MIPS: KVM: Convert headers to kernel sized types
[deliverable/linux.git] / arch / mips / kvm / emulate.c
CommitLineData
e685c689 1/*
d116e812
DCZ
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
e685c689
SL
11
12#include <linux/errno.h>
13#include <linux/err.h>
e30492bb 14#include <linux/ktime.h>
e685c689
SL
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/vmalloc.h>
18#include <linux/fs.h>
19#include <linux/bootmem.h>
20#include <linux/random.h>
21#include <asm/page.h>
22#include <asm/cacheflush.h>
f4956f62 23#include <asm/cacheops.h>
e685c689
SL
24#include <asm/cpu-info.h>
25#include <asm/mmu_context.h>
26#include <asm/tlbflush.h>
27#include <asm/inst.h>
28
29#undef CONFIG_MIPS_MT
30#include <asm/r4kcache.h>
31#define CONFIG_MIPS_MT
32
d7d5b05f
DCZ
33#include "interrupt.h"
34#include "commpage.h"
e685c689
SL
35
36#include "trace.h"
37
38/*
39 * Compute the return address and do emulate branch simulation, if required.
40 * This function should be called only in branch delay slot active.
41 */
42unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 unsigned long instpc)
44{
45 unsigned int dspcontrol;
46 union mips_instruction insn;
47 struct kvm_vcpu_arch *arch = &vcpu->arch;
48 long epc = instpc;
49 long nextpc = KVM_INVALID_INST;
50
51 if (epc & 3)
52 goto unaligned;
53
d116e812 54 /* Read the instruction */
e685c689
SL
55 insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57 if (insn.word == KVM_INVALID_INST)
58 return KVM_INVALID_INST;
59
60 switch (insn.i_format.opcode) {
d116e812 61 /* jr and jalr are in r_format format. */
e685c689
SL
62 case spec_op:
63 switch (insn.r_format.func) {
64 case jalr_op:
65 arch->gprs[insn.r_format.rd] = epc + 8;
66 /* Fall through */
67 case jr_op:
68 nextpc = arch->gprs[insn.r_format.rs];
69 break;
70 }
71 break;
72
73 /*
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 */
78 case bcond_op:
79 switch (insn.i_format.rt) {
80 case bltz_op:
81 case bltzl_op:
82 if ((long)arch->gprs[insn.i_format.rs] < 0)
83 epc = epc + 4 + (insn.i_format.simmediate << 2);
84 else
85 epc += 8;
86 nextpc = epc;
87 break;
88
89 case bgez_op:
90 case bgezl_op:
91 if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 epc = epc + 4 + (insn.i_format.simmediate << 2);
93 else
94 epc += 8;
95 nextpc = epc;
96 break;
97
98 case bltzal_op:
99 case bltzall_op:
100 arch->gprs[31] = epc + 8;
101 if ((long)arch->gprs[insn.i_format.rs] < 0)
102 epc = epc + 4 + (insn.i_format.simmediate << 2);
103 else
104 epc += 8;
105 nextpc = epc;
106 break;
107
108 case bgezal_op:
109 case bgezall_op:
110 arch->gprs[31] = epc + 8;
111 if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 epc = epc + 4 + (insn.i_format.simmediate << 2);
113 else
114 epc += 8;
115 nextpc = epc;
116 break;
117 case bposge32_op:
118 if (!cpu_has_dsp)
119 goto sigill;
120
121 dspcontrol = rddsp(0x01);
122
d116e812 123 if (dspcontrol >= 32)
e685c689 124 epc = epc + 4 + (insn.i_format.simmediate << 2);
d116e812 125 else
e685c689
SL
126 epc += 8;
127 nextpc = epc;
128 break;
129 }
130 break;
131
d116e812 132 /* These are unconditional and in j_format. */
e685c689
SL
133 case jal_op:
134 arch->gprs[31] = instpc + 8;
135 case j_op:
136 epc += 4;
137 epc >>= 28;
138 epc <<= 28;
139 epc |= (insn.j_format.target << 2);
140 nextpc = epc;
141 break;
142
d116e812 143 /* These are conditional and in i_format. */
e685c689
SL
144 case beq_op:
145 case beql_op:
146 if (arch->gprs[insn.i_format.rs] ==
147 arch->gprs[insn.i_format.rt])
148 epc = epc + 4 + (insn.i_format.simmediate << 2);
149 else
150 epc += 8;
151 nextpc = epc;
152 break;
153
154 case bne_op:
155 case bnel_op:
156 if (arch->gprs[insn.i_format.rs] !=
157 arch->gprs[insn.i_format.rt])
158 epc = epc + 4 + (insn.i_format.simmediate << 2);
159 else
160 epc += 8;
161 nextpc = epc;
162 break;
163
164 case blez_op: /* not really i_format */
165 case blezl_op:
166 /* rt field assumed to be zero */
167 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 epc = epc + 4 + (insn.i_format.simmediate << 2);
169 else
170 epc += 8;
171 nextpc = epc;
172 break;
173
174 case bgtz_op:
175 case bgtzl_op:
176 /* rt field assumed to be zero */
177 if ((long)arch->gprs[insn.i_format.rs] > 0)
178 epc = epc + 4 + (insn.i_format.simmediate << 2);
179 else
180 epc += 8;
181 nextpc = epc;
182 break;
183
d116e812 184 /* And now the FPA/cp1 branch instructions. */
e685c689 185 case cop1_op:
6ad78a5c 186 kvm_err("%s: unsupported cop1_op\n", __func__);
e685c689
SL
187 break;
188 }
189
190 return nextpc;
191
192unaligned:
6ad78a5c 193 kvm_err("%s: unaligned epc\n", __func__);
e685c689
SL
194 return nextpc;
195
196sigill:
6ad78a5c 197 kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
e685c689
SL
198 return nextpc;
199}
200
bdb7ed86 201enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
e685c689
SL
202{
203 unsigned long branch_pc;
204 enum emulation_result er = EMULATE_DONE;
205
206 if (cause & CAUSEF_BD) {
207 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 if (branch_pc == KVM_INVALID_INST) {
209 er = EMULATE_FAIL;
210 } else {
211 vcpu->arch.pc = branch_pc;
d116e812
DCZ
212 kvm_debug("BD update_pc(): New PC: %#lx\n",
213 vcpu->arch.pc);
e685c689
SL
214 }
215 } else
216 vcpu->arch.pc += 4;
217
218 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220 return er;
221}
222
e30492bb
JH
223/**
224 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225 * @vcpu: Virtual CPU.
e685c689 226 *
f8239342
JH
227 * Returns: 1 if the CP0_Count timer is disabled by either the guest
228 * CP0_Cause.DC bit or the count_ctl.DC bit.
e30492bb 229 * 0 otherwise (in which case CP0_Count timer is running).
e685c689 230 */
e30492bb 231static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
e685c689
SL
232{
233 struct mips_coproc *cop0 = vcpu->arch.cop0;
d116e812 234
f8239342
JH
235 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
e30492bb 237}
e685c689 238
e30492bb
JH
239/**
240 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241 *
242 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243 *
244 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245 */
bdb7ed86 246static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
e30492bb
JH
247{
248 s64 now_ns, periods;
249 u64 delta;
250
251 now_ns = ktime_to_ns(now);
252 delta = now_ns + vcpu->arch.count_dyn_bias;
253
254 if (delta >= vcpu->arch.count_period) {
255 /* If delta is out of safe range the bias needs adjusting */
256 periods = div64_s64(now_ns, vcpu->arch.count_period);
257 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 /* Recalculate delta with new bias */
259 delta = now_ns + vcpu->arch.count_dyn_bias;
e685c689
SL
260 }
261
e30492bb
JH
262 /*
263 * We've ensured that:
264 * delta < count_period
265 *
266 * Therefore the intermediate delta*count_hz will never overflow since
267 * at the boundary condition:
268 * delta = count_period
269 * delta = NSEC_PER_SEC * 2^32 / count_hz
270 * delta * count_hz = NSEC_PER_SEC * 2^32
271 */
272 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273}
274
f8239342
JH
275/**
276 * kvm_mips_count_time() - Get effective current time.
277 * @vcpu: Virtual CPU.
278 *
279 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280 * except when the master disable bit is set in count_ctl, in which case it is
281 * count_resume, i.e. the time that the count was disabled.
282 *
283 * Returns: Effective monotonic ktime for CP0_Count.
284 */
285static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286{
287 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 return vcpu->arch.count_resume;
289
290 return ktime_get();
291}
292
e30492bb
JH
293/**
294 * kvm_mips_read_count_running() - Read the current count value as if running.
295 * @vcpu: Virtual CPU.
296 * @now: Kernel time to read CP0_Count at.
297 *
298 * Returns the current guest CP0_Count register at time @now and handles if the
299 * timer interrupt is pending and hasn't been handled yet.
300 *
301 * Returns: The current value of the guest CP0_Count register.
302 */
bdb7ed86 303static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
e30492bb 304{
4355c44f
JH
305 struct mips_coproc *cop0 = vcpu->arch.cop0;
306 ktime_t expires, threshold;
307 uint32_t count, compare;
e30492bb
JH
308 int running;
309
4355c44f
JH
310 /* Calculate the biased and scaled guest CP0_Count */
311 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312 compare = kvm_read_c0_guest_compare(cop0);
313
314 /*
315 * Find whether CP0_Count has reached the closest timer interrupt. If
316 * not, we shouldn't inject it.
317 */
318 if ((int32_t)(count - compare) < 0)
319 return count;
320
321 /*
322 * The CP0_Count we're going to return has already reached the closest
323 * timer interrupt. Quickly check if it really is a new interrupt by
324 * looking at whether the interval until the hrtimer expiry time is
325 * less than 1/4 of the timer period.
326 */
e30492bb 327 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
4355c44f
JH
328 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329 if (ktime_before(expires, threshold)) {
e30492bb
JH
330 /*
331 * Cancel it while we handle it so there's no chance of
332 * interference with the timeout handler.
333 */
334 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335
336 /* Nothing should be waiting on the timeout */
337 kvm_mips_callbacks->queue_timer_int(vcpu);
338
339 /*
340 * Restart the timer if it was running based on the expiry time
341 * we read, so that we don't push it back 2 periods.
