mm, vmscan: wake up all pfmemalloc-throttled processes at once
[deliverable/linux.git] / arch / powerpc / mm / hugetlbpage.c
CommitLineData
1da177e4 1/*
41151e77 2 * PPC Huge TLB Page Support for Kernel.
1da177e4
LT
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
41151e77 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
1da177e4
LT
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
1da177e4 11#include <linux/mm.h>
883a3e52 12#include <linux/io.h>
5a0e3ad6 13#include <linux/slab.h>
1da177e4 14#include <linux/hugetlb.h>
342d3db7 15#include <linux/export.h>
41151e77
BB
16#include <linux/of_fdt.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
13020be8 19#include <linux/moduleparam.h>
883a3e52 20#include <asm/pgtable.h>
1da177e4
LT
21#include <asm/pgalloc.h>
22#include <asm/tlb.h>
41151e77 23#include <asm/setup.h>
29409997
AK
24#include <asm/hugetlb.h>
25
26#ifdef CONFIG_HUGETLB_PAGE
1da177e4 27
91224346
JT
28#define PAGE_SHIFT_64K 16
29#define PAGE_SHIFT_16M 24
30#define PAGE_SHIFT_16G 34
4ec161cf 31
41151e77 32unsigned int HPAGE_SHIFT;
ec4b2c0c 33
41151e77
BB
34/*
35 * Tracks gpages after the device tree is scanned and before the
a6146888
BB
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
41151e77 40 */
881fde1d 41#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
42#define MAX_NUMBER_GPAGES 128
43struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46};
47static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
881fde1d
BB
48#else
49#define MAX_NUMBER_GPAGES 1024
50static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51static unsigned nr_gpages;
41151e77 52#endif
f10a04c0 53
a4fe3ce7
DG
54#define hugepd_none(hpd) ((hpd).pd == 0)
55
e2b3d202
AK
56#ifdef CONFIG_PPC_BOOK3S_64
57/*
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
60 */
61
62/*
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
06743521
AK
65 *
66 * Defined in such a way that we can optimize away code block at build time
67 * if CONFIG_HUGETLB_PAGE=n.
e2b3d202
AK
68 */
69int pmd_huge(pmd_t pmd)
70{
71 /*
72 * leaf pte for huge page, bottom two bits != 00
73 */
74 return ((pmd_val(pmd) & 0x3) != 0x0);
75}
76
77int pud_huge(pud_t pud)
78{
79 /*
80 * leaf pte for huge page, bottom two bits != 00
81 */
82 return ((pud_val(pud) & 0x3) != 0x0);
83}
84
85int pgd_huge(pgd_t pgd)
86{
87 /*
88 * leaf pte for huge page, bottom two bits != 00
89 */
90 return ((pgd_val(pgd) & 0x3) != 0x0);
91}
92#else
93int pmd_huge(pmd_t pmd)
94{
95 return 0;
96}
97
98int pud_huge(pud_t pud)
99{
100 return 0;
101}
102
103int pgd_huge(pgd_t pgd)
104{
105 return 0;
106}
107#endif
108
a4fe3ce7
DG
109pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110{
12bc9f6f 111 /* Only called for hugetlbfs pages, hence can ignore THP */
a4fe3ce7
DG
112 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
113}
114
f10a04c0 115static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
a4fe3ce7 116 unsigned long address, unsigned pdshift, unsigned pshift)
f10a04c0 117{
41151e77
BB
118 struct kmem_cache *cachep;
119 pte_t *new;
120
881fde1d 121#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
122 int i;
123 int num_hugepd = 1 << (pshift - pdshift);
124 cachep = hugepte_cache;
881fde1d
BB
125#else
126 cachep = PGT_CACHE(pdshift - pshift);
41151e77
BB
127#endif
128
129 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
f10a04c0 130
a4fe3ce7
DG
131 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
132 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
133
f10a04c0
DG
134 if (! new)
135 return -ENOMEM;
136
137 spin_lock(&mm->page_table_lock);
881fde1d 138#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
139 /*
140 * We have multiple higher-level entries that point to the same
141 * actual pte location. Fill in each as we go and backtrack on error.
142 * We need all of these so the DTLB pgtable walk code can find the
143 * right higher-level entry without knowing if it's a hugepage or not.
