x86/64: Adjust types of temporaries used by ffs()/fls()/fls64()
[deliverable/linux.git] / arch / x86 / include / asm / bitops.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_BITOPS_H
2#define _ASM_X86_BITOPS_H
1c54d770
JF
3
4/*
5 * Copyright 1992, Linus Torvalds.
c8399943
AK
6 *
7 * Note: inlines with more than a single statement should be marked
8 * __always_inline to avoid problems with older gcc's inlining heuristics.
1c54d770
JF
9 */
10
11#ifndef _LINUX_BITOPS_H
12#error only <linux/bitops.h> can be included directly
13#endif
14
15#include <linux/compiler.h>
16#include <asm/alternative.h>
17
e8f380e0
BP
18#define BIT_64(n) (U64_C(1) << (n))
19
1c54d770
JF
20/*
21 * These have to be done with inline assembly: that way the bit-setting
22 * is guaranteed to be atomic. All bit operations return 0 if the bit
23 * was cleared before the operation and != 0 if it was not.
24 *
25 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
26 */
27
28#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
29/* Technically wrong, but this avoids compilation errors on some gcc
30 versions. */
1a750e0c 31#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
1c54d770 32#else
1a750e0c 33#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
1c54d770
JF
34#endif
35
7dbceaf9 36#define ADDR BITOP_ADDR(addr)
1a750e0c
LT
37
38/*
39 * We do the locked ops that don't return the old value as
40 * a mask operation on a byte.
41 */
7dbceaf9
IM
42#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
43#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
44#define CONST_MASK(nr) (1 << ((nr) & 7))
1a750e0c 45
1c54d770
JF
46/**
47 * set_bit - Atomically set a bit in memory
48 * @nr: the bit to set
49 * @addr: the address to start counting from
50 *
51 * This function is atomic and may not be reordered. See __set_bit()
52 * if you do not require the atomic guarantees.
53 *
54 * Note: there are no guarantees that this function will not be reordered
55 * on non x86 architectures, so if you are writing portable code,
56 * make sure not to rely on its reordering guarantees.
57 *
58 * Note that @nr may be almost arbitrarily large; this function is not
59 * restricted to acting on a single-word quantity.
60 */
c8399943
AK
61static __always_inline void
62set_bit(unsigned int nr, volatile unsigned long *addr)
1c54d770 63{
7dbceaf9
IM
64 if (IS_IMMEDIATE(nr)) {
65 asm volatile(LOCK_PREFIX "orb %1,%0"
66 : CONST_MASK_ADDR(nr, addr)
437a0a54 67 : "iq" ((u8)CONST_MASK(nr))
7dbceaf9
IM
68 : "memory");
69 } else {
70 asm volatile(LOCK_PREFIX "bts %1,%0"
71 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
72 }
1c54d770
JF
73}
74
75/**
76 * __set_bit - Set a bit in memory
77 * @nr: the bit to set
78 * @addr: the address to start counting from
79 *
80 * Unlike set_bit(), this function is non-atomic and may be reordered.
81 * If it's called on the same region of memory simultaneously, the effect
82 * may be that only one operation succeeds.
83 */
5136dea5 84static inline void __set_bit(int nr, volatile unsigned long *addr)
1c54d770 85{
f19dcf4a 86 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
1c54d770
JF
87}
88
1c54d770
JF
89/**
90 * clear_bit - Clears a bit in memory
91 * @nr: Bit to clear
92 * @addr: Address to start counting from
93 *
94 * clear_bit() is atomic and may not be reordered. However, it does
95 * not contain a memory barrier, so if it is used for locking purposes,
96 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
97 * in order to ensure changes are visible on other processors.
98 */
c8399943
AK
99static __always_inline void
100clear_bit(int nr, volatile unsigned long *addr)
1c54d770 101{
7dbceaf9
IM
102 if (IS_IMMEDIATE(nr)) {
103 asm volatile(LOCK_PREFIX "andb %1,%0"
104 : CONST_MASK_ADDR(nr, addr)
437a0a54 105 : "iq" ((u8)~CONST_MASK(nr)));
7dbceaf9
IM
106 } else {
107 asm volatile(LOCK_PREFIX "btr %1,%0"
108 : BITOP_ADDR(addr)
109 : "Ir" (nr));
110 }
1c54d770
JF
111}
112
113/*
114 * clear_bit_unlock - Clears a bit in memory
115 * @nr: Bit to clear
116 * @addr: Address to start counting from
117 *
118 * clear_bit() is atomic and implies release semantics before the memory
119 * operation. It can be used for an unlock.
