x86: pvclock kvm: align allocation size to page size
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
feb3eb70
GN
451 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
452 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
453}
454
8672b721
XG
455static bool spte_has_volatile_bits(u64 spte)
456{
c7ba5b48
XG
457 /*
458 * Always atomicly update spte if it can be updated
459 * out of mmu-lock, it can ensure dirty bit is not lost,
460 * also, it can help us to get a stable is_writable_pte()
461 * to ensure tlb flush is not missed.
462 */
463 if (spte_is_locklessly_modifiable(spte))
464 return true;
465
8672b721
XG
466 if (!shadow_accessed_mask)
467 return false;
468
469 if (!is_shadow_present_pte(spte))
470 return false;
471
4132779b
XG
472 if ((spte & shadow_accessed_mask) &&
473 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
474 return false;
475
476 return true;
477}
478
4132779b
XG
479static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480{
481 return (old_spte & bit_mask) && !(new_spte & bit_mask);
482}
483
1df9f2dc
XG
484/* Rules for using mmu_spte_set:
485 * Set the sptep from nonpresent to present.
486 * Note: the sptep being assigned *must* be either not present
487 * or in a state where the hardware will not attempt to update
488 * the spte.
489 */
490static void mmu_spte_set(u64 *sptep, u64 new_spte)
491{
492 WARN_ON(is_shadow_present_pte(*sptep));
493 __set_spte(sptep, new_spte);
494}
495
496/* Rules for using mmu_spte_update:
497 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
498 *
499 * Whenever we overwrite a writable spte with a read-only one we
500 * should flush remote TLBs. Otherwise rmap_write_protect
501 * will find a read-only spte, even though the writable spte
502 * might be cached on a CPU's TLB, the return value indicates this
503 * case.
1df9f2dc 504 */
6e7d0354 505static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 506{
c7ba5b48 507 u64 old_spte = *sptep;
6e7d0354 508 bool ret = false;
4132779b
XG
509
510 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 511
6e7d0354
XG
512 if (!is_shadow_present_pte(old_spte)) {
513 mmu_spte_set(sptep, new_spte);
514 return ret;
515 }
4132779b 516
c7ba5b48 517 if (!spte_has_volatile_bits(old_spte))
603e0651 518 __update_clear_spte_fast(sptep, new_spte);
4132779b 519 else
603e0651 520 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 521
c7ba5b48
XG
522 /*
523 * For the spte updated out of mmu-lock is safe, since
524 * we always atomicly update it, see the comments in
525 * spte_has_volatile_bits().
526 */
6e7d0354
XG
527 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
528 ret = true;
529
4132779b 530 if (!shadow_accessed_mask)
6e7d0354 531 return ret;
4132779b
XG
532
533 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
535 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
536 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
537
538 return ret;
b79b93f9
AK
539}
540
1df9f2dc
XG
541/*
542 * Rules for using mmu_spte_clear_track_bits:
543 * It sets the sptep from present to nonpresent, and track the
544 * state bits, it is used to clear the last level sptep.
545 */
546static int mmu_spte_clear_track_bits(u64 *sptep)
547{
548 pfn_t pfn;
549 u64 old_spte = *sptep;
550
551 if (!spte_has_volatile_bits(old_spte))
603e0651 552 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 553 else
603e0651 554 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
555
556 if (!is_rmap_spte(old_spte))
557 return 0;
558
559 pfn = spte_to_pfn(old_spte);
86fde74c
XG
560
561 /*
562 * KVM does not hold the refcount of the page used by
563 * kvm mmu, before reclaiming the page, we should
564 * unmap it from mmu first.
565 */
566 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567
1df9f2dc
XG
568 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569 kvm_set_pfn_accessed(pfn);
570 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
571 kvm_set_pfn_dirty(pfn);
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
590static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
591{
c142786c
AK
592 /*
593 * Prevent page table teardown by making any free-er wait during
594 * kvm_flush_remote_tlbs() IPI to all active vcpus.
595 */
596 local_irq_disable();
597 vcpu->mode = READING_SHADOW_PAGE_TABLES;
598 /*
599 * Make sure a following spte read is not reordered ahead of the write
600 * to vcpu->mode.
601 */
602 smp_mb();
c2a2ac2b
XG
603}
604
605static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
606{
c142786c
AK
607 /*
608 * Make sure the write to vcpu->mode is not reordered in front of
609 * reads to sptes. If it does, kvm_commit_zap_page() can see us
610 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611 */
612 smp_mb();
613 vcpu->mode = OUTSIDE_GUEST_MODE;
614 local_irq_enable();
c2a2ac2b
XG
615}
616
e2dec939 617static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 618 struct kmem_cache *base_cache, int min)
714b93da
AK
619{
620 void *obj;
621
622 if (cache->nobjs >= min)
e2dec939 623 return 0;
714b93da 624 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 625 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 626 if (!obj)
e2dec939 627 return -ENOMEM;
714b93da
AK
628 cache->objects[cache->nobjs++] = obj;
629 }
e2dec939 630 return 0;
714b93da
AK
631}
632
f759e2b4
XG
633static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634{
635 return cache->nobjs;
636}
637
e8ad9a70
XG
638static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
639 struct kmem_cache *cache)
714b93da
AK
640{
641 while (mc->nobjs)
e8ad9a70 642 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
643}
644
c1158e63 645static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 646 int min)
c1158e63 647{
842f22ed 648 void *page;
c1158e63
AK
649
650 if (cache->nobjs >= min)
651 return 0;
652 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 653 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
654 if (!page)
655 return -ENOMEM;
842f22ed 656 cache->objects[cache->nobjs++] = page;
c1158e63
AK
657 }
658 return 0;
659}
660
661static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662{
663 while (mc->nobjs)
c4d198d5 664 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
665}
666
2e3e5882 667static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 668{
e2dec939
AK
669 int r;
670
53c07b18 671 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 672 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
673 if (r)
674 goto out;
ad312c7c 675 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
676 if (r)
677 goto out;
ad312c7c 678 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 679 mmu_page_header_cache, 4);
e2dec939
AK
680out:
681 return r;
714b93da
AK
682}
683
684static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685{
53c07b18
XG
686 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
687 pte_list_desc_cache);
ad312c7c 688 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
689 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
690 mmu_page_header_cache);
714b93da
AK
691}
692
80feb89a 693static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
694{
695 void *p;
696
697 BUG_ON(!mc->nobjs);
698 p = mc->objects[--mc->nobjs];
714b93da
AK
699 return p;
700}
701
53c07b18 702static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 703{
80feb89a 704 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
705}
706
53c07b18 707static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 708{
53c07b18 709 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
710}
711
2032a93d
LJ
712static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713{
714 if (!sp->role.direct)
715 return sp->gfns[index];
716
717 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
718}
719
720static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721{
722 if (sp->role.direct)
723 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
724 else
725 sp->gfns[index] = gfn;
726}
727
05da4558 728/*
d4dbf470
TY
729 * Return the pointer to the large page information for a given gfn,
730 * handling slots that are not large page aligned.
05da4558 731 */
d4dbf470
TY
732static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
733 struct kvm_memory_slot *slot,
734 int level)
05da4558
MT
735{
736 unsigned long idx;
737
fb03cb6f 738 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 739 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
740}
741
742static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743{
d25797b2 744 struct kvm_memory_slot *slot;
d4dbf470 745 struct kvm_lpage_info *linfo;
d25797b2 746 int i;
05da4558 747
a1f4d395 748 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
749 for (i = PT_DIRECTORY_LEVEL;
750 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
751 linfo = lpage_info_slot(gfn, slot, i);
752 linfo->write_count += 1;
d25797b2 753 }
332b207d 754 kvm->arch.indirect_shadow_pages++;
05da4558
MT
755}
756
757static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758{
d25797b2 759 struct kvm_memory_slot *slot;
d4dbf470 760 struct kvm_lpage_info *linfo;
d25797b2 761 int i;
05da4558 762
a1f4d395 763 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
764 for (i = PT_DIRECTORY_LEVEL;
765 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
766 linfo = lpage_info_slot(gfn, slot, i);
767 linfo->write_count -= 1;
768 WARN_ON(linfo->write_count < 0);
d25797b2 769 }
332b207d 770 kvm->arch.indirect_shadow_pages--;
05da4558
MT
771}
772
d25797b2
JR
773static int has_wrprotected_page(struct kvm *kvm,
774 gfn_t gfn,
775 int level)
05da4558 776{
2843099f 777 struct kvm_memory_slot *slot;
d4dbf470 778 struct kvm_lpage_info *linfo;
05da4558 779
a1f4d395 780 slot = gfn_to_memslot(kvm, gfn);
05da4558 781 if (slot) {
d4dbf470
TY
782 linfo = lpage_info_slot(gfn, slot, level);
783 return linfo->write_count;
05da4558
MT
784 }
785
786 return 1;
787}
788
d25797b2 789static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 790{
8f0b1ab6 791 unsigned long page_size;
d25797b2 792 int i, ret = 0;
05da4558 793
8f0b1ab6 794 page_size = kvm_host_page_size(kvm, gfn);
05da4558 795
d25797b2
JR
796 for (i = PT_PAGE_TABLE_LEVEL;
797 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
798 if (page_size >= KVM_HPAGE_SIZE(i))
799 ret = i;
800 else
801 break;
802 }
803
4c2155ce 804 return ret;
05da4558
MT
805}
806
5d163b1c
XG
807static struct kvm_memory_slot *
808gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
809 bool no_dirty_log)
05da4558
MT
810{
811 struct kvm_memory_slot *slot;
5d163b1c
XG
812
813 slot = gfn_to_memslot(vcpu->kvm, gfn);
814 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
815 (no_dirty_log && slot->dirty_bitmap))
816 slot = NULL;
817
818 return slot;
819}
820
821static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822{
a0a8eaba 823 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
824}
825
826static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827{
828 int host_level, level, max_level;
05da4558 829
d25797b2
JR
830 host_level = host_mapping_level(vcpu->kvm, large_gfn);
831
832 if (host_level == PT_PAGE_TABLE_LEVEL)
833 return host_level;
834
55dd98c3 835 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
d25797b2
JR
840
841 return level - 1;
05da4558
MT
842}
843
290fc38d 844/*
53c07b18 845 * Pte mapping structures:
cd4a4e53 846 *
53c07b18 847 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 848 *
53c07b18
XG
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
53a27b39 851 *
53c07b18 852 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
853 * the spte was not added.
854 *
cd4a4e53 855 */
53c07b18
XG
856static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
cd4a4e53 858{
53c07b18 859 struct pte_list_desc *desc;
53a27b39 860 int i, count = 0;
cd4a4e53 861
53c07b18
XG
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
d555c333 869 desc->sptes[1] = spte;
53c07b18 870 *pte_list = (unsigned long)desc | 1;
cb16a7b3 871 ++count;
cd4a4e53 872 } else {
53c07b18
XG
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 876 desc = desc->more;
53c07b18 877 count += PTE_LIST_EXT;
53a27b39 878 }
53c07b18
XG
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
881 desc = desc->more;
882 }
d555c333 883 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 884 ++count;
d555c333 885 desc->sptes[i] = spte;
cd4a4e53 886 }
53a27b39 887 return count;
cd4a4e53
AK
888}
889
53c07b18
XG
890static void
891pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
893{
894 int j;
895
53c07b18 896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 897 ;
d555c333
AK
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
cd4a4e53
AK
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
53c07b18 903 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
53c07b18
XG
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
910}
911
53c07b18 912static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 913{
53c07b18
XG
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
cd4a4e53
AK
916 int i;
917
53c07b18
XG
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 920 BUG();
53c07b18
XG
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
925 BUG();
926 }
53c07b18 927 *pte_list = 0;
cd4a4e53 928 } else {
53c07b18
XG
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
931 prev_desc = NULL;
932 while (desc) {
53c07b18 933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 934 if (desc->sptes[i] == spte) {
53c07b18 935 pte_list_desc_remove_entry(pte_list,
714b93da 936 desc, i,
cd4a4e53
AK
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
53c07b18 943 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
944 BUG();
945 }
946}
947
67052b35
XG
948typedef void (*pte_list_walk_fn) (u64 *spte);
949static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950{
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966}
967
9373e2c0 968static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 969 struct kvm_memory_slot *slot)
53c07b18 970{
77d11309 971 unsigned long idx;
53c07b18 972
77d11309 973 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
975}
976
9b9b1492
TY
977/*
978 * Take gfn and return the reverse mapping to it.
979 */
980static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981{
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 985 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
986}
987
f759e2b4
XG
988static bool rmap_can_add(struct kvm_vcpu *vcpu)
989{
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994}
995
53c07b18
XG
996static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997{
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
53c07b18
XG
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005}
1006
53c07b18
XG
1007static void rmap_remove(struct kvm *kvm, u64 *spte)
1008{
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017}
1018
1e3f42f0
TY
1019/*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027};
1028
1029/*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037{
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049}
1050
1051/*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056static u64 *rmap_get_next(struct rmap_iterator *iter)
1057{
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078}
1079
c3707958 1080static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1081{
1df9f2dc 1082 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1083 rmap_remove(kvm, sptep);
be38d276
AK
1084}
1085
8e22f955
XG
1086
1087static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088{
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098}
1099
1100static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101{
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104}
1105
1106/*
49fde340 1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
caf6900f 1108 * spte write-protection is caused by protecting shadow page table.