144 */
145 for (i = 0; i < num_hugepd; i++, hpdp++) {
146 if (unlikely(!hugepd_none(*hpdp)))
147 break;
148 else
cf9427b8 149 /* We use the old format for PPC_FSL_BOOK3E */
41151e77
BB
150 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
151 }
152 /* If we bailed from the for loop early, an error occurred, clean up */
153 if (i < num_hugepd) {
154 for (i = i - 1 ; i >= 0; i--, hpdp--)
155 hpdp->pd = 0;
156 kmem_cache_free(cachep, new);
157 }
a1cd5419
BB
158#else
159 if (!hugepd_none(*hpdp))
160 kmem_cache_free(cachep, new);
cf9427b8
AK
161 else {
162#ifdef CONFIG_PPC_BOOK3S_64
163 hpdp->pd = (unsigned long)new |
164 (shift_to_mmu_psize(pshift) << 2);
165#else
a1cd5419 166 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
cf9427b8
AK
167#endif
168 }
41151e77 169#endif
f10a04c0
DG
170 spin_unlock(&mm->page_table_lock);
171 return 0;
172}
173
a1cd5419
BB
174/*
175 * These macros define how to determine which level of the page table holds
176 * the hpdp.
177 */
178#ifdef CONFIG_PPC_FSL_BOOK3E
179#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
180#define HUGEPD_PUD_SHIFT PUD_SHIFT
181#else
182#define HUGEPD_PGD_SHIFT PUD_SHIFT
183#define HUGEPD_PUD_SHIFT PMD_SHIFT
184#endif
185
e2b3d202
AK
186#ifdef CONFIG_PPC_BOOK3S_64
187/*
188 * At this point we do the placement change only for BOOK3S 64. This would
189 * possibly work on other subarchs.
190 */
191pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
192{
193 pgd_t *pg;
194 pud_t *pu;
195 pmd_t *pm;
196 hugepd_t *hpdp = NULL;
197 unsigned pshift = __ffs(sz);
198 unsigned pdshift = PGDIR_SHIFT;
199
200 addr &= ~(sz-1);
201 pg = pgd_offset(mm, addr);
202
203 if (pshift == PGDIR_SHIFT)
204 /* 16GB huge page */
205 return (pte_t *) pg;
206 else if (pshift > PUD_SHIFT)
207 /*
208 * We need to use hugepd table
209 */
210 hpdp = (hugepd_t *)pg;
211 else {
212 pdshift = PUD_SHIFT;
213 pu = pud_alloc(mm, pg, addr);
214 if (pshift == PUD_SHIFT)
215 return (pte_t *)pu;
216 else if (pshift > PMD_SHIFT)
217 hpdp = (hugepd_t *)pu;
218 else {
219 pdshift = PMD_SHIFT;
220 pm = pmd_alloc(mm, pu, addr);
221 if (pshift == PMD_SHIFT)
222 /* 16MB hugepage */
223 return (pte_t *)pm;
224 else
225 hpdp = (hugepd_t *)pm;
226 }
227 }
228 if (!hpdp)
229 return NULL;
230
231 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
232
233 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
234 return NULL;
235
b30e7590 236 return hugepte_offset(*hpdp, addr, pdshift);
e2b3d202
AK
237}
238
239#else
240
a4fe3ce7 241pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
0b26425c 242{
a4fe3ce7
DG
243 pgd_t *pg;
244 pud_t *pu;
245 pmd_t *pm;
246 hugepd_t *hpdp = NULL;
247 unsigned pshift = __ffs(sz);
248 unsigned pdshift = PGDIR_SHIFT;
249
250 addr &= ~(sz-1);
251
252 pg = pgd_offset(mm, addr);
a1cd5419
BB
253
254 if (pshift >= HUGEPD_PGD_SHIFT) {
a4fe3ce7
DG
255 hpdp = (hugepd_t *)pg;
256 } else {
257 pdshift = PUD_SHIFT;
258 pu = pud_alloc(mm, pg, addr);
a1cd5419 259 if (pshift >= HUGEPD_PUD_SHIFT) {
a4fe3ce7
DG
260 hpdp = (hugepd_t *)pu;
261 } else {
262 pdshift = PMD_SHIFT;
263 pm = pmd_alloc(mm, pu, addr);
264 hpdp = (hugepd_t *)pm;
265 }
266 }
267
268 if (!hpdp)
269 return NULL;
270
271 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
272
273 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
274 return NULL;
275
b30e7590 276 return hugepte_offset(*hpdp, addr, pdshift);
4ec161cf 277}
e2b3d202 278#endif
4ec161cf 279
881fde1d 280#ifdef CONFIG_PPC_FSL_BOOK3E
658013e9 281/* Build list of addresses of gigantic pages. This function is used in early
14ed7409 282 * boot before the buddy allocator is setup.
