Remove deprecated_throw_reason.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
2f47f5fc 2 Copyright 1998-2013 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
6034aab8 25#include "bfd_stdint.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
b38cadfb 29#include "elf-nacl.h"
00a97672 30#include "elf-vxworks.h"
ee065d83 31#include "elf/arm.h"
7f266840 32
00a97672
RS
33/* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35#define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38/* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40#define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45/* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47#define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52/* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54#define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
7f266840
DJ
59#define elf_info_to_howto 0
60#define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62#define ARM_ELF_ABI_VERSION 0
63#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
79f08007
YZ
65/* The Adjusted Place, as defined by AAELF. */
66#define Pa(X) ((X) & 0xfffffffc)
67
3e6b1042
DJ
68static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
7f266840
DJ
73/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
c19d1205 77static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 78{
8029a119 79 /* No relocation. */
7f266840
DJ
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 0, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
c19d1205 138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 139 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
142 32, /* bitsize */
143 TRUE, /* pc_relative */
7f266840 144 0, /* bitpos */
4962c51a 145 complain_overflow_dont,/* complain_on_overflow */
7f266840 146 bfd_elf_generic_reloc, /* special_function */
4962c51a 147 "R_ARM_LDR_PC_G0", /* name */
7f266840 148 FALSE, /* partial_inplace */
4962c51a
MS
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
7f266840
DJ
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
00a97672
RS
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
7f266840
DJ
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
c19d1205 226 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 229 24, /* bitsize */
7f266840
DJ
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
c19d1205 234 "R_ARM_THM_CALL", /* name */
7f266840 235 FALSE, /* partial_inplace */
7f6ab9f8
AM
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
7f266840
DJ
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
c19d1205 254 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
257 32, /* bitsize */
258 FALSE, /* pc_relative */
7f266840
DJ
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
c19d1205 262 "R_ARM_BREL_ADJ", /* name */
7f266840 263 FALSE, /* partial_inplace */
c19d1205
ZW
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
7f266840 267
0855e32b 268 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 269 0, /* rightshift */
0855e32b
NS
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
7f266840
DJ
272 FALSE, /* pc_relative */
273 0, /* bitpos */
0855e32b 274 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 275 bfd_elf_generic_reloc, /* special_function */
0855e32b 276 "R_ARM_TLS_DESC", /* name */
7f266840 277 FALSE, /* partial_inplace */
0855e32b
NS
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
7f266840
DJ
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 300 24, /* bitsize */
7f266840
DJ
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 315 24, /* bitsize */
7f266840
DJ
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
7f6ab9f8
AM
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
7f266840
DJ
324 TRUE), /* pcrel_offset */
325
ba93b8ac 326 /* Dynamic TLS relocations. */
7f266840 327
ba93b8ac 328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
99059e56
RM
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
7f266840 341
ba93b8ac 342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
99059e56
RM
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
7f266840 355
ba93b8ac 356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
99059e56
RM
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
7f266840
DJ
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
99059e56
RM
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
7f266840
DJ
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
99059e56
RM
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
7f266840
DJ
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
99059e56
RM
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
7f266840
DJ
413
414 HOWTO (R_ARM_RELATIVE, /* type */
99059e56
RM
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
7f266840 427
c19d1205 428 HOWTO (R_ARM_GOTOFF32, /* type */
99059e56
RM
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
7f266840
DJ
441
442 HOWTO (R_ARM_GOTPC, /* type */
99059e56
RM
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
7f266840
DJ
455
456 HOWTO (R_ARM_GOT32, /* type */
99059e56
RM
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
7f266840
DJ
469
470 HOWTO (R_ARM_PLT32, /* type */
99059e56
RM
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
7f266840
DJ
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
c19d1205
ZW
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
7f266840 517 0, /* bitpos */
c19d1205 518 complain_overflow_signed,/* complain_on_overflow */
7f266840 519 bfd_elf_generic_reloc, /* special_function */
c19d1205 520 "R_ARM_THM_JUMP24", /* name */
7f266840 521 FALSE, /* partial_inplace */
c19d1205
ZW
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
7f266840 525
c19d1205 526 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 527 0, /* rightshift */
c19d1205
ZW
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
7f266840
DJ
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
c19d1205 534 "R_ARM_BASE_ABS", /* name */
7f266840 535 FALSE, /* partial_inplace */
c19d1205
ZW
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
7f266840
DJ
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
c19d1205
ZW
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
39623e12
PB
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
c19d1205
ZW
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
39623e12
PB
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
c19d1205
ZW
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
39623e12
PB
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
c19d1205
ZW
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
39623e12
PB
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
c19d1205
ZW
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
2cab6cc3 843 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
2cab6cc3
MS
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
c19d1205
ZW
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
2cab6cc3 857 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
2cab6cc3
MS
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
c19d1205
ZW
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
7f266840 892
4962c51a
MS
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
c19d1205 1274
c19d1205
ZW
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
0855e32b
NS
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
c19d1205
ZW
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
99059e56
RM
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
c19d1205
ZW
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
99059e56
RM
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
c19d1205
ZW
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
ba93b8ac 1544
c19d1205
ZW
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
99059e56
RM
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
ba93b8ac 1559
ba93b8ac 1560 HOWTO (R_ARM_TLS_LDM32, /* type */
99059e56
RM
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
ba93b8ac 1573
c19d1205 1574 HOWTO (R_ARM_TLS_LDO32, /* type */
99059e56
RM
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
ba93b8ac 1587
ba93b8ac 1588 HOWTO (R_ARM_TLS_IE32, /* type */
99059e56
RM
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
7f266840 1601
c19d1205 1602 HOWTO (R_ARM_TLS_LE32, /* type */
99059e56
RM
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
7f266840 1615
c19d1205
ZW
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
7f266840 1621 0, /* bitpos */
c19d1205 1622 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1623 bfd_elf_generic_reloc, /* special_function */
c19d1205 1624 "R_ARM_TLS_LDO12", /* name */
7f266840 1625 FALSE, /* partial_inplace */
c19d1205
ZW
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
7f266840 1629
c19d1205
ZW
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
7f266840 1635 0, /* bitpos */
c19d1205 1636 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1637 bfd_elf_generic_reloc, /* special_function */
c19d1205 1638 "R_ARM_TLS_LE12", /* name */
7f266840 1639 FALSE, /* partial_inplace */
c19d1205
ZW
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
7f266840 1643
c19d1205 1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
7f266840 1649 0, /* bitpos */
c19d1205 1650 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1651 bfd_elf_generic_reloc, /* special_function */
c19d1205 1652 "R_ARM_TLS_IE12GP", /* name */
7f266840 1653 FALSE, /* partial_inplace */
c19d1205
ZW
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
0855e32b 1657
34e77a92 1658 /* 112-127 private relocations. */
0855e32b
NS
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
34e77a92
RS
1675
1676 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
c19d1205
ZW
1692};
1693
34e77a92
RS
1694/* 160 onwards: */
1695static reloc_howto_type elf32_arm_howto_table_2[1] =
1696{
1697 HOWTO (R_ARM_IRELATIVE, /* type */
99059e56
RM
1698 0, /* rightshift */
1699 2, /* size (0 = byte, 1 = short, 2 = long) */
1700 32, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_bitfield,/* complain_on_overflow */
1704 bfd_elf_generic_reloc, /* special_function */
1705 "R_ARM_IRELATIVE", /* name */
1706 TRUE, /* partial_inplace */
1707 0xffffffff, /* src_mask */
1708 0xffffffff, /* dst_mask */
1709 FALSE) /* pcrel_offset */
34e77a92 1710};
c19d1205 1711
34e77a92
RS
1712/* 249-255 extended, currently unused, relocations: */
1713static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1714{
1715 HOWTO (R_ARM_RREL32, /* type */
1716 0, /* rightshift */
1717 0, /* size (0 = byte, 1 = short, 2 = long) */
1718 0, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_dont,/* complain_on_overflow */
1722 bfd_elf_generic_reloc, /* special_function */
1723 "R_ARM_RREL32", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (R_ARM_RABS32, /* type */
1730 0, /* rightshift */
1731 0, /* size (0 = byte, 1 = short, 2 = long) */
1732 0, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont,/* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 "R_ARM_RABS32", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (R_ARM_RPC24, /* type */
1744 0, /* rightshift */
1745 0, /* size (0 = byte, 1 = short, 2 = long) */
1746 0, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont,/* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 "R_ARM_RPC24", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 HOWTO (R_ARM_RBASE, /* type */
1758 0, /* rightshift */
1759 0, /* size (0 = byte, 1 = short, 2 = long) */
1760 0, /* bitsize */
1761 FALSE, /* pc_relative */
1762 0, /* bitpos */
1763 complain_overflow_dont,/* complain_on_overflow */
1764 bfd_elf_generic_reloc, /* special_function */
1765 "R_ARM_RBASE", /* name */
1766 FALSE, /* partial_inplace */
1767 0, /* src_mask */
1768 0, /* dst_mask */
1769 FALSE) /* pcrel_offset */
1770};
1771
1772static reloc_howto_type *
1773elf32_arm_howto_from_type (unsigned int r_type)
1774{
906e58ca 1775 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1776 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1777
34e77a92
RS
1778 if (r_type == R_ARM_IRELATIVE)
1779 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1780
c19d1205 1781 if (r_type >= R_ARM_RREL32
34e77a92
RS
1782 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1783 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1784
c19d1205 1785 return NULL;
7f266840
DJ
1786}
1787
1788static void
1789elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1790 Elf_Internal_Rela * elf_reloc)
1791{
1792 unsigned int r_type;
1793
1794 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1795 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1796}
1797
1798struct elf32_arm_reloc_map
1799 {
1800 bfd_reloc_code_real_type bfd_reloc_val;
1801 unsigned char elf_reloc_val;
1802 };
1803
1804/* All entries in this list must also be present in elf32_arm_howto_table. */
1805static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1806 {
1807 {BFD_RELOC_NONE, R_ARM_NONE},
1808 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1809 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1810 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1811 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1812 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1813 {BFD_RELOC_32, R_ARM_ABS32},
1814 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1815 {BFD_RELOC_8, R_ARM_ABS8},
1816 {BFD_RELOC_16, R_ARM_ABS16},
1817 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1818 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1819 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1825 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1826 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1827 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1828 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840 1829 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
b43420e6 1830 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
7f266840
DJ
1831 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1832 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1833 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1834 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1835 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1836 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1837 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1838 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
0855e32b
NS
1839 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1840 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1841 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1842 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
1845 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1846 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1847 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1848 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1849 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1850 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1851 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1852 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
34e77a92 1853 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
c19d1205
ZW
1854 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1855 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1856 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1858 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1860 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1861 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1864 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1865 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1866 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1867 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1868 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1869 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1870 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1871 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1872 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1873 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1874 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1875 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1876 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1877 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1878 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1879 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1880 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1881 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1882 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1883 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1884 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1885 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1886 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1887 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1888 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1889 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1890 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1891 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1892 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1893 };
1894
1895static reloc_howto_type *
f1c71a59
ZW
1896elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1897 bfd_reloc_code_real_type code)
7f266840
DJ
1898{
1899 unsigned int i;
8029a119 1900
906e58ca 1901 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1902 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1904
c19d1205 1905 return NULL;
7f266840
DJ
1906}
1907
157090f7
AM
1908static reloc_howto_type *
1909elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 const char *r_name)
1911{
1912 unsigned int i;
1913
906e58ca 1914 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1915 if (elf32_arm_howto_table_1[i].name != NULL
1916 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1917 return &elf32_arm_howto_table_1[i];
1918
906e58ca 1919 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1920 if (elf32_arm_howto_table_2[i].name != NULL
1921 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1922 return &elf32_arm_howto_table_2[i];
1923
34e77a92
RS
1924 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1925 if (elf32_arm_howto_table_3[i].name != NULL
1926 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1927 return &elf32_arm_howto_table_3[i];
1928
157090f7
AM
1929 return NULL;
1930}
1931
906e58ca
NC
1932/* Support for core dump NOTE sections. */
1933
7f266840 1934static bfd_boolean
f1c71a59 1935elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1936{
1937 int offset;
1938 size_t size;
1939
1940 switch (note->descsz)
1941 {
1942 default:
1943 return FALSE;
1944
8029a119 1945 case 148: /* Linux/ARM 32-bit. */
7f266840 1946 /* pr_cursig */
228e534f 1947 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
1948
1949 /* pr_pid */
228e534f 1950 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
1951
1952 /* pr_reg */
1953 offset = 72;
1954 size = 72;
1955
1956 break;
1957 }
1958
1959 /* Make a ".reg/999" section. */
1960 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1961 size, note->descpos + offset);
1962}
1963
1964static bfd_boolean
f1c71a59 1965elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1966{
1967 switch (note->descsz)
1968 {
1969 default:
1970 return FALSE;
1971
8029a119 1972 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 1973 elf_tdata (abfd)->core->pid
4395ee08 1974 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 1975 elf_tdata (abfd)->core->program
7f266840 1976 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 1977 elf_tdata (abfd)->core->command
7f266840
DJ
1978 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1979 }
1980
1981 /* Note that for some reason, a spurious space is tacked
1982 onto the end of the args in some (at least one anyway)
1983 implementations, so strip it off if it exists. */
7f266840 1984 {
228e534f 1985 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
1986 int n = strlen (command);
1987
1988 if (0 < n && command[n - 1] == ' ')
1989 command[n - 1] = '\0';
1990 }
1991
1992 return TRUE;
1993}
1994
1f20dca5
UW
1995static char *
1996elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1997 int note_type, ...)
1998{
1999 switch (note_type)
2000 {
2001 default:
2002 return NULL;
2003
2004 case NT_PRPSINFO:
2005 {
2006 char data[124];
2007 va_list ap;
2008
2009 va_start (ap, note_type);
2010 memset (data, 0, sizeof (data));
2011 strncpy (data + 28, va_arg (ap, const char *), 16);
2012 strncpy (data + 44, va_arg (ap, const char *), 80);
2013 va_end (ap);
2014
2015 return elfcore_write_note (abfd, buf, bufsiz,
2016 "CORE", note_type, data, sizeof (data));
2017 }
2018
2019 case NT_PRSTATUS:
2020 {
2021 char data[148];
2022 va_list ap;
2023 long pid;
2024 int cursig;
2025 const void *greg;
2026
2027 va_start (ap, note_type);
2028 memset (data, 0, sizeof (data));
2029 pid = va_arg (ap, long);
2030 bfd_put_32 (abfd, pid, data + 24);
2031 cursig = va_arg (ap, int);
2032 bfd_put_16 (abfd, cursig, data + 12);
2033 greg = va_arg (ap, const void *);
2034 memcpy (data + 72, greg, 72);
2035 va_end (ap);
2036
2037 return elfcore_write_note (abfd, buf, bufsiz,
2038 "CORE", note_type, data, sizeof (data));
2039 }
2040 }
2041}
2042
7f266840
DJ
2043#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
2044#define TARGET_LITTLE_NAME "elf32-littlearm"
2045#define TARGET_BIG_SYM bfd_elf32_bigarm_vec
2046#define TARGET_BIG_NAME "elf32-bigarm"
2047
2048#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2049#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2050#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2051
252b5132
RH
2052typedef unsigned long int insn32;
2053typedef unsigned short int insn16;
2054
3a4a14e9
PB
2055/* In lieu of proper flags, assume all EABIv4 or later objects are
2056 interworkable. */
57e8b36a 2057#define INTERWORK_FLAG(abfd) \
3a4a14e9 2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2061
252b5132
RH
2062/* The linker script knows the section names for placement.
2063 The entry_names are used to do simple name mangling on the stubs.
2064 Given a function name, and its type, the stub can be found. The
9b485d32 2065 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2066#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2068
2069#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2071
c7b8f16e
JB
2072#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2074
845b51d6
PB
2075#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2077
7413f23f
DJ
2078#define STUB_ENTRY_NAME "__%s_veneer"
2079
252b5132
RH
2080/* The name of the dynamic interpreter. This is put in the .interp
2081 section. */
2082#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2083
0855e32b 2084static const unsigned long tls_trampoline [] =
b38cadfb
NC
2085{
2086 0xe08e0000, /* add r0, lr, r0 */
2087 0xe5901004, /* ldr r1, [r0,#4] */
2088 0xe12fff11, /* bx r1 */
2089};
0855e32b
NS
2090
2091static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2092{
2093 0xe52d2004, /* push {r2} */
2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2097 0xe081100f, /* 2: add r1, pc */
2098 0xe12fff12, /* bx r2 */
2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2100 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2102};
0855e32b 2103
5e681ec4
PB
2104#ifdef FOUR_WORD_PLT
2105
252b5132
RH
2106/* The first entry in a procedure linkage table looks like
2107 this. It is set up so that any shared library function that is
59f2c4e7 2108 called before the relocation has been set up calls the dynamic
9b485d32 2109 linker first. */
e5a52504 2110static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2111{
2112 0xe52de004, /* str lr, [sp, #-4]! */
2113 0xe59fe010, /* ldr lr, [pc, #16] */
2114 0xe08fe00e, /* add lr, pc, lr */
2115 0xe5bef008, /* ldr pc, [lr, #8]! */
2116};
5e681ec4
PB
2117
2118/* Subsequent entries in a procedure linkage table look like
2119 this. */
e5a52504 2120static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2121{
2122 0xe28fc600, /* add ip, pc, #NN */
2123 0xe28cca00, /* add ip, ip, #NN */
2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2125 0x00000000, /* unused */
2126};
5e681ec4
PB
2127
2128#else
2129
5e681ec4
PB
2130/* The first entry in a procedure linkage table looks like
2131 this. It is set up so that any shared library function that is
2132 called before the relocation has been set up calls the dynamic
2133 linker first. */
e5a52504 2134static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2135{
2136 0xe52de004, /* str lr, [sp, #-4]! */
2137 0xe59fe004, /* ldr lr, [pc, #4] */
2138 0xe08fe00e, /* add lr, pc, lr */
2139 0xe5bef008, /* ldr pc, [lr, #8]! */
2140 0x00000000, /* &GOT[0] - . */
2141};
252b5132
RH
2142
2143/* Subsequent entries in a procedure linkage table look like
2144 this. */
e5a52504 2145static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2146{
2147 0xe28fc600, /* add ip, pc, #0xNN00000 */
2148 0xe28cca00, /* add ip, ip, #0xNN000 */
2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2150};
5e681ec4
PB
2151
2152#endif
252b5132 2153
00a97672
RS
2154/* The format of the first entry in the procedure linkage table
2155 for a VxWorks executable. */
2156static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb
NC
2157{
2158 0xe52dc008, /* str ip,[sp,#-8]! */
2159 0xe59fc000, /* ldr ip,[pc] */
2160 0xe59cf008, /* ldr pc,[ip,#8] */
2161 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2162};
00a97672
RS
2163
2164/* The format of subsequent entries in a VxWorks executable. */
2165static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb
NC
2166{
2167 0xe59fc000, /* ldr ip,[pc] */
2168 0xe59cf000, /* ldr pc,[ip] */
2169 0x00000000, /* .long @got */
2170 0xe59fc000, /* ldr ip,[pc] */
2171 0xea000000, /* b _PLT */
2172 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2173};
00a97672
RS
2174
2175/* The format of entries in a VxWorks shared library. */
2176static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb
NC
2177{
2178 0xe59fc000, /* ldr ip,[pc] */
2179 0xe79cf009, /* ldr pc,[ip,r9] */
2180 0x00000000, /* .long @got */
2181 0xe59fc000, /* ldr ip,[pc] */
2182 0xe599f008, /* ldr pc,[r9,#8] */
2183 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2184};
00a97672 2185
b7693d02
DJ
2186/* An initial stub used if the PLT entry is referenced from Thumb code. */
2187#define PLT_THUMB_STUB_SIZE 4
2188static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2189{
2190 0x4778, /* bx pc */
2191 0x46c0 /* nop */
2192};
b7693d02 2193
e5a52504
MM
2194/* The entries in a PLT when using a DLL-based target with multiple
2195 address spaces. */
906e58ca 2196static const bfd_vma elf32_arm_symbian_plt_entry [] =
b38cadfb
NC
2197{
2198 0xe51ff004, /* ldr pc, [pc, #-4] */
2199 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2200};
2201
2202/* The first entry in a procedure linkage table looks like
2203 this. It is set up so that any shared library function that is
2204 called before the relocation has been set up calls the dynamic
2205 linker first. */
2206static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2207{
2208 /* First bundle: */
2209 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2210 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2211 0xe08cc00f, /* add ip, ip, pc */
2212 0xe52dc008, /* str ip, [sp, #-8]! */
2213 /* Second bundle: */
edccdf7c
RM
2214 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2215 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2216 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2217 0xe12fff1c, /* bx ip */
b38cadfb 2218 /* Third bundle: */
edccdf7c
RM
2219 0xe320f000, /* nop */
2220 0xe320f000, /* nop */
2221 0xe320f000, /* nop */
b38cadfb
NC
2222 /* .Lplt_tail: */
2223 0xe50dc004, /* str ip, [sp, #-4] */
2224 /* Fourth bundle: */
edccdf7c
RM
2225 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2226 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2227 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2228 0xe12fff1c, /* bx ip */
b38cadfb
NC
2229};
2230#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2231
2232/* Subsequent entries in a procedure linkage table look like this. */
2233static const bfd_vma elf32_arm_nacl_plt_entry [] =
2234{
2235 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2236 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2237 0xe08cc00f, /* add ip, ip, pc */
2238 0xea000000, /* b .Lplt_tail */
2239};
e5a52504 2240
906e58ca
NC
2241#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2242#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2243#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2244#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2245#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2246#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2247
461a49ca 2248enum stub_insn_type
b38cadfb
NC
2249{
2250 THUMB16_TYPE = 1,
2251 THUMB32_TYPE,
2252 ARM_TYPE,
2253 DATA_TYPE
2254};
461a49ca 2255
48229727
JB
2256#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2257/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2258 is inserted in arm_build_one_stub(). */
2259#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2260#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2261#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2262#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2263#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2264#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2265
2266typedef struct
2267{
b38cadfb
NC
2268 bfd_vma data;
2269 enum stub_insn_type type;
2270 unsigned int r_type;
2271 int reloc_addend;
461a49ca
DJ
2272} insn_sequence;
2273
fea2b4d6
CL
2274/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2275 to reach the stub if necessary. */
461a49ca 2276static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb
NC
2277{
2278 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2279 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2280};
906e58ca 2281
fea2b4d6
CL
2282/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2283 available. */
461a49ca 2284static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb
NC
2285{
2286 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2287 ARM_INSN (0xe12fff1c), /* bx ip */
2288 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2289};
906e58ca 2290
d3626fb0 2291/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2292static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb
NC
2293{
2294 THUMB16_INSN (0xb401), /* push {r0} */
2295 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2296 THUMB16_INSN (0x4684), /* mov ip, r0 */
2297 THUMB16_INSN (0xbc01), /* pop {r0} */
2298 THUMB16_INSN (0x4760), /* bx ip */
2299 THUMB16_INSN (0xbf00), /* nop */
2300 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2301};
906e58ca 2302
d3626fb0
CL
2303/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2304 allowed. */
2305static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb
NC
2306{
2307 THUMB16_INSN (0x4778), /* bx pc */
2308 THUMB16_INSN (0x46c0), /* nop */
2309 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2310 ARM_INSN (0xe12fff1c), /* bx ip */
2311 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2312};
d3626fb0 2313
fea2b4d6
CL
2314/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2315 available. */
461a49ca 2316static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb
NC
2317{
2318 THUMB16_INSN (0x4778), /* bx pc */
2319 THUMB16_INSN (0x46c0), /* nop */
2320 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2321 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2322};
906e58ca 2323
fea2b4d6
CL
2324/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2325 one, when the destination is close enough. */
461a49ca 2326static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb
NC
2327{
2328 THUMB16_INSN (0x4778), /* bx pc */
2329 THUMB16_INSN (0x46c0), /* nop */
2330 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2331};
c820be07 2332
cf3eccff 2333/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2334 blx to reach the stub if necessary. */
cf3eccff 2335static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb
NC
2336{
2337 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2338 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2339 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2340};
906e58ca 2341
cf3eccff
DJ
2342/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2343 blx to reach the stub if necessary. We can not add into pc;
2344 it is not guaranteed to mode switch (different in ARMv6 and
2345 ARMv7). */
2346static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb
NC
2347{
2348 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2349 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2350 ARM_INSN (0xe12fff1c), /* bx ip */
2351 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2352};
cf3eccff 2353
ebe24dd4
CL
2354/* V4T ARM -> ARM long branch stub, PIC. */
2355static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb
NC
2356{
2357 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2358 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2359 ARM_INSN (0xe12fff1c), /* bx ip */
2360 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2361};
ebe24dd4
CL
2362
2363/* V4T Thumb -> ARM long branch stub, PIC. */
2364static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb
NC
2365{
2366 THUMB16_INSN (0x4778), /* bx pc */
2367 THUMB16_INSN (0x46c0), /* nop */
2368 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2369 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2370 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2371};
ebe24dd4 2372
d3626fb0
CL
2373/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2374 architectures. */
ebe24dd4 2375static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb
NC
2376{
2377 THUMB16_INSN (0xb401), /* push {r0} */
2378 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2379 THUMB16_INSN (0x46fc), /* mov ip, pc */
2380 THUMB16_INSN (0x4484), /* add ip, r0 */
2381 THUMB16_INSN (0xbc01), /* pop {r0} */
2382 THUMB16_INSN (0x4760), /* bx ip */
2383 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2384};
ebe24dd4 2385
d3626fb0
CL
2386/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2387 allowed. */
2388static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb
NC
2389{
2390 THUMB16_INSN (0x4778), /* bx pc */
2391 THUMB16_INSN (0x46c0), /* nop */
2392 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2393 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2394 ARM_INSN (0xe12fff1c), /* bx ip */
2395 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2396};
d3626fb0 2397
0855e32b
NS
2398/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2399 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2400static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2401{
b38cadfb
NC
2402 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2403 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2404 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2405};
2406
2407/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2408 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2409static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2410{
b38cadfb
NC
2411 THUMB16_INSN (0x4778), /* bx pc */
2412 THUMB16_INSN (0x46c0), /* nop */
2413 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2414 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2415 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2416};
2417
7a89b94e
NC
2418/* NaCl ARM -> ARM long branch stub. */
2419static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2420{
2421 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2422 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2423 ARM_INSN (0xe12fff1c), /* bx ip */
2424 ARM_INSN (0xe320f000), /* nop */
2425 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2426 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2427 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2428 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2429};
2430
2431/* NaCl ARM -> ARM long branch stub, PIC. */
2432static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2433{
2434 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2435 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2436 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2437 ARM_INSN (0xe12fff1c), /* bx ip */
2438 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2439 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2440 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2441 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2442};
2443
2444
48229727
JB
2445/* Cortex-A8 erratum-workaround stubs. */
2446
2447/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2448 can't use a conditional branch to reach this stub). */
2449
2450static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb
NC
2451{
2452 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2453 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2454 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2455};
48229727
JB
2456
2457/* Stub used for b.w and bl.w instructions. */
2458
2459static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2460{
2461 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2462};
48229727
JB
2463
2464static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2465{
2466 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2467};
48229727
JB
2468
2469/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2470 instruction (which switches to ARM mode) to point to this stub. Jump to the
2471 real destination using an ARM-mode branch. */
2472
2473static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2474{
2475 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2476};
48229727 2477
9553db3c
NC
2478/* For each section group there can be a specially created linker section
2479 to hold the stubs for that group. The name of the stub section is based
2480 upon the name of another section within that group with the suffix below
2481 applied.