342 */
343 if (running) {
344 expires = ktime_add_ns(expires,
345 vcpu->arch.count_period);
346 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347 HRTIMER_MODE_ABS);
348 }
349 }
350
4355c44f 351 return count;
e30492bb
JH
352}
353
354/**
355 * kvm_mips_read_count() - Read the current count value.
356 * @vcpu: Virtual CPU.
357 *
358 * Read the current guest CP0_Count value, taking into account whether the timer
359 * is stopped.
360 *
361 * Returns: The current guest CP0_Count value.
362 */
bdb7ed86 363u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
e30492bb
JH
364{
365 struct mips_coproc *cop0 = vcpu->arch.cop0;
366
367 /* If count disabled just read static copy of count */
368 if (kvm_mips_count_disabled(vcpu))
369 return kvm_read_c0_guest_count(cop0);
370
371 return kvm_mips_read_count_running(vcpu, ktime_get());
372}
373
374/**
375 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376 * @vcpu: Virtual CPU.
377 * @count: Output pointer for CP0_Count value at point of freeze.
378 *
379 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380 * at the point it was frozen. It is guaranteed that any pending interrupts at
381 * the point it was frozen are handled, and none after that point.
382 *
383 * This is useful where the time/CP0_Count is needed in the calculation of the
384 * new parameters.
385 *
386 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387 *
388 * Returns: The ktime at the point of freeze.
389 */
bdb7ed86 390static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
e30492bb
JH
391{
392 ktime_t now;
393
394 /* stop hrtimer before finding time */
395 hrtimer_cancel(&vcpu->arch.comparecount_timer);
396 now = ktime_get();
397
398 /* find count at this point and handle pending hrtimer */
399 *count = kvm_mips_read_count_running(vcpu, now);
400
401 return now;
402}
403
e30492bb
JH
404/**
405 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
406 * @vcpu: Virtual CPU.
407 * @now: ktime at point of resume.
408 * @count: CP0_Count at point of resume.
409 *
410 * Resumes the timer and updates the timer expiry based on @now and @count.
411 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
412 * parameters need to be changed.
413 *
414 * It is guaranteed that a timer interrupt immediately after resume will be
415 * handled, but not if CP_Compare is exactly at @count. That case is already
416 * handled by kvm_mips_freeze_timer().
417 *
418 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
419 */
420static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
bdb7ed86 421 ktime_t now, u32 count)
e30492bb
JH
422{
423 struct mips_coproc *cop0 = vcpu->arch.cop0;
424 uint32_t compare;
425 u64 delta;
426 ktime_t expire;
427
428 /* Calculate timeout (wrap 0 to 2^32) */
429 compare = kvm_read_c0_guest_compare(cop0);
430 delta = (u64)(uint32_t)(compare - count - 1) + 1;
431 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
432 expire = ktime_add_ns(now, delta);
433
434 /* Update hrtimer to use new timeout */
435 hrtimer_cancel(&vcpu->arch.comparecount_timer);
436 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
437}
438
e30492bb
JH
439/**
440 * kvm_mips_write_count() - Modify the count and update timer.
441 * @vcpu: Virtual CPU.
442 * @count: Guest CP0_Count value to set.
443 *
444 * Sets the CP0_Count value and updates the timer accordingly.
445 */
bdb7ed86 446void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
e30492bb
JH
447{
448 struct mips_coproc *cop0 = vcpu->arch.cop0;
449 ktime_t now;
450
451 /* Calculate bias */
f8239342 452 now = kvm_mips_count_time(vcpu);
e30492bb
JH
453 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
454
455 if (kvm_mips_count_disabled(vcpu))
456 /* The timer's disabled, adjust the static count */
457 kvm_write_c0_guest_count(cop0, count);
458 else
459 /* Update timeout */
460 kvm_mips_resume_hrtimer(vcpu, now, count);
461}
462
463/**
464 * kvm_mips_init_count() - Initialise timer.
465 * @vcpu: Virtual CPU.
466 *
467 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
468 * it going if it's enabled.
469 */
470void kvm_mips_init_count(struct kvm_vcpu *vcpu)
471{
472 /* 100 MHz */
473 vcpu->arch.count_hz = 100*1000*1000;
474 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
475 vcpu->arch.count_hz);
476 vcpu->arch.count_dyn_bias = 0;
477
478 /* Starting at 0 */
479 kvm_mips_write_count(vcpu, 0);
480}
481
f74a8e22
JH
482/**
483 * kvm_mips_set_count_hz() - Update the frequency of the timer.
484 * @vcpu: Virtual CPU.
485 * @count_hz: Frequency of CP0_Count timer in Hz.
486 *
487 * Change the frequency of the CP0_Count timer. This is done atomically so that
488 * CP0_Count is continuous and no timer interrupt is lost.
489 *
490 * Returns: -EINVAL if @count_hz is out of range.
491 * 0 on success.
492 */
493int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
494{
495 struct mips_coproc *cop0 = vcpu->arch.cop0;
496 int dc;
497 ktime_t now;
498 u32 count;
499
500 /* ensure the frequency is in a sensible range... */
501 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
502 return -EINVAL;
503 /* ... and has actually changed */
504 if (vcpu->arch.count_hz == count_hz)
505 return 0;
506
507 /* Safely freeze timer so we can keep it continuous */
508 dc = kvm_mips_count_disabled(vcpu);
509 if (dc) {
510 now = kvm_mips_count_time(vcpu);
511 count = kvm_read_c0_guest_count(cop0);
512 } else {
513 now = kvm_mips_freeze_hrtimer(vcpu, &count);
514 }
515
516 /* Update the frequency */
517 vcpu->arch.count_hz = count_hz;
518 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
519 vcpu->arch.count_dyn_bias = 0;
520
521 /* Calculate adjusted bias so dynamic count is unchanged */
522 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
523
524 /* Update and resume hrtimer */
525 if (!dc)
526 kvm_mips_resume_hrtimer(vcpu, now, count);
527 return 0;
528}
529
e30492bb
JH
530/**
531 * kvm_mips_write_compare() - Modify compare and update timer.
532 * @vcpu: Virtual CPU.
533 * @compare: New CP0_Compare value.
b45bacd2 534 * @ack: Whether to acknowledge timer interrupt.
e30492bb
JH
535 *
536 * Update CP0_Compare to a new value and update the timeout.
b45bacd2
JH
537 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
538 * any pending timer interrupt is preserved.
e30492bb 539 */
bdb7ed86 540void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
e30492bb
JH
541{
542 struct mips_coproc *cop0 = vcpu->arch.cop0;
b45bacd2
JH
543 int dc;
544 u32 old_compare = kvm_read_c0_guest_compare(cop0);
545 ktime_t now;
546 uint32_t count;
e30492bb
JH
547
548 /* if unchanged, must just be an ack */
b45bacd2
JH
549 if (old_compare == compare) {
550 if (!ack)
551 return;
552 kvm_mips_callbacks->dequeue_timer_int(vcpu);
553 kvm_write_c0_guest_compare(cop0, compare);
e30492bb 554 return;
b45bacd2
JH
555 }
556
557 /* freeze_hrtimer() takes care of timer interrupts <= count */
558 dc = kvm_mips_count_disabled(vcpu);
559 if (!dc)
560 now = kvm_mips_freeze_hrtimer(vcpu, &count);
561
562 if (ack)
563 kvm_mips_callbacks->dequeue_timer_int(vcpu);
e30492bb 564
e30492bb
JH
565 kvm_write_c0_guest_compare(cop0, compare);
566
b45bacd2
JH
567 /* resume_hrtimer() takes care of timer interrupts > count */
568 if (!dc)
569 kvm_mips_resume_hrtimer(vcpu, now, count);
e30492bb
JH
570}
571
572/**
573 * kvm_mips_count_disable() - Disable count.
574 * @vcpu: Virtual CPU.
575 *
576 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
577 * time will be handled but not after.
578 *
f8239342
JH
579 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
580 * count_ctl.DC has been set (count disabled).
e30492bb
JH
581 *
582 * Returns: The time that the timer was stopped.
583 */
584static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
585{
586 struct mips_coproc *cop0 = vcpu->arch.cop0;
587 uint32_t count;
588 ktime_t now;
589
590 /* Stop hrtimer */
591 hrtimer_cancel(&vcpu->arch.comparecount_timer);
592
593 /* Set the static count from the dynamic count, handling pending TI */
594 now = ktime_get();
595 count = kvm_mips_read_count_running(vcpu, now);
596 kvm_write_c0_guest_count(cop0, count);
597
598 return now;
599}
600
601/**
602 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
603 * @vcpu: Virtual CPU.
604 *
605 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
f8239342
JH
606 * before the final stop time will be handled if the timer isn't disabled by
607 * count_ctl.DC, but not after.
e30492bb
JH
608 *
609 * Assumes CP0_Cause.DC is clear (count enabled).
610 */
611void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
612{
613 struct mips_coproc *cop0 = vcpu->arch.cop0;
614
615 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
f8239342
JH
616 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
617 kvm_mips_count_disable(vcpu);
e30492bb
JH
618}
619
620/**
621 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
622 * @vcpu: Virtual CPU.
623 *
624 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
f8239342
JH
625 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
626 * potentially before even returning, so the caller should be careful with
627 * ordering of CP0_Cause modifications so as not to lose it.
e30492bb
JH
628 *
629 * Assumes CP0_Cause.DC is set (count disabled).
630 */
631void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
632{
633 struct mips_coproc *cop0 = vcpu->arch.cop0;
634 uint32_t count;
635
636 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
637
638 /*
639 * Set the dynamic count to match the static count.
f8239342
JH
640 * This starts the hrtimer if count_ctl.DC allows it.
641 * Otherwise it conveniently updates the biases.
e30492bb
JH
642 */
643 count = kvm_read_c0_guest_count(cop0);
644 kvm_mips_write_count(vcpu, count);
645}
646
f8239342
JH
647/**
648 * kvm_mips_set_count_ctl() - Update the count control KVM register.
649 * @vcpu: Virtual CPU.
650 * @count_ctl: Count control register new value.
651 *
652 * Set the count control KVM register. The timer is updated accordingly.
653 *
654 * Returns: -EINVAL if reserved bits are set.
655 * 0 on success.