49fde340
XG
1109 *
1110 * Note: write protection is difference between drity logging and spte
1111 * protection:
1112 * - for dirty logging, the spte can be set to writable at anytime if
1113 * its dirty bitmap is properly set.
1114 * - for spte protection, the spte can be writable only after unsync-ing
1115 * shadow page.
8e22f955 1116 *
caf6900f 1117 * Return true if tlb need be flushed.
8e22f955 1118 */
caf6900f 1119static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1120{
1121 u64 spte = *sptep;
1122
49fde340
XG
1123 if (!is_writable_pte(spte) &&
1124 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1125 return false;
1126
1127 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1128
49fde340
XG
1129 if (pt_protect)
1130 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1131 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1132
caf6900f 1133 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1134}
1135
49fde340 1136static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1137 bool pt_protect)
98348e95 1138{
1e3f42f0
TY
1139 u64 *sptep;
1140 struct rmap_iterator iter;
d13bc5b5 1141 bool flush = false;
374cbac0 1142
1e3f42f0
TY
1143 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1144 BUG_ON(!(*sptep & PT_PRESENT_MASK));
a0ed4607 1145
caf6900f 1146 flush |= spte_write_protect(kvm, sptep, pt_protect);
d13bc5b5 1147 sptep = rmap_get_next(&iter);
374cbac0 1148 }
855149aa 1149
d13bc5b5 1150 return flush;
a0ed4607
TY
1151}
1152
5dc99b23
TY
1153/**
1154 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1155 * @kvm: kvm instance
1156 * @slot: slot to protect
1157 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1158 * @mask: indicates which pages we should protect
1159 *
1160 * Used when we do not need to care about huge page mappings: e.g. during dirty
1161 * logging we do not have any such mappings.
1162 */
1163void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1164 struct kvm_memory_slot *slot,
1165 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1166{
1167 unsigned long *rmapp;
a0ed4607 1168
5dc99b23 1169 while (mask) {
65fbe37c
TY
1170 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1171 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1172 __rmap_write_protect(kvm, rmapp, false);
05da4558 1173
5dc99b23
TY
1174 /* clear the first set bit */
1175 mask &= mask - 1;
1176 }
374cbac0
AK
1177}
1178
2f84569f 1179static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1180{
1181 struct kvm_memory_slot *slot;
5dc99b23
TY
1182 unsigned long *rmapp;
1183 int i;
2f84569f 1184 bool write_protected = false;
95d4c16c
TY
1185
1186 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1187
1188 for (i = PT_PAGE_TABLE_LEVEL;
1189 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1190 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1191 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1192 }
1193
1194 return write_protected;
95d4c16c
TY
1195}
1196
8a8365c5 1197static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1198 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1199{
1e3f42f0
TY
1200 u64 *sptep;
1201 struct rmap_iterator iter;
e930bffe
AA
1202 int need_tlb_flush = 0;
1203
1e3f42f0
TY
1204 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1205 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1206 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1207
1208 drop_spte(kvm, sptep);
e930bffe
AA
1209 need_tlb_flush = 1;
1210 }
1e3f42f0 1211
e930bffe
AA
1212 return need_tlb_flush;
1213}
1214
8a8365c5 1215static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1216 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1217{
1e3f42f0
TY
1218 u64 *sptep;
1219 struct rmap_iterator iter;
3da0dd43 1220 int need_flush = 0;
1e3f42f0 1221 u64 new_spte;
3da0dd43
IE
1222 pte_t *ptep = (pte_t *)data;
1223 pfn_t new_pfn;
1224
1225 WARN_ON(pte_huge(*ptep));
1226 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1227
1228 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1229 BUG_ON(!is_shadow_present_pte(*sptep));
1230 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1231
3da0dd43 1232 need_flush = 1;
1e3f42f0 1233
3da0dd43 1234 if (pte_write(*ptep)) {
1e3f42f0
TY
1235 drop_spte(kvm, sptep);
1236 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1237 } else {
1e3f42f0 1238 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1239 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1240
1241 new_spte &= ~PT_WRITABLE_MASK;
1242 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1243 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1244
1245 mmu_spte_clear_track_bits(sptep);
1246 mmu_spte_set(sptep, new_spte);
1247 sptep = rmap_get_next(&iter);
3da0dd43
IE
1248 }
1249 }
1e3f42f0 1250
3da0dd43
IE
1251 if (need_flush)
1252 kvm_flush_remote_tlbs(kvm);
1253
1254 return 0;
1255}
1256
84504ef3
TY
1257static int kvm_handle_hva_range(struct kvm *kvm,
1258 unsigned long start,
1259 unsigned long end,
1260 unsigned long data,
1261 int (*handler)(struct kvm *kvm,
1262 unsigned long *rmapp,
048212d0 1263 struct kvm_memory_slot *slot,
84504ef3 1264 unsigned long data))
e930bffe 1265{
be6ba0f0 1266 int j;
f395302e 1267 int ret = 0;
bc6678a3 1268 struct kvm_memslots *slots;
be6ba0f0 1269 struct kvm_memory_slot *memslot;
bc6678a3 1270
90d83dc3 1271 slots = kvm_memslots(kvm);
e930bffe 1272
be6ba0f0 1273 kvm_for_each_memslot(memslot, slots) {
84504ef3 1274 unsigned long hva_start, hva_end;
bcd3ef58 1275 gfn_t gfn_start, gfn_end;
e930bffe 1276
84504ef3
TY
1277 hva_start = max(start, memslot->userspace_addr);
1278 hva_end = min(end, memslot->userspace_addr +
1279 (memslot->npages << PAGE_SHIFT));
1280 if (hva_start >= hva_end)
1281 continue;
1282 /*
1283 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1284 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1285 */
bcd3ef58 1286 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1287 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1288
bcd3ef58
TY
1289 for (j = PT_PAGE_TABLE_LEVEL;
1290 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1291 unsigned long idx, idx_end;
1292 unsigned long *rmapp;
d4dbf470 1293
bcd3ef58
TY
1294 /*
1295 * {idx(page_j) | page_j intersects with
1296 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1297 */
1298 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1299 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1300
bcd3ef58 1301 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1302
bcd3ef58
TY
1303 for (; idx <= idx_end; ++idx)
1304 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1305 }
1306 }
1307
f395302e 1308 return ret;
e930bffe
AA
1309}
1310
84504ef3
TY
1311static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1312 unsigned long data,
1313 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1314 struct kvm_memory_slot *slot,
84504ef3
TY
1315 unsigned long data))
1316{
1317 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1318}
1319
1320int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1321{
3da0dd43
IE
1322 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1323}
1324
b3ae2096
TY
1325int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1326{
1327 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1328}
1329
3da0dd43
IE
1330void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1331{
8a8365c5 1332 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1333}
1334
8a8365c5 1335static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1336 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1337{
1e3f42f0 1338 u64 *sptep;
79f702a6 1339 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1340 int young = 0;
1341
6316e1c8 1342 /*
3f6d8c8a
XH
1343 * In case of absence of EPT Access and Dirty Bits supports,
1344 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1345 * an EPT mapping, and clearing it if it does. On the next access,
1346 * a new EPT mapping will be established.
1347 * This has some overhead, but not as much as the cost of swapping
1348 * out actively used pages or breaking up actively used hugepages.
1349 */
f395302e
TY
1350 if (!shadow_accessed_mask) {
1351 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1352 goto out;
1353 }
534e38b4 1354
1e3f42f0
TY
1355 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1356 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1357 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1358
3f6d8c8a 1359 if (*sptep & shadow_accessed_mask) {
e930bffe 1360 young = 1;
3f6d8c8a
XH
1361 clear_bit((ffs(shadow_accessed_mask) - 1),
1362 (unsigned long *)sptep);
e930bffe 1363 }
e930bffe 1364 }
f395302e
TY
1365out:
1366 /* @data has hva passed to kvm_age_hva(). */
1367 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1368 return young;
1369}
1370
8ee53820 1371static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1372 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1373{
1e3f42f0
TY
1374 u64 *sptep;
1375 struct rmap_iterator iter;
8ee53820
AA
1376 int young = 0;
1377
1378 /*
1379 * If there's no access bit in the secondary pte set by the
1380 * hardware it's up to gup-fast/gup to set the access bit in
1381 * the primary pte or in the page structure.
1382 */
1383 if (!shadow_accessed_mask)
1384 goto out;
1385
1e3f42f0
TY
1386 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1387 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1388 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1389
3f6d8c8a 1390 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1391 young = 1;
1392 break;
1393 }
8ee53820
AA
1394 }
1395out:
1396 return young;
1397}
1398
53a27b39
MT
1399#define RMAP_RECYCLE_THRESHOLD 1000
1400
852e3c19 1401static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1402{
1403 unsigned long *rmapp;
852e3c19
JR
1404 struct kvm_mmu_page *sp;
1405
1406 sp = page_header(__pa(spte));
53a27b39 1407
852e3c19 1408 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1409
048212d0 1410 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1411 kvm_flush_remote_tlbs(vcpu->kvm);
1412}
1413
e930bffe
AA
1414int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1415{
f395302e 1416 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1417}
1418
8ee53820
AA
1419int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1420{
1421 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1422}
1423
d6c69ee9 1424#ifdef MMU_DEBUG
47ad8e68 1425static int is_empty_shadow_page(u64 *spt)
6aa8b732 1426{
139bdb2d
AK
1427 u64 *pos;
1428 u64 *end;
1429
47ad8e68 1430 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1431 if (is_shadow_present_pte(*pos)) {
b8688d51 1432 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1433 pos, *pos);
6aa8b732 1434 return 0;
139bdb2d 1435 }
6aa8b732
AK
1436 return 1;
1437}
d6c69ee9 1438#endif
6aa8b732 1439
45221ab6
DH
1440/*
1441 * This value is the sum of all of the kvm instances's
1442 * kvm->arch.n_used_mmu_pages values. We need a global,
1443 * aggregate version in order to make the slab shrinker
1444 * faster
1445 */
1446static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1447{
1448 kvm->arch.n_used_mmu_pages += nr;
1449 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1450}
1451
834be0d8 1452static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1453{
4db35314 1454 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1455 hlist_del(&sp->hash_link);
bd4c86ea
XG
1456 list_del(&sp->link);
1457 free_page((unsigned long)sp->spt);
834be0d8
GN
1458 if (!sp->role.direct)
1459 free_page((unsigned long)sp->gfns);
e8ad9a70 1460 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1461}
1462
cea0f0e7
AK
1463static unsigned kvm_page_table_hashfn(gfn_t gfn)
1464{
1ae0a13d 1465 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1466}
1467
714b93da 1468static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1469 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1470{
cea0f0e7
AK
1471 if (!parent_pte)
1472 return;
cea0f0e7 1473
67052b35 1474 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1475}
1476
4db35314 1477static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1478 u64 *parent_pte)
1479{
67052b35 1480 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1481}
1482
bcdd9a93
XG
1483static void drop_parent_pte(struct kvm_mmu_page *sp,
1484 u64 *parent_pte)
1485{
1486 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1487 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1488}
1489
67052b35
XG
1490static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1491 u64 *parent_pte, int direct)
ad8cfbe3 1492{
67052b35 1493 struct kvm_mmu_page *sp;
80feb89a
TY
1494 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1495 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1496 if (!direct)
80feb89a 1497 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1498 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1499 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1500 sp->parent_ptes = 0;
1501 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1502 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1503 return sp;
ad8cfbe3
MT
1504}
1505
67052b35 1506static void mark_unsync(u64 *spte);
1047df1f 1507static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1508{
67052b35 1509 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1510}
1511
67052b35 1512static void mark_unsync(u64 *spte)
0074ff63 1513{
67052b35 1514 struct kvm_mmu_page *sp;
1047df1f 1515 unsigned int index;
0074ff63 1516
67052b35 1517 sp = page_header(__pa(spte));
1047df1f
XG
1518 index = spte - sp->spt;
1519 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1520 return;
1047df1f 1521 if (sp->unsync_children++)
0074ff63 1522 return;
1047df1f 1523 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1524}
1525
e8bc217a 1526static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1527 struct kvm_mmu_page *sp)
e8bc217a
MT
1528{
1529 return 1;
1530}
1531
a7052897
MT
1532static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1533{
1534}
1535
0f53b5b1
XG
1536static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1537 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1538 const void *pte)
0f53b5b1
XG
1539{
1540 WARN_ON(1);
1541}
1542
60c8aec6
MT
1543#define KVM_PAGE_ARRAY_NR 16
1544
1545struct kvm_mmu_pages {
1546 struct mmu_page_and_offset {
1547 struct kvm_mmu_page *sp;
1548 unsigned int idx;
1549 } page[KVM_PAGE_ARRAY_NR];
1550 unsigned int nr;
1551};
1552
cded19f3
HE
1553static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1554 int idx)
4731d4c7 1555{
60c8aec6 1556 int i;
4731d4c7 1557
60c8aec6
MT
1558 if (sp->unsync)
1559 for (i=0; i < pvec->nr; i++)
1560 if (pvec->page[i].sp == sp)
1561 return 0;
1562
1563 pvec->page[pvec->nr].sp = sp;
1564 pvec->page[pvec->nr].idx = idx;
1565 pvec->nr++;
1566 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1567}
1568
1569static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1570 struct kvm_mmu_pages *pvec)
1571{
1572 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1573
37178b8b 1574 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1575 struct kvm_mmu_page *child;
4731d4c7
MT
1576 u64 ent = sp->spt[i];
1577
7a8f1a74
XG
1578 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1579 goto clear_child_bitmap;
1580
1581 child = page_header(ent & PT64_BASE_ADDR_MASK);
1582
1583 if (child->unsync_children) {
1584 if (mmu_pages_add(pvec, child, i))
1585 return -ENOSPC;
1586
1587 ret = __mmu_unsync_walk(child, pvec);
1588 if (!ret)
1589 goto clear_child_bitmap;
1590 else if (ret > 0)
1591 nr_unsync_leaf += ret;
1592 else
1593 return ret;
1594 } else if (child->unsync) {
1595 nr_unsync_leaf++;
1596 if (mmu_pages_add(pvec, child, i))
1597 return -ENOSPC;
1598 } else
1599 goto clear_child_bitmap;
1600
