alpha-vms: ETIR checks
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
b3adc24a 2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
00a97672 25#include "libiberty.h"
7f266840
DJ
26#include "libbfd.h"
27#include "elf-bfd.h"
b38cadfb 28#include "elf-nacl.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
f37164d7
AM
31#include "elf32-arm.h"
32#include "cpu-arm.h"
7f266840 33
00a97672
RS
34/* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36#define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39/* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41#define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46/* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48#define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53/* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55#define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
f3185997 60#define elf_info_to_howto NULL
07d6d2b8 61#define elf_info_to_howto_rel elf32_arm_info_to_howto
7f266840
DJ
62
63#define ARM_ELF_ABI_VERSION 0
64#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
79f08007
YZ
66/* The Adjusted Place, as defined by AAELF. */
67#define Pa(X) ((X) & 0xfffffffc)
68
3e6b1042
DJ
69static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
73
7f266840
DJ
74/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
c19d1205 78static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 79{
8029a119 80 /* No relocation. */
7f266840
DJ
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
6346d5ca 83 3, /* size (0 = byte, 1 = short, 2 = long) */
7f266840
DJ
84 0, /* bitsize */
85 FALSE, /* pc_relative */
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
90 FALSE, /* partial_inplace */
91 0, /* src_mask */
92 0, /* dst_mask */
93 FALSE), /* pcrel_offset */
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
97 2, /* size (0 = byte, 1 = short, 2 = long) */
98 24, /* bitsize */
99 TRUE, /* pc_relative */
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
104 FALSE, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 TRUE), /* pcrel_offset */
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
112 2, /* size (0 = byte, 1 = short, 2 = long) */
113 32, /* bitsize */
114 FALSE, /* pc_relative */
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
119 FALSE, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 FALSE), /* pcrel_offset */
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 32, /* bitsize */
129 TRUE, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
134 FALSE, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 TRUE), /* pcrel_offset */
138
c19d1205 139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 140 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
141 0, /* rightshift */
142 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
143 32, /* bitsize */
144 TRUE, /* pc_relative */
7f266840 145 0, /* bitpos */
4962c51a 146 complain_overflow_dont,/* complain_on_overflow */
7f266840 147 bfd_elf_generic_reloc, /* special_function */
4962c51a 148 "R_ARM_LDR_PC_G0", /* name */
7f266840 149 FALSE, /* partial_inplace */
4962c51a
MS
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 TRUE), /* pcrel_offset */
7f266840
DJ
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
157 1, /* size (0 = byte, 1 = short, 2 = long) */
158 16, /* bitsize */
159 FALSE, /* pc_relative */
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
164 FALSE, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 FALSE), /* pcrel_offset */
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
172 2, /* size (0 = byte, 1 = short, 2 = long) */
173 12, /* bitsize */
174 FALSE, /* pc_relative */
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
179 FALSE, /* partial_inplace */
00a97672
RS
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
7f266840
DJ
182 FALSE), /* pcrel_offset */
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
186 1, /* size (0 = byte, 1 = short, 2 = long) */
187 5, /* bitsize */
188 FALSE, /* pc_relative */
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 FALSE, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 FALSE), /* pcrel_offset */
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
201 0, /* size (0 = byte, 1 = short, 2 = long) */
202 8, /* bitsize */
203 FALSE, /* pc_relative */
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
208 FALSE, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 FALSE), /* pcrel_offset */
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
215 2, /* size (0 = byte, 1 = short, 2 = long) */
216 32, /* bitsize */
217 FALSE, /* pc_relative */
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 FALSE, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226
c19d1205 227 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
228 1, /* rightshift */
229 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 230 24, /* bitsize */
7f266840
DJ
231 TRUE, /* pc_relative */
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
c19d1205 235 "R_ARM_THM_CALL", /* name */
7f266840 236 FALSE, /* partial_inplace */
7f6ab9f8
AM
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
7f266840
DJ
239 TRUE), /* pcrel_offset */
240
07d6d2b8 241 HOWTO (R_ARM_THM_PC8, /* type */
7f266840
DJ
242 1, /* rightshift */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
244 8, /* bitsize */
245 TRUE, /* pc_relative */
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 FALSE, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 TRUE), /* pcrel_offset */
254
c19d1205 255 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
256 1, /* rightshift */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
258 32, /* bitsize */
259 FALSE, /* pc_relative */
7f266840
DJ
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
c19d1205 263 "R_ARM_BREL_ADJ", /* name */
7f266840 264 FALSE, /* partial_inplace */
c19d1205
ZW
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE), /* pcrel_offset */
7f266840 268
0855e32b 269 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 270 0, /* rightshift */
0855e32b
NS
271 2, /* size (0 = byte, 1 = short, 2 = long) */
272 32, /* bitsize */
7f266840
DJ
273 FALSE, /* pc_relative */
274 0, /* bitpos */
0855e32b 275 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 276 bfd_elf_generic_reloc, /* special_function */
0855e32b 277 "R_ARM_TLS_DESC", /* name */
7f266840 278 FALSE, /* partial_inplace */
0855e32b
NS
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
7f266840
DJ
281 FALSE), /* pcrel_offset */
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 0, /* bitsize */
287 FALSE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
292 FALSE, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 FALSE), /* pcrel_offset */
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 301 24, /* bitsize */
7f266840
DJ
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
307 FALSE, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 316 24, /* bitsize */
7f266840
DJ
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 FALSE, /* partial_inplace */
7f6ab9f8
AM
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
7f266840
DJ
325 TRUE), /* pcrel_offset */
326
ba93b8ac 327 /* Dynamic TLS relocations. */
7f266840 328
ba93b8ac 329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
07d6d2b8
AM
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
99059e56
RM
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 TRUE, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
07d6d2b8 341 FALSE), /* pcrel_offset */
7f266840 342
ba93b8ac 343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
07d6d2b8
AM
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 32, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
99059e56
RM
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 TRUE, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
07d6d2b8 355 FALSE), /* pcrel_offset */
7f266840 356
ba93b8ac 357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
07d6d2b8
AM
358 0, /* rightshift */
359 2, /* size (0 = byte, 1 = short, 2 = long) */
360 32, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
99059e56
RM
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 TRUE, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
07d6d2b8 369 FALSE), /* pcrel_offset */
7f266840
DJ
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
07d6d2b8
AM
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
99059e56
RM
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
382 TRUE, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
07d6d2b8 385 FALSE), /* pcrel_offset */
7f266840
DJ
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
07d6d2b8
AM
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 FALSE, /* pc_relative */
392 0, /* bitpos */
99059e56
RM
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 TRUE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
07d6d2b8 399 FALSE), /* pcrel_offset */
7f266840
DJ
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
07d6d2b8
AM
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 32, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
99059e56
RM
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 TRUE, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
07d6d2b8 413 FALSE), /* pcrel_offset */
7f266840
DJ
414
415 HOWTO (R_ARM_RELATIVE, /* type */
07d6d2b8
AM
416 0, /* rightshift */
417 2, /* size (0 = byte, 1 = short, 2 = long) */
418 32, /* bitsize */
419 FALSE, /* pc_relative */
420 0, /* bitpos */
99059e56
RM
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 TRUE, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
07d6d2b8 427 FALSE), /* pcrel_offset */
7f266840 428
c19d1205 429 HOWTO (R_ARM_GOTOFF32, /* type */
07d6d2b8
AM
430 0, /* rightshift */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
432 32, /* bitsize */
433 FALSE, /* pc_relative */
434 0, /* bitpos */
99059e56
RM
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
438 TRUE, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
07d6d2b8 441 FALSE), /* pcrel_offset */
7f266840
DJ
442
443 HOWTO (R_ARM_GOTPC, /* type */
07d6d2b8
AM
444 0, /* rightshift */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
446 32, /* bitsize */
99059e56 447 TRUE, /* pc_relative */
07d6d2b8 448 0, /* bitpos */
99059e56
RM
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 TRUE, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 TRUE), /* pcrel_offset */
7f266840
DJ
456
457 HOWTO (R_ARM_GOT32, /* type */
07d6d2b8
AM
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 32, /* bitsize */
99059e56 461 FALSE, /* pc_relative */
07d6d2b8 462 0, /* bitpos */
99059e56
RM
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
466 TRUE, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
7f266840
DJ
470
471 HOWTO (R_ARM_PLT32, /* type */
07d6d2b8
AM
472 2, /* rightshift */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
474 24, /* bitsize */
99059e56 475 TRUE, /* pc_relative */
07d6d2b8 476 0, /* bitpos */
99059e56
RM
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
480 FALSE, /* partial_inplace */
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 TRUE), /* pcrel_offset */
7f266840
DJ
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 24, /* bitsize */
489 TRUE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
494 FALSE, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 TRUE), /* pcrel_offset */
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
502 24, /* bitsize */
503 TRUE, /* pc_relative */
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 FALSE, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 TRUE), /* pcrel_offset */
512
c19d1205
ZW
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 24, /* bitsize */
517 TRUE, /* pc_relative */
7f266840 518 0, /* bitpos */
c19d1205 519 complain_overflow_signed,/* complain_on_overflow */
7f266840 520 bfd_elf_generic_reloc, /* special_function */
c19d1205 521 "R_ARM_THM_JUMP24", /* name */
7f266840 522 FALSE, /* partial_inplace */
c19d1205
ZW
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 TRUE), /* pcrel_offset */
7f266840 526
c19d1205 527 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 528 0, /* rightshift */
c19d1205
ZW
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 32, /* bitsize */
7f266840
DJ
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
c19d1205 535 "R_ARM_BASE_ABS", /* name */
7f266840 536 FALSE, /* partial_inplace */
c19d1205
ZW
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
7f266840
DJ
539 FALSE), /* pcrel_offset */
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 12, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 FALSE, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 12, /* bitsize */
559 TRUE, /* pc_relative */
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 FALSE, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 12, /* bitsize */
573 TRUE, /* pc_relative */
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 FALSE, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 12, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 FALSE, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 8, /* bitsize */
601 FALSE, /* pc_relative */
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 FALSE, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
614 8, /* bitsize */
615 FALSE, /* pc_relative */
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 FALSE, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 FALSE), /* pcrel_offset */
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 32, /* bitsize */
629 FALSE, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 FALSE, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 FALSE), /* pcrel_offset */
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 32, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 FALSE, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 32, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
662 FALSE, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
670 32, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 FALSE, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 TRUE), /* pcrel_offset */
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 31, /* bitsize */
685 TRUE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
690 FALSE, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 TRUE), /* pcrel_offset */
c19d1205
ZW
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 16, /* bitsize */
699 FALSE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 FALSE, /* partial_inplace */
39623e12
PB
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
c19d1205
ZW
707 FALSE), /* pcrel_offset */
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
712 16, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 FALSE, /* partial_inplace */
39623e12
PB
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
c19d1205
ZW
721 FALSE), /* pcrel_offset */
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 TRUE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 FALSE, /* partial_inplace */
39623e12
PB
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
c19d1205
ZW
735 TRUE), /* pcrel_offset */
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
739 2, /* size (0 = byte, 1 = short, 2 = long) */
740 16, /* bitsize */
741 TRUE, /* pc_relative */
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 FALSE, /* partial_inplace */
39623e12
PB
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
c19d1205
ZW
749 TRUE), /* pcrel_offset */
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 FALSE, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 FALSE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 FALSE, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 FALSE), /* pcrel_offset */
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
782 16, /* bitsize */
783 TRUE, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 FALSE, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 TRUE), /* pcrel_offset */
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
796 16, /* bitsize */
797 TRUE, /* pc_relative */
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 FALSE, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 TRUE), /* pcrel_offset */
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 19, /* bitsize */
811 TRUE, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 FALSE, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 TRUE), /* pcrel_offset */
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 6, /* bitsize */
825 TRUE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 FALSE, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 TRUE), /* pcrel_offset */
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
840 2, /* size (0 = byte, 1 = short, 2 = long) */
841 13, /* bitsize */
842 TRUE, /* pc_relative */
843 0, /* bitpos */
2cab6cc3 844 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 FALSE, /* partial_inplace */
2cab6cc3
MS
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
c19d1205
ZW
850 TRUE), /* pcrel_offset */
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 13, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
2cab6cc3 858 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 FALSE, /* partial_inplace */
2cab6cc3
MS
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
c19d1205
ZW
864 TRUE), /* pcrel_offset */
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
868 2, /* size (0 = byte, 1 = short, 2 = long) */
869 32, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 FALSE, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 32, /* bitsize */
884 TRUE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 FALSE, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 FALSE), /* pcrel_offset */
7f266840 893
4962c51a
MS
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
898 2, /* size (0 = byte, 1 = short, 2 = long) */
899 32, /* bitsize */
900 TRUE, /* pc_relative */
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 FALSE, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 TRUE), /* pcrel_offset */
909
07d6d2b8 910 HOWTO (R_ARM_ALU_PC_G0, /* type */
4962c51a
MS
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 TRUE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 918 "R_ARM_ALU_PC_G0", /* name */
4962c51a
MS
919 FALSE, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 TRUE), /* pcrel_offset */
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
926 2, /* size (0 = byte, 1 = short, 2 = long) */
927 32, /* bitsize */
928 TRUE, /* pc_relative */
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 FALSE, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 TRUE), /* pcrel_offset */
937
07d6d2b8 938 HOWTO (R_ARM_ALU_PC_G1, /* type */
4962c51a
MS
939 0, /* rightshift */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
941 32, /* bitsize */
942 TRUE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 946 "R_ARM_ALU_PC_G1", /* name */
4962c51a
MS
947 FALSE, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 TRUE), /* pcrel_offset */
951
07d6d2b8 952 HOWTO (R_ARM_ALU_PC_G2, /* type */
4962c51a
MS
953 0, /* rightshift */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
955 32, /* bitsize */
956 TRUE, /* pc_relative */
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 960 "R_ARM_ALU_PC_G2", /* name */
4962c51a
MS
961 FALSE, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 TRUE), /* pcrel_offset */
965
07d6d2b8 966 HOWTO (R_ARM_LDR_PC_G1, /* type */
4962c51a
MS
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 32, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 974 "R_ARM_LDR_PC_G1", /* name */
4962c51a
MS
975 FALSE, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
07d6d2b8 980 HOWTO (R_ARM_LDR_PC_G2, /* type */
4962c51a
MS
981 0, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 32, /* bitsize */
984 TRUE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 988 "R_ARM_LDR_PC_G2", /* name */
4962c51a
MS
989 FALSE, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 TRUE), /* pcrel_offset */
993
07d6d2b8 994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
4962c51a
MS
995 0, /* rightshift */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
997 32, /* bitsize */
998 TRUE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1002 "R_ARM_LDRS_PC_G0", /* name */
4962c51a
MS
1003 FALSE, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 TRUE), /* pcrel_offset */
1007
07d6d2b8 1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
4962c51a
MS
1009 0, /* rightshift */
1010 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 32, /* bitsize */
1012 TRUE, /* pc_relative */
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1016 "R_ARM_LDRS_PC_G1", /* name */
4962c51a
MS
1017 FALSE, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 TRUE), /* pcrel_offset */
1021
07d6d2b8 1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
4962c51a
MS
1023 0, /* rightshift */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 32, /* bitsize */
1026 TRUE, /* pc_relative */
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1030 "R_ARM_LDRS_PC_G2", /* name */
4962c51a
MS
1031 FALSE, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 TRUE), /* pcrel_offset */
1035
07d6d2b8 1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
4962c51a
MS
1037 0, /* rightshift */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 32, /* bitsize */
1040 TRUE, /* pc_relative */
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1044 "R_ARM_LDC_PC_G0", /* name */
4962c51a
MS
1045 FALSE, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 TRUE), /* pcrel_offset */
1049
07d6d2b8 1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
4962c51a
MS
1051 0, /* rightshift */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 32, /* bitsize */
1054 TRUE, /* pc_relative */
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1058 "R_ARM_LDC_PC_G1", /* name */
4962c51a
MS
1059 FALSE, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 TRUE), /* pcrel_offset */
1063
07d6d2b8 1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
4962c51a
MS
1065 0, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 32, /* bitsize */
1068 TRUE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1072 "R_ARM_LDC_PC_G2", /* name */
4962c51a
MS
1073 FALSE, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 TRUE), /* pcrel_offset */
1077
07d6d2b8 1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
4962c51a
MS
1079 0, /* rightshift */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 32, /* bitsize */
1082 TRUE, /* pc_relative */
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1086 "R_ARM_ALU_SB_G0_NC", /* name */
4962c51a
MS
1087 FALSE, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 TRUE), /* pcrel_offset */
1091
07d6d2b8 1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
4962c51a
MS
1093 0, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 32, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1100 "R_ARM_ALU_SB_G0", /* name */
4962c51a
MS
1101 FALSE, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
07d6d2b8 1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
4962c51a
MS
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 32, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1114 "R_ARM_ALU_SB_G1_NC", /* name */
4962c51a
MS
1115 FALSE, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
07d6d2b8 1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
4962c51a
MS
1121 0, /* rightshift */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 32, /* bitsize */
1124 TRUE, /* pc_relative */
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1128 "R_ARM_ALU_SB_G1", /* name */
4962c51a
MS
1129 FALSE, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 TRUE), /* pcrel_offset */
1133
07d6d2b8 1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
4962c51a
MS
1135 0, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 32, /* bitsize */
1138 TRUE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1142 "R_ARM_ALU_SB_G2", /* name */
4962c51a
MS
1143 FALSE, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 TRUE), /* pcrel_offset */
1147
07d6d2b8 1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
4962c51a
MS
1149 0, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 32, /* bitsize */
1152 TRUE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1156 "R_ARM_LDR_SB_G0", /* name */
4962c51a
MS
1157 FALSE, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 TRUE), /* pcrel_offset */
1161
07d6d2b8 1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
4962c51a
MS
1163 0, /* rightshift */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 32, /* bitsize */
1166 TRUE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1170 "R_ARM_LDR_SB_G1", /* name */
4962c51a
MS
1171 FALSE, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 TRUE), /* pcrel_offset */
1175
07d6d2b8 1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
4962c51a
MS
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 32, /* bitsize */
1180 TRUE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1184 "R_ARM_LDR_SB_G2", /* name */
4962c51a
MS
1185 FALSE, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 TRUE), /* pcrel_offset */
1189
07d6d2b8 1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
4962c51a
MS
1191 0, /* rightshift */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 32, /* bitsize */
1194 TRUE, /* pc_relative */
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1198 "R_ARM_LDRS_SB_G0", /* name */
4962c51a
MS
1199 FALSE, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 TRUE), /* pcrel_offset */
1203
07d6d2b8 1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
4962c51a
MS
1205 0, /* rightshift */
1206 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 32, /* bitsize */
1208 TRUE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1212 "R_ARM_LDRS_SB_G1", /* name */
4962c51a
MS
1213 FALSE, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 TRUE), /* pcrel_offset */
1217
07d6d2b8 1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
4962c51a
MS
1219 0, /* rightshift */
1220 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 32, /* bitsize */
1222 TRUE, /* pc_relative */
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1226 "R_ARM_LDRS_SB_G2", /* name */
4962c51a
MS
1227 FALSE, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 TRUE), /* pcrel_offset */
1231
07d6d2b8 1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
4962c51a
MS
1233 0, /* rightshift */
1234 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 32, /* bitsize */
1236 TRUE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1240 "R_ARM_LDC_SB_G0", /* name */
4962c51a
MS
1241 FALSE, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 TRUE), /* pcrel_offset */
1245
07d6d2b8 1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
4962c51a
MS
1247 0, /* rightshift */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 32, /* bitsize */
1250 TRUE, /* pc_relative */
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1254 "R_ARM_LDC_SB_G1", /* name */
4962c51a
MS
1255 FALSE, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 TRUE), /* pcrel_offset */
1259
07d6d2b8 1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
4962c51a
MS
1261 0, /* rightshift */
1262 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 32, /* bitsize */
1264 TRUE, /* pc_relative */
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1268 "R_ARM_LDC_SB_G2", /* name */
4962c51a
MS
1269 FALSE, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 TRUE), /* pcrel_offset */
1273
1274 /* End of group relocations. */
c19d1205 1275
c19d1205
ZW
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 16, /* bitsize */
1280 FALSE, /* pc_relative */
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 FALSE, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 FALSE), /* pcrel_offset */
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 16, /* bitsize */
1294 FALSE, /* pc_relative */
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 FALSE, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 FALSE), /* pcrel_offset */
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 FALSE, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
1320 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 FALSE, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 FALSE, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 16, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 FALSE, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
0855e32b
NS
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 TRUE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 24, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 FALSE, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 0, /* bitsize */
1392 FALSE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_bitfield,/* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 FALSE, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 FALSE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 24, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 FALSE, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
c19d1205
ZW
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 32, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 FALSE, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 32, /* bitsize */
1434 FALSE, /* pc_relative */
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 FALSE, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 TRUE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 FALSE, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 TRUE), /* pcrel_offset */
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 12, /* bitsize */
1462 FALSE, /* pc_relative */
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 FALSE, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
1474 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 12, /* bitsize */
1476 FALSE, /* pc_relative */
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 FALSE, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 FALSE), /* pcrel_offset */
1485
07d6d2b8 1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
c19d1205
ZW
1487
1488 /* GNU extension to record C++ vtable member usage */
07d6d2b8
AM
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 0, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
99059e56 1495 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8
AM
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0, /* dst_mask */
1501 FALSE), /* pcrel_offset */
c19d1205
ZW
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
07d6d2b8
AM
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 0, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
99059e56 1510 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8 1511 NULL, /* special_function */
99059e56 1512 "R_ARM_GNU_VTINHERIT", /* name */
07d6d2b8
AM
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0, /* dst_mask */
1516 FALSE), /* pcrel_offset */
c19d1205
ZW
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
1520 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 11, /* bitsize */
1522 TRUE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 FALSE, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 TRUE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
1534 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 8, /* bitsize */
1536 TRUE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 FALSE, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 TRUE), /* pcrel_offset */
ba93b8ac 1545
c19d1205
ZW
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
07d6d2b8
AM
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
99059e56
RM
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
07d6d2b8 1559 FALSE), /* pcrel_offset */
ba93b8ac 1560
ba93b8ac 1561 HOWTO (R_ARM_TLS_LDM32, /* type */
07d6d2b8
AM
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 32, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
99059e56
RM
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 TRUE, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
07d6d2b8 1573 FALSE), /* pcrel_offset */
ba93b8ac 1574
c19d1205 1575 HOWTO (R_ARM_TLS_LDO32, /* type */
07d6d2b8
AM
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 32, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
99059e56
RM
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
1584 TRUE, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
07d6d2b8 1587 FALSE), /* pcrel_offset */
ba93b8ac 1588
ba93b8ac 1589 HOWTO (R_ARM_TLS_IE32, /* type */
07d6d2b8
AM
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 32, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
99059e56
RM
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 TRUE, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
07d6d2b8 1601 FALSE), /* pcrel_offset */
7f266840 1602
c19d1205 1603 HOWTO (R_ARM_TLS_LE32, /* type */
07d6d2b8
AM
1604 0, /* rightshift */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 32, /* bitsize */
1607 FALSE, /* pc_relative */
1608 0, /* bitpos */
99059e56 1609 complain_overflow_bitfield,/* complain_on_overflow */
07d6d2b8 1610 NULL, /* special_function */
99059e56
RM
1611 "R_ARM_TLS_LE32", /* name */
1612 TRUE, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
07d6d2b8 1615 FALSE), /* pcrel_offset */
7f266840 1616
c19d1205
ZW
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 12, /* bitsize */
1621 FALSE, /* pc_relative */
7f266840 1622 0, /* bitpos */
c19d1205 1623 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1624 bfd_elf_generic_reloc, /* special_function */
c19d1205 1625 "R_ARM_TLS_LDO12", /* name */
7f266840 1626 FALSE, /* partial_inplace */
c19d1205
ZW
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 FALSE), /* pcrel_offset */
7f266840 1630
c19d1205
ZW
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 12, /* bitsize */
1635 FALSE, /* pc_relative */
7f266840 1636 0, /* bitpos */
c19d1205 1637 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1638 bfd_elf_generic_reloc, /* special_function */
c19d1205 1639 "R_ARM_TLS_LE12", /* name */
7f266840 1640 FALSE, /* partial_inplace */
c19d1205
ZW
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 FALSE), /* pcrel_offset */
7f266840 1644
c19d1205 1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1646 0, /* rightshift */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1648 12, /* bitsize */
1649 FALSE, /* pc_relative */
7f266840 1650 0, /* bitpos */
c19d1205 1651 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1652 bfd_elf_generic_reloc, /* special_function */
c19d1205 1653 "R_ARM_TLS_IE12GP", /* name */
7f266840 1654 FALSE, /* partial_inplace */
c19d1205
ZW
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 FALSE), /* pcrel_offset */
0855e32b 1658
34e77a92 1659 /* 112-127 private relocations. */
0855e32b
NS
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
34e77a92
RS
1676
1677 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
1682 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 0, /* bitsize */
1684 FALSE, /* pc_relative */
1685 0, /* bitpos */
1686 complain_overflow_bitfield,/* complain_on_overflow */
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 FALSE, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 FALSE), /* pcrel_offset */
72d98d16
MG
1693 EMPTY_HOWTO (130),
1694 EMPTY_HOWTO (131),
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1696 0, /* rightshift. */
1697 1, /* size (0 = byte, 1 = short, 2 = long). */
1698 16, /* bitsize. */
1699 FALSE, /* pc_relative. */
1700 0, /* bitpos. */
1701 complain_overflow_bitfield,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1704 FALSE, /* partial_inplace. */
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
1707 FALSE), /* pcrel_offset. */
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1709 0, /* rightshift. */
1710 1, /* size (0 = byte, 1 = short, 2 = long). */
1711 16, /* bitsize. */
1712 FALSE, /* pc_relative. */
1713 0, /* bitpos. */
1714 complain_overflow_bitfield,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1717 FALSE, /* partial_inplace. */
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
1720 FALSE), /* pcrel_offset. */
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1722 0, /* rightshift. */
1723 1, /* size (0 = byte, 1 = short, 2 = long). */
1724 16, /* bitsize. */
1725 FALSE, /* pc_relative. */
1726 0, /* bitpos. */
1727 complain_overflow_bitfield,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1730 FALSE, /* partial_inplace. */
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
1733 FALSE), /* pcrel_offset. */
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1735 0, /* rightshift. */
1736 1, /* size (0 = byte, 1 = short, 2 = long). */
1737 16, /* bitsize. */
1738 FALSE, /* pc_relative. */
1739 0, /* bitpos. */
1740 complain_overflow_bitfield,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1743 FALSE, /* partial_inplace. */
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
1746 FALSE), /* pcrel_offset. */
e5d6e09e
AV
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16, /* type. */
1749 0, /* rightshift. */
1750 1, /* size (0 = byte, 1 = short, 2 = long). */
1751 16, /* bitsize. */
1752 TRUE, /* pc_relative. */
1753 0, /* bitpos. */
1754 complain_overflow_dont,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
1757 FALSE, /* partial_inplace. */
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
1760 TRUE), /* pcrel_offset. */
1889da70
AV
1761 HOWTO (R_ARM_THM_BF12, /* type. */
1762 0, /* rightshift. */
1763 1, /* size (0 = byte, 1 = short, 2 = long). */
1764 12, /* bitsize. */
1765 TRUE, /* pc_relative. */
1766 0, /* bitpos. */
1767 complain_overflow_dont,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
1770 FALSE, /* partial_inplace. */
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
1773 TRUE), /* pcrel_offset. */
1caf72a5
AV
1774 HOWTO (R_ARM_THM_BF18, /* type. */
1775 0, /* rightshift. */
1776 1, /* size (0 = byte, 1 = short, 2 = long). */
1777 18, /* bitsize. */
1778 TRUE, /* pc_relative. */
1779 0, /* bitpos. */
1780 complain_overflow_dont,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
1783 FALSE, /* partial_inplace. */
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
1786 TRUE), /* pcrel_offset. */
c19d1205
ZW
1787};
1788
34e77a92 1789/* 160 onwards: */
5c5a4843 1790static reloc_howto_type elf32_arm_howto_table_2[8] =
34e77a92
RS
1791{
1792 HOWTO (R_ARM_IRELATIVE, /* type */
07d6d2b8
AM
1793 0, /* rightshift */
1794 2, /* size (0 = byte, 1 = short, 2 = long) */
1795 32, /* bitsize */
1796 FALSE, /* pc_relative */
1797 0, /* bitpos */
99059e56
RM
1798 complain_overflow_bitfield,/* complain_on_overflow */
1799 bfd_elf_generic_reloc, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
1801 TRUE, /* partial_inplace */
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
188fd7ae
CL
1804 FALSE), /* pcrel_offset */
1805 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1806 0, /* rightshift */
1807 2, /* size (0 = byte, 1 = short, 2 = long) */
1808 32, /* bitsize */
1809 FALSE, /* pc_relative */
1810 0, /* bitpos */
1811 complain_overflow_bitfield,/* complain_on_overflow */
1812 bfd_elf_generic_reloc, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
1814 FALSE, /* partial_inplace */
1815 0, /* src_mask */
1816 0xffffffff, /* dst_mask */
1817 FALSE), /* pcrel_offset */
1818 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1819 0, /* rightshift */
1820 2, /* size (0 = byte, 1 = short, 2 = long) */
1821 32, /* bitsize */
1822 FALSE, /* pc_relative */
1823 0, /* bitpos */
1824 complain_overflow_bitfield,/* complain_on_overflow */
1825 bfd_elf_generic_reloc, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
1827 FALSE, /* partial_inplace */
1828 0, /* src_mask */
1829 0xffffffff, /* dst_mask */
1830 FALSE), /* pcrel_offset */
1831 HOWTO (R_ARM_FUNCDESC, /* type */
1832 0, /* rightshift */
1833 2, /* size (0 = byte, 1 = short, 2 = long) */
1834 32, /* bitsize */
1835 FALSE, /* pc_relative */
1836 0, /* bitpos */
1837 complain_overflow_bitfield,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
1840 FALSE, /* partial_inplace */
1841 0, /* src_mask */
1842 0xffffffff, /* dst_mask */
1843 FALSE), /* pcrel_offset */
1844 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1845 0, /* rightshift */
1846 2, /* size (0 = byte, 1 = short, 2 = long) */
1847 64, /* bitsize */
1848 FALSE, /* pc_relative */
1849 0, /* bitpos */
1850 complain_overflow_bitfield,/* complain_on_overflow */
1851 bfd_elf_generic_reloc, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
1853 FALSE, /* partial_inplace */
1854 0, /* src_mask */
1855 0xffffffff, /* dst_mask */
1856 FALSE), /* pcrel_offset */
5c5a4843
CL
1857 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1858 0, /* rightshift */
1859 2, /* size (0 = byte, 1 = short, 2 = long) */
1860 32, /* bitsize */
1861 FALSE, /* pc_relative */
1862 0, /* bitpos */
1863 complain_overflow_bitfield,/* complain_on_overflow */
1864 bfd_elf_generic_reloc, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
1866 FALSE, /* partial_inplace */
1867 0, /* src_mask */
1868 0xffffffff, /* dst_mask */
1869 FALSE), /* pcrel_offset */
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1871 0, /* rightshift */
1872 2, /* size (0 = byte, 1 = short, 2 = long) */
1873 32, /* bitsize */
1874 FALSE, /* pc_relative */
1875 0, /* bitpos */
1876 complain_overflow_bitfield,/* complain_on_overflow */
1877 bfd_elf_generic_reloc, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
1879 FALSE, /* partial_inplace */
1880 0, /* src_mask */
1881 0xffffffff, /* dst_mask */
1882 FALSE), /* pcrel_offset */
1883 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1884 0, /* rightshift */
1885 2, /* size (0 = byte, 1 = short, 2 = long) */
1886 32, /* bitsize */
1887 FALSE, /* pc_relative */
1888 0, /* bitpos */
1889 complain_overflow_bitfield,/* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
1892 FALSE, /* partial_inplace */
1893 0, /* src_mask */
1894 0xffffffff, /* dst_mask */
1895 FALSE), /* pcrel_offset */
34e77a92 1896};
c19d1205 1897
34e77a92
RS
1898/* 249-255 extended, currently unused, relocations: */
1899static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1900{
1901 HOWTO (R_ARM_RREL32, /* type */
1902 0, /* rightshift */
1903 0, /* size (0 = byte, 1 = short, 2 = long) */
1904 0, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_dont,/* complain_on_overflow */
1908 bfd_elf_generic_reloc, /* special_function */
1909 "R_ARM_RREL32", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 HOWTO (R_ARM_RABS32, /* type */
1916 0, /* rightshift */
1917 0, /* size (0 = byte, 1 = short, 2 = long) */
1918 0, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont,/* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 "R_ARM_RABS32", /* name */
1924 FALSE, /* partial_inplace */
1925 0, /* src_mask */
1926 0, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 HOWTO (R_ARM_RPC24, /* type */
1930 0, /* rightshift */
1931 0, /* size (0 = byte, 1 = short, 2 = long) */
1932 0, /* bitsize */
1933 FALSE, /* pc_relative */
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 "R_ARM_RPC24", /* name */
1938 FALSE, /* partial_inplace */
1939 0, /* src_mask */
1940 0, /* dst_mask */
1941 FALSE), /* pcrel_offset */
1942
1943 HOWTO (R_ARM_RBASE, /* type */
1944 0, /* rightshift */
1945 0, /* size (0 = byte, 1 = short, 2 = long) */
1946 0, /* bitsize */
1947 FALSE, /* pc_relative */
1948 0, /* bitpos */
1949 complain_overflow_dont,/* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 "R_ARM_RBASE", /* name */
1952 FALSE, /* partial_inplace */
1953 0, /* src_mask */
1954 0, /* dst_mask */
1955 FALSE) /* pcrel_offset */
1956};
1957
1958static reloc_howto_type *
1959elf32_arm_howto_from_type (unsigned int r_type)
1960{
906e58ca 1961 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1962 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1963
188fd7ae
CL
1964 if (r_type >= R_ARM_IRELATIVE
1965 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
34e77a92
RS
1966 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1967
c19d1205 1968 if (r_type >= R_ARM_RREL32
34e77a92
RS
1969 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1970 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1971
c19d1205 1972 return NULL;
7f266840
DJ
1973}
1974
f3185997
NC
1975static bfd_boolean
1976elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
7f266840
DJ
1977 Elf_Internal_Rela * elf_reloc)
1978{
1979 unsigned int r_type;
1980
1981 r_type = ELF32_R_TYPE (elf_reloc->r_info);
f3185997
NC
1982 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1983 {
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1986 abfd, r_type);
1987 bfd_set_error (bfd_error_bad_value);
1988 return FALSE;
1989 }
1990 return TRUE;
7f266840
DJ
1991}
1992
1993struct elf32_arm_reloc_map
1994 {
1995 bfd_reloc_code_real_type bfd_reloc_val;
07d6d2b8 1996 unsigned char elf_reloc_val;
7f266840
DJ
1997 };
1998
1999/* All entries in this list must also be present in elf32_arm_howto_table. */
2000static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
2001 {
07d6d2b8 2002 {BFD_RELOC_NONE, R_ARM_NONE},
7f266840 2003 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
2004 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2005 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
07d6d2b8
AM
2006 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2007 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2008 {BFD_RELOC_32, R_ARM_ABS32},
2009 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2010 {BFD_RELOC_8, R_ARM_ABS8},
2011 {BFD_RELOC_16, R_ARM_ABS16},
2012 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
7f266840 2013 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
07d6d2b8
AM
2020 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2021 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2022 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2023 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2024 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2025 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2026 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2027 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
7f266840
DJ
2028 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2029 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2030 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2031 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac 2032 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
07d6d2b8
AM
2033 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2034 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2035 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
0855e32b 2036 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
07d6d2b8 2037 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
0855e32b 2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
07d6d2b8 2039 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
2040 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2041 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2042 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
07d6d2b8
AM
2045 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2046 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2047 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2048 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
188fd7ae
CL
2049 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2051 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
5c5a4843
CL
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
c19d1205
ZW
2056 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2057 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
2058 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2059 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2060 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2061 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2062 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2069 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2070 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2071 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2072 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2073 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2074 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2075 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2076 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2077 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2078 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2079 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2083 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2084 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2085 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2086 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2087 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2088 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2089 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2090 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2091 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2092 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6 2093 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
72d98d16
MG
2094 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
e5d6e09e 2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
1caf72a5 2099 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
1889da70 2100 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
1caf72a5 2101 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
7f266840
DJ
2102 };
2103
2104static reloc_howto_type *
f1c71a59
ZW
2105elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2106 bfd_reloc_code_real_type code)
7f266840
DJ
2107{
2108 unsigned int i;
8029a119 2109
906e58ca 2110 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
2111 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 2113
c19d1205 2114 return NULL;
7f266840
DJ
2115}
2116
157090f7
AM
2117static reloc_howto_type *
2118elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2119 const char *r_name)
2120{
2121 unsigned int i;
2122
906e58ca 2123 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
2124 if (elf32_arm_howto_table_1[i].name != NULL
2125 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2126 return &elf32_arm_howto_table_1[i];
2127
906e58ca 2128 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
2129 if (elf32_arm_howto_table_2[i].name != NULL
2130 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2131 return &elf32_arm_howto_table_2[i];
2132
34e77a92
RS
2133 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2134 if (elf32_arm_howto_table_3[i].name != NULL
2135 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2136 return &elf32_arm_howto_table_3[i];
2137
157090f7
AM
2138 return NULL;
2139}
2140
906e58ca
NC
2141/* Support for core dump NOTE sections. */
2142
7f266840 2143static bfd_boolean
f1c71a59 2144elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2145{
2146 int offset;
2147 size_t size;
2148
2149 switch (note->descsz)
2150 {
2151 default:
2152 return FALSE;
2153
8029a119 2154 case 148: /* Linux/ARM 32-bit. */
7f266840 2155 /* pr_cursig */
228e534f 2156 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
2157
2158 /* pr_pid */
228e534f 2159 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
2160
2161 /* pr_reg */
2162 offset = 72;
2163 size = 72;
2164
2165 break;
2166 }
2167
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2170 size, note->descpos + offset);
2171}
2172
2173static bfd_boolean
f1c71a59 2174elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2175{
2176 switch (note->descsz)
2177 {
2178 default:
2179 return FALSE;
2180
8029a119 2181 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 2182 elf_tdata (abfd)->core->pid
4395ee08 2183 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 2184 elf_tdata (abfd)->core->program
7f266840 2185 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 2186 elf_tdata (abfd)->core->command
7f266840
DJ
2187 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2188 }
2189
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
7f266840 2193 {
228e534f 2194 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
2195 int n = strlen (command);
2196
2197 if (0 < n && command[n - 1] == ' ')
2198 command[n - 1] = '\0';
2199 }
2200
2201 return TRUE;
2202}
2203
1f20dca5
UW
2204static char *
2205elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2206 int note_type, ...)
2207{
2208 switch (note_type)
2209 {
2210 default:
2211 return NULL;
2212
2213 case NT_PRPSINFO:
2214 {
602f1657 2215 char data[124] ATTRIBUTE_NONSTRING;
1f20dca5
UW
2216 va_list ap;
2217
2218 va_start (ap, note_type);
2219 memset (data, 0, sizeof (data));
2220 strncpy (data + 28, va_arg (ap, const char *), 16);
be3e27bb 2221#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2222 DIAGNOSTIC_PUSH;
be3e27bb 2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
95da9854
L
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2226 */
95da9854
L
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2228#endif
1f20dca5 2229 strncpy (data + 44, va_arg (ap, const char *), 80);
be3e27bb 2230#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2231 DIAGNOSTIC_POP;
fe75810f 2232#endif
1f20dca5
UW
2233 va_end (ap);
2234
2235 return elfcore_write_note (abfd, buf, bufsiz,
2236 "CORE", note_type, data, sizeof (data));
2237 }
2238
2239 case NT_PRSTATUS:
2240 {
2241 char data[148];
2242 va_list ap;
2243 long pid;
2244 int cursig;
2245 const void *greg;
2246
2247 va_start (ap, note_type);
2248 memset (data, 0, sizeof (data));
2249 pid = va_arg (ap, long);
2250 bfd_put_32 (abfd, pid, data + 24);
2251 cursig = va_arg (ap, int);
2252 bfd_put_16 (abfd, cursig, data + 12);
2253 greg = va_arg (ap, const void *);
2254 memcpy (data + 72, greg, 72);
2255 va_end (ap);
2256
2257 return elfcore_write_note (abfd, buf, bufsiz,
2258 "CORE", note_type, data, sizeof (data));
2259 }
2260 }
2261}
2262
07d6d2b8
AM
2263#define TARGET_LITTLE_SYM arm_elf32_le_vec
2264#define TARGET_LITTLE_NAME "elf32-littlearm"
2265#define TARGET_BIG_SYM arm_elf32_be_vec
2266#define TARGET_BIG_NAME "elf32-bigarm"
7f266840
DJ
2267
2268#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2270#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2271
252b5132
RH
2272typedef unsigned long int insn32;
2273typedef unsigned short int insn16;
2274
3a4a14e9
PB
2275/* In lieu of proper flags, assume all EABIv4 or later objects are
2276 interworkable. */
57e8b36a 2277#define INTERWORK_FLAG(abfd) \
3a4a14e9 2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2281
252b5132
RH
2282/* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
9b485d32 2285 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2286#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2288
2289#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2291
c7b8f16e
JB
2292#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2294
a504d23a
LA
2295#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2297
845b51d6
PB
2298#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2300
7413f23f
DJ
2301#define STUB_ENTRY_NAME "__%s_veneer"
2302
4ba2ef8f
TP
2303#define CMSE_PREFIX "__acle_se_"
2304
4d83e8d9
CL
2305#define CMSE_STUB_NAME ".gnu.sgstubs"
2306
252b5132
RH
2307/* The name of the dynamic interpreter. This is put in the .interp
2308 section. */
2309#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2310
cb10292c
CL
2311/* FDPIC default stack size. */
2312#define DEFAULT_STACK_SIZE 0x8000
2313
0855e32b 2314static const unsigned long tls_trampoline [] =
b38cadfb
NC
2315{
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2319};
0855e32b
NS
2320
2321static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2322{
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2330 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2332};
0855e32b 2333
b4e87f2c
TC
2334/* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2338
7801f98f
CL
2339/* ARM FDPIC PLT entry. */
2340/* The last 5 words contain PLT lazy fragment code and data. */
2341static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2342 {
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2353 };
2354
59029f57
CL
2355/* Thumb FDPIC PLT entry. */
2356/* The last 5 words contain PLT lazy fragment code and data. */
2357static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2358 {
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2369 };
2370
5e681ec4
PB
2371#ifdef FOUR_WORD_PLT
2372
252b5132
RH
2373/* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
59f2c4e7 2375 called before the relocation has been set up calls the dynamic
9b485d32 2376 linker first. */
e5a52504 2377static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2378{
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2383};
5e681ec4
PB
2384
2385/* Subsequent entries in a procedure linkage table look like
2386 this. */
e5a52504 2387static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2388{
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2393};
5e681ec4 2394
eed94f8f 2395#else /* not FOUR_WORD_PLT */
5e681ec4 2396
5e681ec4
PB
2397/* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2400 linker first. */
e5a52504 2401static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb 2402{
07d6d2b8
AM
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
b38cadfb 2408};
252b5132 2409
1db37fe6
YG
2410/* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2413{
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2417};
5e681ec4 2418
1db37fe6
YG
2419/* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421static const bfd_vma elf32_arm_plt_entry_long [] =
2422{
07d6d2b8
AM
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
1db37fe6
YG
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2427};
2428
2429static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2430
eed94f8f
NC
2431#endif /* not FOUR_WORD_PLT */
2432
2433/* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436static const bfd_vma elf32_thumb2_plt0_entry [] =
2437{
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2442 /* add lr, pc */
eed94f8f 2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
07d6d2b8 2444 0x00000000, /* &GOT[0] - . */
eed94f8f
NC
2445};
2446
2447/* Subsequent entries in a procedure linkage table for thumb only target
2448 look like this. */
2449static const bfd_vma elf32_thumb2_plt_entry [] =
2450{
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
15ccbdd7
TC
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2457 /* b .-4 */
eed94f8f 2458};
252b5132 2459
00a97672
RS
2460/* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb 2463{
07d6d2b8
AM
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
b38cadfb 2468};
00a97672
RS
2469
2470/* The format of subsequent entries in a VxWorks executable. */
2471static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb 2472{
07d6d2b8
AM
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2479};
00a97672
RS
2480
2481/* The format of entries in a VxWorks shared library. */
2482static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb 2483{
07d6d2b8
AM
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2490};
00a97672 2491
b7693d02
DJ
2492/* An initial stub used if the PLT entry is referenced from Thumb code. */
2493#define PLT_THUMB_STUB_SIZE 4
2494static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2495{
2496 0x4778, /* bx pc */
b4e87f2c 2497 0xe7fd /* b .-2 */
b38cadfb 2498};
b7693d02 2499
e5a52504
MM
2500/* The entries in a PLT when using a DLL-based target with multiple
2501 address spaces. */
906e58ca 2502static const bfd_vma elf32_arm_symbian_plt_entry [] =
b38cadfb 2503{
07d6d2b8
AM
2504 0xe51ff004, /* ldr pc, [pc, #-4] */
2505 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
b38cadfb
NC
2506};
2507
2508/* The first entry in a procedure linkage table looks like
2509 this. It is set up so that any shared library function that is
2510 called before the relocation has been set up calls the dynamic
2511 linker first. */
2512static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2513{
2514 /* First bundle: */
2515 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2516 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2517 0xe08cc00f, /* add ip, ip, pc */
2518 0xe52dc008, /* str ip, [sp, #-8]! */
2519 /* Second bundle: */
edccdf7c
RM
2520 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2521 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2522 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2523 0xe12fff1c, /* bx ip */
b38cadfb 2524 /* Third bundle: */
edccdf7c
RM
2525 0xe320f000, /* nop */
2526 0xe320f000, /* nop */
2527 0xe320f000, /* nop */
b38cadfb
NC
2528 /* .Lplt_tail: */
2529 0xe50dc004, /* str ip, [sp, #-4] */
2530 /* Fourth bundle: */
edccdf7c
RM
2531 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2532 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2533 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2534 0xe12fff1c, /* bx ip */
b38cadfb
NC
2535};
2536#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2537
2538/* Subsequent entries in a procedure linkage table look like this. */
2539static const bfd_vma elf32_arm_nacl_plt_entry [] =
2540{
2541 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2542 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2543 0xe08cc00f, /* add ip, ip, pc */
2544 0xea000000, /* b .Lplt_tail */
2545};
e5a52504 2546
906e58ca
NC
2547#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2548#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2549#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2550#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2551#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2552#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2553#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2554#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2555
461a49ca 2556enum stub_insn_type
b38cadfb
NC
2557{
2558 THUMB16_TYPE = 1,
2559 THUMB32_TYPE,
2560 ARM_TYPE,
2561 DATA_TYPE
2562};
461a49ca 2563
48229727
JB
2564#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2565/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2566 is inserted in arm_build_one_stub(). */
2567#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2568#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
d5a67c02
AV
2569#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2570#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
48229727
JB
2571#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2572#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2573#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2574#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2575
2576typedef struct
2577{
07d6d2b8 2578 bfd_vma data;
b38cadfb 2579 enum stub_insn_type type;
07d6d2b8
AM
2580 unsigned int r_type;
2581 int reloc_addend;
461a49ca
DJ
2582} insn_sequence;
2583
b4e87f2c
TC
2584/* See note [Thumb nop sequence] when adding a veneer. */
2585
fea2b4d6
CL
2586/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2587 to reach the stub if necessary. */
461a49ca 2588static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb 2589{
07d6d2b8 2590 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2591 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2592};
906e58ca 2593
fea2b4d6
CL
2594/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2595 available. */
461a49ca 2596static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb 2597{
07d6d2b8
AM
2598 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2599 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2600 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2601};
906e58ca 2602
d3626fb0 2603/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2604static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb 2605{
07d6d2b8
AM
2606 THUMB16_INSN (0xb401), /* push {r0} */
2607 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2608 THUMB16_INSN (0x4684), /* mov ip, r0 */
2609 THUMB16_INSN (0xbc01), /* pop {r0} */
2610 THUMB16_INSN (0x4760), /* bx ip */
2611 THUMB16_INSN (0xbf00), /* nop */
b38cadfb
NC
2612 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2613};
906e58ca 2614
80c135e5
TP
2615/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2616static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2617{
07d6d2b8 2618 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
80c135e5
TP
2619 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2620};
2621
d5a67c02
AV
2622/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2623 M-profile architectures. */
2624static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2625{
2626 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2627 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
07d6d2b8 2628 THUMB16_INSN (0x4760), /* bx ip */
d5a67c02
AV
2629};
2630
d3626fb0
CL
2631/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2632 allowed. */
2633static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb 2634{
07d6d2b8 2635 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2636 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2637 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2638 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2639 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2640};
d3626fb0 2641
fea2b4d6
CL
2642/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2643 available. */
461a49ca 2644static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb 2645{
07d6d2b8 2646 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2647 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8 2648 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2649 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2650};
906e58ca 2651
fea2b4d6
CL
2652/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2653 one, when the destination is close enough. */
461a49ca 2654static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb 2655{
07d6d2b8 2656 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2657 THUMB16_INSN (0xe7fd), /* b .-2 */
b38cadfb
NC
2658 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2659};
c820be07 2660
cf3eccff 2661/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2662 blx to reach the stub if necessary. */
cf3eccff 2663static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb 2664{
07d6d2b8
AM
2665 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2666 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
b38cadfb
NC
2667 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2668};
906e58ca 2669
cf3eccff
DJ
2670/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2671 blx to reach the stub if necessary. We can not add into pc;
2672 it is not guaranteed to mode switch (different in ARMv6 and
2673 ARMv7). */
2674static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb 2675{
07d6d2b8
AM
2676 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2677 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2678 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2679 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2680};
cf3eccff 2681
ebe24dd4
CL
2682/* V4T ARM -> ARM long branch stub, PIC. */
2683static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb 2684{
07d6d2b8
AM
2685 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2686 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2687 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2688 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2689};
ebe24dd4
CL
2690
2691/* V4T Thumb -> ARM long branch stub, PIC. */
2692static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb 2693{
07d6d2b8 2694 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2695 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2696 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2697 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
b38cadfb
NC
2698 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2699};
ebe24dd4 2700
d3626fb0
CL
2701/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2702 architectures. */
ebe24dd4 2703static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb 2704{
07d6d2b8
AM
2705 THUMB16_INSN (0xb401), /* push {r0} */
2706 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2707 THUMB16_INSN (0x46fc), /* mov ip, pc */
2708 THUMB16_INSN (0x4484), /* add ip, r0 */
2709 THUMB16_INSN (0xbc01), /* pop {r0} */
2710 THUMB16_INSN (0x4760), /* bx ip */
b38cadfb
NC
2711 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2712};
ebe24dd4 2713
d3626fb0
CL
2714/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2715 allowed. */
2716static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb 2717{
07d6d2b8 2718 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2719 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2720 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2721 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2722 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2723 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2724};
d3626fb0 2725
0855e32b
NS
2726/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2727 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2728static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2729{
07d6d2b8
AM
2730 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2731 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
b38cadfb 2732 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2733};
2734
2735/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2736 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2737static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2738{
07d6d2b8 2739 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2740 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2741 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2742 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
b38cadfb 2743 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2744};
2745
7a89b94e
NC
2746/* NaCl ARM -> ARM long branch stub. */
2747static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2748{
2749 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2750 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2751 ARM_INSN (0xe12fff1c), /* bx ip */
2752 ARM_INSN (0xe320f000), /* nop */
2753 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2754 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2755 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2756 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2757};
2758
2759/* NaCl ARM -> ARM long branch stub, PIC. */
2760static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2761{
2762 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
07d6d2b8 2763 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
7a89b94e 2764 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2765 ARM_INSN (0xe12fff1c), /* bx ip */
2766 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2767 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2768 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2769 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2770};
2771
4ba2ef8f
TP
2772/* Stub used for transition to secure state (aka SG veneer). */
2773static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2774{
2775 THUMB32_INSN (0xe97fe97f), /* sg. */
2776 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2777};
2778
7a89b94e 2779
48229727
JB
2780/* Cortex-A8 erratum-workaround stubs. */
2781
2782/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2783 can't use a conditional branch to reach this stub). */
2784
2785static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb 2786{
07d6d2b8 2787 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
b38cadfb
NC
2788 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2789 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2790};
48229727
JB
2791
2792/* Stub used for b.w and bl.w instructions. */
2793
2794static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2795{
2796 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2797};
48229727
JB
2798
2799static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2800{
2801 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2802};
48229727
JB
2803
2804/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2805 instruction (which switches to ARM mode) to point to this stub. Jump to the
2806 real destination using an ARM-mode branch. */
2807
2808static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2809{
2810 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2811};
48229727 2812
9553db3c
NC
2813/* For each section group there can be a specially created linker section
2814 to hold the stubs for that group. The name of the stub section is based
2815 upon the name of another section within that group with the suffix below
2816 applied.
2817
2818 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2819 create what appeared to be a linker stub section when it actually
2820 contained user code/data. For example, consider this fragment:
b38cadfb 2821
9553db3c
NC
2822 const char * stubborn_problems[] = { "np" };
2823
2824 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2825 section called:
2826
2827 .data.rel.local.stubborn_problems
2828
2829 This then causes problems in arm32_arm_build_stubs() as it triggers:
2830
2831 // Ignore non-stub sections.
2832 if (!strstr (stub_sec->name, STUB_SUFFIX))
2833 continue;
2834
2835 And so the section would be ignored instead of being processed. Hence
2836 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2837 C identifier. */
2838#define STUB_SUFFIX ".__stub"
906e58ca 2839
738a79f6
CL
2840/* One entry per long/short branch stub defined above. */
2841#define DEF_STUBS \
2842 DEF_STUB(long_branch_any_any) \
2843 DEF_STUB(long_branch_v4t_arm_thumb) \
2844 DEF_STUB(long_branch_thumb_only) \
2845 DEF_STUB(long_branch_v4t_thumb_thumb) \
2846 DEF_STUB(long_branch_v4t_thumb_arm) \
2847 DEF_STUB(short_branch_v4t_thumb_arm) \
2848 DEF_STUB(long_branch_any_arm_pic) \
2849 DEF_STUB(long_branch_any_thumb_pic) \
2850 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2851 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2852 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2853 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2854 DEF_STUB(long_branch_any_tls_pic) \
2855 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
7a89b94e
NC
2856 DEF_STUB(long_branch_arm_nacl) \
2857 DEF_STUB(long_branch_arm_nacl_pic) \
4ba2ef8f 2858 DEF_STUB(cmse_branch_thumb_only) \
48229727
JB
2859 DEF_STUB(a8_veneer_b_cond) \
2860 DEF_STUB(a8_veneer_b) \
2861 DEF_STUB(a8_veneer_bl) \
80c135e5
TP
2862 DEF_STUB(a8_veneer_blx) \
2863 DEF_STUB(long_branch_thumb2_only) \
d5a67c02 2864 DEF_STUB(long_branch_thumb2_only_pure)
738a79f6
CL
2865
2866#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2867enum elf32_arm_stub_type
2868{
906e58ca 2869 arm_stub_none,
738a79f6 2870 DEF_STUBS
4f4faa4d 2871 max_stub_type
738a79f6
CL
2872};
2873#undef DEF_STUB
2874
8d9d9490
TP
2875/* Note the first a8_veneer type. */
2876const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2877
738a79f6
CL
2878typedef struct
2879{
d3ce72d0 2880 const insn_sequence* template_sequence;
738a79f6
CL
2881 int template_size;
2882} stub_def;
2883
2884#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2885static const stub_def stub_definitions[] =
2886{
738a79f6
CL
2887 {NULL, 0},
2888 DEF_STUBS
906e58ca
NC
2889};
2890
2891struct elf32_arm_stub_hash_entry
2892{
2893 /* Base hash table entry structure. */
2894 struct bfd_hash_entry root;
2895
2896 /* The stub section. */
2897 asection *stub_sec;
2898
2899 /* Offset within stub_sec of the beginning of this stub. */
2900 bfd_vma stub_offset;
2901
2902 /* Given the symbol's value and its section we can determine its final
2903 value when building the stubs (so the stub knows where to jump). */
2904 bfd_vma target_value;
2905 asection *target_section;
2906
8d9d9490
TP
2907 /* Same as above but for the source of the branch to the stub. Used for
2908 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2909 such, source section does not need to be recorded since Cortex-A8 erratum
2910 workaround stubs are only generated when both source and target are in the
2911 same section. */
2912 bfd_vma source_value;
48229727
JB
2913
2914 /* The instruction which caused this stub to be generated (only valid for
2915 Cortex-A8 erratum workaround stubs at present). */
2916 unsigned long orig_insn;
2917
461a49ca 2918 /* The stub type. */
906e58ca 2919 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2920 /* Its encoding size in bytes. */
2921 int stub_size;
2922 /* Its template. */
2923 const insn_sequence *stub_template;
2924 /* The size of the template (number of entries). */
2925 int stub_template_size;
906e58ca
NC
2926
2927 /* The symbol table entry, if any, that this was derived from. */
2928 struct elf32_arm_link_hash_entry *h;
2929
35fc36a8
RS
2930 /* Type of branch. */
2931 enum arm_st_branch_type branch_type;
906e58ca
NC
2932
2933 /* Where this stub is being called from, or, in the case of combined
2934 stub sections, the first input section in the group. */
2935 asection *id_sec;
7413f23f
DJ
2936
2937 /* The name for the local symbol at the start of this stub. The
2938 stub name in the hash table has to be unique; this does not, so
2939 it can be friendlier. */
2940 char *output_name;
906e58ca
NC
2941};
2942
e489d0ae
PB
2943/* Used to build a map of a section. This is required for mixed-endian
2944 code/data. */
2945
2946typedef struct elf32_elf_section_map
2947{
2948 bfd_vma vma;
2949 char type;
2950}
2951elf32_arm_section_map;
2952
c7b8f16e
JB
2953/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2954
2955typedef enum
2956{
2957 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2958 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2959 VFP11_ERRATUM_ARM_VENEER,
2960 VFP11_ERRATUM_THUMB_VENEER
2961}
2962elf32_vfp11_erratum_type;
2963
2964typedef struct elf32_vfp11_erratum_list
2965{
2966 struct elf32_vfp11_erratum_list *next;
2967 bfd_vma vma;
2968 union
2969 {
2970 struct
2971 {
2972 struct elf32_vfp11_erratum_list *veneer;
2973 unsigned int vfp_insn;
2974 } b;
2975 struct
2976 {
2977 struct elf32_vfp11_erratum_list *branch;
2978 unsigned int id;
2979 } v;
2980 } u;
2981 elf32_vfp11_erratum_type type;
2982}
2983elf32_vfp11_erratum_list;
2984
a504d23a
LA
2985/* Information about a STM32L4XX erratum veneer, or a branch to such a
2986 veneer. */
2987typedef enum
2988{
2989 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2990 STM32L4XX_ERRATUM_VENEER
2991}
2992elf32_stm32l4xx_erratum_type;
2993
2994typedef struct elf32_stm32l4xx_erratum_list
2995{
2996 struct elf32_stm32l4xx_erratum_list *next;
2997 bfd_vma vma;
2998 union
2999 {
3000 struct
3001 {
3002 struct elf32_stm32l4xx_erratum_list *veneer;
3003 unsigned int insn;
3004 } b;
3005 struct
3006 {
3007 struct elf32_stm32l4xx_erratum_list *branch;
3008 unsigned int id;
3009 } v;
3010 } u;
3011 elf32_stm32l4xx_erratum_type type;
3012}
3013elf32_stm32l4xx_erratum_list;
3014
2468f9c9
PB
3015typedef enum
3016{
3017 DELETE_EXIDX_ENTRY,
3018 INSERT_EXIDX_CANTUNWIND_AT_END
3019}
3020arm_unwind_edit_type;
3021
3022/* A (sorted) list of edits to apply to an unwind table. */
3023typedef struct arm_unwind_table_edit
3024{
3025 arm_unwind_edit_type type;
3026 /* Note: we sometimes want to insert an unwind entry corresponding to a
3027 section different from the one we're currently writing out, so record the
3028 (text) section this edit relates to here. */
3029 asection *linked_section;
3030 unsigned int index;
3031 struct arm_unwind_table_edit *next;
3032}
3033arm_unwind_table_edit;
3034
8e3de13a 3035typedef struct _arm_elf_section_data
e489d0ae 3036{
2468f9c9 3037 /* Information about mapping symbols. */
e489d0ae 3038 struct bfd_elf_section_data elf;
8e3de13a 3039 unsigned int mapcount;
c7b8f16e 3040 unsigned int mapsize;
e489d0ae 3041 elf32_arm_section_map *map;
2468f9c9 3042 /* Information about CPU errata. */
c7b8f16e
JB
3043 unsigned int erratumcount;
3044 elf32_vfp11_erratum_list *erratumlist;
a504d23a
LA
3045 unsigned int stm32l4xx_erratumcount;
3046 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
491d01d3 3047 unsigned int additional_reloc_count;
2468f9c9
PB
3048 /* Information about unwind tables. */
3049 union
3050 {
3051 /* Unwind info attached to a text section. */
3052 struct
3053 {
3054 asection *arm_exidx_sec;
3055 } text;
3056
3057 /* Unwind info attached to an .ARM.exidx section. */
3058 struct
3059 {
3060 arm_unwind_table_edit *unwind_edit_list;
3061 arm_unwind_table_edit *unwind_edit_tail;
3062 } exidx;
3063 } u;
8e3de13a
NC
3064}
3065_arm_elf_section_data;
e489d0ae
PB
3066
3067#define elf32_arm_section_data(sec) \
8e3de13a 3068 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 3069
48229727
JB
3070/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3071 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3072 so may be created multiple times: we use an array of these entries whilst
3073 relaxing which we can refresh easily, then create stubs for each potentially
3074 erratum-triggering instruction once we've settled on a solution. */
3075
b38cadfb
NC
3076struct a8_erratum_fix
3077{
48229727
JB
3078 bfd *input_bfd;
3079 asection *section;
3080 bfd_vma offset;
8d9d9490 3081 bfd_vma target_offset;
48229727
JB
3082 unsigned long orig_insn;
3083 char *stub_name;
3084 enum elf32_arm_stub_type stub_type;
35fc36a8 3085 enum arm_st_branch_type branch_type;
48229727
JB
3086};
3087
3088/* A table of relocs applied to branches which might trigger Cortex-A8
3089 erratum. */
3090
b38cadfb
NC
3091struct a8_erratum_reloc
3092{
48229727
JB
3093 bfd_vma from;
3094 bfd_vma destination;
92750f34
DJ
3095 struct elf32_arm_link_hash_entry *hash;
3096 const char *sym_name;
48229727 3097 unsigned int r_type;
35fc36a8 3098 enum arm_st_branch_type branch_type;
48229727
JB
3099 bfd_boolean non_a8_stub;
3100};
3101
ba93b8ac
DJ
3102/* The size of the thread control block. */
3103#define TCB_SIZE 8
3104
34e77a92
RS
3105/* ARM-specific information about a PLT entry, over and above the usual
3106 gotplt_union. */
b38cadfb
NC
3107struct arm_plt_info
3108{
34e77a92
RS
3109 /* We reference count Thumb references to a PLT entry separately,
3110 so that we can emit the Thumb trampoline only if needed. */
3111 bfd_signed_vma thumb_refcount;
3112
3113 /* Some references from Thumb code may be eliminated by BL->BLX
3114 conversion, so record them separately. */
3115 bfd_signed_vma maybe_thumb_refcount;
3116
3117 /* How many of the recorded PLT accesses were from non-call relocations.
3118 This information is useful when deciding whether anything takes the
3119 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3120 non-call references to the function should resolve directly to the
3121 real runtime target. */
3122 unsigned int noncall_refcount;
3123
3124 /* Since PLT entries have variable size if the Thumb prologue is
3125 used, we need to record the index into .got.plt instead of
3126 recomputing it from the PLT offset. */
3127 bfd_signed_vma got_offset;
3128};
3129
3130/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
3131struct arm_local_iplt_info
3132{
34e77a92
RS
3133 /* The information that is usually found in the generic ELF part of
3134 the hash table entry. */
3135 union gotplt_union root;
3136
3137 /* The information that is usually found in the ARM-specific part of
3138 the hash table entry. */
3139 struct arm_plt_info arm;
3140
3141 /* A list of all potential dynamic relocations against this symbol. */
3142 struct elf_dyn_relocs *dyn_relocs;
3143};
3144
e8b09b87
CL
3145/* Structure to handle FDPIC support for local functions. */
3146struct fdpic_local {
3147 unsigned int funcdesc_cnt;
3148 unsigned int gotofffuncdesc_cnt;
3149 int funcdesc_offset;
3150};
3151
0ffa91dd 3152struct elf_arm_obj_tdata
ba93b8ac
DJ
3153{
3154 struct elf_obj_tdata root;
3155
3156 /* tls_type for each local got entry. */
3157 char *local_got_tls_type;
ee065d83 3158
0855e32b
NS
3159 /* GOTPLT entries for TLS descriptors. */
3160 bfd_vma *local_tlsdesc_gotent;
3161
34e77a92
RS
3162 /* Information for local symbols that need entries in .iplt. */
3163 struct arm_local_iplt_info **local_iplt;
3164
bf21ed78
MS
3165 /* Zero to warn when linking objects with incompatible enum sizes. */
3166 int no_enum_size_warning;
a9dc9481
JM
3167
3168 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3169 int no_wchar_size_warning;
e8b09b87
CL
3170
3171 /* Maintains FDPIC counters and funcdesc info. */
3172 struct fdpic_local *local_fdpic_cnts;
ba93b8ac
DJ
3173};
3174
0ffa91dd
NC
3175#define elf_arm_tdata(bfd) \
3176 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 3177
0ffa91dd
NC
3178#define elf32_arm_local_got_tls_type(bfd) \
3179 (elf_arm_tdata (bfd)->local_got_tls_type)
3180
0855e32b
NS
3181#define elf32_arm_local_tlsdesc_gotent(bfd) \
3182 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3183
34e77a92
RS
3184#define elf32_arm_local_iplt(bfd) \
3185 (elf_arm_tdata (bfd)->local_iplt)
3186
e8b09b87
CL
3187#define elf32_arm_local_fdpic_cnts(bfd) \
3188 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3189
0ffa91dd
NC
3190#define is_arm_elf(bfd) \
3191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3192 && elf_tdata (bfd) != NULL \
4dfe6ac6 3193 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
3194
3195static bfd_boolean
3196elf32_arm_mkobject (bfd *abfd)
3197{
0ffa91dd 3198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 3199 ARM_ELF_DATA);
ba93b8ac
DJ
3200}
3201
ba93b8ac
DJ
3202#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3203
e8b09b87
CL
3204/* Structure to handle FDPIC support for extern functions. */
3205struct fdpic_global {
3206 unsigned int gotofffuncdesc_cnt;
3207 unsigned int gotfuncdesc_cnt;
3208 unsigned int funcdesc_cnt;
3209 int funcdesc_offset;
3210 int gotfuncdesc_offset;
3211};
3212
ba96a88f 3213/* Arm ELF linker hash entry. */
252b5132 3214struct elf32_arm_link_hash_entry
b38cadfb
NC
3215{
3216 struct elf_link_hash_entry root;
252b5132 3217
b38cadfb
NC
3218 /* Track dynamic relocs copied for this symbol. */
3219 struct elf_dyn_relocs *dyn_relocs;
b7693d02 3220
b38cadfb
NC
3221 /* ARM-specific PLT information. */
3222 struct arm_plt_info plt;
ba93b8ac
DJ
3223
3224#define GOT_UNKNOWN 0
3225#define GOT_NORMAL 1
3226#define GOT_TLS_GD 2
3227#define GOT_TLS_IE 4
0855e32b
NS
3228#define GOT_TLS_GDESC 8
3229#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 3230 unsigned int tls_type : 8;
34e77a92 3231
b38cadfb
NC
3232 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3233 unsigned int is_iplt : 1;
34e77a92 3234
b38cadfb 3235 unsigned int unused : 23;
a4fd1a8e 3236
b38cadfb
NC
3237 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3238 starting at the end of the jump table. */
3239 bfd_vma tlsdesc_got;
0855e32b 3240
b38cadfb
NC
3241 /* The symbol marking the real symbol location for exported thumb
3242 symbols with Arm stubs. */
3243 struct elf_link_hash_entry *export_glue;
906e58ca 3244
b38cadfb 3245 /* A pointer to the most recently used stub hash entry against this
8029a119 3246 symbol. */
b38cadfb 3247 struct elf32_arm_stub_hash_entry *stub_cache;
e8b09b87
CL
3248
3249 /* Counter for FDPIC relocations against this symbol. */
3250 struct fdpic_global fdpic_cnts;
b38cadfb 3251};
252b5132 3252
252b5132 3253/* Traverse an arm ELF linker hash table. */
252b5132
RH
3254#define elf32_arm_link_hash_traverse(table, func, info) \
3255 (elf_link_hash_traverse \
3256 (&(table)->root, \
b7693d02 3257 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
3258 (info)))
3259
3260/* Get the ARM elf linker hash table from a link_info structure. */
3261#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
3262 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3263 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 3264
906e58ca
NC
3265#define arm_stub_hash_lookup(table, string, create, copy) \
3266 ((struct elf32_arm_stub_hash_entry *) \
3267 bfd_hash_lookup ((table), (string), (create), (copy)))
3268
21d799b5
NC
3269/* Array to keep track of which stub sections have been created, and
3270 information on stub grouping. */
3271struct map_stub
3272{
3273 /* This is the section to which stubs in the group will be
3274 attached. */
3275 asection *link_sec;
3276 /* The stub section. */
3277 asection *stub_sec;
3278};
3279
0855e32b
NS
3280#define elf32_arm_compute_jump_table_size(htab) \
3281 ((htab)->next_tls_desc_index * 4)
3282
9b485d32 3283/* ARM ELF linker hash table. */
252b5132 3284struct elf32_arm_link_hash_table
906e58ca
NC
3285{
3286 /* The main hash table. */
3287 struct elf_link_hash_table root;
252b5132 3288
906e58ca
NC
3289 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3290 bfd_size_type thumb_glue_size;
252b5132 3291
906e58ca
NC
3292 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3293 bfd_size_type arm_glue_size;
252b5132 3294
906e58ca
NC
3295 /* The size in bytes of section containing the ARMv4 BX veneers. */
3296 bfd_size_type bx_glue_size;
845b51d6 3297
906e58ca
NC
3298 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3299 veneer has been populated. */
3300 bfd_vma bx_glue_offset[15];
845b51d6 3301
906e58ca
NC
3302 /* The size in bytes of the section containing glue for VFP11 erratum
3303 veneers. */
3304 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 3305
a504d23a
LA
3306 /* The size in bytes of the section containing glue for STM32L4XX erratum
3307 veneers. */
3308 bfd_size_type stm32l4xx_erratum_glue_size;
3309
48229727
JB
3310 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3311 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3312 elf32_arm_write_section(). */
3313 struct a8_erratum_fix *a8_erratum_fixes;
3314 unsigned int num_a8_erratum_fixes;
3315
906e58ca
NC
3316 /* An arbitrary input BFD chosen to hold the glue sections. */
3317 bfd * bfd_of_glue_owner;
ba96a88f 3318
906e58ca
NC
3319 /* Nonzero to output a BE8 image. */
3320 int byteswap_code;
e489d0ae 3321
906e58ca
NC
3322 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3323 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3324 int target1_is_rel;
9c504268 3325
906e58ca
NC
3326 /* The relocation to use for R_ARM_TARGET2 relocations. */
3327 int target2_reloc;
eb043451 3328
906e58ca
NC
3329 /* 0 = Ignore R_ARM_V4BX.
3330 1 = Convert BX to MOV PC.
3331 2 = Generate v4 interworing stubs. */
3332 int fix_v4bx;
319850b4 3333
48229727
JB
3334 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3335 int fix_cortex_a8;
3336
2de70689
MGD
3337 /* Whether we should fix the ARM1176 BLX immediate issue. */
3338 int fix_arm1176;
3339
906e58ca
NC
3340 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3341 int use_blx;
33bfe774 3342
906e58ca
NC
3343 /* What sort of code sequences we should look for which may trigger the
3344 VFP11 denorm erratum. */
3345 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 3346
906e58ca
NC
3347 /* Global counter for the number of fixes we have emitted. */
3348 int num_vfp11_fixes;
c7b8f16e 3349
a504d23a
LA
3350 /* What sort of code sequences we should look for which may trigger the
3351 STM32L4XX erratum. */
3352 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3353
3354 /* Global counter for the number of fixes we have emitted. */
3355 int num_stm32l4xx_fixes;
3356
906e58ca
NC
3357 /* Nonzero to force PIC branch veneers. */
3358 int pic_veneer;
27e55c4d 3359
906e58ca
NC
3360 /* The number of bytes in the initial entry in the PLT. */
3361 bfd_size_type plt_header_size;
e5a52504 3362
906e58ca
NC
3363 /* The number of bytes in the subsequent PLT etries. */
3364 bfd_size_type plt_entry_size;
e5a52504 3365
906e58ca
NC
3366 /* True if the target system is VxWorks. */
3367 int vxworks_p;
00a97672 3368
906e58ca
NC
3369 /* True if the target system is Symbian OS. */
3370 int symbian_p;
e5a52504 3371
b38cadfb
NC
3372 /* True if the target system is Native Client. */
3373 int nacl_p;
3374
906e58ca 3375 /* True if the target uses REL relocations. */
f3185997 3376 bfd_boolean use_rel;
4e7fd91e 3377
54ddd295
TP
3378 /* Nonzero if import library must be a secure gateway import library
3379 as per ARMv8-M Security Extensions. */
3380 int cmse_implib;
3381
0955507f
TP
3382 /* The import library whose symbols' address must remain stable in
3383 the import library generated. */
3384 bfd *in_implib_bfd;
3385
0855e32b
NS
3386 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3387 bfd_vma next_tls_desc_index;
3388
3389 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3390 bfd_vma num_tls_desc;
3391
906e58ca
NC
3392 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3393 asection *srelplt2;
00a97672 3394
0855e32b
NS
3395 /* The offset into splt of the PLT entry for the TLS descriptor
3396 resolver. Special values are 0, if not necessary (or not found
3397 to be necessary yet), and -1 if needed but not determined
3398 yet. */
3399 bfd_vma dt_tlsdesc_plt;
3400
3401 /* The offset into sgot of the GOT entry used by the PLT entry
3402 above. */
b38cadfb 3403 bfd_vma dt_tlsdesc_got;
0855e32b
NS
3404
3405 /* Offset in .plt section of tls_arm_trampoline. */
3406 bfd_vma tls_trampoline;
3407
5c5a4843 3408 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
906e58ca
NC
3409 union
3410 {
3411 bfd_signed_vma refcount;
3412 bfd_vma offset;
3413 } tls_ldm_got;
b7693d02 3414
87d72d41
AM
3415 /* Small local sym cache. */
3416 struct sym_cache sym_cache;
906e58ca
NC
3417
3418 /* For convenience in allocate_dynrelocs. */
3419 bfd * obfd;
3420
0855e32b
NS
3421 /* The amount of space used by the reserved portion of the sgotplt
3422 section, plus whatever space is used by the jump slots. */
3423 bfd_vma sgotplt_jump_table_size;
3424
906e58ca
NC
3425 /* The stub hash table. */
3426 struct bfd_hash_table stub_hash_table;
3427
3428 /* Linker stub bfd. */
3429 bfd *stub_bfd;
3430
3431 /* Linker call-backs. */
6bde4c52
TP
3432 asection * (*add_stub_section) (const char *, asection *, asection *,
3433 unsigned int);
906e58ca
NC
3434 void (*layout_sections_again) (void);
3435
3436 /* Array to keep track of which stub sections have been created, and
3437 information on stub grouping. */
21d799b5 3438 struct map_stub *stub_group;
906e58ca 3439
4ba2ef8f
TP
3440 /* Input stub section holding secure gateway veneers. */
3441 asection *cmse_stub_sec;
3442
0955507f
TP
3443 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3444 start to be allocated. */
3445 bfd_vma new_cmse_stub_offset;
3446
fe33d2fa 3447 /* Number of elements in stub_group. */
7292b3ac 3448 unsigned int top_id;
fe33d2fa 3449
906e58ca
NC
3450 /* Assorted information used by elf32_arm_size_stubs. */
3451 unsigned int bfd_count;
7292b3ac 3452 unsigned int top_index;
906e58ca 3453 asection **input_list;
617a5ada
CL
3454
3455 /* True if the target system uses FDPIC. */
3456 int fdpic_p;
e8b09b87
CL
3457
3458 /* Fixup section. Used for FDPIC. */
3459 asection *srofixup;
906e58ca 3460};
252b5132 3461
e8b09b87
CL
3462/* Add an FDPIC read-only fixup. */
3463static void
3464arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3465{
3466 bfd_vma fixup_offset;
3467
3468 fixup_offset = srofixup->reloc_count++ * 4;
3469 BFD_ASSERT (fixup_offset < srofixup->size);
3470 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3471}
3472
a504d23a
LA
3473static inline int
3474ctz (unsigned int mask)
3475{
3476#if GCC_VERSION >= 3004
3477 return __builtin_ctz (mask);
3478#else
3479 unsigned int i;
3480
3481 for (i = 0; i < 8 * sizeof (mask); i++)
3482 {
3483 if (mask & 0x1)
3484 break;
3485 mask = (mask >> 1);
3486 }
3487 return i;
3488#endif
3489}
3490
3491static inline int
b25e998d 3492elf32_arm_popcount (unsigned int mask)
a504d23a
LA
3493{
3494#if GCC_VERSION >= 3004
3495 return __builtin_popcount (mask);
3496#else
b25e998d
CG
3497 unsigned int i;
3498 int sum = 0;
a504d23a
LA
3499
3500 for (i = 0; i < 8 * sizeof (mask); i++)
3501 {
3502 if (mask & 0x1)
3503 sum++;
3504 mask = (mask >> 1);
3505 }
3506 return sum;
3507#endif
3508}
3509
e8b09b87
CL
3510static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3511 asection *sreloc, Elf_Internal_Rela *rel);
3512
3513static void
3514arm_elf_fill_funcdesc(bfd *output_bfd,
3515 struct bfd_link_info *info,
3516 int *funcdesc_offset,
3517 int dynindx,
3518 int offset,
3519 bfd_vma addr,
3520 bfd_vma dynreloc_value,
3521 bfd_vma seg)
3522{
3523 if ((*funcdesc_offset & 1) == 0)
3524 {
3525 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3526 asection *sgot = globals->root.sgot;
3527
3528 if (bfd_link_pic(info))
3529 {
3530 asection *srelgot = globals->root.srelgot;
3531 Elf_Internal_Rela outrel;
3532
3533 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3534 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3535 outrel.r_addend = 0;
3536
3537 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3538 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3539 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3540 }
3541 else
3542 {
3543 struct elf_link_hash_entry *hgot = globals->root.hgot;
3544 bfd_vma got_value = hgot->root.u.def.value
3545 + hgot->root.u.def.section->output_section->vma
3546 + hgot->root.u.def.section->output_offset;
3547
3548 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3549 sgot->output_section->vma + sgot->output_offset
3550 + offset);
3551 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3552 sgot->output_section->vma + sgot->output_offset
3553 + offset + 4);
3554 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3555 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3556 }
3557 *funcdesc_offset |= 1;
3558 }
3559}
3560
780a67af
NC
3561/* Create an entry in an ARM ELF linker hash table. */
3562
3563static struct bfd_hash_entry *
57e8b36a 3564elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3565 struct bfd_hash_table * table,
3566 const char * string)
780a67af
NC
3567{
3568 struct elf32_arm_link_hash_entry * ret =
3569 (struct elf32_arm_link_hash_entry *) entry;
3570
3571 /* Allocate the structure if it has not already been allocated by a
3572 subclass. */
906e58ca 3573 if (ret == NULL)
21d799b5 3574 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3575 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3576 if (ret == NULL)
780a67af
NC
3577 return (struct bfd_hash_entry *) ret;
3578
3579 /* Call the allocation method of the superclass. */
3580 ret = ((struct elf32_arm_link_hash_entry *)
3581 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3582 table, string));
57e8b36a 3583 if (ret != NULL)
b7693d02 3584 {
0bdcacaf 3585 ret->dyn_relocs = NULL;
ba93b8ac 3586 ret->tls_type = GOT_UNKNOWN;
0855e32b 3587 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3588 ret->plt.thumb_refcount = 0;
3589 ret->plt.maybe_thumb_refcount = 0;
3590 ret->plt.noncall_refcount = 0;
3591 ret->plt.got_offset = -1;
3592 ret->is_iplt = FALSE;
a4fd1a8e 3593 ret->export_glue = NULL;
906e58ca
NC
3594
3595 ret->stub_cache = NULL;
e8b09b87
CL
3596
3597 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3598 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3599 ret->fdpic_cnts.funcdesc_cnt = 0;
3600 ret->fdpic_cnts.funcdesc_offset = -1;
3601 ret->fdpic_cnts.gotfuncdesc_offset = -1;
b7693d02 3602 }
780a67af
NC
3603
3604 return (struct bfd_hash_entry *) ret;
3605}
3606
34e77a92
RS
3607/* Ensure that we have allocated bookkeeping structures for ABFD's local
3608 symbols. */
3609
3610static bfd_boolean
3611elf32_arm_allocate_local_sym_info (bfd *abfd)
3612{
3613 if (elf_local_got_refcounts (abfd) == NULL)
3614 {
3615 bfd_size_type num_syms;
3616 bfd_size_type size;
3617 char *data;
3618
3619 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3620 size = num_syms * (sizeof (bfd_signed_vma)
3621 + sizeof (struct arm_local_iplt_info *)
3622 + sizeof (bfd_vma)
e8b09b87
CL
3623 + sizeof (char)
3624 + sizeof (struct fdpic_local));
34e77a92
RS
3625 data = bfd_zalloc (abfd, size);
3626 if (data == NULL)
3627 return FALSE;
3628
e8b09b87
CL
3629 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3630 data += num_syms * sizeof (struct fdpic_local);
3631
34e77a92
RS
3632 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3633 data += num_syms * sizeof (bfd_signed_vma);
3634
3635 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3636 data += num_syms * sizeof (struct arm_local_iplt_info *);
3637
3638 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3639 data += num_syms * sizeof (bfd_vma);
3640
3641 elf32_arm_local_got_tls_type (abfd) = data;
3642 }
3643 return TRUE;
3644}
3645
3646/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3647 to input bfd ABFD. Create the information if it doesn't already exist.
3648 Return null if an allocation fails. */
3649
3650static struct arm_local_iplt_info *
3651elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3652{
3653 struct arm_local_iplt_info **ptr;
3654
3655 if (!elf32_arm_allocate_local_sym_info (abfd))
3656 return NULL;
3657
3658 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3659 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3660 if (*ptr == NULL)
3661 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3662 return *ptr;
3663}
3664
3665/* Try to obtain PLT information for the symbol with index R_SYMNDX
3666 in ABFD's symbol table. If the symbol is global, H points to its
3667 hash table entry, otherwise H is null.
