KVM: MMU: drop kvm_mmu_zap_mmio_sptes
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
f2fd125d
XG
200/*
201 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203 * number.
204 */
205#define MMIO_SPTE_GEN_LOW_SHIFT 3
206#define MMIO_SPTE_GEN_HIGH_SHIFT 52
207
f8f55942 208#define MMIO_GEN_SHIFT 19
f2fd125d
XG
209#define MMIO_GEN_LOW_SHIFT 9
210#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
f8f55942
XG
211#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
212#define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
213
214static u64 generation_mmio_spte_mask(unsigned int gen)
215{
216 u64 mask;
217
218 WARN_ON(gen > MMIO_MAX_GEN);
219
220 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222 return mask;
223}
224
225static unsigned int get_mmio_spte_generation(u64 spte)
226{
227 unsigned int gen;
228
229 spte &= ~shadow_mmio_mask;
230
231 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233 return gen;
234}
235
f8f55942
XG
236static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237{
69c9ea93
XG
238 /*
239 * Init kvm generation close to MMIO_MAX_GEN to easily test the
240 * code of handling generation number wrap-around.
241 */
242 return (kvm_memslots(kvm)->generation +
243 MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
f8f55942
XG
244}
245
f2fd125d
XG
246static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 unsigned access)
ce88decf 248{
f8f55942
XG
249 unsigned int gen = kvm_current_mmio_generation(kvm);
250 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 251
ce88decf 252 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 253 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 254
f8f55942 255 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 256 mmu_spte_set(sptep, mask);
ce88decf
XG
257}
258
259static bool is_mmio_spte(u64 spte)
260{
261 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262}
263
264static gfn_t get_mmio_spte_gfn(u64 spte)
265{
f2fd125d
XG
266 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
268}
269
270static unsigned get_mmio_spte_access(u64 spte)
271{
f2fd125d
XG
272 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
274}
275
f2fd125d
XG
276static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 pfn_t pfn, unsigned access)
ce88decf
XG
278{
279 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 280 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
281 return true;
282 }
283
284 return false;
285}
c7addb90 286
f8f55942
XG
287static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288{
089504c0
XG
289 unsigned int kvm_gen, spte_gen;
290
291 kvm_gen = kvm_current_mmio_generation(kvm);
292 spte_gen = get_mmio_spte_generation(spte);
293
294 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 return likely(kvm_gen == spte_gen);
f8f55942
XG
296}
297
82725b20
DE
298static inline u64 rsvd_bits(int s, int e)
299{
300 return ((1ULL << (e - s + 1)) - 1) << s;
301}
302
7b52345e 303void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 304 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
305{
306 shadow_user_mask = user_mask;
307 shadow_accessed_mask = accessed_mask;
308 shadow_dirty_mask = dirty_mask;
309 shadow_nx_mask = nx_mask;
310 shadow_x_mask = x_mask;
311}
312EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
313
6aa8b732
AK
314static int is_cpuid_PSE36(void)
315{
316 return 1;
317}
318
73b1087e
AK
319static int is_nx(struct kvm_vcpu *vcpu)
320{
f6801dff 321 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
322}
323
c7addb90
AK
324static int is_shadow_present_pte(u64 pte)
325{
ce88decf 326 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
327}
328
05da4558
MT
329static int is_large_pte(u64 pte)
330{
331 return pte & PT_PAGE_SIZE_MASK;
332}
333
43a3795a 334static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 335{
439e218a 336 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
337}
338
43a3795a 339static int is_rmap_spte(u64 pte)
cd4a4e53 340{
4b1a80fa 341 return is_shadow_present_pte(pte);
cd4a4e53
AK
342}
343
776e6633
MT
344static int is_last_spte(u64 pte, int level)
345{
346 if (level == PT_PAGE_TABLE_LEVEL)
347 return 1;
852e3c19 348 if (is_large_pte(pte))
776e6633
MT
349 return 1;
350 return 0;
351}
352
35149e21 353static pfn_t spte_to_pfn(u64 pte)
0b49ea86 354{
35149e21 355 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
356}
357
da928521
AK
358static gfn_t pse36_gfn_delta(u32 gpte)
359{
360 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
361
362 return (gpte & PT32_DIR_PSE36_MASK) << shift;
363}
364
603e0651 365#ifdef CONFIG_X86_64
d555c333 366static void __set_spte(u64 *sptep, u64 spte)
e663ee64 367{
603e0651 368 *sptep = spte;
e663ee64
AK
369}
370
603e0651 371static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 372{
603e0651
XG
373 *sptep = spte;
374}
375
376static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
377{
378 return xchg(sptep, spte);
379}
c2a2ac2b
XG
380
381static u64 __get_spte_lockless(u64 *sptep)
382{
383 return ACCESS_ONCE(*sptep);
384}
ce88decf
XG
385
386static bool __check_direct_spte_mmio_pf(u64 spte)
387{
388 /* It is valid if the spte is zapped. */
389 return spte == 0ull;
390}
a9221dd5 391#else
603e0651
XG
392union split_spte {
393 struct {
394 u32 spte_low;
395 u32 spte_high;
396 };
397 u64 spte;
398};
a9221dd5 399
c2a2ac2b
XG
400static void count_spte_clear(u64 *sptep, u64 spte)
401{
402 struct kvm_mmu_page *sp = page_header(__pa(sptep));
403
404 if (is_shadow_present_pte(spte))
405 return;
406
407 /* Ensure the spte is completely set before we increase the count */
408 smp_wmb();
409 sp->clear_spte_count++;
410}
411
603e0651
XG
412static void __set_spte(u64 *sptep, u64 spte)
413{
414 union split_spte *ssptep, sspte;
a9221dd5 415
603e0651
XG
416 ssptep = (union split_spte *)sptep;
417 sspte = (union split_spte)spte;
418
419 ssptep->spte_high = sspte.spte_high;
420
421 /*
422 * If we map the spte from nonpresent to present, We should store
423 * the high bits firstly, then set present bit, so cpu can not
424 * fetch this spte while we are setting the spte.
425 */
426 smp_wmb();
427
428 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
429}
430
603e0651
XG
431static void __update_clear_spte_fast(u64 *sptep, u64 spte)
432{
433 union split_spte *ssptep, sspte;
434
435 ssptep = (union split_spte *)sptep;
436 sspte = (union split_spte)spte;
437
438 ssptep->spte_low = sspte.spte_low;
439
440 /*
441 * If we map the spte from present to nonpresent, we should clear
442 * present bit firstly to avoid vcpu fetch the old high bits.
443 */
444 smp_wmb();
445
446 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 447 count_spte_clear(sptep, spte);
603e0651
XG
448}
449
450static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
451{
452 union split_spte *ssptep, sspte, orig;
453
454 ssptep = (union split_spte *)sptep;
455 sspte = (union split_spte)spte;
456
457 /* xchg acts as a barrier before the setting of the high bits */
458 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
459 orig.spte_high = ssptep->spte_high;
460 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 461 count_spte_clear(sptep, spte);
603e0651
XG
462
463 return orig.spte;
464}
c2a2ac2b
XG
465
466/*
467 * The idea using the light way get the spte on x86_32 guest is from
468 * gup_get_pte(arch/x86/mm/gup.c).
469 * The difference is we can not catch the spte tlb flush if we leave
470 * guest mode, so we emulate it by increase clear_spte_count when spte
471 * is cleared.
472 */
473static u64 __get_spte_lockless(u64 *sptep)
474{
475 struct kvm_mmu_page *sp = page_header(__pa(sptep));
476 union split_spte spte, *orig = (union split_spte *)sptep;
477 int count;
478
479retry:
480 count = sp->clear_spte_count;
481 smp_rmb();
482
483 spte.spte_low = orig->spte_low;
484 smp_rmb();
485
486 spte.spte_high = orig->spte_high;
487 smp_rmb();
488
489 if (unlikely(spte.spte_low != orig->spte_low ||
490 count != sp->clear_spte_count))
491 goto retry;
492
493 return spte.spte;
494}
ce88decf
XG
495
496static bool __check_direct_spte_mmio_pf(u64 spte)
497{
498 union split_spte sspte = (union split_spte)spte;
499 u32 high_mmio_mask = shadow_mmio_mask >> 32;
500
501 /* It is valid if the spte is zapped. */
502 if (spte == 0ull)
503 return true;
504
505 /* It is valid if the spte is being zapped. */
506 if (sspte.spte_low == 0ull &&
507 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
508 return true;
509
510 return false;
511}
603e0651
XG
512#endif
513
c7ba5b48
XG
514static bool spte_is_locklessly_modifiable(u64 spte)
515{
feb3eb70
GN
516 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
517 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
518}
519
8672b721
XG
520static bool spte_has_volatile_bits(u64 spte)
521{
c7ba5b48
XG
522 /*
523 * Always atomicly update spte if it can be updated
524 * out of mmu-lock, it can ensure dirty bit is not lost,
525 * also, it can help us to get a stable is_writable_pte()
526 * to ensure tlb flush is not missed.
527 */
528 if (spte_is_locklessly_modifiable(spte))
529 return true;
530
8672b721
XG
531 if (!shadow_accessed_mask)
532 return false;
533
534 if (!is_shadow_present_pte(spte))
535 return false;
536
4132779b
XG
537 if ((spte & shadow_accessed_mask) &&
538 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
539 return false;
540
541 return true;
542}
543
4132779b
XG
544static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
545{
546 return (old_spte & bit_mask) && !(new_spte & bit_mask);
547}
548
1df9f2dc
XG
549/* Rules for using mmu_spte_set:
550 * Set the sptep from nonpresent to present.
551 * Note: the sptep being assigned *must* be either not present
552 * or in a state where the hardware will not attempt to update
553 * the spte.
554 */
555static void mmu_spte_set(u64 *sptep, u64 new_spte)
556{
557 WARN_ON(is_shadow_present_pte(*sptep));
558 __set_spte(sptep, new_spte);
559}
560
561/* Rules for using mmu_spte_update:
562 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
563 *
564 * Whenever we overwrite a writable spte with a read-only one we
565 * should flush remote TLBs. Otherwise rmap_write_protect
566 * will find a read-only spte, even though the writable spte
567 * might be cached on a CPU's TLB, the return value indicates this
568 * case.
1df9f2dc 569 */
6e7d0354 570static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 571{
c7ba5b48 572 u64 old_spte = *sptep;
6e7d0354 573 bool ret = false;
4132779b
XG
574
575 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 576
6e7d0354
XG
577 if (!is_shadow_present_pte(old_spte)) {
578 mmu_spte_set(sptep, new_spte);
579 return ret;
580 }
4132779b 581
c7ba5b48 582 if (!spte_has_volatile_bits(old_spte))
603e0651 583 __update_clear_spte_fast(sptep, new_spte);
4132779b 584 else
603e0651 585 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 586
c7ba5b48
XG
587 /*
588 * For the spte updated out of mmu-lock is safe, since
589 * we always atomicly update it, see the comments in
590 * spte_has_volatile_bits().
591 */
6e7d0354
XG
592 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
593 ret = true;
594
4132779b 595 if (!shadow_accessed_mask)
6e7d0354 596 return ret;
4132779b
XG
597
598 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
602
603 return ret;
b79b93f9
AK
604}
605
1df9f2dc
XG
606/*
607 * Rules for using mmu_spte_clear_track_bits:
608 * It sets the sptep from present to nonpresent, and track the
609 * state bits, it is used to clear the last level sptep.
610 */
611static int mmu_spte_clear_track_bits(u64 *sptep)
612{
613 pfn_t pfn;
614 u64 old_spte = *sptep;
615
616 if (!spte_has_volatile_bits(old_spte))
603e0651 617 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 618 else
603e0651 619 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
620
621 if (!is_rmap_spte(old_spte))
622 return 0;
623
624 pfn = spte_to_pfn(old_spte);
86fde74c
XG
625
626 /*
627 * KVM does not hold the refcount of the page used by
628 * kvm mmu, before reclaiming the page, we should
629 * unmap it from mmu first.
630 */
631 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632
1df9f2dc
XG
633 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634 kvm_set_pfn_accessed(pfn);
635 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636 kvm_set_pfn_dirty(pfn);
637 return 1;
638}
639
640/*
641 * Rules for using mmu_spte_clear_no_track:
642 * Directly clear spte without caring the state bits of sptep,
643 * it is used to set the upper level spte.
644 */
645static void mmu_spte_clear_no_track(u64 *sptep)
646{
603e0651 647 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
648}
649
c2a2ac2b
XG
650static u64 mmu_spte_get_lockless(u64 *sptep)
651{
652 return __get_spte_lockless(sptep);
653}
654
655static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656{
c142786c
AK
657 /*
658 * Prevent page table teardown by making any free-er wait during
659 * kvm_flush_remote_tlbs() IPI to all active vcpus.
660 */
661 local_irq_disable();
662 vcpu->mode = READING_SHADOW_PAGE_TABLES;
663 /*
664 * Make sure a following spte read is not reordered ahead of the write
665 * to vcpu->mode.
666 */
667 smp_mb();
c2a2ac2b
XG
668}
669
670static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671{
c142786c
AK
672 /*
673 * Make sure the write to vcpu->mode is not reordered in front of
674 * reads to sptes. If it does, kvm_commit_zap_page() can see us
675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676 */
677 smp_mb();
678 vcpu->mode = OUTSIDE_GUEST_MODE;
679 local_irq_enable();
c2a2ac2b
XG
680}
681
e2dec939 682static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 683 struct kmem_cache *base_cache, int min)
714b93da
AK
684{
685 void *obj;
686
687 if (cache->nobjs >= min)
e2dec939 688 return 0;
714b93da 689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 690 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 691 if (!obj)
e2dec939 692 return -ENOMEM;
714b93da
AK
693 cache->objects[cache->nobjs++] = obj;
694 }
e2dec939 695 return 0;
714b93da
AK
696}
697
f759e2b4
XG
698static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699{
700 return cache->nobjs;
701}
702
e8ad9a70
XG
703static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704 struct kmem_cache *cache)
714b93da
AK
705{
706 while (mc->nobjs)
e8ad9a70 707 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
708}
709
c1158e63 710static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 711 int min)
c1158e63 712{
842f22ed 713 void *page;
c1158e63
AK
714
715 if (cache->nobjs >= min)
716 return 0;
717 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 718 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
719 if (!page)
720 return -ENOMEM;
842f22ed 721 cache->objects[cache->nobjs++] = page;
c1158e63
AK
722 }
723 return 0;
724}
725
726static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727{
728 while (mc->nobjs)
c4d198d5 729 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
730}
731
2e3e5882 732static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 733{
e2dec939
AK
734 int r;
735
53c07b18 736 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 737 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
738 if (r)
739 goto out;
ad312c7c 740 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
741 if (r)
742 goto out;
ad312c7c 743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 744 mmu_page_header_cache, 4);
e2dec939
AK
745out:
746 return r;
714b93da
AK
747}
748
749static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750{
53c07b18
XG
751 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752 pte_list_desc_cache);
ad312c7c 753 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
754 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755 mmu_page_header_cache);
714b93da
AK
756}
757
80feb89a 758static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
759{
760 void *p;
761
762 BUG_ON(!mc->nobjs);
763 p = mc->objects[--mc->nobjs];
714b93da
AK
764 return p;
765}
766
53c07b18 767static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 768{
80feb89a 769 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
770}
771
53c07b18 772static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 773{
53c07b18 774 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
775}
776
2032a93d
LJ
777static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778{
779 if (!sp->role.direct)
780 return sp->gfns[index];
781
782 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783}
784
785static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786{
787 if (sp->role.direct)
788 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789 else
790 sp->gfns[index] = gfn;
791}
792
05da4558 793/*
d4dbf470
TY
794 * Return the pointer to the large page information for a given gfn,
795 * handling slots that are not large page aligned.
