x86/dumpstack: When OOPSing, rewind the stack before do_exit()
[deliverable/linux.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
d7e7528b 38#include <linux/err.h>
1da177e4 39
86a1c34a
RM
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
4d732138
IM
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
ea714547 45
4d732138
IM
46.code64
47.section .entry.text, "ax"
16444a8a 48
72fe4858 49#ifdef CONFIG_PARAVIRT
2be29982 50ENTRY(native_usergs_sysret64)
72fe4858
GOC
51 swapgs
52 sysretq
b3baaa13 53ENDPROC(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
f2db9382 56.macro TRACE_IRQS_IRETQ
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
5963e317
SR
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
4d732138 79 call debug_stack_set_zero
5963e317 80 TRACE_IRQS_OFF
4d732138 81 call debug_stack_reset
5963e317
SR
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
4d732138 85 call debug_stack_set_zero
5963e317 86 TRACE_IRQS_ON
4d732138 87 call debug_stack_reset
5963e317
SR
88.endm
89
f2db9382 90.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
5963e317
SR
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
4d732138
IM
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
101#endif
102
1da177e4 103/*
4d732138 104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 105 *
fda57b22
AL
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
4d732138 116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
1da177e4 123 * rax system call number
b87cf63e
DV
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 126 * rdi arg0
1da177e4 127 * rsi arg1
0bd7b798 128 * rdx arg2
b87cf63e 129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
130 * r8 arg4
131 * r9 arg5
4d732138 132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 133 *
1da177e4
LT
134 * Only called from user space.
135 *
7fcb3bc3 136 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 139 */
1da177e4 140
b2502b41 141ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
72fe4858
GOC
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
b2502b41 153GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 154
4d732138
IM
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 157
1e423bff
AL
158 TRACE_IRQS_OFF
159
9ed8e7d8 160 /* Construct struct pt_regs on stack */
4d732138
IM
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
1e423bff
AL
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
b2502b41 185entry_SYSCALL_64_fastpath:
1e423bff
AL
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 193#if __SYSCALL_MASK == ~0
4d732138 194 cmpq $__NR_syscall_max, %rax
fca460f9 195#else
4d732138
IM
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
fca460f9 198#endif
4d732138
IM
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
302f5b26
AL
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
302f5b26 206 */
4d732138 207 call *sys_call_table(, %rax, 8)
302f5b26
AL
208.Lentry_SYSCALL_64_after_fastpath_call:
209
4d732138 210 movq %rax, RAX(%rsp)
146b2b09 2111:
b3494a4a
AL
212
213 /*
1e423bff
AL
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 217 */
1e423bff
AL
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
4d732138 220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
1e423bff 221 jnz 1f
b3494a4a 222
1e423bff
AL
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 228 movq RSP(%rsp), %rsp
2be29982 229 USERGS_SYSRET64
1da177e4 230
1e423bff
AL
2311:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
29ea1b25
AL
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
76f5df43 239 SAVE_EXTRA_REGS
4d732138 240 movq %rsp, %rdi
1e423bff
AL
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
0bd7b798 243
1e423bff
AL
244entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
76f5df43 246 SAVE_EXTRA_REGS
29ea1b25 247 movq %rsp, %rdi
1e423bff
AL
248 call do_syscall_64 /* returns with IRQs disabled */
249
250return_from_SYSCALL_64:
76f5df43 251 RESTORE_EXTRA_REGS
29ea1b25 252 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
4d732138
IM
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
fffbb5dc
DV
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
17be0aec 266 * the kernel, since userspace controls RSP.
fffbb5dc 267 *
17be0aec 268 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
4d732138 274
17be0aec
DV
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 278
17be0aec
DV
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
fffbb5dc 282
4d732138
IM
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
fffbb5dc 285
4d732138
IM
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
fffbb5dc
DV
289
290 /*
291 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
292 * restoring TF results in a trap from userspace immediately after
293 * SYSRET. This would cause an infinite loop whenever #DB happens
294 * with register state that satisfies the opportunistic SYSRET
295 * conditions. For example, single-stepping this user code:
296 *
4d732138 297 * movq $stuck_here, %rcx
fffbb5dc
DV
298 * pushfq
299 * popq %r11
300 * stuck_here:
301 *
302 * would never get past 'stuck_here'.
303 */
4d732138
IM
304 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
305 jnz opportunistic_sysret_failed
fffbb5dc
DV
306
307 /* nothing to check for RSP */
308
4d732138
IM
309 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
310 jne opportunistic_sysret_failed
fffbb5dc
DV
311
312 /*
4d732138
IM
313 * We win! This label is here just for ease of understanding
314 * perf profiles. Nothing jumps here.
fffbb5dc
DV
315 */
316syscall_return_via_sysret:
17be0aec
DV
317 /* rcx and r11 are already restored (see code above) */
318 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 319 movq RSP(%rsp), %rsp
fffbb5dc 320 USERGS_SYSRET64
fffbb5dc
DV
321
322opportunistic_sysret_failed:
323 SWAPGS
324 jmp restore_c_regs_and_iret
b2502b41 325END(entry_SYSCALL_64)
0bd7b798 326
302f5b26
AL
327ENTRY(stub_ptregs_64)
328 /*
329 * Syscalls marked as needing ptregs land here.
b7765086
AL
330 * If we are on the fast path, we need to save the extra regs,
331 * which we achieve by trying again on the slow path. If we are on
332 * the slow path, the extra regs are already saved.
302f5b26
AL
333 *
334 * RAX stores a pointer to the C function implementing the syscall.
b7765086 335 * IRQs are on.
