KVM: MMU: cleanup __kvm_sync_page and its callers
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
3d0c27ad 44#include <asm/kvm_page_track.h>
6aa8b732 45
18552672
JR
46/*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
2f333bcb 53bool tdp_enabled = false;
18552672 54
8b1fe17c
XG
55enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
6903074c
XG
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
8b1fe17c 62};
37a7d8b0 63
8b1fe17c 64#undef MMU_DEBUG
37a7d8b0
AK
65
66#ifdef MMU_DEBUG
fa4a2c08
PB
67static bool dbg = 0;
68module_param(dbg, bool, 0644);
37a7d8b0
AK
69
70#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 72#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 73#else
37a7d8b0
AK
74#define pgprintk(x...) do { } while (0)
75#define rmap_printk(x...) do { } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 77#endif
6aa8b732 78
957ed9ef
XG
79#define PTE_PREFETCH_NUM 8
80
00763e41 81#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
82#define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
6aa8b732
AK
84#define PT64_LEVEL_BITS 9
85
86#define PT64_LEVEL_SHIFT(level) \
d77c26fc 87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 88
6aa8b732
AK
89#define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93#define PT32_LEVEL_BITS 10
94
95#define PT32_LEVEL_SHIFT(level) \
d77c26fc 96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 97
e04da980
JR
98#define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
101
102#define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
27aba766 106#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
107#define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
109#define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112#define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
115
116#define PT32_BASE_ADDR_MASK PAGE_MASK
117#define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
119#define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
6aa8b732 122
53166229
GN
123#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
6aa8b732 125
fe135d2c
AK
126#define ACC_EXEC_MASK 1
127#define ACC_WRITE_MASK PT_WRITABLE_MASK
128#define ACC_USER_MASK PT_USER_MASK
129#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
90bb6fc5
AK
131#include <trace/events/kvm.h>
132
07420171
AK
133#define CREATE_TRACE_POINTS
134#include "mmutrace.h"
135
49fde340
XG
136#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 138
135f8c2b
AK
139#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
220f773a
TY
141/* make pte_list_desc fit well in cache line */
142#define PTE_LIST_EXT 3
143
53c07b18
XG
144struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
cd4a4e53
AK
147};
148
2d11123a
AK
149struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
2d11123a 152 u64 *sptep;
dd3bfd59 153 int level;
2d11123a
AK
154 unsigned index;
155};
156
157#define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
c2a2ac2b
XG
162#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
53c07b18 168static struct kmem_cache *pte_list_desc_cache;
d3d25b04 169static struct kmem_cache *mmu_page_header_cache;
45221ab6 170static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 171
7b52345e
SY
172static u64 __read_mostly shadow_nx_mask;
173static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174static u64 __read_mostly shadow_user_mask;
175static u64 __read_mostly shadow_accessed_mask;
176static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
177static u64 __read_mostly shadow_mmio_mask;
178
179static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 180static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
181
182void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183{
184 shadow_mmio_mask = mmio_mask;
185}
186EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
f2fd125d 188/*
ee3d1570
DM
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 196 */
ee3d1570 197#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
198#define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
ee3d1570
DM
200#define MMIO_GEN_SHIFT 20
201#define MMIO_GEN_LOW_SHIFT 10
202#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 203#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
204
205static u64 generation_mmio_spte_mask(unsigned int gen)
206{
207 u64 mask;
208
842bb26a 209 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214}
215
216static unsigned int get_mmio_spte_generation(u64 spte)
217{
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225}
226
54bf36aa 227static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 228{
54bf36aa 229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
230}
231
54bf36aa 232static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 233 unsigned access)
ce88decf 234{
54bf36aa 235 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 236 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 237
ce88decf 238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 240
f8f55942 241 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 242 mmu_spte_set(sptep, mask);
ce88decf
XG
243}
244
245static bool is_mmio_spte(u64 spte)
246{
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248}
249
250static gfn_t get_mmio_spte_gfn(u64 spte)
251{
842bb26a 252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 253 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
254}
255
256static unsigned get_mmio_spte_access(u64 spte)
257{
842bb26a 258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 259 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
260}
261
54bf36aa 262static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 263 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
264{
265 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 266 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
267 return true;
268 }
269
270 return false;
271}
c7addb90 272
54bf36aa 273static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 274{
089504c0
XG
275 unsigned int kvm_gen, spte_gen;
276
54bf36aa 277 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
f8f55942
XG
282}
283
7b52345e 284void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
286{
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292}
293EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
6aa8b732
AK
295static int is_cpuid_PSE36(void)
296{
297 return 1;
298}
299
73b1087e
AK
300static int is_nx(struct kvm_vcpu *vcpu)
301{
f6801dff 302 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
303}
304
c7addb90
AK
305static int is_shadow_present_pte(u64 pte)
306{
ce88decf 307 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
308}
309
05da4558
MT
310static int is_large_pte(u64 pte)
311{
312 return pte & PT_PAGE_SIZE_MASK;
313}
314
776e6633
MT
315static int is_last_spte(u64 pte, int level)
316{
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
852e3c19 319 if (is_large_pte(pte))
776e6633
MT
320 return 1;
321 return 0;
322}
323
ba049e93 324static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 325{
35149e21 326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
327}
328
da928521
AK
329static gfn_t pse36_gfn_delta(u32 gpte)
330{
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334}
335
603e0651 336#ifdef CONFIG_X86_64
d555c333 337static void __set_spte(u64 *sptep, u64 spte)
e663ee64 338{
603e0651 339 *sptep = spte;
e663ee64
AK
340}
341
603e0651 342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 343{
603e0651
XG
344 *sptep = spte;
345}
346
347static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348{
349 return xchg(sptep, spte);
350}
c2a2ac2b
XG
351
352static u64 __get_spte_lockless(u64 *sptep)
353{
354 return ACCESS_ONCE(*sptep);
355}
a9221dd5 356#else
603e0651
XG
357union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363};
a9221dd5 364
c2a2ac2b
XG
365static void count_spte_clear(u64 *sptep, u64 spte)
366{
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375}
376
603e0651
XG
377static void __set_spte(u64 *sptep, u64 spte)
378{
379 union split_spte *ssptep, sspte;
a9221dd5 380
603e0651
XG
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
394}
395
603e0651
XG
396static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397{
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 ssptep->spte_low = sspte.spte_low;
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 412 count_spte_clear(sptep, spte);
603e0651
XG
413}
414
415static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416{
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 426 count_spte_clear(sptep, spte);
603e0651
XG
427
428 return orig.spte;
429}
c2a2ac2b
XG
430
431/*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
448 */
449static u64 __get_spte_lockless(u64 *sptep)
450{
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470}
603e0651
XG
471#endif
472
c7ba5b48
XG
473static bool spte_is_locklessly_modifiable(u64 spte)
474{
feb3eb70
GN
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
477}
478
8672b721
XG
479static bool spte_has_volatile_bits(u64 spte)
480{
c7ba5b48
XG
481 /*
482 * Always atomicly update spte if it can be updated
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
8672b721
XG
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
4132779b
XG
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
498 return false;
499
500 return true;
501}
502
4132779b
XG
503static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504{
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506}
507
7e71a59b
KH
508static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509{
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511}
512
1df9f2dc
XG
513/* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519static void mmu_spte_set(u64 *sptep, u64 new_spte)
520{
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523}
524
525/* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
1df9f2dc 533 */
6e7d0354 534static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 535{
c7ba5b48 536 u64 old_spte = *sptep;
6e7d0354 537 bool ret = false;
4132779b 538
afd28fe1 539 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 540
6e7d0354
XG
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
4132779b 545
c7ba5b48 546 if (!spte_has_volatile_bits(old_spte))
603e0651 547 __update_clear_spte_fast(sptep, new_spte);
4132779b 548 else
603e0651 549 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 550
c7ba5b48
XG
551 /*
552 * For the spte updated out of mmu-lock is safe, since
553 * we always atomicly update it, see the comments in
554 * spte_has_volatile_bits().
555 */
7f31c959
XG
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
6e7d0354
XG
558 ret = true;
559
4132779b 560 if (!shadow_accessed_mask)
6e7d0354 561 return ret;
4132779b 562
7e71a59b
KH
563 /*
564 * Flush TLB when accessed/dirty bits are changed in the page tables,
565 * to guarantee consistency between TLB and page tables.
566 */
567 if (spte_is_bit_changed(old_spte, new_spte,
568 shadow_accessed_mask | shadow_dirty_mask))
569 ret = true;
570
4132779b
XG
571 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
575
576 return ret;
b79b93f9
AK
577}
578
1df9f2dc
XG
579/*
580 * Rules for using mmu_spte_clear_track_bits:
581 * It sets the sptep from present to nonpresent, and track the
582 * state bits, it is used to clear the last level sptep.
583 */
584static int mmu_spte_clear_track_bits(u64 *sptep)
585{
ba049e93 586 kvm_pfn_t pfn;
1df9f2dc
XG
587 u64 old_spte = *sptep;
588
589 if (!spte_has_volatile_bits(old_spte))
603e0651 590 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 591 else
603e0651 592 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 593
afd28fe1 594 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
595 return 0;
596
597 pfn = spte_to_pfn(old_spte);
86fde74c
XG
598
599 /*
600 * KVM does not hold the refcount of the page used by
601 * kvm mmu, before reclaiming the page, we should
602 * unmap it from mmu first.
603 */
bf4bea8e 604 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 605
1df9f2dc
XG
606 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607 kvm_set_pfn_accessed(pfn);
608 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609 kvm_set_pfn_dirty(pfn);
610 return 1;
611}
612
613/*
614 * Rules for using mmu_spte_clear_no_track:
615 * Directly clear spte without caring the state bits of sptep,
616 * it is used to set the upper level spte.
617 */
618static void mmu_spte_clear_no_track(u64 *sptep)
619{
603e0651 620 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
621}
622
c2a2ac2b
XG
623static u64 mmu_spte_get_lockless(u64 *sptep)
624{
625 return __get_spte_lockless(sptep);
626}
627
628static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629{
c142786c
AK
630 /*
631 * Prevent page table teardown by making any free-er wait during
632 * kvm_flush_remote_tlbs() IPI to all active vcpus.
633 */
634 local_irq_disable();
635 vcpu->mode = READING_SHADOW_PAGE_TABLES;
636 /*
637 * Make sure a following spte read is not reordered ahead of the write
638 * to vcpu->mode.
639 */
640 smp_mb();
c2a2ac2b
XG
641}
642
643static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644{
c142786c
AK
645 /*
646 * Make sure the write to vcpu->mode is not reordered in front of
647 * reads to sptes. If it does, kvm_commit_zap_page() can see us
648 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649 */
650 smp_mb();
651 vcpu->mode = OUTSIDE_GUEST_MODE;
652 local_irq_enable();
c2a2ac2b
XG
653}
654
e2dec939 655static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 656 struct kmem_cache *base_cache, int min)
714b93da
AK
657{
658 void *obj;
659
660 if (cache->nobjs >= min)
e2dec939 661 return 0;
714b93da 662 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 663 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 664 if (!obj)
e2dec939 665 return -ENOMEM;
714b93da
AK
666 cache->objects[cache->nobjs++] = obj;
667 }
e2dec939 668 return 0;
714b93da
AK
669}
670
f759e2b4
XG
671static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672{
673 return cache->nobjs;
674}
675
e8ad9a70
XG
676static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677 struct kmem_cache *cache)
714b93da
AK
678{
679 while (mc->nobjs)
e8ad9a70 680 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
681}
682
c1158e63 683static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 684 int min)
c1158e63 685{
842f22ed 686 void *page;
c1158e63
AK
687
688 if (cache->nobjs >= min)
689 return 0;
690 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 691 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
692 if (!page)
693 return -ENOMEM;
842f22ed 694 cache->objects[cache->nobjs++] = page;
c1158e63
AK
695 }
696 return 0;
697}
698
699static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700{
701 while (mc->nobjs)
c4d198d5 702 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
703}
704
2e3e5882 705static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 706{
e2dec939
AK
707 int r;
708
53c07b18 709 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 710 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
711 if (r)
712 goto out;
ad312c7c 713 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
714 if (r)
715 goto out;
ad312c7c 716 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 717 mmu_page_header_cache, 4);
e2dec939
AK
718out:
719 return r;
714b93da
AK
720}
721
722static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723{
53c07b18
XG
724 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725 pte_list_desc_cache);
ad312c7c 726 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
727 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728 mmu_page_header_cache);
714b93da
AK
729}
730
80feb89a 731static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
732{
733 void *p;
734
735 BUG_ON(!mc->nobjs);
736 p = mc->objects[--mc->nobjs];
714b93da
AK
737 return p;
738}
739
53c07b18 740static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 741{
80feb89a 742 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
743}
744
53c07b18 745static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 746{
53c07b18 747 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
748}
749
2032a93d
LJ
750static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751{
752 if (!sp->role.direct)
753 return sp->gfns[index];
754
755 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756}
757
758static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759{
760 if (sp->role.direct)
761 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762 else
763 sp->gfns[index] = gfn;
764}
765
05da4558 766/*
d4dbf470
TY
767 * Return the pointer to the large page information for a given gfn,
768 * handling slots that are not large page aligned.
05da4558 769 */
d4dbf470
TY
770static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771 struct kvm_memory_slot *slot,
772 int level)
05da4558
MT
773{
774 unsigned long idx;
775
fb03cb6f 776 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 777 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
778}
779
547ffaed
XG
780static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781 gfn_t gfn, int count)
782{
783 struct kvm_lpage_info *linfo;
784 int i;
785
786 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787 linfo = lpage_info_slot(gfn, slot, i);
788 linfo->disallow_lpage += count;
789 WARN_ON(linfo->disallow_lpage < 0);
790 }
791}
792
793void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794{
795 update_gfn_disallow_lpage_count(slot, gfn, 1);
796}
797
798void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799{
800 update_gfn_disallow_lpage_count(slot, gfn, -1);
801}
802
3ed1a478 803static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 804{
699023e2 805 struct kvm_memslots *slots;
d25797b2 806 struct kvm_memory_slot *slot;
3ed1a478 807 gfn_t gfn;
05da4558 808
56ca57f9 809 kvm->arch.indirect_shadow_pages++;
3ed1a478 810 gfn = sp->gfn;
699023e2
PB
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
813
814 /* the non-leaf shadow pages are keeping readonly. */
815 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
816 return kvm_slot_page_track_add_page(kvm, slot, gfn,
817 KVM_PAGE_TRACK_WRITE);
818
547ffaed 819 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
820}
821
3ed1a478 822static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 823{
699023e2 824 struct kvm_memslots *slots;
d25797b2 825 struct kvm_memory_slot *slot;
3ed1a478 826 gfn_t gfn;
05da4558 827
56ca57f9 828 kvm->arch.indirect_shadow_pages--;
3ed1a478 829 gfn = sp->gfn;
699023e2
PB
830 slots = kvm_memslots_for_spte_role(kvm, sp->role);
831 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
832 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
833 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
834 KVM_PAGE_TRACK_WRITE);
835
547ffaed 836 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
837}
838
92f94f1e
XG
839static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
840 struct kvm_memory_slot *slot)
05da4558 841{
d4dbf470 842 struct kvm_lpage_info *linfo;
05da4558
MT
843
844 if (slot) {
d4dbf470 845 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 846 return !!linfo->disallow_lpage;
05da4558
MT
847 }
848
92f94f1e 849 return true;
05da4558
MT
850}
851
92f94f1e
XG
852static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
853 int level)
5225fdf8
TY
854{
855 struct kvm_memory_slot *slot;
856
857 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 858 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
859}
860
d25797b2 861static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 862{
8f0b1ab6 863 unsigned long page_size;
d25797b2 864 int i, ret = 0;
05da4558 865
8f0b1ab6 866 page_size = kvm_host_page_size(kvm, gfn);
05da4558 867
8a3d08f1 868 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
869 if (page_size >= KVM_HPAGE_SIZE(i))
870 ret = i;
871 else
872 break;
873 }
874
4c2155ce 875 return ret;
05da4558
MT
876}
877
d8aacf5d
TY
878static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
879 bool no_dirty_log)
880{
881 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
882 return false;
883 if (no_dirty_log && slot->dirty_bitmap)
884 return false;
885
886 return true;
887}
888
5d163b1c
XG
889static struct kvm_memory_slot *
890gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
891 bool no_dirty_log)
05da4558
MT
892{
893 struct kvm_memory_slot *slot;
5d163b1c 894
54bf36aa 895 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 896 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
897 slot = NULL;
898
899 return slot;
900}
901
fd136902
TY
902static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
903 bool *force_pt_level)
936a5fe6
AA
904{
905 int host_level, level, max_level;
d8aacf5d
TY
906 struct kvm_memory_slot *slot;
907
8c85ac1c
TY
908 if (unlikely(*force_pt_level))
909 return PT_PAGE_TABLE_LEVEL;
05da4558 910
8c85ac1c
TY
911 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
912 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
913 if (unlikely(*force_pt_level))
914 return PT_PAGE_TABLE_LEVEL;
915
d25797b2
JR
916 host_level = host_mapping_level(vcpu->kvm, large_gfn);
917
918 if (host_level == PT_PAGE_TABLE_LEVEL)
919 return host_level;
920
55dd98c3 921 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
922
923 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 924 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 925 break;
d25797b2
JR
926
927 return level - 1;
05da4558
MT
928}
929
290fc38d 930/*
018aabb5 931 * About rmap_head encoding:
cd4a4e53 932 *
018aabb5
TY
933 * If the bit zero of rmap_head->val is clear, then it points to the only spte
934 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 935 * pte_list_desc containing more mappings.
