any TLB exceptions. That
1877 * would be bad...since we must stay in microMIPS mode.
1878 */
1879 if (!(handler & 0x1))
1880 handler |= 1;
1881#endif
b22d1b6a 1882 old_handler = xchg(&exception_handlers[n], handler);
1da177e4 1883
1da177e4 1884 if (n == 0 && cpu_has_divec) {
2a0b24f5
SH
1885#ifdef CONFIG_CPU_MICROMIPS
1886 unsigned long jump_mask = ~((1 << 27) - 1);
1887#else
92bbe1b9 1888 unsigned long jump_mask = ~((1 << 28) - 1);
2a0b24f5 1889#endif
92bbe1b9
FF
1890 u32 *buf = (u32 *)(ebase + 0x200);
1891 unsigned int k0 = 26;
1892 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1893 uasm_i_j(&buf, handler & ~jump_mask);
1894 uasm_i_nop(&buf);
1895 } else {
1896 UASM_i_LA(&buf, k0, handler);
1897 uasm_i_jr(&buf, k0);
1898 uasm_i_nop(&buf);
1899 }
1900 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
e01402b1
RB
1901 }
1902 return (void *)old_handler;
1903}
1904
86a1708a 1905static void do_default_vi(void)
6ba07e59
AN
1906{
1907 show_regs(get_irq_regs());
1908 panic("Caught unexpected vectored interrupt.");
1909}
1910
ef300e42 1911static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
1912{
1913 unsigned long handler;
1914 unsigned long old_handler = vi_handlers[n];
f6771dbb 1915 int srssets = current_cpu_data.srsets;
2a0b24f5 1916 u16 *h;
e01402b1
RB
1917 unsigned char *b;
1918
b72b7092 1919 BUG_ON(!cpu_has_veic && !cpu_has_vint);
e01402b1
RB
1920
1921 if (addr == NULL) {
1922 handler = (unsigned long) do_default_vi;
1923 srs = 0;
41c594ab 1924 } else
e01402b1 1925 handler = (unsigned long) addr;
2a0b24f5 1926 vi_handlers[n] = handler;
e01402b1
RB
1927
1928 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1929
f6771dbb 1930 if (srs >= srssets)
e01402b1
RB
1931 panic("Shadow register set %d not supported", srs);
1932
1933 if (cpu_has_veic) {
1934 if (board_bind_eic_interrupt)
49a89efb 1935 board_bind_eic_interrupt(n, srs);
41c594ab 1936 } else if (cpu_has_vint) {
e01402b1 1937 /* SRSMap is only defined if shadow sets are implemented */
f6771dbb 1938 if (srssets > 1)
49a89efb 1939 change_c0_srsmap(0xf << n*4, srs << n*4);
e01402b1
RB
1940 }
1941
1942 if (srs == 0) {
1943 /*
1944 * If no shadow set is selected then use the default handler
2a0b24f5 1945 * that does normal register saving and standard interrupt exit
e01402b1 1946 */
e01402b1
RB
1947 extern char except_vec_vi, except_vec_vi_lui;
1948 extern char except_vec_vi_ori, except_vec_vi_end;
c65a5480 1949 extern char rollback_except_vec_vi;
f94d9a8e 1950 char *vec_start = using_rollback_handler() ?
c65a5480 1951 &rollback_except_vec_vi : &except_vec_vi;
2a0b24f5
SH
1952#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1953 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1954 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1955#else
c65a5480
AN
1956 const int lui_offset = &except_vec_vi_lui - vec_start;
1957 const int ori_offset = &except_vec_vi_ori - vec_start;
2a0b24f5
SH
1958#endif
1959 const int handler_len = &except_vec_vi_end - vec_start;
e01402b1
RB
1960
1961 if (handler_len > VECTORSPACING) {
1962 /*
1963 * Sigh... panicing won't help as the console
1964 * is probably not configured :(
1965 */
49a89efb 1966 panic("VECTORSPACING too small");
e01402b1
RB
1967 }
1968
2a0b24f5
SH
1969 set_handler(((unsigned long)b - ebase), vec_start,
1970#ifdef CONFIG_CPU_MICROMIPS
1971 (handler_len - 1));
1972#else
1973 handler_len);
1974#endif
2a0b24f5
SH
1975 h = (u16 *)(b + lui_offset);
1976 *h = (handler >> 16) & 0xffff;
1977 h = (u16 *)(b + ori_offset);
1978 *h = (handler & 0xffff);
e0cee3ee
TB
1979 local_flush_icache_range((unsigned long)b,
1980 (unsigned long)(b+handler_len));
e01402b1
RB
1981 }
1982 else {
1983 /*
2a0b24f5
SH
1984 * In other cases jump directly to the interrupt handler. It
1985 * is the handler's responsibility to save registers if required
1986 * (eg hi/lo) and return from the exception using "eret".