658013e9 283 */
41151e77
BB
284void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
285{
286 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
287 int i;
288
289 if (addr == 0)
290 return;
291
292 gpage_freearray[idx].nr_gpages = number_of_pages;
293
294 for (i = 0; i < number_of_pages; i++) {
295 gpage_freearray[idx].gpage_list[i] = addr;
296 addr += page_size;
297 }
298}
299
300/*
301 * Moves the gigantic page addresses from the temporary list to the
302 * huge_boot_pages list.
303 */
304int alloc_bootmem_huge_page(struct hstate *hstate)
305{
306 struct huge_bootmem_page *m;
2415cf12 307 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
41151e77
BB
308 int nr_gpages = gpage_freearray[idx].nr_gpages;
309
310 if (nr_gpages == 0)
311 return 0;
312
313#ifdef CONFIG_HIGHMEM
314 /*
315 * If gpages can be in highmem we can't use the trick of storing the
316 * data structure in the page; allocate space for this
317 */
e39f223f 318 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
41151e77
BB
319 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
320#else
321 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
322#endif
323
324 list_add(&m->list, &huge_boot_pages);
325 gpage_freearray[idx].nr_gpages = nr_gpages;
326 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
327 m->hstate = hstate;
328
329 return 1;
330}
331/*
332 * Scan the command line hugepagesz= options for gigantic pages; store those in
333 * a list that we use to allocate the memory once all options are parsed.
334 */
335
336unsigned long gpage_npages[MMU_PAGE_COUNT];
337
89528127
PG
338static int __init do_gpage_early_setup(char *param, char *val,
339 const char *unused)
41151e77
BB
340{
341 static phys_addr_t size;
342 unsigned long npages;
343
344 /*
345 * The hugepagesz and hugepages cmdline options are interleaved. We
346 * use the size variable to keep track of whether or not this was done
347 * properly and skip over instances where it is incorrect. Other
348 * command-line parsing code will issue warnings, so we don't need to.
349 *
350 */
351 if ((strcmp(param, "default_hugepagesz") == 0) ||
352 (strcmp(param, "hugepagesz") == 0)) {
353 size = memparse(val, NULL);
354 } else if (strcmp(param, "hugepages") == 0) {
355 if (size != 0) {
356 if (sscanf(val, "%lu", &npages) <= 0)
357 npages = 0;
c4f3eb5f
JY
358 if (npages > MAX_NUMBER_GPAGES) {
359 pr_warn("MMU: %lu pages requested for page "
360 "size %llu KB, limiting to "
361 __stringify(MAX_NUMBER_GPAGES) "\n",
362 npages, size / 1024);
363 npages = MAX_NUMBER_GPAGES;
364 }
41151e77
BB
365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 size = 0;
367 }
368 }
369 return 0;
370}
371
372
373/*
374 * This function allocates physical space for pages that are larger than the
375 * buddy allocator can handle. We want to allocate these in highmem because
376 * the amount of lowmem is limited. This means that this function MUST be
377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378 * allocate to grab highmem.
379 */
380void __init reserve_hugetlb_gpages(void)
381{
382 static __initdata char cmdline[COMMAND_LINE_SIZE];
383 phys_addr_t size, base;
384 int i;
385
386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
026cee00
PM
387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 &do_gpage_early_setup);
41151e77
BB
389
390 /*
391 * Walk gpage list in reverse, allocating larger page sizes first.
392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 * When we reach the point in the list where pages are no longer
394 * considered gpages, we're done.
395 */
396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 continue;
399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 break;
401
402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 base = memblock_alloc_base(size * gpage_npages[i], size,
404 MEMBLOCK_ALLOC_ANYWHERE);
405 add_gpage(base, size, gpage_npages[i]);
406 }
407}
408
881fde1d 409#else /* !PPC_FSL_BOOK3E */
41151e77
BB
410
411/* Build list of addresses of gigantic pages. This function is used in early
14ed7409 412 * boot before the buddy allocator is setup.
41151e77
BB
413 */
414void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
658013e9
JT
415{
416 if (!addr)
417 return;
418 while (number_of_pages > 0) {
419 gpage_freearray[nr_gpages] = addr;
420 nr_gpages++;
421 number_of_pages--;
422 addr += page_size;
423 }
424}
425
ec4b2c0c 426/* Moves the gigantic page addresses from the temporary list to the
0d9ea754
JT
427 * huge_boot_pages list.