302f5b26
AL
336 */
337 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
338 jne 1f
339
b7765086
AL
340 /*
341 * Called from fast path -- disable IRQs again, pop return address
342 * and jump to slow path
343 */
344 DISABLE_INTERRUPTS(CLBR_NONE)
345 TRACE_IRQS_OFF
302f5b26 346 popq %rax
b7765086 347 jmp entry_SYSCALL64_slow_path
302f5b26
AL
348
3491:
350 /* Called from C */
351 jmp *%rax /* called from C */
352END(stub_ptregs_64)
353
354.macro ptregs_stub func
355ENTRY(ptregs_\func)
356 leaq \func(%rip), %rax
357 jmp stub_ptregs_64
358END(ptregs_\func)
359.endm
360
361/* Instantiate ptregs_stub for each ptregs-using syscall */
362#define __SYSCALL_64_QUAL_(sym)
363#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
364#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
365#include <asm/syscalls_64.h>
fffbb5dc 366
1eeb207f
DV
367/*
368 * A newly forked process directly context switches into this address.
369 *
370 * rdi: prev task we switched from
371 */
372ENTRY(ret_from_fork)
4d732138 373 LOCK ; btr $TIF_FORK, TI_flags(%r8)
1eeb207f 374
4d732138 375 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 376
4d732138 377 testb $3, CS(%rsp) /* from kernel_thread? */
24d978b7 378 jnz 1f
1eeb207f 379
1e3fbb8a 380 /*
24d978b7
AL
381 * We came from kernel_thread. This code path is quite twisted, and
382 * someone should clean it up.
383 *
384 * copy_thread_tls stashes the function pointer in RBX and the
385 * parameter to be passed in RBP. The called function is permitted
386 * to call do_execve and thereby jump to user mode.
1e3fbb8a 387 */
24d978b7
AL
388 movq RBP(%rsp), %rdi
389 call *RBX(%rsp)
390 movl $0, RAX(%rsp)
1eeb207f 391
4d732138 392 /*
24d978b7
AL
393 * Fall through as though we're exiting a syscall. This makes a
394 * twisted sort of sense if we just called do_execve.
4d732138 395 */
24d978b7
AL
396
3971:
398 movq %rsp, %rdi
399 call syscall_return_slowpath /* returns with IRQs disabled */
400 TRACE_IRQS_ON /* user mode is traced as IRQS on */
401 SWAPGS
402 jmp restore_regs_and_iret
1eeb207f
DV
403END(ret_from_fork)
404
939b7871 405/*
3304c9c3
DV
406 * Build the entry stubs with some assembler magic.
407 * We pack 1 stub into every 8-byte block.
939b7871 408 */
3304c9c3 409 .align 8
939b7871 410ENTRY(irq_entries_start)
3304c9c3
DV
411 vector=FIRST_EXTERNAL_VECTOR
412 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 413 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
414 vector=vector+1
415 jmp common_interrupt
3304c9c3
DV
416 .align 8
417 .endr
939b7871
PA
418END(irq_entries_start)
419
d99015b1 420/*
1da177e4
LT
421 * Interrupt entry/exit.
422 *
423 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
424 *
425 * Entry runs with interrupts off.
426 */
1da177e4 427
722024db 428/* 0(%rsp): ~(interrupt number) */
1da177e4 429 .macro interrupt func
f6f64681 430 cld
ff467594
AL
431 ALLOC_PT_GPREGS_ON_STACK
432 SAVE_C_REGS
433 SAVE_EXTRA_REGS
76f5df43 434
ff467594 435 testb $3, CS(%rsp)
dde74f2e 436 jz 1f
02bc7768
AL
437
438 /*
439 * IRQ from user mode. Switch to kernel gsbase and inform context
440 * tracking that we're in kernel mode.
441 */
f6f64681 442 SWAPGS
f1075053
AL
443
444 /*
445 * We need to tell lockdep that IRQs are off. We can't do this until
446 * we fix gsbase, and we should do it before enter_from_user_mode
447 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
448 * the simplest way to handle it is to just call it twice if
449 * we enter from user mode. There's no reason to optimize this since
450 * TRACE_IRQS_OFF is a no-op if lockdep is off.
451 */
452 TRACE_IRQS_OFF
453
478dc89c 454 CALL_enter_from_user_mode
02bc7768 455
76f5df43 4561:
f6f64681 457 /*
e90e147c 458 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
459 * irq_count is used to check if a CPU is already on an interrupt stack
460 * or not. While this is essentially redundant with preempt_count it is
461 * a little cheaper to use a separate counter in the PDA (short of
462 * moving irq_enter into assembly, which would be too much work)
463 */
a586f98e 464 movq %rsp, %rdi
4d732138
IM
465 incl PER_CPU_VAR(irq_count)
466 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 467 pushq %rdi
f6f64681
DV
468 /* We entered an interrupt context - irqs are off: */
469 TRACE_IRQS_OFF
470
a586f98e 471 call \func /* rdi points to pt_regs */
1da177e4
LT
472 .endm
473
722024db
AH
474 /*
475 * The interrupt stubs push (~vector+0x80) onto the stack and
476 * then jump to common_interrupt.
477 */
939b7871
PA
478 .p2align CONFIG_X86_L1_CACHE_SHIFT
479common_interrupt:
ee4eb87b 480 ASM_CLAC
4d732138 481 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 482 interrupt do_IRQ
34061f13 483 /* 0(%rsp): old RSP */
7effaa88 484ret_from_intr:
72fe4858 485 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 486 TRACE_IRQS_OFF
4d732138 487 decl PER_CPU_VAR(irq_count)
625dbc3b 488
a2bbe750 489 /* Restore saved previous stack */
ff467594 490 popq %rsp
625dbc3b 491
03335e95 492 testb $3, CS(%rsp)
dde74f2e 493 jz retint_kernel
4d732138 494
02bc7768 495 /* Interrupt came from user space */
02bc7768
AL
496GLOBAL(retint_user)
497 mov %rsp,%rdi
498 call prepare_exit_to_usermode
2601e64d 499 TRACE_IRQS_IRETQ
72fe4858 500 SWAPGS
ff467594 501 jmp restore_regs_and_iret
2601e64d 502
627276cb 503/* Returning to kernel space */
6ba71b76 504retint_kernel:
627276cb
DV
505#ifdef CONFIG_PREEMPT
506 /* Interrupts are off */
507 /* Check if we need preemption */
4d732138 508 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 509 jnc 1f
4d732138 5100: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 511 jnz 1f
627276cb 512 call preempt_schedule_irq
36acef25 513 jmp 0b
6ba71b76 5141:
627276cb 515#endif
2601e64d
IM
516 /*
517 * The iretq could re-enable interrupts:
518 */
519 TRACE_IRQS_IRETQ
fffbb5dc
DV
520
521/*
522 * At this label, code paths which return to kernel and to user,
523 * which come from interrupts/exception and from syscalls, merge.
