Remove spurious whitespace introduced by previous delta.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
6f2750fe 2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
6034aab8 25#include "bfd_stdint.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
b38cadfb 29#include "elf-nacl.h"
00a97672 30#include "elf-vxworks.h"
ee065d83 31#include "elf/arm.h"
7f266840 32
00a97672
RS
33/* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35#define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38/* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40#define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45/* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47#define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52/* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54#define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
7f266840
DJ
59#define elf_info_to_howto 0
60#define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62#define ARM_ELF_ABI_VERSION 0
63#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
79f08007
YZ
65/* The Adjusted Place, as defined by AAELF. */
66#define Pa(X) ((X) & 0xfffffffc)
67
3e6b1042
DJ
68static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
7f266840
DJ
73/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
c19d1205 77static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 78{
8029a119 79 /* No relocation. */
7f266840
DJ
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
6346d5ca 82 3, /* size (0 = byte, 1 = short, 2 = long) */
7f266840
DJ
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
c19d1205 138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 139 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
142 32, /* bitsize */
143 TRUE, /* pc_relative */
7f266840 144 0, /* bitpos */
4962c51a 145 complain_overflow_dont,/* complain_on_overflow */
7f266840 146 bfd_elf_generic_reloc, /* special_function */
4962c51a 147 "R_ARM_LDR_PC_G0", /* name */
7f266840 148 FALSE, /* partial_inplace */
4962c51a
MS
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
7f266840
DJ
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
00a97672
RS
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
7f266840
DJ
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
c19d1205 226 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 229 24, /* bitsize */
7f266840
DJ
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
c19d1205 234 "R_ARM_THM_CALL", /* name */
7f266840 235 FALSE, /* partial_inplace */
7f6ab9f8
AM
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
7f266840
DJ
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
c19d1205 254 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
257 32, /* bitsize */
258 FALSE, /* pc_relative */
7f266840
DJ
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
c19d1205 262 "R_ARM_BREL_ADJ", /* name */
7f266840 263 FALSE, /* partial_inplace */
c19d1205
ZW
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
7f266840 267
0855e32b 268 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 269 0, /* rightshift */
0855e32b
NS
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
7f266840
DJ
272 FALSE, /* pc_relative */
273 0, /* bitpos */
0855e32b 274 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 275 bfd_elf_generic_reloc, /* special_function */
0855e32b 276 "R_ARM_TLS_DESC", /* name */
7f266840 277 FALSE, /* partial_inplace */
0855e32b
NS
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
7f266840
DJ
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 300 24, /* bitsize */
7f266840
DJ
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 315 24, /* bitsize */
7f266840
DJ
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
7f6ab9f8
AM
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
7f266840
DJ
324 TRUE), /* pcrel_offset */
325
ba93b8ac 326 /* Dynamic TLS relocations. */
7f266840 327
ba93b8ac 328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
99059e56
RM
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
7f266840 341
ba93b8ac 342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
99059e56
RM
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
7f266840 355
ba93b8ac 356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
99059e56
RM
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
7f266840
DJ
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
99059e56
RM
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
7f266840
DJ
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
99059e56
RM
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
7f266840
DJ
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
99059e56
RM
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
7f266840
DJ
413
414 HOWTO (R_ARM_RELATIVE, /* type */
99059e56
RM
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
7f266840 427
c19d1205 428 HOWTO (R_ARM_GOTOFF32, /* type */
99059e56
RM
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
7f266840
DJ
441
442 HOWTO (R_ARM_GOTPC, /* type */
99059e56
RM
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
7f266840
DJ
455
456 HOWTO (R_ARM_GOT32, /* type */
99059e56
RM
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
7f266840
DJ
469
470 HOWTO (R_ARM_PLT32, /* type */
99059e56
RM
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
7f266840
DJ
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
c19d1205
ZW
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
7f266840 517 0, /* bitpos */
c19d1205 518 complain_overflow_signed,/* complain_on_overflow */
7f266840 519 bfd_elf_generic_reloc, /* special_function */
c19d1205 520 "R_ARM_THM_JUMP24", /* name */
7f266840 521 FALSE, /* partial_inplace */
c19d1205
ZW
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
7f266840 525
c19d1205 526 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 527 0, /* rightshift */
c19d1205
ZW
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
7f266840
DJ
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
c19d1205 534 "R_ARM_BASE_ABS", /* name */
7f266840 535 FALSE, /* partial_inplace */
c19d1205
ZW
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
7f266840
DJ
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
c19d1205
ZW
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
39623e12
PB
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
c19d1205
ZW
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
39623e12
PB
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
c19d1205
ZW
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
39623e12
PB
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
c19d1205
ZW
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
39623e12
PB
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
c19d1205
ZW
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
2cab6cc3 843 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
2cab6cc3
MS
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
c19d1205
ZW
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
2cab6cc3 857 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
2cab6cc3
MS
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
c19d1205
ZW
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
7f266840 892
4962c51a
MS
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
c19d1205 1274
c19d1205
ZW
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
0855e32b
NS
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
c19d1205
ZW
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
99059e56
RM
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
c19d1205
ZW
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
99059e56
RM
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
c19d1205
ZW
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
ba93b8ac 1544
c19d1205
ZW
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
99059e56
RM
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
ba93b8ac 1559
ba93b8ac 1560 HOWTO (R_ARM_TLS_LDM32, /* type */
99059e56
RM
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
ba93b8ac 1573
c19d1205 1574 HOWTO (R_ARM_TLS_LDO32, /* type */
99059e56
RM
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
ba93b8ac 1587
ba93b8ac 1588 HOWTO (R_ARM_TLS_IE32, /* type */
99059e56
RM
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
7f266840 1601
c19d1205 1602 HOWTO (R_ARM_TLS_LE32, /* type */
99059e56
RM
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
75c11999 1609 NULL, /* special_function */
99059e56
RM
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
7f266840 1615
c19d1205
ZW
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
7f266840 1621 0, /* bitpos */
c19d1205 1622 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1623 bfd_elf_generic_reloc, /* special_function */
c19d1205 1624 "R_ARM_TLS_LDO12", /* name */
7f266840 1625 FALSE, /* partial_inplace */
c19d1205
ZW
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
7f266840 1629
c19d1205
ZW
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
7f266840 1635 0, /* bitpos */
c19d1205 1636 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1637 bfd_elf_generic_reloc, /* special_function */
c19d1205 1638 "R_ARM_TLS_LE12", /* name */
7f266840 1639 FALSE, /* partial_inplace */
c19d1205
ZW
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
7f266840 1643
c19d1205 1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
7f266840 1649 0, /* bitpos */
c19d1205 1650 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1651 bfd_elf_generic_reloc, /* special_function */
c19d1205 1652 "R_ARM_TLS_IE12GP", /* name */
7f266840 1653 FALSE, /* partial_inplace */
c19d1205
ZW
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
0855e32b 1657
34e77a92 1658 /* 112-127 private relocations. */
0855e32b
NS
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
34e77a92
RS
1675
1676 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
72d98d16
MG
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
c19d1205
ZW
1746};
1747
34e77a92
RS
1748/* 160 onwards: */
1749static reloc_howto_type elf32_arm_howto_table_2[1] =
1750{
1751 HOWTO (R_ARM_IRELATIVE, /* type */
99059e56
RM
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
34e77a92 1764};
c19d1205 1765
34e77a92
RS
1766/* 249-255 extended, currently unused, relocations: */
1767static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1768{
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824};
1825
1826static reloc_howto_type *
1827elf32_arm_howto_from_type (unsigned int r_type)
1828{
906e58ca 1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1830 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1831
34e77a92
RS
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
c19d1205 1835 if (r_type >= R_ARM_RREL32
34e77a92
RS
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1838
c19d1205 1839 return NULL;
7f266840
DJ
1840}
1841
1842static void
1843elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845{
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850}
1851
1852struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858/* All entries in this list must also be present in elf32_arm_howto_table. */
1859static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840 1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
b43420e6 1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
7f266840
DJ
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
0855e32b
NS
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
34e77a92 1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
c19d1205
ZW
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6 1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
72d98d16
MG
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
7f266840
DJ
1951 };
1952
1953static reloc_howto_type *
f1c71a59
ZW
1954elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
7f266840
DJ
1956{
1957 unsigned int i;
8029a119 1958
906e58ca 1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1962
c19d1205 1963 return NULL;
7f266840
DJ
1964}
1965
157090f7
AM
1966static reloc_howto_type *
1967elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969{
1970 unsigned int i;
1971
906e58ca 1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
906e58ca 1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
34e77a92
RS
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
157090f7
AM
1987 return NULL;
1988}
1989
906e58ca
NC
1990/* Support for core dump NOTE sections. */
1991
7f266840 1992static bfd_boolean
f1c71a59 1993elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1994{
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
8029a119 2003 case 148: /* Linux/ARM 32-bit. */
7f266840 2004 /* pr_cursig */
228e534f 2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
2006
2007 /* pr_pid */
228e534f 2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020}
2021
2022static bfd_boolean
f1c71a59 2023elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2024{
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
8029a119 2030 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 2031 elf_tdata (abfd)->core->pid
4395ee08 2032 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 2033 elf_tdata (abfd)->core->program
7f266840 2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 2035 elf_tdata (abfd)->core->command
7f266840
DJ
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
7f266840 2042 {
228e534f 2043 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051}
2052
1f20dca5
UW
2053static char *
2054elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056{
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099}
2100
6d00b590 2101#define TARGET_LITTLE_SYM arm_elf32_le_vec
7f266840 2102#define TARGET_LITTLE_NAME "elf32-littlearm"
6d00b590 2103#define TARGET_BIG_SYM arm_elf32_be_vec
7f266840
DJ
2104#define TARGET_BIG_NAME "elf32-bigarm"
2105
2106#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2108#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2109
252b5132
RH
2110typedef unsigned long int insn32;
2111typedef unsigned short int insn16;
2112
3a4a14e9
PB
2113/* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
57e8b36a 2115#define INTERWORK_FLAG(abfd) \
3a4a14e9 2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2119
252b5132
RH
2120/* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
9b485d32 2123 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2124#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
c7b8f16e
JB
2130#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
a504d23a
LA
2133#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
845b51d6
PB
2136#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
7413f23f
DJ
2139#define STUB_ENTRY_NAME "__%s_veneer"
2140
4ba2ef8f
TP
2141#define CMSE_PREFIX "__acle_se_"
2142
252b5132
RH
2143/* The name of the dynamic interpreter. This is put in the .interp
2144 section. */
2145#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2146
0855e32b 2147static const unsigned long tls_trampoline [] =
b38cadfb
NC
2148{
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2152};
0855e32b
NS
2153
2154static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2155{
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2163 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165};
0855e32b 2166
5e681ec4
PB
2167#ifdef FOUR_WORD_PLT
2168
252b5132
RH
2169/* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
59f2c4e7 2171 called before the relocation has been set up calls the dynamic
9b485d32 2172 linker first. */
e5a52504 2173static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2174{
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2179};
5e681ec4
PB
2180
2181/* Subsequent entries in a procedure linkage table look like
2182 this. */
e5a52504 2183static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2184{
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2189};
5e681ec4 2190
eed94f8f 2191#else /* not FOUR_WORD_PLT */
5e681ec4 2192
5e681ec4
PB
2193/* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2196 linker first. */
e5a52504 2197static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2198{
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2204};
252b5132 2205
1db37fe6
YG
2206/* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2209{
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213};
5e681ec4 2214
1db37fe6
YG
2215/* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217static const bfd_vma elf32_arm_plt_entry_long [] =
2218{
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223};
2224
2225static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226
eed94f8f
NC
2227#endif /* not FOUR_WORD_PLT */
2228
2229/* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232static const bfd_vma elf32_thumb2_plt0_entry [] =
2233{
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
469a3493 2238 /* add lr, pc */
eed94f8f
NC
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2241};
2242
2243/* Subsequent entries in a procedure linkage table for thumb only target
2244 look like this. */
2245static const bfd_vma elf32_thumb2_plt_entry [] =
2246{
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
469a3493 2253 /* nop */
eed94f8f 2254};
252b5132 2255
00a97672
RS
2256/* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb
NC
2259{
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264};
00a97672
RS
2265
2266/* The format of subsequent entries in a VxWorks executable. */
2267static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb
NC
2268{
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275};
00a97672
RS
2276
2277/* The format of entries in a VxWorks shared library. */
2278static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb
NC
2279{
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286};
00a97672 2287
b7693d02
DJ
2288/* An initial stub used if the PLT entry is referenced from Thumb code. */
2289#define PLT_THUMB_STUB_SIZE 4
2290static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2291{
2292 0x4778, /* bx pc */
2293 0x46c0 /* nop */
2294};
b7693d02 2295
e5a52504
MM
2296/* The entries in a PLT when using a DLL-based target with multiple
2297 address spaces. */
906e58ca 2298static const bfd_vma elf32_arm_symbian_plt_entry [] =
b38cadfb
NC
2299{
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302};
2303
2304/* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2307 linker first. */
2308static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309{
2310 /* First bundle: */
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
edccdf7c
RM
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2319 0xe12fff1c, /* bx ip */
b38cadfb 2320 /* Third bundle: */
edccdf7c
RM
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
b38cadfb
NC
2324 /* .Lplt_tail: */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
edccdf7c
RM
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2330 0xe12fff1c, /* bx ip */
b38cadfb
NC
2331};
2332#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2333
2334/* Subsequent entries in a procedure linkage table look like this. */
2335static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336{
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2341};
e5a52504 2342
906e58ca
NC
2343#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2349#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2351
461a49ca 2352enum stub_insn_type
b38cadfb
NC
2353{
2354 THUMB16_TYPE = 1,
2355 THUMB32_TYPE,
2356 ARM_TYPE,
2357 DATA_TYPE
2358};
461a49ca 2359
48229727
JB
2360#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
d5a67c02
AV
2365#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
48229727
JB
2367#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2371
2372typedef struct
2373{
b38cadfb
NC
2374 bfd_vma data;
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2377 int reloc_addend;
461a49ca
DJ
2378} insn_sequence;
2379
fea2b4d6
CL
2380/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
461a49ca 2382static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb
NC
2383{
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2386};
906e58ca 2387
fea2b4d6
CL
2388/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389 available. */
461a49ca 2390static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb
NC
2391{
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2395};
906e58ca 2396
d3626fb0 2397/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2398static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb
NC
2399{
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2407};
906e58ca 2408
80c135e5
TP
2409/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411{
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2414};
2415
d5a67c02
AV
2416/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419{
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2423};
2424
d3626fb0
CL
2425/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426 allowed. */
2427static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb
NC
2428{
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2434};
d3626fb0 2435
fea2b4d6
CL
2436/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437 available. */
461a49ca 2438static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb
NC
2439{
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2444};
906e58ca 2445
fea2b4d6
CL
2446/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
461a49ca 2448static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb
NC
2449{
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2453};
c820be07 2454
cf3eccff 2455/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2456 blx to reach the stub if necessary. */
cf3eccff 2457static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb
NC
2458{
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2462};
906e58ca 2463
cf3eccff
DJ
2464/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2467 ARMv7). */
2468static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb
NC
2469{
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2474};
cf3eccff 2475
ebe24dd4
CL
2476/* V4T ARM -> ARM long branch stub, PIC. */
2477static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb
NC
2478{
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2483};
ebe24dd4
CL
2484
2485/* V4T Thumb -> ARM long branch stub, PIC. */
2486static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb
NC
2487{
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2493};
ebe24dd4 2494
d3626fb0
CL
2495/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496 architectures. */
ebe24dd4 2497static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb
NC
2498{
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2506};
ebe24dd4 2507
d3626fb0
CL
2508/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509 allowed. */
2510static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb
NC
2511{
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2518};
d3626fb0 2519
0855e32b
NS
2520/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523{
b38cadfb
NC
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2527};
2528
2529/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532{
b38cadfb
NC
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2538};
2539
7a89b94e
NC
2540/* NaCl ARM -> ARM long branch stub. */
2541static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542{
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2551};
2552
2553/* NaCl ARM -> ARM long branch stub, PIC. */
2554static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555{
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2564};
2565
4ba2ef8f
TP
2566/* Stub used for transition to secure state (aka SG veneer). */
2567static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568{
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2571};
2572
7a89b94e 2573
48229727
JB
2574/* Cortex-A8 erratum-workaround stubs. */
2575
2576/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2578
2579static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb
NC
2580{
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2584};
48229727
JB
2585
2586/* Stub used for b.w and bl.w instructions. */
2587
2588static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2589{
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2591};
48229727
JB
2592
2593static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2594{
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2596};
48229727
JB
2597
2598/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2601
2602static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2603{
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2605};
48229727 2606
9553db3c
NC
2607/* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2610 applied.
2611
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
b38cadfb 2615
9553db3c
NC
2616 const char * stubborn_problems[] = { "np" };
2617
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619 section called:
2620
2621 .data.rel.local.stubborn_problems
2622
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2624
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 continue;
2628
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631 C identifier. */
2632#define STUB_SUFFIX ".__stub"
906e58ca 2633
738a79f6
CL
2634/* One entry per long/short branch stub defined above. */
2635#define DEF_STUBS \
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2647 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
7a89b94e
NC
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
4ba2ef8f 2652 DEF_STUB(cmse_branch_thumb_only) \
48229727
JB
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
80c135e5
TP
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
d5a67c02 2658 DEF_STUB(long_branch_thumb2_only_pure)
738a79f6
CL
2659
2660#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2661enum elf32_arm_stub_type
2662{
906e58ca 2663 arm_stub_none,
738a79f6 2664 DEF_STUBS
4f4faa4d 2665 max_stub_type
738a79f6
CL
2666};
2667#undef DEF_STUB
2668
8d9d9490
TP
2669/* Note the first a8_veneer type. */
2670const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671
738a79f6
CL
2672typedef struct
2673{
d3ce72d0 2674 const insn_sequence* template_sequence;
738a79f6
CL
2675 int template_size;
2676} stub_def;
2677
2678#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2679static const stub_def stub_definitions[] =
2680{
738a79f6
CL
2681 {NULL, 0},
2682 DEF_STUBS
906e58ca
NC
2683};
2684
2685struct elf32_arm_stub_hash_entry
2686{
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2689
2690 /* The stub section. */
2691 asection *stub_sec;
2692
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2695
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2700
8d9d9490
TP
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2705 same section. */
2706 bfd_vma source_value;
48229727
JB
2707
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2711
461a49ca 2712 /* The stub type. */
906e58ca 2713 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2714 /* Its encoding size in bytes. */
2715 int stub_size;
2716 /* Its template. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
906e58ca
NC
2720
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2723
35fc36a8
RS
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
906e58ca
NC
2726
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2729 asection *id_sec;
7413f23f
DJ
2730
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2734 char *output_name;
906e58ca
NC
2735};
2736
e489d0ae
PB
2737/* Used to build a map of a section. This is required for mixed-endian
2738 code/data. */
2739
2740typedef struct elf32_elf_section_map
2741{
2742 bfd_vma vma;
2743 char type;
2744}
2745elf32_arm_section_map;
2746
c7b8f16e
JB
2747/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2748
2749typedef enum
2750{
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2755}
2756elf32_vfp11_erratum_type;
2757
2758typedef struct elf32_vfp11_erratum_list
2759{
2760 struct elf32_vfp11_erratum_list *next;
2761 bfd_vma vma;
2762 union
2763 {
2764 struct
2765 {
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2768 } b;
2769 struct
2770 {
2771 struct elf32_vfp11_erratum_list *branch;
2772 unsigned int id;
2773 } v;
2774 } u;
2775 elf32_vfp11_erratum_type type;
2776}
2777elf32_vfp11_erratum_list;
2778
a504d23a
LA
2779/* Information about a STM32L4XX erratum veneer, or a branch to such a
2780 veneer. */
2781typedef enum
2782{
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2785}
2786elf32_stm32l4xx_erratum_type;
2787
2788typedef struct elf32_stm32l4xx_erratum_list
2789{
2790 struct elf32_stm32l4xx_erratum_list *next;
2791 bfd_vma vma;
2792 union
2793 {
2794 struct
2795 {
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2797 unsigned int insn;
2798 } b;
2799 struct
2800 {
2801 struct elf32_stm32l4xx_erratum_list *branch;
2802 unsigned int id;
2803 } v;
2804 } u;
2805 elf32_stm32l4xx_erratum_type type;
2806}
2807elf32_stm32l4xx_erratum_list;
2808
2468f9c9
PB
2809typedef enum
2810{
2811 DELETE_EXIDX_ENTRY,
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2813}
2814arm_unwind_edit_type;
2815
2816/* A (sorted) list of edits to apply to an unwind table. */
2817typedef struct arm_unwind_table_edit
2818{
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2824 unsigned int index;
2825 struct arm_unwind_table_edit *next;
2826}
2827arm_unwind_table_edit;
2828
8e3de13a 2829typedef struct _arm_elf_section_data
e489d0ae 2830{
2468f9c9 2831 /* Information about mapping symbols. */
e489d0ae 2832 struct bfd_elf_section_data elf;
8e3de13a 2833 unsigned int mapcount;
c7b8f16e 2834 unsigned int mapsize;
e489d0ae 2835 elf32_arm_section_map *map;
2468f9c9 2836 /* Information about CPU errata. */
c7b8f16e
JB
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
a504d23a
LA
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
491d01d3 2841 unsigned int additional_reloc_count;
2468f9c9
PB
2842 /* Information about unwind tables. */
2843 union
2844 {
2845 /* Unwind info attached to a text section. */
2846 struct
2847 {
2848 asection *arm_exidx_sec;
2849 } text;
2850
2851 /* Unwind info attached to an .ARM.exidx section. */
2852 struct
2853 {
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2856 } exidx;
2857 } u;
8e3de13a
NC
2858}
2859_arm_elf_section_data;
e489d0ae
PB
2860
2861#define elf32_arm_section_data(sec) \
8e3de13a 2862 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2863
48229727
JB
2864/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2869
b38cadfb
NC
2870struct a8_erratum_fix
2871{
48229727
JB
2872 bfd *input_bfd;
2873 asection *section;
2874 bfd_vma offset;
8d9d9490 2875 bfd_vma target_offset;
48229727
JB
2876 unsigned long orig_insn;
2877 char *stub_name;
2878 enum elf32_arm_stub_type stub_type;
35fc36a8 2879 enum arm_st_branch_type branch_type;
48229727
JB
2880};
2881
2882/* A table of relocs applied to branches which might trigger Cortex-A8
2883 erratum. */
2884
b38cadfb
NC
2885struct a8_erratum_reloc
2886{
48229727
JB
2887 bfd_vma from;
2888 bfd_vma destination;
92750f34
DJ
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
48229727 2891 unsigned int r_type;
35fc36a8 2892 enum arm_st_branch_type branch_type;
48229727
JB
2893 bfd_boolean non_a8_stub;
2894};
2895
ba93b8ac
DJ
2896/* The size of the thread control block. */
2897#define TCB_SIZE 8
2898
34e77a92
RS
2899/* ARM-specific information about a PLT entry, over and above the usual
2900 gotplt_union. */
b38cadfb
NC
2901struct arm_plt_info
2902{
34e77a92
RS
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2906
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2910
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2917
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2922};
2923
2924/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
2925struct arm_local_iplt_info
2926{
34e77a92
RS
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2930
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2934
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2937};
2938
0ffa91dd 2939struct elf_arm_obj_tdata
ba93b8ac
DJ
2940{
2941 struct elf_obj_tdata root;
2942
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
ee065d83 2945
0855e32b
NS
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2948
34e77a92
RS
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2951
bf21ed78
MS
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
a9dc9481
JM
2954
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
ba93b8ac
DJ
2957};
2958
0ffa91dd
NC
2959#define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2961
0ffa91dd
NC
2962#define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2964
0855e32b
NS
2965#define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967
34e77a92
RS
2968#define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2970
0ffa91dd
NC
2971#define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
4dfe6ac6 2974 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
2975
2976static bfd_boolean
2977elf32_arm_mkobject (bfd *abfd)
2978{
0ffa91dd 2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 2980 ARM_ELF_DATA);
ba93b8ac
DJ
2981}
2982
ba93b8ac
DJ
2983#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984
ba96a88f 2985/* Arm ELF linker hash entry. */
252b5132 2986struct elf32_arm_link_hash_entry
b38cadfb
NC
2987{
2988 struct elf_link_hash_entry root;
252b5132 2989
b38cadfb
NC
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
b7693d02 2992
b38cadfb
NC
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
ba93b8ac
DJ
2995
2996#define GOT_UNKNOWN 0
2997#define GOT_NORMAL 1
2998#define GOT_TLS_GD 2
2999#define GOT_TLS_IE 4
0855e32b
NS
3000#define GOT_TLS_GDESC 8
3001#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 3002 unsigned int tls_type : 8;
34e77a92 3003
b38cadfb
NC
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
34e77a92 3006
b38cadfb 3007 unsigned int unused : 23;
a4fd1a8e 3008
b38cadfb
NC
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
0855e32b 3012
b38cadfb
NC
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
906e58ca 3016
b38cadfb 3017 /* A pointer to the most recently used stub hash entry against this
8029a119 3018 symbol. */
b38cadfb
NC
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3020};
252b5132 3021
252b5132 3022/* Traverse an arm ELF linker hash table. */
252b5132
RH
3023#define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3025 (&(table)->root, \
b7693d02 3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
3027 (info)))
3028
3029/* Get the ARM elf linker hash table from a link_info structure. */
3030#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 3033
906e58ca
NC
3034#define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3037
21d799b5
NC
3038/* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3040struct map_stub
3041{
3042 /* This is the section to which stubs in the group will be
3043 attached. */
3044 asection *link_sec;
3045 /* The stub section. */
3046 asection *stub_sec;
3047};
3048
0855e32b
NS
3049#define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3051
9b485d32 3052/* ARM ELF linker hash table. */
252b5132 3053struct elf32_arm_link_hash_table
906e58ca
NC
3054{
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
252b5132 3057
906e58ca
NC
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
252b5132 3060
906e58ca
NC
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
252b5132 3063
906e58ca
NC
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
845b51d6 3066
906e58ca
NC
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
845b51d6 3070
906e58ca
NC
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3072 veneers. */
3073 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 3074
a504d23a
LA
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3076 veneers. */
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3078
48229727
JB
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3084
906e58ca
NC
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
ba96a88f 3087
906e58ca
NC
3088 /* Nonzero to output a BE8 image. */
3089 int byteswap_code;
e489d0ae 3090
906e58ca
NC
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3093 int target1_is_rel;
9c504268 3094
906e58ca
NC
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3096 int target2_reloc;
eb043451 3097
906e58ca
NC
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3101 int fix_v4bx;
319850b4 3102
48229727
JB
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3104 int fix_cortex_a8;
3105
2de70689
MGD
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3107 int fix_arm1176;
3108
906e58ca
NC
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3110 int use_blx;
33bfe774 3111
906e58ca
NC
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 3115
906e58ca
NC
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
c7b8f16e 3118
a504d23a
LA
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3125
906e58ca
NC
3126 /* Nonzero to force PIC branch veneers. */
3127 int pic_veneer;
27e55c4d 3128
906e58ca
NC
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
e5a52504 3131
906e58ca
NC
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
e5a52504 3134
906e58ca
NC
3135 /* True if the target system is VxWorks. */
3136 int vxworks_p;
00a97672 3137
906e58ca
NC
3138 /* True if the target system is Symbian OS. */
3139 int symbian_p;
e5a52504 3140
b38cadfb
NC
3141 /* True if the target system is Native Client. */
3142 int nacl_p;
3143
906e58ca
NC
3144 /* True if the target uses REL relocations. */
3145 int use_rel;
4e7fd91e 3146
54ddd295
TP
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3149 int cmse_implib;
3150
0955507f
TP
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3153 bfd *in_implib_bfd;
3154
0855e32b
NS
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3157
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3160
906e58ca 3161 /* Short-cuts to get to dynamic linker sections. */
906e58ca
NC
3162 asection *sdynbss;
3163 asection *srelbss;
5e681ec4 3164
906e58ca
NC
3165 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3166 asection *srelplt2;
00a97672 3167
0855e32b
NS
3168 /* The offset into splt of the PLT entry for the TLS descriptor
3169 resolver. Special values are 0, if not necessary (or not found
3170 to be necessary yet), and -1 if needed but not determined
3171 yet. */
3172 bfd_vma dt_tlsdesc_plt;
3173
3174 /* The offset into sgot of the GOT entry used by the PLT entry
3175 above. */
b38cadfb 3176 bfd_vma dt_tlsdesc_got;
0855e32b
NS
3177
3178 /* Offset in .plt section of tls_arm_trampoline. */
3179 bfd_vma tls_trampoline;
3180
906e58ca
NC
3181 /* Data for R_ARM_TLS_LDM32 relocations. */
3182 union
3183 {
3184 bfd_signed_vma refcount;
3185 bfd_vma offset;
3186 } tls_ldm_got;
b7693d02 3187
87d72d41
AM
3188 /* Small local sym cache. */
3189 struct sym_cache sym_cache;
906e58ca
NC
3190
3191 /* For convenience in allocate_dynrelocs. */
3192 bfd * obfd;
3193
0855e32b
NS
3194 /* The amount of space used by the reserved portion of the sgotplt
3195 section, plus whatever space is used by the jump slots. */
3196 bfd_vma sgotplt_jump_table_size;
3197
906e58ca
NC
3198 /* The stub hash table. */
3199 struct bfd_hash_table stub_hash_table;
3200
3201 /* Linker stub bfd. */
3202 bfd *stub_bfd;
3203
3204 /* Linker call-backs. */
6bde4c52
TP
3205 asection * (*add_stub_section) (const char *, asection *, asection *,
3206 unsigned int);
906e58ca
NC
3207 void (*layout_sections_again) (void);
3208
3209 /* Array to keep track of which stub sections have been created, and
3210 information on stub grouping. */
21d799b5 3211 struct map_stub *stub_group;
906e58ca 3212
4ba2ef8f
TP
3213 /* Input stub section holding secure gateway veneers. */
3214 asection *cmse_stub_sec;
3215
0955507f
TP
3216 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3217 start to be allocated. */
3218 bfd_vma new_cmse_stub_offset;
3219
fe33d2fa 3220 /* Number of elements in stub_group. */
7292b3ac 3221 unsigned int top_id;
fe33d2fa 3222
906e58ca
NC
3223 /* Assorted information used by elf32_arm_size_stubs. */
3224 unsigned int bfd_count;
7292b3ac 3225 unsigned int top_index;
906e58ca
NC
3226 asection **input_list;
3227};
252b5132 3228
a504d23a
LA
3229static inline int
3230ctz (unsigned int mask)
3231{
3232#if GCC_VERSION >= 3004
3233 return __builtin_ctz (mask);
3234#else
3235 unsigned int i;
3236
3237 for (i = 0; i < 8 * sizeof (mask); i++)
3238 {
3239 if (mask & 0x1)
3240 break;
3241 mask = (mask >> 1);
3242 }
3243 return i;
3244#endif
3245}
3246
3247static inline int
3248popcount (unsigned int mask)
3249{
3250#if GCC_VERSION >= 3004
3251 return __builtin_popcount (mask);
3252#else
3253 unsigned int i, sum = 0;
3254
3255 for (i = 0; i < 8 * sizeof (mask); i++)
3256 {
3257 if (mask & 0x1)
3258 sum++;
3259 mask = (mask >> 1);
3260 }
3261 return sum;
3262#endif
3263}
3264
780a67af
NC
3265/* Create an entry in an ARM ELF linker hash table. */
3266
3267static struct bfd_hash_entry *
57e8b36a 3268elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3269 struct bfd_hash_table * table,
3270 const char * string)
780a67af
NC
3271{
3272 struct elf32_arm_link_hash_entry * ret =
3273 (struct elf32_arm_link_hash_entry *) entry;
3274
3275 /* Allocate the structure if it has not already been allocated by a
3276 subclass. */
906e58ca 3277 if (ret == NULL)
21d799b5 3278 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3279 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3280 if (ret == NULL)
780a67af
NC
3281 return (struct bfd_hash_entry *) ret;
3282
3283 /* Call the allocation method of the superclass. */
3284 ret = ((struct elf32_arm_link_hash_entry *)
3285 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3286 table, string));
57e8b36a 3287 if (ret != NULL)
b7693d02 3288 {
0bdcacaf 3289 ret->dyn_relocs = NULL;
ba93b8ac 3290 ret->tls_type = GOT_UNKNOWN;
0855e32b 3291 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3292 ret->plt.thumb_refcount = 0;
3293 ret->plt.maybe_thumb_refcount = 0;
3294 ret->plt.noncall_refcount = 0;
3295 ret->plt.got_offset = -1;
3296 ret->is_iplt = FALSE;
a4fd1a8e 3297 ret->export_glue = NULL;
906e58ca
NC
3298
3299 ret->stub_cache = NULL;
b7693d02 3300 }
780a67af
NC
3301
3302 return (struct bfd_hash_entry *) ret;
3303}
3304
34e77a92
RS
3305/* Ensure that we have allocated bookkeeping structures for ABFD's local
3306 symbols. */
3307
3308static bfd_boolean
3309elf32_arm_allocate_local_sym_info (bfd *abfd)
3310{
3311 if (elf_local_got_refcounts (abfd) == NULL)
3312 {
3313 bfd_size_type num_syms;
3314 bfd_size_type size;
3315 char *data;
3316
3317 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3318 size = num_syms * (sizeof (bfd_signed_vma)
3319 + sizeof (struct arm_local_iplt_info *)
3320 + sizeof (bfd_vma)
3321 + sizeof (char));
3322 data = bfd_zalloc (abfd, size);
3323 if (data == NULL)
3324 return FALSE;
3325
3326 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3327 data += num_syms * sizeof (bfd_signed_vma);
3328
3329 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3330 data += num_syms * sizeof (struct arm_local_iplt_info *);
3331
3332 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3333 data += num_syms * sizeof (bfd_vma);
3334
3335 elf32_arm_local_got_tls_type (abfd) = data;
3336 }
3337 return TRUE;
3338}
3339
3340/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3341 to input bfd ABFD. Create the information if it doesn't already exist.
3342 Return null if an allocation fails. */
3343
3344static struct arm_local_iplt_info *
3345elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3346{
3347 struct arm_local_iplt_info **ptr;
3348
3349 if (!elf32_arm_allocate_local_sym_info (abfd))
3350 return NULL;
3351
3352 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3353 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3354 if (*ptr == NULL)
3355 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3356 return *ptr;
3357}
3358
3359/* Try to obtain PLT information for the symbol with index R_SYMNDX
3360 in ABFD's symbol table. If the symbol is global, H points to its
3361 hash table entry, otherwise H is null.
3362
3363 Return true if the symbol does have PLT information. When returning
3364 true, point *ROOT_PLT at the target-independent reference count/offset
3365 union and *ARM_PLT at the ARM-specific information. */
3366
3367static bfd_boolean
4ba2ef8f
TP
3368elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3369 struct elf32_arm_link_hash_entry *h,
34e77a92
RS
3370 unsigned long r_symndx, union gotplt_union **root_plt,
3371 struct arm_plt_info **arm_plt)
3372{
3373 struct arm_local_iplt_info *local_iplt;
3374
4ba2ef8f
TP
3375 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3376 return FALSE;
3377
34e77a92
RS
3378 if (h != NULL)
3379 {
3380 *root_plt = &h->root.plt;
3381 *arm_plt = &h->plt;
3382 return TRUE;
3383 }
3384
3385 if (elf32_arm_local_iplt (abfd) == NULL)
3386 return FALSE;
3387
3388 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3389 if (local_iplt == NULL)
3390 return FALSE;
3391
3392 *root_plt = &local_iplt->root;
3393 *arm_plt = &local_iplt->arm;
3394 return TRUE;
3395}
3396
3397/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3398 before it. */
3399
3400static bfd_boolean
3401elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3402 struct arm_plt_info *arm_plt)
3403{
3404 struct elf32_arm_link_hash_table *htab;
3405
3406 htab = elf32_arm_hash_table (info);
3407 return (arm_plt->thumb_refcount != 0
3408 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3409}
3410
3411/* Return a pointer to the head of the dynamic reloc list that should
3412 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3413 ABFD's symbol table. Return null if an error occurs. */
3414
3415static struct elf_dyn_relocs **
3416elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3417 Elf_Internal_Sym *isym)
3418{
3419 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3420 {
3421 struct arm_local_iplt_info *local_iplt;
3422
3423 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3424 if (local_iplt == NULL)
3425 return NULL;
3426 return &local_iplt->dyn_relocs;
3427 }
3428 else
3429 {
3430 /* Track dynamic relocs needed for local syms too.
3431 We really need local syms available to do this
3432 easily. Oh well. */
3433 asection *s;
3434 void *vpp;
3435
3436 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3437 if (s == NULL)
3438 abort ();
3439
3440 vpp = &elf_section_data (s)->local_dynrel;
3441 return (struct elf_dyn_relocs **) vpp;
3442 }
3443}
3444
906e58ca
NC
3445/* Initialize an entry in the stub hash table. */
3446
3447static struct bfd_hash_entry *
3448stub_hash_newfunc (struct bfd_hash_entry *entry,
3449 struct bfd_hash_table *table,
3450 const char *string)
3451{
3452 /* Allocate the structure if it has not already been allocated by a
3453 subclass. */
3454 if (entry == NULL)
3455 {
21d799b5 3456 entry = (struct bfd_hash_entry *)
99059e56 3457 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3458 if (entry == NULL)
3459 return entry;
3460 }
3461
3462 /* Call the allocation method of the superclass. */
3463 entry = bfd_hash_newfunc (entry, table, string);
3464 if (entry != NULL)
3465 {
3466 struct elf32_arm_stub_hash_entry *eh;
3467
3468 /* Initialize the local fields. */
3469 eh = (struct elf32_arm_stub_hash_entry *) entry;
3470 eh->stub_sec = NULL;
0955507f 3471 eh->stub_offset = (bfd_vma) -1;
8d9d9490 3472 eh->source_value = 0;
906e58ca
NC
3473 eh->target_value = 0;
3474 eh->target_section = NULL;
cedfb179 3475 eh->orig_insn = 0;
906e58ca 3476 eh->stub_type = arm_stub_none;
461a49ca
DJ
3477 eh->stub_size = 0;
3478 eh->stub_template = NULL;
0955507f 3479 eh->stub_template_size = -1;
906e58ca
NC
3480 eh->h = NULL;
3481 eh->id_sec = NULL;
d8d2f433 3482 eh->output_name = NULL;
906e58ca
NC
3483 }
3484
3485 return entry;
3486}
3487
00a97672 3488/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3489 shortcuts to them in our hash table. */
3490
3491static bfd_boolean
57e8b36a 3492create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3493{
3494 struct elf32_arm_link_hash_table *htab;
3495
e5a52504 3496 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3497 if (htab == NULL)
3498 return FALSE;
3499
e5a52504
MM
3500 /* BPABI objects never have a GOT, or associated sections. */
3501 if (htab->symbian_p)
3502 return TRUE;
3503
5e681ec4
PB
3504 if (! _bfd_elf_create_got_section (dynobj, info))
3505 return FALSE;
3506
5e681ec4
PB
3507 return TRUE;
3508}
3509
34e77a92
RS
3510/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3511
3512static bfd_boolean
3513create_ifunc_sections (struct bfd_link_info *info)
3514{
3515 struct elf32_arm_link_hash_table *htab;
3516 const struct elf_backend_data *bed;
3517 bfd *dynobj;
3518 asection *s;
3519 flagword flags;
b38cadfb 3520
34e77a92
RS
3521 htab = elf32_arm_hash_table (info);
3522 dynobj = htab->root.dynobj;
3523 bed = get_elf_backend_data (dynobj);
3524 flags = bed->dynamic_sec_flags;
3525
3526 if (htab->root.iplt == NULL)
3527 {
3d4d4302
AM
3528 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3529 flags | SEC_READONLY | SEC_CODE);
34e77a92 3530 if (s == NULL
a0f49396 3531 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
34e77a92
RS
3532 return FALSE;
3533 htab->root.iplt = s;
3534 }
3535
3536 if (htab->root.irelplt == NULL)
3537 {
3d4d4302
AM
3538 s = bfd_make_section_anyway_with_flags (dynobj,
3539 RELOC_SECTION (htab, ".iplt"),
3540 flags | SEC_READONLY);
34e77a92 3541 if (s == NULL
a0f49396 3542 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
34e77a92
RS
3543 return FALSE;
3544 htab->root.irelplt = s;
3545 }
3546
3547 if (htab->root.igotplt == NULL)
3548 {
3d4d4302 3549 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92
RS
3550 if (s == NULL
3551 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3552 return FALSE;
3553 htab->root.igotplt = s;
3554 }
3555 return TRUE;
3556}
3557
eed94f8f
NC
3558/* Determine if we're dealing with a Thumb only architecture. */
3559
3560static bfd_boolean
3561using_thumb_only (struct elf32_arm_link_hash_table *globals)
3562{
2fd158eb
TP
3563 int arch;
3564 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3565 Tag_CPU_arch_profile);
eed94f8f 3566
2fd158eb
TP
3567 if (profile)
3568 return profile == 'M';
eed94f8f 3569
2fd158eb 3570 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
eed94f8f 3571
60a019a0
TP
3572 /* Force return logic to be reviewed for each new architecture. */
3573 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3574 || arch == TAG_CPU_ARCH_V8M_BASE
3575 || arch == TAG_CPU_ARCH_V8M_MAIN);
3576
2fd158eb
TP
3577 if (arch == TAG_CPU_ARCH_V6_M
3578 || arch == TAG_CPU_ARCH_V6S_M
3579 || arch == TAG_CPU_ARCH_V7E_M
3580 || arch == TAG_CPU_ARCH_V8M_BASE
3581 || arch == TAG_CPU_ARCH_V8M_MAIN)
3582 return TRUE;
eed94f8f 3583
2fd158eb 3584 return FALSE;
eed94f8f
NC
3585}
3586
3587/* Determine if we're dealing with a Thumb-2 object. */
3588
3589static bfd_boolean
3590using_thumb2 (struct elf32_arm_link_hash_table *globals)
3591{
60a019a0
TP
3592 int arch;
3593 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3594 Tag_THUMB_ISA_use);
3595
3596 if (thumb_isa)
3597 return thumb_isa == 2;
3598
3599 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3600
3601 /* Force return logic to be reviewed for each new architecture. */
3602 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3603 || arch == TAG_CPU_ARCH_V8M_BASE
3604 || arch == TAG_CPU_ARCH_V8M_MAIN);
3605
3606 return (arch == TAG_CPU_ARCH_V6T2
3607 || arch == TAG_CPU_ARCH_V7
3608 || arch == TAG_CPU_ARCH_V7E_M
3609 || arch == TAG_CPU_ARCH_V8
3610 || arch == TAG_CPU_ARCH_V8M_MAIN);
eed94f8f
NC
3611}
3612
5e866f5a
TP
3613/* Determine whether Thumb-2 BL instruction is available. */
3614
3615static bfd_boolean
3616using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3617{
3618 int arch =
3619 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3620
3621 /* Force return logic to be reviewed for each new architecture. */
3622 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3623 || arch == TAG_CPU_ARCH_V8M_BASE
3624 || arch == TAG_CPU_ARCH_V8M_MAIN);
3625
3626 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3627 return (arch == TAG_CPU_ARCH_V6T2
3628 || arch >= TAG_CPU_ARCH_V7);
3629}
3630
00a97672
RS
3631/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3632 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3633 hash table. */
3634
3635static bfd_boolean
57e8b36a 3636elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3637{
3638 struct elf32_arm_link_hash_table *htab;
3639
3640 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3641 if (htab == NULL)
3642 return FALSE;
3643
362d30a1 3644 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
3645 return FALSE;
3646
3647 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3648 return FALSE;
3649
3d4d4302 3650 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
0e1862bb 3651 if (!bfd_link_pic (info))
3d4d4302
AM
3652 htab->srelbss = bfd_get_linker_section (dynobj,
3653 RELOC_SECTION (htab, ".bss"));
00a97672
RS
3654
3655 if (htab->vxworks_p)
3656 {
3657 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3658 return FALSE;
3659
0e1862bb 3660 if (bfd_link_pic (info))
00a97672
RS
3661 {
3662 htab->plt_header_size = 0;
3663 htab->plt_entry_size
3664 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3665 }
3666 else
3667 {
3668 htab->plt_header_size
3669 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3670 htab->plt_entry_size
3671 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3672 }
aebf9be7
NC
3673
3674 if (elf_elfheader (dynobj))
3675 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
00a97672 3676 }
eed94f8f
NC
3677 else
3678 {
3679 /* PR ld/16017
3680 Test for thumb only architectures. Note - we cannot just call
3681 using_thumb_only() as the attributes in the output bfd have not been
3682 initialised at this point, so instead we use the input bfd. */
3683 bfd * saved_obfd = htab->obfd;
3684
3685 htab->obfd = dynobj;
3686 if (using_thumb_only (htab))
3687 {
3688 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3689 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3690 }
3691 htab->obfd = saved_obfd;
3692 }
5e681ec4 3693
362d30a1
RS
3694 if (!htab->root.splt
3695 || !htab->root.srelplt
e5a52504 3696 || !htab->sdynbss
0e1862bb 3697 || (!bfd_link_pic (info) && !htab->srelbss))
5e681ec4
PB
3698 abort ();
3699
3700 return TRUE;
3701}
3702
906e58ca
NC
3703/* Copy the extra info we tack onto an elf_link_hash_entry. */
3704
3705static void
3706elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3707 struct elf_link_hash_entry *dir,
3708 struct elf_link_hash_entry *ind)
3709{
3710 struct elf32_arm_link_hash_entry *edir, *eind;
3711
3712 edir = (struct elf32_arm_link_hash_entry *) dir;
3713 eind = (struct elf32_arm_link_hash_entry *) ind;
3714
0bdcacaf 3715 if (eind->dyn_relocs != NULL)
906e58ca 3716 {
0bdcacaf 3717 if (edir->dyn_relocs != NULL)
906e58ca 3718 {
0bdcacaf
RS
3719 struct elf_dyn_relocs **pp;
3720 struct elf_dyn_relocs *p;
906e58ca
NC
3721
3722 /* Add reloc counts against the indirect sym to the direct sym
3723 list. Merge any entries against the same section. */
0bdcacaf 3724 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
906e58ca 3725 {
0bdcacaf 3726 struct elf_dyn_relocs *q;
906e58ca 3727
0bdcacaf
RS
3728 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3729 if (q->sec == p->sec)
906e58ca
NC
3730 {
3731 q->pc_count += p->pc_count;
3732 q->count += p->count;
3733 *pp = p->next;
3734 break;
3735 }
3736 if (q == NULL)
3737 pp = &p->next;
3738 }
0bdcacaf 3739 *pp = edir->dyn_relocs;
906e58ca
NC
3740 }
3741
0bdcacaf
RS
3742 edir->dyn_relocs = eind->dyn_relocs;
3743 eind->dyn_relocs = NULL;
906e58ca
NC
3744 }
3745
3746 if (ind->root.type == bfd_link_hash_indirect)
3747 {
3748 /* Copy over PLT info. */
34e77a92
RS
3749 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3750 eind->plt.thumb_refcount = 0;
3751 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3752 eind->plt.maybe_thumb_refcount = 0;
3753 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3754 eind->plt.noncall_refcount = 0;
3755
3756 /* We should only allocate a function to .iplt once the final
3757 symbol information is known. */
3758 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
3759
3760 if (dir->got.refcount <= 0)
3761 {
3762 edir->tls_type = eind->tls_type;
3763 eind->tls_type = GOT_UNKNOWN;
3764 }
3765 }
3766
3767 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3768}
3769
68faa637
AM
3770/* Destroy an ARM elf linker hash table. */
3771
3772static void
d495ab0d 3773elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
3774{
3775 struct elf32_arm_link_hash_table *ret
d495ab0d 3776 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
3777
3778 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 3779 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
3780}
3781
906e58ca
NC
3782/* Create an ARM elf linker hash table. */
3783
3784static struct bfd_link_hash_table *
3785elf32_arm_link_hash_table_create (bfd *abfd)
3786{
3787 struct elf32_arm_link_hash_table *ret;
3788 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3789
7bf52ea2 3790 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
3791 if (ret == NULL)
3792 return NULL;
3793
3794 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3795 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
3796 sizeof (struct elf32_arm_link_hash_entry),
3797 ARM_ELF_DATA))
906e58ca
NC
3798 {
3799 free (ret);
3800 return NULL;
3801 }
3802
906e58ca 3803 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
a504d23a 3804 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
906e58ca
NC
3805#ifdef FOUR_WORD_PLT
3806 ret->plt_header_size = 16;
3807 ret->plt_entry_size = 16;
3808#else
3809 ret->plt_header_size = 20;
1db37fe6 3810 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 3811#endif
906e58ca 3812 ret->use_rel = 1;
906e58ca 3813 ret->obfd = abfd;
906e58ca
NC
3814
3815 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3816 sizeof (struct elf32_arm_stub_hash_entry)))
3817 {
d495ab0d 3818 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
3819 return NULL;
3820 }
d495ab0d 3821 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
3822
3823 return &ret->root.root;
3824}
3825
cd1dac3d
DG
3826/* Determine what kind of NOPs are available. */
3827
3828static bfd_boolean
3829arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3830{
3831 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3832 Tag_CPU_arch);
cd1dac3d 3833
60a019a0
TP
3834 /* Force return logic to be reviewed for each new architecture. */
3835 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3836 || arch == TAG_CPU_ARCH_V8M_BASE
3837 || arch == TAG_CPU_ARCH_V8M_MAIN);
3838
3839 return (arch == TAG_CPU_ARCH_V6T2
3840 || arch == TAG_CPU_ARCH_V6K
3841 || arch == TAG_CPU_ARCH_V7
3842 || arch == TAG_CPU_ARCH_V8);
cd1dac3d
DG
3843}
3844
f4ac8484
DJ
3845static bfd_boolean
3846arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3847{
3848 switch (stub_type)
3849 {
fea2b4d6 3850 case arm_stub_long_branch_thumb_only:
80c135e5 3851 case arm_stub_long_branch_thumb2_only:
d5a67c02 3852 case arm_stub_long_branch_thumb2_only_pure:
fea2b4d6
CL
3853 case arm_stub_long_branch_v4t_thumb_arm:
3854 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 3855 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 3856 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 3857 case arm_stub_long_branch_thumb_only_pic:
4ba2ef8f 3858 case arm_stub_cmse_branch_thumb_only:
f4ac8484
DJ
3859 return TRUE;
3860 case arm_stub_none:
3861 BFD_FAIL ();
3862 return FALSE;
3863 break;
3864 default:
3865 return FALSE;
3866 }
3867}
3868
906e58ca
NC
3869/* Determine the type of stub needed, if any, for a call. */
3870
3871static enum elf32_arm_stub_type
3872arm_type_of_stub (struct bfd_link_info *info,
3873 asection *input_sec,
3874 const Elf_Internal_Rela *rel,
34e77a92 3875 unsigned char st_type,
35fc36a8 3876 enum arm_st_branch_type *actual_branch_type,
906e58ca 3877 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3878 bfd_vma destination,
3879 asection *sym_sec,
3880 bfd *input_bfd,
3881 const char *name)
906e58ca
NC
3882{
3883 bfd_vma location;
3884 bfd_signed_vma branch_offset;
3885 unsigned int r_type;
3886 struct elf32_arm_link_hash_table * globals;
5e866f5a 3887 bfd_boolean thumb2, thumb2_bl, thumb_only;
906e58ca 3888 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3889 int use_plt = 0;
35fc36a8 3890 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
3891 union gotplt_union *root_plt;
3892 struct arm_plt_info *arm_plt;
d5a67c02
AV
3893 int arch;
3894 int thumb2_movw;
906e58ca 3895
35fc36a8 3896 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
3897 return stub_type;
3898
906e58ca 3899 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3900 if (globals == NULL)
3901 return stub_type;
906e58ca
NC
3902
3903 thumb_only = using_thumb_only (globals);
906e58ca 3904 thumb2 = using_thumb2 (globals);
5e866f5a 3905 thumb2_bl = using_thumb2_bl (globals);
906e58ca 3906
d5a67c02
AV
3907 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3908
3909 /* True for architectures that implement the thumb2 movw instruction. */
3910 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3911
906e58ca
NC
3912 /* Determine where the call point is. */
3913 location = (input_sec->output_offset
3914 + input_sec->output_section->vma
3915 + rel->r_offset);
3916
906e58ca
NC
3917 r_type = ELF32_R_TYPE (rel->r_info);
3918
39f21624
NC
3919 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3920 are considering a function call relocation. */
c5423981
TG
3921 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3922 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
3923 && branch_type == ST_BRANCH_TO_ARM)
3924 branch_type = ST_BRANCH_TO_THUMB;
3925
34e77a92
RS
3926 /* For TLS call relocs, it is the caller's responsibility to provide
3927 the address of the appropriate trampoline. */
3928 if (r_type != R_ARM_TLS_CALL
3929 && r_type != R_ARM_THM_TLS_CALL
4ba2ef8f
TP
3930 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3931 ELF32_R_SYM (rel->r_info), &root_plt,
3932 &arm_plt)
34e77a92 3933 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 3934 {
34e77a92 3935 asection *splt;
fe33d2fa 3936
34e77a92
RS
3937 if (hash == NULL || hash->is_iplt)
3938 splt = globals->root.iplt;
3939 else
3940 splt = globals->root.splt;
3941 if (splt != NULL)
b38cadfb 3942 {
34e77a92
RS
3943 use_plt = 1;
3944
3945 /* Note when dealing with PLT entries: the main PLT stub is in
3946 ARM mode, so if the branch is in Thumb mode, another
3947 Thumb->ARM stub will be inserted later just before the ARM
2df2751d
CL
3948 PLT stub. If a long branch stub is needed, we'll add a
3949 Thumb->Arm one and branch directly to the ARM PLT entry.
3950 Here, we have to check if a pre-PLT Thumb->ARM stub
3951 is needed and if it will be close enough. */
34e77a92
RS
3952
3953 destination = (splt->output_section->vma
3954 + splt->output_offset
3955 + root_plt->offset);
3956 st_type = STT_FUNC;
2df2751d
CL
3957
3958 /* Thumb branch/call to PLT: it can become a branch to ARM
3959 or to Thumb. We must perform the same checks and
3960 corrections as in elf32_arm_final_link_relocate. */
3961 if ((r_type == R_ARM_THM_CALL)
3962 || (r_type == R_ARM_THM_JUMP24))
3963 {
3964 if (globals->use_blx
3965 && r_type == R_ARM_THM_CALL
3966 && !thumb_only)
3967 {
3968 /* If the Thumb BLX instruction is available, convert
3969 the BL to a BLX instruction to call the ARM-mode
3970 PLT entry. */
3971 branch_type = ST_BRANCH_TO_ARM;
3972 }
3973 else
3974 {
3975 if (!thumb_only)
3976 /* Target the Thumb stub before the ARM PLT entry. */
3977 destination -= PLT_THUMB_STUB_SIZE;
3978 branch_type = ST_BRANCH_TO_THUMB;
3979 }
3980 }
3981 else
3982 {
3983 branch_type = ST_BRANCH_TO_ARM;
3984 }
34e77a92 3985 }
5fa9e92f 3986 }
34e77a92
RS
3987 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3988 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 3989
fe33d2fa
CL
3990 branch_offset = (bfd_signed_vma)(destination - location);
3991
0855e32b 3992 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 3993 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 3994 {
5fa9e92f
CL
3995 /* Handle cases where:
3996 - this call goes too far (different Thumb/Thumb2 max
99059e56 3997 distance)
155d87d7 3998 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
3999 Thumb->Arm branch (not bl). A stub is needed in this case,
4000 but only if this call is not through a PLT entry. Indeed,
4001 PLT stubs handle mode switching already.
5fa9e92f 4002 */
5e866f5a 4003 if ((!thumb2_bl
906e58ca
NC
4004 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4005 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
5e866f5a 4006 || (thumb2_bl
906e58ca
NC
4007 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4008 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
4009 || (thumb2
4010 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4011 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4012 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 4013 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
4014 && (((r_type == R_ARM_THM_CALL
4015 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981
TG
4016 || (r_type == R_ARM_THM_JUMP24)
4017 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 4018 && !use_plt))
906e58ca 4019 {
2df2751d
CL
4020 /* If we need to insert a Thumb-Thumb long branch stub to a
4021 PLT, use one that branches directly to the ARM PLT
4022 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4023 stub, undo this now. */
4024 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only) {
4025 branch_type = ST_BRANCH_TO_ARM;
4026 branch_offset += PLT_THUMB_STUB_SIZE;
4027 }
4028
35fc36a8 4029 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4030 {
4031 /* Thumb to thumb. */
4032 if (!thumb_only)
4033 {
d5a67c02 4034 if (input_sec->flags & SEC_ELF_PURECODE)
4eca0228
AM
4035 _bfd_error_handler (_("%B(%s): warning: long branch "
4036 " veneers used in section with "
4037 "SHF_ARM_PURECODE section "
4038 "attribute is only supported"
4039 " for M-profile targets that "
4040 "implement the movw "
4041 "instruction."));
d5a67c02 4042
0e1862bb 4043 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4044 /* PIC stubs. */
155d87d7 4045 ? ((globals->use_blx
9553db3c 4046 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
4047 /* V5T and above. Stub starts with ARM code, so
4048 we must be able to switch mode before
4049 reaching it, which is only possible for 'bl'
4050 (ie R_ARM_THM_CALL relocation). */
cf3eccff 4051 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 4052 /* On V4T, use Thumb code only. */
d3626fb0 4053 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
4054
4055 /* non-PIC stubs. */
155d87d7 4056 : ((globals->use_blx
9553db3c 4057 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
4058 /* V5T and above. */
4059 ? arm_stub_long_branch_any_any
4060 /* V4T. */
d3626fb0 4061 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
4062 }
4063 else
4064 {
d5a67c02
AV
4065 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4066 stub_type = arm_stub_long_branch_thumb2_only_pure;
4067 else
4068 {
4069 if (input_sec->flags & SEC_ELF_PURECODE)
4eca0228
AM
4070 _bfd_error_handler (_("%B(%s): warning: long branch "
4071 " veneers used in section with "
4072 "SHF_ARM_PURECODE section "
4073 "attribute is only supported"
4074 " for M-profile targets that "
4075 "implement the movw "
4076 "instruction."));
d5a67c02
AV
4077
4078 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4079 /* PIC stub. */
4080 ? arm_stub_long_branch_thumb_only_pic
4081 /* non-PIC stub. */
4082 : (thumb2 ? arm_stub_long_branch_thumb2_only
4083 : arm_stub_long_branch_thumb_only);
4084 }
906e58ca
NC
4085 }
4086 }
4087 else
4088 {
d5a67c02 4089 if (input_sec->flags & SEC_ELF_PURECODE)
4eca0228
AM
4090 _bfd_error_handler (_("%B(%s): warning: long branch "
4091 " veneers used in section with "
4092 "SHF_ARM_PURECODE section "
4093 "attribute is only supported"
4094 " for M-profile targets that "
4095 "implement the movw "
4096 "instruction."));
d5a67c02 4097
906e58ca 4098 /* Thumb to arm. */
c820be07
NC
4099 if (sym_sec != NULL
4100 && sym_sec->owner != NULL
4101 && !INTERWORK_FLAG (sym_sec->owner))
4102 {
4eca0228 4103 _bfd_error_handler
c820be07
NC
4104 (_("%B(%s): warning: interworking not enabled.\n"
4105 " first occurrence: %B: Thumb call to ARM"),
4106 sym_sec->owner, input_bfd, name);
4107 }
4108
0855e32b 4109 stub_type =
0e1862bb 4110 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4111 /* PIC stubs. */
0855e32b 4112 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 4113 /* TLS PIC stubs. */
0855e32b
NS
4114 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4115 : arm_stub_long_branch_v4t_thumb_tls_pic)
4116 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4117 /* V5T PIC and above. */
4118 ? arm_stub_long_branch_any_arm_pic
4119 /* V4T PIC stub. */
4120 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
4121
4122 /* non-PIC stubs. */
0855e32b 4123 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
4124 /* V5T and above. */
4125 ? arm_stub_long_branch_any_any
4126 /* V4T. */
4127 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
4128
4129 /* Handle v4t short branches. */
fea2b4d6 4130 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
4131 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4132 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 4133 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
4134 }
4135 }
4136 }
fe33d2fa
CL
4137 else if (r_type == R_ARM_CALL
4138 || r_type == R_ARM_JUMP24
0855e32b
NS
4139 || r_type == R_ARM_PLT32
4140 || r_type == R_ARM_TLS_CALL)
906e58ca 4141 {
d5a67c02 4142 if (input_sec->flags & SEC_ELF_PURECODE)
4eca0228
AM
4143 _bfd_error_handler (_("%B(%s): warning: long branch "
4144 " veneers used in section with "
4145 "SHF_ARM_PURECODE section "
4146 "attribute is only supported"
4147 " for M-profile targets that "
4148 "implement the movw "
4149 "instruction."));
35fc36a8 4150 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4151 {
4152 /* Arm to thumb. */
c820be07
NC
4153
4154 if (sym_sec != NULL
4155 && sym_sec->owner != NULL
4156 && !INTERWORK_FLAG (sym_sec->owner))
4157 {
4eca0228 4158 _bfd_error_handler
c820be07 4159 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 4160 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
4161 sym_sec->owner, input_bfd, name);
4162 }
4163
4164 /* We have an extra 2-bytes reach because of
4165 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
4166 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4167 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 4168 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
4169 || (r_type == R_ARM_JUMP24)
4170 || (r_type == R_ARM_PLT32))
906e58ca 4171 {
0e1862bb 4172 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4173 /* PIC stubs. */
ebe24dd4
CL
4174 ? ((globals->use_blx)
4175 /* V5T and above. */
4176 ? arm_stub_long_branch_any_thumb_pic
4177 /* V4T stub. */
4178 : arm_stub_long_branch_v4t_arm_thumb_pic)
4179
c2b4a39d
CL
4180 /* non-PIC stubs. */
4181 : ((globals->use_blx)
4182 /* V5T and above. */
4183 ? arm_stub_long_branch_any_any
4184 /* V4T. */
4185 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
4186 }
4187 }
4188 else
4189 {
4190 /* Arm to arm. */
4191 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4192 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4193 {
0855e32b 4194 stub_type =
0e1862bb 4195 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4196 /* PIC stubs. */
0855e32b 4197 ? (r_type == R_ARM_TLS_CALL
6a631e86 4198 /* TLS PIC Stub. */
0855e32b 4199 ? arm_stub_long_branch_any_tls_pic
7a89b94e
NC
4200 : (globals->nacl_p
4201 ? arm_stub_long_branch_arm_nacl_pic
4202 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 4203 /* non-PIC stubs. */
7a89b94e
NC
4204 : (globals->nacl_p
4205 ? arm_stub_long_branch_arm_nacl
4206 : arm_stub_long_branch_any_any);
906e58ca
NC
4207 }
4208 }
4209 }
4210
fe33d2fa
CL
4211 /* If a stub is needed, record the actual destination type. */
4212 if (stub_type != arm_stub_none)
35fc36a8 4213 *actual_branch_type = branch_type;
fe33d2fa 4214
906e58ca
NC
4215 return stub_type;
4216}
4217
4218/* Build a name for an entry in the stub hash table. */
4219
4220static char *
4221elf32_arm_stub_name (const asection *input_section,
4222 const asection *sym_sec,
4223 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
4224 const Elf_Internal_Rela *rel,
4225 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4226{
4227 char *stub_name;
4228 bfd_size_type len;
4229
4230 if (hash)
4231 {
fe33d2fa 4232 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 4233 stub_name = (char *) bfd_malloc (len);
906e58ca 4234 if (stub_name != NULL)
fe33d2fa 4235 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
4236 input_section->id & 0xffffffff,
4237 hash->root.root.root.string,
fe33d2fa
CL
4238 (int) rel->r_addend & 0xffffffff,
4239 (int) stub_type);
906e58ca
NC
4240 }
4241 else
4242 {
fe33d2fa 4243 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 4244 stub_name = (char *) bfd_malloc (len);
906e58ca 4245 if (stub_name != NULL)
fe33d2fa 4246 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
4247 input_section->id & 0xffffffff,
4248 sym_sec->id & 0xffffffff,
0855e32b
NS
4249 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4250 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4251 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
4252 (int) rel->r_addend & 0xffffffff,
4253 (int) stub_type);
906e58ca
NC
4254 }
4255
4256 return stub_name;
4257}
4258
4259/* Look up an entry in the stub hash. Stub entries are cached because
4260 creating the stub name takes a bit of time. */
4261
4262static struct elf32_arm_stub_hash_entry *
4263elf32_arm_get_stub_entry (const asection *input_section,
4264 const asection *sym_sec,
4265 struct elf_link_hash_entry *hash,
4266 const Elf_Internal_Rela *rel,
fe33d2fa
CL
4267 struct elf32_arm_link_hash_table *htab,
4268 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4269{
4270 struct elf32_arm_stub_hash_entry *stub_entry;
4271 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4272 const asection *id_sec;
4273
4274 if ((input_section->flags & SEC_CODE) == 0)
4275 return NULL;
4276
4277 /* If this input section is part of a group of sections sharing one
4278 stub section, then use the id of the first section in the group.
4279 Stub names need to include a section id, as there may well be
4280 more than one stub used to reach say, printf, and we need to
4281 distinguish between them. */
c2abbbeb 4282 BFD_ASSERT (input_section->id <= htab->top_id);
906e58ca
NC
4283 id_sec = htab->stub_group[input_section->id].link_sec;
4284
4285 if (h != NULL && h->stub_cache != NULL
4286 && h->stub_cache->h == h
fe33d2fa
CL
4287 && h->stub_cache->id_sec == id_sec
4288 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
4289 {
4290 stub_entry = h->stub_cache;
4291 }
4292 else
4293 {
4294 char *stub_name;
4295
fe33d2fa 4296 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
4297 if (stub_name == NULL)
4298 return NULL;
4299
4300 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4301 stub_name, FALSE, FALSE);
4302 if (h != NULL)
4303 h->stub_cache = stub_entry;
4304
4305 free (stub_name);
4306 }
4307
4308 return stub_entry;
4309}
4310
daa4adae
TP
4311/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4312 section. */
4313
4314static bfd_boolean
4315arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4316{
4317 if (stub_type >= max_stub_type)
4318 abort (); /* Should be unreachable. */
4319
4ba2ef8f
TP
4320 switch (stub_type)
4321 {
4322 case arm_stub_cmse_branch_thumb_only:
4323 return TRUE;
4324
4325 default:
4326 return FALSE;
4327 }
4328
4329 abort (); /* Should be unreachable. */
daa4adae
TP
4330}
4331
4332/* Required alignment (as a power of 2) for the dedicated section holding
4333 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4334 with input sections. */
4335
4336static int
4337arm_dedicated_stub_output_section_required_alignment
4338 (enum elf32_arm_stub_type stub_type)
4339{
4340 if (stub_type >= max_stub_type)
4341 abort (); /* Should be unreachable. */
4342
4ba2ef8f
TP
4343 switch (stub_type)
4344 {
4345 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4346 boundary. */
4347 case arm_stub_cmse_branch_thumb_only:
4348 return 5;
4349
4350 default:
4351 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4352 return 0;
4353 }
4354
4355 abort (); /* Should be unreachable. */
daa4adae
TP
4356}
4357
4358/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4359 NULL if veneers of this type are interspersed with input sections. */
4360
4361static const char *
4362arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4363{
4364 if (stub_type >= max_stub_type)
4365 abort (); /* Should be unreachable. */
4366
4ba2ef8f
TP
4367 switch (stub_type)
4368 {
4369 case arm_stub_cmse_branch_thumb_only:
4370 return ".gnu.sgstubs";
4371
4372 default:
4373 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4374 return NULL;
4375 }
4376
4377 abort (); /* Should be unreachable. */
daa4adae
TP
4378}
4379
4380/* If veneers of type STUB_TYPE should go in a dedicated output section,
4381 returns the address of the hash table field in HTAB holding a pointer to the
4382 corresponding input section. Otherwise, returns NULL. */
4383
4384static asection **
4ba2ef8f
TP
4385arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4386 enum elf32_arm_stub_type stub_type)
daa4adae
TP
4387{
4388 if (stub_type >= max_stub_type)
4389 abort (); /* Should be unreachable. */
4390
4ba2ef8f
TP
4391 switch (stub_type)
4392 {
4393 case arm_stub_cmse_branch_thumb_only:
4394 return &htab->cmse_stub_sec;
4395
4396 default:
4397 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4398 return NULL;
4399 }
4400
4401 abort (); /* Should be unreachable. */
daa4adae
TP
4402}
4403
4404/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4405 is the section that branch into veneer and can be NULL if stub should go in
4406 a dedicated output section. Returns a pointer to the stub section, and the
4407 section to which the stub section will be attached (in *LINK_SEC_P).