428 */
429int alloc_bootmem_huge_page(struct hstate *hstate)
ec4b2c0c
JT
430{
431 struct huge_bootmem_page *m;
432 if (nr_gpages == 0)
433 return 0;
434 m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 gpage_freearray[nr_gpages] = 0;
436 list_add(&m->list, &huge_boot_pages);
0d9ea754 437 m->hstate = hstate;
ec4b2c0c
JT
438 return 1;
439}
41151e77 440#endif
ec4b2c0c 441
39dde65c
CK
442int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
443{
444 return 0;
445}
446
881fde1d 447#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
448#define HUGEPD_FREELIST_SIZE \
449 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
450
451struct hugepd_freelist {
452 struct rcu_head rcu;
453 unsigned int index;
454 void *ptes[0];
455};
456
457static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
458
459static void hugepd_free_rcu_callback(struct rcu_head *head)
460{
461 struct hugepd_freelist *batch =
462 container_of(head, struct hugepd_freelist, rcu);
463 unsigned int i;
464
465 for (i = 0; i < batch->index; i++)
466 kmem_cache_free(hugepte_cache, batch->ptes[i]);
467
468 free_page((unsigned long)batch);
469}
470
471static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
472{
473 struct hugepd_freelist **batchp;
474
69111bac 475 batchp = this_cpu_ptr(&hugepd_freelist_cur);
41151e77
BB
476
477 if (atomic_read(&tlb->mm->mm_users) < 2 ||
478 cpumask_equal(mm_cpumask(tlb->mm),
479 cpumask_of(smp_processor_id()))) {
480 kmem_cache_free(hugepte_cache, hugepte);
94b09d75 481 put_cpu_var(hugepd_freelist_cur);
41151e77
BB
482 return;
483 }
484
485 if (*batchp == NULL) {
486 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
487 (*batchp)->index = 0;
488 }
489
490 (*batchp)->ptes[(*batchp)->index++] = hugepte;
491 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
492 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
493 *batchp = NULL;
494 }
94b09d75 495 put_cpu_var(hugepd_freelist_cur);
41151e77
BB
496}
497#endif
498
a4fe3ce7
DG
499static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
500 unsigned long start, unsigned long end,
501 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
502{
503 pte_t *hugepte = hugepd_page(*hpdp);
41151e77
BB
504 int i;
505
a4fe3ce7 506 unsigned long pdmask = ~((1UL << pdshift) - 1);
41151e77
BB
507 unsigned int num_hugepd = 1;
508
881fde1d
BB
509#ifdef CONFIG_PPC_FSL_BOOK3E
510 /* Note: On fsl the hpdp may be the first of several */
41151e77 511 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
881fde1d
BB
512#else
513 unsigned int shift = hugepd_shift(*hpdp);
41151e77 514#endif
a4fe3ce7
DG
515
516 start &= pdmask;
517 if (start < floor)
518 return;
519 if (ceiling) {
520 ceiling &= pdmask;
521 if (! ceiling)
522 return;
523 }
524 if (end - 1 > ceiling - 1)
525 return;
f10a04c0 526
41151e77
BB
527 for (i = 0; i < num_hugepd; i++, hpdp++)
528 hpdp->pd = 0;
529
881fde1d 530#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77 531 hugepd_free(tlb, hugepte);
881fde1d
BB
532#else
533 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
41151e77 534#endif
f10a04c0
DG
535}
536
f10a04c0
DG
537static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
538 unsigned long addr, unsigned long end,
a4fe3ce7 539 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
540{
541 pmd_t *pmd;
542 unsigned long next;
543 unsigned long start;
544
545 start = addr;
f10a04c0 546 do {
a1cd5419 547 pmd = pmd_offset(pud, addr);
f10a04c0 548 next = pmd_addr_end(addr, end);
b30e7590 549 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
8bbd9f04
AK
550 /*
551 * if it is not hugepd pointer, we should already find
552 * it cleared.
553 */
554 WARN_ON(!pmd_none_or_clear_bad(pmd));
f10a04c0 555 continue;
8bbd9f04 556 }
a1cd5419
BB
557#ifdef CONFIG_PPC_FSL_BOOK3E
558 /*
559 * Increment next by the size of the huge mapping since
560 * there may be more than one entry at this level for a
561 * single hugepage, but all of them point to
562 * the same kmem cache that holds the hugepte.