1601 continue;
1602
1603clear_child_bitmap:
1604 __clear_bit(i, sp->unsync_child_bitmap);
1605 sp->unsync_children--;
1606 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1607 }
1608
4731d4c7 1609
60c8aec6
MT
1610 return nr_unsync_leaf;
1611}
1612
1613static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1614 struct kvm_mmu_pages *pvec)
1615{
1616 if (!sp->unsync_children)
1617 return 0;
1618
1619 mmu_pages_add(pvec, sp, 0);
1620 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1621}
1622
4731d4c7
MT
1623static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1624{
1625 WARN_ON(!sp->unsync);
5e1b3ddb 1626 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1627 sp->unsync = 0;
1628 --kvm->stat.mmu_unsync;
1629}
1630
7775834a
XG
1631static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1632 struct list_head *invalid_list);
1633static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1634 struct list_head *invalid_list);
4731d4c7 1635
f41d335a
XG
1636#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1637 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1638 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1639 if ((sp)->gfn != (gfn)) {} else
1640
f41d335a
XG
1641#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1642 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1643 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1644 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1645 (sp)->role.invalid) {} else
1646
f918b443 1647/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1648static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1649 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1650{
5b7e0102 1651 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1652 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1653 return 1;
1654 }
1655
f918b443 1656 if (clear_unsync)
1d9dc7e0 1657 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1658
a4a8e6f7 1659 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1660 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1661 return 1;
1662 }
1663
1664 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1665 return 0;
1666}
1667
1d9dc7e0
XG
1668static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1669 struct kvm_mmu_page *sp)
1670{
d98ba053 1671 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1672 int ret;
1673
d98ba053 1674 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1675 if (ret)
d98ba053
XG
1676 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1677
1d9dc7e0
XG
1678 return ret;
1679}
1680
e37fa785
XG
1681#ifdef CONFIG_KVM_MMU_AUDIT
1682#include "mmu_audit.c"
1683#else
1684static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1685static void mmu_audit_disable(void) { }
1686#endif
1687
d98ba053
XG
1688static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1689 struct list_head *invalid_list)
1d9dc7e0 1690{
d98ba053 1691 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1692}
1693
9f1a122f
XG
1694/* @gfn should be write-protected at the call site */
1695static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1696{
9f1a122f 1697 struct kvm_mmu_page *s;
f41d335a 1698 struct hlist_node *node;
d98ba053 1699 LIST_HEAD(invalid_list);
9f1a122f
XG
1700 bool flush = false;
1701
f41d335a 1702 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1703 if (!s->unsync)
9f1a122f
XG
1704 continue;
1705
1706 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1707 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1708 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1709 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1710 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1711 continue;
1712 }
9f1a122f
XG
1713 flush = true;
1714 }
1715
d98ba053 1716 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1717 if (flush)
1718 kvm_mmu_flush_tlb(vcpu);
1719}
1720
60c8aec6
MT
1721struct mmu_page_path {
1722 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1723 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1724};
1725
60c8aec6
MT
1726#define for_each_sp(pvec, sp, parents, i) \
1727 for (i = mmu_pages_next(&pvec, &parents, -1), \
1728 sp = pvec.page[i].sp; \
1729 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1730 i = mmu_pages_next(&pvec, &parents, i))
1731
cded19f3
HE
1732static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1733 struct mmu_page_path *parents,
1734 int i)
60c8aec6
MT
1735{
1736 int n;
1737
1738 for (n = i+1; n < pvec->nr; n++) {
1739 struct kvm_mmu_page *sp = pvec->page[n].sp;
1740
1741 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1742 parents->idx[0] = pvec->page[n].idx;
1743 return n;
1744 }
1745
1746 parents->parent[sp->role.level-2] = sp;
1747 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1748 }
1749
1750 return n;
1751}
1752
cded19f3 1753static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1754{
60c8aec6
MT
1755 struct kvm_mmu_page *sp;
1756 unsigned int level = 0;
1757
1758 do {
1759 unsigned int idx = parents->idx[level];
4731d4c7 1760
60c8aec6
MT
1761 sp = parents->parent[level];
1762 if (!sp)
1763 return;
1764
1765 --sp->unsync_children;
1766 WARN_ON((int)sp->unsync_children < 0);
1767 __clear_bit(idx, sp->unsync_child_bitmap);
1768 level++;
1769 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1770}
1771
60c8aec6
MT
1772static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1773 struct mmu_page_path *parents,
1774 struct kvm_mmu_pages *pvec)
4731d4c7 1775{
60c8aec6
MT
1776 parents->parent[parent->role.level-1] = NULL;
1777 pvec->nr = 0;
1778}
4731d4c7 1779
60c8aec6
MT
1780static void mmu_sync_children(struct kvm_vcpu *vcpu,
1781 struct kvm_mmu_page *parent)
1782{
1783 int i;
1784 struct kvm_mmu_page *sp;
1785 struct mmu_page_path parents;
1786 struct kvm_mmu_pages pages;
d98ba053 1787 LIST_HEAD(invalid_list);
60c8aec6
MT
1788
1789 kvm_mmu_pages_init(parent, &parents, &pages);
1790 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1791 bool protected = false;
b1a36821
MT
1792
1793 for_each_sp(pages, sp, parents, i)
1794 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1795
1796 if (protected)
1797 kvm_flush_remote_tlbs(vcpu->kvm);
1798
60c8aec6 1799 for_each_sp(pages, sp, parents, i) {
d98ba053 1800 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1801 mmu_pages_clear_parents(&parents);
1802 }
d98ba053 1803 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1804 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1805 kvm_mmu_pages_init(parent, &parents, &pages);
1806 }
4731d4c7
MT
1807}
1808
c3707958
XG
1809static void init_shadow_page_table(struct kvm_mmu_page *sp)
1810{
1811 int i;
1812
1813 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1814 sp->spt[i] = 0ull;
1815}
1816
a30f47cb
XG
1817static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1818{
1819 sp->write_flooding_count = 0;
1820}
1821
1822static void clear_sp_write_flooding_count(u64 *spte)
1823{
1824 struct kvm_mmu_page *sp = page_header(__pa(spte));
1825
1826 __clear_sp_write_flooding_count(sp);
1827}
1828
cea0f0e7
AK
1829static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1830 gfn_t gfn,
1831 gva_t gaddr,
1832 unsigned level,
f6e2c02b 1833 int direct,
41074d07 1834 unsigned access,
f7d9c7b7 1835 u64 *parent_pte)
cea0f0e7
AK
1836{
1837 union kvm_mmu_page_role role;
cea0f0e7 1838 unsigned quadrant;
9f1a122f 1839 struct kvm_mmu_page *sp;
f41d335a 1840 struct hlist_node *node;
9f1a122f 1841 bool need_sync = false;
cea0f0e7 1842
a770f6f2 1843 role = vcpu->arch.mmu.base_role;
cea0f0e7 1844 role.level = level;
f6e2c02b 1845 role.direct = direct;
84b0c8c6 1846 if (role.direct)
5b7e0102 1847 role.cr4_pae = 0;
41074d07 1848 role.access = access;
c5a78f2b
JR
1849 if (!vcpu->arch.mmu.direct_map
1850 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1851 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1852 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1853 role.quadrant = quadrant;
1854 }
f41d335a 1855 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1856 if (!need_sync && sp->unsync)
1857 need_sync = true;
4731d4c7 1858
7ae680eb
XG
1859 if (sp->role.word != role.word)
1860 continue;
4731d4c7 1861
7ae680eb
XG
1862 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1863 break;
e02aa901 1864
7ae680eb
XG
1865 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1866 if (sp->unsync_children) {
a8eeb04a 1867 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1868 kvm_mmu_mark_parents_unsync(sp);
1869 } else if (sp->unsync)
1870 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1871
a30f47cb 1872 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1873 trace_kvm_mmu_get_page(sp, false);
1874 return sp;
1875 }
dfc5aa00 1876 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1877 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1878 if (!sp)
1879 return sp;
4db35314
AK
1880 sp->gfn = gfn;
1881 sp->role = role;
7ae680eb
XG
1882 hlist_add_head(&sp->hash_link,
1883 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1884 if (!direct) {
b1a36821
MT
1885 if (rmap_write_protect(vcpu->kvm, gfn))
1886 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1887 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1888 kvm_sync_pages(vcpu, gfn);
1889
4731d4c7
MT
1890 account_shadowed(vcpu->kvm, gfn);
1891 }
c3707958 1892 init_shadow_page_table(sp);
f691fe1d 1893 trace_kvm_mmu_get_page(sp, true);
4db35314 1894 return sp;
cea0f0e7
AK
1895}
1896
2d11123a
AK
1897static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1898 struct kvm_vcpu *vcpu, u64 addr)
1899{
1900 iterator->addr = addr;
1901 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1902 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1903
1904 if (iterator->level == PT64_ROOT_LEVEL &&
1905 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1906 !vcpu->arch.mmu.direct_map)
1907 --iterator->level;
1908
2d11123a
AK
1909 if (iterator->level == PT32E_ROOT_LEVEL) {
1910 iterator->shadow_addr
1911 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1912 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1913 --iterator->level;
1914 if (!iterator->shadow_addr)
1915 iterator->level = 0;
1916 }
1917}
1918
1919static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1920{
1921 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1922 return false;
4d88954d 1923
2d11123a
AK
1924 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1925 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1926 return true;
1927}
1928
c2a2ac2b
XG
1929static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1930 u64 spte)
2d11123a 1931{
c2a2ac2b 1932 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1933 iterator->level = 0;
1934 return;
1935 }
1936
c2a2ac2b 1937 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1938 --iterator->level;
1939}
1940
c2a2ac2b
XG
1941static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1942{
1943 return __shadow_walk_next(iterator, *iterator->sptep);
1944}
1945
32ef26a3
AK
1946static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1947{
1948 u64 spte;
1949
24db2734
XG
1950 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1951 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1952
1df9f2dc 1953 mmu_spte_set(sptep, spte);
32ef26a3
AK
1954}
1955
a357bd22
AK
1956static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1957 unsigned direct_access)
1958{
1959 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1960 struct kvm_mmu_page *child;
1961
1962 /*
1963 * For the direct sp, if the guest pte's dirty bit
1964 * changed form clean to dirty, it will corrupt the
1965 * sp's access: allow writable in the read-only sp,
1966 * so we should update the spte at this point to get
1967 * a new sp with the correct access.
1968 */
1969 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1970 if (child->role.access == direct_access)
1971 return;
1972
bcdd9a93 1973 drop_parent_pte(child, sptep);
a357bd22
AK
1974 kvm_flush_remote_tlbs(vcpu->kvm);
1975 }
1976}
1977
505aef8f 1978static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1979 u64 *spte)
1980{
1981 u64 pte;
1982 struct kvm_mmu_page *child;
1983
1984 pte = *spte;
1985 if (is_shadow_present_pte(pte)) {
505aef8f 1986 if (is_last_spte(pte, sp->role.level)) {
c3707958 1987 drop_spte(kvm, spte);
505aef8f
XG
1988 if (is_large_pte(pte))
1989 --kvm->stat.lpages;
1990 } else {
38e3b2b2 1991 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1992 drop_parent_pte(child, spte);
38e3b2b2 1993 }
505aef8f
XG
1994 return true;
1995 }
1996
1997 if (is_mmio_spte(pte))
ce88decf 1998 mmu_spte_clear_no_track(spte);
c3707958 1999
505aef8f 2000 return false;
38e3b2b2
XG
2001}
2002
90cb0529 2003static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2004 struct kvm_mmu_page *sp)
a436036b 2005{
697fe2e2 2006 unsigned i;
697fe2e2 2007
38e3b2b2
XG
2008 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2009 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2010}
2011
4db35314 2012static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2013{
4db35314 2014 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2015}
2016
31aa2b44 2017static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2018{
1e3f42f0
TY
2019 u64 *sptep;
2020 struct rmap_iterator iter;
a436036b 2021
1e3f42f0
TY
2022 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2023 drop_parent_pte(sp, sptep);
31aa2b44
AK
2024}
2025
60c8aec6 2026static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2027 struct kvm_mmu_page *parent,
2028 struct list_head *invalid_list)
4731d4c7 2029{
60c8aec6
MT
2030 int i, zapped = 0;
2031 struct mmu_page_path parents;
2032 struct kvm_mmu_pages pages;
4731d4c7 2033
60c8aec6 2034 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2035 return 0;
60c8aec6
MT
2036
2037 kvm_mmu_pages_init(parent, &parents, &pages);
2038 while (mmu_unsync_walk(parent, &pages)) {
2039 struct kvm_mmu_page *sp;
2040
2041 for_each_sp(pages, sp, parents, i) {
7775834a 2042 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2043 mmu_pages_clear_parents(&parents);
77662e00 2044 zapped++;
60c8aec6 2045 }
60c8aec6
MT
2046 kvm_mmu_pages_init(parent, &parents, &pages);
2047 }
2048
2049 return zapped;
4731d4c7
MT
2050}
2051
7775834a
XG
2052static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2053 struct list_head *invalid_list)
31aa2b44 2054{
4731d4c7 2055 int ret;
f691fe1d 2056
7775834a 2057 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2058 ++kvm->stat.mmu_shadow_zapped;
7775834a 2059 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2060 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2061 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2062 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2063 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2064 if (sp->unsync)
2065 kvm_unlink_unsync_page(kvm, sp);
4db35314 2066 if (!sp->root_count) {
54a4f023
GJ
2067 /* Count self */
2068 ret++;
7775834a 2069 list_move(&sp->link, invalid_list);
aa6bd187 2070 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2071 } else {
5b5c6a5a 2072 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2073 kvm_reload_remote_mmus(kvm);
2074 }
7775834a
XG
2075
2076 sp->role.invalid = 1;
4731d4c7 2077 return ret;
a436036b
AK
2078}
2079
7775834a
XG
2080static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2081 struct list_head *invalid_list)
2082{
2083 struct kvm_mmu_page *sp;
2084
2085 if (list_empty(invalid_list))
2086 return;
2087
c142786c
AK
2088 /*
2089 * wmb: make sure everyone sees our modifications to the page tables
2090 * rmb: make sure we see changes to vcpu->mode
2091 */
2092 smp_mb();
4f022648 2093
c142786c
AK
2094 /*
2095 * Wait for all vcpus to exit guest mode and/or lockless shadow
2096 * page table walks.