018aabb5
TY
936 */
937
938/*
939 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 940 */
53c07b18 941static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 942 struct kvm_rmap_head *rmap_head)
cd4a4e53 943{
53c07b18 944 struct pte_list_desc *desc;
53a27b39 945 int i, count = 0;
cd4a4e53 946
018aabb5 947 if (!rmap_head->val) {
53c07b18 948 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
949 rmap_head->val = (unsigned long)spte;
950 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
951 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
952 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 953 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 954 desc->sptes[1] = spte;
018aabb5 955 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 956 ++count;
cd4a4e53 957 } else {
53c07b18 958 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 959 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 960 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 961 desc = desc->more;
53c07b18 962 count += PTE_LIST_EXT;
53a27b39 963 }
53c07b18
XG
964 if (desc->sptes[PTE_LIST_EXT-1]) {
965 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
966 desc = desc->more;
967 }
d555c333 968 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 969 ++count;
d555c333 970 desc->sptes[i] = spte;
cd4a4e53 971 }
53a27b39 972 return count;
cd4a4e53
AK
973}
974
53c07b18 975static void
018aabb5
TY
976pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
977 struct pte_list_desc *desc, int i,
978 struct pte_list_desc *prev_desc)
cd4a4e53
AK
979{
980 int j;
981
53c07b18 982 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 983 ;
d555c333
AK
984 desc->sptes[i] = desc->sptes[j];
985 desc->sptes[j] = NULL;
cd4a4e53
AK
986 if (j != 0)
987 return;
988 if (!prev_desc && !desc->more)
018aabb5 989 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
990 else
991 if (prev_desc)
992 prev_desc->more = desc->more;
993 else
018aabb5 994 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 995 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
996}
997
018aabb5 998static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 999{
53c07b18
XG
1000 struct pte_list_desc *desc;
1001 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1002 int i;
1003
018aabb5 1004 if (!rmap_head->val) {
53c07b18 1005 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1006 BUG();
018aabb5 1007 } else if (!(rmap_head->val & 1)) {
53c07b18 1008 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1009 if ((u64 *)rmap_head->val != spte) {
53c07b18 1010 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1011 BUG();
1012 }
018aabb5 1013 rmap_head->val = 0;
cd4a4e53 1014 } else {
53c07b18 1015 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1016 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1017 prev_desc = NULL;
1018 while (desc) {
018aabb5 1019 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1020 if (desc->sptes[i] == spte) {
018aabb5
TY
1021 pte_list_desc_remove_entry(rmap_head,
1022 desc, i, prev_desc);
cd4a4e53
AK
1023 return;
1024 }
018aabb5 1025 }
cd4a4e53
AK
1026 prev_desc = desc;
1027 desc = desc->more;
1028 }
53c07b18 1029 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1030 BUG();
1031 }
1032}
1033
018aabb5
TY
1034static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1035 struct kvm_memory_slot *slot)
53c07b18 1036{
77d11309 1037 unsigned long idx;
53c07b18 1038
77d11309 1039 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1040 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1041}
1042
018aabb5
TY
1043static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1044 struct kvm_mmu_page *sp)
9b9b1492 1045{
699023e2 1046 struct kvm_memslots *slots;
9b9b1492
TY
1047 struct kvm_memory_slot *slot;
1048
699023e2
PB
1049 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1051 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1052}
1053
f759e2b4
XG
1054static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055{
1056 struct kvm_mmu_memory_cache *cache;
1057
1058 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059 return mmu_memory_cache_free_objects(cache);
1060}
1061
53c07b18
XG
1062static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063{
1064 struct kvm_mmu_page *sp;
018aabb5 1065 struct kvm_rmap_head *rmap_head;
53c07b18 1066
53c07b18
XG
1067 sp = page_header(__pa(spte));
1068 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1069 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1070 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1071}
1072
53c07b18
XG
1073static void rmap_remove(struct kvm *kvm, u64 *spte)
1074{
1075 struct kvm_mmu_page *sp;
1076 gfn_t gfn;
018aabb5 1077 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1078
1079 sp = page_header(__pa(spte));
1080 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1081 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1082 pte_list_remove(spte, rmap_head);
53c07b18
XG
1083}
1084
1e3f42f0
TY
1085/*
1086 * Used by the following functions to iterate through the sptes linked by a
1087 * rmap. All fields are private and not assumed to be used outside.
1088 */
1089struct rmap_iterator {
1090 /* private fields */
1091 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1092 int pos; /* index of the sptep */
1093};
1094
1095/*
1096 * Iteration must be started by this function. This should also be used after
1097 * removing/dropping sptes from the rmap link because in such cases the
1098 * information in the itererator may not be valid.
1099 *
1100 * Returns sptep if found, NULL otherwise.
1101 */
018aabb5
TY
1102static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1103 struct rmap_iterator *iter)
1e3f42f0 1104{
77fbbbd2
TY
1105 u64 *sptep;
1106
018aabb5 1107 if (!rmap_head->val)
1e3f42f0
TY
1108 return NULL;
1109
018aabb5 1110 if (!(rmap_head->val & 1)) {
1e3f42f0 1111 iter->desc = NULL;
77fbbbd2
TY
1112 sptep = (u64 *)rmap_head->val;
1113 goto out;
1e3f42f0
TY
1114 }
1115
018aabb5 1116 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1117 iter->pos = 0;
77fbbbd2
TY
1118 sptep = iter->desc->sptes[iter->pos];
1119out:
1120 BUG_ON(!is_shadow_present_pte(*sptep));
1121 return sptep;
1e3f42f0
TY
1122}
1123
1124/*
1125 * Must be used with a valid iterator: e.g. after rmap_get_first().
1126 *
1127 * Returns sptep if found, NULL otherwise.
1128 */
1129static u64 *rmap_get_next(struct rmap_iterator *iter)
1130{
77fbbbd2
TY
1131 u64 *sptep;
1132
1e3f42f0
TY
1133 if (iter->desc) {
1134 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1135 ++iter->pos;
1136 sptep = iter->desc->sptes[iter->pos];
1137 if (sptep)
77fbbbd2 1138 goto out;
1e3f42f0
TY
1139 }
1140
1141 iter->desc = iter->desc->more;
1142
1143 if (iter->desc) {
1144 iter->pos = 0;
1145 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1146 sptep = iter->desc->sptes[iter->pos];
1147 goto out;
1e3f42f0
TY
1148 }
1149 }
1150
1151 return NULL;
77fbbbd2
TY
1152out:
1153 BUG_ON(!is_shadow_present_pte(*sptep));
1154 return sptep;
1e3f42f0
TY
1155}
1156
018aabb5
TY
1157#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1158 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1159 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1160
c3707958 1161static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1162{
1df9f2dc 1163 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1164 rmap_remove(kvm, sptep);
be38d276
AK
1165}
1166
8e22f955
XG
1167
1168static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1169{
1170 if (is_large_pte(*sptep)) {
1171 WARN_ON(page_header(__pa(sptep))->role.level ==
1172 PT_PAGE_TABLE_LEVEL);
1173 drop_spte(kvm, sptep);
1174 --kvm->stat.lpages;
1175 return true;
1176 }
1177
1178 return false;
1179}
1180
1181static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1182{
1183 if (__drop_large_spte(vcpu->kvm, sptep))
1184 kvm_flush_remote_tlbs(vcpu->kvm);
1185}
1186
1187/*
49fde340 1188 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1189 * spte write-protection is caused by protecting shadow page table.
49fde340 1190 *
b4619660 1191 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1192 * protection:
1193 * - for dirty logging, the spte can be set to writable at anytime if
1194 * its dirty bitmap is properly set.
1195 * - for spte protection, the spte can be writable only after unsync-ing
1196 * shadow page.
8e22f955 1197 *
c126d94f 1198 * Return true if tlb need be flushed.
8e22f955 1199 */
c126d94f 1200static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1201{
1202 u64 spte = *sptep;
1203
49fde340
XG
1204 if (!is_writable_pte(spte) &&
1205 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1206 return false;
1207
1208 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1209
49fde340
XG
1210 if (pt_protect)
1211 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1212 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1213
c126d94f 1214 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1215}
1216
018aabb5
TY
1217static bool __rmap_write_protect(struct kvm *kvm,
1218 struct kvm_rmap_head *rmap_head,
245c3912 1219 bool pt_protect)
98348e95 1220{
1e3f42f0
TY
1221 u64 *sptep;
1222 struct rmap_iterator iter;
d13bc5b5 1223 bool flush = false;
374cbac0 1224
018aabb5 1225 for_each_rmap_spte(rmap_head, &iter, sptep)
c126d94f 1226 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1227
d13bc5b5 1228 return flush;
a0ed4607
TY
1229}
1230
f4b4b180
KH
1231static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1232{
1233 u64 spte = *sptep;
1234
1235 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237 spte &= ~shadow_dirty_mask;
1238
1239 return mmu_spte_update(sptep, spte);
1240}
1241
018aabb5 1242static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1243{
1244 u64 *sptep;
1245 struct rmap_iterator iter;
1246 bool flush = false;
1247
018aabb5 1248 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1249 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1250
1251 return flush;
1252}
1253
1254static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1255{
1256 u64 spte = *sptep;
1257
1258 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1259
1260 spte |= shadow_dirty_mask;
1261
1262 return mmu_spte_update(sptep, spte);
1263}
1264
018aabb5 1265static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1266{
1267 u64 *sptep;
1268 struct rmap_iterator iter;
1269 bool flush = false;
1270
018aabb5 1271 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1272 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1273
1274 return flush;
1275}
1276
5dc99b23 1277/**
3b0f1d01 1278 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1279 * @kvm: kvm instance
1280 * @slot: slot to protect
1281 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1282 * @mask: indicates which pages we should protect
1283 *
1284 * Used when we do not need to care about huge page mappings: e.g. during dirty
1285 * logging we do not have any such mappings.
1286 */
3b0f1d01 1287static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1288 struct kvm_memory_slot *slot,
1289 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1290{
018aabb5 1291 struct kvm_rmap_head *rmap_head;
a0ed4607 1292
5dc99b23 1293 while (mask) {
018aabb5
TY
1294 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295 PT_PAGE_TABLE_LEVEL, slot);
1296 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1297
5dc99b23
TY
1298 /* clear the first set bit */
1299 mask &= mask - 1;
1300 }
374cbac0
AK
1301}
1302
f4b4b180
KH
1303/**
1304 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1305 * @kvm: kvm instance
1306 * @slot: slot to clear D-bit
1307 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1308 * @mask: indicates which pages we should clear D-bit
1309 *
1310 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1311 */
1312void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1313 struct kvm_memory_slot *slot,
1314 gfn_t gfn_offset, unsigned long mask)
1315{
018aabb5 1316 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1317
1318 while (mask) {
018aabb5
TY
1319 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1320 PT_PAGE_TABLE_LEVEL, slot);
1321 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1322
1323 /* clear the first set bit */
1324 mask &= mask - 1;
1325 }
1326}
1327EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1328
3b0f1d01
KH
1329/**
1330 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1331 * PT level pages.
1332 *
1333 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1334 * enable dirty logging for them.
1335 *
1336 * Used when we do not need to care about huge page mappings: e.g. during dirty
1337 * logging we do not have any such mappings.
1338 */
1339void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1340 struct kvm_memory_slot *slot,
1341 gfn_t gfn_offset, unsigned long mask)
1342{
88178fd4
KH
1343 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1344 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1345 mask);
1346 else
1347 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1348}
1349
aeecee2e
XG
1350bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1351 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1352{
018aabb5 1353 struct kvm_rmap_head *rmap_head;
5dc99b23 1354 int i;
2f84569f 1355 bool write_protected = false;
95d4c16c 1356
8a3d08f1 1357 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1358 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1359 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1360 }
1361
1362 return write_protected;
95d4c16c
TY
1363}
1364
aeecee2e
XG
1365static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1366{
1367 struct kvm_memory_slot *slot;
1368
1369 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1370 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1371}
1372
018aabb5 1373static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1374{
1e3f42f0
TY
1375 u64 *sptep;
1376 struct rmap_iterator iter;
6a49f85c 1377 bool flush = false;
e930bffe 1378
018aabb5 1379 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1380 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1381
1382 drop_spte(kvm, sptep);
6a49f85c 1383 flush = true;
e930bffe 1384 }
1e3f42f0 1385
6a49f85c
XG
1386 return flush;
1387}
1388
018aabb5 1389static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1390 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391 unsigned long data)
1392{
018aabb5 1393 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1394}
1395
018aabb5 1396static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1397 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 unsigned long data)
3da0dd43 1399{
1e3f42f0
TY
1400 u64 *sptep;
1401 struct rmap_iterator iter;
3da0dd43 1402 int need_flush = 0;
1e3f42f0 1403 u64 new_spte;
3da0dd43 1404 pte_t *ptep = (pte_t *)data;
ba049e93 1405 kvm_pfn_t new_pfn;
3da0dd43
IE
1406
1407 WARN_ON(pte_huge(*ptep));
1408 new_pfn = pte_pfn(*ptep);
1e3f42f0 1409
0d536790 1410restart:
018aabb5 1411 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1412 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1413 sptep, *sptep, gfn, level);
1e3f42f0 1414
3da0dd43 1415 need_flush = 1;
1e3f42f0 1416
3da0dd43 1417 if (pte_write(*ptep)) {
1e3f42f0 1418 drop_spte(kvm, sptep);
0d536790 1419 goto restart;
3da0dd43 1420 } else {
1e3f42f0 1421 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1422 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1423
1424 new_spte &= ~PT_WRITABLE_MASK;
1425 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1426 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1427
1428 mmu_spte_clear_track_bits(sptep);
1429 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1430 }
1431 }
1e3f42f0 1432
3da0dd43
IE
1433 if (need_flush)
1434 kvm_flush_remote_tlbs(kvm);
1435
1436 return 0;
1437}
1438
6ce1f4e2
XG
1439struct slot_rmap_walk_iterator {
1440 /* input fields. */
1441 struct kvm_memory_slot *slot;
1442 gfn_t start_gfn;
1443 gfn_t end_gfn;
1444 int start_level;
1445 int end_level;
1446
1447 /* output fields. */
1448 gfn_t gfn;
018aabb5 1449 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1450 int level;
1451
1452 /* private field. */
018aabb5 1453 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1454};
1455
1456static void
1457rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458{
1459 iterator->level = level;
1460 iterator->gfn = iterator->start_gfn;
1461 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1463 iterator->slot);
1464}
1465
1466static void
1467slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468 struct kvm_memory_slot *slot, int start_level,
1469 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470{
1471 iterator->slot = slot;
1472 iterator->start_level = start_level;
1473 iterator->end_level = end_level;
1474 iterator->start_gfn = start_gfn;
1475 iterator->end_gfn = end_gfn;
1476
1477 rmap_walk_init_level(iterator, iterator->start_level);
1478}
1479
1480static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481{
1482 return !!iterator->rmap;
1483}
1484
1485static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486{
1487 if (++iterator->rmap <= iterator->end_rmap) {
1488 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489 return;
1490 }
1491
1492 if (++iterator->level > iterator->end_level) {
1493 iterator->rmap = NULL;
1494 return;
1495 }
1496
1497 rmap_walk_init_level(iterator, iterator->level);
1498}
1499
1500#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1501 _start_gfn, _end_gfn, _iter_) \
1502 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1503 _end_level_, _start_gfn, _end_gfn); \
1504 slot_rmap_walk_okay(_iter_); \
1505 slot_rmap_walk_next(_iter_))
1506
84504ef3
TY
1507static int kvm_handle_hva_range(struct kvm *kvm,
1508 unsigned long start,
1509 unsigned long end,
1510 unsigned long data,
1511 int (*handler)(struct kvm *kvm,
018aabb5 1512 struct kvm_rmap_head *rmap_head,
048212d0 1513 struct kvm_memory_slot *slot,
8a9522d2
ALC
1514 gfn_t gfn,
1515 int level,
84504ef3 1516 unsigned long data))
e930bffe 1517{
bc6678a3 1518 struct kvm_memslots *slots;
be6ba0f0 1519 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1520 struct slot_rmap_walk_iterator iterator;
1521 int ret = 0;
9da0e4d5 1522 int i;
bc6678a3 1523
9da0e4d5
PB
1524 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1525 slots = __kvm_memslots(kvm, i);
1526 kvm_for_each_memslot(memslot, slots) {
1527 unsigned long hva_start, hva_end;
1528 gfn_t gfn_start, gfn_end;
e930bffe 1529
9da0e4d5
PB
1530 hva_start = max(start, memslot->userspace_addr);
1531 hva_end = min(end, memslot->userspace_addr +
1532 (memslot->npages << PAGE_SHIFT));
1533 if (hva_start >= hva_end)
1534 continue;
1535 /*
1536 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1537 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1538 */
1539 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1540 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1541
1542 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1543 PT_MAX_HUGEPAGE_LEVEL,
1544 gfn_start, gfn_end - 1,
1545 &iterator)
1546 ret |= handler(kvm, iterator.rmap, memslot,
1547 iterator.gfn, iterator.level, data);
1548 }
e930bffe
AA
1549 }
1550
f395302e 1551 return ret;
e930bffe
AA
1552}
1553
84504ef3
TY
1554static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1555 unsigned long data,
018aabb5
TY
1556 int (*handler)(struct kvm *kvm,
1557 struct kvm_rmap_head *rmap_head,
048212d0 1558 struct kvm_memory_slot *slot,
8a9522d2 1559 gfn_t gfn, int level,
84504ef3
TY
1560 unsigned long data))
1561{
1562 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1563}
1564
1565int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1566{
3da0dd43
IE
1567 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1568}
1569
b3ae2096
TY
1570int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1571{
1572 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1573}
1574
3da0dd43
IE
1575void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1576{
8a8365c5 1577 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1578}
1579
018aabb5 1580static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1581 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1582 unsigned long data)
e930bffe 1583{
1e3f42f0 1584 u64 *sptep;
79f702a6 1585 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1586 int young = 0;
1587
57128468 1588 BUG_ON(!shadow_accessed_mask);
534e38b4 1589
018aabb5 1590 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1591 if (*sptep & shadow_accessed_mask) {
e930bffe 1592 young = 1;
3f6d8c8a
XH
1593 clear_bit((ffs(shadow_accessed_mask) - 1),
1594 (unsigned long *)sptep);
e930bffe 1595 }
018aabb5 1596 }
0d536790 1597
8a9522d2 1598 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1599 return young;
1600}
1601
018aabb5 1602static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1603 struct kvm_memory_slot *slot, gfn_t gfn,
1604 int level, unsigned long data)
8ee53820 1605{
1e3f42f0
TY
1606 u64 *sptep;
1607 struct rmap_iterator iter;
8ee53820
AA
1608 int young = 0;
1609
1610 /*
1611 * If there's no access bit in the secondary pte set by the
1612 * hardware it's up to gup-fast/gup to set the access bit in
1613 * the primary pte or in the page structure.