3668
3669 Return true if the symbol does have PLT information. When returning
3670 true, point *ROOT_PLT at the target-independent reference count/offset
3671 union and *ARM_PLT at the ARM-specific information. */
3672
3673static bfd_boolean
4ba2ef8f
TP
3674elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3675 struct elf32_arm_link_hash_entry *h,
34e77a92
RS
3676 unsigned long r_symndx, union gotplt_union **root_plt,
3677 struct arm_plt_info **arm_plt)
3678{
3679 struct arm_local_iplt_info *local_iplt;
3680
4ba2ef8f
TP
3681 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3682 return FALSE;
3683
34e77a92
RS
3684 if (h != NULL)
3685 {
3686 *root_plt = &h->root.plt;
3687 *arm_plt = &h->plt;
3688 return TRUE;
3689 }
3690
3691 if (elf32_arm_local_iplt (abfd) == NULL)
3692 return FALSE;
3693
3694 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3695 if (local_iplt == NULL)
3696 return FALSE;
3697
3698 *root_plt = &local_iplt->root;
3699 *arm_plt = &local_iplt->arm;
3700 return TRUE;
3701}
3702
59029f57
CL
3703static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3704
34e77a92
RS
3705/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3706 before it. */
3707
3708static bfd_boolean
3709elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3710 struct arm_plt_info *arm_plt)
3711{
3712 struct elf32_arm_link_hash_table *htab;
3713
3714 htab = elf32_arm_hash_table (info);
59029f57
CL
3715
3716 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3717 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
34e77a92
RS
3718}
3719
3720/* Return a pointer to the head of the dynamic reloc list that should
3721 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3722 ABFD's symbol table. Return null if an error occurs. */
3723
3724static struct elf_dyn_relocs **
3725elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3726 Elf_Internal_Sym *isym)
3727{
3728 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3729 {
3730 struct arm_local_iplt_info *local_iplt;
3731
3732 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3733 if (local_iplt == NULL)
3734 return NULL;
3735 return &local_iplt->dyn_relocs;
3736 }
3737 else
3738 {
3739 /* Track dynamic relocs needed for local syms too.
3740 We really need local syms available to do this
3741 easily. Oh well. */
3742 asection *s;
3743 void *vpp;
3744
3745 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3746 if (s == NULL)
3747 abort ();
3748
3749 vpp = &elf_section_data (s)->local_dynrel;
3750 return (struct elf_dyn_relocs **) vpp;
3751 }
3752}
3753
906e58ca
NC
3754/* Initialize an entry in the stub hash table. */
3755
3756static struct bfd_hash_entry *
3757stub_hash_newfunc (struct bfd_hash_entry *entry,
3758 struct bfd_hash_table *table,
3759 const char *string)
3760{
3761 /* Allocate the structure if it has not already been allocated by a
3762 subclass. */
3763 if (entry == NULL)
3764 {
21d799b5 3765 entry = (struct bfd_hash_entry *)
99059e56 3766 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3767 if (entry == NULL)
3768 return entry;
3769 }
3770
3771 /* Call the allocation method of the superclass. */
3772 entry = bfd_hash_newfunc (entry, table, string);
3773 if (entry != NULL)
3774 {
3775 struct elf32_arm_stub_hash_entry *eh;
3776
3777 /* Initialize the local fields. */
3778 eh = (struct elf32_arm_stub_hash_entry *) entry;
3779 eh->stub_sec = NULL;
0955507f 3780 eh->stub_offset = (bfd_vma) -1;
8d9d9490 3781 eh->source_value = 0;
906e58ca
NC
3782 eh->target_value = 0;
3783 eh->target_section = NULL;
cedfb179 3784 eh->orig_insn = 0;
906e58ca 3785 eh->stub_type = arm_stub_none;
461a49ca
DJ
3786 eh->stub_size = 0;
3787 eh->stub_template = NULL;
0955507f 3788 eh->stub_template_size = -1;
906e58ca
NC
3789 eh->h = NULL;
3790 eh->id_sec = NULL;
d8d2f433 3791 eh->output_name = NULL;
906e58ca
NC
3792 }
3793
3794 return entry;
3795}
3796
00a97672 3797/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3798 shortcuts to them in our hash table. */
3799
3800static bfd_boolean
57e8b36a 3801create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3802{
3803 struct elf32_arm_link_hash_table *htab;
3804
e5a52504 3805 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3806 if (htab == NULL)
3807 return FALSE;
3808
e5a52504
MM
3809 /* BPABI objects never have a GOT, or associated sections. */
3810 if (htab->symbian_p)
3811 return TRUE;
3812
5e681ec4
PB
3813 if (! _bfd_elf_create_got_section (dynobj, info))
3814 return FALSE;
3815
e8b09b87
CL
3816 /* Also create .rofixup. */
3817 if (htab->fdpic_p)
3818 {
3819 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3820 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3821 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
fd361982
AM
3822 if (htab->srofixup == NULL
3823 || !bfd_set_section_alignment (htab->srofixup, 2))
e8b09b87
CL
3824 return FALSE;
3825 }
3826
5e681ec4
PB
3827 return TRUE;
3828}
3829
34e77a92
RS
3830/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3831
3832static bfd_boolean
3833create_ifunc_sections (struct bfd_link_info *info)
3834{
3835 struct elf32_arm_link_hash_table *htab;
3836 const struct elf_backend_data *bed;
3837 bfd *dynobj;
3838 asection *s;
3839 flagword flags;
b38cadfb 3840
34e77a92
RS
3841 htab = elf32_arm_hash_table (info);
3842 dynobj = htab->root.dynobj;
3843 bed = get_elf_backend_data (dynobj);
3844 flags = bed->dynamic_sec_flags;
3845
3846 if (htab->root.iplt == NULL)
3847 {
3d4d4302
AM
3848 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3849 flags | SEC_READONLY | SEC_CODE);
34e77a92 3850 if (s == NULL
fd361982 3851 || !bfd_set_section_alignment (s, bed->plt_alignment))
34e77a92
RS
3852 return FALSE;
3853 htab->root.iplt = s;
3854 }
3855
3856 if (htab->root.irelplt == NULL)
3857 {
3d4d4302
AM
3858 s = bfd_make_section_anyway_with_flags (dynobj,
3859 RELOC_SECTION (htab, ".iplt"),
3860 flags | SEC_READONLY);
34e77a92 3861 if (s == NULL
fd361982 3862 || !bfd_set_section_alignment (s, bed->s->log_file_align))
34e77a92
RS
3863 return FALSE;
3864 htab->root.irelplt = s;
3865 }
3866
3867 if (htab->root.igotplt == NULL)
3868 {
3d4d4302 3869 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92 3870 if (s == NULL
fd361982 3871 || !bfd_set_section_alignment (s, bed->s->log_file_align))
34e77a92
RS
3872 return FALSE;
3873 htab->root.igotplt = s;
3874 }
3875 return TRUE;
3876}
3877
eed94f8f
NC
3878/* Determine if we're dealing with a Thumb only architecture. */
3879
3880static bfd_boolean
3881using_thumb_only (struct elf32_arm_link_hash_table *globals)
3882{
2fd158eb
TP
3883 int arch;
3884 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3885 Tag_CPU_arch_profile);
eed94f8f 3886
2fd158eb
TP
3887 if (profile)
3888 return profile == 'M';
eed94f8f 3889
2fd158eb 3890 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
eed94f8f 3891
60a019a0 3892 /* Force return logic to be reviewed for each new architecture. */
031254f2 3893 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0 3894
2fd158eb
TP
3895 if (arch == TAG_CPU_ARCH_V6_M
3896 || arch == TAG_CPU_ARCH_V6S_M
3897 || arch == TAG_CPU_ARCH_V7E_M
3898 || arch == TAG_CPU_ARCH_V8M_BASE
031254f2
AV
3899 || arch == TAG_CPU_ARCH_V8M_MAIN
3900 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
2fd158eb 3901 return TRUE;
eed94f8f 3902
2fd158eb 3903 return FALSE;
eed94f8f
NC
3904}
3905
3906/* Determine if we're dealing with a Thumb-2 object. */
3907
3908static bfd_boolean
3909using_thumb2 (struct elf32_arm_link_hash_table *globals)
3910{
60a019a0
TP
3911 int arch;
3912 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3913 Tag_THUMB_ISA_use);
3914
3915 if (thumb_isa)
3916 return thumb_isa == 2;
3917
3918 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3919
3920 /* Force return logic to be reviewed for each new architecture. */
031254f2 3921 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0
TP
3922
3923 return (arch == TAG_CPU_ARCH_V6T2
3924 || arch == TAG_CPU_ARCH_V7
3925 || arch == TAG_CPU_ARCH_V7E_M
3926 || arch == TAG_CPU_ARCH_V8
bff0500d 3927 || arch == TAG_CPU_ARCH_V8R
031254f2
AV
3928 || arch == TAG_CPU_ARCH_V8M_MAIN
3929 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
eed94f8f
NC
3930}
3931
5e866f5a
TP
3932/* Determine whether Thumb-2 BL instruction is available. */
3933
3934static bfd_boolean
3935using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3936{
3937 int arch =
3938 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3939
3940 /* Force return logic to be reviewed for each new architecture. */
031254f2 3941 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
5e866f5a
TP
3942
3943 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3944 return (arch == TAG_CPU_ARCH_V6T2
3945 || arch >= TAG_CPU_ARCH_V7);
3946}
3947
00a97672
RS
3948/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3949 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3950 hash table. */
3951
3952static bfd_boolean
57e8b36a 3953elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3954{
3955 struct elf32_arm_link_hash_table *htab;
3956
3957 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3958 if (htab == NULL)
3959 return FALSE;
3960
362d30a1 3961 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
3962 return FALSE;
3963
3964 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3965 return FALSE;
3966
00a97672
RS
3967 if (htab->vxworks_p)
3968 {
3969 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3970 return FALSE;
3971
0e1862bb 3972 if (bfd_link_pic (info))
00a97672
RS
3973 {
3974 htab->plt_header_size = 0;
3975 htab->plt_entry_size
3976 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3977 }
3978 else
3979 {
3980 htab->plt_header_size
3981 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3982 htab->plt_entry_size
3983 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3984 }
aebf9be7
NC
3985
3986 if (elf_elfheader (dynobj))
3987 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
00a97672 3988 }
eed94f8f
NC
3989 else
3990 {
3991 /* PR ld/16017
3992 Test for thumb only architectures. Note - we cannot just call
3993 using_thumb_only() as the attributes in the output bfd have not been
3994 initialised at this point, so instead we use the input bfd. */
3995 bfd * saved_obfd = htab->obfd;
3996
3997 htab->obfd = dynobj;
3998 if (using_thumb_only (htab))
3999 {
4000 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
4001 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
4002 }
4003 htab->obfd = saved_obfd;
4004 }
5e681ec4 4005
7801f98f
CL
4006 if (htab->fdpic_p) {
4007 htab->plt_header_size = 0;
4008 if (info->flags & DF_BIND_NOW)
4009 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
4010 else
4011 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
4012 }
4013
362d30a1
RS
4014 if (!htab->root.splt
4015 || !htab->root.srelplt
9d19e4fd
AM
4016 || !htab->root.sdynbss
4017 || (!bfd_link_pic (info) && !htab->root.srelbss))
5e681ec4
PB
4018 abort ();
4019
4020 return TRUE;
4021}
4022
906e58ca
NC
4023/* Copy the extra info we tack onto an elf_link_hash_entry. */
4024
4025static void
4026elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4027 struct elf_link_hash_entry *dir,
4028 struct elf_link_hash_entry *ind)
4029{
4030 struct elf32_arm_link_hash_entry *edir, *eind;
4031
4032 edir = (struct elf32_arm_link_hash_entry *) dir;
4033 eind = (struct elf32_arm_link_hash_entry *) ind;
4034
0bdcacaf 4035 if (eind->dyn_relocs != NULL)
906e58ca 4036 {
0bdcacaf 4037 if (edir->dyn_relocs != NULL)
906e58ca 4038 {
0bdcacaf
RS
4039 struct elf_dyn_relocs **pp;
4040 struct elf_dyn_relocs *p;
906e58ca
NC
4041
4042 /* Add reloc counts against the indirect sym to the direct sym
4043 list. Merge any entries against the same section. */
0bdcacaf 4044 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
906e58ca 4045 {
0bdcacaf 4046 struct elf_dyn_relocs *q;
906e58ca 4047
0bdcacaf
RS
4048 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4049 if (q->sec == p->sec)
906e58ca
NC
4050 {
4051 q->pc_count += p->pc_count;
4052 q->count += p->count;
4053 *pp = p->next;
4054 break;
4055 }
4056 if (q == NULL)
4057 pp = &p->next;
4058 }
0bdcacaf 4059 *pp = edir->dyn_relocs;
906e58ca
NC
4060 }
4061
0bdcacaf
RS
4062 edir->dyn_relocs = eind->dyn_relocs;
4063 eind->dyn_relocs = NULL;
906e58ca
NC
4064 }
4065
4066 if (ind->root.type == bfd_link_hash_indirect)
4067 {
4068 /* Copy over PLT info. */
34e77a92
RS
4069 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4070 eind->plt.thumb_refcount = 0;
4071 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4072 eind->plt.maybe_thumb_refcount = 0;
4073 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4074 eind->plt.noncall_refcount = 0;
4075
e8b09b87
CL
4076 /* Copy FDPIC counters. */
4077 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4078 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4079 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4080
34e77a92
RS
4081 /* We should only allocate a function to .iplt once the final
4082 symbol information is known. */
4083 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
4084
4085 if (dir->got.refcount <= 0)
4086 {
4087 edir->tls_type = eind->tls_type;
4088 eind->tls_type = GOT_UNKNOWN;
4089 }
4090 }
4091
4092 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4093}
4094
68faa637
AM
4095/* Destroy an ARM elf linker hash table. */
4096
4097static void
d495ab0d 4098elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
4099{
4100 struct elf32_arm_link_hash_table *ret
d495ab0d 4101 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
4102
4103 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 4104 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
4105}
4106
906e58ca
NC
4107/* Create an ARM elf linker hash table. */
4108
4109static struct bfd_link_hash_table *
4110elf32_arm_link_hash_table_create (bfd *abfd)
4111{
4112 struct elf32_arm_link_hash_table *ret;
986f0783 4113 size_t amt = sizeof (struct elf32_arm_link_hash_table);
906e58ca 4114
7bf52ea2 4115 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
4116 if (ret == NULL)
4117 return NULL;
4118
4119 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4120 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
4121 sizeof (struct elf32_arm_link_hash_entry),
4122 ARM_ELF_DATA))
906e58ca
NC
4123 {
4124 free (ret);
4125 return NULL;
4126 }
4127
906e58ca 4128 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
a504d23a 4129 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
906e58ca
NC
4130#ifdef FOUR_WORD_PLT
4131 ret->plt_header_size = 16;
4132 ret->plt_entry_size = 16;
4133#else
4134 ret->plt_header_size = 20;
1db37fe6 4135 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 4136#endif
f3185997 4137 ret->use_rel = TRUE;
906e58ca 4138 ret->obfd = abfd;
617a5ada 4139 ret->fdpic_p = 0;
906e58ca
NC
4140
4141 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4142 sizeof (struct elf32_arm_stub_hash_entry)))
4143 {
d495ab0d 4144 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
4145 return NULL;
4146 }
d495ab0d 4147 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
4148
4149 return &ret->root.root;
4150}
4151
cd1dac3d
DG
4152/* Determine what kind of NOPs are available. */
4153
4154static bfd_boolean
4155arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4156{
4157 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4158 Tag_CPU_arch);
cd1dac3d 4159
60a019a0 4160 /* Force return logic to be reviewed for each new architecture. */
031254f2 4161 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0
TP
4162
4163 return (arch == TAG_CPU_ARCH_V6T2
4164 || arch == TAG_CPU_ARCH_V6K
4165 || arch == TAG_CPU_ARCH_V7
bff0500d
TP
4166 || arch == TAG_CPU_ARCH_V8
4167 || arch == TAG_CPU_ARCH_V8R);
cd1dac3d
DG
4168}
4169
f4ac8484
DJ
4170static bfd_boolean
4171arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4172{
4173 switch (stub_type)
4174 {
fea2b4d6 4175 case arm_stub_long_branch_thumb_only:
80c135e5 4176 case arm_stub_long_branch_thumb2_only:
d5a67c02 4177 case arm_stub_long_branch_thumb2_only_pure:
fea2b4d6
CL
4178 case arm_stub_long_branch_v4t_thumb_arm:
4179 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 4180 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 4181 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 4182 case arm_stub_long_branch_thumb_only_pic:
4ba2ef8f 4183 case arm_stub_cmse_branch_thumb_only:
f4ac8484
DJ
4184 return TRUE;
4185 case arm_stub_none:
4186 BFD_FAIL ();
4187 return FALSE;
4188 break;
4189 default:
4190 return FALSE;
4191 }
4192}
4193
906e58ca
NC
4194/* Determine the type of stub needed, if any, for a call. */
4195
4196static enum elf32_arm_stub_type
4197arm_type_of_stub (struct bfd_link_info *info,
4198 asection *input_sec,
4199 const Elf_Internal_Rela *rel,
34e77a92 4200 unsigned char st_type,
35fc36a8 4201 enum arm_st_branch_type *actual_branch_type,
906e58ca 4202 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
4203 bfd_vma destination,
4204 asection *sym_sec,
4205 bfd *input_bfd,
4206 const char *name)
906e58ca
NC
4207{
4208 bfd_vma location;
4209 bfd_signed_vma branch_offset;
4210 unsigned int r_type;
4211 struct elf32_arm_link_hash_table * globals;
5e866f5a 4212 bfd_boolean thumb2, thumb2_bl, thumb_only;
906e58ca 4213 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 4214 int use_plt = 0;
35fc36a8 4215 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
4216 union gotplt_union *root_plt;
4217 struct arm_plt_info *arm_plt;
d5a67c02
AV
4218 int arch;
4219 int thumb2_movw;
906e58ca 4220
35fc36a8 4221 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
4222 return stub_type;
4223
906e58ca 4224 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4225 if (globals == NULL)
4226 return stub_type;
906e58ca
NC
4227
4228 thumb_only = using_thumb_only (globals);
906e58ca 4229 thumb2 = using_thumb2 (globals);
5e866f5a 4230 thumb2_bl = using_thumb2_bl (globals);
906e58ca 4231
d5a67c02
AV
4232 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4233
4234 /* True for architectures that implement the thumb2 movw instruction. */
4235 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4236
906e58ca
NC
4237 /* Determine where the call point is. */
4238 location = (input_sec->output_offset
4239 + input_sec->output_section->vma
4240 + rel->r_offset);
4241
906e58ca
NC
4242 r_type = ELF32_R_TYPE (rel->r_info);
4243
39f21624
NC
4244 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4245 are considering a function call relocation. */
c5423981 4246 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
07d6d2b8 4247 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
4248 && branch_type == ST_BRANCH_TO_ARM)
4249 branch_type = ST_BRANCH_TO_THUMB;
4250
34e77a92
RS
4251 /* For TLS call relocs, it is the caller's responsibility to provide
4252 the address of the appropriate trampoline. */
4253 if (r_type != R_ARM_TLS_CALL
4254 && r_type != R_ARM_THM_TLS_CALL
4ba2ef8f
TP
4255 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4256 ELF32_R_SYM (rel->r_info), &root_plt,
4257 &arm_plt)
34e77a92 4258 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 4259 {
34e77a92 4260 asection *splt;
fe33d2fa 4261
34e77a92
RS
4262 if (hash == NULL || hash->is_iplt)
4263 splt = globals->root.iplt;
4264 else
4265 splt = globals->root.splt;
4266 if (splt != NULL)
b38cadfb 4267 {
34e77a92
RS
4268 use_plt = 1;
4269
4270 /* Note when dealing with PLT entries: the main PLT stub is in
4271 ARM mode, so if the branch is in Thumb mode, another
4272 Thumb->ARM stub will be inserted later just before the ARM
2df2751d
CL
4273 PLT stub. If a long branch stub is needed, we'll add a
4274 Thumb->Arm one and branch directly to the ARM PLT entry.
4275 Here, we have to check if a pre-PLT Thumb->ARM stub
4276 is needed and if it will be close enough. */
34e77a92
RS
4277
4278 destination = (splt->output_section->vma
4279 + splt->output_offset
4280 + root_plt->offset);
4281 st_type = STT_FUNC;
2df2751d
CL
4282
4283 /* Thumb branch/call to PLT: it can become a branch to ARM
4284 or to Thumb. We must perform the same checks and
4285 corrections as in elf32_arm_final_link_relocate. */
4286 if ((r_type == R_ARM_THM_CALL)
4287 || (r_type == R_ARM_THM_JUMP24))
4288 {
4289 if (globals->use_blx
4290 && r_type == R_ARM_THM_CALL
4291 && !thumb_only)
4292 {
4293 /* If the Thumb BLX instruction is available, convert
4294 the BL to a BLX instruction to call the ARM-mode
4295 PLT entry. */
4296 branch_type = ST_BRANCH_TO_ARM;
4297 }
4298 else
4299 {
4300 if (!thumb_only)
4301 /* Target the Thumb stub before the ARM PLT entry. */
4302 destination -= PLT_THUMB_STUB_SIZE;
4303 branch_type = ST_BRANCH_TO_THUMB;
4304 }
4305 }
4306 else
4307 {
4308 branch_type = ST_BRANCH_TO_ARM;
4309 }
34e77a92 4310 }
5fa9e92f 4311 }
34e77a92
RS
4312 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4313 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 4314
fe33d2fa
CL
4315 branch_offset = (bfd_signed_vma)(destination - location);
4316
0855e32b 4317 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 4318 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 4319 {
5fa9e92f
CL
4320 /* Handle cases where:
4321 - this call goes too far (different Thumb/Thumb2 max
99059e56 4322 distance)
155d87d7 4323 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
4324 Thumb->Arm branch (not bl). A stub is needed in this case,
4325 but only if this call is not through a PLT entry. Indeed,
695344c0 4326 PLT stubs handle mode switching already. */
5e866f5a 4327 if ((!thumb2_bl
906e58ca
NC
4328 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4329 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
5e866f5a 4330 || (thumb2_bl
906e58ca
NC
4331 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4332 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
4333 || (thumb2
4334 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4335 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4336 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 4337 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
4338 && (((r_type == R_ARM_THM_CALL
4339 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981 4340 || (r_type == R_ARM_THM_JUMP24)
07d6d2b8 4341 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 4342 && !use_plt))
906e58ca 4343 {
2df2751d
CL
4344 /* If we need to insert a Thumb-Thumb long branch stub to a
4345 PLT, use one that branches directly to the ARM PLT
4346 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4347 stub, undo this now. */
695344c0
NC
4348 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4349 {
4350 branch_type = ST_BRANCH_TO_ARM;
4351 branch_offset += PLT_THUMB_STUB_SIZE;
4352 }
2df2751d 4353
35fc36a8 4354 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4355 {
4356 /* Thumb to thumb. */
4357 if (!thumb_only)
4358 {
d5a67c02 4359 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4360 _bfd_error_handler
871b3ab2 4361 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4362 " section with SHF_ARM_PURECODE section"
4363 " attribute is only supported for M-profile"
90b6238f 4364 " targets that implement the movw instruction"),
10463f39 4365 input_bfd, input_sec);
d5a67c02 4366
0e1862bb 4367 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4368 /* PIC stubs. */
155d87d7 4369 ? ((globals->use_blx
9553db3c 4370 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
4371 /* V5T and above. Stub starts with ARM code, so
4372 we must be able to switch mode before
4373 reaching it, which is only possible for 'bl'
4374 (ie R_ARM_THM_CALL relocation). */
cf3eccff 4375 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 4376 /* On V4T, use Thumb code only. */
d3626fb0 4377 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
4378
4379 /* non-PIC stubs. */
155d87d7 4380 : ((globals->use_blx
9553db3c 4381 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
4382 /* V5T and above. */
4383 ? arm_stub_long_branch_any_any
4384 /* V4T. */
d3626fb0 4385 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
4386 }
4387 else
4388 {
d5a67c02
AV
4389 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4390 stub_type = arm_stub_long_branch_thumb2_only_pure;
4391 else
4392 {
4393 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4394 _bfd_error_handler
871b3ab2 4395 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4396 " section with SHF_ARM_PURECODE section"
4397 " attribute is only supported for M-profile"
90b6238f 4398 " targets that implement the movw instruction"),
10463f39 4399 input_bfd, input_sec);
d5a67c02
AV
4400
4401 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4402 /* PIC stub. */
4403 ? arm_stub_long_branch_thumb_only_pic
4404 /* non-PIC stub. */
4405 : (thumb2 ? arm_stub_long_branch_thumb2_only
4406 : arm_stub_long_branch_thumb_only);
4407 }
906e58ca
NC
4408 }
4409 }
4410 else
4411 {
d5a67c02 4412 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4413 _bfd_error_handler
871b3ab2 4414 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4415 " section with SHF_ARM_PURECODE section"
4416 " attribute is only supported" " for M-profile"
90b6238f 4417 " targets that implement the movw instruction"),
10463f39 4418 input_bfd, input_sec);
d5a67c02 4419
906e58ca 4420 /* Thumb to arm. */
c820be07
NC
4421 if (sym_sec != NULL
4422 && sym_sec->owner != NULL
4423 && !INTERWORK_FLAG (sym_sec->owner))
4424 {
4eca0228 4425 _bfd_error_handler
90b6238f
AM
4426 (_("%pB(%s): warning: interworking not enabled;"
4427 " first occurrence: %pB: %s call to %s"),
4428 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
c820be07
NC
4429 }
4430
0855e32b 4431 stub_type =
0e1862bb 4432 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4433 /* PIC stubs. */
0855e32b 4434 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 4435 /* TLS PIC stubs. */
0855e32b
NS
4436 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4437 : arm_stub_long_branch_v4t_thumb_tls_pic)
4438 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4439 /* V5T PIC and above. */
4440 ? arm_stub_long_branch_any_arm_pic
4441 /* V4T PIC stub. */
4442 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
4443
4444 /* non-PIC stubs. */
0855e32b 4445 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
4446 /* V5T and above. */
4447 ? arm_stub_long_branch_any_any
4448 /* V4T. */
4449 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
4450
4451 /* Handle v4t short branches. */
fea2b4d6 4452 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
4453 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4454 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 4455 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
4456 }
4457 }
4458 }
fe33d2fa
CL
4459 else if (r_type == R_ARM_CALL
4460 || r_type == R_ARM_JUMP24
0855e32b
NS
4461 || r_type == R_ARM_PLT32
4462 || r_type == R_ARM_TLS_CALL)
906e58ca 4463 {
d5a67c02 4464 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4465 _bfd_error_handler
871b3ab2 4466 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4467 " section with SHF_ARM_PURECODE section"
4468 " attribute is only supported for M-profile"
90b6238f 4469 " targets that implement the movw instruction"),
10463f39 4470 input_bfd, input_sec);
35fc36a8 4471 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4472 {
4473 /* Arm to thumb. */
c820be07
NC
4474
4475 if (sym_sec != NULL
4476 && sym_sec->owner != NULL
4477 && !INTERWORK_FLAG (sym_sec->owner))
4478 {
4eca0228 4479 _bfd_error_handler
90b6238f
AM
4480 (_("%pB(%s): warning: interworking not enabled;"
4481 " first occurrence: %pB: %s call to %s"),
4482 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
c820be07
NC
4483 }
4484
4485 /* We have an extra 2-bytes reach because of
4486 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
4487 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4488 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 4489 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
4490 || (r_type == R_ARM_JUMP24)
4491 || (r_type == R_ARM_PLT32))
906e58ca 4492 {
0e1862bb 4493 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4494 /* PIC stubs. */
ebe24dd4
CL
4495 ? ((globals->use_blx)
4496 /* V5T and above. */
4497 ? arm_stub_long_branch_any_thumb_pic
4498 /* V4T stub. */
4499 : arm_stub_long_branch_v4t_arm_thumb_pic)
4500
c2b4a39d
CL
4501 /* non-PIC stubs. */
4502 : ((globals->use_blx)
4503 /* V5T and above. */
4504 ? arm_stub_long_branch_any_any
4505 /* V4T. */
4506 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
4507 }
4508 }
4509 else
4510 {
4511 /* Arm to arm. */
4512 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4513 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4514 {
0855e32b 4515 stub_type =
0e1862bb 4516 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4517 /* PIC stubs. */
0855e32b 4518 ? (r_type == R_ARM_TLS_CALL
6a631e86 4519 /* TLS PIC Stub. */
0855e32b 4520 ? arm_stub_long_branch_any_tls_pic
7a89b94e
NC
4521 : (globals->nacl_p
4522 ? arm_stub_long_branch_arm_nacl_pic
4523 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 4524 /* non-PIC stubs. */
7a89b94e
NC
4525 : (globals->nacl_p
4526 ? arm_stub_long_branch_arm_nacl
4527 : arm_stub_long_branch_any_any);
906e58ca
NC
4528 }
4529 }
4530 }
4531
fe33d2fa
CL
4532 /* If a stub is needed, record the actual destination type. */
4533 if (stub_type != arm_stub_none)
35fc36a8 4534 *actual_branch_type = branch_type;
fe33d2fa 4535
906e58ca
NC
4536 return stub_type;
4537}
4538
4539/* Build a name for an entry in the stub hash table. */
4540
4541static char *
4542elf32_arm_stub_name (const asection *input_section,
4543 const asection *sym_sec,
4544 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
4545 const Elf_Internal_Rela *rel,
4546 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4547{
4548 char *stub_name;
4549 bfd_size_type len;
4550
4551 if (hash)
4552 {
fe33d2fa 4553 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 4554 stub_name = (char *) bfd_malloc (len);
906e58ca 4555 if (stub_name != NULL)
fe33d2fa 4556 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
4557 input_section->id & 0xffffffff,
4558 hash->root.root.root.string,
fe33d2fa
CL
4559 (int) rel->r_addend & 0xffffffff,
4560 (int) stub_type);
906e58ca
NC
4561 }
4562 else
4563 {
fe33d2fa 4564 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 4565 stub_name = (char *) bfd_malloc (len);
906e58ca 4566 if (stub_name != NULL)
fe33d2fa 4567 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
4568 input_section->id & 0xffffffff,
4569 sym_sec->id & 0xffffffff,
0855e32b
NS
4570 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4571 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4572 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
4573 (int) rel->r_addend & 0xffffffff,
4574 (int) stub_type);
906e58ca
NC
4575 }
4576
4577 return stub_name;
4578}
4579
4580/* Look up an entry in the stub hash. Stub entries are cached because
4581 creating the stub name takes a bit of time. */
4582
4583static struct elf32_arm_stub_hash_entry *
4584elf32_arm_get_stub_entry (const asection *input_section,
4585 const asection *sym_sec,
4586 struct elf_link_hash_entry *hash,
4587 const Elf_Internal_Rela *rel,
fe33d2fa
CL
4588 struct elf32_arm_link_hash_table *htab,
4589 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4590{
4591 struct elf32_arm_stub_hash_entry *stub_entry;
4592 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4593 const asection *id_sec;
4594
4595 if ((input_section->flags & SEC_CODE) == 0)
4596 return NULL;
4597
4d83e8d9
CL
4598 /* If the input section is the CMSE stubs one and it needs a long
4599 branch stub to reach it's final destination, give up with an
4600 error message: this is not supported. See PR ld/24709. */
4601 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen(CMSE_STUB_NAME)))
4602 {
4603 bfd *output_bfd = htab->obfd;
4604 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4605
4606 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4607 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4608 CMSE_STUB_NAME,
4609 (uint64_t)out_sec->output_section->vma
4610 + out_sec->output_offset,
4611 (uint64_t)sym_sec->output_section->vma
4612 + sym_sec->output_offset
4613 + h->root.root.u.def.value);
4614 /* Exit, rather than leave incompletely processed
4615 relocations. */
4616 xexit(1);
4617 }
4618
906e58ca
NC
4619 /* If this input section is part of a group of sections sharing one
4620 stub section, then use the id of the first section in the group.
4621 Stub names need to include a section id, as there may well be
4622 more than one stub used to reach say, printf, and we need to
4623 distinguish between them. */
c2abbbeb 4624 BFD_ASSERT (input_section->id <= htab->top_id);
906e58ca
NC
4625 id_sec = htab->stub_group[input_section->id].link_sec;
4626
4627 if (h != NULL && h->stub_cache != NULL
4628 && h->stub_cache->h == h
fe33d2fa
CL
4629 && h->stub_cache->id_sec == id_sec
4630 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
4631 {
4632 stub_entry = h->stub_cache;
4633 }
4634 else
4635 {
4636 char *stub_name;
4637
fe33d2fa 4638 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
4639 if (stub_name == NULL)
4640 return NULL;
4641
4642 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4643 stub_name, FALSE, FALSE);
4644 if (h != NULL)
4645 h->stub_cache = stub_entry;
4646
4647 free (stub_name);
4648 }
4649
4650 return stub_entry;
4651}
4652
daa4adae
TP
4653/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4654 section. */
4655
4656static bfd_boolean
4657arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4658{
4659 if (stub_type >= max_stub_type)
4660 abort (); /* Should be unreachable. */
4661
4ba2ef8f
TP
4662 switch (stub_type)
4663 {
4664 case arm_stub_cmse_branch_thumb_only:
4665 return TRUE;
4666
4667 default:
4668 return FALSE;
4669 }
4670
4671 abort (); /* Should be unreachable. */
daa4adae
TP
4672}
4673
4674/* Required alignment (as a power of 2) for the dedicated section holding
4675 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4676 with input sections. */
4677
4678static int
4679arm_dedicated_stub_output_section_required_alignment
4680 (enum elf32_arm_stub_type stub_type)
4681{
4682 if (stub_type >= max_stub_type)
4683 abort (); /* Should be unreachable. */
4684
4ba2ef8f
TP
4685 switch (stub_type)
4686 {
4687 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4688 boundary. */
4689 case arm_stub_cmse_branch_thumb_only:
4690 return 5;
4691
4692 default:
4693 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4694 return 0;
4695 }
4696
4697 abort (); /* Should be unreachable. */
daa4adae
TP
4698}
4699
4700/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4701 NULL if veneers of this type are interspersed with input sections. */
4702
4703static const char *
4704arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4705{
4706 if (stub_type >= max_stub_type)
4707 abort (); /* Should be unreachable. */
4708
4ba2ef8f
TP
4709 switch (stub_type)
4710 {
4711 case arm_stub_cmse_branch_thumb_only:
4d83e8d9 4712 return CMSE_STUB_NAME;
4ba2ef8f
TP
4713
4714 default:
4715 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4716 return NULL;
4717 }
4718
4719 abort (); /* Should be unreachable. */
daa4adae
TP
4720}
4721
4722/* If veneers of type STUB_TYPE should go in a dedicated output section,
4723 returns the address of the hash table field in HTAB holding a pointer to the
4724 corresponding input section. Otherwise, returns NULL. */
4725
4726static asection **
4ba2ef8f
TP
4727arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4728 enum elf32_arm_stub_type stub_type)
daa4adae
TP
4729{
4730 if (stub_type >= max_stub_type)
4731 abort (); /* Should be unreachable. */
4732
4ba2ef8f
TP
4733 switch (stub_type)
4734 {
4735 case arm_stub_cmse_branch_thumb_only:
4736 return &htab->cmse_stub_sec;
4737
4738 default:
4739 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4740 return NULL;
4741 }
4742
4743 abort (); /* Should be unreachable. */
daa4adae
TP
4744}
4745
4746/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4747 is the section that branch into veneer and can be NULL if stub should go in
4748 a dedicated output section. Returns a pointer to the stub section, and the
4749 section to which the stub section will be attached (in *LINK_SEC_P).
48229727 4750 LINK_SEC_P may be NULL. */
906e58ca 4751
48229727
JB
4752static asection *
4753elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
daa4adae
TP
4754 struct elf32_arm_link_hash_table *htab,
4755 enum elf32_arm_stub_type stub_type)
906e58ca 4756{
daa4adae
TP
4757 asection *link_sec, *out_sec, **stub_sec_p;
4758 const char *stub_sec_prefix;
4759 bfd_boolean dedicated_output_section =
4760 arm_dedicated_stub_output_section_required (stub_type);
4761 int align;
906e58ca 4762
daa4adae 4763 if (dedicated_output_section)
906e58ca 4764 {
daa4adae
TP
4765 bfd *output_bfd = htab->obfd;
4766 const char *out_sec_name =
4767 arm_dedicated_stub_output_section_name (stub_type);
4768 link_sec = NULL;
4769 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4770 stub_sec_prefix = out_sec_name;
4771 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4772 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4773 if (out_sec == NULL)
906e58ca 4774 {
90b6238f 4775 _bfd_error_handler (_("no address assigned to the veneers output "
4eca0228 4776 "section %s"), out_sec_name);
daa4adae 4777 return NULL;
906e58ca 4778 }
daa4adae
TP
4779 }
4780 else
4781 {
c2abbbeb 4782 BFD_ASSERT (section->id <= htab->top_id);
daa4adae
TP
4783 link_sec = htab->stub_group[section->id].link_sec;
4784 BFD_ASSERT (link_sec != NULL);
4785 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4786 if (*stub_sec_p == NULL)
4787 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4788 stub_sec_prefix = link_sec->name;
4789 out_sec = link_sec->output_section;
4790 align = htab->nacl_p ? 4 : 3;
906e58ca 4791 }
b38cadfb 4792
daa4adae
TP
4793 if (*stub_sec_p == NULL)
4794 {
4795 size_t namelen;
4796 bfd_size_type len;
4797 char *s_name;
4798
4799 namelen = strlen (stub_sec_prefix);
4800 len = namelen + sizeof (STUB_SUFFIX);
4801 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4802 if (s_name == NULL)
4803 return NULL;
4804
4805 memcpy (s_name, stub_sec_prefix, namelen);
4806 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4807 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4808 align);
4809 if (*stub_sec_p == NULL)
4810 return NULL;
4811
4812 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4813 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4814 | SEC_KEEP;
4815 }
4816
4817 if (!dedicated_output_section)
4818 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4819
48229727
JB
4820 if (link_sec_p)
4821 *link_sec_p = link_sec;
b38cadfb 4822
daa4adae 4823 return *stub_sec_p;
48229727
JB
4824}
4825
4826/* Add a new stub entry to the stub hash. Not all fields of the new
4827 stub entry are initialised. */
4828
4829static struct elf32_arm_stub_hash_entry *
daa4adae
TP
4830elf32_arm_add_stub (const char *stub_name, asection *section,
4831 struct elf32_arm_link_hash_table *htab,
4832 enum elf32_arm_stub_type stub_type)
48229727
JB
4833{
4834 asection *link_sec;
4835 asection *stub_sec;
4836 struct elf32_arm_stub_hash_entry *stub_entry;
4837
daa4adae
TP
4838 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4839 stub_type);
48229727
JB
4840 if (stub_sec == NULL)
4841 return NULL;
906e58ca
NC
4842
4843 /* Enter this entry into the linker stub hash table. */
4844 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4845 TRUE, FALSE);
4846 if (stub_entry == NULL)
4847 {
6bde4c52
TP
4848 if (section == NULL)
4849 section = stub_sec;
871b3ab2 4850 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 4851 section->owner, stub_name);
906e58ca
NC
4852 return NULL;
4853 }
4854
4855 stub_entry->stub_sec = stub_sec;
0955507f 4856 stub_entry->stub_offset = (bfd_vma) -1;
906e58ca
NC
4857 stub_entry->id_sec = link_sec;
4858
906e58ca
NC
4859 return stub_entry;
4860}
4861
4862/* Store an Arm insn into an output section not processed by
4863 elf32_arm_write_section. */
4864
4865static void
8029a119
NC
4866put_arm_insn (struct elf32_arm_link_hash_table * htab,
4867 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4868{
4869 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4870 bfd_putl32 (val, ptr);
4871 else
4872 bfd_putb32 (val, ptr);
4873}
4874
4875/* Store a 16-bit Thumb insn into an output section not processed by
4876 elf32_arm_write_section. */
4877
4878static void
8029a119
NC
4879put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4880 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4881{
4882 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4883 bfd_putl16 (val, ptr);
4884 else
4885 bfd_putb16 (val, ptr);
4886}
4887
a504d23a
LA
4888/* Store a Thumb2 insn into an output section not processed by
4889 elf32_arm_write_section. */
4890
4891static void
4892put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
b98e6871 4893 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
a504d23a
LA
4894{
4895 /* T2 instructions are 16-bit streamed. */
4896 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4897 {
4898 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4899 bfd_putl16 ((val & 0xffff), ptr + 2);
4900 }
4901 else
4902 {
4903 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4904 bfd_putb16 ((val & 0xffff), ptr + 2);
4905 }
4906}
4907
0855e32b
NS
4908/* If it's possible to change R_TYPE to a more efficient access
4909 model, return the new reloc type. */
4910
4911static unsigned
b38cadfb 4912elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4913 struct elf_link_hash_entry *h)
4914{
4915 int is_local = (h == NULL);
4916
9cb09e33 4917 if (bfd_link_dll (info)
0e1862bb 4918 || (h && h->root.type == bfd_link_hash_undefweak))
0855e32b
NS
4919 return r_type;
4920
b38cadfb 4921 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4922 switch (r_type)
4923 {
4924 case R_ARM_TLS_GOTDESC:
4925 case R_ARM_TLS_CALL:
4926 case R_ARM_THM_TLS_CALL:
4927 case R_ARM_TLS_DESCSEQ:
4928 case R_ARM_THM_TLS_DESCSEQ:
4929 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4930 }
4931
4932 return r_type;
4933}
4934
48229727
JB
4935static bfd_reloc_status_type elf32_arm_final_link_relocate
4936 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4937 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92
RS
4938 const char *, unsigned char, enum arm_st_branch_type,
4939 struct elf_link_hash_entry *, bfd_boolean *, char **);
48229727 4940
4563a860
JB
4941static unsigned int
4942arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4943{
4944 switch (stub_type)
4945 {
4946 case arm_stub_a8_veneer_b_cond:
4947 case arm_stub_a8_veneer_b:
4948 case arm_stub_a8_veneer_bl:
4949 return 2;
4950
4951 case arm_stub_long_branch_any_any:
4952 case arm_stub_long_branch_v4t_arm_thumb:
4953 case arm_stub_long_branch_thumb_only:
80c135e5 4954 case arm_stub_long_branch_thumb2_only:
d5a67c02 4955 case arm_stub_long_branch_thumb2_only_pure:
4563a860
JB
4956 case arm_stub_long_branch_v4t_thumb_thumb:
4957 case arm_stub_long_branch_v4t_thumb_arm:
4958 case arm_stub_short_branch_v4t_thumb_arm:
4959 case arm_stub_long_branch_any_arm_pic:
4960 case arm_stub_long_branch_any_thumb_pic:
4961 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4962 case arm_stub_long_branch_v4t_arm_thumb_pic:
4963 case arm_stub_long_branch_v4t_thumb_arm_pic:
4964 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4965 case arm_stub_long_branch_any_tls_pic:
4966 case arm_stub_long_branch_v4t_thumb_tls_pic:
4ba2ef8f 4967 case arm_stub_cmse_branch_thumb_only:
4563a860
JB
4968 case arm_stub_a8_veneer_blx:
4969 return 4;
b38cadfb 4970
7a89b94e
NC
4971 case arm_stub_long_branch_arm_nacl:
4972 case arm_stub_long_branch_arm_nacl_pic:
4973 return 16;
4974
4563a860
JB
4975 default:
4976 abort (); /* Should be unreachable. */
4977 }
4978}
4979
4f4faa4d
TP
4980/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4981 veneering (TRUE) or have their own symbol (FALSE). */
4982
4983static bfd_boolean
4984arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4985{
4986 if (stub_type >= max_stub_type)
4987 abort (); /* Should be unreachable. */
4988
4ba2ef8f
TP
4989 switch (stub_type)
4990 {
4991 case arm_stub_cmse_branch_thumb_only:
4992 return TRUE;
4993
4994 default:
4995 return FALSE;
4996 }
4997
4998 abort (); /* Should be unreachable. */
4f4faa4d
TP
4999}
5000
d7c5bd02
TP
5001/* Returns the padding needed for the dedicated section used stubs of type
5002 STUB_TYPE. */
5003
5004static int
5005arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
5006{
5007 if (stub_type >= max_stub_type)
5008 abort (); /* Should be unreachable. */
5009
4ba2ef8f
TP
5010 switch (stub_type)
5011 {
5012 case arm_stub_cmse_branch_thumb_only:
5013 return 32;
5014
5015 default:
5016 return 0;
5017 }
5018
5019 abort (); /* Should be unreachable. */
d7c5bd02
TP
5020}
5021
0955507f
TP
5022/* If veneers of type STUB_TYPE should go in a dedicated output section,
5023 returns the address of the hash table field in HTAB holding the offset at
5024 which new veneers should be layed out in the stub section. */
5025
5026static bfd_vma*
5027arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
5028 enum elf32_arm_stub_type stub_type)
5029{
5030 switch (stub_type)
5031 {
5032 case arm_stub_cmse_branch_thumb_only:
5033 return &htab->new_cmse_stub_offset;
5034
5035 default:
5036 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5037 return NULL;
5038 }
5039}
5040
906e58ca
NC
5041static bfd_boolean
5042arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5043 void * in_arg)
5044{
7a89b94e 5045#define MAXRELOCS 3
0955507f 5046 bfd_boolean removed_sg_veneer;
906e58ca 5047 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 5048 struct elf32_arm_link_hash_table *globals;
906e58ca 5049 struct bfd_link_info *info;
906e58ca
NC
5050 asection *stub_sec;
5051 bfd *stub_bfd;
906e58ca
NC
5052 bfd_byte *loc;
5053 bfd_vma sym_value;
5054 int template_size;
5055 int size;
d3ce72d0 5056 const insn_sequence *template_sequence;
906e58ca 5057 int i;
48229727
JB
5058 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5059 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5060 int nrelocs = 0;
0955507f 5061 int just_allocated = 0;
906e58ca
NC
5062
5063 /* Massage our args to the form they really have. */
5064 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5065 info = (struct bfd_link_info *) in_arg;
5066
abf874aa
CL
5067 /* Fail if the target section could not be assigned to an output
5068 section. The user should fix his linker script. */
5069 if (stub_entry->target_section->output_section == NULL
5070 && info->non_contiguous_regions)
53215f21
CL
5071 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
5072 "Retry without --enable-non-contiguous-regions.\n"),
5073 stub_entry->target_section);
abf874aa 5074
906e58ca 5075 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
5076 if (globals == NULL)
5077 return FALSE;
906e58ca 5078
906e58ca
NC
5079 stub_sec = stub_entry->stub_sec;
5080
4dfe6ac6 5081 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
5082 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5083 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 5084 return TRUE;
fe33d2fa 5085
0955507f
TP
5086 /* Assign a slot at the end of section if none assigned yet. */
5087 if (stub_entry->stub_offset == (bfd_vma) -1)
5088 {
5089 stub_entry->stub_offset = stub_sec->size;
5090 just_allocated = 1;
5091 }
906e58ca
NC
5092 loc = stub_sec->contents + stub_entry->stub_offset;
5093
5094 stub_bfd = stub_sec->owner;
5095
906e58ca
NC
5096 /* This is the address of the stub destination. */
5097 sym_value = (stub_entry->target_value
5098 + stub_entry->target_section->output_offset
5099 + stub_entry->target_section->output_section->vma);
5100
d3ce72d0 5101 template_sequence = stub_entry->stub_template;
461a49ca 5102 template_size = stub_entry->stub_template_size;
906e58ca
NC
5103
5104 size = 0;
461a49ca 5105 for (i = 0; i < template_size; i++)
906e58ca 5106 {
d3ce72d0 5107 switch (template_sequence[i].type)
461a49ca
DJ
5108 {
5109 case THUMB16_TYPE:
48229727 5110 {
d3ce72d0
NC
5111 bfd_vma data = (bfd_vma) template_sequence[i].data;
5112 if (template_sequence[i].reloc_addend != 0)
48229727 5113 {
99059e56
RM
5114 /* We've borrowed the reloc_addend field to mean we should
5115 insert a condition code into this (Thumb-1 branch)
5116 instruction. See THUMB16_BCOND_INSN. */
5117 BFD_ASSERT ((data & 0xff00) == 0xd000);
5118 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 5119 }
fe33d2fa 5120 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
5121 size += 2;
5122 }
461a49ca 5123 break;
906e58ca 5124
48229727 5125 case THUMB32_TYPE:
fe33d2fa
CL
5126 bfd_put_16 (stub_bfd,
5127 (template_sequence[i].data >> 16) & 0xffff,
5128 loc + size);
5129 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5130 loc + size + 2);
99059e56
RM
5131 if (template_sequence[i].r_type != R_ARM_NONE)
5132 {
5133 stub_reloc_idx[nrelocs] = i;
5134 stub_reloc_offset[nrelocs++] = size;
5135 }
5136 size += 4;
5137 break;
48229727 5138
461a49ca 5139 case ARM_TYPE:
fe33d2fa
CL
5140 bfd_put_32 (stub_bfd, template_sequence[i].data,
5141 loc + size);
461a49ca
DJ
5142 /* Handle cases where the target is encoded within the
5143 instruction. */
d3ce72d0 5144 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 5145 {
48229727
JB
5146 stub_reloc_idx[nrelocs] = i;
5147 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5148 }
5149 size += 4;
5150 break;
5151
5152 case DATA_TYPE:
d3ce72d0 5153 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
5154 stub_reloc_idx[nrelocs] = i;
5155 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5156 size += 4;
5157 break;
5158
5159 default:
5160 BFD_FAIL ();
5161 return FALSE;
5162 }
906e58ca 5163 }
461a49ca 5164
0955507f
TP
5165 if (just_allocated)
5166 stub_sec->size += size;
906e58ca 5167
461a49ca
DJ
5168 /* Stub size has already been computed in arm_size_one_stub. Check
5169 consistency. */
5170 BFD_ASSERT (size == stub_entry->stub_size);
5171
906e58ca 5172 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 5173 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
5174 sym_value |= 1;
5175
0955507f
TP
5176 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5177 to relocate in each stub. */
5178 removed_sg_veneer =
5179 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5180 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
c820be07 5181
48229727 5182 for (i = 0; i < nrelocs; i++)
8d9d9490
TP
5183 {
5184 Elf_Internal_Rela rel;
5185 bfd_boolean unresolved_reloc;
5186 char *error_message;
5187 bfd_vma points_to =
5188 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5189
5190 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5191 rel.r_info = ELF32_R_INFO (0,
5192 template_sequence[stub_reloc_idx[i]].r_type);
5193 rel.r_addend = 0;
5194
5195 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5196 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5197 template should refer back to the instruction after the original
5198 branch. We use target_section as Cortex-A8 erratum workaround stubs
5199 are only generated when both source and target are in the same
5200 section. */
5201 points_to = stub_entry->target_section->output_section->vma
5202 + stub_entry->target_section->output_offset
5203 + stub_entry->source_value;
5204
5205 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5206 (template_sequence[stub_reloc_idx[i]].r_type),
5207 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5208 points_to, info, stub_entry->target_section, "", STT_FUNC,
5209 stub_entry->branch_type,
5210 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5211 &error_message);
5212 }
906e58ca
NC
5213
5214 return TRUE;
48229727 5215#undef MAXRELOCS
906e58ca
NC
5216}
5217
48229727
JB
5218/* Calculate the template, template size and instruction size for a stub.
5219 Return value is the instruction size. */
906e58ca 5220
48229727
JB
5221static unsigned int
5222find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5223 const insn_sequence **stub_template,
5224 int *stub_template_size)
906e58ca 5225{
d3ce72d0 5226 const insn_sequence *template_sequence = NULL;
48229727
JB
5227 int template_size = 0, i;
5228 unsigned int size;
906e58ca 5229
d3ce72d0 5230 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
5231 if (stub_template)
5232 *stub_template = template_sequence;
5233
48229727 5234 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
5235 if (stub_template_size)
5236 *stub_template_size = template_size;
906e58ca
NC
5237
5238 size = 0;
461a49ca
DJ
5239 for (i = 0; i < template_size; i++)
5240 {
d3ce72d0 5241 switch (template_sequence[i].type)
461a49ca
DJ
5242 {
5243 case THUMB16_TYPE:
5244 size += 2;
5245 break;
5246
5247 case ARM_TYPE:
48229727 5248 case THUMB32_TYPE:
461a49ca
DJ
5249 case DATA_TYPE:
5250 size += 4;
5251 break;
5252
5253 default:
5254 BFD_FAIL ();
2a229407 5255 return 0;
461a49ca
DJ
5256 }
5257 }
5258
48229727
JB
5259 return size;
5260}
5261
5262/* As above, but don't actually build the stub. Just bump offset so
5263 we know stub section sizes. */
5264
5265static bfd_boolean
5266arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 5267 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
5268{
5269 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 5270 const insn_sequence *template_sequence;
48229727
JB
5271 int template_size, size;
5272
5273 /* Massage our args to the form they really have. */
5274 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
5275
5276 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5277 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5278
d3ce72d0 5279 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
5280 &template_size);
5281
0955507f
TP
5282 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5283 if (stub_entry->stub_template_size)
5284 {
5285 stub_entry->stub_size = size;
5286 stub_entry->stub_template = template_sequence;
5287 stub_entry->stub_template_size = template_size;
5288 }
5289
5290 /* Already accounted for. */
5291 if (stub_entry->stub_offset != (bfd_vma) -1)
5292 return TRUE;
461a49ca 5293
906e58ca
NC
5294 size = (size + 7) & ~7;
5295 stub_entry->stub_sec->size += size;
461a49ca 5296
906e58ca
NC
5297 return TRUE;
5298}
5299
5300/* External entry points for sizing and building linker stubs. */
5301
5302/* Set up various things so that we can make a list of input sections
5303 for each output section included in the link. Returns -1 on error,
5304 0 when no stubs will be needed, and 1 on success. */
5305
5306int
5307elf32_arm_setup_section_lists (bfd *output_bfd,
5308 struct bfd_link_info *info)
5309{
5310 bfd *input_bfd;
5311 unsigned int bfd_count;
7292b3ac 5312 unsigned int top_id, top_index;
906e58ca
NC
5313 asection *section;
5314 asection **input_list, **list;
986f0783 5315 size_t amt;
906e58ca
NC
5316 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5317
4dfe6ac6
NC
5318 if (htab == NULL)
5319 return 0;
906e58ca
NC
5320 if (! is_elf_hash_table (htab))
5321 return 0;
5322
5323 /* Count the number of input BFDs and find the top input section id. */
5324 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5325 input_bfd != NULL;
c72f2fb2 5326 input_bfd = input_bfd->link.next)
906e58ca
NC
5327 {
5328 bfd_count += 1;
5329 for (section = input_bfd->sections;
5330 section != NULL;
5331 section = section->next)
5332 {
5333 if (top_id < section->id)
5334 top_id = section->id;
5335 }
5336 }
5337 htab->bfd_count = bfd_count;
5338
5339 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 5340 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
5341 if (htab->stub_group == NULL)
5342 return -1;
fe33d2fa 5343 htab->top_id = top_id;
906e58ca
NC
5344
5345 /* We can't use output_bfd->section_count here to find the top output
5346 section index as some sections may have been removed, and
5347 _bfd_strip_section_from_output doesn't renumber the indices. */
5348 for (section = output_bfd->sections, top_index = 0;
5349 section != NULL;
5350 section = section->next)
5351 {
5352 if (top_index < section->index)
5353 top_index = section->index;
5354 }
5355
5356 htab->top_index = top_index;
5357 amt = sizeof (asection *) * (top_index + 1);
21d799b5 5358 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
5359 htab->input_list = input_list;
5360 if (input_list == NULL)
5361 return -1;
5362
5363 /* For sections we aren't interested in, mark their entries with a
5364 value we can check later. */
5365 list = input_list + top_index;
5366 do
5367 *list = bfd_abs_section_ptr;
5368 while (list-- != input_list);
5369
5370 for (section = output_bfd->sections;
5371 section != NULL;
5372 section = section->next)
5373 {
5374 if ((section->flags & SEC_CODE) != 0)
5375 input_list[section->index] = NULL;
5376 }
5377
5378 return 1;
5379}
5380
5381/* The linker repeatedly calls this function for each input section,
5382 in the order that input sections are linked into output sections.
5383 Build lists of input sections to determine groupings between which
5384 we may insert linker stubs. */
5385
5386void
5387elf32_arm_next_input_section (struct bfd_link_info *info,
5388 asection *isec)
5389{
5390 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5391
4dfe6ac6
NC
5392 if (htab == NULL)
5393 return;
5394
906e58ca
NC
5395 if (isec->output_section->index <= htab->top_index)
5396 {
5397 asection **list = htab->input_list + isec->output_section->index;
5398
a7470592 5399 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
5400 {
5401 /* Steal the link_sec pointer for our list. */
5402#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5403 /* This happens to make the list in reverse order,
07d72278 5404 which we reverse later. */
906e58ca
NC
5405 PREV_SEC (isec) = *list;
5406 *list = isec;
5407 }
5408 }
5409}
5410
5411/* See whether we can group stub sections together. Grouping stub
5412 sections may result in fewer stubs. More importantly, we need to
07d72278 5413 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
5414 .fini output sections respectively, because glibc splits the
5415 _init and _fini functions into multiple parts. Putting a stub in
5416 the middle of a function is not a good idea. */
5417
5418static void
5419group_sections (struct elf32_arm_link_hash_table *htab,
5420 bfd_size_type stub_group_size,
07d72278 5421 bfd_boolean stubs_always_after_branch)
906e58ca 5422{
07d72278 5423 asection **list = htab->input_list;
906e58ca
NC
5424
5425 do
5426 {
5427 asection *tail = *list;
07d72278 5428 asection *head;
906e58ca
NC
5429
5430 if (tail == bfd_abs_section_ptr)
5431 continue;
5432
07d72278
DJ
5433 /* Reverse the list: we must avoid placing stubs at the
5434 beginning of the section because the beginning of the text
5435 section may be required for an interrupt vector in bare metal
5436 code. */
5437#define NEXT_SEC PREV_SEC
e780aef2
CL
5438 head = NULL;
5439 while (tail != NULL)
99059e56
RM
5440 {
5441 /* Pop from tail. */
5442 asection *item = tail;
5443 tail = PREV_SEC (item);
e780aef2 5444
99059e56
RM
5445 /* Push on head. */
5446 NEXT_SEC (item) = head;
5447 head = item;
5448 }
07d72278
DJ
5449
5450 while (head != NULL)
906e58ca
NC
5451 {
5452 asection *curr;
07d72278 5453 asection *next;
e780aef2
CL
5454 bfd_vma stub_group_start = head->output_offset;
5455 bfd_vma end_of_next;
906e58ca 5456
07d72278 5457 curr = head;
e780aef2 5458 while (NEXT_SEC (curr) != NULL)
8cd931b7 5459 {
e780aef2
CL
5460 next = NEXT_SEC (curr);
5461 end_of_next = next->output_offset + next->size;
5462 if (end_of_next - stub_group_start >= stub_group_size)
5463 /* End of NEXT is too far from start, so stop. */
8cd931b7 5464 break;
e780aef2
CL
5465 /* Add NEXT to the group. */
5466 curr = next;
8cd931b7 5467 }
906e58ca 5468
07d72278 5469 /* OK, the size from the start to the start of CURR is less
906e58ca 5470 than stub_group_size and thus can be handled by one stub
07d72278 5471 section. (Or the head section is itself larger than
906e58ca
NC
5472 stub_group_size, in which case we may be toast.)
5473 We should really be keeping track of the total size of
5474 stubs added here, as stubs contribute to the final output
7fb9f789 5475 section size. */
906e58ca
NC
5476 do
5477 {
07d72278 5478 next = NEXT_SEC (head);
906e58ca 5479 /* Set up this stub group. */
07d72278 5480 htab->stub_group[head->id].link_sec = curr;
906e58ca 5481 }
07d72278 5482 while (head != curr && (head = next) != NULL);
906e58ca
NC
5483
5484 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
5485 bytes after the stub section can be handled by it too. */
5486 if (!stubs_always_after_branch)
906e58ca 5487 {
e780aef2
CL
5488 stub_group_start = curr->output_offset + curr->size;
5489
8cd931b7 5490 while (next != NULL)
906e58ca 5491 {
e780aef2
CL
5492 end_of_next = next->output_offset + next->size;
5493 if (end_of_next - stub_group_start >= stub_group_size)
5494 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 5495 break;
e780aef2 5496 /* Add NEXT to the stub group. */
07d72278
DJ
5497 head = next;
5498 next = NEXT_SEC (head);
5499 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
5500 }
5501 }
07d72278 5502 head = next;
906e58ca
NC
5503 }
5504 }
07d72278 5505 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
5506
5507 free (htab->input_list);
5508#undef PREV_SEC
07d72278 5509#undef NEXT_SEC
906e58ca
NC
5510}
5511
48229727
JB
5512/* Comparison function for sorting/searching relocations relating to Cortex-A8
5513 erratum fix. */
5514
5515static int
5516a8_reloc_compare (const void *a, const void *b)
5517{
21d799b5
NC
5518 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5519 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
5520
5521 if (ra->from < rb->from)
5522 return -1;
5523 else if (ra->from > rb->from)
5524 return 1;
5525 else
5526 return 0;
5527}
5528
5529static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5530 const char *, char **);
5531
5532/* Helper function to scan code for sequences which might trigger the Cortex-A8
5533 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 5534 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
5535 otherwise. */
5536
81694485
NC
5537static bfd_boolean
5538cortex_a8_erratum_scan (bfd *input_bfd,
5539 struct bfd_link_info *info,
48229727
JB
5540 struct a8_erratum_fix **a8_fixes_p,
5541 unsigned int *num_a8_fixes_p,
5542 unsigned int *a8_fix_table_size_p,
5543 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
5544 unsigned int num_a8_relocs,
5545 unsigned prev_num_a8_fixes,
5546 bfd_boolean *stub_changed_p)
48229727
JB
5547{
5548 asection *section;
5549 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5550 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5551 unsigned int num_a8_fixes = *num_a8_fixes_p;
5552 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5553
4dfe6ac6
NC
5554 if (htab == NULL)
5555 return FALSE;
5556
48229727
JB
5557 for (section = input_bfd->sections;
5558 section != NULL;
5559 section = section->next)
5560 {
5561 bfd_byte *contents = NULL;
5562 struct _arm_elf_section_data *sec_data;
5563 unsigned int span;
5564 bfd_vma base_vma;
5565
5566 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
5567 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5568 || (section->flags & SEC_EXCLUDE) != 0
5569 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5570 || (section->output_section == bfd_abs_section_ptr))
5571 continue;
48229727
JB
5572
5573 base_vma = section->output_section->vma + section->output_offset;
5574
5575 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 5576 contents = elf_section_data (section)->this_hdr.contents;
48229727 5577 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
99059e56 5578 return TRUE;
48229727
JB
5579
5580 sec_data = elf32_arm_section_data (section);
5581
5582 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
5583 {
5584 unsigned int span_start = sec_data->map[span].vma;
5585 unsigned int span_end = (span == sec_data->mapcount - 1)
5586 ? section->size : sec_data->map[span + 1].vma;
5587 unsigned int i;
5588 char span_type = sec_data->map[span].type;
5589 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5590
5591 if (span_type != 't')
5592 continue;
5593
5594 /* Span is entirely within a single 4KB region: skip scanning. */
5595 if (((base_vma + span_start) & ~0xfff)
48229727 5596 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
5597 continue;
5598
5599 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5600
5601 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5602 * The branch target is in the same 4KB region as the
5603 first half of the branch.
5604 * The instruction before the branch is a 32-bit
5605 length non-branch instruction. */
5606 for (i = span_start; i < span_end;)
5607 {
5608 unsigned int insn = bfd_getl16 (&contents[i]);
5609 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
48229727
JB
5610 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5611
99059e56
RM
5612 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5613 insn_32bit = TRUE;
48229727
JB
5614
5615 if (insn_32bit)
99059e56
RM
5616 {
5617 /* Load the rest of the insn (in manual-friendly order). */
5618 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5619
5620 /* Encoding T4: B<c>.W. */
5621 is_b = (insn & 0xf800d000) == 0xf0009000;
5622 /* Encoding T1: BL<c>.W. */
5623 is_bl = (insn & 0xf800d000) == 0xf000d000;
5624 /* Encoding T2: BLX<c>.W. */
5625 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
5626 /* Encoding T3: B<c>.W (not permitted in IT block). */
5627 is_bcc = (insn & 0xf800d000) == 0xf0008000
5628 && (insn & 0x07f00000) != 0x03800000;
5629 }
5630
5631 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 5632
99059e56 5633 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
5634 && insn_32bit
5635 && is_32bit_branch
5636 && last_was_32bit
5637 && ! last_was_branch)
99059e56
RM
5638 {
5639 bfd_signed_vma offset = 0;
5640 bfd_boolean force_target_arm = FALSE;
48229727 5641 bfd_boolean force_target_thumb = FALSE;
99059e56
RM
5642 bfd_vma target;
5643 enum elf32_arm_stub_type stub_type = arm_stub_none;
5644 struct a8_erratum_reloc key, *found;
5645 bfd_boolean use_plt = FALSE;
48229727 5646
99059e56
RM
5647 key.from = base_vma + i;
5648 found = (struct a8_erratum_reloc *)
5649 bsearch (&key, a8_relocs, num_a8_relocs,
5650 sizeof (struct a8_erratum_reloc),
5651 &a8_reloc_compare);
48229727
JB
5652
5653 if (found)
5654 {
5655 char *error_message = NULL;
5656 struct elf_link_hash_entry *entry;
5657
5658 /* We don't care about the error returned from this
99059e56 5659 function, only if there is glue or not. */
48229727
JB
5660 entry = find_thumb_glue (info, found->sym_name,
5661 &error_message);
5662
5663 if (entry)
5664 found->non_a8_stub = TRUE;
5665
92750f34 5666 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 5667 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
5668 && found->hash->root.plt.offset != (bfd_vma) -1)
5669 use_plt = TRUE;
5670
5671 if (found->r_type == R_ARM_THM_CALL)
5672 {
35fc36a8
RS
5673 if (found->branch_type == ST_BRANCH_TO_ARM
5674 || use_plt)
92750f34
DJ
5675 force_target_arm = TRUE;
5676 else
5677 force_target_thumb = TRUE;
5678 }
48229727
JB
5679 }
5680
99059e56 5681 /* Check if we have an offending branch instruction. */
48229727
JB
5682
5683 if (found && found->non_a8_stub)
5684 /* We've already made a stub for this instruction, e.g.
5685 it's a long branch or a Thumb->ARM stub. Assume that
5686 stub will suffice to work around the A8 erratum (see
5687 setting of always_after_branch above). */
5688 ;
99059e56
RM
5689 else if (is_bcc)
5690 {
5691 offset = (insn & 0x7ff) << 1;
5692 offset |= (insn & 0x3f0000) >> 4;
5693 offset |= (insn & 0x2000) ? 0x40000 : 0;
5694 offset |= (insn & 0x800) ? 0x80000 : 0;
5695 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5696 if (offset & 0x100000)
5697 offset |= ~ ((bfd_signed_vma) 0xfffff);
5698 stub_type = arm_stub_a8_veneer_b_cond;
5699 }
5700 else if (is_b || is_bl || is_blx)
5701 {
5702 int s = (insn & 0x4000000) != 0;
5703 int j1 = (insn & 0x2000) != 0;
5704 int j2 = (insn & 0x800) != 0;
5705 int i1 = !(j1 ^ s);
5706 int i2 = !(j2 ^ s);
5707
5708 offset = (insn & 0x7ff) << 1;
5709 offset |= (insn & 0x3ff0000) >> 4;
5710 offset |= i2 << 22;
5711 offset |= i1 << 23;
5712 offset |= s << 24;
5713 if (offset & 0x1000000)
5714 offset |= ~ ((bfd_signed_vma) 0xffffff);
5715
5716 if (is_blx)
5717 offset &= ~ ((bfd_signed_vma) 3);
5718
5719 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5720 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5721 }
5722
5723 if (stub_type != arm_stub_none)
5724 {
5725 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
5726
5727 /* The original instruction is a BL, but the target is
99059e56 5728 an ARM instruction. If we were not making a stub,
48229727
JB
5729 the BL would have been converted to a BLX. Use the
5730 BLX stub instead in that case. */
5731 if (htab->use_blx && force_target_arm
5732 && stub_type == arm_stub_a8_veneer_bl)
5733 {
5734 stub_type = arm_stub_a8_veneer_blx;
5735 is_blx = TRUE;
5736 is_bl = FALSE;
5737 }
5738 /* Conversely, if the original instruction was
5739 BLX but the target is Thumb mode, use the BL
5740 stub. */
5741 else if (force_target_thumb
5742 && stub_type == arm_stub_a8_veneer_blx)
5743 {
5744 stub_type = arm_stub_a8_veneer_bl;
5745 is_blx = FALSE;
5746 is_bl = TRUE;
5747 }
5748
99059e56
RM
5749 if (is_blx)
5750 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 5751
99059e56
RM
5752 /* If we found a relocation, use the proper destination,
5753 not the offset in the (unrelocated) instruction.
48229727
JB
5754 Note this is always done if we switched the stub type
5755 above. */
99059e56
RM
5756 if (found)
5757 offset =
81694485 5758 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 5759
99059e56
RM
5760 /* If the stub will use a Thumb-mode branch to a
5761 PLT target, redirect it to the preceding Thumb
5762 entry point. */
5763 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5764 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 5765
99059e56 5766 target = pc_for_insn + offset;
48229727 5767
99059e56
RM
5768 /* The BLX stub is ARM-mode code. Adjust the offset to
5769 take the different PC value (+8 instead of +4) into
48229727 5770 account. */
99059e56
RM
5771 if (stub_type == arm_stub_a8_veneer_blx)
5772 offset += 4;
5773
5774 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5775 {
5776 char *stub_name = NULL;
5777
5778 if (num_a8_fixes == a8_fix_table_size)
5779 {
5780 a8_fix_table_size *= 2;
5781 a8_fixes = (struct a8_erratum_fix *)
5782 bfd_realloc (a8_fixes,
5783 sizeof (struct a8_erratum_fix)
5784 * a8_fix_table_size);
5785 }
48229727 5786
eb7c4339
NS
5787 if (num_a8_fixes < prev_num_a8_fixes)
5788 {
5789 /* If we're doing a subsequent scan,
5790 check if we've found the same fix as
5791 before, and try and reuse the stub
5792 name. */
5793 stub_name = a8_fixes[num_a8_fixes].stub_name;
5794 if ((a8_fixes[num_a8_fixes].section != section)
5795 || (a8_fixes[num_a8_fixes].offset != i))
5796 {
5797 free (stub_name);
5798 stub_name = NULL;
5799 *stub_changed_p = TRUE;
5800 }
5801 }
5802
5803 if (!stub_name)
5804 {
21d799b5 5805 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
5806 if (stub_name != NULL)
5807 sprintf (stub_name, "%x:%x", section->id, i);
5808 }
48229727 5809
99059e56
RM
5810 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5811 a8_fixes[num_a8_fixes].section = section;
5812 a8_fixes[num_a8_fixes].offset = i;
8d9d9490
TP
5813 a8_fixes[num_a8_fixes].target_offset =
5814 target - base_vma;
99059e56
RM
5815 a8_fixes[num_a8_fixes].orig_insn = insn;
5816 a8_fixes[num_a8_fixes].stub_name = stub_name;
5817 a8_fixes[num_a8_fixes].stub_type = stub_type;
5818 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 5819 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 5820
99059e56
RM
5821 num_a8_fixes++;
5822 }
5823 }
5824 }
48229727 5825
99059e56
RM
5826 i += insn_32bit ? 4 : 2;
5827 last_was_32bit = insn_32bit;
48229727 5828 last_was_branch = is_32bit_branch;
99059e56
RM
5829 }
5830 }
48229727
JB
5831
5832 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 5833 free (contents);
48229727 5834 }
fe33d2fa 5835
48229727
JB
5836 *a8_fixes_p = a8_fixes;
5837 *num_a8_fixes_p = num_a8_fixes;
5838 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 5839
81694485 5840 return FALSE;
48229727
JB
5841}
5842
b715f643
TP
5843/* Create or update a stub entry depending on whether the stub can already be
5844 found in HTAB. The stub is identified by:
5845 - its type STUB_TYPE
5846 - its source branch (note that several can share the same stub) whose
5847 section and relocation (if any) are given by SECTION and IRELA
5848 respectively
5849 - its target symbol whose input section, hash, name, value and branch type
5850 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5851 respectively
5852
5853 If found, the value of the stub's target symbol is updated from SYM_VALUE
5854 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5855 TRUE and the stub entry is initialized.
5856
0955507f
TP
5857 Returns the stub that was created or updated, or NULL if an error
5858 occurred. */
b715f643 5859
0955507f 5860static struct elf32_arm_stub_hash_entry *
b715f643
TP
5861elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5862 enum elf32_arm_stub_type stub_type, asection *section,
5863 Elf_Internal_Rela *irela, asection *sym_sec,
5864 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5865 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5866 bfd_boolean *new_stub)
5867{
5868 const asection *id_sec;
5869 char *stub_name;
5870 struct elf32_arm_stub_hash_entry *stub_entry;
5871 unsigned int r_type;
4f4faa4d 5872 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
b715f643
TP
5873
5874 BFD_ASSERT (stub_type != arm_stub_none);
5875 *new_stub = FALSE;
5876
4f4faa4d
TP
5877 if (sym_claimed)
5878 stub_name = sym_name;
5879 else
5880 {
5881 BFD_ASSERT (irela);
5882 BFD_ASSERT (section);
c2abbbeb 5883 BFD_ASSERT (section->id <= htab->top_id);
b715f643 5884
4f4faa4d
TP
5885 /* Support for grouping stub sections. */
5886 id_sec = htab->stub_group[section->id].link_sec;
b715f643 5887
4f4faa4d
TP
5888 /* Get the name of this stub. */
5889 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5890 stub_type);
5891 if (!stub_name)
0955507f 5892 return NULL;
4f4faa4d 5893 }
b715f643
TP
5894
5895 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5896 FALSE);
5897 /* The proper stub has already been created, just update its value. */
5898 if (stub_entry != NULL)
5899 {
4f4faa4d
TP
5900 if (!sym_claimed)
5901 free (stub_name);
b715f643 5902 stub_entry->target_value = sym_value;
0955507f 5903 return stub_entry;
b715f643
TP
5904 }
5905
daa4adae 5906 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
b715f643
TP
5907 if (stub_entry == NULL)
5908 {
4f4faa4d
TP
5909 if (!sym_claimed)
5910 free (stub_name);
0955507f 5911 return NULL;
b715f643
TP
5912 }
5913
5914 stub_entry->target_value = sym_value;
5915 stub_entry->target_section = sym_sec;
5916 stub_entry->stub_type = stub_type;
5917 stub_entry->h = hash;
5918 stub_entry->branch_type = branch_type;
5919
4f4faa4d
TP
5920 if (sym_claimed)
5921 stub_entry->output_name = sym_name;
5922 else
b715f643 5923 {
4f4faa4d
TP
5924 if (sym_name == NULL)
5925 sym_name = "unnamed";
5926 stub_entry->output_name = (char *)
5927 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5928 + strlen (sym_name));
5929 if (stub_entry->output_name == NULL)
5930 {
5931 free (stub_name);
0955507f 5932 return NULL;
4f4faa4d 5933 }
b715f643 5934
4f4faa4d
TP
5935 /* For historical reasons, use the existing names for ARM-to-Thumb and
5936 Thumb-to-ARM stubs. */
5937 r_type = ELF32_R_TYPE (irela->r_info);
5938 if ((r_type == (unsigned int) R_ARM_THM_CALL
5939 || r_type == (unsigned int) R_ARM_THM_JUMP24
5940 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5941 && branch_type == ST_BRANCH_TO_ARM)
5942 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5943 else if ((r_type == (unsigned int) R_ARM_CALL
5944 || r_type == (unsigned int) R_ARM_JUMP24)
5945 && branch_type == ST_BRANCH_TO_THUMB)
5946 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5947 else
5948 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5949 }
b715f643
TP
5950
5951 *new_stub = TRUE;
0955507f 5952 return stub_entry;
b715f643
TP
5953}
5954
4ba2ef8f
TP
5955/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5956 gateway veneer to transition from non secure to secure state and create them
5957 accordingly.
5958
5959 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5960 defines the conditions that govern Secure Gateway veneer creation for a
5961 given symbol <SYM> as follows:
5962 - it has function type
5963 - it has non local binding
5964 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5965 same type, binding and value as <SYM> (called normal symbol).
5966 An entry function can handle secure state transition itself in which case
5967 its special symbol would have a different value from the normal symbol.
5968
5969 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5970 entry mapping while HTAB gives the name to hash entry mapping.
0955507f
TP
5971 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5972 created.
4ba2ef8f 5973
0955507f 5974 The return value gives whether a stub failed to be allocated. */
4ba2ef8f
TP
5975
5976static bfd_boolean
5977cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5978 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
0955507f 5979 int *cmse_stub_created)
4ba2ef8f
TP
5980{
5981 const struct elf_backend_data *bed;
5982 Elf_Internal_Shdr *symtab_hdr;
5983 unsigned i, j, sym_count, ext_start;
5984 Elf_Internal_Sym *cmse_sym, *local_syms;
5985 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5986 enum arm_st_branch_type branch_type;
5987 char *sym_name, *lsym_name;
5988 bfd_vma sym_value;
5989 asection *section;
0955507f
TP
5990 struct elf32_arm_stub_hash_entry *stub_entry;
5991 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
4ba2ef8f
TP
5992
5993 bed = get_elf_backend_data (input_bfd);
5994 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5995 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5996 ext_start = symtab_hdr->sh_info;
5997 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5998 && out_attr[Tag_CPU_arch_profile].i == 'M');
5999
6000 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
6001 if (local_syms == NULL)
6002 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6003 symtab_hdr->sh_info, 0, NULL, NULL,
6004 NULL);
6005 if (symtab_hdr->sh_info && local_syms == NULL)
6006 return FALSE;
6007
6008 /* Scan symbols. */
6009 for (i = 0; i < sym_count; i++)
6010 {
6011 cmse_invalid = FALSE;
6012
6013 if (i < ext_start)
6014 {
6015 cmse_sym = &local_syms[i];
4ba2ef8f
TP
6016 sym_name = bfd_elf_string_from_elf_section (input_bfd,
6017 symtab_hdr->sh_link,
6018 cmse_sym->st_name);
baf46cd7
AM
6019 if (!sym_name || !CONST_STRNEQ (sym_name, CMSE_PREFIX))
6020 continue;
6021
4ba2ef8f
TP
6022 /* Special symbol with local binding. */
6023 cmse_invalid = TRUE;
6024 }
6025 else
6026 {
6027 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
6028 sym_name = (char *) cmse_hash->root.root.root.string;
baf46cd7 6029 if (!CONST_STRNEQ (sym_name, CMSE_PREFIX))
4ba2ef8f
TP
6030 continue;
6031
6032 /* Special symbol has incorrect binding or type. */
6033 if ((cmse_hash->root.root.type != bfd_link_hash_defined
6034 && cmse_hash->root.root.type != bfd_link_hash_defweak)
6035 || cmse_hash->root.type != STT_FUNC)
6036 cmse_invalid = TRUE;
6037 }
6038
6039 if (!is_v8m)
6040 {
90b6238f
AM
6041 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6042 "ARMv8-M architecture or later"),
4eca0228 6043 input_bfd, sym_name);
4ba2ef8f
TP
6044 is_v8m = TRUE; /* Avoid multiple warning. */
6045 ret = FALSE;
6046 }
6047
6048 if (cmse_invalid)
6049 {
90b6238f
AM
6050 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6051 " a global or weak function symbol"),
4eca0228 6052 input_bfd, sym_name);
4ba2ef8f
TP
6053 ret = FALSE;
6054 if (i < ext_start)
6055 continue;
6056 }
6057
6058 sym_name += strlen (CMSE_PREFIX);
6059 hash = (struct elf32_arm_link_hash_entry *)
6060 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6061
6062 /* No associated normal symbol or it is neither global nor weak. */
6063 if (!hash
6064 || (hash->root.root.type != bfd_link_hash_defined
6065 && hash->root.root.type != bfd_link_hash_defweak)
6066 || hash->root.type != STT_FUNC)
6067 {
6068 /* Initialize here to avoid warning about use of possibly
6069 uninitialized variable. */
6070 j = 0;
6071
6072 if (!hash)
6073 {
6074 /* Searching for a normal symbol with local binding. */
6075 for (; j < ext_start; j++)
6076 {
6077 lsym_name =
6078 bfd_elf_string_from_elf_section (input_bfd,
6079 symtab_hdr->sh_link,
6080 local_syms[j].st_name);
6081 if (!strcmp (sym_name, lsym_name))
6082 break;
6083 }
6084 }
6085
6086 if (hash || j < ext_start)
6087 {
4eca0228 6088 _bfd_error_handler
90b6238f
AM
6089 (_("%pB: invalid standard symbol `%s'; it must be "
6090 "a global or weak function symbol"),
6091 input_bfd, sym_name);
4ba2ef8f
TP
6092 }
6093 else
4eca0228 6094 _bfd_error_handler
90b6238f 6095 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
4ba2ef8f
TP
6096 ret = FALSE;
6097 if (!hash)
6098 continue;
6099 }
6100
6101 sym_value = hash->root.root.u.def.value;
6102 section = hash->root.root.u.def.section;
6103
6104 if (cmse_hash->root.root.u.def.section != section)
6105 {
4eca0228 6106 _bfd_error_handler
90b6238f 6107 (_("%pB: `%s' and its special symbol are in different sections"),
4ba2ef8f
TP
6108 input_bfd, sym_name);
6109 ret = FALSE;
6110 }
6111 if (cmse_hash->root.root.u.def.value != sym_value)
6112 continue; /* Ignore: could be an entry function starting with SG. */
6113
6114 /* If this section is a link-once section that will be discarded, then
6115 don't create any stubs. */
6116 if (section->output_section == NULL)
6117 {
4eca0228 6118 _bfd_error_handler
90b6238f 6119 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
4ba2ef8f
TP
6120 continue;
6121 }
6122
6123 if (hash->root.size == 0)
6124 {
4eca0228 6125 _bfd_error_handler
90b6238f 6126 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
4ba2ef8f
TP
6127 ret = FALSE;
6128 }
6129
6130 if (!ret)
6131 continue;
6132 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
0955507f 6133 stub_entry
4ba2ef8f
TP
6134 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6135 NULL, NULL, section, hash, sym_name,
6136 sym_value, branch_type, &new_stub);
6137
0955507f 6138 if (stub_entry == NULL)
4ba2ef8f
TP
6139 ret = FALSE;
6140 else
6141 {
6142 BFD_ASSERT (new_stub);
0955507f 6143 (*cmse_stub_created)++;
4ba2ef8f
TP
6144 }
6145 }
6146
6147 if (!symtab_hdr->contents)
6148 free (local_syms);
6149 return ret;
6150}
6151
0955507f
TP
6152/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6153 code entry function, ie can be called from non secure code without using a
6154 veneer. */
6155
6156static bfd_boolean
6157cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6158{
42484486 6159 bfd_byte contents[4];
0955507f
TP
6160 uint32_t first_insn;
6161 asection *section;
6162 file_ptr offset;
6163 bfd *abfd;
6164
6165 /* Defined symbol of function type. */
6166 if (hash->root.root.type != bfd_link_hash_defined
6167 && hash->root.root.type != bfd_link_hash_defweak)
6168 return FALSE;
6169 if (hash->root.type != STT_FUNC)
6170 return FALSE;
6171
6172 /* Read first instruction. */
6173 section = hash->root.root.u.def.section;
6174 abfd = section->owner;
6175 offset = hash->root.root.u.def.value - section->vma;
42484486
TP
6176 if (!bfd_get_section_contents (abfd, section, contents, offset,
6177 sizeof (contents)))
0955507f
TP
6178 return FALSE;
6179
42484486
TP
6180 first_insn = bfd_get_32 (abfd, contents);
6181
6182 /* Starts by SG instruction. */
0955507f
TP
6183 return first_insn == 0xe97fe97f;
6184}
6185
6186/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6187 secure gateway veneers (ie. the veneers was not in the input import library)
6188 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6189
6190static bfd_boolean
6191arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6192{
6193 struct elf32_arm_stub_hash_entry *stub_entry;
6194 struct bfd_link_info *info;
6195
6196 /* Massage our args to the form they really have. */
6197 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6198 info = (struct bfd_link_info *) gen_info;
6199
6200 if (info->out_implib_bfd)
6201 return TRUE;
6202
6203 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6204 return TRUE;
6205
6206 if (stub_entry->stub_offset == (bfd_vma) -1)
4eca0228 6207 _bfd_error_handler (" %s", stub_entry->output_name);
0955507f
TP
6208
6209 return TRUE;
6210}
6211
6212/* Set offset of each secure gateway veneers so that its address remain
6213 identical to the one in the input import library referred by
6214 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6215 (present in input import library but absent from the executable being
6216 linked) or if new veneers appeared and there is no output import library
6217 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6218 number of secure gateway veneers found in the input import library.