e01402b1 1987 */
2a0b24f5
SH
1988 u32 insn;
1989
1990 h = (u16 *)b;
1991 /* j handler */
1992#ifdef CONFIG_CPU_MICROMIPS
1993 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1994#else
1995 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1996#endif
1997 h[0] = (insn >> 16) & 0xffff;
1998 h[1] = insn & 0xffff;
1999 h[2] = 0;
2000 h[3] = 0;
e0cee3ee
TB
2001 local_flush_icache_range((unsigned long)b,
2002 (unsigned long)(b+8));
1da177e4 2003 }
e01402b1 2004
1da177e4
LT
2005 return (void *)old_handler;
2006}
2007
ef300e42 2008void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 2009{
ff3eab2a 2010 return set_vi_srs_handler(n, addr, 0);
e01402b1 2011}
f41ae0b2 2012
1da177e4
LT
2013extern void tlb_init(void);
2014
42f77542
RB
2015/*
2016 * Timer interrupt
2017 */
2018int cp0_compare_irq;
68b6352c 2019EXPORT_SYMBOL_GPL(cp0_compare_irq);
010c108d 2020int cp0_compare_irq_shift;
42f77542
RB
2021
2022/*
2023 * Performance counter IRQ or -1 if shared with timer
2024 */
2025int cp0_perfcount_irq;
2026EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2027
8f7ff027
JH
2028/*
2029 * Fast debug channel IRQ or -1 if not present
2030 */
2031int cp0_fdc_irq;
2032EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2033
078a55fc 2034static int noulri;
bdc94eb4
CD
2035
2036static int __init ulri_disable(char *s)
2037{
2038 pr_info("Disabling ulri\n");
2039 noulri = 1;
2040
2041 return 1;
2042}
2043__setup("noulri", ulri_disable);
2044
ae4ce454
JH
2045/* configure STATUS register */
2046static void configure_status(void)
1da177e4 2047{
1da177e4
LT
2048 /*
2049 * Disable coprocessors and select 32-bit or 64-bit addressing
2050 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2051 * flag that some firmware may have left set and the TS bit (for
2052 * IP27). Set XX for ISA IV code to work.