05da4558 796 */
d4dbf470
TY
797static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798 struct kvm_memory_slot *slot,
799 int level)
05da4558
MT
800{
801 unsigned long idx;
802
fb03cb6f 803 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 804 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
805}
806
807static void account_shadowed(struct kvm *kvm, gfn_t gfn)
808{
d25797b2 809 struct kvm_memory_slot *slot;
d4dbf470 810 struct kvm_lpage_info *linfo;
d25797b2 811 int i;
05da4558 812
a1f4d395 813 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
814 for (i = PT_DIRECTORY_LEVEL;
815 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
816 linfo = lpage_info_slot(gfn, slot, i);
817 linfo->write_count += 1;
d25797b2 818 }
332b207d 819 kvm->arch.indirect_shadow_pages++;
05da4558
MT
820}
821
822static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
823{
d25797b2 824 struct kvm_memory_slot *slot;
d4dbf470 825 struct kvm_lpage_info *linfo;
d25797b2 826 int i;
05da4558 827
a1f4d395 828 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
829 for (i = PT_DIRECTORY_LEVEL;
830 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
831 linfo = lpage_info_slot(gfn, slot, i);
832 linfo->write_count -= 1;
833 WARN_ON(linfo->write_count < 0);
d25797b2 834 }
332b207d 835 kvm->arch.indirect_shadow_pages--;
05da4558
MT
836}
837
d25797b2
JR
838static int has_wrprotected_page(struct kvm *kvm,
839 gfn_t gfn,
840 int level)
05da4558 841{
2843099f 842 struct kvm_memory_slot *slot;
d4dbf470 843 struct kvm_lpage_info *linfo;
05da4558 844
a1f4d395 845 slot = gfn_to_memslot(kvm, gfn);
05da4558 846 if (slot) {
d4dbf470
TY
847 linfo = lpage_info_slot(gfn, slot, level);
848 return linfo->write_count;
05da4558
MT
849 }
850
851 return 1;
852}
853
d25797b2 854static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 855{
8f0b1ab6 856 unsigned long page_size;
d25797b2 857 int i, ret = 0;
05da4558 858
8f0b1ab6 859 page_size = kvm_host_page_size(kvm, gfn);
05da4558 860
d25797b2
JR
861 for (i = PT_PAGE_TABLE_LEVEL;
862 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
863 if (page_size >= KVM_HPAGE_SIZE(i))
864 ret = i;
865 else
866 break;
867 }
868
4c2155ce 869 return ret;
05da4558
MT
870}
871
5d163b1c
XG
872static struct kvm_memory_slot *
873gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
874 bool no_dirty_log)
05da4558
MT
875{
876 struct kvm_memory_slot *slot;
5d163b1c
XG
877
878 slot = gfn_to_memslot(vcpu->kvm, gfn);
879 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
880 (no_dirty_log && slot->dirty_bitmap))
881 slot = NULL;
882
883 return slot;
884}
885
886static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
887{
a0a8eaba 888 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
889}
890
891static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
892{
893 int host_level, level, max_level;
05da4558 894
d25797b2
JR
895 host_level = host_mapping_level(vcpu->kvm, large_gfn);
896
897 if (host_level == PT_PAGE_TABLE_LEVEL)
898 return host_level;
899
55dd98c3 900 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
901
902 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
903 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
904 break;
d25797b2
JR
905
906 return level - 1;
05da4558
MT
907}
908
290fc38d 909/*
53c07b18 910 * Pte mapping structures:
cd4a4e53 911 *
53c07b18 912 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 913 *
53c07b18
XG
914 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
915 * pte_list_desc containing more mappings.
53a27b39 916 *
53c07b18 917 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
918 * the spte was not added.
919 *
cd4a4e53 920 */
53c07b18
XG
921static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
922 unsigned long *pte_list)
cd4a4e53 923{
53c07b18 924 struct pte_list_desc *desc;
53a27b39 925 int i, count = 0;
cd4a4e53 926
53c07b18
XG
927 if (!*pte_list) {
928 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
929 *pte_list = (unsigned long)spte;
930 } else if (!(*pte_list & 1)) {
931 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
932 desc = mmu_alloc_pte_list_desc(vcpu);
933 desc->sptes[0] = (u64 *)*pte_list;
d555c333 934 desc->sptes[1] = spte;
53c07b18 935 *pte_list = (unsigned long)desc | 1;
cb16a7b3 936 ++count;
cd4a4e53 937 } else {
53c07b18
XG
938 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
939 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
940 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 941 desc = desc->more;
53c07b18 942 count += PTE_LIST_EXT;
53a27b39 943 }
53c07b18
XG
944 if (desc->sptes[PTE_LIST_EXT-1]) {
945 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
946 desc = desc->more;
947 }
d555c333 948 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 949 ++count;
d555c333 950 desc->sptes[i] = spte;
cd4a4e53 951 }
53a27b39 952 return count;
cd4a4e53
AK
953}
954
53c07b18
XG
955static void
956pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
957 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
958{
959 int j;
960
53c07b18 961 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 962 ;
d555c333
AK
963 desc->sptes[i] = desc->sptes[j];
964 desc->sptes[j] = NULL;
cd4a4e53
AK
965 if (j != 0)
966 return;
967 if (!prev_desc && !desc->more)
53c07b18 968 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
969 else
970 if (prev_desc)
971 prev_desc->more = desc->more;
972 else
53c07b18
XG
973 *pte_list = (unsigned long)desc->more | 1;
974 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
975}
976
53c07b18 977static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 978{
53c07b18
XG
979 struct pte_list_desc *desc;
980 struct pte_list_desc *prev_desc;
cd4a4e53
AK
981 int i;
982
53c07b18
XG
983 if (!*pte_list) {
984 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 985 BUG();
53c07b18
XG
986 } else if (!(*pte_list & 1)) {
987 rmap_printk("pte_list_remove: %p 1->0\n", spte);
988 if ((u64 *)*pte_list != spte) {
989 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
990 BUG();
991 }
53c07b18 992 *pte_list = 0;
cd4a4e53 993 } else {
53c07b18
XG
994 rmap_printk("pte_list_remove: %p many->many\n", spte);
995 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
996 prev_desc = NULL;
997 while (desc) {
53c07b18 998 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 999 if (desc->sptes[i] == spte) {
53c07b18 1000 pte_list_desc_remove_entry(pte_list,
714b93da 1001 desc, i,
cd4a4e53
AK
1002 prev_desc);
1003 return;
1004 }
1005 prev_desc = desc;
1006 desc = desc->more;
1007 }
53c07b18 1008 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1009 BUG();
1010 }
1011}
1012
67052b35
XG
1013typedef void (*pte_list_walk_fn) (u64 *spte);
1014static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1015{
1016 struct pte_list_desc *desc;
1017 int i;
1018
1019 if (!*pte_list)
1020 return;
1021
1022 if (!(*pte_list & 1))
1023 return fn((u64 *)*pte_list);
1024
1025 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1026 while (desc) {
1027 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1028 fn(desc->sptes[i]);
1029 desc = desc->more;
1030 }
1031}
1032
9373e2c0 1033static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1034 struct kvm_memory_slot *slot)
53c07b18 1035{
77d11309 1036 unsigned long idx;
53c07b18 1037
77d11309 1038 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1039 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1040}
1041
9b9b1492
TY
1042/*
1043 * Take gfn and return the reverse mapping to it.
1044 */
1045static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1046{
1047 struct kvm_memory_slot *slot;
1048
1049 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1050 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1051}
1052
f759e2b4
XG
1053static bool rmap_can_add(struct kvm_vcpu *vcpu)
1054{
1055 struct kvm_mmu_memory_cache *cache;
1056
1057 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1058 return mmu_memory_cache_free_objects(cache);
1059}
1060
53c07b18
XG
1061static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1062{
1063 struct kvm_mmu_page *sp;
1064 unsigned long *rmapp;
1065
53c07b18
XG
1066 sp = page_header(__pa(spte));
1067 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1068 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1069 return pte_list_add(vcpu, spte, rmapp);
1070}
1071
53c07b18
XG
1072static void rmap_remove(struct kvm *kvm, u64 *spte)
1073{
1074 struct kvm_mmu_page *sp;
1075 gfn_t gfn;
1076 unsigned long *rmapp;
1077
1078 sp = page_header(__pa(spte));
1079 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1080 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1081 pte_list_remove(spte, rmapp);
1082}
1083
1e3f42f0
TY
1084/*
1085 * Used by the following functions to iterate through the sptes linked by a
1086 * rmap. All fields are private and not assumed to be used outside.
1087 */
1088struct rmap_iterator {
1089 /* private fields */
1090 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1091 int pos; /* index of the sptep */
1092};
1093
1094/*
1095 * Iteration must be started by this function. This should also be used after
1096 * removing/dropping sptes from the rmap link because in such cases the
1097 * information in the itererator may not be valid.
1098 *
1099 * Returns sptep if found, NULL otherwise.
1100 */
1101static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1102{
1103 if (!rmap)
1104 return NULL;
1105
1106 if (!(rmap & 1)) {
1107 iter->desc = NULL;
1108 return (u64 *)rmap;
1109 }
1110
1111 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1112 iter->pos = 0;
1113 return iter->desc->sptes[iter->pos];
1114}
1115
1116/*
1117 * Must be used with a valid iterator: e.g. after rmap_get_first().
1118 *
1119 * Returns sptep if found, NULL otherwise.
1120 */
1121static u64 *rmap_get_next(struct rmap_iterator *iter)
1122{
1123 if (iter->desc) {
1124 if (iter->pos < PTE_LIST_EXT - 1) {
1125 u64 *sptep;
1126
1127 ++iter->pos;
1128 sptep = iter->desc->sptes[iter->pos];
1129 if (sptep)
1130 return sptep;
1131 }
1132
1133 iter->desc = iter->desc->more;
1134
1135 if (iter->desc) {
1136 iter->pos = 0;
1137 /* desc->sptes[0] cannot be NULL */
1138 return iter->desc->sptes[iter->pos];
1139 }
1140 }
1141
1142 return NULL;
1143}
1144
c3707958 1145static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1146{
1df9f2dc 1147 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1148 rmap_remove(kvm, sptep);
be38d276
AK
1149}
1150
8e22f955
XG
1151
1152static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1153{
1154 if (is_large_pte(*sptep)) {
1155 WARN_ON(page_header(__pa(sptep))->role.level ==
1156 PT_PAGE_TABLE_LEVEL);
1157 drop_spte(kvm, sptep);
1158 --kvm->stat.lpages;
1159 return true;
1160 }
1161
1162 return false;
1163}
1164
1165static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1166{
1167 if (__drop_large_spte(vcpu->kvm, sptep))
1168 kvm_flush_remote_tlbs(vcpu->kvm);
1169}
1170
1171/*
49fde340 1172 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1173 * spte writ-protection is caused by protecting shadow page table.
1174 * @flush indicates whether tlb need be flushed.
49fde340
XG
1175 *
1176 * Note: write protection is difference between drity logging and spte
1177 * protection:
1178 * - for dirty logging, the spte can be set to writable at anytime if
1179 * its dirty bitmap is properly set.
1180 * - for spte protection, the spte can be writable only after unsync-ing
1181 * shadow page.
8e22f955 1182 *
6b73a960 1183 * Return true if the spte is dropped.
8e22f955 1184 */
6b73a960
MT
1185static bool
1186spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1187{
1188 u64 spte = *sptep;
1189
49fde340
XG
1190 if (!is_writable_pte(spte) &&
1191 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1192 return false;
1193
1194 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
6b73a960
MT
1196 if (__drop_large_spte(kvm, sptep)) {
1197 *flush |= true;
1198 return true;
1199 }
1200
49fde340
XG
1201 if (pt_protect)
1202 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1203 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1204
6b73a960
MT
1205 *flush |= mmu_spte_update(sptep, spte);
1206 return false;
d13bc5b5
XG
1207}
1208
49fde340 1209static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1210 bool pt_protect)
98348e95 1211{
1e3f42f0
TY
1212 u64 *sptep;
1213 struct rmap_iterator iter;
d13bc5b5 1214 bool flush = false;
374cbac0 1215
1e3f42f0
TY
1216 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1217 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1218 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1219 sptep = rmap_get_first(*rmapp, &iter);
1220 continue;
1221 }
a0ed4607 1222
d13bc5b5 1223 sptep = rmap_get_next(&iter);
374cbac0 1224 }
855149aa 1225
d13bc5b5 1226 return flush;
a0ed4607
TY
1227}
1228
5dc99b23
TY
1229/**
1230 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1231 * @kvm: kvm instance
1232 * @slot: slot to protect
1233 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1234 * @mask: indicates which pages we should protect
1235 *
1236 * Used when we do not need to care about huge page mappings: e.g. during dirty
1237 * logging we do not have any such mappings.