1614 */
1615 if (!shadow_accessed_mask)
1616 goto out;
1617
018aabb5 1618 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1619 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1620 young = 1;
1621 break;
1622 }
018aabb5 1623 }
8ee53820
AA
1624out:
1625 return young;
1626}
1627
53a27b39
MT
1628#define RMAP_RECYCLE_THRESHOLD 1000
1629
852e3c19 1630static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1631{
018aabb5 1632 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1633 struct kvm_mmu_page *sp;
1634
1635 sp = page_header(__pa(spte));
53a27b39 1636
018aabb5 1637 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1638
018aabb5 1639 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1640 kvm_flush_remote_tlbs(vcpu->kvm);
1641}
1642
57128468 1643int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1644{
57128468
ALC
1645 /*
1646 * In case of absence of EPT Access and Dirty Bits supports,
1647 * emulate the accessed bit for EPT, by checking if this page has
1648 * an EPT mapping, and clearing it if it does. On the next access,
1649 * a new EPT mapping will be established.
1650 * This has some overhead, but not as much as the cost of swapping
1651 * out actively used pages or breaking up actively used hugepages.
1652 */
1653 if (!shadow_accessed_mask) {
1654 /*
1655 * We are holding the kvm->mmu_lock, and we are blowing up
1656 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1657 * This is correct as long as we don't decouple the mmu_lock
1658 * protected regions (like invalidate_range_start|end does).
1659 */
1660 kvm->mmu_notifier_seq++;
1661 return kvm_handle_hva_range(kvm, start, end, 0,
1662 kvm_unmap_rmapp);
1663 }
1664
1665 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1666}
1667
8ee53820
AA
1668int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1669{
1670 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1671}
1672
d6c69ee9 1673#ifdef MMU_DEBUG
47ad8e68 1674static int is_empty_shadow_page(u64 *spt)
6aa8b732 1675{
139bdb2d
AK
1676 u64 *pos;
1677 u64 *end;
1678
47ad8e68 1679 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1680 if (is_shadow_present_pte(*pos)) {
b8688d51 1681 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1682 pos, *pos);
6aa8b732 1683 return 0;
139bdb2d 1684 }
6aa8b732
AK
1685 return 1;
1686}
d6c69ee9 1687#endif
6aa8b732 1688
45221ab6
DH
1689/*
1690 * This value is the sum of all of the kvm instances's
1691 * kvm->arch.n_used_mmu_pages values. We need a global,
1692 * aggregate version in order to make the slab shrinker
1693 * faster
1694 */
1695static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1696{
1697 kvm->arch.n_used_mmu_pages += nr;
1698 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1699}
1700
834be0d8 1701static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1702{
fa4a2c08 1703 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1704 hlist_del(&sp->hash_link);
bd4c86ea
XG
1705 list_del(&sp->link);
1706 free_page((unsigned long)sp->spt);
834be0d8
GN
1707 if (!sp->role.direct)
1708 free_page((unsigned long)sp->gfns);
e8ad9a70 1709 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1710}
1711
cea0f0e7
AK
1712static unsigned kvm_page_table_hashfn(gfn_t gfn)
1713{
1ae0a13d 1714 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1715}
1716
714b93da 1717static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1718 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1719{
cea0f0e7
AK
1720 if (!parent_pte)
1721 return;
cea0f0e7 1722
67052b35 1723 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1724}
1725
4db35314 1726static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1727 u64 *parent_pte)
1728{
67052b35 1729 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1730}
1731
bcdd9a93
XG
1732static void drop_parent_pte(struct kvm_mmu_page *sp,
1733 u64 *parent_pte)
1734{
1735 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1736 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1737}
1738
47005792 1739static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1740{
67052b35 1741 struct kvm_mmu_page *sp;
7ddca7e4 1742
80feb89a
TY
1743 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1744 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1745 if (!direct)
80feb89a 1746 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1747 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1748
1749 /*
1750 * The active_mmu_pages list is the FIFO list, do not move the
1751 * page until it is zapped. kvm_zap_obsolete_pages depends on
1752 * this feature. See the comments in kvm_zap_obsolete_pages().
1753 */
67052b35 1754 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1755 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1756 return sp;
ad8cfbe3
MT
1757}
1758
67052b35 1759static void mark_unsync(u64 *spte);
1047df1f 1760static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1761{
74c4e63a
TY
1762 u64 *sptep;
1763 struct rmap_iterator iter;
1764
1765 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1766 mark_unsync(sptep);
1767 }
0074ff63
MT
1768}
1769
67052b35 1770static void mark_unsync(u64 *spte)
0074ff63 1771{
67052b35 1772 struct kvm_mmu_page *sp;
1047df1f 1773 unsigned int index;
0074ff63 1774
67052b35 1775 sp = page_header(__pa(spte));
1047df1f
XG
1776 index = spte - sp->spt;
1777 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1778 return;
1047df1f 1779 if (sp->unsync_children++)
0074ff63 1780 return;
1047df1f 1781 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1782}
1783
e8bc217a 1784static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1785 struct kvm_mmu_page *sp)
e8bc217a
MT
1786{
1787 return 1;
1788}
1789
a7052897
MT
1790static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1791{
1792}
1793
0f53b5b1
XG
1794static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1795 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1796 const void *pte)
0f53b5b1
XG
1797{
1798 WARN_ON(1);
1799}
1800
60c8aec6
MT
1801#define KVM_PAGE_ARRAY_NR 16
1802
1803struct kvm_mmu_pages {
1804 struct mmu_page_and_offset {
1805 struct kvm_mmu_page *sp;
1806 unsigned int idx;
1807 } page[KVM_PAGE_ARRAY_NR];
1808 unsigned int nr;
1809};
1810
cded19f3
HE
1811static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812 int idx)
4731d4c7 1813{
60c8aec6 1814 int i;
4731d4c7 1815
60c8aec6
MT
1816 if (sp->unsync)
1817 for (i=0; i < pvec->nr; i++)
1818 if (pvec->page[i].sp == sp)
1819 return 0;
1820
1821 pvec->page[pvec->nr].sp = sp;
1822 pvec->page[pvec->nr].idx = idx;
1823 pvec->nr++;
1824 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825}
1826
fd951457
TY
1827static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828{
1829 --sp->unsync_children;
1830 WARN_ON((int)sp->unsync_children < 0);
1831 __clear_bit(idx, sp->unsync_child_bitmap);
1832}
1833
60c8aec6
MT
1834static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835 struct kvm_mmu_pages *pvec)
1836{
1837 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1838
37178b8b 1839 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1840 struct kvm_mmu_page *child;
4731d4c7
MT
1841 u64 ent = sp->spt[i];
1842
fd951457
TY
1843 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844 clear_unsync_child_bit(sp, i);
1845 continue;
1846 }
7a8f1a74
XG
1847
1848 child = page_header(ent & PT64_BASE_ADDR_MASK);
1849
1850 if (child->unsync_children) {
1851 if (mmu_pages_add(pvec, child, i))
1852 return -ENOSPC;
1853
1854 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1855 if (!ret) {
1856 clear_unsync_child_bit(sp, i);
1857 continue;
1858 } else if (ret > 0) {
7a8f1a74 1859 nr_unsync_leaf += ret;
fd951457 1860 } else
7a8f1a74
XG
1861 return ret;
1862 } else if (child->unsync) {
1863 nr_unsync_leaf++;
1864 if (mmu_pages_add(pvec, child, i))
1865 return -ENOSPC;
1866 } else
fd951457 1867 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1868 }
1869
60c8aec6
MT
1870 return nr_unsync_leaf;
1871}
1872
e23d3fef
XG
1873#define INVALID_INDEX (-1)
1874
60c8aec6
MT
1875static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876 struct kvm_mmu_pages *pvec)
1877{
0a47cd85 1878 pvec->nr = 0;
60c8aec6
MT
1879 if (!sp->unsync_children)
1880 return 0;
1881
e23d3fef 1882 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1883 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1884}
1885
4731d4c7
MT
1886static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887{
1888 WARN_ON(!sp->unsync);
5e1b3ddb 1889 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1890 sp->unsync = 0;
1891 --kvm->stat.mmu_unsync;
1892}
1893
7775834a
XG
1894static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895 struct list_head *invalid_list);
1896static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897 struct list_head *invalid_list);
4731d4c7 1898
f34d251d
XG
1899/*
1900 * NOTE: we should pay more attention on the zapped-obsolete page
1901 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1902 * since it has been deleted from active_mmu_pages but still can be found
1903 * at hast list.
1904 *
1905 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1906 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1907 * all the obsolete pages.
1908 */
1044b030
TY
1909#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1910 hlist_for_each_entry(_sp, \
1911 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1912 if ((_sp)->gfn != (_gfn)) {} else
1913
1914#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1915 for_each_gfn_sp(_kvm, _sp, _gfn) \
1916 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1917
f918b443 1918/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1919static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
9a43c5d9 1920 struct list_head *invalid_list)
4731d4c7 1921{
5b7e0102 1922 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1923 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1924 return 1;
1925 }
1926
a4a8e6f7 1927 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1928 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1929 return 1;
1930 }
1931
4731d4c7
MT
1932 return 0;
1933}
1934
35a70510
PB
1935static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1936 struct list_head *invalid_list,
1937 bool remote_flush, bool local_flush)
1938{
1939 if (!list_empty(invalid_list)) {
1940 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1941 return;
1942 }
1943
1944 if (remote_flush)
1945 kvm_flush_remote_tlbs(vcpu->kvm);
1946 else if (local_flush)
1947 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1948}
1949
1d9dc7e0
XG
1950static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1951 struct kvm_mmu_page *sp)
1952{
d98ba053 1953 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1954 int ret;
1955
9a43c5d9 1956 ret = __kvm_sync_page(vcpu, sp, &invalid_list);
35a70510 1957 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, !ret);
d98ba053 1958
1d9dc7e0
XG
1959 return ret;
1960}
1961
e37fa785
XG
1962#ifdef CONFIG_KVM_MMU_AUDIT
1963#include "mmu_audit.c"
1964#else
1965static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1966static void mmu_audit_disable(void) { }
1967#endif
1968
d98ba053
XG
1969static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1970 struct list_head *invalid_list)
1d9dc7e0 1971{
9a43c5d9
PB
1972 kvm_unlink_unsync_page(vcpu->kvm, sp);
1973 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1974}
1975
9f1a122f
XG
1976/* @gfn should be write-protected at the call site */
1977static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1978{
9f1a122f 1979 struct kvm_mmu_page *s;
d98ba053 1980 LIST_HEAD(invalid_list);
9f1a122f
XG
1981 bool flush = false;
1982
b67bfe0d 1983 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1984 if (!s->unsync)
9f1a122f
XG
1985 continue;
1986
1987 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
df748f86 1988 if (!kvm_sync_page(vcpu, s, &invalid_list))
35a70510 1989 flush = true;
9f1a122f
XG
1990 }
1991
35a70510 1992 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
9f1a122f
XG
1993}
1994
60c8aec6 1995struct mmu_page_path {
0a47cd85
PB
1996 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1997 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
1998};
1999
60c8aec6 2000#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2001 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2002 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2003 i = mmu_pages_next(&pvec, &parents, i))
2004
cded19f3
HE
2005static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2006 struct mmu_page_path *parents,
2007 int i)
60c8aec6
MT
2008{
2009 int n;
2010
2011 for (n = i+1; n < pvec->nr; n++) {
2012 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2013 unsigned idx = pvec->page[n].idx;
2014 int level = sp->role.level;
60c8aec6 2015
0a47cd85
PB
2016 parents->idx[level-1] = idx;
2017 if (level == PT_PAGE_TABLE_LEVEL)
2018 break;
60c8aec6 2019
0a47cd85 2020 parents->parent[level-2] = sp;
60c8aec6
MT
2021 }
2022
2023 return n;
2024}
2025
0a47cd85
PB
2026static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2027 struct mmu_page_path *parents)
2028{
2029 struct kvm_mmu_page *sp;
2030 int level;
2031
2032 if (pvec->nr == 0)
2033 return 0;
2034
e23d3fef
XG
2035 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2036
0a47cd85
PB
2037 sp = pvec->page[0].sp;
2038 level = sp->role.level;
2039 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2040
2041 parents->parent[level-2] = sp;
2042
2043 /* Also set up a sentinel. Further entries in pvec are all
2044 * children of sp, so this element is never overwritten.
2045 */
2046 parents->parent[level-1] = NULL;
2047 return mmu_pages_next(pvec, parents, 0);
2048}
2049
cded19f3 2050static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2051{
60c8aec6
MT
2052 struct kvm_mmu_page *sp;
2053 unsigned int level = 0;
2054
2055 do {
2056 unsigned int idx = parents->idx[level];
60c8aec6
MT
2057 sp = parents->parent[level];
2058 if (!sp)
2059 return;
2060
e23d3fef 2061 WARN_ON(idx == INVALID_INDEX);
fd951457 2062 clear_unsync_child_bit(sp, idx);
60c8aec6 2063 level++;
0a47cd85 2064 } while (!sp->unsync_children);
60c8aec6 2065}
4731d4c7 2066
60c8aec6
MT
2067static void mmu_sync_children(struct kvm_vcpu *vcpu,
2068 struct kvm_mmu_page *parent)
2069{
2070 int i;
2071 struct kvm_mmu_page *sp;
2072 struct mmu_page_path parents;
2073 struct kvm_mmu_pages pages;
d98ba053 2074 LIST_HEAD(invalid_list);
60c8aec6 2075
60c8aec6 2076 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2077 bool protected = false;
35a70510 2078 bool flush = false;
b1a36821
MT
2079
2080 for_each_sp(pages, sp, parents, i)
54bf36aa 2081 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821
MT
2082
2083 if (protected)
2084 kvm_flush_remote_tlbs(vcpu->kvm);
2085
60c8aec6 2086 for_each_sp(pages, sp, parents, i) {
35a70510
PB
2087 if (!kvm_sync_page(vcpu, sp, &invalid_list))
2088 flush = true;
2089
60c8aec6
MT
2090 mmu_pages_clear_parents(&parents);
2091 }
35a70510 2092 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7 2093 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6 2094 }
4731d4c7
MT
2095}
2096
a30f47cb
XG
2097static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2098{
e5691a81 2099 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2100}
2101
2102static void clear_sp_write_flooding_count(u64 *spte)
2103{
2104 struct kvm_mmu_page *sp = page_header(__pa(spte));
2105
2106 __clear_sp_write_flooding_count(sp);
2107}
2108
5304b8d3
XG
2109static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2110{
2111 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2112}
2113
cea0f0e7
AK
2114static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2115 gfn_t gfn,
2116 gva_t gaddr,
2117 unsigned level,
f6e2c02b 2118 int direct,
bb11c6c9 2119 unsigned access)
cea0f0e7
AK
2120{
2121 union kvm_mmu_page_role role;
cea0f0e7 2122 unsigned quadrant;
9f1a122f 2123 struct kvm_mmu_page *sp;
9f1a122f 2124 bool need_sync = false;
cea0f0e7 2125
a770f6f2 2126 role = vcpu->arch.mmu.base_role;
cea0f0e7 2127 role.level = level;
f6e2c02b 2128 role.direct = direct;
84b0c8c6 2129 if (role.direct)
5b7e0102 2130 role.cr4_pae = 0;
41074d07 2131 role.access = access;
c5a78f2b
JR
2132 if (!vcpu->arch.mmu.direct_map
2133 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2134 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2135 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2136 role.quadrant = quadrant;
2137 }
b67bfe0d 2138 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2139 if (is_obsolete_sp(vcpu->kvm, sp))
2140 continue;
2141
7ae680eb
XG
2142 if (!need_sync && sp->unsync)
2143 need_sync = true;
4731d4c7 2144
7ae680eb
XG
2145 if (sp->role.word != role.word)
2146 continue;
4731d4c7 2147
7ae680eb
XG
2148 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2149 break;
e02aa901 2150
98bba238 2151 if (sp->unsync_children)
a8eeb04a 2152 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2153
a30f47cb 2154 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2155 trace_kvm_mmu_get_page(sp, false);
2156 return sp;
2157 }
47005792 2158
dfc5aa00 2159 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2160
2161 sp = kvm_mmu_alloc_page(vcpu, direct);
2162
4db35314
AK
2163 sp->gfn = gfn;
2164 sp->role = role;
7ae680eb
XG
2165 hlist_add_head(&sp->hash_link,
2166 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2167 if (!direct) {
56ca57f9
XG
2168 /*
2169 * we should do write protection before syncing pages
2170 * otherwise the content of the synced shadow page may
2171 * be inconsistent with guest page table.