2053 */
ae4ce454 2054 unsigned int status_set = ST0_CU0;
875d43e7 2055#ifdef CONFIG_64BIT
1da177e4
LT
2056 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2057#endif
adb37892 2058 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1da177e4 2059 status_set |= ST0_XX;
bbaf238b
CD
2060 if (cpu_has_dsp)
2061 status_set |= ST0_MX;
2062
b38c7399 2063 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4 2064 status_set);
ae4ce454
JH
2065}
2066
2067/* configure HWRENA register */
2068static void configure_hwrena(void)
2069{
2070 unsigned int hwrena = cpu_hwrena_impl_bits;
1da177e4 2071
9c7d5768 2072 if (cpu_has_mips_r2_r6)
18d693b3 2073 hwrena |= 0x0000000f;
a3692020 2074
18d693b3
KC
2075 if (!noulri && cpu_has_userlocal)
2076 hwrena |= (1 << 29);
a3692020 2077
18d693b3
KC
2078 if (hwrena)
2079 write_c0_hwrena(hwrena);
ae4ce454 2080}
e01402b1 2081
ae4ce454
JH
2082static void configure_exception_vector(void)
2083{
e01402b1 2084 if (cpu_has_veic || cpu_has_vint) {
9fb4c2b9 2085 unsigned long sr = set_c0_status(ST0_BEV);
49a89efb 2086 write_c0_ebase(ebase);
9fb4c2b9 2087 write_c0_status(sr);
e01402b1 2088 /* Setting vector spacing enables EI/VI mode */
49a89efb 2089 change_c0_intctl(0x3e0, VECTORSPACING);
e01402b1 2090 }
d03d0a57
RB
2091 if (cpu_has_divec) {
2092 if (cpu_has_mipsmt) {
2093 unsigned int vpflags = dvpe();
2094 set_c0_cause(CAUSEF_IV);
2095 evpe(vpflags);
2096 } else
2097 set_c0_cause(CAUSEF_IV);
2098 }
ae4ce454
JH
2099}
2100
2101void per_cpu_trap_init(bool is_boot_cpu)
2102{
2103 unsigned int cpu = smp_processor_id();
ae4ce454
JH
2104
2105 configure_status();
2106 configure_hwrena();
2107
ae4ce454 2108 configure_exception_vector();
3b1d4ed5
RB
2109
2110 /*
2111 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2112 *
2113 * o read IntCtl.IPTI to determine the timer interrupt
2114 * o read IntCtl.IPPCI to determine the performance counter interrupt
8f7ff027 2115 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
3b1d4ed5 2116 */
9c7d5768 2117 if (cpu_has_mips_r2_r6) {
04d83f94
MC
2118 /*
2119 * We shouldn't trust a secondary core has a sane EBASE register
2120 * so use the one calculated by the boot CPU.
2121 */
2122 if (!is_boot_cpu)
2123 write_c0_ebase(ebase);
2124
010c108d
DV
2125 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2126 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2127 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
8f7ff027
JH
2128 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2129 if (!cp0_fdc_irq)
2130 cp0_fdc_irq = -1;
2131
c3e838a2
CD
2132 } else {
2133 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
c6a4ebb9 2134 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
c3e838a2 2135 cp0_perfcount_irq = -1;
8f7ff027 2136 cp0_fdc_irq = -1;
3b1d4ed5
RB
2137 }
2138
48c4ac97 2139 if (!cpu_data[cpu].asid_cache)
4edf00a4 2140 cpu_data[cpu].asid_cache = asid_first_version(cpu);
1da177e4
LT
2141
2142 atomic_inc(&init_mm.mm_count);
2143 current->active_mm = &init_mm;
2144 BUG_ON(current->mm);
2145 enter_lazy_tlb(&init_mm, current);
2146
761b4493
MC
2147 /* Boot CPU's cache setup in setup_arch(). */
2148 if (!is_boot_cpu)
2149 cpu_cache_init();
2150 tlb_init();
3d8bfdd0 2151 TLBMISS_HANDLER_SETUP();
1da177e4
LT
2152}
2153
e01402b1 2154/* Install CPU exception handler */
078a55fc 2155void set_handler(unsigned long offset, void *addr, unsigned long size)
e01402b1 2156{
2a0b24f5
SH
2157#ifdef CONFIG_CPU_MICROMIPS
2158 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2159#else
e01402b1 2160 memcpy((void *)(ebase + offset), addr, size);
2a0b24f5 2161#endif
e0cee3ee 2162 local_flush_icache_range(ebase + offset, ebase + offset + size);
e01402b1
RB
2163}
2164
078a55fc 2165static char panic_null_cerr[] =
641e97f3
RB
2166 "Trying to set NULL cache error exception handler";
2167
42fe7ee3
RB
2168/*
2169 * Install uncached CPU exception handler.
2170 * This is suitable only for the cache error exception which is the only
2171 * exception handler that is being run uncached.