1238 */
1239void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1240 struct kvm_memory_slot *slot,
1241 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1242{
1243 unsigned long *rmapp;
a0ed4607 1244
5dc99b23 1245 while (mask) {
65fbe37c
TY
1246 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1247 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1248 __rmap_write_protect(kvm, rmapp, false);
05da4558 1249
5dc99b23
TY
1250 /* clear the first set bit */
1251 mask &= mask - 1;
1252 }
374cbac0
AK
1253}
1254
2f84569f 1255static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1256{
1257 struct kvm_memory_slot *slot;
5dc99b23
TY
1258 unsigned long *rmapp;
1259 int i;
2f84569f 1260 bool write_protected = false;
95d4c16c
TY
1261
1262 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1263
1264 for (i = PT_PAGE_TABLE_LEVEL;
1265 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1266 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1267 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1268 }
1269
1270 return write_protected;
95d4c16c
TY
1271}
1272
8a8365c5 1273static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1274 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1275{
1e3f42f0
TY
1276 u64 *sptep;
1277 struct rmap_iterator iter;
e930bffe
AA
1278 int need_tlb_flush = 0;
1279
1e3f42f0
TY
1280 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1281 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1282 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1283
1284 drop_spte(kvm, sptep);
e930bffe
AA
1285 need_tlb_flush = 1;
1286 }
1e3f42f0 1287
e930bffe
AA
1288 return need_tlb_flush;
1289}
1290
8a8365c5 1291static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1292 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1293{
1e3f42f0
TY
1294 u64 *sptep;
1295 struct rmap_iterator iter;
3da0dd43 1296 int need_flush = 0;
1e3f42f0 1297 u64 new_spte;
3da0dd43
IE
1298 pte_t *ptep = (pte_t *)data;
1299 pfn_t new_pfn;
1300
1301 WARN_ON(pte_huge(*ptep));
1302 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1303
1304 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1305 BUG_ON(!is_shadow_present_pte(*sptep));
1306 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1307
3da0dd43 1308 need_flush = 1;
1e3f42f0 1309
3da0dd43 1310 if (pte_write(*ptep)) {
1e3f42f0
TY
1311 drop_spte(kvm, sptep);
1312 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1313 } else {
1e3f42f0 1314 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1315 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1316
1317 new_spte &= ~PT_WRITABLE_MASK;
1318 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1319 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1320
1321 mmu_spte_clear_track_bits(sptep);
1322 mmu_spte_set(sptep, new_spte);
1323 sptep = rmap_get_next(&iter);
3da0dd43
IE
1324 }
1325 }
1e3f42f0 1326
3da0dd43
IE
1327 if (need_flush)
1328 kvm_flush_remote_tlbs(kvm);
1329
1330 return 0;
1331}
1332
84504ef3
TY
1333static int kvm_handle_hva_range(struct kvm *kvm,
1334 unsigned long start,
1335 unsigned long end,
1336 unsigned long data,
1337 int (*handler)(struct kvm *kvm,
1338 unsigned long *rmapp,
048212d0 1339 struct kvm_memory_slot *slot,
84504ef3 1340 unsigned long data))
e930bffe 1341{
be6ba0f0 1342 int j;
f395302e 1343 int ret = 0;
bc6678a3 1344 struct kvm_memslots *slots;
be6ba0f0 1345 struct kvm_memory_slot *memslot;
bc6678a3 1346
90d83dc3 1347 slots = kvm_memslots(kvm);
e930bffe 1348
be6ba0f0 1349 kvm_for_each_memslot(memslot, slots) {
84504ef3 1350 unsigned long hva_start, hva_end;
bcd3ef58 1351 gfn_t gfn_start, gfn_end;
e930bffe 1352
84504ef3
TY
1353 hva_start = max(start, memslot->userspace_addr);
1354 hva_end = min(end, memslot->userspace_addr +
1355 (memslot->npages << PAGE_SHIFT));
1356 if (hva_start >= hva_end)
1357 continue;
1358 /*
1359 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1360 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1361 */
bcd3ef58 1362 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1363 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1364
bcd3ef58
TY
1365 for (j = PT_PAGE_TABLE_LEVEL;
1366 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1367 unsigned long idx, idx_end;
1368 unsigned long *rmapp;
d4dbf470 1369
bcd3ef58
TY
1370 /*
1371 * {idx(page_j) | page_j intersects with
1372 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1373 */
1374 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1375 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1376
bcd3ef58 1377 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1378
bcd3ef58
TY
1379 for (; idx <= idx_end; ++idx)
1380 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1381 }
1382 }
1383
f395302e 1384 return ret;
e930bffe
AA
1385}
1386
84504ef3
TY
1387static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1388 unsigned long data,
1389 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1390 struct kvm_memory_slot *slot,
84504ef3
TY
1391 unsigned long data))
1392{
1393 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1394}
1395
1396int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1397{
3da0dd43
IE
1398 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1399}
1400
b3ae2096
TY
1401int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1402{
1403 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1404}
1405
3da0dd43
IE
1406void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1407{
8a8365c5 1408 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1409}
1410
8a8365c5 1411static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1412 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1413{
1e3f42f0 1414 u64 *sptep;
79f702a6 1415 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1416 int young = 0;
1417
6316e1c8 1418 /*
3f6d8c8a
XH
1419 * In case of absence of EPT Access and Dirty Bits supports,
1420 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1421 * an EPT mapping, and clearing it if it does. On the next access,
1422 * a new EPT mapping will be established.
1423 * This has some overhead, but not as much as the cost of swapping
1424 * out actively used pages or breaking up actively used hugepages.
1425 */
f395302e
TY
1426 if (!shadow_accessed_mask) {
1427 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1428 goto out;
1429 }
534e38b4 1430
1e3f42f0
TY
1431 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1432 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1433 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1434
3f6d8c8a 1435 if (*sptep & shadow_accessed_mask) {
e930bffe 1436 young = 1;
3f6d8c8a
XH
1437 clear_bit((ffs(shadow_accessed_mask) - 1),
1438 (unsigned long *)sptep);
e930bffe 1439 }
e930bffe 1440 }
f395302e
TY
1441out:
1442 /* @data has hva passed to kvm_age_hva(). */
1443 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1444 return young;
1445}
1446
8ee53820 1447static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1448 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1449{
1e3f42f0
TY
1450 u64 *sptep;
1451 struct rmap_iterator iter;
8ee53820
AA
1452 int young = 0;
1453
1454 /*
1455 * If there's no access bit in the secondary pte set by the
1456 * hardware it's up to gup-fast/gup to set the access bit in
1457 * the primary pte or in the page structure.
1458 */
1459 if (!shadow_accessed_mask)
1460 goto out;
1461
1e3f42f0
TY
1462 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1463 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1464 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1465
3f6d8c8a 1466 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1467 young = 1;
1468 break;
1469 }
8ee53820
AA
1470 }
1471out:
1472 return young;
1473}
1474
53a27b39
MT
1475#define RMAP_RECYCLE_THRESHOLD 1000
1476
852e3c19 1477static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1478{
1479 unsigned long *rmapp;
852e3c19
JR
1480 struct kvm_mmu_page *sp;
1481
1482 sp = page_header(__pa(spte));
53a27b39 1483
852e3c19 1484 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1485
048212d0 1486 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1487 kvm_flush_remote_tlbs(vcpu->kvm);
1488}
1489
e930bffe
AA
1490int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1491{
f395302e 1492 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1493}
1494
8ee53820
AA
1495int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1496{
1497 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1498}
1499
d6c69ee9 1500#ifdef MMU_DEBUG
47ad8e68 1501static int is_empty_shadow_page(u64 *spt)
6aa8b732 1502{
139bdb2d
AK
1503 u64 *pos;
1504 u64 *end;
1505
47ad8e68 1506 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1507 if (is_shadow_present_pte(*pos)) {
b8688d51 1508 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1509 pos, *pos);
6aa8b732 1510 return 0;
139bdb2d 1511 }
6aa8b732
AK
1512 return 1;
1513}
d6c69ee9 1514#endif
6aa8b732 1515
45221ab6
DH
1516/*
1517 * This value is the sum of all of the kvm instances's
1518 * kvm->arch.n_used_mmu_pages values. We need a global,
1519 * aggregate version in order to make the slab shrinker
1520 * faster
1521 */
1522static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1523{
1524 kvm->arch.n_used_mmu_pages += nr;
1525 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1526}
1527
834be0d8 1528static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1529{
4db35314 1530 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1531 hlist_del(&sp->hash_link);
bd4c86ea
XG
1532 list_del(&sp->link);
1533 free_page((unsigned long)sp->spt);
834be0d8
GN
1534 if (!sp->role.direct)
1535 free_page((unsigned long)sp->gfns);
e8ad9a70 1536 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1537}
1538
cea0f0e7
AK
1539static unsigned kvm_page_table_hashfn(gfn_t gfn)
1540{
1ae0a13d 1541 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1542}
1543
714b93da 1544static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1545 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1546{
cea0f0e7
AK
1547 if (!parent_pte)
1548 return;
cea0f0e7 1549
67052b35 1550 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1551}
1552
4db35314 1553static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1554 u64 *parent_pte)
1555{
67052b35 1556 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1557}
1558
bcdd9a93
XG
1559static void drop_parent_pte(struct kvm_mmu_page *sp,
1560 u64 *parent_pte)
1561{
1562 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1563 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1564}
1565
67052b35
XG
1566static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1567 u64 *parent_pte, int direct)
ad8cfbe3 1568{
67052b35 1569 struct kvm_mmu_page *sp;
7ddca7e4 1570
80feb89a
TY
1571 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1572 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1573 if (!direct)
80feb89a 1574 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1575 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1576
1577 /*
1578 * The active_mmu_pages list is the FIFO list, do not move the
1579 * page until it is zapped. kvm_zap_obsolete_pages depends on
1580 * this feature. See the comments in kvm_zap_obsolete_pages().
1581 */
67052b35 1582 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1583 sp->parent_ptes = 0;
1584 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1585 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1586 return sp;
ad8cfbe3
MT
1587}
1588
67052b35 1589static void mark_unsync(u64 *spte);
1047df1f 1590static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1591{
67052b35 1592 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1593}
1594
67052b35 1595static void mark_unsync(u64 *spte)
0074ff63 1596{
67052b35 1597 struct kvm_mmu_page *sp;
1047df1f 1598 unsigned int index;
0074ff63 1599
67052b35 1600 sp = page_header(__pa(spte));
1047df1f
XG
1601 index = spte - sp->spt;
1602 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1603 return;
1047df1f 1604 if (sp->unsync_children++)
0074ff63 1605 return;
1047df1f 1606 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1607}
1608
e8bc217a 1609static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1610 struct kvm_mmu_page *sp)
e8bc217a
MT
1611{
1612 return 1;
1613}
1614
a7052897
MT
1615static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1616{
1617}
1618
0f53b5b1
XG
1619static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1620 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1621 const void *pte)
0f53b5b1
XG
1622{
1623 WARN_ON(1);
1624}
1625
60c8aec6
MT
1626#define KVM_PAGE_ARRAY_NR 16
1627
1628struct kvm_mmu_pages {
1629 struct mmu_page_and_offset {
1630 struct kvm_mmu_page *sp;
1631 unsigned int idx;
1632 } page[KVM_PAGE_ARRAY_NR];
1633 unsigned int nr;
1634};
1635
cded19f3
HE
1636static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1637 int idx)
4731d4c7 1638{
60c8aec6 1639 int i;
4731d4c7 1640
60c8aec6
MT
1641 if (sp->unsync)
1642 for (i=0; i < pvec->nr; i++)
1643 if (pvec->page[i].sp == sp)
1644 return 0;
1645
1646 pvec->page[pvec->nr].sp = sp;
1647 pvec->page[pvec->nr].idx = idx;
1648 pvec->nr++;
1649 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1650}
1651
1652static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1653 struct kvm_mmu_pages *pvec)
1654{
1655 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1656
37178b8b 1657 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1658 struct kvm_mmu_page *child;
4731d4c7
MT
1659 u64 ent = sp->spt[i];
1660
7a8f1a74
XG
1661 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1662 goto clear_child_bitmap;
1663
1664 child = page_header(ent & PT64_BASE_ADDR_MASK);
1665
1666 if (child->unsync_children) {
1667 if (mmu_pages_add(pvec, child, i))
1668 return -ENOSPC;
1669
1670 ret = __mmu_unsync_walk(child, pvec);
1671 if (!ret)
1672 goto clear_child_bitmap;
1673 else if (ret > 0)
1674 nr_unsync_leaf += ret;
1675 else
1676 return ret;
1677 } else if (child->unsync) {
1678 nr_unsync_leaf++;
1679 if (mmu_pages_add(pvec, child, i))
1680 return -ENOSPC;
1681 } else
1682 goto clear_child_bitmap;
1683
1684 continue;
1685
1686clear_child_bitmap:
1687 __clear_bit(i, sp->unsync_child_bitmap);
1688 sp->unsync_children--;
1689 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1690 }
1691
4731d4c7 1692
60c8aec6
MT
1693 return nr_unsync_leaf;
1694}
1695
1696static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1697 struct kvm_mmu_pages *pvec)
1698{
1699 if (!sp->unsync_children)
1700 return 0;
1701
1702 mmu_pages_add(pvec, sp, 0);
1703 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1704}
1705
4731d4c7
MT
1706static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1707{
1708 WARN_ON(!sp->unsync);
5e1b3ddb 1709 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1710 sp->unsync = 0;
1711 --kvm->stat.mmu_unsync;
1712}
1713
7775834a
XG
1714static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1715 struct list_head *invalid_list);
1716static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1717 struct list_head *invalid_list);
4731d4c7 1718
f34d251d
XG
1719/*
1720 * NOTE: we should pay more attention on the zapped-obsolete page
1721 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1722 * since it has been deleted from active_mmu_pages but still can be found
1723 * at hast list.
1724 *
1725 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1726 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1727 * all the obsolete pages.