48229727 4408 LINK_SEC_P may be NULL. */
906e58ca 4409
48229727
JB
4410static asection *
4411elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
daa4adae
TP
4412 struct elf32_arm_link_hash_table *htab,
4413 enum elf32_arm_stub_type stub_type)
906e58ca 4414{
daa4adae
TP
4415 asection *link_sec, *out_sec, **stub_sec_p;
4416 const char *stub_sec_prefix;
4417 bfd_boolean dedicated_output_section =
4418 arm_dedicated_stub_output_section_required (stub_type);
4419 int align;
906e58ca 4420
daa4adae 4421 if (dedicated_output_section)
906e58ca 4422 {
daa4adae
TP
4423 bfd *output_bfd = htab->obfd;
4424 const char *out_sec_name =
4425 arm_dedicated_stub_output_section_name (stub_type);
4426 link_sec = NULL;
4427 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4428 stub_sec_prefix = out_sec_name;
4429 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4430 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4431 if (out_sec == NULL)
906e58ca 4432 {
4eca0228
AM
4433 _bfd_error_handler (_("No address assigned to the veneers output "
4434 "section %s"), out_sec_name);
daa4adae 4435 return NULL;
906e58ca 4436 }
daa4adae
TP
4437 }
4438 else
4439 {
c2abbbeb 4440 BFD_ASSERT (section->id <= htab->top_id);
daa4adae
TP
4441 link_sec = htab->stub_group[section->id].link_sec;
4442 BFD_ASSERT (link_sec != NULL);
4443 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4444 if (*stub_sec_p == NULL)
4445 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4446 stub_sec_prefix = link_sec->name;
4447 out_sec = link_sec->output_section;
4448 align = htab->nacl_p ? 4 : 3;
906e58ca 4449 }
b38cadfb 4450
daa4adae
TP
4451 if (*stub_sec_p == NULL)
4452 {
4453 size_t namelen;
4454 bfd_size_type len;
4455 char *s_name;
4456
4457 namelen = strlen (stub_sec_prefix);
4458 len = namelen + sizeof (STUB_SUFFIX);
4459 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4460 if (s_name == NULL)
4461 return NULL;
4462
4463 memcpy (s_name, stub_sec_prefix, namelen);
4464 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4465 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4466 align);
4467 if (*stub_sec_p == NULL)
4468 return NULL;
4469
4470 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4471 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4472 | SEC_KEEP;
4473 }
4474
4475 if (!dedicated_output_section)
4476 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4477
48229727
JB
4478 if (link_sec_p)
4479 *link_sec_p = link_sec;
b38cadfb 4480
daa4adae 4481 return *stub_sec_p;
48229727
JB
4482}
4483
4484/* Add a new stub entry to the stub hash. Not all fields of the new
4485 stub entry are initialised. */
4486
4487static struct elf32_arm_stub_hash_entry *
daa4adae
TP
4488elf32_arm_add_stub (const char *stub_name, asection *section,
4489 struct elf32_arm_link_hash_table *htab,
4490 enum elf32_arm_stub_type stub_type)
48229727
JB
4491{
4492 asection *link_sec;
4493 asection *stub_sec;
4494 struct elf32_arm_stub_hash_entry *stub_entry;
4495
daa4adae
TP
4496 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4497 stub_type);
48229727
JB
4498 if (stub_sec == NULL)
4499 return NULL;
906e58ca
NC
4500
4501 /* Enter this entry into the linker stub hash table. */
4502 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4503 TRUE, FALSE);
4504 if (stub_entry == NULL)
4505 {
6bde4c52
TP
4506 if (section == NULL)
4507 section = stub_sec;
4eca0228
AM
4508 _bfd_error_handler (_("%s: cannot create stub entry %s"),
4509 section->owner, stub_name);
906e58ca
NC
4510 return NULL;
4511 }
4512
4513 stub_entry->stub_sec = stub_sec;
0955507f 4514 stub_entry->stub_offset = (bfd_vma) -1;
906e58ca
NC
4515 stub_entry->id_sec = link_sec;
4516
906e58ca
NC
4517 return stub_entry;
4518}
4519
4520/* Store an Arm insn into an output section not processed by
4521 elf32_arm_write_section. */
4522
4523static void
8029a119
NC
4524put_arm_insn (struct elf32_arm_link_hash_table * htab,
4525 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4526{
4527 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4528 bfd_putl32 (val, ptr);
4529 else
4530 bfd_putb32 (val, ptr);
4531}
4532
4533/* Store a 16-bit Thumb insn into an output section not processed by
4534 elf32_arm_write_section. */
4535
4536static void
8029a119
NC
4537put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4538 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4539{
4540 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4541 bfd_putl16 (val, ptr);
4542 else
4543 bfd_putb16 (val, ptr);
4544}
4545
a504d23a
LA
4546/* Store a Thumb2 insn into an output section not processed by
4547 elf32_arm_write_section. */
4548
4549static void
4550put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
b98e6871 4551 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
a504d23a
LA
4552{
4553 /* T2 instructions are 16-bit streamed. */
4554 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4555 {
4556 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4557 bfd_putl16 ((val & 0xffff), ptr + 2);
4558 }
4559 else
4560 {
4561 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4562 bfd_putb16 ((val & 0xffff), ptr + 2);
4563 }
4564}
4565
0855e32b
NS
4566/* If it's possible to change R_TYPE to a more efficient access
4567 model, return the new reloc type. */
4568
4569static unsigned
b38cadfb 4570elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4571 struct elf_link_hash_entry *h)
4572{
4573 int is_local = (h == NULL);
4574
0e1862bb
L
4575 if (bfd_link_pic (info)
4576 || (h && h->root.type == bfd_link_hash_undefweak))
0855e32b
NS
4577 return r_type;
4578
b38cadfb 4579 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4580 switch (r_type)
4581 {
4582 case R_ARM_TLS_GOTDESC:
4583 case R_ARM_TLS_CALL:
4584 case R_ARM_THM_TLS_CALL:
4585 case R_ARM_TLS_DESCSEQ:
4586 case R_ARM_THM_TLS_DESCSEQ:
4587 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4588 }
4589
4590 return r_type;
4591}
4592
48229727
JB
4593static bfd_reloc_status_type elf32_arm_final_link_relocate
4594 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4595 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92
RS
4596 const char *, unsigned char, enum arm_st_branch_type,
4597 struct elf_link_hash_entry *, bfd_boolean *, char **);
48229727 4598
4563a860
JB
4599static unsigned int
4600arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4601{
4602 switch (stub_type)
4603 {
4604 case arm_stub_a8_veneer_b_cond:
4605 case arm_stub_a8_veneer_b:
4606 case arm_stub_a8_veneer_bl:
4607 return 2;
4608
4609 case arm_stub_long_branch_any_any:
4610 case arm_stub_long_branch_v4t_arm_thumb:
4611 case arm_stub_long_branch_thumb_only:
80c135e5 4612 case arm_stub_long_branch_thumb2_only:
d5a67c02 4613 case arm_stub_long_branch_thumb2_only_pure:
4563a860
JB
4614 case arm_stub_long_branch_v4t_thumb_thumb:
4615 case arm_stub_long_branch_v4t_thumb_arm:
4616 case arm_stub_short_branch_v4t_thumb_arm:
4617 case arm_stub_long_branch_any_arm_pic:
4618 case arm_stub_long_branch_any_thumb_pic:
4619 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4620 case arm_stub_long_branch_v4t_arm_thumb_pic:
4621 case arm_stub_long_branch_v4t_thumb_arm_pic:
4622 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4623 case arm_stub_long_branch_any_tls_pic:
4624 case arm_stub_long_branch_v4t_thumb_tls_pic:
4ba2ef8f 4625 case arm_stub_cmse_branch_thumb_only:
4563a860
JB
4626 case arm_stub_a8_veneer_blx:
4627 return 4;
b38cadfb 4628
7a89b94e
NC
4629 case arm_stub_long_branch_arm_nacl:
4630 case arm_stub_long_branch_arm_nacl_pic:
4631 return 16;
4632
4563a860
JB
4633 default:
4634 abort (); /* Should be unreachable. */
4635 }
4636}
4637
4f4faa4d
TP
4638/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4639 veneering (TRUE) or have their own symbol (FALSE). */
4640
4641static bfd_boolean
4642arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4643{
4644 if (stub_type >= max_stub_type)
4645 abort (); /* Should be unreachable. */
4646
4ba2ef8f
TP
4647 switch (stub_type)
4648 {
4649 case arm_stub_cmse_branch_thumb_only:
4650 return TRUE;
4651
4652 default:
4653 return FALSE;
4654 }
4655
4656 abort (); /* Should be unreachable. */
4f4faa4d
TP
4657}
4658
d7c5bd02
TP
4659/* Returns the padding needed for the dedicated section used stubs of type
4660 STUB_TYPE. */
4661
4662static int
4663arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4664{
4665 if (stub_type >= max_stub_type)
4666 abort (); /* Should be unreachable. */
4667
4ba2ef8f
TP
4668 switch (stub_type)
4669 {
4670 case arm_stub_cmse_branch_thumb_only:
4671 return 32;
4672
4673 default:
4674 return 0;
4675 }
4676
4677 abort (); /* Should be unreachable. */
d7c5bd02
TP
4678}
4679
0955507f
TP
4680/* If veneers of type STUB_TYPE should go in a dedicated output section,
4681 returns the address of the hash table field in HTAB holding the offset at
4682 which new veneers should be layed out in the stub section. */
4683
4684static bfd_vma*
4685arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4686 enum elf32_arm_stub_type stub_type)
4687{
4688 switch (stub_type)
4689 {
4690 case arm_stub_cmse_branch_thumb_only:
4691 return &htab->new_cmse_stub_offset;
4692
4693 default:
4694 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4695 return NULL;
4696 }
4697}
4698
906e58ca
NC
4699static bfd_boolean
4700arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4701 void * in_arg)
4702{
7a89b94e 4703#define MAXRELOCS 3
0955507f 4704 bfd_boolean removed_sg_veneer;
906e58ca 4705 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 4706 struct elf32_arm_link_hash_table *globals;
906e58ca 4707 struct bfd_link_info *info;
906e58ca
NC
4708 asection *stub_sec;
4709 bfd *stub_bfd;
906e58ca
NC
4710 bfd_byte *loc;
4711 bfd_vma sym_value;
4712 int template_size;
4713 int size;
d3ce72d0 4714 const insn_sequence *template_sequence;
906e58ca 4715 int i;
48229727
JB
4716 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4717 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4718 int nrelocs = 0;
0955507f 4719 int just_allocated = 0;
906e58ca
NC
4720
4721 /* Massage our args to the form they really have. */
4722 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4723 info = (struct bfd_link_info *) in_arg;
4724
4725 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4726 if (globals == NULL)
4727 return FALSE;
906e58ca 4728
906e58ca
NC
4729 stub_sec = stub_entry->stub_sec;
4730
4dfe6ac6 4731 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
4732 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4733 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 4734 return TRUE;
fe33d2fa 4735
0955507f
TP
4736 /* Assign a slot at the end of section if none assigned yet. */
4737 if (stub_entry->stub_offset == (bfd_vma) -1)
4738 {
4739 stub_entry->stub_offset = stub_sec->size;
4740 just_allocated = 1;
4741 }
906e58ca
NC
4742 loc = stub_sec->contents + stub_entry->stub_offset;
4743
4744 stub_bfd = stub_sec->owner;
4745
906e58ca
NC
4746 /* This is the address of the stub destination. */
4747 sym_value = (stub_entry->target_value
4748 + stub_entry->target_section->output_offset
4749 + stub_entry->target_section->output_section->vma);
4750
d3ce72d0 4751 template_sequence = stub_entry->stub_template;
461a49ca 4752 template_size = stub_entry->stub_template_size;
906e58ca
NC
4753
4754 size = 0;
461a49ca 4755 for (i = 0; i < template_size; i++)
906e58ca 4756 {
d3ce72d0 4757 switch (template_sequence[i].type)
461a49ca
DJ
4758 {
4759 case THUMB16_TYPE:
48229727 4760 {
d3ce72d0
NC
4761 bfd_vma data = (bfd_vma) template_sequence[i].data;
4762 if (template_sequence[i].reloc_addend != 0)
48229727 4763 {
99059e56
RM
4764 /* We've borrowed the reloc_addend field to mean we should
4765 insert a condition code into this (Thumb-1 branch)
4766 instruction. See THUMB16_BCOND_INSN. */
4767 BFD_ASSERT ((data & 0xff00) == 0xd000);
4768 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 4769 }
fe33d2fa 4770 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
4771 size += 2;
4772 }
461a49ca 4773 break;
906e58ca 4774
48229727 4775 case THUMB32_TYPE:
fe33d2fa
CL
4776 bfd_put_16 (stub_bfd,
4777 (template_sequence[i].data >> 16) & 0xffff,
4778 loc + size);
4779 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4780 loc + size + 2);
99059e56
RM
4781 if (template_sequence[i].r_type != R_ARM_NONE)
4782 {
4783 stub_reloc_idx[nrelocs] = i;
4784 stub_reloc_offset[nrelocs++] = size;
4785 }
4786 size += 4;
4787 break;
48229727 4788
461a49ca 4789 case ARM_TYPE:
fe33d2fa
CL
4790 bfd_put_32 (stub_bfd, template_sequence[i].data,
4791 loc + size);
461a49ca
DJ
4792 /* Handle cases where the target is encoded within the
4793 instruction. */
d3ce72d0 4794 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 4795 {
48229727
JB
4796 stub_reloc_idx[nrelocs] = i;
4797 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4798 }
4799 size += 4;
4800 break;
4801
4802 case DATA_TYPE:
d3ce72d0 4803 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
4804 stub_reloc_idx[nrelocs] = i;
4805 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4806 size += 4;
4807 break;
4808
4809 default:
4810 BFD_FAIL ();
4811 return FALSE;
4812 }
906e58ca 4813 }
461a49ca 4814
0955507f
TP
4815 if (just_allocated)
4816 stub_sec->size += size;
906e58ca 4817
461a49ca
DJ
4818 /* Stub size has already been computed in arm_size_one_stub. Check
4819 consistency. */
4820 BFD_ASSERT (size == stub_entry->stub_size);
4821
906e58ca 4822 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 4823 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4824 sym_value |= 1;
4825
0955507f
TP
4826 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4827 to relocate in each stub. */
4828 removed_sg_veneer =
4829 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4830 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
c820be07 4831
48229727 4832 for (i = 0; i < nrelocs; i++)
8d9d9490
TP
4833 {
4834 Elf_Internal_Rela rel;
4835 bfd_boolean unresolved_reloc;
4836 char *error_message;
4837 bfd_vma points_to =
4838 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4839
4840 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4841 rel.r_info = ELF32_R_INFO (0,
4842 template_sequence[stub_reloc_idx[i]].r_type);
4843 rel.r_addend = 0;
4844
4845 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4846 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4847 template should refer back to the instruction after the original
4848 branch. We use target_section as Cortex-A8 erratum workaround stubs
4849 are only generated when both source and target are in the same
4850 section. */
4851 points_to = stub_entry->target_section->output_section->vma
4852 + stub_entry->target_section->output_offset
4853 + stub_entry->source_value;
4854
4855 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4856 (template_sequence[stub_reloc_idx[i]].r_type),
4857 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4858 points_to, info, stub_entry->target_section, "", STT_FUNC,
4859 stub_entry->branch_type,
4860 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4861 &error_message);
4862 }
906e58ca
NC
4863
4864 return TRUE;
48229727 4865#undef MAXRELOCS
906e58ca
NC
4866}
4867
48229727
JB
4868/* Calculate the template, template size and instruction size for a stub.
4869 Return value is the instruction size. */
906e58ca 4870
48229727
JB
4871static unsigned int
4872find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4873 const insn_sequence **stub_template,
4874 int *stub_template_size)
906e58ca 4875{
d3ce72d0 4876 const insn_sequence *template_sequence = NULL;
48229727
JB
4877 int template_size = 0, i;
4878 unsigned int size;
906e58ca 4879
d3ce72d0 4880 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
4881 if (stub_template)
4882 *stub_template = template_sequence;
4883
48229727 4884 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
4885 if (stub_template_size)
4886 *stub_template_size = template_size;
906e58ca
NC
4887
4888 size = 0;
461a49ca
DJ
4889 for (i = 0; i < template_size; i++)
4890 {
d3ce72d0 4891 switch (template_sequence[i].type)
461a49ca
DJ
4892 {
4893 case THUMB16_TYPE:
4894 size += 2;
4895 break;
4896
4897 case ARM_TYPE:
48229727 4898 case THUMB32_TYPE:
461a49ca
DJ
4899 case DATA_TYPE:
4900 size += 4;
4901 break;
4902
4903 default:
4904 BFD_FAIL ();
2a229407 4905 return 0;
461a49ca
DJ
4906 }
4907 }
4908
48229727
JB
4909 return size;
4910}
4911
4912/* As above, but don't actually build the stub. Just bump offset so
4913 we know stub section sizes. */
4914
4915static bfd_boolean
4916arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 4917 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
4918{
4919 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 4920 const insn_sequence *template_sequence;
48229727
JB
4921 int template_size, size;
4922
4923 /* Massage our args to the form they really have. */
4924 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
4925
4926 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4927 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4928
d3ce72d0 4929 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
4930 &template_size);
4931
0955507f
TP
4932 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4933 if (stub_entry->stub_template_size)
4934 {
4935 stub_entry->stub_size = size;
4936 stub_entry->stub_template = template_sequence;
4937 stub_entry->stub_template_size = template_size;
4938 }
4939
4940 /* Already accounted for. */
4941 if (stub_entry->stub_offset != (bfd_vma) -1)
4942 return TRUE;
461a49ca 4943
906e58ca
NC
4944 size = (size + 7) & ~7;
4945 stub_entry->stub_sec->size += size;
461a49ca 4946
906e58ca
NC
4947 return TRUE;
4948}
4949
4950/* External entry points for sizing and building linker stubs. */
4951
4952/* Set up various things so that we can make a list of input sections
4953 for each output section included in the link. Returns -1 on error,
4954 0 when no stubs will be needed, and 1 on success. */
4955
4956int
4957elf32_arm_setup_section_lists (bfd *output_bfd,
4958 struct bfd_link_info *info)
4959{
4960 bfd *input_bfd;
4961 unsigned int bfd_count;
7292b3ac 4962 unsigned int top_id, top_index;
906e58ca
NC
4963 asection *section;
4964 asection **input_list, **list;
4965 bfd_size_type amt;
4966 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4967
4dfe6ac6
NC
4968 if (htab == NULL)
4969 return 0;
906e58ca
NC
4970 if (! is_elf_hash_table (htab))
4971 return 0;
4972
4973 /* Count the number of input BFDs and find the top input section id. */
4974 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4975 input_bfd != NULL;
c72f2fb2 4976 input_bfd = input_bfd->link.next)
906e58ca
NC
4977 {
4978 bfd_count += 1;
4979 for (section = input_bfd->sections;
4980 section != NULL;
4981 section = section->next)
4982 {
4983 if (top_id < section->id)
4984 top_id = section->id;
4985 }
4986 }
4987 htab->bfd_count = bfd_count;
4988
4989 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 4990 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
4991 if (htab->stub_group == NULL)
4992 return -1;
fe33d2fa 4993 htab->top_id = top_id;
906e58ca
NC
4994
4995 /* We can't use output_bfd->section_count here to find the top output
4996 section index as some sections may have been removed, and
4997 _bfd_strip_section_from_output doesn't renumber the indices. */
4998 for (section = output_bfd->sections, top_index = 0;
4999 section != NULL;
5000 section = section->next)
5001 {
5002 if (top_index < section->index)
5003 top_index = section->index;
5004 }
5005
5006 htab->top_index = top_index;
5007 amt = sizeof (asection *) * (top_index + 1);
21d799b5 5008 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
5009 htab->input_list = input_list;
5010 if (input_list == NULL)
5011 return -1;
5012
5013 /* For sections we aren't interested in, mark their entries with a
5014 value we can check later. */
5015 list = input_list + top_index;
5016 do
5017 *list = bfd_abs_section_ptr;
5018 while (list-- != input_list);
5019
5020 for (section = output_bfd->sections;
5021 section != NULL;
5022 section = section->next)
5023 {
5024 if ((section->flags & SEC_CODE) != 0)
5025 input_list[section->index] = NULL;
5026 }
5027
5028 return 1;
5029}
5030
5031/* The linker repeatedly calls this function for each input section,
5032 in the order that input sections are linked into output sections.
5033 Build lists of input sections to determine groupings between which
5034 we may insert linker stubs. */
5035
5036void
5037elf32_arm_next_input_section (struct bfd_link_info *info,
5038 asection *isec)
5039{
5040 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5041
4dfe6ac6
NC
5042 if (htab == NULL)
5043 return;
5044
906e58ca
NC
5045 if (isec->output_section->index <= htab->top_index)
5046 {
5047 asection **list = htab->input_list + isec->output_section->index;
5048
a7470592 5049 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
5050 {
5051 /* Steal the link_sec pointer for our list. */
5052#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5053 /* This happens to make the list in reverse order,
07d72278 5054 which we reverse later. */
906e58ca
NC
5055 PREV_SEC (isec) = *list;
5056 *list = isec;
5057 }
5058 }
5059}
5060
5061/* See whether we can group stub sections together. Grouping stub
5062 sections may result in fewer stubs. More importantly, we need to
07d72278 5063 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
5064 .fini output sections respectively, because glibc splits the
5065 _init and _fini functions into multiple parts. Putting a stub in
5066 the middle of a function is not a good idea. */
5067
5068static void
5069group_sections (struct elf32_arm_link_hash_table *htab,
5070 bfd_size_type stub_group_size,
07d72278 5071 bfd_boolean stubs_always_after_branch)
906e58ca 5072{
07d72278 5073 asection **list = htab->input_list;
906e58ca
NC
5074
5075 do
5076 {
5077 asection *tail = *list;
07d72278 5078 asection *head;
906e58ca
NC
5079
5080 if (tail == bfd_abs_section_ptr)
5081 continue;
5082
07d72278
DJ
5083 /* Reverse the list: we must avoid placing stubs at the
5084 beginning of the section because the beginning of the text
5085 section may be required for an interrupt vector in bare metal
5086 code. */
5087#define NEXT_SEC PREV_SEC
e780aef2
CL
5088 head = NULL;
5089 while (tail != NULL)
99059e56
RM
5090 {
5091 /* Pop from tail. */
5092 asection *item = tail;
5093 tail = PREV_SEC (item);
e780aef2 5094
99059e56
RM
5095 /* Push on head. */
5096 NEXT_SEC (item) = head;
5097 head = item;
5098 }
07d72278
DJ
5099
5100 while (head != NULL)
906e58ca
NC
5101 {
5102 asection *curr;
07d72278 5103 asection *next;
e780aef2
CL
5104 bfd_vma stub_group_start = head->output_offset;
5105 bfd_vma end_of_next;
906e58ca 5106
07d72278 5107 curr = head;
e780aef2 5108 while (NEXT_SEC (curr) != NULL)
8cd931b7 5109 {
e780aef2
CL
5110 next = NEXT_SEC (curr);
5111 end_of_next = next->output_offset + next->size;
5112 if (end_of_next - stub_group_start >= stub_group_size)
5113 /* End of NEXT is too far from start, so stop. */
8cd931b7 5114 break;
e780aef2
CL
5115 /* Add NEXT to the group. */
5116 curr = next;
8cd931b7 5117 }
906e58ca 5118
07d72278 5119 /* OK, the size from the start to the start of CURR is less
906e58ca 5120 than stub_group_size and thus can be handled by one stub
07d72278 5121 section. (Or the head section is itself larger than
906e58ca
NC
5122 stub_group_size, in which case we may be toast.)
5123 We should really be keeping track of the total size of
5124 stubs added here, as stubs contribute to the final output
7fb9f789 5125 section size. */
906e58ca
NC
5126 do
5127 {
07d72278 5128 next = NEXT_SEC (head);
906e58ca 5129 /* Set up this stub group. */
07d72278 5130 htab->stub_group[head->id].link_sec = curr;
906e58ca 5131 }
07d72278 5132 while (head != curr && (head = next) != NULL);
906e58ca
NC
5133
5134 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
5135 bytes after the stub section can be handled by it too. */
5136 if (!stubs_always_after_branch)
906e58ca 5137 {
e780aef2
CL
5138 stub_group_start = curr->output_offset + curr->size;
5139
8cd931b7 5140 while (next != NULL)
906e58ca 5141 {
e780aef2
CL
5142 end_of_next = next->output_offset + next->size;
5143 if (end_of_next - stub_group_start >= stub_group_size)
5144 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 5145 break;
e780aef2 5146 /* Add NEXT to the stub group. */
07d72278
DJ
5147 head = next;
5148 next = NEXT_SEC (head);
5149 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
5150 }
5151 }
07d72278 5152 head = next;
906e58ca
NC
5153 }
5154 }
07d72278 5155 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
5156
5157 free (htab->input_list);
5158#undef PREV_SEC
07d72278 5159#undef NEXT_SEC
906e58ca
NC
5160}
5161
48229727
JB
5162/* Comparison function for sorting/searching relocations relating to Cortex-A8
5163 erratum fix. */
5164
5165static int
5166a8_reloc_compare (const void *a, const void *b)
5167{
21d799b5
NC
5168 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5169 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
5170
5171 if (ra->from < rb->from)
5172 return -1;
5173 else if (ra->from > rb->from)
5174 return 1;
5175 else
5176 return 0;
5177}
5178
5179static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5180 const char *, char **);
5181
5182/* Helper function to scan code for sequences which might trigger the Cortex-A8
5183 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 5184 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
5185 otherwise. */
5186
81694485
NC
5187static bfd_boolean
5188cortex_a8_erratum_scan (bfd *input_bfd,
5189 struct bfd_link_info *info,
48229727
JB
5190 struct a8_erratum_fix **a8_fixes_p,
5191 unsigned int *num_a8_fixes_p,
5192 unsigned int *a8_fix_table_size_p,
5193 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
5194 unsigned int num_a8_relocs,
5195 unsigned prev_num_a8_fixes,
5196 bfd_boolean *stub_changed_p)
48229727
JB
5197{
5198 asection *section;
5199 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5200 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5201 unsigned int num_a8_fixes = *num_a8_fixes_p;
5202 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5203
4dfe6ac6
NC
5204 if (htab == NULL)
5205 return FALSE;
5206
48229727
JB
5207 for (section = input_bfd->sections;
5208 section != NULL;
5209 section = section->next)
5210 {
5211 bfd_byte *contents = NULL;
5212 struct _arm_elf_section_data *sec_data;
5213 unsigned int span;
5214 bfd_vma base_vma;
5215
5216 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
5217 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5218 || (section->flags & SEC_EXCLUDE) != 0
5219 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5220 || (section->output_section == bfd_abs_section_ptr))
5221 continue;
48229727
JB
5222
5223 base_vma = section->output_section->vma + section->output_offset;
5224
5225 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 5226 contents = elf_section_data (section)->this_hdr.contents;
48229727 5227 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
99059e56 5228 return TRUE;
48229727
JB
5229
5230 sec_data = elf32_arm_section_data (section);
5231
5232 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
5233 {
5234 unsigned int span_start = sec_data->map[span].vma;
5235 unsigned int span_end = (span == sec_data->mapcount - 1)
5236 ? section->size : sec_data->map[span + 1].vma;
5237 unsigned int i;
5238 char span_type = sec_data->map[span].type;
5239 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5240
5241 if (span_type != 't')
5242 continue;
5243
5244 /* Span is entirely within a single 4KB region: skip scanning. */
5245 if (((base_vma + span_start) & ~0xfff)
48229727 5246 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
5247 continue;
5248
5249 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5250
5251 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5252 * The branch target is in the same 4KB region as the
5253 first half of the branch.
5254 * The instruction before the branch is a 32-bit
5255 length non-branch instruction. */
5256 for (i = span_start; i < span_end;)
5257 {
5258 unsigned int insn = bfd_getl16 (&contents[i]);
5259 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
48229727
JB
5260 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5261
99059e56
RM
5262 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5263 insn_32bit = TRUE;
48229727
JB
5264
5265 if (insn_32bit)
99059e56
RM
5266 {
5267 /* Load the rest of the insn (in manual-friendly order). */
5268 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5269
5270 /* Encoding T4: B<c>.W. */
5271 is_b = (insn & 0xf800d000) == 0xf0009000;
5272 /* Encoding T1: BL<c>.W. */
5273 is_bl = (insn & 0xf800d000) == 0xf000d000;
5274 /* Encoding T2: BLX<c>.W. */
5275 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
5276 /* Encoding T3: B<c>.W (not permitted in IT block). */
5277 is_bcc = (insn & 0xf800d000) == 0xf0008000
5278 && (insn & 0x07f00000) != 0x03800000;
5279 }
5280
5281 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 5282
99059e56 5283 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
5284 && insn_32bit
5285 && is_32bit_branch
5286 && last_was_32bit
5287 && ! last_was_branch)
99059e56
RM
5288 {
5289 bfd_signed_vma offset = 0;
5290 bfd_boolean force_target_arm = FALSE;
48229727 5291 bfd_boolean force_target_thumb = FALSE;
99059e56
RM
5292 bfd_vma target;
5293 enum elf32_arm_stub_type stub_type = arm_stub_none;
5294 struct a8_erratum_reloc key, *found;
5295 bfd_boolean use_plt = FALSE;
48229727 5296
99059e56
RM
5297 key.from = base_vma + i;
5298 found = (struct a8_erratum_reloc *)
5299 bsearch (&key, a8_relocs, num_a8_relocs,
5300 sizeof (struct a8_erratum_reloc),
5301 &a8_reloc_compare);
48229727
JB
5302
5303 if (found)
5304 {
5305 char *error_message = NULL;
5306 struct elf_link_hash_entry *entry;
5307
5308 /* We don't care about the error returned from this
99059e56 5309 function, only if there is glue or not. */
48229727
JB
5310 entry = find_thumb_glue (info, found->sym_name,
5311 &error_message);
5312
5313 if (entry)
5314 found->non_a8_stub = TRUE;
5315
92750f34 5316 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 5317 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
5318 && found->hash->root.plt.offset != (bfd_vma) -1)
5319 use_plt = TRUE;
5320
5321 if (found->r_type == R_ARM_THM_CALL)
5322 {
35fc36a8
RS
5323 if (found->branch_type == ST_BRANCH_TO_ARM
5324 || use_plt)
92750f34
DJ
5325 force_target_arm = TRUE;
5326 else
5327 force_target_thumb = TRUE;
5328 }
48229727
JB
5329 }
5330
99059e56 5331 /* Check if we have an offending branch instruction. */
48229727
JB
5332
5333 if (found && found->non_a8_stub)
5334 /* We've already made a stub for this instruction, e.g.
5335 it's a long branch or a Thumb->ARM stub. Assume that
5336 stub will suffice to work around the A8 erratum (see
5337 setting of always_after_branch above). */
5338 ;
99059e56
RM
5339 else if (is_bcc)
5340 {
5341 offset = (insn & 0x7ff) << 1;
5342 offset |= (insn & 0x3f0000) >> 4;
5343 offset |= (insn & 0x2000) ? 0x40000 : 0;
5344 offset |= (insn & 0x800) ? 0x80000 : 0;
5345 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5346 if (offset & 0x100000)
5347 offset |= ~ ((bfd_signed_vma) 0xfffff);
5348 stub_type = arm_stub_a8_veneer_b_cond;
5349 }
5350 else if (is_b || is_bl || is_blx)
5351 {
5352 int s = (insn & 0x4000000) != 0;
5353 int j1 = (insn & 0x2000) != 0;
5354 int j2 = (insn & 0x800) != 0;
5355 int i1 = !(j1 ^ s);
5356 int i2 = !(j2 ^ s);
5357
5358 offset = (insn & 0x7ff) << 1;
5359 offset |= (insn & 0x3ff0000) >> 4;
5360 offset |= i2 << 22;
5361 offset |= i1 << 23;
5362 offset |= s << 24;
5363 if (offset & 0x1000000)
5364 offset |= ~ ((bfd_signed_vma) 0xffffff);
5365
5366 if (is_blx)
5367 offset &= ~ ((bfd_signed_vma) 3);
5368
5369 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5370 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5371 }
5372
5373 if (stub_type != arm_stub_none)
5374 {
5375 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
5376
5377 /* The original instruction is a BL, but the target is
99059e56 5378 an ARM instruction. If we were not making a stub,
48229727
JB
5379 the BL would have been converted to a BLX. Use the
5380 BLX stub instead in that case. */
5381 if (htab->use_blx && force_target_arm
5382 && stub_type == arm_stub_a8_veneer_bl)
5383 {
5384 stub_type = arm_stub_a8_veneer_blx;
5385 is_blx = TRUE;
5386 is_bl = FALSE;
5387 }
5388 /* Conversely, if the original instruction was
5389 BLX but the target is Thumb mode, use the BL
5390 stub. */
5391 else if (force_target_thumb
5392 && stub_type == arm_stub_a8_veneer_blx)
5393 {
5394 stub_type = arm_stub_a8_veneer_bl;
5395 is_blx = FALSE;
5396 is_bl = TRUE;
5397 }
5398
99059e56
RM
5399 if (is_blx)
5400 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 5401
99059e56
RM
5402 /* If we found a relocation, use the proper destination,
5403 not the offset in the (unrelocated) instruction.
48229727
JB
5404 Note this is always done if we switched the stub type
5405 above. */
99059e56
RM
5406 if (found)
5407 offset =
81694485 5408 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 5409
99059e56
RM
5410 /* If the stub will use a Thumb-mode branch to a
5411 PLT target, redirect it to the preceding Thumb
5412 entry point. */
5413 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5414 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 5415
99059e56 5416 target = pc_for_insn + offset;
48229727 5417
99059e56
RM
5418 /* The BLX stub is ARM-mode code. Adjust the offset to
5419 take the different PC value (+8 instead of +4) into
48229727 5420 account. */
99059e56
RM
5421 if (stub_type == arm_stub_a8_veneer_blx)
5422 offset += 4;
5423
5424 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5425 {
5426 char *stub_name = NULL;
5427
5428 if (num_a8_fixes == a8_fix_table_size)
5429 {
5430 a8_fix_table_size *= 2;
5431 a8_fixes = (struct a8_erratum_fix *)
5432 bfd_realloc (a8_fixes,
5433 sizeof (struct a8_erratum_fix)
5434 * a8_fix_table_size);
5435 }
48229727 5436
eb7c4339
NS
5437 if (num_a8_fixes < prev_num_a8_fixes)
5438 {
5439 /* If we're doing a subsequent scan,
5440 check if we've found the same fix as
5441 before, and try and reuse the stub
5442 name. */
5443 stub_name = a8_fixes[num_a8_fixes].stub_name;
5444 if ((a8_fixes[num_a8_fixes].section != section)
5445 || (a8_fixes[num_a8_fixes].offset != i))
5446 {
5447 free (stub_name);
5448 stub_name = NULL;
5449 *stub_changed_p = TRUE;
5450 }
5451 }
5452
5453 if (!stub_name)
5454 {
21d799b5 5455 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
5456 if (stub_name != NULL)
5457 sprintf (stub_name, "%x:%x", section->id, i);
5458 }
48229727 5459
99059e56
RM
5460 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5461 a8_fixes[num_a8_fixes].section = section;
5462 a8_fixes[num_a8_fixes].offset = i;
8d9d9490
TP
5463 a8_fixes[num_a8_fixes].target_offset =
5464 target - base_vma;
99059e56
RM
5465 a8_fixes[num_a8_fixes].orig_insn = insn;
5466 a8_fixes[num_a8_fixes].stub_name = stub_name;
5467 a8_fixes[num_a8_fixes].stub_type = stub_type;
5468 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 5469 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 5470
99059e56
RM
5471 num_a8_fixes++;
5472 }
5473 }
5474 }
48229727 5475
99059e56
RM
5476 i += insn_32bit ? 4 : 2;
5477 last_was_32bit = insn_32bit;
48229727 5478 last_was_branch = is_32bit_branch;
99059e56
RM
5479 }
5480 }
48229727
JB
5481
5482 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 5483 free (contents);
48229727 5484 }
fe33d2fa 5485
48229727
JB
5486 *a8_fixes_p = a8_fixes;
5487 *num_a8_fixes_p = num_a8_fixes;
5488 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 5489
81694485 5490 return FALSE;
48229727
JB
5491}
5492
b715f643
TP
5493/* Create or update a stub entry depending on whether the stub can already be
5494 found in HTAB. The stub is identified by:
5495 - its type STUB_TYPE
5496 - its source branch (note that several can share the same stub) whose
5497 section and relocation (if any) are given by SECTION and IRELA
5498 respectively
5499 - its target symbol whose input section, hash, name, value and branch type
5500 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5501 respectively
5502
5503 If found, the value of the stub's target symbol is updated from SYM_VALUE
5504 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5505 TRUE and the stub entry is initialized.
5506
0955507f
TP
5507 Returns the stub that was created or updated, or NULL if an error
5508 occurred. */
b715f643 5509
0955507f 5510static struct elf32_arm_stub_hash_entry *
b715f643
TP
5511elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5512 enum elf32_arm_stub_type stub_type, asection *section,
5513 Elf_Internal_Rela *irela, asection *sym_sec,
5514 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5515 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5516 bfd_boolean *new_stub)
5517{
5518 const asection *id_sec;
5519 char *stub_name;
5520 struct elf32_arm_stub_hash_entry *stub_entry;
5521 unsigned int r_type;
4f4faa4d 5522 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
b715f643
TP
5523
5524 BFD_ASSERT (stub_type != arm_stub_none);
5525 *new_stub = FALSE;
5526
4f4faa4d
TP
5527 if (sym_claimed)
5528 stub_name = sym_name;
5529 else
5530 {
5531 BFD_ASSERT (irela);
5532 BFD_ASSERT (section);
c2abbbeb 5533 BFD_ASSERT (section->id <= htab->top_id);
b715f643 5534
4f4faa4d
TP
5535 /* Support for grouping stub sections. */
5536 id_sec = htab->stub_group[section->id].link_sec;
b715f643 5537
4f4faa4d
TP
5538 /* Get the name of this stub. */
5539 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5540 stub_type);
5541 if (!stub_name)
0955507f 5542 return NULL;
4f4faa4d 5543 }
b715f643
TP
5544
5545 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5546 FALSE);
5547 /* The proper stub has already been created, just update its value. */
5548 if (stub_entry != NULL)
5549 {
4f4faa4d
TP
5550 if (!sym_claimed)
5551 free (stub_name);
b715f643 5552 stub_entry->target_value = sym_value;
0955507f 5553 return stub_entry;
b715f643
TP
5554 }
5555
daa4adae 5556 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
b715f643
TP
5557 if (stub_entry == NULL)
5558 {
4f4faa4d
TP
5559 if (!sym_claimed)
5560 free (stub_name);
0955507f 5561 return NULL;
b715f643
TP
5562 }
5563
5564 stub_entry->target_value = sym_value;
5565 stub_entry->target_section = sym_sec;
5566 stub_entry->stub_type = stub_type;
5567 stub_entry->h = hash;
5568 stub_entry->branch_type = branch_type;
5569
4f4faa4d
TP
5570 if (sym_claimed)
5571 stub_entry->output_name = sym_name;
5572 else
b715f643 5573 {
4f4faa4d
TP
5574 if (sym_name == NULL)
5575 sym_name = "unnamed";
5576 stub_entry->output_name = (char *)
5577 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5578 + strlen (sym_name));
5579 if (stub_entry->output_name == NULL)
5580 {
5581 free (stub_name);
0955507f 5582 return NULL;
4f4faa4d 5583 }
b715f643 5584
4f4faa4d
TP
5585 /* For historical reasons, use the existing names for ARM-to-Thumb and
5586 Thumb-to-ARM stubs. */
5587 r_type = ELF32_R_TYPE (irela->r_info);
5588 if ((r_type == (unsigned int) R_ARM_THM_CALL
5589 || r_type == (unsigned int) R_ARM_THM_JUMP24
5590 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5591 && branch_type == ST_BRANCH_TO_ARM)
5592 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5593 else if ((r_type == (unsigned int) R_ARM_CALL
5594 || r_type == (unsigned int) R_ARM_JUMP24)
5595 && branch_type == ST_BRANCH_TO_THUMB)
5596 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5597 else
5598 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5599 }
b715f643
TP
5600
5601 *new_stub = TRUE;
0955507f 5602 return stub_entry;
b715f643
TP
5603}
5604
4ba2ef8f
TP
5605/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5606 gateway veneer to transition from non secure to secure state and create them
5607 accordingly.
5608
5609 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5610 defines the conditions that govern Secure Gateway veneer creation for a
5611 given symbol <SYM> as follows:
5612 - it has function type
5613 - it has non local binding
5614 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5615 same type, binding and value as <SYM> (called normal symbol).
5616 An entry function can handle secure state transition itself in which case
5617 its special symbol would have a different value from the normal symbol.
5618
5619 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5620 entry mapping while HTAB gives the name to hash entry mapping.
0955507f
TP
5621 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5622 created.
4ba2ef8f 5623
0955507f 5624 The return value gives whether a stub failed to be allocated. */
4ba2ef8f
TP
5625
5626static bfd_boolean
5627cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5628 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
0955507f 5629 int *cmse_stub_created)
4ba2ef8f
TP
5630{
5631 const struct elf_backend_data *bed;
5632 Elf_Internal_Shdr *symtab_hdr;
5633 unsigned i, j, sym_count, ext_start;
5634 Elf_Internal_Sym *cmse_sym, *local_syms;
5635 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5636 enum arm_st_branch_type branch_type;
5637 char *sym_name, *lsym_name;
5638 bfd_vma sym_value;
5639 asection *section;
0955507f
TP
5640 struct elf32_arm_stub_hash_entry *stub_entry;
5641 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
4ba2ef8f
TP
5642
5643 bed = get_elf_backend_data (input_bfd);
5644 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5645 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5646 ext_start = symtab_hdr->sh_info;
5647 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5648 && out_attr[Tag_CPU_arch_profile].i == 'M');
5649
5650 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5651 if (local_syms == NULL)
5652 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5653 symtab_hdr->sh_info, 0, NULL, NULL,
5654 NULL);
5655 if (symtab_hdr->sh_info && local_syms == NULL)
5656 return FALSE;
5657
5658 /* Scan symbols. */
5659 for (i = 0; i < sym_count; i++)
5660 {
5661 cmse_invalid = FALSE;
5662
5663 if (i < ext_start)
5664 {
5665 cmse_sym = &local_syms[i];
5666 /* Not a special symbol. */
5667 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5668 continue;
5669 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5670 symtab_hdr->sh_link,
5671 cmse_sym->st_name);
5672 /* Special symbol with local binding. */
5673 cmse_invalid = TRUE;
5674 }
5675 else
5676 {
5677 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5678 sym_name = (char *) cmse_hash->root.root.root.string;
5679
5680 /* Not a special symbol. */
5681 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5682 continue;
5683
5684 /* Special symbol has incorrect binding or type. */
5685 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5686 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5687 || cmse_hash->root.type != STT_FUNC)
5688 cmse_invalid = TRUE;
5689 }
5690
5691 if (!is_v8m)
5692 {
4eca0228
AM
5693 _bfd_error_handler (_("%B: Special symbol `%s' only allowed for "
5694 "ARMv8-M architecture or later."),
5695 input_bfd, sym_name);
4ba2ef8f
TP
5696 is_v8m = TRUE; /* Avoid multiple warning. */
5697 ret = FALSE;
5698 }
5699
5700 if (cmse_invalid)
5701 {
4eca0228
AM
5702 _bfd_error_handler (_("%B: invalid special symbol `%s'."),
5703 input_bfd, sym_name);
5704 _bfd_error_handler (_("It must be a global or weak function "
5705 "symbol."));
4ba2ef8f
TP
5706 ret = FALSE;
5707 if (i < ext_start)
5708 continue;
5709 }
5710
5711 sym_name += strlen (CMSE_PREFIX);
5712 hash = (struct elf32_arm_link_hash_entry *)
5713 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5714
5715 /* No associated normal symbol or it is neither global nor weak. */
5716 if (!hash
5717 || (hash->root.root.type != bfd_link_hash_defined
5718 && hash->root.root.type != bfd_link_hash_defweak)
5719 || hash->root.type != STT_FUNC)
5720 {
5721 /* Initialize here to avoid warning about use of possibly
5722 uninitialized variable. */
5723 j = 0;
5724
5725 if (!hash)
5726 {
5727 /* Searching for a normal symbol with local binding. */
5728 for (; j < ext_start; j++)
5729 {
5730 lsym_name =
5731 bfd_elf_string_from_elf_section (input_bfd,
5732 symtab_hdr->sh_link,
5733 local_syms[j].st_name);
5734 if (!strcmp (sym_name, lsym_name))
5735 break;
5736 }
5737 }
5738
5739 if (hash || j < ext_start)
5740 {
4eca0228 5741 _bfd_error_handler
4ba2ef8f 5742 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
4eca0228 5743 _bfd_error_handler
4ba2ef8f
TP
5744 (_("It must be a global or weak function symbol."));
5745 }
5746 else
4eca0228 5747 _bfd_error_handler
4ba2ef8f
TP
5748 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5749 ret = FALSE;
5750 if (!hash)
5751 continue;
5752 }
5753
5754 sym_value = hash->root.root.u.def.value;
5755 section = hash->root.root.u.def.section;
5756
5757 if (cmse_hash->root.root.u.def.section != section)
5758 {
4eca0228 5759 _bfd_error_handler
4ba2ef8f
TP
5760 (_("%B: `%s' and its special symbol are in different sections."),
5761 input_bfd, sym_name);
5762 ret = FALSE;
5763 }
5764 if (cmse_hash->root.root.u.def.value != sym_value)
5765 continue; /* Ignore: could be an entry function starting with SG. */
5766
5767 /* If this section is a link-once section that will be discarded, then
5768 don't create any stubs. */
5769 if (section->output_section == NULL)
5770 {
4eca0228 5771 _bfd_error_handler
4ba2ef8f
TP
5772 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5773 continue;
5774 }
5775
5776 if (hash->root.size == 0)
5777 {
4eca0228 5778 _bfd_error_handler
4ba2ef8f
TP
5779 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5780 ret = FALSE;
5781 }
5782
5783 if (!ret)
5784 continue;
5785 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
0955507f 5786 stub_entry
4ba2ef8f
TP
5787 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5788 NULL, NULL, section, hash, sym_name,
5789 sym_value, branch_type, &new_stub);
5790
0955507f 5791 if (stub_entry == NULL)
4ba2ef8f
TP
5792 ret = FALSE;
5793 else
5794 {
5795 BFD_ASSERT (new_stub);
0955507f 5796 (*cmse_stub_created)++;
4ba2ef8f
TP
5797 }
5798 }
5799
5800 if (!symtab_hdr->contents)
5801 free (local_syms);
5802 return ret;
5803}
5804
0955507f
TP
5805/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5806 code entry function, ie can be called from non secure code without using a
5807 veneer. */
5808
5809static bfd_boolean
5810cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5811{
42484486 5812 bfd_byte contents[4];
0955507f
TP
5813 uint32_t first_insn;
5814 asection *section;
5815 file_ptr offset;
5816 bfd *abfd;
5817
5818 /* Defined symbol of function type. */
5819 if (hash->root.root.type != bfd_link_hash_defined
5820 && hash->root.root.type != bfd_link_hash_defweak)
5821 return FALSE;
5822 if (hash->root.type != STT_FUNC)
5823 return FALSE;
5824
5825 /* Read first instruction. */
5826 section = hash->root.root.u.def.section;
5827 abfd = section->owner;
5828 offset = hash->root.root.u.def.value - section->vma;
42484486
TP
5829 if (!bfd_get_section_contents (abfd, section, contents, offset,
5830 sizeof (contents)))
0955507f
TP
5831 return FALSE;
5832
42484486
TP
5833 first_insn = bfd_get_32 (abfd, contents);
5834
5835 /* Starts by SG instruction. */
0955507f
TP
5836 return first_insn == 0xe97fe97f;
5837}
5838
5839/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5840 secure gateway veneers (ie. the veneers was not in the input import library)
5841 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5842
5843static bfd_boolean
5844arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5845{
5846 struct elf32_arm_stub_hash_entry *stub_entry;
5847 struct bfd_link_info *info;
5848
5849 /* Massage our args to the form they really have. */
5850 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5851 info = (struct bfd_link_info *) gen_info;
5852
5853 if (info->out_implib_bfd)
5854 return TRUE;
5855
5856 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5857 return TRUE;
5858
5859 if (stub_entry->stub_offset == (bfd_vma) -1)
4eca0228 5860 _bfd_error_handler (" %s", stub_entry->output_name);
0955507f
TP
5861
5862 return TRUE;
5863}
5864
5865/* Set offset of each secure gateway veneers so that its address remain
5866 identical to the one in the input import library referred by
5867 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5868 (present in input import library but absent from the executable being
5869 linked) or if new veneers appeared and there is no output import library
5870 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5871 number of secure gateway veneers found in the input import library.
5872
5873 The function returns whether an error occurred. If no error occurred,
5874 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5875 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5876 veneer observed set for new veneers to be layed out after. */
5877
5878static bfd_boolean
5879set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5880 struct elf32_arm_link_hash_table *htab,
5881 int *cmse_stub_created)
5882{
5883 long symsize;
5884 char *sym_name;
5885 flagword flags;
5886 long i, symcount;
5887 bfd *in_implib_bfd;
5888 asection *stub_out_sec;
5889 bfd_boolean ret = TRUE;
5890 Elf_Internal_Sym *intsym;
5891 const char *out_sec_name;
5892 bfd_size_type cmse_stub_size;
5893 asymbol **sympp = NULL, *sym;
5894 struct elf32_arm_link_hash_entry *hash;
5895 const insn_sequence *cmse_stub_template;
5896 struct elf32_arm_stub_hash_entry *stub_entry;
5897 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5898 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5899 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5900
5901 /* No input secure gateway import library. */
5902 if (!htab->in_implib_bfd)
5903 return TRUE;
5904
5905 in_implib_bfd = htab->in_implib_bfd;
5906 if (!htab->cmse_implib)
5907 {
4eca0228
AM
5908 _bfd_error_handler (_("%B: --in-implib only supported for Secure "
5909 "Gateway import libraries."), in_implib_bfd);
0955507f
TP
5910 return FALSE;
5911 }
5912
5913 /* Get symbol table size. */
5914 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5915 if (symsize < 0)
5916 return FALSE;
5917
5918 /* Read in the input secure gateway import library's symbol table. */
5919 sympp = (asymbol **) xmalloc (symsize);
5920 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5921 if (symcount < 0)
5922 {
5923 ret = FALSE;
5924 goto free_sym_buf;
5925 }
5926
5927 htab->new_cmse_stub_offset = 0;
5928 cmse_stub_size =
5929 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5930 &cmse_stub_template,
5931 &cmse_stub_template_size);
5932 out_sec_name =
5933 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5934 stub_out_sec =
5935 bfd_get_section_by_name (htab->obfd, out_sec_name);
5936 if (stub_out_sec != NULL)
5937 cmse_stub_sec_vma = stub_out_sec->vma;
5938
5939 /* Set addresses of veneers mentionned in input secure gateway import
5940 library's symbol table. */
5941 for (i = 0; i < symcount; i++)
5942 {
5943 sym = sympp[i];
5944 flags = sym->flags;
5945 sym_name = (char *) bfd_asymbol_name (sym);
5946 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5947
5948 if (sym->section != bfd_abs_section_ptr
5949 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5950 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5951 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5952 != ST_BRANCH_TO_THUMB))
5953 {
4eca0228
AM
5954 _bfd_error_handler (_("%B: invalid import library entry: `%s'."),
5955 in_implib_bfd, sym_name);
5956 _bfd_error_handler (_("Symbol should be absolute, global and "
5957 "refer to Thumb functions."));
0955507f
TP
5958 ret = FALSE;
5959 continue;
5960 }
5961
5962 veneer_value = bfd_asymbol_value (sym);
5963 stub_offset = veneer_value - cmse_stub_sec_vma;
5964 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5965 FALSE, FALSE);
5966 hash = (struct elf32_arm_link_hash_entry *)
5967 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5968
5969 /* Stub entry should have been created by cmse_scan or the symbol be of
5970 a secure function callable from non secure code. */
5971 if (!stub_entry && !hash)
5972 {
5973 bfd_boolean new_stub;
5974
4eca0228 5975 _bfd_error_handler
0955507f
TP
5976 (_("Entry function `%s' disappeared from secure code."), sym_name);
5977 hash = (struct elf32_arm_link_hash_entry *)
5978 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5979 stub_entry
5980 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5981 NULL, NULL, bfd_abs_section_ptr, hash,
5982 sym_name, veneer_value,
5983 ST_BRANCH_TO_THUMB, &new_stub);
5984 if (stub_entry == NULL)
5985 ret = FALSE;
5986 else
5987 {
5988 BFD_ASSERT (new_stub);
5989 new_cmse_stubs_created++;
5990 (*cmse_stub_created)++;
5991 }
5992 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5993 stub_entry->stub_offset = stub_offset;
5994 }
5995 /* Symbol found is not callable from non secure code. */
5996 else if (!stub_entry)
5997 {
5998 if (!cmse_entry_fct_p (hash))
5999 {
4eca0228
AM
6000 _bfd_error_handler (_("`%s' refers to a non entry function."),
6001 sym_name);
0955507f
TP
6002 ret = FALSE;
6003 }
6004 continue;
6005 }
6006 else
6007 {
6008 /* Only stubs for SG veneers should have been created. */
6009 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6010
6011 /* Check visibility hasn't changed. */
6012 if (!!(flags & BSF_GLOBAL)
6013 != (hash->root.root.type == bfd_link_hash_defined))
4eca0228 6014 _bfd_error_handler
0955507f
TP
6015 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
6016 sym_name);
6017
6018 stub_entry->stub_offset = stub_offset;
6019 }
6020
6021 /* Size should match that of a SG veneer. */
6022 if (intsym->st_size != cmse_stub_size)
6023 {
4eca0228
AM
6024 _bfd_error_handler (_("%B: incorrect size for symbol `%s'."),
6025 in_implib_bfd, sym_name);
0955507f
TP
6026 ret = FALSE;
6027 }
6028
6029 /* Previous veneer address is before current SG veneer section. */
6030 if (veneer_value < cmse_stub_sec_vma)
6031 {
6032 /* Avoid offset underflow. */
6033 if (stub_entry)
6034 stub_entry->stub_offset = 0;
6035 stub_offset = 0;
6036 ret = FALSE;
6037 }
6038
6039 /* Complain if stub offset not a multiple of stub size. */
6040 if (stub_offset % cmse_stub_size)
6041 {
4eca0228 6042 _bfd_error_handler
0955507f
TP
6043 (_("Offset of veneer for entry function `%s' not a multiple of "
6044 "its size."), sym_name);
6045 ret = FALSE;
6046 }
6047
6048 if (!ret)
6049 continue;
6050
6051 new_cmse_stubs_created--;
6052 if (veneer_value < cmse_stub_array_start)
6053 cmse_stub_array_start = veneer_value;
6054 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6055 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6056 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6057 }
6058
6059 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6060 {
6061 BFD_ASSERT (new_cmse_stubs_created > 0);
4eca0228 6062 _bfd_error_handler
0955507f
TP
6063 (_("new entry function(s) introduced but no output import library "
6064 "specified:"));
6065 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6066 }
6067
6068 if (cmse_stub_array_start != cmse_stub_sec_vma)
6069 {
4eca0228 6070 _bfd_error_handler
0955507f
TP
6071 (_("Start address of `%s' is different from previous link."),
6072 out_sec_name);
6073 ret = FALSE;
6074 }
6075
6076free_sym_buf:
6077 free (sympp);
6078 return ret;
6079}
6080
906e58ca
NC
6081/* Determine and set the size of the stub section for a final link.
6082
6083 The basic idea here is to examine all the relocations looking for
6084 PC-relative calls to a target that is unreachable with a "bl"
6085 instruction. */
6086
6087bfd_boolean
6088elf32_arm_size_stubs (bfd *output_bfd,
6089 bfd *stub_bfd,
6090 struct bfd_link_info *info,
6091 bfd_signed_vma group_size,
7a89b94e 6092 asection * (*add_stub_section) (const char *, asection *,
6bde4c52 6093 asection *,
7a89b94e 6094 unsigned int),
906e58ca
NC
6095 void (*layout_sections_again) (void))
6096{
0955507f 6097 bfd_boolean ret = TRUE;
4ba2ef8f 6098 obj_attribute *out_attr;
0955507f 6099 int cmse_stub_created = 0;
906e58ca 6100 bfd_size_type stub_group_size;
4ba2ef8f 6101 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
906e58ca 6102 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 6103 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 6104 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
6105 struct a8_erratum_reloc *a8_relocs = NULL;
6106 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6107
4dfe6ac6
NC
6108 if (htab == NULL)
6109 return FALSE;
6110
48229727
JB
6111 if (htab->fix_cortex_a8)
6112 {
21d799b5 6113 a8_fixes = (struct a8_erratum_fix *)
99059e56 6114 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 6115 a8_relocs = (struct a8_erratum_reloc *)
99059e56 6116 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 6117 }
906e58ca
NC
6118
6119 /* Propagate mach to stub bfd, because it may not have been
6120 finalized when we created stub_bfd. */
6121 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6122 bfd_get_mach (output_bfd));
6123
6124 /* Stash our params away. */
6125 htab->stub_bfd = stub_bfd;
6126 htab->add_stub_section = add_stub_section;
6127 htab->layout_sections_again = layout_sections_again;
07d72278 6128 stubs_always_after_branch = group_size < 0;
48229727 6129
4ba2ef8f
TP
6130 out_attr = elf_known_obj_attributes_proc (output_bfd);
6131 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
0955507f 6132
48229727
JB
6133 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6134 as the first half of a 32-bit branch straddling two 4K pages. This is a
6135 crude way of enforcing that. */
6136 if (htab->fix_cortex_a8)
6137 stubs_always_after_branch = 1;
6138
906e58ca
NC
6139 if (group_size < 0)
6140 stub_group_size = -group_size;
6141 else
6142 stub_group_size = group_size;
6143
6144 if (stub_group_size == 1)
6145 {
6146 /* Default values. */
6147 /* Thumb branch range is +-4MB has to be used as the default
6148 maximum size (a given section can contain both ARM and Thumb
6149 code, so the worst case has to be taken into account).
6150
6151 This value is 24K less than that, which allows for 2025
6152 12-byte stubs. If we exceed that, then we will fail to link.
6153 The user will have to relink with an explicit group size
6154 option. */
6155 stub_group_size = 4170000;
6156 }
6157
07d72278 6158 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 6159
3ae046cc
NS
6160 /* If we're applying the cortex A8 fix, we need to determine the
6161 program header size now, because we cannot change it later --
6162 that could alter section placements. Notice the A8 erratum fix
6163 ends up requiring the section addresses to remain unchanged
6164 modulo the page size. That's something we cannot represent
6165 inside BFD, and we don't want to force the section alignment to
6166 be the page size. */
6167 if (htab->fix_cortex_a8)
6168 (*htab->layout_sections_again) ();
6169
906e58ca
NC
6170 while (1)
6171 {
6172 bfd *input_bfd;
6173 unsigned int bfd_indx;
6174 asection *stub_sec;
d7c5bd02 6175 enum elf32_arm_stub_type stub_type;
eb7c4339
NS
6176 bfd_boolean stub_changed = FALSE;
6177 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 6178
48229727 6179 num_a8_fixes = 0;
906e58ca
NC
6180 for (input_bfd = info->input_bfds, bfd_indx = 0;
6181 input_bfd != NULL;
c72f2fb2 6182 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
6183 {
6184 Elf_Internal_Shdr *symtab_hdr;
6185 asection *section;
6186 Elf_Internal_Sym *local_syms = NULL;
6187
99059e56
RM
6188 if (!is_arm_elf (input_bfd))
6189 continue;
adbcc655 6190
48229727
JB
6191 num_a8_relocs = 0;
6192
906e58ca
NC
6193 /* We'll need the symbol table in a second. */
6194 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6195 if (symtab_hdr->sh_info == 0)
6196 continue;
6197
4ba2ef8f
TP
6198 /* Limit scan of symbols to object file whose profile is
6199 Microcontroller to not hinder performance in the general case. */
6200 if (m_profile && first_veneer_scan)
6201 {
6202 struct elf_link_hash_entry **sym_hashes;
6203
6204 sym_hashes = elf_sym_hashes (input_bfd);
6205 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
0955507f 6206 &cmse_stub_created))
4ba2ef8f 6207 goto error_ret_free_local;
0955507f
TP
6208
6209 if (cmse_stub_created != 0)
6210 stub_changed = TRUE;
4ba2ef8f
TP
6211 }
6212
906e58ca
NC
6213 /* Walk over each section attached to the input bfd. */
6214 for (section = input_bfd->sections;
6215 section != NULL;
6216 section = section->next)
6217 {
6218 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6219
6220 /* If there aren't any relocs, then there's nothing more
6221 to do. */
6222 if ((section->flags & SEC_RELOC) == 0
6223 || section->reloc_count == 0
6224 || (section->flags & SEC_CODE) == 0)
6225 continue;
6226
6227 /* If this section is a link-once section that will be
6228 discarded, then don't create any stubs. */
6229 if (section->output_section == NULL
6230 || section->output_section->owner != output_bfd)
6231 continue;
6232
6233 /* Get the relocs. */
6234 internal_relocs
6235 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6236 NULL, info->keep_memory);
6237 if (internal_relocs == NULL)
6238 goto error_ret_free_local;
6239
6240 /* Now examine each relocation. */
6241 irela = internal_relocs;
6242 irelaend = irela + section->reloc_count;
6243 for (; irela < irelaend; irela++)
6244 {
6245 unsigned int r_type, r_indx;
906e58ca
NC
6246 asection *sym_sec;
6247 bfd_vma sym_value;
6248 bfd_vma destination;
6249 struct elf32_arm_link_hash_entry *hash;
7413f23f 6250 const char *sym_name;
34e77a92 6251 unsigned char st_type;
35fc36a8 6252 enum arm_st_branch_type branch_type;
48229727 6253 bfd_boolean created_stub = FALSE;
906e58ca
NC
6254
6255 r_type = ELF32_R_TYPE (irela->r_info);
6256 r_indx = ELF32_R_SYM (irela->r_info);
6257
6258 if (r_type >= (unsigned int) R_ARM_max)
6259 {
6260 bfd_set_error (bfd_error_bad_value);
6261 error_ret_free_internal:
6262 if (elf_section_data (section)->relocs == NULL)
6263 free (internal_relocs);
15dd01b1
TP
6264 /* Fall through. */
6265 error_ret_free_local:
6266 if (local_syms != NULL
6267 && (symtab_hdr->contents
6268 != (unsigned char *) local_syms))
6269 free (local_syms);
6270 return FALSE;
906e58ca 6271 }
b38cadfb 6272
0855e32b
NS
6273 hash = NULL;
6274 if (r_indx >= symtab_hdr->sh_info)
6275 hash = elf32_arm_hash_entry
6276 (elf_sym_hashes (input_bfd)
6277 [r_indx - symtab_hdr->sh_info]);
b38cadfb 6278
0855e32b
NS
6279 /* Only look for stubs on branch instructions, or
6280 non-relaxed TLSCALL */
906e58ca 6281 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
6282 && (r_type != (unsigned int) R_ARM_THM_CALL)
6283 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
6284 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6285 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 6286 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
6287 && (r_type != (unsigned int) R_ARM_PLT32)
6288 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6289 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6290 && r_type == elf32_arm_tls_transition
6291 (info, r_type, &hash->root)
6292 && ((hash ? hash->tls_type
6293 : (elf32_arm_local_got_tls_type
6294 (input_bfd)[r_indx]))
6295 & GOT_TLS_GDESC) != 0))
906e58ca
NC
6296 continue;
6297
6298 /* Now determine the call target, its name, value,
6299 section. */
6300 sym_sec = NULL;
6301 sym_value = 0;
6302 destination = 0;
7413f23f 6303 sym_name = NULL;
b38cadfb 6304
0855e32b
NS
6305 if (r_type == (unsigned int) R_ARM_TLS_CALL
6306 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6307 {
6308 /* A non-relaxed TLS call. The target is the
6309 plt-resident trampoline and nothing to do
6310 with the symbol. */
6311 BFD_ASSERT (htab->tls_trampoline > 0);
6312 sym_sec = htab->root.splt;
6313 sym_value = htab->tls_trampoline;
6314 hash = 0;
34e77a92 6315 st_type = STT_FUNC;
35fc36a8 6316 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
6317 }
6318 else if (!hash)
906e58ca
NC
6319 {
6320 /* It's a local symbol. */
6321 Elf_Internal_Sym *sym;
906e58ca
NC
6322
6323 if (local_syms == NULL)
6324 {
6325 local_syms
6326 = (Elf_Internal_Sym *) symtab_hdr->contents;
6327 if (local_syms == NULL)
6328 local_syms
6329 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6330 symtab_hdr->sh_info, 0,
6331 NULL, NULL, NULL);
6332 if (local_syms == NULL)
6333 goto error_ret_free_internal;
6334 }
6335
6336 sym = local_syms + r_indx;
f6d250ce
TS
6337 if (sym->st_shndx == SHN_UNDEF)
6338 sym_sec = bfd_und_section_ptr;
6339 else if (sym->st_shndx == SHN_ABS)
6340 sym_sec = bfd_abs_section_ptr;
6341 else if (sym->st_shndx == SHN_COMMON)
6342 sym_sec = bfd_com_section_ptr;
6343 else
6344 sym_sec =
6345 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6346
ffcb4889
NS
6347 if (!sym_sec)
6348 /* This is an undefined symbol. It can never
6a631e86 6349 be resolved. */
ffcb4889 6350 continue;
fe33d2fa 6351
906e58ca
NC
6352 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6353 sym_value = sym->st_value;
6354 destination = (sym_value + irela->r_addend
6355 + sym_sec->output_offset
6356 + sym_sec->output_section->vma);
34e77a92 6357 st_type = ELF_ST_TYPE (sym->st_info);
39d911fc
TP
6358 branch_type =
6359 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
7413f23f
DJ
6360 sym_name
6361 = bfd_elf_string_from_elf_section (input_bfd,
6362 symtab_hdr->sh_link,
6363 sym->st_name);
906e58ca
NC
6364 }
6365 else
6366 {
6367 /* It's an external symbol. */
906e58ca
NC
6368 while (hash->root.root.type == bfd_link_hash_indirect
6369 || hash->root.root.type == bfd_link_hash_warning)
6370 hash = ((struct elf32_arm_link_hash_entry *)
6371 hash->root.root.u.i.link);
6372
6373 if (hash->root.root.type == bfd_link_hash_defined
6374 || hash->root.root.type == bfd_link_hash_defweak)
6375 {
6376 sym_sec = hash->root.root.u.def.section;
6377 sym_value = hash->root.root.u.def.value;
022f8312
CL
6378
6379 struct elf32_arm_link_hash_table *globals =
6380 elf32_arm_hash_table (info);
6381
6382 /* For a destination in a shared library,
6383 use the PLT stub as target address to
6384 decide whether a branch stub is
6385 needed. */
4dfe6ac6 6386 if (globals != NULL
362d30a1 6387 && globals->root.splt != NULL
4dfe6ac6 6388 && hash != NULL
022f8312
CL
6389 && hash->root.plt.offset != (bfd_vma) -1)
6390 {
362d30a1 6391 sym_sec = globals->root.splt;
022f8312
CL
6392 sym_value = hash->root.plt.offset;
6393 if (sym_sec->output_section != NULL)
6394 destination = (sym_value
6395 + sym_sec->output_offset
6396 + sym_sec->output_section->vma);
6397 }
6398 else if (sym_sec->output_section != NULL)
906e58ca
NC
6399 destination = (sym_value + irela->r_addend
6400 + sym_sec->output_offset
6401 + sym_sec->output_section->vma);
6402 }
69c5861e
CL
6403 else if ((hash->root.root.type == bfd_link_hash_undefined)
6404 || (hash->root.root.type == bfd_link_hash_undefweak))
6405 {
6406 /* For a shared library, use the PLT stub as
6407 target address to decide whether a long
6408 branch stub is needed.
6409 For absolute code, they cannot be handled. */
6410 struct elf32_arm_link_hash_table *globals =
6411 elf32_arm_hash_table (info);
6412
4dfe6ac6 6413 if (globals != NULL
362d30a1 6414 && globals->root.splt != NULL
4dfe6ac6 6415 && hash != NULL
69c5861e
CL
6416 && hash->root.plt.offset != (bfd_vma) -1)
6417 {
362d30a1 6418 sym_sec = globals->root.splt;
69c5861e
CL
6419 sym_value = hash->root.plt.offset;
6420 if (sym_sec->output_section != NULL)
6421 destination = (sym_value
6422 + sym_sec->output_offset
6423 + sym_sec->output_section->vma);
6424 }
6425 else
6426 continue;
6427 }
906e58ca
NC
6428 else
6429 {
6430 bfd_set_error (bfd_error_bad_value);
6431 goto error_ret_free_internal;
6432 }
34e77a92 6433 st_type = hash->root.type;
39d911fc
TP
6434 branch_type =
6435 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
7413f23f 6436 sym_name = hash->root.root.root.string;
906e58ca
NC
6437 }
6438
48229727 6439 do
7413f23f 6440 {
b715f643 6441 bfd_boolean new_stub;
0955507f 6442 struct elf32_arm_stub_hash_entry *stub_entry;
b715f643 6443
48229727
JB
6444 /* Determine what (if any) linker stub is needed. */
6445 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
6446 st_type, &branch_type,
6447 hash, destination, sym_sec,
48229727
JB
6448 input_bfd, sym_name);
6449 if (stub_type == arm_stub_none)
6450 break;
6451
48229727
JB
6452 /* We've either created a stub for this reloc already,
6453 or we are about to. */
0955507f 6454 stub_entry =
b715f643
TP
6455 elf32_arm_create_stub (htab, stub_type, section, irela,
6456 sym_sec, hash,
6457 (char *) sym_name, sym_value,
6458 branch_type, &new_stub);
7413f23f 6459
0955507f 6460 created_stub = stub_entry != NULL;
b715f643
TP
6461 if (!created_stub)
6462 goto error_ret_free_internal;
6463 else if (!new_stub)
6464 break;
99059e56 6465 else
b715f643 6466 stub_changed = TRUE;
99059e56
RM
6467 }
6468 while (0);
6469
6470 /* Look for relocations which might trigger Cortex-A8
6471 erratum. */
6472 if (htab->fix_cortex_a8
6473 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6474 || r_type == (unsigned int) R_ARM_THM_JUMP19
6475 || r_type == (unsigned int) R_ARM_THM_CALL
6476 || r_type == (unsigned int) R_ARM_THM_XPC22))
6477 {
6478 bfd_vma from = section->output_section->vma
6479 + section->output_offset
6480 + irela->r_offset;
6481
6482 if ((from & 0xfff) == 0xffe)
6483 {
6484 /* Found a candidate. Note we haven't checked the
6485 destination is within 4K here: if we do so (and
6486 don't create an entry in a8_relocs) we can't tell
6487 that a branch should have been relocated when
6488 scanning later. */
6489 if (num_a8_relocs == a8_reloc_table_size)
6490 {
6491 a8_reloc_table_size *= 2;
6492 a8_relocs = (struct a8_erratum_reloc *)
6493 bfd_realloc (a8_relocs,
6494 sizeof (struct a8_erratum_reloc)
6495 * a8_reloc_table_size);
6496 }
6497
6498 a8_relocs[num_a8_relocs].from = from;
6499 a8_relocs[num_a8_relocs].destination = destination;
6500 a8_relocs[num_a8_relocs].r_type = r_type;
6501 a8_relocs[num_a8_relocs].branch_type = branch_type;
6502 a8_relocs[num_a8_relocs].sym_name = sym_name;
6503 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6504 a8_relocs[num_a8_relocs].hash = hash;
6505
6506 num_a8_relocs++;
6507 }
6508 }
906e58ca
NC
6509 }
6510
99059e56
RM
6511 /* We're done with the internal relocs, free them. */
6512 if (elf_section_data (section)->relocs == NULL)
6513 free (internal_relocs);
6514 }
48229727 6515
99059e56 6516 if (htab->fix_cortex_a8)
48229727 6517 {
99059e56
RM
6518 /* Sort relocs which might apply to Cortex-A8 erratum. */
6519 qsort (a8_relocs, num_a8_relocs,
eb7c4339 6520 sizeof (struct a8_erratum_reloc),
99059e56 6521 &a8_reloc_compare);
48229727 6522
99059e56
RM
6523 /* Scan for branches which might trigger Cortex-A8 erratum. */
6524 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 6525 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
6526 a8_relocs, num_a8_relocs,
6527 prev_num_a8_fixes, &stub_changed)
6528 != 0)
48229727 6529 goto error_ret_free_local;
5e681ec4 6530 }
7f991970
AM
6531
6532 if (local_syms != NULL
6533 && symtab_hdr->contents != (unsigned char *) local_syms)
6534 {
6535 if (!info->keep_memory)
6536 free (local_syms);
6537 else
6538 symtab_hdr->contents = (unsigned char *) local_syms;
6539 }
5e681ec4
PB
6540 }
6541
0955507f
TP
6542 if (first_veneer_scan
6543 && !set_cmse_veneer_addr_from_implib (info, htab,
6544 &cmse_stub_created))
6545 ret = FALSE;
6546
eb7c4339 6547 if (prev_num_a8_fixes != num_a8_fixes)
99059e56 6548 stub_changed = TRUE;
48229727 6549
906e58ca
NC
6550 if (!stub_changed)
6551 break;
5e681ec4 6552
906e58ca
NC
6553 /* OK, we've added some stubs. Find out the new size of the
6554 stub sections. */
6555 for (stub_sec = htab->stub_bfd->sections;
6556 stub_sec != NULL;
6557 stub_sec = stub_sec->next)
3e6b1042
DJ
6558 {
6559 /* Ignore non-stub sections. */
6560 if (!strstr (stub_sec->name, STUB_SUFFIX))
6561 continue;
6562
6563 stub_sec->size = 0;
6564 }
b34b2d70 6565
0955507f
TP
6566 /* Add new SG veneers after those already in the input import
6567 library. */
6568 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6569 stub_type++)
6570 {
6571 bfd_vma *start_offset_p;
6572 asection **stub_sec_p;
6573
6574 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6575 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6576 if (start_offset_p == NULL)
6577 continue;
6578
6579 BFD_ASSERT (stub_sec_p != NULL);
6580 if (*stub_sec_p != NULL)
6581 (*stub_sec_p)->size = *start_offset_p;
6582 }
6583
d7c5bd02 6584 /* Compute stub section size, considering padding. */
906e58ca 6585 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
d7c5bd02
TP
6586 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6587 stub_type++)
6588 {
6589 int size, padding;
6590 asection **stub_sec_p;
6591
6592 padding = arm_dedicated_stub_section_padding (stub_type);
6593 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6594 /* Skip if no stub input section or no stub section padding
6595 required. */
6596 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6597 continue;
6598 /* Stub section padding required but no dedicated section. */
6599 BFD_ASSERT (stub_sec_p);
6600
6601 size = (*stub_sec_p)->size;
6602 size = (size + padding - 1) & ~(padding - 1);
6603 (*stub_sec_p)->size = size;
6604 }
906e58ca 6605
48229727
JB
6606 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6607 if (htab->fix_cortex_a8)
99059e56
RM
6608 for (i = 0; i < num_a8_fixes; i++)
6609 {
48229727 6610 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
daa4adae 6611 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
48229727
JB
6612
6613 if (stub_sec == NULL)
7f991970 6614 return FALSE;
48229727 6615
99059e56
RM
6616 stub_sec->size
6617 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6618 NULL);
6619 }
48229727
JB
6620
6621
906e58ca
NC
6622 /* Ask the linker to do its stuff. */
6623 (*htab->layout_sections_again) ();
4ba2ef8f 6624 first_veneer_scan = FALSE;
ba93b8ac
DJ
6625 }
6626
48229727
JB
6627 /* Add stubs for Cortex-A8 erratum fixes now. */
6628 if (htab->fix_cortex_a8)
6629 {
6630 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
6631 {
6632 struct elf32_arm_stub_hash_entry *stub_entry;
6633 char *stub_name = a8_fixes[i].stub_name;
6634 asection *section = a8_fixes[i].section;
6635 unsigned int section_id = a8_fixes[i].section->id;
6636 asection *link_sec = htab->stub_group[section_id].link_sec;
6637 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6638 const insn_sequence *template_sequence;
6639 int template_size, size = 0;
6640
6641 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6642 TRUE, FALSE);
6643 if (stub_entry == NULL)
6644 {
4eca0228
AM
6645 _bfd_error_handler (_("%s: cannot create stub entry %s"),
6646 section->owner, stub_name);
99059e56
RM
6647 return FALSE;
6648 }
6649
6650 stub_entry->stub_sec = stub_sec;
0955507f 6651 stub_entry->stub_offset = (bfd_vma) -1;
99059e56
RM
6652 stub_entry->id_sec = link_sec;
6653 stub_entry->stub_type = a8_fixes[i].stub_type;
8d9d9490 6654 stub_entry->source_value = a8_fixes[i].offset;
99059e56 6655 stub_entry->target_section = a8_fixes[i].section;
8d9d9490 6656 stub_entry->target_value = a8_fixes[i].target_offset;
99059e56 6657 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 6658 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 6659
99059e56
RM
6660 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6661 &template_sequence,
6662 &template_size);
48229727 6663
99059e56
RM
6664 stub_entry->stub_size = size;
6665 stub_entry->stub_template = template_sequence;
6666 stub_entry->stub_template_size = template_size;
6667 }
48229727
JB
6668
6669 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 6670 elf32_arm_write_section(). */
48229727
JB
6671 htab->a8_erratum_fixes = a8_fixes;
6672 htab->num_a8_erratum_fixes = num_a8_fixes;
6673 }
6674 else
6675 {
6676 htab->a8_erratum_fixes = NULL;
6677 htab->num_a8_erratum_fixes = 0;
6678 }
0955507f 6679 return ret;
5e681ec4
PB
6680}
6681
906e58ca
NC
6682/* Build all the stubs associated with the current output file. The
6683 stubs are kept in a hash table attached to the main linker hash
6684 table. We also set up the .plt entries for statically linked PIC
6685 functions here. This function is called via arm_elf_finish in the
6686 linker. */
252b5132 6687
906e58ca
NC
6688bfd_boolean
6689elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 6690{
906e58ca
NC
6691 asection *stub_sec;
6692 struct bfd_hash_table *table;
0955507f 6693 enum elf32_arm_stub_type stub_type;
906e58ca 6694 struct elf32_arm_link_hash_table *htab;
252b5132 6695
906e58ca 6696 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
6697 if (htab == NULL)
6698 return FALSE;
252b5132 6699
906e58ca
NC
6700 for (stub_sec = htab->stub_bfd->sections;
6701 stub_sec != NULL;
6702 stub_sec = stub_sec->next)
252b5132 6703 {
906e58ca
NC
6704 bfd_size_type size;
6705
8029a119 6706 /* Ignore non-stub sections. */
906e58ca
NC
6707 if (!strstr (stub_sec->name, STUB_SUFFIX))
6708 continue;
6709
d7c5bd02 6710 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
0955507f
TP
6711 must at least be done for stub section requiring padding and for SG
6712 veneers to ensure that a non secure code branching to a removed SG
6713 veneer causes an error. */
906e58ca 6714 size = stub_sec->size;
21d799b5 6715 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
6716 if (stub_sec->contents == NULL && size != 0)
6717 return FALSE;
0955507f 6718
906e58ca 6719 stub_sec->size = 0;
252b5132
RH
6720 }
6721
0955507f
TP
6722 /* Add new SG veneers after those already in the input import library. */
6723 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6724 {
6725 bfd_vma *start_offset_p;
6726 asection **stub_sec_p;
6727
6728 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6729 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6730 if (start_offset_p == NULL)
6731 continue;
6732
6733 BFD_ASSERT (stub_sec_p != NULL);
6734 if (*stub_sec_p != NULL)
6735 (*stub_sec_p)->size = *start_offset_p;
6736 }
6737
906e58ca
NC
6738 /* Build the stubs as directed by the stub hash table. */
6739 table = &htab->stub_hash_table;
6740 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
6741 if (htab->fix_cortex_a8)
6742 {
6743 /* Place the cortex a8 stubs last. */
6744 htab->fix_cortex_a8 = -1;
6745 bfd_hash_traverse (table, arm_build_one_stub, info);
6746 }
252b5132 6747
906e58ca 6748 return TRUE;
252b5132
RH
6749}
6750
9b485d32
NC
6751/* Locate the Thumb encoded calling stub for NAME. */
6752
252b5132 6753static struct elf_link_hash_entry *
57e8b36a
NC
6754find_thumb_glue (struct bfd_link_info *link_info,
6755 const char *name,
f2a9dd69 6756 char **error_message)
252b5132
RH
6757{
6758 char *tmp_name;
6759 struct elf_link_hash_entry *hash;
6760 struct elf32_arm_link_hash_table *hash_table;
6761
6762 /* We need a pointer to the armelf specific hash table. */
6763 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6764 if (hash_table == NULL)
6765 return NULL;
252b5132 6766
21d799b5 6767 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 6768 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
6769
6770 BFD_ASSERT (tmp_name);
6771
6772 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6773
6774 hash = elf_link_hash_lookup
b34976b6 6775 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 6776
b1657152
AM
6777 if (hash == NULL
6778 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6779 tmp_name, name) == -1)
6780 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
6781
6782 free (tmp_name);
6783
6784 return hash;
6785}
6786
9b485d32
NC
6787/* Locate the ARM encoded calling stub for NAME. */
6788
252b5132 6789static struct elf_link_hash_entry *
57e8b36a
NC
6790find_arm_glue (struct bfd_link_info *link_info,
6791 const char *name,
f2a9dd69 6792 char **error_message)
252b5132
RH
6793{
6794 char *tmp_name;
6795 struct elf_link_hash_entry *myh;
6796 struct elf32_arm_link_hash_table *hash_table;
6797
6798 /* We need a pointer to the elfarm specific hash table. */
6799 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6800 if (hash_table == NULL)
6801 return NULL;
252b5132 6802
21d799b5 6803 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 6804 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
6805
6806 BFD_ASSERT (tmp_name);
6807
6808 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6809
6810 myh = elf_link_hash_lookup
b34976b6 6811 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 6812
b1657152
AM
6813 if (myh == NULL
6814 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6815 tmp_name, name) == -1)
6816 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
6817
6818 free (tmp_name);
6819
6820 return myh;
6821}
6822
8f6277f5 6823/* ARM->Thumb glue (static images):
252b5132
RH
6824
6825 .arm
6826 __func_from_arm:
6827 ldr r12, __func_addr
6828 bx r12
6829 __func_addr:
906e58ca 6830 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 6831
26079076
PB
6832 (v5t static images)
6833 .arm
6834 __func_from_arm:
6835 ldr pc, __func_addr
6836 __func_addr:
906e58ca 6837 .word func @ behave as if you saw a ARM_32 reloc.