2482
2483 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2484 create what appeared to be a linker stub section when it actually
2485 contained user code/data. For example, consider this fragment:
b38cadfb 2486
9553db3c
NC
2487 const char * stubborn_problems[] = { "np" };
2488
2489 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2490 section called:
2491
2492 .data.rel.local.stubborn_problems
2493
2494 This then causes problems in arm32_arm_build_stubs() as it triggers:
2495
2496 // Ignore non-stub sections.
2497 if (!strstr (stub_sec->name, STUB_SUFFIX))
2498 continue;
2499
2500 And so the section would be ignored instead of being processed. Hence
2501 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2502 C identifier. */
2503#define STUB_SUFFIX ".__stub"
906e58ca 2504
738a79f6
CL
2505/* One entry per long/short branch stub defined above. */
2506#define DEF_STUBS \
2507 DEF_STUB(long_branch_any_any) \
2508 DEF_STUB(long_branch_v4t_arm_thumb) \
2509 DEF_STUB(long_branch_thumb_only) \
2510 DEF_STUB(long_branch_v4t_thumb_thumb) \
2511 DEF_STUB(long_branch_v4t_thumb_arm) \
2512 DEF_STUB(short_branch_v4t_thumb_arm) \
2513 DEF_STUB(long_branch_any_arm_pic) \
2514 DEF_STUB(long_branch_any_thumb_pic) \
2515 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2516 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2517 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2518 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2519 DEF_STUB(long_branch_any_tls_pic) \
2520 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
7a89b94e
NC
2521 DEF_STUB(long_branch_arm_nacl) \
2522 DEF_STUB(long_branch_arm_nacl_pic) \
48229727
JB
2523 DEF_STUB(a8_veneer_b_cond) \
2524 DEF_STUB(a8_veneer_b) \
2525 DEF_STUB(a8_veneer_bl) \
2526 DEF_STUB(a8_veneer_blx)
738a79f6
CL
2527
2528#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2529enum elf32_arm_stub_type
2530{
906e58ca 2531 arm_stub_none,
738a79f6 2532 DEF_STUBS
eb7c4339
NS
2533 /* Note the first a8_veneer type */
2534 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
738a79f6
CL
2535};
2536#undef DEF_STUB
2537
2538typedef struct
2539{
d3ce72d0 2540 const insn_sequence* template_sequence;
738a79f6
CL
2541 int template_size;
2542} stub_def;
2543
2544#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2545static const stub_def stub_definitions[] =
2546{
738a79f6
CL
2547 {NULL, 0},
2548 DEF_STUBS
906e58ca
NC
2549};
2550
2551struct elf32_arm_stub_hash_entry
2552{
2553 /* Base hash table entry structure. */
2554 struct bfd_hash_entry root;
2555
2556 /* The stub section. */
2557 asection *stub_sec;
2558
2559 /* Offset within stub_sec of the beginning of this stub. */
2560 bfd_vma stub_offset;
2561
2562 /* Given the symbol's value and its section we can determine its final
2563 value when building the stubs (so the stub knows where to jump). */
2564 bfd_vma target_value;
2565 asection *target_section;
2566
48229727
JB
2567 /* Offset to apply to relocation referencing target_value. */
2568 bfd_vma target_addend;
2569
2570 /* The instruction which caused this stub to be generated (only valid for
2571 Cortex-A8 erratum workaround stubs at present). */
2572 unsigned long orig_insn;
2573
461a49ca 2574 /* The stub type. */
906e58ca 2575 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2576 /* Its encoding size in bytes. */
2577 int stub_size;
2578 /* Its template. */
2579 const insn_sequence *stub_template;
2580 /* The size of the template (number of entries). */
2581 int stub_template_size;
906e58ca
NC
2582
2583 /* The symbol table entry, if any, that this was derived from. */
2584 struct elf32_arm_link_hash_entry *h;
2585
35fc36a8
RS
2586 /* Type of branch. */
2587 enum arm_st_branch_type branch_type;
906e58ca
NC
2588
2589 /* Where this stub is being called from, or, in the case of combined
2590 stub sections, the first input section in the group. */
2591 asection *id_sec;
7413f23f
DJ
2592
2593 /* The name for the local symbol at the start of this stub. The
2594 stub name in the hash table has to be unique; this does not, so
2595 it can be friendlier. */
2596 char *output_name;
906e58ca
NC
2597};
2598
e489d0ae
PB
2599/* Used to build a map of a section. This is required for mixed-endian
2600 code/data. */
2601
2602typedef struct elf32_elf_section_map
2603{
2604 bfd_vma vma;
2605 char type;
2606}
2607elf32_arm_section_map;
2608
c7b8f16e
JB
2609/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2610
2611typedef enum
2612{
2613 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2614 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2615 VFP11_ERRATUM_ARM_VENEER,
2616 VFP11_ERRATUM_THUMB_VENEER
2617}
2618elf32_vfp11_erratum_type;
2619
2620typedef struct elf32_vfp11_erratum_list
2621{
2622 struct elf32_vfp11_erratum_list *next;
2623 bfd_vma vma;
2624 union
2625 {
2626 struct
2627 {
2628 struct elf32_vfp11_erratum_list *veneer;
2629 unsigned int vfp_insn;
2630 } b;
2631 struct
2632 {
2633 struct elf32_vfp11_erratum_list *branch;
2634 unsigned int id;
2635 } v;
2636 } u;
2637 elf32_vfp11_erratum_type type;
2638}
2639elf32_vfp11_erratum_list;
2640
2468f9c9
PB
2641typedef enum
2642{
2643 DELETE_EXIDX_ENTRY,
2644 INSERT_EXIDX_CANTUNWIND_AT_END
2645}
2646arm_unwind_edit_type;
2647
2648/* A (sorted) list of edits to apply to an unwind table. */
2649typedef struct arm_unwind_table_edit
2650{
2651 arm_unwind_edit_type type;
2652 /* Note: we sometimes want to insert an unwind entry corresponding to a
2653 section different from the one we're currently writing out, so record the
2654 (text) section this edit relates to here. */
2655 asection *linked_section;
2656 unsigned int index;
2657 struct arm_unwind_table_edit *next;
2658}
2659arm_unwind_table_edit;
2660
8e3de13a 2661typedef struct _arm_elf_section_data
e489d0ae 2662{
2468f9c9 2663 /* Information about mapping symbols. */
e489d0ae 2664 struct bfd_elf_section_data elf;
8e3de13a 2665 unsigned int mapcount;
c7b8f16e 2666 unsigned int mapsize;
e489d0ae 2667 elf32_arm_section_map *map;
2468f9c9 2668 /* Information about CPU errata. */
c7b8f16e
JB
2669 unsigned int erratumcount;
2670 elf32_vfp11_erratum_list *erratumlist;
2468f9c9
PB
2671 /* Information about unwind tables. */
2672 union
2673 {
2674 /* Unwind info attached to a text section. */
2675 struct
2676 {
2677 asection *arm_exidx_sec;
2678 } text;
2679
2680 /* Unwind info attached to an .ARM.exidx section. */
2681 struct
2682 {
2683 arm_unwind_table_edit *unwind_edit_list;
2684 arm_unwind_table_edit *unwind_edit_tail;
2685 } exidx;
2686 } u;
8e3de13a
NC
2687}
2688_arm_elf_section_data;
e489d0ae
PB
2689
2690#define elf32_arm_section_data(sec) \
8e3de13a 2691 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2692
48229727
JB
2693/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2694 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2695 so may be created multiple times: we use an array of these entries whilst
2696 relaxing which we can refresh easily, then create stubs for each potentially
2697 erratum-triggering instruction once we've settled on a solution. */
2698
b38cadfb
NC
2699struct a8_erratum_fix
2700{
48229727
JB
2701 bfd *input_bfd;
2702 asection *section;
2703 bfd_vma offset;
2704 bfd_vma addend;
2705 unsigned long orig_insn;
2706 char *stub_name;
2707 enum elf32_arm_stub_type stub_type;
35fc36a8 2708 enum arm_st_branch_type branch_type;
48229727
JB
2709};
2710
2711/* A table of relocs applied to branches which might trigger Cortex-A8
2712 erratum. */
2713
b38cadfb
NC
2714struct a8_erratum_reloc
2715{
48229727
JB
2716 bfd_vma from;
2717 bfd_vma destination;
92750f34
DJ
2718 struct elf32_arm_link_hash_entry *hash;
2719 const char *sym_name;
48229727 2720 unsigned int r_type;
35fc36a8 2721 enum arm_st_branch_type branch_type;
48229727
JB
2722 bfd_boolean non_a8_stub;
2723};
2724
ba93b8ac
DJ
2725/* The size of the thread control block. */
2726#define TCB_SIZE 8
2727
34e77a92
RS
2728/* ARM-specific information about a PLT entry, over and above the usual
2729 gotplt_union. */
b38cadfb
NC
2730struct arm_plt_info
2731{
34e77a92
RS
2732 /* We reference count Thumb references to a PLT entry separately,
2733 so that we can emit the Thumb trampoline only if needed. */
2734 bfd_signed_vma thumb_refcount;
2735
2736 /* Some references from Thumb code may be eliminated by BL->BLX
2737 conversion, so record them separately. */
2738 bfd_signed_vma maybe_thumb_refcount;
2739
2740 /* How many of the recorded PLT accesses were from non-call relocations.
2741 This information is useful when deciding whether anything takes the
2742 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2743 non-call references to the function should resolve directly to the
2744 real runtime target. */
2745 unsigned int noncall_refcount;
2746
2747 /* Since PLT entries have variable size if the Thumb prologue is
2748 used, we need to record the index into .got.plt instead of
2749 recomputing it from the PLT offset. */
2750 bfd_signed_vma got_offset;
2751};
2752
2753/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
2754struct arm_local_iplt_info
2755{
34e77a92
RS
2756 /* The information that is usually found in the generic ELF part of
2757 the hash table entry. */
2758 union gotplt_union root;
2759
2760 /* The information that is usually found in the ARM-specific part of
2761 the hash table entry. */
2762 struct arm_plt_info arm;
2763
2764 /* A list of all potential dynamic relocations against this symbol. */
2765 struct elf_dyn_relocs *dyn_relocs;
2766};
2767
0ffa91dd 2768struct elf_arm_obj_tdata
ba93b8ac
DJ
2769{
2770 struct elf_obj_tdata root;
2771
2772 /* tls_type for each local got entry. */
2773 char *local_got_tls_type;
ee065d83 2774
0855e32b
NS
2775 /* GOTPLT entries for TLS descriptors. */
2776 bfd_vma *local_tlsdesc_gotent;
2777
34e77a92
RS
2778 /* Information for local symbols that need entries in .iplt. */
2779 struct arm_local_iplt_info **local_iplt;
2780
bf21ed78
MS
2781 /* Zero to warn when linking objects with incompatible enum sizes. */
2782 int no_enum_size_warning;
a9dc9481
JM
2783
2784 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2785 int no_wchar_size_warning;
ba93b8ac
DJ
2786};
2787
0ffa91dd
NC
2788#define elf_arm_tdata(bfd) \
2789 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2790
0ffa91dd
NC
2791#define elf32_arm_local_got_tls_type(bfd) \
2792 (elf_arm_tdata (bfd)->local_got_tls_type)
2793
0855e32b
NS
2794#define elf32_arm_local_tlsdesc_gotent(bfd) \
2795 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2796
34e77a92
RS
2797#define elf32_arm_local_iplt(bfd) \
2798 (elf_arm_tdata (bfd)->local_iplt)
2799
0ffa91dd
NC
2800#define is_arm_elf(bfd) \
2801 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2802 && elf_tdata (bfd) != NULL \
4dfe6ac6 2803 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
2804
2805static bfd_boolean
2806elf32_arm_mkobject (bfd *abfd)
2807{
0ffa91dd 2808 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 2809 ARM_ELF_DATA);
ba93b8ac
DJ
2810}
2811
ba93b8ac
DJ
2812#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2813
ba96a88f 2814/* Arm ELF linker hash entry. */
252b5132 2815struct elf32_arm_link_hash_entry
b38cadfb
NC
2816{
2817 struct elf_link_hash_entry root;
252b5132 2818
b38cadfb
NC
2819 /* Track dynamic relocs copied for this symbol. */
2820 struct elf_dyn_relocs *dyn_relocs;
b7693d02 2821
b38cadfb
NC
2822 /* ARM-specific PLT information. */
2823 struct arm_plt_info plt;
ba93b8ac
DJ
2824
2825#define GOT_UNKNOWN 0
2826#define GOT_NORMAL 1
2827#define GOT_TLS_GD 2
2828#define GOT_TLS_IE 4
0855e32b
NS
2829#define GOT_TLS_GDESC 8
2830#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 2831 unsigned int tls_type : 8;
34e77a92 2832
b38cadfb
NC
2833 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2834 unsigned int is_iplt : 1;
34e77a92 2835
b38cadfb 2836 unsigned int unused : 23;
a4fd1a8e 2837
b38cadfb
NC
2838 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2839 starting at the end of the jump table. */
2840 bfd_vma tlsdesc_got;
0855e32b 2841
b38cadfb
NC
2842 /* The symbol marking the real symbol location for exported thumb
2843 symbols with Arm stubs. */
2844 struct elf_link_hash_entry *export_glue;
906e58ca 2845
b38cadfb 2846 /* A pointer to the most recently used stub hash entry against this
8029a119 2847 symbol. */
b38cadfb
NC
2848 struct elf32_arm_stub_hash_entry *stub_cache;
2849};
252b5132 2850
252b5132 2851/* Traverse an arm ELF linker hash table. */
252b5132
RH
2852#define elf32_arm_link_hash_traverse(table, func, info) \
2853 (elf_link_hash_traverse \
2854 (&(table)->root, \
b7693d02 2855 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2856 (info)))
2857
2858/* Get the ARM elf linker hash table from a link_info structure. */
2859#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
2860 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2861 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 2862
906e58ca
NC
2863#define arm_stub_hash_lookup(table, string, create, copy) \
2864 ((struct elf32_arm_stub_hash_entry *) \
2865 bfd_hash_lookup ((table), (string), (create), (copy)))
2866
21d799b5
NC
2867/* Array to keep track of which stub sections have been created, and
2868 information on stub grouping. */
2869struct map_stub
2870{
2871 /* This is the section to which stubs in the group will be
2872 attached. */
2873 asection *link_sec;
2874 /* The stub section. */
2875 asection *stub_sec;
2876};
2877
0855e32b
NS
2878#define elf32_arm_compute_jump_table_size(htab) \
2879 ((htab)->next_tls_desc_index * 4)
2880
9b485d32 2881/* ARM ELF linker hash table. */
252b5132 2882struct elf32_arm_link_hash_table
906e58ca
NC
2883{
2884 /* The main hash table. */
2885 struct elf_link_hash_table root;
252b5132 2886
906e58ca
NC
2887 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2888 bfd_size_type thumb_glue_size;
252b5132 2889
906e58ca
NC
2890 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2891 bfd_size_type arm_glue_size;
252b5132 2892
906e58ca
NC
2893 /* The size in bytes of section containing the ARMv4 BX veneers. */
2894 bfd_size_type bx_glue_size;
845b51d6 2895
906e58ca
NC
2896 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2897 veneer has been populated. */
2898 bfd_vma bx_glue_offset[15];
845b51d6 2899
906e58ca
NC
2900 /* The size in bytes of the section containing glue for VFP11 erratum
2901 veneers. */
2902 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2903
48229727
JB
2904 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2905 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2906 elf32_arm_write_section(). */
2907 struct a8_erratum_fix *a8_erratum_fixes;
2908 unsigned int num_a8_erratum_fixes;
2909
906e58ca
NC
2910 /* An arbitrary input BFD chosen to hold the glue sections. */
2911 bfd * bfd_of_glue_owner;
ba96a88f 2912
906e58ca
NC
2913 /* Nonzero to output a BE8 image. */
2914 int byteswap_code;
e489d0ae 2915
906e58ca
NC
2916 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2917 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2918 int target1_is_rel;
9c504268 2919
906e58ca
NC
2920 /* The relocation to use for R_ARM_TARGET2 relocations. */
2921 int target2_reloc;
eb043451 2922
906e58ca
NC
2923 /* 0 = Ignore R_ARM_V4BX.
2924 1 = Convert BX to MOV PC.