656 */
657int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
658{
659 struct mips_coproc *cop0 = vcpu->arch.cop0;
660 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
661 s64 delta;
662 ktime_t expire, now;
663 uint32_t count, compare;
664
665 /* Only allow defined bits to be changed */
666 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
667 return -EINVAL;
668
669 /* Apply new value */
670 vcpu->arch.count_ctl = count_ctl;
671
672 /* Master CP0_Count disable */
673 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
674 /* Is CP0_Cause.DC already disabling CP0_Count? */
675 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
676 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
677 /* Just record the current time */
678 vcpu->arch.count_resume = ktime_get();
679 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
680 /* disable timer and record current time */
681 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
682 } else {
683 /*
684 * Calculate timeout relative to static count at resume
685 * time (wrap 0 to 2^32).
686 */
687 count = kvm_read_c0_guest_count(cop0);
688 compare = kvm_read_c0_guest_compare(cop0);
689 delta = (u64)(uint32_t)(compare - count - 1) + 1;
690 delta = div_u64(delta * NSEC_PER_SEC,
691 vcpu->arch.count_hz);
692 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
693
694 /* Handle pending interrupt */
695 now = ktime_get();
696 if (ktime_compare(now, expire) >= 0)
697 /* Nothing should be waiting on the timeout */
698 kvm_mips_callbacks->queue_timer_int(vcpu);
699
700 /* Resume hrtimer without changing bias */
701 count = kvm_mips_read_count_running(vcpu, now);
702 kvm_mips_resume_hrtimer(vcpu, now, count);
703 }
704 }
705
706 return 0;
707}
708
709/**
710 * kvm_mips_set_count_resume() - Update the count resume KVM register.
711 * @vcpu: Virtual CPU.
712 * @count_resume: Count resume register new value.
713 *
714 * Set the count resume KVM register.
715 *
716 * Returns: -EINVAL if out of valid range (0..now).
717 * 0 on success.
718 */
719int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
720{
721 /*
722 * It doesn't make sense for the resume time to be in the future, as it
723 * would be possible for the next interrupt to be more than a full
724 * period in the future.
725 */
726 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
727 return -EINVAL;
728
729 vcpu->arch.count_resume = ns_to_ktime(count_resume);
730 return 0;
731}
732
e30492bb
JH
733/**
734 * kvm_mips_count_timeout() - Push timer forward on timeout.
735 * @vcpu: Virtual CPU.
736 *
737 * Handle an hrtimer event by push the hrtimer forward a period.
738 *
739 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
740 */
741enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
742{
743 /* Add the Count period to the current expiry time */
744 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
745 vcpu->arch.count_period);
746 return HRTIMER_RESTART;
e685c689
SL
747}
748
749enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
750{
751 struct mips_coproc *cop0 = vcpu->arch.cop0;
752 enum emulation_result er = EMULATE_DONE;
753
754 if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
755 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
756 kvm_read_c0_guest_epc(cop0));
757 kvm_clear_c0_guest_status(cop0, ST0_EXL);
758 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
759
760 } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
761 kvm_clear_c0_guest_status(cop0, ST0_ERL);
762 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
763 } else {
6ad78a5c
DCZ
764 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
765 vcpu->arch.pc);
e685c689
SL
766 er = EMULATE_FAIL;
767 }
768
769 return er;
770}
771
772enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
773{
e685c689
SL
774 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
775 vcpu->arch.pending_exceptions);
776
777 ++vcpu->stat.wait_exits;
778 trace_kvm_exit(vcpu, WAIT_EXITS);
779 if (!vcpu->arch.pending_exceptions) {
780 vcpu->arch.wait = 1;
781 kvm_vcpu_block(vcpu);
782
d116e812
DCZ
783 /*
784 * We we are runnable, then definitely go off to user space to
785 * check if any I/O interrupts are pending.
e685c689
SL
786 */
787 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
788 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
789 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
790 }
791 }
792
d98403a5 793 return EMULATE_DONE;
e685c689
SL
794}
795
d116e812
DCZ
796/*
797 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
798 * we can catch this, if things ever change
e685c689
SL
799 */
800enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
801{
802 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689
SL
803 uint32_t pc = vcpu->arch.pc;
804
6ad78a5c 805 kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
d98403a5 806 return EMULATE_FAIL;
e685c689
SL
807}
808
809/* Write Guest TLB Entry @ Index */
810enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
811{
812 struct mips_coproc *cop0 = vcpu->arch.cop0;
813 int index = kvm_read_c0_guest_index(cop0);
e685c689
SL
814 struct kvm_mips_tlb *tlb = NULL;
815 uint32_t pc = vcpu->arch.pc;
816
817 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
6ad78a5c
DCZ
818 kvm_debug("%s: illegal index: %d\n", __func__, index);
819 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
820 pc, index, kvm_read_c0_guest_entryhi(cop0),
821 kvm_read_c0_guest_entrylo0(cop0),
822 kvm_read_c0_guest_entrylo1(cop0),
823 kvm_read_c0_guest_pagemask(cop0));
e685c689
SL
824 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
825 }
826
827 tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
828 /*
829 * Probe the shadow host TLB for the entry being overwritten, if one
830 * matches, invalidate it
831 */
e685c689 832 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
833
834 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
835 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
836 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
837 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
838
d116e812
DCZ
839 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
840 pc, index, kvm_read_c0_guest_entryhi(cop0),
841 kvm_read_c0_guest_entrylo0(cop0),
842 kvm_read_c0_guest_entrylo1(cop0),
843 kvm_read_c0_guest_pagemask(cop0));
e685c689 844
d98403a5 845 return EMULATE_DONE;
e685c689
SL
846}
847
848/* Write Guest TLB Entry @ Random Index */
849enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
850{
851 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689
SL
852 struct kvm_mips_tlb *tlb = NULL;
853 uint32_t pc = vcpu->arch.pc;
854 int index;
855
e685c689
SL
856 get_random_bytes(&index, sizeof(index));
857 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
e685c689 858
e685c689
SL
859 tlb = &vcpu->arch.guest_tlb[index];
860
d116e812
DCZ
861 /*
862 * Probe the shadow host TLB for the entry being overwritten, if one
863 * matches, invalidate it
864 */
e685c689 865 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
866
867 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
868 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
869 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
870 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
871
d116e812
DCZ
872 kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
873 pc, index, kvm_read_c0_guest_entryhi(cop0),
874 kvm_read_c0_guest_entrylo0(cop0),
875 kvm_read_c0_guest_entrylo1(cop0));
e685c689 876
d98403a5 877 return EMULATE_DONE;
e685c689
SL
878}
879
880enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
881{
882 struct mips_coproc *cop0 = vcpu->arch.cop0;
883 long entryhi = kvm_read_c0_guest_entryhi(cop0);
e685c689
SL
884 uint32_t pc = vcpu->arch.pc;
885 int index = -1;
886
887 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
888
889 kvm_write_c0_guest_index(cop0, index);
890
891 kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
892 index);
893
d98403a5 894 return EMULATE_DONE;
e685c689
SL
895}
896
c771607a
JH
897/**
898 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
899 * @vcpu: Virtual CPU.
900 *
901 * Finds the mask of bits which are writable in the guest's Config1 CP0
902 * register, by userland (currently read-only to the guest).
903 */
904unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
905{
6cdc65e3
JH
906 unsigned int mask = 0;
907
908 /* Permit FPU to be present if FPU is supported */
909 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
910 mask |= MIPS_CONF1_FP;
911
912 return mask;
c771607a
JH
913}
914
915/**
916 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
917 * @vcpu: Virtual CPU.
918 *
919 * Finds the mask of bits which are writable in the guest's Config3 CP0
920 * register, by userland (currently read-only to the guest).
921 */
922unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
923{
924 /* Config4 is optional */
2b6009d6
JH
925 unsigned int mask = MIPS_CONF_M;
926
927 /* Permit MSA to be present if MSA is supported */
928 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
929 mask |= MIPS_CONF3_MSA;
930
931 return mask;
c771607a
JH
932}
933
934/**
935 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
936 * @vcpu: Virtual CPU.
937 *
938 * Finds the mask of bits which are writable in the guest's Config4 CP0
939 * register, by userland (currently read-only to the guest).
940 */
941unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
942{
943 /* Config5 is optional */
944 return MIPS_CONF_M;
945}
946
947/**
948 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
949 * @vcpu: Virtual CPU.
950 *
951 * Finds the mask of bits which are writable in the guest's Config5 CP0
952 * register, by the guest itself.
953 */
954unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
955{
6cdc65e3
JH
956 unsigned int mask = 0;
957
2b6009d6
JH
958 /* Permit MSAEn changes if MSA supported and enabled */
959 if (kvm_mips_guest_has_msa(&vcpu->arch))
960 mask |= MIPS_CONF5_MSAEN;
961
6cdc65e3
JH
962 /*
963 * Permit guest FPU mode changes if FPU is enabled and the relevant
964 * feature exists according to FIR register.