524 */
ee08c6bd 525GLOBAL(restore_regs_and_iret)
ff467594 526 RESTORE_EXTRA_REGS
fffbb5dc 527restore_c_regs_and_iret:
76f5df43
DV
528 RESTORE_C_REGS
529 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
530 INTERRUPT_RETURN
531
532ENTRY(native_iret)
3891a04a
PA
533 /*
534 * Are we returning to a stack segment from the LDT? Note: in
535 * 64-bit mode SS:RSP on the exception stack is always valid.
536 */
34273f41 537#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
538 testb $4, (SS-RIP)(%rsp)
539 jnz native_irq_return_ldt
34273f41 540#endif
3891a04a 541
af726f21 542.global native_irq_return_iret
7209a75d 543native_irq_return_iret:
b645af2d
AL
544 /*
545 * This may fault. Non-paranoid faults on return to userspace are
546 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
547 * Double-faults due to espfix64 are handled in do_double_fault.
548 * Other faults here are fatal.
549 */
1da177e4 550 iretq
3701d863 551
34273f41 552#ifdef CONFIG_X86_ESPFIX64
7209a75d 553native_irq_return_ldt:
4d732138
IM
554 pushq %rax
555 pushq %rdi
3891a04a 556 SWAPGS
4d732138
IM
557 movq PER_CPU_VAR(espfix_waddr), %rdi
558 movq %rax, (0*8)(%rdi) /* RAX */
559 movq (2*8)(%rsp), %rax /* RIP */
560 movq %rax, (1*8)(%rdi)
561 movq (3*8)(%rsp), %rax /* CS */
562 movq %rax, (2*8)(%rdi)
563 movq (4*8)(%rsp), %rax /* RFLAGS */
564 movq %rax, (3*8)(%rdi)
565 movq (6*8)(%rsp), %rax /* SS */
566 movq %rax, (5*8)(%rdi)
567 movq (5*8)(%rsp), %rax /* RSP */
568 movq %rax, (4*8)(%rdi)
569 andl $0xffff0000, %eax
570 popq %rdi
571 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 572 SWAPGS
4d732138
IM
573 movq %rax, %rsp
574 popq %rax
575 jmp native_irq_return_iret
34273f41 576#endif
4b787e0b 577END(common_interrupt)
3891a04a 578
1da177e4
LT
579/*
580 * APIC interrupts.
0bd7b798 581 */
cf910e83 582.macro apicinterrupt3 num sym do_sym
322648d1 583ENTRY(\sym)
ee4eb87b 584 ASM_CLAC
4d732138 585 pushq $~(\num)
39e95433 586.Lcommon_\sym:
322648d1 587 interrupt \do_sym
4d732138 588 jmp ret_from_intr
322648d1
AH
589END(\sym)
590.endm
1da177e4 591
cf910e83
SA
592#ifdef CONFIG_TRACING
593#define trace(sym) trace_##sym
594#define smp_trace(sym) smp_trace_##sym
595
596.macro trace_apicinterrupt num sym
597apicinterrupt3 \num trace(\sym) smp_trace(\sym)
598.endm
599#else
600.macro trace_apicinterrupt num sym do_sym
601.endm
602#endif
603
604.macro apicinterrupt num sym do_sym
605apicinterrupt3 \num \sym \do_sym
606trace_apicinterrupt \num \sym
607.endm
608
322648d1 609#ifdef CONFIG_SMP
4d732138
IM
610apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
611apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 612#endif
1da177e4 613
03b48632 614#ifdef CONFIG_X86_UV
4d732138 615apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 616#endif
4d732138
IM
617
618apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
619apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 620
d78f2664 621#ifdef CONFIG_HAVE_KVM
4d732138
IM
622apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
623apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
624#endif
625
33e5ff63 626#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 627apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
628#endif
629
24fd78a8 630#ifdef CONFIG_X86_MCE_AMD
4d732138 631apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
632#endif
633
33e5ff63 634#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 635apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 636#endif
1812924b 637
322648d1 638#ifdef CONFIG_SMP
4d732138
IM
639apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
640apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
641apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 642#endif
1da177e4 643
4d732138
IM
644apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
645apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 646
e360adbe 647#ifdef CONFIG_IRQ_WORK
4d732138 648apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
649#endif
650
1da177e4
LT
651/*
652 * Exception entry points.