2172 */
2173 account_shadowed(vcpu->kvm, sp);
2174 if (level == PT_PAGE_TABLE_LEVEL &&
2175 rmap_write_protect(vcpu, gfn))
b1a36821 2176 kvm_flush_remote_tlbs(vcpu->kvm);
56ca57f9 2177
9f1a122f
XG
2178 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2179 kvm_sync_pages(vcpu, gfn);
4731d4c7 2180 }
5304b8d3 2181 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2182 clear_page(sp->spt);
f691fe1d 2183 trace_kvm_mmu_get_page(sp, true);
4db35314 2184 return sp;
cea0f0e7
AK
2185}
2186
2d11123a
AK
2187static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2188 struct kvm_vcpu *vcpu, u64 addr)
2189{
2190 iterator->addr = addr;
2191 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2192 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2193
2194 if (iterator->level == PT64_ROOT_LEVEL &&
2195 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2196 !vcpu->arch.mmu.direct_map)
2197 --iterator->level;
2198
2d11123a
AK
2199 if (iterator->level == PT32E_ROOT_LEVEL) {
2200 iterator->shadow_addr
2201 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2202 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2203 --iterator->level;
2204 if (!iterator->shadow_addr)
2205 iterator->level = 0;
2206 }
2207}
2208
2209static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2210{
2211 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2212 return false;
4d88954d 2213
2d11123a
AK
2214 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2215 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2216 return true;
2217}
2218
c2a2ac2b
XG
2219static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2220 u64 spte)
2d11123a 2221{
c2a2ac2b 2222 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2223 iterator->level = 0;
2224 return;
2225 }
2226
c2a2ac2b 2227 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2228 --iterator->level;
2229}
2230
c2a2ac2b
XG
2231static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2232{
2233 return __shadow_walk_next(iterator, *iterator->sptep);
2234}
2235
98bba238
TY
2236static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2237 struct kvm_mmu_page *sp)
32ef26a3
AK
2238{
2239 u64 spte;
2240
7a1638ce
YZ
2241 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2242 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2243
24db2734 2244 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
0e3d0648 2245 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2246
1df9f2dc 2247 mmu_spte_set(sptep, spte);
98bba238
TY
2248
2249 mmu_page_add_parent_pte(vcpu, sp, sptep);
2250
2251 if (sp->unsync_children || sp->unsync)
2252 mark_unsync(sptep);
32ef26a3
AK
2253}
2254
a357bd22
AK
2255static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2256 unsigned direct_access)
2257{
2258 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2259 struct kvm_mmu_page *child;
2260
2261 /*
2262 * For the direct sp, if the guest pte's dirty bit
2263 * changed form clean to dirty, it will corrupt the
2264 * sp's access: allow writable in the read-only sp,
2265 * so we should update the spte at this point to get
2266 * a new sp with the correct access.
2267 */
2268 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2269 if (child->role.access == direct_access)
2270 return;
2271
bcdd9a93 2272 drop_parent_pte(child, sptep);
a357bd22
AK
2273 kvm_flush_remote_tlbs(vcpu->kvm);
2274 }
2275}
2276
505aef8f 2277static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2278 u64 *spte)
2279{
2280 u64 pte;
2281 struct kvm_mmu_page *child;
2282
2283 pte = *spte;
2284 if (is_shadow_present_pte(pte)) {
505aef8f 2285 if (is_last_spte(pte, sp->role.level)) {
c3707958 2286 drop_spte(kvm, spte);
505aef8f
XG
2287 if (is_large_pte(pte))
2288 --kvm->stat.lpages;
2289 } else {
38e3b2b2 2290 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2291 drop_parent_pte(child, spte);
38e3b2b2 2292 }
505aef8f
XG
2293 return true;
2294 }
2295
2296 if (is_mmio_spte(pte))
ce88decf 2297 mmu_spte_clear_no_track(spte);
c3707958 2298
505aef8f 2299 return false;
38e3b2b2
XG
2300}
2301
90cb0529 2302static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2303 struct kvm_mmu_page *sp)
a436036b 2304{
697fe2e2 2305 unsigned i;
697fe2e2 2306
38e3b2b2
XG
2307 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2308 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2309}
2310
31aa2b44 2311static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2312{
1e3f42f0
TY
2313 u64 *sptep;
2314 struct rmap_iterator iter;
a436036b 2315
018aabb5 2316 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2317 drop_parent_pte(sp, sptep);
31aa2b44
AK
2318}
2319
60c8aec6 2320static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2321 struct kvm_mmu_page *parent,
2322 struct list_head *invalid_list)
4731d4c7 2323{
60c8aec6
MT
2324 int i, zapped = 0;
2325 struct mmu_page_path parents;
2326 struct kvm_mmu_pages pages;
4731d4c7 2327
60c8aec6 2328 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2329 return 0;
60c8aec6 2330
60c8aec6
MT
2331 while (mmu_unsync_walk(parent, &pages)) {
2332 struct kvm_mmu_page *sp;
2333
2334 for_each_sp(pages, sp, parents, i) {
7775834a 2335 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2336 mmu_pages_clear_parents(&parents);
77662e00 2337 zapped++;
60c8aec6 2338 }
60c8aec6
MT
2339 }
2340
2341 return zapped;
4731d4c7
MT
2342}
2343
7775834a
XG
2344static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2345 struct list_head *invalid_list)
31aa2b44 2346{
4731d4c7 2347 int ret;
f691fe1d 2348
7775834a 2349 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2350 ++kvm->stat.mmu_shadow_zapped;
7775834a 2351 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2352 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2353 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2354
f6e2c02b 2355 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2356 unaccount_shadowed(kvm, sp);
5304b8d3 2357
4731d4c7
MT
2358 if (sp->unsync)
2359 kvm_unlink_unsync_page(kvm, sp);
4db35314 2360 if (!sp->root_count) {
54a4f023
GJ
2361 /* Count self */
2362 ret++;
7775834a 2363 list_move(&sp->link, invalid_list);
aa6bd187 2364 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2365 } else {
5b5c6a5a 2366 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2367
2368 /*
2369 * The obsolete pages can not be used on any vcpus.
2370 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2371 */
2372 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2373 kvm_reload_remote_mmus(kvm);
2e53d63a 2374 }
7775834a
XG
2375
2376 sp->role.invalid = 1;
4731d4c7 2377 return ret;
a436036b
AK
2378}
2379
7775834a
XG
2380static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2381 struct list_head *invalid_list)
2382{
945315b9 2383 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2384
2385 if (list_empty(invalid_list))
2386 return;
2387
c142786c
AK
2388 /*
2389 * wmb: make sure everyone sees our modifications to the page tables
2390 * rmb: make sure we see changes to vcpu->mode
2391 */
2392 smp_mb();
4f022648 2393
c142786c
AK
2394 /*
2395 * Wait for all vcpus to exit guest mode and/or lockless shadow
2396 * page table walks.
2397 */
2398 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2399
945315b9 2400 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2401 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2402 kvm_mmu_free_page(sp);
945315b9 2403 }
7775834a
XG
2404}
2405
5da59607
TY
2406static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2407 struct list_head *invalid_list)
2408{
2409 struct kvm_mmu_page *sp;
2410
2411 if (list_empty(&kvm->arch.active_mmu_pages))
2412 return false;
2413
d74c0e6b
GT
2414 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2415 struct kvm_mmu_page, link);
5da59607
TY
2416 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2417
2418 return true;
2419}
2420
82ce2c96
IE
2421/*
2422 * Changing the number of mmu pages allocated to the vm
49d5ca26 2423 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2424 */
49d5ca26 2425void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2426{
d98ba053 2427 LIST_HEAD(invalid_list);
82ce2c96 2428
b34cb590
TY
2429 spin_lock(&kvm->mmu_lock);
2430
49d5ca26 2431 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2432 /* Need to free some mmu pages to achieve the goal. */
2433 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2434 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2435 break;
82ce2c96 2436
aa6bd187 2437 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2438 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2439 }
82ce2c96 2440
49d5ca26 2441 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2442
2443 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2444}
2445
1cb3f3ae 2446int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2447{
4db35314 2448 struct kvm_mmu_page *sp;
d98ba053 2449 LIST_HEAD(invalid_list);
a436036b
AK
2450 int r;
2451
9ad17b10 2452 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2453 r = 0;
1cb3f3ae 2454 spin_lock(&kvm->mmu_lock);
b67bfe0d 2455 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2456 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2457 sp->role.word);
2458 r = 1;
f41d335a 2459 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2460 }
d98ba053 2461 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2462 spin_unlock(&kvm->mmu_lock);
2463
a436036b 2464 return r;
cea0f0e7 2465}
1cb3f3ae 2466EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2467
5c520e90 2468static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2469{
2470 trace_kvm_mmu_unsync_page(sp);
2471 ++vcpu->kvm->stat.mmu_unsync;
2472 sp->unsync = 1;
2473
2474 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2475}
2476
3d0c27ad
XG
2477static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2478 bool can_unsync)
4731d4c7 2479{
5c520e90 2480 struct kvm_mmu_page *sp;
9cf5cf5a 2481
3d0c27ad
XG
2482 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2483 return true;
2484
5c520e90 2485 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2486 if (!can_unsync)
3d0c27ad 2487 return true;
36a2e677 2488
5c520e90
XG
2489 if (sp->unsync)
2490 continue;
9cf5cf5a 2491
5c520e90
XG
2492 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2493 kvm_unsync_page(vcpu, sp);
4731d4c7 2494 }
3d0c27ad
XG
2495
2496 return false;
4731d4c7
MT
2497}
2498
ba049e93 2499static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2500{
2501 if (pfn_valid(pfn))
2502 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2503
2504 return true;
2505}
2506
d555c333 2507static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2508 unsigned pte_access, int level,
ba049e93 2509 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2510 bool can_unsync, bool host_writable)
1c4f1fd6 2511{
6e7d0354 2512 u64 spte;
1e73f9dd 2513 int ret = 0;
64d4d521 2514
54bf36aa 2515 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2516 return 0;
2517
982c2565 2518 spte = PT_PRESENT_MASK;
947da538 2519 if (!speculative)
3201b5d9 2520 spte |= shadow_accessed_mask;
640d9b0d 2521
7b52345e
SY
2522 if (pte_access & ACC_EXEC_MASK)
2523 spte |= shadow_x_mask;
2524 else
2525 spte |= shadow_nx_mask;
49fde340 2526
1c4f1fd6 2527 if (pte_access & ACC_USER_MASK)
7b52345e 2528 spte |= shadow_user_mask;
49fde340 2529
852e3c19 2530 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2531 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2532 if (tdp_enabled)
4b12f0de 2533 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2534 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2535
9bdbba13 2536 if (host_writable)
1403283a 2537 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2538 else
2539 pte_access &= ~ACC_WRITE_MASK;
1403283a 2540
35149e21 2541 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2542
c2288505 2543 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2544
c2193463 2545 /*
7751babd
XG
2546 * Other vcpu creates new sp in the window between
2547 * mapping_level() and acquiring mmu-lock. We can
2548 * allow guest to retry the access, the mapping can
2549 * be fixed if guest refault.
c2193463 2550 */
852e3c19 2551 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2552 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2553 goto done;
38187c83 2554
49fde340 2555 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2556
ecc5589f
MT
2557 /*
2558 * Optimization: for pte sync, if spte was writable the hash
2559 * lookup is unnecessary (and expensive). Write protection
2560 * is responsibility of mmu_get_page / kvm_sync_page.
2561 * Same reasoning can be applied to dirty page accounting.
2562 */
8dae4445 2563 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2564 goto set_pte;
2565
4731d4c7 2566 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2567 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2568 __func__, gfn);
1e73f9dd 2569 ret = 1;
1c4f1fd6 2570 pte_access &= ~ACC_WRITE_MASK;
49fde340 2571 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2572 }
2573 }
2574
9b51a630 2575 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2576 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2577 spte |= shadow_dirty_mask;
2578 }
1c4f1fd6 2579
38187c83 2580set_pte:
6e7d0354 2581 if (mmu_spte_update(sptep, spte))
b330aa0c 2582 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2583done:
1e73f9dd
MT
2584 return ret;
2585}
2586
029499b4 2587static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2588 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2589 bool speculative, bool host_writable)
1e73f9dd
MT
2590{
2591 int was_rmapped = 0;
53a27b39 2592 int rmap_count;
029499b4 2593 bool emulate = false;
1e73f9dd 2594
f7616203
XG
2595 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2596 *sptep, write_fault, gfn);
1e73f9dd 2597
afd28fe1 2598 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2599 /*
2600 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2601 * the parent of the now unreachable PTE.
2602 */
852e3c19
JR
2603 if (level > PT_PAGE_TABLE_LEVEL &&
2604 !is_large_pte(*sptep)) {
1e73f9dd 2605 struct kvm_mmu_page *child;
d555c333 2606 u64 pte = *sptep;
1e73f9dd
MT
2607
2608 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2609 drop_parent_pte(child, sptep);
3be2264b 2610 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2611 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2612 pgprintk("hfn old %llx new %llx\n",
d555c333 2613 spte_to_pfn(*sptep), pfn);
c3707958 2614 drop_spte(vcpu->kvm, sptep);
91546356 2615 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2616 } else
2617 was_rmapped = 1;
1e73f9dd 2618 }
852e3c19 2619
c2288505
XG
2620 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2621 true, host_writable)) {
1e73f9dd 2622 if (write_fault)
029499b4 2623 emulate = true;
77c3913b 2624 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2625 }
1e73f9dd 2626
029499b4
TY
2627 if (unlikely(is_mmio_spte(*sptep)))
2628 emulate = true;
ce88decf 2629
d555c333 2630 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2631 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2632 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2633 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2634 *sptep, sptep);
d555c333 2635 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2636 ++vcpu->kvm->stat.lpages;
2637
ffb61bb3 2638 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2639 if (!was_rmapped) {
2640 rmap_count = rmap_add(vcpu, sptep, gfn);
2641 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2642 rmap_recycle(vcpu, sptep, gfn);
2643 }
1c4f1fd6 2644 }
cb9aaa30 2645
f3ac1a4b 2646 kvm_release_pfn_clean(pfn);
029499b4
TY
2647
2648 return emulate;
1c4f1fd6
AK
2649}
2650
ba049e93 2651static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2652 bool no_dirty_log)
2653{
2654 struct kvm_memory_slot *slot;
957ed9ef 2655
5d163b1c 2656 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2657 if (!slot)
6c8ee57b 2658 return KVM_PFN_ERR_FAULT;
957ed9ef 2659
037d92dc 2660 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2661}
2662
2663static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2664 struct kvm_mmu_page *sp,
2665 u64 *start, u64 *end)
2666{
2667 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2668 struct kvm_memory_slot *slot;
957ed9ef
XG
2669 unsigned access = sp->role.access;
2670 int i, ret;
2671 gfn_t gfn;
2672
2673 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2674 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2675 if (!slot)
957ed9ef
XG
2676 return -1;
2677
d9ef13c2 2678 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2679 if (ret <= 0)
2680 return -1;
2681
2682 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2683 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2684 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2685
2686 return 0;
2687}
2688
2689static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2690 struct kvm_mmu_page *sp, u64 *sptep)
2691{
2692 u64 *spte, *start = NULL;
2693 int i;
2694
2695 WARN_ON(!sp->role.direct);
2696
2697 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2698 spte = sp->spt + i;
2699
2700 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2701 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2702 if (!start)
2703 continue;
2704 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2705 break;
2706 start = NULL;
2707 } else if (!start)
2708 start = spte;
2709 }
2710}
2711
2712static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2713{
2714 struct kvm_mmu_page *sp;
2715
2716 /*
2717 * Since it's no accessed bit on EPT, it's no way to
2718 * distinguish between actually accessed translations
2719 * and prefetched, so disable pte prefetch if EPT is
2720 * enabled.