965 */
966 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
967 if (cpu_has_fre)
968 mask |= MIPS_CONF5_FRE;
969 /* We don't support UFR or UFE */
970 }
971
972 return mask;
c771607a
JH
973}
974
bdb7ed86
JH
975enum emulation_result kvm_mips_emulate_CP0(u32 inst, u32 *opc, u32 cause,
976 struct kvm_run *run,
d116e812 977 struct kvm_vcpu *vcpu)
e685c689
SL
978{
979 struct mips_coproc *cop0 = vcpu->arch.cop0;
980 enum emulation_result er = EMULATE_DONE;
981 int32_t rt, rd, copz, sel, co_bit, op;
982 uint32_t pc = vcpu->arch.pc;
983 unsigned long curr_pc;
984
985 /*
986 * Update PC and hold onto current PC in case there is
987 * an error and we want to rollback the PC
988 */
989 curr_pc = vcpu->arch.pc;
990 er = update_pc(vcpu, cause);
d116e812 991 if (er == EMULATE_FAIL)
e685c689 992 return er;
e685c689
SL
993
994 copz = (inst >> 21) & 0x1f;
995 rt = (inst >> 16) & 0x1f;
996 rd = (inst >> 11) & 0x1f;
997 sel = inst & 0x7;
998 co_bit = (inst >> 25) & 1;
999
e685c689
SL
1000 if (co_bit) {
1001 op = (inst) & 0xff;
1002
1003 switch (op) {
1004 case tlbr_op: /* Read indexed TLB entry */
1005 er = kvm_mips_emul_tlbr(vcpu);
1006 break;
1007 case tlbwi_op: /* Write indexed */
1008 er = kvm_mips_emul_tlbwi(vcpu);
1009 break;
1010 case tlbwr_op: /* Write random */
1011 er = kvm_mips_emul_tlbwr(vcpu);
1012 break;
1013 case tlbp_op: /* TLB Probe */
1014 er = kvm_mips_emul_tlbp(vcpu);
1015 break;
1016 case rfe_op:
6ad78a5c 1017 kvm_err("!!!COP0_RFE!!!\n");
e685c689
SL
1018 break;
1019 case eret_op:
1020 er = kvm_mips_emul_eret(vcpu);
1021 goto dont_update_pc;
1022 break;
1023 case wait_op:
1024 er = kvm_mips_emul_wait(vcpu);
1025 break;
1026 }
1027 } else {
1028 switch (copz) {
1029 case mfc_op:
1030#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1031 cop0->stat[rd][sel]++;
1032#endif
1033 /* Get reg */
1034 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
e30492bb 1035 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
e685c689
SL
1036 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1037 vcpu->arch.gprs[rt] = 0x0;
1038#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1039 kvm_mips_trans_mfc0(inst, opc, vcpu);
1040#endif
d116e812 1041 } else {
e685c689
SL
1042 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1043
1044#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1045 kvm_mips_trans_mfc0(inst, opc, vcpu);
1046#endif
1047 }
1048
1049 kvm_debug
1050 ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1051 pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1052
1053 break;
1054
1055 case dmfc_op:
1056 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1057 break;
1058
1059 case mtc_op:
1060#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1061 cop0->stat[rd][sel]++;
1062#endif
1063 if ((rd == MIPS_CP0_TLB_INDEX)
1064 && (vcpu->arch.gprs[rt] >=
1065 KVM_MIPS_GUEST_TLB_SIZE)) {
6ad78a5c
DCZ
1066 kvm_err("Invalid TLB Index: %ld",
1067 vcpu->arch.gprs[rt]);
e685c689
SL
1068 er = EMULATE_FAIL;
1069 break;
1070 }
1071#define C0_EBASE_CORE_MASK 0xff
1072 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1073 /* Preserve CORE number */
1074 kvm_change_c0_guest_ebase(cop0,
1075 ~(C0_EBASE_CORE_MASK),
1076 vcpu->arch.gprs[rt]);
6ad78a5c
DCZ
1077 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1078 kvm_read_c0_guest_ebase(cop0));
e685c689 1079 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
48c4ac97 1080 uint32_t nasid =
ca64c2be 1081 vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
d116e812 1082 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
48c4ac97 1083 ((kvm_read_c0_guest_entryhi(cop0) &
ca64c2be 1084 KVM_ENTRYHI_ASID) != nasid)) {
d116e812
DCZ
1085 kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1086 kvm_read_c0_guest_entryhi(cop0)
ca64c2be 1087 & KVM_ENTRYHI_ASID,
d116e812 1088 vcpu->arch.gprs[rt]
ca64c2be 1089 & KVM_ENTRYHI_ASID);
e685c689
SL
1090
1091 /* Blow away the shadow host TLBs */
1092 kvm_mips_flush_host_tlb(1);
1093 }
1094 kvm_write_c0_guest_entryhi(cop0,
1095 vcpu->arch.gprs[rt]);
1096 }
1097 /* Are we writing to COUNT */
1098 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
e30492bb 1099 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
e685c689
SL
1100 goto done;
1101 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1102 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1103 pc, kvm_read_c0_guest_compare(cop0),
1104 vcpu->arch.gprs[rt]);
1105
1106 /* If we are writing to COMPARE */
1107 /* Clear pending timer interrupt, if any */
e30492bb 1108 kvm_mips_write_compare(vcpu,
b45bacd2
JH
1109 vcpu->arch.gprs[rt],
1110 true);
e685c689 1111 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
6cdc65e3
JH
1112 unsigned int old_val, val, change;
1113
1114 old_val = kvm_read_c0_guest_status(cop0);
1115 val = vcpu->arch.gprs[rt];
1116 change = val ^ old_val;
1117
1118 /* Make sure that the NMI bit is never set */
1119 val &= ~ST0_NMI;
1120
1121 /*
1122 * Don't allow CU1 or FR to be set unless FPU
1123 * capability enabled and exists in guest
1124 * configuration.
1125 */
1126 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1127 val &= ~(ST0_CU1 | ST0_FR);
1128
1129 /*
1130 * Also don't allow FR to be set if host doesn't
1131 * support it.
1132 */
1133 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1134 val &= ~ST0_FR;
1135
1136
1137 /* Handle changes in FPU mode */
1138 preempt_disable();
1139
1140 /*
1141 * FPU and Vector register state is made
1142 * UNPREDICTABLE by a change of FR, so don't
1143 * even bother saving it.
1144 */
1145 if (change & ST0_FR)
1146 kvm_drop_fpu(vcpu);
1147
2b6009d6
JH
1148 /*
1149 * If MSA state is already live, it is undefined
1150 * how it interacts with FR=0 FPU state, and we
1151 * don't want to hit reserved instruction
1152 * exceptions trying to save the MSA state later
1153 * when CU=1 && FR=1, so play it safe and save
1154 * it first.
1155 */
1156 if (change & ST0_CU1 && !(val & ST0_FR) &&
1157 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1158 kvm_lose_fpu(vcpu);
1159
d116e812 1160 /*
6cdc65e3
JH
1161 * Propagate CU1 (FPU enable) changes
1162 * immediately if the FPU context is already
1163 * loaded. When disabling we leave the context
1164 * loaded so it can be quickly enabled again in
1165 * the near future.
d116e812 1166 */
6cdc65e3
JH
1167 if (change & ST0_CU1 &&
1168 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1169 change_c0_status(ST0_CU1, val);
1170
1171 preempt_enable();
1172
1173 kvm_write_c0_guest_status(cop0, val);
e685c689
SL
1174
1175#ifdef CONFIG_KVM_MIPS_DYN_TRANS
6cdc65e3
JH
1176 /*
1177 * If FPU present, we need CU1/FR bits to take
1178 * effect fairly soon.
1179 */
1180 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1181 kvm_mips_trans_mtc0(inst, opc, vcpu);
e685c689 1182#endif
6cdc65e3
JH
1183 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1184 unsigned int old_val, val, change, wrmask;
1185
1186 old_val = kvm_read_c0_guest_config5(cop0);
1187 val = vcpu->arch.gprs[rt];
1188
1189 /* Only a few bits are writable in Config5 */
1190 wrmask = kvm_mips_config5_wrmask(vcpu);
1191 change = (val ^ old_val) & wrmask;
1192 val = old_val ^ change;
1193
1194
2b6009d6 1195 /* Handle changes in FPU/MSA modes */
6cdc65e3
JH
1196 preempt_disable();
1197
1198 /*
1199 * Propagate FRE changes immediately if the FPU
1200 * context is already loaded.
1201 */
1202 if (change & MIPS_CONF5_FRE &&
1203 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1204 change_c0_config5(MIPS_CONF5_FRE, val);
1205
2b6009d6
JH
1206 /*
1207 * Propagate MSAEn changes immediately if the
1208 * MSA context is already loaded. When disabling
1209 * we leave the context loaded so it can be
1210 * quickly enabled again in the near future.
1211 */
1212 if (change & MIPS_CONF5_MSAEN &&
1213 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1214 change_c0_config5(MIPS_CONF5_MSAEN,
1215 val);
1216
6cdc65e3
JH
1217 preempt_enable();
1218
1219 kvm_write_c0_guest_config5(cop0, val);
e30492bb
JH
1220 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1221 uint32_t old_cause, new_cause;
d116e812 1222
e30492bb
JH
1223 old_cause = kvm_read_c0_guest_cause(cop0);
1224 new_cause = vcpu->arch.gprs[rt];
1225 /* Update R/W bits */
1226 kvm_change_c0_guest_cause(cop0, 0x08800300,
1227 new_cause);
1228 /* DC bit enabling/disabling timer? */
1229 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1230 if (new_cause & CAUSEF_DC)
1231 kvm_mips_count_disable_cause(vcpu);
1232 else
1233 kvm_mips_count_enable_cause(vcpu);
1234 }
e685c689
SL
1235 } else {
1236 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1237#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1238 kvm_mips_trans_mtc0(inst, opc, vcpu);
1239#endif
1240 }
1241
1242 kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1243 rd, sel, cop0->reg[rd][sel]);
1244 break;
1245
1246 case dmtc_op:
6ad78a5c
DCZ
1247 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1248 vcpu->arch.pc, rt, rd, sel);
e685c689
SL
1249 er = EMULATE_FAIL;
1250 break;
1251
b2c59635 1252 case mfmc0_op:
e685c689
SL
1253#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1254 cop0->stat[MIPS_CP0_STATUS][0]++;
1255#endif
caa1faa7 1256 if (rt != 0)
e685c689
SL
1257 vcpu->arch.gprs[rt] =
1258 kvm_read_c0_guest_status(cop0);
e685c689
SL
1259 /* EI */
1260 if (inst & 0x20) {
b2c59635 1261 kvm_debug("[%#lx] mfmc0_op: EI\n",
e685c689
SL
1262 vcpu->arch.pc);
1263 kvm_set_c0_guest_status(cop0, ST0_IE);
1264 } else {
b2c59635 1265 kvm_debug("[%#lx] mfmc0_op: DI\n",
e685c689
SL
1266 vcpu->arch.pc);
1267 kvm_clear_c0_guest_status(cop0, ST0_IE);
1268 }
1269
1270 break;
1271
1272 case wrpgpr_op:
1273 {
1274 uint32_t css =
1275 cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1276 uint32_t pss =
1277 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
d116e812
DCZ
1278 /*
1279 * We don't support any shadow register sets, so
1280 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1281 */
e685c689
SL
1282 if (css || pss) {
1283 er = EMULATE_FAIL;
1284 break;
1285 }
1286 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1287 vcpu->arch.gprs[rt]);
1288 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1289 }
1290 break;
1291 default:
6ad78a5c
DCZ
1292 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1293 vcpu->arch.pc, copz);
e685c689
SL
1294 er = EMULATE_FAIL;
1295 break;
1296 }
1297 }
1298
1299done:
d116e812
DCZ
1300 /* Rollback PC only if emulation was unsuccessful */
1301 if (er == EMULATE_FAIL)
e685c689 1302 vcpu->arch.pc = curr_pc;
e685c689
SL
1303
1304dont_update_pc:
1305 /*
1306 * This is for special instructions whose emulation
1307 * updates the PC, so do not overwrite the PC under
1308 * any circumstances
1309 */
1310
1311 return er;
1312}
1313
bdb7ed86 1314enum emulation_result kvm_mips_emulate_store(u32 inst, u32 cause,
d116e812
DCZ