2097 */
2098 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2099
7775834a
XG
2100 do {
2101 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2102 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2103 kvm_mmu_free_page(sp);
7775834a 2104 } while (!list_empty(invalid_list));
7775834a
XG
2105}
2106
82ce2c96
IE
2107/*
2108 * Changing the number of mmu pages allocated to the vm
49d5ca26 2109 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2110 */
49d5ca26 2111void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2112{
d98ba053 2113 LIST_HEAD(invalid_list);
82ce2c96
IE
2114 /*
2115 * If we set the number of mmu pages to be smaller be than the
2116 * number of actived pages , we must to free some mmu pages before we
2117 * change the value
2118 */
2119
b34cb590
TY
2120 spin_lock(&kvm->mmu_lock);
2121
49d5ca26
DH
2122 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2123 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2124 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2125 struct kvm_mmu_page *page;
2126
f05e70ac 2127 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2128 struct kvm_mmu_page, link);
80b63faf 2129 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2130 }
aa6bd187 2131 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2132 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2133 }
82ce2c96 2134
49d5ca26 2135 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2136
2137 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2138}
2139
1cb3f3ae 2140int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2141{
4db35314 2142 struct kvm_mmu_page *sp;
f41d335a 2143 struct hlist_node *node;
d98ba053 2144 LIST_HEAD(invalid_list);
a436036b
AK
2145 int r;
2146
9ad17b10 2147 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2148 r = 0;
1cb3f3ae 2149 spin_lock(&kvm->mmu_lock);
f41d335a 2150 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2151 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2152 sp->role.word);
2153 r = 1;
f41d335a 2154 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2155 }
d98ba053 2156 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2157 spin_unlock(&kvm->mmu_lock);
2158
a436036b 2159 return r;
cea0f0e7 2160}
1cb3f3ae 2161EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2162
74be52e3
SY
2163/*
2164 * The function is based on mtrr_type_lookup() in
2165 * arch/x86/kernel/cpu/mtrr/generic.c
2166 */
2167static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2168 u64 start, u64 end)
2169{
2170 int i;
2171 u64 base, mask;
2172 u8 prev_match, curr_match;
2173 int num_var_ranges = KVM_NR_VAR_MTRR;
2174
2175 if (!mtrr_state->enabled)
2176 return 0xFF;
2177
2178 /* Make end inclusive end, instead of exclusive */
2179 end--;
2180
2181 /* Look in fixed ranges. Just return the type as per start */
2182 if (mtrr_state->have_fixed && (start < 0x100000)) {
2183 int idx;
2184
2185 if (start < 0x80000) {
2186 idx = 0;
2187 idx += (start >> 16);
2188 return mtrr_state->fixed_ranges[idx];
2189 } else if (start < 0xC0000) {
2190 idx = 1 * 8;
2191 idx += ((start - 0x80000) >> 14);
2192 return mtrr_state->fixed_ranges[idx];
2193 } else if (start < 0x1000000) {
2194 idx = 3 * 8;
2195 idx += ((start - 0xC0000) >> 12);
2196 return mtrr_state->fixed_ranges[idx];
2197 }
2198 }
2199
2200 /*
2201 * Look in variable ranges
2202 * Look of multiple ranges matching this address and pick type
2203 * as per MTRR precedence
2204 */
2205 if (!(mtrr_state->enabled & 2))
2206 return mtrr_state->def_type;
2207
2208 prev_match = 0xFF;
2209 for (i = 0; i < num_var_ranges; ++i) {
2210 unsigned short start_state, end_state;
2211
2212 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2213 continue;
2214
2215 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2216 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2217 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2218 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2219
2220 start_state = ((start & mask) == (base & mask));
2221 end_state = ((end & mask) == (base & mask));
2222 if (start_state != end_state)
2223 return 0xFE;
2224
2225 if ((start & mask) != (base & mask))
2226 continue;
2227
2228 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2229 if (prev_match == 0xFF) {
2230 prev_match = curr_match;
2231 continue;
2232 }
2233
2234 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2235 curr_match == MTRR_TYPE_UNCACHABLE)
2236 return MTRR_TYPE_UNCACHABLE;
2237
2238 if ((prev_match == MTRR_TYPE_WRBACK &&
2239 curr_match == MTRR_TYPE_WRTHROUGH) ||
2240 (prev_match == MTRR_TYPE_WRTHROUGH &&
2241 curr_match == MTRR_TYPE_WRBACK)) {
2242 prev_match = MTRR_TYPE_WRTHROUGH;
2243 curr_match = MTRR_TYPE_WRTHROUGH;
2244 }
2245
2246 if (prev_match != curr_match)
2247 return MTRR_TYPE_UNCACHABLE;
2248 }
2249
2250 if (prev_match != 0xFF)
2251 return prev_match;
2252
2253 return mtrr_state->def_type;
2254}
2255
4b12f0de 2256u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2257{
2258 u8 mtrr;
2259
2260 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2261 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2262 if (mtrr == 0xfe || mtrr == 0xff)
2263 mtrr = MTRR_TYPE_WRBACK;
2264 return mtrr;
2265}
4b12f0de 2266EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2267
9cf5cf5a
XG
2268static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2269{
2270 trace_kvm_mmu_unsync_page(sp);
2271 ++vcpu->kvm->stat.mmu_unsync;
2272 sp->unsync = 1;
2273
2274 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2275}
2276
2277static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2278{
4731d4c7 2279 struct kvm_mmu_page *s;
f41d335a 2280 struct hlist_node *node;
9cf5cf5a 2281
f41d335a 2282 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2283 if (s->unsync)
4731d4c7 2284 continue;
9cf5cf5a
XG
2285 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2286 __kvm_unsync_page(vcpu, s);
4731d4c7 2287 }
4731d4c7
MT
2288}
2289
2290static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2291 bool can_unsync)
2292{
9cf5cf5a 2293 struct kvm_mmu_page *s;
f41d335a 2294 struct hlist_node *node;
9cf5cf5a
XG
2295 bool need_unsync = false;
2296
f41d335a 2297 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2298 if (!can_unsync)
2299 return 1;
2300
9cf5cf5a 2301 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2302 return 1;
9cf5cf5a 2303
9bb4f6b1 2304 if (!s->unsync)
9cf5cf5a 2305 need_unsync = true;
4731d4c7 2306 }
9cf5cf5a
XG
2307 if (need_unsync)
2308 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2309 return 0;
2310}
2311
d555c333 2312static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2313 unsigned pte_access, int level,
c2d0ee46 2314 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2315 bool can_unsync, bool host_writable)
1c4f1fd6 2316{
6e7d0354 2317 u64 spte;
1e73f9dd 2318 int ret = 0;
64d4d521 2319
ce88decf
XG
2320 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2321 return 0;
2322
982c2565 2323 spte = PT_PRESENT_MASK;
947da538 2324 if (!speculative)
3201b5d9 2325 spte |= shadow_accessed_mask;
640d9b0d 2326
7b52345e
SY
2327 if (pte_access & ACC_EXEC_MASK)
2328 spte |= shadow_x_mask;
2329 else
2330 spte |= shadow_nx_mask;
49fde340 2331
1c4f1fd6 2332 if (pte_access & ACC_USER_MASK)
7b52345e 2333 spte |= shadow_user_mask;
49fde340 2334
852e3c19 2335 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2336 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2337 if (tdp_enabled)
4b12f0de
SY
2338 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2339 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2340
9bdbba13 2341 if (host_writable)
1403283a 2342 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2343 else
2344 pte_access &= ~ACC_WRITE_MASK;
1403283a 2345
35149e21 2346 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2347
c2288505 2348 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2349
c2193463 2350 /*
7751babd
XG
2351 * Other vcpu creates new sp in the window between
2352 * mapping_level() and acquiring mmu-lock. We can
2353 * allow guest to retry the access, the mapping can
2354 * be fixed if guest refault.
c2193463 2355 */
852e3c19 2356 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2357 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2358 goto done;
38187c83 2359
49fde340 2360 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2361
ecc5589f
MT
2362 /*
2363 * Optimization: for pte sync, if spte was writable the hash
2364 * lookup is unnecessary (and expensive). Write protection
2365 * is responsibility of mmu_get_page / kvm_sync_page.
2366 * Same reasoning can be applied to dirty page accounting.
2367 */
8dae4445 2368 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2369 goto set_pte;
2370
4731d4c7 2371 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2372 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2373 __func__, gfn);
1e73f9dd 2374 ret = 1;
1c4f1fd6 2375 pte_access &= ~ACC_WRITE_MASK;
49fde340 2376 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2377 }
2378 }
2379
1c4f1fd6
AK
2380 if (pte_access & ACC_WRITE_MASK)
2381 mark_page_dirty(vcpu->kvm, gfn);
2382
38187c83 2383set_pte:
6e7d0354 2384 if (mmu_spte_update(sptep, spte))
b330aa0c 2385 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2386done:
1e73f9dd
MT
2387 return ret;
2388}
2389
d555c333 2390static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2391 unsigned pte_access, int write_fault, int *emulate,
2392 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2393 bool host_writable)
1e73f9dd
MT
2394{
2395 int was_rmapped = 0;
53a27b39 2396 int rmap_count;
1e73f9dd 2397
f7616203
XG
2398 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2399 *sptep, write_fault, gfn);
1e73f9dd 2400
d555c333 2401 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2402 /*
2403 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2404 * the parent of the now unreachable PTE.
2405 */
852e3c19
JR
2406 if (level > PT_PAGE_TABLE_LEVEL &&
2407 !is_large_pte(*sptep)) {
1e73f9dd 2408 struct kvm_mmu_page *child;
d555c333 2409 u64 pte = *sptep;
1e73f9dd
MT
2410
2411 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2412 drop_parent_pte(child, sptep);
3be2264b 2413 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2414 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2415 pgprintk("hfn old %llx new %llx\n",
d555c333 2416 spte_to_pfn(*sptep), pfn);
c3707958 2417 drop_spte(vcpu->kvm, sptep);
91546356 2418 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2419 } else
2420 was_rmapped = 1;
1e73f9dd 2421 }
852e3c19 2422
c2288505
XG
2423 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2424 true, host_writable)) {
1e73f9dd 2425 if (write_fault)
b90a0e6c 2426 *emulate = 1;
5304efde 2427 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2428 }
1e73f9dd 2429
ce88decf
XG
2430 if (unlikely(is_mmio_spte(*sptep) && emulate))
2431 *emulate = 1;
2432
d555c333 2433 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2434 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2435 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2436 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2437 *sptep, sptep);
d555c333 2438 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2439 ++vcpu->kvm->stat.lpages;
2440
ffb61bb3 2441 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2442 if (!was_rmapped) {
2443 rmap_count = rmap_add(vcpu, sptep, gfn);
2444 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2445 rmap_recycle(vcpu, sptep, gfn);
2446 }
1c4f1fd6 2447 }
cb9aaa30 2448
f3ac1a4b 2449 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2450}
2451
6aa8b732
AK
2452static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2453{
e676505a 2454 mmu_free_roots(vcpu);
6aa8b732
AK
2455}
2456
a052b42b
XG
2457static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2458{
2459 int bit7;
2460
2461 bit7 = (gpte >> 7) & 1;
2462 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2463}
2464
957ed9ef
XG
2465static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2466 bool no_dirty_log)
2467{
2468 struct kvm_memory_slot *slot;
957ed9ef 2469
5d163b1c 2470 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2471 if (!slot)
6c8ee57b 2472 return KVM_PFN_ERR_FAULT;
957ed9ef 2473
037d92dc 2474 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2475}
2476
a052b42b
XG
2477static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2478 struct kvm_mmu_page *sp, u64 *spte,
2479 u64 gpte)
2480{
2481 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2482 goto no_present;
2483
2484 if (!is_present_gpte(gpte))
2485 goto no_present;
2486
2487 if (!(gpte & PT_ACCESSED_MASK))
2488 goto no_present;
2489
2490 return false;
2491
2492no_present:
2493 drop_spte(vcpu->kvm, spte);
2494 return true;
2495}
2496
957ed9ef
XG
2497static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2498 struct kvm_mmu_page *sp,
2499 u64 *start, u64 *end)
2500{
2501 struct page *pages[PTE_PREFETCH_NUM];
2502 unsigned access = sp->role.access;
2503 int i, ret;
2504 gfn_t gfn;
2505
2506 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2507 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2508 return -1;
2509
2510 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2511 if (ret <= 0)
2512 return -1;
2513
2514 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2515 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2516 sp->role.level, gfn, page_to_pfn(pages[i]),
2517 true, true);
957ed9ef
XG
2518
2519 return 0;
2520}
2521
2522static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2523 struct kvm_mmu_page *sp, u64 *sptep)
2524{
2525 u64 *spte, *start = NULL;
2526 int i;
2527
2528 WARN_ON(!sp->role.direct);
2529
2530 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2531 spte = sp->spt + i;
2532
2533 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2534 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2535 if (!start)
2536 continue;
2537 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2538 break;
2539 start = NULL;
2540 } else if (!start)
2541 start = spte;
2542 }
2543}
2544
2545static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2546{
2547 struct kvm_mmu_page *sp;
2548
2549 /*
2550 * Since it's no accessed bit on EPT, it's no way to
2551 * distinguish between actually accessed translations
2552 * and prefetched, so disable pte prefetch if EPT is
2553 * enabled.