2721 */
2722 if (!shadow_accessed_mask)
2723 return;
2724
2725 sp = page_header(__pa(sptep));
2726 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2727 return;
2728
2729 __direct_pte_prefetch(vcpu, sp, sptep);
2730}
2731
7ee0e5b2 2732static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2733 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2734{
9f652d21 2735 struct kvm_shadow_walk_iterator iterator;
140754bc 2736 struct kvm_mmu_page *sp;
b90a0e6c 2737 int emulate = 0;
140754bc 2738 gfn_t pseudo_gfn;
6aa8b732 2739
989c6b34
MT
2740 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2741 return 0;
2742
9f652d21 2743 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2744 if (iterator.level == level) {
029499b4
TY
2745 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2746 write, level, gfn, pfn, prefault,
2747 map_writable);
957ed9ef 2748 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2749 ++vcpu->stat.pf_fixed;
2750 break;
6aa8b732
AK
2751 }
2752
404381c5 2753 drop_large_spte(vcpu, iterator.sptep);
c3707958 2754 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2755 u64 base_addr = iterator.addr;
2756
2757 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2758 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2759 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2760 iterator.level - 1, 1, ACC_ALL);
140754bc 2761
98bba238 2762 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2763 }
2764 }
b90a0e6c 2765 return emulate;
6aa8b732
AK
2766}
2767
77db5cbd 2768static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2769{
77db5cbd
HY
2770 siginfo_t info;
2771
2772 info.si_signo = SIGBUS;
2773 info.si_errno = 0;
2774 info.si_code = BUS_MCEERR_AR;
2775 info.si_addr = (void __user *)address;
2776 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2777
77db5cbd 2778 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2779}
2780
ba049e93 2781static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2782{
4d8b81ab
XG
2783 /*
2784 * Do not cache the mmio info caused by writing the readonly gfn
2785 * into the spte otherwise read access on readonly gfn also can
2786 * caused mmio page fault and treat it as mmio access.
2787 * Return 1 to tell kvm to emulate it.
2788 */
2789 if (pfn == KVM_PFN_ERR_RO_FAULT)
2790 return 1;
2791
e6c1502b 2792 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2793 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2794 return 0;
d7c55201 2795 }
edba23e5 2796
d7c55201 2797 return -EFAULT;
bf998156
HY
2798}
2799
936a5fe6 2800static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2801 gfn_t *gfnp, kvm_pfn_t *pfnp,
2802 int *levelp)
936a5fe6 2803{
ba049e93 2804 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2805 gfn_t gfn = *gfnp;
2806 int level = *levelp;
2807
2808 /*
2809 * Check if it's a transparent hugepage. If this would be an
2810 * hugetlbfs page, level wouldn't be set to
2811 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2812 * here.
2813 */
bf4bea8e 2814 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2815 level == PT_PAGE_TABLE_LEVEL &&
2816 PageTransCompound(pfn_to_page(pfn)) &&
92f94f1e 2817 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2818 unsigned long mask;
2819 /*
2820 * mmu_notifier_retry was successful and we hold the
2821 * mmu_lock here, so the pmd can't become splitting
2822 * from under us, and in turn
2823 * __split_huge_page_refcount() can't run from under
2824 * us and we can safely transfer the refcount from
2825 * PG_tail to PG_head as we switch the pfn to tail to
2826 * head.
2827 */
2828 *levelp = level = PT_DIRECTORY_LEVEL;
2829 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2830 VM_BUG_ON((gfn & mask) != (pfn & mask));
2831 if (pfn & mask) {
2832 gfn &= ~mask;
2833 *gfnp = gfn;
2834 kvm_release_pfn_clean(pfn);
2835 pfn &= ~mask;
c3586667 2836 kvm_get_pfn(pfn);
936a5fe6
AA
2837 *pfnp = pfn;
2838 }
2839 }
2840}
2841
d7c55201 2842static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2843 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 2844{
d7c55201 2845 /* The pfn is invalid, report the error! */
81c52c56 2846 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2847 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2848 return true;
d7c55201
XG
2849 }
2850
ce88decf 2851 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2852 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 2853
798e88b3 2854 return false;
d7c55201
XG
2855}
2856
e5552fd2 2857static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2858{
1c118b82
XG
2859 /*
2860 * Do not fix the mmio spte with invalid generation number which
2861 * need to be updated by slow page fault path.
2862 */
2863 if (unlikely(error_code & PFERR_RSVD_MASK))
2864 return false;
2865
c7ba5b48
XG
2866 /*
2867 * #PF can be fast only if the shadow page table is present and it
2868 * is caused by write-protect, that means we just need change the
2869 * W bit of the spte which can be done out of mmu-lock.
2870 */
2871 if (!(error_code & PFERR_PRESENT_MASK) ||
2872 !(error_code & PFERR_WRITE_MASK))
2873 return false;
2874
2875 return true;
2876}
2877
2878static bool
92a476cb
XG
2879fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2880 u64 *sptep, u64 spte)
c7ba5b48 2881{
c7ba5b48
XG
2882 gfn_t gfn;
2883
2884 WARN_ON(!sp->role.direct);
2885
2886 /*
2887 * The gfn of direct spte is stable since it is calculated
2888 * by sp->gfn.
2889 */
2890 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2891
9b51a630
KH
2892 /*
2893 * Theoretically we could also set dirty bit (and flush TLB) here in
2894 * order to eliminate unnecessary PML logging. See comments in
2895 * set_spte. But fast_page_fault is very unlikely to happen with PML
2896 * enabled, so we do not do this. This might result in the same GPA
2897 * to be logged in PML buffer again when the write really happens, and
2898 * eventually to be called by mark_page_dirty twice. But it's also no
2899 * harm. This also avoids the TLB flush needed after setting dirty bit
2900 * so non-PML cases won't be impacted.
2901 *
2902 * Compare with set_spte where instead shadow_dirty_mask is set.
2903 */
c7ba5b48 2904 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2905 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2906
2907 return true;
2908}
2909
2910/*
2911 * Return value:
2912 * - true: let the vcpu to access on the same address again.
2913 * - false: let the real page fault path to fix it.
2914 */
2915static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2916 u32 error_code)
2917{
2918 struct kvm_shadow_walk_iterator iterator;
92a476cb 2919 struct kvm_mmu_page *sp;
c7ba5b48
XG
2920 bool ret = false;
2921 u64 spte = 0ull;
2922
37f6a4e2
MT
2923 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2924 return false;
2925
e5552fd2 2926 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2927 return false;
2928
2929 walk_shadow_page_lockless_begin(vcpu);
2930 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2931 if (!is_shadow_present_pte(spte) || iterator.level < level)
2932 break;
2933
2934 /*
2935 * If the mapping has been changed, let the vcpu fault on the
2936 * same address again.
2937 */
afd28fe1 2938 if (!is_shadow_present_pte(spte)) {
c7ba5b48
XG
2939 ret = true;
2940 goto exit;
2941 }
2942
92a476cb
XG
2943 sp = page_header(__pa(iterator.sptep));
2944 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2945 goto exit;
2946
2947 /*
2948 * Check if it is a spurious fault caused by TLB lazily flushed.
2949 *
2950 * Need not check the access of upper level table entries since
2951 * they are always ACC_ALL.
2952 */
2953 if (is_writable_pte(spte)) {
2954 ret = true;
2955 goto exit;
2956 }
2957
2958 /*
2959 * Currently, to simplify the code, only the spte write-protected
2960 * by dirty-log can be fast fixed.
2961 */
2962 if (!spte_is_locklessly_modifiable(spte))
2963 goto exit;
2964
c126d94f
XG
2965 /*
2966 * Do not fix write-permission on the large spte since we only dirty
2967 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2968 * that means other pages are missed if its slot is dirty-logged.
2969 *
2970 * Instead, we let the slow page fault path create a normal spte to
2971 * fix the access.
2972 *
2973 * See the comments in kvm_arch_commit_memory_region().
2974 */
2975 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2976 goto exit;
2977
c7ba5b48
XG
2978 /*
2979 * Currently, fast page fault only works for direct mapping since
2980 * the gfn is not stable for indirect shadow page.
2981 * See Documentation/virtual/kvm/locking.txt to get more detail.
2982 */
92a476cb 2983 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2984exit:
a72faf25
XG
2985 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2986 spte, ret);
c7ba5b48
XG
2987 walk_shadow_page_lockless_end(vcpu);
2988
2989 return ret;
2990}
2991
78b2c54a 2992static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 2993 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 2994static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2995
c7ba5b48
XG
2996static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2997 gfn_t gfn, bool prefault)
10589a46
MT
2998{
2999 int r;
852e3c19 3000 int level;
fd136902 3001 bool force_pt_level = false;
ba049e93 3002 kvm_pfn_t pfn;
e930bffe 3003 unsigned long mmu_seq;
c7ba5b48 3004 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3005
fd136902 3006 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3007 if (likely(!force_pt_level)) {
936a5fe6
AA
3008 /*
3009 * This path builds a PAE pagetable - so we can map
3010 * 2mb pages at maximum. Therefore check if the level
3011 * is larger than that.
3012 */
3013 if (level > PT_DIRECTORY_LEVEL)
3014 level = PT_DIRECTORY_LEVEL;
852e3c19 3015
936a5fe6 3016 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3017 }
05da4558 3018
c7ba5b48
XG
3019 if (fast_page_fault(vcpu, v, level, error_code))
3020 return 0;
3021
e930bffe 3022 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3023 smp_rmb();
060c2abe 3024
78b2c54a 3025 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3026 return 0;
aaee2c94 3027
d7c55201
XG
3028 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3029 return r;
d196e343 3030
aaee2c94 3031 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3032 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3033 goto out_unlock;
450e0b41 3034 make_mmu_pages_available(vcpu);
936a5fe6
AA
3035 if (likely(!force_pt_level))
3036 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3037 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3038 spin_unlock(&vcpu->kvm->mmu_lock);
3039
10589a46 3040 return r;
e930bffe
AA
3041
3042out_unlock:
3043 spin_unlock(&vcpu->kvm->mmu_lock);
3044 kvm_release_pfn_clean(pfn);
3045 return 0;
10589a46
MT
3046}
3047
3048
17ac10ad
AK
3049static void mmu_free_roots(struct kvm_vcpu *vcpu)
3050{
3051 int i;
4db35314 3052 struct kvm_mmu_page *sp;
d98ba053 3053 LIST_HEAD(invalid_list);
17ac10ad 3054
ad312c7c 3055 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3056 return;
35af577a 3057
81407ca5
JR
3058 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3059 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3060 vcpu->arch.mmu.direct_map)) {
ad312c7c 3061 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3062
35af577a 3063 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3064 sp = page_header(root);
3065 --sp->root_count;
d98ba053
XG
3066 if (!sp->root_count && sp->role.invalid) {
3067 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3068 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3069 }
aaee2c94 3070 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3071 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3072 return;
3073 }
35af577a
GN
3074
3075 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3076 for (i = 0; i < 4; ++i) {
ad312c7c 3077 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3078
417726a3 3079 if (root) {
417726a3 3080 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3081 sp = page_header(root);
3082 --sp->root_count;
2e53d63a 3083 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3084 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3085 &invalid_list);
417726a3 3086 }
ad312c7c 3087 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3088 }
d98ba053 3089 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3090 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3091 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3092}
3093
8986ecc0
MT
3094static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3095{
3096 int ret = 0;
3097
3098 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3099 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3100 ret = 1;
3101 }
3102
3103 return ret;
3104}
3105
651dd37a
JR
3106static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3107{
3108 struct kvm_mmu_page *sp;
7ebaf15e 3109 unsigned i;
651dd37a
JR
3110
3111 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3112 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3113 make_mmu_pages_available(vcpu);
bb11c6c9 3114 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3115 ++sp->root_count;
3116 spin_unlock(&vcpu->kvm->mmu_lock);
3117 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3118 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3119 for (i = 0; i < 4; ++i) {
3120 hpa_t root = vcpu->arch.mmu.pae_root[i];
3121
fa4a2c08 3122 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3123 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3124 make_mmu_pages_available(vcpu);
649497d1 3125 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3126 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3127 root = __pa(sp->spt);
3128 ++sp->root_count;
3129 spin_unlock(&vcpu->kvm->mmu_lock);
3130 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3131 }
6292757f 3132 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3133 } else
3134 BUG();
3135
3136 return 0;
3137}
3138
3139static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3140{
4db35314 3141 struct kvm_mmu_page *sp;
81407ca5
JR
3142 u64 pdptr, pm_mask;
3143 gfn_t root_gfn;
3144 int i;
3bb65a22 3145
5777ed34 3146 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3147
651dd37a
JR
3148 if (mmu_check_root(vcpu, root_gfn))
3149 return 1;
3150
3151 /*
3152 * Do we shadow a long mode page table? If so we need to
3153 * write-protect the guests page table root.
3154 */
3155 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3156 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3157
fa4a2c08 3158 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3159
8facbbff 3160 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3161 make_mmu_pages_available(vcpu);
651dd37a 3162 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3163 0, ACC_ALL);
4db35314
AK
3164 root = __pa(sp->spt);
3165 ++sp->root_count;
8facbbff 3166 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3167 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3168 return 0;
17ac10ad 3169 }
f87f9288 3170
651dd37a
JR
3171 /*
3172 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3173 * or a PAE 3-level page table. In either case we need to be aware that
3174 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3175 */
81407ca5
JR
3176 pm_mask = PT_PRESENT_MASK;
3177 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3178 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3179
17ac10ad 3180 for (i = 0; i < 4; ++i) {
ad312c7c 3181 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3182
fa4a2c08 3183 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3184 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3185 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3186 if (!is_present_gpte(pdptr)) {
ad312c7c 3187 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3188 continue;
3189 }
6de4f3ad 3190 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3191 if (mmu_check_root(vcpu, root_gfn))
3192 return 1;
5a7388c2 3193 }
8facbbff 3194 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3195 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3196 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3197 0, ACC_ALL);
4db35314
AK
3198 root = __pa(sp->spt);
3199 ++sp->root_count;
8facbbff
AK
3200 spin_unlock(&vcpu->kvm->mmu_lock);
3201
81407ca5 3202 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3203 }
6292757f 3204 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3205
3206 /*
3207 * If we shadow a 32 bit page table with a long mode page
3208 * table we enter this path.
3209 */
3210 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3211 if (vcpu->arch.mmu.lm_root == NULL) {
3212 /*
3213 * The additional page necessary for this is only
3214 * allocated on demand.