2925 2 = Generate v4 interworing stubs. */
2926 int fix_v4bx;
319850b4 2927
48229727
JB
2928 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2929 int fix_cortex_a8;
2930
2de70689
MGD
2931 /* Whether we should fix the ARM1176 BLX immediate issue. */
2932 int fix_arm1176;
2933
906e58ca
NC
2934 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2935 int use_blx;
33bfe774 2936
906e58ca
NC
2937 /* What sort of code sequences we should look for which may trigger the
2938 VFP11 denorm erratum. */
2939 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2940
906e58ca
NC
2941 /* Global counter for the number of fixes we have emitted. */
2942 int num_vfp11_fixes;
c7b8f16e 2943
906e58ca
NC
2944 /* Nonzero to force PIC branch veneers. */
2945 int pic_veneer;
27e55c4d 2946
906e58ca
NC
2947 /* The number of bytes in the initial entry in the PLT. */
2948 bfd_size_type plt_header_size;
e5a52504 2949
906e58ca
NC
2950 /* The number of bytes in the subsequent PLT etries. */
2951 bfd_size_type plt_entry_size;
e5a52504 2952
906e58ca
NC
2953 /* True if the target system is VxWorks. */
2954 int vxworks_p;
00a97672 2955
906e58ca
NC
2956 /* True if the target system is Symbian OS. */
2957 int symbian_p;
e5a52504 2958
b38cadfb
NC
2959 /* True if the target system is Native Client. */
2960 int nacl_p;
2961
906e58ca
NC
2962 /* True if the target uses REL relocations. */
2963 int use_rel;
4e7fd91e 2964
0855e32b
NS
2965 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2966 bfd_vma next_tls_desc_index;
2967
2968 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2969 bfd_vma num_tls_desc;
2970
906e58ca 2971 /* Short-cuts to get to dynamic linker sections. */
906e58ca
NC
2972 asection *sdynbss;
2973 asection *srelbss;
5e681ec4 2974
906e58ca
NC
2975 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2976 asection *srelplt2;
00a97672 2977
0855e32b
NS
2978 /* The offset into splt of the PLT entry for the TLS descriptor
2979 resolver. Special values are 0, if not necessary (or not found
2980 to be necessary yet), and -1 if needed but not determined
2981 yet. */
2982 bfd_vma dt_tlsdesc_plt;
2983
2984 /* The offset into sgot of the GOT entry used by the PLT entry
2985 above. */
b38cadfb 2986 bfd_vma dt_tlsdesc_got;
0855e32b
NS
2987
2988 /* Offset in .plt section of tls_arm_trampoline. */
2989 bfd_vma tls_trampoline;
2990
906e58ca
NC
2991 /* Data for R_ARM_TLS_LDM32 relocations. */
2992 union
2993 {
2994 bfd_signed_vma refcount;
2995 bfd_vma offset;
2996 } tls_ldm_got;
b7693d02 2997
87d72d41
AM
2998 /* Small local sym cache. */
2999 struct sym_cache sym_cache;
906e58ca
NC
3000
3001 /* For convenience in allocate_dynrelocs. */
3002 bfd * obfd;
3003
0855e32b
NS
3004 /* The amount of space used by the reserved portion of the sgotplt
3005 section, plus whatever space is used by the jump slots. */
3006 bfd_vma sgotplt_jump_table_size;
3007
906e58ca
NC
3008 /* The stub hash table. */
3009 struct bfd_hash_table stub_hash_table;
3010
3011 /* Linker stub bfd. */
3012 bfd *stub_bfd;
3013
3014 /* Linker call-backs. */
7a89b94e 3015 asection * (*add_stub_section) (const char *, asection *, unsigned int);
906e58ca
NC
3016 void (*layout_sections_again) (void);
3017
3018 /* Array to keep track of which stub sections have been created, and
3019 information on stub grouping. */
21d799b5 3020 struct map_stub *stub_group;
906e58ca 3021
fe33d2fa
CL
3022 /* Number of elements in stub_group. */
3023 int top_id;
3024
906e58ca
NC
3025 /* Assorted information used by elf32_arm_size_stubs. */
3026 unsigned int bfd_count;
3027 int top_index;
3028 asection **input_list;
3029};
252b5132 3030
780a67af
NC
3031/* Create an entry in an ARM ELF linker hash table. */
3032
3033static struct bfd_hash_entry *
57e8b36a 3034elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3035 struct bfd_hash_table * table,
3036 const char * string)
780a67af
NC
3037{
3038 struct elf32_arm_link_hash_entry * ret =
3039 (struct elf32_arm_link_hash_entry *) entry;
3040
3041 /* Allocate the structure if it has not already been allocated by a
3042 subclass. */
906e58ca 3043 if (ret == NULL)
21d799b5 3044 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3045 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3046 if (ret == NULL)
780a67af
NC
3047 return (struct bfd_hash_entry *) ret;
3048
3049 /* Call the allocation method of the superclass. */
3050 ret = ((struct elf32_arm_link_hash_entry *)
3051 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3052 table, string));
57e8b36a 3053 if (ret != NULL)
b7693d02 3054 {
0bdcacaf 3055 ret->dyn_relocs = NULL;
ba93b8ac 3056 ret->tls_type = GOT_UNKNOWN;
0855e32b 3057 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3058 ret->plt.thumb_refcount = 0;
3059 ret->plt.maybe_thumb_refcount = 0;
3060 ret->plt.noncall_refcount = 0;
3061 ret->plt.got_offset = -1;
3062 ret->is_iplt = FALSE;
a4fd1a8e 3063 ret->export_glue = NULL;
906e58ca
NC
3064
3065 ret->stub_cache = NULL;
b7693d02 3066 }
780a67af
NC
3067
3068 return (struct bfd_hash_entry *) ret;
3069}
3070
34e77a92
RS
3071/* Ensure that we have allocated bookkeeping structures for ABFD's local
3072 symbols. */
3073
3074static bfd_boolean
3075elf32_arm_allocate_local_sym_info (bfd *abfd)
3076{
3077 if (elf_local_got_refcounts (abfd) == NULL)
3078 {
3079 bfd_size_type num_syms;
3080 bfd_size_type size;
3081 char *data;
3082
3083 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3084 size = num_syms * (sizeof (bfd_signed_vma)
3085 + sizeof (struct arm_local_iplt_info *)
3086 + sizeof (bfd_vma)
3087 + sizeof (char));
3088 data = bfd_zalloc (abfd, size);
3089 if (data == NULL)
3090 return FALSE;
3091
3092 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3093 data += num_syms * sizeof (bfd_signed_vma);
3094
3095 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3096 data += num_syms * sizeof (struct arm_local_iplt_info *);
3097
3098 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3099 data += num_syms * sizeof (bfd_vma);
3100
3101 elf32_arm_local_got_tls_type (abfd) = data;
3102 }
3103 return TRUE;
3104}
3105
3106/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3107 to input bfd ABFD. Create the information if it doesn't already exist.
3108 Return null if an allocation fails. */
3109
3110static struct arm_local_iplt_info *
3111elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3112{
3113 struct arm_local_iplt_info **ptr;
3114
3115 if (!elf32_arm_allocate_local_sym_info (abfd))
3116 return NULL;
3117
3118 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3119 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3120 if (*ptr == NULL)
3121 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3122 return *ptr;
3123}
3124
3125/* Try to obtain PLT information for the symbol with index R_SYMNDX
3126 in ABFD's symbol table. If the symbol is global, H points to its
3127 hash table entry, otherwise H is null.
3128
3129 Return true if the symbol does have PLT information. When returning
3130 true, point *ROOT_PLT at the target-independent reference count/offset
3131 union and *ARM_PLT at the ARM-specific information. */
3132
3133static bfd_boolean
3134elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3135 unsigned long r_symndx, union gotplt_union **root_plt,
3136 struct arm_plt_info **arm_plt)
3137{
3138 struct arm_local_iplt_info *local_iplt;
3139
3140 if (h != NULL)
3141 {
3142 *root_plt = &h->root.plt;
3143 *arm_plt = &h->plt;
3144 return TRUE;
3145 }
3146
3147 if (elf32_arm_local_iplt (abfd) == NULL)
3148 return FALSE;
3149
3150 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3151 if (local_iplt == NULL)
3152 return FALSE;
3153
3154 *root_plt = &local_iplt->root;
3155 *arm_plt = &local_iplt->arm;
3156 return TRUE;
3157}
3158
3159/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3160 before it. */
3161
3162static bfd_boolean
3163elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3164 struct arm_plt_info *arm_plt)
3165{
3166 struct elf32_arm_link_hash_table *htab;
3167
3168 htab = elf32_arm_hash_table (info);
3169 return (arm_plt->thumb_refcount != 0
3170 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3171}
3172
3173/* Return a pointer to the head of the dynamic reloc list that should
3174 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3175 ABFD's symbol table. Return null if an error occurs. */
3176
3177static struct elf_dyn_relocs **
3178elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3179 Elf_Internal_Sym *isym)
3180{
3181 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3182 {
3183 struct arm_local_iplt_info *local_iplt;
3184
3185 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3186 if (local_iplt == NULL)
3187 return NULL;
3188 return &local_iplt->dyn_relocs;
3189 }
3190 else
3191 {
3192 /* Track dynamic relocs needed for local syms too.
3193 We really need local syms available to do this
3194 easily. Oh well. */
3195 asection *s;
3196 void *vpp;
3197
3198 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3199 if (s == NULL)
3200 abort ();
3201
3202 vpp = &elf_section_data (s)->local_dynrel;
3203 return (struct elf_dyn_relocs **) vpp;
3204 }
3205}
3206
906e58ca
NC
3207/* Initialize an entry in the stub hash table. */
3208
3209static struct bfd_hash_entry *
3210stub_hash_newfunc (struct bfd_hash_entry *entry,
3211 struct bfd_hash_table *table,
3212 const char *string)
3213{
3214 /* Allocate the structure if it has not already been allocated by a
3215 subclass. */
3216 if (entry == NULL)
3217 {
21d799b5 3218 entry = (struct bfd_hash_entry *)
99059e56 3219 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3220 if (entry == NULL)
3221 return entry;
3222 }
3223
3224 /* Call the allocation method of the superclass. */
3225 entry = bfd_hash_newfunc (entry, table, string);
3226 if (entry != NULL)
3227 {
3228 struct elf32_arm_stub_hash_entry *eh;
3229
3230 /* Initialize the local fields. */
3231 eh = (struct elf32_arm_stub_hash_entry *) entry;
3232 eh->stub_sec = NULL;
3233 eh->stub_offset = 0;
3234 eh->target_value = 0;
3235 eh->target_section = NULL;
cedfb179
DK
3236 eh->target_addend = 0;
3237 eh->orig_insn = 0;
906e58ca 3238 eh->stub_type = arm_stub_none;
461a49ca
DJ
3239 eh->stub_size = 0;
3240 eh->stub_template = NULL;
3241 eh->stub_template_size = 0;
906e58ca
NC
3242 eh->h = NULL;
3243 eh->id_sec = NULL;
d8d2f433 3244 eh->output_name = NULL;
906e58ca
NC
3245 }
3246
3247 return entry;
3248}
3249
00a97672 3250/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3251 shortcuts to them in our hash table. */
3252
3253static bfd_boolean
57e8b36a 3254create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3255{
3256 struct elf32_arm_link_hash_table *htab;
3257
e5a52504 3258 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3259 if (htab == NULL)
3260 return FALSE;
3261
e5a52504
MM
3262 /* BPABI objects never have a GOT, or associated sections. */
3263 if (htab->symbian_p)
3264 return TRUE;
3265
5e681ec4
PB
3266 if (! _bfd_elf_create_got_section (dynobj, info))
3267 return FALSE;
3268
5e681ec4
PB
3269 return TRUE;
3270}
3271
34e77a92
RS
3272/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3273
3274static bfd_boolean
3275create_ifunc_sections (struct bfd_link_info *info)
3276{
3277 struct elf32_arm_link_hash_table *htab;
3278 const struct elf_backend_data *bed;
3279 bfd *dynobj;
3280 asection *s;
3281 flagword flags;
b38cadfb 3282
34e77a92
RS
3283 htab = elf32_arm_hash_table (info);
3284 dynobj = htab->root.dynobj;
3285 bed = get_elf_backend_data (dynobj);
3286 flags = bed->dynamic_sec_flags;
3287
3288 if (htab->root.iplt == NULL)
3289 {
3d4d4302
AM
3290 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3291 flags | SEC_READONLY | SEC_CODE);
34e77a92 3292 if (s == NULL
a0f49396 3293 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
34e77a92
RS
3294 return FALSE;
3295 htab->root.iplt = s;
3296 }
3297
3298 if (htab->root.irelplt == NULL)
3299 {
3d4d4302
AM
3300 s = bfd_make_section_anyway_with_flags (dynobj,
3301 RELOC_SECTION (htab, ".iplt"),
3302 flags | SEC_READONLY);
34e77a92 3303 if (s == NULL
a0f49396 3304 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
34e77a92
RS
3305 return FALSE;
3306 htab->root.irelplt = s;
3307 }
3308
3309 if (htab->root.igotplt == NULL)
3310 {
3d4d4302 3311 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92
RS
3312 if (s == NULL
3313 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3314 return FALSE;
3315 htab->root.igotplt = s;
3316 }
3317 return TRUE;
3318}
3319
00a97672
RS
3320/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3321 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3322 hash table. */
3323
3324static bfd_boolean
57e8b36a 3325elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3326{
3327 struct elf32_arm_link_hash_table *htab;
3328
3329 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3330 if (htab == NULL)
3331 return FALSE;
3332
362d30a1 3333 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
3334 return FALSE;
3335
3336 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3337 return FALSE;
3338
3d4d4302 3339 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5e681ec4 3340 if (!info->shared)
3d4d4302
AM
3341 htab->srelbss = bfd_get_linker_section (dynobj,
3342 RELOC_SECTION (htab, ".bss"));
00a97672
RS
3343
3344 if (htab->vxworks_p)
3345 {
3346 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3347 return FALSE;
3348
3349 if (info->shared)
3350 {
3351 htab->plt_header_size = 0;
3352 htab->plt_entry_size
3353 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3354 }
3355 else
3356 {
3357 htab->plt_header_size
3358 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3359 htab->plt_entry_size
3360 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3361 }
3362 }
5e681ec4 3363
362d30a1
RS
3364 if (!htab->root.splt
3365 || !htab->root.srelplt
e5a52504 3366 || !htab->sdynbss
5e681ec4
PB
3367 || (!info->shared && !htab->srelbss))
3368 abort ();
3369
3370 return TRUE;
3371}
3372
906e58ca
NC
3373/* Copy the extra info we tack onto an elf_link_hash_entry. */
3374
3375static void
3376elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3377 struct elf_link_hash_entry *dir,
3378 struct elf_link_hash_entry *ind)
3379{
3380 struct elf32_arm_link_hash_entry *edir, *eind;
3381
3382 edir = (struct elf32_arm_link_hash_entry *) dir;
3383 eind = (struct elf32_arm_link_hash_entry *) ind;
3384
0bdcacaf 3385 if (eind->dyn_relocs != NULL)
906e58ca 3386 {
0bdcacaf 3387 if (edir->dyn_relocs != NULL)
906e58ca 3388 {
0bdcacaf
RS
3389 struct elf_dyn_relocs **pp;
3390 struct elf_dyn_relocs *p;
906e58ca
NC
3391
3392 /* Add reloc counts against the indirect sym to the direct sym
3393 list. Merge any entries against the same section. */
0bdcacaf 3394 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
906e58ca 3395 {
0bdcacaf 3396 struct elf_dyn_relocs *q;
906e58ca 3397
0bdcacaf
RS
3398 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3399 if (q->sec == p->sec)
906e58ca
NC
3400 {
3401 q->pc_count += p->pc_count;
3402 q->count += p->count;
3403 *pp = p->next;
3404 break;
3405 }
3406 if (q == NULL)
3407 pp = &p->next;
3408 }
0bdcacaf 3409 *pp = edir->dyn_relocs;
906e58ca
NC
3410 }
3411
0bdcacaf
RS
3412 edir->dyn_relocs = eind->dyn_relocs;
3413 eind->dyn_relocs = NULL;
906e58ca
NC
3414 }
3415
3416 if (ind->root.type == bfd_link_hash_indirect)
3417 {
3418 /* Copy over PLT info. */
34e77a92
RS
3419 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3420 eind->plt.thumb_refcount = 0;
3421 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3422 eind->plt.maybe_thumb_refcount = 0;
3423 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3424 eind->plt.noncall_refcount = 0;
3425
3426 /* We should only allocate a function to .iplt once the final
3427 symbol information is known. */
3428 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
3429
3430 if (dir->got.refcount <= 0)
3431 {
3432 edir->tls_type = eind->tls_type;
3433 eind->tls_type = GOT_UNKNOWN;
3434 }
3435 }
3436
3437 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3438}
3439
3440/* Create an ARM elf linker hash table. */
3441
3442static struct bfd_link_hash_table *
3443elf32_arm_link_hash_table_create (bfd *abfd)
3444{
3445 struct elf32_arm_link_hash_table *ret;
3446 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3447
7bf52ea2 3448 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
3449 if (ret == NULL)
3450 return NULL;
3451
3452 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3453 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
3454 sizeof (struct elf32_arm_link_hash_entry),
3455 ARM_ELF_DATA))
906e58ca
NC
3456 {
3457 free (ret);
3458 return NULL;
3459 }
3460
906e58ca 3461 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
906e58ca
NC
3462#ifdef FOUR_WORD_PLT
3463 ret->plt_header_size = 16;
3464 ret->plt_entry_size = 16;
3465#else
3466 ret->plt_header_size = 20;
3467 ret->plt_entry_size = 12;
3468#endif
906e58ca 3469 ret->use_rel = 1;
906e58ca 3470 ret->obfd = abfd;
906e58ca
NC
3471
3472 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3473 sizeof (struct elf32_arm_stub_hash_entry)))
3474 {
3475 free (ret);
3476 return NULL;
3477 }
3478
3479 return &ret->root.root;
3480}
3481
3482/* Free the derived linker hash table. */
3483
3484static void
3485elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3486{
3487 struct elf32_arm_link_hash_table *ret
3488 = (struct elf32_arm_link_hash_table *) hash;
3489
3490 bfd_hash_table_free (&ret->stub_hash_table);
9f7c3e5e 3491 _bfd_elf_link_hash_table_free (hash);
906e58ca
NC
3492}
3493
3494/* Determine if we're dealing with a Thumb only architecture. */
3495
3496static bfd_boolean
3497using_thumb_only (struct elf32_arm_link_hash_table *globals)
3498{
3499 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3500 Tag_CPU_arch);
3501 int profile;
3502
41ed1ee7
DJ
3503 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3504 return TRUE;
3505
9e3c6df6 3506 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
906e58ca
NC
3507 return FALSE;
3508
3509 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3510 Tag_CPU_arch_profile);
3511
3512 return profile == 'M';
3513}
3514
3515/* Determine if we're dealing with a Thumb-2 object. */
3516
3517static bfd_boolean
3518using_thumb2 (struct elf32_arm_link_hash_table *globals)
3519{
3520 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3521 Tag_CPU_arch);
3522 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3523}
3524
cd1dac3d
DG
3525/* Determine what kind of NOPs are available. */
3526
3527static bfd_boolean
3528arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3529{
3530 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3531 Tag_CPU_arch);
3532 return arch == TAG_CPU_ARCH_V6T2
3533 || arch == TAG_CPU_ARCH_V6K
9e3c6df6
PB
3534 || arch == TAG_CPU_ARCH_V7
3535 || arch == TAG_CPU_ARCH_V7E_M;
cd1dac3d
DG
3536}
3537
3538static bfd_boolean
3539arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3540{
3541 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3542 Tag_CPU_arch);
9e3c6df6
PB
3543 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3544 || arch == TAG_CPU_ARCH_V7E_M);
cd1dac3d
DG
3545}
3546
f4ac8484
DJ
3547static bfd_boolean
3548arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3549{
3550 switch (stub_type)
3551 {
fea2b4d6
CL
3552 case arm_stub_long_branch_thumb_only:
3553 case arm_stub_long_branch_v4t_thumb_arm:
3554 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 3555 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 3556 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 3557 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
3558 return TRUE;
3559 case arm_stub_none:
3560 BFD_FAIL ();
3561 return FALSE;
3562 break;
3563 default:
3564 return FALSE;
3565 }
3566}
3567
906e58ca
NC
3568/* Determine the type of stub needed, if any, for a call. */
3569
3570static enum elf32_arm_stub_type
3571arm_type_of_stub (struct bfd_link_info *info,
3572 asection *input_sec,
3573 const Elf_Internal_Rela *rel,
34e77a92 3574 unsigned char st_type,
35fc36a8 3575 enum arm_st_branch_type *actual_branch_type,
906e58ca 3576 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3577 bfd_vma destination,
3578 asection *sym_sec,
3579 bfd *input_bfd,
3580 const char *name)
906e58ca
NC
3581{
3582 bfd_vma location;
3583 bfd_signed_vma branch_offset;
3584 unsigned int r_type;
3585 struct elf32_arm_link_hash_table * globals;
3586 int thumb2;
3587 int thumb_only;
3588 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3589 int use_plt = 0;
35fc36a8 3590 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
3591 union gotplt_union *root_plt;
3592 struct arm_plt_info *arm_plt;
906e58ca 3593
35fc36a8 3594 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
3595 return stub_type;
3596
906e58ca 3597 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3598 if (globals == NULL)
3599 return stub_type;
906e58ca
NC
3600
3601 thumb_only = using_thumb_only (globals);
3602
3603 thumb2 = using_thumb2 (globals);
3604
3605 /* Determine where the call point is. */
3606 location = (input_sec->output_offset
3607 + input_sec->output_section->vma
3608 + rel->r_offset);
3609
906e58ca
NC
3610 r_type = ELF32_R_TYPE (rel->r_info);
3611
39f21624
NC
3612 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3613 are considering a function call relocation. */
3614 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3615 && branch_type == ST_BRANCH_TO_ARM)
3616 branch_type = ST_BRANCH_TO_THUMB;
3617
34e77a92
RS
3618 /* For TLS call relocs, it is the caller's responsibility to provide
3619 the address of the appropriate trampoline. */
3620 if (r_type != R_ARM_TLS_CALL
3621 && r_type != R_ARM_THM_TLS_CALL
3622 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3623 &root_plt, &arm_plt)
3624 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 3625 {
34e77a92 3626 asection *splt;
fe33d2fa 3627
34e77a92
RS
3628 if (hash == NULL || hash->is_iplt)
3629 splt = globals->root.iplt;
3630 else
3631 splt = globals->root.splt;
3632 if (splt != NULL)
b38cadfb 3633 {
34e77a92
RS
3634 use_plt = 1;
3635
3636 /* Note when dealing with PLT entries: the main PLT stub is in
3637 ARM mode, so if the branch is in Thumb mode, another
3638 Thumb->ARM stub will be inserted later just before the ARM
3639 PLT stub. We don't take this extra distance into account
3640 here, because if a long branch stub is needed, we'll add a
3641 Thumb->Arm one and branch directly to the ARM PLT entry
3642 because it avoids spreading offset corrections in several
3643 places. */
3644
3645 destination = (splt->output_section->vma
3646 + splt->output_offset
3647 + root_plt->offset);
3648 st_type = STT_FUNC;
3649 branch_type = ST_BRANCH_TO_ARM;
3650 }
5fa9e92f 3651 }
34e77a92
RS
3652 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3653 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 3654
fe33d2fa
CL
3655 branch_offset = (bfd_signed_vma)(destination - location);
3656
0855e32b
NS
3657 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3658 || r_type == R_ARM_THM_TLS_CALL)
906e58ca 3659 {
5fa9e92f
CL
3660 /* Handle cases where:
3661 - this call goes too far (different Thumb/Thumb2 max
99059e56 3662 distance)