0bd7b798 653 */
9b476688 654#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
655
656.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 657ENTRY(\sym)
577ed45e
AL
658 /* Sanity check */
659 .if \shift_ist != -1 && \paranoid == 0
660 .error "using shift_ist requires paranoid=1"
661 .endif
662
ee4eb87b 663 ASM_CLAC
b8b1d08b 664 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
665
666 .ifeq \has_error_code
4d732138 667 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
668 .endif
669
76f5df43 670 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
671
672 .if \paranoid
48e08d0f 673 .if \paranoid == 1
4d732138
IM
674 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
675 jnz 1f
48e08d0f 676 .endif
4d732138 677 call paranoid_entry
cb5dd2c5 678 .else
4d732138 679 call error_entry
cb5dd2c5 680 .endif
ebfc453e 681 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 682
cb5dd2c5 683 .if \paranoid
577ed45e 684 .if \shift_ist != -1
4d732138 685 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 686 .else
b8b1d08b 687 TRACE_IRQS_OFF
cb5dd2c5 688 .endif
577ed45e 689 .endif
cb5dd2c5 690
4d732138 691 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
692
693 .if \has_error_code
4d732138
IM
694 movq ORIG_RAX(%rsp), %rsi /* get error code */
695 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 696 .else
4d732138 697 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
698 .endif
699
577ed45e 700 .if \shift_ist != -1
4d732138 701 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
702 .endif
703
4d732138 704 call \do_sym
cb5dd2c5 705
577ed45e 706 .if \shift_ist != -1
4d732138 707 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
708 .endif
709
ebfc453e 710 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 711 .if \paranoid
4d732138 712 jmp paranoid_exit
cb5dd2c5 713 .else
4d732138 714 jmp error_exit
cb5dd2c5
AL
715 .endif
716
48e08d0f 717 .if \paranoid == 1
48e08d0f
AL
718 /*
719 * Paranoid entry from userspace. Switch stacks and treat it
720 * as a normal entry. This means that paranoid handlers
721 * run in real process context if user_mode(regs).
722 */
7231:
4d732138 724 call error_entry
48e08d0f 725
48e08d0f 726
4d732138
IM
727 movq %rsp, %rdi /* pt_regs pointer */
728 call sync_regs
729 movq %rax, %rsp /* switch stack */
48e08d0f 730
4d732138 731 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
732
733 .if \has_error_code
4d732138
IM
734 movq ORIG_RAX(%rsp), %rsi /* get error code */
735 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 736 .else
4d732138 737 xorl %esi, %esi /* no error code */
48e08d0f
AL
738 .endif
739
4d732138 740 call \do_sym
48e08d0f 741
4d732138 742 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 743 .endif
ddeb8f21 744END(\sym)
322648d1 745.endm
b8b1d08b 746
25c74b10 747#ifdef CONFIG_TRACING
cb5dd2c5
AL
748.macro trace_idtentry sym do_sym has_error_code:req
749idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
750idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
751.endm
752#else
cb5dd2c5
AL
753.macro trace_idtentry sym do_sym has_error_code:req
754idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
755.endm
756#endif
757
4d732138
IM
758idtentry divide_error do_divide_error has_error_code=0
759idtentry overflow do_overflow has_error_code=0
760idtentry bounds do_bounds has_error_code=0
761idtentry invalid_op do_invalid_op has_error_code=0
762idtentry device_not_available do_device_not_available has_error_code=0
763idtentry double_fault do_double_fault has_error_code=1 paranoid=2
764idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
765idtentry invalid_TSS do_invalid_TSS has_error_code=1
766idtentry segment_not_present do_segment_not_present has_error_code=1
767idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
768idtentry coprocessor_error do_coprocessor_error has_error_code=0
769idtentry alignment_check do_alignment_check has_error_code=1
770idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
771
772
773 /*
774 * Reload gs selector with exception handling
775 * edi: new selector
776 */
9f9d489a 777ENTRY(native_load_gs_index)
131484c8 778 pushfq
b8aa287f 779 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 780 SWAPGS
42c748bb 781.Lgs_change:
4d732138 782 movl %edi, %gs
96e5d28a 7832: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 784 SWAPGS
131484c8 785 popfq
9f1e87ea 786 ret
6efdcfaf 787END(native_load_gs_index)
0bd7b798 788
42c748bb 789 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 790 .section .fixup, "ax"
1da177e4 791 /* running with kernelgs */
0bd7b798 792bad_gs:
4d732138 793 SWAPGS /* switch back to user gs */
b038c842
AL
794.macro ZAP_GS
795 /* This can't be a string because the preprocessor needs to see it. */
796 movl $__USER_DS, %eax
797 movl %eax, %gs
798.endm
799 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
800 xorl %eax, %eax
801 movl %eax, %gs
802 jmp 2b
9f1e87ea 803 .previous
0bd7b798 804
2699500b 805/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 806ENTRY(do_softirq_own_stack)
4d732138
IM
807 pushq %rbp
808 mov %rsp, %rbp
809 incl PER_CPU_VAR(irq_count)
810 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
811 push %rbp /* frame pointer backlink */
812 call __do_softirq
2699500b 813 leaveq
4d732138 814 decl PER_CPU_VAR(irq_count)
ed6b676c 815 ret
7d65f4a6 816END(do_softirq_own_stack)
75154f40 817
3d75e1b8 818#ifdef CONFIG_XEN
cb5dd2c5 819idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
820
821/*
9f1e87ea
CG
822 * A note on the "critical region" in our callback handler.
823 * We want to avoid stacking callback handlers due to events occurring
824 * during handling of the last event. To do this, we keep events disabled
825 * until we've done all processing. HOWEVER, we must enable events before
826 * popping the stack frame (can't be done atomically) and so it would still
827 * be possible to get enough handler activations to overflow the stack.
828 * Although unlikely, bugs of that kind are hard to track down, so we'd
829 * like to avoid the possibility.
830 * So, on entry to the handler we detect whether we interrupted an
831 * existing activation in its critical region -- if so, we pop the current
832 * activation and restart the handler using the previous one.
833 */
4d732138
IM
834ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
835
9f1e87ea
CG
836/*
837 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
838 * see the correct pointer to the pt_regs
839 */
4d732138
IM
840 movq %rdi, %rsp /* we don't return, adjust the stack frame */
84111: incl PER_CPU_VAR(irq_count)
842 movq %rsp, %rbp
843 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
844 pushq %rbp /* frame pointer backlink */
845 call xen_evtchn_do_upcall
846 popq %rsp
847 decl PER_CPU_VAR(irq_count)
fdfd811d 848#ifndef CONFIG_PREEMPT
4d732138 849 call xen_maybe_preempt_hcall
fdfd811d 850#endif
4d732138 851 jmp error_exit
371c394a 852END(xen_do_hypervisor_callback)
3d75e1b8
JF
853
854/*
9f1e87ea
CG
855 * Hypervisor uses this for application faults while it executes.