3215 */
3216
3217 u64 *lm_root;
3218
3219 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3220 if (lm_root == NULL)
3221 return 1;
3222
3223 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3224
3225 vcpu->arch.mmu.lm_root = lm_root;
3226 }
3227
3228 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3229 }
3230
8986ecc0 3231 return 0;
17ac10ad
AK
3232}
3233
651dd37a
JR
3234static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3235{
3236 if (vcpu->arch.mmu.direct_map)
3237 return mmu_alloc_direct_roots(vcpu);
3238 else
3239 return mmu_alloc_shadow_roots(vcpu);
3240}
3241
0ba73cda
MT
3242static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3243{
3244 int i;
3245 struct kvm_mmu_page *sp;
3246
81407ca5
JR
3247 if (vcpu->arch.mmu.direct_map)
3248 return;
3249
0ba73cda
MT
3250 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3251 return;
6903074c 3252
56f17dd3 3253 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3254 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3255 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3256 hpa_t root = vcpu->arch.mmu.root_hpa;
3257 sp = page_header(root);
3258 mmu_sync_children(vcpu, sp);
0375f7fa 3259 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3260 return;
3261 }
3262 for (i = 0; i < 4; ++i) {
3263 hpa_t root = vcpu->arch.mmu.pae_root[i];
3264
8986ecc0 3265 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3266 root &= PT64_BASE_ADDR_MASK;
3267 sp = page_header(root);
3268 mmu_sync_children(vcpu, sp);
3269 }
3270 }
0375f7fa 3271 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3272}
3273
3274void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3275{
3276 spin_lock(&vcpu->kvm->mmu_lock);
3277 mmu_sync_roots(vcpu);
6cffe8ca 3278 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3279}
bfd0a56b 3280EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3281
1871c602 3282static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3283 u32 access, struct x86_exception *exception)
6aa8b732 3284{
ab9ae313
AK
3285 if (exception)
3286 exception->error_code = 0;
6aa8b732
AK
3287 return vaddr;
3288}
3289
6539e738 3290static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3291 u32 access,
3292 struct x86_exception *exception)
6539e738 3293{
ab9ae313
AK
3294 if (exception)
3295 exception->error_code = 0;
54987b7a 3296 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3297}
3298
d625b155
XG
3299static bool
3300__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3301{
3302 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3303
3304 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3305 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3306}
3307
3308static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3309{
3310 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3311}
3312
3313static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3314{
3315 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3316}
3317
ded58749 3318static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3319{
3320 if (direct)
3321 return vcpu_match_mmio_gpa(vcpu, addr);
3322
3323 return vcpu_match_mmio_gva(vcpu, addr);
3324}
3325
47ab8751
XG
3326/* return true if reserved bit is detected on spte. */
3327static bool
3328walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3329{
3330 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3331 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3332 int root, leaf;
3333 bool reserved = false;
ce88decf 3334
37f6a4e2 3335 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3336 goto exit;
37f6a4e2 3337
ce88decf 3338 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3339
29ecd660
PB
3340 for (shadow_walk_init(&iterator, vcpu, addr),
3341 leaf = root = iterator.level;
47ab8751
XG
3342 shadow_walk_okay(&iterator);
3343 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3344 spte = mmu_spte_get_lockless(iterator.sptep);
3345
3346 sptes[leaf - 1] = spte;
29ecd660 3347 leaf--;
47ab8751 3348
ce88decf
XG
3349 if (!is_shadow_present_pte(spte))
3350 break;
47ab8751
XG
3351
3352 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3353 iterator.level);
47ab8751
XG
3354 }
3355
ce88decf
XG
3356 walk_shadow_page_lockless_end(vcpu);
3357
47ab8751
XG
3358 if (reserved) {
3359 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3360 __func__, addr);
29ecd660 3361 while (root > leaf) {
47ab8751
XG
3362 pr_err("------ spte 0x%llx level %d.\n",
3363 sptes[root - 1], root);
3364 root--;
3365 }
3366 }
3367exit:
3368 *sptep = spte;
3369 return reserved;
ce88decf
XG
3370}
3371
450869d6 3372int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3373{
3374 u64 spte;
47ab8751 3375 bool reserved;
ce88decf 3376
ded58749 3377 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3378 return RET_MMIO_PF_EMULATE;
ce88decf 3379
47ab8751 3380 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3381 if (WARN_ON(reserved))
47ab8751 3382 return RET_MMIO_PF_BUG;
ce88decf
XG
3383
3384 if (is_mmio_spte(spte)) {
3385 gfn_t gfn = get_mmio_spte_gfn(spte);
3386 unsigned access = get_mmio_spte_access(spte);
3387
54bf36aa 3388 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3389 return RET_MMIO_PF_INVALID;
3390
ce88decf
XG
3391 if (direct)
3392 addr = 0;
4f022648
XG
3393
3394 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3395 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3396 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3397 }
3398
ce88decf
XG
3399 /*
3400 * If the page table is zapped by other cpus, let CPU fault again on
3401 * the address.
3402 */
b37fbea6 3403 return RET_MMIO_PF_RETRY;
ce88decf 3404}
450869d6 3405EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3406
3d0c27ad
XG
3407static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3408 u32 error_code, gfn_t gfn)
3409{
3410 if (unlikely(error_code & PFERR_RSVD_MASK))
3411 return false;
3412
3413 if (!(error_code & PFERR_PRESENT_MASK) ||
3414 !(error_code & PFERR_WRITE_MASK))
3415 return false;
3416
3417 /*
3418 * guest is writing the page which is write tracked which can
3419 * not be fixed by page fault handler.
3420 */
3421 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3422 return true;
3423
3424 return false;
3425}
3426
e5691a81
XG
3427static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3428{
3429 struct kvm_shadow_walk_iterator iterator;
3430 u64 spte;
3431
3432 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3433 return;
3434
3435 walk_shadow_page_lockless_begin(vcpu);
3436 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3437 clear_sp_write_flooding_count(iterator.sptep);
3438 if (!is_shadow_present_pte(spte))
3439 break;
3440 }
3441 walk_shadow_page_lockless_end(vcpu);
3442}
3443
6aa8b732 3444static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3445 u32 error_code, bool prefault)
6aa8b732 3446{
3d0c27ad 3447 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3448 int r;
6aa8b732 3449
b8688d51 3450 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3451
3d0c27ad
XG
3452 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3453 return 1;
3454
e2dec939
AK
3455 r = mmu_topup_memory_caches(vcpu);
3456 if (r)
3457 return r;
714b93da 3458
fa4a2c08 3459 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3460
6aa8b732 3461
e833240f 3462 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3463 error_code, gfn, prefault);
6aa8b732
AK
3464}
3465
7e1fbeac 3466static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3467{
3468 struct kvm_arch_async_pf arch;
fb67e14f 3469
7c90705b 3470 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3471 arch.gfn = gfn;
c4806acd 3472 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3473 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3474
54bf36aa 3475 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3476}
3477
3478static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3479{
35754c98 3480 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3481 kvm_event_needs_reinjection(vcpu)))
3482 return false;
3483
3484 return kvm_x86_ops->interrupt_allowed(vcpu);
3485}
3486
78b2c54a 3487static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3488 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3489{
3520469d 3490 struct kvm_memory_slot *slot;
af585b92
GN
3491 bool async;
3492
54bf36aa 3493 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3494 async = false;
3495 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3496 if (!async)
3497 return false; /* *pfn has correct page already */
3498
78b2c54a 3499 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3500 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3501 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3502 trace_kvm_async_pf_doublefault(gva, gfn);
3503 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3504 return true;
3505 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3506 return true;
3507 }
3508
3520469d 3509 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3510 return false;
3511}
3512
6a39bbc5
XG
3513static bool
3514check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3515{
3516 int page_num = KVM_PAGES_PER_HPAGE(level);
3517
3518 gfn &= ~(page_num - 1);
3519
3520 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3521}
3522
56028d08 3523static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3524 bool prefault)
fb72d167 3525{
ba049e93 3526 kvm_pfn_t pfn;
fb72d167 3527 int r;
852e3c19 3528 int level;
cd1872f0 3529 bool force_pt_level;
05da4558 3530 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3531 unsigned long mmu_seq;
612819c3
MT
3532 int write = error_code & PFERR_WRITE_MASK;
3533 bool map_writable;
fb72d167 3534
fa4a2c08 3535 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3536
3d0c27ad
XG
3537 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3538 return 1;
3539
fb72d167
JR
3540 r = mmu_topup_memory_caches(vcpu);
3541 if (r)
3542 return r;
3543
fd136902
TY
3544 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3545 PT_DIRECTORY_LEVEL);
3546 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3547 if (likely(!force_pt_level)) {
6a39bbc5
XG
3548 if (level > PT_DIRECTORY_LEVEL &&
3549 !check_hugepage_cache_consistency(vcpu, gfn, level))
3550 level = PT_DIRECTORY_LEVEL;
936a5fe6 3551 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3552 }
852e3c19 3553
c7ba5b48
XG
3554 if (fast_page_fault(vcpu, gpa, level, error_code))
3555 return 0;
3556
e930bffe 3557 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3558 smp_rmb();
af585b92 3559
78b2c54a 3560 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3561 return 0;
3562
d7c55201
XG
3563 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3564 return r;
3565
fb72d167 3566 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3567 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3568 goto out_unlock;
450e0b41 3569 make_mmu_pages_available(vcpu);
936a5fe6
AA
3570 if (likely(!force_pt_level))
3571 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3572 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3573 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3574
3575 return r;
e930bffe
AA
3576
3577out_unlock:
3578 spin_unlock(&vcpu->kvm->mmu_lock);
3579 kvm_release_pfn_clean(pfn);
3580 return 0;
fb72d167
JR
3581}
3582
8a3c1a33
PB
3583static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3584 struct kvm_mmu *context)
6aa8b732 3585{
6aa8b732 3586 context->page_fault = nonpaging_page_fault;
6aa8b732 3587 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3588 context->sync_page = nonpaging_sync_page;
a7052897 3589 context->invlpg = nonpaging_invlpg;
0f53b5b1 3590 context->update_pte = nonpaging_update_pte;
cea0f0e7 3591 context->root_level = 0;
6aa8b732 3592 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3593 context->root_hpa = INVALID_PAGE;
c5a78f2b 3594 context->direct_map = true;
2d48a985 3595 context->nx = false;
6aa8b732
AK
3596}
3597
d8d173da 3598void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3599{
cea0f0e7 3600 mmu_free_roots(vcpu);
6aa8b732
AK
3601}
3602
5777ed34
JR
3603static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3604{
9f8fe504 3605 return kvm_read_cr3(vcpu);
5777ed34
JR
3606}
3607
6389ee94
AK
3608static void inject_page_fault(struct kvm_vcpu *vcpu,
3609 struct x86_exception *fault)
6aa8b732 3610{
6389ee94 3611 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3612}
3613
54bf36aa 3614static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3615 unsigned access, int *nr_present)
ce88decf
XG
3616{
3617 if (unlikely(is_mmio_spte(*sptep))) {
3618 if (gfn != get_mmio_spte_gfn(*sptep)) {
3619 mmu_spte_clear_no_track(sptep);
3620 return true;
3621 }
3622
3623 (*nr_present)++;
54bf36aa 3624 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3625 return true;
3626 }
3627
3628 return false;
3629}
3630
6fd01b71
AK
3631static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3632{
3633 unsigned index;
3634
3635 index = level - 1;
3636 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3637 return mmu->last_pte_bitmap & (1 << index);
3638}
3639
37406aaa
NHE
3640#define PTTYPE_EPT 18 /* arbitrary */
3641#define PTTYPE PTTYPE_EPT
3642#include "paging_tmpl.h"
3643#undef PTTYPE
3644
6aa8b732
AK
3645#define PTTYPE 64
3646#include "paging_tmpl.h"
3647#undef PTTYPE
3648
3649#define PTTYPE 32
3650#include "paging_tmpl.h"
3651#undef PTTYPE
3652
6dc98b86
XG
3653static void
3654__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3655 struct rsvd_bits_validate *rsvd_check,
3656 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3657 bool pse, bool amd)
82725b20 3658{
82725b20 3659 u64 exb_bit_rsvd = 0;
5f7dde7b 3660 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3661 u64 nonleaf_bit8_rsvd = 0;
82725b20 3662
a0a64f50 3663 rsvd_check->bad_mt_xwr = 0;
25d92081 3664
6dc98b86 3665 if (!nx)
82725b20 3666 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3667 if (!gbpages)
5f7dde7b 3668 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3669
3670 /*
3671 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3672 * leaf entries) on AMD CPUs only.
3673 */
6fec2144 3674 if (amd)
a0c0feb5
PB
3675 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3676
6dc98b86 3677 switch (level) {
82725b20
DE
3678 case PT32_ROOT_LEVEL:
3679 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3680 rsvd_check->rsvd_bits_mask[0][1] = 0;
3681 rsvd_check->rsvd_bits_mask[0][0] = 0;
3682 rsvd_check->rsvd_bits_mask[1][0] =
3683 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3684
6dc98b86 3685 if (!pse) {
a0a64f50 3686 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3687 break;
3688 }
3689
82725b20
DE
3690 if (is_cpuid_PSE36())
3691 /* 36bits PSE 4MB page */
a0a64f50 3692 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3693 else
3694 /* 32 bits PSE 4MB page */
a0a64f50 3695 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3696 break;
3697 case PT32E_ROOT_LEVEL:
a0a64f50 3698 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3699 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3700 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3701 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3702 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3703 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3704 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3705 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3706 rsvd_bits(maxphyaddr, 62) |
3707 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3708 rsvd_check->rsvd_bits_mask[1][0] =
3709 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3710 break;
3711 case PT64_ROOT_LEVEL:
a0a64f50
XG
3712 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3713 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3714 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3715 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3716 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3717 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3718 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3719 rsvd_bits(maxphyaddr, 51);
3720 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3721 rsvd_bits(maxphyaddr, 51);
3722 rsvd_check->rsvd_bits_mask[1][3] =
3723 rsvd_check->rsvd_bits_mask[0][3];
3724 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3725 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3726 rsvd_bits(13, 29);
a0a64f50 3727 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3728 rsvd_bits(maxphyaddr, 51) |
3729 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3730 rsvd_check->rsvd_bits_mask[1][0] =
3731 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3732 break;
3733 }
3734}
3735
6dc98b86
XG
3736static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3737 struct kvm_mmu *context)
3738{
3739 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3740 cpuid_maxphyaddr(vcpu), context->root_level,
3741 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3742 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3743}
3744
81b8eebb
XG
3745static void
3746__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3747 int maxphyaddr, bool execonly)
25d92081 3748{
951f9fd7 3749 u64 bad_mt_xwr;
25d92081 3750
a0a64f50 3751 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3752 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3753 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3754 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3755 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3756 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3757 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3758
3759 /* large page */
a0a64f50
XG
3760 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3761 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3762 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3763 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3764 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3765 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3766
951f9fd7
PB
3767 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3768 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3769 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3770 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3771 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3772 if (!execonly) {
3773 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3774 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3775 }
951f9fd7 3776 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3777}
3778
81b8eebb
XG
3779static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3780 struct kvm_mmu *context, bool execonly)
3781{
3782 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3783 cpuid_maxphyaddr(vcpu), execonly);
3784}
3785
c258b62b
XG
3786/*
3787 * the page table on host is the shadow page table for the page
3788 * table in guest or amd nested guest, its mmu features completely
3789 * follow the features in guest.
3790 */
3791void
3792reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3793{
6fec2144
PB
3794 /*
3795 * Passing "true" to the last argument is okay; it adds a check
3796 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3797 */
c258b62b
XG
3798 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3799 boot_cpu_data.x86_phys_bits,
3800 context->shadow_root_level, context->nx,
6fec2144
PB
3801 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3802 true);
c258b62b
XG
3803}
3804EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3805
6fec2144
PB
3806static inline bool boot_cpu_is_amd(void)
3807{
3808 WARN_ON_ONCE(!tdp_enabled);
3809 return shadow_x_mask == 0;
3810}
3811
c258b62b
XG
3812/*
3813 * the direct page table on host, use as much mmu features as
3814 * possible, however, kvm currently does not do execution-protection.
3815 */
3816static void
3817reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3818 struct kvm_mmu *context)
3819{
6fec2144 3820 if (boot_cpu_is_amd())
c258b62b
XG
3821 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3822 boot_cpu_data.x86_phys_bits,
3823 context->shadow_root_level, false,
6fec2144 3824 cpu_has_gbpages, true, true);
c258b62b
XG
3825 else
3826 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3827 boot_cpu_data.x86_phys_bits,
3828 false);
3829
3830}
3831
3832/*
3833 * as the comments in reset_shadow_zero_bits_mask() except it
3834 * is the shadow page table for intel nested guest.
3835 */
3836static void
3837reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3838 struct kvm_mmu *context, bool execonly)
3839{
3840 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3841 boot_cpu_data.x86_phys_bits, execonly);
3842}
3843
edc90b7d
XG
3844static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3845 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3846{
3847 unsigned bit, byte, pfec;
3848 u8 map;
66386ade 3849 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3850
66386ade 3851 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3852 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3853 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3854 pfec = byte << 1;
3855 map = 0;
3856 wf = pfec & PFERR_WRITE_MASK;
3857 uf = pfec & PFERR_USER_MASK;
3858 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3859 /*
3860 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3861 * subject to SMAP restrictions, and cleared otherwise. The
3862 * bit is only meaningful if the SMAP bit is set in CR4.
3863 */
3864 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3865 for (bit = 0; bit < 8; ++bit) {
3866 x = bit & ACC_EXEC_MASK;
3867 w = bit & ACC_WRITE_MASK;
3868 u = bit & ACC_USER_MASK;
3869
25d92081
YZ
3870 if (!ept) {
3871 /* Not really needed: !nx will cause pte.nx to fault */
3872 x |= !mmu->nx;
3873 /* Allow supervisor writes if !cr0.wp */
3874 w |= !is_write_protection(vcpu) && !uf;
3875 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3876 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3877
3878 /*
3879 * SMAP:kernel-mode data accesses from user-mode
3880 * mappings should fault. A fault is considered
3881 * as a SMAP violation if all of the following
3882 * conditions are ture:
3883 * - X86_CR4_SMAP is set in CR4
3884 * - An user page is accessed
3885 * - Page fault in kernel mode
3886 * - if CPL = 3 or X86_EFLAGS_AC is clear
3887 *
3888 * Here, we cover the first three conditions.
3889 * The fourth is computed dynamically in
3890 * permission_fault() and is in smapf.
3891 *
3892 * Also, SMAP does not affect instruction
3893 * fetches, add the !ff check here to make it
3894 * clearer.