26079076 6838
8f6277f5
PB
6839 (relocatable images)
6840 .arm
6841 __func_from_arm:
6842 ldr r12, __func_offset
6843 add r12, r12, pc
6844 bx r12
6845 __func_offset:
8029a119 6846 .word func - . */
8f6277f5
PB
6847
6848#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
6849static const insn32 a2t1_ldr_insn = 0xe59fc000;
6850static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6851static const insn32 a2t3_func_addr_insn = 0x00000001;
6852
26079076
PB
6853#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6854static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6855static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6856
8f6277f5
PB
6857#define ARM2THUMB_PIC_GLUE_SIZE 16
6858static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6859static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6860static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6861
9b485d32 6862/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 6863
8029a119
NC
6864 .thumb .thumb
6865 .align 2 .align 2
6866 __func_from_thumb: __func_from_thumb:
6867 bx pc push {r6, lr}
6868 nop ldr r6, __func_addr
6869 .arm mov lr, pc
6870 b func bx r6
99059e56
RM
6871 .arm
6872 ;; back_to_thumb
6873 ldmia r13! {r6, lr}
6874 bx lr
6875 __func_addr:
6876 .word func */
252b5132
RH
6877
6878#define THUMB2ARM_GLUE_SIZE 8
6879static const insn16 t2a1_bx_pc_insn = 0x4778;
6880static const insn16 t2a2_noop_insn = 0x46c0;
6881static const insn32 t2a3_b_insn = 0xea000000;
6882
c7b8f16e 6883#define VFP11_ERRATUM_VENEER_SIZE 8
a504d23a
LA
6884#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6885#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
c7b8f16e 6886
845b51d6
PB
6887#define ARM_BX_VENEER_SIZE 12
6888static const insn32 armbx1_tst_insn = 0xe3100001;
6889static const insn32 armbx2_moveq_insn = 0x01a0f000;
6890static const insn32 armbx3_bx_insn = 0xe12fff10;
6891
7e392df6 6892#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
6893static void
6894arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
6895{
6896 asection * s;
8029a119 6897 bfd_byte * contents;
252b5132 6898
8029a119 6899 if (size == 0)
3e6b1042
DJ
6900 {
6901 /* Do not include empty glue sections in the output. */
6902 if (abfd != NULL)
6903 {
3d4d4302 6904 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
6905 if (s != NULL)
6906 s->flags |= SEC_EXCLUDE;
6907 }
6908 return;
6909 }
252b5132 6910
8029a119 6911 BFD_ASSERT (abfd != NULL);
252b5132 6912
3d4d4302 6913 s = bfd_get_linker_section (abfd, name);
8029a119 6914 BFD_ASSERT (s != NULL);
252b5132 6915
21d799b5 6916 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 6917
8029a119
NC
6918 BFD_ASSERT (s->size == size);
6919 s->contents = contents;
6920}
906e58ca 6921
8029a119
NC
6922bfd_boolean
6923bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6924{
6925 struct elf32_arm_link_hash_table * globals;
906e58ca 6926
8029a119
NC
6927 globals = elf32_arm_hash_table (info);
6928 BFD_ASSERT (globals != NULL);
906e58ca 6929
8029a119
NC
6930 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6931 globals->arm_glue_size,
6932 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 6933
8029a119
NC
6934 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6935 globals->thumb_glue_size,
6936 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 6937
8029a119
NC
6938 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6939 globals->vfp11_erratum_glue_size,
6940 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 6941
a504d23a
LA
6942 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6943 globals->stm32l4xx_erratum_glue_size,
6944 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6945
8029a119
NC
6946 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6947 globals->bx_glue_size,
845b51d6
PB
6948 ARM_BX_GLUE_SECTION_NAME);
6949
b34976b6 6950 return TRUE;
252b5132
RH
6951}
6952
a4fd1a8e 6953/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
6954 returns the symbol identifying the stub. */
6955
a4fd1a8e 6956static struct elf_link_hash_entry *
57e8b36a
NC
6957record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6958 struct elf_link_hash_entry * h)
252b5132
RH
6959{
6960 const char * name = h->root.root.string;
63b0f745 6961 asection * s;
252b5132
RH
6962 char * tmp_name;
6963 struct elf_link_hash_entry * myh;
14a793b2 6964 struct bfd_link_hash_entry * bh;
252b5132 6965 struct elf32_arm_link_hash_table * globals;
dc810e39 6966 bfd_vma val;
2f475487 6967 bfd_size_type size;
252b5132
RH
6968
6969 globals = elf32_arm_hash_table (link_info);
252b5132
RH
6970 BFD_ASSERT (globals != NULL);
6971 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6972
3d4d4302 6973 s = bfd_get_linker_section
252b5132
RH
6974 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6975
252b5132
RH
6976 BFD_ASSERT (s != NULL);
6977
21d799b5 6978 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 6979 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
6980
6981 BFD_ASSERT (tmp_name);
6982
6983 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6984
6985 myh = elf_link_hash_lookup
b34976b6 6986 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
6987
6988 if (myh != NULL)
6989 {
9b485d32 6990 /* We've already seen this guy. */
252b5132 6991 free (tmp_name);
a4fd1a8e 6992 return myh;
252b5132
RH
6993 }
6994
57e8b36a
NC
6995 /* The only trick here is using hash_table->arm_glue_size as the value.
6996 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
6997 putting it. The +1 on the value marks that the stub has not been
6998 output yet - not that it is a Thumb function. */
14a793b2 6999 bh = NULL;
dc810e39
AM
7000 val = globals->arm_glue_size + 1;
7001 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7002 tmp_name, BSF_GLOBAL, s, val,
b34976b6 7003 NULL, TRUE, FALSE, &bh);
252b5132 7004
b7693d02
DJ
7005 myh = (struct elf_link_hash_entry *) bh;
7006 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7007 myh->forced_local = 1;
7008
252b5132
RH
7009 free (tmp_name);
7010
0e1862bb
L
7011 if (bfd_link_pic (link_info)
7012 || globals->root.is_relocatable_executable
27e55c4d 7013 || globals->pic_veneer)
2f475487 7014 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
7015 else if (globals->use_blx)
7016 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 7017 else
2f475487
AM
7018 size = ARM2THUMB_STATIC_GLUE_SIZE;
7019
7020 s->size += size;
7021 globals->arm_glue_size += size;
252b5132 7022
a4fd1a8e 7023 return myh;
252b5132
RH
7024}
7025
845b51d6
PB
7026/* Allocate space for ARMv4 BX veneers. */
7027
7028static void
7029record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7030{
7031 asection * s;
7032 struct elf32_arm_link_hash_table *globals;
7033 char *tmp_name;
7034 struct elf_link_hash_entry *myh;
7035 struct bfd_link_hash_entry *bh;
7036 bfd_vma val;
7037
7038 /* BX PC does not need a veneer. */
7039 if (reg == 15)
7040 return;
7041
7042 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
7043 BFD_ASSERT (globals != NULL);
7044 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7045
7046 /* Check if this veneer has already been allocated. */
7047 if (globals->bx_glue_offset[reg])
7048 return;
7049
3d4d4302 7050 s = bfd_get_linker_section
845b51d6
PB
7051 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7052
7053 BFD_ASSERT (s != NULL);
7054
7055 /* Add symbol for veneer. */
21d799b5
NC
7056 tmp_name = (char *)
7057 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 7058
845b51d6 7059 BFD_ASSERT (tmp_name);
906e58ca 7060
845b51d6 7061 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 7062
845b51d6
PB
7063 myh = elf_link_hash_lookup
7064 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7065
845b51d6 7066 BFD_ASSERT (myh == NULL);
906e58ca 7067
845b51d6
PB
7068 bh = NULL;
7069 val = globals->bx_glue_size;
7070 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56
RM
7071 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7072 NULL, TRUE, FALSE, &bh);
845b51d6
PB
7073
7074 myh = (struct elf_link_hash_entry *) bh;
7075 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7076 myh->forced_local = 1;
7077
7078 s->size += ARM_BX_VENEER_SIZE;
7079 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7080 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7081}
7082
7083
c7b8f16e
JB
7084/* Add an entry to the code/data map for section SEC. */
7085
7086static void
7087elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7088{
7089 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7090 unsigned int newidx;
906e58ca 7091
c7b8f16e
JB
7092 if (sec_data->map == NULL)
7093 {
21d799b5 7094 sec_data->map = (elf32_arm_section_map *)
99059e56 7095 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
7096 sec_data->mapcount = 0;
7097 sec_data->mapsize = 1;
7098 }
906e58ca 7099
c7b8f16e 7100 newidx = sec_data->mapcount++;
906e58ca 7101
c7b8f16e
JB
7102 if (sec_data->mapcount > sec_data->mapsize)
7103 {
7104 sec_data->mapsize *= 2;
21d799b5 7105 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
7106 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7107 * sizeof (elf32_arm_section_map));
515ef31d
NC
7108 }
7109
7110 if (sec_data->map)
7111 {
7112 sec_data->map[newidx].vma = vma;
7113 sec_data->map[newidx].type = type;
c7b8f16e 7114 }
c7b8f16e
JB
7115}
7116
7117
7118/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7119 veneers are handled for now. */
7120
7121static bfd_vma
7122record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
7123 elf32_vfp11_erratum_list *branch,
7124 bfd *branch_bfd,
7125 asection *branch_sec,
7126 unsigned int offset)
c7b8f16e
JB
7127{
7128 asection *s;
7129 struct elf32_arm_link_hash_table *hash_table;
7130 char *tmp_name;
7131 struct elf_link_hash_entry *myh;
7132 struct bfd_link_hash_entry *bh;
7133 bfd_vma val;
7134 struct _arm_elf_section_data *sec_data;
c7b8f16e 7135 elf32_vfp11_erratum_list *newerr;
906e58ca 7136
c7b8f16e 7137 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
7138 BFD_ASSERT (hash_table != NULL);
7139 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 7140
3d4d4302 7141 s = bfd_get_linker_section
c7b8f16e 7142 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 7143
c7b8f16e 7144 sec_data = elf32_arm_section_data (s);
906e58ca 7145
c7b8f16e 7146 BFD_ASSERT (s != NULL);
906e58ca 7147
21d799b5 7148 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 7149 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 7150
c7b8f16e 7151 BFD_ASSERT (tmp_name);
906e58ca 7152
c7b8f16e
JB
7153 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7154 hash_table->num_vfp11_fixes);
906e58ca 7155
c7b8f16e
JB
7156 myh = elf_link_hash_lookup
7157 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7158
c7b8f16e 7159 BFD_ASSERT (myh == NULL);
906e58ca 7160
c7b8f16e
JB
7161 bh = NULL;
7162 val = hash_table->vfp11_erratum_glue_size;
7163 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56
RM
7164 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7165 NULL, TRUE, FALSE, &bh);
c7b8f16e
JB
7166
7167 myh = (struct elf_link_hash_entry *) bh;
7168 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7169 myh->forced_local = 1;
7170
7171 /* Link veneer back to calling location. */
c7e2358a 7172 sec_data->erratumcount += 1;
21d799b5
NC
7173 newerr = (elf32_vfp11_erratum_list *)
7174 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 7175
c7b8f16e
JB
7176 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7177 newerr->vma = -1;
7178 newerr->u.v.branch = branch;
7179 newerr->u.v.id = hash_table->num_vfp11_fixes;
7180 branch->u.b.veneer = newerr;
7181
7182 newerr->next = sec_data->erratumlist;
7183 sec_data->erratumlist = newerr;
7184
7185 /* A symbol for the return from the veneer. */
7186 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7187 hash_table->num_vfp11_fixes);
7188
7189 myh = elf_link_hash_lookup
7190 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7191
c7b8f16e
JB
7192 if (myh != NULL)
7193 abort ();
7194
7195 bh = NULL;
7196 val = offset + 4;
7197 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7198 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 7199
c7b8f16e
JB
7200 myh = (struct elf_link_hash_entry *) bh;
7201 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7202 myh->forced_local = 1;
7203
7204 free (tmp_name);
906e58ca 7205
c7b8f16e
JB
7206 /* Generate a mapping symbol for the veneer section, and explicitly add an
7207 entry for that symbol to the code/data map for the section. */
7208 if (hash_table->vfp11_erratum_glue_size == 0)
7209 {
7210 bh = NULL;
7211 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 7212 ever requires this erratum fix. */
c7b8f16e
JB
7213 _bfd_generic_link_add_one_symbol (link_info,
7214 hash_table->bfd_of_glue_owner, "$a",
7215 BSF_LOCAL, s, 0, NULL,
99059e56 7216 TRUE, FALSE, &bh);
c7b8f16e
JB
7217
7218 myh = (struct elf_link_hash_entry *) bh;
7219 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7220 myh->forced_local = 1;
906e58ca 7221
c7b8f16e 7222 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
7223 BFDs. We must make a note of this generated mapping symbol
7224 ourselves so that code byteswapping works properly in
7225 elf32_arm_write_section. */
c7b8f16e
JB
7226 elf32_arm_section_map_add (s, 'a', 0);
7227 }
906e58ca 7228
c7b8f16e
JB
7229 s->size += VFP11_ERRATUM_VENEER_SIZE;
7230 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7231 hash_table->num_vfp11_fixes++;
906e58ca 7232
c7b8f16e
JB
7233 /* The offset of the veneer. */
7234 return val;
7235}
7236
a504d23a
LA
7237/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7238 veneers need to be handled because used only in Cortex-M. */
7239
7240static bfd_vma
7241record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7242 elf32_stm32l4xx_erratum_list *branch,
7243 bfd *branch_bfd,
7244 asection *branch_sec,
7245 unsigned int offset,
7246 bfd_size_type veneer_size)
7247{
7248 asection *s;
7249 struct elf32_arm_link_hash_table *hash_table;
7250 char *tmp_name;
7251 struct elf_link_hash_entry *myh;
7252 struct bfd_link_hash_entry *bh;
7253 bfd_vma val;
7254 struct _arm_elf_section_data *sec_data;
7255 elf32_stm32l4xx_erratum_list *newerr;
7256
7257 hash_table = elf32_arm_hash_table (link_info);
7258 BFD_ASSERT (hash_table != NULL);
7259 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7260
7261 s = bfd_get_linker_section
7262 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7263
7264 BFD_ASSERT (s != NULL);
7265
7266 sec_data = elf32_arm_section_data (s);
7267
7268 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7269 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7270
7271 BFD_ASSERT (tmp_name);
7272
7273 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7274 hash_table->num_stm32l4xx_fixes);
7275
7276 myh = elf_link_hash_lookup
7277 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7278
7279 BFD_ASSERT (myh == NULL);
7280
7281 bh = NULL;
7282 val = hash_table->stm32l4xx_erratum_glue_size;
7283 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7284 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7285 NULL, TRUE, FALSE, &bh);
7286
7287 myh = (struct elf_link_hash_entry *) bh;
7288 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7289 myh->forced_local = 1;
7290
7291 /* Link veneer back to calling location. */
7292 sec_data->stm32l4xx_erratumcount += 1;
7293 newerr = (elf32_stm32l4xx_erratum_list *)
7294 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7295
7296 newerr->type = STM32L4XX_ERRATUM_VENEER;
7297 newerr->vma = -1;
7298 newerr->u.v.branch = branch;
7299 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7300 branch->u.b.veneer = newerr;
7301
7302 newerr->next = sec_data->stm32l4xx_erratumlist;
7303 sec_data->stm32l4xx_erratumlist = newerr;
7304
7305 /* A symbol for the return from the veneer. */
7306 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7307 hash_table->num_stm32l4xx_fixes);
7308
7309 myh = elf_link_hash_lookup
7310 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7311
7312 if (myh != NULL)
7313 abort ();
7314
7315 bh = NULL;
7316 val = offset + 4;
7317 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7318 branch_sec, val, NULL, TRUE, FALSE, &bh);
7319
7320 myh = (struct elf_link_hash_entry *) bh;
7321 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7322 myh->forced_local = 1;
7323
7324 free (tmp_name);
7325
7326 /* Generate a mapping symbol for the veneer section, and explicitly add an
7327 entry for that symbol to the code/data map for the section. */
7328 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7329 {
7330 bh = NULL;
7331 /* Creates a THUMB symbol since there is no other choice. */
7332 _bfd_generic_link_add_one_symbol (link_info,
7333 hash_table->bfd_of_glue_owner, "$t",
7334 BSF_LOCAL, s, 0, NULL,
7335 TRUE, FALSE, &bh);
7336
7337 myh = (struct elf_link_hash_entry *) bh;
7338 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7339 myh->forced_local = 1;
7340
7341 /* The elf32_arm_init_maps function only cares about symbols from input
7342 BFDs. We must make a note of this generated mapping symbol
7343 ourselves so that code byteswapping works properly in
7344 elf32_arm_write_section. */
7345 elf32_arm_section_map_add (s, 't', 0);
7346 }
7347
7348 s->size += veneer_size;
7349 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7350 hash_table->num_stm32l4xx_fixes++;
7351
7352 /* The offset of the veneer. */
7353 return val;
7354}
7355
8029a119 7356#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
7357 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7358 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
7359
7360/* Create a fake section for use by the ARM backend of the linker. */
7361
7362static bfd_boolean
7363arm_make_glue_section (bfd * abfd, const char * name)
7364{
7365 asection * sec;
7366
3d4d4302 7367 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
7368 if (sec != NULL)
7369 /* Already made. */
7370 return TRUE;
7371
3d4d4302 7372 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
7373
7374 if (sec == NULL
7375 || !bfd_set_section_alignment (abfd, sec, 2))
7376 return FALSE;
7377
7378 /* Set the gc mark to prevent the section from being removed by garbage
7379 collection, despite the fact that no relocs refer to this section. */
7380 sec->gc_mark = 1;
7381
7382 return TRUE;
7383}
7384
1db37fe6
YG
7385/* Set size of .plt entries. This function is called from the
7386 linker scripts in ld/emultempl/{armelf}.em. */
7387
7388void
7389bfd_elf32_arm_use_long_plt (void)
7390{
7391 elf32_arm_use_long_plt_entry = TRUE;
7392}
7393
8afb0e02
NC
7394/* Add the glue sections to ABFD. This function is called from the
7395 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 7396
b34976b6 7397bfd_boolean
57e8b36a
NC
7398bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7399 struct bfd_link_info *info)
252b5132 7400{
a504d23a
LA
7401 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7402 bfd_boolean dostm32l4xx = globals
7403 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7404 bfd_boolean addglue;
7405
8afb0e02
NC
7406 /* If we are only performing a partial
7407 link do not bother adding the glue. */
0e1862bb 7408 if (bfd_link_relocatable (info))
b34976b6 7409 return TRUE;
252b5132 7410
a504d23a 7411 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
8029a119
NC
7412 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7413 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7414 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
a504d23a
LA
7415
7416 if (!dostm32l4xx)
7417 return addglue;
7418
7419 return addglue
7420 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
8afb0e02
NC
7421}
7422
daa4adae
TP
7423/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7424 ensures they are not marked for deletion by
7425 strip_excluded_output_sections () when veneers are going to be created
7426 later. Not doing so would trigger assert on empty section size in
7427 lang_size_sections_1 (). */
7428
7429void
7430bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7431{
7432 enum elf32_arm_stub_type stub_type;
7433
7434 /* If we are only performing a partial
7435 link do not bother adding the glue. */
7436 if (bfd_link_relocatable (info))
7437 return;
7438
7439 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7440 {
7441 asection *out_sec;
7442 const char *out_sec_name;
7443
7444 if (!arm_dedicated_stub_output_section_required (stub_type))
7445 continue;
7446
7447 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7448 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7449 if (out_sec != NULL)
7450 out_sec->flags |= SEC_KEEP;
7451 }
7452}
7453
8afb0e02
NC
7454/* Select a BFD to be used to hold the sections used by the glue code.
7455 This function is called from the linker scripts in ld/emultempl/
8029a119 7456 {armelf/pe}.em. */
8afb0e02 7457
b34976b6 7458bfd_boolean
57e8b36a 7459bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
7460{
7461 struct elf32_arm_link_hash_table *globals;
7462
7463 /* If we are only performing a partial link
7464 do not bother getting a bfd to hold the glue. */
0e1862bb 7465 if (bfd_link_relocatable (info))
b34976b6 7466 return TRUE;
8afb0e02 7467
b7693d02
DJ
7468 /* Make sure we don't attach the glue sections to a dynamic object. */
7469 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7470
8afb0e02 7471 globals = elf32_arm_hash_table (info);
8afb0e02
NC
7472 BFD_ASSERT (globals != NULL);
7473
7474 if (globals->bfd_of_glue_owner != NULL)
b34976b6 7475 return TRUE;
8afb0e02 7476
252b5132
RH
7477 /* Save the bfd for later use. */
7478 globals->bfd_of_glue_owner = abfd;
cedb70c5 7479
b34976b6 7480 return TRUE;
252b5132
RH
7481}
7482
906e58ca
NC
7483static void
7484check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 7485{
2de70689
MGD
7486 int cpu_arch;
7487
b38cadfb 7488 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
7489 Tag_CPU_arch);
7490
7491 if (globals->fix_arm1176)
7492 {
7493 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7494 globals->use_blx = 1;
7495 }
7496 else
7497 {
7498 if (cpu_arch > TAG_CPU_ARCH_V4T)
7499 globals->use_blx = 1;
7500 }
39b41c9c
PB
7501}
7502
b34976b6 7503bfd_boolean
57e8b36a 7504bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 7505 struct bfd_link_info *link_info)
252b5132
RH
7506{
7507 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 7508 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
7509 Elf_Internal_Rela *irel, *irelend;
7510 bfd_byte *contents = NULL;
252b5132
RH
7511
7512 asection *sec;
7513 struct elf32_arm_link_hash_table *globals;
7514
7515 /* If we are only performing a partial link do not bother
7516 to construct any glue. */
0e1862bb 7517 if (bfd_link_relocatable (link_info))
b34976b6 7518 return TRUE;
252b5132 7519
39ce1a6a
NC
7520 /* Here we have a bfd that is to be included on the link. We have a
7521 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 7522 globals = elf32_arm_hash_table (link_info);
252b5132 7523 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
7524
7525 check_use_blx (globals);
252b5132 7526
d504ffc8 7527 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 7528 {
d003868e
AM
7529 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7530 abfd);
e489d0ae
PB
7531 return FALSE;
7532 }
f21f3fe0 7533
39ce1a6a
NC
7534 /* PR 5398: If we have not decided to include any loadable sections in
7535 the output then we will not have a glue owner bfd. This is OK, it
7536 just means that there is nothing else for us to do here. */
7537 if (globals->bfd_of_glue_owner == NULL)
7538 return TRUE;
7539
252b5132
RH
7540 /* Rummage around all the relocs and map the glue vectors. */
7541 sec = abfd->sections;
7542
7543 if (sec == NULL)
b34976b6 7544 return TRUE;
252b5132
RH
7545
7546 for (; sec != NULL; sec = sec->next)
7547 {
7548 if (sec->reloc_count == 0)
7549 continue;
7550
2f475487
AM
7551 if ((sec->flags & SEC_EXCLUDE) != 0)
7552 continue;
7553
0ffa91dd 7554 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 7555
9b485d32 7556 /* Load the relocs. */
6cdc0ccc 7557 internal_relocs
906e58ca 7558 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 7559
6cdc0ccc
AM
7560 if (internal_relocs == NULL)
7561 goto error_return;
252b5132 7562
6cdc0ccc
AM
7563 irelend = internal_relocs + sec->reloc_count;
7564 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
7565 {
7566 long r_type;
7567 unsigned long r_index;
252b5132
RH
7568
7569 struct elf_link_hash_entry *h;
7570
7571 r_type = ELF32_R_TYPE (irel->r_info);
7572 r_index = ELF32_R_SYM (irel->r_info);
7573
9b485d32 7574 /* These are the only relocation types we care about. */
ba96a88f 7575 if ( r_type != R_ARM_PC24
845b51d6 7576 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
7577 continue;
7578
7579 /* Get the section contents if we haven't done so already. */
7580 if (contents == NULL)
7581 {
7582 /* Get cached copy if it exists. */
7583 if (elf_section_data (sec)->this_hdr.contents != NULL)
7584 contents = elf_section_data (sec)->this_hdr.contents;
7585 else
7586 {
7587 /* Go get them off disk. */
57e8b36a 7588 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
7589 goto error_return;
7590 }
7591 }
7592
845b51d6
PB
7593 if (r_type == R_ARM_V4BX)
7594 {
7595 int reg;
7596
7597 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7598 record_arm_bx_glue (link_info, reg);
7599 continue;
7600 }
7601
a7c10850 7602 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
7603 h = NULL;
7604
9b485d32 7605 /* We don't care about local symbols. */
252b5132
RH
7606 if (r_index < symtab_hdr->sh_info)
7607 continue;
7608
9b485d32 7609 /* This is an external symbol. */
252b5132
RH
7610 r_index -= symtab_hdr->sh_info;
7611 h = (struct elf_link_hash_entry *)
7612 elf_sym_hashes (abfd)[r_index];
7613
7614 /* If the relocation is against a static symbol it must be within
7615 the current section and so cannot be a cross ARM/Thumb relocation. */
7616 if (h == NULL)
7617 continue;
7618
d504ffc8
DJ
7619 /* If the call will go through a PLT entry then we do not need
7620 glue. */
362d30a1 7621 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
7622 continue;
7623
252b5132
RH
7624 switch (r_type)
7625 {
7626 case R_ARM_PC24:
7627 /* This one is a call from arm code. We need to look up
99059e56
RM
7628 the target of the call. If it is a thumb target, we
7629 insert glue. */
39d911fc
TP
7630 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7631 == ST_BRANCH_TO_THUMB)
252b5132
RH
7632 record_arm_to_thumb_glue (link_info, h);
7633 break;
7634
252b5132 7635 default:
c6596c5e 7636 abort ();
252b5132
RH
7637 }
7638 }
6cdc0ccc
AM
7639
7640 if (contents != NULL
7641 && elf_section_data (sec)->this_hdr.contents != contents)
7642 free (contents);
7643 contents = NULL;
7644
7645 if (internal_relocs != NULL
7646 && elf_section_data (sec)->relocs != internal_relocs)
7647 free (internal_relocs);
7648 internal_relocs = NULL;
252b5132
RH
7649 }
7650
b34976b6 7651 return TRUE;
9a5aca8c 7652
252b5132 7653error_return:
6cdc0ccc
AM
7654 if (contents != NULL
7655 && elf_section_data (sec)->this_hdr.contents != contents)
7656 free (contents);
7657 if (internal_relocs != NULL
7658 && elf_section_data (sec)->relocs != internal_relocs)
7659 free (internal_relocs);
9a5aca8c 7660
b34976b6 7661 return FALSE;
252b5132 7662}
7e392df6 7663#endif
252b5132 7664
eb043451 7665
c7b8f16e
JB
7666/* Initialise maps of ARM/Thumb/data for input BFDs. */
7667
7668void
7669bfd_elf32_arm_init_maps (bfd *abfd)
7670{
7671 Elf_Internal_Sym *isymbuf;
7672 Elf_Internal_Shdr *hdr;
7673 unsigned int i, localsyms;
7674
af1f4419
NC
7675 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7676 if (! is_arm_elf (abfd))
7677 return;
7678
c7b8f16e
JB
7679 if ((abfd->flags & DYNAMIC) != 0)
7680 return;
7681
0ffa91dd 7682 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
7683 localsyms = hdr->sh_info;
7684
7685 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7686 should contain the number of local symbols, which should come before any
7687 global symbols. Mapping symbols are always local. */
7688 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7689 NULL);
7690
7691 /* No internal symbols read? Skip this BFD. */
7692 if (isymbuf == NULL)
7693 return;
7694
7695 for (i = 0; i < localsyms; i++)
7696 {
7697 Elf_Internal_Sym *isym = &isymbuf[i];
7698 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7699 const char *name;
906e58ca 7700
c7b8f16e 7701 if (sec != NULL
99059e56
RM
7702 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7703 {
7704 name = bfd_elf_string_from_elf_section (abfd,
7705 hdr->sh_link, isym->st_name);
906e58ca 7706
99059e56 7707 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 7708 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
7709 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7710 }
c7b8f16e
JB
7711 }
7712}
7713
7714
48229727
JB
7715/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7716 say what they wanted. */
7717
7718void
7719bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7720{
7721 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7722 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7723
4dfe6ac6
NC
7724 if (globals == NULL)
7725 return;
7726
48229727
JB
7727 if (globals->fix_cortex_a8 == -1)
7728 {
7729 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7730 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7731 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7732 || out_attr[Tag_CPU_arch_profile].i == 0))
7733 globals->fix_cortex_a8 = 1;
7734 else
7735 globals->fix_cortex_a8 = 0;
7736 }
7737}
7738
7739
c7b8f16e
JB
7740void
7741bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7742{
7743 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 7744 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 7745
4dfe6ac6
NC
7746 if (globals == NULL)
7747 return;
c7b8f16e
JB
7748 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7749 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7750 {
7751 switch (globals->vfp11_fix)
99059e56
RM
7752 {
7753 case BFD_ARM_VFP11_FIX_DEFAULT:
7754 case BFD_ARM_VFP11_FIX_NONE:
7755 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7756 break;
7757
7758 default:
7759 /* Give a warning, but do as the user requests anyway. */
4eca0228 7760 _bfd_error_handler (_("%B: warning: selected VFP11 erratum "
99059e56
RM
7761 "workaround is not necessary for target architecture"), obfd);
7762 }
c7b8f16e
JB
7763 }
7764 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7765 /* For earlier architectures, we might need the workaround, but do not
7766 enable it by default. If users is running with broken hardware, they
7767 must enable the erratum fix explicitly. */
7768 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7769}
7770
a504d23a
LA
7771void
7772bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7773{
7774 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7775 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7776
7777 if (globals == NULL)
7778 return;
7779
7780 /* We assume only Cortex-M4 may require the fix. */
7781 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7782 || out_attr[Tag_CPU_arch_profile].i != 'M')
7783 {
7784 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7785 /* Give a warning, but do as the user requests anyway. */
4eca0228 7786 _bfd_error_handler
a504d23a
LA
7787 (_("%B: warning: selected STM32L4XX erratum "
7788 "workaround is not necessary for target architecture"), obfd);
7789 }
7790}
c7b8f16e 7791
906e58ca
NC
7792enum bfd_arm_vfp11_pipe
7793{
c7b8f16e
JB
7794 VFP11_FMAC,
7795 VFP11_LS,
7796 VFP11_DS,
7797 VFP11_BAD
7798};
7799
7800/* Return a VFP register number. This is encoded as RX:X for single-precision
7801 registers, or X:RX for double-precision registers, where RX is the group of
7802 four bits in the instruction encoding and X is the single extension bit.
7803 RX and X fields are specified using their lowest (starting) bit. The return
7804 value is:
7805
7806 0...31: single-precision registers s0...s31
7807 32...63: double-precision registers d0...d31.
906e58ca 7808
c7b8f16e
JB
7809 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7810 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 7811
c7b8f16e
JB
7812static unsigned int
7813bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
99059e56 7814 unsigned int x)
c7b8f16e
JB
7815{
7816 if (is_double)
7817 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7818 else
7819 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7820}
7821
7822/* Set bits in *WMASK according to a register number REG as encoded by
7823 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7824
7825static void
7826bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7827{
7828 if (reg < 32)
7829 *wmask |= 1 << reg;
7830 else if (reg < 48)
7831 *wmask |= 3 << ((reg - 32) * 2);
7832}
7833
7834/* Return TRUE if WMASK overwrites anything in REGS. */
7835
7836static bfd_boolean
7837bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7838{
7839 int i;
906e58ca 7840
c7b8f16e
JB
7841 for (i = 0; i < numregs; i++)
7842 {
7843 unsigned int reg = regs[i];
7844
7845 if (reg < 32 && (wmask & (1 << reg)) != 0)
99059e56 7846 return TRUE;
906e58ca 7847
c7b8f16e
JB
7848 reg -= 32;
7849
7850 if (reg >= 16)
99059e56 7851 continue;
906e58ca 7852
c7b8f16e 7853 if ((wmask & (3 << (reg * 2))) != 0)
99059e56 7854 return TRUE;
c7b8f16e 7855 }
906e58ca 7856
c7b8f16e
JB
7857 return FALSE;
7858}
7859
7860/* In this function, we're interested in two things: finding input registers
7861 for VFP data-processing instructions, and finding the set of registers which
7862 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7863 hold the written set, so FLDM etc. are easy to deal with (we're only
7864 interested in 32 SP registers or 16 dp registers, due to the VFP version
7865 implemented by the chip in question). DP registers are marked by setting
7866 both SP registers in the write mask). */
7867
7868static enum bfd_arm_vfp11_pipe
7869bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 7870 int *numregs)
c7b8f16e 7871{
91d6fa6a 7872 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
7873 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7874
7875 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7876 {
7877 unsigned int pqrs;
7878 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7879 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7880
7881 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
7882 | ((insn & 0x00300000) >> 19)
7883 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
7884
7885 switch (pqrs)
99059e56
RM
7886 {
7887 case 0: /* fmac[sd]. */
7888 case 1: /* fnmac[sd]. */
7889 case 2: /* fmsc[sd]. */
7890 case 3: /* fnmsc[sd]. */
7891 vpipe = VFP11_FMAC;
7892 bfd_arm_vfp11_write_mask (destmask, fd);
7893 regs[0] = fd;
7894 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7895 regs[2] = fm;
7896 *numregs = 3;
7897 break;
7898
7899 case 4: /* fmul[sd]. */
7900 case 5: /* fnmul[sd]. */
7901 case 6: /* fadd[sd]. */
7902 case 7: /* fsub[sd]. */
7903 vpipe = VFP11_FMAC;
7904 goto vfp_binop;
7905
7906 case 8: /* fdiv[sd]. */
7907 vpipe = VFP11_DS;
7908 vfp_binop:
7909 bfd_arm_vfp11_write_mask (destmask, fd);
7910 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7911 regs[1] = fm;
7912 *numregs = 2;
7913 break;
7914
7915 case 15: /* extended opcode. */
7916 {
7917 unsigned int extn = ((insn >> 15) & 0x1e)
7918 | ((insn >> 7) & 1);
7919
7920 switch (extn)
7921 {
7922 case 0: /* fcpy[sd]. */
7923 case 1: /* fabs[sd]. */
7924 case 2: /* fneg[sd]. */
7925 case 8: /* fcmp[sd]. */
7926 case 9: /* fcmpe[sd]. */
7927 case 10: /* fcmpz[sd]. */
7928 case 11: /* fcmpez[sd]. */
7929 case 16: /* fuito[sd]. */
7930 case 17: /* fsito[sd]. */
7931 case 24: /* ftoui[sd]. */
7932 case 25: /* ftouiz[sd]. */
7933 case 26: /* ftosi[sd]. */
7934 case 27: /* ftosiz[sd]. */
7935 /* These instructions will not bounce due to underflow. */
7936 *numregs = 0;
7937 vpipe = VFP11_FMAC;
7938 break;
7939
7940 case 3: /* fsqrt[sd]. */
7941 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7942 registers to cause the erratum in previous instructions. */
7943 bfd_arm_vfp11_write_mask (destmask, fd);
7944 vpipe = VFP11_DS;
7945 break;
7946
7947 case 15: /* fcvt{ds,sd}. */
7948 {
7949 int rnum = 0;
7950
7951 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
7952
7953 /* Only FCVTSD can underflow. */
99059e56
RM
7954 if ((insn & 0x100) != 0)
7955 regs[rnum++] = fm;
c7b8f16e 7956
99059e56 7957 *numregs = rnum;
c7b8f16e 7958
99059e56
RM
7959 vpipe = VFP11_FMAC;
7960 }
7961 break;
c7b8f16e 7962
99059e56
RM
7963 default:
7964 return VFP11_BAD;
7965 }
7966 }
7967 break;
c7b8f16e 7968
99059e56
RM
7969 default:
7970 return VFP11_BAD;
7971 }
c7b8f16e
JB
7972 }
7973 /* Two-register transfer. */
7974 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7975 {
7976 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 7977
c7b8f16e
JB
7978 if ((insn & 0x100000) == 0)
7979 {
99059e56
RM
7980 if (is_double)
7981 bfd_arm_vfp11_write_mask (destmask, fm);
7982 else
7983 {
7984 bfd_arm_vfp11_write_mask (destmask, fm);
7985 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7986 }
c7b8f16e
JB
7987 }
7988
91d6fa6a 7989 vpipe = VFP11_LS;
c7b8f16e
JB
7990 }
7991 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7992 {
7993 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7994 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 7995
c7b8f16e 7996 switch (puw)
99059e56
RM
7997 {
7998 case 0: /* Two-reg transfer. We should catch these above. */
7999 abort ();
906e58ca 8000
99059e56
RM
8001 case 2: /* fldm[sdx]. */
8002 case 3:
8003 case 5:
8004 {
8005 unsigned int i, offset = insn & 0xff;
c7b8f16e 8006
99059e56
RM
8007 if (is_double)
8008 offset >>= 1;
c7b8f16e 8009
99059e56
RM
8010 for (i = fd; i < fd + offset; i++)
8011 bfd_arm_vfp11_write_mask (destmask, i);
8012 }
8013 break;
906e58ca 8014
99059e56
RM
8015 case 4: /* fld[sd]. */
8016 case 6:
8017 bfd_arm_vfp11_write_mask (destmask, fd);
8018 break;
906e58ca 8019
99059e56
RM
8020 default:
8021 return VFP11_BAD;
8022 }
c7b8f16e 8023
91d6fa6a 8024 vpipe = VFP11_LS;
c7b8f16e
JB
8025 }
8026 /* Single-register transfer. Note L==0. */
8027 else if ((insn & 0x0f100e10) == 0x0e000a10)
8028 {
8029 unsigned int opcode = (insn >> 21) & 7;
8030 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8031
8032 switch (opcode)
99059e56
RM
8033 {
8034 case 0: /* fmsr/fmdlr. */
8035 case 1: /* fmdhr. */
8036 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8037 destination register. I don't know if this is exactly right,
8038 but it is the conservative choice. */
8039 bfd_arm_vfp11_write_mask (destmask, fn);
8040 break;
8041
8042 case 7: /* fmxr. */
8043 break;
8044 }
c7b8f16e 8045
91d6fa6a 8046 vpipe = VFP11_LS;
c7b8f16e
JB
8047 }
8048
91d6fa6a 8049 return vpipe;
c7b8f16e
JB
8050}
8051
8052
8053static int elf32_arm_compare_mapping (const void * a, const void * b);
8054
8055
8056/* Look for potentially-troublesome code sequences which might trigger the
8057 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8058 (available from ARM) for details of the erratum. A short version is
8059 described in ld.texinfo. */
8060
8061bfd_boolean
8062bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8063{
8064 asection *sec;
8065 bfd_byte *contents = NULL;
8066 int state = 0;
8067 int regs[3], numregs = 0;
8068 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8069 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 8070
4dfe6ac6
NC
8071 if (globals == NULL)
8072 return FALSE;
8073
c7b8f16e
JB
8074 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8075 The states transition as follows:
906e58ca 8076
c7b8f16e 8077 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
8078 A VFP FMAC-pipeline instruction has been seen. Fill
8079 regs[0]..regs[numregs-1] with its input operands. Remember this
8080 instruction in 'first_fmac'.
c7b8f16e
JB
8081
8082 1 -> 2
99059e56
RM
8083 Any instruction, except for a VFP instruction which overwrites
8084 regs[*].
906e58ca 8085
c7b8f16e
JB
8086 1 -> 3 [ -> 0 ] or
8087 2 -> 3 [ -> 0 ]
99059e56
RM
8088 A VFP instruction has been seen which overwrites any of regs[*].
8089 We must make a veneer! Reset state to 0 before examining next
8090 instruction.
906e58ca 8091
c7b8f16e 8092 2 -> 0
99059e56
RM
8093 If we fail to match anything in state 2, reset to state 0 and reset
8094 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
8095
8096 If the VFP11 vector mode is in use, there must be at least two unrelated
8097 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 8098 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
8099
8100 /* If we are only performing a partial link do not bother
8101 to construct any glue. */
0e1862bb 8102 if (bfd_link_relocatable (link_info))
c7b8f16e
JB
8103 return TRUE;
8104
0ffa91dd
NC
8105 /* Skip if this bfd does not correspond to an ELF image. */
8106 if (! is_arm_elf (abfd))
8107 return TRUE;
906e58ca 8108
c7b8f16e
JB
8109 /* We should have chosen a fix type by the time we get here. */
8110 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8111
8112 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8113 return TRUE;
2e6030b9 8114
33a7ffc2
JM
8115 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8116 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8117 return TRUE;
8118
c7b8f16e
JB
8119 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8120 {
8121 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8122 struct _arm_elf_section_data *sec_data;
8123
8124 /* If we don't have executable progbits, we're not interested in this
99059e56 8125 section. Also skip if section is to be excluded. */
c7b8f16e 8126 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
8127 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8128 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 8129 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 8130 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
8131 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8132 continue;
c7b8f16e
JB
8133
8134 sec_data = elf32_arm_section_data (sec);
906e58ca 8135
c7b8f16e 8136 if (sec_data->mapcount == 0)
99059e56 8137 continue;
906e58ca 8138
c7b8f16e
JB
8139 if (elf_section_data (sec)->this_hdr.contents != NULL)
8140 contents = elf_section_data (sec)->this_hdr.contents;
8141 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8142 goto error_return;
8143
8144 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8145 elf32_arm_compare_mapping);
8146
8147 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
8148 {
8149 unsigned int span_start = sec_data->map[span].vma;
8150 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 8151 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
8152 char span_type = sec_data->map[span].type;
8153
8154 /* FIXME: Only ARM mode is supported at present. We may need to
8155 support Thumb-2 mode also at some point. */
8156 if (span_type != 'a')
8157 continue;
8158
8159 for (i = span_start; i < span_end;)
8160 {
8161 unsigned int next_i = i + 4;
8162 unsigned int insn = bfd_big_endian (abfd)
8163 ? (contents[i] << 24)
8164 | (contents[i + 1] << 16)
8165 | (contents[i + 2] << 8)
8166 | contents[i + 3]
8167 : (contents[i + 3] << 24)
8168 | (contents[i + 2] << 16)
8169 | (contents[i + 1] << 8)
8170 | contents[i];
8171 unsigned int writemask = 0;
8172 enum bfd_arm_vfp11_pipe vpipe;
8173
8174 switch (state)
8175 {
8176 case 0:
8177 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8178 &numregs);
8179 /* I'm assuming the VFP11 erratum can trigger with denorm
8180 operands on either the FMAC or the DS pipeline. This might
8181 lead to slightly overenthusiastic veneer insertion. */
8182 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8183 {
8184 state = use_vector ? 1 : 2;
8185 first_fmac = i;
8186 veneer_of_insn = insn;
8187 }
8188 break;
8189
8190 case 1:
8191 {
8192 int other_regs[3], other_numregs;
8193 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8194 other_regs,
99059e56
RM
8195 &other_numregs);
8196 if (vpipe != VFP11_BAD
8197 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8198 numregs))
99059e56
RM
8199 state = 3;
8200 else
8201 state = 2;
8202 }
8203 break;
8204
8205 case 2:
8206 {
8207 int other_regs[3], other_numregs;
8208 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8209 other_regs,
99059e56
RM
8210 &other_numregs);
8211 if (vpipe != VFP11_BAD
8212 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8213 numregs))
99059e56
RM
8214 state = 3;
8215 else
8216 {
8217 state = 0;
8218 next_i = first_fmac + 4;
8219 }
8220 }
8221 break;
8222
8223 case 3:
8224 abort (); /* Should be unreachable. */
8225 }
8226
8227 if (state == 3)
8228 {
8229 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8230 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8231
8232 elf32_arm_section_data (sec)->erratumcount += 1;
8233
8234 newerr->u.b.vfp_insn = veneer_of_insn;
8235
8236 switch (span_type)
8237 {
8238 case 'a':
8239 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8240 break;
8241
8242 default:
8243 abort ();
8244 }
8245
8246 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
8247 first_fmac);
8248
99059e56 8249 newerr->vma = -1;
c7b8f16e 8250
99059e56
RM
8251 newerr->next = sec_data->erratumlist;
8252 sec_data->erratumlist = newerr;
c7b8f16e 8253
99059e56
RM
8254 state = 0;
8255 }
c7b8f16e 8256
99059e56
RM
8257 i = next_i;
8258 }
8259 }
906e58ca 8260
c7b8f16e 8261 if (contents != NULL
99059e56
RM
8262 && elf_section_data (sec)->this_hdr.contents != contents)
8263 free (contents);
c7b8f16e
JB
8264 contents = NULL;
8265 }
8266
8267 return TRUE;
8268
8269error_return:
8270 if (contents != NULL
8271 && elf_section_data (sec)->this_hdr.contents != contents)
8272 free (contents);
906e58ca 8273
c7b8f16e
JB
8274 return FALSE;
8275}
8276
8277/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8278 after sections have been laid out, using specially-named symbols. */
8279
8280void
8281bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8282 struct bfd_link_info *link_info)
8283{
8284 asection *sec;
8285 struct elf32_arm_link_hash_table *globals;
8286 char *tmp_name;
906e58ca 8287
0e1862bb 8288 if (bfd_link_relocatable (link_info))
c7b8f16e 8289 return;
2e6030b9
MS
8290
8291 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 8292 if (! is_arm_elf (abfd))
2e6030b9
MS
8293 return;
8294
c7b8f16e 8295 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8296 if (globals == NULL)
8297 return;
906e58ca 8298
21d799b5 8299 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 8300 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
8301
8302 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8303 {
8304 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8305 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 8306
c7b8f16e 8307 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
8308 {
8309 struct elf_link_hash_entry *myh;
8310 bfd_vma vma;
8311
8312 switch (errnode->type)
8313 {
8314 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8315 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8316 /* Find veneer symbol. */
8317 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
8318 errnode->u.b.veneer->u.v.id);
8319
99059e56
RM
8320 myh = elf_link_hash_lookup
8321 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 8322
a504d23a 8323 if (myh == NULL)
4eca0228
AM
8324 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8325 "`%s'"), abfd, tmp_name);
a504d23a
LA
8326
8327 vma = myh->root.u.def.section->output_section->vma
8328 + myh->root.u.def.section->output_offset
8329 + myh->root.u.def.value;
8330
8331 errnode->u.b.veneer->vma = vma;
8332 break;
8333
8334 case VFP11_ERRATUM_ARM_VENEER:
8335 case VFP11_ERRATUM_THUMB_VENEER:
8336 /* Find return location. */
8337 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8338 errnode->u.v.id);
8339
8340 myh = elf_link_hash_lookup
8341 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8342
8343 if (myh == NULL)
4eca0228
AM
8344 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8345 "`%s'"), abfd, tmp_name);
a504d23a
LA
8346
8347 vma = myh->root.u.def.section->output_section->vma
8348 + myh->root.u.def.section->output_offset
8349 + myh->root.u.def.value;
8350
8351 errnode->u.v.branch->vma = vma;
8352 break;
8353
8354 default:
8355 abort ();
8356 }
8357 }
8358 }
8359
8360 free (tmp_name);
8361}
8362
8363/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8364 return locations after sections have been laid out, using
8365 specially-named symbols. */
8366
8367void
8368bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8369 struct bfd_link_info *link_info)
8370{
8371 asection *sec;
8372 struct elf32_arm_link_hash_table *globals;
8373 char *tmp_name;
8374
8375 if (bfd_link_relocatable (link_info))
8376 return;
8377
8378 /* Skip if this bfd does not correspond to an ELF image. */
8379 if (! is_arm_elf (abfd))
8380 return;
8381
8382 globals = elf32_arm_hash_table (link_info);
8383 if (globals == NULL)
8384 return;
8385
8386 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8387 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8388
8389 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8390 {
8391 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8392 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8393
8394 for (; errnode != NULL; errnode = errnode->next)
8395 {
8396 struct elf_link_hash_entry *myh;
8397 bfd_vma vma;
8398
8399 switch (errnode->type)
8400 {
8401 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8402 /* Find veneer symbol. */
8403 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8404 errnode->u.b.veneer->u.v.id);
8405
8406 myh = elf_link_hash_lookup
8407 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8408
8409 if (myh == NULL)
4eca0228
AM
8410 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8411 "`%s'"), abfd, tmp_name);
a504d23a
LA
8412
8413 vma = myh->root.u.def.section->output_section->vma
8414 + myh->root.u.def.section->output_offset
8415 + myh->root.u.def.value;
8416
8417 errnode->u.b.veneer->vma = vma;
8418 break;
8419
8420 case STM32L4XX_ERRATUM_VENEER:
8421 /* Find return location. */
8422 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8423 errnode->u.v.id);
8424
8425 myh = elf_link_hash_lookup
8426 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8427
8428 if (myh == NULL)
4eca0228
AM
8429 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8430 "`%s'"), abfd, tmp_name);
a504d23a
LA
8431
8432 vma = myh->root.u.def.section->output_section->vma
8433 + myh->root.u.def.section->output_offset
8434 + myh->root.u.def.value;
8435
8436 errnode->u.v.branch->vma = vma;
8437 break;
8438
8439 default:
8440 abort ();
8441 }
8442 }
8443 }
8444
8445 free (tmp_name);
8446}
8447
8448static inline bfd_boolean
8449is_thumb2_ldmia (const insn32 insn)
8450{
8451 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8452 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8453 return (insn & 0xffd02000) == 0xe8900000;
8454}
8455
8456static inline bfd_boolean
8457is_thumb2_ldmdb (const insn32 insn)
8458{
8459 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8460 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8461 return (insn & 0xffd02000) == 0xe9100000;
8462}
8463
8464static inline bfd_boolean
8465is_thumb2_vldm (const insn32 insn)
8466{
8467 /* A6.5 Extension register load or store instruction
8468 A7.7.229
9239bbd3
CM
8469 We look for SP 32-bit and DP 64-bit registers.
8470 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8471 <list> is consecutive 64-bit registers
8472 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
a504d23a
LA
8473 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8474 <list> is consecutive 32-bit registers
8475 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8476 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8477 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8478 return
9239bbd3
CM
8479 (((insn & 0xfe100f00) == 0xec100b00) ||
8480 ((insn & 0xfe100f00) == 0xec100a00))
a504d23a
LA
8481 && /* (IA without !). */
8482 (((((insn << 7) >> 28) & 0xd) == 0x4)
9239bbd3 8483 /* (IA with !), includes VPOP (when reg number is SP). */
a504d23a
LA
8484 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8485 /* (DB with !). */
8486 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8487}
8488
8489/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8490 VLDM opcode and:
8491 - computes the number and the mode of memory accesses
8492 - decides if the replacement should be done:
8493 . replaces only if > 8-word accesses
8494 . or (testing purposes only) replaces all accesses. */
8495
8496static bfd_boolean
8497stm32l4xx_need_create_replacing_stub (const insn32 insn,
8498 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8499{
9239bbd3 8500 int nb_words = 0;
a504d23a
LA
8501
8502 /* The field encoding the register list is the same for both LDMIA
8503 and LDMDB encodings. */
8504 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
9239bbd3 8505 nb_words = popcount (insn & 0x0000ffff);
a504d23a 8506 else if (is_thumb2_vldm (insn))
9239bbd3 8507 nb_words = (insn & 0xff);
a504d23a
LA
8508
8509 /* DEFAULT mode accounts for the real bug condition situation,
8510 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8511 return
9239bbd3 8512 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
a504d23a
LA
8513 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8514}
8515
8516/* Look for potentially-troublesome code sequences which might trigger
8517 the STM STM32L4XX erratum. */
8518
8519bfd_boolean
8520bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8521 struct bfd_link_info *link_info)
8522{
8523 asection *sec;
8524 bfd_byte *contents = NULL;
8525 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8526
8527 if (globals == NULL)
8528 return FALSE;
8529
8530 /* If we are only performing a partial link do not bother
8531 to construct any glue. */
8532 if (bfd_link_relocatable (link_info))
8533 return TRUE;
8534
8535 /* Skip if this bfd does not correspond to an ELF image. */
8536 if (! is_arm_elf (abfd))
8537 return TRUE;
8538
8539 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8540 return TRUE;
8541
8542 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8543 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8544 return TRUE;
8545
8546 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8547 {
8548 unsigned int i, span;
8549 struct _arm_elf_section_data *sec_data;
8550
8551 /* If we don't have executable progbits, we're not interested in this
8552 section. Also skip if section is to be excluded. */
8553 if (elf_section_type (sec) != SHT_PROGBITS
8554 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8555 || (sec->flags & SEC_EXCLUDE) != 0
8556 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8557 || sec->output_section == bfd_abs_section_ptr
8558 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8559 continue;
8560
8561 sec_data = elf32_arm_section_data (sec);
c7b8f16e 8562
a504d23a
LA
8563 if (sec_data->mapcount == 0)
8564 continue;
c7b8f16e 8565
a504d23a
LA
8566 if (elf_section_data (sec)->this_hdr.contents != NULL)
8567 contents = elf_section_data (sec)->this_hdr.contents;
8568 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8569 goto error_return;
c7b8f16e 8570
a504d23a
LA
8571 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8572 elf32_arm_compare_mapping);
c7b8f16e 8573
a504d23a
LA
8574 for (span = 0; span < sec_data->mapcount; span++)
8575 {
8576 unsigned int span_start = sec_data->map[span].vma;
8577 unsigned int span_end = (span == sec_data->mapcount - 1)
8578 ? sec->size : sec_data->map[span + 1].vma;
8579 char span_type = sec_data->map[span].type;
8580 int itblock_current_pos = 0;
c7b8f16e 8581
a504d23a
LA
8582 /* Only Thumb2 mode need be supported with this CM4 specific
8583 code, we should not encounter any arm mode eg span_type
8584 != 'a'. */
8585 if (span_type != 't')
8586 continue;
c7b8f16e 8587
a504d23a
LA
8588 for (i = span_start; i < span_end;)
8589 {
8590 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8591 bfd_boolean insn_32bit = FALSE;
8592 bfd_boolean is_ldm = FALSE;
8593 bfd_boolean is_vldm = FALSE;
8594 bfd_boolean is_not_last_in_it_block = FALSE;
8595
8596 /* The first 16-bits of all 32-bit thumb2 instructions start
8597 with opcode[15..13]=0b111 and the encoded op1 can be anything
8598 except opcode[12..11]!=0b00.
8599 See 32-bit Thumb instruction encoding. */
8600 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8601 insn_32bit = TRUE;
c7b8f16e 8602
a504d23a
LA
8603 /* Compute the predicate that tells if the instruction
8604 is concerned by the IT block
8605 - Creates an error if there is a ldm that is not
8606 last in the IT block thus cannot be replaced
8607 - Otherwise we can create a branch at the end of the
8608 IT block, it will be controlled naturally by IT
8609 with the proper pseudo-predicate
8610 - So the only interesting predicate is the one that
8611 tells that we are not on the last item of an IT
8612 block. */
8613 if (itblock_current_pos != 0)
8614 is_not_last_in_it_block = !!--itblock_current_pos;
906e58ca 8615
a504d23a
LA
8616 if (insn_32bit)
8617 {
8618 /* Load the rest of the insn (in manual-friendly order). */
8619 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8620 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8621 is_vldm = is_thumb2_vldm (insn);
8622
8623 /* Veneers are created for (v)ldm depending on
8624 option flags and memory accesses conditions; but
8625 if the instruction is not the last instruction of
8626 an IT block, we cannot create a jump there, so we
8627 bail out. */
5025eb7c
AO
8628 if ((is_ldm || is_vldm)
8629 && stm32l4xx_need_create_replacing_stub
a504d23a
LA
8630 (insn, globals->stm32l4xx_fix))
8631 {
8632 if (is_not_last_in_it_block)
8633 {
4eca0228 8634 _bfd_error_handler
a504d23a
LA
8635 /* Note - overlong line used here to allow for translation. */
8636 (_("\
8637%B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
8638 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
8639 abfd, sec, (long)i);
8640 }
8641 else
8642 {
8643 elf32_stm32l4xx_erratum_list *newerr =
8644 (elf32_stm32l4xx_erratum_list *)
8645 bfd_zmalloc
8646 (sizeof (elf32_stm32l4xx_erratum_list));
8647
8648 elf32_arm_section_data (sec)
8649 ->stm32l4xx_erratumcount += 1;
8650 newerr->u.b.insn = insn;
8651 /* We create only thumb branches. */
8652 newerr->type =
8653 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8654 record_stm32l4xx_erratum_veneer
8655 (link_info, newerr, abfd, sec,
8656 i,
8657 is_ldm ?
8658 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8659 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8660 newerr->vma = -1;
8661 newerr->next = sec_data->stm32l4xx_erratumlist;
8662 sec_data->stm32l4xx_erratumlist = newerr;
8663 }
8664 }
8665 }
8666 else
8667 {
8668 /* A7.7.37 IT p208
8669 IT blocks are only encoded in T1
8670 Encoding T1: IT{x{y{z}}} <firstcond>
8671 1 0 1 1 - 1 1 1 1 - firstcond - mask
8672 if mask = '0000' then see 'related encodings'
8673 We don't deal with UNPREDICTABLE, just ignore these.
8674 There can be no nested IT blocks so an IT block
8675 is naturally a new one for which it is worth
8676 computing its size. */
5025eb7c
AO
8677 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8678 && ((insn & 0x000f) != 0x0000);
a504d23a
LA
8679 /* If we have a new IT block we compute its size. */
8680 if (is_newitblock)
8681 {
8682 /* Compute the number of instructions controlled
8683 by the IT block, it will be used to decide
8684 whether we are inside an IT block or not. */
8685 unsigned int mask = insn & 0x000f;
8686 itblock_current_pos = 4 - ctz (mask);
8687 }
8688 }
8689
8690 i += insn_32bit ? 4 : 2;
99059e56
RM
8691 }
8692 }
a504d23a
LA
8693
8694 if (contents != NULL
8695 && elf_section_data (sec)->this_hdr.contents != contents)
8696 free (contents);
8697 contents = NULL;
c7b8f16e 8698 }
906e58ca 8699
a504d23a
LA
8700 return TRUE;
8701
8702error_return:
8703 if (contents != NULL
8704 && elf_section_data (sec)->this_hdr.contents != contents)
8705 free (contents);
c7b8f16e 8706
a504d23a
LA
8707 return FALSE;
8708}
c7b8f16e 8709
eb043451
PB
8710/* Set target relocation values needed during linking. */
8711
8712void
68c39892 8713bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
bf21ed78 8714 struct bfd_link_info *link_info,
68c39892 8715 struct elf32_arm_params *params)
eb043451
PB
8716{
8717 struct elf32_arm_link_hash_table *globals;
8718
8719 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8720 if (globals == NULL)
8721 return;
eb043451 8722
68c39892
TP
8723 globals->target1_is_rel = params->target1_is_rel;
8724 if (strcmp (params->target2_type, "rel") == 0)
eb043451 8725 globals->target2_reloc = R_ARM_REL32;
68c39892 8726 else if (strcmp (params->target2_type, "abs") == 0)
eeac373a 8727 globals->target2_reloc = R_ARM_ABS32;
68c39892 8728 else if (strcmp (params->target2_type, "got-rel") == 0)
eb043451
PB
8729 globals->target2_reloc = R_ARM_GOT_PREL;
8730 else
8731 {
8732 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
68c39892 8733 params->target2_type);
eb043451 8734 }
68c39892
TP
8735 globals->fix_v4bx = params->fix_v4bx;
8736 globals->use_blx |= params->use_blx;
8737 globals->vfp11_fix = params->vfp11_denorm_fix;
8738 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8739 globals->pic_veneer = params->pic_veneer;
8740 globals->fix_cortex_a8 = params->fix_cortex_a8;
8741 globals->fix_arm1176 = params->fix_arm1176;
8742 globals->cmse_implib = params->cmse_implib;
8743 globals->in_implib_bfd = params->in_implib_bfd;
bf21ed78 8744
0ffa91dd 8745 BFD_ASSERT (is_arm_elf (output_bfd));
68c39892
TP
8746 elf_arm_tdata (output_bfd)->no_enum_size_warning
8747 = params->no_enum_size_warning;
8748 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8749 = params->no_wchar_size_warning;
eb043451 8750}
eb043451 8751
12a0a0fd 8752/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 8753
12a0a0fd
PB
8754static void
8755insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8756{
8757 bfd_vma upper;
8758 bfd_vma lower;
8759 int reloc_sign;
8760
8761 BFD_ASSERT ((offset & 1) == 0);
8762
8763 upper = bfd_get_16 (abfd, insn);
8764 lower = bfd_get_16 (abfd, insn + 2);
8765 reloc_sign = (offset < 0) ? 1 : 0;
8766 upper = (upper & ~(bfd_vma) 0x7ff)
8767 | ((offset >> 12) & 0x3ff)
8768 | (reloc_sign << 10);
906e58ca 8769 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
8770 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8771 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8772 | ((offset >> 1) & 0x7ff);
8773 bfd_put_16 (abfd, upper, insn);
8774 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
8775}
8776
9b485d32
NC
8777/* Thumb code calling an ARM function. */
8778
252b5132 8779static int
57e8b36a
NC
8780elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8781 const char * name,
8782 bfd * input_bfd,
8783 bfd * output_bfd,
8784 asection * input_section,
8785 bfd_byte * hit_data,
8786 asection * sym_sec,
8787 bfd_vma offset,
8788 bfd_signed_vma addend,
f2a9dd69
DJ
8789 bfd_vma val,
8790 char **error_message)
252b5132 8791{
bcbdc74c 8792 asection * s = 0;
dc810e39 8793 bfd_vma my_offset;
252b5132 8794 long int ret_offset;
bcbdc74c
NC
8795 struct elf_link_hash_entry * myh;
8796 struct elf32_arm_link_hash_table * globals;
252b5132 8797
f2a9dd69 8798 myh = find_thumb_glue (info, name, error_message);
252b5132 8799 if (myh == NULL)
b34976b6 8800 return FALSE;
252b5132
RH
8801
8802 globals = elf32_arm_hash_table (info);
252b5132
RH
8803 BFD_ASSERT (globals != NULL);
8804 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8805
8806 my_offset = myh->root.u.def.value;
8807
3d4d4302
AM
8808 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8809 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
8810
8811 BFD_ASSERT (s != NULL);
8812 BFD_ASSERT (s->contents != NULL);
8813 BFD_ASSERT (s->output_section != NULL);
8814
8815 if ((my_offset & 0x01) == 0x01)
8816 {
8817 if (sym_sec != NULL
8818 && sym_sec->owner != NULL
8819 && !INTERWORK_FLAG (sym_sec->owner))
8820 {
4eca0228 8821 _bfd_error_handler
d003868e 8822 (_("%B(%s): warning: interworking not enabled.\n"
3aaeb7d3 8823 " first occurrence: %B: Thumb call to ARM"),
d003868e 8824 sym_sec->owner, input_bfd, name);
252b5132 8825
b34976b6 8826 return FALSE;
252b5132
RH
8827 }
8828
8829 --my_offset;
8830 myh->root.u.def.value = my_offset;
8831
52ab56c2
PB
8832 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8833 s->contents + my_offset);
252b5132 8834
52ab56c2
PB
8835 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8836 s->contents + my_offset + 2);
252b5132
RH
8837
8838 ret_offset =
9b485d32
NC
8839 /* Address of destination of the stub. */
8840 ((bfd_signed_vma) val)
252b5132 8841 - ((bfd_signed_vma)
57e8b36a
NC
8842 /* Offset from the start of the current section
8843 to the start of the stubs. */
9b485d32
NC
8844 (s->output_offset
8845 /* Offset of the start of this stub from the start of the stubs. */
8846 + my_offset
8847 /* Address of the start of the current section. */
8848 + s->output_section->vma)
8849 /* The branch instruction is 4 bytes into the stub. */
8850 + 4
8851 /* ARM branches work from the pc of the instruction + 8. */
8852 + 8);
252b5132 8853
52ab56c2
PB
8854 put_arm_insn (globals, output_bfd,
8855 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8856 s->contents + my_offset + 4);
252b5132
RH
8857 }
8858
8859 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8860
427bfd90
NC
8861 /* Now go back and fix up the original BL insn to point to here. */
8862 ret_offset =
8863 /* Address of where the stub is located. */
8864 (s->output_section->vma + s->output_offset + my_offset)
8865 /* Address of where the BL is located. */
57e8b36a
NC
8866 - (input_section->output_section->vma + input_section->output_offset
8867 + offset)
427bfd90
NC
8868 /* Addend in the relocation. */
8869 - addend
8870 /* Biassing for PC-relative addressing. */
8871 - 8;
252b5132 8872
12a0a0fd 8873 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 8874
b34976b6 8875 return TRUE;
252b5132
RH
8876}
8877
a4fd1a8e 8878/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 8879
a4fd1a8e
PB
8880static struct elf_link_hash_entry *
8881elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8882 const char * name,
8883 bfd * input_bfd,
8884 bfd * output_bfd,
8885 asection * sym_sec,
8886 bfd_vma val,
8029a119
NC
8887 asection * s,
8888 char ** error_message)
252b5132 8889{
dc810e39 8890 bfd_vma my_offset;
252b5132 8891 long int ret_offset;
bcbdc74c
NC
8892 struct elf_link_hash_entry * myh;
8893 struct elf32_arm_link_hash_table * globals;
252b5132 8894
f2a9dd69 8895 myh = find_arm_glue (info, name, error_message);
252b5132 8896 if (myh == NULL)
a4fd1a8e 8897 return NULL;
252b5132
RH
8898
8899 globals = elf32_arm_hash_table (info);
252b5132
RH
8900 BFD_ASSERT (globals != NULL);
8901 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8902
8903 my_offset = myh->root.u.def.value;
252b5132
RH
8904
8905 if ((my_offset & 0x01) == 0x01)
8906 {
8907 if (sym_sec != NULL
8908 && sym_sec->owner != NULL
8909 && !INTERWORK_FLAG (sym_sec->owner))
8910 {
4eca0228 8911 _bfd_error_handler
d003868e
AM
8912 (_("%B(%s): warning: interworking not enabled.\n"
8913 " first occurrence: %B: arm call to thumb"),
8914 sym_sec->owner, input_bfd, name);
252b5132 8915 }
9b485d32 8916
252b5132
RH
8917 --my_offset;
8918 myh->root.u.def.value = my_offset;
8919
0e1862bb
L
8920 if (bfd_link_pic (info)
8921 || globals->root.is_relocatable_executable
27e55c4d 8922 || globals->pic_veneer)
8f6277f5
PB
8923 {
8924 /* For relocatable objects we can't use absolute addresses,
8925 so construct the address from a relative offset. */
8926 /* TODO: If the offset is small it's probably worth
8927 constructing the address with adds. */
52ab56c2
PB
8928 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8929 s->contents + my_offset);
8930 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8931 s->contents + my_offset + 4);
8932 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8933 s->contents + my_offset + 8);
8f6277f5
PB
8934 /* Adjust the offset by 4 for the position of the add,
8935 and 8 for the pipeline offset. */
8936 ret_offset = (val - (s->output_offset
8937 + s->output_section->vma
8938 + my_offset + 12))
8939 | 1;
8940 bfd_put_32 (output_bfd, ret_offset,
8941 s->contents + my_offset + 12);
8942 }
26079076
PB
8943 else if (globals->use_blx)
8944 {
8945 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8946 s->contents + my_offset);
8947
8948 /* It's a thumb address. Add the low order bit. */
8949 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8950 s->contents + my_offset + 4);
8951 }
8f6277f5
PB
8952 else
8953 {
52ab56c2
PB
8954 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8955 s->contents + my_offset);
252b5132 8956
52ab56c2
PB
8957 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8958 s->contents + my_offset + 4);
252b5132 8959
8f6277f5
PB
8960 /* It's a thumb address. Add the low order bit. */
8961 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8962 s->contents + my_offset + 8);
8029a119
NC
8963
8964 my_offset += 12;
8f6277f5 8965 }
252b5132
RH
8966 }
8967
8968 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8969
a4fd1a8e
PB
8970 return myh;
8971}
8972
8973/* Arm code calling a Thumb function. */
8974
8975static int
8976elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8977 const char * name,
8978 bfd * input_bfd,
8979 bfd * output_bfd,
8980 asection * input_section,
8981 bfd_byte * hit_data,
8982 asection * sym_sec,
8983 bfd_vma offset,
8984 bfd_signed_vma addend,
f2a9dd69
DJ
8985 bfd_vma val,
8986 char **error_message)
a4fd1a8e
PB
8987{
8988 unsigned long int tmp;
8989 bfd_vma my_offset;
8990 asection * s;
8991 long int ret_offset;
8992 struct elf_link_hash_entry * myh;
8993 struct elf32_arm_link_hash_table * globals;
8994
8995 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
8996 BFD_ASSERT (globals != NULL);
8997 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8998
3d4d4302
AM
8999 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9000 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9001 BFD_ASSERT (s != NULL);
9002 BFD_ASSERT (s->contents != NULL);
9003 BFD_ASSERT (s->output_section != NULL);
9004
9005 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 9006 sym_sec, val, s, error_message);
a4fd1a8e
PB
9007 if (!myh)
9008 return FALSE;
9009
9010 my_offset = myh->root.u.def.value;
252b5132
RH
9011 tmp = bfd_get_32 (input_bfd, hit_data);
9012 tmp = tmp & 0xFF000000;
9013
9b485d32 9014 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
9015 ret_offset = (s->output_offset
9016 + my_offset
9017 + s->output_section->vma
9018 - (input_section->output_offset
9019 + input_section->output_section->vma
9020 + offset + addend)
9021 - 8);
9a5aca8c 9022
252b5132
RH
9023 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9024
dc810e39 9025 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 9026
b34976b6 9027 return TRUE;
252b5132
RH
9028}
9029
a4fd1a8e
PB
9030/* Populate Arm stub for an exported Thumb function. */
9031
9032static bfd_boolean
9033elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9034{
9035 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9036 asection * s;
9037 struct elf_link_hash_entry * myh;
9038 struct elf32_arm_link_hash_entry *eh;
9039 struct elf32_arm_link_hash_table * globals;
9040 asection *sec;
9041 bfd_vma val;
f2a9dd69 9042 char *error_message;
a4fd1a8e 9043
906e58ca 9044 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
9045 /* Allocate stubs for exported Thumb functions on v4t. */
9046 if (eh->export_glue == NULL)
9047 return TRUE;
9048
9049 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9050 BFD_ASSERT (globals != NULL);
9051 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9052
3d4d4302
AM
9053 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9054 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9055 BFD_ASSERT (s != NULL);
9056 BFD_ASSERT (s->contents != NULL);
9057 BFD_ASSERT (s->output_section != NULL);
9058
9059 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
9060
9061 BFD_ASSERT (sec->output_section != NULL);
9062
a4fd1a8e
PB
9063 val = eh->export_glue->root.u.def.value + sec->output_offset
9064 + sec->output_section->vma;
8029a119 9065
a4fd1a8e
PB
9066 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9067 h->root.u.def.section->owner,
f2a9dd69
DJ
9068 globals->obfd, sec, val, s,
9069 &error_message);
a4fd1a8e
PB
9070 BFD_ASSERT (myh);
9071 return TRUE;
9072}
9073
845b51d6
PB
9074/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9075
9076static bfd_vma
9077elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9078{
9079 bfd_byte *p;
9080 bfd_vma glue_addr;
9081 asection *s;
9082 struct elf32_arm_link_hash_table *globals;
9083
9084 globals = elf32_arm_hash_table (info);
845b51d6
PB
9085 BFD_ASSERT (globals != NULL);
9086 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9087
3d4d4302
AM
9088 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9089 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
9090 BFD_ASSERT (s != NULL);
9091 BFD_ASSERT (s->contents != NULL);
9092 BFD_ASSERT (s->output_section != NULL);
9093
9094 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9095
9096 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9097
9098 if ((globals->bx_glue_offset[reg] & 1) == 0)
9099 {
9100 p = s->contents + glue_addr;
9101 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9102 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9103 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9104 globals->bx_glue_offset[reg] |= 1;
9105 }
9106
9107 return glue_addr + s->output_section->vma + s->output_offset;
9108}
9109
a4fd1a8e
PB
9110/* Generate Arm stubs for exported Thumb symbols. */
9111static void
906e58ca 9112elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
9113 struct bfd_link_info *link_info)
9114{
9115 struct elf32_arm_link_hash_table * globals;
9116
8029a119
NC
9117 if (link_info == NULL)
9118 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
9119 return;
9120
9121 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9122 if (globals == NULL)
9123 return;
9124
84c08195
PB
9125 /* If blx is available then exported Thumb symbols are OK and there is
9126 nothing to do. */
a4fd1a8e
PB
9127 if (globals->use_blx)
9128 return;
9129
9130 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9131 link_info);
9132}
9133
47beaa6a
RS
9134/* Reserve space for COUNT dynamic relocations in relocation selection
9135 SRELOC. */
9136
9137static void
9138elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9139 bfd_size_type count)
9140{
9141 struct elf32_arm_link_hash_table *htab;
9142
9143 htab = elf32_arm_hash_table (info);
9144 BFD_ASSERT (htab->root.dynamic_sections_created);
9145 if (sreloc == NULL)
9146 abort ();
9147 sreloc->size += RELOC_SIZE (htab) * count;
9148}
9149
34e77a92
RS
9150/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9151 dynamic, the relocations should go in SRELOC, otherwise they should
9152 go in the special .rel.iplt section. */
9153
9154static void
9155elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9156 bfd_size_type count)
9157{
9158 struct elf32_arm_link_hash_table *htab;
9159
9160 htab = elf32_arm_hash_table (info);
9161 if (!htab->root.dynamic_sections_created)
9162 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9163 else
9164 {
9165 BFD_ASSERT (sreloc != NULL);
9166 sreloc->size += RELOC_SIZE (htab) * count;
9167 }
9168}
9169
47beaa6a
RS
9170/* Add relocation REL to the end of relocation section SRELOC. */
9171
9172static void
9173elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9174 asection *sreloc, Elf_Internal_Rela *rel)
9175{
9176 bfd_byte *loc;
9177 struct elf32_arm_link_hash_table *htab;
9178
9179 htab = elf32_arm_hash_table (info);
34e77a92
RS
9180 if (!htab->root.dynamic_sections_created
9181 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9182 sreloc = htab->root.irelplt;
47beaa6a
RS
9183 if (sreloc == NULL)
9184 abort ();
9185 loc = sreloc->contents;
9186 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9187 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9188 abort ();
9189 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9190}
9191
34e77a92
RS
9192/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9193 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9194 to .plt. */
9195
9196static void
9197elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9198 bfd_boolean is_iplt_entry,
9199 union gotplt_union *root_plt,
9200 struct arm_plt_info *arm_plt)
9201{
9202 struct elf32_arm_link_hash_table *htab;
9203 asection *splt;
9204 asection *sgotplt;
9205
9206 htab = elf32_arm_hash_table (info);
9207
9208 if (is_iplt_entry)
9209 {
9210 splt = htab->root.iplt;
9211 sgotplt = htab->root.igotplt;
9212
99059e56
RM
9213 /* NaCl uses a special first entry in .iplt too. */
9214 if (htab->nacl_p && splt->size == 0)
9215 splt->size += htab->plt_header_size;
9216
34e77a92
RS
9217 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9218 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9219 }
9220 else
9221 {
9222 splt = htab->root.splt;
9223 sgotplt = htab->root.sgotplt;
9224
9225 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9226 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9227
9228 /* If this is the first .plt entry, make room for the special
9229 first entry. */
9230 if (splt->size == 0)
9231 splt->size += htab->plt_header_size;
9f19ab6d
WN
9232
9233 htab->next_tls_desc_index++;
34e77a92
RS
9234 }
9235
9236 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9237 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9238 splt->size += PLT_THUMB_STUB_SIZE;
9239 root_plt->offset = splt->size;
9240 splt->size += htab->plt_entry_size;
9241
9242 if (!htab->symbian_p)
9243 {
9244 /* We also need to make an entry in the .got.plt section, which
9245 will be placed in the .got section by the linker script. */
9f19ab6d
WN
9246 if (is_iplt_entry)
9247 arm_plt->got_offset = sgotplt->size;
9248 else
9249 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
34e77a92
RS
9250 sgotplt->size += 4;
9251 }
9252}
9253
b38cadfb
NC
9254static bfd_vma
9255arm_movw_immediate (bfd_vma value)
9256{
9257 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9258}
9259
9260static bfd_vma
9261arm_movt_immediate (bfd_vma value)
9262{
9263 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9264}
9265
34e77a92
RS
9266/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9267 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9268 Otherwise, DYNINDX is the index of the symbol in the dynamic
9269 symbol table and SYM_VALUE is undefined.