1315 struct kvm_run *run,
1316 struct kvm_vcpu *vcpu)
e685c689
SL
1317{
1318 enum emulation_result er = EMULATE_DO_MMIO;
1319 int32_t op, base, rt, offset;
1320 uint32_t bytes;
1321 void *data = run->mmio.data;
1322 unsigned long curr_pc;
1323
1324 /*
1325 * Update PC and hold onto current PC in case there is
1326 * an error and we want to rollback the PC
1327 */
1328 curr_pc = vcpu->arch.pc;
1329 er = update_pc(vcpu, cause);
1330 if (er == EMULATE_FAIL)
1331 return er;
1332
1333 rt = (inst >> 16) & 0x1f;
1334 base = (inst >> 21) & 0x1f;
1335 offset = inst & 0xffff;
1336 op = (inst >> 26) & 0x3f;
1337
1338 switch (op) {
1339 case sb_op:
1340 bytes = 1;
1341 if (bytes > sizeof(run->mmio.data)) {
1342 kvm_err("%s: bad MMIO length: %d\n", __func__,
1343 run->mmio.len);
1344 }
1345 run->mmio.phys_addr =
1346 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1347 host_cp0_badvaddr);
1348 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1349 er = EMULATE_FAIL;
1350 break;
1351 }
1352 run->mmio.len = bytes;
1353 run->mmio.is_write = 1;
1354 vcpu->mmio_needed = 1;
1355 vcpu->mmio_is_write = 1;
1356 *(u8 *) data = vcpu->arch.gprs[rt];
1357 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1358 vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1359 *(uint8_t *) data);
1360
1361 break;
1362
1363 case sw_op:
1364 bytes = 4;
1365 if (bytes > sizeof(run->mmio.data)) {
1366 kvm_err("%s: bad MMIO length: %d\n", __func__,
1367 run->mmio.len);
1368 }
1369 run->mmio.phys_addr =
1370 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1371 host_cp0_badvaddr);
1372 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1373 er = EMULATE_FAIL;
1374 break;
1375 }
1376
1377 run->mmio.len = bytes;
1378 run->mmio.is_write = 1;
1379 vcpu->mmio_needed = 1;
1380 vcpu->mmio_is_write = 1;
1381 *(uint32_t *) data = vcpu->arch.gprs[rt];
1382
1383 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1384 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1385 vcpu->arch.gprs[rt], *(uint32_t *) data);
1386 break;
1387
1388 case sh_op:
1389 bytes = 2;
1390 if (bytes > sizeof(run->mmio.data)) {
1391 kvm_err("%s: bad MMIO length: %d\n", __func__,
1392 run->mmio.len);
1393 }
1394 run->mmio.phys_addr =
1395 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1396 host_cp0_badvaddr);
1397 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1398 er = EMULATE_FAIL;
1399 break;
1400 }
1401
1402 run->mmio.len = bytes;
1403 run->mmio.is_write = 1;
1404 vcpu->mmio_needed = 1;
1405 vcpu->mmio_is_write = 1;
1406 *(uint16_t *) data = vcpu->arch.gprs[rt];
1407
1408 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1409 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1410 vcpu->arch.gprs[rt], *(uint32_t *) data);
1411 break;
1412
1413 default:
6ad78a5c 1414 kvm_err("Store not yet supported");
e685c689
SL
1415 er = EMULATE_FAIL;
1416 break;
1417 }
1418
d116e812
DCZ
1419 /* Rollback PC if emulation was unsuccessful */
1420 if (er == EMULATE_FAIL)
e685c689 1421 vcpu->arch.pc = curr_pc;
e685c689
SL
1422
1423 return er;
1424}
1425
bdb7ed86 1426enum emulation_result kvm_mips_emulate_load(u32 inst, u32 cause,
d116e812
DCZ
1427 struct kvm_run *run,
1428 struct kvm_vcpu *vcpu)
e685c689
SL
1429{
1430 enum emulation_result er = EMULATE_DO_MMIO;
1431 int32_t op, base, rt, offset;
1432 uint32_t bytes;
1433
1434 rt = (inst >> 16) & 0x1f;
1435 base = (inst >> 21) & 0x1f;
1436 offset = inst & 0xffff;
1437 op = (inst >> 26) & 0x3f;
1438
1439 vcpu->arch.pending_load_cause = cause;
1440 vcpu->arch.io_gpr = rt;
1441
1442 switch (op) {
1443 case lw_op:
1444 bytes = 4;
1445 if (bytes > sizeof(run->mmio.data)) {
1446 kvm_err("%s: bad MMIO length: %d\n", __func__,
1447 run->mmio.len);
1448 er = EMULATE_FAIL;
1449 break;
1450 }
1451 run->mmio.phys_addr =
1452 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1453 host_cp0_badvaddr);
1454 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1455 er = EMULATE_FAIL;
1456 break;
1457 }
1458
1459 run->mmio.len = bytes;
1460 run->mmio.is_write = 0;
1461 vcpu->mmio_needed = 1;
1462 vcpu->mmio_is_write = 0;
1463 break;
1464
1465 case lh_op:
1466 case lhu_op:
1467 bytes = 2;
1468 if (bytes > sizeof(run->mmio.data)) {
1469 kvm_err("%s: bad MMIO length: %d\n", __func__,
1470 run->mmio.len);
1471 er = EMULATE_FAIL;
1472 break;
1473 }
1474 run->mmio.phys_addr =
1475 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1476 host_cp0_badvaddr);
1477 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1478 er = EMULATE_FAIL;
1479 break;
1480 }
1481
1482 run->mmio.len = bytes;
1483 run->mmio.is_write = 0;
1484 vcpu->mmio_needed = 1;
1485 vcpu->mmio_is_write = 0;
1486
1487 if (op == lh_op)
1488 vcpu->mmio_needed = 2;
1489 else
1490 vcpu->mmio_needed = 1;
1491
1492 break;
1493
1494 case lbu_op:
1495 case lb_op:
1496 bytes = 1;
1497 if (bytes > sizeof(run->mmio.data)) {
1498 kvm_err("%s: bad MMIO length: %d\n", __func__,
1499 run->mmio.len);
1500 er = EMULATE_FAIL;
1501 break;
1502 }
1503 run->mmio.phys_addr =
1504 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1505 host_cp0_badvaddr);
1506 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1507 er = EMULATE_FAIL;
1508 break;
1509 }
1510
1511 run->mmio.len = bytes;
1512 run->mmio.is_write = 0;
1513 vcpu->mmio_is_write = 0;
1514
1515 if (op == lb_op)
1516 vcpu->mmio_needed = 2;
1517 else
1518 vcpu->mmio_needed = 1;
1519
1520 break;
1521
1522 default:
6ad78a5c 1523 kvm_err("Load not yet supported");
e685c689
SL
1524 er = EMULATE_FAIL;
1525 break;
1526 }
1527
1528 return er;
1529}
1530
bdb7ed86
JH
1531enum emulation_result kvm_mips_emulate_cache(u32 inst, u32 *opc,
1532 u32 cause,
d116e812
DCZ
1533 struct kvm_run *run,
1534 struct kvm_vcpu *vcpu)
e685c689
SL
1535{
1536 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689
SL
1537 enum emulation_result er = EMULATE_DONE;
1538 int32_t offset, cache, op_inst, op, base;
1539 struct kvm_vcpu_arch *arch = &vcpu->arch;
1540 unsigned long va;
1541 unsigned long curr_pc;
1542
1543 /*
1544 * Update PC and hold onto current PC in case there is
1545 * an error and we want to rollback the PC
1546 */
1547 curr_pc = vcpu->arch.pc;
1548 er = update_pc(vcpu, cause);
1549 if (er == EMULATE_FAIL)
1550 return er;
1551
1552 base = (inst >> 21) & 0x1f;
1553 op_inst = (inst >> 16) & 0x1f;
c5c2a3b9 1554 offset = (int16_t)inst;
f4956f62
JH
1555 cache = op_inst & CacheOp_Cache;
1556 op = op_inst & CacheOp_Op;
e685c689
SL
1557
1558 va = arch->gprs[base] + offset;
1559
1560 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1561 cache, op, base, arch->gprs[base], offset);
1562
d116e812
DCZ
1563 /*
1564 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1565 * invalidate the caches entirely by stepping through all the
1566 * ways/indexes
e685c689 1567 */
f4956f62 1568 if (op == Index_Writeback_Inv) {
d116e812
DCZ
1569 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1570 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1571 arch->gprs[base], offset);
e685c689 1572
f4956f62 1573 if (cache == Cache_D)
e685c689 1574 r4k_blast_dcache();
f4956f62 1575 else if (cache == Cache_I)
e685c689
SL
1576 r4k_blast_icache();
1577 else {
6ad78a5c
DCZ
1578 kvm_err("%s: unsupported CACHE INDEX operation\n",
1579 __func__);
e685c689
SL
1580 return EMULATE_FAIL;
1581 }
1582
1583#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1584 kvm_mips_trans_cache_index(inst, opc, vcpu);
1585#endif
1586 goto done;
1587 }
1588
1589 preempt_disable();
1590 if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
d116e812 1591 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
e685c689 1592 kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
e685c689
SL
1593 } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1594 KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1595 int index;
1596
1597 /* If an entry already exists then skip */
d116e812 1598 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
e685c689 1599 goto skip_fault;
e685c689 1600
d116e812
DCZ
1601 /*
1602 * If address not in the guest TLB, then give the guest a fault,
1603 * the resulting handler will do the right thing
e685c689
SL
1604 */
1605 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
48c4ac97 1606 (kvm_read_c0_guest_entryhi
ca64c2be 1607 (cop0) & KVM_ENTRYHI_ASID));
e685c689
SL
1608
1609 if (index < 0) {
e685c689 1610 vcpu->arch.host_cp0_badvaddr = va;
6df82a7b 1611 vcpu->arch.pc = curr_pc;
e685c689
SL
1612 er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1613 vcpu);
1614 preempt_enable();
1615 goto dont_update_pc;
1616 } else {
1617 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
1618 /*
1619 * Check if the entry is valid, if not then setup a TLB
1620 * invalid exception to the guest
1621 */
e685c689 1622 if (!TLB_IS_VALID(*tlb, va)) {
6df82a7b
JH
1623 vcpu->arch.host_cp0_badvaddr = va;
1624 vcpu->arch.pc = curr_pc;
e685c689
SL
1625 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1626 run, vcpu);
1627 preempt_enable();
1628 goto dont_update_pc;
1629 } else {
d116e812
DCZ
1630 /*
1631 * We fault an entry from the guest tlb to the
1632 * shadow host TLB
1633 */
e685c689
SL
1634 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1635 NULL,
1636 NULL);
1637 }
1638 }
1639 } else {
6ad78a5c
DCZ
1640 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1641 cache, op, base, arch->gprs[base], offset);
e685c689
SL
1642 er = EMULATE_FAIL;
1643 preempt_enable();
cc81e948 1644 goto done;
e685c689
SL
1645
1646 }
1647
1648skip_fault:
1649 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
f4956f62 1650 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
e685c689
SL
1651 flush_dcache_line(va);
1652
1653#ifdef CONFIG_KVM_MIPS_DYN_TRANS
d116e812
DCZ
1654 /*
1655 * Replace the CACHE instruction, with a SYNCI, not the same,
1656 * but avoids a trap
1657 */
e685c689
SL
1658 kvm_mips_trans_cache_va(inst, opc, vcpu);
1659#endif
f4956f62 1660 } else if (op_inst == Hit_Invalidate_I) {
e685c689
SL
1661 flush_dcache_line(va);
1662 flush_icache_line(va);
1663
1664#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1665 /* Replace the CACHE instruction, with a SYNCI */
1666 kvm_mips_trans_cache_va(inst, opc, vcpu);
1667#endif
1668 } else {
6ad78a5c
DCZ
1669 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1670 cache, op, base, arch->gprs[base], offset);
e685c689 1671 er = EMULATE_FAIL;
e685c689
SL
1672 }
1673
1674 preempt_enable();
cc81e948
JH
1675done:
1676 /* Rollback PC only if emulation was unsuccessful */
1677 if (er == EMULATE_FAIL)
1678 vcpu->arch.pc = curr_pc;
e685c689 1679
d116e812 1680dont_update_pc:
cc81e948
JH
1681 /*
1682 * This is for exceptions whose emulation updates the PC, so do not
1683 * overwrite the PC under any circumstances
1684 */
1685
e685c689
SL
1686 return er;
1687}
1688
bdb7ed86 1689enum emulation_result kvm_mips_emulate_inst(unsigned long cause, u32 *opc,