6219
6220 The function returns whether an error occurred. If no error occurred,
6221 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6222 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6223 veneer observed set for new veneers to be layed out after. */
6224
6225static bfd_boolean
6226set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6227 struct elf32_arm_link_hash_table *htab,
6228 int *cmse_stub_created)
6229{
6230 long symsize;
6231 char *sym_name;
6232 flagword flags;
6233 long i, symcount;
6234 bfd *in_implib_bfd;
6235 asection *stub_out_sec;
6236 bfd_boolean ret = TRUE;
6237 Elf_Internal_Sym *intsym;
6238 const char *out_sec_name;
6239 bfd_size_type cmse_stub_size;
6240 asymbol **sympp = NULL, *sym;
6241 struct elf32_arm_link_hash_entry *hash;
6242 const insn_sequence *cmse_stub_template;
6243 struct elf32_arm_stub_hash_entry *stub_entry;
6244 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6245 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6246 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6247
6248 /* No input secure gateway import library. */
6249 if (!htab->in_implib_bfd)
6250 return TRUE;
6251
6252 in_implib_bfd = htab->in_implib_bfd;
6253 if (!htab->cmse_implib)
6254 {
871b3ab2 6255 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
90b6238f 6256 "Gateway import libraries"), in_implib_bfd);
0955507f
TP
6257 return FALSE;
6258 }
6259
6260 /* Get symbol table size. */
6261 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6262 if (symsize < 0)
6263 return FALSE;
6264
6265 /* Read in the input secure gateway import library's symbol table. */
9a733151
AM
6266 sympp = (asymbol **) bfd_malloc (symsize);
6267 if (sympp == NULL)
6268 return FALSE;
6269
0955507f
TP
6270 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6271 if (symcount < 0)
6272 {
6273 ret = FALSE;
6274 goto free_sym_buf;
6275 }
6276
6277 htab->new_cmse_stub_offset = 0;
6278 cmse_stub_size =
6279 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6280 &cmse_stub_template,
6281 &cmse_stub_template_size);
6282 out_sec_name =
6283 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6284 stub_out_sec =
6285 bfd_get_section_by_name (htab->obfd, out_sec_name);
6286 if (stub_out_sec != NULL)
6287 cmse_stub_sec_vma = stub_out_sec->vma;
6288
6289 /* Set addresses of veneers mentionned in input secure gateway import
6290 library's symbol table. */
6291 for (i = 0; i < symcount; i++)
6292 {
6293 sym = sympp[i];
6294 flags = sym->flags;
6295 sym_name = (char *) bfd_asymbol_name (sym);
6296 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6297
6298 if (sym->section != bfd_abs_section_ptr
6299 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6300 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6301 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6302 != ST_BRANCH_TO_THUMB))
6303 {
90b6238f
AM
6304 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6305 "symbol should be absolute, global and "
6306 "refer to Thumb functions"),
4eca0228 6307 in_implib_bfd, sym_name);
0955507f
TP
6308 ret = FALSE;
6309 continue;
6310 }
6311
6312 veneer_value = bfd_asymbol_value (sym);
6313 stub_offset = veneer_value - cmse_stub_sec_vma;
6314 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6315 FALSE, FALSE);
6316 hash = (struct elf32_arm_link_hash_entry *)
6317 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6318
6319 /* Stub entry should have been created by cmse_scan or the symbol be of
6320 a secure function callable from non secure code. */
6321 if (!stub_entry && !hash)
6322 {
6323 bfd_boolean new_stub;
6324
4eca0228 6325 _bfd_error_handler
90b6238f 6326 (_("entry function `%s' disappeared from secure code"), sym_name);
0955507f
TP
6327 hash = (struct elf32_arm_link_hash_entry *)
6328 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6329 stub_entry
6330 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6331 NULL, NULL, bfd_abs_section_ptr, hash,
6332 sym_name, veneer_value,
6333 ST_BRANCH_TO_THUMB, &new_stub);
6334 if (stub_entry == NULL)
6335 ret = FALSE;
6336 else
6337 {
6338 BFD_ASSERT (new_stub);
6339 new_cmse_stubs_created++;
6340 (*cmse_stub_created)++;
6341 }
6342 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6343 stub_entry->stub_offset = stub_offset;
6344 }
6345 /* Symbol found is not callable from non secure code. */
6346 else if (!stub_entry)
6347 {
6348 if (!cmse_entry_fct_p (hash))
6349 {
90b6238f 6350 _bfd_error_handler (_("`%s' refers to a non entry function"),
4eca0228 6351 sym_name);
0955507f
TP
6352 ret = FALSE;
6353 }
6354 continue;
6355 }
6356 else
6357 {
6358 /* Only stubs for SG veneers should have been created. */
6359 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6360
6361 /* Check visibility hasn't changed. */
6362 if (!!(flags & BSF_GLOBAL)
6363 != (hash->root.root.type == bfd_link_hash_defined))
4eca0228 6364 _bfd_error_handler
90b6238f 6365 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
0955507f
TP
6366 sym_name);
6367
6368 stub_entry->stub_offset = stub_offset;
6369 }
6370
6371 /* Size should match that of a SG veneer. */
6372 if (intsym->st_size != cmse_stub_size)
6373 {
90b6238f 6374 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
4eca0228 6375 in_implib_bfd, sym_name);
0955507f
TP
6376 ret = FALSE;
6377 }
6378
6379 /* Previous veneer address is before current SG veneer section. */
6380 if (veneer_value < cmse_stub_sec_vma)
6381 {
6382 /* Avoid offset underflow. */
6383 if (stub_entry)
6384 stub_entry->stub_offset = 0;
6385 stub_offset = 0;
6386 ret = FALSE;
6387 }
6388
6389 /* Complain if stub offset not a multiple of stub size. */
6390 if (stub_offset % cmse_stub_size)
6391 {
4eca0228 6392 _bfd_error_handler
90b6238f
AM
6393 (_("offset of veneer for entry function `%s' not a multiple of "
6394 "its size"), sym_name);
0955507f
TP
6395 ret = FALSE;
6396 }
6397
6398 if (!ret)
6399 continue;
6400
6401 new_cmse_stubs_created--;
6402 if (veneer_value < cmse_stub_array_start)
6403 cmse_stub_array_start = veneer_value;
6404 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6405 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6406 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6407 }
6408
6409 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6410 {
6411 BFD_ASSERT (new_cmse_stubs_created > 0);
4eca0228 6412 _bfd_error_handler
0955507f
TP
6413 (_("new entry function(s) introduced but no output import library "
6414 "specified:"));
6415 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6416 }
6417
6418 if (cmse_stub_array_start != cmse_stub_sec_vma)
6419 {
4eca0228 6420 _bfd_error_handler
90b6238f 6421 (_("start address of `%s' is different from previous link"),
0955507f
TP
6422 out_sec_name);
6423 ret = FALSE;
6424 }
6425
dc1e8a47 6426 free_sym_buf:
0955507f
TP
6427 free (sympp);
6428 return ret;
6429}
6430
906e58ca
NC
6431/* Determine and set the size of the stub section for a final link.
6432
6433 The basic idea here is to examine all the relocations looking for
6434 PC-relative calls to a target that is unreachable with a "bl"
6435 instruction. */
6436
6437bfd_boolean
6438elf32_arm_size_stubs (bfd *output_bfd,
6439 bfd *stub_bfd,
6440 struct bfd_link_info *info,
6441 bfd_signed_vma group_size,
7a89b94e 6442 asection * (*add_stub_section) (const char *, asection *,
6bde4c52 6443 asection *,
7a89b94e 6444 unsigned int),
906e58ca
NC
6445 void (*layout_sections_again) (void))
6446{
0955507f 6447 bfd_boolean ret = TRUE;
4ba2ef8f 6448 obj_attribute *out_attr;
0955507f 6449 int cmse_stub_created = 0;
906e58ca 6450 bfd_size_type stub_group_size;
4ba2ef8f 6451 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
906e58ca 6452 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 6453 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 6454 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
6455 struct a8_erratum_reloc *a8_relocs = NULL;
6456 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6457
4dfe6ac6
NC
6458 if (htab == NULL)
6459 return FALSE;
6460
48229727
JB
6461 if (htab->fix_cortex_a8)
6462 {
21d799b5 6463 a8_fixes = (struct a8_erratum_fix *)
99059e56 6464 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 6465 a8_relocs = (struct a8_erratum_reloc *)
99059e56 6466 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 6467 }
906e58ca
NC
6468
6469 /* Propagate mach to stub bfd, because it may not have been
6470 finalized when we created stub_bfd. */
6471 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6472 bfd_get_mach (output_bfd));
6473
6474 /* Stash our params away. */
6475 htab->stub_bfd = stub_bfd;
6476 htab->add_stub_section = add_stub_section;
6477 htab->layout_sections_again = layout_sections_again;
07d72278 6478 stubs_always_after_branch = group_size < 0;
48229727 6479
4ba2ef8f
TP
6480 out_attr = elf_known_obj_attributes_proc (output_bfd);
6481 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
0955507f 6482
48229727
JB
6483 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6484 as the first half of a 32-bit branch straddling two 4K pages. This is a
6485 crude way of enforcing that. */
6486 if (htab->fix_cortex_a8)
6487 stubs_always_after_branch = 1;
6488
906e58ca
NC
6489 if (group_size < 0)
6490 stub_group_size = -group_size;
6491 else
6492 stub_group_size = group_size;
6493
6494 if (stub_group_size == 1)
6495 {
6496 /* Default values. */
6497 /* Thumb branch range is +-4MB has to be used as the default
6498 maximum size (a given section can contain both ARM and Thumb
6499 code, so the worst case has to be taken into account).
6500
6501 This value is 24K less than that, which allows for 2025
6502 12-byte stubs. If we exceed that, then we will fail to link.
6503 The user will have to relink with an explicit group size
6504 option. */
6505 stub_group_size = 4170000;
6506 }
6507
07d72278 6508 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 6509
3ae046cc
NS
6510 /* If we're applying the cortex A8 fix, we need to determine the
6511 program header size now, because we cannot change it later --
6512 that could alter section placements. Notice the A8 erratum fix
6513 ends up requiring the section addresses to remain unchanged
6514 modulo the page size. That's something we cannot represent
6515 inside BFD, and we don't want to force the section alignment to
6516 be the page size. */
6517 if (htab->fix_cortex_a8)
6518 (*htab->layout_sections_again) ();
6519
906e58ca
NC
6520 while (1)
6521 {
6522 bfd *input_bfd;
6523 unsigned int bfd_indx;
6524 asection *stub_sec;
d7c5bd02 6525 enum elf32_arm_stub_type stub_type;
eb7c4339
NS
6526 bfd_boolean stub_changed = FALSE;
6527 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 6528
48229727 6529 num_a8_fixes = 0;
906e58ca
NC
6530 for (input_bfd = info->input_bfds, bfd_indx = 0;
6531 input_bfd != NULL;
c72f2fb2 6532 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
6533 {
6534 Elf_Internal_Shdr *symtab_hdr;
6535 asection *section;
6536 Elf_Internal_Sym *local_syms = NULL;
6537
73d5efd7
AM
6538 if (!is_arm_elf (input_bfd))
6539 continue;
6540 if ((input_bfd->flags & DYNAMIC) != 0
6541 && (elf_sym_hashes (input_bfd) == NULL
6542 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0))
99059e56 6543 continue;
adbcc655 6544
48229727
JB
6545 num_a8_relocs = 0;
6546
906e58ca
NC
6547 /* We'll need the symbol table in a second. */
6548 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6549 if (symtab_hdr->sh_info == 0)
6550 continue;
6551
4ba2ef8f
TP
6552 /* Limit scan of symbols to object file whose profile is
6553 Microcontroller to not hinder performance in the general case. */
6554 if (m_profile && first_veneer_scan)
6555 {
6556 struct elf_link_hash_entry **sym_hashes;
6557
6558 sym_hashes = elf_sym_hashes (input_bfd);
6559 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
0955507f 6560 &cmse_stub_created))
4ba2ef8f 6561 goto error_ret_free_local;
0955507f
TP
6562
6563 if (cmse_stub_created != 0)
6564 stub_changed = TRUE;
4ba2ef8f
TP
6565 }
6566
906e58ca
NC
6567 /* Walk over each section attached to the input bfd. */
6568 for (section = input_bfd->sections;
6569 section != NULL;
6570 section = section->next)
6571 {
6572 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6573
6574 /* If there aren't any relocs, then there's nothing more
6575 to do. */
6576 if ((section->flags & SEC_RELOC) == 0
6577 || section->reloc_count == 0
6578 || (section->flags & SEC_CODE) == 0)
6579 continue;
6580
6581 /* If this section is a link-once section that will be
6582 discarded, then don't create any stubs. */
6583 if (section->output_section == NULL
6584 || section->output_section->owner != output_bfd)
6585 continue;
6586
6587 /* Get the relocs. */
6588 internal_relocs
6589 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6590 NULL, info->keep_memory);
6591 if (internal_relocs == NULL)
6592 goto error_ret_free_local;
6593
6594 /* Now examine each relocation. */
6595 irela = internal_relocs;
6596 irelaend = irela + section->reloc_count;
6597 for (; irela < irelaend; irela++)
6598 {
6599 unsigned int r_type, r_indx;
906e58ca
NC
6600 asection *sym_sec;
6601 bfd_vma sym_value;
6602 bfd_vma destination;
6603 struct elf32_arm_link_hash_entry *hash;
7413f23f 6604 const char *sym_name;
34e77a92 6605 unsigned char st_type;
35fc36a8 6606 enum arm_st_branch_type branch_type;
48229727 6607 bfd_boolean created_stub = FALSE;
906e58ca
NC
6608
6609 r_type = ELF32_R_TYPE (irela->r_info);
6610 r_indx = ELF32_R_SYM (irela->r_info);
6611
6612 if (r_type >= (unsigned int) R_ARM_max)
6613 {
6614 bfd_set_error (bfd_error_bad_value);
6615 error_ret_free_internal:
6616 if (elf_section_data (section)->relocs == NULL)
6617 free (internal_relocs);
15dd01b1
TP
6618 /* Fall through. */
6619 error_ret_free_local:
c9594989 6620 if (symtab_hdr->contents != (unsigned char *) local_syms)
15dd01b1
TP
6621 free (local_syms);
6622 return FALSE;
906e58ca 6623 }
b38cadfb 6624
0855e32b
NS
6625 hash = NULL;
6626 if (r_indx >= symtab_hdr->sh_info)
6627 hash = elf32_arm_hash_entry
6628 (elf_sym_hashes (input_bfd)
6629 [r_indx - symtab_hdr->sh_info]);
b38cadfb 6630
0855e32b
NS
6631 /* Only look for stubs on branch instructions, or
6632 non-relaxed TLSCALL */
906e58ca 6633 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
6634 && (r_type != (unsigned int) R_ARM_THM_CALL)
6635 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
6636 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6637 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 6638 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
6639 && (r_type != (unsigned int) R_ARM_PLT32)
6640 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6641 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6642 && r_type == elf32_arm_tls_transition
6643 (info, r_type, &hash->root)
6644 && ((hash ? hash->tls_type
6645 : (elf32_arm_local_got_tls_type
6646 (input_bfd)[r_indx]))
6647 & GOT_TLS_GDESC) != 0))
906e58ca
NC
6648 continue;
6649
6650 /* Now determine the call target, its name, value,
6651 section. */
6652 sym_sec = NULL;
6653 sym_value = 0;
6654 destination = 0;
7413f23f 6655 sym_name = NULL;
b38cadfb 6656
0855e32b
NS
6657 if (r_type == (unsigned int) R_ARM_TLS_CALL
6658 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6659 {
6660 /* A non-relaxed TLS call. The target is the
6661 plt-resident trampoline and nothing to do
6662 with the symbol. */
6663 BFD_ASSERT (htab->tls_trampoline > 0);
6664 sym_sec = htab->root.splt;
6665 sym_value = htab->tls_trampoline;
6666 hash = 0;
34e77a92 6667 st_type = STT_FUNC;
35fc36a8 6668 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
6669 }
6670 else if (!hash)
906e58ca
NC
6671 {
6672 /* It's a local symbol. */
6673 Elf_Internal_Sym *sym;
906e58ca
NC
6674
6675 if (local_syms == NULL)
6676 {
6677 local_syms
6678 = (Elf_Internal_Sym *) symtab_hdr->contents;
6679 if (local_syms == NULL)
6680 local_syms
6681 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6682 symtab_hdr->sh_info, 0,
6683 NULL, NULL, NULL);
6684 if (local_syms == NULL)
6685 goto error_ret_free_internal;
6686 }
6687
6688 sym = local_syms + r_indx;
f6d250ce
TS
6689 if (sym->st_shndx == SHN_UNDEF)
6690 sym_sec = bfd_und_section_ptr;
6691 else if (sym->st_shndx == SHN_ABS)
6692 sym_sec = bfd_abs_section_ptr;
6693 else if (sym->st_shndx == SHN_COMMON)
6694 sym_sec = bfd_com_section_ptr;
6695 else
6696 sym_sec =
6697 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6698
ffcb4889
NS
6699 if (!sym_sec)
6700 /* This is an undefined symbol. It can never
6a631e86 6701 be resolved. */
ffcb4889 6702 continue;
fe33d2fa 6703
906e58ca
NC
6704 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6705 sym_value = sym->st_value;
6706 destination = (sym_value + irela->r_addend
6707 + sym_sec->output_offset
6708 + sym_sec->output_section->vma);
34e77a92 6709 st_type = ELF_ST_TYPE (sym->st_info);
39d911fc
TP
6710 branch_type =
6711 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
7413f23f
DJ
6712 sym_name
6713 = bfd_elf_string_from_elf_section (input_bfd,
6714 symtab_hdr->sh_link,
6715 sym->st_name);
906e58ca
NC
6716 }
6717 else
6718 {
6719 /* It's an external symbol. */
906e58ca
NC
6720 while (hash->root.root.type == bfd_link_hash_indirect
6721 || hash->root.root.type == bfd_link_hash_warning)
6722 hash = ((struct elf32_arm_link_hash_entry *)
6723 hash->root.root.u.i.link);
6724
6725 if (hash->root.root.type == bfd_link_hash_defined
6726 || hash->root.root.type == bfd_link_hash_defweak)
6727 {
6728 sym_sec = hash->root.root.u.def.section;
6729 sym_value = hash->root.root.u.def.value;
022f8312
CL
6730
6731 struct elf32_arm_link_hash_table *globals =
6732 elf32_arm_hash_table (info);
6733
6734 /* For a destination in a shared library,
6735 use the PLT stub as target address to
6736 decide whether a branch stub is
6737 needed. */
4dfe6ac6 6738 if (globals != NULL
362d30a1 6739 && globals->root.splt != NULL
4dfe6ac6 6740 && hash != NULL
022f8312
CL
6741 && hash->root.plt.offset != (bfd_vma) -1)
6742 {
362d30a1 6743 sym_sec = globals->root.splt;
022f8312
CL
6744 sym_value = hash->root.plt.offset;
6745 if (sym_sec->output_section != NULL)
6746 destination = (sym_value
6747 + sym_sec->output_offset
6748 + sym_sec->output_section->vma);
6749 }
6750 else if (sym_sec->output_section != NULL)
906e58ca
NC
6751 destination = (sym_value + irela->r_addend
6752 + sym_sec->output_offset
6753 + sym_sec->output_section->vma);
6754 }
69c5861e
CL
6755 else if ((hash->root.root.type == bfd_link_hash_undefined)
6756 || (hash->root.root.type == bfd_link_hash_undefweak))
6757 {
6758 /* For a shared library, use the PLT stub as
6759 target address to decide whether a long
6760 branch stub is needed.
6761 For absolute code, they cannot be handled. */
6762 struct elf32_arm_link_hash_table *globals =
6763 elf32_arm_hash_table (info);
6764
4dfe6ac6 6765 if (globals != NULL
362d30a1 6766 && globals->root.splt != NULL
4dfe6ac6 6767 && hash != NULL
69c5861e
CL
6768 && hash->root.plt.offset != (bfd_vma) -1)
6769 {
362d30a1 6770 sym_sec = globals->root.splt;
69c5861e
CL
6771 sym_value = hash->root.plt.offset;
6772 if (sym_sec->output_section != NULL)
6773 destination = (sym_value
6774 + sym_sec->output_offset
6775 + sym_sec->output_section->vma);
6776 }
6777 else
6778 continue;
6779 }
906e58ca
NC
6780 else
6781 {
6782 bfd_set_error (bfd_error_bad_value);
6783 goto error_ret_free_internal;
6784 }
34e77a92 6785 st_type = hash->root.type;
39d911fc
TP
6786 branch_type =
6787 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
7413f23f 6788 sym_name = hash->root.root.root.string;
906e58ca
NC
6789 }
6790
48229727 6791 do
7413f23f 6792 {
b715f643 6793 bfd_boolean new_stub;
0955507f 6794 struct elf32_arm_stub_hash_entry *stub_entry;
b715f643 6795
48229727
JB
6796 /* Determine what (if any) linker stub is needed. */
6797 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
6798 st_type, &branch_type,
6799 hash, destination, sym_sec,
48229727
JB
6800 input_bfd, sym_name);
6801 if (stub_type == arm_stub_none)
6802 break;
6803
48229727
JB
6804 /* We've either created a stub for this reloc already,
6805 or we are about to. */
0955507f 6806 stub_entry =
b715f643
TP
6807 elf32_arm_create_stub (htab, stub_type, section, irela,
6808 sym_sec, hash,
6809 (char *) sym_name, sym_value,
6810 branch_type, &new_stub);
7413f23f 6811
0955507f 6812 created_stub = stub_entry != NULL;
b715f643
TP
6813 if (!created_stub)
6814 goto error_ret_free_internal;
6815 else if (!new_stub)
6816 break;
99059e56 6817 else
b715f643 6818 stub_changed = TRUE;
99059e56
RM
6819 }
6820 while (0);
6821
6822 /* Look for relocations which might trigger Cortex-A8
6823 erratum. */
6824 if (htab->fix_cortex_a8
6825 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6826 || r_type == (unsigned int) R_ARM_THM_JUMP19
6827 || r_type == (unsigned int) R_ARM_THM_CALL
6828 || r_type == (unsigned int) R_ARM_THM_XPC22))
6829 {
6830 bfd_vma from = section->output_section->vma
6831 + section->output_offset
6832 + irela->r_offset;
6833
6834 if ((from & 0xfff) == 0xffe)
6835 {
6836 /* Found a candidate. Note we haven't checked the
6837 destination is within 4K here: if we do so (and
6838 don't create an entry in a8_relocs) we can't tell
6839 that a branch should have been relocated when
6840 scanning later. */
6841 if (num_a8_relocs == a8_reloc_table_size)
6842 {
6843 a8_reloc_table_size *= 2;
6844 a8_relocs = (struct a8_erratum_reloc *)
6845 bfd_realloc (a8_relocs,
6846 sizeof (struct a8_erratum_reloc)
6847 * a8_reloc_table_size);
6848 }
6849
6850 a8_relocs[num_a8_relocs].from = from;
6851 a8_relocs[num_a8_relocs].destination = destination;
6852 a8_relocs[num_a8_relocs].r_type = r_type;
6853 a8_relocs[num_a8_relocs].branch_type = branch_type;
6854 a8_relocs[num_a8_relocs].sym_name = sym_name;
6855 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6856 a8_relocs[num_a8_relocs].hash = hash;
6857
6858 num_a8_relocs++;
6859 }
6860 }
906e58ca
NC
6861 }
6862
99059e56
RM
6863 /* We're done with the internal relocs, free them. */
6864 if (elf_section_data (section)->relocs == NULL)
6865 free (internal_relocs);
6866 }
48229727 6867
99059e56 6868 if (htab->fix_cortex_a8)
48229727 6869 {
99059e56
RM
6870 /* Sort relocs which might apply to Cortex-A8 erratum. */
6871 qsort (a8_relocs, num_a8_relocs,
eb7c4339 6872 sizeof (struct a8_erratum_reloc),
99059e56 6873 &a8_reloc_compare);
48229727 6874
99059e56
RM
6875 /* Scan for branches which might trigger Cortex-A8 erratum. */
6876 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 6877 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
6878 a8_relocs, num_a8_relocs,
6879 prev_num_a8_fixes, &stub_changed)
6880 != 0)
48229727 6881 goto error_ret_free_local;
5e681ec4 6882 }
7f991970
AM
6883
6884 if (local_syms != NULL
6885 && symtab_hdr->contents != (unsigned char *) local_syms)
6886 {
6887 if (!info->keep_memory)
6888 free (local_syms);
6889 else
6890 symtab_hdr->contents = (unsigned char *) local_syms;
6891 }
5e681ec4
PB
6892 }
6893
0955507f
TP
6894 if (first_veneer_scan
6895 && !set_cmse_veneer_addr_from_implib (info, htab,
6896 &cmse_stub_created))
6897 ret = FALSE;
6898
eb7c4339 6899 if (prev_num_a8_fixes != num_a8_fixes)
99059e56 6900 stub_changed = TRUE;
48229727 6901
906e58ca
NC
6902 if (!stub_changed)
6903 break;
5e681ec4 6904
906e58ca
NC
6905 /* OK, we've added some stubs. Find out the new size of the
6906 stub sections. */
6907 for (stub_sec = htab->stub_bfd->sections;
6908 stub_sec != NULL;
6909 stub_sec = stub_sec->next)
3e6b1042
DJ
6910 {
6911 /* Ignore non-stub sections. */
6912 if (!strstr (stub_sec->name, STUB_SUFFIX))
6913 continue;
6914
6915 stub_sec->size = 0;
6916 }
b34b2d70 6917
0955507f
TP
6918 /* Add new SG veneers after those already in the input import
6919 library. */
6920 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6921 stub_type++)
6922 {
6923 bfd_vma *start_offset_p;
6924 asection **stub_sec_p;
6925
6926 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6927 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6928 if (start_offset_p == NULL)
6929 continue;
6930
6931 BFD_ASSERT (stub_sec_p != NULL);
6932 if (*stub_sec_p != NULL)
6933 (*stub_sec_p)->size = *start_offset_p;
6934 }
6935
d7c5bd02 6936 /* Compute stub section size, considering padding. */
906e58ca 6937 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
d7c5bd02
TP
6938 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6939 stub_type++)
6940 {
6941 int size, padding;
6942 asection **stub_sec_p;
6943
6944 padding = arm_dedicated_stub_section_padding (stub_type);
6945 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6946 /* Skip if no stub input section or no stub section padding
6947 required. */
6948 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6949 continue;
6950 /* Stub section padding required but no dedicated section. */
6951 BFD_ASSERT (stub_sec_p);
6952
6953 size = (*stub_sec_p)->size;
6954 size = (size + padding - 1) & ~(padding - 1);
6955 (*stub_sec_p)->size = size;
6956 }
906e58ca 6957
48229727
JB
6958 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6959 if (htab->fix_cortex_a8)
99059e56
RM
6960 for (i = 0; i < num_a8_fixes; i++)
6961 {
48229727 6962 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
daa4adae 6963 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
48229727
JB
6964
6965 if (stub_sec == NULL)
7f991970 6966 return FALSE;
48229727 6967
99059e56
RM
6968 stub_sec->size
6969 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6970 NULL);
6971 }
48229727
JB
6972
6973
906e58ca
NC
6974 /* Ask the linker to do its stuff. */
6975 (*htab->layout_sections_again) ();
4ba2ef8f 6976 first_veneer_scan = FALSE;
ba93b8ac
DJ
6977 }
6978
48229727
JB
6979 /* Add stubs for Cortex-A8 erratum fixes now. */
6980 if (htab->fix_cortex_a8)
6981 {
6982 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
6983 {
6984 struct elf32_arm_stub_hash_entry *stub_entry;
6985 char *stub_name = a8_fixes[i].stub_name;
6986 asection *section = a8_fixes[i].section;
6987 unsigned int section_id = a8_fixes[i].section->id;
6988 asection *link_sec = htab->stub_group[section_id].link_sec;
6989 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6990 const insn_sequence *template_sequence;
6991 int template_size, size = 0;
6992
6993 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6994 TRUE, FALSE);
6995 if (stub_entry == NULL)
6996 {
871b3ab2 6997 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 6998 section->owner, stub_name);
99059e56
RM
6999 return FALSE;
7000 }
7001
7002 stub_entry->stub_sec = stub_sec;
0955507f 7003 stub_entry->stub_offset = (bfd_vma) -1;
99059e56
RM
7004 stub_entry->id_sec = link_sec;
7005 stub_entry->stub_type = a8_fixes[i].stub_type;
8d9d9490 7006 stub_entry->source_value = a8_fixes[i].offset;
99059e56 7007 stub_entry->target_section = a8_fixes[i].section;
8d9d9490 7008 stub_entry->target_value = a8_fixes[i].target_offset;
99059e56 7009 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 7010 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 7011
99059e56
RM
7012 size = find_stub_size_and_template (a8_fixes[i].stub_type,
7013 &template_sequence,
7014 &template_size);
48229727 7015
99059e56
RM
7016 stub_entry->stub_size = size;
7017 stub_entry->stub_template = template_sequence;
7018 stub_entry->stub_template_size = template_size;
7019 }
48229727
JB
7020
7021 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 7022 elf32_arm_write_section(). */
48229727
JB
7023 htab->a8_erratum_fixes = a8_fixes;
7024 htab->num_a8_erratum_fixes = num_a8_fixes;
7025 }
7026 else
7027 {
7028 htab->a8_erratum_fixes = NULL;
7029 htab->num_a8_erratum_fixes = 0;
7030 }
0955507f 7031 return ret;
5e681ec4
PB
7032}
7033
906e58ca
NC
7034/* Build all the stubs associated with the current output file. The
7035 stubs are kept in a hash table attached to the main linker hash
7036 table. We also set up the .plt entries for statically linked PIC
7037 functions here. This function is called via arm_elf_finish in the
7038 linker. */
252b5132 7039
906e58ca
NC
7040bfd_boolean
7041elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 7042{
906e58ca
NC
7043 asection *stub_sec;
7044 struct bfd_hash_table *table;
0955507f 7045 enum elf32_arm_stub_type stub_type;
906e58ca 7046 struct elf32_arm_link_hash_table *htab;
252b5132 7047
906e58ca 7048 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
7049 if (htab == NULL)
7050 return FALSE;
252b5132 7051
906e58ca
NC
7052 for (stub_sec = htab->stub_bfd->sections;
7053 stub_sec != NULL;
7054 stub_sec = stub_sec->next)
252b5132 7055 {
906e58ca
NC
7056 bfd_size_type size;
7057
8029a119 7058 /* Ignore non-stub sections. */
906e58ca
NC
7059 if (!strstr (stub_sec->name, STUB_SUFFIX))
7060 continue;
7061
d7c5bd02 7062 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
0955507f
TP
7063 must at least be done for stub section requiring padding and for SG
7064 veneers to ensure that a non secure code branching to a removed SG
7065 veneer causes an error. */
906e58ca 7066 size = stub_sec->size;
21d799b5 7067 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
7068 if (stub_sec->contents == NULL && size != 0)
7069 return FALSE;
0955507f 7070
906e58ca 7071 stub_sec->size = 0;
252b5132
RH
7072 }
7073
0955507f
TP
7074 /* Add new SG veneers after those already in the input import library. */
7075 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7076 {
7077 bfd_vma *start_offset_p;
7078 asection **stub_sec_p;
7079
7080 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7081 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7082 if (start_offset_p == NULL)
7083 continue;
7084
7085 BFD_ASSERT (stub_sec_p != NULL);
7086 if (*stub_sec_p != NULL)
7087 (*stub_sec_p)->size = *start_offset_p;
7088 }
7089
906e58ca
NC
7090 /* Build the stubs as directed by the stub hash table. */
7091 table = &htab->stub_hash_table;
7092 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
7093 if (htab->fix_cortex_a8)
7094 {
7095 /* Place the cortex a8 stubs last. */
7096 htab->fix_cortex_a8 = -1;
7097 bfd_hash_traverse (table, arm_build_one_stub, info);
7098 }
252b5132 7099
906e58ca 7100 return TRUE;
252b5132
RH
7101}
7102
9b485d32
NC
7103/* Locate the Thumb encoded calling stub for NAME. */
7104
252b5132 7105static struct elf_link_hash_entry *
57e8b36a
NC
7106find_thumb_glue (struct bfd_link_info *link_info,
7107 const char *name,
f2a9dd69 7108 char **error_message)
252b5132
RH
7109{
7110 char *tmp_name;
7111 struct elf_link_hash_entry *hash;
7112 struct elf32_arm_link_hash_table *hash_table;
7113
7114 /* We need a pointer to the armelf specific hash table. */
7115 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7116 if (hash_table == NULL)
7117 return NULL;
252b5132 7118
21d799b5 7119 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7120 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7121
7122 BFD_ASSERT (tmp_name);
7123
7124 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7125
7126 hash = elf_link_hash_lookup
b34976b6 7127 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 7128
b1657152 7129 if (hash == NULL
90b6238f
AM
7130 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7131 "Thumb", tmp_name, name) == -1)
b1657152 7132 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7133
7134 free (tmp_name);
7135
7136 return hash;
7137}
7138
9b485d32
NC
7139/* Locate the ARM encoded calling stub for NAME. */
7140
252b5132 7141static struct elf_link_hash_entry *
57e8b36a
NC
7142find_arm_glue (struct bfd_link_info *link_info,
7143 const char *name,
f2a9dd69 7144 char **error_message)
252b5132
RH
7145{
7146 char *tmp_name;
7147 struct elf_link_hash_entry *myh;
7148 struct elf32_arm_link_hash_table *hash_table;
7149
7150 /* We need a pointer to the elfarm specific hash table. */
7151 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7152 if (hash_table == NULL)
7153 return NULL;
252b5132 7154
21d799b5 7155 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7156 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7157 BFD_ASSERT (tmp_name);
7158
7159 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7160
7161 myh = elf_link_hash_lookup
b34976b6 7162 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 7163
b1657152 7164 if (myh == NULL
90b6238f
AM
7165 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7166 "ARM", tmp_name, name) == -1)
b1657152 7167 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7168
7169 free (tmp_name);
7170
7171 return myh;
7172}
7173
8f6277f5 7174/* ARM->Thumb glue (static images):
252b5132
RH
7175
7176 .arm
7177 __func_from_arm:
7178 ldr r12, __func_addr
7179 bx r12
7180 __func_addr:
906e58ca 7181 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 7182
26079076
PB
7183 (v5t static images)
7184 .arm
7185 __func_from_arm:
7186 ldr pc, __func_addr
7187 __func_addr:
906e58ca 7188 .word func @ behave as if you saw a ARM_32 reloc.
26079076 7189
8f6277f5
PB
7190 (relocatable images)
7191 .arm
7192 __func_from_arm:
7193 ldr r12, __func_offset
7194 add r12, r12, pc
7195 bx r12
7196 __func_offset:
8029a119 7197 .word func - . */
8f6277f5
PB
7198
7199#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
7200static const insn32 a2t1_ldr_insn = 0xe59fc000;
7201static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7202static const insn32 a2t3_func_addr_insn = 0x00000001;
7203
26079076
PB
7204#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7205static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7206static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7207
8f6277f5
PB
7208#define ARM2THUMB_PIC_GLUE_SIZE 16
7209static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7210static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7211static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7212
07d6d2b8 7213/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 7214
07d6d2b8
AM
7215 .thumb .thumb
7216 .align 2 .align 2
7217 __func_from_thumb: __func_from_thumb:
7218 bx pc push {r6, lr}
7219 nop ldr r6, __func_addr
7220 .arm mov lr, pc
7221 b func bx r6
99059e56
RM
7222 .arm
7223 ;; back_to_thumb
7224 ldmia r13! {r6, lr}
7225 bx lr
7226 __func_addr:
07d6d2b8 7227 .word func */
252b5132
RH
7228
7229#define THUMB2ARM_GLUE_SIZE 8
7230static const insn16 t2a1_bx_pc_insn = 0x4778;
7231static const insn16 t2a2_noop_insn = 0x46c0;
7232static const insn32 t2a3_b_insn = 0xea000000;
7233
c7b8f16e 7234#define VFP11_ERRATUM_VENEER_SIZE 8
a504d23a
LA
7235#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7236#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
c7b8f16e 7237
845b51d6
PB
7238#define ARM_BX_VENEER_SIZE 12
7239static const insn32 armbx1_tst_insn = 0xe3100001;
7240static const insn32 armbx2_moveq_insn = 0x01a0f000;
7241static const insn32 armbx3_bx_insn = 0xe12fff10;
7242
7e392df6 7243#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
7244static void
7245arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
7246{
7247 asection * s;
8029a119 7248 bfd_byte * contents;
252b5132 7249
8029a119 7250 if (size == 0)
3e6b1042
DJ
7251 {
7252 /* Do not include empty glue sections in the output. */
7253 if (abfd != NULL)
7254 {
3d4d4302 7255 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
7256 if (s != NULL)
7257 s->flags |= SEC_EXCLUDE;
7258 }
7259 return;
7260 }
252b5132 7261
8029a119 7262 BFD_ASSERT (abfd != NULL);
252b5132 7263
3d4d4302 7264 s = bfd_get_linker_section (abfd, name);
8029a119 7265 BFD_ASSERT (s != NULL);
252b5132 7266
b0f4fbf8 7267 contents = (bfd_byte *) bfd_zalloc (abfd, size);
252b5132 7268
8029a119
NC
7269 BFD_ASSERT (s->size == size);
7270 s->contents = contents;
7271}
906e58ca 7272
8029a119
NC
7273bfd_boolean
7274bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7275{
7276 struct elf32_arm_link_hash_table * globals;
906e58ca 7277
8029a119
NC
7278 globals = elf32_arm_hash_table (info);
7279 BFD_ASSERT (globals != NULL);
906e58ca 7280
8029a119
NC
7281 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7282 globals->arm_glue_size,
7283 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 7284
8029a119
NC
7285 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7286 globals->thumb_glue_size,
7287 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 7288
8029a119
NC
7289 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7290 globals->vfp11_erratum_glue_size,
7291 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 7292
a504d23a
LA
7293 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7294 globals->stm32l4xx_erratum_glue_size,
7295 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7296
8029a119
NC
7297 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7298 globals->bx_glue_size,
845b51d6
PB
7299 ARM_BX_GLUE_SECTION_NAME);
7300
b34976b6 7301 return TRUE;
252b5132
RH
7302}
7303
a4fd1a8e 7304/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
7305 returns the symbol identifying the stub. */
7306
a4fd1a8e 7307static struct elf_link_hash_entry *
57e8b36a
NC
7308record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7309 struct elf_link_hash_entry * h)
252b5132
RH
7310{
7311 const char * name = h->root.root.string;
63b0f745 7312 asection * s;
252b5132
RH
7313 char * tmp_name;
7314 struct elf_link_hash_entry * myh;
14a793b2 7315 struct bfd_link_hash_entry * bh;
252b5132 7316 struct elf32_arm_link_hash_table * globals;
dc810e39 7317 bfd_vma val;
2f475487 7318 bfd_size_type size;
252b5132
RH
7319
7320 globals = elf32_arm_hash_table (link_info);
252b5132
RH
7321 BFD_ASSERT (globals != NULL);
7322 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7323
3d4d4302 7324 s = bfd_get_linker_section
252b5132
RH
7325 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7326
252b5132
RH
7327 BFD_ASSERT (s != NULL);
7328
21d799b5 7329 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7330 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7331 BFD_ASSERT (tmp_name);
7332
7333 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7334
7335 myh = elf_link_hash_lookup
b34976b6 7336 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
7337
7338 if (myh != NULL)
7339 {
9b485d32 7340 /* We've already seen this guy. */
252b5132 7341 free (tmp_name);
a4fd1a8e 7342 return myh;
252b5132
RH
7343 }
7344
57e8b36a
NC
7345 /* The only trick here is using hash_table->arm_glue_size as the value.
7346 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
7347 putting it. The +1 on the value marks that the stub has not been
7348 output yet - not that it is a Thumb function. */
14a793b2 7349 bh = NULL;
dc810e39
AM
7350 val = globals->arm_glue_size + 1;
7351 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7352 tmp_name, BSF_GLOBAL, s, val,
b34976b6 7353 NULL, TRUE, FALSE, &bh);
252b5132 7354
b7693d02
DJ
7355 myh = (struct elf_link_hash_entry *) bh;
7356 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7357 myh->forced_local = 1;
7358
252b5132
RH
7359 free (tmp_name);
7360
0e1862bb
L
7361 if (bfd_link_pic (link_info)
7362 || globals->root.is_relocatable_executable
27e55c4d 7363 || globals->pic_veneer)
2f475487 7364 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
7365 else if (globals->use_blx)
7366 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 7367 else
2f475487
AM
7368 size = ARM2THUMB_STATIC_GLUE_SIZE;
7369
7370 s->size += size;
7371 globals->arm_glue_size += size;
252b5132 7372
a4fd1a8e 7373 return myh;
252b5132
RH
7374}
7375
845b51d6
PB
7376/* Allocate space for ARMv4 BX veneers. */
7377
7378static void
7379record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7380{
7381 asection * s;
7382 struct elf32_arm_link_hash_table *globals;
7383 char *tmp_name;
7384 struct elf_link_hash_entry *myh;
7385 struct bfd_link_hash_entry *bh;
7386 bfd_vma val;
7387
7388 /* BX PC does not need a veneer. */
7389 if (reg == 15)
7390 return;
7391
7392 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
7393 BFD_ASSERT (globals != NULL);
7394 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7395
7396 /* Check if this veneer has already been allocated. */
7397 if (globals->bx_glue_offset[reg])
7398 return;
7399
3d4d4302 7400 s = bfd_get_linker_section
845b51d6
PB
7401 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7402
7403 BFD_ASSERT (s != NULL);
7404
7405 /* Add symbol for veneer. */
21d799b5
NC
7406 tmp_name = (char *)
7407 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
845b51d6 7408 BFD_ASSERT (tmp_name);
906e58ca 7409
845b51d6 7410 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 7411
845b51d6
PB
7412 myh = elf_link_hash_lookup
7413 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7414
845b51d6 7415 BFD_ASSERT (myh == NULL);
906e58ca 7416
845b51d6
PB
7417 bh = NULL;
7418 val = globals->bx_glue_size;
7419 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56
RM
7420 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7421 NULL, TRUE, FALSE, &bh);
845b51d6
PB
7422
7423 myh = (struct elf_link_hash_entry *) bh;
7424 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7425 myh->forced_local = 1;
7426
7427 s->size += ARM_BX_VENEER_SIZE;
7428 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7429 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7430}
7431
7432
c7b8f16e
JB
7433/* Add an entry to the code/data map for section SEC. */
7434
7435static void
7436elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7437{
7438 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7439 unsigned int newidx;
906e58ca 7440
c7b8f16e
JB
7441 if (sec_data->map == NULL)
7442 {
21d799b5 7443 sec_data->map = (elf32_arm_section_map *)
99059e56 7444 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
7445 sec_data->mapcount = 0;
7446 sec_data->mapsize = 1;
7447 }
906e58ca 7448
c7b8f16e 7449 newidx = sec_data->mapcount++;
906e58ca 7450
c7b8f16e
JB
7451 if (sec_data->mapcount > sec_data->mapsize)
7452 {
7453 sec_data->mapsize *= 2;
21d799b5 7454 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
7455 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7456 * sizeof (elf32_arm_section_map));
515ef31d
NC
7457 }
7458
7459 if (sec_data->map)
7460 {
7461 sec_data->map[newidx].vma = vma;
7462 sec_data->map[newidx].type = type;
c7b8f16e 7463 }
c7b8f16e
JB
7464}
7465
7466
7467/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7468 veneers are handled for now. */
7469
7470static bfd_vma
7471record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
7472 elf32_vfp11_erratum_list *branch,
7473 bfd *branch_bfd,
7474 asection *branch_sec,
7475 unsigned int offset)
c7b8f16e
JB
7476{
7477 asection *s;
7478 struct elf32_arm_link_hash_table *hash_table;
7479 char *tmp_name;
7480 struct elf_link_hash_entry *myh;
7481 struct bfd_link_hash_entry *bh;
7482 bfd_vma val;
7483 struct _arm_elf_section_data *sec_data;
c7b8f16e 7484 elf32_vfp11_erratum_list *newerr;
906e58ca 7485
c7b8f16e 7486 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
7487 BFD_ASSERT (hash_table != NULL);
7488 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 7489
3d4d4302 7490 s = bfd_get_linker_section
c7b8f16e 7491 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 7492
c7b8f16e 7493 sec_data = elf32_arm_section_data (s);
906e58ca 7494
c7b8f16e 7495 BFD_ASSERT (s != NULL);
906e58ca 7496
21d799b5 7497 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 7498 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e 7499 BFD_ASSERT (tmp_name);
906e58ca 7500
c7b8f16e
JB
7501 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7502 hash_table->num_vfp11_fixes);
906e58ca 7503
c7b8f16e
JB
7504 myh = elf_link_hash_lookup
7505 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7506
c7b8f16e 7507 BFD_ASSERT (myh == NULL);
906e58ca 7508
c7b8f16e
JB
7509 bh = NULL;
7510 val = hash_table->vfp11_erratum_glue_size;
7511 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56
RM
7512 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7513 NULL, TRUE, FALSE, &bh);
c7b8f16e
JB
7514
7515 myh = (struct elf_link_hash_entry *) bh;
7516 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7517 myh->forced_local = 1;
7518
7519 /* Link veneer back to calling location. */
c7e2358a 7520 sec_data->erratumcount += 1;
21d799b5
NC
7521 newerr = (elf32_vfp11_erratum_list *)
7522 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 7523
c7b8f16e
JB
7524 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7525 newerr->vma = -1;
7526 newerr->u.v.branch = branch;
7527 newerr->u.v.id = hash_table->num_vfp11_fixes;
7528 branch->u.b.veneer = newerr;
7529
7530 newerr->next = sec_data->erratumlist;
7531 sec_data->erratumlist = newerr;
7532
7533 /* A symbol for the return from the veneer. */
7534 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7535 hash_table->num_vfp11_fixes);
7536
7537 myh = elf_link_hash_lookup
7538 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7539
c7b8f16e
JB
7540 if (myh != NULL)
7541 abort ();
7542
7543 bh = NULL;
7544 val = offset + 4;
7545 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7546 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 7547
c7b8f16e
JB
7548 myh = (struct elf_link_hash_entry *) bh;
7549 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7550 myh->forced_local = 1;
7551
7552 free (tmp_name);
906e58ca 7553
c7b8f16e
JB
7554 /* Generate a mapping symbol for the veneer section, and explicitly add an
7555 entry for that symbol to the code/data map for the section. */
7556 if (hash_table->vfp11_erratum_glue_size == 0)
7557 {
7558 bh = NULL;
7559 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 7560 ever requires this erratum fix. */
c7b8f16e
JB
7561 _bfd_generic_link_add_one_symbol (link_info,
7562 hash_table->bfd_of_glue_owner, "$a",
7563 BSF_LOCAL, s, 0, NULL,
99059e56 7564 TRUE, FALSE, &bh);
c7b8f16e
JB
7565
7566 myh = (struct elf_link_hash_entry *) bh;
7567 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7568 myh->forced_local = 1;
906e58ca 7569
c7b8f16e 7570 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
7571 BFDs. We must make a note of this generated mapping symbol
7572 ourselves so that code byteswapping works properly in
7573 elf32_arm_write_section. */
c7b8f16e
JB
7574 elf32_arm_section_map_add (s, 'a', 0);
7575 }
906e58ca 7576
c7b8f16e
JB
7577 s->size += VFP11_ERRATUM_VENEER_SIZE;
7578 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7579 hash_table->num_vfp11_fixes++;
906e58ca 7580
c7b8f16e
JB
7581 /* The offset of the veneer. */
7582 return val;
7583}
7584
a504d23a
LA
7585/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7586 veneers need to be handled because used only in Cortex-M. */
7587
7588static bfd_vma
7589record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7590 elf32_stm32l4xx_erratum_list *branch,
7591 bfd *branch_bfd,
7592 asection *branch_sec,
7593 unsigned int offset,
7594 bfd_size_type veneer_size)
7595{
7596 asection *s;
7597 struct elf32_arm_link_hash_table *hash_table;
7598 char *tmp_name;
7599 struct elf_link_hash_entry *myh;
7600 struct bfd_link_hash_entry *bh;
7601 bfd_vma val;
7602 struct _arm_elf_section_data *sec_data;
7603 elf32_stm32l4xx_erratum_list *newerr;
7604
7605 hash_table = elf32_arm_hash_table (link_info);
7606 BFD_ASSERT (hash_table != NULL);
7607 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7608
7609 s = bfd_get_linker_section
7610 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7611
7612 BFD_ASSERT (s != NULL);
7613
7614 sec_data = elf32_arm_section_data (s);
7615
7616 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7617 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
a504d23a
LA
7618 BFD_ASSERT (tmp_name);
7619
7620 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7621 hash_table->num_stm32l4xx_fixes);
7622
7623 myh = elf_link_hash_lookup
7624 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7625
7626 BFD_ASSERT (myh == NULL);
7627
7628 bh = NULL;
7629 val = hash_table->stm32l4xx_erratum_glue_size;
7630 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7631 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7632 NULL, TRUE, FALSE, &bh);
7633
7634 myh = (struct elf_link_hash_entry *) bh;
7635 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7636 myh->forced_local = 1;
7637
7638 /* Link veneer back to calling location. */
7639 sec_data->stm32l4xx_erratumcount += 1;
7640 newerr = (elf32_stm32l4xx_erratum_list *)
7641 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7642
7643 newerr->type = STM32L4XX_ERRATUM_VENEER;
7644 newerr->vma = -1;
7645 newerr->u.v.branch = branch;
7646 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7647 branch->u.b.veneer = newerr;
7648
7649 newerr->next = sec_data->stm32l4xx_erratumlist;
7650 sec_data->stm32l4xx_erratumlist = newerr;
7651
7652 /* A symbol for the return from the veneer. */
7653 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7654 hash_table->num_stm32l4xx_fixes);
7655
7656 myh = elf_link_hash_lookup
7657 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7658
7659 if (myh != NULL)
7660 abort ();
7661
7662 bh = NULL;
7663 val = offset + 4;
7664 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7665 branch_sec, val, NULL, TRUE, FALSE, &bh);
7666
7667 myh = (struct elf_link_hash_entry *) bh;
7668 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7669 myh->forced_local = 1;
7670
7671 free (tmp_name);
7672
7673 /* Generate a mapping symbol for the veneer section, and explicitly add an
7674 entry for that symbol to the code/data map for the section. */
7675 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7676 {
7677 bh = NULL;
7678 /* Creates a THUMB symbol since there is no other choice. */
7679 _bfd_generic_link_add_one_symbol (link_info,
7680 hash_table->bfd_of_glue_owner, "$t",
7681 BSF_LOCAL, s, 0, NULL,
7682 TRUE, FALSE, &bh);
7683
7684 myh = (struct elf_link_hash_entry *) bh;
7685 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7686 myh->forced_local = 1;
7687
7688 /* The elf32_arm_init_maps function only cares about symbols from input
7689 BFDs. We must make a note of this generated mapping symbol
7690 ourselves so that code byteswapping works properly in
7691 elf32_arm_write_section. */
7692 elf32_arm_section_map_add (s, 't', 0);
7693 }
7694
7695 s->size += veneer_size;
7696 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7697 hash_table->num_stm32l4xx_fixes++;
7698
7699 /* The offset of the veneer. */
7700 return val;
7701}
7702
8029a119 7703#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
7704 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7705 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
7706
7707/* Create a fake section for use by the ARM backend of the linker. */
7708
7709static bfd_boolean
7710arm_make_glue_section (bfd * abfd, const char * name)
7711{
7712 asection * sec;
7713
3d4d4302 7714 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
7715 if (sec != NULL)
7716 /* Already made. */
7717 return TRUE;
7718
3d4d4302 7719 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
7720
7721 if (sec == NULL
fd361982 7722 || !bfd_set_section_alignment (sec, 2))
8029a119
NC
7723 return FALSE;
7724
7725 /* Set the gc mark to prevent the section from being removed by garbage
7726 collection, despite the fact that no relocs refer to this section. */
7727 sec->gc_mark = 1;
7728
7729 return TRUE;
7730}
7731
1db37fe6
YG
7732/* Set size of .plt entries. This function is called from the
7733 linker scripts in ld/emultempl/{armelf}.em. */
7734
7735void
7736bfd_elf32_arm_use_long_plt (void)
7737{
7738 elf32_arm_use_long_plt_entry = TRUE;
7739}
7740
8afb0e02
NC
7741/* Add the glue sections to ABFD. This function is called from the
7742 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 7743
b34976b6 7744bfd_boolean
57e8b36a
NC
7745bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7746 struct bfd_link_info *info)
252b5132 7747{
a504d23a
LA
7748 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7749 bfd_boolean dostm32l4xx = globals
7750 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7751 bfd_boolean addglue;
7752
8afb0e02
NC
7753 /* If we are only performing a partial
7754 link do not bother adding the glue. */
0e1862bb 7755 if (bfd_link_relocatable (info))
b34976b6 7756 return TRUE;
252b5132 7757
a504d23a 7758 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
8029a119
NC
7759 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7760 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7761 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
a504d23a
LA
7762
7763 if (!dostm32l4xx)
7764 return addglue;
7765
7766 return addglue
7767 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
8afb0e02
NC
7768}
7769
daa4adae
TP
7770/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7771 ensures they are not marked for deletion by
7772 strip_excluded_output_sections () when veneers are going to be created
7773 later. Not doing so would trigger assert on empty section size in
7774 lang_size_sections_1 (). */
7775
7776void
7777bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7778{
7779 enum elf32_arm_stub_type stub_type;
7780
7781 /* If we are only performing a partial
7782 link do not bother adding the glue. */
7783 if (bfd_link_relocatable (info))
7784 return;
7785
7786 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7787 {
7788 asection *out_sec;
7789 const char *out_sec_name;
7790
7791 if (!arm_dedicated_stub_output_section_required (stub_type))
7792 continue;
7793
7794 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7795 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7796 if (out_sec != NULL)
7797 out_sec->flags |= SEC_KEEP;
7798 }
7799}
7800
8afb0e02
NC
7801/* Select a BFD to be used to hold the sections used by the glue code.
7802 This function is called from the linker scripts in ld/emultempl/
8029a119 7803 {armelf/pe}.em. */
8afb0e02 7804
b34976b6 7805bfd_boolean
57e8b36a 7806bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
7807{
7808 struct elf32_arm_link_hash_table *globals;
7809
7810 /* If we are only performing a partial link
7811 do not bother getting a bfd to hold the glue. */
0e1862bb 7812 if (bfd_link_relocatable (info))
b34976b6 7813 return TRUE;
8afb0e02 7814
b7693d02
DJ
7815 /* Make sure we don't attach the glue sections to a dynamic object. */
7816 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7817
8afb0e02 7818 globals = elf32_arm_hash_table (info);
8afb0e02
NC
7819 BFD_ASSERT (globals != NULL);
7820
7821 if (globals->bfd_of_glue_owner != NULL)
b34976b6 7822 return TRUE;
8afb0e02 7823
252b5132
RH
7824 /* Save the bfd for later use. */
7825 globals->bfd_of_glue_owner = abfd;
cedb70c5 7826
b34976b6 7827 return TRUE;
252b5132
RH
7828}
7829
906e58ca
NC
7830static void
7831check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 7832{
2de70689
MGD
7833 int cpu_arch;
7834
b38cadfb 7835 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
7836 Tag_CPU_arch);
7837
7838 if (globals->fix_arm1176)
7839 {
7840 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7841 globals->use_blx = 1;
7842 }
7843 else
7844 {
7845 if (cpu_arch > TAG_CPU_ARCH_V4T)
7846 globals->use_blx = 1;
7847 }
39b41c9c
PB
7848}
7849
b34976b6 7850bfd_boolean
57e8b36a 7851bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 7852 struct bfd_link_info *link_info)
252b5132
RH
7853{
7854 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 7855 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
7856 Elf_Internal_Rela *irel, *irelend;
7857 bfd_byte *contents = NULL;
252b5132
RH
7858
7859 asection *sec;
7860 struct elf32_arm_link_hash_table *globals;
7861
7862 /* If we are only performing a partial link do not bother
7863 to construct any glue. */
0e1862bb 7864 if (bfd_link_relocatable (link_info))
b34976b6 7865 return TRUE;
252b5132 7866
39ce1a6a
NC
7867 /* Here we have a bfd that is to be included on the link. We have a
7868 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 7869 globals = elf32_arm_hash_table (link_info);
252b5132 7870 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
7871
7872 check_use_blx (globals);
252b5132 7873
d504ffc8 7874 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 7875 {
90b6238f 7876 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
d003868e 7877 abfd);
e489d0ae
PB
7878 return FALSE;
7879 }
f21f3fe0 7880
39ce1a6a
NC
7881 /* PR 5398: If we have not decided to include any loadable sections in
7882 the output then we will not have a glue owner bfd. This is OK, it
7883 just means that there is nothing else for us to do here. */
7884 if (globals->bfd_of_glue_owner == NULL)
7885 return TRUE;
7886
252b5132
RH
7887 /* Rummage around all the relocs and map the glue vectors. */
7888 sec = abfd->sections;
7889
7890 if (sec == NULL)
b34976b6 7891 return TRUE;
252b5132
RH
7892
7893 for (; sec != NULL; sec = sec->next)
7894 {
7895 if (sec->reloc_count == 0)
7896 continue;
7897
2f475487
AM
7898 if ((sec->flags & SEC_EXCLUDE) != 0)
7899 continue;
7900
0ffa91dd 7901 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 7902
9b485d32 7903 /* Load the relocs. */
6cdc0ccc 7904 internal_relocs
906e58ca 7905 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 7906
6cdc0ccc
AM
7907 if (internal_relocs == NULL)
7908 goto error_return;
252b5132 7909
6cdc0ccc
AM
7910 irelend = internal_relocs + sec->reloc_count;
7911 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
7912 {
7913 long r_type;
7914 unsigned long r_index;
252b5132
RH
7915
7916 struct elf_link_hash_entry *h;
7917
7918 r_type = ELF32_R_TYPE (irel->r_info);
7919 r_index = ELF32_R_SYM (irel->r_info);
7920
9b485d32 7921 /* These are the only relocation types we care about. */
ba96a88f 7922 if ( r_type != R_ARM_PC24
845b51d6 7923 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
7924 continue;
7925
7926 /* Get the section contents if we haven't done so already. */
7927 if (contents == NULL)
7928 {
7929 /* Get cached copy if it exists. */
7930 if (elf_section_data (sec)->this_hdr.contents != NULL)
7931 contents = elf_section_data (sec)->this_hdr.contents;
7932 else
7933 {
7934 /* Go get them off disk. */
57e8b36a 7935 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
7936 goto error_return;
7937 }
7938 }
7939
845b51d6
PB
7940 if (r_type == R_ARM_V4BX)
7941 {
7942 int reg;
7943
7944 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7945 record_arm_bx_glue (link_info, reg);
7946 continue;
7947 }
7948
a7c10850 7949 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
7950 h = NULL;
7951
9b485d32 7952 /* We don't care about local symbols. */
252b5132
RH
7953 if (r_index < symtab_hdr->sh_info)
7954 continue;
7955
9b485d32 7956 /* This is an external symbol. */
252b5132
RH
7957 r_index -= symtab_hdr->sh_info;
7958 h = (struct elf_link_hash_entry *)
7959 elf_sym_hashes (abfd)[r_index];
7960
7961 /* If the relocation is against a static symbol it must be within
7962 the current section and so cannot be a cross ARM/Thumb relocation. */
7963 if (h == NULL)
7964 continue;
7965
d504ffc8
DJ
7966 /* If the call will go through a PLT entry then we do not need
7967 glue. */
362d30a1 7968 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
7969 continue;
7970
252b5132
RH
7971 switch (r_type)
7972 {
7973 case R_ARM_PC24:
7974 /* This one is a call from arm code. We need to look up
99059e56
RM
7975 the target of the call. If it is a thumb target, we
7976 insert glue. */
39d911fc
TP
7977 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7978 == ST_BRANCH_TO_THUMB)
252b5132
RH
7979 record_arm_to_thumb_glue (link_info, h);
7980 break;
7981
252b5132 7982 default:
c6596c5e 7983 abort ();
252b5132
RH
7984 }
7985 }
6cdc0ccc 7986
c9594989 7987 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc
AM
7988 free (contents);
7989 contents = NULL;
7990
c9594989 7991 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc
AM
7992 free (internal_relocs);
7993 internal_relocs = NULL;
252b5132
RH
7994 }
7995
b34976b6 7996 return TRUE;
9a5aca8c 7997
dc1e8a47 7998 error_return:
c9594989 7999 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc 8000 free (contents);
c9594989 8001 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc 8002 free (internal_relocs);
9a5aca8c 8003
b34976b6 8004 return FALSE;
252b5132 8005}
7e392df6 8006#endif
252b5132 8007
eb043451 8008
c7b8f16e
JB
8009/* Initialise maps of ARM/Thumb/data for input BFDs. */
8010
8011void
8012bfd_elf32_arm_init_maps (bfd *abfd)
8013{
8014 Elf_Internal_Sym *isymbuf;
8015 Elf_Internal_Shdr *hdr;
8016 unsigned int i, localsyms;
8017
af1f4419
NC
8018 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8019 if (! is_arm_elf (abfd))
8020 return;
8021
c7b8f16e
JB
8022 if ((abfd->flags & DYNAMIC) != 0)
8023 return;
8024
0ffa91dd 8025 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
8026 localsyms = hdr->sh_info;
8027
8028 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8029 should contain the number of local symbols, which should come before any
8030 global symbols. Mapping symbols are always local. */
8031 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8032 NULL);
8033
8034 /* No internal symbols read? Skip this BFD. */
8035 if (isymbuf == NULL)
8036 return;
8037
8038 for (i = 0; i < localsyms; i++)
8039 {
8040 Elf_Internal_Sym *isym = &isymbuf[i];
8041 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8042 const char *name;
906e58ca 8043
c7b8f16e 8044 if (sec != NULL
99059e56
RM
8045 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8046 {
8047 name = bfd_elf_string_from_elf_section (abfd,
8048 hdr->sh_link, isym->st_name);
906e58ca 8049
99059e56 8050 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 8051 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
8052 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8053 }
c7b8f16e
JB
8054 }
8055}
8056
8057
48229727
JB
8058/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8059 say what they wanted. */
8060
8061void
8062bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8063{
8064 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8065 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8066
4dfe6ac6
NC
8067 if (globals == NULL)
8068 return;
8069
48229727
JB
8070 if (globals->fix_cortex_a8 == -1)
8071 {
8072 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8073 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8074 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8075 || out_attr[Tag_CPU_arch_profile].i == 0))
8076 globals->fix_cortex_a8 = 1;
8077 else
8078 globals->fix_cortex_a8 = 0;
8079 }
8080}
8081
8082
c7b8f16e
JB
8083void
8084bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8085{
8086 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 8087 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 8088
4dfe6ac6
NC
8089 if (globals == NULL)
8090 return;
c7b8f16e
JB
8091 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8092 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8093 {
8094 switch (globals->vfp11_fix)
99059e56
RM
8095 {
8096 case BFD_ARM_VFP11_FIX_DEFAULT:
8097 case BFD_ARM_VFP11_FIX_NONE:
8098 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8099 break;
8100
8101 default:
8102 /* Give a warning, but do as the user requests anyway. */
871b3ab2 8103 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
99059e56
RM
8104 "workaround is not necessary for target architecture"), obfd);
8105 }
c7b8f16e
JB
8106 }
8107 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8108 /* For earlier architectures, we might need the workaround, but do not
8109 enable it by default. If users is running with broken hardware, they
8110 must enable the erratum fix explicitly. */
8111 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8112}
8113
a504d23a
LA
8114void
8115bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8116{
8117 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8118 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8119
8120 if (globals == NULL)
8121 return;
8122
8123 /* We assume only Cortex-M4 may require the fix. */
8124 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8125 || out_attr[Tag_CPU_arch_profile].i != 'M')
8126 {
8127 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8128 /* Give a warning, but do as the user requests anyway. */
4eca0228 8129 _bfd_error_handler
871b3ab2 8130 (_("%pB: warning: selected STM32L4XX erratum "
a504d23a
LA
8131 "workaround is not necessary for target architecture"), obfd);
8132 }
8133}
c7b8f16e 8134
906e58ca
NC
8135enum bfd_arm_vfp11_pipe
8136{
c7b8f16e
JB
8137 VFP11_FMAC,
8138 VFP11_LS,
8139 VFP11_DS,
8140 VFP11_BAD
8141};
8142
8143/* Return a VFP register number. This is encoded as RX:X for single-precision
8144 registers, or X:RX for double-precision registers, where RX is the group of
8145 four bits in the instruction encoding and X is the single extension bit.
8146 RX and X fields are specified using their lowest (starting) bit. The return
8147 value is:
8148
8149 0...31: single-precision registers s0...s31
8150 32...63: double-precision registers d0...d31.
906e58ca 8151
c7b8f16e
JB
8152 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8153 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 8154
c7b8f16e
JB
8155static unsigned int
8156bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
99059e56 8157 unsigned int x)
c7b8f16e
JB
8158{
8159 if (is_double)
8160 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8161 else
8162 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8163}
8164
8165/* Set bits in *WMASK according to a register number REG as encoded by
8166 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8167
8168static void
8169bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8170{
8171 if (reg < 32)
8172 *wmask |= 1 << reg;
8173 else if (reg < 48)
8174 *wmask |= 3 << ((reg - 32) * 2);
8175}
8176
8177/* Return TRUE if WMASK overwrites anything in REGS. */
8178
8179static bfd_boolean
8180bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8181{
8182 int i;
906e58ca 8183
c7b8f16e
JB
8184 for (i = 0; i < numregs; i++)
8185 {
8186 unsigned int reg = regs[i];
8187
8188 if (reg < 32 && (wmask & (1 << reg)) != 0)
99059e56 8189 return TRUE;
906e58ca 8190
c7b8f16e
JB
8191 reg -= 32;
8192
8193 if (reg >= 16)
99059e56 8194 continue;
906e58ca 8195
c7b8f16e 8196 if ((wmask & (3 << (reg * 2))) != 0)
99059e56 8197 return TRUE;
c7b8f16e 8198 }
906e58ca 8199
c7b8f16e
JB
8200 return FALSE;
8201}
8202
8203/* In this function, we're interested in two things: finding input registers
8204 for VFP data-processing instructions, and finding the set of registers which
8205 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8206 hold the written set, so FLDM etc. are easy to deal with (we're only
8207 interested in 32 SP registers or 16 dp registers, due to the VFP version
8208 implemented by the chip in question). DP registers are marked by setting
8209 both SP registers in the write mask). */
8210
8211static enum bfd_arm_vfp11_pipe
8212bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 8213 int *numregs)
c7b8f16e 8214{
91d6fa6a 8215 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
8216 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8217
8218 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8219 {
8220 unsigned int pqrs;
8221 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8222 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8223
8224 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
8225 | ((insn & 0x00300000) >> 19)
8226 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
8227
8228 switch (pqrs)
99059e56
RM
8229 {
8230 case 0: /* fmac[sd]. */
8231 case 1: /* fnmac[sd]. */
8232 case 2: /* fmsc[sd]. */
8233 case 3: /* fnmsc[sd]. */
8234 vpipe = VFP11_FMAC;
8235 bfd_arm_vfp11_write_mask (destmask, fd);
8236 regs[0] = fd;
8237 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8238 regs[2] = fm;
8239 *numregs = 3;
8240 break;
8241
8242 case 4: /* fmul[sd]. */
8243 case 5: /* fnmul[sd]. */
8244 case 6: /* fadd[sd]. */
8245 case 7: /* fsub[sd]. */
8246 vpipe = VFP11_FMAC;
8247 goto vfp_binop;
8248
8249 case 8: /* fdiv[sd]. */
8250 vpipe = VFP11_DS;
8251 vfp_binop:
8252 bfd_arm_vfp11_write_mask (destmask, fd);
8253 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8254 regs[1] = fm;
8255 *numregs = 2;
8256 break;
8257
8258 case 15: /* extended opcode. */
8259 {
8260 unsigned int extn = ((insn >> 15) & 0x1e)
8261 | ((insn >> 7) & 1);
8262
8263 switch (extn)
8264 {
8265 case 0: /* fcpy[sd]. */
8266 case 1: /* fabs[sd]. */
8267 case 2: /* fneg[sd]. */
8268 case 8: /* fcmp[sd]. */
8269 case 9: /* fcmpe[sd]. */
8270 case 10: /* fcmpz[sd]. */
8271 case 11: /* fcmpez[sd]. */
8272 case 16: /* fuito[sd]. */
8273 case 17: /* fsito[sd]. */
8274 case 24: /* ftoui[sd]. */
8275 case 25: /* ftouiz[sd]. */
8276 case 26: /* ftosi[sd]. */
8277 case 27: /* ftosiz[sd]. */
8278 /* These instructions will not bounce due to underflow. */
8279 *numregs = 0;
8280 vpipe = VFP11_FMAC;
8281 break;
8282
8283 case 3: /* fsqrt[sd]. */
8284 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8285 registers to cause the erratum in previous instructions. */
8286 bfd_arm_vfp11_write_mask (destmask, fd);
8287 vpipe = VFP11_DS;
8288 break;
8289
8290 case 15: /* fcvt{ds,sd}. */
8291 {
8292 int rnum = 0;
8293
8294 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
8295
8296 /* Only FCVTSD can underflow. */
99059e56
RM
8297 if ((insn & 0x100) != 0)
8298 regs[rnum++] = fm;
c7b8f16e 8299
99059e56 8300 *numregs = rnum;
c7b8f16e 8301
99059e56
RM
8302 vpipe = VFP11_FMAC;
8303 }
8304 break;
c7b8f16e 8305
99059e56
RM
8306 default:
8307 return VFP11_BAD;
8308 }
8309 }
8310 break;
c7b8f16e 8311
99059e56
RM
8312 default:
8313 return VFP11_BAD;
8314 }
c7b8f16e
JB
8315 }
8316 /* Two-register transfer. */
8317 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8318 {
8319 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 8320
c7b8f16e
JB
8321 if ((insn & 0x100000) == 0)
8322 {
99059e56
RM
8323 if (is_double)
8324 bfd_arm_vfp11_write_mask (destmask, fm);
8325 else
8326 {
8327 bfd_arm_vfp11_write_mask (destmask, fm);
8328 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8329 }
c7b8f16e
JB
8330 }
8331
91d6fa6a 8332 vpipe = VFP11_LS;
c7b8f16e
JB
8333 }
8334 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8335 {
8336 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8337 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 8338
c7b8f16e 8339 switch (puw)
99059e56
RM
8340 {
8341 case 0: /* Two-reg transfer. We should catch these above. */
8342 abort ();
906e58ca 8343
99059e56
RM
8344 case 2: /* fldm[sdx]. */
8345 case 3:
8346 case 5:
8347 {
8348 unsigned int i, offset = insn & 0xff;
c7b8f16e 8349
99059e56
RM
8350 if (is_double)
8351 offset >>= 1;
c7b8f16e 8352
99059e56
RM
8353 for (i = fd; i < fd + offset; i++)
8354 bfd_arm_vfp11_write_mask (destmask, i);
8355 }
8356 break;
906e58ca 8357
99059e56
RM
8358 case 4: /* fld[sd]. */
8359 case 6:
8360 bfd_arm_vfp11_write_mask (destmask, fd);
8361 break;
906e58ca 8362
99059e56
RM
8363 default:
8364 return VFP11_BAD;
8365 }
c7b8f16e 8366
91d6fa6a 8367 vpipe = VFP11_LS;
c7b8f16e
JB
8368 }
8369 /* Single-register transfer. Note L==0. */
8370 else if ((insn & 0x0f100e10) == 0x0e000a10)
8371 {
8372 unsigned int opcode = (insn >> 21) & 7;
8373 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8374
8375 switch (opcode)
99059e56
RM
8376 {
8377 case 0: /* fmsr/fmdlr. */
8378 case 1: /* fmdhr. */
8379 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8380 destination register. I don't know if this is exactly right,
8381 but it is the conservative choice. */
8382 bfd_arm_vfp11_write_mask (destmask, fn);
8383 break;
8384
8385 case 7: /* fmxr. */
8386 break;
8387 }
c7b8f16e 8388
91d6fa6a 8389 vpipe = VFP11_LS;
c7b8f16e
JB
8390 }
8391
91d6fa6a 8392 return vpipe;
c7b8f16e
JB
8393}
8394
8395
8396static int elf32_arm_compare_mapping (const void * a, const void * b);
8397
8398
8399/* Look for potentially-troublesome code sequences which might trigger the
8400 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8401 (available from ARM) for details of the erratum. A short version is
8402 described in ld.texinfo. */
8403
8404bfd_boolean
8405bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8406{
8407 asection *sec;
8408 bfd_byte *contents = NULL;
8409 int state = 0;
8410 int regs[3], numregs = 0;
8411 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8412 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 8413
4dfe6ac6
NC
8414 if (globals == NULL)
8415 return FALSE;
8416
c7b8f16e
JB
8417 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8418 The states transition as follows:
906e58ca 8419
c7b8f16e 8420 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
8421 A VFP FMAC-pipeline instruction has been seen. Fill
8422 regs[0]..regs[numregs-1] with its input operands. Remember this
8423 instruction in 'first_fmac'.
c7b8f16e
JB
8424
8425 1 -> 2
99059e56
RM
8426 Any instruction, except for a VFP instruction which overwrites
8427 regs[*].
906e58ca 8428
c7b8f16e
JB
8429 1 -> 3 [ -> 0 ] or
8430 2 -> 3 [ -> 0 ]
99059e56
RM
8431 A VFP instruction has been seen which overwrites any of regs[*].
8432 We must make a veneer! Reset state to 0 before examining next
8433 instruction.
906e58ca 8434
c7b8f16e 8435 2 -> 0
99059e56
RM
8436 If we fail to match anything in state 2, reset to state 0 and reset
8437 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
8438
8439 If the VFP11 vector mode is in use, there must be at least two unrelated
8440 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 8441 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
8442
8443 /* If we are only performing a partial link do not bother
8444 to construct any glue. */
0e1862bb 8445 if (bfd_link_relocatable (link_info))
c7b8f16e
JB
8446 return TRUE;
8447
0ffa91dd
NC
8448 /* Skip if this bfd does not correspond to an ELF image. */
8449 if (! is_arm_elf (abfd))
8450 return TRUE;
906e58ca 8451
c7b8f16e
JB
8452 /* We should have chosen a fix type by the time we get here. */
8453 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8454
8455 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8456 return TRUE;
2e6030b9 8457
33a7ffc2
JM
8458 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8459 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8460 return TRUE;
8461
c7b8f16e
JB
8462 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8463 {
8464 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8465 struct _arm_elf_section_data *sec_data;
8466
8467 /* If we don't have executable progbits, we're not interested in this
99059e56 8468 section. Also skip if section is to be excluded. */
c7b8f16e 8469 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
8470 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8471 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 8472 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 8473 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
8474 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8475 continue;
c7b8f16e
JB
8476
8477 sec_data = elf32_arm_section_data (sec);
906e58ca 8478
c7b8f16e 8479 if (sec_data->mapcount == 0)
99059e56 8480 continue;
906e58ca 8481
c7b8f16e
JB
8482 if (elf_section_data (sec)->this_hdr.contents != NULL)
8483 contents = elf_section_data (sec)->this_hdr.contents;
8484 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8485 goto error_return;
8486
8487 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8488 elf32_arm_compare_mapping);
8489
8490 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
8491 {
8492 unsigned int span_start = sec_data->map[span].vma;
8493 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 8494 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
8495 char span_type = sec_data->map[span].type;
8496
8497 /* FIXME: Only ARM mode is supported at present. We may need to
8498 support Thumb-2 mode also at some point. */
8499 if (span_type != 'a')
8500 continue;
8501
8502 for (i = span_start; i < span_end;)
8503 {
8504 unsigned int next_i = i + 4;
8505 unsigned int insn = bfd_big_endian (abfd)
13c9c485
AM
8506 ? (((unsigned) contents[i] << 24)
8507 | (contents[i + 1] << 16)
8508 | (contents[i + 2] << 8)
8509 | contents[i + 3])
8510 : (((unsigned) contents[i + 3] << 24)
8511 | (contents[i + 2] << 16)
8512 | (contents[i + 1] << 8)
8513 | contents[i]);
99059e56
RM
8514 unsigned int writemask = 0;
8515 enum bfd_arm_vfp11_pipe vpipe;
8516
8517 switch (state)
8518 {
8519 case 0:
8520 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8521 &numregs);
8522 /* I'm assuming the VFP11 erratum can trigger with denorm
8523 operands on either the FMAC or the DS pipeline. This might
8524 lead to slightly overenthusiastic veneer insertion. */
8525 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8526 {
8527 state = use_vector ? 1 : 2;
8528 first_fmac = i;
8529 veneer_of_insn = insn;
8530 }
8531 break;
8532
8533 case 1:
8534 {
8535 int other_regs[3], other_numregs;
8536 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8537 other_regs,
99059e56
RM
8538 &other_numregs);
8539 if (vpipe != VFP11_BAD
8540 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8541 numregs))
99059e56
RM
8542 state = 3;
8543 else
8544 state = 2;
8545 }
8546 break;
8547
8548 case 2:
8549 {
8550 int other_regs[3], other_numregs;
8551 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8552 other_regs,
99059e56
RM
8553 &other_numregs);
8554 if (vpipe != VFP11_BAD
8555 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8556 numregs))
99059e56
RM
8557 state = 3;
8558 else
8559 {
8560 state = 0;
8561 next_i = first_fmac + 4;
8562 }
8563 }
8564 break;
8565
8566 case 3:
8567 abort (); /* Should be unreachable. */
8568 }
8569
8570 if (state == 3)
8571 {
8572 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8573 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8574
8575 elf32_arm_section_data (sec)->erratumcount += 1;
8576
8577 newerr->u.b.vfp_insn = veneer_of_insn;
8578
8579 switch (span_type)
8580 {
8581 case 'a':
8582 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8583 break;
8584
8585 default:
8586 abort ();
8587 }
8588
8589 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
8590 first_fmac);
8591
99059e56 8592 newerr->vma = -1;
c7b8f16e 8593
99059e56
RM
8594 newerr->next = sec_data->erratumlist;
8595 sec_data->erratumlist = newerr;
c7b8f16e 8596
99059e56
RM
8597 state = 0;
8598 }
c7b8f16e 8599
99059e56
RM
8600 i = next_i;
8601 }
8602 }
906e58ca 8603
c9594989 8604 if (elf_section_data (sec)->this_hdr.contents != contents)
99059e56 8605 free (contents);
c7b8f16e
JB
8606 contents = NULL;
8607 }
8608
8609 return TRUE;
8610
dc1e8a47 8611 error_return:
c9594989 8612 if (elf_section_data (sec)->this_hdr.contents != contents)
c7b8f16e 8613 free (contents);
906e58ca 8614
c7b8f16e
JB
8615 return FALSE;
8616}
8617
8618/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8619 after sections have been laid out, using specially-named symbols. */
8620
8621void
8622bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8623 struct bfd_link_info *link_info)
8624{
8625 asection *sec;
8626 struct elf32_arm_link_hash_table *globals;
8627 char *tmp_name;
906e58ca 8628
0e1862bb 8629 if (bfd_link_relocatable (link_info))
c7b8f16e 8630 return;
2e6030b9
MS
8631
8632 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 8633 if (! is_arm_elf (abfd))
2e6030b9
MS
8634 return;
8635
c7b8f16e 8636 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8637 if (globals == NULL)
8638 return;
906e58ca 8639
21d799b5 8640 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 8641 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8642 BFD_ASSERT (tmp_name);
c7b8f16e
JB
8643
8644 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8645 {
8646 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8647 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 8648
c7b8f16e 8649 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
8650 {
8651 struct elf_link_hash_entry *myh;
8652 bfd_vma vma;
8653
8654 switch (errnode->type)
8655 {
8656 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8657 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8658 /* Find veneer symbol. */
8659 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
8660 errnode->u.b.veneer->u.v.id);
8661
99059e56
RM
8662 myh = elf_link_hash_lookup
8663 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 8664
a504d23a 8665 if (myh == NULL)
90b6238f
AM
8666 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8667 abfd, "VFP11", tmp_name);
a504d23a
LA
8668
8669 vma = myh->root.u.def.section->output_section->vma
8670 + myh->root.u.def.section->output_offset
8671 + myh->root.u.def.value;
8672
8673 errnode->u.b.veneer->vma = vma;
8674 break;
8675
8676 case VFP11_ERRATUM_ARM_VENEER:
8677 case VFP11_ERRATUM_THUMB_VENEER:
8678 /* Find return location. */
8679 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8680 errnode->u.v.id);
8681
8682 myh = elf_link_hash_lookup
8683 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8684
8685 if (myh == NULL)
90b6238f
AM
8686 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8687 abfd, "VFP11", tmp_name);
a504d23a
LA
8688
8689 vma = myh->root.u.def.section->output_section->vma
8690 + myh->root.u.def.section->output_offset
8691 + myh->root.u.def.value;
8692
8693 errnode->u.v.branch->vma = vma;
8694 break;
8695
8696 default:
8697 abort ();
8698 }
8699 }
8700 }
8701
8702 free (tmp_name);
8703}
8704
8705/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8706 return locations after sections have been laid out, using
8707 specially-named symbols. */
8708
8709void
8710bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8711 struct bfd_link_info *link_info)
8712{
8713 asection *sec;
8714 struct elf32_arm_link_hash_table *globals;
8715 char *tmp_name;
8716
8717 if (bfd_link_relocatable (link_info))
8718 return;
8719
8720 /* Skip if this bfd does not correspond to an ELF image. */
8721 if (! is_arm_elf (abfd))
8722 return;
8723
8724 globals = elf32_arm_hash_table (link_info);
8725 if (globals == NULL)
8726 return;
8727
8728 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8729 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8730 BFD_ASSERT (tmp_name);
a504d23a
LA
8731
8732 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8733 {
8734 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8735 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8736
8737 for (; errnode != NULL; errnode = errnode->next)
8738 {
8739 struct elf_link_hash_entry *myh;
8740 bfd_vma vma;
8741
8742 switch (errnode->type)
8743 {
8744 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8745 /* Find veneer symbol. */
8746 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8747 errnode->u.b.veneer->u.v.id);
8748
8749 myh = elf_link_hash_lookup
8750 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8751
8752 if (myh == NULL)
90b6238f
AM
8753 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8754 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8755
8756 vma = myh->root.u.def.section->output_section->vma
8757 + myh->root.u.def.section->output_offset
8758 + myh->root.u.def.value;
8759
8760 errnode->u.b.veneer->vma = vma;
8761 break;
8762
8763 case STM32L4XX_ERRATUM_VENEER:
8764 /* Find return location. */
8765 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8766 errnode->u.v.id);
8767
8768 myh = elf_link_hash_lookup
8769 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8770
8771 if (myh == NULL)
90b6238f
AM
8772 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8773 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8774
8775 vma = myh->root.u.def.section->output_section->vma
8776 + myh->root.u.def.section->output_offset
8777 + myh->root.u.def.value;
8778
8779 errnode->u.v.branch->vma = vma;
8780 break;
8781
8782 default:
8783 abort ();
8784 }
8785 }
8786 }
8787
8788 free (tmp_name);
8789}
8790
8791static inline bfd_boolean
8792is_thumb2_ldmia (const insn32 insn)
8793{
8794 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8795 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8796 return (insn & 0xffd02000) == 0xe8900000;
8797}
8798
8799static inline bfd_boolean
8800is_thumb2_ldmdb (const insn32 insn)
8801{
8802 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8803 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8804 return (insn & 0xffd02000) == 0xe9100000;
8805}
8806
8807static inline bfd_boolean
8808is_thumb2_vldm (const insn32 insn)
8809{
8810 /* A6.5 Extension register load or store instruction
8811 A7.7.229
9239bbd3
CM
8812 We look for SP 32-bit and DP 64-bit registers.
8813 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8814 <list> is consecutive 64-bit registers
8815 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
a504d23a
LA
8816 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8817 <list> is consecutive 32-bit registers
8818 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8819 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8820 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8821 return
9239bbd3
CM
8822 (((insn & 0xfe100f00) == 0xec100b00) ||
8823 ((insn & 0xfe100f00) == 0xec100a00))
a504d23a
LA
8824 && /* (IA without !). */
8825 (((((insn << 7) >> 28) & 0xd) == 0x4)
9239bbd3 8826 /* (IA with !), includes VPOP (when reg number is SP). */
a504d23a
LA
8827 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8828 /* (DB with !). */
8829 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8830}
8831
8832/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8833 VLDM opcode and:
8834 - computes the number and the mode of memory accesses
8835 - decides if the replacement should be done:
8836 . replaces only if > 8-word accesses
8837 . or (testing purposes only) replaces all accesses. */
8838
8839static bfd_boolean
8840stm32l4xx_need_create_replacing_stub (const insn32 insn,
8841 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8842{
9239bbd3 8843 int nb_words = 0;
a504d23a
LA
8844
8845 /* The field encoding the register list is the same for both LDMIA
8846 and LDMDB encodings. */
8847 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
b25e998d 8848 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
a504d23a 8849 else if (is_thumb2_vldm (insn))
9239bbd3 8850 nb_words = (insn & 0xff);
a504d23a
LA
8851
8852 /* DEFAULT mode accounts for the real bug condition situation,
8853 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8854 return
9239bbd3 8855 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
a504d23a
LA
8856 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8857}
8858
8859/* Look for potentially-troublesome code sequences which might trigger
8860 the STM STM32L4XX erratum. */
8861
8862bfd_boolean
8863bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8864 struct bfd_link_info *link_info)
8865{
8866 asection *sec;
8867 bfd_byte *contents = NULL;
8868 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8869
8870 if (globals == NULL)
8871 return FALSE;
8872
8873 /* If we are only performing a partial link do not bother
8874 to construct any glue. */
8875 if (bfd_link_relocatable (link_info))
8876 return TRUE;
8877
8878 /* Skip if this bfd does not correspond to an ELF image. */
8879 if (! is_arm_elf (abfd))
8880 return TRUE;
8881
8882 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8883 return TRUE;
8884
8885 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8886 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8887 return TRUE;
8888
8889 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8890 {
8891 unsigned int i, span;
8892 struct _arm_elf_section_data *sec_data;
8893
8894 /* If we don't have executable progbits, we're not interested in this
8895 section. Also skip if section is to be excluded. */
8896 if (elf_section_type (sec) != SHT_PROGBITS
8897 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8898 || (sec->flags & SEC_EXCLUDE) != 0
8899 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8900 || sec->output_section == bfd_abs_section_ptr
8901 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8902 continue;
8903
8904 sec_data = elf32_arm_section_data (sec);
c7b8f16e 8905
a504d23a
LA
8906 if (sec_data->mapcount == 0)
8907 continue;
c7b8f16e 8908
a504d23a
LA
8909 if (elf_section_data (sec)->this_hdr.contents != NULL)
8910 contents = elf_section_data (sec)->this_hdr.contents;
8911 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8912 goto error_return;
c7b8f16e 8913
a504d23a
LA
8914 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8915 elf32_arm_compare_mapping);
c7b8f16e 8916
a504d23a
LA
8917 for (span = 0; span < sec_data->mapcount; span++)
8918 {
8919 unsigned int span_start = sec_data->map[span].vma;
8920 unsigned int span_end = (span == sec_data->mapcount - 1)
8921 ? sec->size : sec_data->map[span + 1].vma;
8922 char span_type = sec_data->map[span].type;
8923 int itblock_current_pos = 0;
c7b8f16e 8924
a504d23a
LA
8925 /* Only Thumb2 mode need be supported with this CM4 specific
8926 code, we should not encounter any arm mode eg span_type
8927 != 'a'. */
8928 if (span_type != 't')
8929 continue;
c7b8f16e 8930
a504d23a
LA
8931 for (i = span_start; i < span_end;)
8932 {
8933 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8934 bfd_boolean insn_32bit = FALSE;
8935 bfd_boolean is_ldm = FALSE;
8936 bfd_boolean is_vldm = FALSE;
8937 bfd_boolean is_not_last_in_it_block = FALSE;
8938
8939 /* The first 16-bits of all 32-bit thumb2 instructions start
8940 with opcode[15..13]=0b111 and the encoded op1 can be anything
8941 except opcode[12..11]!=0b00.