2172 */
078a55fc 2173void set_uncached_handler(unsigned long offset, void *addr,
234fcd14 2174 unsigned long size)
e01402b1 2175{
4f81b01a 2176 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
e01402b1 2177
641e97f3
RB
2178 if (!addr)
2179 panic(panic_null_cerr);
2180
e01402b1
RB
2181 memcpy((void *)(uncached_ebase + offset), addr, size);
2182}
2183
5b10496b
AN
2184static int __initdata rdhwr_noopt;
2185static int __init set_rdhwr_noopt(char *str)
2186{
2187 rdhwr_noopt = 1;
2188 return 1;
2189}
2190
2191__setup("rdhwr_noopt", set_rdhwr_noopt);
2192
1da177e4
LT
2193void __init trap_init(void)
2194{
2a0b24f5 2195 extern char except_vec3_generic;
1da177e4 2196 extern char except_vec4;
2a0b24f5 2197 extern char except_vec3_r4000;
1da177e4 2198 unsigned long i;
c65a5480
AN
2199
2200 check_wait();
1da177e4 2201
9fb4c2b9
CD
2202 if (cpu_has_veic || cpu_has_vint) {
2203 unsigned long size = 0x200 + VECTORSPACING*64;
2204 ebase = (unsigned long)
2205 __alloc_bootmem(size, 1 << fls(size), 0);
2206 } else {
a13c9962
PB
2207 ebase = CAC_BASE;
2208
9c7d5768 2209 if (cpu_has_mips_r2_r6)
566f74f6
DD
2210 ebase += (read_c0_ebase() & 0x3ffff000);
2211 }
e01402b1 2212
c6213c6c
SH
2213 if (cpu_has_mmips) {
2214 unsigned int config3 = read_c0_config3();
2215
2216 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2217 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2218 else
2219 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2220 }
2221
6fb97eff
KC
2222 if (board_ebase_setup)
2223 board_ebase_setup();
6650df3c 2224 per_cpu_trap_init(true);
1da177e4
LT
2225
2226 /*
2227 * Copy the generic exception handlers to their final destination.
92a76f6d 2228 * This will be overridden later as suitable for a particular
1da177e4
LT
2229 * configuration.
2230 */
e01402b1 2231 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
2232
2233 /*
2234 * Setup default vectors
2235 */
2236 for (i = 0; i <= 31; i++)
2237 set_except_vector(i, handle_reserved);
2238
2239 /*
2240 * Copy the EJTAG debug exception vector handler code to it's final
2241 * destination.
2242 */
e01402b1 2243 if (cpu_has_ejtag && board_ejtag_handler_setup)
49a89efb 2244 board_ejtag_handler_setup();
1da177e4
LT
2245
2246 /*
2247 * Only some CPUs have the watch exceptions.
2248 */
2249 if (cpu_has_watch)
1b505def 2250 set_except_vector(EXCCODE_WATCH, handle_watch);
1da177e4
LT
2251
2252 /*
e01402b1 2253 * Initialise interrupt handlers
1da177e4 2254 */
e01402b1
RB
2255 if (cpu_has_veic || cpu_has_vint) {
2256 int nvec = cpu_has_veic ? 64 : 8;
2257 for (i = 0; i < nvec; i++)
ff3eab2a 2258 set_vi_handler(i, NULL);
e01402b1
RB
2259 }
2260 else if (cpu_has_divec)
2261 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
2262
2263 /*
2264 * Some CPUs can enable/disable for cache parity detection, but does
2265 * it different ways.
2266 */
2267 parity_protection_init();
2268
2269 /*
2270 * The Data Bus Errors / Instruction Bus Errors are signaled
2271 * by external hardware. Therefore these two exceptions
2272 * may have board specific handlers.
2273 */
2274 if (board_be_init)
2275 board_be_init();
2276
1b505def
JH
2277 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2278 rollback_handle_int : handle_int);
2279 set_except_vector(EXCCODE_MOD, handle_tlbm);
2280 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2281 set_except_vector(EXCCODE_TLBS, handle_tlbs);
1da177e4 2282
1b505def
JH
2283 set_except_vector(EXCCODE_ADEL, handle_adel);
2284 set_except_vector(EXCCODE_ADES, handle_ades);
1da177e4 2285
1b505def
JH
2286 set_except_vector(EXCCODE_IBE, handle_ibe);
2287 set_except_vector(EXCCODE_DBE, handle_dbe);
1da177e4 2288
1b505def
JH
2289 set_except_vector(EXCCODE_SYS, handle_sys);
2290 set_except_vector(EXCCODE_BP, handle_bp);
2291 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
5b10496b
AN
2292 (cpu_has_vtag_icache ?