9270
9271 ROOT_PLT points to the offset of the PLT entry from the start of its
9272 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 9273 bookkeeping information.
34e77a92 9274
57460bcf
NC
9275 Returns FALSE if there was a problem. */
9276
9277static bfd_boolean
34e77a92
RS
9278elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9279 union gotplt_union *root_plt,
9280 struct arm_plt_info *arm_plt,
9281 int dynindx, bfd_vma sym_value)
9282{
9283 struct elf32_arm_link_hash_table *htab;
9284 asection *sgot;
9285 asection *splt;
9286 asection *srel;
9287 bfd_byte *loc;
9288 bfd_vma plt_index;
9289 Elf_Internal_Rela rel;
9290 bfd_vma plt_header_size;
9291 bfd_vma got_header_size;
9292
9293 htab = elf32_arm_hash_table (info);
9294
9295 /* Pick the appropriate sections and sizes. */
9296 if (dynindx == -1)
9297 {
9298 splt = htab->root.iplt;
9299 sgot = htab->root.igotplt;
9300 srel = htab->root.irelplt;
9301
9302 /* There are no reserved entries in .igot.plt, and no special
9303 first entry in .iplt. */
9304 got_header_size = 0;
9305 plt_header_size = 0;
9306 }
9307 else
9308 {
9309 splt = htab->root.splt;
9310 sgot = htab->root.sgotplt;
9311 srel = htab->root.srelplt;
9312
9313 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9314 plt_header_size = htab->plt_header_size;
9315 }
9316 BFD_ASSERT (splt != NULL && srel != NULL);
9317
9318 /* Fill in the entry in the procedure linkage table. */
9319 if (htab->symbian_p)
9320 {
9321 BFD_ASSERT (dynindx >= 0);
9322 put_arm_insn (htab, output_bfd,
9323 elf32_arm_symbian_plt_entry[0],
9324 splt->contents + root_plt->offset);
9325 bfd_put_32 (output_bfd,
9326 elf32_arm_symbian_plt_entry[1],
9327 splt->contents + root_plt->offset + 4);
9328
9329 /* Fill in the entry in the .rel.plt section. */
9330 rel.r_offset = (splt->output_section->vma
9331 + splt->output_offset
9332 + root_plt->offset + 4);
9333 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9334
9335 /* Get the index in the procedure linkage table which
9336 corresponds to this symbol. This is the index of this symbol
9337 in all the symbols for which we are making plt entries. The
9338 first entry in the procedure linkage table is reserved. */
9339 plt_index = ((root_plt->offset - plt_header_size)
9340 / htab->plt_entry_size);
9341 }
9342 else
9343 {
9344 bfd_vma got_offset, got_address, plt_address;
9345 bfd_vma got_displacement, initial_got_entry;
9346 bfd_byte * ptr;
9347
9348 BFD_ASSERT (sgot != NULL);
9349
9350 /* Get the offset into the .(i)got.plt table of the entry that
9351 corresponds to this function. */
9352 got_offset = (arm_plt->got_offset & -2);
9353
9354 /* Get the index in the procedure linkage table which
9355 corresponds to this symbol. This is the index of this symbol
9356 in all the symbols for which we are making plt entries.
9357 After the reserved .got.plt entries, all symbols appear in
9358 the same order as in .plt. */
9359 plt_index = (got_offset - got_header_size) / 4;
9360
9361 /* Calculate the address of the GOT entry. */
9362 got_address = (sgot->output_section->vma
9363 + sgot->output_offset
9364 + got_offset);
9365
9366 /* ...and the address of the PLT entry. */
9367 plt_address = (splt->output_section->vma
9368 + splt->output_offset
9369 + root_plt->offset);
9370
9371 ptr = splt->contents + root_plt->offset;
0e1862bb 9372 if (htab->vxworks_p && bfd_link_pic (info))
34e77a92
RS
9373 {
9374 unsigned int i;
9375 bfd_vma val;
9376
9377 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9378 {
9379 val = elf32_arm_vxworks_shared_plt_entry[i];
9380 if (i == 2)
9381 val |= got_address - sgot->output_section->vma;
9382 if (i == 5)
9383 val |= plt_index * RELOC_SIZE (htab);
9384 if (i == 2 || i == 5)
9385 bfd_put_32 (output_bfd, val, ptr);
9386 else
9387 put_arm_insn (htab, output_bfd, val, ptr);
9388 }
9389 }
9390 else if (htab->vxworks_p)
9391 {
9392 unsigned int i;
9393 bfd_vma val;
9394
9395 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9396 {
9397 val = elf32_arm_vxworks_exec_plt_entry[i];
9398 if (i == 2)
9399 val |= got_address;
9400 if (i == 4)
9401 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9402 if (i == 5)
9403 val |= plt_index * RELOC_SIZE (htab);
9404 if (i == 2 || i == 5)
9405 bfd_put_32 (output_bfd, val, ptr);
9406 else
9407 put_arm_insn (htab, output_bfd, val, ptr);
9408 }
9409
9410 loc = (htab->srelplt2->contents
9411 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9412
9413 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9414 referencing the GOT for this PLT entry. */
9415 rel.r_offset = plt_address + 8;
9416 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9417 rel.r_addend = got_offset;
9418 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9419 loc += RELOC_SIZE (htab);
9420
9421 /* Create the R_ARM_ABS32 relocation referencing the
9422 beginning of the PLT for this GOT entry. */
9423 rel.r_offset = got_address;
9424 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9425 rel.r_addend = 0;
9426 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9427 }
b38cadfb
NC
9428 else if (htab->nacl_p)
9429 {
9430 /* Calculate the displacement between the PLT slot and the
9431 common tail that's part of the special initial PLT slot. */
6034aab8 9432 int32_t tail_displacement
b38cadfb
NC
9433 = ((splt->output_section->vma + splt->output_offset
9434 + ARM_NACL_PLT_TAIL_OFFSET)
9435 - (plt_address + htab->plt_entry_size + 4));
9436 BFD_ASSERT ((tail_displacement & 3) == 0);
9437 tail_displacement >>= 2;
9438
9439 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9440 || (-tail_displacement & 0xff000000) == 0);
9441
9442 /* Calculate the displacement between the PLT slot and the entry
9443 in the GOT. The offset accounts for the value produced by
9444 adding to pc in the penultimate instruction of the PLT stub. */
6034aab8 9445 got_displacement = (got_address
99059e56 9446 - (plt_address + htab->plt_entry_size));
b38cadfb
NC
9447
9448 /* NaCl does not support interworking at all. */
9449 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9450
9451 put_arm_insn (htab, output_bfd,
9452 elf32_arm_nacl_plt_entry[0]
9453 | arm_movw_immediate (got_displacement),
9454 ptr + 0);
9455 put_arm_insn (htab, output_bfd,
9456 elf32_arm_nacl_plt_entry[1]
9457 | arm_movt_immediate (got_displacement),
9458 ptr + 4);
9459 put_arm_insn (htab, output_bfd,
9460 elf32_arm_nacl_plt_entry[2],
9461 ptr + 8);
9462 put_arm_insn (htab, output_bfd,
9463 elf32_arm_nacl_plt_entry[3]
9464 | (tail_displacement & 0x00ffffff),
9465 ptr + 12);
9466 }
57460bcf
NC
9467 else if (using_thumb_only (htab))
9468 {
eed94f8f 9469 /* PR ld/16017: Generate thumb only PLT entries. */
469a3493 9470 if (!using_thumb2 (htab))
eed94f8f
NC
9471 {
9472 /* FIXME: We ought to be able to generate thumb-1 PLT
9473 instructions... */
9474 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9475 output_bfd);
9476 return FALSE;
9477 }
57460bcf 9478
eed94f8f
NC
9479 /* Calculate the displacement between the PLT slot and the entry in
9480 the GOT. The 12-byte offset accounts for the value produced by
9481 adding to pc in the 3rd instruction of the PLT stub. */
9482 got_displacement = got_address - (plt_address + 12);
9483
9484 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9485 instead of 'put_thumb_insn'. */
9486 put_arm_insn (htab, output_bfd,
9487 elf32_thumb2_plt_entry[0]
9488 | ((got_displacement & 0x000000ff) << 16)
9489 | ((got_displacement & 0x00000700) << 20)
9490 | ((got_displacement & 0x00000800) >> 1)
9491 | ((got_displacement & 0x0000f000) >> 12),
9492 ptr + 0);
9493 put_arm_insn (htab, output_bfd,
9494 elf32_thumb2_plt_entry[1]
9495 | ((got_displacement & 0x00ff0000) )
9496 | ((got_displacement & 0x07000000) << 4)
9497 | ((got_displacement & 0x08000000) >> 17)
9498 | ((got_displacement & 0xf0000000) >> 28),
9499 ptr + 4);
9500 put_arm_insn (htab, output_bfd,
9501 elf32_thumb2_plt_entry[2],
9502 ptr + 8);
9503 put_arm_insn (htab, output_bfd,
9504 elf32_thumb2_plt_entry[3],
9505 ptr + 12);
57460bcf 9506 }
34e77a92
RS
9507 else
9508 {
9509 /* Calculate the displacement between the PLT slot and the
9510 entry in the GOT. The eight-byte offset accounts for the
9511 value produced by adding to pc in the first instruction
9512 of the PLT stub. */
9513 got_displacement = got_address - (plt_address + 8);
9514
34e77a92
RS
9515 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9516 {
9517 put_thumb_insn (htab, output_bfd,
9518 elf32_arm_plt_thumb_stub[0], ptr - 4);
9519 put_thumb_insn (htab, output_bfd,
9520 elf32_arm_plt_thumb_stub[1], ptr - 2);
9521 }
9522
1db37fe6
YG
9523 if (!elf32_arm_use_long_plt_entry)
9524 {
9525 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9526
9527 put_arm_insn (htab, output_bfd,
9528 elf32_arm_plt_entry_short[0]
9529 | ((got_displacement & 0x0ff00000) >> 20),
9530 ptr + 0);
9531 put_arm_insn (htab, output_bfd,
9532 elf32_arm_plt_entry_short[1]
9533 | ((got_displacement & 0x000ff000) >> 12),
9534 ptr+ 4);
9535 put_arm_insn (htab, output_bfd,
9536 elf32_arm_plt_entry_short[2]
9537 | (got_displacement & 0x00000fff),
9538 ptr + 8);
34e77a92 9539#ifdef FOUR_WORD_PLT
1db37fe6 9540 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
34e77a92 9541#endif
1db37fe6
YG
9542 }
9543 else
9544 {
9545 put_arm_insn (htab, output_bfd,
9546 elf32_arm_plt_entry_long[0]
9547 | ((got_displacement & 0xf0000000) >> 28),
9548 ptr + 0);
9549 put_arm_insn (htab, output_bfd,
9550 elf32_arm_plt_entry_long[1]
9551 | ((got_displacement & 0x0ff00000) >> 20),
9552 ptr + 4);
9553 put_arm_insn (htab, output_bfd,
9554 elf32_arm_plt_entry_long[2]
9555 | ((got_displacement & 0x000ff000) >> 12),
9556 ptr+ 8);
9557 put_arm_insn (htab, output_bfd,
9558 elf32_arm_plt_entry_long[3]
9559 | (got_displacement & 0x00000fff),
9560 ptr + 12);
9561 }
34e77a92
RS
9562 }
9563
9564 /* Fill in the entry in the .rel(a).(i)plt section. */
9565 rel.r_offset = got_address;
9566 rel.r_addend = 0;
9567 if (dynindx == -1)
9568 {
9569 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9570 The dynamic linker or static executable then calls SYM_VALUE
9571 to determine the correct run-time value of the .igot.plt entry. */
9572 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9573 initial_got_entry = sym_value;
9574 }
9575 else
9576 {
9577 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9578 initial_got_entry = (splt->output_section->vma
9579 + splt->output_offset);
9580 }
9581
9582 /* Fill in the entry in the global offset table. */
9583 bfd_put_32 (output_bfd, initial_got_entry,
9584 sgot->contents + got_offset);
9585 }
9586
aba8c3de
WN
9587 if (dynindx == -1)
9588 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9589 else
9590 {
9591 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9592 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9593 }
57460bcf
NC
9594
9595 return TRUE;
34e77a92
RS
9596}
9597
eb043451
PB
9598/* Some relocations map to different relocations depending on the
9599 target. Return the real relocation. */
8029a119 9600
eb043451
PB
9601static int
9602arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9603 int r_type)
9604{
9605 switch (r_type)
9606 {
9607 case R_ARM_TARGET1:
9608 if (globals->target1_is_rel)
9609 return R_ARM_REL32;
9610 else
9611 return R_ARM_ABS32;
9612
9613 case R_ARM_TARGET2:
9614 return globals->target2_reloc;
9615
9616 default:
9617 return r_type;
9618 }
9619}
eb043451 9620
ba93b8ac
DJ
9621/* Return the base VMA address which should be subtracted from real addresses
9622 when resolving @dtpoff relocation.
9623 This is PT_TLS segment p_vaddr. */
9624
9625static bfd_vma
9626dtpoff_base (struct bfd_link_info *info)
9627{
9628 /* If tls_sec is NULL, we should have signalled an error already. */
9629 if (elf_hash_table (info)->tls_sec == NULL)
9630 return 0;
9631 return elf_hash_table (info)->tls_sec->vma;
9632}
9633
9634/* Return the relocation value for @tpoff relocation
9635 if STT_TLS virtual address is ADDRESS. */
9636
9637static bfd_vma
9638tpoff (struct bfd_link_info *info, bfd_vma address)
9639{
9640 struct elf_link_hash_table *htab = elf_hash_table (info);
9641 bfd_vma base;
9642
9643 /* If tls_sec is NULL, we should have signalled an error already. */
9644 if (htab->tls_sec == NULL)
9645 return 0;
9646 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9647 return address - htab->tls_sec->vma + base;
9648}
9649
00a97672
RS
9650/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9651 VALUE is the relocation value. */
9652
9653static bfd_reloc_status_type
9654elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9655{
9656 if (value > 0xfff)
9657 return bfd_reloc_overflow;
9658
9659 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9660 bfd_put_32 (abfd, value, data);
9661 return bfd_reloc_ok;
9662}
9663
0855e32b
NS
9664/* Handle TLS relaxations. Relaxing is possible for symbols that use
9665 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9666 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9667
9668 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9669 is to then call final_link_relocate. Return other values in the
62672b10
NS
9670 case of error.
9671
9672 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9673 the pre-relaxed code. It would be nice if the relocs were updated
9674 to match the optimization. */
0855e32b 9675
b38cadfb 9676static bfd_reloc_status_type
0855e32b 9677elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 9678 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
9679 Elf_Internal_Rela *rel, unsigned long is_local)
9680{
9681 unsigned long insn;
b38cadfb 9682
0855e32b
NS
9683 switch (ELF32_R_TYPE (rel->r_info))
9684 {
9685 default:
9686 return bfd_reloc_notsupported;
b38cadfb 9687
0855e32b
NS
9688 case R_ARM_TLS_GOTDESC:
9689 if (is_local)
9690 insn = 0;
9691 else
9692 {
9693 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9694 if (insn & 1)
9695 insn -= 5; /* THUMB */
9696 else
9697 insn -= 8; /* ARM */
9698 }
9699 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9700 return bfd_reloc_continue;
9701
9702 case R_ARM_THM_TLS_DESCSEQ:
9703 /* Thumb insn. */
9704 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9705 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9706 {
9707 if (is_local)
9708 /* nop */
9709 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9710 }
9711 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9712 {
9713 if (is_local)
9714 /* nop */
9715 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9716 else
9717 /* ldr rx,[ry] */
9718 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9719 }
9720 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9721 {
9722 if (is_local)
9723 /* nop */
9724 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9725 else
9726 /* mov r0, rx */
9727 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9728 contents + rel->r_offset);
9729 }
9730 else
9731 {
9732 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9733 /* It's a 32 bit instruction, fetch the rest of it for
9734 error generation. */
9735 insn = (insn << 16)
9736 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
4eca0228 9737 _bfd_error_handler
0855e32b
NS
9738 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
9739 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9740 return bfd_reloc_notsupported;
9741 }
9742 break;
b38cadfb 9743
0855e32b
NS
9744 case R_ARM_TLS_DESCSEQ:
9745 /* arm insn. */
9746 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9747 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9748 {
9749 if (is_local)
9750 /* mov rx, ry */
9751 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9752 contents + rel->r_offset);
9753 }
9754 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9755 {
9756 if (is_local)
9757 /* nop */
9758 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9759 else
9760 /* ldr rx,[ry] */
9761 bfd_put_32 (input_bfd, insn & 0xfffff000,
9762 contents + rel->r_offset);
9763 }
9764 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9765 {
9766 if (is_local)
9767 /* nop */
9768 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9769 else
9770 /* mov r0, rx */
9771 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9772 contents + rel->r_offset);
9773 }
9774 else
9775 {
4eca0228 9776 _bfd_error_handler
0855e32b
NS
9777 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
9778 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9779 return bfd_reloc_notsupported;
9780 }
9781 break;
9782
9783 case R_ARM_TLS_CALL:
9784 /* GD->IE relaxation, turn the instruction into 'nop' or
9785 'ldr r0, [pc,r0]' */
9786 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9787 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9788 break;
b38cadfb 9789
0855e32b 9790 case R_ARM_THM_TLS_CALL:
6a631e86 9791 /* GD->IE relaxation. */
0855e32b
NS
9792 if (!is_local)
9793 /* add r0,pc; ldr r0, [r0] */
9794 insn = 0x44786800;
60a019a0 9795 else if (using_thumb2 (globals))
0855e32b
NS
9796 /* nop.w */
9797 insn = 0xf3af8000;
9798 else
9799 /* nop; nop */
9800 insn = 0xbf00bf00;
b38cadfb 9801
0855e32b
NS
9802 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9803 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9804 break;
9805 }
9806 return bfd_reloc_ok;
9807}
9808
4962c51a
MS
9809/* For a given value of n, calculate the value of G_n as required to
9810 deal with group relocations. We return it in the form of an
9811 encoded constant-and-rotation, together with the final residual. If n is
9812 specified as less than zero, then final_residual is filled with the
9813 input value and no further action is performed. */
9814
9815static bfd_vma
9816calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9817{
9818 int current_n;
9819 bfd_vma g_n;
9820 bfd_vma encoded_g_n = 0;
9821 bfd_vma residual = value; /* Also known as Y_n. */
9822
9823 for (current_n = 0; current_n <= n; current_n++)
9824 {
9825 int shift;
9826
9827 /* Calculate which part of the value to mask. */
9828 if (residual == 0)
99059e56 9829 shift = 0;
4962c51a 9830 else
99059e56
RM
9831 {
9832 int msb;
9833
9834 /* Determine the most significant bit in the residual and
9835 align the resulting value to a 2-bit boundary. */
9836 for (msb = 30; msb >= 0; msb -= 2)
9837 if (residual & (3 << msb))
9838 break;
9839
9840 /* The desired shift is now (msb - 6), or zero, whichever
9841 is the greater. */
9842 shift = msb - 6;
9843 if (shift < 0)
9844 shift = 0;
9845 }
4962c51a
MS
9846
9847 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9848 g_n = residual & (0xff << shift);
9849 encoded_g_n = (g_n >> shift)
99059e56 9850 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
9851
9852 /* Calculate the residual for the next time around. */
9853 residual &= ~g_n;
9854 }
9855
9856 *final_residual = residual;
9857
9858 return encoded_g_n;
9859}
9860
9861/* Given an ARM instruction, determine whether it is an ADD or a SUB.
9862 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 9863
4962c51a 9864static int
906e58ca 9865identify_add_or_sub (bfd_vma insn)
4962c51a
MS
9866{
9867 int opcode = insn & 0x1e00000;
9868
9869 if (opcode == 1 << 23) /* ADD */
9870 return 1;
9871
9872 if (opcode == 1 << 22) /* SUB */
9873 return -1;
9874
9875 return 0;
9876}
9877
252b5132 9878/* Perform a relocation as part of a final link. */
9b485d32 9879
252b5132 9880static bfd_reloc_status_type
57e8b36a
NC
9881elf32_arm_final_link_relocate (reloc_howto_type * howto,
9882 bfd * input_bfd,
9883 bfd * output_bfd,
9884 asection * input_section,
9885 bfd_byte * contents,
9886 Elf_Internal_Rela * rel,
9887 bfd_vma value,
9888 struct bfd_link_info * info,
9889 asection * sym_sec,
9890 const char * sym_name,
34e77a92
RS
9891 unsigned char st_type,
9892 enum arm_st_branch_type branch_type,
0945cdfd 9893 struct elf_link_hash_entry * h,
f2a9dd69 9894 bfd_boolean * unresolved_reloc_p,
8029a119 9895 char ** error_message)
252b5132
RH
9896{
9897 unsigned long r_type = howto->type;
9898 unsigned long r_symndx;
9899 bfd_byte * hit_data = contents + rel->r_offset;
252b5132 9900 bfd_vma * local_got_offsets;
0855e32b 9901 bfd_vma * local_tlsdesc_gotents;
34e77a92
RS
9902 asection * sgot;
9903 asection * splt;
252b5132 9904 asection * sreloc = NULL;
362d30a1 9905 asection * srelgot;
252b5132 9906 bfd_vma addend;
ba96a88f 9907 bfd_signed_vma signed_addend;
34e77a92
RS
9908 unsigned char dynreloc_st_type;
9909 bfd_vma dynreloc_value;
ba96a88f 9910 struct elf32_arm_link_hash_table * globals;
34e77a92
RS
9911 struct elf32_arm_link_hash_entry *eh;
9912 union gotplt_union *root_plt;
9913 struct arm_plt_info *arm_plt;
9914 bfd_vma plt_offset;
9915 bfd_vma gotplt_offset;
9916 bfd_boolean has_iplt_entry;
f21f3fe0 9917
9c504268 9918 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
9919 if (globals == NULL)
9920 return bfd_reloc_notsupported;
9c504268 9921
0ffa91dd
NC
9922 BFD_ASSERT (is_arm_elf (input_bfd));
9923
9924 /* Some relocation types map to different relocations depending on the
9c504268 9925 target. We pick the right one here. */
eb043451 9926 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
9927
9928 /* It is possible to have linker relaxations on some TLS access
9929 models. Update our information here. */
9930 r_type = elf32_arm_tls_transition (info, r_type, h);
9931
eb043451
PB
9932 if (r_type != howto->type)
9933 howto = elf32_arm_howto_from_type (r_type);
9c504268 9934
34e77a92 9935 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 9936 sgot = globals->root.sgot;
252b5132 9937 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
9938 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9939
34e77a92
RS
9940 if (globals->root.dynamic_sections_created)
9941 srelgot = globals->root.srelgot;
9942 else
9943 srelgot = NULL;
9944
252b5132
RH
9945 r_symndx = ELF32_R_SYM (rel->r_info);
9946
4e7fd91e 9947 if (globals->use_rel)
ba96a88f 9948 {
4e7fd91e
PB
9949 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9950
9951 if (addend & ((howto->src_mask + 1) >> 1))
9952 {
9953 signed_addend = -1;
9954 signed_addend &= ~ howto->src_mask;
9955 signed_addend |= addend;
9956 }
9957 else
9958 signed_addend = addend;
ba96a88f
NC
9959 }
9960 else
4e7fd91e 9961 addend = signed_addend = rel->r_addend;
f21f3fe0 9962
39f21624
NC
9963 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9964 are resolving a function call relocation. */
9965 if (using_thumb_only (globals)
9966 && (r_type == R_ARM_THM_CALL
9967 || r_type == R_ARM_THM_JUMP24)
9968 && branch_type == ST_BRANCH_TO_ARM)
9969 branch_type = ST_BRANCH_TO_THUMB;
9970
34e77a92
RS
9971 /* Record the symbol information that should be used in dynamic
9972 relocations. */
9973 dynreloc_st_type = st_type;
9974 dynreloc_value = value;
9975 if (branch_type == ST_BRANCH_TO_THUMB)
9976 dynreloc_value |= 1;
9977
9978 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9979 VALUE appropriately for relocations that we resolve at link time. */
9980 has_iplt_entry = FALSE;
4ba2ef8f
TP
9981 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9982 &arm_plt)
34e77a92
RS
9983 && root_plt->offset != (bfd_vma) -1)
9984 {
9985 plt_offset = root_plt->offset;
9986 gotplt_offset = arm_plt->got_offset;
9987
9988 if (h == NULL || eh->is_iplt)
9989 {
9990 has_iplt_entry = TRUE;
9991 splt = globals->root.iplt;
9992
9993 /* Populate .iplt entries here, because not all of them will
9994 be seen by finish_dynamic_symbol. The lower bit is set if
9995 we have already populated the entry. */
9996 if (plt_offset & 1)
9997 plt_offset--;
9998 else
9999 {
57460bcf
NC
10000 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10001 -1, dynreloc_value))
10002 root_plt->offset |= 1;
10003 else
10004 return bfd_reloc_notsupported;
34e77a92
RS
10005 }
10006
10007 /* Static relocations always resolve to the .iplt entry. */
10008 st_type = STT_FUNC;
10009 value = (splt->output_section->vma
10010 + splt->output_offset
10011 + plt_offset);
10012 branch_type = ST_BRANCH_TO_ARM;
10013
10014 /* If there are non-call relocations that resolve to the .iplt
10015 entry, then all dynamic ones must too. */
10016 if (arm_plt->noncall_refcount != 0)
10017 {
10018 dynreloc_st_type = st_type;
10019 dynreloc_value = value;
10020 }
10021 }
10022 else
10023 /* We populate the .plt entry in finish_dynamic_symbol. */
10024 splt = globals->root.splt;
10025 }
10026 else
10027 {
10028 splt = NULL;
10029 plt_offset = (bfd_vma) -1;
10030 gotplt_offset = (bfd_vma) -1;
10031 }
10032
252b5132
RH
10033 switch (r_type)
10034 {
10035 case R_ARM_NONE:
28a094c2
DJ
10036 /* We don't need to find a value for this symbol. It's just a
10037 marker. */
10038 *unresolved_reloc_p = FALSE;
252b5132
RH
10039 return bfd_reloc_ok;
10040
00a97672
RS
10041 case R_ARM_ABS12:
10042 if (!globals->vxworks_p)
10043 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
1a0670f3 10044 /* Fall through. */
00a97672 10045
252b5132
RH
10046 case R_ARM_PC24:
10047 case R_ARM_ABS32:
bb224fc3 10048 case R_ARM_ABS32_NOI:
252b5132 10049 case R_ARM_REL32:
bb224fc3 10050 case R_ARM_REL32_NOI:
5b5bb741
PB
10051 case R_ARM_CALL:
10052 case R_ARM_JUMP24:
dfc5f959 10053 case R_ARM_XPC25:
eb043451 10054 case R_ARM_PREL31:
7359ea65 10055 case R_ARM_PLT32:
7359ea65
DJ
10056 /* Handle relocations which should use the PLT entry. ABS32/REL32
10057 will use the symbol's value, which may point to a PLT entry, but we
10058 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
10059 branches in this object should go to it, except if the PLT is too
10060 far away, in which case a long branch stub should be inserted. */
bb224fc3 10061 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 10062 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
10063 && r_type != R_ARM_CALL
10064 && r_type != R_ARM_JUMP24
10065 && r_type != R_ARM_PLT32)
34e77a92 10066 && plt_offset != (bfd_vma) -1)
7359ea65 10067 {
34e77a92
RS
10068 /* If we've created a .plt section, and assigned a PLT entry
10069 to this function, it must either be a STT_GNU_IFUNC reference
10070 or not be known to bind locally. In other cases, we should
10071 have cleared the PLT entry by now. */
10072 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
10073
10074 value = (splt->output_section->vma
10075 + splt->output_offset
34e77a92 10076 + plt_offset);
0945cdfd 10077 *unresolved_reloc_p = FALSE;
7359ea65
DJ
10078 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10079 contents, rel->r_offset, value,
00a97672 10080 rel->r_addend);
7359ea65
DJ
10081 }
10082
67687978
PB
10083 /* When generating a shared object or relocatable executable, these
10084 relocations are copied into the output file to be resolved at
10085 run time. */
0e1862bb
L
10086 if ((bfd_link_pic (info)
10087 || globals->root.is_relocatable_executable)
7359ea65 10088 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 10089 && !(globals->vxworks_p
3348747a
NS
10090 && strcmp (input_section->output_section->name,
10091 ".tls_vars") == 0)
bb224fc3 10092 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 10093 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
10094 && !(input_bfd == globals->stub_bfd
10095 && strstr (input_section->name, STUB_SUFFIX))
7359ea65
DJ
10096 && (h == NULL
10097 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10098 || h->root.type != bfd_link_hash_undefweak)
10099 && r_type != R_ARM_PC24
5b5bb741
PB
10100 && r_type != R_ARM_CALL
10101 && r_type != R_ARM_JUMP24
ee06dc07 10102 && r_type != R_ARM_PREL31
7359ea65 10103 && r_type != R_ARM_PLT32)
252b5132 10104 {
947216bf 10105 Elf_Internal_Rela outrel;
b34976b6 10106 bfd_boolean skip, relocate;
f21f3fe0 10107
52db4ec2
JW
10108 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10109 && !h->def_regular)
10110 {
10111 char *v = _("shared object");
10112
0e1862bb 10113 if (bfd_link_executable (info))
52db4ec2
JW
10114 v = _("PIE executable");
10115
4eca0228 10116 _bfd_error_handler
52db4ec2
JW
10117 (_("%B: relocation %s against external or undefined symbol `%s'"
10118 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10119 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10120 return bfd_reloc_notsupported;
10121 }
10122
0945cdfd
DJ
10123 *unresolved_reloc_p = FALSE;
10124
34e77a92 10125 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 10126 {
83bac4b0
NC
10127 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10128 ! globals->use_rel);
f21f3fe0 10129
83bac4b0 10130 if (sreloc == NULL)
252b5132 10131 return bfd_reloc_notsupported;
252b5132 10132 }
f21f3fe0 10133
b34976b6
AM
10134 skip = FALSE;
10135 relocate = FALSE;
f21f3fe0 10136
00a97672 10137 outrel.r_addend = addend;
c629eae0
JJ
10138 outrel.r_offset =
10139 _bfd_elf_section_offset (output_bfd, info, input_section,
10140 rel->r_offset);
10141 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 10142 skip = TRUE;
0bb2d96a 10143 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 10144 skip = TRUE, relocate = TRUE;
252b5132
RH
10145 outrel.r_offset += (input_section->output_section->vma
10146 + input_section->output_offset);
f21f3fe0 10147
252b5132 10148 if (skip)
0bb2d96a 10149 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
10150 else if (h != NULL
10151 && h->dynindx != -1
0e1862bb 10152 && (!bfd_link_pic (info)
a496fbc8 10153 || !SYMBOLIC_BIND (info, h)
f5385ebf 10154 || !h->def_regular))
5e681ec4 10155 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
10156 else
10157 {
a16385dc
MM
10158 int symbol;
10159
5e681ec4 10160 /* This symbol is local, or marked to become local. */
34e77a92 10161 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
a16385dc 10162 if (globals->symbian_p)
6366ff1e 10163 {
74541ad4
AM
10164 asection *osec;
10165
6366ff1e
MM
10166 /* On Symbian OS, the data segment and text segement
10167 can be relocated independently. Therefore, we
10168 must indicate the segment to which this
10169 relocation is relative. The BPABI allows us to
10170 use any symbol in the right segment; we just use
10171 the section symbol as it is convenient. (We
10172 cannot use the symbol given by "h" directly as it
74541ad4
AM
10173 will not appear in the dynamic symbol table.)
10174
10175 Note that the dynamic linker ignores the section
10176 symbol value, so we don't subtract osec->vma
10177 from the emitted reloc addend. */
10dbd1f3 10178 if (sym_sec)
74541ad4 10179 osec = sym_sec->output_section;
10dbd1f3 10180 else
74541ad4
AM
10181 osec = input_section->output_section;
10182 symbol = elf_section_data (osec)->dynindx;
10183 if (symbol == 0)
10184 {
10185 struct elf_link_hash_table *htab = elf_hash_table (info);
10186
10187 if ((osec->flags & SEC_READONLY) == 0
10188 && htab->data_index_section != NULL)
10189 osec = htab->data_index_section;
10190 else
10191 osec = htab->text_index_section;
10192 symbol = elf_section_data (osec)->dynindx;
10193 }
6366ff1e
MM
10194 BFD_ASSERT (symbol != 0);
10195 }
a16385dc
MM
10196 else
10197 /* On SVR4-ish systems, the dynamic loader cannot
10198 relocate the text and data segments independently,
10199 so the symbol does not matter. */
10200 symbol = 0;
34e77a92
RS
10201 if (dynreloc_st_type == STT_GNU_IFUNC)
10202 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10203 to the .iplt entry. Instead, every non-call reference
10204 must use an R_ARM_IRELATIVE relocation to obtain the
10205 correct run-time address. */
10206 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10207 else
10208 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
10209 if (globals->use_rel)
10210 relocate = TRUE;
10211 else
34e77a92 10212 outrel.r_addend += dynreloc_value;
252b5132 10213 }
f21f3fe0 10214
47beaa6a 10215 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 10216
f21f3fe0 10217 /* If this reloc is against an external symbol, we do not want to
252b5132 10218 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 10219 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
10220 if (! relocate)
10221 return bfd_reloc_ok;
9a5aca8c 10222
f21f3fe0 10223 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
10224 contents, rel->r_offset,
10225 dynreloc_value, (bfd_vma) 0);
252b5132
RH
10226 }
10227 else switch (r_type)
10228 {
00a97672
RS
10229 case R_ARM_ABS12:
10230 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10231
dfc5f959 10232 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
10233 case R_ARM_CALL:
10234 case R_ARM_JUMP24:
8029a119 10235 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 10236 case R_ARM_PLT32:
906e58ca 10237 {
906e58ca
NC
10238 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10239
dfc5f959 10240 if (r_type == R_ARM_XPC25)
252b5132 10241 {
dfc5f959
NC
10242 /* Check for Arm calling Arm function. */
10243 /* FIXME: Should we translate the instruction into a BL
10244 instruction instead ? */
35fc36a8 10245 if (branch_type != ST_BRANCH_TO_THUMB)
4eca0228 10246 _bfd_error_handler
d003868e
AM
10247 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10248 input_bfd,
10249 h ? h->root.root.string : "(local)");
dfc5f959 10250 }
155d87d7 10251 else if (r_type == R_ARM_PC24)
dfc5f959
NC
10252 {
10253 /* Check for Arm calling Thumb function. */
35fc36a8 10254 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 10255 {
f2a9dd69
DJ
10256 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10257 output_bfd, input_section,
10258 hit_data, sym_sec, rel->r_offset,
10259 signed_addend, value,
10260 error_message))
10261 return bfd_reloc_ok;
10262 else
10263 return bfd_reloc_dangerous;
dfc5f959 10264 }
252b5132 10265 }
ba96a88f 10266
906e58ca 10267 /* Check if a stub has to be inserted because the
8029a119 10268 destination is too far or we are changing mode. */
155d87d7
CL
10269 if ( r_type == R_ARM_CALL
10270 || r_type == R_ARM_JUMP24
10271 || r_type == R_ARM_PLT32)
906e58ca 10272 {
fe33d2fa
CL
10273 enum elf32_arm_stub_type stub_type = arm_stub_none;
10274 struct elf32_arm_link_hash_entry *hash;
10275
10276 hash = (struct elf32_arm_link_hash_entry *) h;
10277 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10278 st_type, &branch_type,
10279 hash, value, sym_sec,
fe33d2fa 10280 input_bfd, sym_name);
5fa9e92f 10281
fe33d2fa 10282 if (stub_type != arm_stub_none)
906e58ca
NC
10283 {
10284 /* The target is out of reach, so redirect the
10285 branch to the local stub for this function. */
906e58ca
NC
10286 stub_entry = elf32_arm_get_stub_entry (input_section,
10287 sym_sec, h,
fe33d2fa
CL
10288 rel, globals,
10289 stub_type);
9cd3e4e5
NC
10290 {
10291 if (stub_entry != NULL)
10292 value = (stub_entry->stub_offset
10293 + stub_entry->stub_sec->output_offset
10294 + stub_entry->stub_sec->output_section->vma);
10295
10296 if (plt_offset != (bfd_vma) -1)
10297 *unresolved_reloc_p = FALSE;
10298 }
906e58ca 10299 }
fe33d2fa
CL
10300 else
10301 {
10302 /* If the call goes through a PLT entry, make sure to
10303 check distance to the right destination address. */
34e77a92 10304 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10305 {
10306 value = (splt->output_section->vma
10307 + splt->output_offset
34e77a92 10308 + plt_offset);
fe33d2fa
CL
10309 *unresolved_reloc_p = FALSE;
10310 /* The PLT entry is in ARM mode, regardless of the
10311 target function. */
35fc36a8 10312 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10313 }
10314 }
906e58ca
NC
10315 }
10316
dea514f5
PB
10317 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10318 where:
10319 S is the address of the symbol in the relocation.
10320 P is address of the instruction being relocated.
10321 A is the addend (extracted from the instruction) in bytes.
10322
10323 S is held in 'value'.
10324 P is the base address of the section containing the
10325 instruction plus the offset of the reloc into that
10326 section, ie:
10327 (input_section->output_section->vma +
10328 input_section->output_offset +
10329 rel->r_offset).
10330 A is the addend, converted into bytes, ie:
10331 (signed_addend * 4)
10332
10333 Note: None of these operations have knowledge of the pipeline
10334 size of the processor, thus it is up to the assembler to
10335 encode this information into the addend. */
10336 value -= (input_section->output_section->vma
10337 + input_section->output_offset);
10338 value -= rel->r_offset;
4e7fd91e
PB
10339 if (globals->use_rel)
10340 value += (signed_addend << howto->size);
10341 else
10342 /* RELA addends do not have to be adjusted by howto->size. */
10343 value += signed_addend;
23080146 10344
dcb5e6e6
NC
10345 signed_addend = value;
10346 signed_addend >>= howto->rightshift;
9a5aca8c 10347
5ab79981 10348 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 10349 the next instruction unless a PLT entry will be created.
77b4f08f 10350 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
10351 The jump to the next instruction is optimized as a NOP depending
10352 on the architecture. */
ffcb4889 10353 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 10354 && plt_offset == (bfd_vma) -1)
77b4f08f 10355 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 10356 {
cd1dac3d
DG
10357 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10358
10359 if (arch_has_arm_nop (globals))
10360 value |= 0x0320f000;
10361 else
10362 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
10363 }
10364 else
59f2c4e7 10365 {
9b485d32 10366 /* Perform a signed range check. */
dcb5e6e6 10367 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
10368 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10369 return bfd_reloc_overflow;
9a5aca8c 10370
5ab79981 10371 addend = (value & 2);
39b41c9c 10372
5ab79981
PB
10373 value = (signed_addend & howto->dst_mask)
10374 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 10375
5ab79981
PB
10376 if (r_type == R_ARM_CALL)
10377 {
155d87d7 10378 /* Set the H bit in the BLX instruction. */
35fc36a8 10379 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
10380 {
10381 if (addend)
10382 value |= (1 << 24);
10383 else
10384 value &= ~(bfd_vma)(1 << 24);
10385 }
10386
5ab79981 10387 /* Select the correct instruction (BL or BLX). */
906e58ca 10388 /* Only if we are not handling a BL to a stub. In this
8029a119 10389 case, mode switching is performed by the stub. */
35fc36a8 10390 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 10391 value |= (1 << 28);
63e1a0fc 10392 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
10393 {
10394 value &= ~(bfd_vma)(1 << 28);
10395 value |= (1 << 24);
10396 }
39b41c9c
PB
10397 }
10398 }
906e58ca 10399 }
252b5132 10400 break;
f21f3fe0 10401
252b5132
RH
10402 case R_ARM_ABS32:
10403 value += addend;
35fc36a8 10404 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
10405 value |= 1;
10406 break;
f21f3fe0 10407
bb224fc3
MS
10408 case R_ARM_ABS32_NOI:
10409 value += addend;
10410 break;
10411
252b5132 10412 case R_ARM_REL32:
a8bc6c78 10413 value += addend;
35fc36a8 10414 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 10415 value |= 1;
252b5132 10416 value -= (input_section->output_section->vma
62efb346 10417 + input_section->output_offset + rel->r_offset);
252b5132 10418 break;
eb043451 10419
bb224fc3
MS
10420 case R_ARM_REL32_NOI:
10421 value += addend;
10422 value -= (input_section->output_section->vma
10423 + input_section->output_offset + rel->r_offset);
10424 break;
10425
eb043451
PB
10426 case R_ARM_PREL31:
10427 value -= (input_section->output_section->vma
10428 + input_section->output_offset + rel->r_offset);
10429 value += signed_addend;
10430 if (! h || h->root.type != bfd_link_hash_undefweak)
10431 {
8029a119 10432 /* Check for overflow. */
eb043451
PB
10433 if ((value ^ (value >> 1)) & (1 << 30))
10434 return bfd_reloc_overflow;
10435 }
10436 value &= 0x7fffffff;
10437 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 10438 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
10439 value |= 1;
10440 break;
252b5132 10441 }
f21f3fe0 10442
252b5132
RH
10443 bfd_put_32 (input_bfd, value, hit_data);
10444 return bfd_reloc_ok;
10445
10446 case R_ARM_ABS8:
fd0fd00c
MJ
10447 /* PR 16202: Refectch the addend using the correct size. */
10448 if (globals->use_rel)
10449 addend = bfd_get_8 (input_bfd, hit_data);
252b5132 10450 value += addend;
4e67d4ca
DG
10451
10452 /* There is no way to tell whether the user intended to use a signed or
10453 unsigned addend. When checking for overflow we accept either,
10454 as specified by the AAELF. */
10455 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
10456 return bfd_reloc_overflow;
10457
10458 bfd_put_8 (input_bfd, value, hit_data);
10459 return bfd_reloc_ok;
10460
10461 case R_ARM_ABS16:
fd0fd00c
MJ
10462 /* PR 16202: Refectch the addend using the correct size. */
10463 if (globals->use_rel)
10464 addend = bfd_get_16 (input_bfd, hit_data);
252b5132
RH
10465 value += addend;
10466
4e67d4ca
DG
10467 /* See comment for R_ARM_ABS8. */
10468 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
10469 return bfd_reloc_overflow;
10470
10471 bfd_put_16 (input_bfd, value, hit_data);
10472 return bfd_reloc_ok;
10473
252b5132 10474 case R_ARM_THM_ABS5:
9b485d32 10475 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
10476 if (globals->use_rel)
10477 {
10478 /* Need to refetch addend. */
10479 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10480 /* ??? Need to determine shift amount from operand size. */
10481 addend >>= howto->rightshift;
10482 }
252b5132
RH
10483 value += addend;
10484
10485 /* ??? Isn't value unsigned? */
10486 if ((long) value > 0x1f || (long) value < -0x10)
10487 return bfd_reloc_overflow;
10488
10489 /* ??? Value needs to be properly shifted into place first. */
10490 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10491 bfd_put_16 (input_bfd, value, hit_data);
10492 return bfd_reloc_ok;
10493
2cab6cc3
MS
10494 case R_ARM_THM_ALU_PREL_11_0:
10495 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10496 {
10497 bfd_vma insn;
10498 bfd_signed_vma relocation;
10499
10500 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10501 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10502
99059e56
RM
10503 if (globals->use_rel)
10504 {
10505 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10506 | ((insn & (1 << 26)) >> 15);
10507 if (insn & 0xf00000)
10508 signed_addend = -signed_addend;
10509 }
2cab6cc3
MS
10510
10511 relocation = value + signed_addend;
79f08007 10512 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10513 + input_section->output_offset
10514 + rel->r_offset);
2cab6cc3 10515
b6518b38 10516 value = relocation;
2cab6cc3 10517
99059e56
RM
10518 if (value >= 0x1000)
10519 return bfd_reloc_overflow;
2cab6cc3
MS
10520
10521 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
10522 | ((value & 0x700) << 4)
10523 | ((value & 0x800) << 15);
10524 if (relocation < 0)
10525 insn |= 0xa00000;
2cab6cc3
MS
10526
10527 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10528 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10529
99059e56 10530 return bfd_reloc_ok;
2cab6cc3
MS
10531 }
10532
e1ec24c6
NC
10533 case R_ARM_THM_PC8:
10534 /* PR 10073: This reloc is not generated by the GNU toolchain,
10535 but it is supported for compatibility with third party libraries
10536 generated by other compilers, specifically the ARM/IAR. */
10537 {
10538 bfd_vma insn;
10539 bfd_signed_vma relocation;
10540
10541 insn = bfd_get_16 (input_bfd, hit_data);
10542
99059e56 10543 if (globals->use_rel)
79f08007 10544 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
10545
10546 relocation = value + addend;
79f08007 10547 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10548 + input_section->output_offset
10549 + rel->r_offset);
e1ec24c6 10550
b6518b38 10551 value = relocation;
e1ec24c6
NC
10552
10553 /* We do not check for overflow of this reloc. Although strictly
10554 speaking this is incorrect, it appears to be necessary in order
10555 to work with IAR generated relocs. Since GCC and GAS do not
10556 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10557 a problem for them. */
10558 value &= 0x3fc;
10559
10560 insn = (insn & 0xff00) | (value >> 2);
10561
10562 bfd_put_16 (input_bfd, insn, hit_data);
10563
99059e56 10564 return bfd_reloc_ok;
e1ec24c6
NC
10565 }
10566
2cab6cc3
MS
10567 case R_ARM_THM_PC12:
10568 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10569 {
10570 bfd_vma insn;
10571 bfd_signed_vma relocation;
10572
10573 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10574 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10575
99059e56
RM
10576 if (globals->use_rel)
10577 {
10578 signed_addend = insn & 0xfff;
10579 if (!(insn & (1 << 23)))
10580 signed_addend = -signed_addend;
10581 }
2cab6cc3
MS
10582
10583 relocation = value + signed_addend;
79f08007 10584 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10585 + input_section->output_offset
10586 + rel->r_offset);
2cab6cc3 10587
b6518b38 10588 value = relocation;
2cab6cc3 10589
99059e56
RM
10590 if (value >= 0x1000)
10591 return bfd_reloc_overflow;
2cab6cc3
MS
10592
10593 insn = (insn & 0xff7ff000) | value;
99059e56
RM
10594 if (relocation >= 0)
10595 insn |= (1 << 23);
2cab6cc3
MS
10596
10597 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10598 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10599
99059e56 10600 return bfd_reloc_ok;
2cab6cc3
MS
10601 }
10602
dfc5f959 10603 case R_ARM_THM_XPC22:
c19d1205 10604 case R_ARM_THM_CALL:
bd97cb95 10605 case R_ARM_THM_JUMP24:
dfc5f959 10606 /* Thumb BL (branch long instruction). */
252b5132 10607 {
b34976b6 10608 bfd_vma relocation;
99059e56 10609 bfd_vma reloc_sign;
b34976b6
AM
10610 bfd_boolean overflow = FALSE;
10611 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10612 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
10613 bfd_signed_vma reloc_signed_max;
10614 bfd_signed_vma reloc_signed_min;
b34976b6 10615 bfd_vma check;
252b5132 10616 bfd_signed_vma signed_check;
e95de063 10617 int bitsize;
cd1dac3d 10618 const int thumb2 = using_thumb2 (globals);
5e866f5a 10619 const int thumb2_bl = using_thumb2_bl (globals);
252b5132 10620
5ab79981 10621 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
10622 the next instruction unless a PLT entry will be created.
10623 The jump to the next instruction is optimized as a NOP.W for
10624 Thumb-2 enabled architectures. */
19540007 10625 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 10626 && plt_offset == (bfd_vma) -1)
5ab79981 10627 {
60a019a0 10628 if (thumb2)
cd1dac3d
DG
10629 {
10630 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10631 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10632 }
10633 else
10634 {
10635 bfd_put_16 (input_bfd, 0xe000, hit_data);
10636 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10637 }
5ab79981
PB
10638 return bfd_reloc_ok;
10639 }
10640
e95de063 10641 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 10642 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
10643 if (globals->use_rel)
10644 {
99059e56
RM
10645 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10646 bfd_vma upper = upper_insn & 0x3ff;
10647 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
10648 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10649 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
10650 bfd_vma i1 = j1 ^ s ? 0 : 1;
10651 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 10652
99059e56
RM
10653 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10654 /* Sign extend. */
10655 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 10656
4e7fd91e
PB
10657 signed_addend = addend;
10658 }
cb1afa5c 10659
dfc5f959
NC
10660 if (r_type == R_ARM_THM_XPC22)
10661 {
10662 /* Check for Thumb to Thumb call. */
10663 /* FIXME: Should we translate the instruction into a BL
10664 instruction instead ? */
35fc36a8 10665 if (branch_type == ST_BRANCH_TO_THUMB)
4eca0228 10666 _bfd_error_handler
d003868e
AM
10667 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10668 input_bfd,
10669 h ? h->root.root.string : "(local)");
dfc5f959
NC
10670 }
10671 else
252b5132 10672 {
dfc5f959
NC
10673 /* If it is not a call to Thumb, assume call to Arm.
10674 If it is a call relative to a section name, then it is not a
b7693d02
DJ
10675 function call at all, but rather a long jump. Calls through
10676 the PLT do not require stubs. */
34e77a92 10677 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 10678 {
bd97cb95 10679 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
10680 {
10681 /* Convert BL to BLX. */
10682 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10683 }
155d87d7
CL
10684 else if (( r_type != R_ARM_THM_CALL)
10685 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
10686 {
10687 if (elf32_thumb_to_arm_stub
10688 (info, sym_name, input_bfd, output_bfd, input_section,
10689 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10690 error_message))
10691 return bfd_reloc_ok;
10692 else
10693 return bfd_reloc_dangerous;
10694 }
da5938a2 10695 }
35fc36a8
RS
10696 else if (branch_type == ST_BRANCH_TO_THUMB
10697 && globals->use_blx
bd97cb95 10698 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
10699 {
10700 /* Make sure this is a BL. */
10701 lower_insn |= 0x1800;
10702 }
252b5132 10703 }
f21f3fe0 10704
fe33d2fa 10705 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 10706 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
10707 {
10708 /* Check if a stub has to be inserted because the destination
8029a119 10709 is too far. */
fe33d2fa
CL
10710 struct elf32_arm_stub_hash_entry *stub_entry;
10711 struct elf32_arm_link_hash_entry *hash;
10712
10713 hash = (struct elf32_arm_link_hash_entry *) h;
10714
10715 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10716 st_type, &branch_type,
10717 hash, value, sym_sec,
fe33d2fa
CL
10718 input_bfd, sym_name);
10719
10720 if (stub_type != arm_stub_none)
906e58ca
NC
10721 {
10722 /* The target is out of reach or we are changing modes, so
10723 redirect the branch to the local stub for this
10724 function. */
10725 stub_entry = elf32_arm_get_stub_entry (input_section,
10726 sym_sec, h,
fe33d2fa
CL
10727 rel, globals,
10728 stub_type);
906e58ca 10729 if (stub_entry != NULL)
9cd3e4e5
NC
10730 {
10731 value = (stub_entry->stub_offset
10732 + stub_entry->stub_sec->output_offset
10733 + stub_entry->stub_sec->output_section->vma);
10734
10735 if (plt_offset != (bfd_vma) -1)
10736 *unresolved_reloc_p = FALSE;
10737 }
906e58ca 10738
f4ac8484 10739 /* If this call becomes a call to Arm, force BLX. */
155d87d7 10740 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
10741 {
10742 if ((stub_entry
10743 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 10744 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
10745 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10746 }
906e58ca
NC
10747 }
10748 }
10749
fe33d2fa 10750 /* Handle calls via the PLT. */
34e77a92 10751 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10752 {
10753 value = (splt->output_section->vma
10754 + splt->output_offset
34e77a92 10755 + plt_offset);
fe33d2fa 10756
eed94f8f
NC
10757 if (globals->use_blx
10758 && r_type == R_ARM_THM_CALL
10759 && ! using_thumb_only (globals))
fe33d2fa
CL
10760 {
10761 /* If the Thumb BLX instruction is available, convert
10762 the BL to a BLX instruction to call the ARM-mode
10763 PLT entry. */
10764 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 10765 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10766 }
10767 else
10768 {
eed94f8f
NC
10769 if (! using_thumb_only (globals))
10770 /* Target the Thumb stub before the ARM PLT entry. */
10771 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 10772 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa
CL
10773 }
10774 *unresolved_reloc_p = FALSE;
10775 }
10776
ba96a88f 10777 relocation = value + signed_addend;
f21f3fe0 10778
252b5132 10779 relocation -= (input_section->output_section->vma
ba96a88f
NC
10780 + input_section->output_offset
10781 + rel->r_offset);
9a5aca8c 10782
252b5132
RH
10783 check = relocation >> howto->rightshift;
10784
10785 /* If this is a signed value, the rightshift just dropped
10786 leading 1 bits (assuming twos complement). */
10787 if ((bfd_signed_vma) relocation >= 0)
10788 signed_check = check;
10789 else
10790 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10791
e95de063
MS
10792 /* Calculate the permissable maximum and minimum values for
10793 this relocation according to whether we're relocating for
10794 Thumb-2 or not. */
10795 bitsize = howto->bitsize;
5e866f5a 10796 if (!thumb2_bl)
e95de063 10797 bitsize -= 2;
f6ebfac0 10798 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
10799 reloc_signed_min = ~reloc_signed_max;
10800
252b5132 10801 /* Assumes two's complement. */
ba96a88f 10802 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 10803 overflow = TRUE;
252b5132 10804
bd97cb95 10805 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
10806 /* For a BLX instruction, make sure that the relocation is rounded up
10807 to a word boundary. This follows the semantics of the instruction
10808 which specifies that bit 1 of the target address will come from bit
10809 1 of the base address. */
10810 relocation = (relocation + 2) & ~ 3;
cb1afa5c 10811
e95de063
MS
10812 /* Put RELOCATION back into the insn. Assumes two's complement.
10813 We use the Thumb-2 encoding, which is safe even if dealing with
10814 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 10815 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 10816 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
10817 | ((relocation >> 12) & 0x3ff)
10818 | (reloc_sign << 10);
906e58ca 10819 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
10820 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10821 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10822 | ((relocation >> 1) & 0x7ff);
c62e1cc3 10823
252b5132
RH
10824 /* Put the relocated value back in the object file: */
10825 bfd_put_16 (input_bfd, upper_insn, hit_data);
10826 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10827
10828 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10829 }
10830 break;
10831
c19d1205
ZW
10832 case R_ARM_THM_JUMP19:
10833 /* Thumb32 conditional branch instruction. */
10834 {
10835 bfd_vma relocation;
10836 bfd_boolean overflow = FALSE;
10837 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10838 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
10839 bfd_signed_vma reloc_signed_max = 0xffffe;
10840 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 10841 bfd_signed_vma signed_check;
c5423981
TG
10842 enum elf32_arm_stub_type stub_type = arm_stub_none;
10843 struct elf32_arm_stub_hash_entry *stub_entry;
10844 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
10845
10846 /* Need to refetch the addend, reconstruct the top three bits,
10847 and squish the two 11 bit pieces together. */
10848 if (globals->use_rel)
10849 {
10850 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 10851 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
10852 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10853 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10854 bfd_vma lower = (lower_insn & 0x07ff);
10855
a00a1f35
MS
10856 upper |= J1 << 6;
10857 upper |= J2 << 7;
10858 upper |= (!S) << 8;
c19d1205
ZW
10859 upper -= 0x0100; /* Sign extend. */
10860
10861 addend = (upper << 12) | (lower << 1);
10862 signed_addend = addend;
10863 }
10864
bd97cb95 10865 /* Handle calls via the PLT. */
34e77a92 10866 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
10867 {
10868 value = (splt->output_section->vma
10869 + splt->output_offset
34e77a92 10870 + plt_offset);
bd97cb95
DJ
10871 /* Target the Thumb stub before the ARM PLT entry. */
10872 value -= PLT_THUMB_STUB_SIZE;
10873 *unresolved_reloc_p = FALSE;
10874 }
10875
c5423981
TG
10876 hash = (struct elf32_arm_link_hash_entry *)h;
10877
10878 stub_type = arm_type_of_stub (info, input_section, rel,
10879 st_type, &branch_type,
10880 hash, value, sym_sec,
10881 input_bfd, sym_name);
10882 if (stub_type != arm_stub_none)
10883 {
10884 stub_entry = elf32_arm_get_stub_entry (input_section,
10885 sym_sec, h,
10886 rel, globals,
10887 stub_type);
10888 if (stub_entry != NULL)
10889 {
10890 value = (stub_entry->stub_offset
10891 + stub_entry->stub_sec->output_offset
10892 + stub_entry->stub_sec->output_section->vma);
10893 }
10894 }
c19d1205 10895
99059e56 10896 relocation = value + signed_addend;
c19d1205
ZW
10897 relocation -= (input_section->output_section->vma
10898 + input_section->output_offset
10899 + rel->r_offset);
a00a1f35 10900 signed_check = (bfd_signed_vma) relocation;
c19d1205 10901
c19d1205
ZW
10902 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10903 overflow = TRUE;
10904
10905 /* Put RELOCATION back into the insn. */
10906 {
10907 bfd_vma S = (relocation & 0x00100000) >> 20;
10908 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10909 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10910 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10911 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10912
a00a1f35 10913 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
10914 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10915 }
10916
10917 /* Put the relocated value back in the object file: */
10918 bfd_put_16 (input_bfd, upper_insn, hit_data);
10919 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10920
10921 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10922 }
10923
10924 case R_ARM_THM_JUMP11:
10925 case R_ARM_THM_JUMP8:
10926 case R_ARM_THM_JUMP6:
51c5503b
NC
10927 /* Thumb B (branch) instruction). */
10928 {
6cf9e9fe 10929 bfd_signed_vma relocation;
51c5503b
NC
10930 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10931 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
10932 bfd_signed_vma signed_check;
10933
c19d1205
ZW
10934 /* CZB cannot jump backward. */
10935 if (r_type == R_ARM_THM_JUMP6)
10936 reloc_signed_min = 0;
10937
4e7fd91e 10938 if (globals->use_rel)
6cf9e9fe 10939 {
4e7fd91e
PB
10940 /* Need to refetch addend. */
10941 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10942 if (addend & ((howto->src_mask + 1) >> 1))
10943 {
10944 signed_addend = -1;
10945 signed_addend &= ~ howto->src_mask;
10946 signed_addend |= addend;
10947 }
10948 else
10949 signed_addend = addend;
10950 /* The value in the insn has been right shifted. We need to
10951 undo this, so that we can perform the address calculation
10952 in terms of bytes. */
10953 signed_addend <<= howto->rightshift;
6cf9e9fe 10954 }
6cf9e9fe 10955 relocation = value + signed_addend;
51c5503b
NC
10956
10957 relocation -= (input_section->output_section->vma
10958 + input_section->output_offset
10959 + rel->r_offset);
10960
6cf9e9fe
NC
10961 relocation >>= howto->rightshift;
10962 signed_check = relocation;
c19d1205
ZW
10963
10964 if (r_type == R_ARM_THM_JUMP6)
10965 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10966 else
10967 relocation &= howto->dst_mask;
51c5503b 10968 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 10969
51c5503b
NC
10970 bfd_put_16 (input_bfd, relocation, hit_data);
10971
10972 /* Assumes two's complement. */
10973 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10974 return bfd_reloc_overflow;
10975
10976 return bfd_reloc_ok;
10977 }
cedb70c5 10978
8375c36b
PB
10979 case R_ARM_ALU_PCREL7_0:
10980 case R_ARM_ALU_PCREL15_8:
10981 case R_ARM_ALU_PCREL23_15:
10982 {
10983 bfd_vma insn;
10984 bfd_vma relocation;
10985
10986 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
10987 if (globals->use_rel)
10988 {
10989 /* Extract the addend. */
10990 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10991 signed_addend = addend;
10992 }
8375c36b
PB
10993 relocation = value + signed_addend;
10994
10995 relocation -= (input_section->output_section->vma
10996 + input_section->output_offset
10997 + rel->r_offset);
10998 insn = (insn & ~0xfff)
10999 | ((howto->bitpos << 7) & 0xf00)
11000 | ((relocation >> howto->bitpos) & 0xff);
11001 bfd_put_32 (input_bfd, value, hit_data);
11002 }
11003 return bfd_reloc_ok;
11004
252b5132
RH
11005 case R_ARM_GNU_VTINHERIT:
11006 case R_ARM_GNU_VTENTRY:
11007 return bfd_reloc_ok;
11008
c19d1205 11009 case R_ARM_GOTOFF32:
252b5132 11010 /* Relocation is relative to the start of the
99059e56 11011 global offset table. */
252b5132
RH
11012
11013 BFD_ASSERT (sgot != NULL);
11014 if (sgot == NULL)
99059e56 11015 return bfd_reloc_notsupported;
9a5aca8c 11016
cedb70c5 11017 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
11018 address by one, so that attempts to call the function pointer will
11019 correctly interpret it as Thumb code. */
35fc36a8 11020 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
11021 value += 1;
11022
252b5132 11023 /* Note that sgot->output_offset is not involved in this
99059e56
RM
11024 calculation. We always want the start of .got. If we
11025 define _GLOBAL_OFFSET_TABLE in a different way, as is
11026 permitted by the ABI, we might have to change this
11027 calculation. */
252b5132 11028 value -= sgot->output_section->vma;
f21f3fe0 11029 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11030 contents, rel->r_offset, value,
00a97672 11031 rel->r_addend);
252b5132
RH
11032
11033 case R_ARM_GOTPC:
a7c10850 11034 /* Use global offset table as symbol value. */
252b5132 11035 BFD_ASSERT (sgot != NULL);
f21f3fe0 11036
252b5132 11037 if (sgot == NULL)
99059e56 11038 return bfd_reloc_notsupported;
252b5132 11039
0945cdfd 11040 *unresolved_reloc_p = FALSE;
252b5132 11041 value = sgot->output_section->vma;
f21f3fe0 11042 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11043 contents, rel->r_offset, value,
00a97672 11044 rel->r_addend);
f21f3fe0 11045
252b5132 11046 case R_ARM_GOT32:
eb043451 11047 case R_ARM_GOT_PREL:
252b5132 11048 /* Relocation is to the entry for this symbol in the
99059e56 11049 global offset table. */
252b5132
RH
11050 if (sgot == NULL)
11051 return bfd_reloc_notsupported;
f21f3fe0 11052
34e77a92
RS
11053 if (dynreloc_st_type == STT_GNU_IFUNC
11054 && plt_offset != (bfd_vma) -1
11055 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11056 {
11057 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11058 symbol, and the relocation resolves directly to the runtime
11059 target rather than to the .iplt entry. This means that any
11060 .got entry would be the same value as the .igot.plt entry,
11061 so there's no point creating both. */
11062 sgot = globals->root.igotplt;
11063 value = sgot->output_offset + gotplt_offset;
11064 }
11065 else if (h != NULL)
252b5132
RH
11066 {
11067 bfd_vma off;
f21f3fe0 11068
252b5132
RH
11069 off = h->got.offset;
11070 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 11071 if ((off & 1) != 0)
252b5132 11072 {
b436d854
RS
11073 /* We have already processsed one GOT relocation against
11074 this symbol. */
11075 off &= ~1;
11076 if (globals->root.dynamic_sections_created
11077 && !SYMBOL_REFERENCES_LOCAL (info, h))
11078 *unresolved_reloc_p = FALSE;
11079 }
11080 else
11081 {
11082 Elf_Internal_Rela outrel;
11083
6f820c85 11084 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
11085 {
11086 /* If the symbol doesn't resolve locally in a static
11087 object, we have an undefined reference. If the
11088 symbol doesn't resolve locally in a dynamic object,
11089 it should be resolved by the dynamic linker. */
11090 if (globals->root.dynamic_sections_created)
11091 {
11092 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11093 *unresolved_reloc_p = FALSE;
11094 }
11095 else
11096 outrel.r_info = 0;
11097 outrel.r_addend = 0;
11098 }
252b5132
RH
11099 else
11100 {
34e77a92 11101 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11102 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
5025eb7c
AO
11103 else if (bfd_link_pic (info)
11104 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11105 || h->root.type != bfd_link_hash_undefweak))
99059e56
RM
11106 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11107 else
11108 outrel.r_info = 0;
34e77a92 11109 outrel.r_addend = dynreloc_value;
b436d854 11110 }
ee29b9fb 11111
b436d854
RS
11112 /* The GOT entry is initialized to zero by default.