563 */
564 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
565#endif
a4fe3ce7
DG
566 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
567 addr, next, floor, ceiling);
a1cd5419 568 } while (addr = next, addr != end);
f10a04c0
DG
569
570 start &= PUD_MASK;
571 if (start < floor)
572 return;
573 if (ceiling) {
574 ceiling &= PUD_MASK;
575 if (!ceiling)
576 return;
1da177e4 577 }
f10a04c0
DG
578 if (end - 1 > ceiling - 1)
579 return;
1da177e4 580
f10a04c0
DG
581 pmd = pmd_offset(pud, start);
582 pud_clear(pud);
9e1b32ca 583 pmd_free_tlb(tlb, pmd, start);
f10a04c0 584}
f10a04c0
DG
585
586static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
587 unsigned long addr, unsigned long end,
588 unsigned long floor, unsigned long ceiling)
589{
590 pud_t *pud;
591 unsigned long next;
592 unsigned long start;
593
594 start = addr;
f10a04c0 595 do {
a1cd5419 596 pud = pud_offset(pgd, addr);
f10a04c0 597 next = pud_addr_end(addr, end);
b30e7590 598 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
4ec161cf
JT
599 if (pud_none_or_clear_bad(pud))
600 continue;
0d9ea754 601 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
a4fe3ce7 602 ceiling);
4ec161cf 603 } else {
a1cd5419
BB
604#ifdef CONFIG_PPC_FSL_BOOK3E
605 /*
606 * Increment next by the size of the huge mapping since
607 * there may be more than one entry at this level for a
608 * single hugepage, but all of them point to
609 * the same kmem cache that holds the hugepte.
610 */
611 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
612#endif
a4fe3ce7
DG
613 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
614 addr, next, floor, ceiling);
4ec161cf 615 }
a1cd5419 616 } while (addr = next, addr != end);
f10a04c0
DG
617
618 start &= PGDIR_MASK;
619 if (start < floor)
620 return;
621 if (ceiling) {
622 ceiling &= PGDIR_MASK;
623 if (!ceiling)
624 return;
625 }
626 if (end - 1 > ceiling - 1)
627 return;
628
629 pud = pud_offset(pgd, start);
630 pgd_clear(pgd);
9e1b32ca 631 pud_free_tlb(tlb, pud, start);
f10a04c0
DG
632}
633
634/*
635 * This function frees user-level page tables of a process.
f10a04c0 636 */
42b77728 637void hugetlb_free_pgd_range(struct mmu_gather *tlb,
f10a04c0
DG
638 unsigned long addr, unsigned long end,
639 unsigned long floor, unsigned long ceiling)
640{
641 pgd_t *pgd;
642 unsigned long next;
f10a04c0
DG
643
644 /*
a4fe3ce7
DG
645 * Because there are a number of different possible pagetable
646 * layouts for hugepage ranges, we limit knowledge of how
647 * things should be laid out to the allocation path
648 * (huge_pte_alloc(), above). Everything else works out the
649 * structure as it goes from information in the hugepd
650 * pointers. That means that we can't here use the
651 * optimization used in the normal page free_pgd_range(), of
652 * checking whether we're actually covering a large enough
653 * range to have to do anything at the top level of the walk
654 * instead of at the bottom.
f10a04c0 655 *
a4fe3ce7
DG
656 * To make sense of this, you should probably go read the big
657 * block comment at the top of the normal free_pgd_range(),
658 * too.
f10a04c0 659 */
f10a04c0 660
f10a04c0 661 do {
f10a04c0 662 next = pgd_addr_end(addr, end);
41151e77 663 pgd = pgd_offset(tlb->mm, addr);
b30e7590 664 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
0b26425c
DG
665 if (pgd_none_or_clear_bad(pgd))
666 continue;
667 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
668 } else {
881fde1d 669#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
670 /*
671 * Increment next by the size of the huge mapping since
881fde1d
BB
672 * there may be more than one entry at the pgd level
673 * for a single hugepage, but all of them point to the
674 * same kmem cache that holds the hugepte.
41151e77
BB
675 */
676 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
677#endif
a4fe3ce7
DG
678 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
679 addr, next, floor, ceiling);
0b26425c 680 }
41151e77 681 } while (addr = next, addr != end);
1da177e4
LT
682}
683
1da177e4
LT
684struct page *
685follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
686{
687 pte_t *ptep;
688 struct page *page;
a4fe3ce7
DG
689 unsigned shift;
690 unsigned long mask;
12bc9f6f
AK
691 /*
692 * Transparent hugepages are handled by generic code. We can skip them
693 * here.