8942 See 32-bit Thumb instruction encoding. */
8943 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8944 insn_32bit = TRUE;
c7b8f16e 8945
a504d23a
LA
8946 /* Compute the predicate that tells if the instruction
8947 is concerned by the IT block
8948 - Creates an error if there is a ldm that is not
8949 last in the IT block thus cannot be replaced
8950 - Otherwise we can create a branch at the end of the
8951 IT block, it will be controlled naturally by IT
8952 with the proper pseudo-predicate
8953 - So the only interesting predicate is the one that
8954 tells that we are not on the last item of an IT
8955 block. */
8956 if (itblock_current_pos != 0)
8957 is_not_last_in_it_block = !!--itblock_current_pos;
906e58ca 8958
a504d23a
LA
8959 if (insn_32bit)
8960 {
8961 /* Load the rest of the insn (in manual-friendly order). */
8962 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8963 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8964 is_vldm = is_thumb2_vldm (insn);
8965
8966 /* Veneers are created for (v)ldm depending on
8967 option flags and memory accesses conditions; but
8968 if the instruction is not the last instruction of
8969 an IT block, we cannot create a jump there, so we
8970 bail out. */
5025eb7c
AO
8971 if ((is_ldm || is_vldm)
8972 && stm32l4xx_need_create_replacing_stub
a504d23a
LA
8973 (insn, globals->stm32l4xx_fix))
8974 {
8975 if (is_not_last_in_it_block)
8976 {
4eca0228 8977 _bfd_error_handler
695344c0 8978 /* xgettext:c-format */
871b3ab2 8979 (_("%pB(%pA+%#x): error: multiple load detected"
90b6238f
AM
8980 " in non-last IT block instruction:"
8981 " STM32L4XX veneer cannot be generated; "
8982 "use gcc option -mrestrict-it to generate"
8983 " only one instruction per IT block"),
d42c267e 8984 abfd, sec, i);
a504d23a
LA
8985 }
8986 else
8987 {
8988 elf32_stm32l4xx_erratum_list *newerr =
8989 (elf32_stm32l4xx_erratum_list *)
8990 bfd_zmalloc
8991 (sizeof (elf32_stm32l4xx_erratum_list));
8992
8993 elf32_arm_section_data (sec)
8994 ->stm32l4xx_erratumcount += 1;
8995 newerr->u.b.insn = insn;
8996 /* We create only thumb branches. */
8997 newerr->type =
8998 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8999 record_stm32l4xx_erratum_veneer
9000 (link_info, newerr, abfd, sec,
9001 i,
9002 is_ldm ?
9003 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
9004 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
9005 newerr->vma = -1;
9006 newerr->next = sec_data->stm32l4xx_erratumlist;
9007 sec_data->stm32l4xx_erratumlist = newerr;
9008 }
9009 }
9010 }
9011 else
9012 {
9013 /* A7.7.37 IT p208
9014 IT blocks are only encoded in T1
9015 Encoding T1: IT{x{y{z}}} <firstcond>
9016 1 0 1 1 - 1 1 1 1 - firstcond - mask
9017 if mask = '0000' then see 'related encodings'
9018 We don't deal with UNPREDICTABLE, just ignore these.
9019 There can be no nested IT blocks so an IT block
9020 is naturally a new one for which it is worth
9021 computing its size. */
5025eb7c
AO
9022 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
9023 && ((insn & 0x000f) != 0x0000);
a504d23a
LA
9024 /* If we have a new IT block we compute its size. */
9025 if (is_newitblock)
9026 {
9027 /* Compute the number of instructions controlled
9028 by the IT block, it will be used to decide
9029 whether we are inside an IT block or not. */
9030 unsigned int mask = insn & 0x000f;
9031 itblock_current_pos = 4 - ctz (mask);
9032 }
9033 }
9034
9035 i += insn_32bit ? 4 : 2;
99059e56
RM
9036 }
9037 }
a504d23a 9038
c9594989 9039 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a
LA
9040 free (contents);
9041 contents = NULL;
c7b8f16e 9042 }
906e58ca 9043
a504d23a
LA
9044 return TRUE;
9045
dc1e8a47 9046 error_return:
c9594989 9047 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a 9048 free (contents);
c7b8f16e 9049
a504d23a
LA
9050 return FALSE;
9051}
c7b8f16e 9052
eb043451
PB
9053/* Set target relocation values needed during linking. */
9054
9055void
68c39892 9056bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
bf21ed78 9057 struct bfd_link_info *link_info,
68c39892 9058 struct elf32_arm_params *params)
eb043451
PB
9059{
9060 struct elf32_arm_link_hash_table *globals;
9061
9062 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9063 if (globals == NULL)
9064 return;
eb043451 9065
68c39892 9066 globals->target1_is_rel = params->target1_is_rel;
29e9b073
CL
9067 if (globals->fdpic_p)
9068 globals->target2_reloc = R_ARM_GOT32;
9069 else if (strcmp (params->target2_type, "rel") == 0)
eb043451 9070 globals->target2_reloc = R_ARM_REL32;
68c39892 9071 else if (strcmp (params->target2_type, "abs") == 0)
eeac373a 9072 globals->target2_reloc = R_ARM_ABS32;
68c39892 9073 else if (strcmp (params->target2_type, "got-rel") == 0)
eb043451
PB
9074 globals->target2_reloc = R_ARM_GOT_PREL;
9075 else
9076 {
90b6238f 9077 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
68c39892 9078 params->target2_type);
eb043451 9079 }
68c39892
TP
9080 globals->fix_v4bx = params->fix_v4bx;
9081 globals->use_blx |= params->use_blx;
9082 globals->vfp11_fix = params->vfp11_denorm_fix;
9083 globals->stm32l4xx_fix = params->stm32l4xx_fix;
e8b09b87
CL
9084 if (globals->fdpic_p)
9085 globals->pic_veneer = 1;
9086 else
9087 globals->pic_veneer = params->pic_veneer;
68c39892
TP
9088 globals->fix_cortex_a8 = params->fix_cortex_a8;
9089 globals->fix_arm1176 = params->fix_arm1176;
9090 globals->cmse_implib = params->cmse_implib;
9091 globals->in_implib_bfd = params->in_implib_bfd;
bf21ed78 9092
0ffa91dd 9093 BFD_ASSERT (is_arm_elf (output_bfd));
68c39892
TP
9094 elf_arm_tdata (output_bfd)->no_enum_size_warning
9095 = params->no_enum_size_warning;
9096 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9097 = params->no_wchar_size_warning;
eb043451 9098}
eb043451 9099
12a0a0fd 9100/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 9101
12a0a0fd
PB
9102static void
9103insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9104{
9105 bfd_vma upper;
9106 bfd_vma lower;
9107 int reloc_sign;
9108
9109 BFD_ASSERT ((offset & 1) == 0);
9110
9111 upper = bfd_get_16 (abfd, insn);
9112 lower = bfd_get_16 (abfd, insn + 2);
9113 reloc_sign = (offset < 0) ? 1 : 0;
9114 upper = (upper & ~(bfd_vma) 0x7ff)
9115 | ((offset >> 12) & 0x3ff)
9116 | (reloc_sign << 10);
906e58ca 9117 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
9118 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9119 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9120 | ((offset >> 1) & 0x7ff);
9121 bfd_put_16 (abfd, upper, insn);
9122 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
9123}
9124
9b485d32
NC
9125/* Thumb code calling an ARM function. */
9126
252b5132 9127static int
57e8b36a 9128elf32_thumb_to_arm_stub (struct bfd_link_info * info,
07d6d2b8
AM
9129 const char * name,
9130 bfd * input_bfd,
9131 bfd * output_bfd,
9132 asection * input_section,
9133 bfd_byte * hit_data,
9134 asection * sym_sec,
9135 bfd_vma offset,
9136 bfd_signed_vma addend,
9137 bfd_vma val,
f2a9dd69 9138 char **error_message)
252b5132 9139{
bcbdc74c 9140 asection * s = 0;
dc810e39 9141 bfd_vma my_offset;
252b5132 9142 long int ret_offset;
bcbdc74c
NC
9143 struct elf_link_hash_entry * myh;
9144 struct elf32_arm_link_hash_table * globals;
252b5132 9145
f2a9dd69 9146 myh = find_thumb_glue (info, name, error_message);
252b5132 9147 if (myh == NULL)
b34976b6 9148 return FALSE;
252b5132
RH
9149
9150 globals = elf32_arm_hash_table (info);
252b5132
RH
9151 BFD_ASSERT (globals != NULL);
9152 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9153
9154 my_offset = myh->root.u.def.value;
9155
3d4d4302
AM
9156 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9157 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
9158
9159 BFD_ASSERT (s != NULL);
9160 BFD_ASSERT (s->contents != NULL);
9161 BFD_ASSERT (s->output_section != NULL);
9162
9163 if ((my_offset & 0x01) == 0x01)
9164 {
9165 if (sym_sec != NULL
9166 && sym_sec->owner != NULL
9167 && !INTERWORK_FLAG (sym_sec->owner))
9168 {
4eca0228 9169 _bfd_error_handler
90b6238f
AM
9170 (_("%pB(%s): warning: interworking not enabled;"
9171 " first occurrence: %pB: %s call to %s"),
9172 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
252b5132 9173
b34976b6 9174 return FALSE;
252b5132
RH
9175 }
9176
9177 --my_offset;
9178 myh->root.u.def.value = my_offset;
9179
52ab56c2
PB
9180 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9181 s->contents + my_offset);
252b5132 9182
52ab56c2
PB
9183 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9184 s->contents + my_offset + 2);
252b5132
RH
9185
9186 ret_offset =
9b485d32
NC
9187 /* Address of destination of the stub. */
9188 ((bfd_signed_vma) val)
252b5132 9189 - ((bfd_signed_vma)
57e8b36a
NC
9190 /* Offset from the start of the current section
9191 to the start of the stubs. */
9b485d32
NC
9192 (s->output_offset
9193 /* Offset of the start of this stub from the start of the stubs. */
9194 + my_offset
9195 /* Address of the start of the current section. */
9196 + s->output_section->vma)
9197 /* The branch instruction is 4 bytes into the stub. */
9198 + 4
9199 /* ARM branches work from the pc of the instruction + 8. */
9200 + 8);
252b5132 9201
52ab56c2
PB
9202 put_arm_insn (globals, output_bfd,
9203 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9204 s->contents + my_offset + 4);
252b5132
RH
9205 }
9206
9207 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9208
427bfd90
NC
9209 /* Now go back and fix up the original BL insn to point to here. */
9210 ret_offset =
9211 /* Address of where the stub is located. */
9212 (s->output_section->vma + s->output_offset + my_offset)
9213 /* Address of where the BL is located. */
57e8b36a
NC
9214 - (input_section->output_section->vma + input_section->output_offset
9215 + offset)
427bfd90
NC
9216 /* Addend in the relocation. */
9217 - addend
9218 /* Biassing for PC-relative addressing. */
9219 - 8;
252b5132 9220
12a0a0fd 9221 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 9222
b34976b6 9223 return TRUE;
252b5132
RH
9224}
9225
a4fd1a8e 9226/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 9227
a4fd1a8e
PB
9228static struct elf_link_hash_entry *
9229elf32_arm_create_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9230 const char * name,
9231 bfd * input_bfd,
9232 bfd * output_bfd,
9233 asection * sym_sec,
9234 bfd_vma val,
9235 asection * s,
9236 char ** error_message)
252b5132 9237{
dc810e39 9238 bfd_vma my_offset;
252b5132 9239 long int ret_offset;
bcbdc74c
NC
9240 struct elf_link_hash_entry * myh;
9241 struct elf32_arm_link_hash_table * globals;
252b5132 9242
f2a9dd69 9243 myh = find_arm_glue (info, name, error_message);
252b5132 9244 if (myh == NULL)
a4fd1a8e 9245 return NULL;
252b5132
RH
9246
9247 globals = elf32_arm_hash_table (info);
252b5132
RH
9248 BFD_ASSERT (globals != NULL);
9249 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9250
9251 my_offset = myh->root.u.def.value;
252b5132
RH
9252
9253 if ((my_offset & 0x01) == 0x01)
9254 {
9255 if (sym_sec != NULL
9256 && sym_sec->owner != NULL
9257 && !INTERWORK_FLAG (sym_sec->owner))
9258 {
4eca0228 9259 _bfd_error_handler
90b6238f
AM
9260 (_("%pB(%s): warning: interworking not enabled;"
9261 " first occurrence: %pB: %s call to %s"),
9262 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
252b5132 9263 }
9b485d32 9264
252b5132
RH
9265 --my_offset;
9266 myh->root.u.def.value = my_offset;
9267
0e1862bb
L
9268 if (bfd_link_pic (info)
9269 || globals->root.is_relocatable_executable
27e55c4d 9270 || globals->pic_veneer)
8f6277f5
PB
9271 {
9272 /* For relocatable objects we can't use absolute addresses,
9273 so construct the address from a relative offset. */
9274 /* TODO: If the offset is small it's probably worth
9275 constructing the address with adds. */
52ab56c2
PB
9276 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9277 s->contents + my_offset);
9278 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9279 s->contents + my_offset + 4);
9280 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9281 s->contents + my_offset + 8);
8f6277f5
PB
9282 /* Adjust the offset by 4 for the position of the add,
9283 and 8 for the pipeline offset. */
9284 ret_offset = (val - (s->output_offset
9285 + s->output_section->vma
9286 + my_offset + 12))
9287 | 1;
9288 bfd_put_32 (output_bfd, ret_offset,
9289 s->contents + my_offset + 12);
9290 }
26079076
PB
9291 else if (globals->use_blx)
9292 {
9293 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9294 s->contents + my_offset);
9295
9296 /* It's a thumb address. Add the low order bit. */
9297 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9298 s->contents + my_offset + 4);
9299 }
8f6277f5
PB
9300 else
9301 {
52ab56c2
PB
9302 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9303 s->contents + my_offset);
252b5132 9304
52ab56c2
PB
9305 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9306 s->contents + my_offset + 4);
252b5132 9307
8f6277f5
PB
9308 /* It's a thumb address. Add the low order bit. */
9309 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9310 s->contents + my_offset + 8);
8029a119
NC
9311
9312 my_offset += 12;
8f6277f5 9313 }
252b5132
RH
9314 }
9315
9316 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9317
a4fd1a8e
PB
9318 return myh;
9319}
9320
9321/* Arm code calling a Thumb function. */
9322
9323static int
9324elf32_arm_to_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9325 const char * name,
9326 bfd * input_bfd,
9327 bfd * output_bfd,
9328 asection * input_section,
9329 bfd_byte * hit_data,
9330 asection * sym_sec,
9331 bfd_vma offset,
9332 bfd_signed_vma addend,
9333 bfd_vma val,
f2a9dd69 9334 char **error_message)
a4fd1a8e
PB
9335{
9336 unsigned long int tmp;
9337 bfd_vma my_offset;
9338 asection * s;
9339 long int ret_offset;
9340 struct elf_link_hash_entry * myh;
9341 struct elf32_arm_link_hash_table * globals;
9342
9343 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9344 BFD_ASSERT (globals != NULL);
9345 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9346
3d4d4302
AM
9347 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9348 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9349 BFD_ASSERT (s != NULL);
9350 BFD_ASSERT (s->contents != NULL);
9351 BFD_ASSERT (s->output_section != NULL);
9352
9353 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 9354 sym_sec, val, s, error_message);
a4fd1a8e
PB
9355 if (!myh)
9356 return FALSE;
9357
9358 my_offset = myh->root.u.def.value;
252b5132
RH
9359 tmp = bfd_get_32 (input_bfd, hit_data);
9360 tmp = tmp & 0xFF000000;
9361
9b485d32 9362 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
9363 ret_offset = (s->output_offset
9364 + my_offset
9365 + s->output_section->vma
9366 - (input_section->output_offset
9367 + input_section->output_section->vma
9368 + offset + addend)
9369 - 8);
9a5aca8c 9370
252b5132
RH
9371 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9372
dc810e39 9373 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 9374
b34976b6 9375 return TRUE;
252b5132
RH
9376}
9377
a4fd1a8e
PB
9378/* Populate Arm stub for an exported Thumb function. */
9379
9380static bfd_boolean
9381elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9382{
9383 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9384 asection * s;
9385 struct elf_link_hash_entry * myh;
9386 struct elf32_arm_link_hash_entry *eh;
9387 struct elf32_arm_link_hash_table * globals;
9388 asection *sec;
9389 bfd_vma val;
f2a9dd69 9390 char *error_message;
a4fd1a8e 9391
906e58ca 9392 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
9393 /* Allocate stubs for exported Thumb functions on v4t. */
9394 if (eh->export_glue == NULL)
9395 return TRUE;
9396
9397 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9398 BFD_ASSERT (globals != NULL);
9399 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9400
3d4d4302
AM
9401 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9402 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9403 BFD_ASSERT (s != NULL);
9404 BFD_ASSERT (s->contents != NULL);
9405 BFD_ASSERT (s->output_section != NULL);
9406
9407 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
9408
9409 BFD_ASSERT (sec->output_section != NULL);
9410
a4fd1a8e
PB
9411 val = eh->export_glue->root.u.def.value + sec->output_offset
9412 + sec->output_section->vma;
8029a119 9413
a4fd1a8e
PB
9414 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9415 h->root.u.def.section->owner,
f2a9dd69
DJ
9416 globals->obfd, sec, val, s,
9417 &error_message);
a4fd1a8e
PB
9418 BFD_ASSERT (myh);
9419 return TRUE;
9420}
9421
845b51d6
PB
9422/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9423
9424static bfd_vma
9425elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9426{
9427 bfd_byte *p;
9428 bfd_vma glue_addr;
9429 asection *s;
9430 struct elf32_arm_link_hash_table *globals;
9431
9432 globals = elf32_arm_hash_table (info);
845b51d6
PB
9433 BFD_ASSERT (globals != NULL);
9434 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9435
3d4d4302
AM
9436 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9437 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
9438 BFD_ASSERT (s != NULL);
9439 BFD_ASSERT (s->contents != NULL);
9440 BFD_ASSERT (s->output_section != NULL);
9441
9442 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9443
9444 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9445
9446 if ((globals->bx_glue_offset[reg] & 1) == 0)
9447 {
9448 p = s->contents + glue_addr;
9449 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9450 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9451 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9452 globals->bx_glue_offset[reg] |= 1;
9453 }
9454
9455 return glue_addr + s->output_section->vma + s->output_offset;
9456}
9457
a4fd1a8e
PB
9458/* Generate Arm stubs for exported Thumb symbols. */
9459static void
906e58ca 9460elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
9461 struct bfd_link_info *link_info)
9462{
9463 struct elf32_arm_link_hash_table * globals;
9464
8029a119
NC
9465 if (link_info == NULL)
9466 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
9467 return;
9468
9469 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9470 if (globals == NULL)
9471 return;
9472
84c08195
PB
9473 /* If blx is available then exported Thumb symbols are OK and there is
9474 nothing to do. */
a4fd1a8e
PB
9475 if (globals->use_blx)
9476 return;
9477
9478 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9479 link_info);
9480}
9481
47beaa6a
RS
9482/* Reserve space for COUNT dynamic relocations in relocation selection
9483 SRELOC. */
9484
9485static void
9486elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9487 bfd_size_type count)
9488{
9489 struct elf32_arm_link_hash_table *htab;
9490
9491 htab = elf32_arm_hash_table (info);
9492 BFD_ASSERT (htab->root.dynamic_sections_created);
9493 if (sreloc == NULL)
9494 abort ();
9495 sreloc->size += RELOC_SIZE (htab) * count;
9496}
9497
34e77a92
RS
9498/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9499 dynamic, the relocations should go in SRELOC, otherwise they should
9500 go in the special .rel.iplt section. */
9501
9502static void
9503elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9504 bfd_size_type count)
9505{
9506 struct elf32_arm_link_hash_table *htab;
9507
9508 htab = elf32_arm_hash_table (info);
9509 if (!htab->root.dynamic_sections_created)
9510 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9511 else
9512 {
9513 BFD_ASSERT (sreloc != NULL);
9514 sreloc->size += RELOC_SIZE (htab) * count;
9515 }
9516}
9517
47beaa6a
RS
9518/* Add relocation REL to the end of relocation section SRELOC. */
9519
9520static void
9521elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9522 asection *sreloc, Elf_Internal_Rela *rel)
9523{
9524 bfd_byte *loc;
9525 struct elf32_arm_link_hash_table *htab;
9526
9527 htab = elf32_arm_hash_table (info);
34e77a92
RS
9528 if (!htab->root.dynamic_sections_created
9529 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9530 sreloc = htab->root.irelplt;
47beaa6a
RS
9531 if (sreloc == NULL)
9532 abort ();
9533 loc = sreloc->contents;
9534 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9535 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9536 abort ();
9537 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9538}
9539
34e77a92
RS
9540/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9541 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9542 to .plt. */
9543
9544static void
9545elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9546 bfd_boolean is_iplt_entry,
9547 union gotplt_union *root_plt,
9548 struct arm_plt_info *arm_plt)
9549{
9550 struct elf32_arm_link_hash_table *htab;
9551 asection *splt;
9552 asection *sgotplt;
9553
9554 htab = elf32_arm_hash_table (info);
9555
9556 if (is_iplt_entry)
9557 {
9558 splt = htab->root.iplt;
9559 sgotplt = htab->root.igotplt;
9560
99059e56
RM
9561 /* NaCl uses a special first entry in .iplt too. */
9562 if (htab->nacl_p && splt->size == 0)
9563 splt->size += htab->plt_header_size;
9564
34e77a92
RS
9565 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9566 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9567 }
9568 else
9569 {
9570 splt = htab->root.splt;
9571 sgotplt = htab->root.sgotplt;
9572
7801f98f
CL
9573 if (htab->fdpic_p)
9574 {
9575 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9576 /* For lazy binding, relocations will be put into .rel.plt, in
9577 .rel.got otherwise. */
9578 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9579 if (info->flags & DF_BIND_NOW)
9580 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9581 else
9582 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9583 }
9584 else
9585 {
9586 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9587 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9588 }
34e77a92
RS
9589
9590 /* If this is the first .plt entry, make room for the special
9591 first entry. */
9592 if (splt->size == 0)
9593 splt->size += htab->plt_header_size;
9f19ab6d
WN
9594
9595 htab->next_tls_desc_index++;
34e77a92
RS
9596 }
9597
9598 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9599 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9600 splt->size += PLT_THUMB_STUB_SIZE;
9601 root_plt->offset = splt->size;
9602 splt->size += htab->plt_entry_size;
9603
9604 if (!htab->symbian_p)
9605 {
9606 /* We also need to make an entry in the .got.plt section, which
9607 will be placed in the .got section by the linker script. */
9f19ab6d
WN
9608 if (is_iplt_entry)
9609 arm_plt->got_offset = sgotplt->size;
9610 else
9611 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7801f98f
CL
9612 if (htab->fdpic_p)
9613 /* Function descriptor takes 64 bits in GOT. */
4b24dd1a 9614 sgotplt->size += 8;
7801f98f
CL
9615 else
9616 sgotplt->size += 4;
34e77a92
RS
9617 }
9618}
9619
b38cadfb
NC
9620static bfd_vma
9621arm_movw_immediate (bfd_vma value)
9622{
9623 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9624}
9625
9626static bfd_vma
9627arm_movt_immediate (bfd_vma value)
9628{
9629 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9630}
9631
34e77a92
RS
9632/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9633 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9634 Otherwise, DYNINDX is the index of the symbol in the dynamic
9635 symbol table and SYM_VALUE is undefined.
9636
9637 ROOT_PLT points to the offset of the PLT entry from the start of its
9638 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 9639 bookkeeping information.
34e77a92 9640
57460bcf
NC
9641 Returns FALSE if there was a problem. */
9642
9643static bfd_boolean
34e77a92
RS
9644elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9645 union gotplt_union *root_plt,
9646 struct arm_plt_info *arm_plt,
9647 int dynindx, bfd_vma sym_value)
9648{
9649 struct elf32_arm_link_hash_table *htab;
9650 asection *sgot;
9651 asection *splt;
9652 asection *srel;
9653 bfd_byte *loc;
9654 bfd_vma plt_index;
9655 Elf_Internal_Rela rel;
9656 bfd_vma plt_header_size;
9657 bfd_vma got_header_size;
9658
9659 htab = elf32_arm_hash_table (info);
9660
9661 /* Pick the appropriate sections and sizes. */
9662 if (dynindx == -1)
9663 {
9664 splt = htab->root.iplt;
9665 sgot = htab->root.igotplt;
9666 srel = htab->root.irelplt;
9667
9668 /* There are no reserved entries in .igot.plt, and no special
9669 first entry in .iplt. */
9670 got_header_size = 0;
9671 plt_header_size = 0;
9672 }
9673 else
9674 {
9675 splt = htab->root.splt;
9676 sgot = htab->root.sgotplt;
9677 srel = htab->root.srelplt;
9678
9679 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9680 plt_header_size = htab->plt_header_size;
9681 }
9682 BFD_ASSERT (splt != NULL && srel != NULL);
9683
9684 /* Fill in the entry in the procedure linkage table. */
9685 if (htab->symbian_p)
9686 {
9687 BFD_ASSERT (dynindx >= 0);
9688 put_arm_insn (htab, output_bfd,
9689 elf32_arm_symbian_plt_entry[0],
9690 splt->contents + root_plt->offset);
9691 bfd_put_32 (output_bfd,
9692 elf32_arm_symbian_plt_entry[1],
9693 splt->contents + root_plt->offset + 4);
9694
9695 /* Fill in the entry in the .rel.plt section. */
9696 rel.r_offset = (splt->output_section->vma
9697 + splt->output_offset
9698 + root_plt->offset + 4);
9699 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9700
9701 /* Get the index in the procedure linkage table which
9702 corresponds to this symbol. This is the index of this symbol
9703 in all the symbols for which we are making plt entries. The
9704 first entry in the procedure linkage table is reserved. */
9705 plt_index = ((root_plt->offset - plt_header_size)
9706 / htab->plt_entry_size);
9707 }
9708 else
9709 {
9710 bfd_vma got_offset, got_address, plt_address;
9711 bfd_vma got_displacement, initial_got_entry;
9712 bfd_byte * ptr;
9713
9714 BFD_ASSERT (sgot != NULL);
9715
9716 /* Get the offset into the .(i)got.plt table of the entry that
9717 corresponds to this function. */
9718 got_offset = (arm_plt->got_offset & -2);
9719
9720 /* Get the index in the procedure linkage table which
9721 corresponds to this symbol. This is the index of this symbol
9722 in all the symbols for which we are making plt entries.
9723 After the reserved .got.plt entries, all symbols appear in
9724 the same order as in .plt. */
7801f98f 9725 if (htab->fdpic_p)
4b24dd1a
AM
9726 /* Function descriptor takes 8 bytes. */
9727 plt_index = (got_offset - got_header_size) / 8;
7801f98f 9728 else
4b24dd1a 9729 plt_index = (got_offset - got_header_size) / 4;
34e77a92
RS
9730
9731 /* Calculate the address of the GOT entry. */
9732 got_address = (sgot->output_section->vma
9733 + sgot->output_offset
9734 + got_offset);
9735
9736 /* ...and the address of the PLT entry. */
9737 plt_address = (splt->output_section->vma
9738 + splt->output_offset
9739 + root_plt->offset);
9740
9741 ptr = splt->contents + root_plt->offset;
0e1862bb 9742 if (htab->vxworks_p && bfd_link_pic (info))
34e77a92
RS
9743 {
9744 unsigned int i;
9745 bfd_vma val;
9746
9747 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9748 {
9749 val = elf32_arm_vxworks_shared_plt_entry[i];
9750 if (i == 2)
9751 val |= got_address - sgot->output_section->vma;
9752 if (i == 5)
9753 val |= plt_index * RELOC_SIZE (htab);
9754 if (i == 2 || i == 5)
9755 bfd_put_32 (output_bfd, val, ptr);
9756 else
9757 put_arm_insn (htab, output_bfd, val, ptr);
9758 }
9759 }
9760 else if (htab->vxworks_p)
9761 {
9762 unsigned int i;
9763 bfd_vma val;
9764
9765 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9766 {
9767 val = elf32_arm_vxworks_exec_plt_entry[i];
9768 if (i == 2)
9769 val |= got_address;
9770 if (i == 4)
9771 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9772 if (i == 5)
9773 val |= plt_index * RELOC_SIZE (htab);
9774 if (i == 2 || i == 5)
9775 bfd_put_32 (output_bfd, val, ptr);
9776 else
9777 put_arm_insn (htab, output_bfd, val, ptr);
9778 }
9779
9780 loc = (htab->srelplt2->contents
9781 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9782
9783 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9784 referencing the GOT for this PLT entry. */
9785 rel.r_offset = plt_address + 8;
9786 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9787 rel.r_addend = got_offset;
9788 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9789 loc += RELOC_SIZE (htab);
9790
9791 /* Create the R_ARM_ABS32 relocation referencing the
9792 beginning of the PLT for this GOT entry. */
9793 rel.r_offset = got_address;
9794 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9795 rel.r_addend = 0;
9796 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9797 }
b38cadfb
NC
9798 else if (htab->nacl_p)
9799 {
9800 /* Calculate the displacement between the PLT slot and the
9801 common tail that's part of the special initial PLT slot. */
6034aab8 9802 int32_t tail_displacement
b38cadfb
NC
9803 = ((splt->output_section->vma + splt->output_offset
9804 + ARM_NACL_PLT_TAIL_OFFSET)
9805 - (plt_address + htab->plt_entry_size + 4));
9806 BFD_ASSERT ((tail_displacement & 3) == 0);
9807 tail_displacement >>= 2;
9808
9809 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9810 || (-tail_displacement & 0xff000000) == 0);
9811
9812 /* Calculate the displacement between the PLT slot and the entry
9813 in the GOT. The offset accounts for the value produced by
9814 adding to pc in the penultimate instruction of the PLT stub. */
6034aab8 9815 got_displacement = (got_address
99059e56 9816 - (plt_address + htab->plt_entry_size));
b38cadfb
NC
9817
9818 /* NaCl does not support interworking at all. */
9819 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9820
9821 put_arm_insn (htab, output_bfd,
9822 elf32_arm_nacl_plt_entry[0]
9823 | arm_movw_immediate (got_displacement),
9824 ptr + 0);
9825 put_arm_insn (htab, output_bfd,
9826 elf32_arm_nacl_plt_entry[1]
9827 | arm_movt_immediate (got_displacement),
9828 ptr + 4);
9829 put_arm_insn (htab, output_bfd,
9830 elf32_arm_nacl_plt_entry[2],
9831 ptr + 8);
9832 put_arm_insn (htab, output_bfd,
9833 elf32_arm_nacl_plt_entry[3]
9834 | (tail_displacement & 0x00ffffff),
9835 ptr + 12);
9836 }
7801f98f
CL
9837 else if (htab->fdpic_p)
9838 {
59029f57
CL
9839 const bfd_vma *plt_entry = using_thumb_only(htab)
9840 ? elf32_arm_fdpic_thumb_plt_entry
9841 : elf32_arm_fdpic_plt_entry;
9842
7801f98f
CL
9843 /* Fill-up Thumb stub if needed. */
9844 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9845 {
9846 put_thumb_insn (htab, output_bfd,
9847 elf32_arm_plt_thumb_stub[0], ptr - 4);
9848 put_thumb_insn (htab, output_bfd,
9849 elf32_arm_plt_thumb_stub[1], ptr - 2);
9850 }
59029f57
CL
9851 /* As we are using 32 bit instructions even for the Thumb
9852 version, we have to use 'put_arm_insn' instead of
9853 'put_thumb_insn'. */
9854 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9855 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9856 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9857 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
7801f98f
CL
9858 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9859
9860 if (!(info->flags & DF_BIND_NOW))
9861 {
9862 /* funcdesc_value_reloc_offset. */
9863 bfd_put_32 (output_bfd,
9864 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9865 ptr + 20);
59029f57
CL
9866 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9867 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9868 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9869 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
7801f98f
CL
9870 }
9871 }
57460bcf
NC
9872 else if (using_thumb_only (htab))
9873 {
eed94f8f 9874 /* PR ld/16017: Generate thumb only PLT entries. */
469a3493 9875 if (!using_thumb2 (htab))
eed94f8f
NC
9876 {
9877 /* FIXME: We ought to be able to generate thumb-1 PLT
9878 instructions... */
90b6238f 9879 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
eed94f8f
NC
9880 output_bfd);
9881 return FALSE;
9882 }
57460bcf 9883
eed94f8f
NC
9884 /* Calculate the displacement between the PLT slot and the entry in
9885 the GOT. The 12-byte offset accounts for the value produced by
9886 adding to pc in the 3rd instruction of the PLT stub. */
9887 got_displacement = got_address - (plt_address + 12);
9888
9889 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9890 instead of 'put_thumb_insn'. */
9891 put_arm_insn (htab, output_bfd,
9892 elf32_thumb2_plt_entry[0]
9893 | ((got_displacement & 0x000000ff) << 16)
9894 | ((got_displacement & 0x00000700) << 20)
9895 | ((got_displacement & 0x00000800) >> 1)
9896 | ((got_displacement & 0x0000f000) >> 12),
9897 ptr + 0);
9898 put_arm_insn (htab, output_bfd,
9899 elf32_thumb2_plt_entry[1]
9900 | ((got_displacement & 0x00ff0000) )
9901 | ((got_displacement & 0x07000000) << 4)
9902 | ((got_displacement & 0x08000000) >> 17)
9903 | ((got_displacement & 0xf0000000) >> 28),
9904 ptr + 4);
9905 put_arm_insn (htab, output_bfd,
9906 elf32_thumb2_plt_entry[2],
9907 ptr + 8);
9908 put_arm_insn (htab, output_bfd,
9909 elf32_thumb2_plt_entry[3],
9910 ptr + 12);
57460bcf 9911 }
34e77a92
RS
9912 else
9913 {
9914 /* Calculate the displacement between the PLT slot and the
9915 entry in the GOT. The eight-byte offset accounts for the
9916 value produced by adding to pc in the first instruction
9917 of the PLT stub. */
9918 got_displacement = got_address - (plt_address + 8);
9919
34e77a92
RS
9920 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9921 {
9922 put_thumb_insn (htab, output_bfd,
9923 elf32_arm_plt_thumb_stub[0], ptr - 4);
9924 put_thumb_insn (htab, output_bfd,
9925 elf32_arm_plt_thumb_stub[1], ptr - 2);
9926 }
9927
1db37fe6
YG
9928 if (!elf32_arm_use_long_plt_entry)
9929 {
9930 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9931
9932 put_arm_insn (htab, output_bfd,
9933 elf32_arm_plt_entry_short[0]
9934 | ((got_displacement & 0x0ff00000) >> 20),
9935 ptr + 0);
9936 put_arm_insn (htab, output_bfd,
9937 elf32_arm_plt_entry_short[1]
9938 | ((got_displacement & 0x000ff000) >> 12),
9939 ptr+ 4);
9940 put_arm_insn (htab, output_bfd,
9941 elf32_arm_plt_entry_short[2]
9942 | (got_displacement & 0x00000fff),
9943 ptr + 8);
34e77a92 9944#ifdef FOUR_WORD_PLT
1db37fe6 9945 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
34e77a92 9946#endif
1db37fe6
YG
9947 }
9948 else
9949 {
9950 put_arm_insn (htab, output_bfd,
9951 elf32_arm_plt_entry_long[0]
9952 | ((got_displacement & 0xf0000000) >> 28),
9953 ptr + 0);
9954 put_arm_insn (htab, output_bfd,
9955 elf32_arm_plt_entry_long[1]
9956 | ((got_displacement & 0x0ff00000) >> 20),
9957 ptr + 4);
9958 put_arm_insn (htab, output_bfd,
9959 elf32_arm_plt_entry_long[2]
9960 | ((got_displacement & 0x000ff000) >> 12),
9961 ptr+ 8);
9962 put_arm_insn (htab, output_bfd,
9963 elf32_arm_plt_entry_long[3]
9964 | (got_displacement & 0x00000fff),
9965 ptr + 12);
9966 }
34e77a92
RS
9967 }
9968
9969 /* Fill in the entry in the .rel(a).(i)plt section. */
9970 rel.r_offset = got_address;
9971 rel.r_addend = 0;
9972 if (dynindx == -1)
9973 {
9974 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9975 The dynamic linker or static executable then calls SYM_VALUE
9976 to determine the correct run-time value of the .igot.plt entry. */
9977 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9978 initial_got_entry = sym_value;
9979 }
9980 else
9981 {
7801f98f
CL
9982 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9983 used by PLT entry. */
9984 if (htab->fdpic_p)
9985 {
9986 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9987 initial_got_entry = 0;
9988 }
9989 else
9990 {
9991 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9992 initial_got_entry = (splt->output_section->vma
9993 + splt->output_offset);
a7618269
TC
9994
9995 /* PR ld/16017
9996 When thumb only we need to set the LSB for any address that
9997 will be used with an interworking branch instruction. */
9998 if (using_thumb_only (htab))
9999 initial_got_entry |= 1;
7801f98f 10000 }
34e77a92
RS
10001 }
10002
10003 /* Fill in the entry in the global offset table. */
10004 bfd_put_32 (output_bfd, initial_got_entry,
10005 sgot->contents + got_offset);
7801f98f
CL
10006
10007 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
10008 {
10009 /* Setup initial funcdesc value. */
10010 /* FIXME: we don't support lazy binding because there is a
10011 race condition between both words getting written and
10012 some other thread attempting to read them. The ARM
10013 architecture does not have an atomic 64 bit load/store
10014 instruction that could be used to prevent it; it is
10015 recommended that threaded FDPIC applications run with the
10016 LD_BIND_NOW environment variable set. */
10017 bfd_put_32(output_bfd, plt_address + 0x18,
10018 sgot->contents + got_offset);
10019 bfd_put_32(output_bfd, -1 /*TODO*/,
10020 sgot->contents + got_offset + 4);
10021 }
34e77a92
RS
10022 }
10023
aba8c3de
WN
10024 if (dynindx == -1)
10025 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
10026 else
10027 {
7801f98f
CL
10028 if (htab->fdpic_p)
10029 {
10030 /* For FDPIC we put PLT relocationss into .rel.got when not
10031 lazy binding otherwise we put them in .rel.plt. For now,
10032 we don't support lazy binding so put it in .rel.got. */
10033 if (info->flags & DF_BIND_NOW)
10034 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
10035 else
10036 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
10037 }
10038 else
10039 {
10040 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10041 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10042 }
aba8c3de 10043 }
57460bcf
NC
10044
10045 return TRUE;
34e77a92
RS
10046}
10047
eb043451
PB
10048/* Some relocations map to different relocations depending on the
10049 target. Return the real relocation. */
8029a119 10050
eb043451
PB
10051static int
10052arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10053 int r_type)
10054{
10055 switch (r_type)
10056 {
10057 case R_ARM_TARGET1:
10058 if (globals->target1_is_rel)
10059 return R_ARM_REL32;
10060 else
10061 return R_ARM_ABS32;
10062
10063 case R_ARM_TARGET2:
10064 return globals->target2_reloc;
10065
10066 default:
10067 return r_type;
10068 }
10069}
eb043451 10070
ba93b8ac
DJ
10071/* Return the base VMA address which should be subtracted from real addresses
10072 when resolving @dtpoff relocation.
10073 This is PT_TLS segment p_vaddr. */
10074
10075static bfd_vma
10076dtpoff_base (struct bfd_link_info *info)
10077{
10078 /* If tls_sec is NULL, we should have signalled an error already. */
10079 if (elf_hash_table (info)->tls_sec == NULL)
10080 return 0;
10081 return elf_hash_table (info)->tls_sec->vma;
10082}
10083
10084/* Return the relocation value for @tpoff relocation
10085 if STT_TLS virtual address is ADDRESS. */
10086
10087static bfd_vma
10088tpoff (struct bfd_link_info *info, bfd_vma address)
10089{
10090 struct elf_link_hash_table *htab = elf_hash_table (info);
10091 bfd_vma base;
10092
10093 /* If tls_sec is NULL, we should have signalled an error already. */
10094 if (htab->tls_sec == NULL)
10095 return 0;
10096 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10097 return address - htab->tls_sec->vma + base;
10098}
10099
00a97672
RS
10100/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10101 VALUE is the relocation value. */
10102
10103static bfd_reloc_status_type
10104elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10105{
10106 if (value > 0xfff)
10107 return bfd_reloc_overflow;
10108
10109 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10110 bfd_put_32 (abfd, value, data);
10111 return bfd_reloc_ok;
10112}
10113
0855e32b
NS
10114/* Handle TLS relaxations. Relaxing is possible for symbols that use
10115 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10116 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10117
10118 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10119 is to then call final_link_relocate. Return other values in the
62672b10
NS
10120 case of error.
10121
10122 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10123 the pre-relaxed code. It would be nice if the relocs were updated
10124 to match the optimization. */
0855e32b 10125
b38cadfb 10126static bfd_reloc_status_type
0855e32b 10127elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 10128 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
10129 Elf_Internal_Rela *rel, unsigned long is_local)
10130{
10131 unsigned long insn;
b38cadfb 10132
0855e32b
NS
10133 switch (ELF32_R_TYPE (rel->r_info))
10134 {
10135 default:
10136 return bfd_reloc_notsupported;
b38cadfb 10137
0855e32b
NS
10138 case R_ARM_TLS_GOTDESC:
10139 if (is_local)
10140 insn = 0;
10141 else
10142 {
10143 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10144 if (insn & 1)
10145 insn -= 5; /* THUMB */
10146 else
10147 insn -= 8; /* ARM */
10148 }
10149 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10150 return bfd_reloc_continue;
10151
10152 case R_ARM_THM_TLS_DESCSEQ:
10153 /* Thumb insn. */
10154 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10155 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10156 {
10157 if (is_local)
10158 /* nop */
10159 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10160 }
10161 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10162 {
10163 if (is_local)
10164 /* nop */
10165 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10166 else
10167 /* ldr rx,[ry] */
10168 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10169 }
10170 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10171 {
10172 if (is_local)
10173 /* nop */
10174 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10175 else
10176 /* mov r0, rx */
10177 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10178 contents + rel->r_offset);
10179 }
10180 else
10181 {
10182 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10183 /* It's a 32 bit instruction, fetch the rest of it for
10184 error generation. */
10185 insn = (insn << 16)
10186 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
4eca0228 10187 _bfd_error_handler
695344c0 10188 /* xgettext:c-format */
2dcf00ce 10189 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10190 "unexpected %s instruction '%#lx' in TLS trampoline"),
10191 input_bfd, input_sec, (uint64_t) rel->r_offset,
10192 "Thumb", insn);
0855e32b
NS
10193 return bfd_reloc_notsupported;
10194 }
10195 break;
b38cadfb 10196
0855e32b
NS
10197 case R_ARM_TLS_DESCSEQ:
10198 /* arm insn. */
10199 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10200 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10201 {
10202 if (is_local)
10203 /* mov rx, ry */
10204 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10205 contents + rel->r_offset);
10206 }
10207 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10208 {
10209 if (is_local)
10210 /* nop */
10211 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10212 else
10213 /* ldr rx,[ry] */
10214 bfd_put_32 (input_bfd, insn & 0xfffff000,
10215 contents + rel->r_offset);
10216 }
10217 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10218 {
10219 if (is_local)
10220 /* nop */
10221 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10222 else
10223 /* mov r0, rx */
10224 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10225 contents + rel->r_offset);
10226 }
10227 else
10228 {
4eca0228 10229 _bfd_error_handler
695344c0 10230 /* xgettext:c-format */
2dcf00ce 10231 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10232 "unexpected %s instruction '%#lx' in TLS trampoline"),
10233 input_bfd, input_sec, (uint64_t) rel->r_offset,
10234 "ARM", insn);
0855e32b
NS
10235 return bfd_reloc_notsupported;
10236 }
10237 break;
10238
10239 case R_ARM_TLS_CALL:
10240 /* GD->IE relaxation, turn the instruction into 'nop' or
10241 'ldr r0, [pc,r0]' */
10242 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10243 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10244 break;
b38cadfb 10245
0855e32b 10246 case R_ARM_THM_TLS_CALL:
6a631e86 10247 /* GD->IE relaxation. */
0855e32b
NS
10248 if (!is_local)
10249 /* add r0,pc; ldr r0, [r0] */
10250 insn = 0x44786800;
60a019a0 10251 else if (using_thumb2 (globals))
0855e32b
NS
10252 /* nop.w */
10253 insn = 0xf3af8000;
10254 else
10255 /* nop; nop */
10256 insn = 0xbf00bf00;
b38cadfb 10257
0855e32b
NS
10258 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10259 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10260 break;
10261 }
10262 return bfd_reloc_ok;
10263}
10264
4962c51a
MS
10265/* For a given value of n, calculate the value of G_n as required to
10266 deal with group relocations. We return it in the form of an
10267 encoded constant-and-rotation, together with the final residual. If n is
10268 specified as less than zero, then final_residual is filled with the
10269 input value and no further action is performed. */
10270
10271static bfd_vma
10272calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10273{
10274 int current_n;
10275 bfd_vma g_n;
10276 bfd_vma encoded_g_n = 0;
10277 bfd_vma residual = value; /* Also known as Y_n. */
10278
10279 for (current_n = 0; current_n <= n; current_n++)
10280 {
10281 int shift;
10282
10283 /* Calculate which part of the value to mask. */
10284 if (residual == 0)
99059e56 10285 shift = 0;
4962c51a 10286 else
99059e56
RM
10287 {
10288 int msb;
10289
10290 /* Determine the most significant bit in the residual and
10291 align the resulting value to a 2-bit boundary. */
10292 for (msb = 30; msb >= 0; msb -= 2)
10293 if (residual & (3 << msb))
10294 break;
10295
10296 /* The desired shift is now (msb - 6), or zero, whichever
10297 is the greater. */
10298 shift = msb - 6;
10299 if (shift < 0)
10300 shift = 0;
10301 }
4962c51a
MS
10302
10303 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10304 g_n = residual & (0xff << shift);
10305 encoded_g_n = (g_n >> shift)
99059e56 10306 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
10307
10308 /* Calculate the residual for the next time around. */
10309 residual &= ~g_n;
10310 }
10311
10312 *final_residual = residual;
10313
10314 return encoded_g_n;
10315}
10316
10317/* Given an ARM instruction, determine whether it is an ADD or a SUB.
10318 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 10319
4962c51a 10320static int
906e58ca 10321identify_add_or_sub (bfd_vma insn)
4962c51a
MS
10322{
10323 int opcode = insn & 0x1e00000;
10324
10325 if (opcode == 1 << 23) /* ADD */
10326 return 1;
10327
10328 if (opcode == 1 << 22) /* SUB */
10329 return -1;
10330
10331 return 0;
10332}
10333
252b5132 10334/* Perform a relocation as part of a final link. */
9b485d32 10335
252b5132 10336static bfd_reloc_status_type
07d6d2b8
AM
10337elf32_arm_final_link_relocate (reloc_howto_type * howto,
10338 bfd * input_bfd,
10339 bfd * output_bfd,
10340 asection * input_section,
10341 bfd_byte * contents,
10342 Elf_Internal_Rela * rel,
10343 bfd_vma value,
10344 struct bfd_link_info * info,
10345 asection * sym_sec,
10346 const char * sym_name,
10347 unsigned char st_type,
10348 enum arm_st_branch_type branch_type,
0945cdfd 10349 struct elf_link_hash_entry * h,
07d6d2b8
AM
10350 bfd_boolean * unresolved_reloc_p,
10351 char ** error_message)
10352{
10353 unsigned long r_type = howto->type;
10354 unsigned long r_symndx;
10355 bfd_byte * hit_data = contents + rel->r_offset;
10356 bfd_vma * local_got_offsets;
10357 bfd_vma * local_tlsdesc_gotents;
10358 asection * sgot;
10359 asection * splt;
10360 asection * sreloc = NULL;
10361 asection * srelgot;
10362 bfd_vma addend;
10363 bfd_signed_vma signed_addend;
10364 unsigned char dynreloc_st_type;
10365 bfd_vma dynreloc_value;
ba96a88f 10366 struct elf32_arm_link_hash_table * globals;
34e77a92 10367 struct elf32_arm_link_hash_entry *eh;
07d6d2b8
AM
10368 union gotplt_union *root_plt;
10369 struct arm_plt_info *arm_plt;
10370 bfd_vma plt_offset;
10371 bfd_vma gotplt_offset;
10372 bfd_boolean has_iplt_entry;
10373 bfd_boolean resolved_to_zero;
f21f3fe0 10374
9c504268 10375 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10376 if (globals == NULL)
10377 return bfd_reloc_notsupported;
9c504268 10378
0ffa91dd 10379 BFD_ASSERT (is_arm_elf (input_bfd));
47aeb64c 10380 BFD_ASSERT (howto != NULL);
0ffa91dd
NC
10381
10382 /* Some relocation types map to different relocations depending on the
9c504268 10383 target. We pick the right one here. */
eb043451 10384 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
10385
10386 /* It is possible to have linker relaxations on some TLS access
10387 models. Update our information here. */
10388 r_type = elf32_arm_tls_transition (info, r_type, h);
10389
eb043451
PB
10390 if (r_type != howto->type)
10391 howto = elf32_arm_howto_from_type (r_type);
9c504268 10392
34e77a92 10393 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 10394 sgot = globals->root.sgot;
252b5132 10395 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
10396 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10397
34e77a92
RS
10398 if (globals->root.dynamic_sections_created)
10399 srelgot = globals->root.srelgot;
10400 else
10401 srelgot = NULL;
10402
252b5132
RH
10403 r_symndx = ELF32_R_SYM (rel->r_info);
10404
4e7fd91e 10405 if (globals->use_rel)
ba96a88f 10406 {
4e7fd91e
PB
10407 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10408
10409 if (addend & ((howto->src_mask + 1) >> 1))
10410 {
10411 signed_addend = -1;
10412 signed_addend &= ~ howto->src_mask;
10413 signed_addend |= addend;
10414 }
10415 else
10416 signed_addend = addend;
ba96a88f
NC
10417 }
10418 else
4e7fd91e 10419 addend = signed_addend = rel->r_addend;
f21f3fe0 10420
39f21624
NC
10421 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10422 are resolving a function call relocation. */
10423 if (using_thumb_only (globals)
10424 && (r_type == R_ARM_THM_CALL
10425 || r_type == R_ARM_THM_JUMP24)
10426 && branch_type == ST_BRANCH_TO_ARM)
10427 branch_type = ST_BRANCH_TO_THUMB;
10428
34e77a92
RS
10429 /* Record the symbol information that should be used in dynamic
10430 relocations. */
10431 dynreloc_st_type = st_type;
10432 dynreloc_value = value;
10433 if (branch_type == ST_BRANCH_TO_THUMB)
10434 dynreloc_value |= 1;
10435
10436 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10437 VALUE appropriately for relocations that we resolve at link time. */
10438 has_iplt_entry = FALSE;
4ba2ef8f
TP
10439 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10440 &arm_plt)
34e77a92
RS
10441 && root_plt->offset != (bfd_vma) -1)
10442 {
10443 plt_offset = root_plt->offset;
10444 gotplt_offset = arm_plt->got_offset;
10445
10446 if (h == NULL || eh->is_iplt)
10447 {
10448 has_iplt_entry = TRUE;
10449 splt = globals->root.iplt;
10450
10451 /* Populate .iplt entries here, because not all of them will
10452 be seen by finish_dynamic_symbol. The lower bit is set if
10453 we have already populated the entry. */
10454 if (plt_offset & 1)
10455 plt_offset--;
10456 else
10457 {
57460bcf
NC
10458 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10459 -1, dynreloc_value))
10460 root_plt->offset |= 1;
10461 else
10462 return bfd_reloc_notsupported;
34e77a92
RS
10463 }
10464
10465 /* Static relocations always resolve to the .iplt entry. */
10466 st_type = STT_FUNC;
10467 value = (splt->output_section->vma
10468 + splt->output_offset
10469 + plt_offset);
10470 branch_type = ST_BRANCH_TO_ARM;
10471
10472 /* If there are non-call relocations that resolve to the .iplt
10473 entry, then all dynamic ones must too. */
10474 if (arm_plt->noncall_refcount != 0)
10475 {
10476 dynreloc_st_type = st_type;
10477 dynreloc_value = value;
10478 }
10479 }
10480 else
10481 /* We populate the .plt entry in finish_dynamic_symbol. */
10482 splt = globals->root.splt;
10483 }
10484 else
10485 {
10486 splt = NULL;
10487 plt_offset = (bfd_vma) -1;
10488 gotplt_offset = (bfd_vma) -1;
10489 }
10490
95b03e4a
L
10491 resolved_to_zero = (h != NULL
10492 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10493
252b5132
RH
10494 switch (r_type)
10495 {
10496 case R_ARM_NONE:
28a094c2
DJ
10497 /* We don't need to find a value for this symbol. It's just a
10498 marker. */
10499 *unresolved_reloc_p = FALSE;
252b5132
RH
10500 return bfd_reloc_ok;
10501
00a97672
RS
10502 case R_ARM_ABS12:
10503 if (!globals->vxworks_p)
10504 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
1a0670f3 10505 /* Fall through. */
00a97672 10506
252b5132
RH
10507 case R_ARM_PC24:
10508 case R_ARM_ABS32:
bb224fc3 10509 case R_ARM_ABS32_NOI:
252b5132 10510 case R_ARM_REL32:
bb224fc3 10511 case R_ARM_REL32_NOI:
5b5bb741
PB
10512 case R_ARM_CALL:
10513 case R_ARM_JUMP24:
dfc5f959 10514 case R_ARM_XPC25:
eb043451 10515 case R_ARM_PREL31:
7359ea65 10516 case R_ARM_PLT32:
7359ea65
DJ
10517 /* Handle relocations which should use the PLT entry. ABS32/REL32
10518 will use the symbol's value, which may point to a PLT entry, but we
10519 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
10520 branches in this object should go to it, except if the PLT is too
10521 far away, in which case a long branch stub should be inserted. */
bb224fc3 10522 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 10523 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
10524 && r_type != R_ARM_CALL
10525 && r_type != R_ARM_JUMP24
10526 && r_type != R_ARM_PLT32)
34e77a92 10527 && plt_offset != (bfd_vma) -1)
7359ea65 10528 {
34e77a92
RS
10529 /* If we've created a .plt section, and assigned a PLT entry
10530 to this function, it must either be a STT_GNU_IFUNC reference
10531 or not be known to bind locally. In other cases, we should
10532 have cleared the PLT entry by now. */
10533 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
10534
10535 value = (splt->output_section->vma
10536 + splt->output_offset
34e77a92 10537 + plt_offset);
0945cdfd 10538 *unresolved_reloc_p = FALSE;
7359ea65
DJ
10539 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10540 contents, rel->r_offset, value,
00a97672 10541 rel->r_addend);
7359ea65
DJ
10542 }
10543
67687978
PB
10544 /* When generating a shared object or relocatable executable, these
10545 relocations are copied into the output file to be resolved at
10546 run time. */
0e1862bb 10547 if ((bfd_link_pic (info)
e8b09b87
CL
10548 || globals->root.is_relocatable_executable
10549 || globals->fdpic_p)
7359ea65 10550 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 10551 && !(globals->vxworks_p
3348747a
NS
10552 && strcmp (input_section->output_section->name,
10553 ".tls_vars") == 0)
bb224fc3 10554 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 10555 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
10556 && !(input_bfd == globals->stub_bfd
10557 && strstr (input_section->name, STUB_SUFFIX))
7359ea65 10558 && (h == NULL
95b03e4a
L
10559 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10560 && !resolved_to_zero)
7359ea65
DJ
10561 || h->root.type != bfd_link_hash_undefweak)
10562 && r_type != R_ARM_PC24
5b5bb741
PB
10563 && r_type != R_ARM_CALL
10564 && r_type != R_ARM_JUMP24
ee06dc07 10565 && r_type != R_ARM_PREL31
7359ea65 10566 && r_type != R_ARM_PLT32)
252b5132 10567 {
947216bf 10568 Elf_Internal_Rela outrel;
b34976b6 10569 bfd_boolean skip, relocate;
e8b09b87 10570 int isrofixup = 0;
f21f3fe0 10571
52db4ec2
JW
10572 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10573 && !h->def_regular)
10574 {
10575 char *v = _("shared object");
10576
0e1862bb 10577 if (bfd_link_executable (info))
52db4ec2
JW
10578 v = _("PIE executable");
10579
4eca0228 10580 _bfd_error_handler
871b3ab2 10581 (_("%pB: relocation %s against external or undefined symbol `%s'"
52db4ec2
JW
10582 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10583 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10584 return bfd_reloc_notsupported;
10585 }
10586
0945cdfd
DJ
10587 *unresolved_reloc_p = FALSE;
10588
34e77a92 10589 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 10590 {
83bac4b0
NC
10591 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10592 ! globals->use_rel);
f21f3fe0 10593
83bac4b0 10594 if (sreloc == NULL)
252b5132 10595 return bfd_reloc_notsupported;
252b5132 10596 }
f21f3fe0 10597
b34976b6
AM
10598 skip = FALSE;
10599 relocate = FALSE;
f21f3fe0 10600
00a97672 10601 outrel.r_addend = addend;
c629eae0
JJ
10602 outrel.r_offset =
10603 _bfd_elf_section_offset (output_bfd, info, input_section,
10604 rel->r_offset);
10605 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 10606 skip = TRUE;
0bb2d96a 10607 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 10608 skip = TRUE, relocate = TRUE;
252b5132
RH
10609 outrel.r_offset += (input_section->output_section->vma
10610 + input_section->output_offset);
f21f3fe0 10611
252b5132 10612 if (skip)
0bb2d96a 10613 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
10614 else if (h != NULL
10615 && h->dynindx != -1
0e1862bb 10616 && (!bfd_link_pic (info)
1dcb9720
JW
10617 || !(bfd_link_pie (info)
10618 || SYMBOLIC_BIND (info, h))
f5385ebf 10619 || !h->def_regular))
5e681ec4 10620 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
10621 else
10622 {
a16385dc
MM
10623 int symbol;
10624
5e681ec4 10625 /* This symbol is local, or marked to become local. */
e8b09b87
CL
10626 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10627 || (globals->fdpic_p && !bfd_link_pic(info)));
a16385dc 10628 if (globals->symbian_p)
6366ff1e 10629 {
74541ad4
AM
10630 asection *osec;
10631
6366ff1e
MM
10632 /* On Symbian OS, the data segment and text segement
10633 can be relocated independently. Therefore, we
10634 must indicate the segment to which this
10635 relocation is relative. The BPABI allows us to
10636 use any symbol in the right segment; we just use
10637 the section symbol as it is convenient. (We
10638 cannot use the symbol given by "h" directly as it
74541ad4
AM
10639 will not appear in the dynamic symbol table.)
10640
10641 Note that the dynamic linker ignores the section
10642 symbol value, so we don't subtract osec->vma
10643 from the emitted reloc addend. */
10dbd1f3 10644 if (sym_sec)
74541ad4 10645 osec = sym_sec->output_section;
10dbd1f3 10646 else
74541ad4
AM
10647 osec = input_section->output_section;
10648 symbol = elf_section_data (osec)->dynindx;
10649 if (symbol == 0)
10650 {
10651 struct elf_link_hash_table *htab = elf_hash_table (info);
10652
10653 if ((osec->flags & SEC_READONLY) == 0
10654 && htab->data_index_section != NULL)
10655 osec = htab->data_index_section;
10656 else
10657 osec = htab->text_index_section;
10658 symbol = elf_section_data (osec)->dynindx;
10659 }
6366ff1e
MM
10660 BFD_ASSERT (symbol != 0);
10661 }
a16385dc
MM
10662 else
10663 /* On SVR4-ish systems, the dynamic loader cannot
10664 relocate the text and data segments independently,
10665 so the symbol does not matter. */
10666 symbol = 0;
34e77a92
RS
10667 if (dynreloc_st_type == STT_GNU_IFUNC)
10668 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10669 to the .iplt entry. Instead, every non-call reference
10670 must use an R_ARM_IRELATIVE relocation to obtain the
10671 correct run-time address. */
10672 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
e8b09b87
CL
10673 else if (globals->fdpic_p && !bfd_link_pic(info))
10674 isrofixup = 1;
34e77a92
RS
10675 else
10676 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
10677 if (globals->use_rel)
10678 relocate = TRUE;
10679 else
34e77a92 10680 outrel.r_addend += dynreloc_value;
252b5132 10681 }
f21f3fe0 10682
e8b09b87
CL
10683 if (isrofixup)
10684 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10685 else
10686 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 10687
f21f3fe0 10688 /* If this reloc is against an external symbol, we do not want to
252b5132 10689 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 10690 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
10691 if (! relocate)
10692 return bfd_reloc_ok;
9a5aca8c 10693
f21f3fe0 10694 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
10695 contents, rel->r_offset,
10696 dynreloc_value, (bfd_vma) 0);
252b5132
RH
10697 }
10698 else switch (r_type)
10699 {
00a97672
RS
10700 case R_ARM_ABS12:
10701 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10702
dfc5f959 10703 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
10704 case R_ARM_CALL:
10705 case R_ARM_JUMP24:
8029a119 10706 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 10707 case R_ARM_PLT32:
906e58ca 10708 {
906e58ca
NC
10709 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10710
dfc5f959 10711 if (r_type == R_ARM_XPC25)
252b5132 10712 {
dfc5f959
NC
10713 /* Check for Arm calling Arm function. */
10714 /* FIXME: Should we translate the instruction into a BL
10715 instruction instead ? */
35fc36a8 10716 if (branch_type != ST_BRANCH_TO_THUMB)
4eca0228 10717 _bfd_error_handler
90b6238f
AM
10718 (_("\%pB: warning: %s BLX instruction targets"
10719 " %s function '%s'"),
10720 input_bfd, "ARM",
10721 "ARM", h ? h->root.root.string : "(local)");
dfc5f959 10722 }
155d87d7 10723 else if (r_type == R_ARM_PC24)
dfc5f959
NC
10724 {
10725 /* Check for Arm calling Thumb function. */
35fc36a8 10726 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 10727 {
f2a9dd69
DJ
10728 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10729 output_bfd, input_section,
10730 hit_data, sym_sec, rel->r_offset,
10731 signed_addend, value,
10732 error_message))
10733 return bfd_reloc_ok;
10734 else
10735 return bfd_reloc_dangerous;
dfc5f959 10736 }
252b5132 10737 }
ba96a88f 10738
906e58ca 10739 /* Check if a stub has to be inserted because the
8029a119 10740 destination is too far or we are changing mode. */
155d87d7
CL
10741 if ( r_type == R_ARM_CALL
10742 || r_type == R_ARM_JUMP24
10743 || r_type == R_ARM_PLT32)
906e58ca 10744 {
fe33d2fa
CL
10745 enum elf32_arm_stub_type stub_type = arm_stub_none;
10746 struct elf32_arm_link_hash_entry *hash;
10747
10748 hash = (struct elf32_arm_link_hash_entry *) h;
10749 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10750 st_type, &branch_type,
10751 hash, value, sym_sec,
fe33d2fa 10752 input_bfd, sym_name);
5fa9e92f 10753
fe33d2fa 10754 if (stub_type != arm_stub_none)
906e58ca
NC
10755 {
10756 /* The target is out of reach, so redirect the
10757 branch to the local stub for this function. */
906e58ca
NC
10758 stub_entry = elf32_arm_get_stub_entry (input_section,
10759 sym_sec, h,
fe33d2fa
CL
10760 rel, globals,
10761 stub_type);
9cd3e4e5
NC
10762 {
10763 if (stub_entry != NULL)
10764 value = (stub_entry->stub_offset
10765 + stub_entry->stub_sec->output_offset
10766 + stub_entry->stub_sec->output_section->vma);
10767
10768 if (plt_offset != (bfd_vma) -1)
10769 *unresolved_reloc_p = FALSE;
10770 }
906e58ca 10771 }
fe33d2fa
CL
10772 else
10773 {
10774 /* If the call goes through a PLT entry, make sure to
10775 check distance to the right destination address. */
34e77a92 10776 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10777 {
10778 value = (splt->output_section->vma
10779 + splt->output_offset
34e77a92 10780 + plt_offset);
fe33d2fa
CL
10781 *unresolved_reloc_p = FALSE;
10782 /* The PLT entry is in ARM mode, regardless of the
10783 target function. */
35fc36a8 10784 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10785 }
10786 }
906e58ca
NC
10787 }
10788
dea514f5
PB
10789 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10790 where:
10791 S is the address of the symbol in the relocation.
10792 P is address of the instruction being relocated.
10793 A is the addend (extracted from the instruction) in bytes.
10794
10795 S is held in 'value'.
10796 P is the base address of the section containing the
10797 instruction plus the offset of the reloc into that
10798 section, ie:
10799 (input_section->output_section->vma +
10800 input_section->output_offset +
10801 rel->r_offset).
10802 A is the addend, converted into bytes, ie:
10803 (signed_addend * 4)
10804
10805 Note: None of these operations have knowledge of the pipeline
10806 size of the processor, thus it is up to the assembler to
10807 encode this information into the addend. */
10808 value -= (input_section->output_section->vma
10809 + input_section->output_offset);
10810 value -= rel->r_offset;
4e7fd91e
PB
10811 if (globals->use_rel)
10812 value += (signed_addend << howto->size);
10813 else
10814 /* RELA addends do not have to be adjusted by howto->size. */
10815 value += signed_addend;
23080146 10816
dcb5e6e6
NC
10817 signed_addend = value;
10818 signed_addend >>= howto->rightshift;
9a5aca8c 10819
5ab79981 10820 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 10821 the next instruction unless a PLT entry will be created.
77b4f08f 10822 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
10823 The jump to the next instruction is optimized as a NOP depending
10824 on the architecture. */
ffcb4889 10825 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 10826 && plt_offset == (bfd_vma) -1)
77b4f08f 10827 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 10828 {
cd1dac3d
DG
10829 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10830
10831 if (arch_has_arm_nop (globals))
10832 value |= 0x0320f000;
10833 else
10834 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
10835 }
10836 else
59f2c4e7 10837 {
9b485d32 10838 /* Perform a signed range check. */
dcb5e6e6 10839 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
10840 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10841 return bfd_reloc_overflow;
9a5aca8c 10842
5ab79981 10843 addend = (value & 2);
39b41c9c 10844
5ab79981
PB
10845 value = (signed_addend & howto->dst_mask)
10846 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 10847
5ab79981
PB
10848 if (r_type == R_ARM_CALL)
10849 {
155d87d7 10850 /* Set the H bit in the BLX instruction. */
35fc36a8 10851 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
10852 {
10853 if (addend)
10854 value |= (1 << 24);
10855 else
10856 value &= ~(bfd_vma)(1 << 24);
10857 }
10858
5ab79981 10859 /* Select the correct instruction (BL or BLX). */
906e58ca 10860 /* Only if we are not handling a BL to a stub. In this
8029a119 10861 case, mode switching is performed by the stub. */
35fc36a8 10862 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 10863 value |= (1 << 28);
63e1a0fc 10864 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
10865 {
10866 value &= ~(bfd_vma)(1 << 28);
10867 value |= (1 << 24);
10868 }
39b41c9c
PB
10869 }
10870 }
906e58ca 10871 }
252b5132 10872 break;
f21f3fe0 10873
252b5132
RH
10874 case R_ARM_ABS32:
10875 value += addend;
35fc36a8 10876 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
10877 value |= 1;
10878 break;
f21f3fe0 10879
bb224fc3
MS
10880 case R_ARM_ABS32_NOI:
10881 value += addend;
10882 break;
10883
252b5132 10884 case R_ARM_REL32:
a8bc6c78 10885 value += addend;
35fc36a8 10886 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 10887 value |= 1;
252b5132 10888 value -= (input_section->output_section->vma
62efb346 10889 + input_section->output_offset + rel->r_offset);
252b5132 10890 break;
eb043451 10891
bb224fc3
MS
10892 case R_ARM_REL32_NOI:
10893 value += addend;
10894 value -= (input_section->output_section->vma
10895 + input_section->output_offset + rel->r_offset);
10896 break;
10897
eb043451
PB
10898 case R_ARM_PREL31:
10899 value -= (input_section->output_section->vma
10900 + input_section->output_offset + rel->r_offset);
10901 value += signed_addend;
10902 if (! h || h->root.type != bfd_link_hash_undefweak)
10903 {
8029a119 10904 /* Check for overflow. */
eb043451
PB
10905 if ((value ^ (value >> 1)) & (1 << 30))
10906 return bfd_reloc_overflow;
10907 }
10908 value &= 0x7fffffff;
10909 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 10910 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
10911 value |= 1;
10912 break;
252b5132 10913 }
f21f3fe0 10914
252b5132
RH
10915 bfd_put_32 (input_bfd, value, hit_data);
10916 return bfd_reloc_ok;
10917
10918 case R_ARM_ABS8:
fd0fd00c
MJ
10919 /* PR 16202: Refectch the addend using the correct size. */
10920 if (globals->use_rel)
10921 addend = bfd_get_8 (input_bfd, hit_data);
252b5132 10922 value += addend;
4e67d4ca
DG
10923
10924 /* There is no way to tell whether the user intended to use a signed or
10925 unsigned addend. When checking for overflow we accept either,
10926 as specified by the AAELF. */
10927 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
10928 return bfd_reloc_overflow;
10929
10930 bfd_put_8 (input_bfd, value, hit_data);
10931 return bfd_reloc_ok;
10932
10933 case R_ARM_ABS16:
fd0fd00c
MJ
10934 /* PR 16202: Refectch the addend using the correct size. */
10935 if (globals->use_rel)
10936 addend = bfd_get_16 (input_bfd, hit_data);
252b5132
RH
10937 value += addend;
10938
4e67d4ca
DG
10939 /* See comment for R_ARM_ABS8. */
10940 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
10941 return bfd_reloc_overflow;
10942
10943 bfd_put_16 (input_bfd, value, hit_data);
10944 return bfd_reloc_ok;
10945
252b5132 10946 case R_ARM_THM_ABS5:
9b485d32 10947 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
10948 if (globals->use_rel)
10949 {
10950 /* Need to refetch addend. */
10951 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10952 /* ??? Need to determine shift amount from operand size. */
10953 addend >>= howto->rightshift;
10954 }
252b5132
RH
10955 value += addend;
10956
10957 /* ??? Isn't value unsigned? */
10958 if ((long) value > 0x1f || (long) value < -0x10)
10959 return bfd_reloc_overflow;
10960
10961 /* ??? Value needs to be properly shifted into place first. */
10962 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10963 bfd_put_16 (input_bfd, value, hit_data);
10964 return bfd_reloc_ok;
10965
2cab6cc3
MS
10966 case R_ARM_THM_ALU_PREL_11_0:
10967 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10968 {
10969 bfd_vma insn;
10970 bfd_signed_vma relocation;
10971
10972 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10973 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10974
99059e56
RM
10975 if (globals->use_rel)
10976 {
10977 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10978 | ((insn & (1 << 26)) >> 15);
10979 if (insn & 0xf00000)
10980 signed_addend = -signed_addend;
10981 }
2cab6cc3
MS
10982
10983 relocation = value + signed_addend;
79f08007 10984 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10985 + input_section->output_offset
10986 + rel->r_offset);
2cab6cc3 10987
8c65b54f
CS
10988 /* PR 21523: Use an absolute value. The user of this reloc will
10989 have already selected an ADD or SUB insn appropriately. */
453f8e1e 10990 value = llabs (relocation);
2cab6cc3 10991
99059e56
RM
10992 if (value >= 0x1000)
10993 return bfd_reloc_overflow;
2cab6cc3 10994
e645cf40
AG
10995 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10996 if (branch_type == ST_BRANCH_TO_THUMB)
10997 value |= 1;
10998
2cab6cc3 10999 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
11000 | ((value & 0x700) << 4)
11001 | ((value & 0x800) << 15);
11002 if (relocation < 0)
11003 insn |= 0xa00000;
2cab6cc3
MS
11004
11005 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11006 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11007
99059e56 11008 return bfd_reloc_ok;
2cab6cc3
MS
11009 }
11010
e1ec24c6
NC
11011 case R_ARM_THM_PC8:
11012 /* PR 10073: This reloc is not generated by the GNU toolchain,
11013 but it is supported for compatibility with third party libraries
11014 generated by other compilers, specifically the ARM/IAR. */
11015 {
11016 bfd_vma insn;
11017 bfd_signed_vma relocation;
11018
11019 insn = bfd_get_16 (input_bfd, hit_data);
11020
99059e56 11021 if (globals->use_rel)
79f08007 11022 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
11023
11024 relocation = value + addend;
79f08007 11025 relocation -= Pa (input_section->output_section->vma
99059e56
RM
11026 + input_section->output_offset
11027 + rel->r_offset);
e1ec24c6 11028
b6518b38 11029 value = relocation;
e1ec24c6
NC
11030
11031 /* We do not check for overflow of this reloc. Although strictly
11032 speaking this is incorrect, it appears to be necessary in order
11033 to work with IAR generated relocs. Since GCC and GAS do not
11034 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
11035 a problem for them. */
11036 value &= 0x3fc;
11037
11038 insn = (insn & 0xff00) | (value >> 2);
11039
11040 bfd_put_16 (input_bfd, insn, hit_data);
11041
99059e56 11042 return bfd_reloc_ok;
e1ec24c6
NC
11043 }
11044
2cab6cc3
MS
11045 case R_ARM_THM_PC12:
11046 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11047 {
11048 bfd_vma insn;
11049 bfd_signed_vma relocation;
11050
11051 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 11052 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 11053
99059e56
RM
11054 if (globals->use_rel)
11055 {
11056 signed_addend = insn & 0xfff;
11057 if (!(insn & (1 << 23)))
11058 signed_addend = -signed_addend;
11059 }
2cab6cc3
MS
11060
11061 relocation = value + signed_addend;
79f08007 11062 relocation -= Pa (input_section->output_section->vma
99059e56
RM
11063 + input_section->output_offset
11064 + rel->r_offset);
2cab6cc3 11065
b6518b38 11066 value = relocation;
2cab6cc3 11067
99059e56
RM
11068 if (value >= 0x1000)
11069 return bfd_reloc_overflow;
2cab6cc3
MS
11070
11071 insn = (insn & 0xff7ff000) | value;
99059e56
RM
11072 if (relocation >= 0)
11073 insn |= (1 << 23);
2cab6cc3
MS
11074
11075 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11076 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11077
99059e56 11078 return bfd_reloc_ok;
2cab6cc3
MS
11079 }
11080
dfc5f959 11081 case R_ARM_THM_XPC22:
c19d1205 11082 case R_ARM_THM_CALL:
bd97cb95 11083 case R_ARM_THM_JUMP24:
dfc5f959 11084 /* Thumb BL (branch long instruction). */
252b5132 11085 {
b34976b6 11086 bfd_vma relocation;
99059e56 11087 bfd_vma reloc_sign;
b34976b6
AM
11088 bfd_boolean overflow = FALSE;
11089 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11090 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
11091 bfd_signed_vma reloc_signed_max;
11092 bfd_signed_vma reloc_signed_min;
b34976b6 11093 bfd_vma check;
252b5132 11094 bfd_signed_vma signed_check;
e95de063 11095 int bitsize;
cd1dac3d 11096 const int thumb2 = using_thumb2 (globals);
5e866f5a 11097 const int thumb2_bl = using_thumb2_bl (globals);
252b5132 11098
5ab79981 11099 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
11100 the next instruction unless a PLT entry will be created.
11101 The jump to the next instruction is optimized as a NOP.W for
11102 Thumb-2 enabled architectures. */
19540007 11103 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 11104 && plt_offset == (bfd_vma) -1)
5ab79981 11105 {
60a019a0 11106 if (thumb2)
cd1dac3d
DG
11107 {
11108 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11109 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11110 }
11111 else
11112 {
11113 bfd_put_16 (input_bfd, 0xe000, hit_data);
11114 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11115 }
5ab79981
PB
11116 return bfd_reloc_ok;
11117 }
11118
e95de063 11119 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 11120 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
11121 if (globals->use_rel)
11122 {
99059e56
RM
11123 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11124 bfd_vma upper = upper_insn & 0x3ff;
11125 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
11126 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11127 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
11128 bfd_vma i1 = j1 ^ s ? 0 : 1;
11129 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 11130
99059e56
RM
11131 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11132 /* Sign extend. */
11133 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 11134
4e7fd91e
PB
11135 signed_addend = addend;
11136 }
cb1afa5c 11137
dfc5f959
NC
11138 if (r_type == R_ARM_THM_XPC22)
11139 {
11140 /* Check for Thumb to Thumb call. */
11141 /* FIXME: Should we translate the instruction into a BL
11142 instruction instead ? */
35fc36a8 11143 if (branch_type == ST_BRANCH_TO_THUMB)
4eca0228 11144 _bfd_error_handler
90b6238f
AM
11145 (_("%pB: warning: %s BLX instruction targets"
11146 " %s function '%s'"),
11147 input_bfd, "Thumb",
11148 "Thumb", h ? h->root.root.string : "(local)");
dfc5f959
NC
11149 }
11150 else
252b5132 11151 {
dfc5f959
NC
11152 /* If it is not a call to Thumb, assume call to Arm.