2554 */
2555 if (!shadow_accessed_mask)
2556 return;
2557
2558 sp = page_header(__pa(sptep));
2559 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2560 return;
2561
2562 __direct_pte_prefetch(vcpu, sp, sptep);
2563}
2564
9f652d21 2565static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2566 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2567 bool prefault)
140754bc 2568{
9f652d21 2569 struct kvm_shadow_walk_iterator iterator;
140754bc 2570 struct kvm_mmu_page *sp;
b90a0e6c 2571 int emulate = 0;
140754bc 2572 gfn_t pseudo_gfn;
6aa8b732 2573
9f652d21 2574 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2575 if (iterator.level == level) {
f7616203 2576 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2577 write, &emulate, level, gfn, pfn,
2578 prefault, map_writable);
957ed9ef 2579 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2580 ++vcpu->stat.pf_fixed;
2581 break;
6aa8b732
AK
2582 }
2583
caf6900f
XG
2584 drop_large_spte(vcpu, iterator.sptep);
2585
c3707958 2586 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2587 u64 base_addr = iterator.addr;
2588
2589 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2590 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2591 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2592 iterator.level - 1,
2593 1, ACC_ALL, iterator.sptep);
140754bc 2594
24db2734 2595 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2596 }
2597 }
b90a0e6c 2598 return emulate;
6aa8b732
AK
2599}
2600
77db5cbd 2601static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2602{
77db5cbd
HY
2603 siginfo_t info;
2604
2605 info.si_signo = SIGBUS;
2606 info.si_errno = 0;
2607 info.si_code = BUS_MCEERR_AR;
2608 info.si_addr = (void __user *)address;
2609 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2610
77db5cbd 2611 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2612}
2613
d7c55201 2614static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2615{
4d8b81ab
XG
2616 /*
2617 * Do not cache the mmio info caused by writing the readonly gfn
2618 * into the spte otherwise read access on readonly gfn also can
2619 * caused mmio page fault and treat it as mmio access.
2620 * Return 1 to tell kvm to emulate it.
2621 */
2622 if (pfn == KVM_PFN_ERR_RO_FAULT)
2623 return 1;
2624
e6c1502b 2625 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2626 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2627 return 0;
d7c55201 2628 }
edba23e5 2629
d7c55201 2630 return -EFAULT;
bf998156
HY
2631}
2632
936a5fe6
AA
2633static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2634 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2635{
2636 pfn_t pfn = *pfnp;
2637 gfn_t gfn = *gfnp;
2638 int level = *levelp;
2639
2640 /*
2641 * Check if it's a transparent hugepage. If this would be an
2642 * hugetlbfs page, level wouldn't be set to
2643 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2644 * here.
2645 */
81c52c56 2646 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2647 level == PT_PAGE_TABLE_LEVEL &&
2648 PageTransCompound(pfn_to_page(pfn)) &&
2649 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2650 unsigned long mask;
2651 /*
2652 * mmu_notifier_retry was successful and we hold the
2653 * mmu_lock here, so the pmd can't become splitting
2654 * from under us, and in turn
2655 * __split_huge_page_refcount() can't run from under
2656 * us and we can safely transfer the refcount from
2657 * PG_tail to PG_head as we switch the pfn to tail to
2658 * head.
2659 */
2660 *levelp = level = PT_DIRECTORY_LEVEL;
2661 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2662 VM_BUG_ON((gfn & mask) != (pfn & mask));
2663 if (pfn & mask) {
2664 gfn &= ~mask;
2665 *gfnp = gfn;
2666 kvm_release_pfn_clean(pfn);
2667 pfn &= ~mask;
c3586667 2668 kvm_get_pfn(pfn);
936a5fe6
AA
2669 *pfnp = pfn;
2670 }
2671 }
2672}
2673
d7c55201
XG
2674static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2675 pfn_t pfn, unsigned access, int *ret_val)
2676{
2677 bool ret = true;
2678
2679 /* The pfn is invalid, report the error! */
81c52c56 2680 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2681 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2682 goto exit;
2683 }
2684
ce88decf 2685 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2686 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2687
2688 ret = false;
2689exit:
2690 return ret;
2691}
2692
c7ba5b48
XG
2693static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2694{
2695 /*
2696 * #PF can be fast only if the shadow page table is present and it
2697 * is caused by write-protect, that means we just need change the
2698 * W bit of the spte which can be done out of mmu-lock.
2699 */
2700 if (!(error_code & PFERR_PRESENT_MASK) ||
2701 !(error_code & PFERR_WRITE_MASK))
2702 return false;
2703
2704 return true;
2705}
2706
2707static bool
2708fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2709{
2710 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2711 gfn_t gfn;
2712
2713 WARN_ON(!sp->role.direct);
2714
2715 /*
2716 * The gfn of direct spte is stable since it is calculated
2717 * by sp->gfn.
2718 */
2719 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2720
2721 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2722 mark_page_dirty(vcpu->kvm, gfn);
2723
2724 return true;
2725}
2726
2727/*
2728 * Return value:
2729 * - true: let the vcpu to access on the same address again.
2730 * - false: let the real page fault path to fix it.
2731 */
2732static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2733 u32 error_code)
2734{
2735 struct kvm_shadow_walk_iterator iterator;
2736 bool ret = false;
2737 u64 spte = 0ull;
2738
2739 if (!page_fault_can_be_fast(vcpu, error_code))
2740 return false;
2741
2742 walk_shadow_page_lockless_begin(vcpu);
2743 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2744 if (!is_shadow_present_pte(spte) || iterator.level < level)
2745 break;
2746
2747 /*
2748 * If the mapping has been changed, let the vcpu fault on the
2749 * same address again.
2750 */
2751 if (!is_rmap_spte(spte)) {
2752 ret = true;
2753 goto exit;
2754 }
2755
2756 if (!is_last_spte(spte, level))
2757 goto exit;
2758
2759 /*
2760 * Check if it is a spurious fault caused by TLB lazily flushed.
2761 *
2762 * Need not check the access of upper level table entries since
2763 * they are always ACC_ALL.
2764 */
2765 if (is_writable_pte(spte)) {
2766 ret = true;
2767 goto exit;
2768 }
2769
2770 /*
2771 * Currently, to simplify the code, only the spte write-protected
2772 * by dirty-log can be fast fixed.
2773 */
2774 if (!spte_is_locklessly_modifiable(spte))
2775 goto exit;
2776
2777 /*
2778 * Currently, fast page fault only works for direct mapping since
2779 * the gfn is not stable for indirect shadow page.
2780 * See Documentation/virtual/kvm/locking.txt to get more detail.
2781 */
2782 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2783exit:
a72faf25
XG
2784 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2785 spte, ret);
c7ba5b48
XG
2786 walk_shadow_page_lockless_end(vcpu);
2787
2788 return ret;
2789}
2790
78b2c54a 2791static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2792 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2793
c7ba5b48
XG
2794static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2795 gfn_t gfn, bool prefault)
10589a46
MT
2796{
2797 int r;
852e3c19 2798 int level;
936a5fe6 2799 int force_pt_level;
35149e21 2800 pfn_t pfn;
e930bffe 2801 unsigned long mmu_seq;
c7ba5b48 2802 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2803
936a5fe6
AA
2804 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2805 if (likely(!force_pt_level)) {
2806 level = mapping_level(vcpu, gfn);
2807 /*
2808 * This path builds a PAE pagetable - so we can map
2809 * 2mb pages at maximum. Therefore check if the level
2810 * is larger than that.
2811 */
2812 if (level > PT_DIRECTORY_LEVEL)
2813 level = PT_DIRECTORY_LEVEL;
852e3c19 2814
936a5fe6
AA
2815 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2816 } else
2817 level = PT_PAGE_TABLE_LEVEL;
05da4558 2818
c7ba5b48
XG
2819 if (fast_page_fault(vcpu, v, level, error_code))
2820 return 0;
2821
e930bffe 2822 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2823 smp_rmb();
060c2abe 2824
78b2c54a 2825 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2826 return 0;
aaee2c94 2827
d7c55201
XG
2828 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2829 return r;
d196e343 2830
aaee2c94 2831 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2832 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2833 goto out_unlock;
eb787d10 2834 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2835 if (likely(!force_pt_level))
2836 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2837 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2838 prefault);
aaee2c94
MT
2839 spin_unlock(&vcpu->kvm->mmu_lock);
2840
aaee2c94 2841
10589a46 2842 return r;
e930bffe
AA
2843
2844out_unlock:
2845 spin_unlock(&vcpu->kvm->mmu_lock);
2846 kvm_release_pfn_clean(pfn);
2847 return 0;
10589a46
MT
2848}
2849
2850
17ac10ad
AK
2851static void mmu_free_roots(struct kvm_vcpu *vcpu)
2852{
2853 int i;
4db35314 2854 struct kvm_mmu_page *sp;
d98ba053 2855 LIST_HEAD(invalid_list);
17ac10ad 2856
ad312c7c 2857 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2858 return;
aaee2c94 2859 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2860 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2861 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2862 vcpu->arch.mmu.direct_map)) {
ad312c7c 2863 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2864
4db35314
AK
2865 sp = page_header(root);
2866 --sp->root_count;
d98ba053
XG
2867 if (!sp->root_count && sp->role.invalid) {
2868 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2869 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2870 }
ad312c7c 2871 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2872 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2873 return;
2874 }
17ac10ad 2875 for (i = 0; i < 4; ++i) {
ad312c7c 2876 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2877
417726a3 2878 if (root) {
417726a3 2879 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2880 sp = page_header(root);
2881 --sp->root_count;
2e53d63a 2882 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2883 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2884 &invalid_list);
417726a3 2885 }
ad312c7c 2886 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2887 }
d98ba053 2888 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2889 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2890 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2891}
2892
8986ecc0
MT
2893static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2894{
2895 int ret = 0;
2896
2897 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2898 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2899 ret = 1;
2900 }
2901
2902 return ret;
2903}
2904
651dd37a
JR
2905static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2906{
2907 struct kvm_mmu_page *sp;
7ebaf15e 2908 unsigned i;
651dd37a
JR
2909
2910 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2911 spin_lock(&vcpu->kvm->mmu_lock);
2912 kvm_mmu_free_some_pages(vcpu);
2913 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2914 1, ACC_ALL, NULL);
2915 ++sp->root_count;
2916 spin_unlock(&vcpu->kvm->mmu_lock);
2917 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2918 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2919 for (i = 0; i < 4; ++i) {
2920 hpa_t root = vcpu->arch.mmu.pae_root[i];
2921
2922 ASSERT(!VALID_PAGE(root));
2923 spin_lock(&vcpu->kvm->mmu_lock);
2924 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2925 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2926 i << 30,
651dd37a
JR
2927 PT32_ROOT_LEVEL, 1, ACC_ALL,
2928 NULL);
2929 root = __pa(sp->spt);
2930 ++sp->root_count;
2931 spin_unlock(&vcpu->kvm->mmu_lock);
2932 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2933 }
6292757f 2934 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2935 } else
2936 BUG();
2937
2938 return 0;
2939}
2940
2941static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2942{
4db35314 2943 struct kvm_mmu_page *sp;
81407ca5
JR
2944 u64 pdptr, pm_mask;
2945 gfn_t root_gfn;
2946 int i;
3bb65a22 2947
5777ed34 2948 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2949
651dd37a
JR
2950 if (mmu_check_root(vcpu, root_gfn))
2951 return 1;
2952
2953 /*
2954 * Do we shadow a long mode page table? If so we need to
2955 * write-protect the guests page table root.