120 */
5136dea5 121static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
1c54d770
JF
122{
123 barrier();
124 clear_bit(nr, addr);
125}
126
5136dea5 127static inline void __clear_bit(int nr, volatile unsigned long *addr)
1c54d770 128{
eb2b4e68 129 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
130}
131
132/*
133 * __clear_bit_unlock - Clears a bit in memory
134 * @nr: Bit to clear
135 * @addr: Address to start counting from
136 *
137 * __clear_bit() is non-atomic and implies release semantics before the memory
138 * operation. It can be used for an unlock if no other CPUs can concurrently
139 * modify other bits in the word.
140 *
141 * No memory barrier is required here, because x86 cannot reorder stores past
142 * older loads. Same principle as spin_unlock.
143 */
5136dea5 144static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
1c54d770
JF
145{
146 barrier();
147 __clear_bit(nr, addr);
148}
149
150#define smp_mb__before_clear_bit() barrier()
151#define smp_mb__after_clear_bit() barrier()
152
153/**
154 * __change_bit - Toggle a bit in memory
155 * @nr: the bit to change
156 * @addr: the address to start counting from
157 *
158 * Unlike change_bit(), this function is non-atomic and may be reordered.
159 * If it's called on the same region of memory simultaneously, the effect
160 * may be that only one operation succeeds.
161 */
5136dea5 162static inline void __change_bit(int nr, volatile unsigned long *addr)
1c54d770 163{
eb2b4e68 164 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
165}
166
167/**
168 * change_bit - Toggle a bit in memory
169 * @nr: Bit to change
170 * @addr: Address to start counting from
171 *
172 * change_bit() is atomic and may not be reordered.
173 * Note that @nr may be almost arbitrarily large; this function is not
174 * restricted to acting on a single-word quantity.
175 */
5136dea5 176static inline void change_bit(int nr, volatile unsigned long *addr)
1c54d770 177{
838e8bb7
UB
178 if (IS_IMMEDIATE(nr)) {
179 asm volatile(LOCK_PREFIX "xorb %1,%0"
180 : CONST_MASK_ADDR(nr, addr)
181 : "iq" ((u8)CONST_MASK(nr)));
182 } else {
183 asm volatile(LOCK_PREFIX "btc %1,%0"
184 : BITOP_ADDR(addr)
185 : "Ir" (nr));
186 }
1c54d770
JF
187}
188
189/**
190 * test_and_set_bit - Set a bit and return its old value
191 * @nr: Bit to set
192 * @addr: Address to count from
193 *
194 * This operation is atomic and cannot be reordered.
195 * It also implies a memory barrier.
196 */
5136dea5 197static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
198{
199 int oldbit;
200
201 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
286275c9 202 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
1c54d770
JF
203
204 return oldbit;
205}
206
207/**
208 * test_and_set_bit_lock - Set a bit and return its old value for lock
209 * @nr: Bit to set
210 * @addr: Address to count from
211 *
212 * This is the same as test_and_set_bit on x86.
213 */
c8399943
AK
214static __always_inline int
215test_and_set_bit_lock(int nr, volatile unsigned long *addr)
1c54d770
JF
216{
217 return test_and_set_bit(nr, addr);
218}
219
220/**
221 * __test_and_set_bit - Set a bit and return its old value
222 * @nr: Bit to set
223 * @addr: Address to count from
224 *
225 * This operation is non-atomic and can be reordered.
226 * If two examples of this operation race, one can appear to succeed
227 * but actually fail. You must protect multiple accesses with a lock.
228 */
5136dea5 229static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
230{
231 int oldbit;
232
eb2b4e68
SHT
233 asm("bts %2,%1\n\t"
234 "sbb %0,%0"
235 : "=r" (oldbit), ADDR
236 : "Ir" (nr));
1c54d770
JF
237 return oldbit;
238}
239
240/**
241 * test_and_clear_bit - Clear a bit and return its old value
242 * @nr: Bit to clear
243 * @addr: Address to count from
244 *
245 * This operation is atomic and cannot be reordered.
246 * It also implies a memory barrier.
247 */
5136dea5 248static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
249{
250 int oldbit;
251
252 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
253 "sbb %0,%0"
286275c9 254 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
1c54d770
JF
255
256 return oldbit;
257}
258
259/**
260 * __test_and_clear_bit - Clear a bit and return its old value
261 * @nr: Bit to clear
262 * @addr: Address to count from
263 *
264 * This operation is non-atomic and can be reordered.