11153 If it is a call relative to a section name, then it is not a
b7693d02
DJ
11154 function call at all, but rather a long jump. Calls through
11155 the PLT do not require stubs. */
34e77a92 11156 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 11157 {
bd97cb95 11158 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11159 {
11160 /* Convert BL to BLX. */
11161 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11162 }
155d87d7
CL
11163 else if (( r_type != R_ARM_THM_CALL)
11164 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
11165 {
11166 if (elf32_thumb_to_arm_stub
11167 (info, sym_name, input_bfd, output_bfd, input_section,
11168 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11169 error_message))
11170 return bfd_reloc_ok;
11171 else
11172 return bfd_reloc_dangerous;
11173 }
da5938a2 11174 }
35fc36a8
RS
11175 else if (branch_type == ST_BRANCH_TO_THUMB
11176 && globals->use_blx
bd97cb95 11177 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11178 {
11179 /* Make sure this is a BL. */
11180 lower_insn |= 0x1800;
11181 }
252b5132 11182 }
f21f3fe0 11183
fe33d2fa 11184 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 11185 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
11186 {
11187 /* Check if a stub has to be inserted because the destination
8029a119 11188 is too far. */
fe33d2fa
CL
11189 struct elf32_arm_stub_hash_entry *stub_entry;
11190 struct elf32_arm_link_hash_entry *hash;
11191
11192 hash = (struct elf32_arm_link_hash_entry *) h;
11193
11194 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
11195 st_type, &branch_type,
11196 hash, value, sym_sec,
fe33d2fa
CL
11197 input_bfd, sym_name);
11198
11199 if (stub_type != arm_stub_none)
906e58ca
NC
11200 {
11201 /* The target is out of reach or we are changing modes, so
11202 redirect the branch to the local stub for this
11203 function. */
11204 stub_entry = elf32_arm_get_stub_entry (input_section,
11205 sym_sec, h,
fe33d2fa
CL
11206 rel, globals,
11207 stub_type);
906e58ca 11208 if (stub_entry != NULL)
9cd3e4e5
NC
11209 {
11210 value = (stub_entry->stub_offset
11211 + stub_entry->stub_sec->output_offset
11212 + stub_entry->stub_sec->output_section->vma);
11213
11214 if (plt_offset != (bfd_vma) -1)
11215 *unresolved_reloc_p = FALSE;
11216 }
906e58ca 11217
f4ac8484 11218 /* If this call becomes a call to Arm, force BLX. */
155d87d7 11219 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
11220 {
11221 if ((stub_entry
11222 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 11223 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
11224 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11225 }
906e58ca
NC
11226 }
11227 }
11228
fe33d2fa 11229 /* Handle calls via the PLT. */
34e77a92 11230 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
11231 {
11232 value = (splt->output_section->vma
11233 + splt->output_offset
34e77a92 11234 + plt_offset);
fe33d2fa 11235
eed94f8f
NC
11236 if (globals->use_blx
11237 && r_type == R_ARM_THM_CALL
11238 && ! using_thumb_only (globals))
fe33d2fa
CL
11239 {
11240 /* If the Thumb BLX instruction is available, convert
11241 the BL to a BLX instruction to call the ARM-mode
11242 PLT entry. */
11243 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 11244 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
11245 }
11246 else
11247 {
eed94f8f
NC
11248 if (! using_thumb_only (globals))
11249 /* Target the Thumb stub before the ARM PLT entry. */
11250 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 11251 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa
CL
11252 }
11253 *unresolved_reloc_p = FALSE;
11254 }
11255
ba96a88f 11256 relocation = value + signed_addend;
f21f3fe0 11257
252b5132 11258 relocation -= (input_section->output_section->vma
ba96a88f
NC
11259 + input_section->output_offset
11260 + rel->r_offset);
9a5aca8c 11261
252b5132
RH
11262 check = relocation >> howto->rightshift;
11263
11264 /* If this is a signed value, the rightshift just dropped
11265 leading 1 bits (assuming twos complement). */
11266 if ((bfd_signed_vma) relocation >= 0)
11267 signed_check = check;
11268 else
11269 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11270
e95de063
MS
11271 /* Calculate the permissable maximum and minimum values for
11272 this relocation according to whether we're relocating for
11273 Thumb-2 or not. */
11274 bitsize = howto->bitsize;
5e866f5a 11275 if (!thumb2_bl)
e95de063 11276 bitsize -= 2;
f6ebfac0 11277 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
11278 reloc_signed_min = ~reloc_signed_max;
11279
252b5132 11280 /* Assumes two's complement. */
ba96a88f 11281 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 11282 overflow = TRUE;
252b5132 11283
bd97cb95 11284 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
11285 /* For a BLX instruction, make sure that the relocation is rounded up
11286 to a word boundary. This follows the semantics of the instruction
11287 which specifies that bit 1 of the target address will come from bit
11288 1 of the base address. */
11289 relocation = (relocation + 2) & ~ 3;
cb1afa5c 11290
e95de063
MS
11291 /* Put RELOCATION back into the insn. Assumes two's complement.
11292 We use the Thumb-2 encoding, which is safe even if dealing with
11293 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 11294 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 11295 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
11296 | ((relocation >> 12) & 0x3ff)
11297 | (reloc_sign << 10);
906e58ca 11298 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
11299 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11300 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11301 | ((relocation >> 1) & 0x7ff);
c62e1cc3 11302
252b5132
RH
11303 /* Put the relocated value back in the object file: */
11304 bfd_put_16 (input_bfd, upper_insn, hit_data);
11305 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11306
11307 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11308 }
11309 break;
11310
c19d1205
ZW
11311 case R_ARM_THM_JUMP19:
11312 /* Thumb32 conditional branch instruction. */
11313 {
11314 bfd_vma relocation;
11315 bfd_boolean overflow = FALSE;
11316 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11317 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
11318 bfd_signed_vma reloc_signed_max = 0xffffe;
11319 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 11320 bfd_signed_vma signed_check;
07d6d2b8 11321 enum elf32_arm_stub_type stub_type = arm_stub_none;
c5423981
TG
11322 struct elf32_arm_stub_hash_entry *stub_entry;
11323 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
11324
11325 /* Need to refetch the addend, reconstruct the top three bits,
11326 and squish the two 11 bit pieces together. */
11327 if (globals->use_rel)
11328 {
11329 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 11330 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
11331 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11332 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11333 bfd_vma lower = (lower_insn & 0x07ff);
11334
a00a1f35
MS
11335 upper |= J1 << 6;
11336 upper |= J2 << 7;
11337 upper |= (!S) << 8;
c19d1205
ZW
11338 upper -= 0x0100; /* Sign extend. */
11339
11340 addend = (upper << 12) | (lower << 1);
11341 signed_addend = addend;
11342 }
11343
bd97cb95 11344 /* Handle calls via the PLT. */
34e77a92 11345 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
11346 {
11347 value = (splt->output_section->vma
11348 + splt->output_offset
34e77a92 11349 + plt_offset);
bd97cb95
DJ
11350 /* Target the Thumb stub before the ARM PLT entry. */
11351 value -= PLT_THUMB_STUB_SIZE;
11352 *unresolved_reloc_p = FALSE;
11353 }
11354
c5423981
TG
11355 hash = (struct elf32_arm_link_hash_entry *)h;
11356
11357 stub_type = arm_type_of_stub (info, input_section, rel,
07d6d2b8
AM
11358 st_type, &branch_type,
11359 hash, value, sym_sec,
11360 input_bfd, sym_name);
c5423981
TG
11361 if (stub_type != arm_stub_none)
11362 {
11363 stub_entry = elf32_arm_get_stub_entry (input_section,
07d6d2b8
AM
11364 sym_sec, h,
11365 rel, globals,
11366 stub_type);
c5423981
TG
11367 if (stub_entry != NULL)
11368 {
07d6d2b8
AM
11369 value = (stub_entry->stub_offset
11370 + stub_entry->stub_sec->output_offset
11371 + stub_entry->stub_sec->output_section->vma);
c5423981
TG
11372 }
11373 }
c19d1205 11374
99059e56 11375 relocation = value + signed_addend;
c19d1205
ZW
11376 relocation -= (input_section->output_section->vma
11377 + input_section->output_offset
11378 + rel->r_offset);
a00a1f35 11379 signed_check = (bfd_signed_vma) relocation;
c19d1205 11380
c19d1205
ZW
11381 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11382 overflow = TRUE;
11383
11384 /* Put RELOCATION back into the insn. */
11385 {
11386 bfd_vma S = (relocation & 0x00100000) >> 20;
11387 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11388 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11389 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11390 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11391
a00a1f35 11392 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
11393 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11394 }
11395
11396 /* Put the relocated value back in the object file: */
11397 bfd_put_16 (input_bfd, upper_insn, hit_data);
11398 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11399
11400 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11401 }
11402
11403 case R_ARM_THM_JUMP11:
11404 case R_ARM_THM_JUMP8:
11405 case R_ARM_THM_JUMP6:
51c5503b
NC
11406 /* Thumb B (branch) instruction). */
11407 {
6cf9e9fe 11408 bfd_signed_vma relocation;
51c5503b
NC
11409 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11410 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
11411 bfd_signed_vma signed_check;
11412
c19d1205
ZW
11413 /* CZB cannot jump backward. */
11414 if (r_type == R_ARM_THM_JUMP6)
11415 reloc_signed_min = 0;
11416
4e7fd91e 11417 if (globals->use_rel)
6cf9e9fe 11418 {
4e7fd91e
PB
11419 /* Need to refetch addend. */
11420 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11421 if (addend & ((howto->src_mask + 1) >> 1))
11422 {
11423 signed_addend = -1;
11424 signed_addend &= ~ howto->src_mask;
11425 signed_addend |= addend;
11426 }
11427 else
11428 signed_addend = addend;
11429 /* The value in the insn has been right shifted. We need to
11430 undo this, so that we can perform the address calculation
11431 in terms of bytes. */
11432 signed_addend <<= howto->rightshift;
6cf9e9fe 11433 }
6cf9e9fe 11434 relocation = value + signed_addend;
51c5503b
NC
11435
11436 relocation -= (input_section->output_section->vma
11437 + input_section->output_offset
11438 + rel->r_offset);
11439
6cf9e9fe
NC
11440 relocation >>= howto->rightshift;
11441 signed_check = relocation;
c19d1205
ZW
11442
11443 if (r_type == R_ARM_THM_JUMP6)
11444 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11445 else
11446 relocation &= howto->dst_mask;
51c5503b 11447 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 11448
51c5503b
NC
11449 bfd_put_16 (input_bfd, relocation, hit_data);
11450
11451 /* Assumes two's complement. */
11452 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11453 return bfd_reloc_overflow;
11454
11455 return bfd_reloc_ok;
11456 }
cedb70c5 11457
8375c36b
PB
11458 case R_ARM_ALU_PCREL7_0:
11459 case R_ARM_ALU_PCREL15_8:
11460 case R_ARM_ALU_PCREL23_15:
11461 {
11462 bfd_vma insn;
11463 bfd_vma relocation;
11464
11465 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
11466 if (globals->use_rel)
11467 {
11468 /* Extract the addend. */
11469 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11470 signed_addend = addend;
11471 }
8375c36b
PB
11472 relocation = value + signed_addend;
11473
11474 relocation -= (input_section->output_section->vma
11475 + input_section->output_offset
11476 + rel->r_offset);
11477 insn = (insn & ~0xfff)
11478 | ((howto->bitpos << 7) & 0xf00)
11479 | ((relocation >> howto->bitpos) & 0xff);
11480 bfd_put_32 (input_bfd, value, hit_data);
11481 }
11482 return bfd_reloc_ok;
11483
252b5132
RH
11484 case R_ARM_GNU_VTINHERIT:
11485 case R_ARM_GNU_VTENTRY:
11486 return bfd_reloc_ok;
11487
c19d1205 11488 case R_ARM_GOTOFF32:
252b5132 11489 /* Relocation is relative to the start of the
99059e56 11490 global offset table. */
252b5132
RH
11491
11492 BFD_ASSERT (sgot != NULL);
11493 if (sgot == NULL)
99059e56 11494 return bfd_reloc_notsupported;
9a5aca8c 11495
cedb70c5 11496 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
11497 address by one, so that attempts to call the function pointer will
11498 correctly interpret it as Thumb code. */
35fc36a8 11499 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
11500 value += 1;
11501
252b5132 11502 /* Note that sgot->output_offset is not involved in this
99059e56
RM
11503 calculation. We always want the start of .got. If we
11504 define _GLOBAL_OFFSET_TABLE in a different way, as is
11505 permitted by the ABI, we might have to change this
11506 calculation. */
252b5132 11507 value -= sgot->output_section->vma;
f21f3fe0 11508 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11509 contents, rel->r_offset, value,
00a97672 11510 rel->r_addend);
252b5132
RH
11511
11512 case R_ARM_GOTPC:
a7c10850 11513 /* Use global offset table as symbol value. */
252b5132 11514 BFD_ASSERT (sgot != NULL);
f21f3fe0 11515
252b5132 11516 if (sgot == NULL)
99059e56 11517 return bfd_reloc_notsupported;
252b5132 11518
0945cdfd 11519 *unresolved_reloc_p = FALSE;
252b5132 11520 value = sgot->output_section->vma;
f21f3fe0 11521 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11522 contents, rel->r_offset, value,
00a97672 11523 rel->r_addend);
f21f3fe0 11524
252b5132 11525 case R_ARM_GOT32:
eb043451 11526 case R_ARM_GOT_PREL:
252b5132 11527 /* Relocation is to the entry for this symbol in the
99059e56 11528 global offset table. */
252b5132
RH
11529 if (sgot == NULL)
11530 return bfd_reloc_notsupported;
f21f3fe0 11531
34e77a92
RS
11532 if (dynreloc_st_type == STT_GNU_IFUNC
11533 && plt_offset != (bfd_vma) -1
11534 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11535 {
11536 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11537 symbol, and the relocation resolves directly to the runtime
11538 target rather than to the .iplt entry. This means that any
11539 .got entry would be the same value as the .igot.plt entry,
11540 so there's no point creating both. */
11541 sgot = globals->root.igotplt;
11542 value = sgot->output_offset + gotplt_offset;
11543 }
11544 else if (h != NULL)
252b5132
RH
11545 {
11546 bfd_vma off;
f21f3fe0 11547
252b5132
RH
11548 off = h->got.offset;
11549 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 11550 if ((off & 1) != 0)
252b5132 11551 {
b436d854
RS
11552 /* We have already processsed one GOT relocation against
11553 this symbol. */
11554 off &= ~1;
11555 if (globals->root.dynamic_sections_created
11556 && !SYMBOL_REFERENCES_LOCAL (info, h))
11557 *unresolved_reloc_p = FALSE;
11558 }
11559 else
11560 {
11561 Elf_Internal_Rela outrel;
e8b09b87 11562 int isrofixup = 0;
b436d854 11563
e8b09b87
CL
11564 if (((h->dynindx != -1) || globals->fdpic_p)
11565 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
11566 {
11567 /* If the symbol doesn't resolve locally in a static
11568 object, we have an undefined reference. If the
11569 symbol doesn't resolve locally in a dynamic object,
11570 it should be resolved by the dynamic linker. */
11571 if (globals->root.dynamic_sections_created)
11572 {
11573 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11574 *unresolved_reloc_p = FALSE;
11575 }
11576 else
11577 outrel.r_info = 0;
11578 outrel.r_addend = 0;
11579 }
252b5132
RH
11580 else
11581 {
34e77a92 11582 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11583 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
5025eb7c 11584 else if (bfd_link_pic (info)
7f026732 11585 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
99059e56
RM
11586 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11587 else
2376f038
EB
11588 {
11589 outrel.r_info = 0;
11590 if (globals->fdpic_p)
11591 isrofixup = 1;
11592 }
34e77a92 11593 outrel.r_addend = dynreloc_value;
b436d854 11594 }
ee29b9fb 11595
b436d854
RS
11596 /* The GOT entry is initialized to zero by default.
11597 See if we should install a different value. */
11598 if (outrel.r_addend != 0
2376f038 11599 && (globals->use_rel || outrel.r_info == 0))
b436d854
RS
11600 {
11601 bfd_put_32 (output_bfd, outrel.r_addend,
11602 sgot->contents + off);
11603 outrel.r_addend = 0;
252b5132 11604 }
f21f3fe0 11605
2376f038
EB
11606 if (isrofixup)
11607 arm_elf_add_rofixup (output_bfd,
11608 elf32_arm_hash_table(info)->srofixup,
11609 sgot->output_section->vma
11610 + sgot->output_offset + off);
11611
11612 else if (outrel.r_info != 0)
b436d854
RS
11613 {
11614 outrel.r_offset = (sgot->output_section->vma
11615 + sgot->output_offset
11616 + off);
11617 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11618 }
2376f038 11619
b436d854
RS
11620 h->got.offset |= 1;
11621 }
252b5132
RH
11622 value = sgot->output_offset + off;
11623 }
11624 else
11625 {
11626 bfd_vma off;
f21f3fe0 11627
5025eb7c
AO
11628 BFD_ASSERT (local_got_offsets != NULL
11629 && local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 11630
252b5132 11631 off = local_got_offsets[r_symndx];
f21f3fe0 11632
252b5132
RH
11633 /* The offset must always be a multiple of 4. We use the
11634 least significant bit to record whether we have already
9b485d32 11635 generated the necessary reloc. */
252b5132
RH
11636 if ((off & 1) != 0)
11637 off &= ~1;
11638 else
11639 {
2376f038
EB
11640 Elf_Internal_Rela outrel;
11641 int isrofixup = 0;
f21f3fe0 11642
2376f038
EB
11643 if (dynreloc_st_type == STT_GNU_IFUNC)
11644 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11645 else if (bfd_link_pic (info))
11646 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11647 else
252b5132 11648 {
2376f038
EB
11649 outrel.r_info = 0;
11650 if (globals->fdpic_p)
11651 isrofixup = 1;
11652 }
11653
11654 /* The GOT entry is initialized to zero by default.
11655 See if we should install a different value. */
11656 if (globals->use_rel || outrel.r_info == 0)
11657 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11658
11659 if (isrofixup)
11660 arm_elf_add_rofixup (output_bfd,
11661 globals->srofixup,
11662 sgot->output_section->vma
11663 + sgot->output_offset + off);
f21f3fe0 11664
2376f038
EB
11665 else if (outrel.r_info != 0)
11666 {
34e77a92 11667 outrel.r_addend = addend + dynreloc_value;
252b5132 11668 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 11669 + sgot->output_offset
252b5132 11670 + off);
47beaa6a 11671 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 11672 }
f21f3fe0 11673
252b5132
RH
11674 local_got_offsets[r_symndx] |= 1;
11675 }
f21f3fe0 11676
252b5132
RH
11677 value = sgot->output_offset + off;
11678 }
eb043451
PB
11679 if (r_type != R_ARM_GOT32)
11680 value += sgot->output_section->vma;
9a5aca8c 11681
f21f3fe0 11682 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11683 contents, rel->r_offset, value,
00a97672 11684 rel->r_addend);
f21f3fe0 11685
ba93b8ac
DJ
11686 case R_ARM_TLS_LDO32:
11687 value = value - dtpoff_base (info);
11688
11689 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11690 contents, rel->r_offset, value,
11691 rel->r_addend);
ba93b8ac
DJ
11692
11693 case R_ARM_TLS_LDM32:
5c5a4843 11694 case R_ARM_TLS_LDM32_FDPIC:
ba93b8ac
DJ
11695 {
11696 bfd_vma off;
11697
362d30a1 11698 if (sgot == NULL)
ba93b8ac
DJ
11699 abort ();
11700
11701 off = globals->tls_ldm_got.offset;
11702
11703 if ((off & 1) != 0)
11704 off &= ~1;
11705 else
11706 {
11707 /* If we don't know the module number, create a relocation
11708 for it. */
9cb09e33 11709 if (bfd_link_dll (info))
ba93b8ac
DJ
11710 {
11711 Elf_Internal_Rela outrel;
ba93b8ac 11712
362d30a1 11713 if (srelgot == NULL)
ba93b8ac
DJ
11714 abort ();
11715
00a97672 11716 outrel.r_addend = 0;
362d30a1
RS
11717 outrel.r_offset = (sgot->output_section->vma
11718 + sgot->output_offset + off);
ba93b8ac
DJ
11719 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11720
00a97672
RS
11721 if (globals->use_rel)
11722 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11723 sgot->contents + off);
ba93b8ac 11724
47beaa6a 11725 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11726 }
11727 else
362d30a1 11728 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
11729
11730 globals->tls_ldm_got.offset |= 1;
11731 }
11732
5c5a4843 11733 if (r_type == R_ARM_TLS_LDM32_FDPIC)
e8b09b87
CL
11734 {
11735 bfd_put_32(output_bfd,
11736 globals->root.sgot->output_offset + off,
11737 contents + rel->r_offset);
11738
11739 return bfd_reloc_ok;
11740 }
11741 else
11742 {
11743 value = sgot->output_section->vma + sgot->output_offset + off
11744 - (input_section->output_section->vma
11745 + input_section->output_offset + rel->r_offset);
ba93b8ac 11746
e8b09b87
CL
11747 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11748 contents, rel->r_offset, value,
11749 rel->r_addend);
11750 }
ba93b8ac
DJ
11751 }
11752
0855e32b
NS
11753 case R_ARM_TLS_CALL:
11754 case R_ARM_THM_TLS_CALL:
ba93b8ac 11755 case R_ARM_TLS_GD32:
5c5a4843 11756 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 11757 case R_ARM_TLS_IE32:
5c5a4843 11758 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
11759 case R_ARM_TLS_GOTDESC:
11760 case R_ARM_TLS_DESCSEQ:
11761 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 11762 {
0855e32b
NS
11763 bfd_vma off, offplt;
11764 int indx = 0;
ba93b8ac
DJ
11765 char tls_type;
11766
0855e32b 11767 BFD_ASSERT (sgot != NULL);
ba93b8ac 11768
ba93b8ac
DJ
11769 if (h != NULL)
11770 {
11771 bfd_boolean dyn;
11772 dyn = globals->root.dynamic_sections_created;
0e1862bb
L
11773 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11774 bfd_link_pic (info),
11775 h)
11776 && (!bfd_link_pic (info)
ba93b8ac
DJ
11777 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11778 {
11779 *unresolved_reloc_p = FALSE;
11780 indx = h->dynindx;
11781 }
11782 off = h->got.offset;
0855e32b 11783 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
11784 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11785 }
11786 else
11787 {
0855e32b 11788 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 11789 off = local_got_offsets[r_symndx];
0855e32b 11790 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
11791 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11792 }
11793
0855e32b 11794 /* Linker relaxations happens from one of the
b38cadfb 11795 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
0855e32b 11796 if (ELF32_R_TYPE(rel->r_info) != r_type)
b38cadfb 11797 tls_type = GOT_TLS_IE;
0855e32b
NS
11798
11799 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
11800
11801 if ((off & 1) != 0)
11802 off &= ~1;
11803 else
11804 {
11805 bfd_boolean need_relocs = FALSE;
11806 Elf_Internal_Rela outrel;
ba93b8ac
DJ
11807 int cur_off = off;
11808
11809 /* The GOT entries have not been initialized yet. Do it
11810 now, and emit any relocations. If both an IE GOT and a
11811 GD GOT are necessary, we emit the GD first. */
11812
9cb09e33 11813 if ((bfd_link_dll (info) || indx != 0)
ba93b8ac 11814 && (h == NULL
95b03e4a
L
11815 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11816 && !resolved_to_zero)
ba93b8ac
DJ
11817 || h->root.type != bfd_link_hash_undefweak))
11818 {
11819 need_relocs = TRUE;
0855e32b 11820 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
11821 }
11822
0855e32b
NS
11823 if (tls_type & GOT_TLS_GDESC)
11824 {
47beaa6a
RS
11825 bfd_byte *loc;
11826
0855e32b
NS
11827 /* We should have relaxed, unless this is an undefined
11828 weak symbol. */
11829 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9cb09e33 11830 || bfd_link_dll (info));
0855e32b 11831 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 11832 <= globals->root.sgotplt->size);
0855e32b
NS
11833
11834 outrel.r_addend = 0;
11835 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11836 + globals->root.sgotplt->output_offset
11837 + offplt
11838 + globals->sgotplt_jump_table_size);
b38cadfb 11839
0855e32b
NS
11840 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11841 sreloc = globals->root.srelplt;
11842 loc = sreloc->contents;
11843 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11844 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 11845 <= sreloc->contents + sreloc->size);
0855e32b
NS
11846
11847 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11848
11849 /* For globals, the first word in the relocation gets
11850 the relocation index and the top bit set, or zero,
11851 if we're binding now. For locals, it gets the
11852 symbol's offset in the tls section. */
99059e56 11853 bfd_put_32 (output_bfd,
0855e32b
NS
11854 !h ? value - elf_hash_table (info)->tls_sec->vma
11855 : info->flags & DF_BIND_NOW ? 0
11856 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
11857 globals->root.sgotplt->contents + offplt
11858 + globals->sgotplt_jump_table_size);
11859
0855e32b 11860 /* Second word in the relocation is always zero. */
99059e56 11861 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
11862 globals->root.sgotplt->contents + offplt
11863 + globals->sgotplt_jump_table_size + 4);
0855e32b 11864 }
ba93b8ac
DJ
11865 if (tls_type & GOT_TLS_GD)
11866 {
11867 if (need_relocs)
11868 {
00a97672 11869 outrel.r_addend = 0;
362d30a1
RS
11870 outrel.r_offset = (sgot->output_section->vma
11871 + sgot->output_offset
00a97672 11872 + cur_off);
ba93b8ac 11873 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 11874
00a97672
RS
11875 if (globals->use_rel)
11876 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11877 sgot->contents + cur_off);
00a97672 11878
47beaa6a 11879 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11880
11881 if (indx == 0)
11882 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11883 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11884 else
11885 {
00a97672 11886 outrel.r_addend = 0;
ba93b8ac
DJ
11887 outrel.r_info = ELF32_R_INFO (indx,
11888 R_ARM_TLS_DTPOFF32);
11889 outrel.r_offset += 4;
00a97672
RS
11890
11891 if (globals->use_rel)
11892 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11893 sgot->contents + cur_off + 4);
00a97672 11894
47beaa6a
RS
11895 elf32_arm_add_dynreloc (output_bfd, info,
11896 srelgot, &outrel);
ba93b8ac
DJ
11897 }
11898 }
11899 else
11900 {
11901 /* If we are not emitting relocations for a
11902 general dynamic reference, then we must be in a
11903 static link or an executable link with the
11904 symbol binding locally. Mark it as belonging
11905 to module 1, the executable. */
11906 bfd_put_32 (output_bfd, 1,
362d30a1 11907 sgot->contents + cur_off);
ba93b8ac 11908 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11909 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11910 }
11911
11912 cur_off += 8;
11913 }
11914
11915 if (tls_type & GOT_TLS_IE)
11916 {
11917 if (need_relocs)
11918 {
00a97672
RS
11919 if (indx == 0)
11920 outrel.r_addend = value - dtpoff_base (info);
11921 else
11922 outrel.r_addend = 0;
362d30a1
RS
11923 outrel.r_offset = (sgot->output_section->vma
11924 + sgot->output_offset
ba93b8ac
DJ
11925 + cur_off);
11926 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11927
00a97672
RS
11928 if (globals->use_rel)
11929 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11930 sgot->contents + cur_off);
ba93b8ac 11931
47beaa6a 11932 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11933 }
11934 else
11935 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 11936 sgot->contents + cur_off);
ba93b8ac
DJ
11937 cur_off += 4;
11938 }
11939
11940 if (h != NULL)
11941 h->got.offset |= 1;
11942 else
11943 local_got_offsets[r_symndx] |= 1;
11944 }
11945
5c5a4843 11946 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
ba93b8ac 11947 off += 8;
0855e32b
NS
11948 else if (tls_type & GOT_TLS_GDESC)
11949 off = offplt;
11950
11951 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11952 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11953 {
11954 bfd_signed_vma offset;
12352d3f
PB
11955 /* TLS stubs are arm mode. The original symbol is a
11956 data object, so branch_type is bogus. */
11957 branch_type = ST_BRANCH_TO_ARM;
0855e32b 11958 enum elf32_arm_stub_type stub_type
34e77a92
RS
11959 = arm_type_of_stub (info, input_section, rel,
11960 st_type, &branch_type,
0855e32b
NS
11961 (struct elf32_arm_link_hash_entry *)h,
11962 globals->tls_trampoline, globals->root.splt,
11963 input_bfd, sym_name);
11964
11965 if (stub_type != arm_stub_none)
11966 {
11967 struct elf32_arm_stub_hash_entry *stub_entry
11968 = elf32_arm_get_stub_entry
11969 (input_section, globals->root.splt, 0, rel,
11970 globals, stub_type);
11971 offset = (stub_entry->stub_offset
11972 + stub_entry->stub_sec->output_offset
11973 + stub_entry->stub_sec->output_section->vma);
11974 }
11975 else
11976 offset = (globals->root.splt->output_section->vma
11977 + globals->root.splt->output_offset
11978 + globals->tls_trampoline);
11979
11980 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11981 {
11982 unsigned long inst;
b38cadfb
NC
11983
11984 offset -= (input_section->output_section->vma
11985 + input_section->output_offset
11986 + rel->r_offset + 8);
0855e32b
NS
11987
11988 inst = offset >> 2;
11989 inst &= 0x00ffffff;
11990 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11991 }
11992 else
11993 {
11994 /* Thumb blx encodes the offset in a complicated
11995 fashion. */
11996 unsigned upper_insn, lower_insn;
11997 unsigned neg;
11998
b38cadfb
NC
11999 offset -= (input_section->output_section->vma
12000 + input_section->output_offset
0855e32b 12001 + rel->r_offset + 4);
b38cadfb 12002
12352d3f
PB
12003 if (stub_type != arm_stub_none
12004 && arm_stub_is_thumb (stub_type))
12005 {
12006 lower_insn = 0xd000;
12007 }
12008 else
12009 {
12010 lower_insn = 0xc000;
6a631e86 12011 /* Round up the offset to a word boundary. */
12352d3f
PB
12012 offset = (offset + 2) & ~2;
12013 }
12014
0855e32b
NS
12015 neg = offset < 0;
12016 upper_insn = (0xf000
12017 | ((offset >> 12) & 0x3ff)
12018 | (neg << 10));
12352d3f 12019 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 12020 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 12021 | ((offset >> 1) & 0x7ff);
0855e32b
NS
12022 bfd_put_16 (input_bfd, upper_insn, hit_data);
12023 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12024 return bfd_reloc_ok;
12025 }
12026 }
12027 /* These relocations needs special care, as besides the fact
12028 they point somewhere in .gotplt, the addend must be
12029 adjusted accordingly depending on the type of instruction
6a631e86 12030 we refer to. */
0855e32b
NS
12031 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
12032 {
12033 unsigned long data, insn;
12034 unsigned thumb;
b38cadfb 12035
b627f562 12036 data = bfd_get_signed_32 (input_bfd, hit_data);
0855e32b 12037 thumb = data & 1;
b627f562 12038 data &= ~1ul;
b38cadfb 12039
0855e32b
NS
12040 if (thumb)
12041 {
12042 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
12043 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
12044 insn = (insn << 16)
12045 | bfd_get_16 (input_bfd,
12046 contents + rel->r_offset - data + 2);
12047 if ((insn & 0xf800c000) == 0xf000c000)
12048 /* bl/blx */
12049 value = -6;
12050 else if ((insn & 0xffffff00) == 0x4400)
12051 /* add */
12052 value = -5;
12053 else
12054 {
4eca0228 12055 _bfd_error_handler
695344c0 12056 /* xgettext:c-format */
2dcf00ce 12057 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 12058 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
12059 "referenced by TLS_GOTDESC"),
12060 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 12061 "Thumb", insn);
0855e32b
NS
12062 return bfd_reloc_notsupported;
12063 }
12064 }
12065 else
12066 {
12067 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12068
12069 switch (insn >> 24)
12070 {
12071 case 0xeb: /* bl */
12072 case 0xfa: /* blx */
12073 value = -4;
12074 break;
12075
12076 case 0xe0: /* add */
12077 value = -8;
12078 break;
b38cadfb 12079
0855e32b 12080 default:
4eca0228 12081 _bfd_error_handler
695344c0 12082 /* xgettext:c-format */
2dcf00ce 12083 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 12084 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
12085 "referenced by TLS_GOTDESC"),
12086 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 12087 "ARM", insn);
0855e32b
NS
12088 return bfd_reloc_notsupported;
12089 }
12090 }
b38cadfb 12091
0855e32b
NS
12092 value += ((globals->root.sgotplt->output_section->vma
12093 + globals->root.sgotplt->output_offset + off)
12094 - (input_section->output_section->vma
12095 + input_section->output_offset
12096 + rel->r_offset)
12097 + globals->sgotplt_jump_table_size);
12098 }
12099 else
12100 value = ((globals->root.sgot->output_section->vma
12101 + globals->root.sgot->output_offset + off)
12102 - (input_section->output_section->vma
12103 + input_section->output_offset + rel->r_offset));
ba93b8ac 12104
5c5a4843
CL
12105 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12106 r_type == R_ARM_TLS_IE32_FDPIC))
e8b09b87
CL
12107 {
12108 /* For FDPIC relocations, resolve to the offset of the GOT
12109 entry from the start of GOT. */
12110 bfd_put_32(output_bfd,
12111 globals->root.sgot->output_offset + off,
12112 contents + rel->r_offset);
12113
12114 return bfd_reloc_ok;
12115 }
12116 else
12117 {
12118 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12119 contents, rel->r_offset, value,
12120 rel->r_addend);
12121 }
ba93b8ac
DJ
12122 }
12123
12124 case R_ARM_TLS_LE32:
3cbc1e5e 12125 if (bfd_link_dll (info))
ba93b8ac 12126 {
4eca0228 12127 _bfd_error_handler
695344c0 12128 /* xgettext:c-format */
2dcf00ce
AM
12129 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12130 "in shared object"),
12131 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
46691134 12132 return bfd_reloc_notsupported;
ba93b8ac
DJ
12133 }
12134 else
12135 value = tpoff (info, value);
906e58ca 12136
ba93b8ac 12137 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
12138 contents, rel->r_offset, value,
12139 rel->r_addend);
ba93b8ac 12140
319850b4
JB
12141 case R_ARM_V4BX:
12142 if (globals->fix_v4bx)
845b51d6
PB
12143 {
12144 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 12145
845b51d6
PB
12146 /* Ensure that we have a BX instruction. */
12147 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 12148
845b51d6
PB
12149 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12150 {
12151 /* Branch to veneer. */
12152 bfd_vma glue_addr;
12153 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12154 glue_addr -= input_section->output_section->vma
12155 + input_section->output_offset
12156 + rel->r_offset + 8;
12157 insn = (insn & 0xf0000000) | 0x0a000000
12158 | ((glue_addr >> 2) & 0x00ffffff);
12159 }
12160 else
12161 {
12162 /* Preserve Rm (lowest four bits) and the condition code
12163 (highest four bits). Other bits encode MOV PC,Rm. */
12164 insn = (insn & 0xf000000f) | 0x01a0f000;
12165 }
319850b4 12166
845b51d6
PB
12167 bfd_put_32 (input_bfd, insn, hit_data);
12168 }
319850b4
JB
12169 return bfd_reloc_ok;
12170
b6895b4f
PB
12171 case R_ARM_MOVW_ABS_NC:
12172 case R_ARM_MOVT_ABS:
12173 case R_ARM_MOVW_PREL_NC:
12174 case R_ARM_MOVT_PREL:
92f5d02b
MS
12175 /* Until we properly support segment-base-relative addressing then
12176 we assume the segment base to be zero, as for the group relocations.
12177 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12178 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12179 case R_ARM_MOVW_BREL_NC:
12180 case R_ARM_MOVW_BREL:
12181 case R_ARM_MOVT_BREL:
b6895b4f
PB
12182 {
12183 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12184
12185 if (globals->use_rel)
12186 {
12187 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 12188 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12189 }
92f5d02b 12190
b6895b4f 12191 value += signed_addend;
b6895b4f
PB
12192
12193 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12194 value -= (input_section->output_section->vma
12195 + input_section->output_offset + rel->r_offset);
12196
92f5d02b 12197 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 12198 return bfd_reloc_overflow;
92f5d02b 12199
35fc36a8 12200 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12201 value |= 1;
12202
12203 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 12204 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
12205 value >>= 16;
12206
12207 insn &= 0xfff0f000;
12208 insn |= value & 0xfff;
12209 insn |= (value & 0xf000) << 4;
12210 bfd_put_32 (input_bfd, insn, hit_data);
12211 }
12212 return bfd_reloc_ok;
12213
12214 case R_ARM_THM_MOVW_ABS_NC:
12215 case R_ARM_THM_MOVT_ABS:
12216 case R_ARM_THM_MOVW_PREL_NC:
12217 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
12218 /* Until we properly support segment-base-relative addressing then
12219 we assume the segment base to be zero, as for the above relocations.
12220 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12221 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12222 as R_ARM_THM_MOVT_ABS. */
12223 case R_ARM_THM_MOVW_BREL_NC:
12224 case R_ARM_THM_MOVW_BREL:
12225 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
12226 {
12227 bfd_vma insn;
906e58ca 12228
b6895b4f
PB
12229 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12230 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12231
12232 if (globals->use_rel)
12233 {
12234 addend = ((insn >> 4) & 0xf000)
12235 | ((insn >> 15) & 0x0800)
12236 | ((insn >> 4) & 0x0700)
07d6d2b8 12237 | (insn & 0x00ff);
39623e12 12238 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12239 }
92f5d02b 12240
b6895b4f 12241 value += signed_addend;
b6895b4f
PB
12242
12243 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12244 value -= (input_section->output_section->vma
12245 + input_section->output_offset + rel->r_offset);
12246
92f5d02b 12247 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 12248 return bfd_reloc_overflow;
92f5d02b 12249
35fc36a8 12250 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12251 value |= 1;
12252
12253 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 12254 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
12255 value >>= 16;
12256
12257 insn &= 0xfbf08f00;
12258 insn |= (value & 0xf000) << 4;
12259 insn |= (value & 0x0800) << 15;
12260 insn |= (value & 0x0700) << 4;
12261 insn |= (value & 0x00ff);
12262
12263 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12264 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12265 }
12266 return bfd_reloc_ok;
12267
4962c51a
MS
12268 case R_ARM_ALU_PC_G0_NC:
12269 case R_ARM_ALU_PC_G1_NC:
12270 case R_ARM_ALU_PC_G0:
12271 case R_ARM_ALU_PC_G1:
12272 case R_ARM_ALU_PC_G2:
12273 case R_ARM_ALU_SB_G0_NC:
12274 case R_ARM_ALU_SB_G1_NC:
12275 case R_ARM_ALU_SB_G0:
12276 case R_ARM_ALU_SB_G1:
12277 case R_ARM_ALU_SB_G2:
12278 {
12279 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12280 bfd_vma pc = input_section->output_section->vma
4962c51a 12281 + input_section->output_offset + rel->r_offset;
31a91d61 12282 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12283 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
12284 bfd_vma residual;
12285 bfd_vma g_n;
4962c51a 12286 bfd_signed_vma signed_value;
99059e56
RM
12287 int group = 0;
12288
12289 /* Determine which group of bits to select. */
12290 switch (r_type)
12291 {
12292 case R_ARM_ALU_PC_G0_NC:
12293 case R_ARM_ALU_PC_G0:
12294 case R_ARM_ALU_SB_G0_NC:
12295 case R_ARM_ALU_SB_G0:
12296 group = 0;
12297 break;
12298
12299 case R_ARM_ALU_PC_G1_NC:
12300 case R_ARM_ALU_PC_G1:
12301 case R_ARM_ALU_SB_G1_NC:
12302 case R_ARM_ALU_SB_G1:
12303 group = 1;
12304 break;
12305
12306 case R_ARM_ALU_PC_G2:
12307 case R_ARM_ALU_SB_G2:
12308 group = 2;
12309 break;
12310
12311 default:
12312 abort ();
12313 }
12314
12315 /* If REL, extract the addend from the insn. If RELA, it will
12316 have already been fetched for us. */
4962c51a 12317 if (globals->use_rel)
99059e56
RM
12318 {
12319 int negative;
12320 bfd_vma constant = insn & 0xff;
12321 bfd_vma rotation = (insn & 0xf00) >> 8;
12322
12323 if (rotation == 0)
12324 signed_addend = constant;
12325 else
12326 {
12327 /* Compensate for the fact that in the instruction, the
12328 rotation is stored in multiples of 2 bits. */
12329 rotation *= 2;
12330
12331 /* Rotate "constant" right by "rotation" bits. */
12332 signed_addend = (constant >> rotation) |
12333 (constant << (8 * sizeof (bfd_vma) - rotation));
12334 }
12335
12336 /* Determine if the instruction is an ADD or a SUB.
12337 (For REL, this determines the sign of the addend.) */
12338 negative = identify_add_or_sub (insn);
12339 if (negative == 0)
12340 {
4eca0228 12341 _bfd_error_handler
695344c0 12342 /* xgettext:c-format */
90b6238f 12343 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
2dcf00ce
AM
12344 "are allowed for ALU group relocations"),
12345 input_bfd, input_section, (uint64_t) rel->r_offset);
99059e56
RM
12346 return bfd_reloc_overflow;
12347 }
12348
12349 signed_addend *= negative;
12350 }
4962c51a
MS
12351
12352 /* Compute the value (X) to go in the place. */
99059e56
RM
12353 if (r_type == R_ARM_ALU_PC_G0_NC
12354 || r_type == R_ARM_ALU_PC_G1_NC
12355 || r_type == R_ARM_ALU_PC_G0
12356 || r_type == R_ARM_ALU_PC_G1
12357 || r_type == R_ARM_ALU_PC_G2)
12358 /* PC relative. */
12359 signed_value = value - pc + signed_addend;
12360 else
12361 /* Section base relative. */
12362 signed_value = value - sb + signed_addend;
12363
12364 /* If the target symbol is a Thumb function, then set the
12365 Thumb bit in the address. */
35fc36a8 12366 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
12367 signed_value |= 1;
12368
99059e56
RM
12369 /* Calculate the value of the relevant G_n, in encoded
12370 constant-with-rotation format. */
b6518b38
NC
12371 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12372 group, &residual);
99059e56
RM
12373
12374 /* Check for overflow if required. */
12375 if ((r_type == R_ARM_ALU_PC_G0
12376 || r_type == R_ARM_ALU_PC_G1
12377 || r_type == R_ARM_ALU_PC_G2
12378 || r_type == R_ARM_ALU_SB_G0
12379 || r_type == R_ARM_ALU_SB_G1
12380 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12381 {
4eca0228 12382 _bfd_error_handler
695344c0 12383 /* xgettext:c-format */
90b6238f 12384 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12385 "splitting %#" PRIx64 " for group relocation %s"),
12386 input_bfd, input_section, (uint64_t) rel->r_offset,
12387 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12388 howto->name);
99059e56
RM
12389 return bfd_reloc_overflow;
12390 }
12391
12392 /* Mask out the value and the ADD/SUB part of the opcode; take care
12393 not to destroy the S bit. */
12394 insn &= 0xff1ff000;
12395
12396 /* Set the opcode according to whether the value to go in the
12397 place is negative. */
12398 if (signed_value < 0)
12399 insn |= 1 << 22;
12400 else
12401 insn |= 1 << 23;
12402
12403 /* Encode the offset. */
12404 insn |= g_n;
4962c51a
MS
12405
12406 bfd_put_32 (input_bfd, insn, hit_data);
12407 }
12408 return bfd_reloc_ok;
12409
12410 case R_ARM_LDR_PC_G0:
12411 case R_ARM_LDR_PC_G1:
12412 case R_ARM_LDR_PC_G2:
12413 case R_ARM_LDR_SB_G0:
12414 case R_ARM_LDR_SB_G1:
12415 case R_ARM_LDR_SB_G2:
12416 {
12417 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12418 bfd_vma pc = input_section->output_section->vma
4962c51a 12419 + input_section->output_offset + rel->r_offset;
31a91d61 12420 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12421 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12422 bfd_vma residual;
4962c51a 12423 bfd_signed_vma signed_value;
99059e56
RM
12424 int group = 0;
12425
12426 /* Determine which groups of bits to calculate. */
12427 switch (r_type)
12428 {
12429 case R_ARM_LDR_PC_G0:
12430 case R_ARM_LDR_SB_G0:
12431 group = 0;
12432 break;
12433
12434 case R_ARM_LDR_PC_G1:
12435 case R_ARM_LDR_SB_G1:
12436 group = 1;
12437 break;
12438
12439 case R_ARM_LDR_PC_G2:
12440 case R_ARM_LDR_SB_G2:
12441 group = 2;
12442 break;
12443
12444 default:
12445 abort ();
12446 }
12447
12448 /* If REL, extract the addend from the insn. If RELA, it will
12449 have already been fetched for us. */
4962c51a 12450 if (globals->use_rel)
99059e56
RM
12451 {
12452 int negative = (insn & (1 << 23)) ? 1 : -1;
12453 signed_addend = negative * (insn & 0xfff);
12454 }
4962c51a
MS
12455
12456 /* Compute the value (X) to go in the place. */
99059e56
RM
12457 if (r_type == R_ARM_LDR_PC_G0
12458 || r_type == R_ARM_LDR_PC_G1
12459 || r_type == R_ARM_LDR_PC_G2)
12460 /* PC relative. */
12461 signed_value = value - pc + signed_addend;
12462 else
12463 /* Section base relative. */
12464 signed_value = value - sb + signed_addend;
12465
12466 /* Calculate the value of the relevant G_{n-1} to obtain
12467 the residual at that stage. */
b6518b38
NC
12468 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12469 group - 1, &residual);
99059e56
RM
12470
12471 /* Check for overflow. */
12472 if (residual >= 0x1000)
12473 {
4eca0228 12474 _bfd_error_handler
695344c0 12475 /* xgettext:c-format */
90b6238f 12476 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12477 "splitting %#" PRIx64 " for group relocation %s"),
12478 input_bfd, input_section, (uint64_t) rel->r_offset,
12479 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12480 howto->name);
99059e56
RM
12481 return bfd_reloc_overflow;
12482 }
12483
12484 /* Mask out the value and U bit. */
12485 insn &= 0xff7ff000;
12486
12487 /* Set the U bit if the value to go in the place is non-negative. */
12488 if (signed_value >= 0)
12489 insn |= 1 << 23;
12490
12491 /* Encode the offset. */
12492 insn |= residual;
4962c51a
MS
12493
12494 bfd_put_32 (input_bfd, insn, hit_data);
12495 }
12496 return bfd_reloc_ok;
12497
12498 case R_ARM_LDRS_PC_G0:
12499 case R_ARM_LDRS_PC_G1:
12500 case R_ARM_LDRS_PC_G2:
12501 case R_ARM_LDRS_SB_G0:
12502 case R_ARM_LDRS_SB_G1:
12503 case R_ARM_LDRS_SB_G2:
12504 {
12505 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12506 bfd_vma pc = input_section->output_section->vma
4962c51a 12507 + input_section->output_offset + rel->r_offset;
31a91d61 12508 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12509 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12510 bfd_vma residual;
4962c51a 12511 bfd_signed_vma signed_value;
99059e56
RM
12512 int group = 0;
12513
12514 /* Determine which groups of bits to calculate. */
12515 switch (r_type)
12516 {
12517 case R_ARM_LDRS_PC_G0:
12518 case R_ARM_LDRS_SB_G0:
12519 group = 0;
12520 break;
12521
12522 case R_ARM_LDRS_PC_G1:
12523 case R_ARM_LDRS_SB_G1:
12524 group = 1;
12525 break;
12526
12527 case R_ARM_LDRS_PC_G2:
12528 case R_ARM_LDRS_SB_G2:
12529 group = 2;
12530 break;
12531
12532 default:
12533 abort ();
12534 }
12535
12536 /* If REL, extract the addend from the insn. If RELA, it will
12537 have already been fetched for us. */
4962c51a 12538 if (globals->use_rel)
99059e56
RM
12539 {
12540 int negative = (insn & (1 << 23)) ? 1 : -1;
12541 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12542 }
4962c51a
MS
12543
12544 /* Compute the value (X) to go in the place. */
99059e56
RM
12545 if (r_type == R_ARM_LDRS_PC_G0
12546 || r_type == R_ARM_LDRS_PC_G1
12547 || r_type == R_ARM_LDRS_PC_G2)
12548 /* PC relative. */
12549 signed_value = value - pc + signed_addend;
12550 else
12551 /* Section base relative. */
12552 signed_value = value - sb + signed_addend;
12553
12554 /* Calculate the value of the relevant G_{n-1} to obtain
12555 the residual at that stage. */
b6518b38
NC
12556 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12557 group - 1, &residual);
99059e56
RM
12558
12559 /* Check for overflow. */
12560 if (residual >= 0x100)
12561 {
4eca0228 12562 _bfd_error_handler
695344c0 12563 /* xgettext:c-format */
90b6238f 12564 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12565 "splitting %#" PRIx64 " for group relocation %s"),
12566 input_bfd, input_section, (uint64_t) rel->r_offset,
12567 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12568 howto->name);
99059e56
RM
12569 return bfd_reloc_overflow;
12570 }
12571
12572 /* Mask out the value and U bit. */
12573 insn &= 0xff7ff0f0;
12574
12575 /* Set the U bit if the value to go in the place is non-negative. */
12576 if (signed_value >= 0)
12577 insn |= 1 << 23;
12578
12579 /* Encode the offset. */
12580 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
12581
12582 bfd_put_32 (input_bfd, insn, hit_data);
12583 }
12584 return bfd_reloc_ok;
12585
12586 case R_ARM_LDC_PC_G0:
12587 case R_ARM_LDC_PC_G1:
12588 case R_ARM_LDC_PC_G2:
12589 case R_ARM_LDC_SB_G0:
12590 case R_ARM_LDC_SB_G1:
12591 case R_ARM_LDC_SB_G2:
12592 {
12593 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12594 bfd_vma pc = input_section->output_section->vma
4962c51a 12595 + input_section->output_offset + rel->r_offset;
31a91d61 12596 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12597 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12598 bfd_vma residual;
4962c51a 12599 bfd_signed_vma signed_value;
99059e56
RM
12600 int group = 0;
12601
12602 /* Determine which groups of bits to calculate. */
12603 switch (r_type)
12604 {
12605 case R_ARM_LDC_PC_G0:
12606 case R_ARM_LDC_SB_G0:
12607 group = 0;
12608 break;
12609
12610 case R_ARM_LDC_PC_G1:
12611 case R_ARM_LDC_SB_G1:
12612 group = 1;
12613 break;
12614
12615 case R_ARM_LDC_PC_G2:
12616 case R_ARM_LDC_SB_G2:
12617 group = 2;
12618 break;
12619
12620 default:
12621 abort ();
12622 }
12623
12624 /* If REL, extract the addend from the insn. If RELA, it will
12625 have already been fetched for us. */
4962c51a 12626 if (globals->use_rel)
99059e56
RM
12627 {
12628 int negative = (insn & (1 << 23)) ? 1 : -1;
12629 signed_addend = negative * ((insn & 0xff) << 2);
12630 }
4962c51a
MS
12631
12632 /* Compute the value (X) to go in the place. */
99059e56
RM
12633 if (r_type == R_ARM_LDC_PC_G0
12634 || r_type == R_ARM_LDC_PC_G1
12635 || r_type == R_ARM_LDC_PC_G2)
12636 /* PC relative. */
12637 signed_value = value - pc + signed_addend;
12638 else
12639 /* Section base relative. */
12640 signed_value = value - sb + signed_addend;
12641
12642 /* Calculate the value of the relevant G_{n-1} to obtain
12643 the residual at that stage. */
b6518b38
NC
12644 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12645 group - 1, &residual);
99059e56
RM
12646
12647 /* Check for overflow. (The absolute value to go in the place must be
12648 divisible by four and, after having been divided by four, must
12649 fit in eight bits.) */
12650 if ((residual & 0x3) != 0 || residual >= 0x400)
12651 {
4eca0228 12652 _bfd_error_handler
695344c0 12653 /* xgettext:c-format */
90b6238f 12654 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12655 "splitting %#" PRIx64 " for group relocation %s"),
12656 input_bfd, input_section, (uint64_t) rel->r_offset,
12657 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12658 howto->name);
99059e56
RM
12659 return bfd_reloc_overflow;
12660 }
12661
12662 /* Mask out the value and U bit. */
12663 insn &= 0xff7fff00;
12664
12665 /* Set the U bit if the value to go in the place is non-negative. */
12666 if (signed_value >= 0)
12667 insn |= 1 << 23;
12668
12669 /* Encode the offset. */
12670 insn |= residual >> 2;
4962c51a
MS
12671
12672 bfd_put_32 (input_bfd, insn, hit_data);
12673 }
12674 return bfd_reloc_ok;
12675
72d98d16
MG
12676 case R_ARM_THM_ALU_ABS_G0_NC:
12677 case R_ARM_THM_ALU_ABS_G1_NC:
12678 case R_ARM_THM_ALU_ABS_G2_NC:
12679 case R_ARM_THM_ALU_ABS_G3_NC:
12680 {
12681 const int shift_array[4] = {0, 8, 16, 24};
12682 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12683 bfd_vma addr = value;
12684 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12685
12686 /* Compute address. */
12687 if (globals->use_rel)
12688 signed_addend = insn & 0xff;
12689 addr += signed_addend;
12690 if (branch_type == ST_BRANCH_TO_THUMB)
12691 addr |= 1;
12692 /* Clean imm8 insn. */
12693 insn &= 0xff00;
12694 /* And update with correct part of address. */
12695 insn |= (addr >> shift) & 0xff;
12696 /* Update insn. */
12697 bfd_put_16 (input_bfd, insn, hit_data);
12698 }
12699
12700 *unresolved_reloc_p = FALSE;
12701 return bfd_reloc_ok;
12702
e8b09b87
CL
12703 case R_ARM_GOTOFFFUNCDESC:
12704 {
4b24dd1a 12705 if (h == NULL)
e8b09b87
CL
12706 {
12707 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12708 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12709 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12710 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12711 bfd_vma seg = -1;
12712
12713 if (bfd_link_pic(info) && dynindx == 0)
12714 abort();
12715
12716 /* Resolve relocation. */
12717 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12718 , contents + rel->r_offset);
12719 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12720 not done yet. */
12721 arm_elf_fill_funcdesc(output_bfd, info,
12722 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12723 dynindx, offset, addr, dynreloc_value, seg);
12724 }
12725 else
12726 {
12727 int dynindx;
12728 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12729 bfd_vma addr;
12730 bfd_vma seg = -1;
12731
12732 /* For static binaries, sym_sec can be null. */
12733 if (sym_sec)
12734 {
12735 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12736 addr = dynreloc_value - sym_sec->output_section->vma;
12737 }
12738 else
12739 {
12740 dynindx = 0;
12741 addr = 0;
12742 }
12743
12744 if (bfd_link_pic(info) && dynindx == 0)
12745 abort();
12746
12747 /* This case cannot occur since funcdesc is allocated by
12748 the dynamic loader so we cannot resolve the relocation. */
12749 if (h->dynindx != -1)
12750 abort();
12751
12752 /* Resolve relocation. */
12753 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12754 contents + rel->r_offset);
12755 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12756 arm_elf_fill_funcdesc(output_bfd, info,
12757 &eh->fdpic_cnts.funcdesc_offset,
12758 dynindx, offset, addr, dynreloc_value, seg);
12759 }
12760 }
12761 *unresolved_reloc_p = FALSE;
12762 return bfd_reloc_ok;
12763
12764 case R_ARM_GOTFUNCDESC:
12765 {
4b24dd1a 12766 if (h != NULL)
e8b09b87
CL
12767 {
12768 Elf_Internal_Rela outrel;
12769
12770 /* Resolve relocation. */
12771 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12772 + sgot->output_offset),
12773 contents + rel->r_offset);
12774 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12775 if(h->dynindx == -1)
12776 {
12777 int dynindx;
12778 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12779 bfd_vma addr;
12780 bfd_vma seg = -1;
12781
12782 /* For static binaries sym_sec can be null. */
12783 if (sym_sec)
12784 {
12785 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12786 addr = dynreloc_value - sym_sec->output_section->vma;
12787 }
12788 else
12789 {
12790 dynindx = 0;
12791 addr = 0;
12792 }
12793
12794 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12795 arm_elf_fill_funcdesc(output_bfd, info,
12796 &eh->fdpic_cnts.funcdesc_offset,
12797 dynindx, offset, addr, dynreloc_value, seg);
12798 }
12799
12800 /* Add a dynamic relocation on GOT entry if not already done. */
12801 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12802 {
12803 if (h->dynindx == -1)
12804 {
12805 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12806 if (h->root.type == bfd_link_hash_undefweak)
12807 bfd_put_32(output_bfd, 0, sgot->contents
12808 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12809 else
12810 bfd_put_32(output_bfd, sgot->output_section->vma
12811 + sgot->output_offset
12812 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12813 sgot->contents
12814 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12815 }
12816 else
12817 {
12818 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12819 }
12820 outrel.r_offset = sgot->output_section->vma
12821 + sgot->output_offset
12822 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12823 outrel.r_addend = 0;
12824 if (h->dynindx == -1 && !bfd_link_pic(info))
12825 if (h->root.type == bfd_link_hash_undefweak)
4b24dd1a 12826 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
e8b09b87 12827 else
4b24dd1a
AM
12828 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12829 outrel.r_offset);
e8b09b87
CL
12830 else
12831 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12832 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12833 }
12834 }
12835 else
12836 {
12837 /* Such relocation on static function should not have been
12838 emitted by the compiler. */
12839 abort();
12840 }
12841 }
12842 *unresolved_reloc_p = FALSE;
12843 return bfd_reloc_ok;
12844
12845 case R_ARM_FUNCDESC:
12846 {
4b24dd1a 12847 if (h == NULL)
e8b09b87
CL
12848 {
12849 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12850 Elf_Internal_Rela outrel;
12851 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12852 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12853 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12854 bfd_vma seg = -1;
12855
12856 if (bfd_link_pic(info) && dynindx == 0)
12857 abort();
12858
12859 /* Replace static FUNCDESC relocation with a
12860 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12861 executable. */
12862 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12863 outrel.r_offset = input_section->output_section->vma
12864 + input_section->output_offset + rel->r_offset;
12865 outrel.r_addend = 0;
12866 if (bfd_link_pic(info))
12867 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12868 else
12869 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12870
12871 bfd_put_32 (input_bfd, sgot->output_section->vma
12872 + sgot->output_offset + offset, hit_data);
12873
12874 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12875 arm_elf_fill_funcdesc(output_bfd, info,
12876 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12877 dynindx, offset, addr, dynreloc_value, seg);
12878 }
12879 else
12880 {
12881 if (h->dynindx == -1)
12882 {
12883 int dynindx;
12884 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12885 bfd_vma addr;
12886 bfd_vma seg = -1;
12887 Elf_Internal_Rela outrel;
12888
12889 /* For static binaries sym_sec can be null. */
12890 if (sym_sec)
12891 {
12892 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12893 addr = dynreloc_value - sym_sec->output_section->vma;
12894 }
12895 else
12896 {
12897 dynindx = 0;
12898 addr = 0;
12899 }
12900
12901 if (bfd_link_pic(info) && dynindx == 0)
12902 abort();
12903
12904 /* Replace static FUNCDESC relocation with a
12905 R_ARM_RELATIVE dynamic relocation. */
12906 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12907 outrel.r_offset = input_section->output_section->vma
12908 + input_section->output_offset + rel->r_offset;
12909 outrel.r_addend = 0;
12910 if (bfd_link_pic(info))
12911 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12912 else
12913 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12914
12915 bfd_put_32 (input_bfd, sgot->output_section->vma
12916 + sgot->output_offset + offset, hit_data);
12917
12918 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12919 arm_elf_fill_funcdesc(output_bfd, info,
12920 &eh->fdpic_cnts.funcdesc_offset,
12921 dynindx, offset, addr, dynreloc_value, seg);
12922 }
12923 else
12924 {
12925 Elf_Internal_Rela outrel;
12926
12927 /* Add a dynamic relocation. */
12928 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12929 outrel.r_offset = input_section->output_section->vma
12930 + input_section->output_offset + rel->r_offset;
12931 outrel.r_addend = 0;
12932 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12933 }
12934 }
12935 }
12936 *unresolved_reloc_p = FALSE;
12937 return bfd_reloc_ok;
12938
e5d6e09e
AV
12939 case R_ARM_THM_BF16:
12940 {
12941 bfd_vma relocation;
12942 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12943 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12944
12945 if (globals->use_rel)
12946 {
12947 bfd_vma immA = (upper_insn & 0x001f);
12948 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12949 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12950 addend = (immA << 12);
12951 addend |= (immB << 2);
12952 addend |= (immC << 1);
12953 addend |= 1;
12954 /* Sign extend. */
e6f65e75 12955 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
e5d6e09e
AV
12956 }
12957
e6f65e75 12958 relocation = value + signed_addend;
e5d6e09e
AV
12959 relocation -= (input_section->output_section->vma
12960 + input_section->output_offset
12961 + rel->r_offset);
12962
12963 /* Put RELOCATION back into the insn. */
12964 {
12965 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12966 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12967 bfd_vma immC = (relocation & 0x00000002) >> 1;
12968
12969 upper_insn = (upper_insn & 0xffe0) | immA;
12970 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12971 }
12972
12973 /* Put the relocated value back in the object file: */
12974 bfd_put_16 (input_bfd, upper_insn, hit_data);
12975 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12976
12977 return bfd_reloc_ok;
12978 }
12979
1889da70
AV
12980 case R_ARM_THM_BF12:
12981 {
12982 bfd_vma relocation;
12983 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12984 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12985
12986 if (globals->use_rel)
12987 {
12988 bfd_vma immA = (upper_insn & 0x0001);
12989 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12990 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12991 addend = (immA << 12);
12992 addend |= (immB << 2);
12993 addend |= (immC << 1);
12994 addend |= 1;
12995 /* Sign extend. */
12996 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
e6f65e75 12997 signed_addend = addend;
1889da70
AV
12998 }
12999
e6f65e75 13000 relocation = value + signed_addend;
1889da70
AV
13001 relocation -= (input_section->output_section->vma
13002 + input_section->output_offset
13003 + rel->r_offset);
13004
13005 /* Put RELOCATION back into the insn. */
13006 {
13007 bfd_vma immA = (relocation & 0x00001000) >> 12;
13008 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13009 bfd_vma immC = (relocation & 0x00000002) >> 1;
13010
13011 upper_insn = (upper_insn & 0xfffe) | immA;
13012 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13013 }
13014
13015 /* Put the relocated value back in the object file: */
13016 bfd_put_16 (input_bfd, upper_insn, hit_data);
13017 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13018
13019 return bfd_reloc_ok;
13020 }
13021
1caf72a5
AV
13022 case R_ARM_THM_BF18:
13023 {
13024 bfd_vma relocation;
13025 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
13026 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
13027
13028 if (globals->use_rel)
13029 {
13030 bfd_vma immA = (upper_insn & 0x007f);
13031 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13032 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13033 addend = (immA << 12);
13034 addend |= (immB << 2);
13035 addend |= (immC << 1);
13036 addend |= 1;
13037 /* Sign extend. */
13038 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
e6f65e75 13039 signed_addend = addend;
1caf72a5
AV
13040 }
13041
e6f65e75 13042 relocation = value + signed_addend;
1caf72a5
AV
13043 relocation -= (input_section->output_section->vma
13044 + input_section->output_offset
13045 + rel->r_offset);
13046
13047 /* Put RELOCATION back into the insn. */
13048 {
13049 bfd_vma immA = (relocation & 0x0007f000) >> 12;
13050 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13051 bfd_vma immC = (relocation & 0x00000002) >> 1;
13052
13053 upper_insn = (upper_insn & 0xff80) | immA;
13054 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13055 }
13056
13057 /* Put the relocated value back in the object file: */
13058 bfd_put_16 (input_bfd, upper_insn, hit_data);
13059 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13060
13061 return bfd_reloc_ok;
13062 }
13063
252b5132
RH
13064 default:
13065 return bfd_reloc_notsupported;
13066 }
13067}
13068
98c1d4aa
NC
13069/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13070static void
07d6d2b8
AM
13071arm_add_to_rel (bfd * abfd,
13072 bfd_byte * address,
57e8b36a 13073 reloc_howto_type * howto,
07d6d2b8 13074 bfd_signed_vma increment)
98c1d4aa 13075{
98c1d4aa
NC
13076 bfd_signed_vma addend;
13077
bd97cb95
DJ
13078 if (howto->type == R_ARM_THM_CALL
13079 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 13080 {
9a5aca8c
AM
13081 int upper_insn, lower_insn;
13082 int upper, lower;
98c1d4aa 13083
9a5aca8c
AM
13084 upper_insn = bfd_get_16 (abfd, address);
13085 lower_insn = bfd_get_16 (abfd, address + 2);
13086 upper = upper_insn & 0x7ff;
13087 lower = lower_insn & 0x7ff;
13088
13089 addend = (upper << 12) | (lower << 1);
ddda4409 13090 addend += increment;
9a5aca8c 13091 addend >>= 1;
98c1d4aa 13092
9a5aca8c
AM
13093 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13094 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13095
dc810e39
AM
13096 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13097 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
13098 }
13099 else
13100 {
07d6d2b8 13101 bfd_vma contents;
9a5aca8c
AM
13102
13103 contents = bfd_get_32 (abfd, address);
13104
13105 /* Get the (signed) value from the instruction. */
13106 addend = contents & howto->src_mask;
13107 if (addend & ((howto->src_mask + 1) >> 1))
13108 {
13109 bfd_signed_vma mask;
13110
13111 mask = -1;
13112 mask &= ~ howto->src_mask;
13113 addend |= mask;
13114 }
13115
13116 /* Add in the increment, (which is a byte value). */
13117 switch (howto->type)
13118 {
13119 default:
13120 addend += increment;
13121 break;
13122
13123 case R_ARM_PC24:
c6596c5e 13124 case R_ARM_PLT32:
5b5bb741
PB
13125 case R_ARM_CALL:
13126 case R_ARM_JUMP24:
9a5aca8c 13127 addend <<= howto->size;
dc810e39 13128 addend += increment;
9a5aca8c
AM
13129
13130 /* Should we check for overflow here ? */
13131
13132 /* Drop any undesired bits. */
13133 addend >>= howto->rightshift;
13134 break;
13135 }
13136
13137 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13138
13139 bfd_put_32 (abfd, contents, address);
ddda4409 13140 }
98c1d4aa 13141}
252b5132 13142
ba93b8ac
DJ
13143#define IS_ARM_TLS_RELOC(R_TYPE) \
13144 ((R_TYPE) == R_ARM_TLS_GD32 \
5c5a4843 13145 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
ba93b8ac
DJ
13146 || (R_TYPE) == R_ARM_TLS_LDO32 \
13147 || (R_TYPE) == R_ARM_TLS_LDM32 \
5c5a4843 13148 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
ba93b8ac
DJ
13149 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13150 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13151 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13152 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b 13153 || (R_TYPE) == R_ARM_TLS_IE32 \
5c5a4843 13154 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
0855e32b
NS
13155 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13156
13157/* Specific set of relocations for the gnu tls dialect. */
13158#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13159 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13160 || (R_TYPE) == R_ARM_TLS_CALL \
13161 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13162 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13163 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 13164
252b5132 13165/* Relocate an ARM ELF section. */
906e58ca 13166
b34976b6 13167static bfd_boolean
07d6d2b8 13168elf32_arm_relocate_section (bfd * output_bfd,
57e8b36a 13169 struct bfd_link_info * info,
07d6d2b8
AM
13170 bfd * input_bfd,
13171 asection * input_section,
13172 bfd_byte * contents,
13173 Elf_Internal_Rela * relocs,
13174 Elf_Internal_Sym * local_syms,
13175 asection ** local_sections)
252b5132 13176{
b34976b6
AM
13177 Elf_Internal_Shdr *symtab_hdr;
13178 struct elf_link_hash_entry **sym_hashes;
13179 Elf_Internal_Rela *rel;
13180 Elf_Internal_Rela *relend;
13181 const char *name;
b32d3aa2 13182 struct elf32_arm_link_hash_table * globals;
252b5132 13183
4e7fd91e 13184 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
13185 if (globals == NULL)
13186 return FALSE;
b491616a 13187
0ffa91dd 13188 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
13189 sym_hashes = elf_sym_hashes (input_bfd);
13190
13191 rel = relocs;
13192 relend = relocs + input_section->reloc_count;
13193 for (; rel < relend; rel++)
13194 {
07d6d2b8
AM
13195 int r_type;
13196 reloc_howto_type * howto;
13197 unsigned long r_symndx;
13198 Elf_Internal_Sym * sym;
13199 asection * sec;
252b5132 13200 struct elf_link_hash_entry * h;
07d6d2b8
AM
13201 bfd_vma relocation;
13202 bfd_reloc_status_type r;
13203 arelent bfd_reloc;
13204 char sym_type;
13205 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 13206 char *error_message = NULL;
f21f3fe0 13207
252b5132 13208 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 13209 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 13210 r_type = arm_real_reloc_type (globals, r_type);
252b5132 13211
ba96a88f 13212 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
13213 || r_type == R_ARM_GNU_VTINHERIT)
13214 continue;
252b5132 13215
47aeb64c
NC
13216 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13217
13218 if (howto == NULL)
13219 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
252b5132 13220
252b5132
RH
13221 h = NULL;
13222 sym = NULL;
13223 sec = NULL;
9b485d32 13224
252b5132
RH
13225 if (r_symndx < symtab_hdr->sh_info)
13226 {
13227 sym = local_syms + r_symndx;
ba93b8ac 13228 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 13229 sec = local_sections[r_symndx];
ffcb4889
NS
13230
13231 /* An object file might have a reference to a local
13232 undefined symbol. This is a daft object file, but we
13233 should at least do something about it. V4BX & NONE
13234 relocations do not use the symbol and are explicitly
77b4f08f
TS
13235 allowed to use the undefined symbol, so allow those.
13236 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
13237 if (r_type != R_ARM_V4BX
13238 && r_type != R_ARM_NONE
77b4f08f 13239 && r_symndx != STN_UNDEF
ffcb4889
NS
13240 && bfd_is_und_section (sec)
13241 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
13242 (*info->callbacks->undefined_symbol)
13243 (info, bfd_elf_string_from_elf_section
13244 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13245 input_bfd, input_section,
13246 rel->r_offset, TRUE);
b38cadfb 13247
4e7fd91e 13248 if (globals->use_rel)
f8df10f4 13249 {
4e7fd91e
PB
13250 relocation = (sec->output_section->vma
13251 + sec->output_offset
13252 + sym->st_value);
0e1862bb 13253 if (!bfd_link_relocatable (info)
ab96bf03
AM
13254 && (sec->flags & SEC_MERGE)
13255 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 13256 {
4e7fd91e
PB
13257 asection *msec;
13258 bfd_vma addend, value;
13259
39623e12 13260 switch (r_type)
4e7fd91e 13261 {
39623e12
PB
13262 case R_ARM_MOVW_ABS_NC:
13263 case R_ARM_MOVT_ABS:
13264 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13265 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13266 addend = (addend ^ 0x8000) - 0x8000;
13267 break;
f8df10f4 13268
39623e12
PB
13269 case R_ARM_THM_MOVW_ABS_NC:
13270 case R_ARM_THM_MOVT_ABS:
13271 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13272 << 16;
13273 value |= bfd_get_16 (input_bfd,
13274 contents + rel->r_offset + 2);
13275 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13276 | ((value & 0x04000000) >> 15);
13277 addend = (addend ^ 0x8000) - 0x8000;
13278 break;
f8df10f4 13279
39623e12
PB
13280 default:
13281 if (howto->rightshift
13282 || (howto->src_mask & (howto->src_mask + 1)))
13283 {
4eca0228 13284 _bfd_error_handler
695344c0 13285 /* xgettext:c-format */
2dcf00ce
AM
13286 (_("%pB(%pA+%#" PRIx64 "): "
13287 "%s relocation against SEC_MERGE section"),
39623e12 13288 input_bfd, input_section,
2dcf00ce 13289 (uint64_t) rel->r_offset, howto->name);
39623e12
PB
13290 return FALSE;
13291 }
13292
13293 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13294
13295 /* Get the (signed) value from the instruction. */
13296 addend = value & howto->src_mask;
13297 if (addend & ((howto->src_mask + 1) >> 1))
13298 {
13299 bfd_signed_vma mask;
13300
13301 mask = -1;
13302 mask &= ~ howto->src_mask;
13303 addend |= mask;
13304 }
13305 break;
4e7fd91e 13306 }
39623e12 13307
4e7fd91e
PB
13308 msec = sec;
13309 addend =
13310 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13311 - relocation;
13312 addend += msec->output_section->vma + msec->output_offset;
39623e12 13313
cc643b88 13314 /* Cases here must match those in the preceding
39623e12
PB
13315 switch statement. */
13316 switch (r_type)
13317 {
13318 case R_ARM_MOVW_ABS_NC:
13319 case R_ARM_MOVT_ABS:
13320 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13321 | (addend & 0xfff);
13322 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13323 break;
13324
13325 case R_ARM_THM_MOVW_ABS_NC:
13326 case R_ARM_THM_MOVT_ABS:
13327 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13328 | (addend & 0xff) | ((addend & 0x0800) << 15);
13329 bfd_put_16 (input_bfd, value >> 16,
13330 contents + rel->r_offset);
13331 bfd_put_16 (input_bfd, value,
13332 contents + rel->r_offset + 2);
13333 break;
13334
13335 default:
13336 value = (value & ~ howto->dst_mask)
13337 | (addend & howto->dst_mask);
13338 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13339 break;
13340 }
f8df10f4 13341 }
f8df10f4 13342 }
4e7fd91e
PB
13343 else
13344 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
13345 }
13346 else
13347 {
62d887d4 13348 bfd_boolean warned, ignored;
560e09e9 13349
b2a8e766
AM
13350 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13351 r_symndx, symtab_hdr, sym_hashes,
13352 h, sec, relocation,
62d887d4 13353 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
13354
13355 sym_type = h->type;
252b5132
RH
13356 }
13357
dbaa2011 13358 if (sec != NULL && discarded_section (sec))
e4067dbb 13359 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 13360 rel, 1, relend, howto, 0, contents);
ab96bf03 13361
0e1862bb 13362 if (bfd_link_relocatable (info))
ab96bf03
AM
13363 {
13364 /* This is a relocatable link. We don't have to change
13365 anything, unless the reloc is against a section symbol,
13366 in which case we have to adjust according to where the
13367 section symbol winds up in the output section. */
13368 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13369 {
13370 if (globals->use_rel)
13371 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13372 howto, (bfd_signed_vma) sec->output_offset);
13373 else
13374 rel->r_addend += sec->output_offset;
13375 }
13376 continue;
13377 }
13378
252b5132
RH
13379 if (h != NULL)
13380 name = h->root.root.string;
13381 else
13382 {
13383 name = (bfd_elf_string_from_elf_section
13384 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13385 if (name == NULL || *name == '\0')
fd361982 13386 name = bfd_section_name (sec);
252b5132 13387 }
f21f3fe0 13388
cf35638d 13389 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
13390 && r_type != R_ARM_NONE
13391 && (h == NULL
13392 || h->root.type == bfd_link_hash_defined
13393 || h->root.type == bfd_link_hash_defweak)
13394 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13395 {
4eca0228 13396 _bfd_error_handler
ba93b8ac 13397 ((sym_type == STT_TLS
695344c0 13398 /* xgettext:c-format */
2dcf00ce 13399 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 13400 /* xgettext:c-format */
2dcf00ce 13401 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
ba93b8ac
DJ
13402 input_bfd,
13403 input_section,
2dcf00ce 13404 (uint64_t) rel->r_offset,
ba93b8ac
DJ
13405 howto->name,
13406 name);
13407 }
13408
0855e32b 13409 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
13410 done, i.e., the relaxation produced the final output we want,
13411 and we won't let anybody mess with it. Also, we have to do
13412 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 13413 both in relaxed and non-relaxed cases. */
39d911fc
TP
13414 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13415 || (IS_ARM_TLS_GNU_RELOC (r_type)
13416 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13417 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13418 & GOT_TLS_GDESC)))
13419 {
13420 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13421 contents, rel, h == NULL);
13422 /* This may have been marked unresolved because it came from
13423 a shared library. But we've just dealt with that. */
13424 unresolved_reloc = 0;
13425 }
13426 else
13427 r = bfd_reloc_continue;
b38cadfb 13428
39d911fc
TP
13429 if (r == bfd_reloc_continue)
13430 {
13431 unsigned char branch_type =
13432 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13433 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13434
13435 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13436 input_section, contents, rel,
13437 relocation, info, sec, name,
13438 sym_type, branch_type, h,
13439 &unresolved_reloc,
13440 &error_message);
13441 }
0945cdfd
DJ
13442
13443 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13444 because such sections are not SEC_ALLOC and thus ld.so will
13445 not process them. */
13446 if (unresolved_reloc
99059e56
RM
13447 && !((input_section->flags & SEC_DEBUGGING) != 0
13448 && h->def_dynamic)
1d5316ab
AM
13449 && _bfd_elf_section_offset (output_bfd, info, input_section,
13450 rel->r_offset) != (bfd_vma) -1)
0945cdfd 13451 {
4eca0228 13452 _bfd_error_handler
695344c0 13453 /* xgettext:c-format */
2dcf00ce
AM
13454 (_("%pB(%pA+%#" PRIx64 "): "
13455 "unresolvable %s relocation against symbol `%s'"),
843fe662
L
13456 input_bfd,
13457 input_section,
2dcf00ce 13458 (uint64_t) rel->r_offset,
843fe662
L
13459 howto->name,
13460 h->root.root.string);
0945cdfd
DJ
13461 return FALSE;
13462 }
252b5132
RH
13463
13464 if (r != bfd_reloc_ok)
13465 {
252b5132
RH
13466 switch (r)
13467 {
13468 case bfd_reloc_overflow:
cf919dfd
PB
13469 /* If the overflowing reloc was to an undefined symbol,
13470 we have already printed one error message and there
13471 is no point complaining again. */
1a72702b
AM
13472 if (!h || h->root.type != bfd_link_hash_undefined)
13473 (*info->callbacks->reloc_overflow)
13474 (info, (h ? &h->root : NULL), name, howto->name,
13475 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
252b5132
RH
13476 break;
13477
13478 case bfd_reloc_undefined:
1a72702b
AM
13479 (*info->callbacks->undefined_symbol)
13480 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
252b5132
RH
13481 break;
13482
13483 case bfd_reloc_outofrange:
f2a9dd69 13484 error_message = _("out of range");
252b5132
RH
13485 goto common_error;
13486
13487 case bfd_reloc_notsupported:
f2a9dd69 13488 error_message = _("unsupported relocation");
252b5132
RH
13489 goto common_error;
13490
13491 case bfd_reloc_dangerous:
f2a9dd69 13492 /* error_message should already be set. */
252b5132
RH
13493 goto common_error;
13494
13495 default:
f2a9dd69 13496 error_message = _("unknown error");
8029a119 13497 /* Fall through. */
252b5132
RH
13498
13499 common_error:
f2a9dd69 13500 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13501 (*info->callbacks->reloc_dangerous)
13502 (info, error_message, input_bfd, input_section, rel->r_offset);
252b5132
RH
13503 break;
13504 }
13505 }
13506 }
13507
b34976b6 13508 return TRUE;
252b5132
RH
13509}
13510
91d6fa6a 13511/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 13512 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 13513 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
13514 maintaining that condition). */
13515
13516static void
13517add_unwind_table_edit (arm_unwind_table_edit **head,
13518 arm_unwind_table_edit **tail,
13519 arm_unwind_edit_type type,
13520 asection *linked_section,
91d6fa6a 13521 unsigned int tindex)
2468f9c9 13522{
21d799b5
NC
13523 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13524 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 13525
2468f9c9
PB
13526 new_edit->type = type;
13527 new_edit->linked_section = linked_section;
91d6fa6a 13528 new_edit->index = tindex;
b38cadfb 13529
91d6fa6a 13530 if (tindex > 0)
2468f9c9
PB
13531 {
13532 new_edit->next = NULL;
13533
13534 if (*tail)
13535 (*tail)->next = new_edit;
13536
13537 (*tail) = new_edit;
13538
13539 if (!*head)
13540 (*head) = new_edit;
13541 }
13542 else
13543 {
13544 new_edit->next = *head;
13545
13546 if (!*tail)
13547 *tail = new_edit;
13548
13549 *head = new_edit;
13550 }
13551}
13552
13553static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13554
13555/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13556static void
13557adjust_exidx_size(asection *exidx_sec, int adjust)
13558{
13559 asection *out_sec;
13560
13561 if (!exidx_sec->rawsize)
13562 exidx_sec->rawsize = exidx_sec->size;
13563
fd361982 13564 bfd_set_section_size (exidx_sec, exidx_sec->size + adjust);
2468f9c9
PB
13565 out_sec = exidx_sec->output_section;
13566 /* Adjust size of output section. */
fd361982 13567 bfd_set_section_size (out_sec, out_sec->size +adjust);
2468f9c9
PB
13568}
13569
13570/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13571static void
13572insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13573{
13574 struct _arm_elf_section_data *exidx_arm_data;
13575
13576 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13577 add_unwind_table_edit (
13578 &exidx_arm_data->u.exidx.unwind_edit_list,
13579 &exidx_arm_data->u.exidx.unwind_edit_tail,
13580 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13581
491d01d3
YU
13582 exidx_arm_data->additional_reloc_count++;
13583
2468f9c9
PB
13584 adjust_exidx_size(exidx_sec, 8);
13585}
13586
13587/* Scan .ARM.exidx tables, and create a list describing edits which should be
13588 made to those tables, such that:
b38cadfb 13589
2468f9c9
PB
13590 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13591 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 13592 codes which have been inlined into the index).