1728 */
1044b030
TY
1729#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1730 hlist_for_each_entry(_sp, \
1731 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1732 if ((_sp)->gfn != (_gfn)) {} else
1733
1734#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1735 for_each_gfn_sp(_kvm, _sp, _gfn) \
1736 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1737
f918b443 1738/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1739static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1740 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1741{
5b7e0102 1742 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1743 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1744 return 1;
1745 }
1746
f918b443 1747 if (clear_unsync)
1d9dc7e0 1748 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1749
a4a8e6f7 1750 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1751 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1752 return 1;
1753 }
1754
1755 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1756 return 0;
1757}
1758
1d9dc7e0
XG
1759static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1760 struct kvm_mmu_page *sp)
1761{
d98ba053 1762 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1763 int ret;
1764
d98ba053 1765 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1766 if (ret)
d98ba053
XG
1767 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1768
1d9dc7e0
XG
1769 return ret;
1770}
1771
e37fa785
XG
1772#ifdef CONFIG_KVM_MMU_AUDIT
1773#include "mmu_audit.c"
1774#else
1775static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1776static void mmu_audit_disable(void) { }
1777#endif
1778
d98ba053
XG
1779static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1780 struct list_head *invalid_list)
1d9dc7e0 1781{
d98ba053 1782 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1783}
1784
9f1a122f
XG
1785/* @gfn should be write-protected at the call site */
1786static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1787{
9f1a122f 1788 struct kvm_mmu_page *s;
d98ba053 1789 LIST_HEAD(invalid_list);
9f1a122f
XG
1790 bool flush = false;
1791
b67bfe0d 1792 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1793 if (!s->unsync)
9f1a122f
XG
1794 continue;
1795
1796 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1797 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1798 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1799 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1800 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1801 continue;
1802 }
9f1a122f
XG
1803 flush = true;
1804 }
1805
d98ba053 1806 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1807 if (flush)
1808 kvm_mmu_flush_tlb(vcpu);
1809}
1810
60c8aec6
MT
1811struct mmu_page_path {
1812 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1813 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1814};
1815
60c8aec6
MT
1816#define for_each_sp(pvec, sp, parents, i) \
1817 for (i = mmu_pages_next(&pvec, &parents, -1), \
1818 sp = pvec.page[i].sp; \
1819 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1820 i = mmu_pages_next(&pvec, &parents, i))
1821
cded19f3
HE
1822static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1823 struct mmu_page_path *parents,
1824 int i)
60c8aec6
MT
1825{
1826 int n;
1827
1828 for (n = i+1; n < pvec->nr; n++) {
1829 struct kvm_mmu_page *sp = pvec->page[n].sp;
1830
1831 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1832 parents->idx[0] = pvec->page[n].idx;
1833 return n;
1834 }
1835
1836 parents->parent[sp->role.level-2] = sp;
1837 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1838 }
1839
1840 return n;
1841}
1842
cded19f3 1843static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1844{
60c8aec6
MT
1845 struct kvm_mmu_page *sp;
1846 unsigned int level = 0;
1847
1848 do {
1849 unsigned int idx = parents->idx[level];
4731d4c7 1850
60c8aec6
MT
1851 sp = parents->parent[level];
1852 if (!sp)
1853 return;
1854
1855 --sp->unsync_children;
1856 WARN_ON((int)sp->unsync_children < 0);
1857 __clear_bit(idx, sp->unsync_child_bitmap);
1858 level++;
1859 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1860}
1861
60c8aec6
MT
1862static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1863 struct mmu_page_path *parents,
1864 struct kvm_mmu_pages *pvec)
4731d4c7 1865{
60c8aec6
MT
1866 parents->parent[parent->role.level-1] = NULL;
1867 pvec->nr = 0;
1868}
4731d4c7 1869
60c8aec6
MT
1870static void mmu_sync_children(struct kvm_vcpu *vcpu,
1871 struct kvm_mmu_page *parent)
1872{
1873 int i;
1874 struct kvm_mmu_page *sp;
1875 struct mmu_page_path parents;
1876 struct kvm_mmu_pages pages;
d98ba053 1877 LIST_HEAD(invalid_list);
60c8aec6
MT
1878
1879 kvm_mmu_pages_init(parent, &parents, &pages);
1880 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1881 bool protected = false;
b1a36821
MT
1882
1883 for_each_sp(pages, sp, parents, i)
1884 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1885
1886 if (protected)
1887 kvm_flush_remote_tlbs(vcpu->kvm);
1888
60c8aec6 1889 for_each_sp(pages, sp, parents, i) {
d98ba053 1890 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1891 mmu_pages_clear_parents(&parents);
1892 }
d98ba053 1893 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1894 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1895 kvm_mmu_pages_init(parent, &parents, &pages);
1896 }
4731d4c7
MT
1897}
1898
c3707958
XG
1899static void init_shadow_page_table(struct kvm_mmu_page *sp)
1900{
1901 int i;
1902
1903 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1904 sp->spt[i] = 0ull;
1905}
1906
a30f47cb
XG
1907static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1908{
1909 sp->write_flooding_count = 0;
1910}
1911
1912static void clear_sp_write_flooding_count(u64 *spte)
1913{
1914 struct kvm_mmu_page *sp = page_header(__pa(spte));
1915
1916 __clear_sp_write_flooding_count(sp);
1917}
1918
5304b8d3
XG
1919static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1920{
1921 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1922}
1923
cea0f0e7
AK
1924static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1925 gfn_t gfn,
1926 gva_t gaddr,
1927 unsigned level,
f6e2c02b 1928 int direct,
41074d07 1929 unsigned access,
f7d9c7b7 1930 u64 *parent_pte)
cea0f0e7
AK
1931{
1932 union kvm_mmu_page_role role;
cea0f0e7 1933 unsigned quadrant;
9f1a122f 1934 struct kvm_mmu_page *sp;
9f1a122f 1935 bool need_sync = false;
cea0f0e7 1936
a770f6f2 1937 role = vcpu->arch.mmu.base_role;
cea0f0e7 1938 role.level = level;
f6e2c02b 1939 role.direct = direct;
84b0c8c6 1940 if (role.direct)
5b7e0102 1941 role.cr4_pae = 0;
41074d07 1942 role.access = access;
c5a78f2b
JR
1943 if (!vcpu->arch.mmu.direct_map
1944 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1945 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1946 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1947 role.quadrant = quadrant;
1948 }
b67bfe0d 1949 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1950 if (is_obsolete_sp(vcpu->kvm, sp))
1951 continue;
1952
7ae680eb
XG
1953 if (!need_sync && sp->unsync)
1954 need_sync = true;
4731d4c7 1955
7ae680eb
XG
1956 if (sp->role.word != role.word)
1957 continue;
4731d4c7 1958
7ae680eb
XG
1959 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1960 break;
e02aa901 1961
7ae680eb
XG
1962 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1963 if (sp->unsync_children) {
a8eeb04a 1964 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1965 kvm_mmu_mark_parents_unsync(sp);
1966 } else if (sp->unsync)
1967 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1968
a30f47cb 1969 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1970 trace_kvm_mmu_get_page(sp, false);
1971 return sp;
1972 }
dfc5aa00 1973 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1974 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1975 if (!sp)
1976 return sp;
4db35314
AK
1977 sp->gfn = gfn;
1978 sp->role = role;
7ae680eb
XG
1979 hlist_add_head(&sp->hash_link,
1980 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1981 if (!direct) {
b1a36821
MT
1982 if (rmap_write_protect(vcpu->kvm, gfn))
1983 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1984 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1985 kvm_sync_pages(vcpu, gfn);
1986
4731d4c7
MT
1987 account_shadowed(vcpu->kvm, gfn);
1988 }
5304b8d3 1989 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1990 init_shadow_page_table(sp);
f691fe1d 1991 trace_kvm_mmu_get_page(sp, true);
4db35314 1992 return sp;
cea0f0e7
AK
1993}
1994
2d11123a
AK
1995static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1996 struct kvm_vcpu *vcpu, u64 addr)
1997{
1998 iterator->addr = addr;
1999 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2000 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2001
2002 if (iterator->level == PT64_ROOT_LEVEL &&
2003 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2004 !vcpu->arch.mmu.direct_map)
2005 --iterator->level;
2006
2d11123a
AK
2007 if (iterator->level == PT32E_ROOT_LEVEL) {
2008 iterator->shadow_addr
2009 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2010 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2011 --iterator->level;
2012 if (!iterator->shadow_addr)
2013 iterator->level = 0;
2014 }
2015}
2016
2017static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2018{
2019 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2020 return false;
4d88954d 2021
2d11123a
AK
2022 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2023 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2024 return true;
2025}
2026
c2a2ac2b
XG
2027static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2028 u64 spte)
2d11123a 2029{
c2a2ac2b 2030 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2031 iterator->level = 0;
2032 return;
2033 }
2034
c2a2ac2b 2035 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2036 --iterator->level;
2037}
2038
c2a2ac2b
XG
2039static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2040{
2041 return __shadow_walk_next(iterator, *iterator->sptep);
2042}
2043
32ef26a3
AK
2044static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2045{
2046 u64 spte;
2047
24db2734
XG
2048 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2049 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2050
1df9f2dc 2051 mmu_spte_set(sptep, spte);
32ef26a3
AK
2052}
2053
a357bd22
AK
2054static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2055 unsigned direct_access)
2056{
2057 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2058 struct kvm_mmu_page *child;
2059
2060 /*
2061 * For the direct sp, if the guest pte's dirty bit
2062 * changed form clean to dirty, it will corrupt the
2063 * sp's access: allow writable in the read-only sp,
2064 * so we should update the spte at this point to get
2065 * a new sp with the correct access.
2066 */
2067 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2068 if (child->role.access == direct_access)
2069 return;
2070
bcdd9a93 2071 drop_parent_pte(child, sptep);
a357bd22
AK
2072 kvm_flush_remote_tlbs(vcpu->kvm);
2073 }
2074}
2075
505aef8f 2076static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2077 u64 *spte)
2078{
2079 u64 pte;
2080 struct kvm_mmu_page *child;
2081
2082 pte = *spte;
2083 if (is_shadow_present_pte(pte)) {
505aef8f 2084 if (is_last_spte(pte, sp->role.level)) {
c3707958 2085 drop_spte(kvm, spte);
505aef8f
XG
2086 if (is_large_pte(pte))
2087 --kvm->stat.lpages;
2088 } else {
38e3b2b2 2089 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2090 drop_parent_pte(child, spte);
38e3b2b2 2091 }
505aef8f
XG
2092 return true;
2093 }
2094
2095 if (is_mmio_spte(pte))
ce88decf 2096 mmu_spte_clear_no_track(spte);
c3707958 2097
505aef8f 2098 return false;
38e3b2b2
XG
2099}
2100
90cb0529 2101static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2102 struct kvm_mmu_page *sp)
a436036b 2103{
697fe2e2 2104 unsigned i;
697fe2e2 2105
38e3b2b2
XG
2106 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2107 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2108}
2109
4db35314 2110static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2111{
4db35314 2112 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2113}
2114
31aa2b44 2115static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2116{
1e3f42f0
TY
2117 u64 *sptep;
2118 struct rmap_iterator iter;
a436036b 2119
1e3f42f0
TY
2120 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2121 drop_parent_pte(sp, sptep);
31aa2b44
AK
2122}
2123
60c8aec6 2124static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2125 struct kvm_mmu_page *parent,
2126 struct list_head *invalid_list)
4731d4c7 2127{
60c8aec6
MT
2128 int i, zapped = 0;
2129 struct mmu_page_path parents;
2130 struct kvm_mmu_pages pages;
4731d4c7 2131
60c8aec6 2132 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2133 return 0;
60c8aec6
MT
2134
2135 kvm_mmu_pages_init(parent, &parents, &pages);
2136 while (mmu_unsync_walk(parent, &pages)) {
2137 struct kvm_mmu_page *sp;
2138
2139 for_each_sp(pages, sp, parents, i) {
7775834a 2140 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2141 mmu_pages_clear_parents(&parents);
77662e00 2142 zapped++;
60c8aec6 2143 }
60c8aec6
MT
2144 kvm_mmu_pages_init(parent, &parents, &pages);
2145 }
2146
2147 return zapped;
4731d4c7
MT
2148}
2149
7775834a
XG
2150static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2151 struct list_head *invalid_list)
31aa2b44 2152{
4731d4c7 2153 int ret;
f691fe1d 2154
7775834a 2155 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2156 ++kvm->stat.mmu_shadow_zapped;
7775834a 2157 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2158 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2159 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2160
f6e2c02b 2161 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2162 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2163
4731d4c7
MT
2164 if (sp->unsync)
2165 kvm_unlink_unsync_page(kvm, sp);
4db35314 2166 if (!sp->root_count) {
54a4f023
GJ
2167 /* Count self */
2168 ret++;
7775834a 2169 list_move(&sp->link, invalid_list);
aa6bd187 2170 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2171 } else {
5b5c6a5a 2172 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2173
2174 /*
2175 * The obsolete pages can not be used on any vcpus.
2176 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2177 */
2178 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2179 kvm_reload_remote_mmus(kvm);
2e53d63a 2180 }
7775834a
XG
2181
2182 sp->role.invalid = 1;
4731d4c7 2183 return ret;
a436036b
AK
2184}
2185
7775834a
XG
2186static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2187 struct list_head *invalid_list)
2188{
945315b9 2189 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2190
2191 if (list_empty(invalid_list))
2192 return;
2193
c142786c
AK
2194 /*
2195 * wmb: make sure everyone sees our modifications to the page tables
2196 * rmb: make sure we see changes to vcpu->mode
2197 */
2198 smp_mb();
4f022648 2199
c142786c
AK
2200 /*
2201 * Wait for all vcpus to exit guest mode and/or lockless shadow
2202 * page table walks.
2203 */
2204 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2205
945315b9 2206 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2207 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2208 kvm_mmu_free_page(sp);
945315b9 2209 }
7775834a
XG
2210}
2211
5da59607
TY
2212static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2213 struct list_head *invalid_list)
2214{
2215 struct kvm_mmu_page *sp;
2216
2217 if (list_empty(&kvm->arch.active_mmu_pages))
2218 return false;
2219
2220 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2221 struct kvm_mmu_page, link);
2222 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2223
2224 return true;
2225}
2226
82ce2c96
IE
2227/*
2228 * Changing the number of mmu pages allocated to the vm
49d5ca26 2229 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2230 */
49d5ca26 2231void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2232{
d98ba053 2233 LIST_HEAD(invalid_list);
82ce2c96 2234
b34cb590
TY
2235 spin_lock(&kvm->mmu_lock);
2236
49d5ca26 2237 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2238 /* Need to free some mmu pages to achieve the goal. */
2239 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2240 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2241 break;
82ce2c96 2242
aa6bd187 2243 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2244 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2245 }
82ce2c96 2246
49d5ca26 2247 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2248
2249 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2250}
2251
1cb3f3ae 2252int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2253{
4db35314 2254 struct kvm_mmu_page *sp;
d98ba053 2255 LIST_HEAD(invalid_list);
a436036b
AK
2256 int r;
2257
9ad17b10 2258 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2259 r = 0;
1cb3f3ae 2260 spin_lock(&kvm->mmu_lock);
b67bfe0d 2261 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2262 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2263 sp->role.word);
2264 r = 1;
f41d335a 2265 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2266 }
d98ba053 2267 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2268 spin_unlock(&kvm->mmu_lock);
2269
a436036b 2270 return r;
cea0f0e7 2271}
1cb3f3ae 2272EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2273
74be52e3
SY
2274/*
2275 * The function is based on mtrr_type_lookup() in
2276 * arch/x86/kernel/cpu/mtrr/generic.c
2277 */
2278static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2279 u64 start, u64 end)
2280{
2281 int i;
2282 u64 base, mask;
2283 u8 prev_match, curr_match;
2284 int num_var_ranges = KVM_NR_VAR_MTRR;
2285
2286 if (!mtrr_state->enabled)
2287 return 0xFF;
2288
2289 /* Make end inclusive end, instead of exclusive */
2290 end--;
2291
2292 /* Look in fixed ranges. Just return the type as per start */
2293 if (mtrr_state->have_fixed && (start < 0x100000)) {
2294 int idx;
2295
2296 if (start < 0x80000) {
2297 idx = 0;
2298 idx += (start >> 16);
2299 return mtrr_state->fixed_ranges[idx];
2300 } else if (start < 0xC0000) {
2301 idx = 1 * 8;
2302 idx += ((start - 0x80000) >> 14);
2303 return mtrr_state->fixed_ranges[idx];
2304 } else if (start < 0x1000000) {
2305 idx = 3 * 8;
2306 idx += ((start - 0xC0000) >> 12);
2307 return mtrr_state->fixed_ranges[idx];
2308 }
2309 }
2310
2311 /*
2312 * Look in variable ranges
2313 * Look of multiple ranges matching this address and pick type
2314 * as per MTRR precedence
2315 */
2316 if (!(mtrr_state->enabled & 2))
2317 return mtrr_state->def_type;
2318
2319 prev_match = 0xFF;
2320 for (i = 0; i < num_var_ranges; ++i) {
2321 unsigned short start_state, end_state;
2322
2323 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2324 continue;
2325
2326 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2327 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2328 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2329 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2330
2331 start_state = ((start & mask) == (base & mask));
2332 end_state = ((end & mask) == (base & mask));
2333 if (start_state != end_state)
2334 return 0xFE;
2335
2336 if ((start & mask) != (base & mask))
2337 continue;
2338
2339 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2340 if (prev_match == 0xFF) {
2341 prev_match = curr_match;
2342 continue;
2343 }
2344
2345 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2346 curr_match == MTRR_TYPE_UNCACHABLE)
2347 return MTRR_TYPE_UNCACHABLE;
2348
2349 if ((prev_match == MTRR_TYPE_WRBACK &&
2350 curr_match == MTRR_TYPE_WRTHROUGH) ||
2351 (prev_match == MTRR_TYPE_WRTHROUGH &&
2352 curr_match == MTRR_TYPE_WRBACK)) {
2353 prev_match = MTRR_TYPE_WRTHROUGH;
2354 curr_match = MTRR_TYPE_WRTHROUGH;
2355 }
2356
2357 if (prev_match != curr_match)
2358 return MTRR_TYPE_UNCACHABLE;
2359 }
2360
2361 if (prev_match != 0xFF)
2362 return prev_match;
2363
2364 return mtrr_state->def_type;
2365}
2366
4b12f0de 2367u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2368{
2369 u8 mtrr;
2370
2371 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2372 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2373 if (mtrr == 0xfe || mtrr == 0xff)
2374 mtrr = MTRR_TYPE_WRBACK;
2375 return mtrr;
2376}
4b12f0de 2377EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2378
9cf5cf5a
XG
2379static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2380{
2381 trace_kvm_mmu_unsync_page(sp);
2382 ++vcpu->kvm->stat.mmu_unsync;
2383 sp->unsync = 1;
2384
2385 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2386}
2387
2388static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2389{
4731d4c7 2390 struct kvm_mmu_page *s;
9cf5cf5a 2391
b67bfe0d 2392 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2393 if (s->unsync)
4731d4c7 2394 continue;
9cf5cf5a
XG
2395 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2396 __kvm_unsync_page(vcpu, s);
4731d4c7 2397 }
4731d4c7
MT
2398}
2399
2400static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2401 bool can_unsync)
2402{
9cf5cf5a 2403 struct kvm_mmu_page *s;
9cf5cf5a
XG
2404 bool need_unsync = false;
2405
b67bfe0d 2406 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2407 if (!can_unsync)
2408 return 1;
2409
9cf5cf5a 2410 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2411 return 1;
9cf5cf5a 2412
9bb4f6b1 2413 if (!s->unsync)
9cf5cf5a 2414 need_unsync = true;
4731d4c7 2415 }
9cf5cf5a
XG
2416 if (need_unsync)
2417 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2418 return 0;
2419}
2420
d555c333 2421static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2422 unsigned pte_access, int level,
c2d0ee46 2423 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2424 bool can_unsync, bool host_writable)
1c4f1fd6 2425{
6e7d0354 2426 u64 spte;
1e73f9dd 2427 int ret = 0;
64d4d521 2428
f2fd125d 2429 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2430 return 0;
2431
982c2565 2432 spte = PT_PRESENT_MASK;
947da538 2433 if (!speculative)
3201b5d9 2434 spte |= shadow_accessed_mask;
640d9b0d 2435
7b52345e
SY
2436 if (pte_access & ACC_EXEC_MASK)
2437 spte |= shadow_x_mask;
2438 else
2439 spte |= shadow_nx_mask;
49fde340 2440
1c4f1fd6 2441 if (pte_access & ACC_USER_MASK)
7b52345e 2442 spte |= shadow_user_mask;
49fde340 2443
852e3c19 2444 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2445 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2446 if (tdp_enabled)
4b12f0de
SY
2447 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2448 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2449
9bdbba13 2450 if (host_writable)
1403283a 2451 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2452 else
2453 pte_access &= ~ACC_WRITE_MASK;
1403283a 2454
35149e21 2455 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2456
c2288505 2457 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2458
c2193463 2459 /*
7751babd
XG
2460 * Other vcpu creates new sp in the window between
2461 * mapping_level() and acquiring mmu-lock. We can
2462 * allow guest to retry the access, the mapping can
2463 * be fixed if guest refault.
c2193463 2464 */
852e3c19 2465 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2466 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2467 goto done;
38187c83 2468
49fde340 2469 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2470
ecc5589f
MT
2471 /*
2472 * Optimization: for pte sync, if spte was writable the hash
2473 * lookup is unnecessary (and expensive). Write protection
2474 * is responsibility of mmu_get_page / kvm_sync_page.