11113 See if we should install a different value. */
11114 if (outrel.r_addend != 0
11115 && (outrel.r_info == 0 || globals->use_rel))
11116 {
11117 bfd_put_32 (output_bfd, outrel.r_addend,
11118 sgot->contents + off);
11119 outrel.r_addend = 0;
252b5132 11120 }
f21f3fe0 11121
b436d854
RS
11122 if (outrel.r_info != 0)
11123 {
11124 outrel.r_offset = (sgot->output_section->vma
11125 + sgot->output_offset
11126 + off);
11127 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11128 }
11129 h->got.offset |= 1;
11130 }
252b5132
RH
11131 value = sgot->output_offset + off;
11132 }
11133 else
11134 {
11135 bfd_vma off;
f21f3fe0 11136
5025eb7c
AO
11137 BFD_ASSERT (local_got_offsets != NULL
11138 && local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 11139
252b5132 11140 off = local_got_offsets[r_symndx];
f21f3fe0 11141
252b5132
RH
11142 /* The offset must always be a multiple of 4. We use the
11143 least significant bit to record whether we have already
9b485d32 11144 generated the necessary reloc. */
252b5132
RH
11145 if ((off & 1) != 0)
11146 off &= ~1;
11147 else
11148 {
00a97672 11149 if (globals->use_rel)
34e77a92 11150 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
f21f3fe0 11151
0e1862bb 11152 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
252b5132 11153 {
947216bf 11154 Elf_Internal_Rela outrel;
f21f3fe0 11155
34e77a92 11156 outrel.r_addend = addend + dynreloc_value;
252b5132 11157 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 11158 + sgot->output_offset
252b5132 11159 + off);
34e77a92 11160 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11161 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
34e77a92
RS
11162 else
11163 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
47beaa6a 11164 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 11165 }
f21f3fe0 11166
252b5132
RH
11167 local_got_offsets[r_symndx] |= 1;
11168 }
f21f3fe0 11169
252b5132
RH
11170 value = sgot->output_offset + off;
11171 }
eb043451
PB
11172 if (r_type != R_ARM_GOT32)
11173 value += sgot->output_section->vma;
9a5aca8c 11174
f21f3fe0 11175 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11176 contents, rel->r_offset, value,
00a97672 11177 rel->r_addend);
f21f3fe0 11178
ba93b8ac
DJ
11179 case R_ARM_TLS_LDO32:
11180 value = value - dtpoff_base (info);
11181
11182 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11183 contents, rel->r_offset, value,
11184 rel->r_addend);
ba93b8ac
DJ
11185
11186 case R_ARM_TLS_LDM32:
11187 {
11188 bfd_vma off;
11189
362d30a1 11190 if (sgot == NULL)
ba93b8ac
DJ
11191 abort ();
11192
11193 off = globals->tls_ldm_got.offset;
11194
11195 if ((off & 1) != 0)
11196 off &= ~1;
11197 else
11198 {
11199 /* If we don't know the module number, create a relocation
11200 for it. */
0e1862bb 11201 if (bfd_link_pic (info))
ba93b8ac
DJ
11202 {
11203 Elf_Internal_Rela outrel;
ba93b8ac 11204
362d30a1 11205 if (srelgot == NULL)
ba93b8ac
DJ
11206 abort ();
11207
00a97672 11208 outrel.r_addend = 0;
362d30a1
RS
11209 outrel.r_offset = (sgot->output_section->vma
11210 + sgot->output_offset + off);
ba93b8ac
DJ
11211 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11212
00a97672
RS
11213 if (globals->use_rel)
11214 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11215 sgot->contents + off);
ba93b8ac 11216
47beaa6a 11217 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11218 }
11219 else
362d30a1 11220 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
11221
11222 globals->tls_ldm_got.offset |= 1;
11223 }
11224
362d30a1 11225 value = sgot->output_section->vma + sgot->output_offset + off
ba93b8ac
DJ
11226 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11227
11228 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11229 contents, rel->r_offset, value,
00a97672 11230 rel->r_addend);
ba93b8ac
DJ
11231 }
11232
0855e32b
NS
11233 case R_ARM_TLS_CALL:
11234 case R_ARM_THM_TLS_CALL:
ba93b8ac
DJ
11235 case R_ARM_TLS_GD32:
11236 case R_ARM_TLS_IE32:
0855e32b
NS
11237 case R_ARM_TLS_GOTDESC:
11238 case R_ARM_TLS_DESCSEQ:
11239 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 11240 {
0855e32b
NS
11241 bfd_vma off, offplt;
11242 int indx = 0;
ba93b8ac
DJ
11243 char tls_type;
11244
0855e32b 11245 BFD_ASSERT (sgot != NULL);
ba93b8ac 11246
ba93b8ac
DJ
11247 if (h != NULL)
11248 {
11249 bfd_boolean dyn;
11250 dyn = globals->root.dynamic_sections_created;
0e1862bb
L
11251 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11252 bfd_link_pic (info),
11253 h)
11254 && (!bfd_link_pic (info)
ba93b8ac
DJ
11255 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11256 {
11257 *unresolved_reloc_p = FALSE;
11258 indx = h->dynindx;
11259 }
11260 off = h->got.offset;
0855e32b 11261 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
11262 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11263 }
11264 else
11265 {
0855e32b 11266 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 11267 off = local_got_offsets[r_symndx];
0855e32b 11268 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
11269 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11270 }
11271
0855e32b 11272 /* Linker relaxations happens from one of the
b38cadfb 11273 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
0855e32b 11274 if (ELF32_R_TYPE(rel->r_info) != r_type)
b38cadfb 11275 tls_type = GOT_TLS_IE;
0855e32b
NS
11276
11277 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
11278
11279 if ((off & 1) != 0)
11280 off &= ~1;
11281 else
11282 {
11283 bfd_boolean need_relocs = FALSE;
11284 Elf_Internal_Rela outrel;
ba93b8ac
DJ
11285 int cur_off = off;
11286
11287 /* The GOT entries have not been initialized yet. Do it
11288 now, and emit any relocations. If both an IE GOT and a
11289 GD GOT are necessary, we emit the GD first. */
11290
0e1862bb 11291 if ((bfd_link_pic (info) || indx != 0)
ba93b8ac
DJ
11292 && (h == NULL
11293 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11294 || h->root.type != bfd_link_hash_undefweak))
11295 {
11296 need_relocs = TRUE;
0855e32b 11297 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
11298 }
11299
0855e32b
NS
11300 if (tls_type & GOT_TLS_GDESC)
11301 {
47beaa6a
RS
11302 bfd_byte *loc;
11303
0855e32b
NS
11304 /* We should have relaxed, unless this is an undefined
11305 weak symbol. */
11306 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
0e1862bb 11307 || bfd_link_pic (info));
0855e32b 11308 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 11309 <= globals->root.sgotplt->size);
0855e32b
NS
11310
11311 outrel.r_addend = 0;
11312 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11313 + globals->root.sgotplt->output_offset
11314 + offplt
11315 + globals->sgotplt_jump_table_size);
b38cadfb 11316
0855e32b
NS
11317 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11318 sreloc = globals->root.srelplt;
11319 loc = sreloc->contents;
11320 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11321 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 11322 <= sreloc->contents + sreloc->size);
0855e32b
NS
11323
11324 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11325
11326 /* For globals, the first word in the relocation gets
11327 the relocation index and the top bit set, or zero,
11328 if we're binding now. For locals, it gets the
11329 symbol's offset in the tls section. */
99059e56 11330 bfd_put_32 (output_bfd,
0855e32b
NS
11331 !h ? value - elf_hash_table (info)->tls_sec->vma
11332 : info->flags & DF_BIND_NOW ? 0
11333 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
11334 globals->root.sgotplt->contents + offplt
11335 + globals->sgotplt_jump_table_size);
11336
0855e32b 11337 /* Second word in the relocation is always zero. */
99059e56 11338 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
11339 globals->root.sgotplt->contents + offplt
11340 + globals->sgotplt_jump_table_size + 4);
0855e32b 11341 }
ba93b8ac
DJ
11342 if (tls_type & GOT_TLS_GD)
11343 {
11344 if (need_relocs)
11345 {
00a97672 11346 outrel.r_addend = 0;
362d30a1
RS
11347 outrel.r_offset = (sgot->output_section->vma
11348 + sgot->output_offset
00a97672 11349 + cur_off);
ba93b8ac 11350 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 11351
00a97672
RS
11352 if (globals->use_rel)
11353 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11354 sgot->contents + cur_off);
00a97672 11355
47beaa6a 11356 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11357
11358 if (indx == 0)
11359 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11360 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11361 else
11362 {
00a97672 11363 outrel.r_addend = 0;
ba93b8ac
DJ
11364 outrel.r_info = ELF32_R_INFO (indx,
11365 R_ARM_TLS_DTPOFF32);
11366 outrel.r_offset += 4;
00a97672
RS
11367
11368 if (globals->use_rel)
11369 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11370 sgot->contents + cur_off + 4);
00a97672 11371
47beaa6a
RS
11372 elf32_arm_add_dynreloc (output_bfd, info,
11373 srelgot, &outrel);
ba93b8ac
DJ
11374 }
11375 }
11376 else
11377 {
11378 /* If we are not emitting relocations for a
11379 general dynamic reference, then we must be in a
11380 static link or an executable link with the
11381 symbol binding locally. Mark it as belonging
11382 to module 1, the executable. */
11383 bfd_put_32 (output_bfd, 1,
362d30a1 11384 sgot->contents + cur_off);
ba93b8ac 11385 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11386 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11387 }
11388
11389 cur_off += 8;
11390 }
11391
11392 if (tls_type & GOT_TLS_IE)
11393 {
11394 if (need_relocs)
11395 {
00a97672
RS
11396 if (indx == 0)
11397 outrel.r_addend = value - dtpoff_base (info);
11398 else
11399 outrel.r_addend = 0;
362d30a1
RS
11400 outrel.r_offset = (sgot->output_section->vma
11401 + sgot->output_offset
ba93b8ac
DJ
11402 + cur_off);
11403 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11404
00a97672
RS
11405 if (globals->use_rel)
11406 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11407 sgot->contents + cur_off);
ba93b8ac 11408
47beaa6a 11409 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11410 }
11411 else
11412 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 11413 sgot->contents + cur_off);
ba93b8ac
DJ
11414 cur_off += 4;
11415 }
11416
11417 if (h != NULL)
11418 h->got.offset |= 1;
11419 else
11420 local_got_offsets[r_symndx] |= 1;
11421 }
11422
11423 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11424 off += 8;
0855e32b
NS
11425 else if (tls_type & GOT_TLS_GDESC)
11426 off = offplt;
11427
11428 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11429 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11430 {
11431 bfd_signed_vma offset;
12352d3f
PB
11432 /* TLS stubs are arm mode. The original symbol is a
11433 data object, so branch_type is bogus. */
11434 branch_type = ST_BRANCH_TO_ARM;
0855e32b 11435 enum elf32_arm_stub_type stub_type
34e77a92
RS
11436 = arm_type_of_stub (info, input_section, rel,
11437 st_type, &branch_type,
0855e32b
NS
11438 (struct elf32_arm_link_hash_entry *)h,
11439 globals->tls_trampoline, globals->root.splt,
11440 input_bfd, sym_name);
11441
11442 if (stub_type != arm_stub_none)
11443 {
11444 struct elf32_arm_stub_hash_entry *stub_entry
11445 = elf32_arm_get_stub_entry
11446 (input_section, globals->root.splt, 0, rel,
11447 globals, stub_type);
11448 offset = (stub_entry->stub_offset
11449 + stub_entry->stub_sec->output_offset
11450 + stub_entry->stub_sec->output_section->vma);
11451 }
11452 else
11453 offset = (globals->root.splt->output_section->vma
11454 + globals->root.splt->output_offset
11455 + globals->tls_trampoline);
11456
11457 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11458 {
11459 unsigned long inst;
b38cadfb
NC
11460
11461 offset -= (input_section->output_section->vma
11462 + input_section->output_offset
11463 + rel->r_offset + 8);
0855e32b
NS
11464
11465 inst = offset >> 2;
11466 inst &= 0x00ffffff;
11467 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11468 }
11469 else
11470 {
11471 /* Thumb blx encodes the offset in a complicated
11472 fashion. */
11473 unsigned upper_insn, lower_insn;
11474 unsigned neg;
11475
b38cadfb
NC
11476 offset -= (input_section->output_section->vma
11477 + input_section->output_offset
0855e32b 11478 + rel->r_offset + 4);
b38cadfb 11479
12352d3f
PB
11480 if (stub_type != arm_stub_none
11481 && arm_stub_is_thumb (stub_type))
11482 {
11483 lower_insn = 0xd000;
11484 }
11485 else
11486 {
11487 lower_insn = 0xc000;
6a631e86 11488 /* Round up the offset to a word boundary. */
12352d3f
PB
11489 offset = (offset + 2) & ~2;
11490 }
11491
0855e32b
NS
11492 neg = offset < 0;
11493 upper_insn = (0xf000
11494 | ((offset >> 12) & 0x3ff)
11495 | (neg << 10));
12352d3f 11496 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 11497 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 11498 | ((offset >> 1) & 0x7ff);
0855e32b
NS
11499 bfd_put_16 (input_bfd, upper_insn, hit_data);
11500 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11501 return bfd_reloc_ok;
11502 }
11503 }
11504 /* These relocations needs special care, as besides the fact
11505 they point somewhere in .gotplt, the addend must be
11506 adjusted accordingly depending on the type of instruction
6a631e86 11507 we refer to. */
0855e32b
NS
11508 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11509 {
11510 unsigned long data, insn;
11511 unsigned thumb;
b38cadfb 11512
0855e32b
NS
11513 data = bfd_get_32 (input_bfd, hit_data);
11514 thumb = data & 1;
11515 data &= ~1u;
b38cadfb 11516
0855e32b
NS
11517 if (thumb)
11518 {
11519 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11520 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11521 insn = (insn << 16)
11522 | bfd_get_16 (input_bfd,
11523 contents + rel->r_offset - data + 2);
11524 if ((insn & 0xf800c000) == 0xf000c000)
11525 /* bl/blx */
11526 value = -6;
11527 else if ((insn & 0xffffff00) == 0x4400)
11528 /* add */
11529 value = -5;
11530 else
11531 {
4eca0228 11532 _bfd_error_handler
0855e32b
NS
11533 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11534 input_bfd, input_section,
11535 (unsigned long)rel->r_offset, insn);
11536 return bfd_reloc_notsupported;
11537 }
11538 }
11539 else
11540 {
11541 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11542
11543 switch (insn >> 24)
11544 {
11545 case 0xeb: /* bl */
11546 case 0xfa: /* blx */
11547 value = -4;
11548 break;
11549
11550 case 0xe0: /* add */
11551 value = -8;
11552 break;
b38cadfb 11553
0855e32b 11554 default:
4eca0228 11555 _bfd_error_handler
0855e32b
NS
11556 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11557 input_bfd, input_section,
11558 (unsigned long)rel->r_offset, insn);
11559 return bfd_reloc_notsupported;
11560 }
11561 }
b38cadfb 11562
0855e32b
NS
11563 value += ((globals->root.sgotplt->output_section->vma
11564 + globals->root.sgotplt->output_offset + off)
11565 - (input_section->output_section->vma
11566 + input_section->output_offset
11567 + rel->r_offset)
11568 + globals->sgotplt_jump_table_size);
11569 }
11570 else
11571 value = ((globals->root.sgot->output_section->vma
11572 + globals->root.sgot->output_offset + off)
11573 - (input_section->output_section->vma
11574 + input_section->output_offset + rel->r_offset));
ba93b8ac
DJ
11575
11576 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11577 contents, rel->r_offset, value,
00a97672 11578 rel->r_addend);
ba93b8ac
DJ
11579 }
11580
11581 case R_ARM_TLS_LE32:
3cbc1e5e 11582 if (bfd_link_dll (info))
ba93b8ac 11583 {
4eca0228 11584 _bfd_error_handler
ba93b8ac
DJ
11585 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11586 input_bfd, input_section,
11587 (long) rel->r_offset, howto->name);
46691134 11588 return bfd_reloc_notsupported;
ba93b8ac
DJ
11589 }
11590 else
11591 value = tpoff (info, value);
906e58ca 11592
ba93b8ac 11593 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11594 contents, rel->r_offset, value,
11595 rel->r_addend);
ba93b8ac 11596
319850b4
JB
11597 case R_ARM_V4BX:
11598 if (globals->fix_v4bx)
845b51d6
PB
11599 {
11600 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 11601
845b51d6
PB
11602 /* Ensure that we have a BX instruction. */
11603 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 11604
845b51d6
PB
11605 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11606 {
11607 /* Branch to veneer. */
11608 bfd_vma glue_addr;
11609 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11610 glue_addr -= input_section->output_section->vma
11611 + input_section->output_offset
11612 + rel->r_offset + 8;
11613 insn = (insn & 0xf0000000) | 0x0a000000
11614 | ((glue_addr >> 2) & 0x00ffffff);
11615 }
11616 else
11617 {
11618 /* Preserve Rm (lowest four bits) and the condition code
11619 (highest four bits). Other bits encode MOV PC,Rm. */
11620 insn = (insn & 0xf000000f) | 0x01a0f000;
11621 }
319850b4 11622
845b51d6
PB
11623 bfd_put_32 (input_bfd, insn, hit_data);
11624 }
319850b4
JB
11625 return bfd_reloc_ok;
11626
b6895b4f
PB
11627 case R_ARM_MOVW_ABS_NC:
11628 case R_ARM_MOVT_ABS:
11629 case R_ARM_MOVW_PREL_NC:
11630 case R_ARM_MOVT_PREL:
92f5d02b
MS
11631 /* Until we properly support segment-base-relative addressing then
11632 we assume the segment base to be zero, as for the group relocations.
11633 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11634 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11635 case R_ARM_MOVW_BREL_NC:
11636 case R_ARM_MOVW_BREL:
11637 case R_ARM_MOVT_BREL:
b6895b4f
PB
11638 {
11639 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11640
11641 if (globals->use_rel)
11642 {
11643 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 11644 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 11645 }
92f5d02b 11646
b6895b4f 11647 value += signed_addend;
b6895b4f
PB
11648
11649 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11650 value -= (input_section->output_section->vma
11651 + input_section->output_offset + rel->r_offset);
11652
92f5d02b 11653 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 11654 return bfd_reloc_overflow;
92f5d02b 11655
35fc36a8 11656 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
11657 value |= 1;
11658
11659 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 11660 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
11661 value >>= 16;
11662
11663 insn &= 0xfff0f000;
11664 insn |= value & 0xfff;
11665 insn |= (value & 0xf000) << 4;
11666 bfd_put_32 (input_bfd, insn, hit_data);
11667 }
11668 return bfd_reloc_ok;
11669
11670 case R_ARM_THM_MOVW_ABS_NC:
11671 case R_ARM_THM_MOVT_ABS:
11672 case R_ARM_THM_MOVW_PREL_NC:
11673 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
11674 /* Until we properly support segment-base-relative addressing then
11675 we assume the segment base to be zero, as for the above relocations.
11676 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11677 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11678 as R_ARM_THM_MOVT_ABS. */
11679 case R_ARM_THM_MOVW_BREL_NC:
11680 case R_ARM_THM_MOVW_BREL:
11681 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
11682 {
11683 bfd_vma insn;
906e58ca 11684
b6895b4f
PB
11685 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11686 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11687
11688 if (globals->use_rel)
11689 {
11690 addend = ((insn >> 4) & 0xf000)
11691 | ((insn >> 15) & 0x0800)
11692 | ((insn >> 4) & 0x0700)
11693 | (insn & 0x00ff);
39623e12 11694 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 11695 }
92f5d02b 11696
b6895b4f 11697 value += signed_addend;
b6895b4f
PB
11698
11699 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11700 value -= (input_section->output_section->vma
11701 + input_section->output_offset + rel->r_offset);
11702
92f5d02b 11703 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 11704 return bfd_reloc_overflow;
92f5d02b 11705
35fc36a8 11706 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
11707 value |= 1;
11708
11709 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 11710 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
11711 value >>= 16;
11712
11713 insn &= 0xfbf08f00;
11714 insn |= (value & 0xf000) << 4;
11715 insn |= (value & 0x0800) << 15;
11716 insn |= (value & 0x0700) << 4;
11717 insn |= (value & 0x00ff);
11718
11719 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11720 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11721 }
11722 return bfd_reloc_ok;
11723
4962c51a
MS
11724 case R_ARM_ALU_PC_G0_NC:
11725 case R_ARM_ALU_PC_G1_NC:
11726 case R_ARM_ALU_PC_G0:
11727 case R_ARM_ALU_PC_G1:
11728 case R_ARM_ALU_PC_G2:
11729 case R_ARM_ALU_SB_G0_NC:
11730 case R_ARM_ALU_SB_G1_NC:
11731 case R_ARM_ALU_SB_G0:
11732 case R_ARM_ALU_SB_G1:
11733 case R_ARM_ALU_SB_G2:
11734 {
11735 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 11736 bfd_vma pc = input_section->output_section->vma
4962c51a 11737 + input_section->output_offset + rel->r_offset;
31a91d61 11738 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 11739 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
11740 bfd_vma residual;
11741 bfd_vma g_n;
4962c51a 11742 bfd_signed_vma signed_value;
99059e56
RM
11743 int group = 0;
11744
11745 /* Determine which group of bits to select. */
11746 switch (r_type)
11747 {
11748 case R_ARM_ALU_PC_G0_NC:
11749 case R_ARM_ALU_PC_G0:
11750 case R_ARM_ALU_SB_G0_NC:
11751 case R_ARM_ALU_SB_G0:
11752 group = 0;
11753 break;
11754
11755 case R_ARM_ALU_PC_G1_NC:
11756 case R_ARM_ALU_PC_G1:
11757 case R_ARM_ALU_SB_G1_NC:
11758 case R_ARM_ALU_SB_G1:
11759 group = 1;
11760 break;
11761
11762 case R_ARM_ALU_PC_G2:
11763 case R_ARM_ALU_SB_G2:
11764 group = 2;
11765 break;
11766
11767 default:
11768 abort ();
11769 }
11770
11771 /* If REL, extract the addend from the insn. If RELA, it will
11772 have already been fetched for us. */
4962c51a 11773 if (globals->use_rel)
99059e56
RM
11774 {
11775 int negative;
11776 bfd_vma constant = insn & 0xff;
11777 bfd_vma rotation = (insn & 0xf00) >> 8;
11778
11779 if (rotation == 0)
11780 signed_addend = constant;
11781 else
11782 {
11783 /* Compensate for the fact that in the instruction, the
11784 rotation is stored in multiples of 2 bits. */
11785 rotation *= 2;
11786
11787 /* Rotate "constant" right by "rotation" bits. */
11788 signed_addend = (constant >> rotation) |
11789 (constant << (8 * sizeof (bfd_vma) - rotation));
11790 }
11791
11792 /* Determine if the instruction is an ADD or a SUB.
11793 (For REL, this determines the sign of the addend.) */
11794 negative = identify_add_or_sub (insn);
11795 if (negative == 0)
11796 {
4eca0228 11797 _bfd_error_handler
99059e56
RM
11798 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11799 input_bfd, input_section,
11800 (long) rel->r_offset, howto->name);
11801 return bfd_reloc_overflow;
11802 }
11803
11804 signed_addend *= negative;
11805 }
4962c51a
MS
11806
11807 /* Compute the value (X) to go in the place. */
99059e56
RM
11808 if (r_type == R_ARM_ALU_PC_G0_NC
11809 || r_type == R_ARM_ALU_PC_G1_NC
11810 || r_type == R_ARM_ALU_PC_G0
11811 || r_type == R_ARM_ALU_PC_G1
11812 || r_type == R_ARM_ALU_PC_G2)
11813 /* PC relative. */
11814 signed_value = value - pc + signed_addend;
11815 else
11816 /* Section base relative. */
11817 signed_value = value - sb + signed_addend;
11818
11819 /* If the target symbol is a Thumb function, then set the
11820 Thumb bit in the address. */
35fc36a8 11821 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
11822 signed_value |= 1;
11823
99059e56
RM
11824 /* Calculate the value of the relevant G_n, in encoded
11825 constant-with-rotation format. */
b6518b38
NC
11826 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11827 group, &residual);
99059e56
RM
11828
11829 /* Check for overflow if required. */
11830 if ((r_type == R_ARM_ALU_PC_G0
11831 || r_type == R_ARM_ALU_PC_G1
11832 || r_type == R_ARM_ALU_PC_G2
11833 || r_type == R_ARM_ALU_SB_G0
11834 || r_type == R_ARM_ALU_SB_G1
11835 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11836 {
4eca0228 11837 _bfd_error_handler
99059e56
RM
11838 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11839 input_bfd, input_section,
b6518b38
NC
11840 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11841 howto->name);
99059e56
RM
11842 return bfd_reloc_overflow;
11843 }
11844
11845 /* Mask out the value and the ADD/SUB part of the opcode; take care
11846 not to destroy the S bit. */
11847 insn &= 0xff1ff000;
11848
11849 /* Set the opcode according to whether the value to go in the
11850 place is negative. */
11851 if (signed_value < 0)
11852 insn |= 1 << 22;
11853 else
11854 insn |= 1 << 23;
11855
11856 /* Encode the offset. */
11857 insn |= g_n;
4962c51a
MS
11858
11859 bfd_put_32 (input_bfd, insn, hit_data);
11860 }
11861 return bfd_reloc_ok;
11862
11863 case R_ARM_LDR_PC_G0:
11864 case R_ARM_LDR_PC_G1:
11865 case R_ARM_LDR_PC_G2:
11866 case R_ARM_LDR_SB_G0:
11867 case R_ARM_LDR_SB_G1:
11868 case R_ARM_LDR_SB_G2:
11869 {
11870 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 11871 bfd_vma pc = input_section->output_section->vma
4962c51a 11872 + input_section->output_offset + rel->r_offset;
31a91d61 11873 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 11874 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 11875 bfd_vma residual;
4962c51a 11876 bfd_signed_vma signed_value;
99059e56
RM
11877 int group = 0;
11878
11879 /* Determine which groups of bits to calculate. */
11880 switch (r_type)
11881 {
11882 case R_ARM_LDR_PC_G0:
11883 case R_ARM_LDR_SB_G0:
11884 group = 0;
11885 break;
11886
11887 case R_ARM_LDR_PC_G1:
11888 case R_ARM_LDR_SB_G1:
11889 group = 1;
11890 break;
11891
11892 case R_ARM_LDR_PC_G2:
11893 case R_ARM_LDR_SB_G2:
11894 group = 2;
11895 break;
11896
11897 default:
11898 abort ();
11899 }
11900
11901 /* If REL, extract the addend from the insn. If RELA, it will
11902 have already been fetched for us. */
4962c51a 11903 if (globals->use_rel)
99059e56
RM
11904 {
11905 int negative = (insn & (1 << 23)) ? 1 : -1;
11906 signed_addend = negative * (insn & 0xfff);
11907 }
4962c51a
MS
11908
11909 /* Compute the value (X) to go in the place. */
99059e56
RM
11910 if (r_type == R_ARM_LDR_PC_G0
11911 || r_type == R_ARM_LDR_PC_G1
11912 || r_type == R_ARM_LDR_PC_G2)
11913 /* PC relative. */
11914 signed_value = value - pc + signed_addend;
11915 else
11916 /* Section base relative. */
11917 signed_value = value - sb + signed_addend;
11918
11919 /* Calculate the value of the relevant G_{n-1} to obtain
11920 the residual at that stage. */
b6518b38
NC
11921 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11922 group - 1, &residual);
99059e56
RM
11923
11924 /* Check for overflow. */
11925 if (residual >= 0x1000)
11926 {
4eca0228 11927 _bfd_error_handler
99059e56 11928 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
b6518b38
NC
11929 input_bfd, input_section,
11930 (long) rel->r_offset, labs (signed_value), howto->name);
99059e56
RM
11931 return bfd_reloc_overflow;
11932 }
11933
11934 /* Mask out the value and U bit. */
11935 insn &= 0xff7ff000;
11936
11937 /* Set the U bit if the value to go in the place is non-negative. */
11938 if (signed_value >= 0)
11939 insn |= 1 << 23;
11940
11941 /* Encode the offset. */
11942 insn |= residual;
4962c51a
MS
11943
11944 bfd_put_32 (input_bfd, insn, hit_data);
11945 }
11946 return bfd_reloc_ok;
11947
11948 case R_ARM_LDRS_PC_G0:
11949 case R_ARM_LDRS_PC_G1:
11950 case R_ARM_LDRS_PC_G2:
11951 case R_ARM_LDRS_SB_G0:
11952 case R_ARM_LDRS_SB_G1:
11953 case R_ARM_LDRS_SB_G2:
11954 {
11955 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 11956 bfd_vma pc = input_section->output_section->vma
4962c51a 11957 + input_section->output_offset + rel->r_offset;
31a91d61 11958 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 11959 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 11960 bfd_vma residual;
4962c51a 11961 bfd_signed_vma signed_value;
99059e56
RM
11962 int group = 0;
11963
11964 /* Determine which groups of bits to calculate. */
11965 switch (r_type)
11966 {
11967 case R_ARM_LDRS_PC_G0:
11968 case R_ARM_LDRS_SB_G0:
11969 group = 0;
11970 break;
11971
11972 case R_ARM_LDRS_PC_G1:
11973 case R_ARM_LDRS_SB_G1:
11974 group = 1;
11975 break;
11976
11977 case R_ARM_LDRS_PC_G2:
11978 case R_ARM_LDRS_SB_G2:
11979 group = 2;
11980 break;
11981
11982 default:
11983 abort ();
11984 }
11985
11986 /* If REL, extract the addend from the insn. If RELA, it will
11987 have already been fetched for us. */
4962c51a 11988 if (globals->use_rel)
99059e56
RM
11989 {
11990 int negative = (insn & (1 << 23)) ? 1 : -1;
11991 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11992 }
4962c51a
MS
11993
11994 /* Compute the value (X) to go in the place. */
99059e56
RM
11995 if (r_type == R_ARM_LDRS_PC_G0
11996 || r_type == R_ARM_LDRS_PC_G1
11997 || r_type == R_ARM_LDRS_PC_G2)
11998 /* PC relative. */
11999 signed_value = value - pc + signed_addend;
12000 else
12001 /* Section base relative. */
12002 signed_value = value - sb + signed_addend;
12003
12004 /* Calculate the value of the relevant G_{n-1} to obtain
12005 the residual at that stage. */
b6518b38
NC
12006 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12007 group - 1, &residual);
99059e56
RM
12008
12009 /* Check for overflow. */
12010 if (residual >= 0x100)
12011 {
4eca0228 12012 _bfd_error_handler
99059e56 12013 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
b6518b38
NC
12014 input_bfd, input_section,
12015 (long) rel->r_offset, labs (signed_value), howto->name);
99059e56
RM
12016 return bfd_reloc_overflow;
12017 }
12018
12019 /* Mask out the value and U bit. */
12020 insn &= 0xff7ff0f0;
12021
12022 /* Set the U bit if the value to go in the place is non-negative. */
12023 if (signed_value >= 0)
12024 insn |= 1 << 23;
12025
12026 /* Encode the offset. */
12027 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
12028
12029 bfd_put_32 (input_bfd, insn, hit_data);
12030 }
12031 return bfd_reloc_ok;
12032
12033 case R_ARM_LDC_PC_G0:
12034 case R_ARM_LDC_PC_G1:
12035 case R_ARM_LDC_PC_G2:
12036 case R_ARM_LDC_SB_G0:
12037 case R_ARM_LDC_SB_G1:
12038 case R_ARM_LDC_SB_G2:
12039 {
12040 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12041 bfd_vma pc = input_section->output_section->vma
4962c51a 12042 + input_section->output_offset + rel->r_offset;
31a91d61 12043 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12044 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12045 bfd_vma residual;
4962c51a 12046 bfd_signed_vma signed_value;
99059e56
RM
12047 int group = 0;
12048
12049 /* Determine which groups of bits to calculate. */
12050 switch (r_type)
12051 {
12052 case R_ARM_LDC_PC_G0:
12053 case R_ARM_LDC_SB_G0:
12054 group = 0;
12055 break;
12056
12057 case R_ARM_LDC_PC_G1:
12058 case R_ARM_LDC_SB_G1:
12059 group = 1;
12060 break;
12061
12062 case R_ARM_LDC_PC_G2:
12063 case R_ARM_LDC_SB_G2:
12064 group = 2;
12065 break;
12066
12067 default:
12068 abort ();
12069 }
12070
12071 /* If REL, extract the addend from the insn. If RELA, it will
12072 have already been fetched for us. */
4962c51a 12073 if (globals->use_rel)
99059e56
RM
12074 {
12075 int negative = (insn & (1 << 23)) ? 1 : -1;
12076 signed_addend = negative * ((insn & 0xff) << 2);
12077 }
4962c51a
MS
12078
12079 /* Compute the value (X) to go in the place. */
99059e56
RM
12080 if (r_type == R_ARM_LDC_PC_G0
12081 || r_type == R_ARM_LDC_PC_G1
12082 || r_type == R_ARM_LDC_PC_G2)
12083 /* PC relative. */
12084 signed_value = value - pc + signed_addend;
12085 else
12086 /* Section base relative. */
12087 signed_value = value - sb + signed_addend;
12088
12089 /* Calculate the value of the relevant G_{n-1} to obtain
12090 the residual at that stage. */
b6518b38
NC
12091 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12092 group - 1, &residual);
99059e56
RM
12093
12094 /* Check for overflow. (The absolute value to go in the place must be
12095 divisible by four and, after having been divided by four, must
12096 fit in eight bits.) */
12097 if ((residual & 0x3) != 0 || residual >= 0x400)
12098 {
4eca0228 12099 _bfd_error_handler
99059e56
RM
12100 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12101 input_bfd, input_section,
b6518b38 12102 (long) rel->r_offset, labs (signed_value), howto->name);
99059e56
RM
12103 return bfd_reloc_overflow;
12104 }
12105
12106 /* Mask out the value and U bit. */
12107 insn &= 0xff7fff00;
12108
12109 /* Set the U bit if the value to go in the place is non-negative. */
12110 if (signed_value >= 0)
12111 insn |= 1 << 23;
12112
12113 /* Encode the offset. */
12114 insn |= residual >> 2;
4962c51a
MS
12115
12116 bfd_put_32 (input_bfd, insn, hit_data);
12117 }
12118 return bfd_reloc_ok;
12119
72d98d16
MG
12120 case R_ARM_THM_ALU_ABS_G0_NC:
12121 case R_ARM_THM_ALU_ABS_G1_NC:
12122 case R_ARM_THM_ALU_ABS_G2_NC:
12123 case R_ARM_THM_ALU_ABS_G3_NC:
12124 {
12125 const int shift_array[4] = {0, 8, 16, 24};
12126 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12127 bfd_vma addr = value;
12128 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12129
12130 /* Compute address. */
12131 if (globals->use_rel)
12132 signed_addend = insn & 0xff;
12133 addr += signed_addend;
12134 if (branch_type == ST_BRANCH_TO_THUMB)
12135 addr |= 1;
12136 /* Clean imm8 insn. */
12137 insn &= 0xff00;
12138 /* And update with correct part of address. */
12139 insn |= (addr >> shift) & 0xff;
12140 /* Update insn. */
12141 bfd_put_16 (input_bfd, insn, hit_data);
12142 }
12143
12144 *unresolved_reloc_p = FALSE;
12145 return bfd_reloc_ok;
12146
252b5132
RH
12147 default:
12148 return bfd_reloc_notsupported;
12149 }
12150}
12151
98c1d4aa
NC
12152/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12153static void
57e8b36a
NC
12154arm_add_to_rel (bfd * abfd,
12155 bfd_byte * address,
12156 reloc_howto_type * howto,
12157 bfd_signed_vma increment)
98c1d4aa 12158{
98c1d4aa
NC
12159 bfd_signed_vma addend;
12160
bd97cb95
DJ
12161 if (howto->type == R_ARM_THM_CALL
12162 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 12163 {
9a5aca8c
AM
12164 int upper_insn, lower_insn;
12165 int upper, lower;
98c1d4aa 12166
9a5aca8c
AM
12167 upper_insn = bfd_get_16 (abfd, address);
12168 lower_insn = bfd_get_16 (abfd, address + 2);
12169 upper = upper_insn & 0x7ff;
12170 lower = lower_insn & 0x7ff;
12171
12172 addend = (upper << 12) | (lower << 1);
ddda4409 12173 addend += increment;
9a5aca8c 12174 addend >>= 1;
98c1d4aa 12175
9a5aca8c
AM
12176 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12177 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12178
dc810e39
AM
12179 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12180 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
12181 }
12182 else
12183 {
12184 bfd_vma contents;
12185
12186 contents = bfd_get_32 (abfd, address);
12187
12188 /* Get the (signed) value from the instruction. */
12189 addend = contents & howto->src_mask;
12190 if (addend & ((howto->src_mask + 1) >> 1))
12191 {
12192 bfd_signed_vma mask;
12193
12194 mask = -1;
12195 mask &= ~ howto->src_mask;
12196 addend |= mask;
12197 }
12198
12199 /* Add in the increment, (which is a byte value). */
12200 switch (howto->type)
12201 {
12202 default:
12203 addend += increment;
12204 break;
12205
12206 case R_ARM_PC24:
c6596c5e 12207 case R_ARM_PLT32:
5b5bb741
PB
12208 case R_ARM_CALL:
12209 case R_ARM_JUMP24:
9a5aca8c 12210 addend <<= howto->size;
dc810e39 12211 addend += increment;
9a5aca8c
AM
12212
12213 /* Should we check for overflow here ? */
12214
12215 /* Drop any undesired bits. */
12216 addend >>= howto->rightshift;
12217 break;
12218 }
12219
12220 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12221
12222 bfd_put_32 (abfd, contents, address);
ddda4409 12223 }
98c1d4aa 12224}
252b5132 12225
ba93b8ac
DJ
12226#define IS_ARM_TLS_RELOC(R_TYPE) \
12227 ((R_TYPE) == R_ARM_TLS_GD32 \
12228 || (R_TYPE) == R_ARM_TLS_LDO32 \
12229 || (R_TYPE) == R_ARM_TLS_LDM32 \
12230 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12231 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12232 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12233 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b
NS
12234 || (R_TYPE) == R_ARM_TLS_IE32 \
12235 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12236
12237/* Specific set of relocations for the gnu tls dialect. */
12238#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12239 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12240 || (R_TYPE) == R_ARM_TLS_CALL \
12241 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12242 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12243 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 12244
252b5132 12245/* Relocate an ARM ELF section. */
906e58ca 12246
b34976b6 12247static bfd_boolean
57e8b36a
NC
12248elf32_arm_relocate_section (bfd * output_bfd,
12249 struct bfd_link_info * info,
12250 bfd * input_bfd,
12251 asection * input_section,
12252 bfd_byte * contents,
12253 Elf_Internal_Rela * relocs,
12254 Elf_Internal_Sym * local_syms,
12255 asection ** local_sections)
252b5132 12256{
b34976b6
AM
12257 Elf_Internal_Shdr *symtab_hdr;
12258 struct elf_link_hash_entry **sym_hashes;
12259 Elf_Internal_Rela *rel;
12260 Elf_Internal_Rela *relend;
12261 const char *name;
b32d3aa2 12262 struct elf32_arm_link_hash_table * globals;
252b5132 12263
4e7fd91e 12264 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
12265 if (globals == NULL)
12266 return FALSE;
b491616a 12267
0ffa91dd 12268 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
12269 sym_hashes = elf_sym_hashes (input_bfd);
12270
12271 rel = relocs;
12272 relend = relocs + input_section->reloc_count;
12273 for (; rel < relend; rel++)
12274 {
ba96a88f
NC
12275 int r_type;
12276 reloc_howto_type * howto;
12277 unsigned long r_symndx;
12278 Elf_Internal_Sym * sym;
12279 asection * sec;
252b5132 12280 struct elf_link_hash_entry * h;
ba96a88f
NC
12281 bfd_vma relocation;
12282 bfd_reloc_status_type r;
12283 arelent bfd_reloc;
ba93b8ac 12284 char sym_type;
0945cdfd 12285 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 12286 char *error_message = NULL;
f21f3fe0 12287
252b5132 12288 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 12289 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 12290 r_type = arm_real_reloc_type (globals, r_type);
252b5132 12291
ba96a88f 12292 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
12293 || r_type == R_ARM_GNU_VTINHERIT)
12294 continue;
252b5132 12295
b32d3aa2 12296 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 12297 howto = bfd_reloc.howto;
252b5132 12298
252b5132
RH
12299 h = NULL;
12300 sym = NULL;
12301 sec = NULL;
9b485d32 12302
252b5132
RH
12303 if (r_symndx < symtab_hdr->sh_info)
12304 {
12305 sym = local_syms + r_symndx;
ba93b8ac 12306 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 12307 sec = local_sections[r_symndx];
ffcb4889
NS
12308
12309 /* An object file might have a reference to a local
12310 undefined symbol. This is a daft object file, but we
12311 should at least do something about it. V4BX & NONE
12312 relocations do not use the symbol and are explicitly
77b4f08f
TS
12313 allowed to use the undefined symbol, so allow those.
12314 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
12315 if (r_type != R_ARM_V4BX
12316 && r_type != R_ARM_NONE
77b4f08f 12317 && r_symndx != STN_UNDEF
ffcb4889
NS
12318 && bfd_is_und_section (sec)
12319 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
12320 (*info->callbacks->undefined_symbol)
12321 (info, bfd_elf_string_from_elf_section
12322 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12323 input_bfd, input_section,
12324 rel->r_offset, TRUE);
b38cadfb 12325
4e7fd91e 12326 if (globals->use_rel)
f8df10f4 12327 {
4e7fd91e
PB
12328 relocation = (sec->output_section->vma
12329 + sec->output_offset
12330 + sym->st_value);
0e1862bb 12331 if (!bfd_link_relocatable (info)
ab96bf03
AM
12332 && (sec->flags & SEC_MERGE)
12333 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 12334 {
4e7fd91e
PB
12335 asection *msec;
12336 bfd_vma addend, value;
12337
39623e12 12338 switch (r_type)
4e7fd91e 12339 {
39623e12
PB
12340 case R_ARM_MOVW_ABS_NC:
12341 case R_ARM_MOVT_ABS:
12342 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12343 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12344 addend = (addend ^ 0x8000) - 0x8000;
12345 break;
f8df10f4 12346
39623e12
PB
12347 case R_ARM_THM_MOVW_ABS_NC:
12348 case R_ARM_THM_MOVT_ABS:
12349 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12350 << 16;
12351 value |= bfd_get_16 (input_bfd,
12352 contents + rel->r_offset + 2);
12353 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12354 | ((value & 0x04000000) >> 15);
12355 addend = (addend ^ 0x8000) - 0x8000;
12356 break;
f8df10f4 12357
39623e12
PB
12358 default:
12359 if (howto->rightshift
12360 || (howto->src_mask & (howto->src_mask + 1)))
12361 {
4eca0228 12362 _bfd_error_handler
39623e12
PB
12363 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12364 input_bfd, input_section,
12365 (long) rel->r_offset, howto->name);
12366 return FALSE;
12367 }
12368
12369 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12370
12371 /* Get the (signed) value from the instruction. */
12372 addend = value & howto->src_mask;
12373 if (addend & ((howto->src_mask + 1) >> 1))
12374 {
12375 bfd_signed_vma mask;
12376
12377 mask = -1;
12378 mask &= ~ howto->src_mask;
12379 addend |= mask;
12380 }
12381 break;
4e7fd91e 12382 }
39623e12 12383
4e7fd91e
PB
12384 msec = sec;
12385 addend =
12386 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12387 - relocation;
12388 addend += msec->output_section->vma + msec->output_offset;
39623e12 12389
cc643b88 12390 /* Cases here must match those in the preceding
39623e12
PB
12391 switch statement. */
12392 switch (r_type)
12393 {
12394 case R_ARM_MOVW_ABS_NC:
12395 case R_ARM_MOVT_ABS:
12396 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12397 | (addend & 0xfff);
12398 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12399 break;
12400
12401 case R_ARM_THM_MOVW_ABS_NC:
12402 case R_ARM_THM_MOVT_ABS:
12403 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12404 | (addend & 0xff) | ((addend & 0x0800) << 15);
12405 bfd_put_16 (input_bfd, value >> 16,
12406 contents + rel->r_offset);
12407 bfd_put_16 (input_bfd, value,
12408 contents + rel->r_offset + 2);
12409 break;
12410
12411 default:
12412 value = (value & ~ howto->dst_mask)
12413 | (addend & howto->dst_mask);
12414 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12415 break;
12416 }
f8df10f4 12417 }
f8df10f4 12418 }
4e7fd91e
PB
12419 else
12420 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
12421 }
12422 else
12423 {
62d887d4 12424 bfd_boolean warned, ignored;
560e09e9 12425
b2a8e766
AM
12426 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12427 r_symndx, symtab_hdr, sym_hashes,
12428 h, sec, relocation,
62d887d4 12429 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
12430
12431 sym_type = h->type;
252b5132
RH
12432 }
12433
dbaa2011 12434 if (sec != NULL && discarded_section (sec))
e4067dbb 12435 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 12436 rel, 1, relend, howto, 0, contents);
ab96bf03 12437
0e1862bb 12438 if (bfd_link_relocatable (info))
ab96bf03
AM
12439 {
12440 /* This is a relocatable link. We don't have to change
12441 anything, unless the reloc is against a section symbol,
12442 in which case we have to adjust according to where the
12443 section symbol winds up in the output section. */
12444 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12445 {
12446 if (globals->use_rel)
12447 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12448 howto, (bfd_signed_vma) sec->output_offset);
12449 else
12450 rel->r_addend += sec->output_offset;
12451 }
12452 continue;
12453 }
12454
252b5132
RH
12455 if (h != NULL)
12456 name = h->root.root.string;
12457 else
12458 {
12459 name = (bfd_elf_string_from_elf_section
12460 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12461 if (name == NULL || *name == '\0')
12462 name = bfd_section_name (input_bfd, sec);
12463 }
f21f3fe0 12464
cf35638d 12465 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
12466 && r_type != R_ARM_NONE
12467 && (h == NULL
12468 || h->root.type == bfd_link_hash_defined
12469 || h->root.type == bfd_link_hash_defweak)
12470 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12471 {
4eca0228 12472 _bfd_error_handler
ba93b8ac
DJ
12473 ((sym_type == STT_TLS
12474 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12475 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12476 input_bfd,
12477 input_section,
12478 (long) rel->r_offset,
12479 howto->name,
12480 name);
12481 }
12482
0855e32b 12483 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
12484 done, i.e., the relaxation produced the final output we want,
12485 and we won't let anybody mess with it. Also, we have to do
12486 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 12487 both in relaxed and non-relaxed cases. */
39d911fc
TP
12488 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12489 || (IS_ARM_TLS_GNU_RELOC (r_type)
12490 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12491 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12492 & GOT_TLS_GDESC)))
12493 {
12494 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12495 contents, rel, h == NULL);
12496 /* This may have been marked unresolved because it came from
12497 a shared library. But we've just dealt with that. */
12498 unresolved_reloc = 0;
12499 }
12500 else
12501 r = bfd_reloc_continue;
b38cadfb 12502
39d911fc
TP
12503 if (r == bfd_reloc_continue)
12504 {
12505 unsigned char branch_type =
12506 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12507 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12508
12509 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12510 input_section, contents, rel,
12511 relocation, info, sec, name,
12512 sym_type, branch_type, h,
12513 &unresolved_reloc,
12514 &error_message);
12515 }
0945cdfd
DJ
12516
12517 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12518 because such sections are not SEC_ALLOC and thus ld.so will
12519 not process them. */
12520 if (unresolved_reloc
99059e56
RM
12521 && !((input_section->flags & SEC_DEBUGGING) != 0
12522 && h->def_dynamic)
1d5316ab
AM
12523 && _bfd_elf_section_offset (output_bfd, info, input_section,
12524 rel->r_offset) != (bfd_vma) -1)
0945cdfd 12525 {
4eca0228 12526 _bfd_error_handler
843fe662
L
12527 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12528 input_bfd,
12529 input_section,
12530 (long) rel->r_offset,
12531 howto->name,
12532 h->root.root.string);
0945cdfd
DJ
12533 return FALSE;
12534 }
252b5132
RH
12535
12536 if (r != bfd_reloc_ok)
12537 {
252b5132
RH
12538 switch (r)
12539 {
12540 case bfd_reloc_overflow:
cf919dfd
PB
12541 /* If the overflowing reloc was to an undefined symbol,
12542 we have already printed one error message and there
12543 is no point complaining again. */
1a72702b
AM
12544 if (!h || h->root.type != bfd_link_hash_undefined)
12545 (*info->callbacks->reloc_overflow)
12546 (info, (h ? &h->root : NULL), name, howto->name,
12547 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
252b5132
RH
12548 break;
12549
12550 case bfd_reloc_undefined:
1a72702b
AM
12551 (*info->callbacks->undefined_symbol)
12552 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
252b5132
RH
12553 break;
12554
12555 case bfd_reloc_outofrange:
f2a9dd69 12556 error_message = _("out of range");
252b5132
RH
12557 goto common_error;
12558
12559 case bfd_reloc_notsupported:
f2a9dd69 12560 error_message = _("unsupported relocation");
252b5132
RH
12561 goto common_error;
12562
12563 case bfd_reloc_dangerous:
f2a9dd69 12564 /* error_message should already be set. */
252b5132
RH
12565 goto common_error;
12566
12567 default:
f2a9dd69 12568 error_message = _("unknown error");
8029a119 12569 /* Fall through. */
252b5132
RH
12570
12571 common_error:
f2a9dd69 12572 BFD_ASSERT (error_message != NULL);
1a72702b
AM
12573 (*info->callbacks->reloc_dangerous)
12574 (info, error_message, input_bfd, input_section, rel->r_offset);
252b5132
RH
12575 break;
12576 }
12577 }
12578 }
12579
b34976b6 12580 return TRUE;
252b5132
RH
12581}
12582
91d6fa6a 12583/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 12584 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 12585 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
12586 maintaining that condition). */
12587
12588static void
12589add_unwind_table_edit (arm_unwind_table_edit **head,
12590 arm_unwind_table_edit **tail,
12591 arm_unwind_edit_type type,
12592 asection *linked_section,
91d6fa6a 12593 unsigned int tindex)
2468f9c9 12594{
21d799b5
NC
12595 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12596 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 12597
2468f9c9
PB
12598 new_edit->type = type;
12599 new_edit->linked_section = linked_section;
91d6fa6a 12600 new_edit->index = tindex;
b38cadfb 12601
91d6fa6a 12602 if (tindex > 0)
2468f9c9
PB
12603 {
12604 new_edit->next = NULL;
12605
12606 if (*tail)
12607 (*tail)->next = new_edit;
12608
12609 (*tail) = new_edit;
12610
12611 if (!*head)
12612 (*head) = new_edit;
12613 }
12614 else
12615 {
12616 new_edit->next = *head;
12617
12618 if (!*tail)
12619 *tail = new_edit;
12620
12621 *head = new_edit;
12622 }
12623}
12624
12625static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12626
12627/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12628static void
12629adjust_exidx_size(asection *exidx_sec, int adjust)
12630{
12631 asection *out_sec;
12632
12633 if (!exidx_sec->rawsize)
12634 exidx_sec->rawsize = exidx_sec->size;
12635
12636 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12637 out_sec = exidx_sec->output_section;
12638 /* Adjust size of output section. */
12639 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12640}
12641
12642/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12643static void
12644insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12645{
12646 struct _arm_elf_section_data *exidx_arm_data;
12647
12648 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12649 add_unwind_table_edit (
12650 &exidx_arm_data->u.exidx.unwind_edit_list,
12651 &exidx_arm_data->u.exidx.unwind_edit_tail,
12652 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12653
491d01d3
YU
12654 exidx_arm_data->additional_reloc_count++;
12655
2468f9c9
PB
12656 adjust_exidx_size(exidx_sec, 8);
12657}
12658
12659/* Scan .ARM.exidx tables, and create a list describing edits which should be
12660 made to those tables, such that:
b38cadfb 12661
2468f9c9
PB
12662 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12663 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 12664 codes which have been inlined into the index).
2468f9c9 12665
85fdf906
AH
12666 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12667
2468f9c9 12668 The edits are applied when the tables are written
b38cadfb 12669 (in elf32_arm_write_section). */
2468f9c9
PB
12670
12671bfd_boolean
12672elf32_arm_fix_exidx_coverage (asection **text_section_order,
12673 unsigned int num_text_sections,
85fdf906
AH
12674 struct bfd_link_info *info,
12675 bfd_boolean merge_exidx_entries)
2468f9c9
PB
12676{
12677 bfd *inp;
12678 unsigned int last_second_word = 0, i;
12679 asection *last_exidx_sec = NULL;
12680 asection *last_text_sec = NULL;
12681 int last_unwind_type = -1;
12682
12683 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12684 text sections. */
c72f2fb2 12685 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
12686 {
12687 asection *sec;
b38cadfb 12688
2468f9c9 12689 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 12690 {
2468f9c9
PB
12691 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12692 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 12693
dec9d5df 12694 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 12695 continue;
b38cadfb 12696
2468f9c9
PB
12697 if (elf_sec->linked_to)
12698 {
12699 Elf_Internal_Shdr *linked_hdr
99059e56 12700 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 12701 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 12702 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
12703
12704 if (linked_sec_arm_data == NULL)
99059e56 12705 continue;
2468f9c9
PB
12706
12707 /* Link this .ARM.exidx section back from the text section it
99059e56 12708 describes. */
2468f9c9
PB
12709 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12710 }
12711 }
12712 }
12713
12714 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12715 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 12716 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
12717
12718 for (i = 0; i < num_text_sections; i++)
12719 {
12720 asection *sec = text_section_order[i];
12721 asection *exidx_sec;
12722 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12723 struct _arm_elf_section_data *exidx_arm_data;
12724 bfd_byte *contents = NULL;
12725 int deleted_exidx_bytes = 0;
12726 bfd_vma j;
12727 arm_unwind_table_edit *unwind_edit_head = NULL;
12728 arm_unwind_table_edit *unwind_edit_tail = NULL;
12729 Elf_Internal_Shdr *hdr;
12730 bfd *ibfd;
12731
12732 if (arm_data == NULL)
99059e56 12733 continue;
2468f9c9
PB
12734
12735 exidx_sec = arm_data->u.text.arm_exidx_sec;
12736 if (exidx_sec == NULL)
12737 {
12738 /* Section has no unwind data. */
12739 if (last_unwind_type == 0 || !last_exidx_sec)
12740 continue;
12741
12742 /* Ignore zero sized sections. */
12743 if (sec->size == 0)
12744 continue;
12745
12746 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12747 last_unwind_type = 0;
12748 continue;
12749 }
12750
22a8f80e
PB
12751 /* Skip /DISCARD/ sections. */
12752 if (bfd_is_abs_section (exidx_sec->output_section))
12753 continue;
12754
2468f9c9
PB
12755 hdr = &elf_section_data (exidx_sec)->this_hdr;
12756 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 12757 continue;
b38cadfb 12758
2468f9c9
PB
12759 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12760 if (exidx_arm_data == NULL)
99059e56 12761 continue;
b38cadfb 12762
2468f9c9 12763 ibfd = exidx_sec->owner;
b38cadfb 12764
2468f9c9
PB
12765 if (hdr->contents != NULL)
12766 contents = hdr->contents;
12767 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12768 /* An error? */
12769 continue;
12770
ac06903d
YU
12771 if (last_unwind_type > 0)
12772 {
12773 unsigned int first_word = bfd_get_32 (ibfd, contents);
12774 /* Add cantunwind if first unwind item does not match section
12775 start. */
12776 if (first_word != sec->vma)
12777 {
12778 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12779 last_unwind_type = 0;
12780 }
12781 }
12782
2468f9c9
PB
12783 for (j = 0; j < hdr->sh_size; j += 8)
12784 {
12785 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12786 int unwind_type;
12787 int elide = 0;
12788
12789 /* An EXIDX_CANTUNWIND entry. */
12790 if (second_word == 1)
12791 {
12792 if (last_unwind_type == 0)
12793 elide = 1;
12794 unwind_type = 0;
12795 }
12796 /* Inlined unwinding data. Merge if equal to previous. */
12797 else if ((second_word & 0x80000000) != 0)
12798 {
85fdf906
AH
12799 if (merge_exidx_entries
12800 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
12801 elide = 1;
12802 unwind_type = 1;
12803 last_second_word = second_word;
12804 }
12805 /* Normal table entry. In theory we could merge these too,
12806 but duplicate entries are likely to be much less common. */
12807 else
12808 unwind_type = 2;
12809
491d01d3 12810 if (elide && !bfd_link_relocatable (info))
2468f9c9
PB
12811 {
12812 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12813 DELETE_EXIDX_ENTRY, NULL, j / 8);
12814
12815 deleted_exidx_bytes += 8;
12816 }
12817
12818 last_unwind_type = unwind_type;
12819 }
12820
12821 /* Free contents if we allocated it ourselves. */
12822 if (contents != hdr->contents)
99059e56 12823 free (contents);
2468f9c9
PB
12824
12825 /* Record edits to be applied later (in elf32_arm_write_section). */
12826 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12827 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 12828
2468f9c9
PB
12829 if (deleted_exidx_bytes > 0)
12830 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12831
12832 last_exidx_sec = exidx_sec;
12833 last_text_sec = sec;
12834 }
12835
12836 /* Add terminating CANTUNWIND entry. */
491d01d3
YU
12837 if (!bfd_link_relocatable (info) && last_exidx_sec
12838 && last_unwind_type != 0)
2468f9c9
PB
12839 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12840
12841 return TRUE;
12842}
12843
3e6b1042
DJ
12844static bfd_boolean
12845elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12846 bfd *ibfd, const char *name)
12847{
12848 asection *sec, *osec;
12849
3d4d4302 12850 sec = bfd_get_linker_section (ibfd, name);
3e6b1042
DJ
12851 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12852 return TRUE;
12853
12854 osec = sec->output_section;
12855 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12856 return TRUE;
12857
12858 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12859 sec->output_offset, sec->size))
12860 return FALSE;
12861
12862 return TRUE;
12863}
12864
12865static bfd_boolean
12866elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12867{
12868 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 12869 asection *sec, *osec;
3e6b1042 12870
4dfe6ac6
NC
12871 if (globals == NULL)
12872 return FALSE;
12873
3e6b1042
DJ
12874 /* Invoke the regular ELF backend linker to do all the work. */
12875 if (!bfd_elf_final_link (abfd, info))
12876 return FALSE;
12877
fe33d2fa
CL
12878 /* Process stub sections (eg BE8 encoding, ...). */
12879 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
7292b3ac 12880 unsigned int i;
cdb21a0a
NS
12881 for (i=0; i<htab->top_id; i++)
12882 {
12883 sec = htab->stub_group[i].stub_sec;
12884 /* Only process it once, in its link_sec slot. */
12885 if (sec && i == htab->stub_group[i].link_sec->id)
12886 {
12887 osec = sec->output_section;
12888 elf32_arm_write_section (abfd, info, sec, sec->contents);
12889 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12890 sec->output_offset, sec->size))
12891 return FALSE;
12892 }
fe33d2fa 12893 }
fe33d2fa 12894
3e6b1042
DJ
12895 /* Write out any glue sections now that we have created all the
12896 stubs. */
12897 if (globals->bfd_of_glue_owner != NULL)
12898 {
12899 if (! elf32_arm_output_glue_section (info, abfd,
12900 globals->bfd_of_glue_owner,
12901 ARM2THUMB_GLUE_SECTION_NAME))
12902 return FALSE;
12903
12904 if (! elf32_arm_output_glue_section (info, abfd,
12905 globals->bfd_of_glue_owner,
12906 THUMB2ARM_GLUE_SECTION_NAME))
12907 return FALSE;
12908
12909 if (! elf32_arm_output_glue_section (info, abfd,
12910 globals->bfd_of_glue_owner,
12911 VFP11_ERRATUM_VENEER_SECTION_NAME))
12912 return FALSE;
12913
a504d23a
LA
12914 if (! elf32_arm_output_glue_section (info, abfd,
12915 globals->bfd_of_glue_owner,
12916 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12917 return FALSE;
12918
3e6b1042
DJ
12919 if (! elf32_arm_output_glue_section (info, abfd,
12920 globals->bfd_of_glue_owner,
12921 ARM_BX_GLUE_SECTION_NAME))
12922 return FALSE;
12923 }
12924
12925 return TRUE;
12926}
12927
5968a7b8
NC
12928/* Return a best guess for the machine number based on the attributes. */
12929
12930static unsigned int
12931bfd_arm_get_mach_from_attributes (bfd * abfd)
12932{
12933 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12934
12935 switch (arch)
12936 {
12937 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12938 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12939 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12940
12941 case TAG_CPU_ARCH_V5TE:
12942 {
12943 char * name;
12944
12945 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12946 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12947
12948 if (name)
12949 {
12950 if (strcmp (name, "IWMMXT2") == 0)
12951 return bfd_mach_arm_iWMMXt2;
12952
12953 if (strcmp (name, "IWMMXT") == 0)
6034aab8 12954 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
12955
12956 if (strcmp (name, "XSCALE") == 0)
12957 {
12958 int wmmx;
12959
12960 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12961 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12962 switch (wmmx)
12963 {
12964 case 1: return bfd_mach_arm_iWMMXt;
12965 case 2: return bfd_mach_arm_iWMMXt2;
12966 default: return bfd_mach_arm_XScale;
12967 }
12968 }
5968a7b8
NC
12969 }
12970
12971 return bfd_mach_arm_5TE;
12972 }
12973
12974 default:
12975 return bfd_mach_arm_unknown;
12976 }
12977}
12978
c178919b
NC
12979/* Set the right machine number. */
12980
12981static bfd_boolean
57e8b36a 12982elf32_arm_object_p (bfd *abfd)
c178919b 12983{
5a6c6817 12984 unsigned int mach;
57e8b36a 12985
5a6c6817 12986 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 12987
5968a7b8
NC
12988 if (mach == bfd_mach_arm_unknown)
12989 {
12990 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
12991 mach = bfd_mach_arm_ep9312;
12992 else
12993 mach = bfd_arm_get_mach_from_attributes (abfd);
12994 }
c178919b 12995
5968a7b8 12996 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
12997 return TRUE;
12998}
12999
fc830a83 13000/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 13001
b34976b6 13002static bfd_boolean
57e8b36a 13003elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
13004{
13005 if (elf_flags_init (abfd)
13006 && elf_elfheader (abfd)->e_flags != flags)
13007 {
fc830a83
NC
13008 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13009 {
fd2ec330 13010 if (flags & EF_ARM_INTERWORK)
4eca0228 13011 _bfd_error_handler
d003868e
AM
13012 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
13013 abfd);
fc830a83 13014 else
d003868e
AM
13015 _bfd_error_handler
13016 (_("Warning: Clearing the interworking flag of %B due to outside request"),
13017 abfd);
fc830a83 13018 }
252b5132
RH
13019 }
13020 else
13021 {
13022 elf_elfheader (abfd)->e_flags = flags;
b34976b6 13023 elf_flags_init (abfd) = TRUE;
252b5132
RH
13024 }
13025
b34976b6 13026 return TRUE;
252b5132
RH
13027}
13028
fc830a83 13029/* Copy backend specific data from one object module to another. */
9b485d32 13030
b34976b6 13031static bfd_boolean
57e8b36a 13032elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
13033{
13034 flagword in_flags;
13035 flagword out_flags;
13036
0ffa91dd 13037 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 13038 return TRUE;
252b5132 13039
fc830a83 13040 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
13041 out_flags = elf_elfheader (obfd)->e_flags;
13042
fc830a83
NC
13043 if (elf_flags_init (obfd)
13044 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13045 && in_flags != out_flags)
252b5132 13046 {
252b5132 13047 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 13048 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 13049 return FALSE;
252b5132
RH
13050
13051 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 13052 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 13053 return FALSE;
252b5132
RH
13054
13055 /* If the src and dest have different interworking flags
99059e56 13056 then turn off the interworking bit. */
fd2ec330 13057 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 13058 {
fd2ec330 13059 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
13060 _bfd_error_handler
13061 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13062 obfd, ibfd);
252b5132 13063
fd2ec330 13064 in_flags &= ~EF_ARM_INTERWORK;
252b5132 13065 }
1006ba19
PB
13066
13067 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
13068 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13069 in_flags &= ~EF_ARM_PIC;
252b5132
RH
13070 }
13071
13072 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 13073 elf_flags_init (obfd) = TRUE;
252b5132 13074
e2349352 13075 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
13076}
13077
13078/* Values for Tag_ABI_PCS_R9_use. */
13079enum
13080{
13081 AEABI_R9_V6,
13082 AEABI_R9_SB,
13083 AEABI_R9_TLS,
13084 AEABI_R9_unused
13085};
13086
13087/* Values for Tag_ABI_PCS_RW_data. */
13088enum
13089{
13090 AEABI_PCS_RW_data_absolute,
13091 AEABI_PCS_RW_data_PCrel,
13092 AEABI_PCS_RW_data_SBrel,
13093 AEABI_PCS_RW_data_unused
13094};
13095
13096/* Values for Tag_ABI_enum_size. */
13097enum
13098{
13099 AEABI_enum_unused,
13100 AEABI_enum_short,
13101 AEABI_enum_wide,
13102 AEABI_enum_forced_wide
13103};
13104
104d59d1
JM
13105/* Determine whether an object attribute tag takes an integer, a
13106 string or both. */
906e58ca 13107
104d59d1
JM
13108static int
13109elf32_arm_obj_attrs_arg_type (int tag)
13110{
13111 if (tag == Tag_compatibility)
3483fe2e 13112 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 13113 else if (tag == Tag_nodefaults)
3483fe2e
AS
13114 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13115 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13116 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 13117 else if (tag < 32)
3483fe2e 13118 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 13119 else
3483fe2e 13120 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
13121}
13122
5aa6ff7c
AS
13123/* The ABI defines that Tag_conformance should be emitted first, and that
13124 Tag_nodefaults should be second (if either is defined). This sets those
13125 two positions, and bumps up the position of all the remaining tags to
13126 compensate. */
13127static int
13128elf32_arm_obj_attrs_order (int num)
13129{
3de4a297 13130 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 13131 return Tag_conformance;
3de4a297 13132 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
13133 return Tag_nodefaults;
13134 if ((num - 2) < Tag_nodefaults)
13135 return num - 2;
13136 if ((num - 1) < Tag_conformance)
13137 return num - 1;
13138 return num;
13139}
13140
e8b36cd1
JM
13141/* Attribute numbers >=64 (mod 128) can be safely ignored. */
13142static bfd_boolean
13143elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13144{
13145 if ((tag & 127) < 64)
13146 {
13147 _bfd_error_handler
13148 (_("%B: Unknown mandatory EABI object attribute %d"),
13149 abfd, tag);
13150 bfd_set_error (bfd_error_bad_value);
13151 return FALSE;
13152 }
13153 else
13154 {
13155 _bfd_error_handler
13156 (_("Warning: %B: Unknown EABI object attribute %d"),
13157 abfd, tag);
13158 return TRUE;
13159 }
13160}
13161
91e22acd
AS
13162/* Read the architecture from the Tag_also_compatible_with attribute, if any.
13163 Returns -1 if no architecture could be read. */
13164
13165static int
13166get_secondary_compatible_arch (bfd *abfd)
13167{
13168 obj_attribute *attr =
13169 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13170
13171 /* Note: the tag and its argument below are uleb128 values, though
13172 currently-defined values fit in one byte for each. */
13173 if (attr->s
13174 && attr->s[0] == Tag_CPU_arch
13175 && (attr->s[1] & 128) != 128
13176 && attr->s[2] == 0)
13177 return attr->s[1];
13178
13179 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13180 return -1;
13181}
13182
13183/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13184 The tag is removed if ARCH is -1. */
13185
8e79c3df 13186static void
91e22acd 13187set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 13188{
91e22acd
AS
13189 obj_attribute *attr =
13190 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 13191
91e22acd
AS
13192 if (arch == -1)
13193 {
13194 attr->s = NULL;
13195 return;
8e79c3df 13196 }
91e22acd
AS
13197
13198 /* Note: the tag and its argument below are uleb128 values, though
13199 currently-defined values fit in one byte for each. */
13200 if (!attr->s)
21d799b5 13201 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
13202 attr->s[0] = Tag_CPU_arch;
13203 attr->s[1] = arch;
13204 attr->s[2] = '\0';
8e79c3df
CM
13205}
13206
91e22acd
AS
13207/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13208 into account. */
13209
13210static int
13211tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13212 int newtag, int secondary_compat)
8e79c3df 13213{
91e22acd
AS
13214#define T(X) TAG_CPU_ARCH_##X
13215 int tagl, tagh, result;
13216 const int v6t2[] =
13217 {
13218 T(V6T2), /* PRE_V4. */
13219 T(V6T2), /* V4. */
13220 T(V6T2), /* V4T. */
13221 T(V6T2), /* V5T. */
13222 T(V6T2), /* V5TE. */
13223 T(V6T2), /* V5TEJ. */
13224 T(V6T2), /* V6. */
13225 T(V7), /* V6KZ. */
13226 T(V6T2) /* V6T2. */
13227 };
13228 const int v6k[] =
13229 {
13230 T(V6K), /* PRE_V4. */
13231 T(V6K), /* V4. */
13232 T(V6K), /* V4T. */
13233 T(V6K), /* V5T. */
13234 T(V6K), /* V5TE. */
13235 T(V6K), /* V5TEJ. */
13236 T(V6K), /* V6. */
13237 T(V6KZ), /* V6KZ. */
13238 T(V7), /* V6T2. */
13239 T(V6K) /* V6K. */
13240 };
13241 const int v7[] =
13242 {
13243 T(V7), /* PRE_V4. */
13244 T(V7), /* V4. */
13245 T(V7), /* V4T. */
13246 T(V7), /* V5T. */
13247 T(V7), /* V5TE. */
13248 T(V7), /* V5TEJ. */
13249 T(V7), /* V6. */
13250 T(V7), /* V6KZ. */
13251 T(V7), /* V6T2. */
13252 T(V7), /* V6K. */
13253 T(V7) /* V7. */
13254 };
13255 const int v6_m[] =
13256 {
13257 -1, /* PRE_V4. */
13258 -1, /* V4. */
13259 T(V6K), /* V4T. */
13260 T(V6K), /* V5T. */
13261 T(V6K), /* V5TE. */
13262 T(V6K), /* V5TEJ. */
13263 T(V6K), /* V6. */
13264 T(V6KZ), /* V6KZ. */
13265 T(V7), /* V6T2. */
13266 T(V6K), /* V6K. */
13267 T(V7), /* V7. */
13268 T(V6_M) /* V6_M. */
13269 };
13270 const int v6s_m[] =
13271 {
13272 -1, /* PRE_V4. */
13273 -1, /* V4. */
13274 T(V6K), /* V4T. */
13275 T(V6K), /* V5T. */
13276 T(V6K), /* V5TE. */
13277 T(V6K), /* V5TEJ. */
13278 T(V6K), /* V6. */
13279 T(V6KZ), /* V6KZ. */
13280 T(V7), /* V6T2. */
13281 T(V6K), /* V6K. */
13282 T(V7), /* V7. */
13283 T(V6S_M), /* V6_M. */
13284 T(V6S_M) /* V6S_M. */
13285 };
9e3c6df6
PB
13286 const int v7e_m[] =
13287 {
13288 -1, /* PRE_V4. */
13289 -1, /* V4. */
13290 T(V7E_M), /* V4T. */
13291 T(V7E_M), /* V5T. */
13292 T(V7E_M), /* V5TE. */
13293 T(V7E_M), /* V5TEJ. */
13294 T(V7E_M), /* V6. */
13295 T(V7E_M), /* V6KZ. */
13296 T(V7E_M), /* V6T2. */
13297 T(V7E_M), /* V6K. */
13298 T(V7E_M), /* V7. */
13299 T(V7E_M), /* V6_M. */
13300 T(V7E_M), /* V6S_M. */
13301 T(V7E_M) /* V7E_M. */
13302 };
bca38921
MGD
13303 const int v8[] =
13304 {
13305 T(V8), /* PRE_V4. */
13306 T(V8), /* V4. */
13307 T(V8), /* V4T. */
13308 T(V8), /* V5T. */
13309 T(V8), /* V5TE. */
13310 T(V8), /* V5TEJ. */
13311 T(V8), /* V6. */
13312 T(V8), /* V6KZ. */
13313 T(V8), /* V6T2. */
13314 T(V8), /* V6K. */
13315 T(V8), /* V7. */
13316 T(V8), /* V6_M. */
13317 T(V8), /* V6S_M. */
13318 T(V8), /* V7E_M. */
13319 T(V8) /* V8. */
13320 };
2fd158eb
TP
13321 const int v8m_baseline[] =
13322 {
13323 -1, /* PRE_V4. */
13324 -1, /* V4. */
13325 -1, /* V4T. */
13326 -1, /* V5T. */
13327 -1, /* V5TE. */
13328 -1, /* V5TEJ. */
13329 -1, /* V6. */
13330 -1, /* V6KZ. */
13331 -1, /* V6T2. */
13332 -1, /* V6K. */
13333 -1, /* V7. */
13334 T(V8M_BASE), /* V6_M. */
13335 T(V8M_BASE), /* V6S_M. */
13336 -1, /* V7E_M. */
13337 -1, /* V8. */
13338 -1,
13339 T(V8M_BASE) /* V8-M BASELINE. */
13340 };
13341 const int v8m_mainline[] =
13342 {
13343 -1, /* PRE_V4. */
13344 -1, /* V4. */
13345 -1, /* V4T. */
13346 -1, /* V5T. */
13347 -1, /* V5TE. */
13348 -1, /* V5TEJ. */
13349 -1, /* V6. */
13350 -1, /* V6KZ. */
13351 -1, /* V6T2. */
13352 -1, /* V6K. */
13353 T(V8M_MAIN), /* V7. */
13354 T(V8M_MAIN), /* V6_M. */
13355 T(V8M_MAIN), /* V6S_M. */
13356 T(V8M_MAIN), /* V7E_M. */
13357 -1, /* V8. */
13358 -1,
13359 T(V8M_MAIN), /* V8-M BASELINE. */
13360 T(V8M_MAIN) /* V8-M MAINLINE. */
13361 };
91e22acd
AS
13362 const int v4t_plus_v6_m[] =
13363 {
13364 -1, /* PRE_V4. */
13365 -1, /* V4. */
13366 T(V4T), /* V4T. */
13367 T(V5T), /* V5T. */
13368 T(V5TE), /* V5TE. */
13369 T(V5TEJ), /* V5TEJ. */
13370 T(V6), /* V6. */
13371 T(V6KZ), /* V6KZ. */
13372 T(V6T2), /* V6T2. */
13373 T(V6K), /* V6K. */
13374 T(V7), /* V7. */
13375 T(V6_M), /* V6_M. */
13376 T(V6S_M), /* V6S_M. */
9e3c6df6 13377 T(V7E_M), /* V7E_M. */
bca38921 13378 T(V8), /* V8. */
4ed7ed8d 13379 -1, /* Unused. */
2fd158eb
TP
13380 T(V8M_BASE), /* V8-M BASELINE. */
13381 T(V8M_MAIN), /* V8-M MAINLINE. */
91e22acd
AS
13382 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13383 };
13384 const int *comb[] =
13385 {
13386 v6t2,
13387 v6k,
13388 v7,
13389 v6_m,
13390 v6s_m,
9e3c6df6 13391 v7e_m,
bca38921 13392 v8,
4ed7ed8d 13393 NULL,
2fd158eb
TP
13394 v8m_baseline,
13395 v8m_mainline,
91e22acd
AS
13396 /* Pseudo-architecture. */
13397 v4t_plus_v6_m
13398 };
13399
13400 /* Check we've not got a higher architecture than we know about. */
13401
9e3c6df6 13402 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 13403 {
3895f852 13404 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
13405 return -1;
13406 }
13407
13408 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13409
13410 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13411 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13412 oldtag = T(V4T_PLUS_V6_M);
13413
13414 /* And override the new tag if we have a Tag_also_compatible_with on the
13415 input. */
13416
13417 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13418 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13419 newtag = T(V4T_PLUS_V6_M);
13420
13421 tagl = (oldtag < newtag) ? oldtag : newtag;
13422 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13423
13424 /* Architectures before V6KZ add features monotonically. */
13425 if (tagh <= TAG_CPU_ARCH_V6KZ)
13426 return result;
13427
4ed7ed8d 13428 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
91e22acd
AS
13429
13430 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13431 as the canonical version. */
13432 if (result == T(V4T_PLUS_V6_M))
13433 {
13434 result = T(V4T);
13435 *secondary_compat_out = T(V6_M);
13436 }
13437 else
13438 *secondary_compat_out = -1;
13439
13440 if (result == -1)
13441 {
3895f852 13442 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
13443 ibfd, oldtag, newtag);
13444 return -1;
13445 }
13446
13447 return result;
13448#undef T
8e79c3df
CM
13449}
13450
ac56ee8f
MGD
13451/* Query attributes object to see if integer divide instructions may be
13452 present in an object. */
13453static bfd_boolean
13454elf32_arm_attributes_accept_div (const obj_attribute *attr)
13455{
13456 int arch = attr[Tag_CPU_arch].i;
13457 int profile = attr[Tag_CPU_arch_profile].i;
13458
13459 switch (attr[Tag_DIV_use].i)
13460 {
13461 case 0:
13462 /* Integer divide allowed if instruction contained in archetecture. */
13463 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13464 return TRUE;
13465 else if (arch >= TAG_CPU_ARCH_V7E_M)
13466 return TRUE;
13467 else
13468 return FALSE;
13469
13470 case 1:
13471 /* Integer divide explicitly prohibited. */
13472 return FALSE;
13473
13474 default:
13475 /* Unrecognised case - treat as allowing divide everywhere. */
13476 case 2:
13477 /* Integer divide allowed in ARM state. */
13478 return TRUE;
13479 }
13480}
13481
13482/* Query attributes object to see if integer divide instructions are
13483 forbidden to be in the object. This is not the inverse of
13484 elf32_arm_attributes_accept_div. */
13485static bfd_boolean
13486elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13487{
13488 return attr[Tag_DIV_use].i == 1;
13489}
13490
ee065d83
PB
13491/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13492 are conflicting attributes. */
906e58ca 13493
ee065d83 13494static bfd_boolean
50e03d47 13495elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
ee065d83 13496{
50e03d47 13497 bfd *obfd = info->output_bfd;
104d59d1
JM
13498 obj_attribute *in_attr;
13499 obj_attribute *out_attr;
ee065d83
PB
13500 /* Some tags have 0 = don't care, 1 = strong requirement,
13501 2 = weak requirement. */
91e22acd 13502 static const int order_021[3] = {0, 2, 1};
ee065d83 13503 int i;
91e22acd 13504 bfd_boolean result = TRUE;
9274e9de 13505 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 13506
3e6b1042
DJ
13507 /* Skip the linker stubs file. This preserves previous behavior
13508 of accepting unknown attributes in the first input file - but
13509 is that a bug? */
13510 if (ibfd->flags & BFD_LINKER_CREATED)
13511 return TRUE;
13512
9274e9de
TG
13513 /* Skip any input that hasn't attribute section.