d116e812
DCZ
1690 struct kvm_run *run,
1691 struct kvm_vcpu *vcpu)
e685c689
SL
1692{
1693 enum emulation_result er = EMULATE_DONE;
1694 uint32_t inst;
1695
d116e812
DCZ
1696 /* Fetch the instruction. */
1697 if (cause & CAUSEF_BD)
e685c689 1698 opc += 1;
e685c689
SL
1699
1700 inst = kvm_get_inst(opc, vcpu);
1701
1702 switch (((union mips_instruction)inst).r_format.opcode) {
1703 case cop0_op:
1704 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1705 break;
1706 case sb_op:
1707 case sh_op:
1708 case sw_op:
1709 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1710 break;
1711 case lb_op:
1712 case lbu_op:
1713 case lhu_op:
1714 case lh_op:
1715 case lw_op:
1716 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1717 break;
1718
1719 case cache_op:
1720 ++vcpu->stat.cache_exits;
1721 trace_kvm_exit(vcpu, CACHE_EXITS);
1722 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1723 break;
1724
1725 default:
6ad78a5c
DCZ
1726 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1727 inst);
e685c689
SL
1728 kvm_arch_vcpu_dump_regs(vcpu);
1729 er = EMULATE_FAIL;
1730 break;
1731 }
1732
1733 return er;
1734}
1735
d116e812 1736enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
bdb7ed86 1737 u32 *opc,
d116e812
DCZ
1738 struct kvm_run *run,
1739 struct kvm_vcpu *vcpu)
e685c689
SL
1740{
1741 struct mips_coproc *cop0 = vcpu->arch.cop0;
1742 struct kvm_vcpu_arch *arch = &vcpu->arch;
1743 enum emulation_result er = EMULATE_DONE;
1744
1745 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1746 /* save old pc */
1747 kvm_write_c0_guest_epc(cop0, arch->pc);
1748 kvm_set_c0_guest_status(cop0, ST0_EXL);
1749
1750 if (cause & CAUSEF_BD)
1751 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1752 else
1753 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1754
1755 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1756
1757 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1758 (EXCCODE_SYS << CAUSEB_EXCCODE));
e685c689
SL
1759
1760 /* Set PC to the exception entry point */
1761 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1762
1763 } else {
6ad78a5c 1764 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
e685c689
SL
1765 er = EMULATE_FAIL;
1766 }
1767
1768 return er;
1769}
1770
d116e812 1771enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
bdb7ed86 1772 u32 *opc,
d116e812
DCZ
1773 struct kvm_run *run,
1774 struct kvm_vcpu *vcpu)
e685c689
SL
1775{
1776 struct mips_coproc *cop0 = vcpu->arch.cop0;
1777 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1778 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1779 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1780
1781 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1782 /* save old pc */
1783 kvm_write_c0_guest_epc(cop0, arch->pc);
1784 kvm_set_c0_guest_status(cop0, ST0_EXL);
1785
1786 if (cause & CAUSEF_BD)
1787 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1788 else
1789 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1790
1791 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1792 arch->pc);
1793
1794 /* set pc to the exception entry point */
1795 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1796
1797 } else {
1798 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1799 arch->pc);
1800
1801 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1802 }
1803
1804 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1805 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1806
1807 /* setup badvaddr, context and entryhi registers for the guest */
1808 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1809 /* XXXKYMA: is the context register used by linux??? */
1810 kvm_write_c0_guest_entryhi(cop0, entryhi);
1811 /* Blow away the shadow host TLBs */
1812 kvm_mips_flush_host_tlb(1);
1813
d98403a5 1814 return EMULATE_DONE;
e685c689
SL
1815}
1816
d116e812 1817enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
bdb7ed86 1818 u32 *opc,
d116e812
DCZ
1819 struct kvm_run *run,
1820 struct kvm_vcpu *vcpu)
e685c689
SL
1821{
1822 struct mips_coproc *cop0 = vcpu->arch.cop0;
1823 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
1824 unsigned long entryhi =
1825 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1826 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1827
1828 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1829 /* save old pc */
1830 kvm_write_c0_guest_epc(cop0, arch->pc);
1831 kvm_set_c0_guest_status(cop0, ST0_EXL);
1832
1833 if (cause & CAUSEF_BD)
1834 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1835 else
1836 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1837
1838 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1839 arch->pc);
1840
1841 /* set pc to the exception entry point */
1842 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1843
1844 } else {
1845 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1846 arch->pc);
1847 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1848 }
1849
1850 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1851 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1852
1853 /* setup badvaddr, context and entryhi registers for the guest */
1854 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1855 /* XXXKYMA: is the context register used by linux??? */
1856 kvm_write_c0_guest_entryhi(cop0, entryhi);
1857 /* Blow away the shadow host TLBs */
1858 kvm_mips_flush_host_tlb(1);
1859
d98403a5 1860 return EMULATE_DONE;
e685c689
SL
1861}
1862
d116e812 1863enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
bdb7ed86 1864 u32 *opc,
d116e812
DCZ
1865 struct kvm_run *run,
1866 struct kvm_vcpu *vcpu)
e685c689
SL
1867{
1868 struct mips_coproc *cop0 = vcpu->arch.cop0;
1869 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1870 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1871 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1872
1873 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1874 /* save old pc */
1875 kvm_write_c0_guest_epc(cop0, arch->pc);
1876 kvm_set_c0_guest_status(cop0, ST0_EXL);
1877
1878 if (cause & CAUSEF_BD)
1879 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1880 else
1881 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1882
1883 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1884 arch->pc);
1885
1886 /* Set PC to the exception entry point */
1887 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1888 } else {
1889 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1890 arch->pc);
1891 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1892 }
1893
1894 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1895 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
1896
1897 /* setup badvaddr, context and entryhi registers for the guest */
1898 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1899 /* XXXKYMA: is the context register used by linux??? */
1900 kvm_write_c0_guest_entryhi(cop0, entryhi);
1901 /* Blow away the shadow host TLBs */
1902 kvm_mips_flush_host_tlb(1);
1903
d98403a5 1904 return EMULATE_DONE;
e685c689
SL
1905}
1906
d116e812 1907enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
bdb7ed86 1908 u32 *opc,
d116e812
DCZ
1909 struct kvm_run *run,
1910 struct kvm_vcpu *vcpu)
e685c689
SL
1911{
1912 struct mips_coproc *cop0 = vcpu->arch.cop0;
1913 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1914 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1915 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1916
1917 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1918 /* save old pc */
1919 kvm_write_c0_guest_epc(cop0, arch->pc);
1920 kvm_set_c0_guest_status(cop0, ST0_EXL);
1921
1922 if (cause & CAUSEF_BD)
1923 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1924 else
1925 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1926
1927 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1928 arch->pc);
1929
1930 /* Set PC to the exception entry point */
1931 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1932 } else {
1933 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1934 arch->pc);
1935 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1936 }
1937
1938 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1939 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
1940
1941 /* setup badvaddr, context and entryhi registers for the guest */
1942 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1943 /* XXXKYMA: is the context register used by linux??? */
1944 kvm_write_c0_guest_entryhi(cop0, entryhi);
1945 /* Blow away the shadow host TLBs */
1946 kvm_mips_flush_host_tlb(1);
1947
d98403a5 1948 return EMULATE_DONE;
e685c689
SL
1949}
1950
1951/* TLBMOD: store into address matching TLB with Dirty bit off */
bdb7ed86 1952enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, u32 *opc,
d116e812
DCZ
1953 struct kvm_run *run,
1954 struct kvm_vcpu *vcpu)
e685c689
SL
1955{
1956 enum emulation_result er = EMULATE_DONE;
e685c689 1957#ifdef DEBUG
3d654833
JH
1958 struct mips_coproc *cop0 = vcpu->arch.cop0;
1959 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1960 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
3d654833
JH
1961 int index;
1962
d116e812 1963 /* If address not in the guest TLB, then we are in trouble */
e685c689
SL
1964 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1965 if (index < 0) {
1966 /* XXXKYMA Invalidate and retry */
1967 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1968 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1969 __func__, entryhi);
1970 kvm_mips_dump_guest_tlbs(vcpu);
1971 kvm_mips_dump_host_tlbs();
1972 return EMULATE_FAIL;
1973 }
1974#endif
1975
1976 er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1977 return er;
1978}
1979
d116e812 1980enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
bdb7ed86 1981 u32 *opc,
d116e812
DCZ
1982 struct kvm_run *run,
1983 struct kvm_vcpu *vcpu)
e685c689
SL
1984{
1985 struct mips_coproc *cop0 = vcpu->arch.cop0;
1986 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1987 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689 1988 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
1989
1990 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1991 /* save old pc */
1992 kvm_write_c0_guest_epc(cop0, arch->pc);
1993 kvm_set_c0_guest_status(cop0, ST0_EXL);
1994
1995 if (cause & CAUSEF_BD)
1996 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1997 else
1998 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1999
2000 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2001 arch->pc);
2002
2003 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2004 } else {
2005 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2006 arch->pc);
2007 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2008 }
2009
16d100db
JH
2010 kvm_change_c0_guest_cause(cop0, (0xff),