2956 */
2957 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2958 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2959
2960 ASSERT(!VALID_PAGE(root));
651dd37a 2961
8facbbff 2962 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2963 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2964 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2965 0, ACC_ALL, NULL);
4db35314
AK
2966 root = __pa(sp->spt);
2967 ++sp->root_count;
8facbbff 2968 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2969 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2970 return 0;
17ac10ad 2971 }
f87f9288 2972
651dd37a
JR
2973 /*
2974 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2975 * or a PAE 3-level page table. In either case we need to be aware that
2976 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2977 */
81407ca5
JR
2978 pm_mask = PT_PRESENT_MASK;
2979 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2980 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2981
17ac10ad 2982 for (i = 0; i < 4; ++i) {
ad312c7c 2983 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2984
2985 ASSERT(!VALID_PAGE(root));
ad312c7c 2986 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2987 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2988 if (!is_present_gpte(pdptr)) {
ad312c7c 2989 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2990 continue;
2991 }
6de4f3ad 2992 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2993 if (mmu_check_root(vcpu, root_gfn))
2994 return 1;
5a7388c2 2995 }
8facbbff 2996 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2997 kvm_mmu_free_some_pages(vcpu);
4db35314 2998 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2999 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3000 ACC_ALL, NULL);
4db35314
AK
3001 root = __pa(sp->spt);
3002 ++sp->root_count;
8facbbff
AK
3003 spin_unlock(&vcpu->kvm->mmu_lock);
3004
81407ca5 3005 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3006 }
6292757f 3007 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3008
3009 /*
3010 * If we shadow a 32 bit page table with a long mode page
3011 * table we enter this path.
3012 */
3013 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3014 if (vcpu->arch.mmu.lm_root == NULL) {
3015 /*
3016 * The additional page necessary for this is only
3017 * allocated on demand.
3018 */
3019
3020 u64 *lm_root;
3021
3022 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3023 if (lm_root == NULL)
3024 return 1;
3025
3026 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3027
3028 vcpu->arch.mmu.lm_root = lm_root;
3029 }
3030
3031 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3032 }
3033
8986ecc0 3034 return 0;
17ac10ad
AK
3035}
3036
651dd37a
JR
3037static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3038{
3039 if (vcpu->arch.mmu.direct_map)
3040 return mmu_alloc_direct_roots(vcpu);
3041 else
3042 return mmu_alloc_shadow_roots(vcpu);
3043}
3044
0ba73cda
MT
3045static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3046{
3047 int i;
3048 struct kvm_mmu_page *sp;
3049
81407ca5
JR
3050 if (vcpu->arch.mmu.direct_map)
3051 return;
3052
0ba73cda
MT
3053 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3054 return;
6903074c 3055
bebb106a 3056 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3057 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3058 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3059 hpa_t root = vcpu->arch.mmu.root_hpa;
3060 sp = page_header(root);
3061 mmu_sync_children(vcpu, sp);
0375f7fa 3062 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3063 return;
3064 }
3065 for (i = 0; i < 4; ++i) {
3066 hpa_t root = vcpu->arch.mmu.pae_root[i];
3067
8986ecc0 3068 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3069 root &= PT64_BASE_ADDR_MASK;
3070 sp = page_header(root);
3071 mmu_sync_children(vcpu, sp);
3072 }
3073 }
0375f7fa 3074 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3075}
3076
3077void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3078{
3079 spin_lock(&vcpu->kvm->mmu_lock);
3080 mmu_sync_roots(vcpu);
6cffe8ca 3081 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3082}
3083
1871c602 3084static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3085 u32 access, struct x86_exception *exception)
6aa8b732 3086{
ab9ae313
AK
3087 if (exception)
3088 exception->error_code = 0;
6aa8b732
AK
3089 return vaddr;
3090}
3091
6539e738 3092static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3093 u32 access,
3094 struct x86_exception *exception)
6539e738 3095{
ab9ae313
AK
3096 if (exception)
3097 exception->error_code = 0;
6539e738
JR
3098 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3099}
3100
ce88decf
XG
3101static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3102{
3103 if (direct)
3104 return vcpu_match_mmio_gpa(vcpu, addr);
3105
3106 return vcpu_match_mmio_gva(vcpu, addr);
3107}
3108
3109
3110/*
3111 * On direct hosts, the last spte is only allows two states
3112 * for mmio page fault:
3113 * - It is the mmio spte
3114 * - It is zapped or it is being zapped.
3115 *
3116 * This function completely checks the spte when the last spte
3117 * is not the mmio spte.
3118 */
3119static bool check_direct_spte_mmio_pf(u64 spte)
3120{
3121 return __check_direct_spte_mmio_pf(spte);
3122}
3123
3124static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3125{
3126 struct kvm_shadow_walk_iterator iterator;
3127 u64 spte = 0ull;
3128
3129 walk_shadow_page_lockless_begin(vcpu);
3130 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3131 if (!is_shadow_present_pte(spte))
3132 break;
3133 walk_shadow_page_lockless_end(vcpu);
3134
3135 return spte;
3136}
3137
3138/*
3139 * If it is a real mmio page fault, return 1 and emulat the instruction
3140 * directly, return 0 to let CPU fault again on the address, -1 is
3141 * returned if bug is detected.
3142 */
3143int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3144{
3145 u64 spte;
3146
3147 if (quickly_check_mmio_pf(vcpu, addr, direct))
3148 return 1;
3149
3150 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3151
3152 if (is_mmio_spte(spte)) {
3153 gfn_t gfn = get_mmio_spte_gfn(spte);
3154 unsigned access = get_mmio_spte_access(spte);
3155
3156 if (direct)
3157 addr = 0;
4f022648
XG
3158
3159 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3160 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3161 return 1;
3162 }
3163
3164 /*
3165 * It's ok if the gva is remapped by other cpus on shadow guest,
3166 * it's a BUG if the gfn is not a mmio page.
3167 */
3168 if (direct && !check_direct_spte_mmio_pf(spte))
3169 return -1;
3170
3171 /*
3172 * If the page table is zapped by other cpus, let CPU fault again on
3173 * the address.
3174 */
3175 return 0;
3176}
3177EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3178
3179static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3180 u32 error_code, bool direct)
3181{
3182 int ret;
3183
3184 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3185 WARN_ON(ret < 0);
3186 return ret;
3187}
3188
6aa8b732 3189static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3190 u32 error_code, bool prefault)
6aa8b732 3191{
e833240f 3192 gfn_t gfn;
e2dec939 3193 int r;
6aa8b732 3194
b8688d51 3195 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3196
3197 if (unlikely(error_code & PFERR_RSVD_MASK))
3198 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3199
e2dec939
AK
3200 r = mmu_topup_memory_caches(vcpu);
3201 if (r)
3202 return r;
714b93da 3203
6aa8b732 3204 ASSERT(vcpu);
ad312c7c 3205 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3206
e833240f 3207 gfn = gva >> PAGE_SHIFT;
6aa8b732 3208
e833240f 3209 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3210 error_code, gfn, prefault);
6aa8b732
AK
3211}
3212
7e1fbeac 3213static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3214{
3215 struct kvm_arch_async_pf arch;
fb67e14f 3216
7c90705b 3217 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3218 arch.gfn = gfn;
c4806acd 3219 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3220 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3221
3222 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3223}
3224
3225static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3226{
3227 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3228 kvm_event_needs_reinjection(vcpu)))
3229 return false;
3230
3231 return kvm_x86_ops->interrupt_allowed(vcpu);
3232}
3233
78b2c54a 3234static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3235 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3236{
3237 bool async;
3238
612819c3 3239 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3240
3241 if (!async)
3242 return false; /* *pfn has correct page already */
3243
78b2c54a 3244 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3245 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3246 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3247 trace_kvm_async_pf_doublefault(gva, gfn);
3248 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3249 return true;
3250 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3251 return true;
3252 }
3253
612819c3 3254 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3255
3256 return false;
3257}
3258
56028d08 3259static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3260 bool prefault)
fb72d167 3261{
35149e21 3262 pfn_t pfn;
fb72d167 3263 int r;
852e3c19 3264 int level;
936a5fe6 3265 int force_pt_level;
05da4558 3266 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3267 unsigned long mmu_seq;
612819c3
MT
3268 int write = error_code & PFERR_WRITE_MASK;
3269 bool map_writable;
fb72d167
JR
3270
3271 ASSERT(vcpu);
3272 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3273
ce88decf
XG
3274 if (unlikely(error_code & PFERR_RSVD_MASK))
3275 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3276
fb72d167
JR
3277 r = mmu_topup_memory_caches(vcpu);
3278 if (r)
3279 return r;
3280
936a5fe6
AA
3281 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3282 if (likely(!force_pt_level)) {
3283 level = mapping_level(vcpu, gfn);
3284 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3285 } else
3286 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3287
c7ba5b48
XG
3288 if (fast_page_fault(vcpu, gpa, level, error_code))
3289 return 0;
3290
e930bffe 3291 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3292 smp_rmb();
af585b92 3293
78b2c54a 3294 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3295 return 0;
3296
d7c55201
XG
3297 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3298 return r;
3299
fb72d167 3300 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3301 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3302 goto out_unlock;
fb72d167 3303 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3304 if (likely(!force_pt_level))
3305 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3306 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3307 level, gfn, pfn, prefault);
fb72d167 3308 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3309
3310 return r;
e930bffe
AA
3311
3312out_unlock:
3313 spin_unlock(&vcpu->kvm->mmu_lock);
3314 kvm_release_pfn_clean(pfn);
3315 return 0;
fb72d167
JR
3316}
3317
6aa8b732
AK
3318static void nonpaging_free(struct kvm_vcpu *vcpu)
3319{
17ac10ad 3320 mmu_free_roots(vcpu);
6aa8b732
AK
3321}
3322
52fde8df
JR
3323static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3324 struct kvm_mmu *context)
6aa8b732 3325{
6aa8b732
AK
3326 context->new_cr3 = nonpaging_new_cr3;
3327 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3328 context->gva_to_gpa = nonpaging_gva_to_gpa;
3329 context->free = nonpaging_free;
e8bc217a 3330 context->sync_page = nonpaging_sync_page;
a7052897 3331 context->invlpg = nonpaging_invlpg;
0f53b5b1 3332 context->update_pte = nonpaging_update_pte;
cea0f0e7 3333 context->root_level = 0;
6aa8b732 3334 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3335 context->root_hpa = INVALID_PAGE;
c5a78f2b 3336 context->direct_map = true;
2d48a985 3337 context->nx = false;
6aa8b732
AK
3338 return 0;
3339}
3340
d835dfec 3341void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3342{
1165f5fe 3343 ++vcpu->stat.tlb_flush;
a8eeb04a 3344 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3345}
3346
3347static void paging_new_cr3(struct kvm_vcpu *vcpu)
3348{
9f8fe504 3349 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3350 mmu_free_roots(vcpu);
6aa8b732
AK
3351}
3352
5777ed34
JR
3353static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3354{
9f8fe504 3355 return kvm_read_cr3(vcpu);
5777ed34
JR
3356}
3357
6389ee94
AK
3358static void inject_page_fault(struct kvm_vcpu *vcpu,
3359 struct x86_exception *fault)
6aa8b732 3360{
6389ee94 3361 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3362}
3363
6aa8b732
AK
3364static void paging_free(struct kvm_vcpu *vcpu)
3365{
3366 nonpaging_free(vcpu);
3367}
3368
8ea667f2
AK
3369static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3370{
3371 unsigned mask;
3372
3373 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3374
3375 mask = (unsigned)~ACC_WRITE_MASK;
3376 /* Allow write access to dirty gptes */
3377 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3378 *access &= mask;
3379}
3380
ce88decf
XG
3381static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3382 int *nr_present)
3383{
3384 if (unlikely(is_mmio_spte(*sptep))) {
3385 if (gfn != get_mmio_spte_gfn(*sptep)) {
3386 mmu_spte_clear_no_track(sptep);
3387 return true;
3388 }
3389
3390 (*nr_present)++;
3391 mark_mmio_spte(sptep, gfn, access);
3392 return true;
3393 }
3394
3395 return false;
3396}
3397
3d34adec
AK
3398static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3399{
3400 unsigned access;
3401
3402 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3403 access &= ~(gpte >> PT64_NX_SHIFT);
3404
3405 return access;
3406}
3407
6fd01b71
AK
3408static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3409{
3410 unsigned index;
3411
3412 index = level - 1;
3413 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3414 return mmu->last_pte_bitmap & (1 << index);
3415}
3416
6aa8b732
AK
3417#define PTTYPE 64
3418#include "paging_tmpl.h"
3419#undef PTTYPE
3420
3421#define PTTYPE 32
3422#include "paging_tmpl.h"
3423#undef PTTYPE
3424
52fde8df 3425static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3426 struct kvm_mmu *context)
82725b20 3427{
82725b20
DE
3428 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3429 u64 exb_bit_rsvd = 0;
3430
2d48a985 3431 if (!context->nx)
82725b20 3432 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3433 switch (context->root_level) {
82725b20
DE
3434 case PT32_ROOT_LEVEL:
3435 /* no rsvd bits for 2 level 4K page table entries */
3436 context->rsvd_bits_mask[0][1] = 0;
3437 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3438 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3439
3440 if (!is_pse(vcpu)) {
3441 context->rsvd_bits_mask[1][1] = 0;
3442 break;
3443 }
3444
82725b20
DE
3445 if (is_cpuid_PSE36())
3446 /* 36bits PSE 4MB page */
3447 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3448 else
3449 /* 32 bits PSE 4MB page */
3450 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3451 break;
3452 case PT32E_ROOT_LEVEL:
20c466b5
DE