3895 */
3896 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3897 } else
3898 /* Not really needed: no U/S accesses on ept */
3899 u = 1;
97d64b78 3900
97ec8c06
FW
3901 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3902 (smapf && smap);
97d64b78
AK
3903 map |= fault << bit;
3904 }
3905 mmu->permissions[byte] = map;
3906 }
3907}
3908
6fd01b71
AK
3909static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3910{
3911 u8 map;
3912 unsigned level, root_level = mmu->root_level;
3913 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3914
3915 if (root_level == PT32E_ROOT_LEVEL)
3916 --root_level;
3917 /* PT_PAGE_TABLE_LEVEL always terminates */
3918 map = 1 | (1 << ps_set_index);
3919 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3920 if (level <= PT_PDPE_LEVEL
3921 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3922 map |= 1 << (ps_set_index | (level - 1));
3923 }
3924 mmu->last_pte_bitmap = map;
3925}
3926
8a3c1a33
PB
3927static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3928 struct kvm_mmu *context,
3929 int level)
6aa8b732 3930{
2d48a985 3931 context->nx = is_nx(vcpu);
4d6931c3 3932 context->root_level = level;
2d48a985 3933
4d6931c3 3934 reset_rsvds_bits_mask(vcpu, context);
25d92081 3935 update_permission_bitmask(vcpu, context, false);
6fd01b71 3936 update_last_pte_bitmap(vcpu, context);
6aa8b732 3937
fa4a2c08 3938 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3939 context->page_fault = paging64_page_fault;
6aa8b732 3940 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3941 context->sync_page = paging64_sync_page;
a7052897 3942 context->invlpg = paging64_invlpg;
0f53b5b1 3943 context->update_pte = paging64_update_pte;
17ac10ad 3944 context->shadow_root_level = level;
17c3ba9d 3945 context->root_hpa = INVALID_PAGE;
c5a78f2b 3946 context->direct_map = false;
6aa8b732
AK
3947}
3948
8a3c1a33
PB
3949static void paging64_init_context(struct kvm_vcpu *vcpu,
3950 struct kvm_mmu *context)
17ac10ad 3951{
8a3c1a33 3952 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3953}
3954
8a3c1a33
PB
3955static void paging32_init_context(struct kvm_vcpu *vcpu,
3956 struct kvm_mmu *context)
6aa8b732 3957{
2d48a985 3958 context->nx = false;
4d6931c3 3959 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3960
4d6931c3 3961 reset_rsvds_bits_mask(vcpu, context);
25d92081 3962 update_permission_bitmask(vcpu, context, false);
6fd01b71 3963 update_last_pte_bitmap(vcpu, context);
6aa8b732 3964
6aa8b732 3965 context->page_fault = paging32_page_fault;
6aa8b732 3966 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3967 context->sync_page = paging32_sync_page;
a7052897 3968 context->invlpg = paging32_invlpg;
0f53b5b1 3969 context->update_pte = paging32_update_pte;
6aa8b732 3970 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3971 context->root_hpa = INVALID_PAGE;
c5a78f2b 3972 context->direct_map = false;
6aa8b732
AK
3973}
3974
8a3c1a33
PB
3975static void paging32E_init_context(struct kvm_vcpu *vcpu,
3976 struct kvm_mmu *context)
6aa8b732 3977{
8a3c1a33 3978 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3979}
3980
8a3c1a33 3981static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3982{
ad896af0 3983 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3984
c445f8ef 3985 context->base_role.word = 0;
699023e2 3986 context->base_role.smm = is_smm(vcpu);
fb72d167 3987 context->page_fault = tdp_page_fault;
e8bc217a 3988 context->sync_page = nonpaging_sync_page;
a7052897 3989 context->invlpg = nonpaging_invlpg;
0f53b5b1 3990 context->update_pte = nonpaging_update_pte;
67253af5 3991 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3992 context->root_hpa = INVALID_PAGE;
c5a78f2b 3993 context->direct_map = true;
1c97f0a0 3994 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3995 context->get_cr3 = get_cr3;
e4e517b4 3996 context->get_pdptr = kvm_pdptr_read;
cb659db8 3997 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3998
3999 if (!is_paging(vcpu)) {
2d48a985 4000 context->nx = false;
fb72d167
JR
4001 context->gva_to_gpa = nonpaging_gva_to_gpa;
4002 context->root_level = 0;
4003 } else if (is_long_mode(vcpu)) {
2d48a985 4004 context->nx = is_nx(vcpu);
fb72d167 4005 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4006 reset_rsvds_bits_mask(vcpu, context);
4007 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4008 } else if (is_pae(vcpu)) {
2d48a985 4009 context->nx = is_nx(vcpu);
fb72d167 4010 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4011 reset_rsvds_bits_mask(vcpu, context);
4012 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4013 } else {
2d48a985 4014 context->nx = false;
fb72d167 4015 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4016 reset_rsvds_bits_mask(vcpu, context);
4017 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4018 }
4019
25d92081 4020 update_permission_bitmask(vcpu, context, false);
6fd01b71 4021 update_last_pte_bitmap(vcpu, context);
c258b62b 4022 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4023}
4024
ad896af0 4025void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4026{
411c588d 4027 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4028 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4029 struct kvm_mmu *context = &vcpu->arch.mmu;
4030
fa4a2c08 4031 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4032
4033 if (!is_paging(vcpu))
8a3c1a33 4034 nonpaging_init_context(vcpu, context);
a9058ecd 4035 else if (is_long_mode(vcpu))
8a3c1a33 4036 paging64_init_context(vcpu, context);
6aa8b732 4037 else if (is_pae(vcpu))
8a3c1a33 4038 paging32E_init_context(vcpu, context);
6aa8b732 4039 else
8a3c1a33 4040 paging32_init_context(vcpu, context);
a770f6f2 4041
ad896af0
PB
4042 context->base_role.nxe = is_nx(vcpu);
4043 context->base_role.cr4_pae = !!is_pae(vcpu);
4044 context->base_role.cr0_wp = is_write_protection(vcpu);
4045 context->base_role.smep_andnot_wp
411c588d 4046 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4047 context->base_role.smap_andnot_wp
4048 = smap && !is_write_protection(vcpu);
699023e2 4049 context->base_role.smm = is_smm(vcpu);
c258b62b 4050 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4051}
4052EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4053
ad896af0 4054void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4055{
ad896af0
PB
4056 struct kvm_mmu *context = &vcpu->arch.mmu;
4057
fa4a2c08 4058 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4059
4060 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4061
4062 context->nx = true;
155a97a3
NHE
4063 context->page_fault = ept_page_fault;
4064 context->gva_to_gpa = ept_gva_to_gpa;
4065 context->sync_page = ept_sync_page;
4066 context->invlpg = ept_invlpg;
4067 context->update_pte = ept_update_pte;
155a97a3
NHE
4068 context->root_level = context->shadow_root_level;
4069 context->root_hpa = INVALID_PAGE;
4070 context->direct_map = false;
4071
4072 update_permission_bitmask(vcpu, context, true);
4073 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4074 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4075}
4076EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4077
8a3c1a33 4078static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4079{
ad896af0
PB
4080 struct kvm_mmu *context = &vcpu->arch.mmu;
4081
4082 kvm_init_shadow_mmu(vcpu);
4083 context->set_cr3 = kvm_x86_ops->set_cr3;
4084 context->get_cr3 = get_cr3;
4085 context->get_pdptr = kvm_pdptr_read;
4086 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4087}
4088
8a3c1a33 4089static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4090{
4091 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4092
4093 g_context->get_cr3 = get_cr3;
e4e517b4 4094 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4095 g_context->inject_page_fault = kvm_inject_page_fault;
4096
4097 /*
0af2593b
DM
4098 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4099 * L1's nested page tables (e.g. EPT12). The nested translation
4100 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4101 * L2's page tables as the first level of translation and L1's
4102 * nested page tables as the second level of translation. Basically
4103 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4104 */
4105 if (!is_paging(vcpu)) {
2d48a985 4106 g_context->nx = false;
02f59dc9
JR
4107 g_context->root_level = 0;
4108 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4109 } else if (is_long_mode(vcpu)) {
2d48a985 4110 g_context->nx = is_nx(vcpu);
02f59dc9 4111 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4112 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4113 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4114 } else if (is_pae(vcpu)) {
2d48a985 4115 g_context->nx = is_nx(vcpu);
02f59dc9 4116 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4117 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4118 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4119 } else {
2d48a985 4120 g_context->nx = false;
02f59dc9 4121 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4122 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4123 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4124 }
4125
25d92081 4126 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4127 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4128}
4129
8a3c1a33 4130static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4131{
02f59dc9 4132 if (mmu_is_nested(vcpu))
e0c6db3e 4133 init_kvm_nested_mmu(vcpu);
02f59dc9 4134 else if (tdp_enabled)
e0c6db3e 4135 init_kvm_tdp_mmu(vcpu);
fb72d167 4136 else
e0c6db3e 4137 init_kvm_softmmu(vcpu);
fb72d167
JR
4138}
4139
8a3c1a33 4140void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4141{
95f93af4 4142 kvm_mmu_unload(vcpu);
8a3c1a33 4143 init_kvm_mmu(vcpu);
17c3ba9d 4144}
8668a3c4 4145EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4146
4147int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4148{
714b93da
AK
4149 int r;
4150
e2dec939 4151 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4152 if (r)
4153 goto out;
8986ecc0 4154 r = mmu_alloc_roots(vcpu);
e2858b4a 4155 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4156 if (r)
4157 goto out;
3662cb1c 4158 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4159 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4160out:
4161 return r;
6aa8b732 4162}
17c3ba9d
AK
4163EXPORT_SYMBOL_GPL(kvm_mmu_load);
4164
4165void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4166{
4167 mmu_free_roots(vcpu);
95f93af4 4168 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4169}
4b16184c 4170EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4171
0028425f 4172static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4173 struct kvm_mmu_page *sp, u64 *spte,
4174 const void *new)
0028425f 4175{
30945387 4176 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4177 ++vcpu->kvm->stat.mmu_pde_zapped;
4178 return;
30945387 4179 }
0028425f 4180
4cee5764 4181 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4182 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4183}
4184
79539cec
AK
4185static bool need_remote_flush(u64 old, u64 new)
4186{
4187 if (!is_shadow_present_pte(old))
4188 return false;
4189 if (!is_shadow_present_pte(new))
4190 return true;
4191 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4192 return true;
53166229
GN
4193 old ^= shadow_nx_mask;
4194 new ^= shadow_nx_mask;
79539cec
AK
4195 return (old & ~new & PT64_PERM_MASK) != 0;
4196}
4197
889e5cbc
XG
4198static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4199 const u8 *new, int *bytes)
da4a00f0 4200{
889e5cbc
XG
4201 u64 gentry;
4202 int r;
72016f3a 4203
72016f3a
AK
4204 /*
4205 * Assume that the pte write on a page table of the same type
49b26e26
XG
4206 * as the current vcpu paging mode since we update the sptes only
4207 * when they have the same mode.
72016f3a 4208 */
889e5cbc 4209 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4210 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4211 *gpa &= ~(gpa_t)7;
4212 *bytes = 8;
54bf36aa 4213 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4214 if (r)
4215 gentry = 0;
08e850c6
AK
4216 new = (const u8 *)&gentry;
4217 }
4218
889e5cbc 4219 switch (*bytes) {
08e850c6
AK
4220 case 4:
4221 gentry = *(const u32 *)new;
4222 break;
4223 case 8:
4224 gentry = *(const u64 *)new;
4225 break;
4226 default:
4227 gentry = 0;
4228 break;
72016f3a
AK
4229 }
4230
889e5cbc
XG
4231 return gentry;
4232}
4233
4234/*
4235 * If we're seeing too many writes to a page, it may no longer be a page table,
4236 * or we may be forking, in which case it is better to unmap the page.
4237 */
a138fe75 4238static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4239{
a30f47cb
XG
4240 /*
4241 * Skip write-flooding detected for the sp whose level is 1, because
4242 * it can become unsync, then the guest page is not write-protected.
4243 */
f71fa31f 4244 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4245 return false;
3246af0e 4246
e5691a81
XG
4247 atomic_inc(&sp->write_flooding_count);
4248 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4249}
4250
4251/*
4252 * Misaligned accesses are too much trouble to fix up; also, they usually
4253 * indicate a page is not used as a page table.
4254 */
4255static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4256 int bytes)
4257{
4258 unsigned offset, pte_size, misaligned;
4259
4260 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4261 gpa, bytes, sp->role.word);
4262
4263 offset = offset_in_page(gpa);
4264 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4265
4266 /*
4267 * Sometimes, the OS only writes the last one bytes to update status
4268 * bits, for example, in linux, andb instruction is used in clear_bit().
4269 */
4270 if (!(offset & (pte_size - 1)) && bytes == 1)
4271 return false;
4272
889e5cbc
XG
4273 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4274 misaligned |= bytes < 4;
4275
4276 return misaligned;
4277}
4278
4279static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4280{
4281 unsigned page_offset, quadrant;
4282 u64 *spte;
4283 int level;
4284
4285 page_offset = offset_in_page(gpa);
4286 level = sp->role.level;
4287 *nspte = 1;
4288 if (!sp->role.cr4_pae) {
4289 page_offset <<= 1; /* 32->64 */
4290 /*
4291 * A 32-bit pde maps 4MB while the shadow pdes map
4292 * only 2MB. So we need to double the offset again
4293 * and zap two pdes instead of one.
4294 */
4295 if (level == PT32_ROOT_LEVEL) {
4296 page_offset &= ~7; /* kill rounding error */
4297 page_offset <<= 1;
4298 *nspte = 2;
4299 }
4300 quadrant = page_offset >> PAGE_SHIFT;
4301 page_offset &= ~PAGE_MASK;
4302 if (quadrant != sp->role.quadrant)
4303 return NULL;
4304 }
4305
4306 spte = &sp->spt[page_offset / sizeof(*spte)];
4307 return spte;
4308}
4309
13d268ca
XG
4310static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4311 const u8 *new, int bytes)
889e5cbc
XG
4312{
4313 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4314 struct kvm_mmu_page *sp;
889e5cbc
XG
4315 LIST_HEAD(invalid_list);
4316 u64 entry, gentry, *spte;
4317 int npte;
b8c67b7a 4318 bool remote_flush, local_flush;
4141259b
AM
4319 union kvm_mmu_page_role mask = { };
4320
4321 mask.cr0_wp = 1;
4322 mask.cr4_pae = 1;
4323 mask.nxe = 1;
4324 mask.smep_andnot_wp = 1;
4325 mask.smap_andnot_wp = 1;
699023e2 4326 mask.smm = 1;
889e5cbc
XG
4327
4328 /*
4329 * If we don't have indirect shadow pages, it means no page is
4330 * write-protected, so we can exit simply.
4331 */
4332 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4333 return;
4334
b8c67b7a 4335 remote_flush = local_flush = false;
889e5cbc
XG
4336
4337 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4338
4339 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4340
4341 /*
4342 * No need to care whether allocation memory is successful
4343 * or not since pte prefetch is skiped if it does not have
4344 * enough objects in the cache.
4345 */
4346 mmu_topup_memory_caches(vcpu);
4347
4348 spin_lock(&vcpu->kvm->mmu_lock);
4349 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4350 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4351
b67bfe0d 4352 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4353 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4354 detect_write_flooding(sp)) {
b8c67b7a 4355 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4356 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4357 continue;
4358 }
889e5cbc
XG
4359
4360 spte = get_written_sptes(sp, gpa, &npte);
4361 if (!spte)
4362 continue;
4363
0671a8e7 4364 local_flush = true;
ac1b714e 4365 while (npte--) {
79539cec 4366 entry = *spte;
38e3b2b2 4367 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4368 if (gentry &&
4369 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4370 & mask.word) && rmap_can_add(vcpu))
7c562522 4371 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4372 if (need_remote_flush(entry, *spte))
0671a8e7 4373 remote_flush = true;
ac1b714e 4374 ++spte;
9b7a0325 4375 }
9b7a0325 4376 }
b8c67b7a 4377 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4378 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4379 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4380}
4381
a436036b
AK
4382int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4383{
10589a46
MT
4384 gpa_t gpa;
4385 int r;
a436036b 4386
c5a78f2b 4387 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4388 return 0;
4389
1871c602 4390 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4391
10589a46 4392 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4393
10589a46 4394 return r;
a436036b 4395}
577bdc49 4396EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4397
81f4f76b 4398static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4399{
d98ba053 4400 LIST_HEAD(invalid_list);
103ad25a 4401
81f4f76b
TY
4402 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4403 return;
4404
5da59607
TY
4405 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4406 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4407 break;
ebeace86 4408
4cee5764 4409 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4410 }
aa6bd187 4411 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4412}
ebeace86 4413
dc25e89e
AP
4414int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4415 void *insn, int insn_len)
3067714c 4416{
1cb3f3ae 4417 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4418 enum emulation_result er;
ded58749 4419 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4420
e9ee956e
TY
4421 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4422 r = handle_mmio_page_fault(vcpu, cr2, direct);
4423 if (r == RET_MMIO_PF_EMULATE) {
4424 emulation_type = 0;
4425 goto emulate;
4426 }
4427 if (r == RET_MMIO_PF_RETRY)
4428 return 1;
4429 if (r < 0)
4430 return r;
4431 }
4432
56028d08 4433 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c 4434 if (r < 0)
e9ee956e
TY
4435 return r;
4436 if (!r)
4437 return 1;
3067714c 4438
ded58749 4439 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4440 emulation_type = 0;
e9ee956e 4441emulate:
1cb3f3ae 4442 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4443
4444 switch (er) {
4445 case EMULATE_DONE:
4446 return 1;
ac0a48c3 4447 case EMULATE_USER_EXIT:
3067714c 4448 ++vcpu->stat.mmio_exits;
6d77dbfc 4449 /* fall through */
3067714c 4450 case EMULATE_FAIL:
3f5d18a9 4451 return 0;
3067714c
AK
4452 default:
4453 BUG();
4454 }
3067714c
AK
4455}
4456EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4457
a7052897
MT
4458void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4459{
a7052897 4460 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4461 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4462 ++vcpu->stat.invlpg;
4463}
4464EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4465
18552672
JR
4466void kvm_enable_tdp(void)
4467{
4468 tdp_enabled = true;
4469}
4470EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4471
5f4cb662
JR
4472void kvm_disable_tdp(void)
4473{
4474 tdp_enabled = false;
4475}
4476EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4477
6aa8b732
AK
4478static void free_mmu_pages(struct kvm_vcpu *vcpu)
4479{
ad312c7c 4480 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4481 if (vcpu->arch.mmu.lm_root != NULL)
4482 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4483}
4484
4485static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4486{
17ac10ad 4487 struct page *page;
6aa8b732
AK
4488 int i;
4489
17ac10ad
AK
4490 /*
4491 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4492 * Therefore we need to allocate shadow page tables in the first
4493 * 4GB of memory, which happens to fit the DMA32 zone.