13514 This enables to link object files without attribute section with
13515 any others. */
13516 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13517 return TRUE;
13518
104d59d1 13519 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
13520 {
13521 /* This is the first object. Copy the attributes. */
104d59d1 13522 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 13523
cd21e546
MGD
13524 out_attr = elf_known_obj_attributes_proc (obfd);
13525
004ae526
PB
13526 /* Use the Tag_null value to indicate the attributes have been
13527 initialized. */
cd21e546 13528 out_attr[0].i = 1;
004ae526 13529
cd21e546
MGD
13530 /* We do not output objects with Tag_MPextension_use_legacy - we move
13531 the attribute's value to Tag_MPextension_use. */
13532 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13533 {
13534 if (out_attr[Tag_MPextension_use].i != 0
13535 && out_attr[Tag_MPextension_use_legacy].i
99059e56 13536 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
13537 {
13538 _bfd_error_handler
13539 (_("Error: %B has both the current and legacy "
13540 "Tag_MPextension_use attributes"), ibfd);
13541 result = FALSE;
13542 }
13543
13544 out_attr[Tag_MPextension_use] =
13545 out_attr[Tag_MPextension_use_legacy];
13546 out_attr[Tag_MPextension_use_legacy].type = 0;
13547 out_attr[Tag_MPextension_use_legacy].i = 0;
13548 }
13549
13550 return result;
ee065d83
PB
13551 }
13552
104d59d1
JM
13553 in_attr = elf_known_obj_attributes_proc (ibfd);
13554 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
13555 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13556 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13557 {
5c294fee
TG
13558 /* Ignore mismatches if the object doesn't use floating point or is
13559 floating point ABI independent. */
13560 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13561 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13562 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 13563 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
13564 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13565 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
13566 {
13567 _bfd_error_handler
3895f852 13568 (_("error: %B uses VFP register arguments, %B does not"),
deddc40b
NS
13569 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13570 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 13571 result = FALSE;
ee065d83
PB
13572 }
13573 }
13574
3de4a297 13575 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
13576 {
13577 /* Merge this attribute with existing attributes. */
13578 switch (i)
13579 {
13580 case Tag_CPU_raw_name:
13581 case Tag_CPU_name:
6a631e86 13582 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
13583 break;
13584
13585 case Tag_ABI_optimization_goals:
13586 case Tag_ABI_FP_optimization_goals:
13587 /* Use the first value seen. */
13588 break;
13589
13590 case Tag_CPU_arch:
91e22acd
AS
13591 {
13592 int secondary_compat = -1, secondary_compat_out = -1;
13593 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
13594 int arch_attr;
13595 static const char *name_table[] =
13596 {
91e22acd
AS
13597 /* These aren't real CPU names, but we can't guess
13598 that from the architecture version alone. */
13599 "Pre v4",
13600 "ARM v4",
13601 "ARM v4T",
13602 "ARM v5T",
13603 "ARM v5TE",
13604 "ARM v5TEJ",
13605 "ARM v6",
13606 "ARM v6KZ",
13607 "ARM v6T2",
13608 "ARM v6K",
13609 "ARM v7",
13610 "ARM v6-M",
bca38921 13611 "ARM v6S-M",
2fd158eb
TP
13612 "ARM v8",
13613 "",
13614 "ARM v8-M.baseline",
13615 "ARM v8-M.mainline",
91e22acd
AS
13616 };
13617
13618 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13619 secondary_compat = get_secondary_compatible_arch (ibfd);
13620 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
13621 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13622 &secondary_compat_out,
13623 in_attr[i].i,
13624 secondary_compat);
13625
13626 /* Return with error if failed to merge. */
13627 if (arch_attr == -1)
13628 return FALSE;
13629
13630 out_attr[i].i = arch_attr;
13631
91e22acd
AS
13632 set_secondary_compatible_arch (obfd, secondary_compat_out);
13633
13634 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13635 if (out_attr[i].i == saved_out_attr)
13636 ; /* Leave the names alone. */
13637 else if (out_attr[i].i == in_attr[i].i)
13638 {
13639 /* The output architecture has been changed to match the
13640 input architecture. Use the input names. */
13641 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13642 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13643 : NULL;
13644 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13645 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13646 : NULL;
13647 }
13648 else
13649 {
13650 out_attr[Tag_CPU_name].s = NULL;
13651 out_attr[Tag_CPU_raw_name].s = NULL;
13652 }
13653
13654 /* If we still don't have a value for Tag_CPU_name,
13655 make one up now. Tag_CPU_raw_name remains blank. */
13656 if (out_attr[Tag_CPU_name].s == NULL
13657 && out_attr[i].i < ARRAY_SIZE (name_table))
13658 out_attr[Tag_CPU_name].s =
13659 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13660 }
13661 break;
13662
ee065d83
PB
13663 case Tag_ARM_ISA_use:
13664 case Tag_THUMB_ISA_use:
ee065d83 13665 case Tag_WMMX_arch:
91e22acd
AS
13666 case Tag_Advanced_SIMD_arch:
13667 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 13668 case Tag_ABI_FP_rounding:
ee065d83
PB
13669 case Tag_ABI_FP_exceptions:
13670 case Tag_ABI_FP_user_exceptions:
13671 case Tag_ABI_FP_number_model:
75375b3e 13672 case Tag_FP_HP_extension:
91e22acd
AS
13673 case Tag_CPU_unaligned_access:
13674 case Tag_T2EE_use:
91e22acd 13675 case Tag_MPextension_use:
ee065d83
PB
13676 /* Use the largest value specified. */
13677 if (in_attr[i].i > out_attr[i].i)
13678 out_attr[i].i = in_attr[i].i;
13679 break;
13680
75375b3e 13681 case Tag_ABI_align_preserved:
91e22acd
AS
13682 case Tag_ABI_PCS_RO_data:
13683 /* Use the smallest value specified. */
13684 if (in_attr[i].i < out_attr[i].i)
13685 out_attr[i].i = in_attr[i].i;
13686 break;
13687
75375b3e 13688 case Tag_ABI_align_needed:
91e22acd 13689 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
13690 && (in_attr[Tag_ABI_align_preserved].i == 0
13691 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 13692 {
91e22acd
AS
13693 /* This error message should be enabled once all non-conformant
13694 binaries in the toolchain have had the attributes set
13695 properly.
ee065d83 13696 _bfd_error_handler
3895f852 13697 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
13698 obfd, ibfd);
13699 result = FALSE; */
ee065d83 13700 }
91e22acd
AS
13701 /* Fall through. */
13702 case Tag_ABI_FP_denormal:
13703 case Tag_ABI_PCS_GOT_use:
13704 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13705 value if greater than 2 (for future-proofing). */
13706 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13707 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13708 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
13709 out_attr[i].i = in_attr[i].i;
13710 break;
91e22acd 13711
75375b3e
MGD
13712 case Tag_Virtualization_use:
13713 /* The virtualization tag effectively stores two bits of
13714 information: the intended use of TrustZone (in bit 0), and the
13715 intended use of Virtualization (in bit 1). */
13716 if (out_attr[i].i == 0)
13717 out_attr[i].i = in_attr[i].i;
13718 else if (in_attr[i].i != 0
13719 && in_attr[i].i != out_attr[i].i)
13720 {
13721 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13722 out_attr[i].i = 3;
13723 else
13724 {
13725 _bfd_error_handler
13726 (_("error: %B: unable to merge virtualization attributes "
13727 "with %B"),
13728 obfd, ibfd);
13729 result = FALSE;
13730 }
13731 }
13732 break;
91e22acd
AS
13733
13734 case Tag_CPU_arch_profile:
13735 if (out_attr[i].i != in_attr[i].i)
13736 {
13737 /* 0 will merge with anything.
13738 'A' and 'S' merge to 'A'.
13739 'R' and 'S' merge to 'R'.
99059e56 13740 'M' and 'A|R|S' is an error. */
91e22acd
AS
13741 if (out_attr[i].i == 0
13742 || (out_attr[i].i == 'S'
13743 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13744 out_attr[i].i = in_attr[i].i;
13745 else if (in_attr[i].i == 0
13746 || (in_attr[i].i == 'S'
13747 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 13748 ; /* Do nothing. */
91e22acd
AS
13749 else
13750 {
13751 _bfd_error_handler
3895f852 13752 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
13753 ibfd,
13754 in_attr[i].i ? in_attr[i].i : '0',
13755 out_attr[i].i ? out_attr[i].i : '0');
13756 result = FALSE;
13757 }
13758 }
13759 break;
15afaa63
TP
13760
13761 case Tag_DSP_extension:
13762 /* No need to change output value if any of:
13763 - pre (<=) ARMv5T input architecture (do not have DSP)
13764 - M input profile not ARMv7E-M and do not have DSP. */
13765 if (in_attr[Tag_CPU_arch].i <= 3
13766 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13767 && in_attr[Tag_CPU_arch].i != 13
13768 && in_attr[i].i == 0))
13769 ; /* Do nothing. */
13770 /* Output value should be 0 if DSP part of architecture, ie.
13771 - post (>=) ARMv5te architecture output
13772 - A, R or S profile output or ARMv7E-M output architecture. */
13773 else if (out_attr[Tag_CPU_arch].i >= 4
13774 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13775 || out_attr[Tag_CPU_arch_profile].i == 'R'
13776 || out_attr[Tag_CPU_arch_profile].i == 'S'
13777 || out_attr[Tag_CPU_arch].i == 13))
13778 out_attr[i].i = 0;
13779 /* Otherwise, DSP instructions are added and not part of output
13780 architecture. */
13781 else
13782 out_attr[i].i = 1;
13783 break;
13784
75375b3e 13785 case Tag_FP_arch:
62f3b8c8 13786 {
4547cb56
NC
13787 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13788 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13789 when it's 0. It might mean absence of FP hardware if
99654aaf 13790 Tag_FP_arch is zero. */
4547cb56 13791
a715796b 13792#define VFP_VERSION_COUNT 9
62f3b8c8
PB
13793 static const struct
13794 {
13795 int ver;
13796 int regs;
bca38921 13797 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
13798 {
13799 {0, 0},
13800 {1, 16},
13801 {2, 16},
13802 {3, 32},
13803 {3, 16},
13804 {4, 32},
bca38921 13805 {4, 16},
a715796b
TG
13806 {8, 32},
13807 {8, 16}
62f3b8c8
PB
13808 };
13809 int ver;
13810 int regs;
13811 int newval;
13812
4547cb56
NC
13813 /* If the output has no requirement about FP hardware,
13814 follow the requirement of the input. */
13815 if (out_attr[i].i == 0)
13816 {
13817 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13818 out_attr[i].i = in_attr[i].i;
13819 out_attr[Tag_ABI_HardFP_use].i
13820 = in_attr[Tag_ABI_HardFP_use].i;
13821 break;
13822 }
13823 /* If the input has no requirement about FP hardware, do
13824 nothing. */
13825 else if (in_attr[i].i == 0)
13826 {
13827 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13828 break;
13829 }
13830
13831 /* Both the input and the output have nonzero Tag_FP_arch.
99654aaf 13832 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
4547cb56
NC
13833
13834 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13835 do nothing. */
13836 if (in_attr[Tag_ABI_HardFP_use].i == 0
13837 && out_attr[Tag_ABI_HardFP_use].i == 0)
13838 ;
13839 /* If the input and the output have different Tag_ABI_HardFP_use,
99654aaf 13840 the combination of them is 0 (implied by Tag_FP_arch). */
4547cb56
NC
13841 else if (in_attr[Tag_ABI_HardFP_use].i
13842 != out_attr[Tag_ABI_HardFP_use].i)
99654aaf 13843 out_attr[Tag_ABI_HardFP_use].i = 0;
4547cb56
NC
13844
13845 /* Now we can handle Tag_FP_arch. */
13846
bca38921
MGD
13847 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13848 pick the biggest. */
13849 if (in_attr[i].i >= VFP_VERSION_COUNT
13850 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
13851 {
13852 out_attr[i] = in_attr[i];
13853 break;
13854 }
13855 /* The output uses the superset of input features
13856 (ISA version) and registers. */
13857 ver = vfp_versions[in_attr[i].i].ver;
13858 if (ver < vfp_versions[out_attr[i].i].ver)
13859 ver = vfp_versions[out_attr[i].i].ver;
13860 regs = vfp_versions[in_attr[i].i].regs;
13861 if (regs < vfp_versions[out_attr[i].i].regs)
13862 regs = vfp_versions[out_attr[i].i].regs;
13863 /* This assumes all possible supersets are also a valid
99059e56 13864 options. */
bca38921 13865 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
13866 {
13867 if (regs == vfp_versions[newval].regs
13868 && ver == vfp_versions[newval].ver)
13869 break;
13870 }
13871 out_attr[i].i = newval;
13872 }
b1cc4aeb 13873 break;
ee065d83
PB
13874 case Tag_PCS_config:
13875 if (out_attr[i].i == 0)
13876 out_attr[i].i = in_attr[i].i;
b6009aca 13877 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
13878 {
13879 /* It's sometimes ok to mix different configs, so this is only
99059e56 13880 a warning. */
ee065d83
PB
13881 _bfd_error_handler
13882 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13883 }
13884 break;
13885 case Tag_ABI_PCS_R9_use:
004ae526
PB
13886 if (in_attr[i].i != out_attr[i].i
13887 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
13888 && in_attr[i].i != AEABI_R9_unused)
13889 {
13890 _bfd_error_handler
3895f852 13891 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 13892 result = FALSE;
ee065d83
PB
13893 }
13894 if (out_attr[i].i == AEABI_R9_unused)
13895 out_attr[i].i = in_attr[i].i;
13896 break;
13897 case Tag_ABI_PCS_RW_data:
13898 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13899 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13900 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13901 {
13902 _bfd_error_handler
3895f852 13903 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 13904 ibfd);
91e22acd 13905 result = FALSE;
ee065d83
PB
13906 }
13907 /* Use the smallest value specified. */
13908 if (in_attr[i].i < out_attr[i].i)
13909 out_attr[i].i = in_attr[i].i;
13910 break;
ee065d83 13911 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
13912 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13913 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
13914 {
13915 _bfd_error_handler
a9dc9481
JM
13916 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13917 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 13918 }
a9dc9481 13919 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
13920 out_attr[i].i = in_attr[i].i;
13921 break;
ee065d83
PB
13922 case Tag_ABI_enum_size:
13923 if (in_attr[i].i != AEABI_enum_unused)
13924 {
13925 if (out_attr[i].i == AEABI_enum_unused
13926 || out_attr[i].i == AEABI_enum_forced_wide)
13927 {
13928 /* The existing object is compatible with anything.
13929 Use whatever requirements the new object has. */
13930 out_attr[i].i = in_attr[i].i;
13931 }
13932 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 13933 && out_attr[i].i != in_attr[i].i
0ffa91dd 13934 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 13935 {
91e22acd 13936 static const char *aeabi_enum_names[] =
bf21ed78 13937 { "", "variable-size", "32-bit", "" };
91e22acd
AS
13938 const char *in_name =
13939 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13940 ? aeabi_enum_names[in_attr[i].i]
13941 : "<unknown>";
13942 const char *out_name =
13943 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13944 ? aeabi_enum_names[out_attr[i].i]
13945 : "<unknown>";
ee065d83 13946 _bfd_error_handler
bf21ed78 13947 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 13948 ibfd, in_name, out_name);
ee065d83
PB
13949 }
13950 }
13951 break;
13952 case Tag_ABI_VFP_args:
13953 /* Aready done. */
13954 break;
13955 case Tag_ABI_WMMX_args:
13956 if (in_attr[i].i != out_attr[i].i)
13957 {
13958 _bfd_error_handler
3895f852 13959 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 13960 ibfd, obfd);
91e22acd 13961 result = FALSE;
ee065d83
PB
13962 }
13963 break;
7b86a9fa
AS
13964 case Tag_compatibility:
13965 /* Merged in target-independent code. */
13966 break;
91e22acd 13967 case Tag_ABI_HardFP_use:
4547cb56 13968 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
13969 break;
13970 case Tag_ABI_FP_16bit_format:
13971 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13972 {
13973 if (in_attr[i].i != out_attr[i].i)
13974 {
13975 _bfd_error_handler
3895f852 13976 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
13977 ibfd, obfd);
13978 result = FALSE;
13979 }
13980 }
13981 if (in_attr[i].i != 0)
13982 out_attr[i].i = in_attr[i].i;
13983 break;
7b86a9fa 13984
cd21e546 13985 case Tag_DIV_use:
ac56ee8f
MGD
13986 /* A value of zero on input means that the divide instruction may
13987 be used if available in the base architecture as specified via
13988 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13989 the user did not want divide instructions. A value of 2
13990 explicitly means that divide instructions were allowed in ARM
13991 and Thumb state. */
13992 if (in_attr[i].i == out_attr[i].i)
13993 /* Do nothing. */ ;
13994 else if (elf32_arm_attributes_forbid_div (in_attr)
13995 && !elf32_arm_attributes_accept_div (out_attr))
13996 out_attr[i].i = 1;
13997 else if (elf32_arm_attributes_forbid_div (out_attr)
13998 && elf32_arm_attributes_accept_div (in_attr))
13999 out_attr[i].i = in_attr[i].i;
14000 else if (in_attr[i].i == 2)
14001 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
14002 break;
14003
14004 case Tag_MPextension_use_legacy:
14005 /* We don't output objects with Tag_MPextension_use_legacy - we
14006 move the value to Tag_MPextension_use. */
14007 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14008 {
14009 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14010 {
14011 _bfd_error_handler
14012 (_("%B has has both the current and legacy "
b38cadfb 14013 "Tag_MPextension_use attributes"),
cd21e546
MGD
14014 ibfd);
14015 result = FALSE;
14016 }
14017 }
14018
14019 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14020 out_attr[Tag_MPextension_use] = in_attr[i];
14021
14022 break;
14023
91e22acd 14024 case Tag_nodefaults:
2d0bb761
AS
14025 /* This tag is set if it exists, but the value is unused (and is
14026 typically zero). We don't actually need to do anything here -
14027 the merge happens automatically when the type flags are merged
14028 below. */
91e22acd
AS
14029 break;
14030 case Tag_also_compatible_with:
14031 /* Already done in Tag_CPU_arch. */
14032 break;
14033 case Tag_conformance:
14034 /* Keep the attribute if it matches. Throw it away otherwise.
14035 No attribute means no claim to conform. */
14036 if (!in_attr[i].s || !out_attr[i].s
14037 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14038 out_attr[i].s = NULL;
14039 break;
3cfad14c 14040
91e22acd 14041 default:
e8b36cd1
JM
14042 result
14043 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
14044 }
14045
14046 /* If out_attr was copied from in_attr then it won't have a type yet. */
14047 if (in_attr[i].type && !out_attr[i].type)
14048 out_attr[i].type = in_attr[i].type;
ee065d83
PB
14049 }
14050
104d59d1 14051 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 14052 if (!_bfd_elf_merge_object_attributes (ibfd, info))
5488d830 14053 return FALSE;
ee065d83 14054
104d59d1 14055 /* Check for any attributes not known on ARM. */
e8b36cd1 14056 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 14057
91e22acd 14058 return result;
252b5132
RH
14059}
14060
3a4a14e9
PB
14061
14062/* Return TRUE if the two EABI versions are incompatible. */
14063
14064static bfd_boolean
14065elf32_arm_versions_compatible (unsigned iver, unsigned over)
14066{
14067 /* v4 and v5 are the same spec before and after it was released,
14068 so allow mixing them. */
14069 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14070 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14071 return TRUE;
14072
14073 return (iver == over);
14074}
14075
252b5132
RH
14076/* Merge backend specific data from an object file to the output
14077 object file when linking. */
9b485d32 14078
b34976b6 14079static bfd_boolean
50e03d47 14080elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
252b5132 14081
9b485d32
NC
14082/* Display the flags field. */
14083
b34976b6 14084static bfd_boolean
57e8b36a 14085elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 14086{
fc830a83
NC
14087 FILE * file = (FILE *) ptr;
14088 unsigned long flags;
252b5132
RH
14089
14090 BFD_ASSERT (abfd != NULL && ptr != NULL);
14091
14092 /* Print normal ELF private data. */
14093 _bfd_elf_print_private_bfd_data (abfd, ptr);
14094
fc830a83 14095 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
14096 /* Ignore init flag - it may not be set, despite the flags field
14097 containing valid data. */
252b5132
RH
14098
14099 /* xgettext:c-format */
9b485d32 14100 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 14101
fc830a83
NC
14102 switch (EF_ARM_EABI_VERSION (flags))
14103 {
14104 case EF_ARM_EABI_UNKNOWN:
4cc11e76 14105 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
14106 official ARM ELF extended ABI. Hence they are only decoded if
14107 the EABI version is not set. */
fd2ec330 14108 if (flags & EF_ARM_INTERWORK)
9b485d32 14109 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 14110
fd2ec330 14111 if (flags & EF_ARM_APCS_26)
6c571f00 14112 fprintf (file, " [APCS-26]");
fc830a83 14113 else
6c571f00 14114 fprintf (file, " [APCS-32]");
9a5aca8c 14115
96a846ea
RE
14116 if (flags & EF_ARM_VFP_FLOAT)
14117 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
14118 else if (flags & EF_ARM_MAVERICK_FLOAT)
14119 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
14120 else
14121 fprintf (file, _(" [FPA float format]"));
14122
fd2ec330 14123 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 14124 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 14125
fd2ec330 14126 if (flags & EF_ARM_PIC)
9b485d32 14127 fprintf (file, _(" [position independent]"));
fc830a83 14128
fd2ec330 14129 if (flags & EF_ARM_NEW_ABI)
9b485d32 14130 fprintf (file, _(" [new ABI]"));
9a5aca8c 14131
fd2ec330 14132 if (flags & EF_ARM_OLD_ABI)
9b485d32 14133 fprintf (file, _(" [old ABI]"));
9a5aca8c 14134
fd2ec330 14135 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 14136 fprintf (file, _(" [software FP]"));
9a5aca8c 14137
96a846ea
RE
14138 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14139 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
14140 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14141 | EF_ARM_MAVERICK_FLOAT);
fc830a83 14142 break;
9a5aca8c 14143
fc830a83 14144 case EF_ARM_EABI_VER1:
9b485d32 14145 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 14146
fc830a83 14147 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 14148 fprintf (file, _(" [sorted symbol table]"));
fc830a83 14149 else
9b485d32 14150 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 14151
fc830a83
NC
14152 flags &= ~ EF_ARM_SYMSARESORTED;
14153 break;
9a5aca8c 14154
fd2ec330
PB
14155 case EF_ARM_EABI_VER2:
14156 fprintf (file, _(" [Version2 EABI]"));
14157
14158 if (flags & EF_ARM_SYMSARESORTED)
14159 fprintf (file, _(" [sorted symbol table]"));
14160 else
14161 fprintf (file, _(" [unsorted symbol table]"));
14162
14163 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14164 fprintf (file, _(" [dynamic symbols use segment index]"));
14165
14166 if (flags & EF_ARM_MAPSYMSFIRST)
14167 fprintf (file, _(" [mapping symbols precede others]"));
14168
99e4ae17 14169 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
14170 | EF_ARM_MAPSYMSFIRST);
14171 break;
14172
d507cf36
PB
14173 case EF_ARM_EABI_VER3:
14174 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
14175 break;
14176
14177 case EF_ARM_EABI_VER4:
14178 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 14179 goto eabi;
d507cf36 14180
3a4a14e9
PB
14181 case EF_ARM_EABI_VER5:
14182 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
14183
14184 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14185 fprintf (file, _(" [soft-float ABI]"));
14186
14187 if (flags & EF_ARM_ABI_FLOAT_HARD)
14188 fprintf (file, _(" [hard-float ABI]"));
14189
14190 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14191
3a4a14e9 14192 eabi:
d507cf36
PB
14193 if (flags & EF_ARM_BE8)
14194 fprintf (file, _(" [BE8]"));
14195
14196 if (flags & EF_ARM_LE8)
14197 fprintf (file, _(" [LE8]"));
14198
14199 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14200 break;
14201
fc830a83 14202 default:
9b485d32 14203 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
14204 break;
14205 }
252b5132 14206
fc830a83 14207 flags &= ~ EF_ARM_EABIMASK;
252b5132 14208
fc830a83 14209 if (flags & EF_ARM_RELEXEC)
9b485d32 14210 fprintf (file, _(" [relocatable executable]"));
252b5132 14211
a5721edd 14212 flags &= ~EF_ARM_RELEXEC;
fc830a83
NC
14213
14214 if (flags)
9b485d32 14215 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 14216
252b5132
RH
14217 fputc ('\n', file);
14218
b34976b6 14219 return TRUE;
252b5132
RH
14220}
14221
14222static int
57e8b36a 14223elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 14224{
2f0ca46a
NC
14225 switch (ELF_ST_TYPE (elf_sym->st_info))
14226 {
14227 case STT_ARM_TFUNC:
14228 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 14229
2f0ca46a
NC
14230 case STT_ARM_16BIT:
14231 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14232 This allows us to distinguish between data used by Thumb instructions
14233 and non-data (which is probably code) inside Thumb regions of an
14234 executable. */
1a0eb693 14235 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
14236 return ELF_ST_TYPE (elf_sym->st_info);
14237 break;
9a5aca8c 14238
ce855c42
NC
14239 default:
14240 break;
2f0ca46a
NC
14241 }
14242
14243 return type;
252b5132 14244}
f21f3fe0 14245
252b5132 14246static asection *
07adf181
AM
14247elf32_arm_gc_mark_hook (asection *sec,
14248 struct bfd_link_info *info,
14249 Elf_Internal_Rela *rel,
14250 struct elf_link_hash_entry *h,
14251 Elf_Internal_Sym *sym)
252b5132
RH
14252{
14253 if (h != NULL)
07adf181 14254 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
14255 {
14256 case R_ARM_GNU_VTINHERIT:
14257 case R_ARM_GNU_VTENTRY:
07adf181
AM
14258 return NULL;
14259 }
9ad5cbcf 14260
07adf181 14261 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
14262}
14263
780a67af
NC
14264/* Update the got entry reference counts for the section being removed. */
14265
b34976b6 14266static bfd_boolean
ba93b8ac
DJ
14267elf32_arm_gc_sweep_hook (bfd * abfd,
14268 struct bfd_link_info * info,
14269 asection * sec,
14270 const Elf_Internal_Rela * relocs)
252b5132 14271{
5e681ec4
PB
14272 Elf_Internal_Shdr *symtab_hdr;
14273 struct elf_link_hash_entry **sym_hashes;
14274 bfd_signed_vma *local_got_refcounts;
14275 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
14276 struct elf32_arm_link_hash_table * globals;
14277
0e1862bb 14278 if (bfd_link_relocatable (info))
7dda2462
TG
14279 return TRUE;
14280
eb043451 14281 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
14282 if (globals == NULL)
14283 return FALSE;
5e681ec4
PB
14284
14285 elf_section_data (sec)->local_dynrel = NULL;
14286
0ffa91dd 14287 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
14288 sym_hashes = elf_sym_hashes (abfd);
14289 local_got_refcounts = elf_local_got_refcounts (abfd);
14290
906e58ca 14291 check_use_blx (globals);
bd97cb95 14292
5e681ec4
PB
14293 relend = relocs + sec->reloc_count;
14294 for (rel = relocs; rel < relend; rel++)
eb043451 14295 {
3eb128b2
AM
14296 unsigned long r_symndx;
14297 struct elf_link_hash_entry *h = NULL;
f6e32f6d 14298 struct elf32_arm_link_hash_entry *eh;
eb043451 14299 int r_type;
34e77a92 14300 bfd_boolean call_reloc_p;
f6e32f6d
RS
14301 bfd_boolean may_become_dynamic_p;
14302 bfd_boolean may_need_local_target_p;
34e77a92
RS
14303 union gotplt_union *root_plt;
14304 struct arm_plt_info *arm_plt;
5e681ec4 14305
3eb128b2
AM
14306 r_symndx = ELF32_R_SYM (rel->r_info);
14307 if (r_symndx >= symtab_hdr->sh_info)
14308 {
14309 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14310 while (h->root.type == bfd_link_hash_indirect
14311 || h->root.type == bfd_link_hash_warning)
14312 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14313 }
f6e32f6d
RS
14314 eh = (struct elf32_arm_link_hash_entry *) h;
14315
34e77a92 14316 call_reloc_p = FALSE;
f6e32f6d
RS
14317 may_become_dynamic_p = FALSE;
14318 may_need_local_target_p = FALSE;
3eb128b2 14319
eb043451 14320 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 14321 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
14322 switch (r_type)
14323 {
14324 case R_ARM_GOT32:
eb043451 14325 case R_ARM_GOT_PREL:
ba93b8ac
DJ
14326 case R_ARM_TLS_GD32:
14327 case R_ARM_TLS_IE32:
3eb128b2 14328 if (h != NULL)
eb043451 14329 {
eb043451
PB
14330 if (h->got.refcount > 0)
14331 h->got.refcount -= 1;
14332 }
14333 else if (local_got_refcounts != NULL)
14334 {
14335 if (local_got_refcounts[r_symndx] > 0)
14336 local_got_refcounts[r_symndx] -= 1;
14337 }
14338 break;
14339
ba93b8ac 14340 case R_ARM_TLS_LDM32:
4dfe6ac6 14341 globals->tls_ldm_got.refcount -= 1;
ba93b8ac
DJ
14342 break;
14343
eb043451
PB
14344 case R_ARM_PC24:
14345 case R_ARM_PLT32:
5b5bb741
PB
14346 case R_ARM_CALL:
14347 case R_ARM_JUMP24:
eb043451 14348 case R_ARM_PREL31:
c19d1205 14349 case R_ARM_THM_CALL:
bd97cb95
DJ
14350 case R_ARM_THM_JUMP24:
14351 case R_ARM_THM_JUMP19:
34e77a92 14352 call_reloc_p = TRUE;
f6e32f6d
RS
14353 may_need_local_target_p = TRUE;
14354 break;
14355
14356 case R_ARM_ABS12:
14357 if (!globals->vxworks_p)
14358 {
14359 may_need_local_target_p = TRUE;
14360 break;
14361 }
14362 /* Fall through. */
14363 case R_ARM_ABS32:
14364 case R_ARM_ABS32_NOI:
14365 case R_ARM_REL32:
14366 case R_ARM_REL32_NOI:
b6895b4f
PB
14367 case R_ARM_MOVW_ABS_NC:
14368 case R_ARM_MOVT_ABS:
14369 case R_ARM_MOVW_PREL_NC:
14370 case R_ARM_MOVT_PREL:
14371 case R_ARM_THM_MOVW_ABS_NC:
14372 case R_ARM_THM_MOVT_ABS:
14373 case R_ARM_THM_MOVW_PREL_NC:
14374 case R_ARM_THM_MOVT_PREL:
b7693d02 14375 /* Should the interworking branches be here also? */
0e1862bb 14376 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
34e77a92
RS
14377 && (sec->flags & SEC_ALLOC) != 0)
14378 {
14379 if (h == NULL
469a3493 14380 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
14381 {
14382 call_reloc_p = TRUE;
14383 may_need_local_target_p = TRUE;
14384 }
14385 else
14386 may_become_dynamic_p = TRUE;
14387 }
f6e32f6d
RS
14388 else
14389 may_need_local_target_p = TRUE;
14390 break;
b7693d02 14391
f6e32f6d
RS
14392 default:
14393 break;
14394 }
5e681ec4 14395
34e77a92 14396 if (may_need_local_target_p
4ba2ef8f
TP
14397 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14398 &arm_plt))
f6e32f6d 14399 {
27586251
HPN
14400 /* If PLT refcount book-keeping is wrong and too low, we'll
14401 see a zero value (going to -1) for the root PLT reference
14402 count. */
14403 if (root_plt->refcount >= 0)
14404 {
14405 BFD_ASSERT (root_plt->refcount != 0);
14406 root_plt->refcount -= 1;
14407 }
14408 else
14409 /* A value of -1 means the symbol has become local, forced
14410 or seeing a hidden definition. Any other negative value
14411 is an error. */
14412 BFD_ASSERT (root_plt->refcount == -1);
34e77a92
RS
14413
14414 if (!call_reloc_p)
14415 arm_plt->noncall_refcount--;
5e681ec4 14416
f6e32f6d 14417 if (r_type == R_ARM_THM_CALL)
34e77a92 14418 arm_plt->maybe_thumb_refcount--;
bd97cb95 14419
f6e32f6d
RS
14420 if (r_type == R_ARM_THM_JUMP24
14421 || r_type == R_ARM_THM_JUMP19)
34e77a92 14422 arm_plt->thumb_refcount--;
f6e32f6d 14423 }
5e681ec4 14424
34e77a92 14425 if (may_become_dynamic_p)
f6e32f6d
RS
14426 {
14427 struct elf_dyn_relocs **pp;
14428 struct elf_dyn_relocs *p;
5e681ec4 14429
34e77a92 14430 if (h != NULL)
9c489990 14431 pp = &(eh->dyn_relocs);
34e77a92
RS
14432 else
14433 {
14434 Elf_Internal_Sym *isym;
14435
14436 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14437 abfd, r_symndx);
14438 if (isym == NULL)
14439 return FALSE;
14440 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14441 if (pp == NULL)
14442 return FALSE;
14443 }
9c489990 14444 for (; (p = *pp) != NULL; pp = &p->next)
f6e32f6d
RS
14445 if (p->sec == sec)
14446 {
14447 /* Everything must go for SEC. */
14448 *pp = p->next;
14449 break;
14450 }
eb043451
PB
14451 }
14452 }
5e681ec4 14453
b34976b6 14454 return TRUE;
252b5132
RH
14455}
14456
780a67af
NC
14457/* Look through the relocs for a section during the first phase. */
14458
b34976b6 14459static bfd_boolean
57e8b36a
NC
14460elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14461 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 14462{
b34976b6
AM
14463 Elf_Internal_Shdr *symtab_hdr;
14464 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
14465 const Elf_Internal_Rela *rel;
14466 const Elf_Internal_Rela *rel_end;
14467 bfd *dynobj;
5e681ec4 14468 asection *sreloc;
5e681ec4 14469 struct elf32_arm_link_hash_table *htab;
f6e32f6d
RS
14470 bfd_boolean call_reloc_p;
14471 bfd_boolean may_become_dynamic_p;
14472 bfd_boolean may_need_local_target_p;
ce98a316 14473 unsigned long nsyms;
9a5aca8c 14474
0e1862bb 14475 if (bfd_link_relocatable (info))
b34976b6 14476 return TRUE;
9a5aca8c 14477
0ffa91dd
NC
14478 BFD_ASSERT (is_arm_elf (abfd));
14479
5e681ec4 14480 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
14481 if (htab == NULL)
14482 return FALSE;
14483
5e681ec4 14484 sreloc = NULL;
9a5aca8c 14485
67687978
PB
14486 /* Create dynamic sections for relocatable executables so that we can
14487 copy relocations. */
14488 if (htab->root.is_relocatable_executable
14489 && ! htab->root.dynamic_sections_created)
14490 {
14491 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14492 return FALSE;
14493 }
14494
cbc704f3
RS
14495 if (htab->root.dynobj == NULL)
14496 htab->root.dynobj = abfd;
34e77a92
RS
14497 if (!create_ifunc_sections (info))
14498 return FALSE;
cbc704f3
RS
14499
14500 dynobj = htab->root.dynobj;
14501
0ffa91dd 14502 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 14503 sym_hashes = elf_sym_hashes (abfd);
ce98a316 14504 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 14505
252b5132
RH
14506 rel_end = relocs + sec->reloc_count;
14507 for (rel = relocs; rel < rel_end; rel++)
14508 {
34e77a92 14509 Elf_Internal_Sym *isym;
252b5132 14510 struct elf_link_hash_entry *h;
b7693d02 14511 struct elf32_arm_link_hash_entry *eh;
252b5132 14512 unsigned long r_symndx;
eb043451 14513 int r_type;
9a5aca8c 14514
252b5132 14515 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 14516 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 14517 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 14518
ce98a316
NC
14519 if (r_symndx >= nsyms
14520 /* PR 9934: It is possible to have relocations that do not
14521 refer to symbols, thus it is also possible to have an
14522 object file containing relocations but no symbol table. */
cf35638d 14523 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac 14524 {
4eca0228
AM
14525 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd,
14526 r_symndx);
ba93b8ac
DJ
14527 return FALSE;
14528 }
14529
34e77a92
RS
14530 h = NULL;
14531 isym = NULL;
14532 if (nsyms > 0)
973a3492 14533 {
34e77a92
RS
14534 if (r_symndx < symtab_hdr->sh_info)
14535 {
14536 /* A local symbol. */
14537 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14538 abfd, r_symndx);
14539 if (isym == NULL)
14540 return FALSE;
14541 }
14542 else
14543 {
14544 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14545 while (h->root.type == bfd_link_hash_indirect
14546 || h->root.type == bfd_link_hash_warning)
14547 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
14548
14549 /* PR15323, ref flags aren't set for references in the
14550 same object. */
14551 h->root.non_ir_ref = 1;
34e77a92 14552 }
973a3492 14553 }
9a5aca8c 14554
b7693d02
DJ
14555 eh = (struct elf32_arm_link_hash_entry *) h;
14556
f6e32f6d
RS
14557 call_reloc_p = FALSE;
14558 may_become_dynamic_p = FALSE;
14559 may_need_local_target_p = FALSE;
14560
0855e32b
NS
14561 /* Could be done earlier, if h were already available. */
14562 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 14563 switch (r_type)
99059e56 14564 {
5e681ec4 14565 case R_ARM_GOT32:
eb043451 14566 case R_ARM_GOT_PREL:
ba93b8ac
DJ
14567 case R_ARM_TLS_GD32:
14568 case R_ARM_TLS_IE32:
0855e32b
NS
14569 case R_ARM_TLS_GOTDESC:
14570 case R_ARM_TLS_DESCSEQ:
14571 case R_ARM_THM_TLS_DESCSEQ:
14572 case R_ARM_TLS_CALL:
14573 case R_ARM_THM_TLS_CALL:
5e681ec4 14574 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
14575 {
14576 int tls_type, old_tls_type;
5e681ec4 14577
ba93b8ac
DJ
14578 switch (r_type)
14579 {
14580 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
b38cadfb 14581
ba93b8ac 14582 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
b38cadfb 14583
0855e32b
NS
14584 case R_ARM_TLS_GOTDESC:
14585 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14586 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14587 tls_type = GOT_TLS_GDESC; break;
b38cadfb 14588
ba93b8ac
DJ
14589 default: tls_type = GOT_NORMAL; break;
14590 }
252b5132 14591
0e1862bb 14592 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
eea6dad2
KM
14593 info->flags |= DF_STATIC_TLS;
14594
ba93b8ac
DJ
14595 if (h != NULL)
14596 {
14597 h->got.refcount++;
14598 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14599 }
14600 else
14601 {
ba93b8ac 14602 /* This is a global offset table entry for a local symbol. */
34e77a92
RS
14603 if (!elf32_arm_allocate_local_sym_info (abfd))
14604 return FALSE;
14605 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
14606 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14607 }
14608
0855e32b 14609 /* If a variable is accessed with both tls methods, two
99059e56 14610 slots may be created. */
0855e32b
NS
14611 if (GOT_TLS_GD_ANY_P (old_tls_type)
14612 && GOT_TLS_GD_ANY_P (tls_type))
14613 tls_type |= old_tls_type;
14614
14615 /* We will already have issued an error message if there
14616 is a TLS/non-TLS mismatch, based on the symbol
14617 type. So just combine any TLS types needed. */
ba93b8ac
DJ
14618 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14619 && tls_type != GOT_NORMAL)
14620 tls_type |= old_tls_type;
14621
0855e32b 14622 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
14623 method, we're able to relax. Turn off the GDESC flag,
14624 without messing up with any other kind of tls types
6a631e86 14625 that may be involved. */
0855e32b
NS
14626 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14627 tls_type &= ~GOT_TLS_GDESC;
14628
ba93b8ac
DJ
14629 if (old_tls_type != tls_type)
14630 {
14631 if (h != NULL)
14632 elf32_arm_hash_entry (h)->tls_type = tls_type;
14633 else
14634 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14635 }
14636 }
8029a119 14637 /* Fall through. */
ba93b8ac
DJ
14638
14639 case R_ARM_TLS_LDM32:
14640 if (r_type == R_ARM_TLS_LDM32)
14641 htab->tls_ldm_got.refcount++;
8029a119 14642 /* Fall through. */
252b5132 14643
c19d1205 14644 case R_ARM_GOTOFF32:
5e681ec4 14645 case R_ARM_GOTPC:
cbc704f3
RS
14646 if (htab->root.sgot == NULL
14647 && !create_got_section (htab->root.dynobj, info))
14648 return FALSE;
252b5132
RH
14649 break;
14650
252b5132 14651 case R_ARM_PC24:
7359ea65 14652 case R_ARM_PLT32:
5b5bb741
PB
14653 case R_ARM_CALL:
14654 case R_ARM_JUMP24:
eb043451 14655 case R_ARM_PREL31:
c19d1205 14656 case R_ARM_THM_CALL:
bd97cb95
DJ
14657 case R_ARM_THM_JUMP24:
14658 case R_ARM_THM_JUMP19:
f6e32f6d
RS
14659 call_reloc_p = TRUE;
14660 may_need_local_target_p = TRUE;
14661 break;
14662
14663 case R_ARM_ABS12:
14664 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14665 ldr __GOTT_INDEX__ offsets. */
14666 if (!htab->vxworks_p)
14667 {
14668 may_need_local_target_p = TRUE;
14669 break;
14670 }
aebf9be7 14671 else goto jump_over;
9eaff861 14672
f6e32f6d 14673 /* Fall through. */
39623e12 14674
96c23d59
JM
14675 case R_ARM_MOVW_ABS_NC:
14676 case R_ARM_MOVT_ABS:
14677 case R_ARM_THM_MOVW_ABS_NC:
14678 case R_ARM_THM_MOVT_ABS:
0e1862bb 14679 if (bfd_link_pic (info))
96c23d59 14680 {
4eca0228 14681 _bfd_error_handler
96c23d59
JM
14682 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14683 abfd, elf32_arm_howto_table_1[r_type].name,
14684 (h) ? h->root.root.string : "a local symbol");
14685 bfd_set_error (bfd_error_bad_value);
14686 return FALSE;
14687 }
14688
14689 /* Fall through. */
39623e12
PB
14690 case R_ARM_ABS32:
14691 case R_ARM_ABS32_NOI:
aebf9be7 14692 jump_over:
0e1862bb 14693 if (h != NULL && bfd_link_executable (info))
97323ad1
WN
14694 {
14695 h->pointer_equality_needed = 1;
14696 }
14697 /* Fall through. */
39623e12
PB
14698 case R_ARM_REL32:
14699 case R_ARM_REL32_NOI:
b6895b4f
PB
14700 case R_ARM_MOVW_PREL_NC:
14701 case R_ARM_MOVT_PREL:
b6895b4f
PB
14702 case R_ARM_THM_MOVW_PREL_NC:
14703 case R_ARM_THM_MOVT_PREL:
39623e12 14704
b7693d02 14705 /* Should the interworking branches be listed here? */
0e1862bb 14706 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
34e77a92
RS
14707 && (sec->flags & SEC_ALLOC) != 0)
14708 {
14709 if (h == NULL
469a3493 14710 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
14711 {
14712 /* In shared libraries and relocatable executables,
14713 we treat local relative references as calls;
14714 see the related SYMBOL_CALLS_LOCAL code in
14715 allocate_dynrelocs. */
14716 call_reloc_p = TRUE;
14717 may_need_local_target_p = TRUE;
14718 }
14719 else
14720 /* We are creating a shared library or relocatable
14721 executable, and this is a reloc against a global symbol,
14722 or a non-PC-relative reloc against a local symbol.
14723 We may need to copy the reloc into the output. */
14724 may_become_dynamic_p = TRUE;
14725 }
f6e32f6d
RS
14726 else
14727 may_need_local_target_p = TRUE;
252b5132
RH
14728 break;
14729
99059e56
RM
14730 /* This relocation describes the C++ object vtable hierarchy.
14731 Reconstruct it for later use during GC. */
14732 case R_ARM_GNU_VTINHERIT:
14733 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14734 return FALSE;
14735 break;
14736
14737 /* This relocation describes which C++ vtable entries are actually
14738 used. Record for later use during GC. */
14739 case R_ARM_GNU_VTENTRY:
14740 BFD_ASSERT (h != NULL);
14741 if (h != NULL
14742 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14743 return FALSE;
14744 break;
14745 }
f6e32f6d
RS
14746
14747 if (h != NULL)
14748 {
14749 if (call_reloc_p)
14750 /* We may need a .plt entry if the function this reloc
14751 refers to is in a different object, regardless of the
14752 symbol's type. We can't tell for sure yet, because
14753 something later might force the symbol local. */
14754 h->needs_plt = 1;
14755 else if (may_need_local_target_p)
14756 /* If this reloc is in a read-only section, we might
14757 need a copy reloc. We can't check reliably at this
14758 stage whether the section is read-only, as input
14759 sections have not yet been mapped to output sections.
14760 Tentatively set the flag for now, and correct in
14761 adjust_dynamic_symbol. */
14762 h->non_got_ref = 1;
14763 }
14764
34e77a92
RS
14765 if (may_need_local_target_p
14766 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 14767 {
34e77a92
RS
14768 union gotplt_union *root_plt;
14769 struct arm_plt_info *arm_plt;
14770 struct arm_local_iplt_info *local_iplt;
14771
14772 if (h != NULL)
14773 {
14774 root_plt = &h->plt;
14775 arm_plt = &eh->plt;
14776 }
14777 else
14778 {
14779 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14780 if (local_iplt == NULL)
14781 return FALSE;
14782 root_plt = &local_iplt->root;
14783 arm_plt = &local_iplt->arm;
14784 }
14785
f6e32f6d
RS
14786 /* If the symbol is a function that doesn't bind locally,
14787 this relocation will need a PLT entry. */
a8c887dd
NC
14788 if (root_plt->refcount != -1)
14789 root_plt->refcount += 1;
34e77a92
RS
14790
14791 if (!call_reloc_p)
14792 arm_plt->noncall_refcount++;
f6e32f6d
RS
14793
14794 /* It's too early to use htab->use_blx here, so we have to
14795 record possible blx references separately from
14796 relocs that definitely need a thumb stub. */
14797
14798 if (r_type == R_ARM_THM_CALL)
34e77a92 14799 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
14800
14801 if (r_type == R_ARM_THM_JUMP24
14802 || r_type == R_ARM_THM_JUMP19)
34e77a92 14803 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
14804 }
14805
14806 if (may_become_dynamic_p)
14807 {
14808 struct elf_dyn_relocs *p, **head;
14809
14810 /* Create a reloc section in dynobj. */
14811 if (sreloc == NULL)
14812 {
14813 sreloc = _bfd_elf_make_dynamic_reloc_section
14814 (sec, dynobj, 2, abfd, ! htab->use_rel);
14815
14816 if (sreloc == NULL)
14817 return FALSE;
14818
14819 /* BPABI objects never have dynamic relocations mapped. */
14820 if (htab->symbian_p)
14821 {
14822 flagword flags;
14823
14824 flags = bfd_get_section_flags (dynobj, sreloc);
14825 flags &= ~(SEC_LOAD | SEC_ALLOC);
14826 bfd_set_section_flags (dynobj, sreloc, flags);
14827 }
14828 }
14829
14830 /* If this is a global symbol, count the number of
14831 relocations we need for this symbol. */
14832 if (h != NULL)
14833 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14834 else
14835 {
34e77a92
RS
14836 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14837 if (head == NULL)
f6e32f6d 14838 return FALSE;
f6e32f6d
RS
14839 }
14840
14841 p = *head;
14842 if (p == NULL || p->sec != sec)
14843 {
14844 bfd_size_type amt = sizeof *p;
14845
14846 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14847 if (p == NULL)
14848 return FALSE;
14849 p->next = *head;
14850 *head = p;
14851 p->sec = sec;
14852 p->count = 0;
14853 p->pc_count = 0;
14854 }
14855
469a3493 14856 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
14857 p->pc_count += 1;
14858 p->count += 1;
14859 }
252b5132 14860 }
f21f3fe0 14861
b34976b6 14862 return TRUE;
252b5132
RH
14863}
14864
9eaff861
AO
14865static void
14866elf32_arm_update_relocs (asection *o,
14867 struct bfd_elf_section_reloc_data *reldata)
14868{
14869 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
14870 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
14871 const struct elf_backend_data *bed;
14872 _arm_elf_section_data *eado;
14873 struct bfd_link_order *p;
14874 bfd_byte *erela_head, *erela;
14875 Elf_Internal_Rela *irela_head, *irela;
14876 Elf_Internal_Shdr *rel_hdr;
14877 bfd *abfd;
14878 unsigned int count;
14879
14880 eado = get_arm_elf_section_data (o);
14881
14882 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
14883 return;
14884
14885 abfd = o->owner;
14886 bed = get_elf_backend_data (abfd);
14887 rel_hdr = reldata->hdr;
14888
14889 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
14890 {
14891 swap_in = bed->s->swap_reloc_in;
14892 swap_out = bed->s->swap_reloc_out;
14893 }
14894 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
14895 {
14896 swap_in = bed->s->swap_reloca_in;
14897 swap_out = bed->s->swap_reloca_out;
14898 }
14899 else
14900 abort ();
14901
14902 erela_head = rel_hdr->contents;
14903 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
14904 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
14905
14906 erela = erela_head;
14907 irela = irela_head;
14908 count = 0;
14909
14910 for (p = o->map_head.link_order; p; p = p->next)
14911 {
14912 if (p->type == bfd_section_reloc_link_order
14913 || p->type == bfd_symbol_reloc_link_order)
14914 {
14915 (*swap_in) (abfd, erela, irela);
14916 erela += rel_hdr->sh_entsize;
14917 irela++;
14918 count++;
14919 }
14920 else if (p->type == bfd_indirect_link_order)
14921 {
14922 struct bfd_elf_section_reloc_data *input_reldata;
14923 arm_unwind_table_edit *edit_list, *edit_tail;
14924 _arm_elf_section_data *eadi;
14925 bfd_size_type j;
14926 bfd_vma offset;
14927 asection *i;
14928
14929 i = p->u.indirect.section;
14930
14931 eadi = get_arm_elf_section_data (i);
14932 edit_list = eadi->u.exidx.unwind_edit_list;
14933 edit_tail = eadi->u.exidx.unwind_edit_tail;
14934 offset = o->vma + i->output_offset;
14935
14936 if (eadi->elf.rel.hdr &&
14937 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
14938 input_reldata = &eadi->elf.rel;
14939 else if (eadi->elf.rela.hdr &&
14940 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
14941 input_reldata = &eadi->elf.rela;
14942 else
14943 abort ();
14944
14945 if (edit_list)
14946 {
14947 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14948 {
14949 arm_unwind_table_edit *edit_node, *edit_next;
14950 bfd_vma bias;
c48182bf 14951 bfd_vma reloc_index;
9eaff861
AO
14952
14953 (*swap_in) (abfd, erela, irela);
c48182bf 14954 reloc_index = (irela->r_offset - offset) / 8;
9eaff861
AO
14955
14956 bias = 0;
14957 edit_node = edit_list;
14958 for (edit_next = edit_list;
c48182bf 14959 edit_next && edit_next->index <= reloc_index;
9eaff861
AO
14960 edit_next = edit_node->next)
14961 {
14962 bias++;
14963 edit_node = edit_next;
14964 }
14965
14966 if (edit_node->type != DELETE_EXIDX_ENTRY
c48182bf 14967 || edit_node->index != reloc_index)
9eaff861
AO
14968 {
14969 irela->r_offset -= bias * 8;
14970 irela++;
14971 count++;
14972 }
14973
14974 erela += rel_hdr->sh_entsize;
14975 }
14976
14977 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
14978 {
14979 /* New relocation entity. */
14980 asection *text_sec = edit_tail->linked_section;
14981 asection *text_out = text_sec->output_section;
14982 bfd_vma exidx_offset = offset + i->size - 8;
14983
14984 irela->r_addend = 0;
14985 irela->r_offset = exidx_offset;
14986 irela->r_info = ELF32_R_INFO
14987 (text_out->target_index, R_ARM_PREL31);
14988 irela++;
14989 count++;
14990 }
14991 }
14992 else
14993 {
14994 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14995 {
14996 (*swap_in) (abfd, erela, irela);
14997 erela += rel_hdr->sh_entsize;
14998 irela++;
14999 }
15000
15001 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15002 }
15003 }
15004 }
15005
15006 reldata->count = count;
15007 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15008
15009 erela = erela_head;
15010 irela = irela_head;
15011 while (count > 0)
15012 {
15013 (*swap_out) (abfd, irela, erela);
15014 erela += rel_hdr->sh_entsize;
15015 irela++;
15016 count--;
15017 }
15018
15019 free (irela_head);
15020
15021 /* Hashes are no longer valid. */
15022 free (reldata->hashes);
15023 reldata->hashes = NULL;
15024}
15025
6a5bb875 15026/* Unwinding tables are not referenced directly. This pass marks them as
4ba2ef8f
TP
15027 required if the corresponding code section is marked. Similarly, ARMv8-M
15028 secure entry functions can only be referenced by SG veneers which are
15029 created after the GC process. They need to be marked in case they reside in
15030 their own section (as would be the case if code was compiled with
15031 -ffunction-sections). */
6a5bb875
PB
15032
15033static bfd_boolean
906e58ca
NC
15034elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15035 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
15036{
15037 bfd *sub;
15038 Elf_Internal_Shdr **elf_shdrp;
4ba2ef8f
TP
15039 asection *cmse_sec;
15040 obj_attribute *out_attr;
15041 Elf_Internal_Shdr *symtab_hdr;
15042 unsigned i, sym_count, ext_start;
15043 const struct elf_backend_data *bed;
15044 struct elf_link_hash_entry **sym_hashes;
15045 struct elf32_arm_link_hash_entry *cmse_hash;
15046 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
6a5bb875 15047
7f6ab9f8
AM
15048 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15049
4ba2ef8f
TP
15050 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15051 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15052 && out_attr[Tag_CPU_arch_profile].i == 'M';
15053
6a5bb875
PB
15054 /* Marking EH data may cause additional code sections to be marked,
15055 requiring multiple passes. */
15056 again = TRUE;
15057 while (again)
15058 {
15059 again = FALSE;
c72f2fb2 15060 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
15061 {
15062 asection *o;
15063
0ffa91dd 15064 if (! is_arm_elf (sub))
6a5bb875
PB
15065 continue;
15066
15067 elf_shdrp = elf_elfsections (sub);
15068 for (o = sub->sections; o != NULL; o = o->next)
15069 {
15070 Elf_Internal_Shdr *hdr;
0ffa91dd 15071
6a5bb875 15072 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
15073 if (hdr->sh_type == SHT_ARM_EXIDX
15074 && hdr->sh_link
15075 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
15076 && !o->gc_mark
15077 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15078 {
15079 again = TRUE;
15080 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15081 return FALSE;
15082 }
15083 }
4ba2ef8f
TP
15084
15085 /* Mark section holding ARMv8-M secure entry functions. We mark all
15086 of them so no need for a second browsing. */
15087 if (is_v8m && first_bfd_browse)
15088 {
15089 sym_hashes = elf_sym_hashes (sub);
15090 bed = get_elf_backend_data (sub);
15091 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15092 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15093 ext_start = symtab_hdr->sh_info;
15094
15095 /* Scan symbols. */
15096 for (i = ext_start; i < sym_count; i++)
15097 {
15098 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15099
15100 /* Assume it is a special symbol. If not, cmse_scan will
15101 warn about it and user can do something about it. */
15102 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15103 {
15104 cmse_sec = cmse_hash->root.root.u.def.section;
5025eb7c
AO
15105 if (!cmse_sec->gc_mark
15106 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
4ba2ef8f
TP
15107 return FALSE;
15108 }
15109 }
15110 }
6a5bb875 15111 }
4ba2ef8f 15112 first_bfd_browse = FALSE;
6a5bb875
PB
15113 }
15114
15115 return TRUE;
15116}
15117
3c9458e9
NC
15118/* Treat mapping symbols as special target symbols. */
15119
15120static bfd_boolean
15121elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15122{
b0796911
PB
15123 return bfd_is_arm_special_symbol_name (sym->name,
15124 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
15125}
15126
0367ecfb
NC
15127/* This is a copy of elf_find_function() from elf.c except that
15128 ARM mapping symbols are ignored when looking for function names
15129 and STT_ARM_TFUNC is considered to a function type. */
252b5132 15130
0367ecfb
NC
15131static bfd_boolean
15132arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
0367ecfb 15133 asymbol ** symbols,
fb167eb2 15134 asection * section,
0367ecfb
NC
15135 bfd_vma offset,
15136 const char ** filename_ptr,
15137 const char ** functionname_ptr)
15138{
15139 const char * filename = NULL;
15140 asymbol * func = NULL;
15141 bfd_vma low_func = 0;
15142 asymbol ** p;
252b5132
RH
15143
15144 for (p = symbols; *p != NULL; p++)
15145 {
15146 elf_symbol_type *q;
15147
15148 q = (elf_symbol_type *) *p;
15149
252b5132
RH
15150 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15151 {
15152 default:
15153 break;
15154 case STT_FILE:
15155 filename = bfd_asymbol_name (&q->symbol);
15156 break;
252b5132
RH
15157 case STT_FUNC:
15158 case STT_ARM_TFUNC:
9d2da7ca 15159 case STT_NOTYPE:
b0796911 15160 /* Skip mapping symbols. */
0367ecfb 15161 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
15162 && bfd_is_arm_special_symbol_name (q->symbol.name,
15163 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
15164 continue;
15165 /* Fall through. */
6b40fcba 15166 if (bfd_get_section (&q->symbol) == section
252b5132
RH
15167 && q->symbol.value >= low_func
15168 && q->symbol.value <= offset)
15169 {
15170 func = (asymbol *) q;
15171 low_func = q->symbol.value;
15172 }
15173 break;
15174 }
15175 }
15176
15177 if (func == NULL)
b34976b6 15178 return FALSE;
252b5132 15179
0367ecfb
NC
15180 if (filename_ptr)
15181 *filename_ptr = filename;
15182 if (functionname_ptr)
15183 *functionname_ptr = bfd_asymbol_name (func);
15184
15185 return TRUE;
906e58ca 15186}
0367ecfb
NC
15187
15188
15189/* Find the nearest line to a particular section and offset, for error
15190 reporting. This code is a duplicate of the code in elf.c, except
15191 that it uses arm_elf_find_function. */
15192
15193static bfd_boolean
15194elf32_arm_find_nearest_line (bfd * abfd,
0367ecfb 15195 asymbol ** symbols,
fb167eb2 15196 asection * section,
0367ecfb
NC
15197 bfd_vma offset,
15198 const char ** filename_ptr,
15199 const char ** functionname_ptr,
fb167eb2
AM
15200 unsigned int * line_ptr,
15201 unsigned int * discriminator_ptr)
0367ecfb
NC
15202{
15203 bfd_boolean found = FALSE;
15204
fb167eb2 15205 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
0367ecfb 15206 filename_ptr, functionname_ptr,
fb167eb2
AM
15207 line_ptr, discriminator_ptr,
15208 dwarf_debug_sections, 0,
0367ecfb
NC
15209 & elf_tdata (abfd)->dwarf2_find_line_info))
15210 {
15211 if (!*functionname_ptr)
fb167eb2 15212 arm_elf_find_function (abfd, symbols, section, offset,
0367ecfb
NC
15213 *filename_ptr ? NULL : filename_ptr,
15214 functionname_ptr);
f21f3fe0 15215
0367ecfb
NC
15216 return TRUE;
15217 }
15218
fb167eb2
AM
15219 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15220 uses DWARF1. */
15221
0367ecfb
NC
15222 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15223 & found, filename_ptr,
15224 functionname_ptr, line_ptr,
15225 & elf_tdata (abfd)->line_info))
15226 return FALSE;
15227
15228 if (found && (*functionname_ptr || *line_ptr))
15229 return TRUE;
15230
15231 if (symbols == NULL)
15232 return FALSE;
15233
fb167eb2 15234 if (! arm_elf_find_function (abfd, symbols, section, offset,
0367ecfb
NC
15235 filename_ptr, functionname_ptr))
15236 return FALSE;
15237
15238 *line_ptr = 0;
b34976b6 15239 return TRUE;
252b5132
RH
15240}
15241
4ab527b0
FF
15242static bfd_boolean
15243elf32_arm_find_inliner_info (bfd * abfd,
15244 const char ** filename_ptr,
15245 const char ** functionname_ptr,
15246 unsigned int * line_ptr)
15247{
15248 bfd_boolean found;
15249 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15250 functionname_ptr, line_ptr,
15251 & elf_tdata (abfd)->dwarf2_find_line_info);
15252 return found;
15253}
15254
252b5132
RH
15255/* Adjust a symbol defined by a dynamic object and referenced by a
15256 regular object. The current definition is in some section of the
15257 dynamic object, but we're not including those sections. We have to
15258 change the definition to something the rest of the link can
15259 understand. */
15260
b34976b6 15261static bfd_boolean
57e8b36a
NC
15262elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15263 struct elf_link_hash_entry * h)
252b5132
RH
15264{
15265 bfd * dynobj;
15266 asection * s;
b7693d02 15267 struct elf32_arm_link_hash_entry * eh;
67687978 15268 struct elf32_arm_link_hash_table *globals;
252b5132 15269
67687978 15270 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
15271 if (globals == NULL)
15272 return FALSE;
15273
252b5132
RH
15274 dynobj = elf_hash_table (info)->dynobj;
15275
15276 /* Make sure we know what is going on here. */
15277 BFD_ASSERT (dynobj != NULL
f5385ebf 15278 && (h->needs_plt
34e77a92 15279 || h->type == STT_GNU_IFUNC
f6e332e6 15280 || h->u.weakdef != NULL
f5385ebf
AM
15281 || (h->def_dynamic
15282 && h->ref_regular
15283 && !h->def_regular)));
252b5132 15284
b7693d02
DJ
15285 eh = (struct elf32_arm_link_hash_entry *) h;
15286
252b5132
RH
15287 /* If this is a function, put it in the procedure linkage table. We
15288 will fill in the contents of the procedure linkage table later,
15289 when we know the address of the .got section. */
34e77a92 15290 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 15291 {
34e77a92
RS
15292 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15293 symbol binds locally. */
5e681ec4 15294 if (h->plt.refcount <= 0
34e77a92
RS
15295 || (h->type != STT_GNU_IFUNC
15296 && (SYMBOL_CALLS_LOCAL (info, h)
15297 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15298 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
15299 {
15300 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
15301 file, but the symbol was never referred to by a dynamic
15302 object, or if all references were garbage collected. In
15303 such a case, we don't actually need to build a procedure
15304 linkage table, and we can just do a PC24 reloc instead. */
15305 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
15306 eh->plt.thumb_refcount = 0;
15307 eh->plt.maybe_thumb_refcount = 0;
15308 eh->plt.noncall_refcount = 0;
f5385ebf 15309 h->needs_plt = 0;
252b5132
RH
15310 }
15311
b34976b6 15312 return TRUE;
252b5132 15313 }
5e681ec4 15314 else
b7693d02
DJ
15315 {
15316 /* It's possible that we incorrectly decided a .plt reloc was
15317 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15318 in check_relocs. We can't decide accurately between function
15319 and non-function syms in check-relocs; Objects loaded later in
15320 the link may change h->type. So fix it now. */
15321 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
15322 eh->plt.thumb_refcount = 0;
15323 eh->plt.maybe_thumb_refcount = 0;
15324 eh->plt.noncall_refcount = 0;
b7693d02 15325 }
252b5132
RH
15326
15327 /* If this is a weak symbol, and there is a real definition, the
15328 processor independent code will have arranged for us to see the
15329 real definition first, and we can just use the same value. */
f6e332e6 15330 if (h->u.weakdef != NULL)
252b5132 15331 {
f6e332e6
AM
15332 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15333 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15334 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15335 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 15336 return TRUE;
252b5132
RH
15337 }
15338
ba93b8ac
DJ
15339 /* If there are no non-GOT references, we do not need a copy
15340 relocation. */
15341 if (!h->non_got_ref)
15342 return TRUE;
15343
252b5132
RH
15344 /* This is a reference to a symbol defined by a dynamic object which
15345 is not a function. */
15346
15347 /* If we are creating a shared library, we must presume that the
15348 only references to the symbol are via the global offset table.
15349 For such cases we need not do anything here; the relocations will
67687978
PB
15350 be handled correctly by relocate_section. Relocatable executables
15351 can reference data in shared objects directly, so we don't need to
15352 do anything here. */
0e1862bb 15353 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
b34976b6 15354 return TRUE;
252b5132
RH
15355
15356 /* We must allocate the symbol in our .dynbss section, which will
15357 become part of the .bss section of the executable. There will be
15358 an entry for this symbol in the .dynsym section. The dynamic
15359 object will contain position independent code, so all references
15360 from the dynamic object to this symbol will go through the global
15361 offset table. The dynamic linker will use the .dynsym entry to
15362 determine the address it must put in the global offset table, so
15363 both the dynamic object and the regular object will refer to the
15364 same memory location for the variable. */
3d4d4302 15365 s = bfd_get_linker_section (dynobj, ".dynbss");
252b5132
RH
15366 BFD_ASSERT (s != NULL);
15367
5522f910
NC
15368 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15369 linker to copy the initial value out of the dynamic object and into
15370 the runtime process image. We need to remember the offset into the
00a97672 15371 .rel(a).bss section we are going to use. */
5522f910
NC
15372 if (info->nocopyreloc == 0
15373 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
5522f910 15374 && h->size != 0)
252b5132
RH
15375 {
15376 asection *srel;
15377
3d4d4302 15378 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
47beaa6a 15379 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 15380 h->needs_copy = 1;
252b5132
RH
15381 }
15382
6cabe1ea 15383 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
15384}
15385
5e681ec4
PB
15386/* Allocate space in .plt, .got and associated reloc sections for
15387 dynamic relocs. */
15388
15389static bfd_boolean
47beaa6a 15390allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
15391{
15392 struct bfd_link_info *info;
15393 struct elf32_arm_link_hash_table *htab;
15394 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 15395 struct elf_dyn_relocs *p;
5e681ec4
PB
15396
15397 if (h->root.type == bfd_link_hash_indirect)
15398 return TRUE;
15399
e6a6bb22
AM
15400 eh = (struct elf32_arm_link_hash_entry *) h;
15401
5e681ec4
PB
15402 info = (struct bfd_link_info *) inf;
15403 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
15404 if (htab == NULL)
15405 return FALSE;
5e681ec4 15406
34e77a92 15407 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
15408 && h->plt.refcount > 0)
15409 {
15410 /* Make sure this symbol is output as a dynamic symbol.
15411 Undefined weak syms won't yet be marked as dynamic. */
15412 if (h->dynindx == -1
f5385ebf 15413 && !h->forced_local)
5e681ec4 15414 {
c152c796 15415 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
15416 return FALSE;
15417 }
15418
34e77a92
RS
15419 /* If the call in the PLT entry binds locally, the associated
15420 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15421 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15422 than the .plt section. */
15423 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15424 {
15425 eh->is_iplt = 1;
15426 if (eh->plt.noncall_refcount == 0
15427 && SYMBOL_REFERENCES_LOCAL (info, h))
15428 /* All non-call references can be resolved directly.
15429 This means that they can (and in some cases, must)
15430 resolve directly to the run-time target, rather than
15431 to the PLT. That in turns means that any .got entry
15432 would be equal to the .igot.plt entry, so there's
15433 no point having both. */
15434 h->got.refcount = 0;
15435 }
15436
0e1862bb 15437 if (bfd_link_pic (info)
34e77a92 15438 || eh->is_iplt
7359ea65 15439 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 15440 {
34e77a92 15441 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 15442
5e681ec4
PB
15443 /* If this symbol is not defined in a regular file, and we are
15444 not generating a shared library, then set the symbol to this
15445 location in the .plt. This is required to make function
15446 pointers compare as equal between the normal executable and
15447 the shared library. */
0e1862bb 15448 if (! bfd_link_pic (info)
f5385ebf 15449 && !h->def_regular)
5e681ec4 15450 {
34e77a92 15451 h->root.u.def.section = htab->root.splt;
5e681ec4 15452 h->root.u.def.value = h->plt.offset;
5e681ec4 15453
67d74e43
DJ
15454 /* Make sure the function is not marked as Thumb, in case
15455 it is the target of an ABS32 relocation, which will
15456 point to the PLT entry. */
39d911fc 15457 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
67d74e43 15458 }
022f8312 15459
00a97672
RS
15460 /* VxWorks executables have a second set of relocations for
15461 each PLT entry. They go in a separate relocation section,
15462 which is processed by the kernel loader. */
0e1862bb 15463 if (htab->vxworks_p && !bfd_link_pic (info))
00a97672
RS
15464 {
15465 /* There is a relocation for the initial PLT entry:
15466 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15467 if (h->plt.offset == htab->plt_header_size)
47beaa6a 15468 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
15469
15470 /* There are two extra relocations for each subsequent
15471 PLT entry: an R_ARM_32 relocation for the GOT entry,
15472 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 15473 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 15474 }
5e681ec4
PB
15475 }
15476 else
15477 {
15478 h->plt.offset = (bfd_vma) -1;
f5385ebf 15479 h->needs_plt = 0;
5e681ec4
PB
15480 }
15481 }
15482 else
15483 {
15484 h->plt.offset = (bfd_vma) -1;
f5385ebf 15485 h->needs_plt = 0;
5e681ec4
PB
15486 }
15487
0855e32b
NS
15488 eh = (struct elf32_arm_link_hash_entry *) h;
15489 eh->tlsdesc_got = (bfd_vma) -1;
15490
5e681ec4
PB
15491 if (h->got.refcount > 0)
15492 {
15493 asection *s;
15494 bfd_boolean dyn;
ba93b8ac
DJ
15495 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15496 int indx;
5e681ec4
PB
15497
15498 /* Make sure this symbol is output as a dynamic symbol.