2475 * Same reasoning can be applied to dirty page accounting.
2476 */
8dae4445 2477 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2478 goto set_pte;
2479
4731d4c7 2480 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2481 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2482 __func__, gfn);
1e73f9dd 2483 ret = 1;
1c4f1fd6 2484 pte_access &= ~ACC_WRITE_MASK;
49fde340 2485 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2486 }
2487 }
2488
1c4f1fd6
AK
2489 if (pte_access & ACC_WRITE_MASK)
2490 mark_page_dirty(vcpu->kvm, gfn);
2491
38187c83 2492set_pte:
6e7d0354 2493 if (mmu_spte_update(sptep, spte))
b330aa0c 2494 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2495done:
1e73f9dd
MT
2496 return ret;
2497}
2498
d555c333 2499static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2500 unsigned pte_access, int write_fault, int *emulate,
2501 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2502 bool host_writable)
1e73f9dd
MT
2503{
2504 int was_rmapped = 0;
53a27b39 2505 int rmap_count;
1e73f9dd 2506
f7616203
XG
2507 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2508 *sptep, write_fault, gfn);
1e73f9dd 2509
d555c333 2510 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2511 /*
2512 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2513 * the parent of the now unreachable PTE.
2514 */
852e3c19
JR
2515 if (level > PT_PAGE_TABLE_LEVEL &&
2516 !is_large_pte(*sptep)) {
1e73f9dd 2517 struct kvm_mmu_page *child;
d555c333 2518 u64 pte = *sptep;
1e73f9dd
MT
2519
2520 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2521 drop_parent_pte(child, sptep);
3be2264b 2522 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2523 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2524 pgprintk("hfn old %llx new %llx\n",
d555c333 2525 spte_to_pfn(*sptep), pfn);
c3707958 2526 drop_spte(vcpu->kvm, sptep);
91546356 2527 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2528 } else
2529 was_rmapped = 1;
1e73f9dd 2530 }
852e3c19 2531
c2288505
XG
2532 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2533 true, host_writable)) {
1e73f9dd 2534 if (write_fault)
b90a0e6c 2535 *emulate = 1;
5304efde 2536 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2537 }
1e73f9dd 2538
ce88decf
XG
2539 if (unlikely(is_mmio_spte(*sptep) && emulate))
2540 *emulate = 1;
2541
d555c333 2542 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2543 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2544 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2545 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2546 *sptep, sptep);
d555c333 2547 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2548 ++vcpu->kvm->stat.lpages;
2549
ffb61bb3 2550 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2551 if (!was_rmapped) {
2552 rmap_count = rmap_add(vcpu, sptep, gfn);
2553 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2554 rmap_recycle(vcpu, sptep, gfn);
2555 }
1c4f1fd6 2556 }
cb9aaa30 2557
f3ac1a4b 2558 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2559}
2560
6aa8b732
AK
2561static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2562{
e676505a 2563 mmu_free_roots(vcpu);
6aa8b732
AK
2564}
2565
a052b42b
XG
2566static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2567{
2568 int bit7;
2569
2570 bit7 = (gpte >> 7) & 1;
2571 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2572}
2573
957ed9ef
XG
2574static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2575 bool no_dirty_log)
2576{
2577 struct kvm_memory_slot *slot;
957ed9ef 2578
5d163b1c 2579 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2580 if (!slot)
6c8ee57b 2581 return KVM_PFN_ERR_FAULT;
957ed9ef 2582
037d92dc 2583 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2584}
2585
a052b42b
XG
2586static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2587 struct kvm_mmu_page *sp, u64 *spte,
2588 u64 gpte)
2589{
2590 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2591 goto no_present;
2592
2593 if (!is_present_gpte(gpte))
2594 goto no_present;
2595
2596 if (!(gpte & PT_ACCESSED_MASK))
2597 goto no_present;
2598
2599 return false;
2600
2601no_present:
2602 drop_spte(vcpu->kvm, spte);
2603 return true;
2604}
2605
957ed9ef
XG
2606static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2607 struct kvm_mmu_page *sp,
2608 u64 *start, u64 *end)
2609{
2610 struct page *pages[PTE_PREFETCH_NUM];
2611 unsigned access = sp->role.access;
2612 int i, ret;
2613 gfn_t gfn;
2614
2615 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2616 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2617 return -1;
2618
2619 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2620 if (ret <= 0)
2621 return -1;
2622
2623 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2624 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2625 sp->role.level, gfn, page_to_pfn(pages[i]),
2626 true, true);
957ed9ef
XG
2627
2628 return 0;
2629}
2630
2631static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2632 struct kvm_mmu_page *sp, u64 *sptep)
2633{
2634 u64 *spte, *start = NULL;
2635 int i;
2636
2637 WARN_ON(!sp->role.direct);
2638
2639 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2640 spte = sp->spt + i;
2641
2642 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2643 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2644 if (!start)
2645 continue;
2646 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2647 break;
2648 start = NULL;
2649 } else if (!start)
2650 start = spte;
2651 }
2652}
2653
2654static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2655{
2656 struct kvm_mmu_page *sp;
2657
2658 /*
2659 * Since it's no accessed bit on EPT, it's no way to
2660 * distinguish between actually accessed translations
2661 * and prefetched, so disable pte prefetch if EPT is
2662 * enabled.
2663 */
2664 if (!shadow_accessed_mask)
2665 return;
2666
2667 sp = page_header(__pa(sptep));
2668 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2669 return;
2670
2671 __direct_pte_prefetch(vcpu, sp, sptep);
2672}
2673
9f652d21 2674static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2675 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2676 bool prefault)
140754bc 2677{
9f652d21 2678 struct kvm_shadow_walk_iterator iterator;
140754bc 2679 struct kvm_mmu_page *sp;
b90a0e6c 2680 int emulate = 0;
140754bc 2681 gfn_t pseudo_gfn;
6aa8b732 2682
9f652d21 2683 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2684 if (iterator.level == level) {
f7616203 2685 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2686 write, &emulate, level, gfn, pfn,
2687 prefault, map_writable);
957ed9ef 2688 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2689 ++vcpu->stat.pf_fixed;
2690 break;
6aa8b732
AK
2691 }
2692
c3707958 2693 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2694 u64 base_addr = iterator.addr;
2695
2696 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2697 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2698 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2699 iterator.level - 1,
2700 1, ACC_ALL, iterator.sptep);
140754bc 2701
24db2734 2702 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2703 }
2704 }
b90a0e6c 2705 return emulate;
6aa8b732
AK
2706}
2707
77db5cbd 2708static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2709{
77db5cbd
HY
2710 siginfo_t info;
2711
2712 info.si_signo = SIGBUS;
2713 info.si_errno = 0;
2714 info.si_code = BUS_MCEERR_AR;
2715 info.si_addr = (void __user *)address;
2716 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2717
77db5cbd 2718 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2719}
2720
d7c55201 2721static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2722{
4d8b81ab
XG
2723 /*
2724 * Do not cache the mmio info caused by writing the readonly gfn
2725 * into the spte otherwise read access on readonly gfn also can
2726 * caused mmio page fault and treat it as mmio access.
2727 * Return 1 to tell kvm to emulate it.
2728 */
2729 if (pfn == KVM_PFN_ERR_RO_FAULT)
2730 return 1;
2731
e6c1502b 2732 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2733 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2734 return 0;
d7c55201 2735 }
edba23e5 2736
d7c55201 2737 return -EFAULT;
bf998156
HY
2738}
2739
936a5fe6
AA
2740static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2741 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2742{
2743 pfn_t pfn = *pfnp;
2744 gfn_t gfn = *gfnp;
2745 int level = *levelp;
2746
2747 /*
2748 * Check if it's a transparent hugepage. If this would be an
2749 * hugetlbfs page, level wouldn't be set to
2750 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2751 * here.
2752 */
81c52c56 2753 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2754 level == PT_PAGE_TABLE_LEVEL &&
2755 PageTransCompound(pfn_to_page(pfn)) &&
2756 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2757 unsigned long mask;
2758 /*
2759 * mmu_notifier_retry was successful and we hold the
2760 * mmu_lock here, so the pmd can't become splitting
2761 * from under us, and in turn
2762 * __split_huge_page_refcount() can't run from under
2763 * us and we can safely transfer the refcount from
2764 * PG_tail to PG_head as we switch the pfn to tail to
2765 * head.
2766 */
2767 *levelp = level = PT_DIRECTORY_LEVEL;
2768 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2769 VM_BUG_ON((gfn & mask) != (pfn & mask));
2770 if (pfn & mask) {
2771 gfn &= ~mask;
2772 *gfnp = gfn;
2773 kvm_release_pfn_clean(pfn);
2774 pfn &= ~mask;
c3586667 2775 kvm_get_pfn(pfn);
936a5fe6
AA
2776 *pfnp = pfn;
2777 }
2778 }
2779}
2780
d7c55201
XG
2781static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2782 pfn_t pfn, unsigned access, int *ret_val)
2783{
2784 bool ret = true;
2785
2786 /* The pfn is invalid, report the error! */
81c52c56 2787 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2788 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2789 goto exit;
2790 }
2791
ce88decf 2792 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2793 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2794
2795 ret = false;
2796exit:
2797 return ret;
2798}
2799
c7ba5b48
XG
2800static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2801{
2802 /*
2803 * #PF can be fast only if the shadow page table is present and it
2804 * is caused by write-protect, that means we just need change the
2805 * W bit of the spte which can be done out of mmu-lock.
2806 */
2807 if (!(error_code & PFERR_PRESENT_MASK) ||
2808 !(error_code & PFERR_WRITE_MASK))
2809 return false;
2810
2811 return true;
2812}
2813
2814static bool
2815fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2816{
2817 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2818 gfn_t gfn;
2819
2820 WARN_ON(!sp->role.direct);
2821
2822 /*
2823 * The gfn of direct spte is stable since it is calculated
2824 * by sp->gfn.
2825 */
2826 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2827
2828 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2829 mark_page_dirty(vcpu->kvm, gfn);
2830
2831 return true;
2832}
2833
2834/*
2835 * Return value:
2836 * - true: let the vcpu to access on the same address again.
2837 * - false: let the real page fault path to fix it.
2838 */
2839static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2840 u32 error_code)
2841{
2842 struct kvm_shadow_walk_iterator iterator;
2843 bool ret = false;
2844 u64 spte = 0ull;
2845
2846 if (!page_fault_can_be_fast(vcpu, error_code))
2847 return false;
2848
2849 walk_shadow_page_lockless_begin(vcpu);
2850 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2851 if (!is_shadow_present_pte(spte) || iterator.level < level)
2852 break;
2853
2854 /*
2855 * If the mapping has been changed, let the vcpu fault on the
2856 * same address again.
2857 */
2858 if (!is_rmap_spte(spte)) {
2859 ret = true;
2860 goto exit;
2861 }
2862
2863 if (!is_last_spte(spte, level))
2864 goto exit;
2865
2866 /*
2867 * Check if it is a spurious fault caused by TLB lazily flushed.
2868 *
2869 * Need not check the access of upper level table entries since
2870 * they are always ACC_ALL.
2871 */
2872 if (is_writable_pte(spte)) {
2873 ret = true;
2874 goto exit;
2875 }
2876
2877 /*
2878 * Currently, to simplify the code, only the spte write-protected
2879 * by dirty-log can be fast fixed.
2880 */
2881 if (!spte_is_locklessly_modifiable(spte))
2882 goto exit;
2883
2884 /*
2885 * Currently, fast page fault only works for direct mapping since
2886 * the gfn is not stable for indirect shadow page.
2887 * See Documentation/virtual/kvm/locking.txt to get more detail.
2888 */
2889 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2890exit:
a72faf25
XG
2891 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2892 spte, ret);
c7ba5b48
XG
2893 walk_shadow_page_lockless_end(vcpu);
2894
2895 return ret;
2896}
2897
78b2c54a 2898static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2899 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2900static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2901
c7ba5b48
XG
2902static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2903 gfn_t gfn, bool prefault)
10589a46
MT
2904{
2905 int r;
852e3c19 2906 int level;
936a5fe6 2907 int force_pt_level;
35149e21 2908 pfn_t pfn;
e930bffe 2909 unsigned long mmu_seq;
c7ba5b48 2910 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2911
936a5fe6
AA
2912 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2913 if (likely(!force_pt_level)) {
2914 level = mapping_level(vcpu, gfn);
2915 /*
2916 * This path builds a PAE pagetable - so we can map
2917 * 2mb pages at maximum. Therefore check if the level
2918 * is larger than that.