4494 */
4495 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4496 if (!page)
d7fa6ab2
WY
4497 return -ENOMEM;
4498
ad312c7c 4499 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4500 for (i = 0; i < 4; ++i)
ad312c7c 4501 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4502
6aa8b732 4503 return 0;
6aa8b732
AK
4504}
4505
8018c27b 4506int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4507{
e459e322
XG
4508 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4509 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4510 vcpu->arch.mmu.translate_gpa = translate_gpa;
4511 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4512
8018c27b
IM
4513 return alloc_mmu_pages(vcpu);
4514}
6aa8b732 4515
8a3c1a33 4516void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4517{
fa4a2c08 4518 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4519
8a3c1a33 4520 init_kvm_mmu(vcpu);
6aa8b732
AK
4521}
4522
13d268ca
XG
4523void kvm_mmu_init_vm(struct kvm *kvm)
4524{
4525 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4526
4527 node->track_write = kvm_mmu_pte_write;
4528 kvm_page_track_register_notifier(kvm, node);
4529}
4530
4531void kvm_mmu_uninit_vm(struct kvm *kvm)
4532{
4533 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4534
4535 kvm_page_track_unregister_notifier(kvm, node);
4536}
4537
1bad2b2a 4538/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4539typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4540
4541/* The caller should hold mmu-lock before calling this function. */
4542static bool
4543slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4544 slot_level_handler fn, int start_level, int end_level,
4545 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4546{
4547 struct slot_rmap_walk_iterator iterator;
4548 bool flush = false;
4549
4550 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4551 end_gfn, &iterator) {
4552 if (iterator.rmap)
4553 flush |= fn(kvm, iterator.rmap);
4554
4555 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4556 if (flush && lock_flush_tlb) {
4557 kvm_flush_remote_tlbs(kvm);
4558 flush = false;
4559 }
4560 cond_resched_lock(&kvm->mmu_lock);
4561 }
4562 }
4563
4564 if (flush && lock_flush_tlb) {
4565 kvm_flush_remote_tlbs(kvm);
4566 flush = false;
4567 }
4568
4569 return flush;
4570}
4571
4572static bool
4573slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4574 slot_level_handler fn, int start_level, int end_level,
4575 bool lock_flush_tlb)
4576{
4577 return slot_handle_level_range(kvm, memslot, fn, start_level,
4578 end_level, memslot->base_gfn,
4579 memslot->base_gfn + memslot->npages - 1,
4580 lock_flush_tlb);
4581}
4582
4583static bool
4584slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4585 slot_level_handler fn, bool lock_flush_tlb)
4586{
4587 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4588 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4589}
4590
4591static bool
4592slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4593 slot_level_handler fn, bool lock_flush_tlb)
4594{
4595 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4596 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4597}
4598
4599static bool
4600slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4601 slot_level_handler fn, bool lock_flush_tlb)
4602{
4603 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4604 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4605}
4606
efdfe536
XG
4607void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4608{
4609 struct kvm_memslots *slots;
4610 struct kvm_memory_slot *memslot;
9da0e4d5 4611 int i;
efdfe536
XG
4612
4613 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4614 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4615 slots = __kvm_memslots(kvm, i);
4616 kvm_for_each_memslot(memslot, slots) {
4617 gfn_t start, end;
4618
4619 start = max(gfn_start, memslot->base_gfn);
4620 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4621 if (start >= end)
4622 continue;
efdfe536 4623
9da0e4d5
PB
4624 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4625 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4626 start, end - 1, true);
4627 }
efdfe536
XG
4628 }
4629
4630 spin_unlock(&kvm->mmu_lock);
4631}
4632
018aabb5
TY
4633static bool slot_rmap_write_protect(struct kvm *kvm,
4634 struct kvm_rmap_head *rmap_head)
d77aa73c 4635{
018aabb5 4636 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4637}
4638
1c91cad4
KH
4639void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4640 struct kvm_memory_slot *memslot)
6aa8b732 4641{
d77aa73c 4642 bool flush;
6aa8b732 4643
9d1beefb 4644 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4645 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4646 false);
9d1beefb 4647 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4648
4649 /*
4650 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4651 * which do tlb flush out of mmu-lock should be serialized by
4652 * kvm->slots_lock otherwise tlb flush would be missed.
4653 */
4654 lockdep_assert_held(&kvm->slots_lock);
4655
4656 /*
4657 * We can flush all the TLBs out of the mmu lock without TLB
4658 * corruption since we just change the spte from writable to
4659 * readonly so that we only need to care the case of changing
4660 * spte from present to present (changing the spte from present
4661 * to nonpresent will flush all the TLBs immediately), in other
4662 * words, the only case we care is mmu_spte_update() where we
4663 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4664 * instead of PT_WRITABLE_MASK, that means it does not depend
4665 * on PT_WRITABLE_MASK anymore.
4666 */
d91ffee9
KH
4667 if (flush)
4668 kvm_flush_remote_tlbs(kvm);
6aa8b732 4669}
37a7d8b0 4670
3ea3b7fa 4671static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4672 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4673{
4674 u64 *sptep;
4675 struct rmap_iterator iter;
4676 int need_tlb_flush = 0;
ba049e93 4677 kvm_pfn_t pfn;
3ea3b7fa
WL
4678 struct kvm_mmu_page *sp;
4679
0d536790 4680restart:
018aabb5 4681 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4682 sp = page_header(__pa(sptep));
4683 pfn = spte_to_pfn(*sptep);
4684
4685 /*
decf6333
XG
4686 * We cannot do huge page mapping for indirect shadow pages,
4687 * which are found on the last rmap (level = 1) when not using
4688 * tdp; such shadow pages are synced with the page table in
4689 * the guest, and the guest page table is using 4K page size
4690 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4691 */
4692 if (sp->role.direct &&
4693 !kvm_is_reserved_pfn(pfn) &&
4694 PageTransCompound(pfn_to_page(pfn))) {
4695 drop_spte(kvm, sptep);
3ea3b7fa 4696 need_tlb_flush = 1;
0d536790
XG
4697 goto restart;
4698 }
3ea3b7fa
WL
4699 }
4700
4701 return need_tlb_flush;
4702}
4703
4704void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4705 const struct kvm_memory_slot *memslot)
3ea3b7fa 4706{
f36f3f28 4707 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4708 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4709 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4710 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4711 spin_unlock(&kvm->mmu_lock);
4712}
4713
f4b4b180
KH
4714void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4715 struct kvm_memory_slot *memslot)
4716{
d77aa73c 4717 bool flush;
f4b4b180
KH
4718
4719 spin_lock(&kvm->mmu_lock);
d77aa73c 4720 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4721 spin_unlock(&kvm->mmu_lock);
4722
4723 lockdep_assert_held(&kvm->slots_lock);
4724
4725 /*
4726 * It's also safe to flush TLBs out of mmu lock here as currently this
4727 * function is only used for dirty logging, in which case flushing TLB
4728 * out of mmu lock also guarantees no dirty pages will be lost in
4729 * dirty_bitmap.
4730 */
4731 if (flush)
4732 kvm_flush_remote_tlbs(kvm);
4733}
4734EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4735
4736void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4737 struct kvm_memory_slot *memslot)
4738{
d77aa73c 4739 bool flush;
f4b4b180
KH
4740
4741 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4742 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4743 false);
f4b4b180
KH
4744 spin_unlock(&kvm->mmu_lock);
4745
4746 /* see kvm_mmu_slot_remove_write_access */
4747 lockdep_assert_held(&kvm->slots_lock);
4748
4749 if (flush)
4750 kvm_flush_remote_tlbs(kvm);
4751}
4752EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4753
4754void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4755 struct kvm_memory_slot *memslot)
4756{
d77aa73c 4757 bool flush;
f4b4b180
KH
4758
4759 spin_lock(&kvm->mmu_lock);
d77aa73c 4760 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4761 spin_unlock(&kvm->mmu_lock);
4762
4763 lockdep_assert_held(&kvm->slots_lock);
4764
4765 /* see kvm_mmu_slot_leaf_clear_dirty */
4766 if (flush)
4767 kvm_flush_remote_tlbs(kvm);
4768}
4769EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4770
e7d11c7a 4771#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4772static void kvm_zap_obsolete_pages(struct kvm *kvm)
4773{
4774 struct kvm_mmu_page *sp, *node;
e7d11c7a 4775 int batch = 0;
5304b8d3
XG
4776
4777restart:
4778 list_for_each_entry_safe_reverse(sp, node,
4779 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4780 int ret;
4781
5304b8d3
XG
4782 /*
4783 * No obsolete page exists before new created page since
4784 * active_mmu_pages is the FIFO list.
4785 */
4786 if (!is_obsolete_sp(kvm, sp))
4787 break;
4788
4789 /*
5304b8d3
XG
4790 * Since we are reversely walking the list and the invalid
4791 * list will be moved to the head, skip the invalid page
4792 * can help us to avoid the infinity list walking.
4793 */
4794 if (sp->role.invalid)
4795 continue;
4796
f34d251d
XG
4797 /*
4798 * Need not flush tlb since we only zap the sp with invalid
4799 * generation number.
4800 */
e7d11c7a 4801 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4802 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4803 batch = 0;
5304b8d3
XG
4804 goto restart;
4805 }
4806
365c8868
XG
4807 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4808 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4809 batch += ret;
4810
4811 if (ret)
5304b8d3
XG
4812 goto restart;
4813 }
4814
f34d251d
XG
4815 /*
4816 * Should flush tlb before free page tables since lockless-walking
4817 * may use the pages.
4818 */
365c8868 4819 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4820}
4821
4822/*
4823 * Fast invalidate all shadow pages and use lock-break technique
4824 * to zap obsolete pages.
4825 *
4826 * It's required when memslot is being deleted or VM is being
4827 * destroyed, in these cases, we should ensure that KVM MMU does
4828 * not use any resource of the being-deleted slot or all slots
4829 * after calling the function.
4830 */
4831void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4832{
4833 spin_lock(&kvm->mmu_lock);
35006126 4834 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4835 kvm->arch.mmu_valid_gen++;
4836
f34d251d
XG
4837 /*
4838 * Notify all vcpus to reload its shadow page table
4839 * and flush TLB. Then all vcpus will switch to new
4840 * shadow page table with the new mmu_valid_gen.
4841 *
4842 * Note: we should do this under the protection of
4843 * mmu-lock, otherwise, vcpu would purge shadow page
4844 * but miss tlb flush.
4845 */
4846 kvm_reload_remote_mmus(kvm);
4847
5304b8d3
XG
4848 kvm_zap_obsolete_pages(kvm);
4849 spin_unlock(&kvm->mmu_lock);
4850}
4851
365c8868
XG
4852static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4853{
4854 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4855}
4856
54bf36aa 4857void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4858{
4859 /*
4860 * The very rare case: if the generation-number is round,
4861 * zap all shadow pages.
f8f55942 4862 */
54bf36aa 4863 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4864 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4865 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4866 }
f8f55942
XG
4867}
4868
70534a73
DC
4869static unsigned long
4870mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4871{
4872 struct kvm *kvm;
1495f230 4873 int nr_to_scan = sc->nr_to_scan;
70534a73 4874 unsigned long freed = 0;
3ee16c81 4875
2f303b74 4876 spin_lock(&kvm_lock);
3ee16c81
IE
4877
4878 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4879 int idx;
d98ba053 4880 LIST_HEAD(invalid_list);
3ee16c81 4881
35f2d16b
TY
4882 /*
4883 * Never scan more than sc->nr_to_scan VM instances.
4884 * Will not hit this condition practically since we do not try
4885 * to shrink more than one VM and it is very unlikely to see
4886 * !n_used_mmu_pages so many times.
4887 */
4888 if (!nr_to_scan--)
4889 break;
19526396
GN
4890 /*
4891 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4892 * here. We may skip a VM instance errorneosly, but we do not
4893 * want to shrink a VM that only started to populate its MMU
4894 * anyway.
4895 */
365c8868
XG
4896 if (!kvm->arch.n_used_mmu_pages &&
4897 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4898 continue;
19526396 4899
f656ce01 4900 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4901 spin_lock(&kvm->mmu_lock);
3ee16c81 4902
365c8868
XG
4903 if (kvm_has_zapped_obsolete_pages(kvm)) {
4904 kvm_mmu_commit_zap_page(kvm,
4905 &kvm->arch.zapped_obsolete_pages);
4906 goto unlock;
4907 }
4908
70534a73
DC
4909 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4910 freed++;
d98ba053 4911 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4912
365c8868 4913unlock:
3ee16c81 4914 spin_unlock(&kvm->mmu_lock);
f656ce01 4915 srcu_read_unlock(&kvm->srcu, idx);
19526396 4916
70534a73
DC
4917 /*
4918 * unfair on small ones
4919 * per-vm shrinkers cry out
4920 * sadness comes quickly
4921 */
19526396
GN
4922 list_move_tail(&kvm->vm_list, &vm_list);
4923 break;
3ee16c81 4924 }
3ee16c81 4925
2f303b74 4926 spin_unlock(&kvm_lock);
70534a73 4927 return freed;
70534a73
DC
4928}
4929
4930static unsigned long
4931mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4932{
45221ab6 4933 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4934}
4935
4936static struct shrinker mmu_shrinker = {
70534a73
DC
4937 .count_objects = mmu_shrink_count,
4938 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4939 .seeks = DEFAULT_SEEKS * 10,
4940};
4941
2ddfd20e 4942static void mmu_destroy_caches(void)
b5a33a75 4943{
53c07b18
XG
4944 if (pte_list_desc_cache)
4945 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4946 if (mmu_page_header_cache)
4947 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4948}
4949
4950int kvm_mmu_module_init(void)
4951{
53c07b18
XG
4952 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4953 sizeof(struct pte_list_desc),
20c2df83 4954 0, 0, NULL);
53c07b18 4955 if (!pte_list_desc_cache)
b5a33a75
AK
4956 goto nomem;
4957
d3d25b04
AK
4958 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4959 sizeof(struct kvm_mmu_page),
20c2df83 4960 0, 0, NULL);
d3d25b04
AK
4961 if (!mmu_page_header_cache)
4962 goto nomem;
4963
908c7f19 4964 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4965 goto nomem;
4966
3ee16c81
IE
4967 register_shrinker(&mmu_shrinker);
4968
b5a33a75
AK
4969 return 0;
4970
4971nomem:
3ee16c81 4972 mmu_destroy_caches();
b5a33a75
AK
4973 return -ENOMEM;
4974}
4975
3ad82a7e
ZX
4976/*
4977 * Caculate mmu pages needed for kvm.
4978 */
4979unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4980{
3ad82a7e
ZX
4981 unsigned int nr_mmu_pages;
4982 unsigned int nr_pages = 0;
bc6678a3 4983 struct kvm_memslots *slots;
be6ba0f0 4984 struct kvm_memory_slot *memslot;
9da0e4d5 4985 int i;
3ad82a7e 4986
9da0e4d5
PB
4987 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4988 slots = __kvm_memslots(kvm, i);
90d83dc3 4989
9da0e4d5
PB
4990 kvm_for_each_memslot(memslot, slots)
4991 nr_pages += memslot->npages;
4992 }
3ad82a7e
ZX
4993
4994 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4995 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 4996 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
4997
4998 return nr_mmu_pages;
4999}
5000
c42fffe3
XG
5001void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5002{
95f93af4 5003 kvm_mmu_unload(vcpu);
c42fffe3
XG
5004 free_mmu_pages(vcpu);
5005 mmu_free_memory_caches(vcpu);
b034cf01
XG
5006}
5007
b034cf01
XG
5008void kvm_mmu_module_exit(void)
5009{
5010 mmu_destroy_caches();
5011 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5012 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5013 mmu_audit_disable();
5014}
This page took 1.046912 seconds and 5 git commands to generate.