265 * If two examples of this operation race, one can appear to succeed
266 * but actually fail. You must protect multiple accesses with a lock.
d0a69d63
MT
267 *
268 * Note: the operation is performed atomically with respect to
269 * the local CPU, but not other CPUs. Portable code should not
270 * rely on this behaviour.
271 * KVM relies on this behaviour on x86 for modifying memory that is also
272 * accessed from a hypervisor on the same CPU if running in a VM: don't change
273 * this without also updating arch/x86/kernel/kvm.c
1c54d770 274 */
5136dea5 275static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
276{
277 int oldbit;
278
eb2b4e68 279 asm volatile("btr %2,%1\n\t"
1c54d770 280 "sbb %0,%0"
eb2b4e68
SHT
281 : "=r" (oldbit), ADDR
282 : "Ir" (nr));
1c54d770
JF
283 return oldbit;
284}
285
286/* WARNING: non atomic and it can be reordered! */
5136dea5 287static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
288{
289 int oldbit;
290
eb2b4e68 291 asm volatile("btc %2,%1\n\t"
1c54d770 292 "sbb %0,%0"
eb2b4e68
SHT
293 : "=r" (oldbit), ADDR
294 : "Ir" (nr) : "memory");
1c54d770
JF
295
296 return oldbit;
297}
298
299/**
300 * test_and_change_bit - Change a bit and return its old value
301 * @nr: Bit to change
302 * @addr: Address to count from
303 *
304 * This operation is atomic and cannot be reordered.
305 * It also implies a memory barrier.
306 */
5136dea5 307static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
308{
309 int oldbit;
310
311 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
312 "sbb %0,%0"
286275c9 313 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
1c54d770
JF
314
315 return oldbit;
316}
317
c8399943 318static __always_inline int constant_test_bit(unsigned int nr, const volatile unsigned long *addr)
1c54d770 319{
26996dd2 320 return ((1UL << (nr % BITS_PER_LONG)) &
c9e2fbd9 321 (addr[nr / BITS_PER_LONG])) != 0;
1c54d770
JF
322}
323
5136dea5 324static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
1c54d770
JF
325{
326 int oldbit;
327
eb2b4e68 328 asm volatile("bt %2,%1\n\t"
1c54d770
JF
329 "sbb %0,%0"
330 : "=r" (oldbit)
eb2b4e68 331 : "m" (*(unsigned long *)addr), "Ir" (nr));
1c54d770
JF
332
333 return oldbit;
334}
335
336#if 0 /* Fool kernel-doc since it doesn't do macros yet */
337/**
338 * test_bit - Determine whether a bit is set
339 * @nr: bit number to test
340 * @addr: Address to start counting from
341 */
342static int test_bit(int nr, const volatile unsigned long *addr);
343#endif
344
f19dcf4a
JP
345#define test_bit(nr, addr) \
346 (__builtin_constant_p((nr)) \
347 ? constant_test_bit((nr), (addr)) \
348 : variable_test_bit((nr), (addr)))
1c54d770 349
12d9c842
AH
350/**
351 * __ffs - find first set bit in word
352 * @word: The word to search
353 *
354 * Undefined if no bit exists, so code should check against 0 first.
355 */
356static inline unsigned long __ffs(unsigned long word)
357{
f19dcf4a
JP
358 asm("bsf %1,%0"
359 : "=r" (word)
360 : "rm" (word));
12d9c842
AH
361 return word;
362}
363
364/**
365 * ffz - find first zero bit in word
366 * @word: The word to search
367 *
368 * Undefined if no zero exists, so code should check against ~0UL first.
369 */
370static inline unsigned long ffz(unsigned long word)
371{
f19dcf4a
JP
372 asm("bsf %1,%0"
373 : "=r" (word)
374 : "r" (~word));
12d9c842
AH
375 return word;
376}
377
378/*
379 * __fls: find last set bit in word
380 * @word: The word to search
381 *
8450e853 382 * Undefined if no set bit exists, so code should check against 0 first.
12d9c842
AH
383 */
384static inline unsigned long __fls(unsigned long word)
385{
f19dcf4a
JP
386 asm("bsr %1,%0"
387 : "=r" (word)
388 : "rm" (word));
12d9c842
AH
389 return word;
390}
391
83d99df7
PA
392#undef ADDR
393
12d9c842
AH
394#ifdef __KERNEL__
395/**
396 * ffs - find first set bit in word
397 * @x: the word to search
398 *
399 * This is defined the same way as the libc and compiler builtin ffs
400 * routines, therefore differs in spirit from the other bitops.