2468f9c9 13593
85fdf906
AH
13594 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13595
2468f9c9 13596 The edits are applied when the tables are written
b38cadfb 13597 (in elf32_arm_write_section). */
2468f9c9
PB
13598
13599bfd_boolean
13600elf32_arm_fix_exidx_coverage (asection **text_section_order,
13601 unsigned int num_text_sections,
85fdf906
AH
13602 struct bfd_link_info *info,
13603 bfd_boolean merge_exidx_entries)
2468f9c9
PB
13604{
13605 bfd *inp;
13606 unsigned int last_second_word = 0, i;
13607 asection *last_exidx_sec = NULL;
13608 asection *last_text_sec = NULL;
13609 int last_unwind_type = -1;
13610
13611 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13612 text sections. */
c72f2fb2 13613 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
13614 {
13615 asection *sec;
b38cadfb 13616
2468f9c9 13617 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 13618 {
2468f9c9
PB
13619 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13620 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 13621
dec9d5df 13622 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 13623 continue;
b38cadfb 13624
2468f9c9
PB
13625 if (elf_sec->linked_to)
13626 {
13627 Elf_Internal_Shdr *linked_hdr
99059e56 13628 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 13629 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 13630 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
13631
13632 if (linked_sec_arm_data == NULL)
99059e56 13633 continue;
2468f9c9
PB
13634
13635 /* Link this .ARM.exidx section back from the text section it
99059e56 13636 describes. */
2468f9c9
PB
13637 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13638 }
13639 }
13640 }
13641
13642 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13643 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 13644 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
13645
13646 for (i = 0; i < num_text_sections; i++)
13647 {
13648 asection *sec = text_section_order[i];
13649 asection *exidx_sec;
13650 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13651 struct _arm_elf_section_data *exidx_arm_data;
13652 bfd_byte *contents = NULL;
13653 int deleted_exidx_bytes = 0;
13654 bfd_vma j;
13655 arm_unwind_table_edit *unwind_edit_head = NULL;
13656 arm_unwind_table_edit *unwind_edit_tail = NULL;
13657 Elf_Internal_Shdr *hdr;
13658 bfd *ibfd;
13659
13660 if (arm_data == NULL)
99059e56 13661 continue;
2468f9c9
PB
13662
13663 exidx_sec = arm_data->u.text.arm_exidx_sec;
13664 if (exidx_sec == NULL)
13665 {
13666 /* Section has no unwind data. */
13667 if (last_unwind_type == 0 || !last_exidx_sec)
13668 continue;
13669
13670 /* Ignore zero sized sections. */
13671 if (sec->size == 0)
13672 continue;
13673
13674 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13675 last_unwind_type = 0;
13676 continue;
13677 }
13678
22a8f80e
PB
13679 /* Skip /DISCARD/ sections. */
13680 if (bfd_is_abs_section (exidx_sec->output_section))
13681 continue;
13682
2468f9c9
PB
13683 hdr = &elf_section_data (exidx_sec)->this_hdr;
13684 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 13685 continue;
b38cadfb 13686
2468f9c9
PB
13687 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13688 if (exidx_arm_data == NULL)
99059e56 13689 continue;
b38cadfb 13690
2468f9c9 13691 ibfd = exidx_sec->owner;
b38cadfb 13692
2468f9c9
PB
13693 if (hdr->contents != NULL)
13694 contents = hdr->contents;
13695 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13696 /* An error? */
13697 continue;
13698
ac06903d
YU
13699 if (last_unwind_type > 0)
13700 {
13701 unsigned int first_word = bfd_get_32 (ibfd, contents);
13702 /* Add cantunwind if first unwind item does not match section
13703 start. */
13704 if (first_word != sec->vma)
13705 {
13706 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13707 last_unwind_type = 0;
13708 }
13709 }
13710
2468f9c9
PB
13711 for (j = 0; j < hdr->sh_size; j += 8)
13712 {
13713 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13714 int unwind_type;
13715 int elide = 0;
13716
13717 /* An EXIDX_CANTUNWIND entry. */
13718 if (second_word == 1)
13719 {
13720 if (last_unwind_type == 0)
13721 elide = 1;
13722 unwind_type = 0;
13723 }
13724 /* Inlined unwinding data. Merge if equal to previous. */
13725 else if ((second_word & 0x80000000) != 0)
13726 {
85fdf906
AH
13727 if (merge_exidx_entries
13728 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
13729 elide = 1;
13730 unwind_type = 1;
13731 last_second_word = second_word;
13732 }
13733 /* Normal table entry. In theory we could merge these too,
13734 but duplicate entries are likely to be much less common. */
13735 else
13736 unwind_type = 2;
13737
491d01d3 13738 if (elide && !bfd_link_relocatable (info))
2468f9c9
PB
13739 {
13740 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13741 DELETE_EXIDX_ENTRY, NULL, j / 8);
13742
13743 deleted_exidx_bytes += 8;
13744 }
13745
13746 last_unwind_type = unwind_type;
13747 }
13748
13749 /* Free contents if we allocated it ourselves. */
13750 if (contents != hdr->contents)
99059e56 13751 free (contents);
2468f9c9
PB
13752
13753 /* Record edits to be applied later (in elf32_arm_write_section). */
13754 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13755 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 13756
2468f9c9
PB
13757 if (deleted_exidx_bytes > 0)
13758 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13759
13760 last_exidx_sec = exidx_sec;
13761 last_text_sec = sec;
13762 }
13763
13764 /* Add terminating CANTUNWIND entry. */
491d01d3
YU
13765 if (!bfd_link_relocatable (info) && last_exidx_sec
13766 && last_unwind_type != 0)
2468f9c9
PB
13767 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13768
13769 return TRUE;
13770}
13771
3e6b1042
DJ
13772static bfd_boolean
13773elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13774 bfd *ibfd, const char *name)
13775{
13776 asection *sec, *osec;
13777
3d4d4302 13778 sec = bfd_get_linker_section (ibfd, name);
3e6b1042
DJ
13779 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13780 return TRUE;
13781
13782 osec = sec->output_section;
13783 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13784 return TRUE;
13785
13786 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13787 sec->output_offset, sec->size))
13788 return FALSE;
13789
13790 return TRUE;
13791}
13792
13793static bfd_boolean
13794elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13795{
13796 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 13797 asection *sec, *osec;
3e6b1042 13798
4dfe6ac6
NC
13799 if (globals == NULL)
13800 return FALSE;
13801
3e6b1042
DJ
13802 /* Invoke the regular ELF backend linker to do all the work. */
13803 if (!bfd_elf_final_link (abfd, info))
13804 return FALSE;
13805
fe33d2fa
CL
13806 /* Process stub sections (eg BE8 encoding, ...). */
13807 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
7292b3ac 13808 unsigned int i;
cdb21a0a
NS
13809 for (i=0; i<htab->top_id; i++)
13810 {
13811 sec = htab->stub_group[i].stub_sec;
13812 /* Only process it once, in its link_sec slot. */
13813 if (sec && i == htab->stub_group[i].link_sec->id)
13814 {
13815 osec = sec->output_section;
13816 elf32_arm_write_section (abfd, info, sec, sec->contents);
13817 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13818 sec->output_offset, sec->size))
13819 return FALSE;
13820 }
fe33d2fa 13821 }
fe33d2fa 13822
3e6b1042
DJ
13823 /* Write out any glue sections now that we have created all the
13824 stubs. */
13825 if (globals->bfd_of_glue_owner != NULL)
13826 {
13827 if (! elf32_arm_output_glue_section (info, abfd,
13828 globals->bfd_of_glue_owner,
13829 ARM2THUMB_GLUE_SECTION_NAME))
13830 return FALSE;
13831
13832 if (! elf32_arm_output_glue_section (info, abfd,
13833 globals->bfd_of_glue_owner,
13834 THUMB2ARM_GLUE_SECTION_NAME))
13835 return FALSE;
13836
13837 if (! elf32_arm_output_glue_section (info, abfd,
13838 globals->bfd_of_glue_owner,
13839 VFP11_ERRATUM_VENEER_SECTION_NAME))
13840 return FALSE;
13841
a504d23a
LA
13842 if (! elf32_arm_output_glue_section (info, abfd,
13843 globals->bfd_of_glue_owner,
13844 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13845 return FALSE;
13846
3e6b1042
DJ
13847 if (! elf32_arm_output_glue_section (info, abfd,
13848 globals->bfd_of_glue_owner,
13849 ARM_BX_GLUE_SECTION_NAME))
13850 return FALSE;
13851 }
13852
13853 return TRUE;
13854}
13855
5968a7b8
NC
13856/* Return a best guess for the machine number based on the attributes. */
13857
13858static unsigned int
13859bfd_arm_get_mach_from_attributes (bfd * abfd)
13860{
13861 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13862
13863 switch (arch)
13864 {
c0c468d5 13865 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
5968a7b8
NC
13866 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13867 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13868 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13869
13870 case TAG_CPU_ARCH_V5TE:
13871 {
13872 char * name;
13873
13874 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13875 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13876
13877 if (name)
13878 {
13879 if (strcmp (name, "IWMMXT2") == 0)
13880 return bfd_mach_arm_iWMMXt2;
13881
13882 if (strcmp (name, "IWMMXT") == 0)
6034aab8 13883 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
13884
13885 if (strcmp (name, "XSCALE") == 0)
13886 {
13887 int wmmx;
13888
13889 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13890 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13891 switch (wmmx)
13892 {
13893 case 1: return bfd_mach_arm_iWMMXt;
13894 case 2: return bfd_mach_arm_iWMMXt2;
13895 default: return bfd_mach_arm_XScale;
13896 }
13897 }
5968a7b8
NC
13898 }
13899
13900 return bfd_mach_arm_5TE;
13901 }
13902
c0c468d5
TP
13903 case TAG_CPU_ARCH_V5TEJ:
13904 return bfd_mach_arm_5TEJ;
13905 case TAG_CPU_ARCH_V6:
13906 return bfd_mach_arm_6;
13907 case TAG_CPU_ARCH_V6KZ:
13908 return bfd_mach_arm_6KZ;
13909 case TAG_CPU_ARCH_V6T2:
13910 return bfd_mach_arm_6T2;
13911 case TAG_CPU_ARCH_V6K:
13912 return bfd_mach_arm_6K;
13913 case TAG_CPU_ARCH_V7:
13914 return bfd_mach_arm_7;
13915 case TAG_CPU_ARCH_V6_M:
13916 return bfd_mach_arm_6M;
13917 case TAG_CPU_ARCH_V6S_M:
13918 return bfd_mach_arm_6SM;
13919 case TAG_CPU_ARCH_V7E_M:
13920 return bfd_mach_arm_7EM;
13921 case TAG_CPU_ARCH_V8:
13922 return bfd_mach_arm_8;
13923 case TAG_CPU_ARCH_V8R:
13924 return bfd_mach_arm_8R;
13925 case TAG_CPU_ARCH_V8M_BASE:
13926 return bfd_mach_arm_8M_BASE;
13927 case TAG_CPU_ARCH_V8M_MAIN:
13928 return bfd_mach_arm_8M_MAIN;
031254f2
AV
13929 case TAG_CPU_ARCH_V8_1M_MAIN:
13930 return bfd_mach_arm_8_1M_MAIN;
c0c468d5 13931
5968a7b8 13932 default:
c0c468d5
TP
13933 /* Force entry to be added for any new known Tag_CPU_arch value. */
13934 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13935
13936 /* Unknown Tag_CPU_arch value. */
5968a7b8
NC
13937 return bfd_mach_arm_unknown;
13938 }
13939}
13940
c178919b
NC
13941/* Set the right machine number. */
13942
13943static bfd_boolean
57e8b36a 13944elf32_arm_object_p (bfd *abfd)
c178919b 13945{
5a6c6817 13946 unsigned int mach;
57e8b36a 13947
5a6c6817 13948 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 13949
5968a7b8
NC
13950 if (mach == bfd_mach_arm_unknown)
13951 {
13952 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13953 mach = bfd_mach_arm_ep9312;
13954 else
13955 mach = bfd_arm_get_mach_from_attributes (abfd);
13956 }
c178919b 13957
5968a7b8 13958 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
13959 return TRUE;
13960}
13961
fc830a83 13962/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 13963
b34976b6 13964static bfd_boolean
57e8b36a 13965elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
13966{
13967 if (elf_flags_init (abfd)
13968 && elf_elfheader (abfd)->e_flags != flags)
13969 {
fc830a83
NC
13970 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13971 {
fd2ec330 13972 if (flags & EF_ARM_INTERWORK)
4eca0228 13973 _bfd_error_handler
90b6238f 13974 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
d003868e 13975 abfd);
fc830a83 13976 else
d003868e 13977 _bfd_error_handler
90b6238f 13978 (_("warning: clearing the interworking flag of %pB due to outside request"),
d003868e 13979 abfd);
fc830a83 13980 }
252b5132
RH
13981 }
13982 else
13983 {
13984 elf_elfheader (abfd)->e_flags = flags;
b34976b6 13985 elf_flags_init (abfd) = TRUE;
252b5132
RH
13986 }
13987
b34976b6 13988 return TRUE;
252b5132
RH
13989}
13990
fc830a83 13991/* Copy backend specific data from one object module to another. */
9b485d32 13992
b34976b6 13993static bfd_boolean
57e8b36a 13994elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
13995{
13996 flagword in_flags;
13997 flagword out_flags;
13998
0ffa91dd 13999 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 14000 return TRUE;
252b5132 14001
fc830a83 14002 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
14003 out_flags = elf_elfheader (obfd)->e_flags;
14004
fc830a83
NC
14005 if (elf_flags_init (obfd)
14006 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
14007 && in_flags != out_flags)
252b5132 14008 {
252b5132 14009 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 14010 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 14011 return FALSE;
252b5132
RH
14012
14013 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 14014 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 14015 return FALSE;
252b5132
RH
14016
14017 /* If the src and dest have different interworking flags
99059e56 14018 then turn off the interworking bit. */
fd2ec330 14019 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 14020 {
fd2ec330 14021 if (out_flags & EF_ARM_INTERWORK)
d003868e 14022 _bfd_error_handler
90b6238f 14023 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
d003868e 14024 obfd, ibfd);
252b5132 14025
fd2ec330 14026 in_flags &= ~EF_ARM_INTERWORK;
252b5132 14027 }
1006ba19
PB
14028
14029 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
14030 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
14031 in_flags &= ~EF_ARM_PIC;
252b5132
RH
14032 }
14033
14034 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 14035 elf_flags_init (obfd) = TRUE;
252b5132 14036
e2349352 14037 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
14038}
14039
14040/* Values for Tag_ABI_PCS_R9_use. */
14041enum
14042{
14043 AEABI_R9_V6,
14044 AEABI_R9_SB,
14045 AEABI_R9_TLS,
14046 AEABI_R9_unused
14047};
14048
14049/* Values for Tag_ABI_PCS_RW_data. */
14050enum
14051{
14052 AEABI_PCS_RW_data_absolute,
14053 AEABI_PCS_RW_data_PCrel,
14054 AEABI_PCS_RW_data_SBrel,
14055 AEABI_PCS_RW_data_unused
14056};
14057
14058/* Values for Tag_ABI_enum_size. */
14059enum
14060{
14061 AEABI_enum_unused,
14062 AEABI_enum_short,
14063 AEABI_enum_wide,
14064 AEABI_enum_forced_wide
14065};
14066
104d59d1
JM
14067/* Determine whether an object attribute tag takes an integer, a
14068 string or both. */
906e58ca 14069
104d59d1
JM
14070static int
14071elf32_arm_obj_attrs_arg_type (int tag)
14072{
14073 if (tag == Tag_compatibility)
3483fe2e 14074 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 14075 else if (tag == Tag_nodefaults)
3483fe2e
AS
14076 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14077 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14078 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 14079 else if (tag < 32)
3483fe2e 14080 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 14081 else
3483fe2e 14082 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
14083}
14084
5aa6ff7c
AS
14085/* The ABI defines that Tag_conformance should be emitted first, and that
14086 Tag_nodefaults should be second (if either is defined). This sets those
14087 two positions, and bumps up the position of all the remaining tags to
14088 compensate. */
14089static int
14090elf32_arm_obj_attrs_order (int num)
14091{
3de4a297 14092 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 14093 return Tag_conformance;
3de4a297 14094 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
14095 return Tag_nodefaults;
14096 if ((num - 2) < Tag_nodefaults)
14097 return num - 2;
14098 if ((num - 1) < Tag_conformance)
14099 return num - 1;
14100 return num;
14101}
14102
e8b36cd1
JM
14103/* Attribute numbers >=64 (mod 128) can be safely ignored. */
14104static bfd_boolean
14105elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14106{
14107 if ((tag & 127) < 64)
14108 {
14109 _bfd_error_handler
90b6238f 14110 (_("%pB: unknown mandatory EABI object attribute %d"),
e8b36cd1
JM
14111 abfd, tag);
14112 bfd_set_error (bfd_error_bad_value);
14113 return FALSE;
14114 }
14115 else
14116 {
14117 _bfd_error_handler
90b6238f 14118 (_("warning: %pB: unknown EABI object attribute %d"),
e8b36cd1
JM
14119 abfd, tag);
14120 return TRUE;
14121 }
14122}
14123
91e22acd
AS
14124/* Read the architecture from the Tag_also_compatible_with attribute, if any.
14125 Returns -1 if no architecture could be read. */
14126
14127static int
14128get_secondary_compatible_arch (bfd *abfd)
14129{
14130 obj_attribute *attr =
14131 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14132
14133 /* Note: the tag and its argument below are uleb128 values, though
14134 currently-defined values fit in one byte for each. */
14135 if (attr->s
14136 && attr->s[0] == Tag_CPU_arch
14137 && (attr->s[1] & 128) != 128
14138 && attr->s[2] == 0)
14139 return attr->s[1];
14140
14141 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14142 return -1;
14143}
14144
14145/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14146 The tag is removed if ARCH is -1. */
14147
8e79c3df 14148static void
91e22acd 14149set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 14150{
91e22acd
AS
14151 obj_attribute *attr =
14152 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 14153
91e22acd
AS
14154 if (arch == -1)
14155 {
14156 attr->s = NULL;
14157 return;
8e79c3df 14158 }
91e22acd
AS
14159
14160 /* Note: the tag and its argument below are uleb128 values, though
14161 currently-defined values fit in one byte for each. */
14162 if (!attr->s)
21d799b5 14163 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
14164 attr->s[0] = Tag_CPU_arch;
14165 attr->s[1] = arch;
14166 attr->s[2] = '\0';
8e79c3df
CM
14167}
14168
91e22acd
AS
14169/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14170 into account. */
14171
14172static int
14173tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14174 int newtag, int secondary_compat)
8e79c3df 14175{
91e22acd
AS
14176#define T(X) TAG_CPU_ARCH_##X
14177 int tagl, tagh, result;
14178 const int v6t2[] =
14179 {
14180 T(V6T2), /* PRE_V4. */
14181 T(V6T2), /* V4. */
14182 T(V6T2), /* V4T. */
14183 T(V6T2), /* V5T. */
14184 T(V6T2), /* V5TE. */
14185 T(V6T2), /* V5TEJ. */
14186 T(V6T2), /* V6. */
14187 T(V7), /* V6KZ. */
14188 T(V6T2) /* V6T2. */
14189 };
14190 const int v6k[] =
14191 {
14192 T(V6K), /* PRE_V4. */
14193 T(V6K), /* V4. */
14194 T(V6K), /* V4T. */
14195 T(V6K), /* V5T. */
14196 T(V6K), /* V5TE. */
14197 T(V6K), /* V5TEJ. */
14198 T(V6K), /* V6. */
14199 T(V6KZ), /* V6KZ. */
14200 T(V7), /* V6T2. */
14201 T(V6K) /* V6K. */
14202 };
14203 const int v7[] =
14204 {
14205 T(V7), /* PRE_V4. */
14206 T(V7), /* V4. */
14207 T(V7), /* V4T. */
14208 T(V7), /* V5T. */
14209 T(V7), /* V5TE. */
14210 T(V7), /* V5TEJ. */
14211 T(V7), /* V6. */
14212 T(V7), /* V6KZ. */
14213 T(V7), /* V6T2. */
14214 T(V7), /* V6K. */
14215 T(V7) /* V7. */
14216 };
14217 const int v6_m[] =
14218 {
07d6d2b8
AM
14219 -1, /* PRE_V4. */
14220 -1, /* V4. */
91e22acd
AS
14221 T(V6K), /* V4T. */
14222 T(V6K), /* V5T. */
14223 T(V6K), /* V5TE. */
14224 T(V6K), /* V5TEJ. */
14225 T(V6K), /* V6. */
14226 T(V6KZ), /* V6KZ. */
14227 T(V7), /* V6T2. */
14228 T(V6K), /* V6K. */
14229 T(V7), /* V7. */
14230 T(V6_M) /* V6_M. */
14231 };
14232 const int v6s_m[] =
14233 {
07d6d2b8
AM
14234 -1, /* PRE_V4. */
14235 -1, /* V4. */
91e22acd
AS
14236 T(V6K), /* V4T. */
14237 T(V6K), /* V5T. */
14238 T(V6K), /* V5TE. */
14239 T(V6K), /* V5TEJ. */
14240 T(V6K), /* V6. */
14241 T(V6KZ), /* V6KZ. */
14242 T(V7), /* V6T2. */
14243 T(V6K), /* V6K. */
14244 T(V7), /* V7. */
14245 T(V6S_M), /* V6_M. */
14246 T(V6S_M) /* V6S_M. */
14247 };
9e3c6df6
PB
14248 const int v7e_m[] =
14249 {
07d6d2b8
AM
14250 -1, /* PRE_V4. */
14251 -1, /* V4. */
9e3c6df6
PB
14252 T(V7E_M), /* V4T. */
14253 T(V7E_M), /* V5T. */
14254 T(V7E_M), /* V5TE. */
14255 T(V7E_M), /* V5TEJ. */
14256 T(V7E_M), /* V6. */
14257 T(V7E_M), /* V6KZ. */
14258 T(V7E_M), /* V6T2. */
14259 T(V7E_M), /* V6K. */
14260 T(V7E_M), /* V7. */
14261 T(V7E_M), /* V6_M. */
14262 T(V7E_M), /* V6S_M. */
14263 T(V7E_M) /* V7E_M. */
14264 };
bca38921
MGD
14265 const int v8[] =
14266 {
14267 T(V8), /* PRE_V4. */
14268 T(V8), /* V4. */
14269 T(V8), /* V4T. */
14270 T(V8), /* V5T. */
14271 T(V8), /* V5TE. */
14272 T(V8), /* V5TEJ. */
14273 T(V8), /* V6. */
14274 T(V8), /* V6KZ. */
14275 T(V8), /* V6T2. */
14276 T(V8), /* V6K. */
14277 T(V8), /* V7. */
14278 T(V8), /* V6_M. */
14279 T(V8), /* V6S_M. */
14280 T(V8), /* V7E_M. */
14281 T(V8) /* V8. */
14282 };
bff0500d
TP
14283 const int v8r[] =
14284 {
14285 T(V8R), /* PRE_V4. */
14286 T(V8R), /* V4. */
14287 T(V8R), /* V4T. */
14288 T(V8R), /* V5T. */
14289 T(V8R), /* V5TE. */
14290 T(V8R), /* V5TEJ. */
14291 T(V8R), /* V6. */
14292 T(V8R), /* V6KZ. */
14293 T(V8R), /* V6T2. */
14294 T(V8R), /* V6K. */
14295 T(V8R), /* V7. */
14296 T(V8R), /* V6_M. */
14297 T(V8R), /* V6S_M. */
14298 T(V8R), /* V7E_M. */
14299 T(V8), /* V8. */
14300 T(V8R), /* V8R. */
14301 };
2fd158eb
TP
14302 const int v8m_baseline[] =
14303 {
14304 -1, /* PRE_V4. */
14305 -1, /* V4. */
14306 -1, /* V4T. */
14307 -1, /* V5T. */
14308 -1, /* V5TE. */
14309 -1, /* V5TEJ. */
14310 -1, /* V6. */
14311 -1, /* V6KZ. */
14312 -1, /* V6T2. */
14313 -1, /* V6K. */
14314 -1, /* V7. */
14315 T(V8M_BASE), /* V6_M. */
14316 T(V8M_BASE), /* V6S_M. */
14317 -1, /* V7E_M. */
14318 -1, /* V8. */
bff0500d 14319 -1, /* V8R. */
2fd158eb
TP
14320 T(V8M_BASE) /* V8-M BASELINE. */
14321 };
14322 const int v8m_mainline[] =
14323 {
14324 -1, /* PRE_V4. */
14325 -1, /* V4. */
14326 -1, /* V4T. */
14327 -1, /* V5T. */
14328 -1, /* V5TE. */
14329 -1, /* V5TEJ. */
14330 -1, /* V6. */
14331 -1, /* V6KZ. */
14332 -1, /* V6T2. */
14333 -1, /* V6K. */
14334 T(V8M_MAIN), /* V7. */
14335 T(V8M_MAIN), /* V6_M. */
14336 T(V8M_MAIN), /* V6S_M. */
14337 T(V8M_MAIN), /* V7E_M. */
14338 -1, /* V8. */
bff0500d 14339 -1, /* V8R. */
2fd158eb
TP
14340 T(V8M_MAIN), /* V8-M BASELINE. */
14341 T(V8M_MAIN) /* V8-M MAINLINE. */
14342 };
031254f2
AV
14343 const int v8_1m_mainline[] =
14344 {
14345 -1, /* PRE_V4. */
14346 -1, /* V4. */
14347 -1, /* V4T. */
14348 -1, /* V5T. */
14349 -1, /* V5TE. */
14350 -1, /* V5TEJ. */
14351 -1, /* V6. */
14352 -1, /* V6KZ. */
14353 -1, /* V6T2. */
14354 -1, /* V6K. */
14355 T(V8_1M_MAIN), /* V7. */
14356 T(V8_1M_MAIN), /* V6_M. */
14357 T(V8_1M_MAIN), /* V6S_M. */
14358 T(V8_1M_MAIN), /* V7E_M. */
14359 -1, /* V8. */
14360 -1, /* V8R. */
14361 T(V8_1M_MAIN), /* V8-M BASELINE. */
14362 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14363 -1, /* Unused (18). */
14364 -1, /* Unused (19). */
14365 -1, /* Unused (20). */
14366 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14367 };
91e22acd
AS
14368 const int v4t_plus_v6_m[] =
14369 {
14370 -1, /* PRE_V4. */
14371 -1, /* V4. */
14372 T(V4T), /* V4T. */
14373 T(V5T), /* V5T. */
14374 T(V5TE), /* V5TE. */
14375 T(V5TEJ), /* V5TEJ. */
14376 T(V6), /* V6. */
14377 T(V6KZ), /* V6KZ. */
14378 T(V6T2), /* V6T2. */
14379 T(V6K), /* V6K. */
14380 T(V7), /* V7. */
14381 T(V6_M), /* V6_M. */
14382 T(V6S_M), /* V6S_M. */
9e3c6df6 14383 T(V7E_M), /* V7E_M. */
bca38921 14384 T(V8), /* V8. */
bff0500d 14385 -1, /* V8R. */
2fd158eb
TP
14386 T(V8M_BASE), /* V8-M BASELINE. */
14387 T(V8M_MAIN), /* V8-M MAINLINE. */
031254f2
AV
14388 -1, /* Unused (18). */
14389 -1, /* Unused (19). */
14390 -1, /* Unused (20). */
14391 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
91e22acd
AS
14392 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14393 };
14394 const int *comb[] =
14395 {
14396 v6t2,
14397 v6k,
14398 v7,
14399 v6_m,
14400 v6s_m,
9e3c6df6 14401 v7e_m,
bca38921 14402 v8,
bff0500d 14403 v8r,
2fd158eb
TP
14404 v8m_baseline,
14405 v8m_mainline,
031254f2
AV
14406 NULL,
14407 NULL,
14408 NULL,
14409 v8_1m_mainline,
91e22acd
AS
14410 /* Pseudo-architecture. */
14411 v4t_plus_v6_m
14412 };
14413
14414 /* Check we've not got a higher architecture than we know about. */
14415
9e3c6df6 14416 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 14417 {
90b6238f 14418 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
91e22acd
AS
14419 return -1;
14420 }
14421
14422 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14423
14424 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14425 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14426 oldtag = T(V4T_PLUS_V6_M);
14427
14428 /* And override the new tag if we have a Tag_also_compatible_with on the
14429 input. */
14430
14431 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14432 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14433 newtag = T(V4T_PLUS_V6_M);
14434
14435 tagl = (oldtag < newtag) ? oldtag : newtag;
14436 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14437
14438 /* Architectures before V6KZ add features monotonically. */
14439 if (tagh <= TAG_CPU_ARCH_V6KZ)
14440 return result;
14441
4ed7ed8d 14442 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
91e22acd
AS
14443
14444 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14445 as the canonical version. */
14446 if (result == T(V4T_PLUS_V6_M))
14447 {
14448 result = T(V4T);
14449 *secondary_compat_out = T(V6_M);
14450 }
14451 else
14452 *secondary_compat_out = -1;
14453
14454 if (result == -1)
14455 {
90b6238f 14456 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
91e22acd
AS
14457 ibfd, oldtag, newtag);
14458 return -1;
14459 }
14460
14461 return result;
14462#undef T
8e79c3df
CM
14463}
14464
ac56ee8f
MGD
14465/* Query attributes object to see if integer divide instructions may be
14466 present in an object. */
14467static bfd_boolean
14468elf32_arm_attributes_accept_div (const obj_attribute *attr)
14469{
14470 int arch = attr[Tag_CPU_arch].i;
14471 int profile = attr[Tag_CPU_arch_profile].i;
14472
14473 switch (attr[Tag_DIV_use].i)
14474 {
14475 case 0:
14476 /* Integer divide allowed if instruction contained in archetecture. */
14477 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14478 return TRUE;
14479 else if (arch >= TAG_CPU_ARCH_V7E_M)
14480 return TRUE;
14481 else
14482 return FALSE;
14483
14484 case 1:
14485 /* Integer divide explicitly prohibited. */
14486 return FALSE;
14487
14488 default:
14489 /* Unrecognised case - treat as allowing divide everywhere. */
14490 case 2:
14491 /* Integer divide allowed in ARM state. */
14492 return TRUE;
14493 }
14494}
14495
14496/* Query attributes object to see if integer divide instructions are
14497 forbidden to be in the object. This is not the inverse of
14498 elf32_arm_attributes_accept_div. */
14499static bfd_boolean
14500elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14501{
14502 return attr[Tag_DIV_use].i == 1;
14503}
14504
ee065d83
PB
14505/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14506 are conflicting attributes. */
906e58ca 14507
ee065d83 14508static bfd_boolean
50e03d47 14509elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
ee065d83 14510{
50e03d47 14511 bfd *obfd = info->output_bfd;
104d59d1
JM
14512 obj_attribute *in_attr;
14513 obj_attribute *out_attr;
ee065d83
PB
14514 /* Some tags have 0 = don't care, 1 = strong requirement,
14515 2 = weak requirement. */
91e22acd 14516 static const int order_021[3] = {0, 2, 1};
ee065d83 14517 int i;
91e22acd 14518 bfd_boolean result = TRUE;
9274e9de 14519 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 14520
3e6b1042
DJ
14521 /* Skip the linker stubs file. This preserves previous behavior
14522 of accepting unknown attributes in the first input file - but
14523 is that a bug? */
14524 if (ibfd->flags & BFD_LINKER_CREATED)
14525 return TRUE;
14526
9274e9de
TG
14527 /* Skip any input that hasn't attribute section.
14528 This enables to link object files without attribute section with
14529 any others. */
14530 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14531 return TRUE;
14532
104d59d1 14533 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
14534 {
14535 /* This is the first object. Copy the attributes. */
104d59d1 14536 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 14537
cd21e546
MGD
14538 out_attr = elf_known_obj_attributes_proc (obfd);
14539
004ae526
PB
14540 /* Use the Tag_null value to indicate the attributes have been
14541 initialized. */
cd21e546 14542 out_attr[0].i = 1;
004ae526 14543
cd21e546
MGD
14544 /* We do not output objects with Tag_MPextension_use_legacy - we move
14545 the attribute's value to Tag_MPextension_use. */
14546 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14547 {
14548 if (out_attr[Tag_MPextension_use].i != 0
14549 && out_attr[Tag_MPextension_use_legacy].i
99059e56 14550 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
14551 {
14552 _bfd_error_handler
871b3ab2 14553 (_("Error: %pB has both the current and legacy "
cd21e546
MGD
14554 "Tag_MPextension_use attributes"), ibfd);
14555 result = FALSE;
14556 }
14557
14558 out_attr[Tag_MPextension_use] =
14559 out_attr[Tag_MPextension_use_legacy];
14560 out_attr[Tag_MPextension_use_legacy].type = 0;
14561 out_attr[Tag_MPextension_use_legacy].i = 0;
14562 }
14563
14564 return result;
ee065d83
PB
14565 }
14566
104d59d1
JM
14567 in_attr = elf_known_obj_attributes_proc (ibfd);
14568 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
14569 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14570 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14571 {
5c294fee
TG
14572 /* Ignore mismatches if the object doesn't use floating point or is
14573 floating point ABI independent. */
14574 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14575 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14576 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 14577 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
14578 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14579 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
14580 {
14581 _bfd_error_handler
871b3ab2 14582 (_("error: %pB uses VFP register arguments, %pB does not"),
deddc40b
NS
14583 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14584 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 14585 result = FALSE;
ee065d83
PB
14586 }
14587 }
14588
3de4a297 14589 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
14590 {
14591 /* Merge this attribute with existing attributes. */
14592 switch (i)
14593 {
14594 case Tag_CPU_raw_name:
14595 case Tag_CPU_name:
6a631e86 14596 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
14597 break;
14598
14599 case Tag_ABI_optimization_goals:
14600 case Tag_ABI_FP_optimization_goals:
14601 /* Use the first value seen. */
14602 break;
14603
14604 case Tag_CPU_arch:
91e22acd
AS
14605 {
14606 int secondary_compat = -1, secondary_compat_out = -1;
14607 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
14608 int arch_attr;
14609 static const char *name_table[] =
14610 {
91e22acd
AS
14611 /* These aren't real CPU names, but we can't guess
14612 that from the architecture version alone. */
14613 "Pre v4",
14614 "ARM v4",
14615 "ARM v4T",
14616 "ARM v5T",
14617 "ARM v5TE",
14618 "ARM v5TEJ",
14619 "ARM v6",
14620 "ARM v6KZ",
14621 "ARM v6T2",
14622 "ARM v6K",
14623 "ARM v7",
14624 "ARM v6-M",
bca38921 14625 "ARM v6S-M",
2fd158eb
TP
14626 "ARM v8",
14627 "",
14628 "ARM v8-M.baseline",
14629 "ARM v8-M.mainline",
91e22acd
AS
14630 };
14631
14632 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14633 secondary_compat = get_secondary_compatible_arch (ibfd);
14634 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
14635 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14636 &secondary_compat_out,
14637 in_attr[i].i,
14638 secondary_compat);
14639
14640 /* Return with error if failed to merge. */
14641 if (arch_attr == -1)
14642 return FALSE;
14643
14644 out_attr[i].i = arch_attr;
14645
91e22acd
AS
14646 set_secondary_compatible_arch (obfd, secondary_compat_out);
14647
14648 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14649 if (out_attr[i].i == saved_out_attr)
14650 ; /* Leave the names alone. */
14651 else if (out_attr[i].i == in_attr[i].i)
14652 {
14653 /* The output architecture has been changed to match the
14654 input architecture. Use the input names. */
14655 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14656 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14657 : NULL;
14658 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14659 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14660 : NULL;
14661 }
14662 else
14663 {
14664 out_attr[Tag_CPU_name].s = NULL;
14665 out_attr[Tag_CPU_raw_name].s = NULL;
14666 }
14667
14668 /* If we still don't have a value for Tag_CPU_name,
14669 make one up now. Tag_CPU_raw_name remains blank. */
14670 if (out_attr[Tag_CPU_name].s == NULL
14671 && out_attr[i].i < ARRAY_SIZE (name_table))
14672 out_attr[Tag_CPU_name].s =
14673 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14674 }
14675 break;
14676
ee065d83
PB
14677 case Tag_ARM_ISA_use:
14678 case Tag_THUMB_ISA_use:
ee065d83 14679 case Tag_WMMX_arch:
91e22acd
AS
14680 case Tag_Advanced_SIMD_arch:
14681 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 14682 case Tag_ABI_FP_rounding:
ee065d83
PB
14683 case Tag_ABI_FP_exceptions:
14684 case Tag_ABI_FP_user_exceptions:
14685 case Tag_ABI_FP_number_model:
75375b3e 14686 case Tag_FP_HP_extension:
91e22acd
AS
14687 case Tag_CPU_unaligned_access:
14688 case Tag_T2EE_use:
91e22acd 14689 case Tag_MPextension_use:
a7ad558c 14690 case Tag_MVE_arch:
ee065d83
PB
14691 /* Use the largest value specified. */
14692 if (in_attr[i].i > out_attr[i].i)
14693 out_attr[i].i = in_attr[i].i;
14694 break;
14695
75375b3e 14696 case Tag_ABI_align_preserved:
91e22acd
AS
14697 case Tag_ABI_PCS_RO_data:
14698 /* Use the smallest value specified. */
14699 if (in_attr[i].i < out_attr[i].i)
14700 out_attr[i].i = in_attr[i].i;
14701 break;
14702
75375b3e 14703 case Tag_ABI_align_needed:
91e22acd 14704 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
14705 && (in_attr[Tag_ABI_align_preserved].i == 0
14706 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 14707 {
91e22acd
AS
14708 /* This error message should be enabled once all non-conformant
14709 binaries in the toolchain have had the attributes set
14710 properly.
ee065d83 14711 _bfd_error_handler
871b3ab2 14712 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
91e22acd
AS
14713 obfd, ibfd);
14714 result = FALSE; */
ee065d83 14715 }
91e22acd
AS
14716 /* Fall through. */
14717 case Tag_ABI_FP_denormal:
14718 case Tag_ABI_PCS_GOT_use:
14719 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14720 value if greater than 2 (for future-proofing). */
14721 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14722 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14723 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
14724 out_attr[i].i = in_attr[i].i;
14725 break;
91e22acd 14726
75375b3e
MGD
14727 case Tag_Virtualization_use:
14728 /* The virtualization tag effectively stores two bits of
14729 information: the intended use of TrustZone (in bit 0), and the
14730 intended use of Virtualization (in bit 1). */
14731 if (out_attr[i].i == 0)
14732 out_attr[i].i = in_attr[i].i;
14733 else if (in_attr[i].i != 0
14734 && in_attr[i].i != out_attr[i].i)
14735 {
14736 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14737 out_attr[i].i = 3;
14738 else
14739 {
14740 _bfd_error_handler
871b3ab2
AM
14741 (_("error: %pB: unable to merge virtualization attributes "
14742 "with %pB"),
75375b3e
MGD
14743 obfd, ibfd);
14744 result = FALSE;
14745 }
14746 }
14747 break;
91e22acd
AS
14748
14749 case Tag_CPU_arch_profile:
14750 if (out_attr[i].i != in_attr[i].i)
14751 {
14752 /* 0 will merge with anything.
14753 'A' and 'S' merge to 'A'.
14754 'R' and 'S' merge to 'R'.
99059e56 14755 'M' and 'A|R|S' is an error. */
91e22acd
AS
14756 if (out_attr[i].i == 0
14757 || (out_attr[i].i == 'S'
14758 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14759 out_attr[i].i = in_attr[i].i;
14760 else if (in_attr[i].i == 0
14761 || (in_attr[i].i == 'S'
14762 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 14763 ; /* Do nothing. */
91e22acd
AS
14764 else
14765 {
14766 _bfd_error_handler
90b6238f 14767 (_("error: %pB: conflicting architecture profiles %c/%c"),
91e22acd
AS
14768 ibfd,
14769 in_attr[i].i ? in_attr[i].i : '0',
14770 out_attr[i].i ? out_attr[i].i : '0');
14771 result = FALSE;
14772 }
14773 }
14774 break;
15afaa63
TP
14775
14776 case Tag_DSP_extension:
14777 /* No need to change output value if any of:
14778 - pre (<=) ARMv5T input architecture (do not have DSP)
14779 - M input profile not ARMv7E-M and do not have DSP. */
14780 if (in_attr[Tag_CPU_arch].i <= 3
14781 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14782 && in_attr[Tag_CPU_arch].i != 13
14783 && in_attr[i].i == 0))
14784 ; /* Do nothing. */
14785 /* Output value should be 0 if DSP part of architecture, ie.
14786 - post (>=) ARMv5te architecture output
14787 - A, R or S profile output or ARMv7E-M output architecture. */
14788 else if (out_attr[Tag_CPU_arch].i >= 4
14789 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14790 || out_attr[Tag_CPU_arch_profile].i == 'R'
14791 || out_attr[Tag_CPU_arch_profile].i == 'S'
14792 || out_attr[Tag_CPU_arch].i == 13))
14793 out_attr[i].i = 0;
14794 /* Otherwise, DSP instructions are added and not part of output
14795 architecture. */
14796 else
14797 out_attr[i].i = 1;
14798 break;
14799
75375b3e 14800 case Tag_FP_arch:
62f3b8c8 14801 {
4547cb56
NC
14802 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14803 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14804 when it's 0. It might mean absence of FP hardware if
99654aaf 14805 Tag_FP_arch is zero. */
4547cb56 14806
a715796b 14807#define VFP_VERSION_COUNT 9
62f3b8c8
PB
14808 static const struct
14809 {
14810 int ver;
14811 int regs;
bca38921 14812 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
14813 {
14814 {0, 0},
14815 {1, 16},
14816 {2, 16},
14817 {3, 32},
14818 {3, 16},
14819 {4, 32},
bca38921 14820 {4, 16},
a715796b
TG
14821 {8, 32},
14822 {8, 16}
62f3b8c8
PB
14823 };
14824 int ver;
14825 int regs;
14826 int newval;
14827
4547cb56
NC
14828 /* If the output has no requirement about FP hardware,
14829 follow the requirement of the input. */
14830 if (out_attr[i].i == 0)
14831 {
4ec192e6
RE
14832 /* This assert is still reasonable, we shouldn't
14833 produce the suspicious build attribute
14834 combination (See below for in_attr). */
4547cb56
NC
14835 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14836 out_attr[i].i = in_attr[i].i;
14837 out_attr[Tag_ABI_HardFP_use].i
14838 = in_attr[Tag_ABI_HardFP_use].i;
14839 break;
14840 }
14841 /* If the input has no requirement about FP hardware, do
14842 nothing. */
14843 else if (in_attr[i].i == 0)
14844 {
4ec192e6
RE
14845 /* We used to assert that Tag_ABI_HardFP_use was
14846 zero here, but we should never assert when
14847 consuming an object file that has suspicious
14848 build attributes. The single precision variant
14849 of 'no FP architecture' is still 'no FP
14850 architecture', so we just ignore the tag in this
14851 case. */
4547cb56
NC
14852 break;
14853 }
14854
14855 /* Both the input and the output have nonzero Tag_FP_arch.
99654aaf 14856 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
4547cb56
NC
14857
14858 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14859 do nothing. */
14860 if (in_attr[Tag_ABI_HardFP_use].i == 0
14861 && out_attr[Tag_ABI_HardFP_use].i == 0)
14862 ;
14863 /* If the input and the output have different Tag_ABI_HardFP_use,
99654aaf 14864 the combination of them is 0 (implied by Tag_FP_arch). */
4547cb56
NC
14865 else if (in_attr[Tag_ABI_HardFP_use].i
14866 != out_attr[Tag_ABI_HardFP_use].i)
99654aaf 14867 out_attr[Tag_ABI_HardFP_use].i = 0;
4547cb56
NC
14868
14869 /* Now we can handle Tag_FP_arch. */
14870
bca38921
MGD
14871 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14872 pick the biggest. */
14873 if (in_attr[i].i >= VFP_VERSION_COUNT
14874 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
14875 {
14876 out_attr[i] = in_attr[i];
14877 break;
14878 }
14879 /* The output uses the superset of input features
14880 (ISA version) and registers. */
14881 ver = vfp_versions[in_attr[i].i].ver;
14882 if (ver < vfp_versions[out_attr[i].i].ver)
14883 ver = vfp_versions[out_attr[i].i].ver;
14884 regs = vfp_versions[in_attr[i].i].regs;
14885 if (regs < vfp_versions[out_attr[i].i].regs)
14886 regs = vfp_versions[out_attr[i].i].regs;
14887 /* This assumes all possible supersets are also a valid
99059e56 14888 options. */
bca38921 14889 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
14890 {
14891 if (regs == vfp_versions[newval].regs
14892 && ver == vfp_versions[newval].ver)
14893 break;
14894 }
14895 out_attr[i].i = newval;
14896 }
b1cc4aeb 14897 break;
ee065d83
PB
14898 case Tag_PCS_config:
14899 if (out_attr[i].i == 0)
14900 out_attr[i].i = in_attr[i].i;
b6009aca 14901 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
14902 {
14903 /* It's sometimes ok to mix different configs, so this is only
99059e56 14904 a warning. */
ee065d83 14905 _bfd_error_handler
90b6238f 14906 (_("warning: %pB: conflicting platform configuration"), ibfd);
ee065d83
PB
14907 }
14908 break;
14909 case Tag_ABI_PCS_R9_use:
004ae526
PB
14910 if (in_attr[i].i != out_attr[i].i
14911 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
14912 && in_attr[i].i != AEABI_R9_unused)
14913 {
14914 _bfd_error_handler
90b6238f 14915 (_("error: %pB: conflicting use of R9"), ibfd);
91e22acd 14916 result = FALSE;
ee065d83
PB
14917 }
14918 if (out_attr[i].i == AEABI_R9_unused)
14919 out_attr[i].i = in_attr[i].i;
14920 break;
14921 case Tag_ABI_PCS_RW_data:
14922 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14923 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14924 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14925 {
14926 _bfd_error_handler
871b3ab2 14927 (_("error: %pB: SB relative addressing conflicts with use of R9"),
ee065d83 14928 ibfd);
91e22acd 14929 result = FALSE;
ee065d83
PB
14930 }
14931 /* Use the smallest value specified. */
14932 if (in_attr[i].i < out_attr[i].i)
14933 out_attr[i].i = in_attr[i].i;
14934 break;
ee065d83 14935 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
14936 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14937 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
14938 {
14939 _bfd_error_handler
871b3ab2 14940 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
a9dc9481 14941 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 14942 }
a9dc9481 14943 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
14944 out_attr[i].i = in_attr[i].i;
14945 break;
ee065d83
PB
14946 case Tag_ABI_enum_size:
14947 if (in_attr[i].i != AEABI_enum_unused)
14948 {
14949 if (out_attr[i].i == AEABI_enum_unused
14950 || out_attr[i].i == AEABI_enum_forced_wide)
14951 {
14952 /* The existing object is compatible with anything.
14953 Use whatever requirements the new object has. */
14954 out_attr[i].i = in_attr[i].i;
14955 }
14956 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 14957 && out_attr[i].i != in_attr[i].i
0ffa91dd 14958 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 14959 {
91e22acd 14960 static const char *aeabi_enum_names[] =
bf21ed78 14961 { "", "variable-size", "32-bit", "" };
91e22acd
AS
14962 const char *in_name =
14963 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14964 ? aeabi_enum_names[in_attr[i].i]
14965 : "<unknown>";
14966 const char *out_name =
14967 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14968 ? aeabi_enum_names[out_attr[i].i]
14969 : "<unknown>";
ee065d83 14970 _bfd_error_handler
871b3ab2 14971 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 14972 ibfd, in_name, out_name);
ee065d83
PB
14973 }
14974 }
14975 break;
14976 case Tag_ABI_VFP_args:
14977 /* Aready done. */
14978 break;
14979 case Tag_ABI_WMMX_args:
14980 if (in_attr[i].i != out_attr[i].i)
14981 {
14982 _bfd_error_handler
871b3ab2 14983 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
ee065d83 14984 ibfd, obfd);
91e22acd 14985 result = FALSE;
ee065d83
PB
14986 }
14987 break;
7b86a9fa
AS
14988 case Tag_compatibility:
14989 /* Merged in target-independent code. */
14990 break;
91e22acd 14991 case Tag_ABI_HardFP_use:
4547cb56 14992 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
14993 break;
14994 case Tag_ABI_FP_16bit_format:
14995 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14996 {
14997 if (in_attr[i].i != out_attr[i].i)
14998 {
14999 _bfd_error_handler
871b3ab2 15000 (_("error: fp16 format mismatch between %pB and %pB"),
91e22acd
AS
15001 ibfd, obfd);
15002 result = FALSE;
15003 }
15004 }
15005 if (in_attr[i].i != 0)
15006 out_attr[i].i = in_attr[i].i;
15007 break;
7b86a9fa 15008
cd21e546 15009 case Tag_DIV_use:
ac56ee8f
MGD
15010 /* A value of zero on input means that the divide instruction may
15011 be used if available in the base architecture as specified via
15012 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15013 the user did not want divide instructions. A value of 2
15014 explicitly means that divide instructions were allowed in ARM
15015 and Thumb state. */
15016 if (in_attr[i].i == out_attr[i].i)
15017 /* Do nothing. */ ;
15018 else if (elf32_arm_attributes_forbid_div (in_attr)
15019 && !elf32_arm_attributes_accept_div (out_attr))
15020 out_attr[i].i = 1;
15021 else if (elf32_arm_attributes_forbid_div (out_attr)
15022 && elf32_arm_attributes_accept_div (in_attr))
15023 out_attr[i].i = in_attr[i].i;
15024 else if (in_attr[i].i == 2)
15025 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
15026 break;
15027
15028 case Tag_MPextension_use_legacy:
15029 /* We don't output objects with Tag_MPextension_use_legacy - we
15030 move the value to Tag_MPextension_use. */
15031 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15032 {
15033 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15034 {
15035 _bfd_error_handler
871b3ab2 15036 (_("%pB has both the current and legacy "
b38cadfb 15037 "Tag_MPextension_use attributes"),
cd21e546
MGD
15038 ibfd);
15039 result = FALSE;
15040 }
15041 }
15042
15043 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15044 out_attr[Tag_MPextension_use] = in_attr[i];
15045
15046 break;
15047
91e22acd 15048 case Tag_nodefaults:
2d0bb761
AS
15049 /* This tag is set if it exists, but the value is unused (and is
15050 typically zero). We don't actually need to do anything here -
15051 the merge happens automatically when the type flags are merged
15052 below. */
91e22acd
AS
15053 break;
15054 case Tag_also_compatible_with:
15055 /* Already done in Tag_CPU_arch. */
15056 break;
15057 case Tag_conformance:
15058 /* Keep the attribute if it matches. Throw it away otherwise.
15059 No attribute means no claim to conform. */
15060 if (!in_attr[i].s || !out_attr[i].s
15061 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15062 out_attr[i].s = NULL;
15063 break;
3cfad14c 15064
91e22acd 15065 default:
e8b36cd1
JM
15066 result
15067 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
15068 }
15069
15070 /* If out_attr was copied from in_attr then it won't have a type yet. */
15071 if (in_attr[i].type && !out_attr[i].type)
15072 out_attr[i].type = in_attr[i].type;
ee065d83
PB
15073 }
15074
104d59d1 15075 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15076 if (!_bfd_elf_merge_object_attributes (ibfd, info))
5488d830 15077 return FALSE;
ee065d83 15078
104d59d1 15079 /* Check for any attributes not known on ARM. */
e8b36cd1 15080 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 15081
91e22acd 15082 return result;
252b5132
RH
15083}
15084
3a4a14e9
PB
15085
15086/* Return TRUE if the two EABI versions are incompatible. */
15087
15088static bfd_boolean
15089elf32_arm_versions_compatible (unsigned iver, unsigned over)
15090{
15091 /* v4 and v5 are the same spec before and after it was released,
15092 so allow mixing them. */
15093 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15094 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15095 return TRUE;
15096
15097 return (iver == over);
15098}
15099
252b5132
RH
15100/* Merge backend specific data from an object file to the output
15101 object file when linking. */
9b485d32 15102
b34976b6 15103static bfd_boolean
50e03d47 15104elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
252b5132 15105
9b485d32
NC
15106/* Display the flags field. */
15107
b34976b6 15108static bfd_boolean
57e8b36a 15109elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 15110{
fc830a83
NC
15111 FILE * file = (FILE *) ptr;
15112 unsigned long flags;
252b5132
RH
15113
15114 BFD_ASSERT (abfd != NULL && ptr != NULL);
15115
15116 /* Print normal ELF private data. */
15117 _bfd_elf_print_private_bfd_data (abfd, ptr);
15118
fc830a83 15119 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
15120 /* Ignore init flag - it may not be set, despite the flags field
15121 containing valid data. */
252b5132 15122
9b485d32 15123 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 15124
fc830a83
NC
15125 switch (EF_ARM_EABI_VERSION (flags))
15126 {
15127 case EF_ARM_EABI_UNKNOWN:
4cc11e76 15128 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
15129 official ARM ELF extended ABI. Hence they are only decoded if
15130 the EABI version is not set. */
fd2ec330 15131 if (flags & EF_ARM_INTERWORK)
9b485d32 15132 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 15133
fd2ec330 15134 if (flags & EF_ARM_APCS_26)
6c571f00 15135 fprintf (file, " [APCS-26]");
fc830a83 15136 else
6c571f00 15137 fprintf (file, " [APCS-32]");
9a5aca8c 15138
96a846ea
RE
15139 if (flags & EF_ARM_VFP_FLOAT)
15140 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
15141 else if (flags & EF_ARM_MAVERICK_FLOAT)
15142 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
15143 else
15144 fprintf (file, _(" [FPA float format]"));
15145
fd2ec330 15146 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 15147 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 15148
fd2ec330 15149 if (flags & EF_ARM_PIC)
9b485d32 15150 fprintf (file, _(" [position independent]"));
fc830a83 15151
fd2ec330 15152 if (flags & EF_ARM_NEW_ABI)
9b485d32 15153 fprintf (file, _(" [new ABI]"));
9a5aca8c 15154
fd2ec330 15155 if (flags & EF_ARM_OLD_ABI)
9b485d32 15156 fprintf (file, _(" [old ABI]"));
9a5aca8c 15157
fd2ec330 15158 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 15159 fprintf (file, _(" [software FP]"));
9a5aca8c 15160
96a846ea
RE
15161 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15162 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
15163 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15164 | EF_ARM_MAVERICK_FLOAT);
fc830a83 15165 break;
9a5aca8c 15166
fc830a83 15167 case EF_ARM_EABI_VER1:
9b485d32 15168 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 15169
fc830a83 15170 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 15171 fprintf (file, _(" [sorted symbol table]"));
fc830a83 15172 else
9b485d32 15173 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 15174
fc830a83
NC
15175 flags &= ~ EF_ARM_SYMSARESORTED;
15176 break;
9a5aca8c 15177
fd2ec330
PB
15178 case EF_ARM_EABI_VER2:
15179 fprintf (file, _(" [Version2 EABI]"));
15180
15181 if (flags & EF_ARM_SYMSARESORTED)
15182 fprintf (file, _(" [sorted symbol table]"));
15183 else
15184 fprintf (file, _(" [unsorted symbol table]"));
15185
15186 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15187 fprintf (file, _(" [dynamic symbols use segment index]"));
15188
15189 if (flags & EF_ARM_MAPSYMSFIRST)
15190 fprintf (file, _(" [mapping symbols precede others]"));
15191
99e4ae17 15192 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
15193 | EF_ARM_MAPSYMSFIRST);
15194 break;
15195
d507cf36
PB
15196 case EF_ARM_EABI_VER3:
15197 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
15198 break;
15199
15200 case EF_ARM_EABI_VER4:
15201 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 15202 goto eabi;
d507cf36 15203
3a4a14e9
PB
15204 case EF_ARM_EABI_VER5:
15205 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
15206
15207 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15208 fprintf (file, _(" [soft-float ABI]"));
15209
15210 if (flags & EF_ARM_ABI_FLOAT_HARD)
15211 fprintf (file, _(" [hard-float ABI]"));
15212
15213 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15214
3a4a14e9 15215 eabi:
d507cf36
PB
15216 if (flags & EF_ARM_BE8)
15217 fprintf (file, _(" [BE8]"));
15218
15219 if (flags & EF_ARM_LE8)
15220 fprintf (file, _(" [LE8]"));
15221
15222 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15223 break;
15224
fc830a83 15225 default:
9b485d32 15226 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
15227 break;
15228 }
252b5132 15229
fc830a83 15230 flags &= ~ EF_ARM_EABIMASK;
252b5132 15231
fc830a83 15232 if (flags & EF_ARM_RELEXEC)
9b485d32 15233 fprintf (file, _(" [relocatable executable]"));
252b5132 15234
18a20338
CL
15235 if (flags & EF_ARM_PIC)
15236 fprintf (file, _(" [position independent]"));
15237
15238 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15239 fprintf (file, _(" [FDPIC ABI supplement]"));
15240
15241 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
fc830a83
NC
15242
15243 if (flags)
9b485d32 15244 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 15245
252b5132
RH
15246 fputc ('\n', file);
15247
b34976b6 15248 return TRUE;
252b5132
RH
15249}
15250
15251static int
57e8b36a 15252elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 15253{
2f0ca46a
NC
15254 switch (ELF_ST_TYPE (elf_sym->st_info))
15255 {
15256 case STT_ARM_TFUNC:
15257 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 15258
2f0ca46a
NC
15259 case STT_ARM_16BIT:
15260 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15261 This allows us to distinguish between data used by Thumb instructions
15262 and non-data (which is probably code) inside Thumb regions of an
15263 executable. */
1a0eb693 15264 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
15265 return ELF_ST_TYPE (elf_sym->st_info);
15266 break;
9a5aca8c 15267
ce855c42
NC
15268 default:
15269 break;
2f0ca46a
NC
15270 }
15271
15272 return type;
252b5132 15273}
f21f3fe0 15274
252b5132 15275static asection *
07adf181
AM
15276elf32_arm_gc_mark_hook (asection *sec,
15277 struct bfd_link_info *info,
15278 Elf_Internal_Rela *rel,
15279 struct elf_link_hash_entry *h,
15280 Elf_Internal_Sym *sym)
252b5132
RH
15281{
15282 if (h != NULL)
07adf181 15283 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
15284 {
15285 case R_ARM_GNU_VTINHERIT:
15286 case R_ARM_GNU_VTENTRY:
07adf181
AM
15287 return NULL;
15288 }
9ad5cbcf 15289
07adf181 15290 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
15291}
15292
780a67af
NC
15293/* Look through the relocs for a section during the first phase. */
15294
b34976b6 15295static bfd_boolean
57e8b36a
NC
15296elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15297 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 15298{
b34976b6
AM
15299 Elf_Internal_Shdr *symtab_hdr;
15300 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
15301 const Elf_Internal_Rela *rel;
15302 const Elf_Internal_Rela *rel_end;
15303 bfd *dynobj;
5e681ec4 15304 asection *sreloc;
5e681ec4 15305 struct elf32_arm_link_hash_table *htab;
f6e32f6d
RS
15306 bfd_boolean call_reloc_p;
15307 bfd_boolean may_become_dynamic_p;
15308 bfd_boolean may_need_local_target_p;
ce98a316 15309 unsigned long nsyms;
9a5aca8c 15310
0e1862bb 15311 if (bfd_link_relocatable (info))
b34976b6 15312 return TRUE;
9a5aca8c 15313
0ffa91dd
NC
15314 BFD_ASSERT (is_arm_elf (abfd));
15315
5e681ec4 15316 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
15317 if (htab == NULL)
15318 return FALSE;
15319
5e681ec4 15320 sreloc = NULL;
9a5aca8c 15321
67687978
PB
15322 /* Create dynamic sections for relocatable executables so that we can
15323 copy relocations. */
15324 if (htab->root.is_relocatable_executable
15325 && ! htab->root.dynamic_sections_created)
15326 {
15327 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15328 return FALSE;
15329 }
15330
cbc704f3
RS
15331 if (htab->root.dynobj == NULL)
15332 htab->root.dynobj = abfd;
34e77a92
RS
15333 if (!create_ifunc_sections (info))
15334 return FALSE;
cbc704f3
RS
15335
15336 dynobj = htab->root.dynobj;
15337
0ffa91dd 15338 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 15339 sym_hashes = elf_sym_hashes (abfd);
ce98a316 15340 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 15341
252b5132
RH
15342 rel_end = relocs + sec->reloc_count;
15343 for (rel = relocs; rel < rel_end; rel++)
15344 {
34e77a92 15345 Elf_Internal_Sym *isym;
252b5132 15346 struct elf_link_hash_entry *h;
b7693d02 15347 struct elf32_arm_link_hash_entry *eh;
d42c267e 15348 unsigned int r_symndx;
eb043451 15349 int r_type;
9a5aca8c 15350
252b5132 15351 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 15352 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 15353 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 15354
ce98a316
NC
15355 if (r_symndx >= nsyms
15356 /* PR 9934: It is possible to have relocations that do not
15357 refer to symbols, thus it is also possible to have an
15358 object file containing relocations but no symbol table. */
cf35638d 15359 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac 15360 {
871b3ab2 15361 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
4eca0228 15362 r_symndx);
ba93b8ac
DJ
15363 return FALSE;
15364 }
15365
34e77a92
RS
15366 h = NULL;
15367 isym = NULL;
15368 if (nsyms > 0)
973a3492 15369 {
34e77a92
RS
15370 if (r_symndx < symtab_hdr->sh_info)
15371 {
15372 /* A local symbol. */
15373 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15374 abfd, r_symndx);
15375 if (isym == NULL)
15376 return FALSE;
15377 }
15378 else
15379 {
15380 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15381 while (h->root.type == bfd_link_hash_indirect
15382 || h->root.type == bfd_link_hash_warning)
15383 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15384 }
973a3492 15385 }
9a5aca8c 15386
b7693d02
DJ
15387 eh = (struct elf32_arm_link_hash_entry *) h;
15388
f6e32f6d
RS
15389 call_reloc_p = FALSE;
15390 may_become_dynamic_p = FALSE;
15391 may_need_local_target_p = FALSE;
15392
0855e32b
NS
15393 /* Could be done earlier, if h were already available. */
15394 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 15395 switch (r_type)
99059e56 15396 {
e8b09b87
CL
15397 case R_ARM_GOTOFFFUNCDESC:
15398 {
15399 if (h == NULL)
15400 {
15401 if (!elf32_arm_allocate_local_sym_info (abfd))
15402 return FALSE;
15403 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15404 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15405 }
15406 else
15407 {
15408 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15409 }
15410 }
15411 break;
15412
15413 case R_ARM_GOTFUNCDESC:
15414 {
15415 if (h == NULL)
15416 {
15417 /* Such a relocation is not supposed to be generated
15418 by gcc on a static function. */
15419 /* Anyway if needed it could be handled. */
15420 abort();
15421 }
15422 else
15423 {
15424 eh->fdpic_cnts.gotfuncdesc_cnt++;
15425 }
15426 }
15427 break;
15428
15429 case R_ARM_FUNCDESC:
15430 {
15431 if (h == NULL)
15432 {
15433 if (!elf32_arm_allocate_local_sym_info (abfd))
15434 return FALSE;
15435 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15436 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15437 }
15438 else
15439 {
15440 eh->fdpic_cnts.funcdesc_cnt++;
15441 }
15442 }
15443 break;
15444
5e681ec4 15445 case R_ARM_GOT32:
eb043451 15446 case R_ARM_GOT_PREL:
ba93b8ac 15447 case R_ARM_TLS_GD32:
5c5a4843 15448 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 15449 case R_ARM_TLS_IE32:
5c5a4843 15450 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
15451 case R_ARM_TLS_GOTDESC:
15452 case R_ARM_TLS_DESCSEQ:
15453 case R_ARM_THM_TLS_DESCSEQ:
15454 case R_ARM_TLS_CALL:
15455 case R_ARM_THM_TLS_CALL:
5e681ec4 15456 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
15457 {
15458 int tls_type, old_tls_type;
5e681ec4 15459
ba93b8ac
DJ
15460 switch (r_type)
15461 {
15462 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
5c5a4843 15463 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
b38cadfb 15464
ba93b8ac 15465 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
5c5a4843 15466 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
b38cadfb 15467
0855e32b
NS
15468 case R_ARM_TLS_GOTDESC:
15469 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15470 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15471 tls_type = GOT_TLS_GDESC; break;
b38cadfb 15472
ba93b8ac
DJ
15473 default: tls_type = GOT_NORMAL; break;
15474 }
252b5132 15475
0e1862bb 15476 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
eea6dad2
KM
15477 info->flags |= DF_STATIC_TLS;
15478
ba93b8ac
DJ
15479 if (h != NULL)
15480 {
15481 h->got.refcount++;
15482 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15483 }
15484 else
15485 {
ba93b8ac 15486 /* This is a global offset table entry for a local symbol. */
34e77a92
RS
15487 if (!elf32_arm_allocate_local_sym_info (abfd))
15488 return FALSE;
15489 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
15490 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15491 }
15492
0855e32b 15493 /* If a variable is accessed with both tls methods, two
99059e56 15494 slots may be created. */
0855e32b
NS
15495 if (GOT_TLS_GD_ANY_P (old_tls_type)
15496 && GOT_TLS_GD_ANY_P (tls_type))
15497 tls_type |= old_tls_type;
15498
15499 /* We will already have issued an error message if there
15500 is a TLS/non-TLS mismatch, based on the symbol
15501 type. So just combine any TLS types needed. */
ba93b8ac
DJ
15502 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15503 && tls_type != GOT_NORMAL)
15504 tls_type |= old_tls_type;
15505
0855e32b 15506 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
15507 method, we're able to relax. Turn off the GDESC flag,
15508 without messing up with any other kind of tls types
6a631e86 15509 that may be involved. */
0855e32b
NS
15510 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15511 tls_type &= ~GOT_TLS_GDESC;
15512
ba93b8ac
DJ
15513 if (old_tls_type != tls_type)
15514 {
15515 if (h != NULL)
15516 elf32_arm_hash_entry (h)->tls_type = tls_type;
15517 else
15518 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15519 }
15520 }
8029a119 15521 /* Fall through. */
ba93b8ac
DJ
15522
15523 case R_ARM_TLS_LDM32:
5c5a4843
CL
15524 case R_ARM_TLS_LDM32_FDPIC:
15525 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
ba93b8ac 15526 htab->tls_ldm_got.refcount++;
8029a119 15527 /* Fall through. */
252b5132 15528
c19d1205 15529 case R_ARM_GOTOFF32:
5e681ec4 15530 case R_ARM_GOTPC:
cbc704f3
RS
15531 if (htab->root.sgot == NULL
15532 && !create_got_section (htab->root.dynobj, info))
15533 return FALSE;
252b5132
RH
15534 break;
15535
252b5132 15536 case R_ARM_PC24:
7359ea65 15537 case R_ARM_PLT32:
5b5bb741
PB
15538 case R_ARM_CALL:
15539 case R_ARM_JUMP24:
eb043451 15540 case R_ARM_PREL31:
c19d1205 15541 case R_ARM_THM_CALL:
bd97cb95
DJ
15542 case R_ARM_THM_JUMP24:
15543 case R_ARM_THM_JUMP19:
f6e32f6d
RS
15544 call_reloc_p = TRUE;
15545 may_need_local_target_p = TRUE;
15546 break;
15547
15548 case R_ARM_ABS12:
15549 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15550 ldr __GOTT_INDEX__ offsets. */
15551 if (!htab->vxworks_p)
15552 {
15553 may_need_local_target_p = TRUE;
15554 break;
15555 }
aebf9be7 15556 else goto jump_over;
9eaff861 15557
f6e32f6d 15558 /* Fall through. */
39623e12 15559
96c23d59
JM
15560 case R_ARM_MOVW_ABS_NC:
15561 case R_ARM_MOVT_ABS:
15562 case R_ARM_THM_MOVW_ABS_NC:
15563 case R_ARM_THM_MOVT_ABS:
0e1862bb 15564 if (bfd_link_pic (info))
96c23d59 15565 {
4eca0228 15566 _bfd_error_handler
871b3ab2 15567 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
96c23d59
JM
15568 abfd, elf32_arm_howto_table_1[r_type].name,
15569 (h) ? h->root.root.string : "a local symbol");
15570 bfd_set_error (bfd_error_bad_value);
15571 return FALSE;
15572 }
15573
15574 /* Fall through. */
39623e12
PB
15575 case R_ARM_ABS32:
15576 case R_ARM_ABS32_NOI:
aebf9be7 15577 jump_over:
0e1862bb 15578 if (h != NULL && bfd_link_executable (info))
97323ad1
WN
15579 {
15580 h->pointer_equality_needed = 1;
15581 }
15582 /* Fall through. */
39623e12
PB
15583 case R_ARM_REL32:
15584 case R_ARM_REL32_NOI:
b6895b4f
PB
15585 case R_ARM_MOVW_PREL_NC:
15586 case R_ARM_MOVT_PREL:
b6895b4f
PB
15587 case R_ARM_THM_MOVW_PREL_NC:
15588 case R_ARM_THM_MOVT_PREL:
39623e12 15589
b7693d02 15590 /* Should the interworking branches be listed here? */
e8b09b87
CL
15591 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15592 || htab->fdpic_p)
34e77a92
RS
15593 && (sec->flags & SEC_ALLOC) != 0)
15594 {
15595 if (h == NULL
469a3493 15596 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
15597 {
15598 /* In shared libraries and relocatable executables,
15599 we treat local relative references as calls;
15600 see the related SYMBOL_CALLS_LOCAL code in
15601 allocate_dynrelocs. */
15602 call_reloc_p = TRUE;
15603 may_need_local_target_p = TRUE;
15604 }
15605 else
15606 /* We are creating a shared library or relocatable
15607 executable, and this is a reloc against a global symbol,
15608 or a non-PC-relative reloc against a local symbol.
15609 We may need to copy the reloc into the output. */
15610 may_become_dynamic_p = TRUE;
15611 }
f6e32f6d
RS
15612 else
15613 may_need_local_target_p = TRUE;
252b5132
RH
15614 break;
15615
99059e56
RM
15616 /* This relocation describes the C++ object vtable hierarchy.
15617 Reconstruct it for later use during GC. */
15618 case R_ARM_GNU_VTINHERIT:
15619 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15620 return FALSE;
15621 break;
15622
15623 /* This relocation describes which C++ vtable entries are actually
15624 used. Record for later use during GC. */
15625 case R_ARM_GNU_VTENTRY:
a0ea3a14 15626 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
99059e56
RM
15627 return FALSE;
15628 break;
15629 }
f6e32f6d
RS
15630
15631 if (h != NULL)
15632 {
15633 if (call_reloc_p)
15634 /* We may need a .plt entry if the function this reloc
15635 refers to is in a different object, regardless of the
15636 symbol's type. We can't tell for sure yet, because
15637 something later might force the symbol local. */
15638 h->needs_plt = 1;
15639 else if (may_need_local_target_p)
15640 /* If this reloc is in a read-only section, we might
15641 need a copy reloc. We can't check reliably at this
15642 stage whether the section is read-only, as input
15643 sections have not yet been mapped to output sections.
15644 Tentatively set the flag for now, and correct in
15645 adjust_dynamic_symbol. */
15646 h->non_got_ref = 1;
15647 }
15648
34e77a92
RS
15649 if (may_need_local_target_p
15650 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 15651 {
34e77a92
RS
15652 union gotplt_union *root_plt;
15653 struct arm_plt_info *arm_plt;
15654 struct arm_local_iplt_info *local_iplt;
15655
15656 if (h != NULL)
15657 {
15658 root_plt = &h->plt;
15659 arm_plt = &eh->plt;
15660 }
15661 else
15662 {
15663 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15664 if (local_iplt == NULL)
15665 return FALSE;
15666 root_plt = &local_iplt->root;
15667 arm_plt = &local_iplt->arm;
15668 }
15669
f6e32f6d
RS
15670 /* If the symbol is a function that doesn't bind locally,
15671 this relocation will need a PLT entry. */
a8c887dd
NC
15672 if (root_plt->refcount != -1)
15673 root_plt->refcount += 1;
34e77a92
RS
15674
15675 if (!call_reloc_p)
15676 arm_plt->noncall_refcount++;
f6e32f6d
RS
15677
15678 /* It's too early to use htab->use_blx here, so we have to
15679 record possible blx references separately from
15680 relocs that definitely need a thumb stub. */
15681
15682 if (r_type == R_ARM_THM_CALL)
34e77a92 15683 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
15684
15685 if (r_type == R_ARM_THM_JUMP24
15686 || r_type == R_ARM_THM_JUMP19)
34e77a92 15687 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
15688 }
15689
15690 if (may_become_dynamic_p)
15691 {
15692 struct elf_dyn_relocs *p, **head;
15693
15694 /* Create a reloc section in dynobj. */
15695 if (sreloc == NULL)
15696 {
15697 sreloc = _bfd_elf_make_dynamic_reloc_section
15698 (sec, dynobj, 2, abfd, ! htab->use_rel);
15699
15700 if (sreloc == NULL)
15701 return FALSE;
15702
15703 /* BPABI objects never have dynamic relocations mapped. */
15704 if (htab->symbian_p)
15705 {
15706 flagword flags;
15707
fd361982 15708 flags = bfd_section_flags (sreloc);
f6e32f6d 15709 flags &= ~(SEC_LOAD | SEC_ALLOC);
fd361982 15710 bfd_set_section_flags (sreloc, flags);
f6e32f6d
RS
15711 }
15712 }
15713
15714 /* If this is a global symbol, count the number of
15715 relocations we need for this symbol. */
15716 if (h != NULL)
15717 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15718 else
15719 {
34e77a92
RS
15720 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15721 if (head == NULL)
f6e32f6d 15722 return FALSE;
f6e32f6d
RS
15723 }
15724
15725 p = *head;
15726 if (p == NULL || p->sec != sec)
15727 {
986f0783 15728 size_t amt = sizeof *p;
f6e32f6d
RS
15729
15730 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15731 if (p == NULL)
15732 return FALSE;
15733 p->next = *head;
15734 *head = p;
15735 p->sec = sec;
15736 p->count = 0;
15737 p->pc_count = 0;
15738 }
15739
469a3493 15740 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
15741 p->pc_count += 1;
15742 p->count += 1;
e8b09b87
CL
15743 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15744 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15745 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15746 that will become rofixup. */
15747 /* This is due to the fact that we suppose all will become rofixup. */
15748 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15749 _bfd_error_handler
15750 (_("FDPIC does not yet support %s relocation"
15751 " to become dynamic for executable"),
15752 elf32_arm_howto_table_1[r_type].name);
15753 abort();
15754 }
f6e32f6d 15755 }
252b5132 15756 }
f21f3fe0 15757
b34976b6 15758 return TRUE;
252b5132
RH
15759}
15760
9eaff861
AO
15761static void
15762elf32_arm_update_relocs (asection *o,
15763 struct bfd_elf_section_reloc_data *reldata)
15764{
15765 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15766 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15767 const struct elf_backend_data *bed;
15768 _arm_elf_section_data *eado;
15769 struct bfd_link_order *p;
15770 bfd_byte *erela_head, *erela;
15771 Elf_Internal_Rela *irela_head, *irela;
15772 Elf_Internal_Shdr *rel_hdr;
15773 bfd *abfd;
15774 unsigned int count;
15775
15776 eado = get_arm_elf_section_data (o);
15777
15778 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15779 return;
15780
15781 abfd = o->owner;
15782 bed = get_elf_backend_data (abfd);
15783 rel_hdr = reldata->hdr;
15784
15785 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15786 {
15787 swap_in = bed->s->swap_reloc_in;
15788 swap_out = bed->s->swap_reloc_out;
15789 }
15790 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15791 {
15792 swap_in = bed->s->swap_reloca_in;
15793 swap_out = bed->s->swap_reloca_out;
15794 }
15795 else
15796 abort ();
15797
15798 erela_head = rel_hdr->contents;
15799 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15800 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15801
15802 erela = erela_head;
15803 irela = irela_head;
15804 count = 0;
15805
15806 for (p = o->map_head.link_order; p; p = p->next)
15807 {
15808 if (p->type == bfd_section_reloc_link_order
15809 || p->type == bfd_symbol_reloc_link_order)
15810 {
15811 (*swap_in) (abfd, erela, irela);
15812 erela += rel_hdr->sh_entsize;
15813 irela++;
15814 count++;
15815 }
15816 else if (p->type == bfd_indirect_link_order)
15817 {
15818 struct bfd_elf_section_reloc_data *input_reldata;
15819 arm_unwind_table_edit *edit_list, *edit_tail;
15820 _arm_elf_section_data *eadi;
15821 bfd_size_type j;
15822 bfd_vma offset;
15823 asection *i;
15824
15825 i = p->u.indirect.section;
15826
15827 eadi = get_arm_elf_section_data (i);
15828 edit_list = eadi->u.exidx.unwind_edit_list;
15829 edit_tail = eadi->u.exidx.unwind_edit_tail;
539300fb 15830 offset = i->output_offset;
9eaff861
AO
15831
15832 if (eadi->elf.rel.hdr &&
15833 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15834 input_reldata = &eadi->elf.rel;
15835 else if (eadi->elf.rela.hdr &&
15836 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15837 input_reldata = &eadi->elf.rela;
15838 else
15839 abort ();
15840
15841 if (edit_list)
15842 {
15843 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15844 {
15845 arm_unwind_table_edit *edit_node, *edit_next;
15846 bfd_vma bias;
c48182bf 15847 bfd_vma reloc_index;
9eaff861
AO
15848
15849 (*swap_in) (abfd, erela, irela);
c48182bf 15850 reloc_index = (irela->r_offset - offset) / 8;
9eaff861
AO
15851
15852 bias = 0;
15853 edit_node = edit_list;
15854 for (edit_next = edit_list;
c48182bf 15855 edit_next && edit_next->index <= reloc_index;
9eaff861
AO
15856 edit_next = edit_node->next)
15857 {
15858 bias++;
15859 edit_node = edit_next;
15860 }
15861
15862 if (edit_node->type != DELETE_EXIDX_ENTRY
c48182bf 15863 || edit_node->index != reloc_index)
9eaff861
AO
15864 {
15865 irela->r_offset -= bias * 8;
15866 irela++;
15867 count++;
15868 }
15869
15870 erela += rel_hdr->sh_entsize;
15871 }
15872
15873 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15874 {
15875 /* New relocation entity. */
15876 asection *text_sec = edit_tail->linked_section;
15877 asection *text_out = text_sec->output_section;
15878 bfd_vma exidx_offset = offset + i->size - 8;
15879
15880 irela->r_addend = 0;
15881 irela->r_offset = exidx_offset;
15882 irela->r_info = ELF32_R_INFO
15883 (text_out->target_index, R_ARM_PREL31);
15884 irela++;
15885 count++;
15886 }
15887 }
15888 else
15889 {
15890 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15891 {
15892 (*swap_in) (abfd, erela, irela);
15893 erela += rel_hdr->sh_entsize;
15894 irela++;
15895 }
15896
15897 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15898 }
15899 }
15900 }
15901
15902 reldata->count = count;
15903 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15904
15905 erela = erela_head;
15906 irela = irela_head;
15907 while (count > 0)
15908 {
15909 (*swap_out) (abfd, irela, erela);
15910 erela += rel_hdr->sh_entsize;
15911 irela++;
15912 count--;
15913 }
15914
15915 free (irela_head);
15916
15917 /* Hashes are no longer valid. */
15918 free (reldata->hashes);
15919 reldata->hashes = NULL;
15920}
15921
6a5bb875 15922/* Unwinding tables are not referenced directly. This pass marks them as
4ba2ef8f
TP
15923 required if the corresponding code section is marked. Similarly, ARMv8-M
15924 secure entry functions can only be referenced by SG veneers which are
15925 created after the GC process. They need to be marked in case they reside in
15926 their own section (as would be the case if code was compiled with
15927 -ffunction-sections). */
6a5bb875
PB
15928
15929static bfd_boolean
906e58ca
NC
15930elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15931 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
15932{
15933 bfd *sub;
15934 Elf_Internal_Shdr **elf_shdrp;
4ba2ef8f
TP
15935 asection *cmse_sec;
15936 obj_attribute *out_attr;
15937 Elf_Internal_Shdr *symtab_hdr;
15938 unsigned i, sym_count, ext_start;
15939 const struct elf_backend_data *bed;
15940 struct elf_link_hash_entry **sym_hashes;
15941 struct elf32_arm_link_hash_entry *cmse_hash;
15942 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
bb32413f
SP
15943 bfd_boolean debug_sec_need_to_be_marked = FALSE;
15944 asection *isec;
6a5bb875 15945
7f6ab9f8
AM
15946 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15947
4ba2ef8f
TP
15948 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15949 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15950 && out_attr[Tag_CPU_arch_profile].i == 'M';
15951
6a5bb875
PB
15952 /* Marking EH data may cause additional code sections to be marked,
15953 requiring multiple passes. */
15954 again = TRUE;
15955 while (again)
15956 {
15957 again = FALSE;
c72f2fb2 15958 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
15959 {
15960 asection *o;
15961
0ffa91dd 15962 if (! is_arm_elf (sub))
6a5bb875
PB
15963 continue;
15964
15965 elf_shdrp = elf_elfsections (sub);
15966 for (o = sub->sections; o != NULL; o = o->next)
15967 {
15968 Elf_Internal_Shdr *hdr;
0ffa91dd 15969
6a5bb875 15970 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
15971 if (hdr->sh_type == SHT_ARM_EXIDX
15972 && hdr->sh_link
15973 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
15974 && !o->gc_mark
15975 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15976 {
15977 again = TRUE;
15978 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15979 return FALSE;
15980 }
15981 }
4ba2ef8f
TP
15982
15983 /* Mark section holding ARMv8-M secure entry functions. We mark all
15984 of them so no need for a second browsing. */
15985 if (is_v8m && first_bfd_browse)
15986 {
15987 sym_hashes = elf_sym_hashes (sub);
15988 bed = get_elf_backend_data (sub);
15989 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15990 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15991 ext_start = symtab_hdr->sh_info;
15992
15993 /* Scan symbols. */
15994 for (i = ext_start; i < sym_count; i++)
15995 {
15996 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15997
15998 /* Assume it is a special symbol. If not, cmse_scan will
15999 warn about it and user can do something about it. */
baf46cd7
AM
16000 if (CONST_STRNEQ (cmse_hash->root.root.root.string,
16001 CMSE_PREFIX))
4ba2ef8f
TP
16002 {
16003 cmse_sec = cmse_hash->root.root.u.def.section;
5025eb7c
AO
16004 if (!cmse_sec->gc_mark
16005 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
4ba2ef8f 16006 return FALSE;
bb32413f
SP
16007 /* The debug sections related to these secure entry
16008 functions are marked on enabling below flag. */
16009 debug_sec_need_to_be_marked = TRUE;
4ba2ef8f
TP
16010 }
16011 }
bb32413f
SP
16012
16013 if (debug_sec_need_to_be_marked)
16014 {
16015 /* Looping over all the sections of the object file containing
16016 Armv8-M secure entry functions and marking all the debug
16017 sections. */
16018 for (isec = sub->sections; isec != NULL; isec = isec->next)
16019 {
16020 /* If not a debug sections, skip it. */
16021 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
16022 isec->gc_mark = 1 ;
16023 }
16024 debug_sec_need_to_be_marked = FALSE;
16025 }
4ba2ef8f 16026 }
6a5bb875 16027 }
4ba2ef8f 16028 first_bfd_browse = FALSE;
6a5bb875
PB
16029 }
16030
16031 return TRUE;
16032}
16033
3c9458e9
NC
16034/* Treat mapping symbols as special target symbols. */
16035
16036static bfd_boolean
16037elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16038{
b0796911
PB
16039 return bfd_is_arm_special_symbol_name (sym->name,
16040 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
16041}
16042
e7679060
AM
16043/* If the ELF symbol SYM might be a function in SEC, return the
16044 function size and set *CODE_OFF to the function's entry point,
16045 otherwise return zero. */
252b5132 16046
e7679060
AM
16047static bfd_size_type
16048elf32_arm_maybe_function_sym (const asymbol *sym, asection *sec,
16049 bfd_vma *code_off)
16050{
16051 bfd_size_type size;
252b5132 16052
e7679060
AM
16053 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
16054 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
16055 || sym->section != sec)
16056 return 0;
252b5132 16057
e7679060
AM
16058 if (!(sym->flags & BSF_SYNTHETIC))
16059 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
16060 {
252b5132
RH
16061 case STT_FUNC:
16062 case STT_ARM_TFUNC:
9d2da7ca 16063 case STT_NOTYPE:
252b5132 16064 break;
e7679060
AM
16065 default:
16066 return 0;
16067 }
0367ecfb 16068
e7679060
AM
16069 if ((sym->flags & BSF_LOCAL)
16070 && bfd_is_arm_special_symbol_name (sym->name,
16071 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16072 return 0;
0367ecfb 16073
e7679060
AM
16074 *code_off = sym->value;
16075 size = 0;
16076 if (!(sym->flags & BSF_SYNTHETIC))
16077 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
16078 if (size == 0)
16079 size = 1;
16080 return size;
252b5132
RH
16081}
16082
4ab527b0 16083static bfd_boolean
07d6d2b8 16084elf32_arm_find_inliner_info (bfd * abfd,
4ab527b0
FF
16085 const char ** filename_ptr,
16086 const char ** functionname_ptr,
16087 unsigned int * line_ptr)
16088{
16089 bfd_boolean found;
16090 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16091 functionname_ptr, line_ptr,
16092 & elf_tdata (abfd)->dwarf2_find_line_info);
16093 return found;
16094}
16095
63c1f59d
AM
16096/* Find dynamic relocs for H that apply to read-only sections. */
16097
16098static asection *
16099readonly_dynrelocs (struct elf_link_hash_entry *h)
16100{
16101 struct elf_dyn_relocs *p;
16102
16103 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
16104 {
16105 asection *s = p->sec->output_section;
16106
16107 if (s != NULL && (s->flags & SEC_READONLY) != 0)
16108 return p->sec;
16109 }
16110 return NULL;
16111}
16112
252b5132
RH
16113/* Adjust a symbol defined by a dynamic object and referenced by a
16114 regular object. The current definition is in some section of the
16115 dynamic object, but we're not including those sections. We have to
16116 change the definition to something the rest of the link can
16117 understand. */
16118
b34976b6 16119static bfd_boolean
57e8b36a
NC
16120elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16121 struct elf_link_hash_entry * h)
252b5132
RH
16122{
16123 bfd * dynobj;
5474d94f 16124 asection *s, *srel;
b7693d02 16125 struct elf32_arm_link_hash_entry * eh;
67687978 16126 struct elf32_arm_link_hash_table *globals;
252b5132 16127
67687978 16128 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
16129 if (globals == NULL)
16130 return FALSE;
16131
252b5132
RH
16132 dynobj = elf_hash_table (info)->dynobj;
16133
16134 /* Make sure we know what is going on here. */
16135 BFD_ASSERT (dynobj != NULL
f5385ebf 16136 && (h->needs_plt
34e77a92 16137 || h->type == STT_GNU_IFUNC
60d67dc8 16138 || h->is_weakalias
f5385ebf
AM
16139 || (h->def_dynamic
16140 && h->ref_regular
16141 && !h->def_regular)));
252b5132 16142
b7693d02
DJ
16143 eh = (struct elf32_arm_link_hash_entry *) h;
16144
252b5132
RH
16145 /* If this is a function, put it in the procedure linkage table. We
16146 will fill in the contents of the procedure linkage table later,
16147 when we know the address of the .got section. */
34e77a92 16148 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 16149 {
34e77a92
RS
16150 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16151 symbol binds locally. */
5e681ec4 16152 if (h->plt.refcount <= 0
34e77a92
RS
16153 || (h->type != STT_GNU_IFUNC
16154 && (SYMBOL_CALLS_LOCAL (info, h)
16155 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16156 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
16157 {
16158 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
16159 file, but the symbol was never referred to by a dynamic
16160 object, or if all references were garbage collected. In
16161 such a case, we don't actually need to build a procedure
16162 linkage table, and we can just do a PC24 reloc instead. */
16163 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16164 eh->plt.thumb_refcount = 0;
16165 eh->plt.maybe_thumb_refcount = 0;
16166 eh->plt.noncall_refcount = 0;
f5385ebf 16167 h->needs_plt = 0;
252b5132
RH
16168 }
16169
b34976b6 16170 return TRUE;
252b5132 16171 }
5e681ec4 16172 else
b7693d02
DJ
16173 {
16174 /* It's possible that we incorrectly decided a .plt reloc was
16175 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16176 in check_relocs. We can't decide accurately between function
16177 and non-function syms in check-relocs; Objects loaded later in
16178 the link may change h->type. So fix it now. */
16179 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16180 eh->plt.thumb_refcount = 0;
16181 eh->plt.maybe_thumb_refcount = 0;
16182 eh->plt.noncall_refcount = 0;
b7693d02 16183 }
252b5132
RH
16184
16185 /* If this is a weak symbol, and there is a real definition, the
16186 processor independent code will have arranged for us to see the
16187 real definition first, and we can just use the same value. */
60d67dc8 16188 if (h->is_weakalias)
252b5132 16189 {
60d67dc8
AM
16190 struct elf_link_hash_entry *def = weakdef (h);
16191 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16192 h->root.u.def.section = def->root.u.def.section;
16193 h->root.u.def.value = def->root.u.def.value;
b34976b6 16194 return TRUE;
252b5132
RH
16195 }
16196
ba93b8ac
DJ
16197 /* If there are no non-GOT references, we do not need a copy
16198 relocation. */
16199 if (!h->non_got_ref)
16200 return TRUE;
16201
252b5132
RH
16202 /* This is a reference to a symbol defined by a dynamic object which
16203 is not a function. */
16204
16205 /* If we are creating a shared library, we must presume that the
16206 only references to the symbol are via the global offset table.