2293 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1b505def
JH
2294 set_except_vector(EXCCODE_CPU, handle_cpu);
2295 set_except_vector(EXCCODE_OV, handle_ov);
2296 set_except_vector(EXCCODE_TR, handle_tr);
2297 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
1da177e4 2298
10cc3529
RB
2299 if (current_cpu_type() == CPU_R6000 ||
2300 current_cpu_type() == CPU_R6000A) {
1da177e4
LT
2301 /*
2302 * The R6000 is the only R-series CPU that features a machine
2303 * check exception (similar to the R4000 cache error) and
2304 * unaligned ldc1/sdc1 exception. The handlers have not been
70342287 2305 * written yet. Well, anyway there is no R6000 machine on the
1da177e4
LT
2306 * current list of targets for Linux/MIPS.
2307 * (Duh, crap, there is someone with a triple R6k machine)
2308 */
2309 //set_except_vector(14, handle_mc);
2310 //set_except_vector(15, handle_ndc);
2311 }
2312
e01402b1
RB
2313
2314 if (board_nmi_handler_setup)
2315 board_nmi_handler_setup();
2316
e50c0a8f 2317 if (cpu_has_fpu && !cpu_has_nofpuex)
1b505def 2318 set_except_vector(EXCCODE_FPE, handle_fpe);
e50c0a8f 2319
1b505def 2320 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
5890f70f
LY
2321
2322 if (cpu_has_rixiex) {
1b505def
JH
2323 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2324 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
5890f70f
LY
2325 }
2326
1b505def
JH
2327 set_except_vector(EXCCODE_MSADIS, handle_msa);
2328 set_except_vector(EXCCODE_MDMX, handle_mdmx);
e50c0a8f
RB
2329
2330 if (cpu_has_mcheck)
1b505def 2331 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
e50c0a8f 2332
340ee4b9 2333 if (cpu_has_mipsmt)
1b505def 2334 set_except_vector(EXCCODE_THREAD, handle_mt);
340ee4b9 2335
1b505def 2336 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
e50c0a8f 2337
fcbf1dfd
DD
2338 if (board_cache_error_setup)
2339 board_cache_error_setup();
2340
e50c0a8f
RB
2341 if (cpu_has_vce)
2342 /* Special exception: R4[04]00 uses also the divec space. */
2a0b24f5 2343 set_handler(0x180, &except_vec3_r4000, 0x100);
e50c0a8f 2344 else if (cpu_has_4kex)
2a0b24f5 2345 set_handler(0x180, &except_vec3_generic, 0x80);
e50c0a8f 2346 else
2a0b24f5 2347 set_handler(0x080, &except_vec3_generic, 0x80);
e50c0a8f 2348
e0cee3ee 2349 local_flush_icache_range(ebase, ebase + 0x400);
0510617b
TB
2350
2351 sort_extable(__start___dbe_table, __stop___dbe_table);
69f3a7de 2352
4483b159 2353 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1da177e4 2354}
ae4ce454
JH
2355
2356static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2357 void *v)
2358{
2359 switch (cmd) {
2360 case CPU_PM_ENTER_FAILED:
2361 case CPU_PM_EXIT:
2362 configure_status();
2363 configure_hwrena();
2364 configure_exception_vector();
2365
2366 /* Restore register with CPU number for TLB handlers */
2367 TLBMISS_HANDLER_RESTORE();
2368
2369 break;
2370 }
2371
2372 return NOTIFY_OK;
2373}
2374
2375static struct notifier_block trap_pm_notifier_block = {
2376 .notifier_call = trap_pm_notifier,
2377};
2378
2379static int __init trap_pm_init(void)
2380{
2381 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2382}
2383arch_initcall(trap_pm_init);
This page took 0.943716 seconds and 5 git commands to generate.