2011 (EXCCODE_MOD << CAUSEB_EXCCODE));
e685c689
SL
2012
2013 /* setup badvaddr, context and entryhi registers for the guest */
2014 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2015 /* XXXKYMA: is the context register used by linux??? */
2016 kvm_write_c0_guest_entryhi(cop0, entryhi);
2017 /* Blow away the shadow host TLBs */
2018 kvm_mips_flush_host_tlb(1);
2019
d98403a5 2020 return EMULATE_DONE;
e685c689
SL
2021}
2022
d116e812 2023enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
bdb7ed86 2024 u32 *opc,
d116e812
DCZ
2025 struct kvm_run *run,
2026 struct kvm_vcpu *vcpu)
e685c689
SL
2027{
2028 struct mips_coproc *cop0 = vcpu->arch.cop0;
2029 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
2030
2031 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2032 /* save old pc */
2033 kvm_write_c0_guest_epc(cop0, arch->pc);
2034 kvm_set_c0_guest_status(cop0, ST0_EXL);
2035
2036 if (cause & CAUSEF_BD)
2037 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2038 else
2039 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2040
2041 }
2042
2043 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2044
2045 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2046 (EXCCODE_CPU << CAUSEB_EXCCODE));
e685c689
SL
2047 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2048
d98403a5 2049 return EMULATE_DONE;
e685c689
SL
2050}
2051
d116e812 2052enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
bdb7ed86 2053 u32 *opc,
d116e812
DCZ
2054 struct kvm_run *run,
2055 struct kvm_vcpu *vcpu)
e685c689
SL
2056{
2057 struct mips_coproc *cop0 = vcpu->arch.cop0;
2058 struct kvm_vcpu_arch *arch = &vcpu->arch;
2059 enum emulation_result er = EMULATE_DONE;
2060
2061 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2062 /* save old pc */
2063 kvm_write_c0_guest_epc(cop0, arch->pc);
2064 kvm_set_c0_guest_status(cop0, ST0_EXL);
2065
2066 if (cause & CAUSEF_BD)
2067 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2068 else
2069 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2070
2071 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2072
2073 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2074 (EXCCODE_RI << CAUSEB_EXCCODE));
e685c689
SL
2075
2076 /* Set PC to the exception entry point */
2077 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2078
2079 } else {
2080 kvm_err("Trying to deliver RI when EXL is already set\n");
2081 er = EMULATE_FAIL;
2082 }
2083
2084 return er;
2085}
2086
d116e812 2087enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
bdb7ed86 2088 u32 *opc,
d116e812
DCZ
2089 struct kvm_run *run,
2090 struct kvm_vcpu *vcpu)
e685c689
SL
2091{
2092 struct mips_coproc *cop0 = vcpu->arch.cop0;
2093 struct kvm_vcpu_arch *arch = &vcpu->arch;
2094 enum emulation_result er = EMULATE_DONE;
2095
2096 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2097 /* save old pc */
2098 kvm_write_c0_guest_epc(cop0, arch->pc);
2099 kvm_set_c0_guest_status(cop0, ST0_EXL);
2100
2101 if (cause & CAUSEF_BD)
2102 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2103 else
2104 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2105
2106 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2107
2108 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2109 (EXCCODE_BP << CAUSEB_EXCCODE));
e685c689
SL
2110
2111 /* Set PC to the exception entry point */
2112 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2113
2114 } else {
6ad78a5c 2115 kvm_err("Trying to deliver BP when EXL is already set\n");
e685c689
SL
2116 er = EMULATE_FAIL;
2117 }
2118
2119 return er;
2120}
2121
0a560427 2122enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
bdb7ed86 2123 u32 *opc,
0a560427
JH
2124 struct kvm_run *run,
2125 struct kvm_vcpu *vcpu)
2126{
2127 struct mips_coproc *cop0 = vcpu->arch.cop0;
2128 struct kvm_vcpu_arch *arch = &vcpu->arch;
2129 enum emulation_result er = EMULATE_DONE;
2130
2131 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2132 /* save old pc */
2133 kvm_write_c0_guest_epc(cop0, arch->pc);
2134 kvm_set_c0_guest_status(cop0, ST0_EXL);
2135
2136 if (cause & CAUSEF_BD)
2137 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2138 else
2139 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2140
2141 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2142
2143 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2144 (EXCCODE_TR << CAUSEB_EXCCODE));
0a560427
JH
2145
2146 /* Set PC to the exception entry point */
2147 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2148
2149 } else {
2150 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2151 er = EMULATE_FAIL;
2152 }
2153
2154 return er;
2155}
2156
c2537ed9 2157enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
bdb7ed86 2158 u32 *opc,
c2537ed9
JH
2159 struct kvm_run *run,
2160 struct kvm_vcpu *vcpu)
2161{
2162 struct mips_coproc *cop0 = vcpu->arch.cop0;
2163 struct kvm_vcpu_arch *arch = &vcpu->arch;
2164 enum emulation_result er = EMULATE_DONE;
2165
2166 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2167 /* save old pc */
2168 kvm_write_c0_guest_epc(cop0, arch->pc);
2169 kvm_set_c0_guest_status(cop0, ST0_EXL);
2170
2171 if (cause & CAUSEF_BD)
2172 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2173 else
2174 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2175
2176 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2177
2178 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2179 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
c2537ed9
JH
2180
2181 /* Set PC to the exception entry point */
2182 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2183
2184 } else {
2185 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2186 er = EMULATE_FAIL;
2187 }
2188
2189 return er;
2190}
2191
1c0cd66a 2192enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
bdb7ed86 2193 u32 *opc,
1c0cd66a
JH
2194 struct kvm_run *run,
2195 struct kvm_vcpu *vcpu)
2196{
2197 struct mips_coproc *cop0 = vcpu->arch.cop0;
2198 struct kvm_vcpu_arch *arch = &vcpu->arch;
2199 enum emulation_result er = EMULATE_DONE;
2200
2201 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2202 /* save old pc */
2203 kvm_write_c0_guest_epc(cop0, arch->pc);
2204 kvm_set_c0_guest_status(cop0, ST0_EXL);
2205
2206 if (cause & CAUSEF_BD)
2207 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2208 else
2209 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2210
2211 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2212
2213 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2214 (EXCCODE_FPE << CAUSEB_EXCCODE));
1c0cd66a
JH
2215
2216 /* Set PC to the exception entry point */
2217 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2218
2219 } else {
2220 kvm_err("Trying to deliver FPE when EXL is already set\n");
2221 er = EMULATE_FAIL;
2222 }
2223
2224 return er;
2225}
2226
c2537ed9 2227enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
bdb7ed86 2228 u32 *opc,
c2537ed9
JH
2229 struct kvm_run *run,
2230 struct kvm_vcpu *vcpu)
2231{
2232 struct mips_coproc *cop0 = vcpu->arch.cop0;
2233 struct kvm_vcpu_arch *arch = &vcpu->arch;
2234 enum emulation_result er = EMULATE_DONE;
2235
2236 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2237 /* save old pc */
2238 kvm_write_c0_guest_epc(cop0, arch->pc);
2239 kvm_set_c0_guest_status(cop0, ST0_EXL);
2240
2241 if (cause & CAUSEF_BD)
2242 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2243 else
2244 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2245
2246 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2247
2248 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2249 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
c2537ed9
JH
2250
2251 /* Set PC to the exception entry point */
2252 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2253
2254 } else {
2255 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2256 er = EMULATE_FAIL;
2257 }
2258
2259 return er;
2260}
2261
d116e812 2262/* ll/sc, rdhwr, sync emulation */
e685c689
SL
2263
2264#define OPCODE 0xfc000000
2265#define BASE 0x03e00000
2266#define RT 0x001f0000
2267#define OFFSET 0x0000ffff
2268#define LL 0xc0000000
2269#define SC 0xe0000000
2270#define SPEC0 0x00000000
2271#define SPEC3 0x7c000000
2272#define RD 0x0000f800
2273#define FUNC 0x0000003f
2274#define SYNC 0x0000000f
2275#define RDHWR 0x0000003b
2276
bdb7ed86 2277enum emulation_result kvm_mips_handle_ri(unsigned long cause, u32 *opc,
d116e812
DCZ
2278 struct kvm_run *run,
2279 struct kvm_vcpu *vcpu)
e685c689
SL
2280{
2281 struct mips_coproc *cop0 = vcpu->arch.cop0;
2282 struct kvm_vcpu_arch *arch = &vcpu->arch;
2283 enum emulation_result er = EMULATE_DONE;
2284 unsigned long curr_pc;
2285 uint32_t inst;
2286
2287 /*
2288 * Update PC and hold onto current PC in case there is
2289 * an error and we want to rollback the PC
2290 */
2291 curr_pc = vcpu->arch.pc;
2292 er = update_pc(vcpu, cause);
2293 if (er == EMULATE_FAIL)
2294 return er;
2295
d116e812 2296 /* Fetch the instruction. */
e685c689
SL
2297 if (cause & CAUSEF_BD)
2298 opc += 1;
2299
2300 inst = kvm_get_inst(opc, vcpu);
2301
2302 if (inst == KVM_INVALID_INST) {
6ad78a5c 2303 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
e685c689
SL
2304 return EMULATE_FAIL;
2305 }
2306
2307 if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
26f4f3b5 2308 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
e685c689
SL
2309 int rd = (inst & RD) >> 11;
2310 int rt = (inst & RT) >> 16;
26f4f3b5
JH
2311 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2312 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2313 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2314 rd, opc);
2315 goto emulate_ri;
2316 }
e685c689
SL
2317 switch (rd) {
2318 case 0: /* CPU number */
2319 arch->gprs[rt] = 0;
2320 break;
2321 case 1: /* SYNCI length */
2322 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2323 current_cpu_data.icache.linesz);
2324 break;
2325 case 2: /* Read count register */
e30492bb 2326 arch->gprs[rt] = kvm_mips_read_count(vcpu);
e685c689
SL
2327 break;
2328 case 3: /* Count register resolution */
2329 switch (current_cpu_data.cputype) {
2330 case CPU_20KC:
2331 case CPU_25KF:
2332 arch->gprs[rt] = 1;
2333 break;
2334 default:
2335 arch->gprs[rt] = 2;
2336 }
2337 break;
2338 case 29:
e685c689 2339 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
e685c689
SL
2340 break;
2341
2342 default:
15505679 2343 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
26f4f3b5 2344 goto emulate_ri;
e685c689
SL
2345 }
2346 } else {
15505679 2347 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
26f4f3b5 2348 goto emulate_ri;
e685c689
SL
2349 }
2350
26f4f3b5
JH
2351 return EMULATE_DONE;
2352
2353emulate_ri:
e685c689 2354 /*
26f4f3b5
JH
2355 * Rollback PC (if in branch delay slot then the PC already points to
2356 * branch target), and pass the RI exception to the guest OS.