3453 context->rsvd_bits_mask[0][2] =
3454 rsvd_bits(maxphyaddr, 63) |
3455 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3456 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3457 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3458 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3459 rsvd_bits(maxphyaddr, 62); /* PTE */
3460 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3461 rsvd_bits(maxphyaddr, 62) |
3462 rsvd_bits(13, 20); /* large page */
f815bce8 3463 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3464 break;
3465 case PT64_ROOT_LEVEL:
3466 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3467 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3468 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3469 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3470 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3471 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3472 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3473 rsvd_bits(maxphyaddr, 51);
3474 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3475 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3476 rsvd_bits(maxphyaddr, 51) |
3477 rsvd_bits(13, 29);
82725b20 3478 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3479 rsvd_bits(maxphyaddr, 51) |
3480 rsvd_bits(13, 20); /* large page */
f815bce8 3481 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3482 break;
3483 }
3484}
3485
97d64b78
AK
3486static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3487{
3488 unsigned bit, byte, pfec;
3489 u8 map;
3490 bool fault, x, w, u, wf, uf, ff, smep;
3491
3492 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3493 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3494 pfec = byte << 1;
3495 map = 0;
3496 wf = pfec & PFERR_WRITE_MASK;
3497 uf = pfec & PFERR_USER_MASK;
3498 ff = pfec & PFERR_FETCH_MASK;
3499 for (bit = 0; bit < 8; ++bit) {
3500 x = bit & ACC_EXEC_MASK;
3501 w = bit & ACC_WRITE_MASK;
3502 u = bit & ACC_USER_MASK;
3503
3504 /* Not really needed: !nx will cause pte.nx to fault */
3505 x |= !mmu->nx;
3506 /* Allow supervisor writes if !cr0.wp */
3507 w |= !is_write_protection(vcpu) && !uf;
3508 /* Disallow supervisor fetches of user code if cr4.smep */
3509 x &= !(smep && u && !uf);
3510
3511 fault = (ff && !x) || (uf && !u) || (wf && !w);
3512 map |= fault << bit;
3513 }
3514 mmu->permissions[byte] = map;
3515 }
3516}
3517
6fd01b71
AK
3518static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3519{
3520 u8 map;
3521 unsigned level, root_level = mmu->root_level;
3522 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3523
3524 if (root_level == PT32E_ROOT_LEVEL)
3525 --root_level;
3526 /* PT_PAGE_TABLE_LEVEL always terminates */
3527 map = 1 | (1 << ps_set_index);
3528 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3529 if (level <= PT_PDPE_LEVEL
3530 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3531 map |= 1 << (ps_set_index | (level - 1));
3532 }
3533 mmu->last_pte_bitmap = map;
3534}
3535
52fde8df
JR
3536static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3537 struct kvm_mmu *context,
3538 int level)
6aa8b732 3539{
2d48a985 3540 context->nx = is_nx(vcpu);
4d6931c3 3541 context->root_level = level;
2d48a985 3542
4d6931c3 3543 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3544 update_permission_bitmask(vcpu, context);
6fd01b71 3545 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3546
3547 ASSERT(is_pae(vcpu));
3548 context->new_cr3 = paging_new_cr3;
3549 context->page_fault = paging64_page_fault;
6aa8b732 3550 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3551 context->sync_page = paging64_sync_page;
a7052897 3552 context->invlpg = paging64_invlpg;
0f53b5b1 3553 context->update_pte = paging64_update_pte;
6aa8b732 3554 context->free = paging_free;
17ac10ad 3555 context->shadow_root_level = level;
17c3ba9d 3556 context->root_hpa = INVALID_PAGE;
c5a78f2b 3557 context->direct_map = false;
6aa8b732
AK
3558 return 0;
3559}
3560
52fde8df
JR
3561static int paging64_init_context(struct kvm_vcpu *vcpu,
3562 struct kvm_mmu *context)
17ac10ad 3563{
52fde8df 3564 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3565}
3566
52fde8df
JR
3567static int paging32_init_context(struct kvm_vcpu *vcpu,
3568 struct kvm_mmu *context)
6aa8b732 3569{
2d48a985 3570 context->nx = false;
4d6931c3 3571 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3572
4d6931c3 3573 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3574 update_permission_bitmask(vcpu, context);
6fd01b71 3575 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3576
3577 context->new_cr3 = paging_new_cr3;
3578 context->page_fault = paging32_page_fault;
6aa8b732
AK
3579 context->gva_to_gpa = paging32_gva_to_gpa;
3580 context->free = paging_free;
e8bc217a 3581 context->sync_page = paging32_sync_page;
a7052897 3582 context->invlpg = paging32_invlpg;
0f53b5b1 3583 context->update_pte = paging32_update_pte;
6aa8b732 3584 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3585 context->root_hpa = INVALID_PAGE;
c5a78f2b 3586 context->direct_map = false;
6aa8b732
AK
3587 return 0;
3588}
3589
52fde8df
JR
3590static int paging32E_init_context(struct kvm_vcpu *vcpu,
3591 struct kvm_mmu *context)
6aa8b732 3592{
52fde8df 3593 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3594}
3595
fb72d167
JR
3596static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3597{
14dfe855 3598 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3599
c445f8ef 3600 context->base_role.word = 0;
fb72d167
JR
3601 context->new_cr3 = nonpaging_new_cr3;
3602 context->page_fault = tdp_page_fault;
3603 context->free = nonpaging_free;
e8bc217a 3604 context->sync_page = nonpaging_sync_page;
a7052897 3605 context->invlpg = nonpaging_invlpg;
0f53b5b1 3606 context->update_pte = nonpaging_update_pte;
67253af5 3607 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3608 context->root_hpa = INVALID_PAGE;
c5a78f2b 3609 context->direct_map = true;
1c97f0a0 3610 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3611 context->get_cr3 = get_cr3;
e4e517b4 3612 context->get_pdptr = kvm_pdptr_read;
cb659db8 3613 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3614
3615 if (!is_paging(vcpu)) {
2d48a985 3616 context->nx = false;
fb72d167
JR
3617 context->gva_to_gpa = nonpaging_gva_to_gpa;
3618 context->root_level = 0;
3619 } else if (is_long_mode(vcpu)) {
2d48a985 3620 context->nx = is_nx(vcpu);
fb72d167 3621 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3622 reset_rsvds_bits_mask(vcpu, context);
3623 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3624 } else if (is_pae(vcpu)) {
2d48a985 3625 context->nx = is_nx(vcpu);
fb72d167 3626 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3627 reset_rsvds_bits_mask(vcpu, context);
3628 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3629 } else {
2d48a985 3630 context->nx = false;
fb72d167 3631 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3632 reset_rsvds_bits_mask(vcpu, context);
3633 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3634 }
3635
97d64b78 3636 update_permission_bitmask(vcpu, context);
6fd01b71 3637 update_last_pte_bitmap(vcpu, context);
97d64b78 3638
fb72d167
JR
3639 return 0;
3640}
3641
52fde8df 3642int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3643{
a770f6f2 3644 int r;
411c588d 3645 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3646 ASSERT(vcpu);
ad312c7c 3647 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3648
3649 if (!is_paging(vcpu))
52fde8df 3650 r = nonpaging_init_context(vcpu, context);
a9058ecd 3651 else if (is_long_mode(vcpu))
52fde8df 3652 r = paging64_init_context(vcpu, context);
6aa8b732 3653 else if (is_pae(vcpu))
52fde8df 3654 r = paging32E_init_context(vcpu, context);
6aa8b732 3655 else
52fde8df 3656 r = paging32_init_context(vcpu, context);
a770f6f2 3657
2c9afa52 3658 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3659 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3660 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3661 vcpu->arch.mmu.base_role.smep_andnot_wp
3662 = smep && !is_write_protection(vcpu);
52fde8df
JR
3663
3664 return r;
3665}
3666EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3667
3668static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3669{
14dfe855 3670 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3671
14dfe855
JR
3672 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3673 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3674 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3675 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3676
3677 return r;
6aa8b732
AK
3678}
3679
02f59dc9
JR
3680static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3681{
3682 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3683
3684 g_context->get_cr3 = get_cr3;
e4e517b4 3685 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3686 g_context->inject_page_fault = kvm_inject_page_fault;
3687
3688 /*
3689 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3690 * translation of l2_gpa to l1_gpa addresses is done using the
3691 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3692 * functions between mmu and nested_mmu are swapped.
3693 */
3694 if (!is_paging(vcpu)) {
2d48a985 3695 g_context->nx = false;
02f59dc9
JR
3696 g_context->root_level = 0;
3697 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3698 } else if (is_long_mode(vcpu)) {
2d48a985 3699 g_context->nx = is_nx(vcpu);
02f59dc9 3700 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3701 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3702 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3703 } else if (is_pae(vcpu)) {
2d48a985 3704 g_context->nx = is_nx(vcpu);
02f59dc9 3705 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3706 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3707 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3708 } else {
2d48a985 3709 g_context->nx = false;
02f59dc9 3710 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3711 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3712 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3713 }
3714
97d64b78 3715 update_permission_bitmask(vcpu, g_context);
6fd01b71 3716 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3717
02f59dc9
JR
3718 return 0;
3719}
3720
fb72d167
JR
3721static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3722{
02f59dc9
JR
3723 if (mmu_is_nested(vcpu))
3724 return init_kvm_nested_mmu(vcpu);
3725 else if (tdp_enabled)
fb72d167
JR
3726 return init_kvm_tdp_mmu(vcpu);
3727 else
3728 return init_kvm_softmmu(vcpu);
3729}
3730
6aa8b732
AK
3731static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3732{
3733 ASSERT(vcpu);
62ad0755
SY
3734 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3735 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3736 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3737}
3738
3739int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3740{
3741 destroy_kvm_mmu(vcpu);
f8f7e5ee 3742 return init_kvm_mmu(vcpu);
17c3ba9d 3743}
8668a3c4 3744EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3745
3746int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3747{
714b93da
AK
3748 int r;
3749
e2dec939 3750 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3751 if (r)
3752 goto out;
8986ecc0 3753 r = mmu_alloc_roots(vcpu);
8facbbff 3754 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3755 mmu_sync_roots(vcpu);
aaee2c94 3756 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3757 if (r)
3758 goto out;
3662cb1c 3759 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3760 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3761out:
3762 return r;
6aa8b732 3763}
17c3ba9d
AK
3764EXPORT_SYMBOL_GPL(kvm_mmu_load);
3765
3766void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3767{
3768 mmu_free_roots(vcpu);
3769}
4b16184c 3770EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3771
0028425f 3772static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3773 struct kvm_mmu_page *sp, u64 *spte,
3774 const void *new)
0028425f 3775{
30945387 3776 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3777 ++vcpu->kvm->stat.mmu_pde_zapped;
3778 return;
30945387 3779 }
0028425f 3780
4cee5764 3781 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3782 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3783}
3784
79539cec
AK
3785static bool need_remote_flush(u64 old, u64 new)
3786{
3787 if (!is_shadow_present_pte(old))
3788 return false;
3789 if (!is_shadow_present_pte(new))
3790 return true;
3791 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3792 return true;
3793 old ^= PT64_NX_MASK;
3794 new ^= PT64_NX_MASK;
3795 return (old & ~new & PT64_PERM_MASK) != 0;
3796}
3797
0671a8e7
XG
3798static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3799 bool remote_flush, bool local_flush)
79539cec 3800{
0671a8e7
XG
3801 if (zap_page)
3802 return;
3803
3804 if (remote_flush)
79539cec 3805 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3806 else if (local_flush)
79539cec
AK
3807 kvm_mmu_flush_tlb(vcpu);
3808}
3809
889e5cbc
XG
3810static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3811 const u8 *new, int *bytes)
da4a00f0 3812{
889e5cbc
XG
3813 u64 gentry;
3814 int r;
72016f3a 3815
72016f3a
AK
3816 /*
3817 * Assume that the pte write on a page table of the same type
49b26e26
XG
3818 * as the current vcpu paging mode since we update the sptes only
3819 * when they have the same mode.
72016f3a 3820 */
889e5cbc 3821 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3822 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3823 *gpa &= ~(gpa_t)7;
3824 *bytes = 8;
116eb3d3 3825 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3826 if (r)
3827 gentry = 0;
08e850c6
AK
3828 new = (const u8 *)&gentry;
3829 }
3830
889e5cbc 3831 switch (*bytes) {
08e850c6
AK
3832 case 4:
3833 gentry = *(const u32 *)new;
3834 break;
3835 case 8:
3836 gentry = *(const u64 *)new;
3837 break;
3838 default:
3839 gentry = 0;
3840 break;
72016f3a
AK
3841 }
3842
889e5cbc
XG
3843 return gentry;
3844}
3845
3846/*
3847 * If we're seeing too many writes to a page, it may no longer be a page table,
3848 * or we may be forking, in which case it is better to unmap the page.
3849 */
a138fe75 3850static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3851{
a30f47cb
XG
3852 /*
3853 * Skip write-flooding detected for the sp whose level is 1, because
3854 * it can become unsync, then the guest page is not write-protected.
3855 */
f71fa31f 3856 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3857 return false;
3246af0e 3858
a30f47cb 3859 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3860}
3861
3862/*
3863 * Misaligned accesses are too much trouble to fix up; also, they usually
3864 * indicate a page is not used as a page table.
3865 */
3866static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3867 int bytes)
3868{
3869 unsigned offset, pte_size, misaligned;
3870
3871 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3872 gpa, bytes, sp->role.word);
3873
3874 offset = offset_in_page(gpa);
3875 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3876
3877 /*
3878 * Sometimes, the OS only writes the last one bytes to update status
3879 * bits, for example, in linux, andb instruction is used in clear_bit().