2919 */
2920 if (level > PT_DIRECTORY_LEVEL)
2921 level = PT_DIRECTORY_LEVEL;
852e3c19 2922
936a5fe6
AA
2923 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2924 } else
2925 level = PT_PAGE_TABLE_LEVEL;
05da4558 2926
c7ba5b48
XG
2927 if (fast_page_fault(vcpu, v, level, error_code))
2928 return 0;
2929
e930bffe 2930 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2931 smp_rmb();
060c2abe 2932
78b2c54a 2933 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2934 return 0;
aaee2c94 2935
d7c55201
XG
2936 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2937 return r;
d196e343 2938
aaee2c94 2939 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2940 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2941 goto out_unlock;
450e0b41 2942 make_mmu_pages_available(vcpu);
936a5fe6
AA
2943 if (likely(!force_pt_level))
2944 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2945 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2946 prefault);
aaee2c94
MT
2947 spin_unlock(&vcpu->kvm->mmu_lock);
2948
aaee2c94 2949
10589a46 2950 return r;
e930bffe
AA
2951
2952out_unlock:
2953 spin_unlock(&vcpu->kvm->mmu_lock);
2954 kvm_release_pfn_clean(pfn);
2955 return 0;
10589a46
MT
2956}
2957
2958
17ac10ad
AK
2959static void mmu_free_roots(struct kvm_vcpu *vcpu)
2960{
2961 int i;
4db35314 2962 struct kvm_mmu_page *sp;
d98ba053 2963 LIST_HEAD(invalid_list);
17ac10ad 2964
ad312c7c 2965 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2966 return;
35af577a 2967
81407ca5
JR
2968 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2969 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2970 vcpu->arch.mmu.direct_map)) {
ad312c7c 2971 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2972
35af577a 2973 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2974 sp = page_header(root);
2975 --sp->root_count;
d98ba053
XG
2976 if (!sp->root_count && sp->role.invalid) {
2977 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2978 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2979 }
aaee2c94 2980 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2981 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2982 return;
2983 }
35af577a
GN
2984
2985 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2986 for (i = 0; i < 4; ++i) {
ad312c7c 2987 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2988
417726a3 2989 if (root) {
417726a3 2990 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2991 sp = page_header(root);
2992 --sp->root_count;
2e53d63a 2993 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2994 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2995 &invalid_list);
417726a3 2996 }
ad312c7c 2997 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2998 }
d98ba053 2999 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3000 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3001 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3002}
3003
8986ecc0
MT
3004static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3005{
3006 int ret = 0;
3007
3008 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3009 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3010 ret = 1;
3011 }
3012
3013 return ret;
3014}
3015
651dd37a
JR
3016static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3017{
3018 struct kvm_mmu_page *sp;
7ebaf15e 3019 unsigned i;
651dd37a
JR
3020
3021 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3022 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3023 make_mmu_pages_available(vcpu);
651dd37a
JR
3024 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3025 1, ACC_ALL, NULL);
3026 ++sp->root_count;
3027 spin_unlock(&vcpu->kvm->mmu_lock);
3028 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3029 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3030 for (i = 0; i < 4; ++i) {
3031 hpa_t root = vcpu->arch.mmu.pae_root[i];
3032
3033 ASSERT(!VALID_PAGE(root));
3034 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3035 make_mmu_pages_available(vcpu);
649497d1
AK
3036 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3037 i << 30,
651dd37a
JR
3038 PT32_ROOT_LEVEL, 1, ACC_ALL,
3039 NULL);
3040 root = __pa(sp->spt);
3041 ++sp->root_count;
3042 spin_unlock(&vcpu->kvm->mmu_lock);
3043 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3044 }
6292757f 3045 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3046 } else
3047 BUG();
3048
3049 return 0;
3050}
3051
3052static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3053{
4db35314 3054 struct kvm_mmu_page *sp;
81407ca5
JR
3055 u64 pdptr, pm_mask;
3056 gfn_t root_gfn;
3057 int i;
3bb65a22 3058
5777ed34 3059 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3060
651dd37a
JR
3061 if (mmu_check_root(vcpu, root_gfn))
3062 return 1;
3063
3064 /*
3065 * Do we shadow a long mode page table? If so we need to
3066 * write-protect the guests page table root.
3067 */
3068 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3069 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
3070
3071 ASSERT(!VALID_PAGE(root));
651dd37a 3072
8facbbff 3073 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3074 make_mmu_pages_available(vcpu);
651dd37a
JR
3075 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3076 0, ACC_ALL, NULL);
4db35314
AK
3077 root = __pa(sp->spt);
3078 ++sp->root_count;
8facbbff 3079 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3080 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3081 return 0;
17ac10ad 3082 }
f87f9288 3083
651dd37a
JR
3084 /*
3085 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3086 * or a PAE 3-level page table. In either case we need to be aware that
3087 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3088 */
81407ca5
JR
3089 pm_mask = PT_PRESENT_MASK;
3090 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3091 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3092
17ac10ad 3093 for (i = 0; i < 4; ++i) {
ad312c7c 3094 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3095
3096 ASSERT(!VALID_PAGE(root));
ad312c7c 3097 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3098 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3099 if (!is_present_gpte(pdptr)) {
ad312c7c 3100 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3101 continue;
3102 }
6de4f3ad 3103 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3104 if (mmu_check_root(vcpu, root_gfn))
3105 return 1;
5a7388c2 3106 }
8facbbff 3107 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3108 make_mmu_pages_available(vcpu);
4db35314 3109 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3110 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3111 ACC_ALL, NULL);
4db35314
AK
3112 root = __pa(sp->spt);
3113 ++sp->root_count;
8facbbff
AK
3114 spin_unlock(&vcpu->kvm->mmu_lock);
3115
81407ca5 3116 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3117 }
6292757f 3118 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3119
3120 /*
3121 * If we shadow a 32 bit page table with a long mode page
3122 * table we enter this path.
3123 */
3124 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3125 if (vcpu->arch.mmu.lm_root == NULL) {
3126 /*
3127 * The additional page necessary for this is only
3128 * allocated on demand.
3129 */
3130
3131 u64 *lm_root;
3132
3133 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3134 if (lm_root == NULL)
3135 return 1;
3136
3137 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3138
3139 vcpu->arch.mmu.lm_root = lm_root;
3140 }
3141
3142 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3143 }
3144
8986ecc0 3145 return 0;
17ac10ad
AK
3146}
3147
651dd37a
JR
3148static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3149{
3150 if (vcpu->arch.mmu.direct_map)
3151 return mmu_alloc_direct_roots(vcpu);
3152 else
3153 return mmu_alloc_shadow_roots(vcpu);
3154}
3155
0ba73cda
MT
3156static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3157{
3158 int i;
3159 struct kvm_mmu_page *sp;
3160
81407ca5
JR
3161 if (vcpu->arch.mmu.direct_map)
3162 return;
3163
0ba73cda
MT
3164 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3165 return;
6903074c 3166
bebb106a 3167 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3168 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3169 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3170 hpa_t root = vcpu->arch.mmu.root_hpa;
3171 sp = page_header(root);
3172 mmu_sync_children(vcpu, sp);
0375f7fa 3173 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3174 return;
3175 }
3176 for (i = 0; i < 4; ++i) {
3177 hpa_t root = vcpu->arch.mmu.pae_root[i];
3178
8986ecc0 3179 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3180 root &= PT64_BASE_ADDR_MASK;
3181 sp = page_header(root);
3182 mmu_sync_children(vcpu, sp);
3183 }
3184 }
0375f7fa 3185 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3186}
3187
3188void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3189{
3190 spin_lock(&vcpu->kvm->mmu_lock);
3191 mmu_sync_roots(vcpu);
6cffe8ca 3192 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3193}
3194
1871c602 3195static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3196 u32 access, struct x86_exception *exception)
6aa8b732 3197{
ab9ae313
AK
3198 if (exception)
3199 exception->error_code = 0;
6aa8b732
AK
3200 return vaddr;
3201}
3202
6539e738 3203static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3204 u32 access,
3205 struct x86_exception *exception)
6539e738 3206{
ab9ae313
AK
3207 if (exception)
3208 exception->error_code = 0;
6539e738
JR
3209 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3210}
3211
ce88decf
XG
3212static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3213{
3214 if (direct)
3215 return vcpu_match_mmio_gpa(vcpu, addr);
3216
3217 return vcpu_match_mmio_gva(vcpu, addr);
3218}
3219
3220
3221/*
3222 * On direct hosts, the last spte is only allows two states
3223 * for mmio page fault:
3224 * - It is the mmio spte
3225 * - It is zapped or it is being zapped.
3226 *
3227 * This function completely checks the spte when the last spte
3228 * is not the mmio spte.
3229 */
3230static bool check_direct_spte_mmio_pf(u64 spte)
3231{
3232 return __check_direct_spte_mmio_pf(spte);
3233}
3234
3235static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3236{
3237 struct kvm_shadow_walk_iterator iterator;
3238 u64 spte = 0ull;
3239
3240 walk_shadow_page_lockless_begin(vcpu);
3241 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3242 if (!is_shadow_present_pte(spte))
3243 break;
3244 walk_shadow_page_lockless_end(vcpu);
3245
3246 return spte;
3247}
3248
ce88decf
XG
3249int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3250{
3251 u64 spte;
3252
3253 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3254 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3255
3256 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3257
3258 if (is_mmio_spte(spte)) {
3259 gfn_t gfn = get_mmio_spte_gfn(spte);
3260 unsigned access = get_mmio_spte_access(spte);
3261
f8f55942
XG
3262 if (!check_mmio_spte(vcpu->kvm, spte))
3263 return RET_MMIO_PF_INVALID;
3264
ce88decf
XG
3265 if (direct)
3266 addr = 0;
4f022648
XG
3267
3268 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3269 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3270 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3271 }
3272
3273 /*
3274 * It's ok if the gva is remapped by other cpus on shadow guest,
3275 * it's a BUG if the gfn is not a mmio page.
3276 */
3277 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3278 return RET_MMIO_PF_BUG;
ce88decf
XG
3279
3280 /*
3281 * If the page table is zapped by other cpus, let CPU fault again on
3282 * the address.
3283 */
b37fbea6 3284 return RET_MMIO_PF_RETRY;
ce88decf
XG
3285}
3286EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3287
3288static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3289 u32 error_code, bool direct)
3290{
3291 int ret;
3292
3293 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3294 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3295 return ret;
3296}
3297
6aa8b732 3298static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3299 u32 error_code, bool prefault)
6aa8b732 3300{
e833240f 3301 gfn_t gfn;
e2dec939 3302 int r;
6aa8b732 3303
b8688d51 3304 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3305
f8f55942
XG
3306 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3307 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3308
3309 if (likely(r != RET_MMIO_PF_INVALID))
3310 return r;
3311 }
ce88decf 3312
e2dec939
AK
3313 r = mmu_topup_memory_caches(vcpu);
3314 if (r)
3315 return r;
714b93da 3316
6aa8b732 3317 ASSERT(vcpu);
ad312c7c 3318 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3319
e833240f 3320 gfn = gva >> PAGE_SHIFT;
6aa8b732 3321
e833240f 3322 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3323 error_code, gfn, prefault);
6aa8b732
AK
3324}
3325
7e1fbeac 3326static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3327{
3328 struct kvm_arch_async_pf arch;
fb67e14f 3329
7c90705b 3330 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3331 arch.gfn = gfn;
c4806acd 3332 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3333 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3334
3335 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3336}
3337
3338static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3339{
3340 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3341 kvm_event_needs_reinjection(vcpu)))
3342 return false;
3343
3344 return kvm_x86_ops->interrupt_allowed(vcpu);
3345}
3346
78b2c54a 3347static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3348 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3349{
3350 bool async;
3351
612819c3 3352 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3353
3354 if (!async)
3355 return false; /* *pfn has correct page already */
3356
78b2c54a 3357 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3358 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3359 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3360 trace_kvm_async_pf_doublefault(gva, gfn);
3361 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3362 return true;
3363 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3364 return true;
3365 }
3366
612819c3 3367 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3368
3369 return false;
3370}
3371
56028d08 3372static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3373 bool prefault)
fb72d167 3374{
35149e21 3375 pfn_t pfn;
fb72d167 3376 int r;
852e3c19 3377 int level;
936a5fe6 3378 int force_pt_level;
05da4558 3379 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3380 unsigned long mmu_seq;
612819c3
MT
3381 int write = error_code & PFERR_WRITE_MASK;
3382 bool map_writable;
fb72d167
JR
3383
3384 ASSERT(vcpu);
3385 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3386
f8f55942
XG
3387 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3388 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3389
3390 if (likely(r != RET_MMIO_PF_INVALID))
3391 return r;
3392 }
ce88decf 3393
fb72d167
JR
3394 r = mmu_topup_memory_caches(vcpu);
3395 if (r)
3396 return r;
3397
936a5fe6
AA
3398 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3399 if (likely(!force_pt_level)) {
3400 level = mapping_level(vcpu, gfn);
3401 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3402 } else
3403 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3404
c7ba5b48
XG
3405 if (fast_page_fault(vcpu, gpa, level, error_code))
3406 return 0;
3407
e930bffe 3408 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3409 smp_rmb();
af585b92 3410
78b2c54a 3411 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3412 return 0;
3413
d7c55201
XG
3414 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3415 return r;
3416
fb72d167 3417 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3418 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3419 goto out_unlock;
450e0b41 3420 make_mmu_pages_available(vcpu);
936a5fe6
AA
3421 if (likely(!force_pt_level))
3422 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3423 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3424 level, gfn, pfn, prefault);
fb72d167 3425 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3426
3427 return r;
e930bffe
AA
3428
3429out_unlock:
3430 spin_unlock(&vcpu->kvm->mmu_lock);
3431 kvm_release_pfn_clean(pfn);
3432 return 0;
fb72d167
JR
3433}
3434
6aa8b732
AK
3435static void nonpaging_free(struct kvm_vcpu *vcpu)
3436{
17ac10ad 3437 mmu_free_roots(vcpu);
6aa8b732
AK
3438}
3439
52fde8df
JR
3440static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3441 struct kvm_mmu *context)
6aa8b732 3442{
6aa8b732
AK
3443 context->new_cr3 = nonpaging_new_cr3;
3444 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3445 context->gva_to_gpa = nonpaging_gva_to_gpa;
3446 context->free = nonpaging_free;
e8bc217a 3447 context->sync_page = nonpaging_sync_page;
a7052897 3448 context->invlpg = nonpaging_invlpg;
0f53b5b1 3449 context->update_pte = nonpaging_update_pte;
cea0f0e7 3450 context->root_level = 0;
6aa8b732 3451 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3452 context->root_hpa = INVALID_PAGE;
c5a78f2b 3453 context->direct_map = true;
2d48a985 3454 context->nx = false;
6aa8b732
AK
3455 return 0;
3456}
3457
d835dfec 3458void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3459{
1165f5fe 3460 ++vcpu->stat.tlb_flush;
a8eeb04a 3461 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3462}
3463
3464static void paging_new_cr3(struct kvm_vcpu *vcpu)
3465{
9f8fe504 3466 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3467 mmu_free_roots(vcpu);
6aa8b732
AK
3468}
3469
5777ed34
JR
3470static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3471{
9f8fe504 3472 return kvm_read_cr3(vcpu);
5777ed34
JR
3473}
3474
6389ee94
AK
3475static void inject_page_fault(struct kvm_vcpu *vcpu,
3476 struct x86_exception *fault)
6aa8b732 3477{
6389ee94 3478 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3479}
3480
6aa8b732
AK
3481static void paging_free(struct kvm_vcpu *vcpu)
3482{
3483 nonpaging_free(vcpu);
3484}
3485
8ea667f2
AK
3486static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3487{
3488 unsigned mask;
3489