856 * We get here for two reasons:
857 * 1. Fault while reloading DS, ES, FS or GS
858 * 2. Fault while executing IRET
859 * Category 1 we do not need to fix up as Xen has already reloaded all segment
860 * registers that could be reloaded and zeroed the others.
861 * Category 2 we fix up by killing the current process. We cannot use the
862 * normal Linux return path in this case because if we use the IRET hypercall
863 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
864 * We distinguish between categories by comparing each saved segment register
865 * with its current contents: any discrepancy means we in category 1.
866 */
3d75e1b8 867ENTRY(xen_failsafe_callback)
4d732138
IM
868 movl %ds, %ecx
869 cmpw %cx, 0x10(%rsp)
870 jne 1f
871 movl %es, %ecx
872 cmpw %cx, 0x18(%rsp)
873 jne 1f
874 movl %fs, %ecx
875 cmpw %cx, 0x20(%rsp)
876 jne 1f
877 movl %gs, %ecx
878 cmpw %cx, 0x28(%rsp)
879 jne 1f
3d75e1b8 880 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
881 movq (%rsp), %rcx
882 movq 8(%rsp), %r11
883 addq $0x30, %rsp
884 pushq $0 /* RIP */
885 pushq %r11
886 pushq %rcx
887 jmp general_protection
3d75e1b8 8881: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
889 movq (%rsp), %rcx
890 movq 8(%rsp), %r11
891 addq $0x30, %rsp
892 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
893 ALLOC_PT_GPREGS_ON_STACK
894 SAVE_C_REGS
895 SAVE_EXTRA_REGS
4d732138 896 jmp error_exit
3d75e1b8
JF
897END(xen_failsafe_callback)
898
cf910e83 899apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
900 xen_hvm_callback_vector xen_evtchn_do_upcall
901
3d75e1b8 902#endif /* CONFIG_XEN */
ddeb8f21 903
bc2b0331 904#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 905apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
906 hyperv_callback_vector hyperv_vector_handler
907#endif /* CONFIG_HYPERV */
908
4d732138
IM
909idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
910idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
911idtentry stack_segment do_stack_segment has_error_code=1
912
6cac5a92 913#ifdef CONFIG_XEN
4d732138
IM
914idtentry xen_debug do_debug has_error_code=0
915idtentry xen_int3 do_int3 has_error_code=0
916idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 917#endif
4d732138
IM
918
919idtentry general_protection do_general_protection has_error_code=1
920trace_idtentry page_fault do_page_fault has_error_code=1
921
631bc487 922#ifdef CONFIG_KVM_GUEST
4d732138 923idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 924#endif
4d732138 925
ddeb8f21 926#ifdef CONFIG_X86_MCE
4d732138 927idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
928#endif
929
ebfc453e
DV
930/*
931 * Save all registers in pt_regs, and switch gs if needed.
932 * Use slow, but surefire "are we in kernel?" check.
933 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
934 */
935ENTRY(paranoid_entry)
1eeb207f
DV
936 cld
937 SAVE_C_REGS 8
938 SAVE_EXTRA_REGS 8
4d732138
IM
939 movl $1, %ebx
940 movl $MSR_GS_BASE, %ecx
1eeb207f 941 rdmsr
4d732138
IM
942 testl %edx, %edx
943 js 1f /* negative -> in kernel */
1eeb207f 944 SWAPGS
4d732138 945 xorl %ebx, %ebx
1eeb207f 9461: ret
ebfc453e 947END(paranoid_entry)
ddeb8f21 948
ebfc453e
DV
949/*
950 * "Paranoid" exit path from exception stack. This is invoked
951 * only on return from non-NMI IST interrupts that came
952 * from kernel space.
953 *
954 * We may be returning to very strange contexts (e.g. very early
955 * in syscall entry), so checking for preemption here would
956 * be complicated. Fortunately, we there's no good reason
957 * to try to handle preemption here.
4d732138
IM
958 *
959 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 960 */
ddeb8f21 961ENTRY(paranoid_exit)
ddeb8f21 962 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 963 TRACE_IRQS_OFF_DEBUG
4d732138
IM
964 testl %ebx, %ebx /* swapgs needed? */
965 jnz paranoid_exit_no_swapgs
f2db9382 966 TRACE_IRQS_IRETQ
ddeb8f21 967 SWAPGS_UNSAFE_STACK
4d732138 968 jmp paranoid_exit_restore
0d550836 969paranoid_exit_no_swapgs:
f2db9382 970 TRACE_IRQS_IRETQ_DEBUG
0d550836 971paranoid_exit_restore:
76f5df43
DV
972 RESTORE_EXTRA_REGS
973 RESTORE_C_REGS
974 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 975 INTERRUPT_RETURN
ddeb8f21
AH
976END(paranoid_exit)
977
978/*
ebfc453e 979 * Save all registers in pt_regs, and switch gs if needed.
539f5113 980 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
981 */
982ENTRY(error_entry)
ddeb8f21 983 cld
76f5df43
DV
984 SAVE_C_REGS 8
985 SAVE_EXTRA_REGS 8
4d732138 986 xorl %ebx, %ebx
03335e95 987 testb $3, CS+8(%rsp)
cb6f64ed 988 jz .Lerror_kernelspace
539f5113 989
cb6f64ed
AL
990.Lerror_entry_from_usermode_swapgs:
991 /*
992 * We entered from user mode or we're pretending to have entered
993 * from user mode due to an IRET fault.
994 */
ddeb8f21 995 SWAPGS
539f5113 996
cb6f64ed 997.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
998 /*
999 * We need to tell lockdep that IRQs are off. We can't do this until
1000 * we fix gsbase, and we should do it before enter_from_user_mode
1001 * (which can take locks).