155d87d7 3663 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
3664 Thumb->Arm branch (not bl). A stub is needed in this case,
3665 but only if this call is not through a PLT entry. Indeed,
3666 PLT stubs handle mode switching already.
5fa9e92f 3667 */
906e58ca
NC
3668 if ((!thumb2
3669 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3670 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3671 || (thumb2
3672 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3673 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
35fc36a8 3674 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
3675 && (((r_type == R_ARM_THM_CALL
3676 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
155d87d7 3677 || (r_type == R_ARM_THM_JUMP24))
5fa9e92f 3678 && !use_plt))
906e58ca 3679 {
35fc36a8 3680 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
3681 {
3682 /* Thumb to thumb. */
3683 if (!thumb_only)
3684 {
3685 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3686 /* PIC stubs. */
155d87d7 3687 ? ((globals->use_blx
9553db3c 3688 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
3689 /* V5T and above. Stub starts with ARM code, so
3690 we must be able to switch mode before
3691 reaching it, which is only possible for 'bl'
3692 (ie R_ARM_THM_CALL relocation). */
cf3eccff 3693 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 3694 /* On V4T, use Thumb code only. */
d3626fb0 3695 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
3696
3697 /* non-PIC stubs. */
155d87d7 3698 : ((globals->use_blx
9553db3c 3699 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
3700 /* V5T and above. */
3701 ? arm_stub_long_branch_any_any
3702 /* V4T. */
d3626fb0 3703 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
3704 }
3705 else
3706 {
3707 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
3708 /* PIC stub. */
3709 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
3710 /* non-PIC stub. */
3711 : arm_stub_long_branch_thumb_only;
906e58ca
NC
3712 }
3713 }
3714 else
3715 {
3716 /* Thumb to arm. */
c820be07
NC
3717 if (sym_sec != NULL
3718 && sym_sec->owner != NULL
3719 && !INTERWORK_FLAG (sym_sec->owner))
3720 {
3721 (*_bfd_error_handler)
3722 (_("%B(%s): warning: interworking not enabled.\n"
3723 " first occurrence: %B: Thumb call to ARM"),
3724 sym_sec->owner, input_bfd, name);
3725 }
3726
0855e32b
NS
3727 stub_type =
3728 (info->shared | globals->pic_veneer)
c2b4a39d 3729 /* PIC stubs. */
0855e32b
NS
3730 ? (r_type == R_ARM_THM_TLS_CALL
3731 /* TLS PIC stubs */
3732 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3733 : arm_stub_long_branch_v4t_thumb_tls_pic)
3734 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3735 /* V5T PIC and above. */
3736 ? arm_stub_long_branch_any_arm_pic
3737 /* V4T PIC stub. */
3738 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
3739
3740 /* non-PIC stubs. */
0855e32b 3741 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
3742 /* V5T and above. */
3743 ? arm_stub_long_branch_any_any
3744 /* V4T. */
3745 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
3746
3747 /* Handle v4t short branches. */
fea2b4d6 3748 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
3749 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3750 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 3751 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
3752 }
3753 }
3754 }
fe33d2fa
CL
3755 else if (r_type == R_ARM_CALL
3756 || r_type == R_ARM_JUMP24
0855e32b
NS
3757 || r_type == R_ARM_PLT32
3758 || r_type == R_ARM_TLS_CALL)
906e58ca 3759 {
35fc36a8 3760 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
3761 {
3762 /* Arm to thumb. */
c820be07
NC
3763
3764 if (sym_sec != NULL
3765 && sym_sec->owner != NULL
3766 && !INTERWORK_FLAG (sym_sec->owner))
3767 {
3768 (*_bfd_error_handler)
3769 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 3770 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
3771 sym_sec->owner, input_bfd, name);
3772 }
3773
3774 /* We have an extra 2-bytes reach because of
3775 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
3776 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3777 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 3778 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
3779 || (r_type == R_ARM_JUMP24)
3780 || (r_type == R_ARM_PLT32))
906e58ca
NC
3781 {
3782 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3783 /* PIC stubs. */
ebe24dd4
CL
3784 ? ((globals->use_blx)
3785 /* V5T and above. */
3786 ? arm_stub_long_branch_any_thumb_pic
3787 /* V4T stub. */
3788 : arm_stub_long_branch_v4t_arm_thumb_pic)
3789
c2b4a39d
CL
3790 /* non-PIC stubs. */
3791 : ((globals->use_blx)
3792 /* V5T and above. */
3793 ? arm_stub_long_branch_any_any
3794 /* V4T. */
3795 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3796 }
3797 }
3798 else
3799 {
3800 /* Arm to arm. */
3801 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3802 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3803 {
0855e32b
NS
3804 stub_type =
3805 (info->shared | globals->pic_veneer)
c2b4a39d 3806 /* PIC stubs. */
0855e32b
NS
3807 ? (r_type == R_ARM_TLS_CALL
3808 /* TLS PIC Stub */
3809 ? arm_stub_long_branch_any_tls_pic
7a89b94e
NC
3810 : (globals->nacl_p
3811 ? arm_stub_long_branch_arm_nacl_pic
3812 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 3813 /* non-PIC stubs. */
7a89b94e
NC
3814 : (globals->nacl_p
3815 ? arm_stub_long_branch_arm_nacl
3816 : arm_stub_long_branch_any_any);
906e58ca
NC
3817 }
3818 }
3819 }
3820
fe33d2fa
CL
3821 /* If a stub is needed, record the actual destination type. */
3822 if (stub_type != arm_stub_none)
35fc36a8 3823 *actual_branch_type = branch_type;
fe33d2fa 3824
906e58ca
NC
3825 return stub_type;
3826}
3827
3828/* Build a name for an entry in the stub hash table. */
3829
3830static char *
3831elf32_arm_stub_name (const asection *input_section,
3832 const asection *sym_sec,
3833 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
3834 const Elf_Internal_Rela *rel,
3835 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3836{
3837 char *stub_name;
3838 bfd_size_type len;
3839
3840 if (hash)
3841 {
fe33d2fa 3842 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 3843 stub_name = (char *) bfd_malloc (len);
906e58ca 3844 if (stub_name != NULL)
fe33d2fa 3845 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
3846 input_section->id & 0xffffffff,
3847 hash->root.root.root.string,
fe33d2fa
CL
3848 (int) rel->r_addend & 0xffffffff,
3849 (int) stub_type);
906e58ca
NC
3850 }
3851 else
3852 {
fe33d2fa 3853 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 3854 stub_name = (char *) bfd_malloc (len);
906e58ca 3855 if (stub_name != NULL)
fe33d2fa 3856 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
3857 input_section->id & 0xffffffff,
3858 sym_sec->id & 0xffffffff,
0855e32b
NS
3859 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3860 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3861 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
3862 (int) rel->r_addend & 0xffffffff,
3863 (int) stub_type);
906e58ca
NC
3864 }
3865
3866 return stub_name;
3867}
3868
3869/* Look up an entry in the stub hash. Stub entries are cached because
3870 creating the stub name takes a bit of time. */
3871
3872static struct elf32_arm_stub_hash_entry *
3873elf32_arm_get_stub_entry (const asection *input_section,
3874 const asection *sym_sec,
3875 struct elf_link_hash_entry *hash,
3876 const Elf_Internal_Rela *rel,
fe33d2fa
CL
3877 struct elf32_arm_link_hash_table *htab,
3878 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3879{
3880 struct elf32_arm_stub_hash_entry *stub_entry;
3881 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3882 const asection *id_sec;
3883
3884 if ((input_section->flags & SEC_CODE) == 0)
3885 return NULL;
3886
3887 /* If this input section is part of a group of sections sharing one
3888 stub section, then use the id of the first section in the group.
3889 Stub names need to include a section id, as there may well be
3890 more than one stub used to reach say, printf, and we need to
3891 distinguish between them. */
3892 id_sec = htab->stub_group[input_section->id].link_sec;
3893
3894 if (h != NULL && h->stub_cache != NULL
3895 && h->stub_cache->h == h
fe33d2fa
CL
3896 && h->stub_cache->id_sec == id_sec
3897 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
3898 {
3899 stub_entry = h->stub_cache;
3900 }
3901 else
3902 {
3903 char *stub_name;
3904
fe33d2fa 3905 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
3906 if (stub_name == NULL)
3907 return NULL;
3908
3909 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3910 stub_name, FALSE, FALSE);
3911 if (h != NULL)
3912 h->stub_cache = stub_entry;
3913
3914 free (stub_name);
3915 }
3916
3917 return stub_entry;
3918}
3919
48229727 3920/* Find or create a stub section. Returns a pointer to the stub section, and
b38cadfb 3921 the section to which the stub section will be attached (in *LINK_SEC_P).
48229727 3922 LINK_SEC_P may be NULL. */
906e58ca 3923
48229727
JB
3924static asection *
3925elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3926 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3927{
3928 asection *link_sec;
3929 asection *stub_sec;
906e58ca
NC
3930
3931 link_sec = htab->stub_group[section->id].link_sec;
9553db3c 3932 BFD_ASSERT (link_sec != NULL);
906e58ca 3933 stub_sec = htab->stub_group[section->id].stub_sec;
9553db3c 3934
906e58ca
NC
3935 if (stub_sec == NULL)
3936 {
3937 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3938 if (stub_sec == NULL)
3939 {
3940 size_t namelen;
3941 bfd_size_type len;
3942 char *s_name;
3943
3944 namelen = strlen (link_sec->name);
3945 len = namelen + sizeof (STUB_SUFFIX);
21d799b5 3946 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
906e58ca
NC
3947 if (s_name == NULL)
3948 return NULL;
3949
3950 memcpy (s_name, link_sec->name, namelen);
3951 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
7a89b94e
NC
3952 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
3953 htab->nacl_p ? 4 : 3);
906e58ca
NC
3954 if (stub_sec == NULL)
3955 return NULL;
3956 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3957 }
3958 htab->stub_group[section->id].stub_sec = stub_sec;
3959 }
b38cadfb 3960
48229727
JB
3961 if (link_sec_p)
3962 *link_sec_p = link_sec;
b38cadfb 3963
48229727
JB
3964 return stub_sec;
3965}
3966
3967/* Add a new stub entry to the stub hash. Not all fields of the new
3968 stub entry are initialised. */
3969
3970static struct elf32_arm_stub_hash_entry *
3971elf32_arm_add_stub (const char *stub_name,
3972 asection *section,
3973 struct elf32_arm_link_hash_table *htab)
3974{
3975 asection *link_sec;
3976 asection *stub_sec;
3977 struct elf32_arm_stub_hash_entry *stub_entry;
3978
3979 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3980 if (stub_sec == NULL)
3981 return NULL;
906e58ca
NC
3982
3983 /* Enter this entry into the linker stub hash table. */
3984 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3985 TRUE, FALSE);
3986 if (stub_entry == NULL)
3987 {
3988 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3989 section->owner,
3990 stub_name);
3991 return NULL;
3992 }
3993
3994 stub_entry->stub_sec = stub_sec;
3995 stub_entry->stub_offset = 0;
3996 stub_entry->id_sec = link_sec;
3997
906e58ca
NC
3998 return stub_entry;
3999}
4000
4001/* Store an Arm insn into an output section not processed by
4002 elf32_arm_write_section. */
4003
4004static void
8029a119
NC
4005put_arm_insn (struct elf32_arm_link_hash_table * htab,
4006 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4007{
4008 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4009 bfd_putl32 (val, ptr);
4010 else
4011 bfd_putb32 (val, ptr);
4012}
4013
4014/* Store a 16-bit Thumb insn into an output section not processed by
4015 elf32_arm_write_section. */
4016
4017static void
8029a119
NC
4018put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4019 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4020{
4021 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4022 bfd_putl16 (val, ptr);
4023 else
4024 bfd_putb16 (val, ptr);
4025}
4026
0855e32b
NS
4027/* If it's possible to change R_TYPE to a more efficient access
4028 model, return the new reloc type. */
4029
4030static unsigned
b38cadfb 4031elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4032 struct elf_link_hash_entry *h)
4033{
4034 int is_local = (h == NULL);
4035
4036 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
4037 return r_type;
4038
b38cadfb 4039 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4040 switch (r_type)
4041 {
4042 case R_ARM_TLS_GOTDESC:
4043 case R_ARM_TLS_CALL:
4044 case R_ARM_THM_TLS_CALL:
4045 case R_ARM_TLS_DESCSEQ:
4046 case R_ARM_THM_TLS_DESCSEQ:
4047 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4048 }
4049
4050 return r_type;
4051}
4052
48229727
JB
4053static bfd_reloc_status_type elf32_arm_final_link_relocate
4054 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4055 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92
RS
4056 const char *, unsigned char, enum arm_st_branch_type,
4057 struct elf_link_hash_entry *, bfd_boolean *, char **);
48229727 4058
4563a860
JB
4059static unsigned int
4060arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4061{
4062 switch (stub_type)
4063 {
4064 case arm_stub_a8_veneer_b_cond:
4065 case arm_stub_a8_veneer_b:
4066 case arm_stub_a8_veneer_bl:
4067 return 2;
4068
4069 case arm_stub_long_branch_any_any:
4070 case arm_stub_long_branch_v4t_arm_thumb:
4071 case arm_stub_long_branch_thumb_only:
4072 case arm_stub_long_branch_v4t_thumb_thumb:
4073 case arm_stub_long_branch_v4t_thumb_arm:
4074 case arm_stub_short_branch_v4t_thumb_arm:
4075 case arm_stub_long_branch_any_arm_pic:
4076 case arm_stub_long_branch_any_thumb_pic:
4077 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4078 case arm_stub_long_branch_v4t_arm_thumb_pic:
4079 case arm_stub_long_branch_v4t_thumb_arm_pic:
4080 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4081 case arm_stub_long_branch_any_tls_pic:
4082 case arm_stub_long_branch_v4t_thumb_tls_pic:
4563a860
JB
4083 case arm_stub_a8_veneer_blx:
4084 return 4;
b38cadfb 4085
7a89b94e
NC
4086 case arm_stub_long_branch_arm_nacl:
4087 case arm_stub_long_branch_arm_nacl_pic:
4088 return 16;
4089
4563a860
JB
4090 default:
4091 abort (); /* Should be unreachable. */
4092 }
4093}
4094
906e58ca
NC
4095static bfd_boolean
4096arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4097 void * in_arg)
4098{
7a89b94e 4099#define MAXRELOCS 3
906e58ca 4100 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 4101 struct elf32_arm_link_hash_table *globals;
906e58ca 4102 struct bfd_link_info *info;
906e58ca
NC
4103 asection *stub_sec;
4104 bfd *stub_bfd;
906e58ca
NC
4105 bfd_byte *loc;
4106 bfd_vma sym_value;
4107 int template_size;
4108 int size;
d3ce72d0 4109 const insn_sequence *template_sequence;
906e58ca 4110 int i;
48229727
JB
4111 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4112 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4113 int nrelocs = 0;
906e58ca
NC
4114
4115 /* Massage our args to the form they really have. */
4116 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4117 info = (struct bfd_link_info *) in_arg;
4118
4119 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4120 if (globals == NULL)
4121 return FALSE;
906e58ca 4122
906e58ca
NC
4123 stub_sec = stub_entry->stub_sec;
4124
4dfe6ac6 4125 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
4126 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4127 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 4128 return TRUE;
fe33d2fa 4129
906e58ca
NC
4130 /* Make a note of the offset within the stubs for this entry. */
4131 stub_entry->stub_offset = stub_sec->size;
4132 loc = stub_sec->contents + stub_entry->stub_offset;
4133
4134 stub_bfd = stub_sec->owner;
4135
906e58ca
NC
4136 /* This is the address of the stub destination. */
4137 sym_value = (stub_entry->target_value
4138 + stub_entry->target_section->output_offset
4139 + stub_entry->target_section->output_section->vma);
4140
d3ce72d0 4141 template_sequence = stub_entry->stub_template;
461a49ca 4142 template_size = stub_entry->stub_template_size;
906e58ca
NC
4143
4144 size = 0;
461a49ca 4145 for (i = 0; i < template_size; i++)
906e58ca 4146 {
d3ce72d0 4147 switch (template_sequence[i].type)
461a49ca
DJ
4148 {
4149 case THUMB16_TYPE:
48229727 4150 {
d3ce72d0
NC
4151 bfd_vma data = (bfd_vma) template_sequence[i].data;
4152 if (template_sequence[i].reloc_addend != 0)
48229727 4153 {
99059e56
RM
4154 /* We've borrowed the reloc_addend field to mean we should
4155 insert a condition code into this (Thumb-1 branch)
4156 instruction. See THUMB16_BCOND_INSN. */
4157 BFD_ASSERT ((data & 0xff00) == 0xd000);
4158 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 4159 }
fe33d2fa 4160 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
4161 size += 2;
4162 }
461a49ca 4163 break;
906e58ca 4164
48229727 4165 case THUMB32_TYPE:
fe33d2fa
CL
4166 bfd_put_16 (stub_bfd,
4167 (template_sequence[i].data >> 16) & 0xffff,
4168 loc + size);
4169 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4170 loc + size + 2);
99059e56
RM
4171 if (template_sequence[i].r_type != R_ARM_NONE)
4172 {
4173 stub_reloc_idx[nrelocs] = i;
4174 stub_reloc_offset[nrelocs++] = size;
4175 }
4176 size += 4;
4177 break;
48229727 4178
461a49ca 4179 case ARM_TYPE:
fe33d2fa
CL
4180 bfd_put_32 (stub_bfd, template_sequence[i].data,
4181 loc + size);
461a49ca
DJ
4182 /* Handle cases where the target is encoded within the
4183 instruction. */
d3ce72d0 4184 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 4185 {
48229727
JB
4186 stub_reloc_idx[nrelocs] = i;
4187 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4188 }
4189 size += 4;
4190 break;
4191
4192 case DATA_TYPE:
d3ce72d0 4193 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
4194 stub_reloc_idx[nrelocs] = i;
4195 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4196 size += 4;
4197 break;
4198
4199 default:
4200 BFD_FAIL ();
4201 return FALSE;
4202 }
906e58ca 4203 }
461a49ca 4204
906e58ca
NC
4205 stub_sec->size += size;
4206
461a49ca
DJ
4207 /* Stub size has already been computed in arm_size_one_stub. Check
4208 consistency. */
4209 BFD_ASSERT (size == stub_entry->stub_size);
4210
906e58ca 4211 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 4212 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4213 sym_value |= 1;
4214
48229727
JB
4215 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4216 in each stub. */
4217 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
c820be07 4218
48229727 4219 for (i = 0; i < nrelocs; i++)
d3ce72d0
NC
4220 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4221 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4222 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4223 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
48229727
JB
4224 {
4225 Elf_Internal_Rela rel;
4226 bfd_boolean unresolved_reloc;
4227 char *error_message;
35fc36a8
RS
4228 enum arm_st_branch_type branch_type
4229 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4230 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
48229727
JB
4231 bfd_vma points_to = sym_value + stub_entry->target_addend;
4232
4233 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
d3ce72d0 4234 rel.r_info = ELF32_R_INFO (0,
99059e56 4235 template_sequence[stub_reloc_idx[i]].r_type);
d3ce72d0 4236 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
48229727
JB
4237
4238 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4239 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4240 template should refer back to the instruction after the original
4241 branch. */
4242 points_to = sym_value;
4243
33c6a8fc
JB
4244 /* There may be unintended consequences if this is not true. */
4245 BFD_ASSERT (stub_entry->h == NULL);
4246
48229727
JB
4247 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4248 properly. We should probably use this function unconditionally,
4249 rather than only for certain relocations listed in the enclosing
4250 conditional, for the sake of consistency. */
4251 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 4252 (template_sequence[stub_reloc_idx[i]].r_type),
48229727 4253 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
34e77a92
RS
4254 points_to, info, stub_entry->target_section, "", STT_FUNC,
4255 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4256 &unresolved_reloc, &error_message);
48229727
JB
4257 }
4258 else
4259 {
fe33d2fa
CL
4260 Elf_Internal_Rela rel;
4261 bfd_boolean unresolved_reloc;
4262 char *error_message;
4263 bfd_vma points_to = sym_value + stub_entry->target_addend
4264 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4265
4266 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4267 rel.r_info = ELF32_R_INFO (0,
99059e56 4268 template_sequence[stub_reloc_idx[i]].r_type);
fe33d2fa
CL
4269 rel.r_addend = 0;
4270
4271 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4272 (template_sequence[stub_reloc_idx[i]].r_type),
4273 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
34e77a92 4274 points_to, info, stub_entry->target_section, "", STT_FUNC,
35fc36a8 4275 stub_entry->branch_type,
fe33d2fa
CL
4276 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4277 &error_message);
48229727 4278 }
906e58ca
NC
4279
4280 return TRUE;
48229727 4281#undef MAXRELOCS
906e58ca
NC
4282}
4283
48229727
JB
4284/* Calculate the template, template size and instruction size for a stub.