3490 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3491
3492 mask = (unsigned)~ACC_WRITE_MASK;
3493 /* Allow write access to dirty gptes */
3494 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3495 *access &= mask;
3496}
3497
f2fd125d
XG
3498static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3499 unsigned access, int *nr_present)
ce88decf
XG
3500{
3501 if (unlikely(is_mmio_spte(*sptep))) {
3502 if (gfn != get_mmio_spte_gfn(*sptep)) {
3503 mmu_spte_clear_no_track(sptep);
3504 return true;
3505 }
3506
3507 (*nr_present)++;
f2fd125d 3508 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3509 return true;
3510 }
3511
3512 return false;
3513}
3514
3d34adec
AK
3515static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3516{
3517 unsigned access;
3518
3519 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3520 access &= ~(gpte >> PT64_NX_SHIFT);
3521
3522 return access;
3523}
3524
6fd01b71
AK
3525static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3526{
3527 unsigned index;
3528
3529 index = level - 1;
3530 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3531 return mmu->last_pte_bitmap & (1 << index);
3532}
3533
6aa8b732
AK
3534#define PTTYPE 64
3535#include "paging_tmpl.h"
3536#undef PTTYPE
3537
3538#define PTTYPE 32
3539#include "paging_tmpl.h"
3540#undef PTTYPE
3541
52fde8df 3542static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3543 struct kvm_mmu *context)
82725b20 3544{
82725b20
DE
3545 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3546 u64 exb_bit_rsvd = 0;
3547
2d48a985 3548 if (!context->nx)
82725b20 3549 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3550 switch (context->root_level) {
82725b20
DE
3551 case PT32_ROOT_LEVEL:
3552 /* no rsvd bits for 2 level 4K page table entries */
3553 context->rsvd_bits_mask[0][1] = 0;
3554 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3555 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3556
3557 if (!is_pse(vcpu)) {
3558 context->rsvd_bits_mask[1][1] = 0;
3559 break;
3560 }
3561
82725b20
DE
3562 if (is_cpuid_PSE36())
3563 /* 36bits PSE 4MB page */
3564 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3565 else
3566 /* 32 bits PSE 4MB page */
3567 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3568 break;
3569 case PT32E_ROOT_LEVEL:
20c466b5
DE
3570 context->rsvd_bits_mask[0][2] =
3571 rsvd_bits(maxphyaddr, 63) |
3572 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3573 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3574 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3575 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3576 rsvd_bits(maxphyaddr, 62); /* PTE */
3577 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3578 rsvd_bits(maxphyaddr, 62) |
3579 rsvd_bits(13, 20); /* large page */
f815bce8 3580 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3581 break;
3582 case PT64_ROOT_LEVEL:
3583 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3584 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3585 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3586 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3587 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3588 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3589 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3590 rsvd_bits(maxphyaddr, 51);
3591 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3592 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3593 rsvd_bits(maxphyaddr, 51) |
3594 rsvd_bits(13, 29);
82725b20 3595 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3596 rsvd_bits(maxphyaddr, 51) |
3597 rsvd_bits(13, 20); /* large page */
f815bce8 3598 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3599 break;
3600 }
3601}
3602
97d64b78
AK
3603static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3604{
3605 unsigned bit, byte, pfec;
3606 u8 map;
3607 bool fault, x, w, u, wf, uf, ff, smep;
3608
3609 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3610 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3611 pfec = byte << 1;
3612 map = 0;
3613 wf = pfec & PFERR_WRITE_MASK;
3614 uf = pfec & PFERR_USER_MASK;
3615 ff = pfec & PFERR_FETCH_MASK;
3616 for (bit = 0; bit < 8; ++bit) {
3617 x = bit & ACC_EXEC_MASK;
3618 w = bit & ACC_WRITE_MASK;
3619 u = bit & ACC_USER_MASK;
3620
3621 /* Not really needed: !nx will cause pte.nx to fault */
3622 x |= !mmu->nx;
3623 /* Allow supervisor writes if !cr0.wp */
3624 w |= !is_write_protection(vcpu) && !uf;
3625 /* Disallow supervisor fetches of user code if cr4.smep */
3626 x &= !(smep && u && !uf);
3627
3628 fault = (ff && !x) || (uf && !u) || (wf && !w);
3629 map |= fault << bit;
3630 }
3631 mmu->permissions[byte] = map;
3632 }
3633}
3634
6fd01b71
AK
3635static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3636{
3637 u8 map;
3638 unsigned level, root_level = mmu->root_level;
3639 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3640
3641 if (root_level == PT32E_ROOT_LEVEL)
3642 --root_level;
3643 /* PT_PAGE_TABLE_LEVEL always terminates */
3644 map = 1 | (1 << ps_set_index);
3645 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3646 if (level <= PT_PDPE_LEVEL
3647 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3648 map |= 1 << (ps_set_index | (level - 1));
3649 }
3650 mmu->last_pte_bitmap = map;
3651}
3652
52fde8df
JR
3653static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3654 struct kvm_mmu *context,
3655 int level)
6aa8b732 3656{
2d48a985 3657 context->nx = is_nx(vcpu);
4d6931c3 3658 context->root_level = level;
2d48a985 3659
4d6931c3 3660 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3661 update_permission_bitmask(vcpu, context);
6fd01b71 3662 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3663
3664 ASSERT(is_pae(vcpu));
3665 context->new_cr3 = paging_new_cr3;
3666 context->page_fault = paging64_page_fault;
6aa8b732 3667 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3668 context->sync_page = paging64_sync_page;
a7052897 3669 context->invlpg = paging64_invlpg;
0f53b5b1 3670 context->update_pte = paging64_update_pte;
6aa8b732 3671 context->free = paging_free;
17ac10ad 3672 context->shadow_root_level = level;
17c3ba9d 3673 context->root_hpa = INVALID_PAGE;
c5a78f2b 3674 context->direct_map = false;
6aa8b732
AK
3675 return 0;
3676}
3677
52fde8df
JR
3678static int paging64_init_context(struct kvm_vcpu *vcpu,
3679 struct kvm_mmu *context)
17ac10ad 3680{
52fde8df 3681 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3682}
3683
52fde8df
JR
3684static int paging32_init_context(struct kvm_vcpu *vcpu,
3685 struct kvm_mmu *context)
6aa8b732 3686{
2d48a985 3687 context->nx = false;
4d6931c3 3688 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3689
4d6931c3 3690 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3691 update_permission_bitmask(vcpu, context);
6fd01b71 3692 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3693
3694 context->new_cr3 = paging_new_cr3;
3695 context->page_fault = paging32_page_fault;
6aa8b732
AK
3696 context->gva_to_gpa = paging32_gva_to_gpa;
3697 context->free = paging_free;
e8bc217a 3698 context->sync_page = paging32_sync_page;
a7052897 3699 context->invlpg = paging32_invlpg;
0f53b5b1 3700 context->update_pte = paging32_update_pte;
6aa8b732 3701 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3702 context->root_hpa = INVALID_PAGE;
c5a78f2b 3703 context->direct_map = false;
6aa8b732
AK
3704 return 0;
3705}
3706
52fde8df
JR
3707static int paging32E_init_context(struct kvm_vcpu *vcpu,
3708 struct kvm_mmu *context)
6aa8b732 3709{
52fde8df 3710 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3711}
3712
fb72d167
JR
3713static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3714{
14dfe855 3715 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3716
c445f8ef 3717 context->base_role.word = 0;
fb72d167
JR
3718 context->new_cr3 = nonpaging_new_cr3;
3719 context->page_fault = tdp_page_fault;
3720 context->free = nonpaging_free;
e8bc217a 3721 context->sync_page = nonpaging_sync_page;
a7052897 3722 context->invlpg = nonpaging_invlpg;
0f53b5b1 3723 context->update_pte = nonpaging_update_pte;
67253af5 3724 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3725 context->root_hpa = INVALID_PAGE;
c5a78f2b 3726 context->direct_map = true;
1c97f0a0 3727 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3728 context->get_cr3 = get_cr3;
e4e517b4 3729 context->get_pdptr = kvm_pdptr_read;
cb659db8 3730 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3731
3732 if (!is_paging(vcpu)) {
2d48a985 3733 context->nx = false;
fb72d167
JR
3734 context->gva_to_gpa = nonpaging_gva_to_gpa;
3735 context->root_level = 0;
3736 } else if (is_long_mode(vcpu)) {
2d48a985 3737 context->nx = is_nx(vcpu);
fb72d167 3738 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3739 reset_rsvds_bits_mask(vcpu, context);
3740 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3741 } else if (is_pae(vcpu)) {
2d48a985 3742 context->nx = is_nx(vcpu);
fb72d167 3743 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3744 reset_rsvds_bits_mask(vcpu, context);
3745 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3746 } else {
2d48a985 3747 context->nx = false;
fb72d167 3748 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3749 reset_rsvds_bits_mask(vcpu, context);
3750 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3751 }
3752
97d64b78 3753 update_permission_bitmask(vcpu, context);
6fd01b71 3754 update_last_pte_bitmap(vcpu, context);
97d64b78 3755
fb72d167
JR
3756 return 0;
3757}
3758
52fde8df 3759int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3760{
a770f6f2 3761 int r;
411c588d 3762 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3763 ASSERT(vcpu);
ad312c7c 3764 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3765
3766 if (!is_paging(vcpu))
52fde8df 3767 r = nonpaging_init_context(vcpu, context);
a9058ecd 3768 else if (is_long_mode(vcpu))
52fde8df 3769 r = paging64_init_context(vcpu, context);
6aa8b732 3770 else if (is_pae(vcpu))
52fde8df 3771 r = paging32E_init_context(vcpu, context);
6aa8b732 3772 else
52fde8df 3773 r = paging32_init_context(vcpu, context);
a770f6f2 3774
2c9afa52 3775 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3776 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3777 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3778 vcpu->arch.mmu.base_role.smep_andnot_wp
3779 = smep && !is_write_protection(vcpu);
52fde8df
JR
3780
3781 return r;
3782}
3783EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3784
3785static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3786{
14dfe855 3787 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3788
14dfe855
JR
3789 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3790 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3791 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3792 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3793
3794 return r;
6aa8b732
AK
3795}
3796
02f59dc9
JR
3797static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3798{
3799 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3800
3801 g_context->get_cr3 = get_cr3;
e4e517b4 3802 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3803 g_context->inject_page_fault = kvm_inject_page_fault;
3804
3805 /*
3806 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3807 * translation of l2_gpa to l1_gpa addresses is done using the
3808 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3809 * functions between mmu and nested_mmu are swapped.
3810 */
3811 if (!is_paging(vcpu)) {
2d48a985 3812 g_context->nx = false;
02f59dc9
JR
3813 g_context->root_level = 0;
3814 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3815 } else if (is_long_mode(vcpu)) {
2d48a985 3816 g_context->nx = is_nx(vcpu);
02f59dc9 3817 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3818 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3819 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3820 } else if (is_pae(vcpu)) {
2d48a985 3821 g_context->nx = is_nx(vcpu);
02f59dc9 3822 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3823 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3824 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3825 } else {
2d48a985 3826 g_context->nx = false;
02f59dc9 3827 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3828 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3829 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3830 }
3831
97d64b78 3832 update_permission_bitmask(vcpu, g_context);
6fd01b71 3833 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3834
02f59dc9
JR
3835 return 0;
3836}
3837
fb72d167
JR
3838static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3839{
02f59dc9
JR
3840 if (mmu_is_nested(vcpu))
3841 return init_kvm_nested_mmu(vcpu);
3842 else if (tdp_enabled)
fb72d167
JR
3843 return init_kvm_tdp_mmu(vcpu);
3844 else
3845 return init_kvm_softmmu(vcpu);
3846}
3847
6aa8b732
AK
3848static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3849{
3850 ASSERT(vcpu);
62ad0755
SY
3851 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3852 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3853 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3854}
3855
3856int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3857{
3858 destroy_kvm_mmu(vcpu);
f8f7e5ee 3859 return init_kvm_mmu(vcpu);
17c3ba9d 3860}
8668a3c4 3861EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3862
3863int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3864{
714b93da
AK
3865 int r;
3866
e2dec939 3867 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3868 if (r)
3869 goto out;
8986ecc0 3870 r = mmu_alloc_roots(vcpu);
e2858b4a 3871 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3872 if (r)
3873 goto out;
3662cb1c 3874 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3875 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3876out:
3877 return r;
6aa8b732 3878}
17c3ba9d
AK
3879EXPORT_SYMBOL_GPL(kvm_mmu_load);
3880
3881void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3882{
3883 mmu_free_roots(vcpu);
3884}
4b16184c 3885EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3886
0028425f 3887static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3888 struct kvm_mmu_page *sp, u64 *spte,
3889 const void *new)
0028425f 3890{
30945387 3891 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3892 ++vcpu->kvm->stat.mmu_pde_zapped;
3893 return;
30945387 3894 }
0028425f 3895
4cee5764 3896 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3897 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3898}
3899
79539cec
AK
3900static bool need_remote_flush(u64 old, u64 new)
3901{
3902 if (!is_shadow_present_pte(old))
3903 return false;
3904 if (!is_shadow_present_pte(new))
3905 return true;
3906 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3907 return true;
3908 old ^= PT64_NX_MASK;
3909 new ^= PT64_NX_MASK;
3910 return (old & ~new & PT64_PERM_MASK) != 0;
3911}
3912
0671a8e7
XG
3913static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3914 bool remote_flush, bool local_flush)
79539cec 3915{
0671a8e7
XG
3916 if (zap_page)
3917 return;
3918
3919 if (remote_flush)
79539cec 3920 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3921 else if (local_flush)
79539cec
AK
3922 kvm_mmu_flush_tlb(vcpu);
3923}
3924
889e5cbc
XG
3925static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3926 const u8 *new, int *bytes)
da4a00f0 3927{
889e5cbc
XG
3928 u64 gentry;
3929 int r;
72016f3a 3930
72016f3a
AK
3931 /*
3932 * Assume that the pte write on a page table of the same type
49b26e26
XG
3933 * as the current vcpu paging mode since we update the sptes only
3934 * when they have the same mode.
72016f3a 3935 */
889e5cbc 3936 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3937 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3938 *gpa &= ~(gpa_t)7;
3939 *bytes = 8;
116eb3d3 3940 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3941 if (r)
3942 gentry = 0;
08e850c6
AK
3943 new = (const u8 *)&gentry;
3944 }
3945
889e5cbc 3946 switch (*bytes) {
08e850c6
AK
3947 case 4:
3948 gentry = *(const u32 *)new;
3949 break;
3950 case 8:
3951 gentry = *(const u64 *)new;
3952 break;
3953 default:
3954 gentry = 0;
3955 break;
72016f3a
AK
3956 }
3957
889e5cbc
XG
3958 return gentry;
3959}
3960
3961/*
3962 * If we're seeing too many writes to a page, it may no longer be a page table,
3963 * or we may be forking, in which case it is better to unmap the page.
3964 */
a138fe75 3965static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3966{
a30f47cb
XG
3967 /*
3968 * Skip write-flooding detected for the sp whose level is 1, because
3969 * it can become unsync, then the guest page is not write-protected.
3970 */
f71fa31f 3971 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3972 return false;
3246af0e 3973
a30f47cb 3974 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3975}
3976
3977/*
3978 * Misaligned accesses are too much trouble to fix up; also, they usually
3979 * indicate a page is not used as a page table.
3980 */
3981static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3982 int bytes)
3983{
3984 unsigned offset, pte_size, misaligned;
3985
3986 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3987 gpa, bytes, sp->role.word);
3988
3989 offset = offset_in_page(gpa);
3990 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3991
3992 /*
3993 * Sometimes, the OS only writes the last one bytes to update status
3994 * bits, for example, in linux, andb instruction is used in clear_bit().
3995 */
3996 if (!(offset & (pte_size - 1)) && bytes == 1)
3997 return false;
3998
889e5cbc
XG
3999 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4000 misaligned |= bytes < 4;
4001
4002 return misaligned;
4003}
4004
4005static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4006{
4007 unsigned page_offset, quadrant;
4008 u64 *spte;
4009 int level;
4010
4011 page_offset = offset_in_page(gpa);
4012 level = sp->role.level;
4013 *nspte = 1;
4014 if (!sp->role.cr4_pae) {
4015 page_offset <<= 1; /* 32->64 */
4016 /*
4017 * A 32-bit pde maps 4MB while the shadow pdes map
4018 * only 2MB. So we need to double the offset again
4019 * and zap two pdes instead of one.