694 */
a4fe3ce7 695 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
1da177e4 696
0d9ea754 697 /* Verify it is a huge page else bail. */
12bc9f6f 698 if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
1da177e4
LT
699 return ERR_PTR(-EINVAL);
700
a4fe3ce7 701 mask = (1UL << shift) - 1;
1da177e4 702 page = pte_page(*ptep);
a4fe3ce7
DG
703 if (page)
704 page += (address & mask) / PAGE_SIZE;
1da177e4
LT
705
706 return page;
707}
708
1da177e4
LT
709struct page *
710follow_huge_pmd(struct mm_struct *mm, unsigned long address,
711 pmd_t *pmd, int write)
712{
713 BUG();
714 return NULL;
715}
716
39adfa54
DG
717static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
718 unsigned long sz)
719{
720 unsigned long __boundary = (addr + sz) & ~(sz-1);
721 return (__boundary - 1 < end - 1) ? __boundary : end;
722}
723
b30e7590
AK
724int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
725 unsigned long end, int write, struct page **pages, int *nr)
a4fe3ce7
DG
726{
727 pte_t *ptep;
b30e7590 728 unsigned long sz = 1UL << hugepd_shift(hugepd);
39adfa54 729 unsigned long next;
a4fe3ce7
DG
730
731 ptep = hugepte_offset(hugepd, addr, pdshift);
732 do {
39adfa54 733 next = hugepte_addr_end(addr, end, sz);
a4fe3ce7
DG
734 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
735 return 0;
39adfa54 736 } while (ptep++, addr = next, addr != end);
a4fe3ce7
DG
737
738 return 1;
739}
1da177e4 740
76512959 741#ifdef CONFIG_PPC_MM_SLICES
1da177e4
LT
742unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
743 unsigned long len, unsigned long pgoff,
744 unsigned long flags)
745{
0d9ea754
JT
746 struct hstate *hstate = hstate_file(file);
747 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
48f797de 748
34d07177 749 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
1da177e4 750}
76512959 751#endif
1da177e4 752
3340289d
MG
753unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
754{
25c29f9e 755#ifdef CONFIG_PPC_MM_SLICES
3340289d
MG
756 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
757
758 return 1UL << mmu_psize_to_shift(psize);
41151e77
BB
759#else
760 if (!is_vm_hugetlb_page(vma))
761 return PAGE_SIZE;
762
763 return huge_page_size(hstate_vma(vma));
764#endif
765}
766
767static inline bool is_power_of_4(unsigned long x)
768{
769 if (is_power_of_2(x))
770 return (__ilog2(x) % 2) ? false : true;
771 return false;
3340289d
MG
772}
773
d1837cba 774static int __init add_huge_page_size(unsigned long long size)
4ec161cf 775{
d1837cba
DG
776 int shift = __ffs(size);
777 int mmu_psize;
a4fe3ce7 778
4ec161cf 779 /* Check that it is a page size supported by the hardware and
d1837cba 780 * that it fits within pagetable and slice limits. */
41151e77
BB
781#ifdef CONFIG_PPC_FSL_BOOK3E
782 if ((size < PAGE_SIZE) || !is_power_of_4(size))
783 return -EINVAL;
784#else
d1837cba
DG
785 if (!is_power_of_2(size)
786 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
787 return -EINVAL;
41151e77 788#endif
91224346 789
d1837cba
DG
790 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
791 return -EINVAL;
792
793#ifdef CONFIG_SPU_FS_64K_LS
794 /* Disable support for 64K huge pages when 64K SPU local store
795 * support is enabled as the current implementation conflicts.