1002 */
1003 TRACE_IRQS_OFF
478dc89c 1004 CALL_enter_from_user_mode
f1075053 1005 ret
02bc7768 1006
cb6f64ed 1007.Lerror_entry_done:
ddeb8f21
AH
1008 TRACE_IRQS_OFF
1009 ret
ddeb8f21 1010
ebfc453e
DV
1011 /*
1012 * There are two places in the kernel that can potentially fault with
1013 * usergs. Handle them here. B stepping K8s sometimes report a
1014 * truncated RIP for IRET exceptions returning to compat mode. Check
1015 * for these here too.
1016 */
cb6f64ed 1017.Lerror_kernelspace:
4d732138
IM
1018 incl %ebx
1019 leaq native_irq_return_iret(%rip), %rcx
1020 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1021 je .Lerror_bad_iret
4d732138
IM
1022 movl %ecx, %eax /* zero extend */
1023 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1024 je .Lbstep_iret
42c748bb 1025 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1026 jne .Lerror_entry_done
539f5113
AL
1027
1028 /*
42c748bb 1029 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1030 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1031 * .Lgs_change's error handler with kernel gsbase.
539f5113 1032 */
cb6f64ed 1033 jmp .Lerror_entry_from_usermode_swapgs
ae24ffe5 1034
cb6f64ed 1035.Lbstep_iret:
ae24ffe5 1036 /* Fix truncated RIP */
4d732138 1037 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1038 /* fall through */
1039
cb6f64ed 1040.Lerror_bad_iret:
539f5113
AL
1041 /*
1042 * We came from an IRET to user mode, so we have user gsbase.
1043 * Switch to kernel gsbase:
1044 */
b645af2d 1045 SWAPGS
539f5113
AL
1046
1047 /*
1048 * Pretend that the exception came from user mode: set up pt_regs
1049 * as if we faulted immediately after IRET and clear EBX so that
1050 * error_exit knows that we will be returning to user mode.
1051 */
4d732138
IM
1052 mov %rsp, %rdi
1053 call fixup_bad_iret
1054 mov %rax, %rsp
539f5113 1055 decl %ebx
cb6f64ed 1056 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1057END(error_entry)
1058
1059
539f5113
AL
1060/*
1061 * On entry, EBS is a "return to kernel mode" flag:
1062 * 1: already in kernel mode, don't need SWAPGS
1063 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1064 */
ddeb8f21 1065ENTRY(error_exit)
4d732138 1066 movl %ebx, %eax
ddeb8f21
AH
1067 DISABLE_INTERRUPTS(CLBR_NONE)
1068 TRACE_IRQS_OFF
4d732138
IM
1069 testl %eax, %eax
1070 jnz retint_kernel
1071 jmp retint_user
ddeb8f21
AH
1072END(error_exit)
1073
0784b364 1074/* Runs on exception stack */
ddeb8f21 1075ENTRY(nmi)
fc57a7c6
AL
1076 /*
1077 * Fix up the exception frame if we're on Xen.
1078 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1079 * one value to the stack on native, so it may clobber the rdx
1080 * scratch slot, but it won't clobber any of the important
1081 * slots past it.
1082 *
1083 * Xen is a different story, because the Xen frame itself overlaps
1084 * the "NMI executing" variable.
1085 */
ddeb8f21 1086 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1087
3f3c8b8c
SR
1088 /*
1089 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1090 * the iretq it performs will take us out of NMI context.
1091 * This means that we can have nested NMIs where the next
1092 * NMI is using the top of the stack of the previous NMI. We
1093 * can't let it execute because the nested NMI will corrupt the
1094 * stack of the previous NMI. NMI handlers are not re-entrant
1095 * anyway.
1096 *
1097 * To handle this case we do the following:
1098 * Check the a special location on the stack that contains
1099 * a variable that is set when NMIs are executing.
1100 * The interrupted task's stack is also checked to see if it
1101 * is an NMI stack.
1102 * If the variable is not set and the stack is not the NMI
1103 * stack then:
1104 * o Set the special variable on the stack
0b22930e
AL
1105 * o Copy the interrupt frame into an "outermost" location on the
1106 * stack
1107 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1108 * o Continue processing the NMI
1109 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1110 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1111 * o return back to the first NMI
1112 *
1113 * Now on exit of the first NMI, we first clear the stack variable
1114 * The NMI stack will tell any nested NMIs at that point that it is
1115 * nested. Then we pop the stack normally with iret, and if there was
1116 * a nested NMI that updated the copy interrupt stack frame, a
1117 * jump will be made to the repeat_nmi code that will handle the second
1118 * NMI.
9b6e6a83
AL
1119 *
1120 * However, espfix prevents us from directly returning to userspace
1121 * with a single IRET instruction. Similarly, IRET to user mode
1122 * can fault. We therefore handle NMIs from user space like
1123 * other IST entries.
3f3c8b8c
SR
1124 */
1125
146b2b09 1126 /* Use %rdx as our temp variable throughout */
4d732138 1127 pushq %rdx
3f3c8b8c 1128
9b6e6a83
AL
1129 testb $3, CS-RIP+8(%rsp)
1130 jz .Lnmi_from_kernel
1131
1132 /*
1133 * NMI from user mode. We need to run on the thread stack, but we
1134 * can't go through the normal entry paths: NMIs are masked, and
1135 * we don't want to enable interrupts, because then we'll end
1136 * up in an awkward situation in which IRQs are on but NMIs
1137 * are off.