401 *
402 * ffs(value) returns 0 if value is 0 or the position of the first
403 * set bit if value is nonzero. The first (least significant) bit
404 * is at position 1.
405 */
406static inline int ffs(int x)
407{
408 int r;
ca3d30cc
DH
409
410#ifdef CONFIG_X86_64
411 /*
412 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
413 * dest reg is undefined if x==0, but their CPU architect says its
414 * value is written to set it to the same as before, except that the
415 * top 32 bits will be cleared.
416 *
417 * We cannot do this on 32 bits because at the very least some
418 * 486 CPUs did not behave this way.
419 */
ca3d30cc
DH
420 asm("bsfl %1,%0"
421 : "=r" (r)
1edfbb41 422 : "rm" (x), "0" (-1));
ca3d30cc 423#elif defined(CONFIG_X86_CMOV)
f19dcf4a
JP
424 asm("bsfl %1,%0\n\t"
425 "cmovzl %2,%0"
ca3d30cc 426 : "=&r" (r) : "rm" (x), "r" (-1));
12d9c842 427#else
f19dcf4a
JP
428 asm("bsfl %1,%0\n\t"
429 "jnz 1f\n\t"
430 "movl $-1,%0\n"
431 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
432#endif
433 return r + 1;
434}
435
436/**
437 * fls - find last set bit in word
438 * @x: the word to search
439 *
440 * This is defined in a similar way as the libc and compiler builtin
441 * ffs, but returns the position of the most significant set bit.
442 *
443 * fls(value) returns 0 if value is 0 or the position of the last
444 * set bit if value is nonzero. The last (most significant) bit is
445 * at position 32.
446 */
447static inline int fls(int x)
448{
449 int r;
ca3d30cc
DH
450
451#ifdef CONFIG_X86_64
452 /*
453 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
454 * dest reg is undefined if x==0, but their CPU architect says its
455 * value is written to set it to the same as before, except that the
456 * top 32 bits will be cleared.
457 *
458 * We cannot do this on 32 bits because at the very least some
459 * 486 CPUs did not behave this way.
460 */
ca3d30cc
DH
461 asm("bsrl %1,%0"
462 : "=r" (r)
1edfbb41 463 : "rm" (x), "0" (-1));
ca3d30cc 464#elif defined(CONFIG_X86_CMOV)
f19dcf4a
JP
465 asm("bsrl %1,%0\n\t"
466 "cmovzl %2,%0"
467 : "=&r" (r) : "rm" (x), "rm" (-1));
12d9c842 468#else
f19dcf4a
JP
469 asm("bsrl %1,%0\n\t"
470 "jnz 1f\n\t"
471 "movl $-1,%0\n"
472 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
473#endif
474 return r + 1;
475}
d66462f5 476
ca3d30cc
DH
477/**
478 * fls64 - find last set bit in a 64-bit word
479 * @x: the word to search
480 *
481 * This is defined in a similar way as the libc and compiler builtin
482 * ffsll, but returns the position of the most significant set bit.
483 *
484 * fls64(value) returns 0 if value is 0 or the position of the last
485 * set bit if value is nonzero. The last (most significant) bit is
486 * at position 64.
487 */
488#ifdef CONFIG_X86_64
489static __always_inline int fls64(__u64 x)
490{
1edfbb41 491 int bitpos = -1;
ca3d30cc
DH
492 /*
493 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
494 * dest reg is undefined if x==0, but their CPU architect says its
495 * value is written to set it to the same as before.
496 */
1edfbb41 497 asm("bsrq %1,%q0"
ca3d30cc
DH
498 : "+r" (bitpos)
499 : "rm" (x));
500 return bitpos + 1;
501}
502#else
503#include <asm-generic/bitops/fls64.h>
504#endif
505
708ff2a0
AM
506#include <asm-generic/bitops/find.h>
507
d66462f5
AH
508#include <asm-generic/bitops/sched.h>
509
510#define ARCH_HAS_FAST_MULTIPLIER 1
511
d61931d8
BP
512#include <asm/arch_hweight.h>
513
514#include <asm-generic/bitops/const_hweight.h>
1c54d770 515
861b5ae7 516#include <asm-generic/bitops/le.h>
d66462f5 517
148817ba 518#include <asm-generic/bitops/ext2-atomic-setbit.h>
d66462f5 519
d66462f5 520#endif /* __KERNEL__ */
1965aae3 521#endif /* _ASM_X86_BITOPS_H */
This page took 0.373966 seconds and 5 git commands to generate.