15499 Undefined weak syms won't yet be marked as dynamic. */
15500 if (h->dynindx == -1
f5385ebf 15501 && !h->forced_local)
5e681ec4 15502 {
c152c796 15503 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
15504 return FALSE;
15505 }
15506
e5a52504
MM
15507 if (!htab->symbian_p)
15508 {
362d30a1 15509 s = htab->root.sgot;
e5a52504 15510 h->got.offset = s->size;
ba93b8ac
DJ
15511
15512 if (tls_type == GOT_UNKNOWN)
15513 abort ();
15514
15515 if (tls_type == GOT_NORMAL)
15516 /* Non-TLS symbols need one GOT slot. */
15517 s->size += 4;
15518 else
15519 {
99059e56
RM
15520 if (tls_type & GOT_TLS_GDESC)
15521 {
0855e32b 15522 /* R_ARM_TLS_DESC needs 2 GOT slots. */
99059e56 15523 eh->tlsdesc_got
0855e32b
NS
15524 = (htab->root.sgotplt->size
15525 - elf32_arm_compute_jump_table_size (htab));
99059e56
RM
15526 htab->root.sgotplt->size += 8;
15527 h->got.offset = (bfd_vma) -2;
34e77a92 15528 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 15529 reloc in the middle of .got.plt. */
99059e56
RM
15530 htab->num_tls_desc++;
15531 }
0855e32b 15532
ba93b8ac 15533 if (tls_type & GOT_TLS_GD)
0855e32b
NS
15534 {
15535 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15536 the symbol is both GD and GDESC, got.offset may
15537 have been overwritten. */
15538 h->got.offset = s->size;
15539 s->size += 8;
15540 }
15541
ba93b8ac
DJ
15542 if (tls_type & GOT_TLS_IE)
15543 /* R_ARM_TLS_IE32 needs one GOT slot. */
15544 s->size += 4;
15545 }
15546
e5a52504 15547 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
15548
15549 indx = 0;
0e1862bb
L
15550 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15551 bfd_link_pic (info),
15552 h)
15553 && (!bfd_link_pic (info)
ba93b8ac
DJ
15554 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15555 indx = h->dynindx;
15556
15557 if (tls_type != GOT_NORMAL
0e1862bb 15558 && (bfd_link_pic (info) || indx != 0)
ba93b8ac
DJ
15559 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15560 || h->root.type != bfd_link_hash_undefweak))
15561 {
15562 if (tls_type & GOT_TLS_IE)
47beaa6a 15563 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
15564
15565 if (tls_type & GOT_TLS_GD)
47beaa6a 15566 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 15567
b38cadfb 15568 if (tls_type & GOT_TLS_GDESC)
0855e32b 15569 {
47beaa6a 15570 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
15571 /* GDESC needs a trampoline to jump to. */
15572 htab->tls_trampoline = -1;
15573 }
15574
15575 /* Only GD needs it. GDESC just emits one relocation per
15576 2 entries. */
b38cadfb 15577 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 15578 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 15579 }
6f820c85 15580 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
15581 {
15582 if (htab->root.dynamic_sections_created)
15583 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15584 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15585 }
34e77a92
RS
15586 else if (h->type == STT_GNU_IFUNC
15587 && eh->plt.noncall_refcount == 0)
15588 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15589 they all resolve dynamically instead. Reserve room for the
15590 GOT entry's R_ARM_IRELATIVE relocation. */
15591 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
0e1862bb
L
15592 else if (bfd_link_pic (info)
15593 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15594 || h->root.type != bfd_link_hash_undefweak))
b436d854 15595 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
47beaa6a 15596 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 15597 }
5e681ec4
PB
15598 }
15599 else
15600 h->got.offset = (bfd_vma) -1;
15601
a4fd1a8e
PB
15602 /* Allocate stubs for exported Thumb functions on v4t. */
15603 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 15604 && h->def_regular
39d911fc 15605 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
15606 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15607 {
15608 struct elf_link_hash_entry * th;
15609 struct bfd_link_hash_entry * bh;
15610 struct elf_link_hash_entry * myh;
15611 char name[1024];
15612 asection *s;
15613 bh = NULL;
15614 /* Create a new symbol to regist the real location of the function. */
15615 s = h->root.u.def.section;
906e58ca 15616 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
15617 _bfd_generic_link_add_one_symbol (info, s->owner,
15618 name, BSF_GLOBAL, s,
15619 h->root.u.def.value,
15620 NULL, TRUE, FALSE, &bh);
15621
15622 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 15623 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 15624 myh->forced_local = 1;
39d911fc 15625 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
a4fd1a8e
PB
15626 eh->export_glue = myh;
15627 th = record_arm_to_thumb_glue (info, h);
15628 /* Point the symbol at the stub. */
15629 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
39d911fc 15630 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
a4fd1a8e
PB
15631 h->root.u.def.section = th->root.u.def.section;
15632 h->root.u.def.value = th->root.u.def.value & ~1;
15633 }
15634
0bdcacaf 15635 if (eh->dyn_relocs == NULL)
5e681ec4
PB
15636 return TRUE;
15637
15638 /* In the shared -Bsymbolic case, discard space allocated for
15639 dynamic pc-relative relocs against symbols which turn out to be
15640 defined in regular objects. For the normal shared case, discard
15641 space for pc-relative relocs that have become local due to symbol
15642 visibility changes. */
15643
0e1862bb 15644 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
5e681ec4 15645 {
469a3493
RM
15646 /* Relocs that use pc_count are PC-relative forms, which will appear
15647 on something like ".long foo - ." or "movw REG, foo - .". We want
15648 calls to protected symbols to resolve directly to the function
15649 rather than going via the plt. If people want function pointer
15650 comparisons to work as expected then they should avoid writing
15651 assembly like ".long foo - .". */
ba93b8ac
DJ
15652 if (SYMBOL_CALLS_LOCAL (info, h))
15653 {
0bdcacaf 15654 struct elf_dyn_relocs **pp;
ba93b8ac 15655
0bdcacaf 15656 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
15657 {
15658 p->count -= p->pc_count;
15659 p->pc_count = 0;
15660 if (p->count == 0)
15661 *pp = p->next;
15662 else
15663 pp = &p->next;
15664 }
15665 }
15666
4dfe6ac6 15667 if (htab->vxworks_p)
3348747a 15668 {
0bdcacaf 15669 struct elf_dyn_relocs **pp;
3348747a 15670
0bdcacaf 15671 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
3348747a 15672 {
0bdcacaf 15673 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
15674 *pp = p->next;
15675 else
15676 pp = &p->next;
15677 }
15678 }
15679
ba93b8ac 15680 /* Also discard relocs on undefined weak syms with non-default
99059e56 15681 visibility. */
0bdcacaf 15682 if (eh->dyn_relocs != NULL
5e681ec4 15683 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
15684 {
15685 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
0bdcacaf 15686 eh->dyn_relocs = NULL;
22d606e9
AM
15687
15688 /* Make sure undefined weak symbols are output as a dynamic
15689 symbol in PIEs. */
15690 else if (h->dynindx == -1
15691 && !h->forced_local)
15692 {
15693 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15694 return FALSE;
15695 }
15696 }
15697
67687978
PB
15698 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15699 && h->root.type == bfd_link_hash_new)
15700 {
15701 /* Output absolute symbols so that we can create relocations
15702 against them. For normal symbols we output a relocation
15703 against the section that contains them. */
15704 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15705 return FALSE;
15706 }
15707
5e681ec4
PB
15708 }
15709 else
15710 {
15711 /* For the non-shared case, discard space for relocs against
15712 symbols which turn out to need copy relocs or are not
15713 dynamic. */
15714
f5385ebf
AM
15715 if (!h->non_got_ref
15716 && ((h->def_dynamic
15717 && !h->def_regular)
5e681ec4
PB
15718 || (htab->root.dynamic_sections_created
15719 && (h->root.type == bfd_link_hash_undefweak
15720 || h->root.type == bfd_link_hash_undefined))))
15721 {
15722 /* Make sure this symbol is output as a dynamic symbol.
15723 Undefined weak syms won't yet be marked as dynamic. */
15724 if (h->dynindx == -1
f5385ebf 15725 && !h->forced_local)
5e681ec4 15726 {
c152c796 15727 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
15728 return FALSE;
15729 }
15730
15731 /* If that succeeded, we know we'll be keeping all the
15732 relocs. */
15733 if (h->dynindx != -1)
15734 goto keep;
15735 }
15736
0bdcacaf 15737 eh->dyn_relocs = NULL;
5e681ec4
PB
15738
15739 keep: ;
15740 }
15741
15742 /* Finally, allocate space. */
0bdcacaf 15743 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5e681ec4 15744 {
0bdcacaf 15745 asection *sreloc = elf_section_data (p->sec)->sreloc;
34e77a92
RS
15746 if (h->type == STT_GNU_IFUNC
15747 && eh->plt.noncall_refcount == 0
15748 && SYMBOL_REFERENCES_LOCAL (info, h))
15749 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15750 else
15751 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
15752 }
15753
15754 return TRUE;
15755}
15756
08d1f311
DJ
15757/* Find any dynamic relocs that apply to read-only sections. */
15758
15759static bfd_boolean
8029a119 15760elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 15761{
8029a119 15762 struct elf32_arm_link_hash_entry * eh;
0bdcacaf 15763 struct elf_dyn_relocs * p;
08d1f311 15764
08d1f311 15765 eh = (struct elf32_arm_link_hash_entry *) h;
0bdcacaf 15766 for (p = eh->dyn_relocs; p != NULL; p = p->next)
08d1f311 15767 {
0bdcacaf 15768 asection *s = p->sec;
08d1f311
DJ
15769
15770 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15771 {
15772 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15773
15774 info->flags |= DF_TEXTREL;
15775
15776 /* Not an error, just cut short the traversal. */
15777 return FALSE;
15778 }
15779 }
15780 return TRUE;
15781}
15782
d504ffc8
DJ
15783void
15784bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15785 int byteswap_code)
15786{
15787 struct elf32_arm_link_hash_table *globals;
15788
15789 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
15790 if (globals == NULL)
15791 return;
15792
d504ffc8
DJ
15793 globals->byteswap_code = byteswap_code;
15794}
15795
252b5132
RH
15796/* Set the sizes of the dynamic sections. */
15797
b34976b6 15798static bfd_boolean
57e8b36a
NC
15799elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15800 struct bfd_link_info * info)
252b5132
RH
15801{
15802 bfd * dynobj;
15803 asection * s;
b34976b6
AM
15804 bfd_boolean plt;
15805 bfd_boolean relocs;
5e681ec4
PB
15806 bfd *ibfd;
15807 struct elf32_arm_link_hash_table *htab;
252b5132 15808
5e681ec4 15809 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
15810 if (htab == NULL)
15811 return FALSE;
15812
252b5132
RH
15813 dynobj = elf_hash_table (info)->dynobj;
15814 BFD_ASSERT (dynobj != NULL);
39b41c9c 15815 check_use_blx (htab);
252b5132
RH
15816
15817 if (elf_hash_table (info)->dynamic_sections_created)
15818 {
15819 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 15820 if (bfd_link_executable (info) && !info->nointerp)
252b5132 15821 {
3d4d4302 15822 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 15823 BFD_ASSERT (s != NULL);
eea6121a 15824 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
15825 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15826 }
15827 }
5e681ec4
PB
15828
15829 /* Set up .got offsets for local syms, and space for local dynamic
15830 relocs. */
c72f2fb2 15831 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 15832 {
5e681ec4
PB
15833 bfd_signed_vma *local_got;
15834 bfd_signed_vma *end_local_got;
34e77a92 15835 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 15836 char *local_tls_type;
0855e32b 15837 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
15838 bfd_size_type locsymcount;
15839 Elf_Internal_Shdr *symtab_hdr;
15840 asection *srel;
4dfe6ac6 15841 bfd_boolean is_vxworks = htab->vxworks_p;
34e77a92 15842 unsigned int symndx;
5e681ec4 15843
0ffa91dd 15844 if (! is_arm_elf (ibfd))
5e681ec4
PB
15845 continue;
15846
15847 for (s = ibfd->sections; s != NULL; s = s->next)
15848 {
0bdcacaf 15849 struct elf_dyn_relocs *p;
5e681ec4 15850
0bdcacaf 15851 for (p = (struct elf_dyn_relocs *)
99059e56 15852 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 15853 {
0bdcacaf
RS
15854 if (!bfd_is_abs_section (p->sec)
15855 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
15856 {
15857 /* Input section has been discarded, either because
15858 it is a copy of a linkonce section or due to
15859 linker script /DISCARD/, so we'll be discarding
15860 the relocs too. */
15861 }
3348747a 15862 else if (is_vxworks
0bdcacaf 15863 && strcmp (p->sec->output_section->name,
3348747a
NS
15864 ".tls_vars") == 0)
15865 {
15866 /* Relocations in vxworks .tls_vars sections are
15867 handled specially by the loader. */
15868 }
5e681ec4
PB
15869 else if (p->count != 0)
15870 {
0bdcacaf 15871 srel = elf_section_data (p->sec)->sreloc;
47beaa6a 15872 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 15873 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
15874 info->flags |= DF_TEXTREL;
15875 }
15876 }
15877 }
15878
15879 local_got = elf_local_got_refcounts (ibfd);
15880 if (!local_got)
15881 continue;
15882
0ffa91dd 15883 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
15884 locsymcount = symtab_hdr->sh_info;
15885 end_local_got = local_got + locsymcount;
34e77a92 15886 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 15887 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 15888 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
34e77a92 15889 symndx = 0;
362d30a1
RS
15890 s = htab->root.sgot;
15891 srel = htab->root.srelgot;
0855e32b 15892 for (; local_got < end_local_got;
34e77a92
RS
15893 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15894 ++local_tlsdesc_gotent, ++symndx)
5e681ec4 15895 {
0855e32b 15896 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92
RS
15897 local_iplt = *local_iplt_ptr;
15898 if (local_iplt != NULL)
15899 {
15900 struct elf_dyn_relocs *p;
15901
15902 if (local_iplt->root.refcount > 0)
15903 {
15904 elf32_arm_allocate_plt_entry (info, TRUE,
15905 &local_iplt->root,
15906 &local_iplt->arm);
15907 if (local_iplt->arm.noncall_refcount == 0)
15908 /* All references to the PLT are calls, so all
15909 non-call references can resolve directly to the
15910 run-time target. This means that the .got entry
15911 would be the same as the .igot.plt entry, so there's
15912 no point creating both. */
15913 *local_got = 0;
15914 }
15915 else
15916 {
15917 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15918 local_iplt->root.offset = (bfd_vma) -1;
15919 }
15920
15921 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15922 {
15923 asection *psrel;
15924
15925 psrel = elf_section_data (p->sec)->sreloc;
15926 if (local_iplt->arm.noncall_refcount == 0)
15927 elf32_arm_allocate_irelocs (info, psrel, p->count);
15928 else
15929 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15930 }
15931 }
5e681ec4
PB
15932 if (*local_got > 0)
15933 {
34e77a92
RS
15934 Elf_Internal_Sym *isym;
15935
eea6121a 15936 *local_got = s->size;
ba93b8ac
DJ
15937 if (*local_tls_type & GOT_TLS_GD)
15938 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15939 s->size += 8;
0855e32b
NS
15940 if (*local_tls_type & GOT_TLS_GDESC)
15941 {
15942 *local_tlsdesc_gotent = htab->root.sgotplt->size
15943 - elf32_arm_compute_jump_table_size (htab);
15944 htab->root.sgotplt->size += 8;
15945 *local_got = (bfd_vma) -2;
34e77a92 15946 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 15947 reloc in the middle of .got.plt. */
99059e56 15948 htab->num_tls_desc++;
0855e32b 15949 }
ba93b8ac
DJ
15950 if (*local_tls_type & GOT_TLS_IE)
15951 s->size += 4;
ba93b8ac 15952
0855e32b
NS
15953 if (*local_tls_type & GOT_NORMAL)
15954 {
15955 /* If the symbol is both GD and GDESC, *local_got
15956 may have been overwritten. */
15957 *local_got = s->size;
15958 s->size += 4;
15959 }
15960
34e77a92
RS
15961 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15962 if (isym == NULL)
15963 return FALSE;
15964
15965 /* If all references to an STT_GNU_IFUNC PLT are calls,
15966 then all non-call references, including this GOT entry,
15967 resolve directly to the run-time target. */
15968 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15969 && (local_iplt == NULL
15970 || local_iplt->arm.noncall_refcount == 0))
15971 elf32_arm_allocate_irelocs (info, srel, 1);
0e1862bb 15972 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
0855e32b 15973 {
0e1862bb 15974 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
3064e1ff
JB
15975 || *local_tls_type & GOT_TLS_GD)
15976 elf32_arm_allocate_dynrelocs (info, srel, 1);
99059e56 15977
0e1862bb 15978 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
3064e1ff
JB
15979 {
15980 elf32_arm_allocate_dynrelocs (info,
15981 htab->root.srelplt, 1);
15982 htab->tls_trampoline = -1;
15983 }
0855e32b 15984 }
5e681ec4
PB
15985 }
15986 else
15987 *local_got = (bfd_vma) -1;
15988 }
252b5132
RH
15989 }
15990
ba93b8ac
DJ
15991 if (htab->tls_ldm_got.refcount > 0)
15992 {
15993 /* Allocate two GOT entries and one dynamic relocation (if necessary)
15994 for R_ARM_TLS_LDM32 relocations. */
362d30a1
RS
15995 htab->tls_ldm_got.offset = htab->root.sgot->size;
15996 htab->root.sgot->size += 8;
0e1862bb 15997 if (bfd_link_pic (info))
47beaa6a 15998 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
15999 }
16000 else
16001 htab->tls_ldm_got.offset = -1;
16002
5e681ec4
PB
16003 /* Allocate global sym .plt and .got entries, and space for global
16004 sym dynamic relocs. */
47beaa6a 16005 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 16006
d504ffc8 16007 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 16008 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 16009 {
0ffa91dd 16010 if (! is_arm_elf (ibfd))
e44a2c9c
AM
16011 continue;
16012
c7b8f16e
JB
16013 /* Initialise mapping tables for code/data. */
16014 bfd_elf32_arm_init_maps (ibfd);
906e58ca 16015
c7b8f16e 16016 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
a504d23a
LA
16017 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16018 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
99059e56
RM
16019 /* xgettext:c-format */
16020 _bfd_error_handler (_("Errors encountered processing file %s"),
c7b8f16e
JB
16021 ibfd->filename);
16022 }
d504ffc8 16023
3e6b1042
DJ
16024 /* Allocate space for the glue sections now that we've sized them. */
16025 bfd_elf32_arm_allocate_interworking_sections (info);
16026
0855e32b
NS
16027 /* For every jump slot reserved in the sgotplt, reloc_count is
16028 incremented. However, when we reserve space for TLS descriptors,
16029 it's not incremented, so in order to compute the space reserved
16030 for them, it suffices to multiply the reloc count by the jump
16031 slot size. */
16032 if (htab->root.srelplt)
16033 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16034
16035 if (htab->tls_trampoline)
16036 {
16037 if (htab->root.splt->size == 0)
16038 htab->root.splt->size += htab->plt_header_size;
b38cadfb 16039
0855e32b
NS
16040 htab->tls_trampoline = htab->root.splt->size;
16041 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 16042
0855e32b 16043 /* If we're not using lazy TLS relocations, don't generate the
99059e56 16044 PLT and GOT entries they require. */
0855e32b
NS
16045 if (!(info->flags & DF_BIND_NOW))
16046 {
16047 htab->dt_tlsdesc_got = htab->root.sgot->size;
16048 htab->root.sgot->size += 4;
16049
16050 htab->dt_tlsdesc_plt = htab->root.splt->size;
16051 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16052 }
16053 }
16054
252b5132
RH
16055 /* The check_relocs and adjust_dynamic_symbol entry points have
16056 determined the sizes of the various dynamic sections. Allocate
16057 memory for them. */
b34976b6
AM
16058 plt = FALSE;
16059 relocs = FALSE;
252b5132
RH
16060 for (s = dynobj->sections; s != NULL; s = s->next)
16061 {
16062 const char * name;
252b5132
RH
16063
16064 if ((s->flags & SEC_LINKER_CREATED) == 0)
16065 continue;
16066
16067 /* It's OK to base decisions on the section name, because none
16068 of the dynobj section names depend upon the input files. */
16069 name = bfd_get_section_name (dynobj, s);
16070
34e77a92 16071 if (s == htab->root.splt)
252b5132 16072 {
c456f082
AM
16073 /* Remember whether there is a PLT. */
16074 plt = s->size != 0;
252b5132 16075 }
0112cd26 16076 else if (CONST_STRNEQ (name, ".rel"))
252b5132 16077 {
c456f082 16078 if (s->size != 0)
252b5132 16079 {
252b5132 16080 /* Remember whether there are any reloc sections other
00a97672 16081 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 16082 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 16083 relocs = TRUE;
252b5132
RH
16084
16085 /* We use the reloc_count field as a counter if we need
16086 to copy relocs into the output file. */
16087 s->reloc_count = 0;
16088 }
16089 }
34e77a92
RS
16090 else if (s != htab->root.sgot
16091 && s != htab->root.sgotplt
16092 && s != htab->root.iplt
16093 && s != htab->root.igotplt
16094 && s != htab->sdynbss)
252b5132
RH
16095 {
16096 /* It's not one of our sections, so don't allocate space. */
16097 continue;
16098 }
16099
c456f082 16100 if (s->size == 0)
252b5132 16101 {
c456f082 16102 /* If we don't need this section, strip it from the
00a97672
RS
16103 output file. This is mostly to handle .rel(a).bss and
16104 .rel(a).plt. We must create both sections in
c456f082
AM
16105 create_dynamic_sections, because they must be created
16106 before the linker maps input sections to output
16107 sections. The linker does that before
16108 adjust_dynamic_symbol is called, and it is that
16109 function which decides whether anything needs to go
16110 into these sections. */
8423293d 16111 s->flags |= SEC_EXCLUDE;
252b5132
RH
16112 continue;
16113 }
16114
c456f082
AM
16115 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16116 continue;
16117
252b5132 16118 /* Allocate memory for the section contents. */
21d799b5 16119 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 16120 if (s->contents == NULL)
b34976b6 16121 return FALSE;
252b5132
RH
16122 }
16123
16124 if (elf_hash_table (info)->dynamic_sections_created)
16125 {
16126 /* Add some entries to the .dynamic section. We fill in the
16127 values later, in elf32_arm_finish_dynamic_sections, but we
16128 must add the entries now so that we get the correct size for
16129 the .dynamic section. The DT_DEBUG entry is filled in by the
16130 dynamic linker and used by the debugger. */
dc810e39 16131#define add_dynamic_entry(TAG, VAL) \
5a580b3a 16132 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 16133
0e1862bb 16134 if (bfd_link_executable (info))
252b5132 16135 {
dc810e39 16136 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 16137 return FALSE;
252b5132
RH
16138 }
16139
16140 if (plt)
16141 {
dc810e39
AM
16142 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16143 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
16144 || !add_dynamic_entry (DT_PLTREL,
16145 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 16146 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 16147 return FALSE;
0855e32b 16148
5025eb7c
AO
16149 if (htab->dt_tlsdesc_plt
16150 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16151 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
b38cadfb 16152 return FALSE;
252b5132
RH
16153 }
16154
16155 if (relocs)
16156 {
00a97672
RS
16157 if (htab->use_rel)
16158 {
16159 if (!add_dynamic_entry (DT_REL, 0)
16160 || !add_dynamic_entry (DT_RELSZ, 0)
16161 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16162 return FALSE;
16163 }
16164 else
16165 {
16166 if (!add_dynamic_entry (DT_RELA, 0)
16167 || !add_dynamic_entry (DT_RELASZ, 0)
16168 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16169 return FALSE;
16170 }
252b5132
RH
16171 }
16172
08d1f311
DJ
16173 /* If any dynamic relocs apply to a read-only section,
16174 then we need a DT_TEXTREL entry. */
16175 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
16176 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
16177 info);
08d1f311 16178
99e4ae17 16179 if ((info->flags & DF_TEXTREL) != 0)
252b5132 16180 {
dc810e39 16181 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 16182 return FALSE;
252b5132 16183 }
7a2b07ff
NS
16184 if (htab->vxworks_p
16185 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16186 return FALSE;
252b5132 16187 }
8532796c 16188#undef add_dynamic_entry
252b5132 16189
b34976b6 16190 return TRUE;
252b5132
RH
16191}
16192
0855e32b
NS
16193/* Size sections even though they're not dynamic. We use it to setup
16194 _TLS_MODULE_BASE_, if needed. */
16195
16196static bfd_boolean
16197elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 16198 struct bfd_link_info *info)
0855e32b
NS
16199{
16200 asection *tls_sec;
16201
0e1862bb 16202 if (bfd_link_relocatable (info))
0855e32b
NS
16203 return TRUE;
16204
16205 tls_sec = elf_hash_table (info)->tls_sec;
16206
16207 if (tls_sec)
16208 {
16209 struct elf_link_hash_entry *tlsbase;
16210
16211 tlsbase = elf_link_hash_lookup
16212 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16213
16214 if (tlsbase)
99059e56
RM
16215 {
16216 struct bfd_link_hash_entry *bh = NULL;
0855e32b 16217 const struct elf_backend_data *bed
99059e56 16218 = get_elf_backend_data (output_bfd);
0855e32b 16219
99059e56 16220 if (!(_bfd_generic_link_add_one_symbol
0855e32b
NS
16221 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16222 tls_sec, 0, NULL, FALSE,
16223 bed->collect, &bh)))
16224 return FALSE;
b38cadfb 16225
99059e56
RM
16226 tlsbase->type = STT_TLS;
16227 tlsbase = (struct elf_link_hash_entry *)bh;
16228 tlsbase->def_regular = 1;
16229 tlsbase->other = STV_HIDDEN;
16230 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
0855e32b
NS
16231 }
16232 }
16233 return TRUE;
16234}
16235
252b5132
RH
16236/* Finish up dynamic symbol handling. We set the contents of various
16237 dynamic sections here. */
16238
b34976b6 16239static bfd_boolean
906e58ca
NC
16240elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16241 struct bfd_link_info * info,
16242 struct elf_link_hash_entry * h,
16243 Elf_Internal_Sym * sym)
252b5132 16244{
e5a52504 16245 struct elf32_arm_link_hash_table *htab;
b7693d02 16246 struct elf32_arm_link_hash_entry *eh;
252b5132 16247
e5a52504 16248 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
16249 if (htab == NULL)
16250 return FALSE;
16251
b7693d02 16252 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
16253
16254 if (h->plt.offset != (bfd_vma) -1)
16255 {
34e77a92 16256 if (!eh->is_iplt)
e5a52504 16257 {
34e77a92 16258 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
16259 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16260 h->dynindx, 0))
16261 return FALSE;
e5a52504 16262 }
57e8b36a 16263
f5385ebf 16264 if (!h->def_regular)
252b5132
RH
16265 {
16266 /* Mark the symbol as undefined, rather than as defined in
3a635617 16267 the .plt section. */
252b5132 16268 sym->st_shndx = SHN_UNDEF;
3a635617 16269 /* If the symbol is weak we need to clear the value.
d982ba73
PB
16270 Otherwise, the PLT entry would provide a definition for
16271 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
16272 and so the symbol would never be NULL. Leave the value if
16273 there were any relocations where pointer equality matters
16274 (this is a clue for the dynamic linker, to make function
16275 pointer comparisons work between an application and shared
16276 library). */
97323ad1 16277 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 16278 sym->st_value = 0;
252b5132 16279 }
34e77a92
RS
16280 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16281 {
16282 /* At least one non-call relocation references this .iplt entry,
16283 so the .iplt entry is the function's canonical address. */
16284 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
39d911fc 16285 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
34e77a92
RS
16286 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16287 (output_bfd, htab->root.iplt->output_section));
16288 sym->st_value = (h->plt.offset
16289 + htab->root.iplt->output_section->vma
16290 + htab->root.iplt->output_offset);
16291 }
252b5132
RH
16292 }
16293
f5385ebf 16294 if (h->needs_copy)
252b5132
RH
16295 {
16296 asection * s;
947216bf 16297 Elf_Internal_Rela rel;
252b5132
RH
16298
16299 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
16300 BFD_ASSERT (h->dynindx != -1
16301 && (h->root.type == bfd_link_hash_defined
16302 || h->root.type == bfd_link_hash_defweak));
16303
362d30a1 16304 s = htab->srelbss;
252b5132
RH
16305 BFD_ASSERT (s != NULL);
16306
00a97672 16307 rel.r_addend = 0;
252b5132
RH
16308 rel.r_offset = (h->root.u.def.value
16309 + h->root.u.def.section->output_section->vma
16310 + h->root.u.def.section->output_offset);
16311 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
47beaa6a 16312 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
16313 }
16314
00a97672
RS
16315 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16316 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16317 to the ".got" section. */
9637f6ef 16318 if (h == htab->root.hdynamic
00a97672 16319 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
16320 sym->st_shndx = SHN_ABS;
16321
b34976b6 16322 return TRUE;
252b5132
RH
16323}
16324
0855e32b
NS
16325static void
16326arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16327 void *contents,
16328 const unsigned long *template, unsigned count)
16329{
16330 unsigned ix;
b38cadfb 16331
0855e32b
NS
16332 for (ix = 0; ix != count; ix++)
16333 {
16334 unsigned long insn = template[ix];
16335
16336 /* Emit mov pc,rx if bx is not permitted. */
16337 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16338 insn = (insn & 0xf000000f) | 0x01a0f000;
16339 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16340 }
16341}
16342
99059e56
RM
16343/* Install the special first PLT entry for elf32-arm-nacl. Unlike
16344 other variants, NaCl needs this entry in a static executable's
16345 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16346 zero. For .iplt really only the last bundle is useful, and .iplt
16347 could have a shorter first entry, with each individual PLT entry's
16348 relative branch calculated differently so it targets the last
16349 bundle instead of the instruction before it (labelled .Lplt_tail
16350 above). But it's simpler to keep the size and layout of PLT0
16351 consistent with the dynamic case, at the cost of some dead code at
16352 the start of .iplt and the one dead store to the stack at the start
16353 of .Lplt_tail. */
16354static void
16355arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16356 asection *plt, bfd_vma got_displacement)
16357{
16358 unsigned int i;
16359
16360 put_arm_insn (htab, output_bfd,
16361 elf32_arm_nacl_plt0_entry[0]
16362 | arm_movw_immediate (got_displacement),
16363 plt->contents + 0);
16364 put_arm_insn (htab, output_bfd,
16365 elf32_arm_nacl_plt0_entry[1]
16366 | arm_movt_immediate (got_displacement),
16367 plt->contents + 4);
16368
16369 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16370 put_arm_insn (htab, output_bfd,
16371 elf32_arm_nacl_plt0_entry[i],
16372 plt->contents + (i * 4));
16373}
16374
252b5132
RH
16375/* Finish up the dynamic sections. */
16376
b34976b6 16377static bfd_boolean
57e8b36a 16378elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
16379{
16380 bfd * dynobj;
16381 asection * sgot;
16382 asection * sdyn;
4dfe6ac6
NC
16383 struct elf32_arm_link_hash_table *htab;
16384
16385 htab = elf32_arm_hash_table (info);
16386 if (htab == NULL)
16387 return FALSE;
252b5132
RH
16388
16389 dynobj = elf_hash_table (info)->dynobj;
16390
362d30a1 16391 sgot = htab->root.sgotplt;
894891db
NC
16392 /* A broken linker script might have discarded the dynamic sections.
16393 Catch this here so that we do not seg-fault later on. */
16394 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16395 return FALSE;
3d4d4302 16396 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
16397
16398 if (elf_hash_table (info)->dynamic_sections_created)
16399 {
16400 asection *splt;
16401 Elf32_External_Dyn *dyncon, *dynconend;
16402
362d30a1 16403 splt = htab->root.splt;
24a1ba0f 16404 BFD_ASSERT (splt != NULL && sdyn != NULL);
cbc704f3 16405 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
16406
16407 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 16408 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 16409
252b5132
RH
16410 for (; dyncon < dynconend; dyncon++)
16411 {
16412 Elf_Internal_Dyn dyn;
16413 const char * name;
16414 asection * s;
16415
16416 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16417
16418 switch (dyn.d_tag)
16419 {
229fcec5
MM
16420 unsigned int type;
16421
252b5132 16422 default:
7a2b07ff
NS
16423 if (htab->vxworks_p
16424 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16425 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
16426 break;
16427
229fcec5
MM
16428 case DT_HASH:
16429 name = ".hash";
16430 goto get_vma_if_bpabi;
16431 case DT_STRTAB:
16432 name = ".dynstr";
16433 goto get_vma_if_bpabi;
16434 case DT_SYMTAB:
16435 name = ".dynsym";
16436 goto get_vma_if_bpabi;
c0042f5d
MM
16437 case DT_VERSYM:
16438 name = ".gnu.version";
16439 goto get_vma_if_bpabi;
16440 case DT_VERDEF:
16441 name = ".gnu.version_d";
16442 goto get_vma_if_bpabi;
16443 case DT_VERNEED:
16444 name = ".gnu.version_r";
16445 goto get_vma_if_bpabi;
16446
252b5132 16447 case DT_PLTGOT:
4ade44b7 16448 name = htab->symbian_p ? ".got" : ".got.plt";
252b5132
RH
16449 goto get_vma;
16450 case DT_JMPREL:
00a97672 16451 name = RELOC_SECTION (htab, ".plt");
252b5132 16452 get_vma:
4ade44b7 16453 s = bfd_get_linker_section (dynobj, name);
05456594
NC
16454 if (s == NULL)
16455 {
4eca0228 16456 _bfd_error_handler
4ade44b7 16457 (_("could not find section %s"), name);
05456594
NC
16458 bfd_set_error (bfd_error_invalid_operation);
16459 return FALSE;
16460 }
229fcec5 16461 if (!htab->symbian_p)
4ade44b7 16462 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
229fcec5
MM
16463 else
16464 /* In the BPABI, tags in the PT_DYNAMIC section point
16465 at the file offset, not the memory address, for the
16466 convenience of the post linker. */
4ade44b7 16467 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
252b5132
RH
16468 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16469 break;
16470
229fcec5
MM
16471 get_vma_if_bpabi:
16472 if (htab->symbian_p)
16473 goto get_vma;
16474 break;
16475
252b5132 16476 case DT_PLTRELSZ:
362d30a1 16477 s = htab->root.srelplt;
252b5132 16478 BFD_ASSERT (s != NULL);
eea6121a 16479 dyn.d_un.d_val = s->size;
252b5132
RH
16480 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16481 break;
906e58ca 16482
252b5132 16483 case DT_RELSZ:
00a97672 16484 case DT_RELASZ:
229fcec5
MM
16485 if (!htab->symbian_p)
16486 {
16487 /* My reading of the SVR4 ABI indicates that the
16488 procedure linkage table relocs (DT_JMPREL) should be
16489 included in the overall relocs (DT_REL). This is
16490 what Solaris does. However, UnixWare can not handle
16491 that case. Therefore, we override the DT_RELSZ entry
16492 here to make it not include the JMPREL relocs. Since
00a97672 16493 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
16494 other relocation sections, we don't have to worry
16495 about changing the DT_REL entry. */
362d30a1 16496 s = htab->root.srelplt;
229fcec5
MM
16497 if (s != NULL)
16498 dyn.d_un.d_val -= s->size;
16499 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16500 break;
16501 }
8029a119 16502 /* Fall through. */
229fcec5
MM
16503
16504 case DT_REL:
16505 case DT_RELA:
229fcec5
MM
16506 /* In the BPABI, the DT_REL tag must point at the file
16507 offset, not the VMA, of the first relocation
16508 section. So, we use code similar to that in
16509 elflink.c, but do not check for SHF_ALLOC on the
16510 relcoation section, since relocations sections are
16511 never allocated under the BPABI. The comments above
16512 about Unixware notwithstanding, we include all of the
16513 relocations here. */
16514 if (htab->symbian_p)
16515 {
16516 unsigned int i;
16517 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16518 ? SHT_REL : SHT_RELA);
16519 dyn.d_un.d_val = 0;
16520 for (i = 1; i < elf_numsections (output_bfd); i++)
16521 {
906e58ca 16522 Elf_Internal_Shdr *hdr
229fcec5
MM
16523 = elf_elfsections (output_bfd)[i];
16524 if (hdr->sh_type == type)
16525 {
906e58ca 16526 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
16527 || dyn.d_tag == DT_RELASZ)
16528 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
16529 else if ((ufile_ptr) hdr->sh_offset
16530 <= dyn.d_un.d_val - 1)
229fcec5
MM
16531 dyn.d_un.d_val = hdr->sh_offset;
16532 }
16533 }
16534 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16535 }
252b5132 16536 break;
88f7bcd5 16537
0855e32b 16538 case DT_TLSDESC_PLT:
99059e56 16539 s = htab->root.splt;
0855e32b
NS
16540 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16541 + htab->dt_tlsdesc_plt);
16542 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16543 break;
16544
16545 case DT_TLSDESC_GOT:
99059e56 16546 s = htab->root.sgot;
0855e32b 16547 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
99059e56 16548 + htab->dt_tlsdesc_got);
0855e32b
NS
16549 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16550 break;
16551
88f7bcd5
NC
16552 /* Set the bottom bit of DT_INIT/FINI if the
16553 corresponding function is Thumb. */
16554 case DT_INIT:
16555 name = info->init_function;
16556 goto get_sym;
16557 case DT_FINI:
16558 name = info->fini_function;
16559 get_sym:
16560 /* If it wasn't set by elf_bfd_final_link
4cc11e76 16561 then there is nothing to adjust. */
88f7bcd5
NC
16562 if (dyn.d_un.d_val != 0)
16563 {
16564 struct elf_link_hash_entry * eh;
16565
16566 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 16567 FALSE, FALSE, TRUE);
39d911fc
TP
16568 if (eh != NULL
16569 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16570 == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
16571 {
16572 dyn.d_un.d_val |= 1;
b34976b6 16573 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
16574 }
16575 }
16576 break;
252b5132
RH
16577 }
16578 }
16579
24a1ba0f 16580 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 16581 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 16582 {
00a97672
RS
16583 const bfd_vma *plt0_entry;
16584 bfd_vma got_address, plt_address, got_displacement;
16585
16586 /* Calculate the addresses of the GOT and PLT. */
16587 got_address = sgot->output_section->vma + sgot->output_offset;
16588 plt_address = splt->output_section->vma + splt->output_offset;
16589
16590 if (htab->vxworks_p)
16591 {
16592 /* The VxWorks GOT is relocated by the dynamic linker.
16593 Therefore, we must emit relocations rather than simply
16594 computing the values now. */
16595 Elf_Internal_Rela rel;
16596
16597 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
16598 put_arm_insn (htab, output_bfd, plt0_entry[0],
16599 splt->contents + 0);
16600 put_arm_insn (htab, output_bfd, plt0_entry[1],
16601 splt->contents + 4);
16602 put_arm_insn (htab, output_bfd, plt0_entry[2],
16603 splt->contents + 8);
00a97672
RS
16604 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16605
8029a119 16606 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
16607 rel.r_offset = plt_address + 12;
16608 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16609 rel.r_addend = 0;
16610 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16611 htab->srelplt2->contents);
16612 }
b38cadfb 16613 else if (htab->nacl_p)
99059e56
RM
16614 arm_nacl_put_plt0 (htab, output_bfd, splt,
16615 got_address + 8 - (plt_address + 16));
eed94f8f
NC
16616 else if (using_thumb_only (htab))
16617 {
16618 got_displacement = got_address - (plt_address + 12);
16619
16620 plt0_entry = elf32_thumb2_plt0_entry;
16621 put_arm_insn (htab, output_bfd, plt0_entry[0],
16622 splt->contents + 0);
16623 put_arm_insn (htab, output_bfd, plt0_entry[1],
16624 splt->contents + 4);
16625 put_arm_insn (htab, output_bfd, plt0_entry[2],
16626 splt->contents + 8);
16627
16628 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16629 }
00a97672
RS
16630 else
16631 {
16632 got_displacement = got_address - (plt_address + 16);
16633
16634 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
16635 put_arm_insn (htab, output_bfd, plt0_entry[0],
16636 splt->contents + 0);
16637 put_arm_insn (htab, output_bfd, plt0_entry[1],
16638 splt->contents + 4);
16639 put_arm_insn (htab, output_bfd, plt0_entry[2],
16640 splt->contents + 8);
16641 put_arm_insn (htab, output_bfd, plt0_entry[3],
16642 splt->contents + 12);
5e681ec4 16643
5e681ec4 16644#ifdef FOUR_WORD_PLT
00a97672
RS
16645 /* The displacement value goes in the otherwise-unused
16646 last word of the second entry. */
16647 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 16648#else
00a97672 16649 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 16650#endif
00a97672 16651 }
f7a74f8c 16652 }
252b5132
RH
16653
16654 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16655 really seem like the right value. */
74541ad4
AM
16656 if (splt->output_section->owner == output_bfd)
16657 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 16658
0855e32b
NS
16659 if (htab->dt_tlsdesc_plt)
16660 {
16661 bfd_vma got_address
16662 = sgot->output_section->vma + sgot->output_offset;
16663 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16664 + htab->root.sgot->output_offset);
16665 bfd_vma plt_address
16666 = splt->output_section->vma + splt->output_offset;
16667
b38cadfb 16668 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
16669 splt->contents + htab->dt_tlsdesc_plt,
16670 dl_tlsdesc_lazy_trampoline, 6);
16671
16672 bfd_put_32 (output_bfd,
16673 gotplt_address + htab->dt_tlsdesc_got
16674 - (plt_address + htab->dt_tlsdesc_plt)
16675 - dl_tlsdesc_lazy_trampoline[6],
16676 splt->contents + htab->dt_tlsdesc_plt + 24);
16677 bfd_put_32 (output_bfd,
16678 got_address - (plt_address + htab->dt_tlsdesc_plt)
16679 - dl_tlsdesc_lazy_trampoline[7],
16680 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16681 }
16682
16683 if (htab->tls_trampoline)
16684 {
b38cadfb 16685 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
16686 splt->contents + htab->tls_trampoline,
16687 tls_trampoline, 3);
16688#ifdef FOUR_WORD_PLT
16689 bfd_put_32 (output_bfd, 0x00000000,
16690 splt->contents + htab->tls_trampoline + 12);
b38cadfb 16691#endif
0855e32b
NS
16692 }
16693
0e1862bb
L
16694 if (htab->vxworks_p
16695 && !bfd_link_pic (info)
16696 && htab->root.splt->size > 0)
00a97672
RS
16697 {
16698 /* Correct the .rel(a).plt.unloaded relocations. They will have
16699 incorrect symbol indexes. */
16700 int num_plts;
eed62c48 16701 unsigned char *p;
00a97672 16702
362d30a1 16703 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
16704 / htab->plt_entry_size);
16705 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16706
16707 for (; num_plts; num_plts--)
16708 {
16709 Elf_Internal_Rela rel;
16710
16711 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16712 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16713 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16714 p += RELOC_SIZE (htab);
16715
16716 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16717 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16718 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16719 p += RELOC_SIZE (htab);
16720 }
16721 }
252b5132
RH
16722 }
16723
99059e56
RM
16724 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16725 /* NaCl uses a special first entry in .iplt too. */
16726 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16727
252b5132 16728 /* Fill in the first three entries in the global offset table. */
229fcec5 16729 if (sgot)
252b5132 16730 {
229fcec5
MM
16731 if (sgot->size > 0)
16732 {
16733 if (sdyn == NULL)
16734 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16735 else
16736 bfd_put_32 (output_bfd,
16737 sdyn->output_section->vma + sdyn->output_offset,
16738 sgot->contents);
16739 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16740 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16741 }
252b5132 16742
229fcec5
MM
16743 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16744 }
252b5132 16745
b34976b6 16746 return TRUE;
252b5132
RH
16747}
16748
ba96a88f 16749static void
57e8b36a 16750elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 16751{
9b485d32 16752 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 16753 struct elf32_arm_link_hash_table *globals;
ac4c9b04 16754 struct elf_segment_map *m;
ba96a88f
NC
16755
16756 i_ehdrp = elf_elfheader (abfd);
16757
94a3258f
PB
16758 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16759 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16760 else
7394f108 16761 _bfd_elf_post_process_headers (abfd, link_info);
ba96a88f 16762 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 16763
93204d3a
PB
16764 if (link_info)
16765 {
16766 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 16767 if (globals != NULL && globals->byteswap_code)
93204d3a
PB
16768 i_ehdrp->e_flags |= EF_ARM_BE8;
16769 }
3bfcb652
NC
16770
16771 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16772 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16773 {
16774 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 16775 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
16776 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16777 else
16778 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16779 }
ac4c9b04
MG
16780
16781 /* Scan segment to set p_flags attribute if it contains only sections with
f0728ee3 16782 SHF_ARM_PURECODE flag. */
ac4c9b04
MG
16783 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16784 {
16785 unsigned int j;
16786
16787 if (m->count == 0)
16788 continue;
16789 for (j = 0; j < m->count; j++)
16790 {
f0728ee3 16791 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
ac4c9b04
MG
16792 break;
16793 }
16794 if (j == m->count)
16795 {
16796 m->p_flags = PF_X;
16797 m->p_flags_valid = 1;
16798 }
16799 }
ba96a88f
NC
16800}
16801
99e4ae17 16802static enum elf_reloc_type_class
7e612e98
AM
16803elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16804 const asection *rel_sec ATTRIBUTE_UNUSED,
16805 const Elf_Internal_Rela *rela)
99e4ae17 16806{
f51e552e 16807 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
16808 {
16809 case R_ARM_RELATIVE:
16810 return reloc_class_relative;
16811 case R_ARM_JUMP_SLOT:
16812 return reloc_class_plt;
16813 case R_ARM_COPY:
16814 return reloc_class_copy;
109575d7
JW
16815 case R_ARM_IRELATIVE:
16816 return reloc_class_ifunc;
99e4ae17
AJ
16817 default:
16818 return reloc_class_normal;
16819 }
16820}
16821
e489d0ae 16822static void
57e8b36a 16823elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 16824{
5a6c6817 16825 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
16826}
16827
40a18ebd
NC
16828/* Return TRUE if this is an unwinding table entry. */
16829
16830static bfd_boolean
16831is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16832{
0112cd26
NC
16833 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16834 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
16835}
16836
16837
16838/* Set the type and flags for an ARM section. We do this by
16839 the section name, which is a hack, but ought to work. */
16840
16841static bfd_boolean
16842elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16843{
16844 const char * name;
16845
16846 name = bfd_get_section_name (abfd, sec);
16847
16848 if (is_arm_elf_unwind_section_name (abfd, name))
16849 {
16850 hdr->sh_type = SHT_ARM_EXIDX;
16851 hdr->sh_flags |= SHF_LINK_ORDER;
16852 }
ac4c9b04 16853
f0728ee3
AV
16854 if (sec->flags & SEC_ELF_PURECODE)
16855 hdr->sh_flags |= SHF_ARM_PURECODE;
ac4c9b04 16856
40a18ebd
NC
16857 return TRUE;
16858}
16859
6dc132d9
L
16860/* Handle an ARM specific section when reading an object file. This is
16861 called when bfd_section_from_shdr finds a section with an unknown
16862 type. */
40a18ebd
NC
16863
16864static bfd_boolean
16865elf32_arm_section_from_shdr (bfd *abfd,
16866 Elf_Internal_Shdr * hdr,
6dc132d9
L
16867 const char *name,
16868 int shindex)
40a18ebd
NC
16869{
16870 /* There ought to be a place to keep ELF backend specific flags, but
16871 at the moment there isn't one. We just keep track of the
16872 sections by their name, instead. Fortunately, the ABI gives
16873 names for all the ARM specific sections, so we will probably get
16874 away with this. */
16875 switch (hdr->sh_type)
16876 {
16877 case SHT_ARM_EXIDX:
0951f019
RE
16878 case SHT_ARM_PREEMPTMAP:
16879 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
16880 break;
16881
16882 default:
16883 return FALSE;
16884 }
16885
6dc132d9 16886 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
16887 return FALSE;
16888
16889 return TRUE;
16890}
e489d0ae 16891
44444f50
NC
16892static _arm_elf_section_data *
16893get_arm_elf_section_data (asection * sec)
16894{
47b2e99c
JZ
16895 if (sec && sec->owner && is_arm_elf (sec->owner))
16896 return elf32_arm_section_data (sec);
44444f50
NC
16897 else
16898 return NULL;
8e3de13a
NC
16899}
16900
4e617b1e
PB
16901typedef struct
16902{
57402f1e 16903 void *flaginfo;
4e617b1e 16904 struct bfd_link_info *info;
91a5743d
PB
16905 asection *sec;
16906 int sec_shndx;
6e0b88f1
AM
16907 int (*func) (void *, const char *, Elf_Internal_Sym *,
16908 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
16909} output_arch_syminfo;
16910
16911enum map_symbol_type
16912{
16913 ARM_MAP_ARM,
16914 ARM_MAP_THUMB,
16915 ARM_MAP_DATA
16916};
16917
16918
7413f23f 16919/* Output a single mapping symbol. */
4e617b1e
PB
16920
16921static bfd_boolean
7413f23f
DJ
16922elf32_arm_output_map_sym (output_arch_syminfo *osi,
16923 enum map_symbol_type type,
16924 bfd_vma offset)
4e617b1e
PB
16925{
16926 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
16927 Elf_Internal_Sym sym;
16928
91a5743d
PB
16929 sym.st_value = osi->sec->output_section->vma
16930 + osi->sec->output_offset
16931 + offset;
4e617b1e
PB
16932 sym.st_size = 0;
16933 sym.st_other = 0;
16934 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 16935 sym.st_shndx = osi->sec_shndx;
35fc36a8 16936 sym.st_target_internal = 0;
fe33d2fa 16937 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 16938 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
16939}
16940
34e77a92
RS
16941/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16942 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e
PB
16943
16944static bfd_boolean
34e77a92
RS
16945elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16946 bfd_boolean is_iplt_entry_p,
16947 union gotplt_union *root_plt,
16948 struct arm_plt_info *arm_plt)
4e617b1e 16949{
4e617b1e 16950 struct elf32_arm_link_hash_table *htab;
34e77a92 16951 bfd_vma addr, plt_header_size;
4e617b1e 16952
34e77a92 16953 if (root_plt->offset == (bfd_vma) -1)
4e617b1e
PB
16954 return TRUE;
16955
4dfe6ac6
NC
16956 htab = elf32_arm_hash_table (osi->info);
16957 if (htab == NULL)
16958 return FALSE;
16959
34e77a92
RS
16960 if (is_iplt_entry_p)
16961 {
16962 osi->sec = htab->root.iplt;
16963 plt_header_size = 0;
16964 }
16965 else
16966 {
16967 osi->sec = htab->root.splt;
16968 plt_header_size = htab->plt_header_size;
16969 }
16970 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16971 (osi->info->output_bfd, osi->sec->output_section));
16972
16973 addr = root_plt->offset & -2;
4e617b1e
PB
16974 if (htab->symbian_p)
16975 {
7413f23f 16976 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 16977 return FALSE;
7413f23f 16978 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
16979 return FALSE;
16980 }
16981 else if (htab->vxworks_p)
16982 {
7413f23f 16983 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 16984 return FALSE;
7413f23f 16985 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 16986 return FALSE;
7413f23f 16987 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 16988 return FALSE;
7413f23f 16989 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
16990 return FALSE;
16991 }
b38cadfb
NC
16992 else if (htab->nacl_p)
16993 {
16994 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16995 return FALSE;
16996 }
eed94f8f
NC
16997 else if (using_thumb_only (htab))
16998 {
16999 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
17000 return FALSE;
6a631e86 17001 }
4e617b1e
PB
17002 else
17003 {
34e77a92 17004 bfd_boolean thumb_stub_p;
bd97cb95 17005
34e77a92
RS
17006 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17007 if (thumb_stub_p)
4e617b1e 17008 {
7413f23f 17009 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
17010 return FALSE;
17011 }
17012#ifdef FOUR_WORD_PLT
7413f23f 17013 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 17014 return FALSE;
7413f23f 17015 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
17016 return FALSE;
17017#else
906e58ca 17018 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
17019 so only need to output a mapping symbol for the first PLT entry and
17020 entries with thumb thunks. */
34e77a92 17021 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 17022 {
7413f23f 17023 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
17024 return FALSE;
17025 }
17026#endif
17027 }
17028
17029 return TRUE;
17030}
17031
34e77a92
RS
17032/* Output mapping symbols for PLT entries associated with H. */
17033
17034static bfd_boolean
17035elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17036{
17037 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17038 struct elf32_arm_link_hash_entry *eh;
17039
17040 if (h->root.type == bfd_link_hash_indirect)
17041 return TRUE;
17042
17043 if (h->root.type == bfd_link_hash_warning)
17044 /* When warning symbols are created, they **replace** the "real"
17045 entry in the hash table, thus we never get to see the real
17046 symbol in a hash traversal. So look at it now. */
17047 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17048
17049 eh = (struct elf32_arm_link_hash_entry *) h;
17050 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17051 &h->plt, &eh->plt);
17052}
17053
4f4faa4d
TP
17054/* Bind a veneered symbol to its veneer identified by its hash entry
17055 STUB_ENTRY. The veneered location thus loose its symbol. */
17056
17057static void
17058arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17059{
17060 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17061
17062 BFD_ASSERT (hash);
17063 hash->root.root.u.def.section = stub_entry->stub_sec;
17064 hash->root.root.u.def.value = stub_entry->stub_offset;
17065 hash->root.size = stub_entry->stub_size;
17066}
17067
7413f23f
DJ
17068/* Output a single local symbol for a generated stub. */
17069
17070static bfd_boolean
17071elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17072 bfd_vma offset, bfd_vma size)
17073{
7413f23f
DJ
17074 Elf_Internal_Sym sym;
17075
7413f23f
DJ
17076 sym.st_value = osi->sec->output_section->vma
17077 + osi->sec->output_offset
17078 + offset;
17079 sym.st_size = size;
17080 sym.st_other = 0;
17081 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17082 sym.st_shndx = osi->sec_shndx;
35fc36a8 17083 sym.st_target_internal = 0;
57402f1e 17084 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 17085}
4e617b1e 17086
da5938a2 17087static bfd_boolean
8029a119
NC
17088arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17089 void * in_arg)
da5938a2
NC
17090{
17091 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
17092 asection *stub_sec;
17093 bfd_vma addr;
7413f23f 17094 char *stub_name;
9a008db3 17095 output_arch_syminfo *osi;
d3ce72d0 17096 const insn_sequence *template_sequence;
461a49ca
DJ
17097 enum stub_insn_type prev_type;
17098 int size;
17099 int i;
17100 enum map_symbol_type sym_type;
da5938a2
NC
17101
17102 /* Massage our args to the form they really have. */
17103 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 17104 osi = (output_arch_syminfo *) in_arg;
da5938a2 17105
da5938a2
NC
17106 stub_sec = stub_entry->stub_sec;
17107
17108 /* Ensure this stub is attached to the current section being
7413f23f 17109 processed. */
da5938a2
NC
17110 if (stub_sec != osi->sec)
17111 return TRUE;
17112
7413f23f 17113 addr = (bfd_vma) stub_entry->stub_offset;
d3ce72d0 17114 template_sequence = stub_entry->stub_template;
4f4faa4d
TP
17115
17116 if (arm_stub_sym_claimed (stub_entry->stub_type))
17117 arm_stub_claim_sym (stub_entry);
17118 else
7413f23f 17119 {
4f4faa4d
TP
17120 stub_name = stub_entry->output_name;
17121 switch (template_sequence[0].type)
17122 {
17123 case ARM_TYPE:
17124 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17125 stub_entry->stub_size))
17126 return FALSE;
17127 break;
17128 case THUMB16_TYPE:
17129 case THUMB32_TYPE:
17130 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17131 stub_entry->stub_size))
17132 return FALSE;
17133 break;
17134 default:
17135 BFD_FAIL ();
17136 return 0;
17137 }
7413f23f 17138 }
da5938a2 17139
461a49ca
DJ
17140 prev_type = DATA_TYPE;
17141 size = 0;
17142 for (i = 0; i < stub_entry->stub_template_size; i++)
17143 {
d3ce72d0 17144 switch (template_sequence[i].type)
461a49ca
DJ
17145 {
17146 case ARM_TYPE:
17147 sym_type = ARM_MAP_ARM;
17148 break;
17149
17150 case THUMB16_TYPE:
48229727 17151 case THUMB32_TYPE:
461a49ca
DJ
17152 sym_type = ARM_MAP_THUMB;
17153 break;
17154
17155 case DATA_TYPE:
17156 sym_type = ARM_MAP_DATA;
17157 break;
17158
17159 default:
17160 BFD_FAIL ();
4e31c731 17161 return FALSE;
461a49ca
DJ
17162 }
17163
d3ce72d0 17164 if (template_sequence[i].type != prev_type)
461a49ca 17165 {
d3ce72d0 17166 prev_type = template_sequence[i].type;
461a49ca
DJ
17167 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17168 return FALSE;
17169 }
17170
d3ce72d0 17171 switch (template_sequence[i].type)
461a49ca
DJ
17172 {
17173 case ARM_TYPE:
48229727 17174 case THUMB32_TYPE:
461a49ca
DJ
17175 size += 4;
17176 break;
17177
17178 case THUMB16_TYPE:
17179 size += 2;
17180 break;
17181
17182 case DATA_TYPE:
17183 size += 4;
17184 break;
17185
17186 default:
17187 BFD_FAIL ();
4e31c731 17188 return FALSE;
461a49ca
DJ
17189 }
17190 }
17191
da5938a2
NC
17192 return TRUE;
17193}
17194
33811162
DG
17195/* Output mapping symbols for linker generated sections,
17196 and for those data-only sections that do not have a
17197 $d. */
4e617b1e
PB
17198
17199static bfd_boolean
17200elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 17201 struct bfd_link_info *info,
57402f1e 17202 void *flaginfo,
6e0b88f1
AM
17203 int (*func) (void *, const char *,
17204 Elf_Internal_Sym *,
17205 asection *,
17206 struct elf_link_hash_entry *))
4e617b1e
PB
17207{
17208 output_arch_syminfo osi;
17209 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
17210 bfd_vma offset;
17211 bfd_size_type size;
33811162 17212 bfd *input_bfd;
4e617b1e
PB
17213
17214 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
17215 if (htab == NULL)
17216 return FALSE;
17217
906e58ca 17218 check_use_blx (htab);
91a5743d 17219
57402f1e 17220 osi.flaginfo = flaginfo;
4e617b1e
PB
17221 osi.info = info;
17222 osi.func = func;
906e58ca 17223
33811162
DG
17224 /* Add a $d mapping symbol to data-only sections that
17225 don't have any mapping symbol. This may result in (harmless) redundant
17226 mapping symbols. */
17227 for (input_bfd = info->input_bfds;
17228 input_bfd != NULL;
c72f2fb2 17229 input_bfd = input_bfd->link.next)
33811162
DG
17230 {
17231 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17232 for (osi.sec = input_bfd->sections;
17233 osi.sec != NULL;
17234 osi.sec = osi.sec->next)
17235 {
17236 if (osi.sec->output_section != NULL
f7dd8c79
DJ
17237 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17238 != 0)
33811162
DG
17239 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17240 == SEC_HAS_CONTENTS
17241 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 17242 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
17243 && osi.sec->size > 0
17244 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
17245 {
17246 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17247 (output_bfd, osi.sec->output_section);
17248 if (osi.sec_shndx != (int)SHN_BAD)
17249 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17250 }
17251 }
17252 }
17253
91a5743d
PB
17254 /* ARM->Thumb glue. */
17255 if (htab->arm_glue_size > 0)
17256 {
3d4d4302
AM
17257 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17258 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
17259
17260 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17261 (output_bfd, osi.sec->output_section);
0e1862bb 17262 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
91a5743d
PB
17263 || htab->pic_veneer)
17264 size = ARM2THUMB_PIC_GLUE_SIZE;
17265 else if (htab->use_blx)
17266 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17267 else
17268 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 17269
91a5743d
PB
17270 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17271 {
7413f23f
DJ
17272 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17273 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
17274 }
17275 }
17276
17277 /* Thumb->ARM glue. */
17278 if (htab->thumb_glue_size > 0)
17279 {
3d4d4302
AM
17280 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17281 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
17282
17283 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17284 (output_bfd, osi.sec->output_section);
17285 size = THUMB2ARM_GLUE_SIZE;
17286
17287 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17288 {
7413f23f
DJ
17289 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17290 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
17291 }
17292 }
17293
845b51d6
PB
17294 /* ARMv4 BX veneers. */
17295 if (htab->bx_glue_size > 0)
17296 {
3d4d4302
AM
17297 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17298 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
17299
17300 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17301 (output_bfd, osi.sec->output_section);
17302
7413f23f 17303 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
17304 }
17305
8029a119
NC
17306 /* Long calls stubs. */
17307 if (htab->stub_bfd && htab->stub_bfd->sections)
17308 {
da5938a2 17309 asection* stub_sec;
8029a119 17310
da5938a2
NC
17311 for (stub_sec = htab->stub_bfd->sections;
17312 stub_sec != NULL;
8029a119
NC
17313 stub_sec = stub_sec->next)
17314 {
17315 /* Ignore non-stub sections. */
17316 if (!strstr (stub_sec->name, STUB_SUFFIX))
17317 continue;
da5938a2 17318
8029a119 17319 osi.sec = stub_sec;
da5938a2 17320
8029a119
NC
17321 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17322 (output_bfd, osi.sec->output_section);
da5938a2 17323
8029a119
NC
17324 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17325 }
17326 }
da5938a2 17327
91a5743d 17328 /* Finally, output mapping symbols for the PLT. */
34e77a92 17329 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 17330 {
34e77a92
RS
17331 osi.sec = htab->root.splt;
17332 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17333 (output_bfd, osi.sec->output_section));
17334
17335 /* Output mapping symbols for the plt header. SymbianOS does not have a
17336 plt header. */
17337 if (htab->vxworks_p)
17338 {
17339 /* VxWorks shared libraries have no PLT header. */
0e1862bb 17340 if (!bfd_link_pic (info))
34e77a92
RS
17341 {
17342 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17343 return FALSE;
17344 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17345 return FALSE;
17346 }
17347 }
b38cadfb
NC
17348 else if (htab->nacl_p)
17349 {
17350 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17351 return FALSE;
17352 }
eed94f8f
NC
17353 else if (using_thumb_only (htab))
17354 {
17355 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17356 return FALSE;
17357 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17358 return FALSE;
17359 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17360 return FALSE;
17361 }
34e77a92 17362 else if (!htab->symbian_p)
4e617b1e 17363 {
7413f23f 17364 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 17365 return FALSE;
34e77a92
RS
17366#ifndef FOUR_WORD_PLT
17367 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e 17368 return FALSE;
34e77a92 17369#endif
4e617b1e
PB
17370 }
17371 }
99059e56
RM
17372 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17373 {
17374 /* NaCl uses a special first entry in .iplt too. */
17375 osi.sec = htab->root.iplt;
17376 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17377 (output_bfd, osi.sec->output_section));
17378 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17379 return FALSE;
17380 }
34e77a92
RS
17381 if ((htab->root.splt && htab->root.splt->size > 0)
17382 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 17383 {
34e77a92
RS
17384 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17385 for (input_bfd = info->input_bfds;
17386 input_bfd != NULL;
c72f2fb2 17387 input_bfd = input_bfd->link.next)
34e77a92
RS
17388 {
17389 struct arm_local_iplt_info **local_iplt;
17390 unsigned int i, num_syms;
4e617b1e 17391
34e77a92
RS
17392 local_iplt = elf32_arm_local_iplt (input_bfd);
17393 if (local_iplt != NULL)
17394 {
17395 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17396 for (i = 0; i < num_syms; i++)
17397 if (local_iplt[i] != NULL
17398 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17399 &local_iplt[i]->root,
17400 &local_iplt[i]->arm))
17401 return FALSE;
17402 }
17403 }
17404 }
0855e32b
NS
17405 if (htab->dt_tlsdesc_plt != 0)
17406 {
17407 /* Mapping symbols for the lazy tls trampoline. */
17408 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17409 return FALSE;
b38cadfb 17410
0855e32b
NS
17411 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17412 htab->dt_tlsdesc_plt + 24))
17413 return FALSE;
17414 }
17415 if (htab->tls_trampoline != 0)
17416 {
17417 /* Mapping symbols for the tls trampoline. */
17418 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17419 return FALSE;
17420#ifdef FOUR_WORD_PLT
17421 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17422 htab->tls_trampoline + 12))
17423 return FALSE;
b38cadfb 17424#endif
0855e32b 17425 }
b38cadfb 17426
4e617b1e
PB
17427 return TRUE;
17428}
17429
54ddd295
TP
17430/* Filter normal symbols of CMSE entry functions of ABFD to include in
17431 the import library. All SYMCOUNT symbols of ABFD can be examined
17432 from their pointers in SYMS. Pointers of symbols to keep should be
17433 stored continuously at the beginning of that array.
17434
17435 Returns the number of symbols to keep. */
17436
17437static unsigned int
17438elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17439 struct bfd_link_info *info,
17440 asymbol **syms, long symcount)
17441{
17442 size_t maxnamelen;
17443 char *cmse_name;
17444 long src_count, dst_count = 0;
17445 struct elf32_arm_link_hash_table *htab;
17446
17447 htab = elf32_arm_hash_table (info);
17448 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17449 symcount = 0;
17450
17451 maxnamelen = 128;
17452 cmse_name = (char *) bfd_malloc (maxnamelen);
17453 for (src_count = 0; src_count < symcount; src_count++)
17454 {
17455 struct elf32_arm_link_hash_entry *cmse_hash;
17456 asymbol *sym;
17457 flagword flags;
17458 char *name;
17459 size_t namelen;
17460
17461 sym = syms[src_count];
17462 flags = sym->flags;
17463 name = (char *) bfd_asymbol_name (sym);
17464
17465 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17466 continue;
17467 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17468 continue;
17469
17470 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17471 if (namelen > maxnamelen)
17472 {
17473 cmse_name = (char *)
17474 bfd_realloc (cmse_name, namelen);
17475 maxnamelen = namelen;
17476 }
17477 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17478 cmse_hash = (struct elf32_arm_link_hash_entry *)
17479 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17480
17481 if (!cmse_hash
17482 || (cmse_hash->root.root.type != bfd_link_hash_defined
17483 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17484 || cmse_hash->root.type != STT_FUNC)
17485 continue;
17486
17487 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17488 continue;
17489
17490 syms[dst_count++] = sym;
17491 }
17492 free (cmse_name);
17493
17494 syms[dst_count] = NULL;
17495
17496 return dst_count;
17497}
17498
17499/* Filter symbols of ABFD to include in the import library. All
17500 SYMCOUNT symbols of ABFD can be examined from their pointers in
17501 SYMS. Pointers of symbols to keep should be stored continuously at
17502 the beginning of that array.
17503
17504 Returns the number of symbols to keep. */
17505
17506static unsigned int
17507elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17508 struct bfd_link_info *info,
17509 asymbol **syms, long symcount)
17510{
17511 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17512
17513 if (globals->cmse_implib)
17514 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17515 else
17516 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17517}
17518
e489d0ae
PB
17519/* Allocate target specific section data. */
17520
17521static bfd_boolean
17522elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17523{
f592407e
AM
17524 if (!sec->used_by_bfd)
17525 {
17526 _arm_elf_section_data *sdata;
17527 bfd_size_type amt = sizeof (*sdata);
e489d0ae 17528
21d799b5 17529 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
17530 if (sdata == NULL)
17531 return FALSE;
17532 sec->used_by_bfd = sdata;
17533 }
e489d0ae
PB
17534
17535 return _bfd_elf_new_section_hook (abfd, sec);
17536}
17537
17538
17539/* Used to order a list of mapping symbols by address. */
17540
17541static int
17542elf32_arm_compare_mapping (const void * a, const void * b)
17543{
7f6a71ff
JM
17544 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17545 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17546
17547 if (amap->vma > bmap->vma)
17548 return 1;
17549 else if (amap->vma < bmap->vma)
17550 return -1;
17551 else if (amap->type > bmap->type)
17552 /* Ensure results do not depend on the host qsort for objects with
17553 multiple mapping symbols at the same address by sorting on type
17554 after vma. */
17555 return 1;
17556 else if (amap->type < bmap->type)
17557 return -1;
17558 else
17559 return 0;
e489d0ae
PB
17560}
17561
2468f9c9
PB
17562/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17563
17564static unsigned long
17565offset_prel31 (unsigned long addr, bfd_vma offset)
17566{
17567 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17568}
17569
17570/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17571 relocations. */
17572
17573static void
17574copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17575{
17576 unsigned long first_word = bfd_get_32 (output_bfd, from);
17577 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 17578
2468f9c9
PB
17579 /* High bit of first word is supposed to be zero. */
17580 if ((first_word & 0x80000000ul) == 0)
17581 first_word = offset_prel31 (first_word, offset);
b38cadfb 17582
2468f9c9
PB
17583 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17584 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17585 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17586 second_word = offset_prel31 (second_word, offset);
b38cadfb 17587
2468f9c9
PB
17588 bfd_put_32 (output_bfd, first_word, to);
17589 bfd_put_32 (output_bfd, second_word, to + 4);
17590}
e489d0ae 17591
48229727
JB
17592/* Data for make_branch_to_a8_stub(). */
17593
b38cadfb
NC
17594struct a8_branch_to_stub_data
17595{
48229727
JB
17596 asection *writing_section;
17597 bfd_byte *contents;
17598};
17599
17600
17601/* Helper to insert branches to Cortex-A8 erratum stubs in the right
17602 places for a particular section. */
17603
17604static bfd_boolean
17605make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 17606 void *in_arg)
48229727
JB
17607{
17608 struct elf32_arm_stub_hash_entry *stub_entry;
17609 struct a8_branch_to_stub_data *data;
17610 bfd_byte *contents;
17611 unsigned long branch_insn;
17612 bfd_vma veneered_insn_loc, veneer_entry_loc;
17613 bfd_signed_vma branch_offset;
17614 bfd *abfd;
8d9d9490 17615 unsigned int loc;
48229727
JB
17616
17617 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17618 data = (struct a8_branch_to_stub_data *) in_arg;
17619
17620 if (stub_entry->target_section != data->writing_section
4563a860 17621 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
17622 return TRUE;
17623
17624 contents = data->contents;
17625
8d9d9490
TP
17626 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17627 generated when both source and target are in the same section. */
48229727
JB
17628 veneered_insn_loc = stub_entry->target_section->output_section->vma
17629 + stub_entry->target_section->output_offset
8d9d9490 17630 + stub_entry->source_value;
48229727
JB
17631
17632 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17633 + stub_entry->stub_sec->output_offset
17634 + stub_entry->stub_offset;
17635
17636 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17637 veneered_insn_loc &= ~3u;
17638
17639 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17640
17641 abfd = stub_entry->target_section->owner;
8d9d9490 17642 loc = stub_entry->source_value;
48229727
JB
17643
17644 /* We attempt to avoid this condition by setting stubs_always_after_branch
17645 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17646 This check is just to be on the safe side... */
17647 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17648 {
4eca0228
AM
17649 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is "
17650 "allocated in unsafe location"), abfd);
48229727
JB
17651 return FALSE;
17652 }
17653
17654 switch (stub_entry->stub_type)
17655 {
17656 case arm_stub_a8_veneer_b:
17657 case arm_stub_a8_veneer_b_cond:
17658 branch_insn = 0xf0009000;
17659 goto jump24;
17660
17661 case arm_stub_a8_veneer_blx:
17662 branch_insn = 0xf000e800;
17663 goto jump24;
17664
17665 case arm_stub_a8_veneer_bl:
17666 {
17667 unsigned int i1, j1, i2, j2, s;
17668
17669 branch_insn = 0xf000d000;
17670
17671 jump24:
17672 if (branch_offset < -16777216 || branch_offset > 16777214)
17673 {
17674 /* There's not much we can do apart from complain if this
17675 happens. */
4eca0228
AM
17676 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out "
17677 "of range (input file too large)"), abfd);
48229727
JB
17678 return FALSE;
17679 }
17680
17681 /* i1 = not(j1 eor s), so:
17682 not i1 = j1 eor s
17683 j1 = (not i1) eor s. */
17684
17685 branch_insn |= (branch_offset >> 1) & 0x7ff;
17686 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17687 i2 = (branch_offset >> 22) & 1;
17688 i1 = (branch_offset >> 23) & 1;
17689 s = (branch_offset >> 24) & 1;
17690 j1 = (!i1) ^ s;
17691 j2 = (!i2) ^ s;
17692 branch_insn |= j2 << 11;
17693 branch_insn |= j1 << 13;
17694 branch_insn |= s << 26;
17695 }
17696 break;
17697
17698 default:
17699 BFD_FAIL ();
17700 return FALSE;
17701 }
17702
8d9d9490
TP
17703 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17704 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
48229727
JB
17705
17706 return TRUE;
17707}
17708
a504d23a
LA
17709/* Beginning of stm32l4xx work-around. */
17710
17711/* Functions encoding instructions necessary for the emission of the
17712 fix-stm32l4xx-629360.