16207 For such cases we need not do anything here; the relocations will
67687978
PB
16208 be handled correctly by relocate_section. Relocatable executables
16209 can reference data in shared objects directly, so we don't need to
16210 do anything here. */
0e1862bb 16211 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
b34976b6 16212 return TRUE;
252b5132
RH
16213
16214 /* We must allocate the symbol in our .dynbss section, which will
16215 become part of the .bss section of the executable. There will be
16216 an entry for this symbol in the .dynsym section. The dynamic
16217 object will contain position independent code, so all references
16218 from the dynamic object to this symbol will go through the global
16219 offset table. The dynamic linker will use the .dynsym entry to
16220 determine the address it must put in the global offset table, so
16221 both the dynamic object and the regular object will refer to the
16222 same memory location for the variable. */
5522f910
NC
16223 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16224 linker to copy the initial value out of the dynamic object and into
16225 the runtime process image. We need to remember the offset into the
00a97672 16226 .rel(a).bss section we are going to use. */
5474d94f
AM
16227 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16228 {
16229 s = globals->root.sdynrelro;
16230 srel = globals->root.sreldynrelro;
16231 }
16232 else
16233 {
16234 s = globals->root.sdynbss;
16235 srel = globals->root.srelbss;
16236 }
5522f910
NC
16237 if (info->nocopyreloc == 0
16238 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
5522f910 16239 && h->size != 0)
252b5132 16240 {
47beaa6a 16241 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 16242 h->needs_copy = 1;
252b5132
RH
16243 }
16244
6cabe1ea 16245 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
16246}
16247
5e681ec4
PB
16248/* Allocate space in .plt, .got and associated reloc sections for
16249 dynamic relocs. */
16250
16251static bfd_boolean
47beaa6a 16252allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
16253{
16254 struct bfd_link_info *info;
16255 struct elf32_arm_link_hash_table *htab;
16256 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 16257 struct elf_dyn_relocs *p;
5e681ec4
PB
16258
16259 if (h->root.type == bfd_link_hash_indirect)
16260 return TRUE;
16261
e6a6bb22
AM
16262 eh = (struct elf32_arm_link_hash_entry *) h;
16263
5e681ec4
PB
16264 info = (struct bfd_link_info *) inf;
16265 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
16266 if (htab == NULL)
16267 return FALSE;
5e681ec4 16268
34e77a92 16269 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
16270 && h->plt.refcount > 0)
16271 {
16272 /* Make sure this symbol is output as a dynamic symbol.
16273 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16274 if (h->dynindx == -1 && !h->forced_local
16275 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16276 {
c152c796 16277 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
16278 return FALSE;
16279 }
16280
34e77a92
RS
16281 /* If the call in the PLT entry binds locally, the associated
16282 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16283 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16284 than the .plt section. */
16285 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16286 {
16287 eh->is_iplt = 1;
16288 if (eh->plt.noncall_refcount == 0
16289 && SYMBOL_REFERENCES_LOCAL (info, h))
16290 /* All non-call references can be resolved directly.
16291 This means that they can (and in some cases, must)
16292 resolve directly to the run-time target, rather than
16293 to the PLT. That in turns means that any .got entry
16294 would be equal to the .igot.plt entry, so there's
16295 no point having both. */
16296 h->got.refcount = 0;
16297 }
16298
0e1862bb 16299 if (bfd_link_pic (info)
34e77a92 16300 || eh->is_iplt
7359ea65 16301 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 16302 {
34e77a92 16303 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 16304
5e681ec4
PB
16305 /* If this symbol is not defined in a regular file, and we are
16306 not generating a shared library, then set the symbol to this
16307 location in the .plt. This is required to make function
16308 pointers compare as equal between the normal executable and
16309 the shared library. */
0e1862bb 16310 if (! bfd_link_pic (info)
f5385ebf 16311 && !h->def_regular)
5e681ec4 16312 {
34e77a92 16313 h->root.u.def.section = htab->root.splt;
5e681ec4 16314 h->root.u.def.value = h->plt.offset;
5e681ec4 16315
67d74e43
DJ
16316 /* Make sure the function is not marked as Thumb, in case
16317 it is the target of an ABS32 relocation, which will
16318 point to the PLT entry. */
39d911fc 16319 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
67d74e43 16320 }
022f8312 16321
00a97672
RS
16322 /* VxWorks executables have a second set of relocations for
16323 each PLT entry. They go in a separate relocation section,
16324 which is processed by the kernel loader. */
0e1862bb 16325 if (htab->vxworks_p && !bfd_link_pic (info))
00a97672
RS
16326 {
16327 /* There is a relocation for the initial PLT entry:
16328 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16329 if (h->plt.offset == htab->plt_header_size)
47beaa6a 16330 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
16331
16332 /* There are two extra relocations for each subsequent
16333 PLT entry: an R_ARM_32 relocation for the GOT entry,
16334 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 16335 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 16336 }
5e681ec4
PB
16337 }
16338 else
16339 {
16340 h->plt.offset = (bfd_vma) -1;
f5385ebf 16341 h->needs_plt = 0;
5e681ec4
PB
16342 }
16343 }
16344 else
16345 {
16346 h->plt.offset = (bfd_vma) -1;
f5385ebf 16347 h->needs_plt = 0;
5e681ec4
PB
16348 }
16349
0855e32b
NS
16350 eh = (struct elf32_arm_link_hash_entry *) h;
16351 eh->tlsdesc_got = (bfd_vma) -1;
16352
5e681ec4
PB
16353 if (h->got.refcount > 0)
16354 {
16355 asection *s;
16356 bfd_boolean dyn;
ba93b8ac
DJ
16357 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16358 int indx;
5e681ec4
PB
16359
16360 /* Make sure this symbol is output as a dynamic symbol.
16361 Undefined weak syms won't yet be marked as dynamic. */
e8b09b87 16362 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
6c699715 16363 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16364 {
c152c796 16365 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
16366 return FALSE;
16367 }
16368
e5a52504
MM
16369 if (!htab->symbian_p)
16370 {
362d30a1 16371 s = htab->root.sgot;
e5a52504 16372 h->got.offset = s->size;
ba93b8ac
DJ
16373
16374 if (tls_type == GOT_UNKNOWN)
16375 abort ();
16376
16377 if (tls_type == GOT_NORMAL)
16378 /* Non-TLS symbols need one GOT slot. */
16379 s->size += 4;
16380 else
16381 {
99059e56
RM
16382 if (tls_type & GOT_TLS_GDESC)
16383 {
0855e32b 16384 /* R_ARM_TLS_DESC needs 2 GOT slots. */
99059e56 16385 eh->tlsdesc_got
0855e32b
NS
16386 = (htab->root.sgotplt->size
16387 - elf32_arm_compute_jump_table_size (htab));
99059e56
RM
16388 htab->root.sgotplt->size += 8;
16389 h->got.offset = (bfd_vma) -2;
34e77a92 16390 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16391 reloc in the middle of .got.plt. */
99059e56
RM
16392 htab->num_tls_desc++;
16393 }
0855e32b 16394
ba93b8ac 16395 if (tls_type & GOT_TLS_GD)
0855e32b 16396 {
5c5a4843
CL
16397 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16398 consecutive GOT slots. If the symbol is both GD
16399 and GDESC, got.offset may have been
16400 overwritten. */
0855e32b
NS
16401 h->got.offset = s->size;
16402 s->size += 8;
16403 }
16404
ba93b8ac 16405 if (tls_type & GOT_TLS_IE)
5c5a4843
CL
16406 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16407 slot. */
ba93b8ac
DJ
16408 s->size += 4;
16409 }
16410
e5a52504 16411 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
16412
16413 indx = 0;
0e1862bb
L
16414 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16415 bfd_link_pic (info),
16416 h)
16417 && (!bfd_link_pic (info)
ba93b8ac
DJ
16418 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16419 indx = h->dynindx;
16420
16421 if (tls_type != GOT_NORMAL
9cb09e33 16422 && (bfd_link_dll (info) || indx != 0)
ba93b8ac
DJ
16423 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16424 || h->root.type != bfd_link_hash_undefweak))
16425 {
16426 if (tls_type & GOT_TLS_IE)
47beaa6a 16427 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
16428
16429 if (tls_type & GOT_TLS_GD)
47beaa6a 16430 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16431
b38cadfb 16432 if (tls_type & GOT_TLS_GDESC)
0855e32b 16433 {
47beaa6a 16434 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
16435 /* GDESC needs a trampoline to jump to. */
16436 htab->tls_trampoline = -1;
16437 }
16438
16439 /* Only GD needs it. GDESC just emits one relocation per
16440 2 entries. */
b38cadfb 16441 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 16442 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16443 }
e8b09b87
CL
16444 else if (((indx != -1) || htab->fdpic_p)
16445 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
16446 {
16447 if (htab->root.dynamic_sections_created)
16448 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16449 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16450 }
34e77a92
RS
16451 else if (h->type == STT_GNU_IFUNC
16452 && eh->plt.noncall_refcount == 0)
16453 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16454 they all resolve dynamically instead. Reserve room for the
16455 GOT entry's R_ARM_IRELATIVE relocation. */
16456 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
0e1862bb 16457 else if (bfd_link_pic (info)
7f026732 16458 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
b436d854 16459 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
47beaa6a 16460 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e8b09b87
CL
16461 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16462 /* Reserve room for rofixup for FDPIC executable. */
16463 /* TLS relocs do not need space since they are completely
16464 resolved. */
16465 htab->srofixup->size += 4;
e5a52504 16466 }
5e681ec4
PB
16467 }
16468 else
16469 h->got.offset = (bfd_vma) -1;
16470
e8b09b87
CL
16471 /* FDPIC support. */
16472 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16473 {
16474 /* Symbol musn't be exported. */
16475 if (h->dynindx != -1)
16476 abort();
16477
16478 /* We only allocate one function descriptor with its associated relocation. */
16479 if (eh->fdpic_cnts.funcdesc_offset == -1)
16480 {
16481 asection *s = htab->root.sgot;
16482
16483 eh->fdpic_cnts.funcdesc_offset = s->size;
16484 s->size += 8;
16485 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16486 if (bfd_link_pic(info))
16487 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16488 else
16489 htab->srofixup->size += 8;
16490 }
16491 }
16492
16493 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16494 {
16495 asection *s = htab->root.sgot;
16496
16497 if (htab->root.dynamic_sections_created && h->dynindx == -1
16498 && !h->forced_local)
16499 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16500 return FALSE;
16501
16502 if (h->dynindx == -1)
16503 {
16504 /* We only allocate one function descriptor with its associated relocation. q */
16505 if (eh->fdpic_cnts.funcdesc_offset == -1)
16506 {
16507
16508 eh->fdpic_cnts.funcdesc_offset = s->size;
16509 s->size += 8;
16510 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16511 if (bfd_link_pic(info))
16512 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16513 else
16514 htab->srofixup->size += 8;
16515 }
16516 }
16517
16518 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16519 R_ARM_RELATIVE/rofixup relocation on it. */
16520 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16521 s->size += 4;
16522 if (h->dynindx == -1 && !bfd_link_pic(info))
4b24dd1a 16523 htab->srofixup->size += 4;
e8b09b87 16524 else
4b24dd1a 16525 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e8b09b87
CL
16526 }
16527
16528 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16529 {
16530 if (htab->root.dynamic_sections_created && h->dynindx == -1
16531 && !h->forced_local)
16532 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16533 return FALSE;
16534
16535 if (h->dynindx == -1)
16536 {
16537 /* We only allocate one function descriptor with its associated relocation. */
16538 if (eh->fdpic_cnts.funcdesc_offset == -1)
16539 {
16540 asection *s = htab->root.sgot;
16541
16542 eh->fdpic_cnts.funcdesc_offset = s->size;
16543 s->size += 8;
16544 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16545 if (bfd_link_pic(info))
16546 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16547 else
16548 htab->srofixup->size += 8;
16549 }
16550 }
16551 if (h->dynindx == -1 && !bfd_link_pic(info))
16552 {
16553 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16554 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16555 }
16556 else
16557 {
16558 /* Will need one dynamic reloc per reference. will be either
16559 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16560 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16561 eh->fdpic_cnts.funcdesc_cnt);
16562 }
16563 }
16564
a4fd1a8e
PB
16565 /* Allocate stubs for exported Thumb functions on v4t. */
16566 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 16567 && h->def_regular
39d911fc 16568 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
16569 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16570 {
16571 struct elf_link_hash_entry * th;
16572 struct bfd_link_hash_entry * bh;
16573 struct elf_link_hash_entry * myh;
16574 char name[1024];
16575 asection *s;
16576 bh = NULL;
16577 /* Create a new symbol to regist the real location of the function. */
16578 s = h->root.u.def.section;
906e58ca 16579 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
16580 _bfd_generic_link_add_one_symbol (info, s->owner,
16581 name, BSF_GLOBAL, s,
16582 h->root.u.def.value,
16583 NULL, TRUE, FALSE, &bh);
16584
16585 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 16586 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 16587 myh->forced_local = 1;
39d911fc 16588 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
a4fd1a8e
PB
16589 eh->export_glue = myh;
16590 th = record_arm_to_thumb_glue (info, h);
16591 /* Point the symbol at the stub. */
16592 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
39d911fc 16593 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
a4fd1a8e
PB
16594 h->root.u.def.section = th->root.u.def.section;
16595 h->root.u.def.value = th->root.u.def.value & ~1;
16596 }
16597
0bdcacaf 16598 if (eh->dyn_relocs == NULL)
5e681ec4
PB
16599 return TRUE;
16600
16601 /* In the shared -Bsymbolic case, discard space allocated for
16602 dynamic pc-relative relocs against symbols which turn out to be
16603 defined in regular objects. For the normal shared case, discard
16604 space for pc-relative relocs that have become local due to symbol
16605 visibility changes. */
16606
e8b09b87 16607 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
5e681ec4 16608 {
469a3493
RM
16609 /* Relocs that use pc_count are PC-relative forms, which will appear
16610 on something like ".long foo - ." or "movw REG, foo - .". We want
16611 calls to protected symbols to resolve directly to the function
16612 rather than going via the plt. If people want function pointer
16613 comparisons to work as expected then they should avoid writing
16614 assembly like ".long foo - .". */
ba93b8ac
DJ
16615 if (SYMBOL_CALLS_LOCAL (info, h))
16616 {
0bdcacaf 16617 struct elf_dyn_relocs **pp;
ba93b8ac 16618
0bdcacaf 16619 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
16620 {
16621 p->count -= p->pc_count;
16622 p->pc_count = 0;
16623 if (p->count == 0)
16624 *pp = p->next;
16625 else
16626 pp = &p->next;
16627 }
16628 }
16629
4dfe6ac6 16630 if (htab->vxworks_p)
3348747a 16631 {
0bdcacaf 16632 struct elf_dyn_relocs **pp;
3348747a 16633
0bdcacaf 16634 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
3348747a 16635 {
0bdcacaf 16636 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
16637 *pp = p->next;
16638 else
16639 pp = &p->next;
16640 }
16641 }
16642
ba93b8ac 16643 /* Also discard relocs on undefined weak syms with non-default
99059e56 16644 visibility. */
0bdcacaf 16645 if (eh->dyn_relocs != NULL
5e681ec4 16646 && h->root.type == bfd_link_hash_undefweak)
22d606e9 16647 {
95b03e4a
L
16648 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16649 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
0bdcacaf 16650 eh->dyn_relocs = NULL;
22d606e9
AM
16651
16652 /* Make sure undefined weak symbols are output as a dynamic
16653 symbol in PIEs. */
e8b09b87 16654 else if (htab->root.dynamic_sections_created && h->dynindx == -1
22d606e9
AM
16655 && !h->forced_local)
16656 {
16657 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16658 return FALSE;
16659 }
16660 }
16661
67687978
PB
16662 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16663 && h->root.type == bfd_link_hash_new)
16664 {
16665 /* Output absolute symbols so that we can create relocations
16666 against them. For normal symbols we output a relocation
16667 against the section that contains them. */
16668 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16669 return FALSE;
16670 }
16671
5e681ec4
PB
16672 }
16673 else
16674 {
16675 /* For the non-shared case, discard space for relocs against
16676 symbols which turn out to need copy relocs or are not
16677 dynamic. */
16678
f5385ebf
AM
16679 if (!h->non_got_ref
16680 && ((h->def_dynamic
16681 && !h->def_regular)
5e681ec4
PB
16682 || (htab->root.dynamic_sections_created
16683 && (h->root.type == bfd_link_hash_undefweak
16684 || h->root.type == bfd_link_hash_undefined))))
16685 {
16686 /* Make sure this symbol is output as a dynamic symbol.
16687 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16688 if (h->dynindx == -1 && !h->forced_local
16689 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16690 {
c152c796 16691 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
16692 return FALSE;
16693 }
16694
16695 /* If that succeeded, we know we'll be keeping all the
16696 relocs. */
16697 if (h->dynindx != -1)
16698 goto keep;
16699 }
16700
0bdcacaf 16701 eh->dyn_relocs = NULL;
5e681ec4
PB
16702
16703 keep: ;
16704 }
16705
16706 /* Finally, allocate space. */
0bdcacaf 16707 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5e681ec4 16708 {
0bdcacaf 16709 asection *sreloc = elf_section_data (p->sec)->sreloc;
e8b09b87 16710
34e77a92
RS
16711 if (h->type == STT_GNU_IFUNC
16712 && eh->plt.noncall_refcount == 0
16713 && SYMBOL_REFERENCES_LOCAL (info, h))
16714 elf32_arm_allocate_irelocs (info, sreloc, p->count);
e8b09b87
CL
16715 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16716 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16717 else if (htab->fdpic_p && !bfd_link_pic(info))
16718 htab->srofixup->size += 4 * p->count;
34e77a92
RS
16719 else
16720 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
16721 }
16722
16723 return TRUE;
16724}
16725
63c1f59d
AM
16726/* Set DF_TEXTREL if we find any dynamic relocs that apply to
16727 read-only sections. */
08d1f311
DJ
16728
16729static bfd_boolean
63c1f59d 16730maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
08d1f311 16731{
63c1f59d 16732 asection *sec;
08d1f311 16733
63c1f59d
AM
16734 if (h->root.type == bfd_link_hash_indirect)
16735 return TRUE;
08d1f311 16736
63c1f59d
AM
16737 sec = readonly_dynrelocs (h);
16738 if (sec != NULL)
16739 {
16740 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
08d1f311 16741
63c1f59d
AM
16742 info->flags |= DF_TEXTREL;
16743 info->callbacks->minfo
c1c8c1ef 16744 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
63c1f59d 16745 sec->owner, h->root.root.string, sec);
08d1f311 16746
63c1f59d
AM
16747 /* Not an error, just cut short the traversal. */
16748 return FALSE;
08d1f311 16749 }
cb10292c 16750
08d1f311
DJ
16751 return TRUE;
16752}
16753
d504ffc8
DJ
16754void
16755bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16756 int byteswap_code)
16757{
16758 struct elf32_arm_link_hash_table *globals;
16759
16760 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
16761 if (globals == NULL)
16762 return;
16763
d504ffc8
DJ
16764 globals->byteswap_code = byteswap_code;
16765}
16766
252b5132
RH
16767/* Set the sizes of the dynamic sections. */
16768
b34976b6 16769static bfd_boolean
57e8b36a
NC
16770elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16771 struct bfd_link_info * info)
252b5132
RH
16772{
16773 bfd * dynobj;
16774 asection * s;
b34976b6
AM
16775 bfd_boolean plt;
16776 bfd_boolean relocs;
5e681ec4
PB
16777 bfd *ibfd;
16778 struct elf32_arm_link_hash_table *htab;
252b5132 16779
5e681ec4 16780 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
16781 if (htab == NULL)
16782 return FALSE;
16783
252b5132
RH
16784 dynobj = elf_hash_table (info)->dynobj;
16785 BFD_ASSERT (dynobj != NULL);
39b41c9c 16786 check_use_blx (htab);
252b5132
RH
16787
16788 if (elf_hash_table (info)->dynamic_sections_created)
16789 {
16790 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 16791 if (bfd_link_executable (info) && !info->nointerp)
252b5132 16792 {
3d4d4302 16793 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 16794 BFD_ASSERT (s != NULL);
eea6121a 16795 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
16796 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16797 }
16798 }
5e681ec4
PB
16799
16800 /* Set up .got offsets for local syms, and space for local dynamic
16801 relocs. */
c72f2fb2 16802 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 16803 {
5e681ec4
PB
16804 bfd_signed_vma *local_got;
16805 bfd_signed_vma *end_local_got;
34e77a92 16806 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 16807 char *local_tls_type;
0855e32b 16808 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
16809 bfd_size_type locsymcount;
16810 Elf_Internal_Shdr *symtab_hdr;
16811 asection *srel;
4dfe6ac6 16812 bfd_boolean is_vxworks = htab->vxworks_p;
34e77a92 16813 unsigned int symndx;
e8b09b87 16814 struct fdpic_local *local_fdpic_cnts;
5e681ec4 16815
0ffa91dd 16816 if (! is_arm_elf (ibfd))
5e681ec4
PB
16817 continue;
16818
16819 for (s = ibfd->sections; s != NULL; s = s->next)
16820 {
0bdcacaf 16821 struct elf_dyn_relocs *p;
5e681ec4 16822
0bdcacaf 16823 for (p = (struct elf_dyn_relocs *)
99059e56 16824 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 16825 {
0bdcacaf
RS
16826 if (!bfd_is_abs_section (p->sec)
16827 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
16828 {
16829 /* Input section has been discarded, either because
16830 it is a copy of a linkonce section or due to
16831 linker script /DISCARD/, so we'll be discarding
16832 the relocs too. */
16833 }
3348747a 16834 else if (is_vxworks
0bdcacaf 16835 && strcmp (p->sec->output_section->name,
3348747a
NS
16836 ".tls_vars") == 0)
16837 {
16838 /* Relocations in vxworks .tls_vars sections are
16839 handled specially by the loader. */
16840 }
5e681ec4
PB
16841 else if (p->count != 0)
16842 {
0bdcacaf 16843 srel = elf_section_data (p->sec)->sreloc;
e8b09b87
CL
16844 if (htab->fdpic_p && !bfd_link_pic(info))
16845 htab->srofixup->size += 4 * p->count;
16846 else
16847 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 16848 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
16849 info->flags |= DF_TEXTREL;
16850 }
16851 }
16852 }
16853
16854 local_got = elf_local_got_refcounts (ibfd);
16855 if (!local_got)
16856 continue;
16857
0ffa91dd 16858 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
16859 locsymcount = symtab_hdr->sh_info;
16860 end_local_got = local_got + locsymcount;
34e77a92 16861 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 16862 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 16863 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
e8b09b87 16864 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
34e77a92 16865 symndx = 0;
362d30a1
RS
16866 s = htab->root.sgot;
16867 srel = htab->root.srelgot;
0855e32b 16868 for (; local_got < end_local_got;
34e77a92 16869 ++local_got, ++local_iplt_ptr, ++local_tls_type,
e8b09b87 16870 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
5e681ec4 16871 {
0855e32b 16872 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92 16873 local_iplt = *local_iplt_ptr;
e8b09b87
CL
16874
16875 /* FDPIC support. */
16876 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16877 {
16878 if (local_fdpic_cnts->funcdesc_offset == -1)
16879 {
16880 local_fdpic_cnts->funcdesc_offset = s->size;
16881 s->size += 8;
16882
16883 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16884 if (bfd_link_pic(info))
16885 elf32_arm_allocate_dynrelocs (info, srel, 1);
16886 else
16887 htab->srofixup->size += 8;
16888 }
16889 }
16890
16891 if (local_fdpic_cnts->funcdesc_cnt > 0)
16892 {
16893 if (local_fdpic_cnts->funcdesc_offset == -1)
16894 {
16895 local_fdpic_cnts->funcdesc_offset = s->size;
16896 s->size += 8;
16897
16898 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16899 if (bfd_link_pic(info))
16900 elf32_arm_allocate_dynrelocs (info, srel, 1);
16901 else
16902 htab->srofixup->size += 8;
16903 }
16904
16905 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16906 if (bfd_link_pic(info))
16907 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16908 else
16909 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16910 }
16911
34e77a92
RS
16912 if (local_iplt != NULL)
16913 {
16914 struct elf_dyn_relocs *p;
16915
16916 if (local_iplt->root.refcount > 0)
16917 {
16918 elf32_arm_allocate_plt_entry (info, TRUE,
16919 &local_iplt->root,
16920 &local_iplt->arm);
16921 if (local_iplt->arm.noncall_refcount == 0)
16922 /* All references to the PLT are calls, so all
16923 non-call references can resolve directly to the
16924 run-time target. This means that the .got entry
16925 would be the same as the .igot.plt entry, so there's
16926 no point creating both. */
16927 *local_got = 0;
16928 }
16929 else
16930 {
16931 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16932 local_iplt->root.offset = (bfd_vma) -1;
16933 }
16934
16935 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16936 {
16937 asection *psrel;
16938
16939 psrel = elf_section_data (p->sec)->sreloc;
16940 if (local_iplt->arm.noncall_refcount == 0)
16941 elf32_arm_allocate_irelocs (info, psrel, p->count);
16942 else
16943 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16944 }
16945 }
5e681ec4
PB
16946 if (*local_got > 0)
16947 {
34e77a92
RS
16948 Elf_Internal_Sym *isym;
16949
eea6121a 16950 *local_got = s->size;
ba93b8ac
DJ
16951 if (*local_tls_type & GOT_TLS_GD)
16952 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16953 s->size += 8;
0855e32b
NS
16954 if (*local_tls_type & GOT_TLS_GDESC)
16955 {
16956 *local_tlsdesc_gotent = htab->root.sgotplt->size
16957 - elf32_arm_compute_jump_table_size (htab);
16958 htab->root.sgotplt->size += 8;
16959 *local_got = (bfd_vma) -2;
34e77a92 16960 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16961 reloc in the middle of .got.plt. */
99059e56 16962 htab->num_tls_desc++;
0855e32b 16963 }
ba93b8ac
DJ
16964 if (*local_tls_type & GOT_TLS_IE)
16965 s->size += 4;
ba93b8ac 16966
0855e32b
NS
16967 if (*local_tls_type & GOT_NORMAL)
16968 {
16969 /* If the symbol is both GD and GDESC, *local_got
16970 may have been overwritten. */
16971 *local_got = s->size;
16972 s->size += 4;
16973 }
16974
34e77a92
RS
16975 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
16976 if (isym == NULL)
16977 return FALSE;
16978
16979 /* If all references to an STT_GNU_IFUNC PLT are calls,
16980 then all non-call references, including this GOT entry,
16981 resolve directly to the run-time target. */
16982 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16983 && (local_iplt == NULL
16984 || local_iplt->arm.noncall_refcount == 0))
16985 elf32_arm_allocate_irelocs (info, srel, 1);
e8b09b87 16986 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
0855e32b 16987 {
e8b09b87 16988 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
3064e1ff 16989 elf32_arm_allocate_dynrelocs (info, srel, 1);
e8b09b87
CL
16990 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16991 htab->srofixup->size += 4;
99059e56 16992
e8b09b87
CL
16993 if ((bfd_link_pic (info) || htab->fdpic_p)
16994 && *local_tls_type & GOT_TLS_GDESC)
3064e1ff
JB
16995 {
16996 elf32_arm_allocate_dynrelocs (info,
16997 htab->root.srelplt, 1);
16998 htab->tls_trampoline = -1;
16999 }
0855e32b 17000 }
5e681ec4
PB
17001 }
17002 else
17003 *local_got = (bfd_vma) -1;
17004 }
252b5132
RH
17005 }
17006
ba93b8ac
DJ
17007 if (htab->tls_ldm_got.refcount > 0)
17008 {
17009 /* Allocate two GOT entries and one dynamic relocation (if necessary)
5c5a4843 17010 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
362d30a1
RS
17011 htab->tls_ldm_got.offset = htab->root.sgot->size;
17012 htab->root.sgot->size += 8;
0e1862bb 17013 if (bfd_link_pic (info))
47beaa6a 17014 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
17015 }
17016 else
17017 htab->tls_ldm_got.offset = -1;
17018
e8b09b87
CL
17019 /* At the very end of the .rofixup section is a pointer to the GOT,
17020 reserve space for it. */
17021 if (htab->fdpic_p && htab->srofixup != NULL)
17022 htab->srofixup->size += 4;
17023
5e681ec4
PB
17024 /* Allocate global sym .plt and .got entries, and space for global
17025 sym dynamic relocs. */
47beaa6a 17026 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 17027
d504ffc8 17028 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 17029 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 17030 {
0ffa91dd 17031 if (! is_arm_elf (ibfd))
e44a2c9c
AM
17032 continue;
17033
c7b8f16e
JB
17034 /* Initialise mapping tables for code/data. */
17035 bfd_elf32_arm_init_maps (ibfd);
906e58ca 17036
c7b8f16e 17037 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
a504d23a
LA
17038 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17039 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
90b6238f 17040 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
c7b8f16e 17041 }
d504ffc8 17042
3e6b1042
DJ
17043 /* Allocate space for the glue sections now that we've sized them. */
17044 bfd_elf32_arm_allocate_interworking_sections (info);
17045
0855e32b
NS
17046 /* For every jump slot reserved in the sgotplt, reloc_count is
17047 incremented. However, when we reserve space for TLS descriptors,
17048 it's not incremented, so in order to compute the space reserved
17049 for them, it suffices to multiply the reloc count by the jump
17050 slot size. */
17051 if (htab->root.srelplt)
17052 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
17053
17054 if (htab->tls_trampoline)
17055 {
17056 if (htab->root.splt->size == 0)
17057 htab->root.splt->size += htab->plt_header_size;
b38cadfb 17058
0855e32b
NS
17059 htab->tls_trampoline = htab->root.splt->size;
17060 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 17061
0855e32b 17062 /* If we're not using lazy TLS relocations, don't generate the
99059e56 17063 PLT and GOT entries they require. */
0855e32b
NS
17064 if (!(info->flags & DF_BIND_NOW))
17065 {
17066 htab->dt_tlsdesc_got = htab->root.sgot->size;
17067 htab->root.sgot->size += 4;
17068
17069 htab->dt_tlsdesc_plt = htab->root.splt->size;
17070 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17071 }
17072 }
17073
252b5132
RH
17074 /* The check_relocs and adjust_dynamic_symbol entry points have
17075 determined the sizes of the various dynamic sections. Allocate
17076 memory for them. */
b34976b6
AM
17077 plt = FALSE;
17078 relocs = FALSE;
252b5132
RH
17079 for (s = dynobj->sections; s != NULL; s = s->next)
17080 {
17081 const char * name;
252b5132
RH
17082
17083 if ((s->flags & SEC_LINKER_CREATED) == 0)
17084 continue;
17085
17086 /* It's OK to base decisions on the section name, because none
17087 of the dynobj section names depend upon the input files. */
fd361982 17088 name = bfd_section_name (s);
252b5132 17089
34e77a92 17090 if (s == htab->root.splt)
252b5132 17091 {
c456f082
AM
17092 /* Remember whether there is a PLT. */
17093 plt = s->size != 0;
252b5132 17094 }
0112cd26 17095 else if (CONST_STRNEQ (name, ".rel"))
252b5132 17096 {
c456f082 17097 if (s->size != 0)
252b5132 17098 {
252b5132 17099 /* Remember whether there are any reloc sections other
00a97672 17100 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 17101 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 17102 relocs = TRUE;
252b5132
RH
17103
17104 /* We use the reloc_count field as a counter if we need
17105 to copy relocs into the output file. */
17106 s->reloc_count = 0;
17107 }
17108 }
34e77a92
RS
17109 else if (s != htab->root.sgot
17110 && s != htab->root.sgotplt
17111 && s != htab->root.iplt
17112 && s != htab->root.igotplt
5474d94f 17113 && s != htab->root.sdynbss
e8b09b87
CL
17114 && s != htab->root.sdynrelro
17115 && s != htab->srofixup)
252b5132
RH
17116 {
17117 /* It's not one of our sections, so don't allocate space. */
17118 continue;
17119 }
17120
c456f082 17121 if (s->size == 0)
252b5132 17122 {
c456f082 17123 /* If we don't need this section, strip it from the
00a97672
RS
17124 output file. This is mostly to handle .rel(a).bss and
17125 .rel(a).plt. We must create both sections in
c456f082
AM
17126 create_dynamic_sections, because they must be created
17127 before the linker maps input sections to output
17128 sections. The linker does that before
17129 adjust_dynamic_symbol is called, and it is that
17130 function which decides whether anything needs to go
17131 into these sections. */
8423293d 17132 s->flags |= SEC_EXCLUDE;
252b5132
RH
17133 continue;
17134 }
17135
c456f082
AM
17136 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17137 continue;
17138
252b5132 17139 /* Allocate memory for the section contents. */
21d799b5 17140 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 17141 if (s->contents == NULL)
b34976b6 17142 return FALSE;
252b5132
RH
17143 }
17144
17145 if (elf_hash_table (info)->dynamic_sections_created)
17146 {
17147 /* Add some entries to the .dynamic section. We fill in the
17148 values later, in elf32_arm_finish_dynamic_sections, but we
17149 must add the entries now so that we get the correct size for
17150 the .dynamic section. The DT_DEBUG entry is filled in by the
17151 dynamic linker and used by the debugger. */
dc810e39 17152#define add_dynamic_entry(TAG, VAL) \
5a580b3a 17153 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 17154
0e1862bb 17155 if (bfd_link_executable (info))
252b5132 17156 {
dc810e39 17157 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 17158 return FALSE;
252b5132
RH
17159 }
17160
17161 if (plt)
17162 {
dc810e39
AM
17163 if ( !add_dynamic_entry (DT_PLTGOT, 0)
17164 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
17165 || !add_dynamic_entry (DT_PLTREL,
17166 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 17167 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 17168 return FALSE;
0855e32b 17169
5025eb7c
AO
17170 if (htab->dt_tlsdesc_plt
17171 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
17172 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
b38cadfb 17173 return FALSE;
252b5132
RH
17174 }
17175
17176 if (relocs)
17177 {
00a97672
RS
17178 if (htab->use_rel)
17179 {
17180 if (!add_dynamic_entry (DT_REL, 0)
17181 || !add_dynamic_entry (DT_RELSZ, 0)
17182 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
17183 return FALSE;
17184 }
17185 else
17186 {
17187 if (!add_dynamic_entry (DT_RELA, 0)
17188 || !add_dynamic_entry (DT_RELASZ, 0)
17189 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17190 return FALSE;
17191 }
252b5132
RH
17192 }
17193
08d1f311
DJ
17194 /* If any dynamic relocs apply to a read-only section,
17195 then we need a DT_TEXTREL entry. */
17196 if ((info->flags & DF_TEXTREL) == 0)
63c1f59d 17197 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
08d1f311 17198
99e4ae17 17199 if ((info->flags & DF_TEXTREL) != 0)
252b5132 17200 {
dc810e39 17201 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 17202 return FALSE;
252b5132 17203 }
7a2b07ff
NS
17204 if (htab->vxworks_p
17205 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17206 return FALSE;
252b5132 17207 }
8532796c 17208#undef add_dynamic_entry
252b5132 17209
b34976b6 17210 return TRUE;
252b5132
RH
17211}
17212
0855e32b
NS
17213/* Size sections even though they're not dynamic. We use it to setup
17214 _TLS_MODULE_BASE_, if needed. */
17215
17216static bfd_boolean
17217elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 17218 struct bfd_link_info *info)
0855e32b
NS
17219{
17220 asection *tls_sec;
cb10292c
CL
17221 struct elf32_arm_link_hash_table *htab;
17222
17223 htab = elf32_arm_hash_table (info);
0855e32b 17224
0e1862bb 17225 if (bfd_link_relocatable (info))
0855e32b
NS
17226 return TRUE;
17227
17228 tls_sec = elf_hash_table (info)->tls_sec;
17229
17230 if (tls_sec)
17231 {
17232 struct elf_link_hash_entry *tlsbase;
17233
17234 tlsbase = elf_link_hash_lookup
17235 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17236
17237 if (tlsbase)
99059e56
RM
17238 {
17239 struct bfd_link_hash_entry *bh = NULL;
0855e32b 17240 const struct elf_backend_data *bed
99059e56 17241 = get_elf_backend_data (output_bfd);
0855e32b 17242
99059e56 17243 if (!(_bfd_generic_link_add_one_symbol
0855e32b
NS
17244 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17245 tls_sec, 0, NULL, FALSE,
17246 bed->collect, &bh)))
17247 return FALSE;
b38cadfb 17248
99059e56
RM
17249 tlsbase->type = STT_TLS;
17250 tlsbase = (struct elf_link_hash_entry *)bh;
17251 tlsbase->def_regular = 1;
17252 tlsbase->other = STV_HIDDEN;
17253 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
0855e32b
NS
17254 }
17255 }
cb10292c
CL
17256
17257 if (htab->fdpic_p && !bfd_link_relocatable (info)
17258 && !bfd_elf_stack_segment_size (output_bfd, info,
17259 "__stacksize", DEFAULT_STACK_SIZE))
17260 return FALSE;
17261
0855e32b
NS
17262 return TRUE;
17263}
17264
252b5132
RH
17265/* Finish up dynamic symbol handling. We set the contents of various
17266 dynamic sections here. */
17267
b34976b6 17268static bfd_boolean
906e58ca
NC
17269elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17270 struct bfd_link_info * info,
17271 struct elf_link_hash_entry * h,
17272 Elf_Internal_Sym * sym)
252b5132 17273{
e5a52504 17274 struct elf32_arm_link_hash_table *htab;
b7693d02 17275 struct elf32_arm_link_hash_entry *eh;
252b5132 17276
e5a52504 17277 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
17278 if (htab == NULL)
17279 return FALSE;
17280
b7693d02 17281 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
17282
17283 if (h->plt.offset != (bfd_vma) -1)
17284 {
34e77a92 17285 if (!eh->is_iplt)
e5a52504 17286 {
34e77a92 17287 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
17288 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17289 h->dynindx, 0))
17290 return FALSE;
e5a52504 17291 }
57e8b36a 17292
f5385ebf 17293 if (!h->def_regular)
252b5132
RH
17294 {
17295 /* Mark the symbol as undefined, rather than as defined in
3a635617 17296 the .plt section. */
252b5132 17297 sym->st_shndx = SHN_UNDEF;
3a635617 17298 /* If the symbol is weak we need to clear the value.
d982ba73
PB
17299 Otherwise, the PLT entry would provide a definition for
17300 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
17301 and so the symbol would never be NULL. Leave the value if
17302 there were any relocations where pointer equality matters
17303 (this is a clue for the dynamic linker, to make function
17304 pointer comparisons work between an application and shared
17305 library). */
97323ad1 17306 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 17307 sym->st_value = 0;
252b5132 17308 }
34e77a92
RS
17309 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17310 {
17311 /* At least one non-call relocation references this .iplt entry,
17312 so the .iplt entry is the function's canonical address. */
17313 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
39d911fc 17314 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
34e77a92
RS
17315 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17316 (output_bfd, htab->root.iplt->output_section));
17317 sym->st_value = (h->plt.offset
17318 + htab->root.iplt->output_section->vma
17319 + htab->root.iplt->output_offset);
17320 }
252b5132
RH
17321 }
17322
f5385ebf 17323 if (h->needs_copy)
252b5132
RH
17324 {
17325 asection * s;
947216bf 17326 Elf_Internal_Rela rel;
252b5132
RH
17327
17328 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
17329 BFD_ASSERT (h->dynindx != -1
17330 && (h->root.type == bfd_link_hash_defined
17331 || h->root.type == bfd_link_hash_defweak));
17332
00a97672 17333 rel.r_addend = 0;
252b5132
RH
17334 rel.r_offset = (h->root.u.def.value
17335 + h->root.u.def.section->output_section->vma
17336 + h->root.u.def.section->output_offset);
17337 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
afbf7e8e 17338 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
17339 s = htab->root.sreldynrelro;
17340 else
17341 s = htab->root.srelbss;
47beaa6a 17342 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
17343 }
17344
00a97672 17345 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
fac7bd64
CL
17346 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17347 it is relative to the ".got" section. */
9637f6ef 17348 if (h == htab->root.hdynamic
fac7bd64 17349 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
17350 sym->st_shndx = SHN_ABS;
17351
b34976b6 17352 return TRUE;
252b5132
RH
17353}
17354
0855e32b
NS
17355static void
17356arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17357 void *contents,
17358 const unsigned long *template, unsigned count)
17359{
17360 unsigned ix;
b38cadfb 17361
0855e32b
NS
17362 for (ix = 0; ix != count; ix++)
17363 {
17364 unsigned long insn = template[ix];
17365
17366 /* Emit mov pc,rx if bx is not permitted. */
17367 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17368 insn = (insn & 0xf000000f) | 0x01a0f000;
17369 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17370 }
17371}
17372
99059e56
RM
17373/* Install the special first PLT entry for elf32-arm-nacl. Unlike
17374 other variants, NaCl needs this entry in a static executable's
17375 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17376 zero. For .iplt really only the last bundle is useful, and .iplt
17377 could have a shorter first entry, with each individual PLT entry's
17378 relative branch calculated differently so it targets the last
17379 bundle instead of the instruction before it (labelled .Lplt_tail
17380 above). But it's simpler to keep the size and layout of PLT0
17381 consistent with the dynamic case, at the cost of some dead code at
17382 the start of .iplt and the one dead store to the stack at the start
17383 of .Lplt_tail. */
17384static void
17385arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17386 asection *plt, bfd_vma got_displacement)
17387{
17388 unsigned int i;
17389
17390 put_arm_insn (htab, output_bfd,
17391 elf32_arm_nacl_plt0_entry[0]
17392 | arm_movw_immediate (got_displacement),
17393 plt->contents + 0);
17394 put_arm_insn (htab, output_bfd,
17395 elf32_arm_nacl_plt0_entry[1]
17396 | arm_movt_immediate (got_displacement),
17397 plt->contents + 4);
17398
17399 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17400 put_arm_insn (htab, output_bfd,
17401 elf32_arm_nacl_plt0_entry[i],
17402 plt->contents + (i * 4));
17403}
17404
252b5132
RH
17405/* Finish up the dynamic sections. */
17406
b34976b6 17407static bfd_boolean
57e8b36a 17408elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
17409{
17410 bfd * dynobj;
17411 asection * sgot;
17412 asection * sdyn;
4dfe6ac6
NC
17413 struct elf32_arm_link_hash_table *htab;
17414
17415 htab = elf32_arm_hash_table (info);
17416 if (htab == NULL)
17417 return FALSE;
252b5132
RH
17418
17419 dynobj = elf_hash_table (info)->dynobj;
17420
362d30a1 17421 sgot = htab->root.sgotplt;
894891db
NC
17422 /* A broken linker script might have discarded the dynamic sections.
17423 Catch this here so that we do not seg-fault later on. */
17424 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17425 return FALSE;
3d4d4302 17426 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
17427
17428 if (elf_hash_table (info)->dynamic_sections_created)
17429 {
17430 asection *splt;
17431 Elf32_External_Dyn *dyncon, *dynconend;
17432
362d30a1 17433 splt = htab->root.splt;
24a1ba0f 17434 BFD_ASSERT (splt != NULL && sdyn != NULL);
cbc704f3 17435 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
17436
17437 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 17438 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 17439
252b5132
RH
17440 for (; dyncon < dynconend; dyncon++)
17441 {
17442 Elf_Internal_Dyn dyn;
17443 const char * name;
17444 asection * s;
17445
17446 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17447
17448 switch (dyn.d_tag)
17449 {
229fcec5
MM
17450 unsigned int type;
17451
252b5132 17452 default:
7a2b07ff
NS
17453 if (htab->vxworks_p
17454 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17455 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
17456 break;
17457
229fcec5
MM
17458 case DT_HASH:
17459 name = ".hash";
17460 goto get_vma_if_bpabi;
17461 case DT_STRTAB:
17462 name = ".dynstr";
17463 goto get_vma_if_bpabi;
17464 case DT_SYMTAB:
17465 name = ".dynsym";
17466 goto get_vma_if_bpabi;
c0042f5d
MM
17467 case DT_VERSYM:
17468 name = ".gnu.version";
17469 goto get_vma_if_bpabi;
17470 case DT_VERDEF:
17471 name = ".gnu.version_d";
17472 goto get_vma_if_bpabi;
17473 case DT_VERNEED:
17474 name = ".gnu.version_r";
17475 goto get_vma_if_bpabi;
17476
252b5132 17477 case DT_PLTGOT:
4ade44b7 17478 name = htab->symbian_p ? ".got" : ".got.plt";
252b5132
RH
17479 goto get_vma;
17480 case DT_JMPREL:
00a97672 17481 name = RELOC_SECTION (htab, ".plt");
252b5132 17482 get_vma:
4ade44b7 17483 s = bfd_get_linker_section (dynobj, name);
05456594
NC
17484 if (s == NULL)
17485 {
4eca0228 17486 _bfd_error_handler
4ade44b7 17487 (_("could not find section %s"), name);
05456594
NC
17488 bfd_set_error (bfd_error_invalid_operation);
17489 return FALSE;
17490 }
229fcec5 17491 if (!htab->symbian_p)
4ade44b7 17492 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
229fcec5
MM
17493 else
17494 /* In the BPABI, tags in the PT_DYNAMIC section point
17495 at the file offset, not the memory address, for the
17496 convenience of the post linker. */
4ade44b7 17497 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
252b5132
RH
17498 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17499 break;
17500
229fcec5
MM
17501 get_vma_if_bpabi:
17502 if (htab->symbian_p)
17503 goto get_vma;
17504 break;
17505
252b5132 17506 case DT_PLTRELSZ:
362d30a1 17507 s = htab->root.srelplt;
252b5132 17508 BFD_ASSERT (s != NULL);
eea6121a 17509 dyn.d_un.d_val = s->size;
252b5132
RH
17510 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17511 break;
906e58ca 17512
252b5132 17513 case DT_RELSZ:
00a97672 17514 case DT_RELASZ:
229fcec5
MM
17515 case DT_REL:
17516 case DT_RELA:
229fcec5
MM
17517 /* In the BPABI, the DT_REL tag must point at the file
17518 offset, not the VMA, of the first relocation
17519 section. So, we use code similar to that in
17520 elflink.c, but do not check for SHF_ALLOC on the
64f52338
AM
17521 relocation section, since relocation sections are
17522 never allocated under the BPABI. PLT relocs are also
17523 included. */
229fcec5
MM
17524 if (htab->symbian_p)
17525 {
17526 unsigned int i;
17527 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17528 ? SHT_REL : SHT_RELA);
17529 dyn.d_un.d_val = 0;
17530 for (i = 1; i < elf_numsections (output_bfd); i++)
17531 {
906e58ca 17532 Elf_Internal_Shdr *hdr
229fcec5
MM
17533 = elf_elfsections (output_bfd)[i];
17534 if (hdr->sh_type == type)
17535 {
906e58ca 17536 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
17537 || dyn.d_tag == DT_RELASZ)
17538 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
17539 else if ((ufile_ptr) hdr->sh_offset
17540 <= dyn.d_un.d_val - 1)
229fcec5
MM
17541 dyn.d_un.d_val = hdr->sh_offset;
17542 }
17543 }
17544 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17545 }
252b5132 17546 break;
88f7bcd5 17547
0855e32b 17548 case DT_TLSDESC_PLT:
99059e56 17549 s = htab->root.splt;
0855e32b
NS
17550 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17551 + htab->dt_tlsdesc_plt);
17552 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17553 break;
17554
17555 case DT_TLSDESC_GOT:
99059e56 17556 s = htab->root.sgot;
0855e32b 17557 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
99059e56 17558 + htab->dt_tlsdesc_got);
0855e32b
NS
17559 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17560 break;
17561
88f7bcd5
NC
17562 /* Set the bottom bit of DT_INIT/FINI if the
17563 corresponding function is Thumb. */
17564 case DT_INIT:
17565 name = info->init_function;
17566 goto get_sym;
17567 case DT_FINI:
17568 name = info->fini_function;
17569 get_sym:
17570 /* If it wasn't set by elf_bfd_final_link
4cc11e76 17571 then there is nothing to adjust. */
88f7bcd5
NC
17572 if (dyn.d_un.d_val != 0)
17573 {
17574 struct elf_link_hash_entry * eh;
17575
17576 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 17577 FALSE, FALSE, TRUE);
39d911fc
TP
17578 if (eh != NULL
17579 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17580 == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
17581 {
17582 dyn.d_un.d_val |= 1;
b34976b6 17583 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
17584 }
17585 }
17586 break;
252b5132
RH
17587 }
17588 }
17589
24a1ba0f 17590 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 17591 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 17592 {
00a97672
RS
17593 const bfd_vma *plt0_entry;
17594 bfd_vma got_address, plt_address, got_displacement;
17595
17596 /* Calculate the addresses of the GOT and PLT. */
17597 got_address = sgot->output_section->vma + sgot->output_offset;
17598 plt_address = splt->output_section->vma + splt->output_offset;
17599
17600 if (htab->vxworks_p)
17601 {
17602 /* The VxWorks GOT is relocated by the dynamic linker.
17603 Therefore, we must emit relocations rather than simply
17604 computing the values now. */
17605 Elf_Internal_Rela rel;
17606
17607 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
17608 put_arm_insn (htab, output_bfd, plt0_entry[0],
17609 splt->contents + 0);
17610 put_arm_insn (htab, output_bfd, plt0_entry[1],
17611 splt->contents + 4);
17612 put_arm_insn (htab, output_bfd, plt0_entry[2],
17613 splt->contents + 8);
00a97672
RS
17614 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17615
8029a119 17616 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
17617 rel.r_offset = plt_address + 12;
17618 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17619 rel.r_addend = 0;
17620 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17621 htab->srelplt2->contents);
17622 }
b38cadfb 17623 else if (htab->nacl_p)
99059e56
RM
17624 arm_nacl_put_plt0 (htab, output_bfd, splt,
17625 got_address + 8 - (plt_address + 16));
eed94f8f
NC
17626 else if (using_thumb_only (htab))
17627 {
17628 got_displacement = got_address - (plt_address + 12);
17629
17630 plt0_entry = elf32_thumb2_plt0_entry;
17631 put_arm_insn (htab, output_bfd, plt0_entry[0],
17632 splt->contents + 0);
17633 put_arm_insn (htab, output_bfd, plt0_entry[1],
17634 splt->contents + 4);
17635 put_arm_insn (htab, output_bfd, plt0_entry[2],
17636 splt->contents + 8);
17637
17638 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17639 }
00a97672
RS
17640 else
17641 {
17642 got_displacement = got_address - (plt_address + 16);
17643
17644 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
17645 put_arm_insn (htab, output_bfd, plt0_entry[0],
17646 splt->contents + 0);
17647 put_arm_insn (htab, output_bfd, plt0_entry[1],
17648 splt->contents + 4);
17649 put_arm_insn (htab, output_bfd, plt0_entry[2],
17650 splt->contents + 8);
17651 put_arm_insn (htab, output_bfd, plt0_entry[3],
17652 splt->contents + 12);
5e681ec4 17653
5e681ec4 17654#ifdef FOUR_WORD_PLT
00a97672
RS
17655 /* The displacement value goes in the otherwise-unused
17656 last word of the second entry. */
17657 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 17658#else
00a97672 17659 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 17660#endif
00a97672 17661 }
f7a74f8c 17662 }
252b5132
RH
17663
17664 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17665 really seem like the right value. */
74541ad4
AM
17666 if (splt->output_section->owner == output_bfd)
17667 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 17668
0855e32b
NS
17669 if (htab->dt_tlsdesc_plt)
17670 {
17671 bfd_vma got_address
17672 = sgot->output_section->vma + sgot->output_offset;
17673 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17674 + htab->root.sgot->output_offset);
17675 bfd_vma plt_address
17676 = splt->output_section->vma + splt->output_offset;
17677
b38cadfb 17678 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17679 splt->contents + htab->dt_tlsdesc_plt,
17680 dl_tlsdesc_lazy_trampoline, 6);
17681
17682 bfd_put_32 (output_bfd,
17683 gotplt_address + htab->dt_tlsdesc_got
17684 - (plt_address + htab->dt_tlsdesc_plt)
17685 - dl_tlsdesc_lazy_trampoline[6],
17686 splt->contents + htab->dt_tlsdesc_plt + 24);
17687 bfd_put_32 (output_bfd,
17688 got_address - (plt_address + htab->dt_tlsdesc_plt)
17689 - dl_tlsdesc_lazy_trampoline[7],
17690 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17691 }
17692
17693 if (htab->tls_trampoline)
17694 {
b38cadfb 17695 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17696 splt->contents + htab->tls_trampoline,
17697 tls_trampoline, 3);
17698#ifdef FOUR_WORD_PLT
17699 bfd_put_32 (output_bfd, 0x00000000,
17700 splt->contents + htab->tls_trampoline + 12);
b38cadfb 17701#endif
0855e32b
NS
17702 }
17703
0e1862bb
L
17704 if (htab->vxworks_p
17705 && !bfd_link_pic (info)
17706 && htab->root.splt->size > 0)
00a97672
RS
17707 {
17708 /* Correct the .rel(a).plt.unloaded relocations. They will have
17709 incorrect symbol indexes. */
17710 int num_plts;
eed62c48 17711 unsigned char *p;
00a97672 17712
362d30a1 17713 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
17714 / htab->plt_entry_size);
17715 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17716
17717 for (; num_plts; num_plts--)
17718 {
17719 Elf_Internal_Rela rel;
17720
17721 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17722 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17723 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17724 p += RELOC_SIZE (htab);
17725
17726 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17727 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17728 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17729 p += RELOC_SIZE (htab);
17730 }
17731 }
252b5132
RH
17732 }
17733
99059e56
RM
17734 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17735 /* NaCl uses a special first entry in .iplt too. */
17736 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17737
252b5132 17738 /* Fill in the first three entries in the global offset table. */
229fcec5 17739 if (sgot)
252b5132 17740 {
229fcec5
MM
17741 if (sgot->size > 0)
17742 {
17743 if (sdyn == NULL)
17744 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17745 else
17746 bfd_put_32 (output_bfd,
17747 sdyn->output_section->vma + sdyn->output_offset,
17748 sgot->contents);
17749 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17750 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17751 }
252b5132 17752
229fcec5
MM
17753 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17754 }
252b5132 17755
e8b09b87
CL
17756 /* At the very end of the .rofixup section is a pointer to the GOT. */
17757 if (htab->fdpic_p && htab->srofixup != NULL)
17758 {
17759 struct elf_link_hash_entry *hgot = htab->root.hgot;
17760
17761 bfd_vma got_value = hgot->root.u.def.value
17762 + hgot->root.u.def.section->output_section->vma
17763 + hgot->root.u.def.section->output_offset;
17764
17765 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17766
17767 /* Make sure we allocated and generated the same number of fixups. */
17768 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17769 }
17770
b34976b6 17771 return TRUE;
252b5132
RH
17772}
17773
ed7e9d0b
AM
17774static bfd_boolean
17775elf32_arm_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
ba96a88f 17776{
9b485d32 17777 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 17778 struct elf32_arm_link_hash_table *globals;
ac4c9b04 17779 struct elf_segment_map *m;
ba96a88f 17780
ed7e9d0b
AM
17781 if (!_bfd_elf_init_file_header (abfd, link_info))
17782 return FALSE;
17783
ba96a88f
NC
17784 i_ehdrp = elf_elfheader (abfd);
17785
94a3258f
PB
17786 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17787 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
ba96a88f 17788 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 17789
93204d3a
PB
17790 if (link_info)
17791 {
17792 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 17793 if (globals != NULL && globals->byteswap_code)
93204d3a 17794 i_ehdrp->e_flags |= EF_ARM_BE8;
18a20338
CL
17795
17796 if (globals->fdpic_p)
17797 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
93204d3a 17798 }
3bfcb652
NC
17799
17800 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17801 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17802 {
17803 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 17804 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
17805 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17806 else
17807 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17808 }
ac4c9b04
MG
17809
17810 /* Scan segment to set p_flags attribute if it contains only sections with
f0728ee3 17811 SHF_ARM_PURECODE flag. */
ac4c9b04
MG
17812 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17813 {
17814 unsigned int j;
17815
17816 if (m->count == 0)
17817 continue;
17818 for (j = 0; j < m->count; j++)
17819 {
f0728ee3 17820 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
ac4c9b04
MG
17821 break;
17822 }
17823 if (j == m->count)
17824 {
17825 m->p_flags = PF_X;
17826 m->p_flags_valid = 1;
17827 }
17828 }
ed7e9d0b 17829 return TRUE;
ba96a88f
NC
17830}
17831
99e4ae17 17832static enum elf_reloc_type_class
7e612e98
AM
17833elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17834 const asection *rel_sec ATTRIBUTE_UNUSED,
17835 const Elf_Internal_Rela *rela)
99e4ae17 17836{
f51e552e 17837 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
17838 {
17839 case R_ARM_RELATIVE:
17840 return reloc_class_relative;
17841 case R_ARM_JUMP_SLOT:
17842 return reloc_class_plt;
17843 case R_ARM_COPY:
17844 return reloc_class_copy;
109575d7
JW
17845 case R_ARM_IRELATIVE:
17846 return reloc_class_ifunc;
99e4ae17
AJ
17847 default:
17848 return reloc_class_normal;
17849 }
17850}
17851
e489d0ae 17852static void
cc364be6 17853arm_final_write_processing (bfd *abfd)
e16bb312 17854{
5a6c6817 17855 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
17856}
17857
cc364be6
AM
17858static bfd_boolean
17859elf32_arm_final_write_processing (bfd *abfd)
06f44071 17860{
cc364be6
AM
17861 arm_final_write_processing (abfd);
17862 return _bfd_elf_final_write_processing (abfd);
06f44071
AM
17863}
17864
40a18ebd
NC
17865/* Return TRUE if this is an unwinding table entry. */
17866
17867static bfd_boolean
17868is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17869{
0112cd26
NC
17870 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17871 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
17872}
17873
17874
17875/* Set the type and flags for an ARM section. We do this by
17876 the section name, which is a hack, but ought to work. */
17877
17878static bfd_boolean
17879elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17880{
17881 const char * name;
17882
fd361982 17883 name = bfd_section_name (sec);
40a18ebd
NC
17884
17885 if (is_arm_elf_unwind_section_name (abfd, name))
17886 {
17887 hdr->sh_type = SHT_ARM_EXIDX;
17888 hdr->sh_flags |= SHF_LINK_ORDER;
17889 }
ac4c9b04 17890
f0728ee3
AV
17891 if (sec->flags & SEC_ELF_PURECODE)
17892 hdr->sh_flags |= SHF_ARM_PURECODE;
ac4c9b04 17893
40a18ebd
NC
17894 return TRUE;
17895}
17896
6dc132d9
L
17897/* Handle an ARM specific section when reading an object file. This is
17898 called when bfd_section_from_shdr finds a section with an unknown
17899 type. */
40a18ebd
NC
17900
17901static bfd_boolean
17902elf32_arm_section_from_shdr (bfd *abfd,
17903 Elf_Internal_Shdr * hdr,
6dc132d9
L
17904 const char *name,
17905 int shindex)
40a18ebd
NC
17906{
17907 /* There ought to be a place to keep ELF backend specific flags, but
17908 at the moment there isn't one. We just keep track of the
17909 sections by their name, instead. Fortunately, the ABI gives
17910 names for all the ARM specific sections, so we will probably get
17911 away with this. */
17912 switch (hdr->sh_type)
17913 {
17914 case SHT_ARM_EXIDX:
0951f019
RE
17915 case SHT_ARM_PREEMPTMAP:
17916 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
17917 break;
17918
17919 default:
17920 return FALSE;
17921 }
17922
6dc132d9 17923 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
17924 return FALSE;
17925
17926 return TRUE;
17927}
e489d0ae 17928
44444f50
NC
17929static _arm_elf_section_data *
17930get_arm_elf_section_data (asection * sec)
17931{
47b2e99c
JZ
17932 if (sec && sec->owner && is_arm_elf (sec->owner))
17933 return elf32_arm_section_data (sec);
44444f50
NC
17934 else
17935 return NULL;
8e3de13a
NC
17936}
17937
4e617b1e
PB
17938typedef struct
17939{
57402f1e 17940 void *flaginfo;
4e617b1e 17941 struct bfd_link_info *info;
91a5743d
PB
17942 asection *sec;
17943 int sec_shndx;
6e0b88f1
AM
17944 int (*func) (void *, const char *, Elf_Internal_Sym *,
17945 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
17946} output_arch_syminfo;
17947
17948enum map_symbol_type
17949{
17950 ARM_MAP_ARM,
17951 ARM_MAP_THUMB,
17952 ARM_MAP_DATA
17953};
17954
17955
7413f23f 17956/* Output a single mapping symbol. */
4e617b1e
PB
17957
17958static bfd_boolean
7413f23f
DJ
17959elf32_arm_output_map_sym (output_arch_syminfo *osi,
17960 enum map_symbol_type type,
17961 bfd_vma offset)
4e617b1e
PB
17962{
17963 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
17964 Elf_Internal_Sym sym;
17965
91a5743d
PB
17966 sym.st_value = osi->sec->output_section->vma
17967 + osi->sec->output_offset
17968 + offset;
4e617b1e
PB
17969 sym.st_size = 0;
17970 sym.st_other = 0;
17971 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 17972 sym.st_shndx = osi->sec_shndx;
35fc36a8 17973 sym.st_target_internal = 0;
fe33d2fa 17974 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 17975 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
17976}
17977
34e77a92
RS
17978/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17979 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e
PB
17980
17981static bfd_boolean
34e77a92
RS
17982elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
17983 bfd_boolean is_iplt_entry_p,
17984 union gotplt_union *root_plt,
17985 struct arm_plt_info *arm_plt)
4e617b1e 17986{
4e617b1e 17987 struct elf32_arm_link_hash_table *htab;
34e77a92 17988 bfd_vma addr, plt_header_size;
4e617b1e 17989
34e77a92 17990 if (root_plt->offset == (bfd_vma) -1)
4e617b1e
PB
17991 return TRUE;
17992
4dfe6ac6
NC
17993 htab = elf32_arm_hash_table (osi->info);
17994 if (htab == NULL)
17995 return FALSE;
17996
34e77a92
RS
17997 if (is_iplt_entry_p)
17998 {
17999 osi->sec = htab->root.iplt;
18000 plt_header_size = 0;
18001 }
18002 else
18003 {
18004 osi->sec = htab->root.splt;
18005 plt_header_size = htab->plt_header_size;
18006 }
18007 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
18008 (osi->info->output_bfd, osi->sec->output_section));
18009
18010 addr = root_plt->offset & -2;
4e617b1e
PB
18011 if (htab->symbian_p)
18012 {
7413f23f 18013 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 18014 return FALSE;
7413f23f 18015 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
18016 return FALSE;
18017 }
18018 else if (htab->vxworks_p)
18019 {
7413f23f 18020 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 18021 return FALSE;
7413f23f 18022 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 18023 return FALSE;
7413f23f 18024 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 18025 return FALSE;
7413f23f 18026 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
18027 return FALSE;
18028 }
b38cadfb
NC
18029 else if (htab->nacl_p)
18030 {
18031 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18032 return FALSE;
18033 }
7801f98f
CL
18034 else if (htab->fdpic_p)
18035 {
59029f57
CL
18036 enum map_symbol_type type = using_thumb_only(htab)
18037 ? ARM_MAP_THUMB
18038 : ARM_MAP_ARM;
18039
7801f98f 18040 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
4b24dd1a
AM
18041 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18042 return FALSE;
59029f57 18043 if (!elf32_arm_output_map_sym (osi, type, addr))
4b24dd1a 18044 return FALSE;
7801f98f 18045 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
4b24dd1a 18046 return FALSE;
7801f98f 18047 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
4b24dd1a
AM
18048 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
18049 return FALSE;
7801f98f 18050 }
eed94f8f
NC
18051 else if (using_thumb_only (htab))
18052 {
18053 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
18054 return FALSE;
6a631e86 18055 }
4e617b1e
PB
18056 else
18057 {
34e77a92 18058 bfd_boolean thumb_stub_p;
bd97cb95 18059
34e77a92
RS
18060 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
18061 if (thumb_stub_p)
4e617b1e 18062 {
7413f23f 18063 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
18064 return FALSE;
18065 }
18066#ifdef FOUR_WORD_PLT
7413f23f 18067 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 18068 return FALSE;
7413f23f 18069 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
18070 return FALSE;
18071#else
906e58ca 18072 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
18073 so only need to output a mapping symbol for the first PLT entry and
18074 entries with thumb thunks. */
34e77a92 18075 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 18076 {
7413f23f 18077 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
18078 return FALSE;
18079 }
18080#endif
18081 }
18082
18083 return TRUE;
18084}
18085
34e77a92
RS
18086/* Output mapping symbols for PLT entries associated with H. */
18087
18088static bfd_boolean
18089elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
18090{
18091 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
18092 struct elf32_arm_link_hash_entry *eh;
18093
18094 if (h->root.type == bfd_link_hash_indirect)
18095 return TRUE;
18096
18097 if (h->root.type == bfd_link_hash_warning)
18098 /* When warning symbols are created, they **replace** the "real"
18099 entry in the hash table, thus we never get to see the real
18100 symbol in a hash traversal. So look at it now. */
18101 h = (struct elf_link_hash_entry *) h->root.u.i.link;
18102
18103 eh = (struct elf32_arm_link_hash_entry *) h;
18104 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18105 &h->plt, &eh->plt);
18106}
18107
4f4faa4d
TP
18108/* Bind a veneered symbol to its veneer identified by its hash entry
18109 STUB_ENTRY. The veneered location thus loose its symbol. */
18110
18111static void
18112arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18113{
18114 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18115
18116 BFD_ASSERT (hash);
18117 hash->root.root.u.def.section = stub_entry->stub_sec;
18118 hash->root.root.u.def.value = stub_entry->stub_offset;
18119 hash->root.size = stub_entry->stub_size;
18120}
18121
7413f23f
DJ
18122/* Output a single local symbol for a generated stub. */
18123
18124static bfd_boolean
18125elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18126 bfd_vma offset, bfd_vma size)
18127{
7413f23f
DJ
18128 Elf_Internal_Sym sym;
18129
7413f23f
DJ
18130 sym.st_value = osi->sec->output_section->vma
18131 + osi->sec->output_offset
18132 + offset;
18133 sym.st_size = size;
18134 sym.st_other = 0;
18135 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18136 sym.st_shndx = osi->sec_shndx;
35fc36a8 18137 sym.st_target_internal = 0;
57402f1e 18138 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 18139}
4e617b1e 18140
da5938a2 18141static bfd_boolean
8029a119
NC
18142arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18143 void * in_arg)
da5938a2
NC
18144{
18145 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
18146 asection *stub_sec;
18147 bfd_vma addr;
7413f23f 18148 char *stub_name;
9a008db3 18149 output_arch_syminfo *osi;
d3ce72d0 18150 const insn_sequence *template_sequence;
461a49ca
DJ
18151 enum stub_insn_type prev_type;
18152 int size;
18153 int i;
18154 enum map_symbol_type sym_type;
da5938a2
NC
18155
18156 /* Massage our args to the form they really have. */
18157 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 18158 osi = (output_arch_syminfo *) in_arg;
da5938a2 18159
da5938a2
NC
18160 stub_sec = stub_entry->stub_sec;
18161
18162 /* Ensure this stub is attached to the current section being
7413f23f 18163 processed. */
da5938a2
NC
18164 if (stub_sec != osi->sec)
18165 return TRUE;
18166
7413f23f 18167 addr = (bfd_vma) stub_entry->stub_offset;
d3ce72d0 18168 template_sequence = stub_entry->stub_template;
4f4faa4d
TP
18169
18170 if (arm_stub_sym_claimed (stub_entry->stub_type))
18171 arm_stub_claim_sym (stub_entry);
18172 else
7413f23f 18173 {
4f4faa4d
TP
18174 stub_name = stub_entry->output_name;
18175 switch (template_sequence[0].type)
18176 {
18177 case ARM_TYPE:
18178 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18179 stub_entry->stub_size))
18180 return FALSE;
18181 break;
18182 case THUMB16_TYPE:
18183 case THUMB32_TYPE:
18184 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18185 stub_entry->stub_size))
18186 return FALSE;
18187 break;
18188 default:
18189 BFD_FAIL ();
18190 return 0;
18191 }
7413f23f 18192 }
da5938a2 18193
461a49ca
DJ
18194 prev_type = DATA_TYPE;
18195 size = 0;
18196 for (i = 0; i < stub_entry->stub_template_size; i++)
18197 {
d3ce72d0 18198 switch (template_sequence[i].type)
461a49ca
DJ
18199 {
18200 case ARM_TYPE:
18201 sym_type = ARM_MAP_ARM;
18202 break;
18203
18204 case THUMB16_TYPE:
48229727 18205 case THUMB32_TYPE:
461a49ca
DJ
18206 sym_type = ARM_MAP_THUMB;
18207 break;
18208
18209 case DATA_TYPE:
18210 sym_type = ARM_MAP_DATA;
18211 break;
18212
18213 default:
18214 BFD_FAIL ();
4e31c731 18215 return FALSE;
461a49ca
DJ
18216 }
18217
d3ce72d0 18218 if (template_sequence[i].type != prev_type)
461a49ca 18219 {
d3ce72d0 18220 prev_type = template_sequence[i].type;
461a49ca
DJ
18221 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18222 return FALSE;
18223 }
18224
d3ce72d0 18225 switch (template_sequence[i].type)
461a49ca
DJ
18226 {
18227 case ARM_TYPE:
48229727 18228 case THUMB32_TYPE:
461a49ca
DJ
18229 size += 4;
18230 break;
18231
18232 case THUMB16_TYPE:
18233 size += 2;
18234 break;
18235
18236 case DATA_TYPE:
18237 size += 4;
18238 break;
18239
18240 default:
18241 BFD_FAIL ();
4e31c731 18242 return FALSE;
461a49ca
DJ
18243 }
18244 }
18245
da5938a2
NC
18246 return TRUE;
18247}
18248
33811162
DG
18249/* Output mapping symbols for linker generated sections,
18250 and for those data-only sections that do not have a
18251 $d. */
4e617b1e
PB
18252
18253static bfd_boolean
18254elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 18255 struct bfd_link_info *info,
57402f1e 18256 void *flaginfo,
6e0b88f1
AM
18257 int (*func) (void *, const char *,
18258 Elf_Internal_Sym *,
18259 asection *,
18260 struct elf_link_hash_entry *))
4e617b1e
PB
18261{
18262 output_arch_syminfo osi;
18263 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
18264 bfd_vma offset;
18265 bfd_size_type size;
33811162 18266 bfd *input_bfd;
4e617b1e
PB
18267
18268 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
18269 if (htab == NULL)
18270 return FALSE;
18271
906e58ca 18272 check_use_blx (htab);
91a5743d 18273
57402f1e 18274 osi.flaginfo = flaginfo;
4e617b1e
PB
18275 osi.info = info;
18276 osi.func = func;
906e58ca 18277
33811162
DG
18278 /* Add a $d mapping symbol to data-only sections that
18279 don't have any mapping symbol. This may result in (harmless) redundant
18280 mapping symbols. */
18281 for (input_bfd = info->input_bfds;
18282 input_bfd != NULL;
c72f2fb2 18283 input_bfd = input_bfd->link.next)
33811162
DG
18284 {
18285 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18286 for (osi.sec = input_bfd->sections;
18287 osi.sec != NULL;
18288 osi.sec = osi.sec->next)
18289 {
18290 if (osi.sec->output_section != NULL
f7dd8c79
DJ
18291 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18292 != 0)
33811162
DG
18293 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18294 == SEC_HAS_CONTENTS
18295 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 18296 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
18297 && osi.sec->size > 0
18298 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
18299 {
18300 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18301 (output_bfd, osi.sec->output_section);
18302 if (osi.sec_shndx != (int)SHN_BAD)
18303 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18304 }
18305 }
18306 }
18307
91a5743d
PB
18308 /* ARM->Thumb glue. */
18309 if (htab->arm_glue_size > 0)
18310 {
3d4d4302
AM
18311 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18312 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
18313
18314 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18315 (output_bfd, osi.sec->output_section);
0e1862bb 18316 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
91a5743d
PB
18317 || htab->pic_veneer)
18318 size = ARM2THUMB_PIC_GLUE_SIZE;
18319 else if (htab->use_blx)
18320 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18321 else
18322 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 18323
91a5743d
PB
18324 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18325 {
7413f23f
DJ
18326 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18327 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
18328 }
18329 }
18330
18331 /* Thumb->ARM glue. */
18332 if (htab->thumb_glue_size > 0)
18333 {
3d4d4302
AM
18334 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18335 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
18336
18337 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18338 (output_bfd, osi.sec->output_section);
18339 size = THUMB2ARM_GLUE_SIZE;
18340
18341 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18342 {
7413f23f
DJ
18343 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18344 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
18345 }
18346 }
18347
845b51d6
PB
18348 /* ARMv4 BX veneers. */
18349 if (htab->bx_glue_size > 0)
18350 {
3d4d4302
AM
18351 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18352 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
18353
18354 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18355 (output_bfd, osi.sec->output_section);
18356
7413f23f 18357 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
18358 }
18359
8029a119
NC
18360 /* Long calls stubs. */
18361 if (htab->stub_bfd && htab->stub_bfd->sections)
18362 {
da5938a2 18363 asection* stub_sec;
8029a119 18364
da5938a2
NC
18365 for (stub_sec = htab->stub_bfd->sections;
18366 stub_sec != NULL;
8029a119
NC
18367 stub_sec = stub_sec->next)
18368 {
18369 /* Ignore non-stub sections. */
18370 if (!strstr (stub_sec->name, STUB_SUFFIX))
18371 continue;
da5938a2 18372
8029a119 18373 osi.sec = stub_sec;
da5938a2 18374
8029a119
NC
18375 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18376 (output_bfd, osi.sec->output_section);
da5938a2 18377
8029a119
NC
18378 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18379 }
18380 }
da5938a2 18381
91a5743d 18382 /* Finally, output mapping symbols for the PLT. */
34e77a92 18383 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 18384 {
34e77a92
RS
18385 osi.sec = htab->root.splt;
18386 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18387 (output_bfd, osi.sec->output_section));
18388
18389 /* Output mapping symbols for the plt header. SymbianOS does not have a
18390 plt header. */
18391 if (htab->vxworks_p)
18392 {
18393 /* VxWorks shared libraries have no PLT header. */
0e1862bb 18394 if (!bfd_link_pic (info))
34e77a92
RS
18395 {
18396 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18397 return FALSE;
18398 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18399 return FALSE;
18400 }
18401 }
b38cadfb
NC
18402 else if (htab->nacl_p)
18403 {
18404 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18405 return FALSE;
18406 }
59029f57 18407 else if (using_thumb_only (htab) && !htab->fdpic_p)
eed94f8f
NC
18408 {
18409 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18410 return FALSE;
18411 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18412 return FALSE;
18413 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18414 return FALSE;
18415 }
e8b09b87 18416 else if (!htab->symbian_p && !htab->fdpic_p)
4e617b1e 18417 {
7413f23f 18418 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 18419 return FALSE;
34e77a92
RS
18420#ifndef FOUR_WORD_PLT
18421 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e 18422 return FALSE;
34e77a92 18423#endif
4e617b1e
PB
18424 }
18425 }
99059e56
RM
18426 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18427 {
18428 /* NaCl uses a special first entry in .iplt too. */
18429 osi.sec = htab->root.iplt;
18430 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18431 (output_bfd, osi.sec->output_section));
18432 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18433 return FALSE;
18434 }
34e77a92
RS
18435 if ((htab->root.splt && htab->root.splt->size > 0)
18436 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 18437 {
34e77a92
RS
18438 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18439 for (input_bfd = info->input_bfds;
18440 input_bfd != NULL;
c72f2fb2 18441 input_bfd = input_bfd->link.next)
34e77a92
RS
18442 {
18443 struct arm_local_iplt_info **local_iplt;
18444 unsigned int i, num_syms;
4e617b1e 18445
34e77a92
RS
18446 local_iplt = elf32_arm_local_iplt (input_bfd);
18447 if (local_iplt != NULL)
18448 {
18449 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18450 for (i = 0; i < num_syms; i++)
18451 if (local_iplt[i] != NULL
18452 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18453 &local_iplt[i]->root,
18454 &local_iplt[i]->arm))
18455 return FALSE;
18456 }
18457 }
18458 }
0855e32b
NS
18459 if (htab->dt_tlsdesc_plt != 0)
18460 {
18461 /* Mapping symbols for the lazy tls trampoline. */
18462 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18463 return FALSE;
b38cadfb 18464
0855e32b
NS
18465 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18466 htab->dt_tlsdesc_plt + 24))
18467 return FALSE;
18468 }
18469 if (htab->tls_trampoline != 0)
18470 {
18471 /* Mapping symbols for the tls trampoline. */
18472 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18473 return FALSE;
18474#ifdef FOUR_WORD_PLT
18475 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18476 htab->tls_trampoline + 12))
18477 return FALSE;
b38cadfb 18478#endif
0855e32b 18479 }
b38cadfb 18480
4e617b1e
PB
18481 return TRUE;
18482}
18483
54ddd295
TP
18484/* Filter normal symbols of CMSE entry functions of ABFD to include in
18485 the import library. All SYMCOUNT symbols of ABFD can be examined
18486 from their pointers in SYMS. Pointers of symbols to keep should be
18487 stored continuously at the beginning of that array.
18488
18489 Returns the number of symbols to keep. */
18490
18491static unsigned int
18492elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18493 struct bfd_link_info *info,
18494 asymbol **syms, long symcount)
18495{
18496 size_t maxnamelen;
18497 char *cmse_name;
18498 long src_count, dst_count = 0;
18499 struct elf32_arm_link_hash_table *htab;
18500
18501 htab = elf32_arm_hash_table (info);
18502 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18503 symcount = 0;
18504
18505 maxnamelen = 128;
18506 cmse_name = (char *) bfd_malloc (maxnamelen);
7a0fb7be
NC
18507 BFD_ASSERT (cmse_name);
18508
54ddd295
TP
18509 for (src_count = 0; src_count < symcount; src_count++)
18510 {
18511 struct elf32_arm_link_hash_entry *cmse_hash;
18512 asymbol *sym;
18513 flagword flags;
18514 char *name;
18515 size_t namelen;
18516
18517 sym = syms[src_count];
18518 flags = sym->flags;
18519 name = (char *) bfd_asymbol_name (sym);
18520
18521 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18522 continue;
18523 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18524 continue;
18525
18526 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18527 if (namelen > maxnamelen)
18528 {
18529 cmse_name = (char *)
18530 bfd_realloc (cmse_name, namelen);
18531 maxnamelen = namelen;
18532 }
18533 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18534 cmse_hash = (struct elf32_arm_link_hash_entry *)
18535 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18536
18537 if (!cmse_hash
18538 || (cmse_hash->root.root.type != bfd_link_hash_defined
18539 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18540 || cmse_hash->root.type != STT_FUNC)
18541 continue;
18542
54ddd295
TP
18543 syms[dst_count++] = sym;
18544 }
18545 free (cmse_name);
18546
18547 syms[dst_count] = NULL;
18548
18549 return dst_count;
18550}
18551
18552/* Filter symbols of ABFD to include in the import library. All
18553 SYMCOUNT symbols of ABFD can be examined from their pointers in
18554 SYMS. Pointers of symbols to keep should be stored continuously at
18555 the beginning of that array.