796 */
797 if (shift == PAGE_SHIFT_64K)
798 return -EINVAL;
799#endif /* CONFIG_SPU_FS_64K_LS */
800
801 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
802
803 /* Return if huge page size has already been setup */
804 if (size_to_hstate(size))
805 return 0;
806
807 hugetlb_add_hstate(shift - PAGE_SHIFT);
808
809 return 0;
4ec161cf
JT
810}
811
812static int __init hugepage_setup_sz(char *str)
813{
814 unsigned long long size;
4ec161cf
JT
815
816 size = memparse(str, &str);
817
d1837cba 818 if (add_huge_page_size(size) != 0)
4ec161cf
JT
819 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
820
821 return 1;
822}
823__setup("hugepagesz=", hugepage_setup_sz);
824
881fde1d 825#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
826struct kmem_cache *hugepte_cache;
827static int __init hugetlbpage_init(void)
828{
829 int psize;
830
831 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
832 unsigned shift;
833
834 if (!mmu_psize_defs[psize].shift)
835 continue;
836
837 shift = mmu_psize_to_shift(psize);
838
839 /* Don't treat normal page sizes as huge... */
840 if (shift != PAGE_SHIFT)
841 if (add_huge_page_size(1ULL << shift) < 0)
842 continue;
843 }
844
845 /*
846 * Create a kmem cache for hugeptes. The bottom bits in the pte have
847 * size information encoded in them, so align them to allow this
848 */
849 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
850 HUGEPD_SHIFT_MASK + 1, 0, NULL);
851 if (hugepte_cache == NULL)
852 panic("%s: Unable to create kmem cache for hugeptes\n",
853 __func__);
854
855 /* Default hpage size = 4M */
856 if (mmu_psize_defs[MMU_PAGE_4M].shift)
857 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
858 else
859 panic("%s: Unable to set default huge page size\n", __func__);
860
861
862 return 0;
863}
864#else
f10a04c0
DG
865static int __init hugetlbpage_init(void)
866{
a4fe3ce7 867 int psize;
0d9ea754 868
44ae3ab3 869 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
f10a04c0 870 return -ENODEV;
00df438e 871
d1837cba
DG
872 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
873 unsigned shift;
874 unsigned pdshift;
0d9ea754 875
d1837cba
DG
876 if (!mmu_psize_defs[psize].shift)
877 continue;
00df438e 878
d1837cba
DG
879 shift = mmu_psize_to_shift(psize);
880
881 if (add_huge_page_size(1ULL << shift) < 0)
882 continue;
883
884 if (shift < PMD_SHIFT)
885 pdshift = PMD_SHIFT;
886 else if (shift < PUD_SHIFT)
887 pdshift = PUD_SHIFT;
888 else
889 pdshift = PGDIR_SHIFT;
e2b3d202
AK
890 /*
891 * if we have pdshift and shift value same, we don't
892 * use pgt cache for hugepd.
893 */
894 if (pdshift != shift) {
895 pgtable_cache_add(pdshift - shift, NULL);
896 if (!PGT_CACHE(pdshift - shift))
897 panic("hugetlbpage_init(): could not create "
898 "pgtable cache for %d bit pagesize\n", shift);
899 }
0d9ea754 900 }
f10a04c0 901
d1837cba
DG
902 /* Set default large page size. Currently, we pick 16M or 1M
903 * depending on what is available
904 */
905 if (mmu_psize_defs[MMU_PAGE_16M].shift)
906 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
907 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
908 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
909
f10a04c0
DG
910 return 0;
911}
41151e77 912#endif
f10a04c0 913module_init(hugetlbpage_init);
0895ecda
DG
914
915void flush_dcache_icache_hugepage(struct page *page)
916{
917 int i;
41151e77 918 void *start;
0895ecda
DG
919
920 BUG_ON(!PageCompound(page));
921
41151e77
BB
922 for (i = 0; i < (1UL << compound_order(page)); i++) {
923 if (!PageHighMem(page)) {
924 __flush_dcache_icache(page_address(page+i));
925 } else {
2480b208 926 start = kmap_atomic(page+i);
41151e77 927 __flush_dcache_icache(start);
2480b208 928 kunmap_atomic(start);
41151e77
BB
929 }
930 }
0895ecda 931}
29409997
AK
932
933#endif /* CONFIG_HUGETLB_PAGE */
934
935/*
936 * We have 4 cases for pgds and pmds:
937 * (1) invalid (all zeroes)
938 * (2) pointer to next table, as normal; bottom 6 bits == 0
939 * (3) leaf pte for huge page, bottom two bits != 00
940 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
0ac52dd7
AK
941 *
942 * So long as we atomically load page table pointers we are safe against teardown,
943 * we can follow the address down to the the page and take a ref on it.
29409997 944 */
0ac52dd7 945
29409997
AK
946pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
947{
0ac52dd7
AK
948 pgd_t pgd, *pgdp;
949 pud_t pud, *pudp;
950 pmd_t pmd, *pmdp;
29409997
AK
951 pte_t *ret_pte;
952 hugepd_t *hpdp = NULL;
953 unsigned pdshift = PGDIR_SHIFT;
954
955 if (shift)
956 *shift = 0;
957
0ac52dd7
AK
958 pgdp = pgdir + pgd_index(ea);
959 pgd = ACCESS_ONCE(*pgdp);
ac52ae47 960 /*
0ac52dd7
AK
961 * Always operate on the local stack value. This make sure the
962 * value don't get updated by a parallel THP split/collapse,
963 * page fault or a page unmap. The return pte_t * is still not
964 * stable. So should be checked there for above conditions.