4020 */
4021 if (level == PT32_ROOT_LEVEL) {
4022 page_offset &= ~7; /* kill rounding error */
4023 page_offset <<= 1;
4024 *nspte = 2;
4025 }
4026 quadrant = page_offset >> PAGE_SHIFT;
4027 page_offset &= ~PAGE_MASK;
4028 if (quadrant != sp->role.quadrant)
4029 return NULL;
4030 }
4031
4032 spte = &sp->spt[page_offset / sizeof(*spte)];
4033 return spte;
4034}
4035
4036void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4037 const u8 *new, int bytes)
4038{
4039 gfn_t gfn = gpa >> PAGE_SHIFT;
4040 union kvm_mmu_page_role mask = { .word = 0 };
4041 struct kvm_mmu_page *sp;
889e5cbc
XG
4042 LIST_HEAD(invalid_list);
4043 u64 entry, gentry, *spte;
4044 int npte;
a30f47cb 4045 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4046
4047 /*
4048 * If we don't have indirect shadow pages, it means no page is
4049 * write-protected, so we can exit simply.
4050 */
4051 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4052 return;
4053
4054 zap_page = remote_flush = local_flush = false;
4055
4056 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4057
4058 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4059
4060 /*
4061 * No need to care whether allocation memory is successful
4062 * or not since pte prefetch is skiped if it does not have
4063 * enough objects in the cache.
4064 */
4065 mmu_topup_memory_caches(vcpu);
4066
4067 spin_lock(&vcpu->kvm->mmu_lock);
4068 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4069 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4070
fa1de2bf 4071 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4072 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4073 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4074 detect_write_flooding(sp)) {
0671a8e7 4075 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4076 &invalid_list);
4cee5764 4077 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4078 continue;
4079 }
889e5cbc
XG
4080
4081 spte = get_written_sptes(sp, gpa, &npte);
4082 if (!spte)
4083 continue;
4084
0671a8e7 4085 local_flush = true;
ac1b714e 4086 while (npte--) {
79539cec 4087 entry = *spte;
38e3b2b2 4088 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4089 if (gentry &&
4090 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4091 & mask.word) && rmap_can_add(vcpu))
7c562522 4092 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4093 if (need_remote_flush(entry, *spte))
0671a8e7 4094 remote_flush = true;
ac1b714e 4095 ++spte;
9b7a0325 4096 }
9b7a0325 4097 }
0671a8e7 4098 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4099 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4100 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4101 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4102}
4103
a436036b
AK
4104int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4105{
10589a46
MT
4106 gpa_t gpa;
4107 int r;
a436036b 4108
c5a78f2b 4109 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4110 return 0;
4111
1871c602 4112 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4113
10589a46 4114 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4115
10589a46 4116 return r;
a436036b 4117}
577bdc49 4118EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4119
81f4f76b 4120static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4121{
d98ba053 4122 LIST_HEAD(invalid_list);
103ad25a 4123
81f4f76b
TY
4124 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4125 return;
4126
5da59607
TY
4127 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4128 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4129 break;
ebeace86 4130
4cee5764 4131 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4132 }
aa6bd187 4133 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4134}
ebeace86 4135
1cb3f3ae
XG
4136static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4137{
4138 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4139 return vcpu_match_mmio_gpa(vcpu, addr);
4140
4141 return vcpu_match_mmio_gva(vcpu, addr);
4142}
4143
dc25e89e
AP
4144int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4145 void *insn, int insn_len)
3067714c 4146{
1cb3f3ae 4147 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4148 enum emulation_result er;
4149
56028d08 4150 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4151 if (r < 0)
4152 goto out;
4153
4154 if (!r) {
4155 r = 1;
4156 goto out;
4157 }
4158
1cb3f3ae
XG
4159 if (is_mmio_page_fault(vcpu, cr2))
4160 emulation_type = 0;
4161
4162 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4163
4164 switch (er) {
4165 case EMULATE_DONE:
4166 return 1;
4167 case EMULATE_DO_MMIO:
4168 ++vcpu->stat.mmio_exits;
6d77dbfc 4169 /* fall through */
3067714c 4170 case EMULATE_FAIL:
3f5d18a9 4171 return 0;
3067714c
AK
4172 default:
4173 BUG();
4174 }
4175out:
3067714c
AK
4176 return r;
4177}
4178EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4179
a7052897
MT
4180void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4181{
a7052897 4182 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4183 kvm_mmu_flush_tlb(vcpu);
4184 ++vcpu->stat.invlpg;
4185}
4186EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4187
18552672
JR
4188void kvm_enable_tdp(void)
4189{
4190 tdp_enabled = true;
4191}
4192EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4193
5f4cb662
JR
4194void kvm_disable_tdp(void)
4195{
4196 tdp_enabled = false;
4197}
4198EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4199
6aa8b732
AK
4200static void free_mmu_pages(struct kvm_vcpu *vcpu)
4201{
ad312c7c 4202 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4203 if (vcpu->arch.mmu.lm_root != NULL)
4204 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4205}
4206
4207static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4208{
17ac10ad 4209 struct page *page;
6aa8b732
AK
4210 int i;
4211
4212 ASSERT(vcpu);
4213
17ac10ad
AK
4214 /*
4215 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4216 * Therefore we need to allocate shadow page tables in the first
4217 * 4GB of memory, which happens to fit the DMA32 zone.
4218 */
4219 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4220 if (!page)
d7fa6ab2
WY
4221 return -ENOMEM;
4222
ad312c7c 4223 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4224 for (i = 0; i < 4; ++i)
ad312c7c 4225 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4226
6aa8b732 4227 return 0;
6aa8b732
AK
4228}
4229
8018c27b 4230int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4231{
6aa8b732 4232 ASSERT(vcpu);
e459e322
XG
4233
4234 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4235 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4236 vcpu->arch.mmu.translate_gpa = translate_gpa;
4237 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4238
8018c27b
IM
4239 return alloc_mmu_pages(vcpu);
4240}
6aa8b732 4241
8018c27b
IM
4242int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4243{
4244 ASSERT(vcpu);
ad312c7c 4245 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4246
8018c27b 4247 return init_kvm_mmu(vcpu);
6aa8b732
AK
4248}
4249
90cb0529 4250void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4251{
b99db1d3
TY
4252 struct kvm_memory_slot *memslot;
4253 gfn_t last_gfn;
4254 int i;
6aa8b732 4255
b99db1d3
TY
4256 memslot = id_to_memslot(kvm->memslots, slot);
4257 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4258
9d1beefb
TY
4259 spin_lock(&kvm->mmu_lock);
4260
b99db1d3
TY
4261 for (i = PT_PAGE_TABLE_LEVEL;
4262 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4263 unsigned long *rmapp;
4264 unsigned long last_index, index;
6aa8b732 4265
b99db1d3
TY
4266 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4267 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4268
b99db1d3
TY
4269 for (index = 0; index <= last_index; ++index, ++rmapp) {
4270 if (*rmapp)
4271 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4272
4273 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4274 kvm_flush_remote_tlbs(kvm);
4275 cond_resched_lock(&kvm->mmu_lock);
4276 }
8234b22e 4277 }
6aa8b732 4278 }
b99db1d3 4279
171d595d 4280 kvm_flush_remote_tlbs(kvm);
9d1beefb 4281 spin_unlock(&kvm->mmu_lock);
6aa8b732 4282}
37a7d8b0 4283
e7d11c7a 4284#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4285static void kvm_zap_obsolete_pages(struct kvm *kvm)
4286{
4287 struct kvm_mmu_page *sp, *node;
e7d11c7a 4288 int batch = 0;
5304b8d3
XG
4289
4290restart:
4291 list_for_each_entry_safe_reverse(sp, node,
4292 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4293 int ret;
4294
5304b8d3
XG
4295 /*
4296 * No obsolete page exists before new created page since
4297 * active_mmu_pages is the FIFO list.
4298 */
4299 if (!is_obsolete_sp(kvm, sp))
4300 break;
4301
4302 /*
5304b8d3
XG
4303 * Since we are reversely walking the list and the invalid
4304 * list will be moved to the head, skip the invalid page
4305 * can help us to avoid the infinity list walking.
4306 */
4307 if (sp->role.invalid)
4308 continue;
4309
f34d251d
XG
4310 /*
4311 * Need not flush tlb since we only zap the sp with invalid
4312 * generation number.
4313 */
e7d11c7a 4314 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4315 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4316 batch = 0;
5304b8d3
XG
4317 goto restart;
4318 }
4319
365c8868
XG
4320 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4321 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4322 batch += ret;
4323
4324 if (ret)
5304b8d3
XG
4325 goto restart;
4326 }
4327
f34d251d
XG
4328 /*
4329 * Should flush tlb before free page tables since lockless-walking
4330 * may use the pages.
4331 */
365c8868 4332 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4333}
4334
4335/*
4336 * Fast invalidate all shadow pages and use lock-break technique
4337 * to zap obsolete pages.
4338 *
4339 * It's required when memslot is being deleted or VM is being
4340 * destroyed, in these cases, we should ensure that KVM MMU does
4341 * not use any resource of the being-deleted slot or all slots
4342 * after calling the function.
4343 */
4344void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4345{
4346 spin_lock(&kvm->mmu_lock);
35006126 4347 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4348 kvm->arch.mmu_valid_gen++;
4349
f34d251d
XG
4350 /*
4351 * Notify all vcpus to reload its shadow page table
4352 * and flush TLB. Then all vcpus will switch to new
4353 * shadow page table with the new mmu_valid_gen.
4354 *
4355 * Note: we should do this under the protection of
4356 * mmu-lock, otherwise, vcpu would purge shadow page
4357 * but miss tlb flush.
4358 */
4359 kvm_reload_remote_mmus(kvm);
4360
5304b8d3
XG
4361 kvm_zap_obsolete_pages(kvm);
4362 spin_unlock(&kvm->mmu_lock);
4363}
4364
365c8868
XG
4365static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4366{
4367 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4368}
4369
f8f55942
XG
4370void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4371{
4372 /*
4373 * The very rare case: if the generation-number is round,
4374 * zap all shadow pages.
4375 *
4376 * The max value is MMIO_MAX_GEN - 1 since it is not called
4377 * when mark memslot invalid.
4378 */
4379 if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1)))
a8eca9dc 4380 kvm_mmu_invalidate_zap_all_pages(kvm);
f8f55942
XG
4381}
4382
1495f230 4383static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4384{
4385 struct kvm *kvm;
1495f230 4386 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4387
4388 if (nr_to_scan == 0)
4389 goto out;
3ee16c81 4390
e935b837 4391 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4392
4393 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4394 int idx;
d98ba053 4395 LIST_HEAD(invalid_list);
3ee16c81 4396
35f2d16b
TY
4397 /*
4398 * Never scan more than sc->nr_to_scan VM instances.
4399 * Will not hit this condition practically since we do not try
4400 * to shrink more than one VM and it is very unlikely to see
4401 * !n_used_mmu_pages so many times.
4402 */
4403 if (!nr_to_scan--)
4404 break;
19526396
GN
4405 /*
4406 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4407 * here. We may skip a VM instance errorneosly, but we do not
4408 * want to shrink a VM that only started to populate its MMU
4409 * anyway.
4410 */
365c8868
XG
4411 if (!kvm->arch.n_used_mmu_pages &&
4412 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4413 continue;
19526396 4414
f656ce01 4415 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4416 spin_lock(&kvm->mmu_lock);
3ee16c81 4417
365c8868
XG
4418 if (kvm_has_zapped_obsolete_pages(kvm)) {
4419 kvm_mmu_commit_zap_page(kvm,
4420 &kvm->arch.zapped_obsolete_pages);
4421 goto unlock;
4422 }
4423
5da59607 4424 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
d98ba053 4425 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4426
365c8868 4427unlock:
3ee16c81 4428 spin_unlock(&kvm->mmu_lock);
f656ce01 4429 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4430
4431 list_move_tail(&kvm->vm_list, &vm_list);
4432 break;
3ee16c81 4433 }
3ee16c81 4434
e935b837 4435 raw_spin_unlock(&kvm_lock);
3ee16c81 4436
45221ab6
DH
4437out:
4438 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4439}
4440
4441static struct shrinker mmu_shrinker = {
4442 .shrink = mmu_shrink,
4443 .seeks = DEFAULT_SEEKS * 10,
4444};
4445
2ddfd20e 4446static void mmu_destroy_caches(void)
b5a33a75 4447{
53c07b18
XG
4448 if (pte_list_desc_cache)
4449 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4450 if (mmu_page_header_cache)
4451 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4452}
4453
4454int kvm_mmu_module_init(void)
4455{
53c07b18
XG
4456 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4457 sizeof(struct pte_list_desc),
20c2df83 4458 0, 0, NULL);
53c07b18 4459 if (!pte_list_desc_cache)
b5a33a75
AK
4460 goto nomem;
4461
d3d25b04
AK
4462 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4463 sizeof(struct kvm_mmu_page),
20c2df83 4464 0, 0, NULL);
d3d25b04
AK
4465 if (!mmu_page_header_cache)
4466 goto nomem;
4467
45bf21a8
WY
4468 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4469 goto nomem;
4470
3ee16c81
IE
4471 register_shrinker(&mmu_shrinker);
4472
b5a33a75
AK
4473 return 0;
4474
4475nomem:
3ee16c81 4476 mmu_destroy_caches();
b5a33a75
AK
4477 return -ENOMEM;
4478}
4479
3ad82a7e
ZX
4480/*
4481 * Caculate mmu pages needed for kvm.
4482 */
4483unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4484{
3ad82a7e
ZX
4485 unsigned int nr_mmu_pages;
4486 unsigned int nr_pages = 0;
bc6678a3 4487 struct kvm_memslots *slots;
be6ba0f0 4488 struct kvm_memory_slot *memslot;
3ad82a7e 4489
90d83dc3
LJ
4490 slots = kvm_memslots(kvm);
4491
be6ba0f0
XG
4492 kvm_for_each_memslot(memslot, slots)
4493 nr_pages += memslot->npages;
3ad82a7e
ZX
4494
4495 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4496 nr_mmu_pages = max(nr_mmu_pages,
4497 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4498
4499 return nr_mmu_pages;
4500}
4501
94d8b056
MT
4502int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4503{
4504 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4505 u64 spte;
94d8b056
MT
4506 int nr_sptes = 0;
4507
c2a2ac2b
XG
4508 walk_shadow_page_lockless_begin(vcpu);
4509 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4510 sptes[iterator.level-1] = spte;
94d8b056 4511 nr_sptes++;
c2a2ac2b 4512 if (!is_shadow_present_pte(spte))
94d8b056
MT
4513 break;
4514 }
c2a2ac2b 4515 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4516
4517 return nr_sptes;
4518}
4519EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4520
c42fffe3
XG
4521void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4522{
4523 ASSERT(vcpu);
4524
4525 destroy_kvm_mmu(vcpu);
4526 free_mmu_pages(vcpu);
4527 mmu_free_memory_caches(vcpu);
b034cf01
XG
4528}
4529
b034cf01
XG
4530void kvm_mmu_module_exit(void)
4531{
4532 mmu_destroy_caches();
4533 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4534 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4535 mmu_audit_disable();
4536}
This page took 1.508985 seconds and 5 git commands to generate.