3880 */
3881 if (!(offset & (pte_size - 1)) && bytes == 1)
3882 return false;
3883
889e5cbc
XG
3884 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3885 misaligned |= bytes < 4;
3886
3887 return misaligned;
3888}
3889
3890static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3891{
3892 unsigned page_offset, quadrant;
3893 u64 *spte;
3894 int level;
3895
3896 page_offset = offset_in_page(gpa);
3897 level = sp->role.level;
3898 *nspte = 1;
3899 if (!sp->role.cr4_pae) {
3900 page_offset <<= 1; /* 32->64 */
3901 /*
3902 * A 32-bit pde maps 4MB while the shadow pdes map
3903 * only 2MB. So we need to double the offset again
3904 * and zap two pdes instead of one.
3905 */
3906 if (level == PT32_ROOT_LEVEL) {
3907 page_offset &= ~7; /* kill rounding error */
3908 page_offset <<= 1;
3909 *nspte = 2;
3910 }
3911 quadrant = page_offset >> PAGE_SHIFT;
3912 page_offset &= ~PAGE_MASK;
3913 if (quadrant != sp->role.quadrant)
3914 return NULL;
3915 }
3916
3917 spte = &sp->spt[page_offset / sizeof(*spte)];
3918 return spte;
3919}
3920
3921void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3922 const u8 *new, int bytes)
3923{
3924 gfn_t gfn = gpa >> PAGE_SHIFT;
3925 union kvm_mmu_page_role mask = { .word = 0 };
3926 struct kvm_mmu_page *sp;
3927 struct hlist_node *node;
3928 LIST_HEAD(invalid_list);
3929 u64 entry, gentry, *spte;
3930 int npte;
a30f47cb 3931 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3932
3933 /*
3934 * If we don't have indirect shadow pages, it means no page is
3935 * write-protected, so we can exit simply.
3936 */
3937 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3938 return;
3939
3940 zap_page = remote_flush = local_flush = false;
3941
3942 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3943
3944 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3945
3946 /*
3947 * No need to care whether allocation memory is successful
3948 * or not since pte prefetch is skiped if it does not have
3949 * enough objects in the cache.
3950 */
3951 mmu_topup_memory_caches(vcpu);
3952
3953 spin_lock(&vcpu->kvm->mmu_lock);
3954 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3955 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3956
fa1de2bf 3957 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3958 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3959 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3960 detect_write_flooding(sp)) {
0671a8e7 3961 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3962 &invalid_list);
4cee5764 3963 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3964 continue;
3965 }
889e5cbc
XG
3966
3967 spte = get_written_sptes(sp, gpa, &npte);
3968 if (!spte)
3969 continue;
3970
0671a8e7 3971 local_flush = true;
ac1b714e 3972 while (npte--) {
79539cec 3973 entry = *spte;
38e3b2b2 3974 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3975 if (gentry &&
3976 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3977 & mask.word) && rmap_can_add(vcpu))
7c562522 3978 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 3979 if (need_remote_flush(entry, *spte))
0671a8e7 3980 remote_flush = true;
ac1b714e 3981 ++spte;
9b7a0325 3982 }
9b7a0325 3983 }
0671a8e7 3984 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3985 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3986 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3987 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3988}
3989
a436036b
AK
3990int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3991{
10589a46
MT
3992 gpa_t gpa;
3993 int r;
a436036b 3994
c5a78f2b 3995 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3996 return 0;
3997
1871c602 3998 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3999
10589a46 4000 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4001
10589a46 4002 return r;
a436036b 4003}
577bdc49 4004EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4005
22d95b12 4006void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 4007{
d98ba053 4008 LIST_HEAD(invalid_list);
103ad25a 4009
e0df7b9f 4010 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 4011 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 4012 struct kvm_mmu_page *sp;
ebeace86 4013
f05e70ac 4014 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 4015 struct kvm_mmu_page, link);
e0df7b9f 4016 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4017 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4018 }
aa6bd187 4019 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4020}
ebeace86 4021
1cb3f3ae
XG
4022static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4023{
4024 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4025 return vcpu_match_mmio_gpa(vcpu, addr);
4026
4027 return vcpu_match_mmio_gva(vcpu, addr);
4028}
4029
dc25e89e
AP
4030int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4031 void *insn, int insn_len)
3067714c 4032{
1cb3f3ae 4033 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4034 enum emulation_result er;
4035
56028d08 4036 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4037 if (r < 0)
4038 goto out;
4039
4040 if (!r) {
4041 r = 1;
4042 goto out;
4043 }
4044
1cb3f3ae
XG
4045 if (is_mmio_page_fault(vcpu, cr2))
4046 emulation_type = 0;
4047
4048 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4049
4050 switch (er) {
4051 case EMULATE_DONE:
4052 return 1;
4053 case EMULATE_DO_MMIO:
4054 ++vcpu->stat.mmio_exits;
6d77dbfc 4055 /* fall through */
3067714c 4056 case EMULATE_FAIL:
3f5d18a9 4057 return 0;
3067714c
AK
4058 default:
4059 BUG();
4060 }
4061out:
3067714c
AK
4062 return r;
4063}
4064EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4065
a7052897
MT
4066void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4067{
a7052897 4068 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4069 kvm_mmu_flush_tlb(vcpu);
4070 ++vcpu->stat.invlpg;
4071}
4072EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4073
18552672
JR
4074void kvm_enable_tdp(void)
4075{
4076 tdp_enabled = true;
4077}
4078EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4079
5f4cb662
JR
4080void kvm_disable_tdp(void)
4081{
4082 tdp_enabled = false;
4083}
4084EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4085
6aa8b732
AK
4086static void free_mmu_pages(struct kvm_vcpu *vcpu)
4087{
ad312c7c 4088 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4089 if (vcpu->arch.mmu.lm_root != NULL)
4090 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4091}
4092
4093static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4094{
17ac10ad 4095 struct page *page;
6aa8b732
AK
4096 int i;
4097
4098 ASSERT(vcpu);
4099
17ac10ad
AK
4100 /*
4101 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4102 * Therefore we need to allocate shadow page tables in the first
4103 * 4GB of memory, which happens to fit the DMA32 zone.
4104 */
4105 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4106 if (!page)
d7fa6ab2
WY
4107 return -ENOMEM;
4108
ad312c7c 4109 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4110 for (i = 0; i < 4; ++i)
ad312c7c 4111 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4112
6aa8b732 4113 return 0;
6aa8b732
AK
4114}
4115
8018c27b 4116int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4117{
6aa8b732 4118 ASSERT(vcpu);
e459e322
XG
4119
4120 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4121 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4122 vcpu->arch.mmu.translate_gpa = translate_gpa;
4123 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4124
8018c27b
IM
4125 return alloc_mmu_pages(vcpu);
4126}
6aa8b732 4127
8018c27b
IM
4128int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4129{
4130 ASSERT(vcpu);
ad312c7c 4131 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4132
8018c27b 4133 return init_kvm_mmu(vcpu);
6aa8b732
AK
4134}
4135
90cb0529 4136void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4137{
b99db1d3
TY
4138 struct kvm_memory_slot *memslot;
4139 gfn_t last_gfn;
4140 int i;
6aa8b732 4141
b99db1d3
TY
4142 memslot = id_to_memslot(kvm->memslots, slot);
4143 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4144
9d1beefb
TY
4145 spin_lock(&kvm->mmu_lock);
4146
b99db1d3
TY
4147 for (i = PT_PAGE_TABLE_LEVEL;
4148 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4149 unsigned long *rmapp;
4150 unsigned long last_index, index;
6aa8b732 4151
b99db1d3
TY
4152 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4153 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4154
b99db1d3
TY
4155 for (index = 0; index <= last_index; ++index, ++rmapp) {
4156 if (*rmapp)
4157 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4158
4159 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4160 kvm_flush_remote_tlbs(kvm);
4161 cond_resched_lock(&kvm->mmu_lock);
4162 }
8234b22e 4163 }
6aa8b732 4164 }
b99db1d3 4165
171d595d 4166 kvm_flush_remote_tlbs(kvm);
9d1beefb 4167 spin_unlock(&kvm->mmu_lock);
6aa8b732 4168}
37a7d8b0 4169
90cb0529 4170void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4171{
4db35314 4172 struct kvm_mmu_page *sp, *node;
d98ba053 4173 LIST_HEAD(invalid_list);
e0fa826f 4174
aaee2c94 4175 spin_lock(&kvm->mmu_lock);
3246af0e 4176restart:
f05e70ac 4177 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4178 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4179 goto restart;
4180
d98ba053 4181 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4182 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4183}
4184
3d56cbdf
JK
4185static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4186 struct list_head *invalid_list)
3ee16c81
IE
4187{
4188 struct kvm_mmu_page *page;
4189
85b70591
XG
4190 if (list_empty(&kvm->arch.active_mmu_pages))
4191 return;
4192
3ee16c81
IE
4193 page = container_of(kvm->arch.active_mmu_pages.prev,
4194 struct kvm_mmu_page, link);
3d56cbdf 4195 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4196}
4197
1495f230 4198static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4199{
4200 struct kvm *kvm;
1495f230 4201 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4202
4203 if (nr_to_scan == 0)
4204 goto out;
3ee16c81 4205
e935b837 4206 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4207
4208 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4209 int idx;
d98ba053 4210 LIST_HEAD(invalid_list);
3ee16c81 4211
35f2d16b
TY
4212 /*
4213 * Never scan more than sc->nr_to_scan VM instances.
4214 * Will not hit this condition practically since we do not try
4215 * to shrink more than one VM and it is very unlikely to see
4216 * !n_used_mmu_pages so many times.
4217 */
4218 if (!nr_to_scan--)
4219 break;
19526396
GN
4220 /*
4221 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4222 * here. We may skip a VM instance errorneosly, but we do not
4223 * want to shrink a VM that only started to populate its MMU
4224 * anyway.
4225 */
35f2d16b 4226 if (!kvm->arch.n_used_mmu_pages)
19526396 4227 continue;
19526396 4228
f656ce01 4229 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4230 spin_lock(&kvm->mmu_lock);
3ee16c81 4231
19526396 4232 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4233 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4234
3ee16c81 4235 spin_unlock(&kvm->mmu_lock);
f656ce01 4236 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4237
4238 list_move_tail(&kvm->vm_list, &vm_list);
4239 break;
3ee16c81 4240 }
3ee16c81 4241
e935b837 4242 raw_spin_unlock(&kvm_lock);
3ee16c81 4243
45221ab6
DH
4244out:
4245 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4246}
4247
4248static struct shrinker mmu_shrinker = {
4249 .shrink = mmu_shrink,
4250 .seeks = DEFAULT_SEEKS * 10,
4251};
4252
2ddfd20e 4253static void mmu_destroy_caches(void)
b5a33a75 4254{
53c07b18
XG
4255 if (pte_list_desc_cache)
4256 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4257 if (mmu_page_header_cache)
4258 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4259}
4260
4261int kvm_mmu_module_init(void)
4262{
53c07b18
XG
4263 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4264 sizeof(struct pte_list_desc),
20c2df83 4265 0, 0, NULL);
53c07b18 4266 if (!pte_list_desc_cache)
b5a33a75
AK
4267 goto nomem;
4268
d3d25b04
AK
4269 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4270 sizeof(struct kvm_mmu_page),
20c2df83 4271 0, 0, NULL);
d3d25b04
AK
4272 if (!mmu_page_header_cache)
4273 goto nomem;
4274
45bf21a8
WY
4275 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4276 goto nomem;
4277
3ee16c81
IE
4278 register_shrinker(&mmu_shrinker);
4279
b5a33a75
AK
4280 return 0;
4281
4282nomem:
3ee16c81 4283 mmu_destroy_caches();
b5a33a75
AK
4284 return -ENOMEM;
4285}
4286
3ad82a7e
ZX
4287/*
4288 * Caculate mmu pages needed for kvm.
4289 */
4290unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4291{
3ad82a7e
ZX
4292 unsigned int nr_mmu_pages;
4293 unsigned int nr_pages = 0;
bc6678a3 4294 struct kvm_memslots *slots;
be6ba0f0 4295 struct kvm_memory_slot *memslot;
3ad82a7e 4296
90d83dc3
LJ
4297 slots = kvm_memslots(kvm);
4298
be6ba0f0
XG
4299 kvm_for_each_memslot(memslot, slots)
4300 nr_pages += memslot->npages;
3ad82a7e
ZX
4301
4302 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4303 nr_mmu_pages = max(nr_mmu_pages,
4304 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4305
4306 return nr_mmu_pages;
4307}
4308
94d8b056
MT
4309int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4310{
4311 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4312 u64 spte;
94d8b056
MT
4313 int nr_sptes = 0;
4314
c2a2ac2b
XG
4315 walk_shadow_page_lockless_begin(vcpu);
4316 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4317 sptes[iterator.level-1] = spte;
94d8b056 4318 nr_sptes++;
c2a2ac2b 4319 if (!is_shadow_present_pte(spte))
94d8b056
MT
4320 break;
4321 }
c2a2ac2b 4322 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4323
4324 return nr_sptes;
4325}
4326EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4327
c42fffe3
XG
4328void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4329{
4330 ASSERT(vcpu);
4331
4332 destroy_kvm_mmu(vcpu);
4333 free_mmu_pages(vcpu);
4334 mmu_free_memory_caches(vcpu);
b034cf01
XG
4335}
4336
b034cf01
XG
4337void kvm_mmu_module_exit(void)
4338{
4339 mmu_destroy_caches();
4340 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4341 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4342 mmu_audit_disable();
4343}
This page took 0.840632 seconds and 5 git commands to generate.