4285 Return value is the instruction size. */
906e58ca 4286
48229727
JB
4287static unsigned int
4288find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4289 const insn_sequence **stub_template,
4290 int *stub_template_size)
906e58ca 4291{
d3ce72d0 4292 const insn_sequence *template_sequence = NULL;
48229727
JB
4293 int template_size = 0, i;
4294 unsigned int size;
906e58ca 4295
d3ce72d0 4296 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
4297 if (stub_template)
4298 *stub_template = template_sequence;
4299
48229727 4300 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
4301 if (stub_template_size)
4302 *stub_template_size = template_size;
906e58ca
NC
4303
4304 size = 0;
461a49ca
DJ
4305 for (i = 0; i < template_size; i++)
4306 {
d3ce72d0 4307 switch (template_sequence[i].type)
461a49ca
DJ
4308 {
4309 case THUMB16_TYPE:
4310 size += 2;
4311 break;
4312
4313 case ARM_TYPE:
48229727 4314 case THUMB32_TYPE:
461a49ca
DJ
4315 case DATA_TYPE:
4316 size += 4;
4317 break;
4318
4319 default:
4320 BFD_FAIL ();
2a229407 4321 return 0;
461a49ca
DJ
4322 }
4323 }
4324
48229727
JB
4325 return size;
4326}
4327
4328/* As above, but don't actually build the stub. Just bump offset so
4329 we know stub section sizes. */
4330
4331static bfd_boolean
4332arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 4333 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
4334{
4335 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 4336 const insn_sequence *template_sequence;
48229727
JB
4337 int template_size, size;
4338
4339 /* Massage our args to the form they really have. */
4340 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
4341
4342 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4343 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4344
d3ce72d0 4345 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
4346 &template_size);
4347
461a49ca 4348 stub_entry->stub_size = size;
d3ce72d0 4349 stub_entry->stub_template = template_sequence;
461a49ca
DJ
4350 stub_entry->stub_template_size = template_size;
4351
906e58ca
NC
4352 size = (size + 7) & ~7;
4353 stub_entry->stub_sec->size += size;
461a49ca 4354
906e58ca
NC
4355 return TRUE;
4356}
4357
4358/* External entry points for sizing and building linker stubs. */
4359
4360/* Set up various things so that we can make a list of input sections
4361 for each output section included in the link. Returns -1 on error,
4362 0 when no stubs will be needed, and 1 on success. */
4363
4364int
4365elf32_arm_setup_section_lists (bfd *output_bfd,
4366 struct bfd_link_info *info)
4367{
4368 bfd *input_bfd;
4369 unsigned int bfd_count;
4370 int top_id, top_index;
4371 asection *section;
4372 asection **input_list, **list;
4373 bfd_size_type amt;
4374 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4375
4dfe6ac6
NC
4376 if (htab == NULL)
4377 return 0;
906e58ca
NC
4378 if (! is_elf_hash_table (htab))
4379 return 0;
4380
4381 /* Count the number of input BFDs and find the top input section id. */
4382 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4383 input_bfd != NULL;
4384 input_bfd = input_bfd->link_next)
4385 {
4386 bfd_count += 1;
4387 for (section = input_bfd->sections;
4388 section != NULL;
4389 section = section->next)
4390 {
4391 if (top_id < section->id)
4392 top_id = section->id;
4393 }
4394 }
4395 htab->bfd_count = bfd_count;
4396
4397 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 4398 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
4399 if (htab->stub_group == NULL)
4400 return -1;
fe33d2fa 4401 htab->top_id = top_id;
906e58ca
NC
4402
4403 /* We can't use output_bfd->section_count here to find the top output
4404 section index as some sections may have been removed, and
4405 _bfd_strip_section_from_output doesn't renumber the indices. */
4406 for (section = output_bfd->sections, top_index = 0;
4407 section != NULL;
4408 section = section->next)
4409 {
4410 if (top_index < section->index)
4411 top_index = section->index;
4412 }
4413
4414 htab->top_index = top_index;
4415 amt = sizeof (asection *) * (top_index + 1);
21d799b5 4416 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
4417 htab->input_list = input_list;
4418 if (input_list == NULL)
4419 return -1;
4420
4421 /* For sections we aren't interested in, mark their entries with a
4422 value we can check later. */
4423 list = input_list + top_index;
4424 do
4425 *list = bfd_abs_section_ptr;
4426 while (list-- != input_list);
4427
4428 for (section = output_bfd->sections;
4429 section != NULL;
4430 section = section->next)
4431 {
4432 if ((section->flags & SEC_CODE) != 0)
4433 input_list[section->index] = NULL;
4434 }
4435
4436 return 1;
4437}
4438
4439/* The linker repeatedly calls this function for each input section,
4440 in the order that input sections are linked into output sections.
4441 Build lists of input sections to determine groupings between which
4442 we may insert linker stubs. */
4443
4444void
4445elf32_arm_next_input_section (struct bfd_link_info *info,
4446 asection *isec)
4447{
4448 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4449
4dfe6ac6
NC
4450 if (htab == NULL)
4451 return;
4452
906e58ca
NC
4453 if (isec->output_section->index <= htab->top_index)
4454 {
4455 asection **list = htab->input_list + isec->output_section->index;
4456
a7470592 4457 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
4458 {
4459 /* Steal the link_sec pointer for our list. */
4460#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4461 /* This happens to make the list in reverse order,
07d72278 4462 which we reverse later. */
906e58ca
NC
4463 PREV_SEC (isec) = *list;
4464 *list = isec;
4465 }
4466 }
4467}
4468
4469/* See whether we can group stub sections together. Grouping stub
4470 sections may result in fewer stubs. More importantly, we need to
07d72278 4471 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
4472 .fini output sections respectively, because glibc splits the
4473 _init and _fini functions into multiple parts. Putting a stub in
4474 the middle of a function is not a good idea. */
4475
4476static void
4477group_sections (struct elf32_arm_link_hash_table *htab,
4478 bfd_size_type stub_group_size,
07d72278 4479 bfd_boolean stubs_always_after_branch)
906e58ca 4480{
07d72278 4481 asection **list = htab->input_list;
906e58ca
NC
4482
4483 do
4484 {
4485 asection *tail = *list;
07d72278 4486 asection *head;
906e58ca
NC
4487
4488 if (tail == bfd_abs_section_ptr)
4489 continue;
4490
07d72278
DJ
4491 /* Reverse the list: we must avoid placing stubs at the
4492 beginning of the section because the beginning of the text
4493 section may be required for an interrupt vector in bare metal
4494 code. */
4495#define NEXT_SEC PREV_SEC
e780aef2
CL
4496 head = NULL;
4497 while (tail != NULL)
99059e56
RM
4498 {
4499 /* Pop from tail. */
4500 asection *item = tail;
4501 tail = PREV_SEC (item);
e780aef2 4502
99059e56
RM
4503 /* Push on head. */
4504 NEXT_SEC (item) = head;
4505 head = item;
4506 }
07d72278
DJ
4507
4508 while (head != NULL)
906e58ca
NC
4509 {
4510 asection *curr;
07d72278 4511 asection *next;
e780aef2
CL
4512 bfd_vma stub_group_start = head->output_offset;
4513 bfd_vma end_of_next;
906e58ca 4514
07d72278 4515 curr = head;
e780aef2 4516 while (NEXT_SEC (curr) != NULL)
8cd931b7 4517 {
e780aef2
CL
4518 next = NEXT_SEC (curr);
4519 end_of_next = next->output_offset + next->size;
4520 if (end_of_next - stub_group_start >= stub_group_size)
4521 /* End of NEXT is too far from start, so stop. */
8cd931b7 4522 break;
e780aef2
CL
4523 /* Add NEXT to the group. */
4524 curr = next;
8cd931b7 4525 }
906e58ca 4526
07d72278 4527 /* OK, the size from the start to the start of CURR is less
906e58ca 4528 than stub_group_size and thus can be handled by one stub
07d72278 4529 section. (Or the head section is itself larger than
906e58ca
NC
4530 stub_group_size, in which case we may be toast.)
4531 We should really be keeping track of the total size of
4532 stubs added here, as stubs contribute to the final output
7fb9f789 4533 section size. */
906e58ca
NC
4534 do
4535 {
07d72278 4536 next = NEXT_SEC (head);
906e58ca 4537 /* Set up this stub group. */
07d72278 4538 htab->stub_group[head->id].link_sec = curr;
906e58ca 4539 }
07d72278 4540 while (head != curr && (head = next) != NULL);
906e58ca
NC
4541
4542 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
4543 bytes after the stub section can be handled by it too. */
4544 if (!stubs_always_after_branch)
906e58ca 4545 {
e780aef2
CL
4546 stub_group_start = curr->output_offset + curr->size;
4547
8cd931b7 4548 while (next != NULL)
906e58ca 4549 {
e780aef2
CL
4550 end_of_next = next->output_offset + next->size;
4551 if (end_of_next - stub_group_start >= stub_group_size)
4552 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 4553 break;
e780aef2 4554 /* Add NEXT to the stub group. */
07d72278
DJ
4555 head = next;
4556 next = NEXT_SEC (head);
4557 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
4558 }
4559 }
07d72278 4560 head = next;
906e58ca
NC
4561 }
4562 }
07d72278 4563 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
4564
4565 free (htab->input_list);
4566#undef PREV_SEC
07d72278 4567#undef NEXT_SEC
906e58ca
NC
4568}
4569
48229727
JB
4570/* Comparison function for sorting/searching relocations relating to Cortex-A8
4571 erratum fix. */
4572
4573static int
4574a8_reloc_compare (const void *a, const void *b)
4575{
21d799b5
NC
4576 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4577 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
4578
4579 if (ra->from < rb->from)
4580 return -1;
4581 else if (ra->from > rb->from)
4582 return 1;
4583 else
4584 return 0;
4585}
4586
4587static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4588 const char *, char **);
4589
4590/* Helper function to scan code for sequences which might trigger the Cortex-A8
4591 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 4592 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
4593 otherwise. */
4594
81694485
NC
4595static bfd_boolean
4596cortex_a8_erratum_scan (bfd *input_bfd,
4597 struct bfd_link_info *info,
48229727
JB
4598 struct a8_erratum_fix **a8_fixes_p,
4599 unsigned int *num_a8_fixes_p,
4600 unsigned int *a8_fix_table_size_p,
4601 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
4602 unsigned int num_a8_relocs,
4603 unsigned prev_num_a8_fixes,
4604 bfd_boolean *stub_changed_p)
48229727
JB
4605{
4606 asection *section;
4607 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4608 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4609 unsigned int num_a8_fixes = *num_a8_fixes_p;
4610 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4611
4dfe6ac6
NC
4612 if (htab == NULL)
4613 return FALSE;
4614
48229727
JB
4615 for (section = input_bfd->sections;
4616 section != NULL;
4617 section = section->next)
4618 {
4619 bfd_byte *contents = NULL;
4620 struct _arm_elf_section_data *sec_data;
4621 unsigned int span;
4622 bfd_vma base_vma;
4623
4624 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
4625 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4626 || (section->flags & SEC_EXCLUDE) != 0
4627 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4628 || (section->output_section == bfd_abs_section_ptr))
4629 continue;
48229727
JB
4630
4631 base_vma = section->output_section->vma + section->output_offset;
4632
4633 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 4634 contents = elf_section_data (section)->this_hdr.contents;
48229727 4635 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
99059e56 4636 return TRUE;
48229727
JB
4637
4638 sec_data = elf32_arm_section_data (section);
4639
4640 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
4641 {
4642 unsigned int span_start = sec_data->map[span].vma;
4643 unsigned int span_end = (span == sec_data->mapcount - 1)
4644 ? section->size : sec_data->map[span + 1].vma;
4645 unsigned int i;
4646 char span_type = sec_data->map[span].type;
4647 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4648
4649 if (span_type != 't')
4650 continue;
4651
4652 /* Span is entirely within a single 4KB region: skip scanning. */
4653 if (((base_vma + span_start) & ~0xfff)
48229727 4654 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
4655 continue;
4656
4657 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4658
4659 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4660 * The branch target is in the same 4KB region as the
4661 first half of the branch.
4662 * The instruction before the branch is a 32-bit
4663 length non-branch instruction. */
4664 for (i = span_start; i < span_end;)
4665 {
4666 unsigned int insn = bfd_getl16 (&contents[i]);
4667 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
48229727
JB
4668 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4669
99059e56
RM
4670 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4671 insn_32bit = TRUE;
48229727
JB
4672
4673 if (insn_32bit)
99059e56
RM
4674 {
4675 /* Load the rest of the insn (in manual-friendly order). */
4676 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4677
4678 /* Encoding T4: B<c>.W. */
4679 is_b = (insn & 0xf800d000) == 0xf0009000;
4680 /* Encoding T1: BL<c>.W. */
4681 is_bl = (insn & 0xf800d000) == 0xf000d000;
4682 /* Encoding T2: BLX<c>.W. */
4683 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
4684 /* Encoding T3: B<c>.W (not permitted in IT block). */
4685 is_bcc = (insn & 0xf800d000) == 0xf0008000
4686 && (insn & 0x07f00000) != 0x03800000;
4687 }
4688
4689 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 4690
99059e56 4691 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
4692 && insn_32bit
4693 && is_32bit_branch
4694 && last_was_32bit
4695 && ! last_was_branch)
99059e56
RM
4696 {
4697 bfd_signed_vma offset = 0;
4698 bfd_boolean force_target_arm = FALSE;
48229727 4699 bfd_boolean force_target_thumb = FALSE;
99059e56
RM
4700 bfd_vma target;
4701 enum elf32_arm_stub_type stub_type = arm_stub_none;
4702 struct a8_erratum_reloc key, *found;
4703 bfd_boolean use_plt = FALSE;
48229727 4704
99059e56
RM
4705 key.from = base_vma + i;
4706 found = (struct a8_erratum_reloc *)
4707 bsearch (&key, a8_relocs, num_a8_relocs,
4708 sizeof (struct a8_erratum_reloc),
4709 &a8_reloc_compare);
48229727
JB
4710
4711 if (found)
4712 {
4713 char *error_message = NULL;
4714 struct elf_link_hash_entry *entry;
4715
4716 /* We don't care about the error returned from this
99059e56 4717 function, only if there is glue or not. */
48229727
JB
4718 entry = find_thumb_glue (info, found->sym_name,
4719 &error_message);
4720
4721 if (entry)
4722 found->non_a8_stub = TRUE;
4723
92750f34 4724 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 4725 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
4726 && found->hash->root.plt.offset != (bfd_vma) -1)
4727 use_plt = TRUE;
4728
4729 if (found->r_type == R_ARM_THM_CALL)
4730 {
35fc36a8
RS
4731 if (found->branch_type == ST_BRANCH_TO_ARM
4732 || use_plt)
92750f34
DJ
4733 force_target_arm = TRUE;
4734 else
4735 force_target_thumb = TRUE;
4736 }
48229727
JB
4737 }
4738
99059e56 4739 /* Check if we have an offending branch instruction. */
48229727
JB
4740
4741 if (found && found->non_a8_stub)
4742 /* We've already made a stub for this instruction, e.g.
4743 it's a long branch or a Thumb->ARM stub. Assume that
4744 stub will suffice to work around the A8 erratum (see
4745 setting of always_after_branch above). */
4746 ;
99059e56
RM
4747 else if (is_bcc)
4748 {
4749 offset = (insn & 0x7ff) << 1;
4750 offset |= (insn & 0x3f0000) >> 4;
4751 offset |= (insn & 0x2000) ? 0x40000 : 0;
4752 offset |= (insn & 0x800) ? 0x80000 : 0;
4753 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4754 if (offset & 0x100000)
4755 offset |= ~ ((bfd_signed_vma) 0xfffff);
4756 stub_type = arm_stub_a8_veneer_b_cond;
4757 }
4758 else if (is_b || is_bl || is_blx)
4759 {
4760 int s = (insn & 0x4000000) != 0;
4761 int j1 = (insn & 0x2000) != 0;
4762 int j2 = (insn & 0x800) != 0;
4763 int i1 = !(j1 ^ s);
4764 int i2 = !(j2 ^ s);
4765
4766 offset = (insn & 0x7ff) << 1;
4767 offset |= (insn & 0x3ff0000) >> 4;
4768 offset |= i2 << 22;
4769 offset |= i1 << 23;
4770 offset |= s << 24;
4771 if (offset & 0x1000000)
4772 offset |= ~ ((bfd_signed_vma) 0xffffff);
4773
4774 if (is_blx)
4775 offset &= ~ ((bfd_signed_vma) 3);
4776
4777 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4778 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4779 }
4780
4781 if (stub_type != arm_stub_none)
4782 {
4783 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
4784
4785 /* The original instruction is a BL, but the target is
99059e56 4786 an ARM instruction. If we were not making a stub,
48229727
JB
4787 the BL would have been converted to a BLX. Use the
4788 BLX stub instead in that case. */
4789 if (htab->use_blx && force_target_arm
4790 && stub_type == arm_stub_a8_veneer_bl)
4791 {
4792 stub_type = arm_stub_a8_veneer_blx;
4793 is_blx = TRUE;
4794 is_bl = FALSE;
4795 }
4796 /* Conversely, if the original instruction was
4797 BLX but the target is Thumb mode, use the BL
4798 stub. */
4799 else if (force_target_thumb
4800 && stub_type == arm_stub_a8_veneer_blx)
4801 {
4802 stub_type = arm_stub_a8_veneer_bl;
4803 is_blx = FALSE;
4804 is_bl = TRUE;
4805 }
4806
99059e56
RM
4807 if (is_blx)
4808 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 4809
99059e56
RM
4810 /* If we found a relocation, use the proper destination,
4811 not the offset in the (unrelocated) instruction.
48229727
JB
4812 Note this is always done if we switched the stub type
4813 above. */
99059e56
RM
4814 if (found)
4815 offset =
81694485 4816 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 4817
99059e56
RM
4818 /* If the stub will use a Thumb-mode branch to a
4819 PLT target, redirect it to the preceding Thumb
4820 entry point. */
4821 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4822 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 4823
99059e56 4824 target = pc_for_insn + offset;
48229727 4825
99059e56
RM
4826 /* The BLX stub is ARM-mode code. Adjust the offset to
4827 take the different PC value (+8 instead of +4) into
48229727 4828 account. */
99059e56
RM
4829 if (stub_type == arm_stub_a8_veneer_blx)
4830 offset += 4;
4831
4832 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4833 {
4834 char *stub_name = NULL;
4835
4836 if (num_a8_fixes == a8_fix_table_size)
4837 {
4838 a8_fix_table_size *= 2;
4839 a8_fixes = (struct a8_erratum_fix *)
4840 bfd_realloc (a8_fixes,
4841 sizeof (struct a8_erratum_fix)
4842 * a8_fix_table_size);
4843 }
48229727 4844
eb7c4339
NS
4845 if (num_a8_fixes < prev_num_a8_fixes)
4846 {
4847 /* If we're doing a subsequent scan,
4848 check if we've found the same fix as
4849 before, and try and reuse the stub
4850 name. */
4851 stub_name = a8_fixes[num_a8_fixes].stub_name;
4852 if ((a8_fixes[num_a8_fixes].section != section)
4853 || (a8_fixes[num_a8_fixes].offset != i))
4854 {
4855 free (stub_name);
4856 stub_name = NULL;
4857 *stub_changed_p = TRUE;
4858 }
4859 }
4860
4861 if (!stub_name)
4862 {
21d799b5 4863 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
4864 if (stub_name != NULL)
4865 sprintf (stub_name, "%x:%x", section->id, i);
4866 }
48229727 4867
99059e56
RM
4868 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4869 a8_fixes[num_a8_fixes].section = section;
4870 a8_fixes[num_a8_fixes].offset = i;
4871 a8_fixes[num_a8_fixes].addend = offset;
4872 a8_fixes[num_a8_fixes].orig_insn = insn;
4873 a8_fixes[num_a8_fixes].stub_name = stub_name;
4874 a8_fixes[num_a8_fixes].stub_type = stub_type;
4875 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 4876 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 4877
99059e56
RM
4878 num_a8_fixes++;
4879 }
4880 }
4881 }
48229727 4882
99059e56
RM
4883 i += insn_32bit ? 4 : 2;
4884 last_was_32bit = insn_32bit;
48229727 4885 last_was_branch = is_32bit_branch;
99059e56
RM
4886 }
4887 }
48229727
JB
4888
4889 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 4890 free (contents);
48229727 4891 }
fe33d2fa 4892
48229727
JB
4893 *a8_fixes_p = a8_fixes;
4894 *num_a8_fixes_p = num_a8_fixes;
4895 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 4896
81694485 4897 return FALSE;
48229727
JB
4898}
4899
906e58ca
NC
4900/* Determine and set the size of the stub section for a final link.