e685c689 2357 */
26f4f3b5
JH
2358 vcpu->arch.pc = curr_pc;
2359 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
e685c689
SL
2360}
2361
d116e812
DCZ
2362enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2363 struct kvm_run *run)
e685c689
SL
2364{
2365 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2366 enum emulation_result er = EMULATE_DONE;
e685c689
SL
2367
2368 if (run->mmio.len > sizeof(*gpr)) {
6ad78a5c 2369 kvm_err("Bad MMIO length: %d", run->mmio.len);
e685c689
SL
2370 er = EMULATE_FAIL;
2371 goto done;
2372 }
2373
e685c689
SL
2374 er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2375 if (er == EMULATE_FAIL)
2376 return er;
2377
2378 switch (run->mmio.len) {
2379 case 4:
2380 *gpr = *(int32_t *) run->mmio.data;
2381 break;
2382
2383 case 2:
2384 if (vcpu->mmio_needed == 2)
2385 *gpr = *(int16_t *) run->mmio.data;
2386 else
ed9244e6 2387 *gpr = *(uint16_t *)run->mmio.data;
e685c689
SL
2388
2389 break;
2390 case 1:
2391 if (vcpu->mmio_needed == 2)
2392 *gpr = *(int8_t *) run->mmio.data;
2393 else
2394 *gpr = *(u8 *) run->mmio.data;
2395 break;
2396 }
2397
2398 if (vcpu->arch.pending_load_cause & CAUSEF_BD)
d116e812
DCZ
2399 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2400 vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2401 vcpu->mmio_needed);
e685c689
SL
2402
2403done:
2404 return er;
2405}
2406
d116e812 2407static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
bdb7ed86 2408 u32 *opc,
d116e812
DCZ
2409 struct kvm_run *run,
2410 struct kvm_vcpu *vcpu)
e685c689
SL
2411{
2412 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2413 struct mips_coproc *cop0 = vcpu->arch.cop0;
2414 struct kvm_vcpu_arch *arch = &vcpu->arch;
2415 enum emulation_result er = EMULATE_DONE;
2416
2417 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2418 /* save old pc */
2419 kvm_write_c0_guest_epc(cop0, arch->pc);
2420 kvm_set_c0_guest_status(cop0, ST0_EXL);
2421
2422 if (cause & CAUSEF_BD)
2423 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2424 else
2425 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2426
2427 kvm_change_c0_guest_cause(cop0, (0xff),
2428 (exccode << CAUSEB_EXCCODE));
2429
2430 /* Set PC to the exception entry point */
2431 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2432 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2433
2434 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2435 exccode, kvm_read_c0_guest_epc(cop0),
2436 kvm_read_c0_guest_badvaddr(cop0));
2437 } else {
6ad78a5c 2438 kvm_err("Trying to deliver EXC when EXL is already set\n");
e685c689
SL
2439 er = EMULATE_FAIL;
2440 }
2441
2442 return er;
2443}
2444
d116e812 2445enum emulation_result kvm_mips_check_privilege(unsigned long cause,
bdb7ed86 2446 u32 *opc,
d116e812
DCZ
2447 struct kvm_run *run,
2448 struct kvm_vcpu *vcpu)
e685c689
SL
2449{
2450 enum emulation_result er = EMULATE_DONE;
2451 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2452 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2453
2454 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2455
2456 if (usermode) {
2457 switch (exccode) {
16d100db
JH
2458 case EXCCODE_INT:
2459 case EXCCODE_SYS:
2460 case EXCCODE_BP:
2461 case EXCCODE_RI:
2462 case EXCCODE_TR:
2463 case EXCCODE_MSAFPE:
2464 case EXCCODE_FPE:
2465 case EXCCODE_MSADIS:
e685c689
SL
2466 break;
2467
16d100db 2468 case EXCCODE_CPU:
e685c689
SL
2469 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2470 er = EMULATE_PRIV_FAIL;
2471 break;
2472
16d100db 2473 case EXCCODE_MOD:
e685c689
SL
2474 break;
2475
16d100db 2476 case EXCCODE_TLBL:
d116e812
DCZ
2477 /*
2478 * We we are accessing Guest kernel space, then send an
2479 * address error exception to the guest
2480 */
e685c689 2481 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2482 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2483 badvaddr);
e685c689 2484 cause &= ~0xff;
16d100db 2485 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
e685c689
SL
2486 er = EMULATE_PRIV_FAIL;
2487 }
2488 break;
2489
16d100db 2490 case EXCCODE_TLBS:
d116e812
DCZ
2491 /*
2492 * We we are accessing Guest kernel space, then send an
2493 * address error exception to the guest
2494 */
e685c689 2495 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2496 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2497 badvaddr);
e685c689 2498 cause &= ~0xff;
16d100db 2499 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
e685c689
SL
2500 er = EMULATE_PRIV_FAIL;
2501 }
2502 break;
2503
16d100db 2504 case EXCCODE_ADES:
6ad78a5c
DCZ
2505 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2506 badvaddr);
e685c689
SL
2507 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2508 cause &= ~0xff;
16d100db 2509 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
e685c689
SL
2510 }
2511 er = EMULATE_PRIV_FAIL;
2512 break;
16d100db 2513 case EXCCODE_ADEL:
6ad78a5c
DCZ
2514 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2515 badvaddr);
e685c689
SL
2516 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2517 cause &= ~0xff;
16d100db 2518 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
e685c689
SL
2519 }
2520 er = EMULATE_PRIV_FAIL;
2521 break;
2522 default:
2523 er = EMULATE_PRIV_FAIL;
2524 break;
2525 }
2526 }
2527
d116e812 2528 if (er == EMULATE_PRIV_FAIL)
e685c689 2529 kvm_mips_emulate_exc(cause, opc, run, vcpu);
d116e812 2530
e685c689
SL
2531 return er;
2532}
2533
d116e812
DCZ
2534/*
2535 * User Address (UA) fault, this could happen if
e685c689
SL
2536 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2537 * case we pass on the fault to the guest kernel and let it handle it.
2538 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2539 * case we inject the TLB from the Guest TLB into the shadow host TLB
2540 */
d116e812 2541enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
bdb7ed86 2542 u32 *opc,
d116e812
DCZ
2543 struct kvm_run *run,
2544 struct kvm_vcpu *vcpu)
e685c689
SL
2545{
2546 enum emulation_result er = EMULATE_DONE;
2547 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2548 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2549 int index;
2550
e4e94c0f
JH
2551 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2552 vcpu->arch.host_cp0_badvaddr);
e685c689 2553
d116e812
DCZ
2554 /*
2555 * KVM would not have got the exception if this entry was valid in the
2556 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2557 * send the guest an exception. The guest exc handler should then inject
2558 * an entry into the guest TLB.
e685c689
SL
2559 */
2560 index = kvm_mips_guest_tlb_lookup(vcpu,
caa1faa7 2561 (va & VPN2_MASK) |
ca64c2be
PB
2562 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2563 KVM_ENTRYHI_ASID));
e685c689 2564 if (index < 0) {
16d100db 2565 if (exccode == EXCCODE_TLBL) {
e685c689 2566 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
16d100db 2567 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2568 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2569 } else {
6ad78a5c
DCZ
2570 kvm_err("%s: invalid exc code: %d\n", __func__,
2571 exccode);
e685c689
SL
2572 er = EMULATE_FAIL;
2573 }
2574 } else {
2575 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2576
d116e812
DCZ
2577 /*
2578 * Check if the entry is valid, if not then setup a TLB invalid
2579 * exception to the guest
2580 */
e685c689 2581 if (!TLB_IS_VALID(*tlb, va)) {
16d100db 2582 if (exccode == EXCCODE_TLBL) {
e685c689
SL
2583 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2584 vcpu);
16d100db 2585 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2586 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2587 vcpu);
2588 } else {
6ad78a5c
DCZ
2589 kvm_err("%s: invalid exc code: %d\n", __func__,
2590 exccode);
e685c689
SL
2591 er = EMULATE_FAIL;
2592 }
2593 } else {
d116e812
DCZ
2594 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2595 tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2596 /*
2597 * OK we have a Guest TLB entry, now inject it into the
2598 * shadow host TLB
2599 */
e685c689
SL
2600 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2601 NULL);
2602 }
2603 }
2604
2605 return er;
2606}
This page took 0.859935 seconds and 5 git commands to generate.