ac52ae47 965 */
0ac52dd7 966 if (pgd_none(pgd))
ac52ae47 967 return NULL;
0ac52dd7
AK
968 else if (pgd_huge(pgd)) {
969 ret_pte = (pte_t *) pgdp;
29409997 970 goto out;
b30e7590 971 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
0ac52dd7 972 hpdp = (hugepd_t *)&pgd;
ac52ae47 973 else {
0ac52dd7
AK
974 /*
975 * Even if we end up with an unmap, the pgtable will not
976 * be freed, because we do an rcu free and here we are
977 * irq disabled
978 */
29409997 979 pdshift = PUD_SHIFT;
0ac52dd7
AK
980 pudp = pud_offset(&pgd, ea);
981 pud = ACCESS_ONCE(*pudp);
29409997 982
0ac52dd7 983 if (pud_none(pud))
ac52ae47 984 return NULL;
0ac52dd7
AK
985 else if (pud_huge(pud)) {
986 ret_pte = (pte_t *) pudp;
29409997 987 goto out;
b30e7590 988 } else if (is_hugepd(__hugepd(pud_val(pud))))
0ac52dd7 989 hpdp = (hugepd_t *)&pud;
ac52ae47 990 else {
29409997 991 pdshift = PMD_SHIFT;
0ac52dd7
AK
992 pmdp = pmd_offset(&pud, ea);
993 pmd = ACCESS_ONCE(*pmdp);
ac52ae47
AK
994 /*
995 * A hugepage collapse is captured by pmd_none, because
996 * it mark the pmd none and do a hpte invalidate.
997 *
998 * A hugepage split is captured by pmd_trans_splitting
999 * because we mark the pmd trans splitting and do a
1000 * hpte invalidate
1001 *
1002 */
0ac52dd7 1003 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
ac52ae47 1004 return NULL;
29409997 1005
0ac52dd7
AK
1006 if (pmd_huge(pmd) || pmd_large(pmd)) {
1007 ret_pte = (pte_t *) pmdp;
29409997 1008 goto out;
b30e7590 1009 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
0ac52dd7 1010 hpdp = (hugepd_t *)&pmd;
ac52ae47 1011 else
0ac52dd7 1012 return pte_offset_kernel(&pmd, ea);
29409997
AK
1013 }
1014 }
1015 if (!hpdp)
1016 return NULL;
1017
b30e7590 1018 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
29409997
AK
1019 pdshift = hugepd_shift(*hpdp);
1020out:
1021 if (shift)
1022 *shift = pdshift;
1023 return ret_pte;
1024}
1025EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1026
1027int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1028 unsigned long end, int write, struct page **pages, int *nr)
1029{
1030 unsigned long mask;
1031 unsigned long pte_end;
1032 struct page *head, *page, *tail;
1033 pte_t pte;
1034 int refs;
1035
1036 pte_end = (addr + sz) & ~(sz-1);
1037 if (pte_end < end)
1038 end = pte_end;
1039
7888b4dd 1040 pte = ACCESS_ONCE(*ptep);
29409997
AK
1041 mask = _PAGE_PRESENT | _PAGE_USER;
1042 if (write)
1043 mask |= _PAGE_RW;
1044
1045 if ((pte_val(pte) & mask) != mask)
1046 return 0;
1047
1048 /* hugepages are never "special" */
1049 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1050
1051 refs = 0;
1052 head = pte_page(pte);
1053
1054 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1055 tail = page;
1056 do {
1057 VM_BUG_ON(compound_head(page) != head);
1058 pages[*nr] = page;
1059 (*nr)++;
1060 page++;
1061 refs++;
1062 } while (addr += PAGE_SIZE, addr != end);
1063
1064 if (!page_cache_add_speculative(head, refs)) {
1065 *nr -= refs;
1066 return 0;
1067 }
1068
1069 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1070 /* Could be optimized better */
1071 *nr -= refs;
1072 while (refs--)
1073 put_page(head);
1074 return 0;
1075 }
1076
1077 /*
1078 * Any tail page need their mapcount reference taken before we
1079 * return.
1080 */
1081 while (refs--) {
1082 if (PageTail(tail))
1083 get_huge_page_tail(tail);
1084 tail++;
1085 }
1086
1087 return 1;
1088}
This page took 0.733643 seconds and 5 git commands to generate.