4901
4902 The basic idea here is to examine all the relocations looking for
4903 PC-relative calls to a target that is unreachable with a "bl"
4904 instruction. */
4905
4906bfd_boolean
4907elf32_arm_size_stubs (bfd *output_bfd,
4908 bfd *stub_bfd,
4909 struct bfd_link_info *info,
4910 bfd_signed_vma group_size,
7a89b94e
NC
4911 asection * (*add_stub_section) (const char *, asection *,
4912 unsigned int),
906e58ca
NC
4913 void (*layout_sections_again) (void))
4914{
4915 bfd_size_type stub_group_size;
07d72278 4916 bfd_boolean stubs_always_after_branch;
906e58ca 4917 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 4918 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 4919 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
4920 struct a8_erratum_reloc *a8_relocs = NULL;
4921 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4922
4dfe6ac6
NC
4923 if (htab == NULL)
4924 return FALSE;
4925
48229727
JB
4926 if (htab->fix_cortex_a8)
4927 {
21d799b5 4928 a8_fixes = (struct a8_erratum_fix *)
99059e56 4929 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 4930 a8_relocs = (struct a8_erratum_reloc *)
99059e56 4931 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 4932 }
906e58ca
NC
4933
4934 /* Propagate mach to stub bfd, because it may not have been
4935 finalized when we created stub_bfd. */
4936 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4937 bfd_get_mach (output_bfd));
4938
4939 /* Stash our params away. */
4940 htab->stub_bfd = stub_bfd;
4941 htab->add_stub_section = add_stub_section;
4942 htab->layout_sections_again = layout_sections_again;
07d72278 4943 stubs_always_after_branch = group_size < 0;
48229727
JB
4944
4945 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4946 as the first half of a 32-bit branch straddling two 4K pages. This is a
4947 crude way of enforcing that. */
4948 if (htab->fix_cortex_a8)
4949 stubs_always_after_branch = 1;
4950
906e58ca
NC
4951 if (group_size < 0)
4952 stub_group_size = -group_size;
4953 else
4954 stub_group_size = group_size;
4955
4956 if (stub_group_size == 1)
4957 {
4958 /* Default values. */
4959 /* Thumb branch range is +-4MB has to be used as the default
4960 maximum size (a given section can contain both ARM and Thumb
4961 code, so the worst case has to be taken into account).
4962
4963 This value is 24K less than that, which allows for 2025
4964 12-byte stubs. If we exceed that, then we will fail to link.
4965 The user will have to relink with an explicit group size
4966 option. */
4967 stub_group_size = 4170000;
4968 }
4969
07d72278 4970 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 4971
3ae046cc
NS
4972 /* If we're applying the cortex A8 fix, we need to determine the
4973 program header size now, because we cannot change it later --
4974 that could alter section placements. Notice the A8 erratum fix
4975 ends up requiring the section addresses to remain unchanged
4976 modulo the page size. That's something we cannot represent
4977 inside BFD, and we don't want to force the section alignment to
4978 be the page size. */
4979 if (htab->fix_cortex_a8)
4980 (*htab->layout_sections_again) ();
4981
906e58ca
NC
4982 while (1)
4983 {
4984 bfd *input_bfd;
4985 unsigned int bfd_indx;
4986 asection *stub_sec;
eb7c4339
NS
4987 bfd_boolean stub_changed = FALSE;
4988 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 4989
48229727 4990 num_a8_fixes = 0;
906e58ca
NC
4991 for (input_bfd = info->input_bfds, bfd_indx = 0;
4992 input_bfd != NULL;
4993 input_bfd = input_bfd->link_next, bfd_indx++)
4994 {
4995 Elf_Internal_Shdr *symtab_hdr;
4996 asection *section;
4997 Elf_Internal_Sym *local_syms = NULL;
4998
99059e56
RM
4999 if (!is_arm_elf (input_bfd))
5000 continue;
adbcc655 5001
48229727
JB
5002 num_a8_relocs = 0;
5003
906e58ca
NC
5004 /* We'll need the symbol table in a second. */
5005 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5006 if (symtab_hdr->sh_info == 0)
5007 continue;
5008
5009 /* Walk over each section attached to the input bfd. */
5010 for (section = input_bfd->sections;
5011 section != NULL;
5012 section = section->next)
5013 {
5014 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5015
5016 /* If there aren't any relocs, then there's nothing more
5017 to do. */
5018 if ((section->flags & SEC_RELOC) == 0
5019 || section->reloc_count == 0
5020 || (section->flags & SEC_CODE) == 0)
5021 continue;
5022
5023 /* If this section is a link-once section that will be
5024 discarded, then don't create any stubs. */
5025 if (section->output_section == NULL
5026 || section->output_section->owner != output_bfd)
5027 continue;
5028
5029 /* Get the relocs. */
5030 internal_relocs
5031 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5032 NULL, info->keep_memory);
5033 if (internal_relocs == NULL)
5034 goto error_ret_free_local;
5035
5036 /* Now examine each relocation. */
5037 irela = internal_relocs;
5038 irelaend = irela + section->reloc_count;
5039 for (; irela < irelaend; irela++)
5040 {
5041 unsigned int r_type, r_indx;
5042 enum elf32_arm_stub_type stub_type;
5043 struct elf32_arm_stub_hash_entry *stub_entry;
5044 asection *sym_sec;
5045 bfd_vma sym_value;
5046 bfd_vma destination;
5047 struct elf32_arm_link_hash_entry *hash;
7413f23f 5048 const char *sym_name;
906e58ca
NC
5049 char *stub_name;
5050 const asection *id_sec;
34e77a92 5051 unsigned char st_type;
35fc36a8 5052 enum arm_st_branch_type branch_type;
48229727 5053 bfd_boolean created_stub = FALSE;
906e58ca
NC
5054
5055 r_type = ELF32_R_TYPE (irela->r_info);
5056 r_indx = ELF32_R_SYM (irela->r_info);
5057
5058 if (r_type >= (unsigned int) R_ARM_max)
5059 {
5060 bfd_set_error (bfd_error_bad_value);
5061 error_ret_free_internal:
5062 if (elf_section_data (section)->relocs == NULL)
5063 free (internal_relocs);
5064 goto error_ret_free_local;
5065 }
b38cadfb 5066
0855e32b
NS
5067 hash = NULL;
5068 if (r_indx >= symtab_hdr->sh_info)
5069 hash = elf32_arm_hash_entry
5070 (elf_sym_hashes (input_bfd)
5071 [r_indx - symtab_hdr->sh_info]);
b38cadfb 5072
0855e32b
NS
5073 /* Only look for stubs on branch instructions, or
5074 non-relaxed TLSCALL */
906e58ca 5075 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
5076 && (r_type != (unsigned int) R_ARM_THM_CALL)
5077 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
5078 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5079 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 5080 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
5081 && (r_type != (unsigned int) R_ARM_PLT32)
5082 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5083 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5084 && r_type == elf32_arm_tls_transition
5085 (info, r_type, &hash->root)
5086 && ((hash ? hash->tls_type
5087 : (elf32_arm_local_got_tls_type
5088 (input_bfd)[r_indx]))
5089 & GOT_TLS_GDESC) != 0))
906e58ca
NC
5090 continue;
5091
5092 /* Now determine the call target, its name, value,
5093 section. */
5094 sym_sec = NULL;
5095 sym_value = 0;
5096 destination = 0;
7413f23f 5097 sym_name = NULL;
b38cadfb 5098
0855e32b
NS
5099 if (r_type == (unsigned int) R_ARM_TLS_CALL
5100 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5101 {
5102 /* A non-relaxed TLS call. The target is the
5103 plt-resident trampoline and nothing to do
5104 with the symbol. */
5105 BFD_ASSERT (htab->tls_trampoline > 0);
5106 sym_sec = htab->root.splt;
5107 sym_value = htab->tls_trampoline;
5108 hash = 0;
34e77a92 5109 st_type = STT_FUNC;
35fc36a8 5110 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
5111 }
5112 else if (!hash)
906e58ca
NC
5113 {
5114 /* It's a local symbol. */
5115 Elf_Internal_Sym *sym;
906e58ca
NC
5116
5117 if (local_syms == NULL)
5118 {
5119 local_syms
5120 = (Elf_Internal_Sym *) symtab_hdr->contents;
5121 if (local_syms == NULL)
5122 local_syms
5123 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5124 symtab_hdr->sh_info, 0,
5125 NULL, NULL, NULL);
5126 if (local_syms == NULL)
5127 goto error_ret_free_internal;
5128 }
5129
5130 sym = local_syms + r_indx;
f6d250ce
TS
5131 if (sym->st_shndx == SHN_UNDEF)
5132 sym_sec = bfd_und_section_ptr;
5133 else if (sym->st_shndx == SHN_ABS)
5134 sym_sec = bfd_abs_section_ptr;
5135 else if (sym->st_shndx == SHN_COMMON)
5136 sym_sec = bfd_com_section_ptr;
5137 else
5138 sym_sec =
5139 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5140
ffcb4889
NS
5141 if (!sym_sec)
5142 /* This is an undefined symbol. It can never
5143 be resolved. */
5144 continue;
fe33d2fa 5145
906e58ca
NC
5146 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5147 sym_value = sym->st_value;
5148 destination = (sym_value + irela->r_addend
5149 + sym_sec->output_offset
5150 + sym_sec->output_section->vma);
34e77a92 5151 st_type = ELF_ST_TYPE (sym->st_info);
35fc36a8 5152 branch_type = ARM_SYM_BRANCH_TYPE (sym);
7413f23f
DJ
5153 sym_name
5154 = bfd_elf_string_from_elf_section (input_bfd,
5155 symtab_hdr->sh_link,
5156 sym->st_name);
906e58ca
NC
5157 }
5158 else
5159 {
5160 /* It's an external symbol. */
906e58ca
NC
5161 while (hash->root.root.type == bfd_link_hash_indirect
5162 || hash->root.root.type == bfd_link_hash_warning)
5163 hash = ((struct elf32_arm_link_hash_entry *)
5164 hash->root.root.u.i.link);
5165
5166 if (hash->root.root.type == bfd_link_hash_defined
5167 || hash->root.root.type == bfd_link_hash_defweak)
5168 {
5169 sym_sec = hash->root.root.u.def.section;
5170 sym_value = hash->root.root.u.def.value;
022f8312
CL
5171
5172 struct elf32_arm_link_hash_table *globals =
5173 elf32_arm_hash_table (info);
5174
5175 /* For a destination in a shared library,
5176 use the PLT stub as target address to
5177 decide whether a branch stub is
5178 needed. */
4dfe6ac6 5179 if (globals != NULL
362d30a1 5180 && globals->root.splt != NULL
4dfe6ac6 5181 && hash != NULL
022f8312
CL
5182 && hash->root.plt.offset != (bfd_vma) -1)
5183 {
362d30a1 5184 sym_sec = globals->root.splt;
022f8312
CL
5185 sym_value = hash->root.plt.offset;
5186 if (sym_sec->output_section != NULL)
5187 destination = (sym_value
5188 + sym_sec->output_offset
5189 + sym_sec->output_section->vma);
5190 }
5191 else if (sym_sec->output_section != NULL)
906e58ca
NC
5192 destination = (sym_value + irela->r_addend
5193 + sym_sec->output_offset
5194 + sym_sec->output_section->vma);
5195 }
69c5861e
CL
5196 else if ((hash->root.root.type == bfd_link_hash_undefined)
5197 || (hash->root.root.type == bfd_link_hash_undefweak))
5198 {
5199 /* For a shared library, use the PLT stub as
5200 target address to decide whether a long
5201 branch stub is needed.
5202 For absolute code, they cannot be handled. */
5203 struct elf32_arm_link_hash_table *globals =
5204 elf32_arm_hash_table (info);
5205
4dfe6ac6 5206 if (globals != NULL
362d30a1 5207 && globals->root.splt != NULL
4dfe6ac6 5208 && hash != NULL
69c5861e
CL
5209 && hash->root.plt.offset != (bfd_vma) -1)
5210 {
362d30a1 5211 sym_sec = globals->root.splt;
69c5861e
CL
5212 sym_value = hash->root.plt.offset;
5213 if (sym_sec->output_section != NULL)
5214 destination = (sym_value
5215 + sym_sec->output_offset
5216 + sym_sec->output_section->vma);
5217 }
5218 else
5219 continue;
5220 }
906e58ca
NC
5221 else
5222 {
5223 bfd_set_error (bfd_error_bad_value);
5224 goto error_ret_free_internal;
5225 }
34e77a92 5226 st_type = hash->root.type;
35fc36a8 5227 branch_type = hash->root.target_internal;
7413f23f 5228 sym_name = hash->root.root.root.string;
906e58ca
NC
5229 }
5230
48229727 5231 do
7413f23f 5232 {
48229727
JB
5233 /* Determine what (if any) linker stub is needed. */
5234 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
5235 st_type, &branch_type,
5236 hash, destination, sym_sec,
48229727
JB
5237 input_bfd, sym_name);
5238 if (stub_type == arm_stub_none)
5239 break;
5240
5241 /* Support for grouping stub sections. */
5242 id_sec = htab->stub_group[section->id].link_sec;
5243
5244 /* Get the name of this stub. */
5245 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
fe33d2fa 5246 irela, stub_type);
48229727
JB
5247 if (!stub_name)
5248 goto error_ret_free_internal;
5249
5250 /* We've either created a stub for this reloc already,
5251 or we are about to. */
5252 created_stub = TRUE;
5253
5254 stub_entry = arm_stub_hash_lookup
5255 (&htab->stub_hash_table, stub_name,
5256 FALSE, FALSE);
5257 if (stub_entry != NULL)
5258 {
5259 /* The proper stub has already been created. */
5260 free (stub_name);
eb7c4339 5261 stub_entry->target_value = sym_value;
48229727
JB
5262 break;
5263 }
7413f23f 5264
48229727
JB
5265 stub_entry = elf32_arm_add_stub (stub_name, section,
5266 htab);
5267 if (stub_entry == NULL)
5268 {
5269 free (stub_name);
5270 goto error_ret_free_internal;
5271 }
7413f23f 5272
99059e56
RM
5273 stub_entry->target_value = sym_value;
5274 stub_entry->target_section = sym_sec;
5275 stub_entry->stub_type = stub_type;
5276 stub_entry->h = hash;
5277 stub_entry->branch_type = branch_type;
5278
5279 if (sym_name == NULL)
5280 sym_name = "unnamed";
5281 stub_entry->output_name = (char *)
5282 bfd_alloc (htab->stub_bfd,
5283 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5284 + strlen (sym_name));
5285 if (stub_entry->output_name == NULL)
5286 {
5287 free (stub_name);
5288 goto error_ret_free_internal;
5289 }
5290
5291 /* For historical reasons, use the existing names for
5292 ARM-to-Thumb and Thumb-to-ARM stubs. */
5293 if ((r_type == (unsigned int) R_ARM_THM_CALL
35fc36a8
RS
5294 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5295 && branch_type == ST_BRANCH_TO_ARM)
99059e56
RM
5296 sprintf (stub_entry->output_name,
5297 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5298 else if ((r_type == (unsigned int) R_ARM_CALL
35fc36a8
RS
5299 || r_type == (unsigned int) R_ARM_JUMP24)
5300 && branch_type == ST_BRANCH_TO_THUMB)
99059e56
RM
5301 sprintf (stub_entry->output_name,
5302 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5303 else
5304 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5305 sym_name);
5306
5307 stub_changed = TRUE;
5308 }
5309 while (0);
5310
5311 /* Look for relocations which might trigger Cortex-A8
5312 erratum. */
5313 if (htab->fix_cortex_a8
5314 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5315 || r_type == (unsigned int) R_ARM_THM_JUMP19
5316 || r_type == (unsigned int) R_ARM_THM_CALL
5317 || r_type == (unsigned int) R_ARM_THM_XPC22))
5318 {
5319 bfd_vma from = section->output_section->vma
5320 + section->output_offset
5321 + irela->r_offset;
5322
5323 if ((from & 0xfff) == 0xffe)
5324 {
5325 /* Found a candidate. Note we haven't checked the
5326 destination is within 4K here: if we do so (and
5327 don't create an entry in a8_relocs) we can't tell
5328 that a branch should have been relocated when
5329 scanning later. */
5330 if (num_a8_relocs == a8_reloc_table_size)
5331 {
5332 a8_reloc_table_size *= 2;
5333 a8_relocs = (struct a8_erratum_reloc *)
5334 bfd_realloc (a8_relocs,
5335 sizeof (struct a8_erratum_reloc)
5336 * a8_reloc_table_size);
5337 }
5338
5339 a8_relocs[num_a8_relocs].from = from;
5340 a8_relocs[num_a8_relocs].destination = destination;
5341 a8_relocs[num_a8_relocs].r_type = r_type;
5342 a8_relocs[num_a8_relocs].branch_type = branch_type;
5343 a8_relocs[num_a8_relocs].sym_name = sym_name;
5344 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5345 a8_relocs[num_a8_relocs].hash = hash;
5346
5347 num_a8_relocs++;
5348 }
5349 }
906e58ca
NC
5350 }
5351
99059e56
RM
5352 /* We're done with the internal relocs, free them. */
5353 if (elf_section_data (section)->relocs == NULL)
5354 free (internal_relocs);
5355 }
48229727 5356
99059e56 5357 if (htab->fix_cortex_a8)
48229727 5358 {
99059e56
RM
5359 /* Sort relocs which might apply to Cortex-A8 erratum. */
5360 qsort (a8_relocs, num_a8_relocs,
eb7c4339 5361 sizeof (struct a8_erratum_reloc),
99059e56 5362 &a8_reloc_compare);
48229727 5363
99059e56
RM
5364 /* Scan for branches which might trigger Cortex-A8 erratum. */
5365 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 5366 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
5367 a8_relocs, num_a8_relocs,
5368 prev_num_a8_fixes, &stub_changed)
5369 != 0)
48229727 5370 goto error_ret_free_local;
5e681ec4 5371 }
5e681ec4
PB
5372 }
5373
eb7c4339 5374 if (prev_num_a8_fixes != num_a8_fixes)
99059e56 5375 stub_changed = TRUE;
48229727 5376
906e58ca
NC
5377 if (!stub_changed)
5378 break;
5e681ec4 5379
906e58ca
NC
5380 /* OK, we've added some stubs. Find out the new size of the
5381 stub sections. */
5382 for (stub_sec = htab->stub_bfd->sections;
5383 stub_sec != NULL;
5384 stub_sec = stub_sec->next)
3e6b1042
DJ
5385 {
5386 /* Ignore non-stub sections. */
5387 if (!strstr (stub_sec->name, STUB_SUFFIX))
5388 continue;
5389
5390 stub_sec->size = 0;
5391 }
b34b2d70 5392
906e58ca
NC
5393 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5394
48229727
JB
5395 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5396 if (htab->fix_cortex_a8)
99059e56
RM
5397 for (i = 0; i < num_a8_fixes; i++)
5398 {
48229727
JB
5399 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5400 a8_fixes[i].section, htab);
5401
5402 if (stub_sec == NULL)
5403 goto error_ret_free_local;
5404
99059e56
RM
5405 stub_sec->size
5406 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5407 NULL);
5408 }
48229727
JB
5409
5410
906e58ca
NC
5411 /* Ask the linker to do its stuff. */
5412 (*htab->layout_sections_again) ();
ba93b8ac
DJ
5413 }
5414
48229727
JB
5415 /* Add stubs for Cortex-A8 erratum fixes now. */
5416 if (htab->fix_cortex_a8)
5417 {
5418 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
5419 {
5420 struct elf32_arm_stub_hash_entry *stub_entry;
5421 char *stub_name = a8_fixes[i].stub_name;
5422 asection *section = a8_fixes[i].section;
5423 unsigned int section_id = a8_fixes[i].section->id;
5424 asection *link_sec = htab->stub_group[section_id].link_sec;
5425 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5426 const insn_sequence *template_sequence;
5427 int template_size, size = 0;
5428
5429 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5430 TRUE, FALSE);
5431 if (stub_entry == NULL)
5432 {
5433 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5434 section->owner,
5435 stub_name);
5436 return FALSE;
5437 }
5438
5439 stub_entry->stub_sec = stub_sec;
5440 stub_entry->stub_offset = 0;
5441 stub_entry->id_sec = link_sec;
5442 stub_entry->stub_type = a8_fixes[i].stub_type;
5443 stub_entry->target_section = a8_fixes[i].section;
5444 stub_entry->target_value = a8_fixes[i].offset;
5445 stub_entry->target_addend = a8_fixes[i].addend;
5446 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 5447 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 5448
99059e56
RM
5449 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5450 &template_sequence,
5451 &template_size);
48229727 5452
99059e56
RM
5453 stub_entry->stub_size = size;
5454 stub_entry->stub_template = template_sequence;
5455 stub_entry->stub_template_size = template_size;
5456 }
48229727
JB
5457
5458 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 5459 elf32_arm_write_section(). */
48229727
JB
5460 htab->a8_erratum_fixes = a8_fixes;
5461 htab->num_a8_erratum_fixes = num_a8_fixes;
5462 }
5463 else
5464 {
5465 htab->a8_erratum_fixes = NULL;
5466 htab->num_a8_erratum_fixes = 0;
5467 }
906e58ca
NC
5468 return TRUE;
5469
5470 error_ret_free_local:
5471 return FALSE;
5e681ec4
PB
5472}
5473
906e58ca
NC
5474/* Build all the stubs associated with the current output file. The
5475 stubs are kept in a hash table attached to the main linker hash
5476 table. We also set up the .plt entries for statically linked PIC
5477 functions here. This function is called via arm_elf_finish in the
5478 linker. */
252b5132 5479
906e58ca
NC
5480bfd_boolean
5481elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 5482{
906e58ca
NC
5483 asection *stub_sec;
5484 struct bfd_hash_table *table;
5485 struct elf32_arm_link_hash_table *htab;
252b5132 5486
906e58ca 5487 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
5488 if (htab == NULL)
5489 return FALSE;
252b5132 5490
906e58ca
NC
5491 for (stub_sec = htab->stub_bfd->sections;
5492 stub_sec != NULL;
5493 stub_sec = stub_sec->next)
252b5132 5494 {
906e58ca
NC
5495 bfd_size_type size;
5496
8029a119 5497 /* Ignore non-stub sections. */
906e58ca
NC
5498 if (!strstr (stub_sec->name, STUB_SUFFIX))
5499 continue;
5500
5501 /* Allocate memory to hold the linker stubs. */
5502 size = stub_sec->size;
21d799b5 5503 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
5504 if (stub_sec->contents == NULL && size != 0)
5505 return FALSE;
5506 stub_sec->size = 0;
252b5132
RH
5507 }
5508
906e58ca
NC
5509 /* Build the stubs as directed by the stub hash table. */
5510 table = &htab->stub_hash_table;
5511 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
5512 if (htab->fix_cortex_a8)
5513 {
5514 /* Place the cortex a8 stubs last. */
5515 htab->fix_cortex_a8 = -1;
5516 bfd_hash_traverse (table, arm_build_one_stub, info);
5517 }
252b5132 5518
906e58ca 5519 return TRUE;
252b5132
RH
5520}
5521
9b485d32
NC
5522/* Locate the Thumb encoded calling stub for NAME. */
5523
252b5132 5524static struct elf_link_hash_entry *
57e8b36a
NC
5525find_thumb_glue (struct bfd_link_info *link_info,
5526 const char *name,
f2a9dd69 5527 char **error_message)
252b5132
RH
5528{
5529 char *tmp_name;
5530 struct elf_link_hash_entry *hash;
5531 struct elf32_arm_link_hash_table *hash_table;
5532
5533 /* We need a pointer to the armelf specific hash table. */
5534 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5535 if (hash_table == NULL)
5536 return NULL;
252b5132 5537
21d799b5 5538 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 5539 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5540
5541 BFD_ASSERT (tmp_name);
5542
5543 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5544
5545 hash = elf_link_hash_lookup
b34976b6 5546 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5547
b1657152
AM
5548 if (hash == NULL
5549 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5550 tmp_name, name) == -1)
5551 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5552
5553 free (tmp_name);
5554
5555 return hash;
5556}
5557
9b485d32
NC
5558/* Locate the ARM encoded calling stub for NAME. */
5559
252b5132 5560static struct elf_link_hash_entry *
57e8b36a
NC
5561find_arm_glue (struct bfd_link_info *link_info,
5562 const char *name,
f2a9dd69 5563 char **error_message)
252b5132
RH
5564{
5565 char *tmp_name;
5566 struct elf_link_hash_entry *myh;
5567 struct elf32_arm_link_hash_table *hash_table;
5568
5569 /* We need a pointer to the elfarm specific hash table. */
5570 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5571 if (hash_table == NULL)
5572 return NULL;
252b5132 5573
21d799b5 5574 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 5575 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5576
5577 BFD_ASSERT (tmp_name);
5578
5579 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5580
5581 myh = elf_link_hash_lookup
b34976b6 5582 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5583
b1657152
AM
5584 if (myh == NULL
5585 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5586 tmp_name, name) == -1)
5587 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5588
5589 free (tmp_name);
5590
5591 return myh;
5592}
5593
8f6277f5 5594/* ARM->Thumb glue (static images):
252b5132
RH
5595
5596 .arm
5597 __func_from_arm:
5598 ldr r12, __func_addr
5599 bx r12
5600 __func_addr:
906e58ca 5601 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 5602
26079076
PB
5603 (v5t static images)
5604 .arm
5605 __func_from_arm:
5606 ldr pc, __func_addr
5607 __func_addr:
906e58ca 5608 .word func @ behave as if you saw a ARM_32 reloc.