18556
18557 Returns the number of symbols to keep. */
18558
18559static unsigned int
18560elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18561 struct bfd_link_info *info,
18562 asymbol **syms, long symcount)
18563{
18564 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18565
046734ff
TP
18566 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18567 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18568 library to be a relocatable object file. */
18569 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
54ddd295
TP
18570 if (globals->cmse_implib)
18571 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18572 else
18573 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18574}
18575
e489d0ae
PB
18576/* Allocate target specific section data. */
18577
18578static bfd_boolean
18579elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18580{
f592407e
AM
18581 if (!sec->used_by_bfd)
18582 {
18583 _arm_elf_section_data *sdata;
986f0783 18584 size_t amt = sizeof (*sdata);
e489d0ae 18585
21d799b5 18586 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
18587 if (sdata == NULL)
18588 return FALSE;
18589 sec->used_by_bfd = sdata;
18590 }
e489d0ae
PB
18591
18592 return _bfd_elf_new_section_hook (abfd, sec);
18593}
18594
18595
18596/* Used to order a list of mapping symbols by address. */
18597
18598static int
18599elf32_arm_compare_mapping (const void * a, const void * b)
18600{
7f6a71ff
JM
18601 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18602 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18603
18604 if (amap->vma > bmap->vma)
18605 return 1;
18606 else if (amap->vma < bmap->vma)
18607 return -1;
18608 else if (amap->type > bmap->type)
18609 /* Ensure results do not depend on the host qsort for objects with
18610 multiple mapping symbols at the same address by sorting on type
18611 after vma. */
18612 return 1;
18613 else if (amap->type < bmap->type)
18614 return -1;
18615 else
18616 return 0;
e489d0ae
PB
18617}
18618
2468f9c9
PB
18619/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18620
18621static unsigned long
18622offset_prel31 (unsigned long addr, bfd_vma offset)
18623{
18624 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18625}
18626
18627/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18628 relocations. */
18629
18630static void
18631copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18632{
18633 unsigned long first_word = bfd_get_32 (output_bfd, from);
18634 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 18635
2468f9c9
PB
18636 /* High bit of first word is supposed to be zero. */
18637 if ((first_word & 0x80000000ul) == 0)
18638 first_word = offset_prel31 (first_word, offset);
b38cadfb 18639
2468f9c9
PB
18640 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18641 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18642 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18643 second_word = offset_prel31 (second_word, offset);
b38cadfb 18644
2468f9c9
PB
18645 bfd_put_32 (output_bfd, first_word, to);
18646 bfd_put_32 (output_bfd, second_word, to + 4);
18647}
e489d0ae 18648
48229727
JB
18649/* Data for make_branch_to_a8_stub(). */
18650
b38cadfb
NC
18651struct a8_branch_to_stub_data
18652{
48229727
JB
18653 asection *writing_section;
18654 bfd_byte *contents;
18655};
18656
18657
18658/* Helper to insert branches to Cortex-A8 erratum stubs in the right
18659 places for a particular section. */
18660
18661static bfd_boolean
18662make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 18663 void *in_arg)
48229727
JB
18664{
18665 struct elf32_arm_stub_hash_entry *stub_entry;
18666 struct a8_branch_to_stub_data *data;
18667 bfd_byte *contents;
18668 unsigned long branch_insn;
18669 bfd_vma veneered_insn_loc, veneer_entry_loc;
18670 bfd_signed_vma branch_offset;
18671 bfd *abfd;
8d9d9490 18672 unsigned int loc;
48229727
JB
18673
18674 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18675 data = (struct a8_branch_to_stub_data *) in_arg;
18676
18677 if (stub_entry->target_section != data->writing_section
4563a860 18678 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
18679 return TRUE;
18680
18681 contents = data->contents;
18682
8d9d9490
TP
18683 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18684 generated when both source and target are in the same section. */
48229727
JB
18685 veneered_insn_loc = stub_entry->target_section->output_section->vma
18686 + stub_entry->target_section->output_offset
8d9d9490 18687 + stub_entry->source_value;
48229727
JB
18688
18689 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18690 + stub_entry->stub_sec->output_offset
18691 + stub_entry->stub_offset;
18692
18693 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18694 veneered_insn_loc &= ~3u;
18695
18696 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18697
18698 abfd = stub_entry->target_section->owner;
8d9d9490 18699 loc = stub_entry->source_value;
48229727
JB
18700
18701 /* We attempt to avoid this condition by setting stubs_always_after_branch
18702 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18703 This check is just to be on the safe side... */
18704 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18705 {
871b3ab2 18706 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
4eca0228 18707 "allocated in unsafe location"), abfd);
48229727
JB
18708 return FALSE;
18709 }
18710
18711 switch (stub_entry->stub_type)
18712 {
18713 case arm_stub_a8_veneer_b:
18714 case arm_stub_a8_veneer_b_cond:
18715 branch_insn = 0xf0009000;
18716 goto jump24;
18717
18718 case arm_stub_a8_veneer_blx:
18719 branch_insn = 0xf000e800;
18720 goto jump24;
18721
18722 case arm_stub_a8_veneer_bl:
18723 {
18724 unsigned int i1, j1, i2, j2, s;
18725
18726 branch_insn = 0xf000d000;
18727
18728 jump24:
18729 if (branch_offset < -16777216 || branch_offset > 16777214)
18730 {
18731 /* There's not much we can do apart from complain if this
18732 happens. */
871b3ab2 18733 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
4eca0228 18734 "of range (input file too large)"), abfd);
48229727
JB
18735 return FALSE;
18736 }
18737
18738 /* i1 = not(j1 eor s), so:
18739 not i1 = j1 eor s
18740 j1 = (not i1) eor s. */
18741
18742 branch_insn |= (branch_offset >> 1) & 0x7ff;
18743 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18744 i2 = (branch_offset >> 22) & 1;
18745 i1 = (branch_offset >> 23) & 1;
18746 s = (branch_offset >> 24) & 1;
18747 j1 = (!i1) ^ s;
18748 j2 = (!i2) ^ s;
18749 branch_insn |= j2 << 11;
18750 branch_insn |= j1 << 13;
18751 branch_insn |= s << 26;
18752 }
18753 break;
18754
18755 default:
18756 BFD_FAIL ();
18757 return FALSE;
18758 }
18759
8d9d9490
TP
18760 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18761 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
48229727
JB
18762
18763 return TRUE;
18764}
18765
a504d23a
LA
18766/* Beginning of stm32l4xx work-around. */
18767
18768/* Functions encoding instructions necessary for the emission of the
18769 fix-stm32l4xx-629360.
18770 Encoding is extracted from the
18771 ARM (C) Architecture Reference Manual
18772 ARMv7-A and ARMv7-R edition
18773 ARM DDI 0406C.b (ID072512). */
18774
18775static inline bfd_vma
82188b29 18776create_instruction_branch_absolute (int branch_offset)
a504d23a
LA
18777{
18778 /* A8.8.18 B (A8-334)
18779 B target_address (Encoding T4). */
18780 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18781 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18782 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18783
a504d23a
LA
18784 int s = ((branch_offset & 0x1000000) >> 24);
18785 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18786 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18787
18788 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18789 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18790
18791 bfd_vma patched_inst = 0xf0009000
18792 | s << 26 /* S. */
18793 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18794 | j1 << 13 /* J1. */
18795 | j2 << 11 /* J2. */
18796 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18797
18798 return patched_inst;
18799}
18800
18801static inline bfd_vma
18802create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18803{
18804 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18805 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18806 bfd_vma patched_inst = 0xe8900000
18807 | (/*W=*/wback << 21)
18808 | (base_reg << 16)
18809 | (reg_mask & 0x0000ffff);
18810
18811 return patched_inst;
18812}
18813
18814static inline bfd_vma
18815create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18816{
18817 /* A8.8.60 LDMDB/LDMEA (A8-402)
18818 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18819 bfd_vma patched_inst = 0xe9100000
18820 | (/*W=*/wback << 21)
18821 | (base_reg << 16)
18822 | (reg_mask & 0x0000ffff);
18823
18824 return patched_inst;
18825}
18826
18827static inline bfd_vma
18828create_instruction_mov (int target_reg, int source_reg)
18829{
18830 /* A8.8.103 MOV (register) (A8-486)
18831 MOV Rd, Rm (Encoding T1). */
18832 bfd_vma patched_inst = 0x4600
18833 | (target_reg & 0x7)
18834 | ((target_reg & 0x8) >> 3) << 7
18835 | (source_reg << 3);
18836
18837 return patched_inst;
18838}
18839
18840static inline bfd_vma
18841create_instruction_sub (int target_reg, int source_reg, int value)
18842{
18843 /* A8.8.221 SUB (immediate) (A8-708)
18844 SUB Rd, Rn, #value (Encoding T3). */
18845 bfd_vma patched_inst = 0xf1a00000
18846 | (target_reg << 8)
18847 | (source_reg << 16)
18848 | (/*S=*/0 << 20)
18849 | ((value & 0x800) >> 11) << 26
18850 | ((value & 0x700) >> 8) << 12
18851 | (value & 0x0ff);
18852
18853 return patched_inst;
18854}
18855
18856static inline bfd_vma
9239bbd3 18857create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
a504d23a
LA
18858 int first_reg)
18859{
18860 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18861 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18862 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
a504d23a
LA
18863 | (/*W=*/wback << 21)
18864 | (base_reg << 16)
9239bbd3
CM
18865 | (num_words & 0x000000ff)
18866 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
a504d23a
LA
18867 | (first_reg & 0x00000001) << 22;
18868
18869 return patched_inst;
18870}
18871
18872static inline bfd_vma
9239bbd3
CM
18873create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18874 int first_reg)
a504d23a
LA
18875{
18876 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18877 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18878 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
a504d23a 18879 | (base_reg << 16)
9239bbd3
CM
18880 | (num_words & 0x000000ff)
18881 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
a504d23a
LA
18882 | (first_reg & 0x00000001) << 22;
18883
18884 return patched_inst;
18885}
18886
18887static inline bfd_vma
18888create_instruction_udf_w (int value)
18889{
18890 /* A8.8.247 UDF (A8-758)
18891 Undefined (Encoding T2). */
18892 bfd_vma patched_inst = 0xf7f0a000
18893 | (value & 0x00000fff)
18894 | (value & 0x000f0000) << 16;
18895
18896 return patched_inst;
18897}
18898
18899static inline bfd_vma
18900create_instruction_udf (int value)
18901{
18902 /* A8.8.247 UDF (A8-758)
18903 Undefined (Encoding T1). */
18904 bfd_vma patched_inst = 0xde00
18905 | (value & 0xff);
18906
18907 return patched_inst;
18908}
18909
18910/* Functions writing an instruction in memory, returning the next
18911 memory position to write to. */
18912
18913static inline bfd_byte *
18914push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18915 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18916{
18917 put_thumb2_insn (htab, output_bfd, insn, pt);
18918 return pt + 4;
18919}
18920
18921static inline bfd_byte *
18922push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18923 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18924{
18925 put_thumb_insn (htab, output_bfd, insn, pt);
18926 return pt + 2;
18927}
18928
18929/* Function filling up a region in memory with T1 and T2 UDFs taking
18930 care of alignment. */
18931
18932static bfd_byte *
18933stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
07d6d2b8
AM
18934 bfd * output_bfd,
18935 const bfd_byte * const base_stub_contents,
18936 bfd_byte * const from_stub_contents,
18937 const bfd_byte * const end_stub_contents)
a504d23a
LA
18938{
18939 bfd_byte *current_stub_contents = from_stub_contents;
18940
18941 /* Fill the remaining of the stub with deterministic contents : UDF
18942 instructions.
18943 Check if realignment is needed on modulo 4 frontier using T1, to
18944 further use T2. */
18945 if ((current_stub_contents < end_stub_contents)
18946 && !((current_stub_contents - base_stub_contents) % 2)
18947 && ((current_stub_contents - base_stub_contents) % 4))
18948 current_stub_contents =
18949 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18950 create_instruction_udf (0));
18951
18952 for (; current_stub_contents < end_stub_contents;)
18953 current_stub_contents =
18954 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18955 create_instruction_udf_w (0));
18956
18957 return current_stub_contents;
18958}
18959
18960/* Functions writing the stream of instructions equivalent to the
18961 derived sequence for ldmia, ldmdb, vldm respectively. */
18962
18963static void
18964stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18965 bfd * output_bfd,
18966 const insn32 initial_insn,
18967 const bfd_byte *const initial_insn_addr,
18968 bfd_byte *const base_stub_contents)
18969{
18970 int wback = (initial_insn & 0x00200000) >> 21;
18971 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18972 int insn_all_registers = initial_insn & 0x0000ffff;
18973 int insn_low_registers, insn_high_registers;
18974 int usable_register_mask;
b25e998d 18975 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18976 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18977 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18978 bfd_byte *current_stub_contents = base_stub_contents;
18979
18980 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18981
18982 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18983 smaller than 8 registers load sequences that do not cause the
18984 hardware issue. */
18985 if (nb_registers <= 8)
18986 {
18987 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18988 current_stub_contents =
18989 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18990 initial_insn);
18991
18992 /* B initial_insn_addr+4. */
18993 if (!restore_pc)
18994 current_stub_contents =
18995 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18996 create_instruction_branch_absolute
82188b29 18997 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18998
18999 /* Fill the remaining of the stub with deterministic contents. */
19000 current_stub_contents =
19001 stm32l4xx_fill_stub_udf (htab, output_bfd,
19002 base_stub_contents, current_stub_contents,
19003 base_stub_contents +
19004 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19005
19006 return;
19007 }
19008
19009 /* - reg_list[13] == 0. */
19010 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
19011
19012 /* - reg_list[14] & reg_list[15] != 1. */
19013 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19014
19015 /* - if (wback==1) reg_list[rn] == 0. */
19016 BFD_ASSERT (!wback || !restore_rn);
19017
19018 /* - nb_registers > 8. */
b25e998d 19019 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
19020
19021 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19022
19023 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
19024 - One with the 7 lowest registers (register mask 0x007F)
19025 This LDM will finally contain between 2 and 7 registers
19026 - One with the 7 highest registers (register mask 0xDF80)
19027 This ldm will finally contain between 2 and 7 registers. */
19028 insn_low_registers = insn_all_registers & 0x007F;
19029 insn_high_registers = insn_all_registers & 0xDF80;
19030
19031 /* A spare register may be needed during this veneer to temporarily
19032 handle the base register. This register will be restored with the
19033 last LDM operation.
19034 The usable register may be any general purpose register (that
19035 excludes PC, SP, LR : register mask is 0x1FFF). */
19036 usable_register_mask = 0x1FFF;
19037
19038 /* Generate the stub function. */
19039 if (wback)
19040 {
19041 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
19042 current_stub_contents =
19043 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19044 create_instruction_ldmia
19045 (rn, /*wback=*/1, insn_low_registers));
19046
19047 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
19048 current_stub_contents =
19049 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19050 create_instruction_ldmia
19051 (rn, /*wback=*/1, insn_high_registers));
19052 if (!restore_pc)
19053 {
19054 /* B initial_insn_addr+4. */
19055 current_stub_contents =
19056 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19057 create_instruction_branch_absolute
82188b29 19058 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19059 }
19060 }
19061 else /* if (!wback). */
19062 {
19063 ri = rn;
19064
19065 /* If Rn is not part of the high-register-list, move it there. */
19066 if (!(insn_high_registers & (1 << rn)))
19067 {
19068 /* Choose a Ri in the high-register-list that will be restored. */
19069 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19070
19071 /* MOV Ri, Rn. */
19072 current_stub_contents =
19073 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19074 create_instruction_mov (ri, rn));
19075 }
19076
19077 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
19078 current_stub_contents =
19079 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19080 create_instruction_ldmia
19081 (ri, /*wback=*/1, insn_low_registers));
19082
19083 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
19084 current_stub_contents =
19085 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19086 create_instruction_ldmia
19087 (ri, /*wback=*/0, insn_high_registers));
19088
19089 if (!restore_pc)
19090 {
19091 /* B initial_insn_addr+4. */
19092 current_stub_contents =
19093 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19094 create_instruction_branch_absolute
82188b29 19095 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19096 }
19097 }
19098
19099 /* Fill the remaining of the stub with deterministic contents. */
19100 current_stub_contents =
19101 stm32l4xx_fill_stub_udf (htab, output_bfd,
19102 base_stub_contents, current_stub_contents,
19103 base_stub_contents +
19104 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19105}
19106
19107static void
19108stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19109 bfd * output_bfd,
19110 const insn32 initial_insn,
19111 const bfd_byte *const initial_insn_addr,
19112 bfd_byte *const base_stub_contents)
19113{
19114 int wback = (initial_insn & 0x00200000) >> 21;
19115 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19116 int insn_all_registers = initial_insn & 0x0000ffff;
19117 int insn_low_registers, insn_high_registers;
19118 int usable_register_mask;
19119 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19120 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
b25e998d 19121 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
19122 bfd_byte *current_stub_contents = base_stub_contents;
19123
19124 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19125
19126 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19127 smaller than 8 registers load sequences that do not cause the
19128 hardware issue. */
19129 if (nb_registers <= 8)
19130 {
19131 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19132 current_stub_contents =
19133 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19134 initial_insn);
19135
19136 /* B initial_insn_addr+4. */
19137 current_stub_contents =
19138 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19139 create_instruction_branch_absolute
82188b29 19140 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19141
19142 /* Fill the remaining of the stub with deterministic contents. */
19143 current_stub_contents =
19144 stm32l4xx_fill_stub_udf (htab, output_bfd,
19145 base_stub_contents, current_stub_contents,
19146 base_stub_contents +
19147 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19148
19149 return;
19150 }
19151
19152 /* - reg_list[13] == 0. */
19153 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19154
19155 /* - reg_list[14] & reg_list[15] != 1. */
19156 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19157
19158 /* - if (wback==1) reg_list[rn] == 0. */
19159 BFD_ASSERT (!wback || !restore_rn);
19160
19161 /* - nb_registers > 8. */
b25e998d 19162 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
19163
19164 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19165
19166 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19167 - One with the 7 lowest registers (register mask 0x007F)
19168 This LDM will finally contain between 2 and 7 registers
19169 - One with the 7 highest registers (register mask 0xDF80)
19170 This ldm will finally contain between 2 and 7 registers. */
19171 insn_low_registers = insn_all_registers & 0x007F;
19172 insn_high_registers = insn_all_registers & 0xDF80;
19173
19174 /* A spare register may be needed during this veneer to temporarily
19175 handle the base register. This register will be restored with
19176 the last LDM operation.
19177 The usable register may be any general purpose register (that excludes
19178 PC, SP, LR : register mask is 0x1FFF). */
19179 usable_register_mask = 0x1FFF;
19180
19181 /* Generate the stub function. */
19182 if (!wback && !restore_pc && !restore_rn)
19183 {
19184 /* Choose a Ri in the low-register-list that will be restored. */
19185 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19186
19187 /* MOV Ri, Rn. */
19188 current_stub_contents =
19189 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19190 create_instruction_mov (ri, rn));
19191
19192 /* LDMDB Ri!, {R-high-register-list}. */
19193 current_stub_contents =
19194 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19195 create_instruction_ldmdb
19196 (ri, /*wback=*/1, insn_high_registers));
19197
19198 /* LDMDB Ri, {R-low-register-list}. */
19199 current_stub_contents =
19200 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19201 create_instruction_ldmdb
19202 (ri, /*wback=*/0, insn_low_registers));
19203
19204 /* B initial_insn_addr+4. */
19205 current_stub_contents =
19206 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19207 create_instruction_branch_absolute
82188b29 19208 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19209 }
19210 else if (wback && !restore_pc && !restore_rn)
19211 {
19212 /* LDMDB Rn!, {R-high-register-list}. */
19213 current_stub_contents =
19214 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19215 create_instruction_ldmdb
19216 (rn, /*wback=*/1, insn_high_registers));
19217
19218 /* LDMDB Rn!, {R-low-register-list}. */
19219 current_stub_contents =
19220 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19221 create_instruction_ldmdb
19222 (rn, /*wback=*/1, insn_low_registers));
19223
19224 /* B initial_insn_addr+4. */
19225 current_stub_contents =
19226 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19227 create_instruction_branch_absolute
82188b29 19228 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19229 }
19230 else if (!wback && restore_pc && !restore_rn)
19231 {
19232 /* Choose a Ri in the high-register-list that will be restored. */
19233 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19234
19235 /* SUB Ri, Rn, #(4*nb_registers). */
19236 current_stub_contents =
19237 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19238 create_instruction_sub (ri, rn, (4 * nb_registers)));
19239
19240 /* LDMIA Ri!, {R-low-register-list}. */
19241 current_stub_contents =
19242 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19243 create_instruction_ldmia
19244 (ri, /*wback=*/1, insn_low_registers));
19245
19246 /* LDMIA Ri, {R-high-register-list}. */
19247 current_stub_contents =
19248 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19249 create_instruction_ldmia
19250 (ri, /*wback=*/0, insn_high_registers));
19251 }
19252 else if (wback && restore_pc && !restore_rn)
19253 {
19254 /* Choose a Ri in the high-register-list that will be restored. */
19255 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19256
19257 /* SUB Rn, Rn, #(4*nb_registers) */
19258 current_stub_contents =
19259 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19260 create_instruction_sub (rn, rn, (4 * nb_registers)));
19261
19262 /* MOV Ri, Rn. */
19263 current_stub_contents =
19264 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19265 create_instruction_mov (ri, rn));
19266
19267 /* LDMIA Ri!, {R-low-register-list}. */
19268 current_stub_contents =
19269 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19270 create_instruction_ldmia
19271 (ri, /*wback=*/1, insn_low_registers));
19272
19273 /* LDMIA Ri, {R-high-register-list}. */
19274 current_stub_contents =
19275 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19276 create_instruction_ldmia
19277 (ri, /*wback=*/0, insn_high_registers));
19278 }
19279 else if (!wback && !restore_pc && restore_rn)
19280 {
19281 ri = rn;
19282 if (!(insn_low_registers & (1 << rn)))
19283 {
19284 /* Choose a Ri in the low-register-list that will be restored. */
19285 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19286
19287 /* MOV Ri, Rn. */
19288 current_stub_contents =
19289 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19290 create_instruction_mov (ri, rn));
19291 }
19292
19293 /* LDMDB Ri!, {R-high-register-list}. */
19294 current_stub_contents =
19295 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19296 create_instruction_ldmdb
19297 (ri, /*wback=*/1, insn_high_registers));
19298
19299 /* LDMDB Ri, {R-low-register-list}. */
19300 current_stub_contents =
19301 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19302 create_instruction_ldmdb
19303 (ri, /*wback=*/0, insn_low_registers));
19304
19305 /* B initial_insn_addr+4. */
19306 current_stub_contents =
19307 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19308 create_instruction_branch_absolute
82188b29 19309 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19310 }
19311 else if (!wback && restore_pc && restore_rn)
19312 {
19313 ri = rn;
19314 if (!(insn_high_registers & (1 << rn)))
19315 {
19316 /* Choose a Ri in the high-register-list that will be restored. */
19317 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19318 }
19319
19320 /* SUB Ri, Rn, #(4*nb_registers). */
19321 current_stub_contents =
19322 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19323 create_instruction_sub (ri, rn, (4 * nb_registers)));
19324
19325 /* LDMIA Ri!, {R-low-register-list}. */
19326 current_stub_contents =
19327 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19328 create_instruction_ldmia
19329 (ri, /*wback=*/1, insn_low_registers));
19330
19331 /* LDMIA Ri, {R-high-register-list}. */
19332 current_stub_contents =
19333 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19334 create_instruction_ldmia
19335 (ri, /*wback=*/0, insn_high_registers));
19336 }
19337 else if (wback && restore_rn)
19338 {
19339 /* The assembler should not have accepted to encode this. */
19340 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19341 "undefined behavior.\n");
19342 }
19343
19344 /* Fill the remaining of the stub with deterministic contents. */
19345 current_stub_contents =
19346 stm32l4xx_fill_stub_udf (htab, output_bfd,
19347 base_stub_contents, current_stub_contents,
19348 base_stub_contents +
19349 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19350
19351}
19352
19353static void
19354stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19355 bfd * output_bfd,
19356 const insn32 initial_insn,
19357 const bfd_byte *const initial_insn_addr,
19358 bfd_byte *const base_stub_contents)
19359{
13c9c485 19360 int num_words = initial_insn & 0xff;
a504d23a
LA
19361 bfd_byte *current_stub_contents = base_stub_contents;
19362
19363 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19364
19365 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
9239bbd3 19366 smaller than 8 words load sequences that do not cause the
a504d23a 19367 hardware issue. */
9239bbd3 19368 if (num_words <= 8)
a504d23a
LA
19369 {
19370 /* Untouched instruction. */
19371 current_stub_contents =
19372 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19373 initial_insn);
19374
19375 /* B initial_insn_addr+4. */
19376 current_stub_contents =
19377 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19378 create_instruction_branch_absolute
82188b29 19379 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19380 }
19381 else
19382 {
9eaff861 19383 bfd_boolean is_dp = /* DP encoding. */
9239bbd3 19384 (initial_insn & 0xfe100f00) == 0xec100b00;
a504d23a
LA
19385 bfd_boolean is_ia_nobang = /* (IA without !). */
19386 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19387 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19388 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19389 bfd_boolean is_db_bang = /* (DB with !). */
19390 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
9239bbd3 19391 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
a504d23a 19392 /* d = UInt (Vd:D);. */
9239bbd3 19393 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
a504d23a
LA
19394 | (((unsigned int)initial_insn << 9) >> 31);
19395
9239bbd3
CM
19396 /* Compute the number of 8-words chunks needed to split. */
19397 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
a504d23a
LA
19398 int chunk;
19399
19400 /* The test coverage has been done assuming the following
19401 hypothesis that exactly one of the previous is_ predicates is
19402 true. */
9239bbd3
CM
19403 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19404 && !(is_ia_nobang & is_ia_bang & is_db_bang));
a504d23a 19405
9239bbd3 19406 /* We treat the cutting of the words in one pass for all
a504d23a
LA
19407 cases, then we emit the adjustments:
19408
19409 vldm rx, {...}
19410 -> vldm rx!, {8_words_or_less} for each needed 8_word
19411 -> sub rx, rx, #size (list)
19412
19413 vldm rx!, {...}
19414 -> vldm rx!, {8_words_or_less} for each needed 8_word
19415 This also handles vpop instruction (when rx is sp)
19416
19417 vldmd rx!, {...}
19418 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
9239bbd3 19419 for (chunk = 0; chunk < chunks; ++chunk)
a504d23a 19420 {
9239bbd3
CM
19421 bfd_vma new_insn = 0;
19422
a504d23a
LA
19423 if (is_ia_nobang || is_ia_bang)
19424 {
9239bbd3
CM
19425 new_insn = create_instruction_vldmia
19426 (base_reg,
19427 is_dp,
19428 /*wback= . */1,
19429 chunks - (chunk + 1) ?
19430 8 : num_words - chunk * 8,
19431 first_reg + chunk * 8);
a504d23a
LA
19432 }
19433 else if (is_db_bang)
19434 {
9239bbd3
CM
19435 new_insn = create_instruction_vldmdb
19436 (base_reg,
19437 is_dp,
19438 chunks - (chunk + 1) ?
19439 8 : num_words - chunk * 8,
19440 first_reg + chunk * 8);
a504d23a 19441 }
9239bbd3
CM
19442
19443 if (new_insn)
19444 current_stub_contents =
19445 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19446 new_insn);
a504d23a
LA
19447 }
19448
19449 /* Only this case requires the base register compensation
19450 subtract. */
19451 if (is_ia_nobang)
19452 {
19453 current_stub_contents =
19454 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19455 create_instruction_sub
9239bbd3 19456 (base_reg, base_reg, 4*num_words));
a504d23a
LA
19457 }
19458
19459 /* B initial_insn_addr+4. */
19460 current_stub_contents =
19461 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19462 create_instruction_branch_absolute
82188b29 19463 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19464 }
19465
19466 /* Fill the remaining of the stub with deterministic contents. */
19467 current_stub_contents =
19468 stm32l4xx_fill_stub_udf (htab, output_bfd,
19469 base_stub_contents, current_stub_contents,
19470 base_stub_contents +
19471 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19472}
19473
19474static void
19475stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19476 bfd * output_bfd,
19477 const insn32 wrong_insn,
19478 const bfd_byte *const wrong_insn_addr,
19479 bfd_byte *const stub_contents)
19480{
19481 if (is_thumb2_ldmia (wrong_insn))
19482 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19483 wrong_insn, wrong_insn_addr,
19484 stub_contents);
19485 else if (is_thumb2_ldmdb (wrong_insn))
19486 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19487 wrong_insn, wrong_insn_addr,
19488 stub_contents);
19489 else if (is_thumb2_vldm (wrong_insn))
19490 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19491 wrong_insn, wrong_insn_addr,
19492 stub_contents);
19493}
19494
19495/* End of stm32l4xx work-around. */
19496
19497
e489d0ae
PB
19498/* Do code byteswapping. Return FALSE afterwards so that the section is
19499 written out as normal. */
19500
19501static bfd_boolean
c7b8f16e 19502elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
19503 struct bfd_link_info *link_info,
19504 asection *sec,
e489d0ae
PB
19505 bfd_byte *contents)
19506{
48229727 19507 unsigned int mapcount, errcount;
8e3de13a 19508 _arm_elf_section_data *arm_data;
c7b8f16e 19509 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 19510 elf32_arm_section_map *map;
c7b8f16e 19511 elf32_vfp11_erratum_list *errnode;
a504d23a 19512 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
e489d0ae
PB
19513 bfd_vma ptr;
19514 bfd_vma end;
c7b8f16e 19515 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 19516 bfd_byte tmp;
48229727 19517 unsigned int i;
57e8b36a 19518
4dfe6ac6
NC
19519 if (globals == NULL)
19520 return FALSE;
19521
8e3de13a
NC
19522 /* If this section has not been allocated an _arm_elf_section_data
19523 structure then we cannot record anything. */
19524 arm_data = get_arm_elf_section_data (sec);
19525 if (arm_data == NULL)
19526 return FALSE;
19527
19528 mapcount = arm_data->mapcount;
19529 map = arm_data->map;
c7b8f16e
JB
19530 errcount = arm_data->erratumcount;
19531
19532 if (errcount != 0)
19533 {
19534 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19535
19536 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
19537 errnode = errnode->next)
19538 {
19539 bfd_vma target = errnode->vma - offset;
19540
19541 switch (errnode->type)
19542 {
19543 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19544 {
19545 bfd_vma branch_to_veneer;
19546 /* Original condition code of instruction, plus bit mask for
19547 ARM B instruction. */
19548 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19549 | 0x0a000000;
c7b8f16e
JB
19550
19551 /* The instruction is before the label. */
91d6fa6a 19552 target -= 4;
c7b8f16e
JB
19553
19554 /* Above offset included in -4 below. */
19555 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 19556 - errnode->vma - 4;
c7b8f16e
JB
19557
19558 if ((signed) branch_to_veneer < -(1 << 25)
19559 || (signed) branch_to_veneer >= (1 << 25))
871b3ab2 19560 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19561 "range"), output_bfd);
c7b8f16e 19562
99059e56
RM
19563 insn |= (branch_to_veneer >> 2) & 0xffffff;
19564 contents[endianflip ^ target] = insn & 0xff;
19565 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19566 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19567 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19568 }
19569 break;
c7b8f16e
JB
19570
19571 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
19572 {
19573 bfd_vma branch_from_veneer;
19574 unsigned int insn;
c7b8f16e 19575
99059e56
RM
19576 /* Take size of veneer into account. */
19577 branch_from_veneer = errnode->u.v.branch->vma
19578 - errnode->vma - 12;
c7b8f16e
JB
19579
19580 if ((signed) branch_from_veneer < -(1 << 25)
19581 || (signed) branch_from_veneer >= (1 << 25))
871b3ab2 19582 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19583 "range"), output_bfd);
c7b8f16e 19584
99059e56
RM
19585 /* Original instruction. */
19586 insn = errnode->u.v.branch->u.b.vfp_insn;
19587 contents[endianflip ^ target] = insn & 0xff;
19588 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19589 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19590 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19591
19592 /* Branch back to insn after original insn. */
19593 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19594 contents[endianflip ^ (target + 4)] = insn & 0xff;
19595 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19596 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19597 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19598 }
19599 break;
c7b8f16e 19600
99059e56
RM
19601 default:
19602 abort ();
19603 }
19604 }
c7b8f16e 19605 }
e489d0ae 19606
a504d23a
LA
19607 if (arm_data->stm32l4xx_erratumcount != 0)
19608 {
19609 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19610 stm32l4xx_errnode != 0;
19611 stm32l4xx_errnode = stm32l4xx_errnode->next)
19612 {
19613 bfd_vma target = stm32l4xx_errnode->vma - offset;
19614
19615 switch (stm32l4xx_errnode->type)
19616 {
19617 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19618 {
19619 unsigned int insn;
19620 bfd_vma branch_to_veneer =
19621 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19622
19623 if ((signed) branch_to_veneer < -(1 << 24)
19624 || (signed) branch_to_veneer >= (1 << 24))
19625 {
19626 bfd_vma out_of_range =
19627 ((signed) branch_to_veneer < -(1 << 24)) ?
19628 - branch_to_veneer - (1 << 24) :
19629 ((signed) branch_to_veneer >= (1 << 24)) ?
19630 branch_to_veneer - (1 << 24) : 0;
19631
4eca0228 19632 _bfd_error_handler
2dcf00ce 19633 (_("%pB(%#" PRIx64 "): error: "
90b6238f
AM
19634 "cannot create STM32L4XX veneer; "
19635 "jump out of range by %" PRId64 " bytes; "
19636 "cannot encode branch instruction"),
a504d23a 19637 output_bfd,
2dcf00ce
AM
19638 (uint64_t) (stm32l4xx_errnode->vma - 4),
19639 (int64_t) out_of_range);
a504d23a
LA
19640 continue;
19641 }
19642
19643 insn = create_instruction_branch_absolute
82188b29 19644 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
a504d23a 19645
a2699ef2
AM
19646 /* The instruction is before the label. */
19647 target -= 4;
19648
a504d23a
LA
19649 put_thumb2_insn (globals, output_bfd,
19650 (bfd_vma) insn, contents + target);
19651 }
19652 break;
19653
19654 case STM32L4XX_ERRATUM_VENEER:
19655 {
82188b29
NC
19656 bfd_byte * veneer;
19657 bfd_byte * veneer_r;
a504d23a
LA
19658 unsigned int insn;
19659
82188b29
NC
19660 veneer = contents + target;
19661 veneer_r = veneer
19662 + stm32l4xx_errnode->u.b.veneer->vma
19663 - stm32l4xx_errnode->vma - 4;
a504d23a
LA
19664
19665 if ((signed) (veneer_r - veneer -
19666 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19667 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19668 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19669 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19670 || (signed) (veneer_r - veneer) >= (1 << 24))
19671 {
90b6238f
AM
19672 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19673 "veneer"), output_bfd);
a504d23a
LA
19674 continue;
19675 }
19676
19677 /* Original instruction. */
19678 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19679
19680 stm32l4xx_create_replacing_stub
19681 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19682 }
19683 break;
19684
19685 default:
19686 abort ();
19687 }
19688 }
19689 }
19690
2468f9c9
PB
19691 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19692 {
19693 arm_unwind_table_edit *edit_node
99059e56 19694 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 19695 /* Now, sec->size is the size of the section we will write. The original
99059e56 19696 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
19697 markers) was sec->rawsize. (This isn't the case if we perform no
19698 edits, then rawsize will be zero and we should use size). */
21d799b5 19699 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
19700 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19701 unsigned int in_index, out_index;
19702 bfd_vma add_to_offsets = 0;
19703
7a0fb7be
NC
19704 if (edited_contents == NULL)
19705 return FALSE;
2468f9c9 19706 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 19707 {
2468f9c9
PB
19708 if (edit_node)
19709 {
19710 unsigned int edit_index = edit_node->index;
b38cadfb 19711
2468f9c9 19712 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 19713 {
2468f9c9
PB
19714 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19715 contents + in_index * 8, add_to_offsets);
19716 out_index++;
19717 in_index++;
19718 }
19719 else if (in_index == edit_index
19720 || (in_index * 8 >= input_size
19721 && edit_index == UINT_MAX))
99059e56 19722 {
2468f9c9
PB
19723 switch (edit_node->type)
19724 {
19725 case DELETE_EXIDX_ENTRY:
19726 in_index++;
19727 add_to_offsets += 8;
19728 break;
b38cadfb 19729
2468f9c9
PB
19730 case INSERT_EXIDX_CANTUNWIND_AT_END:
19731 {
99059e56 19732 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
19733 bfd_vma text_offset = text_sec->output_section->vma
19734 + text_sec->output_offset
19735 + text_sec->size;
19736 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 19737 unsigned long prel31_offset;
2468f9c9
PB
19738
19739 /* Note: this is meant to be equivalent to an
19740 R_ARM_PREL31 relocation. These synthetic
19741 EXIDX_CANTUNWIND markers are not relocated by the
19742 usual BFD method. */
19743 prel31_offset = (text_offset - exidx_offset)
19744 & 0x7ffffffful;
491d01d3
YU
19745 if (bfd_link_relocatable (link_info))
19746 {
19747 /* Here relocation for new EXIDX_CANTUNWIND is
19748 created, so there is no need to
19749 adjust offset by hand. */
19750 prel31_offset = text_sec->output_offset
19751 + text_sec->size;
491d01d3 19752 }
2468f9c9
PB
19753
19754 /* First address we can't unwind. */
19755 bfd_put_32 (output_bfd, prel31_offset,
19756 &edited_contents[out_index * 8]);
19757
19758 /* Code for EXIDX_CANTUNWIND. */
19759 bfd_put_32 (output_bfd, 0x1,
19760 &edited_contents[out_index * 8 + 4]);
19761
19762 out_index++;
19763 add_to_offsets -= 8;
19764 }
19765 break;
19766 }
b38cadfb 19767
2468f9c9
PB
19768 edit_node = edit_node->next;
19769 }
19770 }
19771 else
19772 {
19773 /* No more edits, copy remaining entries verbatim. */
19774 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19775 contents + in_index * 8, add_to_offsets);
19776 out_index++;
19777 in_index++;
19778 }
19779 }
19780
19781 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19782 bfd_set_section_contents (output_bfd, sec->output_section,
19783 edited_contents,
19784 (file_ptr) sec->output_offset, sec->size);
19785
19786 return TRUE;
19787 }
19788
48229727
JB
19789 /* Fix code to point to Cortex-A8 erratum stubs. */
19790 if (globals->fix_cortex_a8)
19791 {
19792 struct a8_branch_to_stub_data data;
19793
19794 data.writing_section = sec;
19795 data.contents = contents;
19796
a504d23a
LA
19797 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19798 & data);
48229727
JB
19799 }
19800
e489d0ae
PB
19801 if (mapcount == 0)
19802 return FALSE;
19803
c7b8f16e 19804 if (globals->byteswap_code)
e489d0ae 19805 {
c7b8f16e 19806 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 19807
c7b8f16e
JB
19808 ptr = map[0].vma;
19809 for (i = 0; i < mapcount; i++)
99059e56
RM
19810 {
19811 if (i == mapcount - 1)
c7b8f16e 19812 end = sec->size;
99059e56
RM
19813 else
19814 end = map[i + 1].vma;
e489d0ae 19815
99059e56 19816 switch (map[i].type)
e489d0ae 19817 {
c7b8f16e
JB
19818 case 'a':
19819 /* Byte swap code words. */
19820 while (ptr + 3 < end)
99059e56
RM
19821 {
19822 tmp = contents[ptr];
19823 contents[ptr] = contents[ptr + 3];
19824 contents[ptr + 3] = tmp;
19825 tmp = contents[ptr + 1];
19826 contents[ptr + 1] = contents[ptr + 2];
19827 contents[ptr + 2] = tmp;
19828 ptr += 4;
19829 }
c7b8f16e 19830 break;
e489d0ae 19831
c7b8f16e
JB
19832 case 't':
19833 /* Byte swap code halfwords. */
19834 while (ptr + 1 < end)
99059e56
RM
19835 {
19836 tmp = contents[ptr];
19837 contents[ptr] = contents[ptr + 1];
19838 contents[ptr + 1] = tmp;
19839 ptr += 2;
19840 }
c7b8f16e
JB
19841 break;
19842
19843 case 'd':
19844 /* Leave data alone. */
19845 break;
19846 }
99059e56
RM
19847 ptr = end;
19848 }
e489d0ae 19849 }
8e3de13a 19850
93204d3a 19851 free (map);
47b2e99c 19852 arm_data->mapcount = -1;
c7b8f16e 19853 arm_data->mapsize = 0;
8e3de13a 19854 arm_data->map = NULL;
8e3de13a 19855
e489d0ae
PB
19856 return FALSE;
19857}
19858
0beaef2b
PB
19859/* Mangle thumb function symbols as we read them in. */
19860
8384fb8f 19861static bfd_boolean
0beaef2b
PB
19862elf32_arm_swap_symbol_in (bfd * abfd,
19863 const void *psrc,
19864 const void *pshn,
19865 Elf_Internal_Sym *dst)
19866{
8384fb8f
AM
19867 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19868 return FALSE;
39d911fc 19869 dst->st_target_internal = 0;
0beaef2b
PB
19870
19871 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 19872 the address. */
63e1a0fc
PB
19873 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19874 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 19875 {
63e1a0fc
PB
19876 if (dst->st_value & 1)
19877 {
19878 dst->st_value &= ~(bfd_vma) 1;
39d911fc
TP
19879 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19880 ST_BRANCH_TO_THUMB);
63e1a0fc
PB
19881 }
19882 else
39d911fc 19883 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
35fc36a8
RS
19884 }
19885 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19886 {
19887 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
39d911fc 19888 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
0beaef2b 19889 }
35fc36a8 19890 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
39d911fc 19891 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
35fc36a8 19892 else
39d911fc 19893 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
35fc36a8 19894
8384fb8f 19895 return TRUE;
0beaef2b
PB
19896}
19897
19898
19899/* Mangle thumb function symbols as we write them out. */
19900
19901static void
19902elf32_arm_swap_symbol_out (bfd *abfd,
19903 const Elf_Internal_Sym *src,
19904 void *cdst,
19905 void *shndx)
19906{
19907 Elf_Internal_Sym newsym;
19908
19909 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19910 of the address set, as per the new EABI. We do this unconditionally
19911 because objcopy does not set the elf header flags until after
19912 it writes out the symbol table. */
39d911fc 19913 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
0beaef2b
PB
19914 {
19915 newsym = *src;
34e77a92
RS
19916 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19917 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 19918 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
19919 {
19920 /* Do this only for defined symbols. At link type, the static
19921 linker will simulate the work of dynamic linker of resolving
19922 symbols and will carry over the thumbness of found symbols to
19923 the output symbol table. It's not clear how it happens, but
19924 the thumbness of undefined symbols can well be different at
19925 runtime, and writing '1' for them will be confusing for users
19926 and possibly for dynamic linker itself.
19927 */
19928 newsym.st_value |= 1;
19929 }
906e58ca 19930
0beaef2b
PB
19931 src = &newsym;
19932 }
19933 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19934}
19935
b294bdf8
MM
19936/* Add the PT_ARM_EXIDX program header. */
19937
19938static bfd_boolean
906e58ca 19939elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
19940 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19941{
19942 struct elf_segment_map *m;
19943 asection *sec;
19944
19945 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19946 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19947 {
19948 /* If there is already a PT_ARM_EXIDX header, then we do not
19949 want to add another one. This situation arises when running
19950 "strip"; the input binary already has the header. */
12bd6957 19951 m = elf_seg_map (abfd);
b294bdf8
MM
19952 while (m && m->p_type != PT_ARM_EXIDX)
19953 m = m->next;
19954 if (!m)
19955 {
21d799b5 19956 m = (struct elf_segment_map *)
99059e56 19957 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
19958 if (m == NULL)
19959 return FALSE;
19960 m->p_type = PT_ARM_EXIDX;
19961 m->count = 1;
19962 m->sections[0] = sec;
19963
12bd6957
AM
19964 m->next = elf_seg_map (abfd);
19965 elf_seg_map (abfd) = m;
b294bdf8
MM
19966 }
19967 }
19968
19969 return TRUE;
19970}
19971
19972/* We may add a PT_ARM_EXIDX program header. */
19973
19974static int
a6b96beb
AM
19975elf32_arm_additional_program_headers (bfd *abfd,
19976 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
19977{
19978 asection *sec;
19979
19980 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19981 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19982 return 1;
19983 else
19984 return 0;
19985}
19986
34e77a92
RS
19987/* Hook called by the linker routine which adds symbols from an object
19988 file. */
19989
19990static bfd_boolean
19991elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19992 Elf_Internal_Sym *sym, const char **namep,
19993 flagword *flagsp, asection **secp, bfd_vma *valp)
19994{
c792917c
NC
19995 if (elf32_arm_hash_table (info) == NULL)
19996 return FALSE;
19997
34e77a92
RS
19998 if (elf32_arm_hash_table (info)->vxworks_p
19999 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
20000 flagsp, secp, valp))
20001 return FALSE;
20002
20003 return TRUE;
20004}
20005
0beaef2b 20006/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
20007const struct elf_size_info elf32_arm_size_info =
20008{
0beaef2b
PB
20009 sizeof (Elf32_External_Ehdr),
20010 sizeof (Elf32_External_Phdr),
20011 sizeof (Elf32_External_Shdr),
20012 sizeof (Elf32_External_Rel),
20013 sizeof (Elf32_External_Rela),
20014 sizeof (Elf32_External_Sym),
20015 sizeof (Elf32_External_Dyn),
20016 sizeof (Elf_External_Note),
20017 4,
20018 1,
20019 32, 2,
20020 ELFCLASS32, EV_CURRENT,
20021 bfd_elf32_write_out_phdrs,
20022 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 20023 bfd_elf32_checksum_contents,
0beaef2b
PB
20024 bfd_elf32_write_relocs,
20025 elf32_arm_swap_symbol_in,
20026 elf32_arm_swap_symbol_out,
20027 bfd_elf32_slurp_reloc_table,
20028 bfd_elf32_slurp_symbol_table,
20029 bfd_elf32_swap_dyn_in,
20030 bfd_elf32_swap_dyn_out,
20031 bfd_elf32_swap_reloc_in,
20032 bfd_elf32_swap_reloc_out,
20033 bfd_elf32_swap_reloca_in,
20034 bfd_elf32_swap_reloca_out
20035};
20036
685e70ae
VK
20037static bfd_vma
20038read_code32 (const bfd *abfd, const bfd_byte *addr)
20039{
20040 /* V7 BE8 code is always little endian. */
20041 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20042 return bfd_getl32 (addr);
20043
20044 return bfd_get_32 (abfd, addr);
20045}
20046
20047static bfd_vma
20048read_code16 (const bfd *abfd, const bfd_byte *addr)
20049{
20050 /* V7 BE8 code is always little endian. */
20051 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20052 return bfd_getl16 (addr);
20053
20054 return bfd_get_16 (abfd, addr);
20055}
20056
6a631e86
YG
20057/* Return size of plt0 entry starting at ADDR
20058 or (bfd_vma) -1 if size can not be determined. */
20059
20060static bfd_vma
20061elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
20062{
20063 bfd_vma first_word;
20064 bfd_vma plt0_size;
20065
685e70ae 20066 first_word = read_code32 (abfd, addr);
6a631e86
YG
20067
20068 if (first_word == elf32_arm_plt0_entry[0])
20069 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
20070 else if (first_word == elf32_thumb2_plt0_entry[0])
20071 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
20072 else
20073 /* We don't yet handle this PLT format. */
20074 return (bfd_vma) -1;
20075
20076 return plt0_size;
20077}
20078
20079/* Return size of plt entry starting at offset OFFSET
20080 of plt section located at address START
20081 or (bfd_vma) -1 if size can not be determined. */
20082
20083static bfd_vma
20084elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
20085{
20086 bfd_vma first_insn;
20087 bfd_vma plt_size = 0;
20088 const bfd_byte *addr = start + offset;
20089
20090 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 20091 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
6a631e86
YG
20092 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20093
20094 /* Respect Thumb stub if necessary. */
685e70ae 20095 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
6a631e86
YG
20096 {
20097 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
20098 }
20099
20100 /* Strip immediate from first add. */
685e70ae 20101 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
6a631e86
YG
20102
20103#ifdef FOUR_WORD_PLT
20104 if (first_insn == elf32_arm_plt_entry[0])
20105 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20106#else
20107 if (first_insn == elf32_arm_plt_entry_long[0])
20108 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20109 else if (first_insn == elf32_arm_plt_entry_short[0])
20110 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20111#endif
20112 else
20113 /* We don't yet handle this PLT format. */
20114 return (bfd_vma) -1;
20115
20116 return plt_size;
20117}
20118
20119/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20120
20121static long
20122elf32_arm_get_synthetic_symtab (bfd *abfd,
20123 long symcount ATTRIBUTE_UNUSED,
20124 asymbol **syms ATTRIBUTE_UNUSED,
20125 long dynsymcount,
20126 asymbol **dynsyms,
20127 asymbol **ret)
20128{
20129 asection *relplt;
20130 asymbol *s;
20131 arelent *p;
20132 long count, i, n;
20133 size_t size;
20134 Elf_Internal_Shdr *hdr;
20135 char *names;
20136 asection *plt;
20137 bfd_vma offset;
20138 bfd_byte *data;
20139
20140 *ret = NULL;
20141
20142 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20143 return 0;
20144
20145 if (dynsymcount <= 0)
20146 return 0;
20147
20148 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20149 if (relplt == NULL)
20150 return 0;
20151
20152 hdr = &elf_section_data (relplt)->this_hdr;
20153 if (hdr->sh_link != elf_dynsymtab (abfd)
20154 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20155 return 0;
20156
20157 plt = bfd_get_section_by_name (abfd, ".plt");
20158 if (plt == NULL)
20159 return 0;
20160
20161 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20162 return -1;
20163
20164 data = plt->contents;
20165 if (data == NULL)
20166 {
20167 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20168 return -1;
20169 bfd_cache_section_contents((asection *) plt, data);
20170 }
20171
20172 count = relplt->size / hdr->sh_entsize;
20173 size = count * sizeof (asymbol);
20174 p = relplt->relocation;
20175 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20176 {
20177 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20178 if (p->addend != 0)
20179 size += sizeof ("+0x") - 1 + 8;
20180 }
20181
20182 s = *ret = (asymbol *) bfd_malloc (size);
20183 if (s == NULL)
20184 return -1;
20185
20186 offset = elf32_arm_plt0_size (abfd, data);
20187 if (offset == (bfd_vma) -1)
20188 return -1;
20189
20190 names = (char *) (s + count);
20191 p = relplt->relocation;
20192 n = 0;
20193 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20194 {
20195 size_t len;
20196
20197 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20198 if (plt_size == (bfd_vma) -1)
20199 break;
20200
20201 *s = **p->sym_ptr_ptr;
20202 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20203 we are defining a symbol, ensure one of them is set. */
20204 if ((s->flags & BSF_LOCAL) == 0)
20205 s->flags |= BSF_GLOBAL;
20206 s->flags |= BSF_SYNTHETIC;
20207 s->section = plt;
20208 s->value = offset;
20209 s->name = names;
20210 s->udata.p = NULL;
20211 len = strlen ((*p->sym_ptr_ptr)->name);
20212 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20213 names += len;
20214 if (p->addend != 0)
20215 {
20216 char buf[30], *a;
20217
20218 memcpy (names, "+0x", sizeof ("+0x") - 1);
20219 names += sizeof ("+0x") - 1;
20220 bfd_sprintf_vma (abfd, buf, p->addend);
20221 for (a = buf; *a == '0'; ++a)
20222 ;
20223 len = strlen (a);
20224 memcpy (names, a, len);
20225 names += len;
20226 }
20227 memcpy (names, "@plt", sizeof ("@plt"));
20228 names += sizeof ("@plt");
20229 ++s, ++n;
20230 offset += plt_size;
20231 }
20232
20233 return n;
20234}
20235
ac4c9b04 20236static bfd_boolean
8c803a2d 20237elf32_arm_section_flags (const Elf_Internal_Shdr *hdr)
ac4c9b04 20238{
f0728ee3 20239 if (hdr->sh_flags & SHF_ARM_PURECODE)
8c803a2d 20240 hdr->bfd_section->flags |= SEC_ELF_PURECODE;
ac4c9b04
MG
20241 return TRUE;
20242}
20243
20244static flagword
20245elf32_arm_lookup_section_flags (char *flag_name)
20246{
f0728ee3
AV
20247 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20248 return SHF_ARM_PURECODE;
ac4c9b04
MG
20249
20250 return SEC_NO_FLAGS;
20251}
20252
491d01d3
YU
20253static unsigned int
20254elf32_arm_count_additional_relocs (asection *sec)
20255{
20256 struct _arm_elf_section_data *arm_data;
20257 arm_data = get_arm_elf_section_data (sec);
5025eb7c 20258
6342be70 20259 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
491d01d3
YU
20260}
20261
5522f910 20262/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
9eaff861 20263 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
5522f910
NC
20264 FALSE otherwise. ISECTION is the best guess matching section from the
20265 input bfd IBFD, but it might be NULL. */
20266
20267static bfd_boolean
20268elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20269 bfd *obfd ATTRIBUTE_UNUSED,
20270 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20271 Elf_Internal_Shdr *osection)
20272{
20273 switch (osection->sh_type)
20274 {
20275 case SHT_ARM_EXIDX:
20276 {
20277 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20278 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20279 unsigned i = 0;
20280
20281 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20282 osection->sh_info = 0;
20283
20284 /* The sh_link field must be set to the text section associated with
20285 this index section. Unfortunately the ARM EHABI does not specify
20286 exactly how to determine this association. Our caller does try
20287 to match up OSECTION with its corresponding input section however
20288 so that is a good first guess. */
20289 if (isection != NULL
20290 && osection->bfd_section != NULL
20291 && isection->bfd_section != NULL
20292 && isection->bfd_section->output_section != NULL
20293 && isection->bfd_section->output_section == osection->bfd_section
20294 && iheaders != NULL
20295 && isection->sh_link > 0
20296 && isection->sh_link < elf_numsections (ibfd)
20297 && iheaders[isection->sh_link]->bfd_section != NULL
20298 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20299 )
20300 {
20301 for (i = elf_numsections (obfd); i-- > 0;)
20302 if (oheaders[i]->bfd_section
20303 == iheaders[isection->sh_link]->bfd_section->output_section)
20304 break;
20305 }
9eaff861 20306
5522f910
NC
20307 if (i == 0)
20308 {
20309 /* Failing that we have to find a matching section ourselves. If
20310 we had the output section name available we could compare that
20311 with input section names. Unfortunately we don't. So instead
20312 we use a simple heuristic and look for the nearest executable
20313 section before this one. */
20314 for (i = elf_numsections (obfd); i-- > 0;)
20315 if (oheaders[i] == osection)
20316 break;
20317 if (i == 0)
20318 break;
20319
20320 while (i-- > 0)
20321 if (oheaders[i]->sh_type == SHT_PROGBITS
20322 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20323 == (SHF_ALLOC | SHF_EXECINSTR))
20324 break;
20325 }
20326
20327 if (i)
20328 {
20329 osection->sh_link = i;
20330 /* If the text section was part of a group
20331 then the index section should be too. */
20332 if (oheaders[i]->sh_flags & SHF_GROUP)
20333 osection->sh_flags |= SHF_GROUP;
20334 return TRUE;
20335 }
20336 }
20337 break;
20338
20339 case SHT_ARM_PREEMPTMAP:
20340 osection->sh_flags = SHF_ALLOC;
20341 break;
20342
20343 case SHT_ARM_ATTRIBUTES:
20344 case SHT_ARM_DEBUGOVERLAY:
20345 case SHT_ARM_OVERLAYSECTION:
20346 default:
20347 break;
20348 }
20349
20350 return FALSE;
20351}
20352
d691934d
NC
20353/* Returns TRUE if NAME is an ARM mapping symbol.
20354 Traditionally the symbols $a, $d and $t have been used.
20355 The ARM ELF standard also defines $x (for A64 code). It also allows a
20356 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20357 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20358 not support them here. $t.x indicates the start of ThumbEE instructions. */
20359
20360static bfd_boolean
20361is_arm_mapping_symbol (const char * name)
20362{
20363 return name != NULL /* Paranoia. */
20364 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20365 the mapping symbols could have acquired a prefix.
20366 We do not support this here, since such symbols no
20367 longer conform to the ARM ELF ABI. */
20368 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20369 && (name[2] == 0 || name[2] == '.');
20370 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20371 any characters that follow the period are legal characters for the body
20372 of a symbol's name. For now we just assume that this is the case. */
20373}
20374
fca2a38f
NC
20375/* Make sure that mapping symbols in object files are not removed via the
20376 "strip --strip-unneeded" tool. These symbols are needed in order to
20377 correctly generate interworking veneers, and for byte swapping code
20378 regions. Once an object file has been linked, it is safe to remove the
20379 symbols as they will no longer be needed. */
20380
20381static void
20382elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20383{
20384 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
fca2a38f 20385 && sym->section != bfd_abs_section_ptr
d691934d 20386 && is_arm_mapping_symbol (sym->name))
fca2a38f
NC
20387 sym->flags |= BSF_KEEP;
20388}
20389
5522f910
NC
20390#undef elf_backend_copy_special_section_fields
20391#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20392
252b5132 20393#define ELF_ARCH bfd_arch_arm
ae95ffa6 20394#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 20395#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
20396#ifdef __QNXTARGET__
20397#define ELF_MAXPAGESIZE 0x1000
20398#else
7572ca89 20399#define ELF_MAXPAGESIZE 0x10000
d0facd1b 20400#endif
b1342370 20401#define ELF_MINPAGESIZE 0x1000
24718e3b 20402#define ELF_COMMONPAGESIZE 0x1000
252b5132 20403
07d6d2b8 20404#define bfd_elf32_mkobject elf32_arm_mkobject
ba93b8ac 20405
99e4ae17
AJ
20406#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20407#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
20408#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20409#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
07d6d2b8 20410#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 20411#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 20412#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
07d6d2b8 20413#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 20414#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 20415#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 20416#define bfd_elf32_bfd_final_link elf32_arm_final_link
07d6d2b8 20417#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132 20418
07d6d2b8 20419#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
e7679060 20420#define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
07d6d2b8 20421#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 20422#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
07d6d2b8 20423#define elf_backend_check_relocs elf32_arm_check_relocs
9eaff861 20424#define elf_backend_update_relocs elf32_arm_update_relocs
dc810e39 20425#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 20426#define elf_backend_write_section elf32_arm_write_section
252b5132 20427#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
07d6d2b8 20428#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
20429#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20430#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20431#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 20432#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 20433#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ed7e9d0b 20434#define elf_backend_init_file_header elf32_arm_init_file_header
99e4ae17 20435#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 20436#define elf_backend_object_p elf32_arm_object_p
07d6d2b8
AM
20437#define elf_backend_fake_sections elf32_arm_fake_sections
20438#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20439#define elf_backend_final_write_processing elf32_arm_final_write_processing
20440#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 20441#define elf_backend_size_info elf32_arm_size_info
b294bdf8 20442#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
07d6d2b8
AM
20443#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20444#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
54ddd295 20445#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
07d6d2b8 20446#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 20447#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
491d01d3 20448#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
fca2a38f 20449#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
906e58ca
NC
20450
20451#define elf_backend_can_refcount 1
20452#define elf_backend_can_gc_sections 1
20453#define elf_backend_plt_readonly 1
20454#define elf_backend_want_got_plt 1
20455#define elf_backend_want_plt_sym 0
5474d94f 20456#define elf_backend_want_dynrelro 1
906e58ca
NC
20457#define elf_backend_may_use_rel_p 1
20458#define elf_backend_may_use_rela_p 0
4e7fd91e 20459#define elf_backend_default_use_rela_p 0
64f52338 20460#define elf_backend_dtrel_excludes_plt 1
252b5132 20461
04f7c78d 20462#define elf_backend_got_header_size 12
b68a20d6 20463#define elf_backend_extern_protected_data 1
04f7c78d 20464
07d6d2b8 20465#undef elf_backend_obj_attrs_vendor
906e58ca 20466#define elf_backend_obj_attrs_vendor "aeabi"
07d6d2b8 20467#undef elf_backend_obj_attrs_section
906e58ca 20468#define elf_backend_obj_attrs_section ".ARM.attributes"
07d6d2b8 20469#undef elf_backend_obj_attrs_arg_type
906e58ca 20470#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
07d6d2b8 20471#undef elf_backend_obj_attrs_section_type
104d59d1 20472#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb 20473#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
07d6d2b8 20474#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 20475
07d6d2b8 20476#undef elf_backend_section_flags
ac4c9b04 20477#define elf_backend_section_flags elf32_arm_section_flags
07d6d2b8
AM
20478#undef elf_backend_lookup_section_flags_hook
20479#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
ac4c9b04 20480
a2f63b2e
MR
20481#define elf_backend_linux_prpsinfo32_ugid16 TRUE
20482
252b5132 20483#include "elf32-target.h"
7f266840 20484
b38cadfb
NC
20485/* Native Client targets. */
20486
20487#undef TARGET_LITTLE_SYM
6d00b590 20488#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
20489#undef TARGET_LITTLE_NAME
20490#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20491#undef TARGET_BIG_SYM
6d00b590 20492#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
20493#undef TARGET_BIG_NAME
20494#define TARGET_BIG_NAME "elf32-bigarm-nacl"
20495
20496/* Like elf32_arm_link_hash_table_create -- but overrides
20497 appropriately for NaCl. */
20498
20499static struct bfd_link_hash_table *
20500elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20501{
20502 struct bfd_link_hash_table *ret;
20503
20504 ret = elf32_arm_link_hash_table_create (abfd);
20505 if (ret)
20506 {
20507 struct elf32_arm_link_hash_table *htab
20508 = (struct elf32_arm_link_hash_table *) ret;
20509
20510 htab->nacl_p = 1;
20511
20512 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20513 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20514 }
20515 return ret;
20516}
20517
20518/* Since NaCl doesn't use the ARM-specific unwind format, we don't
20519 really need to use elf32_arm_modify_segment_map. But we do it
20520 anyway just to reduce gratuitous differences with the stock ARM backend. */
20521
20522static bfd_boolean
20523elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20524{
20525 return (elf32_arm_modify_segment_map (abfd, info)
20526 && nacl_modify_segment_map (abfd, info));
20527}
20528
cc364be6
AM
20529static bfd_boolean
20530elf32_arm_nacl_final_write_processing (bfd *abfd)
887badb3 20531{
cc364be6
AM
20532 arm_final_write_processing (abfd);
20533 return nacl_final_write_processing (abfd);
887badb3
RM
20534}
20535
6a631e86
YG
20536static bfd_vma
20537elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20538 const arelent *rel ATTRIBUTE_UNUSED)
20539{
20540 return plt->vma
20541 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20542 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20543}
887badb3 20544
b38cadfb 20545#undef elf32_bed
6a631e86 20546#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
20547#undef bfd_elf32_bfd_link_hash_table_create
20548#define bfd_elf32_bfd_link_hash_table_create \
20549 elf32_arm_nacl_link_hash_table_create
20550#undef elf_backend_plt_alignment
6a631e86 20551#define elf_backend_plt_alignment 4
b38cadfb
NC
20552#undef elf_backend_modify_segment_map
20553#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
6d6c25c8
AM
20554#undef elf_backend_modify_headers
20555#define elf_backend_modify_headers nacl_modify_headers
887badb3
RM
20556#undef elf_backend_final_write_processing
20557#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
20558#undef bfd_elf32_get_synthetic_symtab
20559#undef elf_backend_plt_sym_val
20560#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
5522f910 20561#undef elf_backend_copy_special_section_fields
b38cadfb 20562
887badb3
RM
20563#undef ELF_MINPAGESIZE
20564#undef ELF_COMMONPAGESIZE
20565
b38cadfb
NC
20566
20567#include "elf32-target.h"
20568
20569/* Reset to defaults. */
20570#undef elf_backend_plt_alignment
20571#undef elf_backend_modify_segment_map
20572#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
6d6c25c8 20573#undef elf_backend_modify_headers
887badb3
RM
20574#undef elf_backend_final_write_processing
20575#define elf_backend_final_write_processing elf32_arm_final_write_processing
20576#undef ELF_MINPAGESIZE
20577#define ELF_MINPAGESIZE 0x1000
20578#undef ELF_COMMONPAGESIZE
20579#define ELF_COMMONPAGESIZE 0x1000
20580
b38cadfb 20581
617a5ada
CL
20582/* FDPIC Targets. */
20583
20584#undef TARGET_LITTLE_SYM
20585#define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20586#undef TARGET_LITTLE_NAME
20587#define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20588#undef TARGET_BIG_SYM
20589#define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20590#undef TARGET_BIG_NAME
20591#define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20592#undef elf_match_priority
20593#define elf_match_priority 128
18a20338
CL
20594#undef ELF_OSABI
20595#define ELF_OSABI ELFOSABI_ARM_FDPIC
617a5ada
CL
20596
20597/* Like elf32_arm_link_hash_table_create -- but overrides
20598 appropriately for FDPIC. */
20599
20600static struct bfd_link_hash_table *
20601elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20602{
20603 struct bfd_link_hash_table *ret;
20604
20605 ret = elf32_arm_link_hash_table_create (abfd);
20606 if (ret)
20607 {
20608 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20609
20610 htab->fdpic_p = 1;
20611 }
20612 return ret;
20613}
20614
e8b09b87
CL
20615/* We need dynamic symbols for every section, since segments can
20616 relocate independently. */
20617static bfd_boolean
20618elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20619 struct bfd_link_info *info
20620 ATTRIBUTE_UNUSED,
20621 asection *p ATTRIBUTE_UNUSED)
20622{
20623 switch (elf_section_data (p)->this_hdr.sh_type)
20624 {
20625 case SHT_PROGBITS:
20626 case SHT_NOBITS:
20627 /* If sh_type is yet undecided, assume it could be
20628 SHT_PROGBITS/SHT_NOBITS. */
20629 case SHT_NULL:
20630 return FALSE;
20631
20632 /* There shouldn't be section relative relocations
20633 against any other section. */
20634 default:
20635 return TRUE;
20636 }
20637}
20638
617a5ada
CL
20639#undef elf32_bed
20640#define elf32_bed elf32_arm_fdpic_bed
20641
20642#undef bfd_elf32_bfd_link_hash_table_create
4b24dd1a 20643#define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
617a5ada 20644
e8b09b87
CL
20645#undef elf_backend_omit_section_dynsym
20646#define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20647
617a5ada 20648#include "elf32-target.h"
e8b09b87 20649
617a5ada 20650#undef elf_match_priority
18a20338 20651#undef ELF_OSABI
e8b09b87 20652#undef elf_backend_omit_section_dynsym
617a5ada 20653
906e58ca 20654/* VxWorks Targets. */
4e7fd91e 20655
07d6d2b8
AM
20656#undef TARGET_LITTLE_SYM
20657#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20658#undef TARGET_LITTLE_NAME
20659#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20660#undef TARGET_BIG_SYM
20661#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20662#undef TARGET_BIG_NAME
20663#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
4e7fd91e
PB
20664
20665/* Like elf32_arm_link_hash_table_create -- but overrides
20666 appropriately for VxWorks. */
906e58ca 20667
4e7fd91e
PB
20668static struct bfd_link_hash_table *
20669elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20670{
20671 struct bfd_link_hash_table *ret;
20672
20673 ret = elf32_arm_link_hash_table_create (abfd);
20674 if (ret)
20675 {
20676 struct elf32_arm_link_hash_table *htab
00a97672 20677 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 20678 htab->use_rel = 0;
00a97672 20679 htab->vxworks_p = 1;
4e7fd91e
PB
20680 }
20681 return ret;
906e58ca 20682}
4e7fd91e 20683
cc364be6
AM
20684static bfd_boolean
20685elf32_arm_vxworks_final_write_processing (bfd *abfd)
00a97672 20686{
cc364be6
AM
20687 arm_final_write_processing (abfd);
20688 return elf_vxworks_final_write_processing (abfd);
00a97672
RS
20689}
20690
906e58ca 20691#undef elf32_bed
4e7fd91e
PB
20692#define elf32_bed elf32_arm_vxworks_bed
20693
906e58ca
NC
20694#undef bfd_elf32_bfd_link_hash_table_create
20695#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
20696#undef elf_backend_final_write_processing
20697#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20698#undef elf_backend_emit_relocs
9eaff861 20699#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 20700
906e58ca 20701#undef elf_backend_may_use_rel_p
00a97672 20702#define elf_backend_may_use_rel_p 0
906e58ca 20703#undef elf_backend_may_use_rela_p
00a97672 20704#define elf_backend_may_use_rela_p 1
906e58ca 20705#undef elf_backend_default_use_rela_p
00a97672 20706#define elf_backend_default_use_rela_p 1
906e58ca 20707#undef elf_backend_want_plt_sym
00a97672 20708#define elf_backend_want_plt_sym 1
906e58ca 20709#undef ELF_MAXPAGESIZE
00a97672 20710#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
20711
20712#include "elf32-target.h"
20713
20714
21d799b5
NC
20715/* Merge backend specific data from an object file to the output
20716 object file when linking. */
20717
20718static bfd_boolean
50e03d47 20719elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
21d799b5 20720{
50e03d47 20721 bfd *obfd = info->output_bfd;
21d799b5
NC
20722 flagword out_flags;
20723 flagword in_flags;
20724 bfd_boolean flags_compatible = TRUE;
20725 asection *sec;
20726
cc643b88 20727 /* Check if we have the same endianness. */
50e03d47 20728 if (! _bfd_generic_verify_endian_match (ibfd, info))
21d799b5
NC
20729 return FALSE;
20730
20731 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20732 return TRUE;
20733
50e03d47 20734 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
21d799b5
NC
20735 return FALSE;
20736
20737 /* The input BFD must have had its flags initialised. */
20738 /* The following seems bogus to me -- The flags are initialized in
20739 the assembler but I don't think an elf_flags_init field is
20740 written into the object. */
20741 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20742
20743 in_flags = elf_elfheader (ibfd)->e_flags;
20744 out_flags = elf_elfheader (obfd)->e_flags;
20745
20746 /* In theory there is no reason why we couldn't handle this. However
20747 in practice it isn't even close to working and there is no real
20748 reason to want it. */
20749 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20750 && !(ibfd->flags & DYNAMIC)
20751 && (in_flags & EF_ARM_BE8))
20752 {
871b3ab2 20753 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
21d799b5
NC
20754 ibfd);
20755 return FALSE;
20756 }
20757
20758 if (!elf_flags_init (obfd))
20759 {
20760 /* If the input is the default architecture and had the default
20761 flags then do not bother setting the flags for the output
20762 architecture, instead allow future merges to do this. If no
20763 future merges ever set these flags then they will retain their
99059e56
RM
20764 uninitialised values, which surprise surprise, correspond
20765 to the default values. */
21d799b5
NC
20766 if (bfd_get_arch_info (ibfd)->the_default
20767 && elf_elfheader (ibfd)->e_flags == 0)
20768 return TRUE;
20769
20770 elf_flags_init (obfd) = TRUE;
20771 elf_elfheader (obfd)->e_flags = in_flags;
20772
20773 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20774 && bfd_get_arch_info (obfd)->the_default)
20775 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20776
20777 return TRUE;
20778 }
20779
20780 /* Determine what should happen if the input ARM architecture
20781 does not match the output ARM architecture. */
20782 if (! bfd_arm_merge_machines (ibfd, obfd))
20783 return FALSE;
20784
20785 /* Identical flags must be compatible. */
20786 if (in_flags == out_flags)
20787 return TRUE;
20788
20789 /* Check to see if the input BFD actually contains any sections. If
20790 not, its flags may not have been initialised either, but it
20791 cannot actually cause any incompatiblity. Do not short-circuit
20792 dynamic objects; their section list may be emptied by
20793 elf_link_add_object_symbols.
20794
20795 Also check to see if there are no code sections in the input.
20796 In this case there is no need to check for code specific flags.
20797 XXX - do we need to worry about floating-point format compatability
20798 in data sections ? */
20799 if (!(ibfd->flags & DYNAMIC))
20800 {
20801 bfd_boolean null_input_bfd = TRUE;
20802 bfd_boolean only_data_sections = TRUE;
20803
20804 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20805 {
20806 /* Ignore synthetic glue sections. */
20807 if (strcmp (sec->name, ".glue_7")
20808 && strcmp (sec->name, ".glue_7t"))
20809 {
fd361982 20810 if ((bfd_section_flags (sec)
21d799b5
NC
20811 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20812 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
99059e56 20813 only_data_sections = FALSE;
21d799b5
NC
20814
20815 null_input_bfd = FALSE;
20816 break;
20817 }
20818 }
20819
20820 if (null_input_bfd || only_data_sections)
20821 return TRUE;
20822 }
20823
20824 /* Complain about various flag mismatches. */
20825 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20826 EF_ARM_EABI_VERSION (out_flags)))
20827 {
20828 _bfd_error_handler
90b6238f 20829 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
c08bb8dd
AM
20830 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20831 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
21d799b5
NC
20832 return FALSE;
20833 }
20834
20835 /* Not sure what needs to be checked for EABI versions >= 1. */
20836 /* VxWorks libraries do not use these flags. */
20837 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20838 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20839 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20840 {
20841 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20842 {
20843 _bfd_error_handler
871b3ab2 20844 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
c08bb8dd
AM
20845 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20846 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
21d799b5
NC
20847 flags_compatible = FALSE;
20848 }
20849
20850 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20851 {
20852 if (in_flags & EF_ARM_APCS_FLOAT)
20853 _bfd_error_handler
871b3ab2 20854 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
21d799b5
NC
20855 ibfd, obfd);
20856 else
20857 _bfd_error_handler
871b3ab2 20858 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
21d799b5
NC
20859 ibfd, obfd);
20860
20861 flags_compatible = FALSE;
20862 }
20863
20864 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20865 {
20866 if (in_flags & EF_ARM_VFP_FLOAT)
20867 _bfd_error_handler
90b6238f
AM
20868 (_("error: %pB uses %s instructions, whereas %pB does not"),
20869 ibfd, "VFP", obfd);
21d799b5
NC
20870 else
20871 _bfd_error_handler
90b6238f
AM
20872 (_("error: %pB uses %s instructions, whereas %pB does not"),
20873 ibfd, "FPA", obfd);
21d799b5
NC
20874
20875 flags_compatible = FALSE;
20876 }
20877
20878 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20879 {
20880 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20881 _bfd_error_handler
90b6238f
AM
20882 (_("error: %pB uses %s instructions, whereas %pB does not"),
20883 ibfd, "Maverick", obfd);
21d799b5
NC
20884 else
20885 _bfd_error_handler
90b6238f
AM
20886 (_("error: %pB does not use %s instructions, whereas %pB does"),
20887 ibfd, "Maverick", obfd);
21d799b5
NC
20888
20889 flags_compatible = FALSE;
20890 }
20891
20892#ifdef EF_ARM_SOFT_FLOAT
20893 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20894 {
20895 /* We can allow interworking between code that is VFP format
20896 layout, and uses either soft float or integer regs for
20897 passing floating point arguments and results. We already
20898 know that the APCS_FLOAT flags match; similarly for VFP
20899 flags. */
20900 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20901 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20902 {
20903 if (in_flags & EF_ARM_SOFT_FLOAT)
20904 _bfd_error_handler
871b3ab2 20905 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
21d799b5
NC
20906 ibfd, obfd);
20907 else
20908 _bfd_error_handler
871b3ab2 20909 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
21d799b5
NC
20910 ibfd, obfd);
20911
20912 flags_compatible = FALSE;
20913 }
20914 }
20915#endif
20916
20917 /* Interworking mismatch is only a warning. */
20918 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20919 {
20920 if (in_flags & EF_ARM_INTERWORK)
20921 {
20922 _bfd_error_handler
90b6238f 20923 (_("warning: %pB supports interworking, whereas %pB does not"),
21d799b5
NC
20924 ibfd, obfd);
20925 }
20926 else
20927 {
20928 _bfd_error_handler
90b6238f 20929 (_("warning: %pB does not support interworking, whereas %pB does"),
21d799b5
NC
20930 ibfd, obfd);
20931 }
20932 }
20933 }
20934
20935 return flags_compatible;
20936}
20937
20938
906e58ca 20939/* Symbian OS Targets. */
7f266840 20940
07d6d2b8
AM
20941#undef TARGET_LITTLE_SYM
20942#define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
20943#undef TARGET_LITTLE_NAME
20944#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
20945#undef TARGET_BIG_SYM
20946#define TARGET_BIG_SYM arm_elf32_symbian_be_vec
20947#undef TARGET_BIG_NAME
20948#define TARGET_BIG_NAME "elf32-bigarm-symbian"
7f266840
DJ
20949
20950/* Like elf32_arm_link_hash_table_create -- but overrides
20951 appropriately for Symbian OS. */
906e58ca 20952
7f266840
DJ
20953static struct bfd_link_hash_table *
20954elf32_arm_symbian_link_hash_table_create (bfd *abfd)
20955{
20956 struct bfd_link_hash_table *ret;
20957
20958 ret = elf32_arm_link_hash_table_create (abfd);
20959 if (ret)
20960 {
20961 struct elf32_arm_link_hash_table *htab
20962 = (struct elf32_arm_link_hash_table *)ret;
20963 /* There is no PLT header for Symbian OS. */
20964 htab->plt_header_size = 0;
95720a86
DJ
20965 /* The PLT entries are each one instruction and one word. */
20966 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 20967 htab->symbian_p = 1;
33bfe774
JB
20968 /* Symbian uses armv5t or above, so use_blx is always true. */
20969 htab->use_blx = 1;
67687978 20970 htab->root.is_relocatable_executable = 1;
7f266840
DJ
20971 }
20972 return ret;
906e58ca 20973}
7f266840 20974
b35d266b 20975static const struct bfd_elf_special_section
551b43fd 20976elf32_arm_symbian_special_sections[] =
7f266840 20977{
5cd3778d
MM
20978 /* In a BPABI executable, the dynamic linking sections do not go in
20979 the loadable read-only segment. The post-linker may wish to
20980 refer to these sections, but they are not part of the final
20981 program image. */
07d6d2b8
AM
20982 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
20983 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
20984 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
20985 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
20986 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
20987 /* These sections do not need to be writable as the SymbianOS
20988 postlinker will arrange things so that no dynamic relocation is
20989 required. */
07d6d2b8
AM
20990 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
20991 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
0112cd26 20992 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
07d6d2b8 20993 { NULL, 0, 0, 0, 0 }
7f266840
DJ
20994};
20995
c3c76620 20996static void
906e58ca 20997elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 20998 struct bfd_link_info *link_info)
c3c76620
MM
20999{
21000 /* BPABI objects are never loaded directly by an OS kernel; they are
21001 processed by a postlinker first, into an OS-specific format. If
21002 the D_PAGED bit is set on the file, BFD will align segments on
21003 page boundaries, so that an OS can directly map the file. With
21004 BPABI objects, that just results in wasted space. In addition,
21005 because we clear the D_PAGED bit, map_sections_to_segments will
21006 recognize that the program headers should not be mapped into any
21007 loadable segment. */
21008 abfd->flags &= ~D_PAGED;
906e58ca 21009 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 21010}
7f266840
DJ
21011
21012static bfd_boolean
906e58ca 21013elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 21014 struct bfd_link_info *info)
7f266840
DJ
21015{
21016 struct elf_segment_map *m;
21017 asection *dynsec;
21018
7f266840
DJ
21019 /* BPABI shared libraries and executables should have a PT_DYNAMIC
21020 segment. However, because the .dynamic section is not marked
21021 with SEC_LOAD, the generic ELF code will not create such a
21022 segment. */
21023 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
21024 if (dynsec)
21025 {
12bd6957 21026 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8ded5a0f
AM
21027 if (m->p_type == PT_DYNAMIC)
21028 break;
21029
21030 if (m == NULL)
21031 {
21032 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12bd6957
AM
21033 m->next = elf_seg_map (abfd);
21034 elf_seg_map (abfd) = m;
8ded5a0f 21035 }
7f266840
DJ
21036 }
21037
b294bdf8
MM
21038 /* Also call the generic arm routine. */
21039 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
21040}
21041
95720a86
DJ
21042/* Return address for Ith PLT stub in section PLT, for relocation REL
21043 or (bfd_vma) -1 if it should not be included. */
21044
21045static bfd_vma
21046elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
21047 const arelent *rel ATTRIBUTE_UNUSED)
21048{
21049 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
21050}
21051
8029a119 21052#undef elf32_bed
7f266840
DJ
21053#define elf32_bed elf32_arm_symbian_bed
21054
21055/* The dynamic sections are not allocated on SymbianOS; the postlinker
21056 will process them and then discard them. */
906e58ca 21057#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
21058#define ELF_DYNAMIC_SEC_FLAGS \
21059 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
21060
9eaff861 21061#undef elf_backend_emit_relocs
c3c76620 21062
906e58ca
NC
21063#undef bfd_elf32_bfd_link_hash_table_create
21064#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
21065#undef elf_backend_special_sections
07d6d2b8 21066#define elf_backend_special_sections elf32_arm_symbian_special_sections
906e58ca
NC
21067#undef elf_backend_begin_write_processing
21068#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
21069#undef elf_backend_final_write_processing
21070#define elf_backend_final_write_processing elf32_arm_final_write_processing
21071
21072#undef elf_backend_modify_segment_map
7f266840
DJ
21073#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
21074
21075/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 21076#undef elf_backend_got_header_size
7f266840
DJ
21077#define elf_backend_got_header_size 0
21078
21079/* Similarly, there is no .got.plt section. */
906e58ca 21080#undef elf_backend_want_got_plt
7f266840
DJ
21081#define elf_backend_want_got_plt 0
21082
906e58ca 21083#undef elf_backend_plt_sym_val
95720a86
DJ
21084#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
21085
906e58ca 21086#undef elf_backend_may_use_rel_p
00a97672 21087#define elf_backend_may_use_rel_p 1
906e58ca 21088#undef elf_backend_may_use_rela_p
00a97672 21089#define elf_backend_may_use_rela_p 0
906e58ca 21090#undef elf_backend_default_use_rela_p
00a97672 21091#define elf_backend_default_use_rela_p 0
906e58ca 21092#undef elf_backend_want_plt_sym
00a97672 21093#define elf_backend_want_plt_sym 0
64f52338
AM
21094#undef elf_backend_dtrel_excludes_plt
21095#define elf_backend_dtrel_excludes_plt 0
906e58ca 21096#undef ELF_MAXPAGESIZE
00a97672 21097#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 21098
7f266840 21099#include "elf32-target.h"
This page took 3.001304 seconds and 4 git commands to generate.