83c133cf
AL
1138 *
1139 * We also must not push anything to the stack before switching
1140 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1141 */
1142
83c133cf 1143 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1144 cld
1145 movq %rsp, %rdx
1146 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1147 pushq 5*8(%rdx) /* pt_regs->ss */
1148 pushq 4*8(%rdx) /* pt_regs->rsp */
1149 pushq 3*8(%rdx) /* pt_regs->flags */
1150 pushq 2*8(%rdx) /* pt_regs->cs */
1151 pushq 1*8(%rdx) /* pt_regs->rip */
1152 pushq $-1 /* pt_regs->orig_ax */
1153 pushq %rdi /* pt_regs->di */
1154 pushq %rsi /* pt_regs->si */
1155 pushq (%rdx) /* pt_regs->dx */
1156 pushq %rcx /* pt_regs->cx */
1157 pushq %rax /* pt_regs->ax */
1158 pushq %r8 /* pt_regs->r8 */
1159 pushq %r9 /* pt_regs->r9 */
1160 pushq %r10 /* pt_regs->r10 */
1161 pushq %r11 /* pt_regs->r11 */
1162 pushq %rbx /* pt_regs->rbx */
1163 pushq %rbp /* pt_regs->rbp */
1164 pushq %r12 /* pt_regs->r12 */
1165 pushq %r13 /* pt_regs->r13 */
1166 pushq %r14 /* pt_regs->r14 */
1167 pushq %r15 /* pt_regs->r15 */
1168
1169 /*
1170 * At this point we no longer need to worry about stack damage
1171 * due to nesting -- we're on the normal thread stack and we're
1172 * done with the NMI stack.
1173 */
1174
1175 movq %rsp, %rdi
1176 movq $-1, %rsi
1177 call do_nmi
1178
45d5a168 1179 /*
9b6e6a83
AL
1180 * Return back to user mode. We must *not* do the normal exit
1181 * work, because we don't want to enable interrupts. Fortunately,
1182 * do_nmi doesn't modify pt_regs.
45d5a168 1183 */
9b6e6a83
AL
1184 SWAPGS
1185 jmp restore_c_regs_and_iret
45d5a168 1186
9b6e6a83 1187.Lnmi_from_kernel:
3f3c8b8c 1188 /*
0b22930e
AL
1189 * Here's what our stack frame will look like:
1190 * +---------------------------------------------------------+
1191 * | original SS |
1192 * | original Return RSP |
1193 * | original RFLAGS |
1194 * | original CS |
1195 * | original RIP |
1196 * +---------------------------------------------------------+
1197 * | temp storage for rdx |
1198 * +---------------------------------------------------------+
1199 * | "NMI executing" variable |
1200 * +---------------------------------------------------------+
1201 * | iret SS } Copied from "outermost" frame |
1202 * | iret Return RSP } on each loop iteration; overwritten |
1203 * | iret RFLAGS } by a nested NMI to force another |
1204 * | iret CS } iteration if needed. |
1205 * | iret RIP } |
1206 * +---------------------------------------------------------+
1207 * | outermost SS } initialized in first_nmi; |
1208 * | outermost Return RSP } will not be changed before |
1209 * | outermost RFLAGS } NMI processing is done. |
1210 * | outermost CS } Copied to "iret" frame on each |
1211 * | outermost RIP } iteration. |
1212 * +---------------------------------------------------------+
1213 * | pt_regs |
1214 * +---------------------------------------------------------+
1215 *
1216 * The "original" frame is used by hardware. Before re-enabling
1217 * NMIs, we need to be done with it, and we need to leave enough
1218 * space for the asm code here.
1219 *
1220 * We return by executing IRET while RSP points to the "iret" frame.
1221 * That will either return for real or it will loop back into NMI
1222 * processing.
1223 *
1224 * The "outermost" frame is copied to the "iret" frame on each
1225 * iteration of the loop, so each iteration starts with the "iret"
1226 * frame pointing to the final return target.
1227 */
1228
45d5a168 1229 /*
0b22930e
AL
1230 * Determine whether we're a nested NMI.
1231 *
a27507ca
AL
1232 * If we interrupted kernel code between repeat_nmi and
1233 * end_repeat_nmi, then we are a nested NMI. We must not
1234 * modify the "iret" frame because it's being written by
1235 * the outer NMI. That's okay; the outer NMI handler is
1236 * about to about to call do_nmi anyway, so we can just
1237 * resume the outer NMI.
45d5a168 1238 */
a27507ca
AL
1239
1240 movq $repeat_nmi, %rdx
1241 cmpq 8(%rsp), %rdx
1242 ja 1f
1243 movq $end_repeat_nmi, %rdx
1244 cmpq 8(%rsp), %rdx
1245 ja nested_nmi_out
12461:
45d5a168 1247
3f3c8b8c 1248 /*
a27507ca 1249 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1250 * This will not detect if we interrupted an outer NMI just
1251 * before IRET.
3f3c8b8c 1252 */
4d732138
IM
1253 cmpl $1, -8(%rsp)
1254 je nested_nmi
3f3c8b8c
SR
1255
1256 /*
0b22930e
AL
1257 * Now test if the previous stack was an NMI stack. This covers
1258 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1259 * "NMI executing" but before IRET. We need to be careful, though:
1260 * there is one case in which RSP could point to the NMI stack
1261 * despite there being no NMI active: naughty userspace controls
1262 * RSP at the very beginning of the SYSCALL targets. We can
1263 * pull a fast one on naughty userspace, though: we program
1264 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1265 * if it controls the kernel's RSP. We set DF before we clear
1266 * "NMI executing".
3f3c8b8c 1267 */
0784b364
DV
1268 lea 6*8(%rsp), %rdx
1269 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1270 cmpq %rdx, 4*8(%rsp)
1271 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1272 ja first_nmi
4d732138 1273
0784b364
DV
1274 subq $EXCEPTION_STKSZ, %rdx
1275 cmpq %rdx, 4*8(%rsp)
1276 /* If it is below the NMI stack, it is a normal NMI */
1277 jb first_nmi
810bc075
AL
1278
1279 /* Ah, it is within the NMI stack. */
1280
1281 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1282 jz first_nmi /* RSP was user controlled. */
1283
1284 /* This is a nested NMI. */
0784b364 1285
3f3c8b8c
SR
1286nested_nmi:
1287 /*
0b22930e
AL
1288 * Modify the "iret" frame to point to repeat_nmi, forcing another
1289 * iteration of NMI handling.