26079076 5609
8f6277f5
PB
5610 (relocatable images)
5611 .arm
5612 __func_from_arm:
5613 ldr r12, __func_offset
5614 add r12, r12, pc
5615 bx r12
5616 __func_offset:
8029a119 5617 .word func - . */
8f6277f5
PB
5618
5619#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
5620static const insn32 a2t1_ldr_insn = 0xe59fc000;
5621static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5622static const insn32 a2t3_func_addr_insn = 0x00000001;
5623
26079076
PB
5624#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5625static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5626static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5627
8f6277f5
PB
5628#define ARM2THUMB_PIC_GLUE_SIZE 16
5629static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5630static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5631static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5632
9b485d32 5633/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 5634
8029a119
NC
5635 .thumb .thumb
5636 .align 2 .align 2
5637 __func_from_thumb: __func_from_thumb:
5638 bx pc push {r6, lr}
5639 nop ldr r6, __func_addr
5640 .arm mov lr, pc
5641 b func bx r6
99059e56
RM
5642 .arm
5643 ;; back_to_thumb
5644 ldmia r13! {r6, lr}
5645 bx lr
5646 __func_addr:
5647 .word func */
252b5132
RH
5648
5649#define THUMB2ARM_GLUE_SIZE 8
5650static const insn16 t2a1_bx_pc_insn = 0x4778;
5651static const insn16 t2a2_noop_insn = 0x46c0;
5652static const insn32 t2a3_b_insn = 0xea000000;
5653
c7b8f16e
JB
5654#define VFP11_ERRATUM_VENEER_SIZE 8
5655
845b51d6
PB
5656#define ARM_BX_VENEER_SIZE 12
5657static const insn32 armbx1_tst_insn = 0xe3100001;
5658static const insn32 armbx2_moveq_insn = 0x01a0f000;
5659static const insn32 armbx3_bx_insn = 0xe12fff10;
5660
7e392df6 5661#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
5662static void
5663arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
5664{
5665 asection * s;
8029a119 5666 bfd_byte * contents;
252b5132 5667
8029a119 5668 if (size == 0)
3e6b1042
DJ
5669 {
5670 /* Do not include empty glue sections in the output. */
5671 if (abfd != NULL)
5672 {
3d4d4302 5673 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
5674 if (s != NULL)
5675 s->flags |= SEC_EXCLUDE;
5676 }
5677 return;
5678 }
252b5132 5679
8029a119 5680 BFD_ASSERT (abfd != NULL);
252b5132 5681
3d4d4302 5682 s = bfd_get_linker_section (abfd, name);
8029a119 5683 BFD_ASSERT (s != NULL);
252b5132 5684
21d799b5 5685 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 5686
8029a119
NC
5687 BFD_ASSERT (s->size == size);
5688 s->contents = contents;
5689}
906e58ca 5690
8029a119
NC
5691bfd_boolean
5692bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5693{
5694 struct elf32_arm_link_hash_table * globals;
906e58ca 5695
8029a119
NC
5696 globals = elf32_arm_hash_table (info);
5697 BFD_ASSERT (globals != NULL);
906e58ca 5698
8029a119
NC
5699 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5700 globals->arm_glue_size,
5701 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 5702
8029a119
NC
5703 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5704 globals->thumb_glue_size,
5705 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 5706
8029a119
NC
5707 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5708 globals->vfp11_erratum_glue_size,
5709 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 5710
8029a119
NC
5711 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5712 globals->bx_glue_size,
845b51d6
PB
5713 ARM_BX_GLUE_SECTION_NAME);
5714
b34976b6 5715 return TRUE;
252b5132
RH
5716}
5717
a4fd1a8e 5718/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
5719 returns the symbol identifying the stub. */
5720
a4fd1a8e 5721static struct elf_link_hash_entry *
57e8b36a
NC
5722record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5723 struct elf_link_hash_entry * h)
252b5132
RH
5724{
5725 const char * name = h->root.root.string;
63b0f745 5726 asection * s;
252b5132
RH
5727 char * tmp_name;
5728 struct elf_link_hash_entry * myh;
14a793b2 5729 struct bfd_link_hash_entry * bh;
252b5132 5730 struct elf32_arm_link_hash_table * globals;
dc810e39 5731 bfd_vma val;
2f475487 5732 bfd_size_type size;
252b5132
RH
5733
5734 globals = elf32_arm_hash_table (link_info);
252b5132
RH
5735 BFD_ASSERT (globals != NULL);
5736 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5737
3d4d4302 5738 s = bfd_get_linker_section
252b5132
RH
5739 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5740
252b5132
RH
5741 BFD_ASSERT (s != NULL);
5742
21d799b5 5743 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 5744 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5745
5746 BFD_ASSERT (tmp_name);
5747
5748 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5749
5750 myh = elf_link_hash_lookup
b34976b6 5751 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
5752
5753 if (myh != NULL)
5754 {
9b485d32 5755 /* We've already seen this guy. */
252b5132 5756 free (tmp_name);
a4fd1a8e 5757 return myh;
252b5132
RH
5758 }
5759
57e8b36a
NC
5760 /* The only trick here is using hash_table->arm_glue_size as the value.
5761 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
5762 putting it. The +1 on the value marks that the stub has not been
5763 output yet - not that it is a Thumb function. */
14a793b2 5764 bh = NULL;
dc810e39
AM
5765 val = globals->arm_glue_size + 1;
5766 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5767 tmp_name, BSF_GLOBAL, s, val,
b34976b6 5768 NULL, TRUE, FALSE, &bh);
252b5132 5769
b7693d02
DJ
5770 myh = (struct elf_link_hash_entry *) bh;
5771 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5772 myh->forced_local = 1;
5773
252b5132
RH
5774 free (tmp_name);
5775
27e55c4d
PB
5776 if (link_info->shared || globals->root.is_relocatable_executable
5777 || globals->pic_veneer)
2f475487 5778 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
5779 else if (globals->use_blx)
5780 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 5781 else
2f475487
AM
5782 size = ARM2THUMB_STATIC_GLUE_SIZE;
5783
5784 s->size += size;
5785 globals->arm_glue_size += size;
252b5132 5786
a4fd1a8e 5787 return myh;
252b5132
RH
5788}
5789
845b51d6
PB
5790/* Allocate space for ARMv4 BX veneers. */
5791
5792static void
5793record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5794{
5795 asection * s;
5796 struct elf32_arm_link_hash_table *globals;
5797 char *tmp_name;
5798 struct elf_link_hash_entry *myh;
5799 struct bfd_link_hash_entry *bh;
5800 bfd_vma val;
5801
5802 /* BX PC does not need a veneer. */
5803 if (reg == 15)
5804 return;
5805
5806 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
5807 BFD_ASSERT (globals != NULL);
5808 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5809
5810 /* Check if this veneer has already been allocated. */
5811 if (globals->bx_glue_offset[reg])
5812 return;
5813
3d4d4302 5814 s = bfd_get_linker_section
845b51d6
PB
5815 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5816
5817 BFD_ASSERT (s != NULL);
5818
5819 /* Add symbol for veneer. */
21d799b5
NC
5820 tmp_name = (char *)
5821 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 5822
845b51d6 5823 BFD_ASSERT (tmp_name);
906e58ca 5824
845b51d6 5825 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 5826
845b51d6
PB
5827 myh = elf_link_hash_lookup
5828 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5829
845b51d6 5830 BFD_ASSERT (myh == NULL);
906e58ca 5831
845b51d6
PB
5832 bh = NULL;
5833 val = globals->bx_glue_size;
5834 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56
RM
5835 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5836 NULL, TRUE, FALSE, &bh);
845b51d6
PB
5837
5838 myh = (struct elf_link_hash_entry *) bh;
5839 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5840 myh->forced_local = 1;
5841
5842 s->size += ARM_BX_VENEER_SIZE;
5843 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5844 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5845}
5846
5847
c7b8f16e
JB
5848/* Add an entry to the code/data map for section SEC. */
5849
5850static void
5851elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5852{
5853 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5854 unsigned int newidx;
906e58ca 5855
c7b8f16e
JB
5856 if (sec_data->map == NULL)
5857 {
21d799b5 5858 sec_data->map = (elf32_arm_section_map *)
99059e56 5859 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
5860 sec_data->mapcount = 0;
5861 sec_data->mapsize = 1;
5862 }
906e58ca 5863
c7b8f16e 5864 newidx = sec_data->mapcount++;
906e58ca 5865
c7b8f16e
JB
5866 if (sec_data->mapcount > sec_data->mapsize)
5867 {
5868 sec_data->mapsize *= 2;
21d799b5 5869 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
5870 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5871 * sizeof (elf32_arm_section_map));
515ef31d
NC
5872 }
5873
5874 if (sec_data->map)
5875 {
5876 sec_data->map[newidx].vma = vma;
5877 sec_data->map[newidx].type = type;
c7b8f16e 5878 }
c7b8f16e
JB
5879}
5880
5881
5882/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5883 veneers are handled for now. */
5884
5885static bfd_vma
5886record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
5887 elf32_vfp11_erratum_list *branch,
5888 bfd *branch_bfd,
5889 asection *branch_sec,
5890 unsigned int offset)
c7b8f16e
JB
5891{
5892 asection *s;
5893 struct elf32_arm_link_hash_table *hash_table;
5894 char *tmp_name;
5895 struct elf_link_hash_entry *myh;
5896 struct bfd_link_hash_entry *bh;
5897 bfd_vma val;
5898 struct _arm_elf_section_data *sec_data;
c7b8f16e 5899 elf32_vfp11_erratum_list *newerr;
906e58ca 5900
c7b8f16e 5901 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
5902 BFD_ASSERT (hash_table != NULL);
5903 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 5904
3d4d4302 5905 s = bfd_get_linker_section
c7b8f16e 5906 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 5907
c7b8f16e 5908 sec_data = elf32_arm_section_data (s);
906e58ca 5909
c7b8f16e 5910 BFD_ASSERT (s != NULL);
906e58ca 5911
21d799b5 5912 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 5913 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 5914
c7b8f16e 5915 BFD_ASSERT (tmp_name);
906e58ca 5916
c7b8f16e
JB
5917 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5918 hash_table->num_vfp11_fixes);
906e58ca 5919
c7b8f16e
JB
5920 myh = elf_link_hash_lookup
5921 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5922
c7b8f16e 5923 BFD_ASSERT (myh == NULL);
906e58ca 5924
c7b8f16e
JB
5925 bh = NULL;
5926 val = hash_table->vfp11_erratum_glue_size;
5927 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56
RM
5928 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5929 NULL, TRUE, FALSE, &bh);
c7b8f16e
JB
5930
5931 myh = (struct elf_link_hash_entry *) bh;
5932 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5933 myh->forced_local = 1;
5934
5935 /* Link veneer back to calling location. */
c7e2358a 5936 sec_data->erratumcount += 1;
21d799b5
NC
5937 newerr = (elf32_vfp11_erratum_list *)
5938 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 5939
c7b8f16e
JB
5940 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5941 newerr->vma = -1;
5942 newerr->u.v.branch = branch;
5943 newerr->u.v.id = hash_table->num_vfp11_fixes;
5944 branch->u.b.veneer = newerr;
5945
5946 newerr->next = sec_data->erratumlist;
5947 sec_data->erratumlist = newerr;
5948
5949 /* A symbol for the return from the veneer. */
5950 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5951 hash_table->num_vfp11_fixes);
5952
5953 myh = elf_link_hash_lookup
5954 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5955
c7b8f16e
JB
5956 if (myh != NULL)
5957 abort ();
5958
5959 bh = NULL;
5960 val = offset + 4;
5961 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5962 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 5963
c7b8f16e
JB
5964 myh = (struct elf_link_hash_entry *) bh;
5965 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5966 myh->forced_local = 1;
5967
5968 free (tmp_name);
906e58ca 5969
c7b8f16e
JB
5970 /* Generate a mapping symbol for the veneer section, and explicitly add an
5971 entry for that symbol to the code/data map for the section. */
5972 if (hash_table->vfp11_erratum_glue_size == 0)
5973 {
5974 bh = NULL;
5975 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 5976 ever requires this erratum fix. */
c7b8f16e
JB
5977 _bfd_generic_link_add_one_symbol (link_info,
5978 hash_table->bfd_of_glue_owner, "$a",
5979 BSF_LOCAL, s, 0, NULL,
99059e56 5980 TRUE, FALSE, &bh);
c7b8f16e
JB
5981
5982 myh = (struct elf_link_hash_entry *) bh;
5983 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5984 myh->forced_local = 1;
906e58ca 5985
c7b8f16e 5986 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
5987 BFDs. We must make a note of this generated mapping symbol
5988 ourselves so that code byteswapping works properly in
5989 elf32_arm_write_section. */
c7b8f16e
JB
5990 elf32_arm_section_map_add (s, 'a', 0);
5991 }
906e58ca 5992
c7b8f16e
JB
5993 s->size += VFP11_ERRATUM_VENEER_SIZE;
5994 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5995 hash_table->num_vfp11_fixes++;
906e58ca 5996
c7b8f16e
JB
5997 /* The offset of the veneer. */
5998 return val;
5999}
6000
8029a119 6001#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
6002 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6003 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
6004
6005/* Create a fake section for use by the ARM backend of the linker. */
6006
6007static bfd_boolean
6008arm_make_glue_section (bfd * abfd, const char * name)
6009{
6010 asection * sec;
6011
3d4d4302 6012 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
6013 if (sec != NULL)
6014 /* Already made. */
6015 return TRUE;
6016
3d4d4302 6017 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
6018
6019 if (sec == NULL
6020 || !bfd_set_section_alignment (abfd, sec, 2))
6021 return FALSE;
6022
6023 /* Set the gc mark to prevent the section from being removed by garbage
6024 collection, despite the fact that no relocs refer to this section. */
6025 sec->gc_mark = 1;
6026
6027 return TRUE;
6028}
6029
8afb0e02
NC
6030/* Add the glue sections to ABFD. This function is called from the
6031 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 6032
b34976b6 6033bfd_boolean
57e8b36a
NC
6034bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6035 struct bfd_link_info *info)
252b5132 6036{
8afb0e02
NC
6037 /* If we are only performing a partial
6038 link do not bother adding the glue. */
1049f94e 6039 if (info->relocatable)
b34976b6 6040 return TRUE;
252b5132 6041
8029a119
NC
6042 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6043 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6044 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6045 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
6046}
6047
6048/* Select a BFD to be used to hold the sections used by the glue code.