17713 Encoding is extracted from the
17714 ARM (C) Architecture Reference Manual
17715 ARMv7-A and ARMv7-R edition
17716 ARM DDI 0406C.b (ID072512). */
17717
17718static inline bfd_vma
82188b29 17719create_instruction_branch_absolute (int branch_offset)
a504d23a
LA
17720{
17721 /* A8.8.18 B (A8-334)
17722 B target_address (Encoding T4). */
17723 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17724 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17725 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17726
a504d23a
LA
17727 int s = ((branch_offset & 0x1000000) >> 24);
17728 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17729 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17730
17731 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17732 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17733
17734 bfd_vma patched_inst = 0xf0009000
17735 | s << 26 /* S. */
17736 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17737 | j1 << 13 /* J1. */
17738 | j2 << 11 /* J2. */
17739 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17740
17741 return patched_inst;
17742}
17743
17744static inline bfd_vma
17745create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17746{
17747 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17748 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17749 bfd_vma patched_inst = 0xe8900000
17750 | (/*W=*/wback << 21)
17751 | (base_reg << 16)
17752 | (reg_mask & 0x0000ffff);
17753
17754 return patched_inst;
17755}
17756
17757static inline bfd_vma
17758create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17759{
17760 /* A8.8.60 LDMDB/LDMEA (A8-402)
17761 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17762 bfd_vma patched_inst = 0xe9100000
17763 | (/*W=*/wback << 21)
17764 | (base_reg << 16)
17765 | (reg_mask & 0x0000ffff);
17766
17767 return patched_inst;
17768}
17769
17770static inline bfd_vma
17771create_instruction_mov (int target_reg, int source_reg)
17772{
17773 /* A8.8.103 MOV (register) (A8-486)
17774 MOV Rd, Rm (Encoding T1). */
17775 bfd_vma patched_inst = 0x4600
17776 | (target_reg & 0x7)
17777 | ((target_reg & 0x8) >> 3) << 7
17778 | (source_reg << 3);
17779
17780 return patched_inst;
17781}
17782
17783static inline bfd_vma
17784create_instruction_sub (int target_reg, int source_reg, int value)
17785{
17786 /* A8.8.221 SUB (immediate) (A8-708)
17787 SUB Rd, Rn, #value (Encoding T3). */
17788 bfd_vma patched_inst = 0xf1a00000
17789 | (target_reg << 8)
17790 | (source_reg << 16)
17791 | (/*S=*/0 << 20)
17792 | ((value & 0x800) >> 11) << 26
17793 | ((value & 0x700) >> 8) << 12
17794 | (value & 0x0ff);
17795
17796 return patched_inst;
17797}
17798
17799static inline bfd_vma
9239bbd3 17800create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
a504d23a
LA
17801 int first_reg)
17802{
17803 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
17804 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17805 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
a504d23a
LA
17806 | (/*W=*/wback << 21)
17807 | (base_reg << 16)
9239bbd3
CM
17808 | (num_words & 0x000000ff)
17809 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
a504d23a
LA
17810 | (first_reg & 0x00000001) << 22;
17811
17812 return patched_inst;
17813}
17814
17815static inline bfd_vma
9239bbd3
CM
17816create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17817 int first_reg)
a504d23a
LA
17818{
17819 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
17820 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17821 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
a504d23a 17822 | (base_reg << 16)
9239bbd3
CM
17823 | (num_words & 0x000000ff)
17824 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
a504d23a
LA
17825 | (first_reg & 0x00000001) << 22;
17826
17827 return patched_inst;
17828}
17829
17830static inline bfd_vma
17831create_instruction_udf_w (int value)
17832{
17833 /* A8.8.247 UDF (A8-758)
17834 Undefined (Encoding T2). */
17835 bfd_vma patched_inst = 0xf7f0a000
17836 | (value & 0x00000fff)
17837 | (value & 0x000f0000) << 16;
17838
17839 return patched_inst;
17840}
17841
17842static inline bfd_vma
17843create_instruction_udf (int value)
17844{
17845 /* A8.8.247 UDF (A8-758)
17846 Undefined (Encoding T1). */
17847 bfd_vma patched_inst = 0xde00
17848 | (value & 0xff);
17849
17850 return patched_inst;
17851}
17852
17853/* Functions writing an instruction in memory, returning the next
17854 memory position to write to. */
17855
17856static inline bfd_byte *
17857push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17858 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17859{
17860 put_thumb2_insn (htab, output_bfd, insn, pt);
17861 return pt + 4;
17862}
17863
17864static inline bfd_byte *
17865push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17866 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17867{
17868 put_thumb_insn (htab, output_bfd, insn, pt);
17869 return pt + 2;
17870}
17871
17872/* Function filling up a region in memory with T1 and T2 UDFs taking
17873 care of alignment. */
17874
17875static bfd_byte *
17876stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17877 bfd * output_bfd,
17878 const bfd_byte * const base_stub_contents,
17879 bfd_byte * const from_stub_contents,
17880 const bfd_byte * const end_stub_contents)
17881{
17882 bfd_byte *current_stub_contents = from_stub_contents;
17883
17884 /* Fill the remaining of the stub with deterministic contents : UDF
17885 instructions.
17886 Check if realignment is needed on modulo 4 frontier using T1, to
17887 further use T2. */
17888 if ((current_stub_contents < end_stub_contents)
17889 && !((current_stub_contents - base_stub_contents) % 2)
17890 && ((current_stub_contents - base_stub_contents) % 4))
17891 current_stub_contents =
17892 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17893 create_instruction_udf (0));
17894
17895 for (; current_stub_contents < end_stub_contents;)
17896 current_stub_contents =
17897 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17898 create_instruction_udf_w (0));
17899
17900 return current_stub_contents;
17901}
17902
17903/* Functions writing the stream of instructions equivalent to the
17904 derived sequence for ldmia, ldmdb, vldm respectively. */
17905
17906static void
17907stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17908 bfd * output_bfd,
17909 const insn32 initial_insn,
17910 const bfd_byte *const initial_insn_addr,
17911 bfd_byte *const base_stub_contents)
17912{
17913 int wback = (initial_insn & 0x00200000) >> 21;
17914 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17915 int insn_all_registers = initial_insn & 0x0000ffff;
17916 int insn_low_registers, insn_high_registers;
17917 int usable_register_mask;
17918 int nb_registers = popcount (insn_all_registers);
17919 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17920 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17921 bfd_byte *current_stub_contents = base_stub_contents;
17922
17923 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17924
17925 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17926 smaller than 8 registers load sequences that do not cause the
17927 hardware issue. */
17928 if (nb_registers <= 8)
17929 {
17930 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17931 current_stub_contents =
17932 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17933 initial_insn);
17934
17935 /* B initial_insn_addr+4. */
17936 if (!restore_pc)
17937 current_stub_contents =
17938 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17939 create_instruction_branch_absolute
82188b29 17940 (initial_insn_addr - current_stub_contents));
a504d23a
LA
17941
17942 /* Fill the remaining of the stub with deterministic contents. */
17943 current_stub_contents =
17944 stm32l4xx_fill_stub_udf (htab, output_bfd,
17945 base_stub_contents, current_stub_contents,
17946 base_stub_contents +
17947 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17948
17949 return;
17950 }
17951
17952 /* - reg_list[13] == 0. */
17953 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17954
17955 /* - reg_list[14] & reg_list[15] != 1. */
17956 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17957
17958 /* - if (wback==1) reg_list[rn] == 0. */
17959 BFD_ASSERT (!wback || !restore_rn);
17960
17961 /* - nb_registers > 8. */
17962 BFD_ASSERT (popcount (insn_all_registers) > 8);
17963
17964 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17965
17966 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17967 - One with the 7 lowest registers (register mask 0x007F)
17968 This LDM will finally contain between 2 and 7 registers
17969 - One with the 7 highest registers (register mask 0xDF80)
17970 This ldm will finally contain between 2 and 7 registers. */
17971 insn_low_registers = insn_all_registers & 0x007F;
17972 insn_high_registers = insn_all_registers & 0xDF80;
17973
17974 /* A spare register may be needed during this veneer to temporarily
17975 handle the base register. This register will be restored with the
17976 last LDM operation.
17977 The usable register may be any general purpose register (that
17978 excludes PC, SP, LR : register mask is 0x1FFF). */
17979 usable_register_mask = 0x1FFF;
17980
17981 /* Generate the stub function. */
17982 if (wback)
17983 {
17984 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17985 current_stub_contents =
17986 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17987 create_instruction_ldmia
17988 (rn, /*wback=*/1, insn_low_registers));
17989
17990 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17991 current_stub_contents =
17992 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17993 create_instruction_ldmia
17994 (rn, /*wback=*/1, insn_high_registers));
17995 if (!restore_pc)
17996 {
17997 /* B initial_insn_addr+4. */
17998 current_stub_contents =
17999 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18000 create_instruction_branch_absolute
82188b29 18001 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18002 }
18003 }
18004 else /* if (!wback). */
18005 {
18006 ri = rn;
18007
18008 /* If Rn is not part of the high-register-list, move it there. */
18009 if (!(insn_high_registers & (1 << rn)))
18010 {
18011 /* Choose a Ri in the high-register-list that will be restored. */
18012 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18013
18014 /* MOV Ri, Rn. */
18015 current_stub_contents =
18016 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18017 create_instruction_mov (ri, rn));
18018 }
18019
18020 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18021 current_stub_contents =
18022 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18023 create_instruction_ldmia
18024 (ri, /*wback=*/1, insn_low_registers));
18025
18026 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18027 current_stub_contents =
18028 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18029 create_instruction_ldmia
18030 (ri, /*wback=*/0, insn_high_registers));
18031
18032 if (!restore_pc)
18033 {
18034 /* B initial_insn_addr+4. */
18035 current_stub_contents =
18036 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18037 create_instruction_branch_absolute
82188b29 18038 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18039 }
18040 }
18041
18042 /* Fill the remaining of the stub with deterministic contents. */
18043 current_stub_contents =
18044 stm32l4xx_fill_stub_udf (htab, output_bfd,
18045 base_stub_contents, current_stub_contents,
18046 base_stub_contents +
18047 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18048}
18049
18050static void
18051stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18052 bfd * output_bfd,
18053 const insn32 initial_insn,
18054 const bfd_byte *const initial_insn_addr,
18055 bfd_byte *const base_stub_contents)
18056{
18057 int wback = (initial_insn & 0x00200000) >> 21;
18058 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18059 int insn_all_registers = initial_insn & 0x0000ffff;
18060 int insn_low_registers, insn_high_registers;
18061 int usable_register_mask;
18062 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18063 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18064 int nb_registers = popcount (insn_all_registers);
18065 bfd_byte *current_stub_contents = base_stub_contents;
18066
18067 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18068
18069 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18070 smaller than 8 registers load sequences that do not cause the
18071 hardware issue. */
18072 if (nb_registers <= 8)
18073 {
18074 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18075 current_stub_contents =
18076 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18077 initial_insn);
18078
18079 /* B initial_insn_addr+4. */
18080 current_stub_contents =
18081 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18082 create_instruction_branch_absolute
82188b29 18083 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18084
18085 /* Fill the remaining of the stub with deterministic contents. */
18086 current_stub_contents =
18087 stm32l4xx_fill_stub_udf (htab, output_bfd,
18088 base_stub_contents, current_stub_contents,
18089 base_stub_contents +
18090 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18091
18092 return;
18093 }
18094
18095 /* - reg_list[13] == 0. */
18096 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18097
18098 /* - reg_list[14] & reg_list[15] != 1. */
18099 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18100
18101 /* - if (wback==1) reg_list[rn] == 0. */
18102 BFD_ASSERT (!wback || !restore_rn);
18103
18104 /* - nb_registers > 8. */
18105 BFD_ASSERT (popcount (insn_all_registers) > 8);
18106
18107 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18108
18109 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18110 - One with the 7 lowest registers (register mask 0x007F)
18111 This LDM will finally contain between 2 and 7 registers
18112 - One with the 7 highest registers (register mask 0xDF80)
18113 This ldm will finally contain between 2 and 7 registers. */
18114 insn_low_registers = insn_all_registers & 0x007F;
18115 insn_high_registers = insn_all_registers & 0xDF80;
18116
18117 /* A spare register may be needed during this veneer to temporarily
18118 handle the base register. This register will be restored with
18119 the last LDM operation.
18120 The usable register may be any general purpose register (that excludes
18121 PC, SP, LR : register mask is 0x1FFF). */
18122 usable_register_mask = 0x1FFF;
18123
18124 /* Generate the stub function. */
18125 if (!wback && !restore_pc && !restore_rn)
18126 {
18127 /* Choose a Ri in the low-register-list that will be restored. */
18128 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18129
18130 /* MOV Ri, Rn. */
18131 current_stub_contents =
18132 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18133 create_instruction_mov (ri, rn));
18134
18135 /* LDMDB Ri!, {R-high-register-list}. */
18136 current_stub_contents =
18137 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18138 create_instruction_ldmdb
18139 (ri, /*wback=*/1, insn_high_registers));
18140
18141 /* LDMDB Ri, {R-low-register-list}. */
18142 current_stub_contents =
18143 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18144 create_instruction_ldmdb
18145 (ri, /*wback=*/0, insn_low_registers));
18146
18147 /* B initial_insn_addr+4. */
18148 current_stub_contents =
18149 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18150 create_instruction_branch_absolute
82188b29 18151 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18152 }
18153 else if (wback && !restore_pc && !restore_rn)
18154 {
18155 /* LDMDB Rn!, {R-high-register-list}. */
18156 current_stub_contents =
18157 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18158 create_instruction_ldmdb
18159 (rn, /*wback=*/1, insn_high_registers));
18160
18161 /* LDMDB Rn!, {R-low-register-list}. */
18162 current_stub_contents =
18163 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18164 create_instruction_ldmdb
18165 (rn, /*wback=*/1, insn_low_registers));
18166
18167 /* B initial_insn_addr+4. */
18168 current_stub_contents =
18169 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18170 create_instruction_branch_absolute
82188b29 18171 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18172 }
18173 else if (!wback && restore_pc && !restore_rn)
18174 {
18175 /* Choose a Ri in the high-register-list that will be restored. */
18176 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18177
18178 /* SUB Ri, Rn, #(4*nb_registers). */
18179 current_stub_contents =
18180 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18181 create_instruction_sub (ri, rn, (4 * nb_registers)));
18182
18183 /* LDMIA Ri!, {R-low-register-list}. */
18184 current_stub_contents =
18185 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18186 create_instruction_ldmia
18187 (ri, /*wback=*/1, insn_low_registers));
18188
18189 /* LDMIA Ri, {R-high-register-list}. */
18190 current_stub_contents =
18191 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18192 create_instruction_ldmia
18193 (ri, /*wback=*/0, insn_high_registers));
18194 }
18195 else if (wback && restore_pc && !restore_rn)
18196 {
18197 /* Choose a Ri in the high-register-list that will be restored. */
18198 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18199
18200 /* SUB Rn, Rn, #(4*nb_registers) */
18201 current_stub_contents =
18202 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18203 create_instruction_sub (rn, rn, (4 * nb_registers)));
18204
18205 /* MOV Ri, Rn. */
18206 current_stub_contents =
18207 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18208 create_instruction_mov (ri, rn));
18209
18210 /* LDMIA Ri!, {R-low-register-list}. */
18211 current_stub_contents =
18212 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18213 create_instruction_ldmia
18214 (ri, /*wback=*/1, insn_low_registers));
18215
18216 /* LDMIA Ri, {R-high-register-list}. */
18217 current_stub_contents =
18218 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18219 create_instruction_ldmia
18220 (ri, /*wback=*/0, insn_high_registers));
18221 }
18222 else if (!wback && !restore_pc && restore_rn)
18223 {
18224 ri = rn;
18225 if (!(insn_low_registers & (1 << rn)))
18226 {
18227 /* Choose a Ri in the low-register-list that will be restored. */
18228 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18229
18230 /* MOV Ri, Rn. */
18231 current_stub_contents =
18232 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18233 create_instruction_mov (ri, rn));
18234 }
18235
18236 /* LDMDB Ri!, {R-high-register-list}. */
18237 current_stub_contents =
18238 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18239 create_instruction_ldmdb
18240 (ri, /*wback=*/1, insn_high_registers));
18241
18242 /* LDMDB Ri, {R-low-register-list}. */
18243 current_stub_contents =
18244 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18245 create_instruction_ldmdb
18246 (ri, /*wback=*/0, insn_low_registers));
18247
18248 /* B initial_insn_addr+4. */
18249 current_stub_contents =
18250 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18251 create_instruction_branch_absolute
82188b29 18252 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18253 }
18254 else if (!wback && restore_pc && restore_rn)
18255 {
18256 ri = rn;
18257 if (!(insn_high_registers & (1 << rn)))
18258 {
18259 /* Choose a Ri in the high-register-list that will be restored. */
18260 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18261 }
18262
18263 /* SUB Ri, Rn, #(4*nb_registers). */
18264 current_stub_contents =
18265 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18266 create_instruction_sub (ri, rn, (4 * nb_registers)));
18267
18268 /* LDMIA Ri!, {R-low-register-list}. */
18269 current_stub_contents =
18270 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18271 create_instruction_ldmia
18272 (ri, /*wback=*/1, insn_low_registers));
18273
18274 /* LDMIA Ri, {R-high-register-list}. */
18275 current_stub_contents =
18276 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18277 create_instruction_ldmia
18278 (ri, /*wback=*/0, insn_high_registers));
18279 }
18280 else if (wback && restore_rn)
18281 {
18282 /* The assembler should not have accepted to encode this. */
18283 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18284 "undefined behavior.\n");
18285 }
18286
18287 /* Fill the remaining of the stub with deterministic contents. */
18288 current_stub_contents =
18289 stm32l4xx_fill_stub_udf (htab, output_bfd,
18290 base_stub_contents, current_stub_contents,
18291 base_stub_contents +
18292 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18293
18294}
18295
18296static void
18297stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18298 bfd * output_bfd,
18299 const insn32 initial_insn,
18300 const bfd_byte *const initial_insn_addr,
18301 bfd_byte *const base_stub_contents)
18302{
9239bbd3 18303 int num_words = ((unsigned int) initial_insn << 24) >> 24;
a504d23a
LA
18304 bfd_byte *current_stub_contents = base_stub_contents;
18305
18306 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18307
18308 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
9239bbd3 18309 smaller than 8 words load sequences that do not cause the
a504d23a 18310 hardware issue. */
9239bbd3 18311 if (num_words <= 8)
a504d23a
LA
18312 {
18313 /* Untouched instruction. */
18314 current_stub_contents =
18315 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18316 initial_insn);
18317
18318 /* B initial_insn_addr+4. */
18319 current_stub_contents =
18320 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18321 create_instruction_branch_absolute
82188b29 18322 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18323 }
18324 else
18325 {
9eaff861 18326 bfd_boolean is_dp = /* DP encoding. */
9239bbd3 18327 (initial_insn & 0xfe100f00) == 0xec100b00;
a504d23a
LA
18328 bfd_boolean is_ia_nobang = /* (IA without !). */
18329 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18330 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18331 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18332 bfd_boolean is_db_bang = /* (DB with !). */
18333 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
9239bbd3 18334 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
a504d23a 18335 /* d = UInt (Vd:D);. */
9239bbd3 18336 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
a504d23a
LA
18337 | (((unsigned int)initial_insn << 9) >> 31);
18338
9239bbd3
CM
18339 /* Compute the number of 8-words chunks needed to split. */
18340 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
a504d23a
LA
18341 int chunk;
18342
18343 /* The test coverage has been done assuming the following
18344 hypothesis that exactly one of the previous is_ predicates is
18345 true. */
9239bbd3
CM
18346 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18347 && !(is_ia_nobang & is_ia_bang & is_db_bang));
a504d23a 18348
9239bbd3 18349 /* We treat the cutting of the words in one pass for all
a504d23a
LA
18350 cases, then we emit the adjustments:
18351
18352 vldm rx, {...}
18353 -> vldm rx!, {8_words_or_less} for each needed 8_word
18354 -> sub rx, rx, #size (list)
18355
18356 vldm rx!, {...}
18357 -> vldm rx!, {8_words_or_less} for each needed 8_word
18358 This also handles vpop instruction (when rx is sp)
18359
18360 vldmd rx!, {...}
18361 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
9239bbd3 18362 for (chunk = 0; chunk < chunks; ++chunk)
a504d23a 18363 {
9239bbd3
CM
18364 bfd_vma new_insn = 0;
18365
a504d23a
LA
18366 if (is_ia_nobang || is_ia_bang)
18367 {
9239bbd3
CM
18368 new_insn = create_instruction_vldmia
18369 (base_reg,
18370 is_dp,
18371 /*wback= . */1,
18372 chunks - (chunk + 1) ?
18373 8 : num_words - chunk * 8,
18374 first_reg + chunk * 8);
a504d23a
LA
18375 }
18376 else if (is_db_bang)
18377 {
9239bbd3
CM
18378 new_insn = create_instruction_vldmdb
18379 (base_reg,
18380 is_dp,
18381 chunks - (chunk + 1) ?
18382 8 : num_words - chunk * 8,
18383 first_reg + chunk * 8);
a504d23a 18384 }
9239bbd3
CM
18385
18386 if (new_insn)
18387 current_stub_contents =
18388 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18389 new_insn);
a504d23a
LA
18390 }
18391
18392 /* Only this case requires the base register compensation
18393 subtract. */
18394 if (is_ia_nobang)
18395 {
18396 current_stub_contents =
18397 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18398 create_instruction_sub
9239bbd3 18399 (base_reg, base_reg, 4*num_words));
a504d23a
LA
18400 }
18401
18402 /* B initial_insn_addr+4. */
18403 current_stub_contents =
18404 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18405 create_instruction_branch_absolute
82188b29 18406 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18407 }
18408
18409 /* Fill the remaining of the stub with deterministic contents. */
18410 current_stub_contents =
18411 stm32l4xx_fill_stub_udf (htab, output_bfd,
18412 base_stub_contents, current_stub_contents,
18413 base_stub_contents +
18414 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18415}
18416
18417static void
18418stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18419 bfd * output_bfd,
18420 const insn32 wrong_insn,
18421 const bfd_byte *const wrong_insn_addr,
18422 bfd_byte *const stub_contents)
18423{
18424 if (is_thumb2_ldmia (wrong_insn))
18425 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18426 wrong_insn, wrong_insn_addr,
18427 stub_contents);
18428 else if (is_thumb2_ldmdb (wrong_insn))
18429 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18430 wrong_insn, wrong_insn_addr,
18431 stub_contents);
18432 else if (is_thumb2_vldm (wrong_insn))
18433 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18434 wrong_insn, wrong_insn_addr,
18435 stub_contents);
18436}
18437
18438/* End of stm32l4xx work-around. */
18439
18440
e489d0ae
PB
18441/* Do code byteswapping. Return FALSE afterwards so that the section is
18442 written out as normal. */
18443
18444static bfd_boolean
c7b8f16e 18445elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
18446 struct bfd_link_info *link_info,
18447 asection *sec,
e489d0ae
PB
18448 bfd_byte *contents)
18449{
48229727 18450 unsigned int mapcount, errcount;
8e3de13a 18451 _arm_elf_section_data *arm_data;
c7b8f16e 18452 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 18453 elf32_arm_section_map *map;
c7b8f16e 18454 elf32_vfp11_erratum_list *errnode;
a504d23a 18455 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
e489d0ae
PB
18456 bfd_vma ptr;
18457 bfd_vma end;
c7b8f16e 18458 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 18459 bfd_byte tmp;
48229727 18460 unsigned int i;
57e8b36a 18461
4dfe6ac6
NC
18462 if (globals == NULL)
18463 return FALSE;
18464
8e3de13a
NC
18465 /* If this section has not been allocated an _arm_elf_section_data
18466 structure then we cannot record anything. */
18467 arm_data = get_arm_elf_section_data (sec);
18468 if (arm_data == NULL)
18469 return FALSE;
18470
18471 mapcount = arm_data->mapcount;
18472 map = arm_data->map;
c7b8f16e
JB
18473 errcount = arm_data->erratumcount;
18474
18475 if (errcount != 0)
18476 {
18477 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18478
18479 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
18480 errnode = errnode->next)
18481 {
18482 bfd_vma target = errnode->vma - offset;
18483
18484 switch (errnode->type)
18485 {
18486 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18487 {
18488 bfd_vma branch_to_veneer;
18489 /* Original condition code of instruction, plus bit mask for
18490 ARM B instruction. */
18491 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18492 | 0x0a000000;
c7b8f16e
JB
18493
18494 /* The instruction is before the label. */
91d6fa6a 18495 target -= 4;
c7b8f16e
JB
18496
18497 /* Above offset included in -4 below. */
18498 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 18499 - errnode->vma - 4;
c7b8f16e
JB
18500
18501 if ((signed) branch_to_veneer < -(1 << 25)
18502 || (signed) branch_to_veneer >= (1 << 25))
4eca0228
AM
18503 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18504 "range"), output_bfd);
c7b8f16e 18505
99059e56
RM
18506 insn |= (branch_to_veneer >> 2) & 0xffffff;
18507 contents[endianflip ^ target] = insn & 0xff;
18508 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18509 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18510 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18511 }
18512 break;
c7b8f16e
JB
18513
18514 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
18515 {
18516 bfd_vma branch_from_veneer;
18517 unsigned int insn;
c7b8f16e 18518
99059e56
RM
18519 /* Take size of veneer into account. */
18520 branch_from_veneer = errnode->u.v.branch->vma
18521 - errnode->vma - 12;
c7b8f16e
JB
18522
18523 if ((signed) branch_from_veneer < -(1 << 25)
18524 || (signed) branch_from_veneer >= (1 << 25))
4eca0228
AM
18525 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18526 "range"), output_bfd);
c7b8f16e 18527
99059e56
RM
18528 /* Original instruction. */
18529 insn = errnode->u.v.branch->u.b.vfp_insn;
18530 contents[endianflip ^ target] = insn & 0xff;
18531 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18532 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18533 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18534
18535 /* Branch back to insn after original insn. */
18536 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18537 contents[endianflip ^ (target + 4)] = insn & 0xff;
18538 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18539 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18540 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18541 }
18542 break;
c7b8f16e 18543
99059e56
RM
18544 default:
18545 abort ();
18546 }
18547 }
c7b8f16e 18548 }
e489d0ae 18549
a504d23a
LA
18550 if (arm_data->stm32l4xx_erratumcount != 0)
18551 {
18552 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18553 stm32l4xx_errnode != 0;
18554 stm32l4xx_errnode = stm32l4xx_errnode->next)
18555 {
18556 bfd_vma target = stm32l4xx_errnode->vma - offset;
18557
18558 switch (stm32l4xx_errnode->type)
18559 {
18560 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18561 {
18562 unsigned int insn;
18563 bfd_vma branch_to_veneer =
18564 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18565
18566 if ((signed) branch_to_veneer < -(1 << 24)
18567 || (signed) branch_to_veneer >= (1 << 24))
18568 {
18569 bfd_vma out_of_range =
18570 ((signed) branch_to_veneer < -(1 << 24)) ?
18571 - branch_to_veneer - (1 << 24) :
18572 ((signed) branch_to_veneer >= (1 << 24)) ?
18573 branch_to_veneer - (1 << 24) : 0;
18574
4eca0228 18575 _bfd_error_handler
a504d23a 18576 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
eee926f2 18577 "Jump out of range by %ld bytes. "
a504d23a
LA
18578 "Cannot encode branch instruction. "),
18579 output_bfd,
eee926f2 18580 (long) (stm32l4xx_errnode->vma - 4),
a504d23a
LA
18581 out_of_range);
18582 continue;
18583 }
18584
18585 insn = create_instruction_branch_absolute
82188b29 18586 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
a504d23a
LA
18587
18588 /* The instruction is before the label. */
18589 target -= 4;
18590
18591 put_thumb2_insn (globals, output_bfd,
18592 (bfd_vma) insn, contents + target);
18593 }
18594 break;
18595
18596 case STM32L4XX_ERRATUM_VENEER:
18597 {
82188b29
NC
18598 bfd_byte * veneer;
18599 bfd_byte * veneer_r;
a504d23a
LA
18600 unsigned int insn;
18601
82188b29
NC
18602 veneer = contents + target;
18603 veneer_r = veneer
18604 + stm32l4xx_errnode->u.b.veneer->vma
18605 - stm32l4xx_errnode->vma - 4;
a504d23a
LA
18606
18607 if ((signed) (veneer_r - veneer -
18608 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18609 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18610 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18611 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18612 || (signed) (veneer_r - veneer) >= (1 << 24))
18613 {
4eca0228
AM
18614 _bfd_error_handler (_("%B: error: Cannot create STM32L4XX "
18615 "veneer."), output_bfd);
a504d23a
LA
18616 continue;
18617 }
18618
18619 /* Original instruction. */
18620 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18621
18622 stm32l4xx_create_replacing_stub
18623 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18624 }
18625 break;
18626
18627 default:
18628 abort ();
18629 }
18630 }
18631 }
18632
2468f9c9
PB
18633 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18634 {
18635 arm_unwind_table_edit *edit_node
99059e56 18636 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 18637 /* Now, sec->size is the size of the section we will write. The original
99059e56 18638 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
18639 markers) was sec->rawsize. (This isn't the case if we perform no
18640 edits, then rawsize will be zero and we should use size). */
21d799b5 18641 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
18642 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18643 unsigned int in_index, out_index;
18644 bfd_vma add_to_offsets = 0;
18645
18646 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 18647 {
2468f9c9
PB
18648 if (edit_node)
18649 {
18650 unsigned int edit_index = edit_node->index;
b38cadfb 18651
2468f9c9 18652 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 18653 {
2468f9c9
PB
18654 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18655 contents + in_index * 8, add_to_offsets);
18656 out_index++;
18657 in_index++;
18658 }
18659 else if (in_index == edit_index
18660 || (in_index * 8 >= input_size
18661 && edit_index == UINT_MAX))
99059e56 18662 {
2468f9c9
PB
18663 switch (edit_node->type)
18664 {
18665 case DELETE_EXIDX_ENTRY:
18666 in_index++;
18667 add_to_offsets += 8;
18668 break;
b38cadfb 18669
2468f9c9
PB
18670 case INSERT_EXIDX_CANTUNWIND_AT_END:
18671 {
99059e56 18672 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
18673 bfd_vma text_offset = text_sec->output_section->vma
18674 + text_sec->output_offset
18675 + text_sec->size;
18676 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 18677 unsigned long prel31_offset;
2468f9c9
PB
18678
18679 /* Note: this is meant to be equivalent to an
18680 R_ARM_PREL31 relocation. These synthetic
18681 EXIDX_CANTUNWIND markers are not relocated by the
18682 usual BFD method. */
18683 prel31_offset = (text_offset - exidx_offset)
18684 & 0x7ffffffful;
491d01d3
YU
18685 if (bfd_link_relocatable (link_info))
18686 {
18687 /* Here relocation for new EXIDX_CANTUNWIND is
18688 created, so there is no need to
18689 adjust offset by hand. */
18690 prel31_offset = text_sec->output_offset
18691 + text_sec->size;
491d01d3 18692 }
2468f9c9
PB
18693
18694 /* First address we can't unwind. */
18695 bfd_put_32 (output_bfd, prel31_offset,
18696 &edited_contents[out_index * 8]);
18697
18698 /* Code for EXIDX_CANTUNWIND. */
18699 bfd_put_32 (output_bfd, 0x1,
18700 &edited_contents[out_index * 8 + 4]);
18701
18702 out_index++;
18703 add_to_offsets -= 8;
18704 }
18705 break;
18706 }
b38cadfb 18707
2468f9c9
PB
18708 edit_node = edit_node->next;
18709 }
18710 }
18711 else
18712 {
18713 /* No more edits, copy remaining entries verbatim. */
18714 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18715 contents + in_index * 8, add_to_offsets);
18716 out_index++;
18717 in_index++;
18718 }
18719 }
18720
18721 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18722 bfd_set_section_contents (output_bfd, sec->output_section,
18723 edited_contents,
18724 (file_ptr) sec->output_offset, sec->size);
18725
18726 return TRUE;
18727 }
18728
48229727
JB
18729 /* Fix code to point to Cortex-A8 erratum stubs. */
18730 if (globals->fix_cortex_a8)
18731 {
18732 struct a8_branch_to_stub_data data;
18733
18734 data.writing_section = sec;
18735 data.contents = contents;
18736
a504d23a
LA
18737 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18738 & data);
48229727
JB
18739 }
18740
e489d0ae
PB
18741 if (mapcount == 0)
18742 return FALSE;
18743
c7b8f16e 18744 if (globals->byteswap_code)
e489d0ae 18745 {
c7b8f16e 18746 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 18747
c7b8f16e
JB
18748 ptr = map[0].vma;
18749 for (i = 0; i < mapcount; i++)
99059e56
RM
18750 {
18751 if (i == mapcount - 1)
c7b8f16e 18752 end = sec->size;
99059e56
RM
18753 else
18754 end = map[i + 1].vma;
e489d0ae 18755
99059e56 18756 switch (map[i].type)
e489d0ae 18757 {
c7b8f16e
JB
18758 case 'a':
18759 /* Byte swap code words. */
18760 while (ptr + 3 < end)
99059e56
RM
18761 {
18762 tmp = contents[ptr];
18763 contents[ptr] = contents[ptr + 3];
18764 contents[ptr + 3] = tmp;
18765 tmp = contents[ptr + 1];
18766 contents[ptr + 1] = contents[ptr + 2];
18767 contents[ptr + 2] = tmp;
18768 ptr += 4;
18769 }
c7b8f16e 18770 break;
e489d0ae 18771
c7b8f16e
JB
18772 case 't':
18773 /* Byte swap code halfwords. */
18774 while (ptr + 1 < end)
99059e56
RM
18775 {
18776 tmp = contents[ptr];
18777 contents[ptr] = contents[ptr + 1];
18778 contents[ptr + 1] = tmp;
18779 ptr += 2;
18780 }
c7b8f16e
JB
18781 break;
18782
18783 case 'd':
18784 /* Leave data alone. */
18785 break;
18786 }
99059e56
RM
18787 ptr = end;
18788 }
e489d0ae 18789 }
8e3de13a 18790
93204d3a 18791 free (map);
47b2e99c 18792 arm_data->mapcount = -1;
c7b8f16e 18793 arm_data->mapsize = 0;
8e3de13a 18794 arm_data->map = NULL;
8e3de13a 18795
e489d0ae
PB
18796 return FALSE;
18797}
18798
0beaef2b
PB
18799/* Mangle thumb function symbols as we read them in. */
18800
8384fb8f 18801static bfd_boolean
0beaef2b
PB
18802elf32_arm_swap_symbol_in (bfd * abfd,
18803 const void *psrc,
18804 const void *pshn,
18805 Elf_Internal_Sym *dst)
18806{
4ba2ef8f
TP
18807 Elf_Internal_Shdr *symtab_hdr;
18808 const char *name = NULL;
18809
8384fb8f
AM
18810 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18811 return FALSE;
39d911fc 18812 dst->st_target_internal = 0;
0beaef2b
PB
18813
18814 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 18815 the address. */
63e1a0fc
PB
18816 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18817 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 18818 {
63e1a0fc
PB
18819 if (dst->st_value & 1)
18820 {
18821 dst->st_value &= ~(bfd_vma) 1;
39d911fc
TP
18822 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18823 ST_BRANCH_TO_THUMB);
63e1a0fc
PB
18824 }
18825 else
39d911fc 18826 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
35fc36a8
RS
18827 }
18828 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18829 {
18830 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
39d911fc 18831 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
0beaef2b 18832 }
35fc36a8 18833 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
39d911fc 18834 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
35fc36a8 18835 else
39d911fc 18836 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
35fc36a8 18837
4ba2ef8f
TP
18838 /* Mark CMSE special symbols. */
18839 symtab_hdr = & elf_symtab_hdr (abfd);
18840 if (symtab_hdr->sh_size)
18841 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18842 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18843 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18844
8384fb8f 18845 return TRUE;
0beaef2b
PB
18846}
18847
18848
18849/* Mangle thumb function symbols as we write them out. */
18850
18851static void
18852elf32_arm_swap_symbol_out (bfd *abfd,
18853 const Elf_Internal_Sym *src,
18854 void *cdst,
18855 void *shndx)
18856{
18857 Elf_Internal_Sym newsym;
18858
18859 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18860 of the address set, as per the new EABI. We do this unconditionally
18861 because objcopy does not set the elf header flags until after
18862 it writes out the symbol table. */
39d911fc 18863 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
0beaef2b
PB
18864 {
18865 newsym = *src;
34e77a92
RS
18866 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18867 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 18868 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
18869 {
18870 /* Do this only for defined symbols. At link type, the static
18871 linker will simulate the work of dynamic linker of resolving
18872 symbols and will carry over the thumbness of found symbols to
18873 the output symbol table. It's not clear how it happens, but
18874 the thumbness of undefined symbols can well be different at
18875 runtime, and writing '1' for them will be confusing for users
18876 and possibly for dynamic linker itself.
18877 */
18878 newsym.st_value |= 1;
18879 }
906e58ca 18880
0beaef2b
PB
18881 src = &newsym;
18882 }
18883 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18884}
18885
b294bdf8
MM
18886/* Add the PT_ARM_EXIDX program header. */
18887
18888static bfd_boolean
906e58ca 18889elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
18890 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18891{
18892 struct elf_segment_map *m;
18893 asection *sec;
18894
18895 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18896 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18897 {
18898 /* If there is already a PT_ARM_EXIDX header, then we do not
18899 want to add another one. This situation arises when running
18900 "strip"; the input binary already has the header. */
12bd6957 18901 m = elf_seg_map (abfd);
b294bdf8
MM
18902 while (m && m->p_type != PT_ARM_EXIDX)
18903 m = m->next;
18904 if (!m)
18905 {
21d799b5 18906 m = (struct elf_segment_map *)
99059e56 18907 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
18908 if (m == NULL)
18909 return FALSE;
18910 m->p_type = PT_ARM_EXIDX;
18911 m->count = 1;
18912 m->sections[0] = sec;
18913
12bd6957
AM
18914 m->next = elf_seg_map (abfd);
18915 elf_seg_map (abfd) = m;
b294bdf8
MM
18916 }
18917 }
18918
18919 return TRUE;
18920}
18921
18922/* We may add a PT_ARM_EXIDX program header. */
18923
18924static int
a6b96beb
AM
18925elf32_arm_additional_program_headers (bfd *abfd,
18926 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
18927{
18928 asection *sec;
18929
18930 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18931 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18932 return 1;
18933 else
18934 return 0;
18935}
18936
34e77a92
RS
18937/* Hook called by the linker routine which adds symbols from an object
18938 file. */
18939
18940static bfd_boolean
18941elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18942 Elf_Internal_Sym *sym, const char **namep,
18943 flagword *flagsp, asection **secp, bfd_vma *valp)
18944{
a43942db 18945 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
f1885d1e
AM
18946 && (abfd->flags & DYNAMIC) == 0
18947 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
a43942db 18948 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
34e77a92 18949
c792917c
NC
18950 if (elf32_arm_hash_table (info) == NULL)
18951 return FALSE;
18952
34e77a92
RS
18953 if (elf32_arm_hash_table (info)->vxworks_p
18954 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18955 flagsp, secp, valp))
18956 return FALSE;
18957
18958 return TRUE;
18959}
18960
0beaef2b 18961/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
18962const struct elf_size_info elf32_arm_size_info =
18963{
0beaef2b
PB
18964 sizeof (Elf32_External_Ehdr),
18965 sizeof (Elf32_External_Phdr),
18966 sizeof (Elf32_External_Shdr),
18967 sizeof (Elf32_External_Rel),
18968 sizeof (Elf32_External_Rela),
18969 sizeof (Elf32_External_Sym),
18970 sizeof (Elf32_External_Dyn),
18971 sizeof (Elf_External_Note),
18972 4,
18973 1,
18974 32, 2,
18975 ELFCLASS32, EV_CURRENT,
18976 bfd_elf32_write_out_phdrs,
18977 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 18978 bfd_elf32_checksum_contents,
0beaef2b
PB
18979 bfd_elf32_write_relocs,
18980 elf32_arm_swap_symbol_in,
18981 elf32_arm_swap_symbol_out,
18982 bfd_elf32_slurp_reloc_table,
18983 bfd_elf32_slurp_symbol_table,
18984 bfd_elf32_swap_dyn_in,
18985 bfd_elf32_swap_dyn_out,
18986 bfd_elf32_swap_reloc_in,
18987 bfd_elf32_swap_reloc_out,
18988 bfd_elf32_swap_reloca_in,
18989 bfd_elf32_swap_reloca_out
18990};
18991
685e70ae
VK
18992static bfd_vma
18993read_code32 (const bfd *abfd, const bfd_byte *addr)
18994{
18995 /* V7 BE8 code is always little endian. */
18996 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18997 return bfd_getl32 (addr);
18998
18999 return bfd_get_32 (abfd, addr);
19000}
19001
19002static bfd_vma
19003read_code16 (const bfd *abfd, const bfd_byte *addr)
19004{
19005 /* V7 BE8 code is always little endian. */
19006 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19007 return bfd_getl16 (addr);
19008
19009 return bfd_get_16 (abfd, addr);
19010}
19011
6a631e86
YG
19012/* Return size of plt0 entry starting at ADDR
19013 or (bfd_vma) -1 if size can not be determined. */
19014
19015static bfd_vma
19016elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19017{
19018 bfd_vma first_word;
19019 bfd_vma plt0_size;
19020
685e70ae 19021 first_word = read_code32 (abfd, addr);
6a631e86
YG
19022
19023 if (first_word == elf32_arm_plt0_entry[0])
19024 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19025 else if (first_word == elf32_thumb2_plt0_entry[0])
19026 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19027 else
19028 /* We don't yet handle this PLT format. */
19029 return (bfd_vma) -1;
19030
19031 return plt0_size;
19032}
19033
19034/* Return size of plt entry starting at offset OFFSET
19035 of plt section located at address START
19036 or (bfd_vma) -1 if size can not be determined. */
19037
19038static bfd_vma
19039elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19040{
19041 bfd_vma first_insn;
19042 bfd_vma plt_size = 0;
19043 const bfd_byte *addr = start + offset;
19044
19045 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 19046 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
6a631e86
YG
19047 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19048
19049 /* Respect Thumb stub if necessary. */
685e70ae 19050 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
6a631e86
YG
19051 {
19052 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19053 }
19054
19055 /* Strip immediate from first add. */
685e70ae 19056 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
6a631e86
YG
19057
19058#ifdef FOUR_WORD_PLT
19059 if (first_insn == elf32_arm_plt_entry[0])
19060 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19061#else
19062 if (first_insn == elf32_arm_plt_entry_long[0])
19063 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19064 else if (first_insn == elf32_arm_plt_entry_short[0])
19065 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19066#endif
19067 else
19068 /* We don't yet handle this PLT format. */
19069 return (bfd_vma) -1;
19070
19071 return plt_size;
19072}
19073
19074/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19075
19076static long
19077elf32_arm_get_synthetic_symtab (bfd *abfd,
19078 long symcount ATTRIBUTE_UNUSED,
19079 asymbol **syms ATTRIBUTE_UNUSED,
19080 long dynsymcount,
19081 asymbol **dynsyms,
19082 asymbol **ret)
19083{
19084 asection *relplt;
19085 asymbol *s;
19086 arelent *p;
19087 long count, i, n;
19088 size_t size;
19089 Elf_Internal_Shdr *hdr;
19090 char *names;
19091 asection *plt;
19092 bfd_vma offset;
19093 bfd_byte *data;
19094
19095 *ret = NULL;
19096
19097 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19098 return 0;
19099
19100 if (dynsymcount <= 0)
19101 return 0;
19102
19103 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19104 if (relplt == NULL)
19105 return 0;
19106
19107 hdr = &elf_section_data (relplt)->this_hdr;
19108 if (hdr->sh_link != elf_dynsymtab (abfd)
19109 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19110 return 0;
19111
19112 plt = bfd_get_section_by_name (abfd, ".plt");
19113 if (plt == NULL)
19114 return 0;
19115
19116 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19117 return -1;
19118
19119 data = plt->contents;
19120 if (data == NULL)
19121 {
19122 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19123 return -1;
19124 bfd_cache_section_contents((asection *) plt, data);
19125 }
19126
19127 count = relplt->size / hdr->sh_entsize;
19128 size = count * sizeof (asymbol);
19129 p = relplt->relocation;
19130 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19131 {
19132 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19133 if (p->addend != 0)
19134 size += sizeof ("+0x") - 1 + 8;
19135 }
19136
19137 s = *ret = (asymbol *) bfd_malloc (size);
19138 if (s == NULL)
19139 return -1;
19140
19141 offset = elf32_arm_plt0_size (abfd, data);
19142 if (offset == (bfd_vma) -1)
19143 return -1;
19144
19145 names = (char *) (s + count);
19146 p = relplt->relocation;
19147 n = 0;
19148 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19149 {
19150 size_t len;
19151
19152 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19153 if (plt_size == (bfd_vma) -1)
19154 break;
19155
19156 *s = **p->sym_ptr_ptr;
19157 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19158 we are defining a symbol, ensure one of them is set. */
19159 if ((s->flags & BSF_LOCAL) == 0)
19160 s->flags |= BSF_GLOBAL;
19161 s->flags |= BSF_SYNTHETIC;
19162 s->section = plt;
19163 s->value = offset;
19164 s->name = names;
19165 s->udata.p = NULL;
19166 len = strlen ((*p->sym_ptr_ptr)->name);
19167 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19168 names += len;
19169 if (p->addend != 0)
19170 {
19171 char buf[30], *a;
19172
19173 memcpy (names, "+0x", sizeof ("+0x") - 1);
19174 names += sizeof ("+0x") - 1;
19175 bfd_sprintf_vma (abfd, buf, p->addend);
19176 for (a = buf; *a == '0'; ++a)
19177 ;
19178 len = strlen (a);
19179 memcpy (names, a, len);
19180 names += len;
19181 }
19182 memcpy (names, "@plt", sizeof ("@plt"));
19183 names += sizeof ("@plt");
19184 ++s, ++n;
19185 offset += plt_size;
19186 }
19187
19188 return n;
19189}
19190
ac4c9b04
MG
19191static bfd_boolean
19192elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19193{
f0728ee3
AV
19194 if (hdr->sh_flags & SHF_ARM_PURECODE)
19195 *flags |= SEC_ELF_PURECODE;
ac4c9b04
MG
19196 return TRUE;
19197}
19198
19199static flagword
19200elf32_arm_lookup_section_flags (char *flag_name)
19201{
f0728ee3
AV
19202 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19203 return SHF_ARM_PURECODE;
ac4c9b04
MG
19204
19205 return SEC_NO_FLAGS;
19206}
19207
491d01d3
YU
19208static unsigned int
19209elf32_arm_count_additional_relocs (asection *sec)
19210{
19211 struct _arm_elf_section_data *arm_data;
19212 arm_data = get_arm_elf_section_data (sec);
5025eb7c 19213
6342be70 19214 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
491d01d3
YU
19215}
19216
5522f910 19217/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
9eaff861 19218 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
5522f910
NC
19219 FALSE otherwise. ISECTION is the best guess matching section from the
19220 input bfd IBFD, but it might be NULL. */
19221
19222static bfd_boolean
19223elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19224 bfd *obfd ATTRIBUTE_UNUSED,
19225 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19226 Elf_Internal_Shdr *osection)
19227{
19228 switch (osection->sh_type)
19229 {
19230 case SHT_ARM_EXIDX:
19231 {
19232 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19233 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19234 unsigned i = 0;
19235
19236 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19237 osection->sh_info = 0;
19238
19239 /* The sh_link field must be set to the text section associated with
19240 this index section. Unfortunately the ARM EHABI does not specify
19241 exactly how to determine this association. Our caller does try
19242 to match up OSECTION with its corresponding input section however
19243 so that is a good first guess. */
19244 if (isection != NULL
19245 && osection->bfd_section != NULL
19246 && isection->bfd_section != NULL
19247 && isection->bfd_section->output_section != NULL
19248 && isection->bfd_section->output_section == osection->bfd_section
19249 && iheaders != NULL
19250 && isection->sh_link > 0
19251 && isection->sh_link < elf_numsections (ibfd)
19252 && iheaders[isection->sh_link]->bfd_section != NULL
19253 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19254 )
19255 {
19256 for (i = elf_numsections (obfd); i-- > 0;)
19257 if (oheaders[i]->bfd_section
19258 == iheaders[isection->sh_link]->bfd_section->output_section)
19259 break;
19260 }
9eaff861 19261
5522f910
NC
19262 if (i == 0)
19263 {
19264 /* Failing that we have to find a matching section ourselves. If
19265 we had the output section name available we could compare that
19266 with input section names. Unfortunately we don't. So instead
19267 we use a simple heuristic and look for the nearest executable
19268 section before this one. */
19269 for (i = elf_numsections (obfd); i-- > 0;)
19270 if (oheaders[i] == osection)
19271 break;
19272 if (i == 0)
19273 break;
19274
19275 while (i-- > 0)
19276 if (oheaders[i]->sh_type == SHT_PROGBITS
19277 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19278 == (SHF_ALLOC | SHF_EXECINSTR))
19279 break;
19280 }
19281
19282 if (i)
19283 {
19284 osection->sh_link = i;
19285 /* If the text section was part of a group
19286 then the index section should be too. */
19287 if (oheaders[i]->sh_flags & SHF_GROUP)
19288 osection->sh_flags |= SHF_GROUP;
19289 return TRUE;
19290 }
19291 }
19292 break;
19293
19294 case SHT_ARM_PREEMPTMAP:
19295 osection->sh_flags = SHF_ALLOC;
19296 break;
19297
19298 case SHT_ARM_ATTRIBUTES:
19299 case SHT_ARM_DEBUGOVERLAY:
19300 case SHT_ARM_OVERLAYSECTION:
19301 default:
19302 break;
19303 }
19304
19305 return FALSE;
19306}
19307
d691934d
NC
19308/* Returns TRUE if NAME is an ARM mapping symbol.
19309 Traditionally the symbols $a, $d and $t have been used.
19310 The ARM ELF standard also defines $x (for A64 code). It also allows a
19311 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19312 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19313 not support them here. $t.x indicates the start of ThumbEE instructions. */
19314
19315static bfd_boolean
19316is_arm_mapping_symbol (const char * name)
19317{
19318 return name != NULL /* Paranoia. */
19319 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19320 the mapping symbols could have acquired a prefix.
19321 We do not support this here, since such symbols no
19322 longer conform to the ARM ELF ABI. */
19323 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19324 && (name[2] == 0 || name[2] == '.');
19325 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19326 any characters that follow the period are legal characters for the body
19327 of a symbol's name. For now we just assume that this is the case. */
19328}
19329
fca2a38f
NC
19330/* Make sure that mapping symbols in object files are not removed via the
19331 "strip --strip-unneeded" tool. These symbols are needed in order to
19332 correctly generate interworking veneers, and for byte swapping code
19333 regions. Once an object file has been linked, it is safe to remove the
19334 symbols as they will no longer be needed. */
19335
19336static void
19337elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19338{
19339 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
fca2a38f 19340 && sym->section != bfd_abs_section_ptr
d691934d 19341 && is_arm_mapping_symbol (sym->name))
fca2a38f
NC
19342 sym->flags |= BSF_KEEP;
19343}
19344
5522f910
NC
19345#undef elf_backend_copy_special_section_fields
19346#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19347
252b5132 19348#define ELF_ARCH bfd_arch_arm
ae95ffa6 19349#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 19350#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
19351#ifdef __QNXTARGET__
19352#define ELF_MAXPAGESIZE 0x1000
19353#else
7572ca89 19354#define ELF_MAXPAGESIZE 0x10000
d0facd1b 19355#endif
b1342370 19356#define ELF_MINPAGESIZE 0x1000
24718e3b 19357#define ELF_COMMONPAGESIZE 0x1000
252b5132 19358
ba93b8ac
DJ
19359#define bfd_elf32_mkobject elf32_arm_mkobject
19360
99e4ae17
AJ
19361#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19362#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
19363#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19364#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19365#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 19366#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 19367#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 19368#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 19369#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 19370#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 19371#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 19372#define bfd_elf32_bfd_final_link elf32_arm_final_link
6a631e86 19373#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132
RH
19374
19375#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19376#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 19377#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
19378#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19379#define elf_backend_check_relocs elf32_arm_check_relocs
9eaff861 19380#define elf_backend_update_relocs elf32_arm_update_relocs
dc810e39 19381#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 19382#define elf_backend_write_section elf32_arm_write_section
252b5132 19383#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 19384#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
19385#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19386#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19387#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 19388#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 19389#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 19390#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 19391#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 19392#define elf_backend_object_p elf32_arm_object_p
40a18ebd
NC
19393#define elf_backend_fake_sections elf32_arm_fake_sections
19394#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 19395#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 19396#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 19397#define elf_backend_size_info elf32_arm_size_info
b294bdf8 19398#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
19399#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19400#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
54ddd295 19401#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
906e58ca 19402#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 19403#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
491d01d3 19404#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
fca2a38f 19405#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
906e58ca
NC
19406
19407#define elf_backend_can_refcount 1
19408#define elf_backend_can_gc_sections 1
19409#define elf_backend_plt_readonly 1
19410#define elf_backend_want_got_plt 1
19411#define elf_backend_want_plt_sym 0
19412#define elf_backend_may_use_rel_p 1
19413#define elf_backend_may_use_rela_p 0
4e7fd91e 19414#define elf_backend_default_use_rela_p 0
252b5132 19415
04f7c78d 19416#define elf_backend_got_header_size 12
b68a20d6 19417#define elf_backend_extern_protected_data 1
04f7c78d 19418
906e58ca
NC
19419#undef elf_backend_obj_attrs_vendor
19420#define elf_backend_obj_attrs_vendor "aeabi"
19421#undef elf_backend_obj_attrs_section
19422#define elf_backend_obj_attrs_section ".ARM.attributes"
19423#undef elf_backend_obj_attrs_arg_type
19424#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19425#undef elf_backend_obj_attrs_section_type
104d59d1 19426#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb
NC
19427#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19428#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 19429
5025eb7c 19430#undef elf_backend_section_flags
ac4c9b04 19431#define elf_backend_section_flags elf32_arm_section_flags
5025eb7c 19432#undef elf_backend_lookup_section_flags_hook
ac4c9b04
MG
19433#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19434
252b5132 19435#include "elf32-target.h"
7f266840 19436
b38cadfb
NC
19437/* Native Client targets. */
19438
19439#undef TARGET_LITTLE_SYM
6d00b590 19440#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
19441#undef TARGET_LITTLE_NAME
19442#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19443#undef TARGET_BIG_SYM
6d00b590 19444#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
19445#undef TARGET_BIG_NAME
19446#define TARGET_BIG_NAME "elf32-bigarm-nacl"
19447
19448/* Like elf32_arm_link_hash_table_create -- but overrides
19449 appropriately for NaCl. */
19450
19451static struct bfd_link_hash_table *
19452elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19453{
19454 struct bfd_link_hash_table *ret;
19455
19456 ret = elf32_arm_link_hash_table_create (abfd);
19457 if (ret)
19458 {
19459 struct elf32_arm_link_hash_table *htab
19460 = (struct elf32_arm_link_hash_table *) ret;
19461
19462 htab->nacl_p = 1;
19463
19464 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19465 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19466 }
19467 return ret;
19468}
19469
19470/* Since NaCl doesn't use the ARM-specific unwind format, we don't
19471 really need to use elf32_arm_modify_segment_map. But we do it
19472 anyway just to reduce gratuitous differences with the stock ARM backend. */
19473
19474static bfd_boolean
19475elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19476{
19477 return (elf32_arm_modify_segment_map (abfd, info)
19478 && nacl_modify_segment_map (abfd, info));
19479}
19480
887badb3
RM
19481static void
19482elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19483{
19484 elf32_arm_final_write_processing (abfd, linker);
19485 nacl_final_write_processing (abfd, linker);
19486}
19487
6a631e86
YG
19488static bfd_vma
19489elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19490 const arelent *rel ATTRIBUTE_UNUSED)
19491{
19492 return plt->vma
19493 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19494 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19495}
887badb3 19496
b38cadfb 19497#undef elf32_bed
6a631e86 19498#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
19499#undef bfd_elf32_bfd_link_hash_table_create
19500#define bfd_elf32_bfd_link_hash_table_create \
19501 elf32_arm_nacl_link_hash_table_create
19502#undef elf_backend_plt_alignment
6a631e86 19503#define elf_backend_plt_alignment 4
b38cadfb
NC
19504#undef elf_backend_modify_segment_map
19505#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19506#undef elf_backend_modify_program_headers
19507#define elf_backend_modify_program_headers nacl_modify_program_headers
887badb3
RM
19508#undef elf_backend_final_write_processing
19509#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
19510#undef bfd_elf32_get_synthetic_symtab
19511#undef elf_backend_plt_sym_val
19512#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
5522f910 19513#undef elf_backend_copy_special_section_fields
b38cadfb 19514
887badb3
RM
19515#undef ELF_MINPAGESIZE
19516#undef ELF_COMMONPAGESIZE
19517
b38cadfb
NC
19518
19519#include "elf32-target.h"
19520
19521/* Reset to defaults. */
19522#undef elf_backend_plt_alignment
19523#undef elf_backend_modify_segment_map
19524#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19525#undef elf_backend_modify_program_headers
887badb3
RM
19526#undef elf_backend_final_write_processing
19527#define elf_backend_final_write_processing elf32_arm_final_write_processing
19528#undef ELF_MINPAGESIZE
19529#define ELF_MINPAGESIZE 0x1000
19530#undef ELF_COMMONPAGESIZE
19531#define ELF_COMMONPAGESIZE 0x1000
19532
b38cadfb 19533
906e58ca 19534/* VxWorks Targets. */
4e7fd91e 19535
906e58ca 19536#undef TARGET_LITTLE_SYM
6d00b590 19537#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
906e58ca 19538#undef TARGET_LITTLE_NAME
4e7fd91e 19539#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 19540#undef TARGET_BIG_SYM
6d00b590 19541#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
906e58ca 19542#undef TARGET_BIG_NAME
4e7fd91e
PB
19543#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19544
19545/* Like elf32_arm_link_hash_table_create -- but overrides
19546 appropriately for VxWorks. */
906e58ca 19547
4e7fd91e
PB
19548static struct bfd_link_hash_table *
19549elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19550{
19551 struct bfd_link_hash_table *ret;
19552
19553 ret = elf32_arm_link_hash_table_create (abfd);
19554 if (ret)
19555 {
19556 struct elf32_arm_link_hash_table *htab
00a97672 19557 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 19558 htab->use_rel = 0;
00a97672 19559 htab->vxworks_p = 1;
4e7fd91e
PB
19560 }
19561 return ret;
906e58ca 19562}
4e7fd91e 19563
00a97672
RS
19564static void
19565elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19566{
19567 elf32_arm_final_write_processing (abfd, linker);
19568 elf_vxworks_final_write_processing (abfd, linker);
19569}
19570
906e58ca 19571#undef elf32_bed
4e7fd91e
PB
19572#define elf32_bed elf32_arm_vxworks_bed
19573
906e58ca
NC
19574#undef bfd_elf32_bfd_link_hash_table_create
19575#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
19576#undef elf_backend_final_write_processing
19577#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19578#undef elf_backend_emit_relocs
9eaff861 19579#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 19580
906e58ca 19581#undef elf_backend_may_use_rel_p
00a97672 19582#define elf_backend_may_use_rel_p 0
906e58ca 19583#undef elf_backend_may_use_rela_p
00a97672 19584#define elf_backend_may_use_rela_p 1
906e58ca 19585#undef elf_backend_default_use_rela_p
00a97672 19586#define elf_backend_default_use_rela_p 1
906e58ca 19587#undef elf_backend_want_plt_sym
00a97672 19588#define elf_backend_want_plt_sym 1
906e58ca 19589#undef ELF_MAXPAGESIZE
00a97672 19590#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
19591
19592#include "elf32-target.h"
19593
19594
21d799b5
NC
19595/* Merge backend specific data from an object file to the output
19596 object file when linking. */
19597
19598static bfd_boolean
50e03d47 19599elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
21d799b5 19600{
50e03d47 19601 bfd *obfd = info->output_bfd;
21d799b5
NC
19602 flagword out_flags;
19603 flagword in_flags;
19604 bfd_boolean flags_compatible = TRUE;
19605 asection *sec;
19606
cc643b88 19607 /* Check if we have the same endianness. */
50e03d47 19608 if (! _bfd_generic_verify_endian_match (ibfd, info))
21d799b5
NC
19609 return FALSE;
19610
19611 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19612 return TRUE;
19613
50e03d47 19614 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
21d799b5
NC
19615 return FALSE;
19616
19617 /* The input BFD must have had its flags initialised. */
19618 /* The following seems bogus to me -- The flags are initialized in
19619 the assembler but I don't think an elf_flags_init field is
19620 written into the object. */
19621 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19622
19623 in_flags = elf_elfheader (ibfd)->e_flags;
19624 out_flags = elf_elfheader (obfd)->e_flags;
19625
19626 /* In theory there is no reason why we couldn't handle this. However
19627 in practice it isn't even close to working and there is no real
19628 reason to want it. */
19629 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19630 && !(ibfd->flags & DYNAMIC)
19631 && (in_flags & EF_ARM_BE8))
19632 {
19633 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19634 ibfd);
19635 return FALSE;
19636 }
19637
19638 if (!elf_flags_init (obfd))
19639 {
19640 /* If the input is the default architecture and had the default
19641 flags then do not bother setting the flags for the output
19642 architecture, instead allow future merges to do this. If no
19643 future merges ever set these flags then they will retain their
99059e56
RM
19644 uninitialised values, which surprise surprise, correspond
19645 to the default values. */
21d799b5
NC
19646 if (bfd_get_arch_info (ibfd)->the_default
19647 && elf_elfheader (ibfd)->e_flags == 0)
19648 return TRUE;
19649
19650 elf_flags_init (obfd) = TRUE;
19651 elf_elfheader (obfd)->e_flags = in_flags;
19652
19653 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19654 && bfd_get_arch_info (obfd)->the_default)
19655 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19656
19657 return TRUE;
19658 }
19659
19660 /* Determine what should happen if the input ARM architecture
19661 does not match the output ARM architecture. */
19662 if (! bfd_arm_merge_machines (ibfd, obfd))
19663 return FALSE;
19664
19665 /* Identical flags must be compatible. */
19666 if (in_flags == out_flags)
19667 return TRUE;
19668
19669 /* Check to see if the input BFD actually contains any sections. If
19670 not, its flags may not have been initialised either, but it
19671 cannot actually cause any incompatiblity. Do not short-circuit
19672 dynamic objects; their section list may be emptied by
19673 elf_link_add_object_symbols.
19674
19675 Also check to see if there are no code sections in the input.
19676 In this case there is no need to check for code specific flags.
19677 XXX - do we need to worry about floating-point format compatability
19678 in data sections ? */
19679 if (!(ibfd->flags & DYNAMIC))
19680 {
19681 bfd_boolean null_input_bfd = TRUE;
19682 bfd_boolean only_data_sections = TRUE;
19683
19684 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19685 {
19686 /* Ignore synthetic glue sections. */
19687 if (strcmp (sec->name, ".glue_7")
19688 && strcmp (sec->name, ".glue_7t"))
19689 {
19690 if ((bfd_get_section_flags (ibfd, sec)
19691 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19692 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
99059e56 19693 only_data_sections = FALSE;
21d799b5
NC
19694
19695 null_input_bfd = FALSE;
19696 break;
19697 }
19698 }
19699
19700 if (null_input_bfd || only_data_sections)
19701 return TRUE;
19702 }
19703
19704 /* Complain about various flag mismatches. */
19705 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19706 EF_ARM_EABI_VERSION (out_flags)))
19707 {
19708 _bfd_error_handler
19709 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19710 ibfd, obfd,
19711 (in_flags & EF_ARM_EABIMASK) >> 24,
19712 (out_flags & EF_ARM_EABIMASK) >> 24);
19713 return FALSE;
19714 }
19715
19716 /* Not sure what needs to be checked for EABI versions >= 1. */
19717 /* VxWorks libraries do not use these flags. */
19718 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19719 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19720 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19721 {
19722 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19723 {
19724 _bfd_error_handler
19725 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19726 ibfd, obfd,
19727 in_flags & EF_ARM_APCS_26 ? 26 : 32,
19728 out_flags & EF_ARM_APCS_26 ? 26 : 32);
19729 flags_compatible = FALSE;
19730 }
19731
19732 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19733 {
19734 if (in_flags & EF_ARM_APCS_FLOAT)
19735 _bfd_error_handler
19736 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19737 ibfd, obfd);
19738 else
19739 _bfd_error_handler
19740 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19741 ibfd, obfd);
19742
19743 flags_compatible = FALSE;
19744 }
19745
19746 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19747 {
19748 if (in_flags & EF_ARM_VFP_FLOAT)
19749 _bfd_error_handler
19750 (_("error: %B uses VFP instructions, whereas %B does not"),
19751 ibfd, obfd);
19752 else
19753 _bfd_error_handler
19754 (_("error: %B uses FPA instructions, whereas %B does not"),
19755 ibfd, obfd);
19756
19757 flags_compatible = FALSE;
19758 }
19759
19760 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19761 {
19762 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19763 _bfd_error_handler
19764 (_("error: %B uses Maverick instructions, whereas %B does not"),
19765 ibfd, obfd);
19766 else
19767 _bfd_error_handler
19768 (_("error: %B does not use Maverick instructions, whereas %B does"),
19769 ibfd, obfd);
19770
19771 flags_compatible = FALSE;
19772 }
19773
19774#ifdef EF_ARM_SOFT_FLOAT
19775 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19776 {
19777 /* We can allow interworking between code that is VFP format
19778 layout, and uses either soft float or integer regs for
19779 passing floating point arguments and results. We already
19780 know that the APCS_FLOAT flags match; similarly for VFP
19781 flags. */
19782 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19783 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19784 {
19785 if (in_flags & EF_ARM_SOFT_FLOAT)
19786 _bfd_error_handler
19787 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19788 ibfd, obfd);
19789 else
19790 _bfd_error_handler
19791 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19792 ibfd, obfd);
19793
19794 flags_compatible = FALSE;
19795 }
19796 }
19797#endif
19798
19799 /* Interworking mismatch is only a warning. */
19800 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19801 {
19802 if (in_flags & EF_ARM_INTERWORK)
19803 {
19804 _bfd_error_handler
19805 (_("Warning: %B supports interworking, whereas %B does not"),
19806 ibfd, obfd);
19807 }
19808 else
19809 {
19810 _bfd_error_handler
19811 (_("Warning: %B does not support interworking, whereas %B does"),
19812 ibfd, obfd);
19813 }
19814 }
19815 }
19816
19817 return flags_compatible;
19818}
19819
19820
906e58ca 19821/* Symbian OS Targets. */
7f266840 19822
906e58ca 19823#undef TARGET_LITTLE_SYM
6d00b590 19824#define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
906e58ca 19825#undef TARGET_LITTLE_NAME
7f266840 19826#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 19827#undef TARGET_BIG_SYM
6d00b590 19828#define TARGET_BIG_SYM arm_elf32_symbian_be_vec
906e58ca 19829#undef TARGET_BIG_NAME
7f266840
DJ
19830#define TARGET_BIG_NAME "elf32-bigarm-symbian"
19831
19832/* Like elf32_arm_link_hash_table_create -- but overrides
19833 appropriately for Symbian OS. */
906e58ca 19834
7f266840
DJ
19835static struct bfd_link_hash_table *
19836elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19837{
19838 struct bfd_link_hash_table *ret;
19839
19840 ret = elf32_arm_link_hash_table_create (abfd);
19841 if (ret)
19842 {
19843 struct elf32_arm_link_hash_table *htab
19844 = (struct elf32_arm_link_hash_table *)ret;
19845 /* There is no PLT header for Symbian OS. */
19846 htab->plt_header_size = 0;
95720a86
DJ
19847 /* The PLT entries are each one instruction and one word. */
19848 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 19849 htab->symbian_p = 1;
33bfe774
JB
19850 /* Symbian uses armv5t or above, so use_blx is always true. */
19851 htab->use_blx = 1;
67687978 19852 htab->root.is_relocatable_executable = 1;
7f266840
DJ
19853 }
19854 return ret;
906e58ca 19855}
7f266840 19856
b35d266b 19857static const struct bfd_elf_special_section
551b43fd 19858elf32_arm_symbian_special_sections[] =
7f266840 19859{
5cd3778d
MM
19860 /* In a BPABI executable, the dynamic linking sections do not go in
19861 the loadable read-only segment. The post-linker may wish to
19862 refer to these sections, but they are not part of the final
19863 program image. */
0112cd26
NC
19864 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19865 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19866 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19867 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19868 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
19869 /* These sections do not need to be writable as the SymbianOS
19870 postlinker will arrange things so that no dynamic relocation is
19871 required. */
0112cd26
NC
19872 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19873 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19874 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19875 { NULL, 0, 0, 0, 0 }
7f266840
DJ
19876};
19877
c3c76620 19878static void
906e58ca 19879elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 19880 struct bfd_link_info *link_info)
c3c76620
MM
19881{
19882 /* BPABI objects are never loaded directly by an OS kernel; they are
19883 processed by a postlinker first, into an OS-specific format. If
19884 the D_PAGED bit is set on the file, BFD will align segments on
19885 page boundaries, so that an OS can directly map the file. With
19886 BPABI objects, that just results in wasted space. In addition,
19887 because we clear the D_PAGED bit, map_sections_to_segments will
19888 recognize that the program headers should not be mapped into any
19889 loadable segment. */
19890 abfd->flags &= ~D_PAGED;
906e58ca 19891 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 19892}
7f266840
DJ
19893
19894static bfd_boolean
906e58ca 19895elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 19896 struct bfd_link_info *info)
7f266840
DJ
19897{
19898 struct elf_segment_map *m;
19899 asection *dynsec;
19900
7f266840
DJ
19901 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19902 segment. However, because the .dynamic section is not marked
19903 with SEC_LOAD, the generic ELF code will not create such a
19904 segment. */
19905 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19906 if (dynsec)
19907 {
12bd6957 19908 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8ded5a0f
AM
19909 if (m->p_type == PT_DYNAMIC)
19910 break;
19911
19912 if (m == NULL)
19913 {
19914 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12bd6957
AM
19915 m->next = elf_seg_map (abfd);
19916 elf_seg_map (abfd) = m;
8ded5a0f 19917 }
7f266840
DJ
19918 }
19919
b294bdf8
MM
19920 /* Also call the generic arm routine. */
19921 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
19922}
19923
95720a86
DJ
19924/* Return address for Ith PLT stub in section PLT, for relocation REL
19925 or (bfd_vma) -1 if it should not be included. */
19926
19927static bfd_vma
19928elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19929 const arelent *rel ATTRIBUTE_UNUSED)
19930{
19931 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19932}
19933
8029a119 19934#undef elf32_bed
7f266840
DJ
19935#define elf32_bed elf32_arm_symbian_bed
19936
19937/* The dynamic sections are not allocated on SymbianOS; the postlinker
19938 will process them and then discard them. */
906e58ca 19939#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
19940#define ELF_DYNAMIC_SEC_FLAGS \
19941 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19942
9eaff861 19943#undef elf_backend_emit_relocs
c3c76620 19944
906e58ca
NC
19945#undef bfd_elf32_bfd_link_hash_table_create
19946#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19947#undef elf_backend_special_sections
19948#define elf_backend_special_sections elf32_arm_symbian_special_sections
19949#undef elf_backend_begin_write_processing
19950#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19951#undef elf_backend_final_write_processing
19952#define elf_backend_final_write_processing elf32_arm_final_write_processing
19953
19954#undef elf_backend_modify_segment_map
7f266840
DJ
19955#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19956
19957/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 19958#undef elf_backend_got_header_size
7f266840
DJ
19959#define elf_backend_got_header_size 0
19960
19961/* Similarly, there is no .got.plt section. */
906e58ca 19962#undef elf_backend_want_got_plt
7f266840
DJ
19963#define elf_backend_want_got_plt 0
19964
906e58ca 19965#undef elf_backend_plt_sym_val
95720a86
DJ
19966#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19967
906e58ca 19968#undef elf_backend_may_use_rel_p
00a97672 19969#define elf_backend_may_use_rel_p 1
906e58ca 19970#undef elf_backend_may_use_rela_p
00a97672 19971#define elf_backend_may_use_rela_p 0
906e58ca 19972#undef elf_backend_default_use_rela_p
00a97672 19973#define elf_backend_default_use_rela_p 0
906e58ca 19974#undef elf_backend_want_plt_sym
00a97672 19975#define elf_backend_want_plt_sym 0
906e58ca 19976#undef ELF_MAXPAGESIZE
00a97672 19977#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 19978
7f266840 19979#include "elf32-target.h"
This page took 2.43883 seconds and 4 git commands to generate.