3f3c8b8c 1290 */
23a781e9 1291 subq $8, %rsp
4d732138
IM
1292 leaq -10*8(%rsp), %rdx
1293 pushq $__KERNEL_DS
1294 pushq %rdx
131484c8 1295 pushfq
4d732138
IM
1296 pushq $__KERNEL_CS
1297 pushq $repeat_nmi
3f3c8b8c
SR
1298
1299 /* Put stack back */
4d732138 1300 addq $(6*8), %rsp
3f3c8b8c
SR
1301
1302nested_nmi_out:
4d732138 1303 popq %rdx
3f3c8b8c 1304
0b22930e 1305 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1306 INTERRUPT_RETURN
1307
1308first_nmi:
0b22930e 1309 /* Restore rdx. */
4d732138 1310 movq (%rsp), %rdx
62610913 1311
36f1a77b
AL
1312 /* Make room for "NMI executing". */
1313 pushq $0
3f3c8b8c 1314
0b22930e 1315 /* Leave room for the "iret" frame */
4d732138 1316 subq $(5*8), %rsp
28696f43 1317
0b22930e 1318 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1319 .rept 5
4d732138 1320 pushq 11*8(%rsp)
3f3c8b8c 1321 .endr
62610913 1322
79fb4ad6
SR
1323 /* Everything up to here is safe from nested NMIs */
1324
a97439aa
AL
1325#ifdef CONFIG_DEBUG_ENTRY
1326 /*
1327 * For ease of testing, unmask NMIs right away. Disabled by
1328 * default because IRET is very expensive.
1329 */
1330 pushq $0 /* SS */
1331 pushq %rsp /* RSP (minus 8 because of the previous push) */
1332 addq $8, (%rsp) /* Fix up RSP */
1333 pushfq /* RFLAGS */
1334 pushq $__KERNEL_CS /* CS */
1335 pushq $1f /* RIP */
1336 INTERRUPT_RETURN /* continues at repeat_nmi below */
13371:
1338#endif
1339
0b22930e 1340repeat_nmi:
62610913
JB
1341 /*
1342 * If there was a nested NMI, the first NMI's iret will return
1343 * here. But NMIs are still enabled and we can take another
1344 * nested NMI. The nested NMI checks the interrupted RIP to see
1345 * if it is between repeat_nmi and end_repeat_nmi, and if so
1346 * it will just return, as we are about to repeat an NMI anyway.
1347 * This makes it safe to copy to the stack frame that a nested
1348 * NMI will update.
0b22930e
AL
1349 *
1350 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1351 * we're repeating an NMI, gsbase has the same value that it had on
1352 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1353 * gsbase if needed before we call do_nmi. "NMI executing"
1354 * is zero.
62610913 1355 */
36f1a77b 1356 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1357
62610913 1358 /*
0b22930e
AL
1359 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1360 * here must not modify the "iret" frame while we're writing to
1361 * it or it will end up containing garbage.
62610913 1362 */
4d732138 1363 addq $(10*8), %rsp
3f3c8b8c 1364 .rept 5
4d732138 1365 pushq -6*8(%rsp)
3f3c8b8c 1366 .endr
4d732138 1367 subq $(5*8), %rsp
62610913 1368end_repeat_nmi:
3f3c8b8c
SR
1369
1370 /*
0b22930e
AL
1371 * Everything below this point can be preempted by a nested NMI.
1372 * If this happens, then the inner NMI will change the "iret"
1373 * frame to point back to repeat_nmi.
3f3c8b8c 1374 */
4d732138 1375 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1376 ALLOC_PT_GPREGS_ON_STACK
1377
1fd466ef 1378 /*
ebfc453e 1379 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1380 * as we should not be calling schedule in NMI context.
1381 * Even with normal interrupts enabled. An NMI should not be
1382 * setting NEED_RESCHED or anything that normal interrupts and
1383 * exceptions might do.
1384 */
4d732138 1385 call paranoid_entry
7fbb98c5 1386
ddeb8f21 1387 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1388 movq %rsp, %rdi
1389 movq $-1, %rsi
1390 call do_nmi
7fbb98c5 1391
4d732138
IM
1392 testl %ebx, %ebx /* swapgs needed? */
1393 jnz nmi_restore
ddeb8f21
AH
1394nmi_swapgs:
1395 SWAPGS_UNSAFE_STACK
1396nmi_restore:
76f5df43
DV
1397 RESTORE_EXTRA_REGS
1398 RESTORE_C_REGS
0b22930e
AL
1399
1400 /* Point RSP at the "iret" frame. */
76f5df43 1401 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1402
810bc075
AL
1403 /*
1404 * Clear "NMI executing". Set DF first so that we can easily
1405 * distinguish the remaining code between here and IRET from
1406 * the SYSCALL entry and exit paths. On a native kernel, we
1407 * could just inspect RIP, but, on paravirt kernels,
1408 * INTERRUPT_RETURN can translate into a jump into a
1409 * hypercall page.
1410 */
1411 std
1412 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1413
1414 /*
1415 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1416 * stack in a single instruction. We are returning to kernel
1417 * mode, so this cannot result in a fault.
1418 */
5ca6f70f 1419 INTERRUPT_RETURN
ddeb8f21
AH
1420END(nmi)
1421
1422ENTRY(ignore_sysret)
4d732138 1423 mov $-ENOSYS, %eax
ddeb8f21 1424 sysret
ddeb8f21 1425END(ignore_sysret)
2deb4be2
AL
1426
1427ENTRY(rewind_stack_do_exit)
1428 /* Prevent any naive code from trying to unwind to our caller. */
1429 xorl %ebp, %ebp
1430
1431 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1432 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1433
1434 call do_exit
14351: jmp 1b
1436END(rewind_stack_do_exit)
This page took 0.96153 seconds and 5 git commands to generate.