6049 This function is called from the linker scripts in ld/emultempl/
8029a119 6050 {armelf/pe}.em. */
8afb0e02 6051
b34976b6 6052bfd_boolean
57e8b36a 6053bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
6054{
6055 struct elf32_arm_link_hash_table *globals;
6056
6057 /* If we are only performing a partial link
6058 do not bother getting a bfd to hold the glue. */
1049f94e 6059 if (info->relocatable)
b34976b6 6060 return TRUE;
8afb0e02 6061
b7693d02
DJ
6062 /* Make sure we don't attach the glue sections to a dynamic object. */
6063 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6064
8afb0e02 6065 globals = elf32_arm_hash_table (info);
8afb0e02
NC
6066 BFD_ASSERT (globals != NULL);
6067
6068 if (globals->bfd_of_glue_owner != NULL)
b34976b6 6069 return TRUE;
8afb0e02 6070
252b5132
RH
6071 /* Save the bfd for later use. */
6072 globals->bfd_of_glue_owner = abfd;
cedb70c5 6073
b34976b6 6074 return TRUE;
252b5132
RH
6075}
6076
906e58ca
NC
6077static void
6078check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 6079{
2de70689
MGD
6080 int cpu_arch;
6081
b38cadfb 6082 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
6083 Tag_CPU_arch);
6084
6085 if (globals->fix_arm1176)
6086 {
6087 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6088 globals->use_blx = 1;
6089 }
6090 else
6091 {
6092 if (cpu_arch > TAG_CPU_ARCH_V4T)
6093 globals->use_blx = 1;
6094 }
39b41c9c
PB
6095}
6096
b34976b6 6097bfd_boolean
57e8b36a 6098bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 6099 struct bfd_link_info *link_info)
252b5132
RH
6100{
6101 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 6102 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
6103 Elf_Internal_Rela *irel, *irelend;
6104 bfd_byte *contents = NULL;
252b5132
RH
6105
6106 asection *sec;
6107 struct elf32_arm_link_hash_table *globals;
6108
6109 /* If we are only performing a partial link do not bother
6110 to construct any glue. */
1049f94e 6111 if (link_info->relocatable)
b34976b6 6112 return TRUE;
252b5132 6113
39ce1a6a
NC
6114 /* Here we have a bfd that is to be included on the link. We have a
6115 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 6116 globals = elf32_arm_hash_table (link_info);
252b5132 6117 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
6118
6119 check_use_blx (globals);
252b5132 6120
d504ffc8 6121 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 6122 {
d003868e
AM
6123 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6124 abfd);
e489d0ae
PB
6125 return FALSE;
6126 }
f21f3fe0 6127
39ce1a6a
NC
6128 /* PR 5398: If we have not decided to include any loadable sections in
6129 the output then we will not have a glue owner bfd. This is OK, it
6130 just means that there is nothing else for us to do here. */
6131 if (globals->bfd_of_glue_owner == NULL)
6132 return TRUE;
6133
252b5132
RH
6134 /* Rummage around all the relocs and map the glue vectors. */
6135 sec = abfd->sections;
6136
6137 if (sec == NULL)
b34976b6 6138 return TRUE;
252b5132
RH
6139
6140 for (; sec != NULL; sec = sec->next)
6141 {
6142 if (sec->reloc_count == 0)
6143 continue;
6144
2f475487
AM
6145 if ((sec->flags & SEC_EXCLUDE) != 0)
6146 continue;
6147
0ffa91dd 6148 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 6149
9b485d32 6150 /* Load the relocs. */
6cdc0ccc 6151 internal_relocs
906e58ca 6152 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 6153
6cdc0ccc
AM
6154 if (internal_relocs == NULL)
6155 goto error_return;
252b5132 6156
6cdc0ccc
AM
6157 irelend = internal_relocs + sec->reloc_count;
6158 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
6159 {
6160 long r_type;
6161 unsigned long r_index;
252b5132
RH
6162
6163 struct elf_link_hash_entry *h;
6164
6165 r_type = ELF32_R_TYPE (irel->r_info);
6166 r_index = ELF32_R_SYM (irel->r_info);
6167
9b485d32 6168 /* These are the only relocation types we care about. */
ba96a88f 6169 if ( r_type != R_ARM_PC24
845b51d6 6170 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
6171 continue;
6172
6173 /* Get the section contents if we haven't done so already. */
6174 if (contents == NULL)
6175 {
6176 /* Get cached copy if it exists. */
6177 if (elf_section_data (sec)->this_hdr.contents != NULL)
6178 contents = elf_section_data (sec)->this_hdr.contents;
6179 else
6180 {
6181 /* Go get them off disk. */
57e8b36a 6182 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
6183 goto error_return;
6184 }
6185 }
6186
845b51d6
PB
6187 if (r_type == R_ARM_V4BX)
6188 {
6189 int reg;
6190
6191 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6192 record_arm_bx_glue (link_info, reg);
6193 continue;
6194 }
6195
a7c10850 6196 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
6197 h = NULL;
6198
9b485d32 6199 /* We don't care about local symbols. */
252b5132
RH
6200 if (r_index < symtab_hdr->sh_info)
6201 continue;
6202
9b485d32 6203 /* This is an external symbol. */
252b5132
RH
6204 r_index -= symtab_hdr->sh_info;
6205 h = (struct elf_link_hash_entry *)
6206 elf_sym_hashes (abfd)[r_index];
6207
6208 /* If the relocation is against a static symbol it must be within
6209 the current section and so cannot be a cross ARM/Thumb relocation. */
6210 if (h == NULL)
6211 continue;
6212
d504ffc8
DJ
6213 /* If the call will go through a PLT entry then we do not need
6214 glue. */
362d30a1 6215 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
6216 continue;
6217
252b5132
RH
6218 switch (r_type)
6219 {
6220 case R_ARM_PC24:
6221 /* This one is a call from arm code. We need to look up
99059e56
RM
6222 the target of the call. If it is a thumb target, we
6223 insert glue. */
35fc36a8 6224 if (h->target_internal == ST_BRANCH_TO_THUMB)
252b5132
RH
6225 record_arm_to_thumb_glue (link_info, h);
6226 break;
6227
252b5132 6228 default:
c6596c5e 6229 abort ();
252b5132
RH
6230 }
6231 }
6cdc0ccc
AM
6232
6233 if (contents != NULL
6234 && elf_section_data (sec)->this_hdr.contents != contents)
6235 free (contents);
6236 contents = NULL;
6237
6238 if (internal_relocs != NULL
6239 && elf_section_data (sec)->relocs != internal_relocs)
6240 free (internal_relocs);
6241 internal_relocs = NULL;
252b5132
RH
6242 }
6243
b34976b6 6244 return TRUE;
9a5aca8c 6245
252b5132 6246error_return:
6cdc0ccc
AM
6247 if (contents != NULL
6248 && elf_section_data (sec)->this_hdr.contents != contents)
6249 free (contents);
6250 if (internal_relocs != NULL
6251 && elf_section_data (sec)->relocs != internal_relocs)
6252 free (internal_relocs);
9a5aca8c 6253
b34976b6 6254 return FALSE;
252b5132 6255}
7e392df6 6256#endif
252b5132 6257
eb043451 6258
c7b8f16e
JB
6259/* Initialise maps of ARM/Thumb/data for input BFDs. */
6260
6261void
6262bfd_elf32_arm_init_maps (bfd *abfd)
6263{
6264 Elf_Internal_Sym *isymbuf;
6265 Elf_Internal_Shdr *hdr;
6266 unsigned int i, localsyms;
6267
af1f4419
NC
6268 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6269 if (! is_arm_elf (abfd))
6270 return;
6271
c7b8f16e
JB
6272 if ((abfd->flags & DYNAMIC) != 0)
6273 return;
6274
0ffa91dd 6275 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
6276 localsyms = hdr->sh_info;
6277
6278 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6279 should contain the number of local symbols, which should come before any
6280 global symbols. Mapping symbols are always local. */
6281 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6282 NULL);
6283
6284 /* No internal symbols read? Skip this BFD. */
6285 if (isymbuf == NULL)
6286 return;
6287
6288 for (i = 0; i < localsyms; i++)
6289 {
6290 Elf_Internal_Sym *isym = &isymbuf[i];
6291 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6292 const char *name;
906e58ca 6293
c7b8f16e 6294 if (sec != NULL
99059e56
RM
6295 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6296 {
6297 name = bfd_elf_string_from_elf_section (abfd,
6298 hdr->sh_link, isym->st_name);
906e58ca 6299
99059e56 6300 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 6301 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
6302 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6303 }
c7b8f16e
JB
6304 }
6305}
6306
6307
48229727
JB
6308/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6309 say what they wanted. */
6310
6311void
6312bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6313{
6314 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6315 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6316
4dfe6ac6
NC
6317 if (globals == NULL)
6318 return;
6319
48229727
JB
6320 if (globals->fix_cortex_a8 == -1)
6321 {
6322 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6323 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6324 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6325 || out_attr[Tag_CPU_arch_profile].i == 0))
6326 globals->fix_cortex_a8 = 1;
6327 else
6328 globals->fix_cortex_a8 = 0;
6329 }
6330}
6331
6332
c7b8f16e
JB
6333void
6334bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6335{
6336 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 6337 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 6338
4dfe6ac6
NC
6339 if (globals == NULL)
6340 return;
c7b8f16e
JB
6341 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6342 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6343 {
6344 switch (globals->vfp11_fix)
99059e56
RM
6345 {
6346 case BFD_ARM_VFP11_FIX_DEFAULT:
6347 case BFD_ARM_VFP11_FIX_NONE:
6348 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6349 break;
6350
6351 default:
6352 /* Give a warning, but do as the user requests anyway. */
6353 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6354 "workaround is not necessary for target architecture"), obfd);
6355 }
c7b8f16e
JB
6356 }
6357 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6358 /* For earlier architectures, we might need the workaround, but do not
6359 enable it by default. If users is running with broken hardware, they
6360 must enable the erratum fix explicitly. */
6361 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6362}
6363
6364
906e58ca
NC
6365enum bfd_arm_vfp11_pipe
6366{
c7b8f16e
JB
6367 VFP11_FMAC,
6368 VFP11_LS,
6369 VFP11_DS,
6370 VFP11_BAD
6371};
6372
6373/* Return a VFP register number. This is encoded as RX:X for single-precision
6374 registers, or X:RX for double-precision registers, where RX is the group of
6375 four bits in the instruction encoding and X is the single extension bit.
6376 RX and X fields are specified using their lowest (starting) bit. The return
6377 value is:
6378
6379 0...31: single-precision registers s0...s31
6380 32...63: double-precision registers d0...d31.
906e58ca 6381
c7b8f16e
JB
6382 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6383 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 6384
c7b8f16e
JB
6385static unsigned int
6386bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
99059e56 6387 unsigned int x)
c7b8f16e
JB
6388{
6389 if (is_double)
6390 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6391 else
6392 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6393}
6394
6395/* Set bits in *WMASK according to a register number REG as encoded by
6396 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6397
6398static void
6399bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6400{
6401 if (reg < 32)
6402 *wmask |= 1 << reg;
6403 else if (reg < 48)
6404 *wmask |= 3 << ((reg - 32) * 2);
6405}
6406
6407/* Return TRUE if WMASK overwrites anything in REGS. */
6408
6409static bfd_boolean
6410bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6411{
6412 int i;
906e58ca 6413
c7b8f16e
JB
6414 for (i = 0; i < numregs; i++)
6415 {
6416 unsigned int reg = regs[i];
6417
6418 if (reg < 32 && (wmask & (1 << reg)) != 0)
99059e56 6419 return TRUE;
906e58ca 6420
c7b8f16e
JB
6421 reg -= 32;
6422
6423 if (reg >= 16)
99059e56 6424 continue;
906e58ca 6425
c7b8f16e 6426 if ((wmask & (3 << (reg * 2))) != 0)
99059e56 6427 return TRUE;
c7b8f16e 6428 }
906e58ca 6429
c7b8f16e
JB
6430 return FALSE;
6431}
6432
6433/* In this function, we're interested in two things: finding input registers
6434 for VFP data-processing instructions, and finding the set of registers which
6435 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6436 hold the written set, so FLDM etc. are easy to deal with (we're only
6437 interested in 32 SP registers or 16 dp registers, due to the VFP version
6438 implemented by the chip in question). DP registers are marked by setting
6439 both SP registers in the write mask). */
6440
6441static enum bfd_arm_vfp11_pipe
6442bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 6443 int *numregs)
c7b8f16e 6444{
91d6fa6a 6445 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
6446 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6447
6448 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6449 {
6450 unsigned int pqrs;
6451 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6452 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6453
6454 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
6455 | ((insn & 0x00300000) >> 19)
6456 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
6457
6458 switch (pqrs)
99059e56
RM
6459 {
6460 case 0: /* fmac[sd]. */
6461 case 1: /* fnmac[sd]. */
6462 case 2: /* fmsc[sd]. */
6463 case 3: /* fnmsc[sd]. */
6464 vpipe = VFP11_FMAC;
6465 bfd_arm_vfp11_write_mask (destmask, fd);
6466 regs[0] = fd;
6467 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6468 regs[2] = fm;
6469 *numregs = 3;
6470 break;
6471
6472 case 4: /* fmul[sd]. */
6473 case 5: /* fnmul[sd]. */
6474 case 6: /* fadd[sd]. */
6475 case 7: /* fsub[sd]. */
6476 vpipe = VFP11_FMAC;
6477 goto vfp_binop;
6478
6479 case 8: /* fdiv[sd]. */
6480 vpipe = VFP11_DS;
6481 vfp_binop:
6482 bfd_arm_vfp11_write_mask (destmask, fd);
6483 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6484 regs[1] = fm;
6485 *numregs = 2;
6486 break;
6487
6488 case 15: /* extended opcode. */
6489 {
6490 unsigned int extn = ((insn >> 15) & 0x1e)
6491 | ((insn >> 7) & 1);
6492
6493 switch (extn)
6494 {
6495 case 0: /* fcpy[sd]. */
6496 case 1: /* fabs[sd]. */
6497 case 2: /* fneg[sd]. */
6498 case 8: /* fcmp[sd]. */
6499 case 9: /* fcmpe[sd]. */
6500 case 10: /* fcmpz[sd]. */
6501 case 11: /* fcmpez[sd]. */
6502 case 16: /* fuito[sd]. */
6503 case 17: /* fsito[sd]. */
6504 case 24: /* ftoui[sd]. */
6505 case 25: /* ftouiz[sd]. */
6506 case 26: /* ftosi[sd]. */
6507 case 27: /* ftosiz[sd]. */
6508 /* These instructions will not bounce due to underflow. */
6509 *numregs = 0;
6510 vpipe = VFP11_FMAC;
6511 break;
6512
6513 case 3: /* fsqrt[sd]. */
6514 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6515 registers to cause the erratum in previous instructions. */
6516 bfd_arm_vfp11_write_mask (destmask, fd);
6517 vpipe = VFP11_DS;
6518 break;
6519
6520 case 15: /* fcvt{ds,sd}. */
6521 {
6522 int rnum = 0;
6523
6524 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
6525
6526 /* Only FCVTSD can underflow. */
99059e56
RM
6527 if ((insn & 0x100) != 0)
6528 regs[rnum++] = fm;
c7b8f16e 6529
99059e56 6530 *numregs = rnum;
c7b8f16e 6531
99059e56
RM
6532 vpipe = VFP11_FMAC;
6533 }
6534 break;
c7b8f16e 6535
99059e56
RM
6536 default:
6537 return VFP11_BAD;
6538 }
6539 }
6540 break;
c7b8f16e 6541
99059e56
RM
6542 default:
6543 return VFP11_BAD;
6544 }
c7b8f16e
JB
6545 }
6546 /* Two-register transfer. */
6547 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6548 {
6549 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 6550
c7b8f16e
JB
6551 if ((insn & 0x100000) == 0)
6552 {
99059e56
RM
6553 if (is_double)
6554 bfd_arm_vfp11_write_mask (destmask, fm);
6555 else
6556 {
6557 bfd_arm_vfp11_write_mask (destmask, fm);
6558 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6559 }
c7b8f16e
JB
6560 }
6561
91d6fa6a 6562 vpipe = VFP11_LS;
c7b8f16e
JB
6563 }
6564 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6565 {
6566 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6567 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 6568
c7b8f16e 6569 switch (puw)
99059e56
RM
6570 {
6571 case 0: /* Two-reg transfer. We should catch these above. */
6572 abort ();
906e58ca 6573
99059e56
RM
6574 case 2: /* fldm[sdx]. */
6575 case 3:
6576 case 5:
6577 {
6578 unsigned int i, offset = insn & 0xff;
c7b8f16e 6579
99059e56
RM
6580 if (is_double)
6581 offset >>= 1;
c7b8f16e 6582
99059e56
RM
6583 for (i = fd; i < fd + offset; i++)
6584 bfd_arm_vfp11_write_mask (destmask, i);
6585 }
6586 break;
906e58ca 6587
99059e56
RM
6588 case 4: /* fld[sd]. */
6589 case 6:
6590 bfd_arm_vfp11_write_mask (destmask, fd);
6591 break;
906e58ca 6592
99059e56
RM
6593 default:
6594 return VFP11_BAD;
6595 }
c7b8f16e 6596
91d6fa6a 6597 vpipe = VFP11_LS;
c7b8f16e
JB
6598 }
6599 /* Single-register transfer. Note L==0. */
6600 else if ((insn & 0x0f100e10) == 0x0e000a10)
6601 {
6602 unsigned int opcode = (insn >> 21) & 7;
6603 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6604
6605 switch (opcode)
99059e56
RM
6606 {
6607 case 0: /* fmsr/fmdlr. */
6608 case 1: /* fmdhr. */
6609 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6610 destination register. I don't know if this is exactly right,
6611 but it is the conservative choice. */
6612 bfd_arm_vfp11_write_mask (destmask, fn);
6613 break;
6614
6615 case 7: /* fmxr. */
6616 break;
6617 }
c7b8f16e 6618
91d6fa6a 6619 vpipe = VFP11_LS;
c7b8f16e
JB
6620 }
6621
91d6fa6a 6622 return vpipe;
c7b8f16e
JB
6623}
6624
6625
6626static int elf32_arm_compare_mapping (const void * a, const void * b);
6627
6628
6629/* Look for potentially-troublesome code sequences which might trigger the
6630 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6631 (available from ARM) for details of the erratum. A short version is
6632 described in ld.texinfo. */
6633
6634bfd_boolean
6635bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6636{
6637 asection *sec;
6638 bfd_byte *contents = NULL;
6639 int state = 0;
6640 int regs[3], numregs = 0;
6641 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6642 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 6643
4dfe6ac6
NC
6644 if (globals == NULL)
6645 return FALSE;
6646
c7b8f16e
JB
6647 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6648 The states transition as follows:
906e58ca 6649
c7b8f16e 6650 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
6651 A VFP FMAC-pipeline instruction has been seen. Fill
6652 regs[0]..regs[numregs-1] with its input operands. Remember this
6653 instruction in 'first_fmac'.
c7b8f16e
JB
6654
6655 1 -> 2
99059e56
RM
6656 Any instruction, except for a VFP instruction which overwrites
6657 regs[*].
906e58ca 6658
c7b8f16e
JB
6659 1 -> 3 [ -> 0 ] or
6660 2 -> 3 [ -> 0 ]
99059e56
RM
6661 A VFP instruction has been seen which overwrites any of regs[*].
6662 We must make a veneer! Reset state to 0 before examining next
6663 instruction.
906e58ca 6664
c7b8f16e 6665 2 -> 0
99059e56
RM
6666 If we fail to match anything in state 2, reset to state 0 and reset
6667 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
6668
6669 If the VFP11 vector mode is in use, there must be at least two unrelated
6670 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 6671 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
6672
6673 /* If we are only performing a partial link do not bother
6674 to construct any glue. */
6675 if (link_info->relocatable)
6676 return TRUE;
6677
0ffa91dd
NC
6678 /* Skip if this bfd does not correspond to an ELF image. */
6679 if (! is_arm_elf (abfd))
6680 return TRUE;
906e58ca 6681
c7b8f16e
JB
6682 /* We should have chosen a fix type by the time we get here. */
6683 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6684
6685 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6686 return TRUE;
2e6030b9 6687
33a7ffc2
JM
6688 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6689 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6690 return TRUE;
6691
c7b8f16e
JB
6692 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6693 {
6694 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6695 struct _arm_elf_section_data *sec_data;
6696
6697 /* If we don't have executable progbits, we're not interested in this
99059e56 6698 section. Also skip if section is to be excluded. */
c7b8f16e 6699 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
6700 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6701 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 6702 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 6703 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
6704 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6705 continue;
c7b8f16e
JB
6706
6707 sec_data = elf32_arm_section_data (sec);
906e58ca 6708
c7b8f16e 6709 if (sec_data->mapcount == 0)
99059e56 6710 continue;
906e58ca 6711
c7b8f16e
JB
6712 if (elf_section_data (sec)->this_hdr.contents != NULL)
6713 contents = elf_section_data (sec)->this_hdr.contents;
6714 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6715 goto error_return;
6716
6717 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6718 elf32_arm_compare_mapping);
6719
6720 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
6721 {
6722 unsigned int span_start = sec_data->map[span].vma;
6723 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 6724 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
6725 char span_type = sec_data->map[span].type;
6726
6727 /* FIXME: Only ARM mode is supported at present. We may need to
6728 support Thumb-2 mode also at some point. */
6729 if (span_type != 'a')
6730 continue;
6731
6732 for (i = span_start; i < span_end;)
6733 {
6734 unsigned int next_i = i + 4;
6735 unsigned int insn = bfd_big_endian (abfd)
6736 ? (contents[i] << 24)
6737 | (contents[i + 1] << 16)
6738 | (contents[i + 2] << 8)
6739 | contents[i + 3]
6740 : (contents[i + 3] << 24)
6741 | (contents[i + 2] << 16)
6742 | (contents[i + 1] << 8)
6743 | contents[i];
6744 unsigned int writemask = 0;
6745 enum bfd_arm_vfp11_pipe vpipe;
6746
6747 switch (state)
6748 {
6749 case 0:
6750 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6751 &numregs);
6752 /* I'm assuming the VFP11 erratum can trigger with denorm
6753 operands on either the FMAC or the DS pipeline. This might
6754 lead to slightly overenthusiastic veneer insertion. */
6755 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6756 {
6757 state = use_vector ? 1 : 2;
6758 first_fmac = i;
6759 veneer_of_insn = insn;
6760 }
6761 break;
6762
6763 case 1:
6764 {
6765 int other_regs[3], other_numregs;
6766 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 6767 other_regs,
99059e56
RM
6768 &other_numregs);
6769 if (vpipe != VFP11_BAD
6770 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 6771 numregs))
99059e56
RM
6772 state = 3;
6773 else
6774 state = 2;
6775 }
6776 break;
6777
6778 case 2:
6779 {
6780 int other_regs[3], other_numregs;
6781 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 6782 other_regs,
99059e56
RM
6783 &other_numregs);
6784 if (vpipe != VFP11_BAD
6785 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 6786 numregs))
99059e56
RM
6787 state = 3;
6788 else
6789 {
6790 state = 0;
6791 next_i = first_fmac + 4;
6792 }
6793 }
6794 break;
6795
6796 case 3:
6797 abort (); /* Should be unreachable. */
6798 }
6799
6800 if (state == 3)
6801 {
6802 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6803 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6804
6805 elf32_arm_section_data (sec)->erratumcount += 1;
6806
6807 newerr->u.b.vfp_insn = veneer_of_insn;
6808
6809 switch (span_type)
6810 {
6811 case 'a':
6812 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6813 break;
6814
6815 default:
6816 abort ();
6817 }
6818
6819 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
6820 first_fmac);
6821
99059e56 6822 newerr->vma = -1;
c7b8f16e 6823
99059e56
RM
6824 newerr->next = sec_data->erratumlist;
6825 sec_data->erratumlist = newerr;
c7b8f16e 6826
99059e56
RM
6827 state = 0;
6828 }
c7b8f16e 6829
99059e56
RM
6830 i = next_i;
6831 }
6832 }
906e58ca 6833
c7b8f16e 6834 if (contents != NULL
99059e56
RM
6835 && elf_section_data (sec)->this_hdr.contents != contents)
6836 free (contents);
c7b8f16e
JB
6837 contents = NULL;
6838 }
6839
6840 return TRUE;
6841
6842error_return:
6843 if (contents != NULL
6844 && elf_section_data (sec)->this_hdr.contents != contents)
6845 free (contents);
906e58ca 6846
c7b8f16e
JB
6847 return FALSE;
6848}
6849
6850/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6851 after sections have been laid out, using specially-named symbols. */
6852
6853void
6854bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6855 struct bfd_link_info *link_info)
6856{
6857 asection *sec;
6858 struct elf32_arm_link_hash_table *globals;
6859 char *tmp_name;
906e58ca 6860
c7b8f16e
JB
6861 if (link_info->relocatable)
6862 return;
2e6030b9
MS
6863
6864 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 6865 if (! is_arm_elf (abfd))
2e6030b9
MS
6866 return;
6867
c7b8f16e 6868 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6869 if (globals == NULL)
6870 return;
906e58ca 6871
21d799b5 6872 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 6873 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
6874
6875 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6876 {
6877 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6878 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 6879
c7b8f16e 6880 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
6881 {
6882 struct elf_link_hash_entry *myh;
6883 bfd_vma vma;
6884
6885 switch (errnode->type)
6886 {
6887 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6888 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6889 /* Find veneer symbol. */
6890 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
6891 errnode->u.b.veneer->u.v.id);
6892
99059e56
RM
6893 myh = elf_link_hash_lookup
6894 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 6895
99059e56
RM
6896 if (myh == NULL)
6897 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6898 "`%s'"), abfd, tmp_name);
c7b8f16e 6899
99059e56
RM
6900 vma = myh->root.u.def.section->output_section->vma
6901 + myh->root.u.def.section->output_offset
6902 + myh->root.u.def.value;
c7b8f16e 6903
99059e56
RM
6904 errnode->u.b.veneer->vma = vma;
6905 break;
c7b8f16e
JB
6906
6907 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
6908 case VFP11_ERRATUM_THUMB_VENEER:
6909 /* Find return location. */
6910 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6911 errnode->u.v.id);
c7b8f16e 6912
99059e56
RM
6913 myh = elf_link_hash_lookup
6914 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 6915
99059e56
RM
6916 if (myh == NULL)
6917 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
c7b8f16e
JB
6918 "`%s'"), abfd, tmp_name);
6919
99059e56
RM
6920 vma = myh->root.u.def.section->output_section->vma
6921 + myh->root.u.def.section->output_offset
6922 + myh->root.u.def.value;
c7b8f16e 6923
99059e56
RM
6924 errnode->u.v.branch->vma = vma;
6925 break;
906e58ca 6926
99059e56
RM
6927 default:
6928 abort ();
6929 }
6930 }
c7b8f16e 6931 }
906e58ca 6932
c7b8f16e
JB
6933 free (tmp_name);
6934}
6935
6936
eb043451
PB
6937/* Set target relocation values needed during linking. */
6938
6939void
bf21ed78
MS
6940bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6941 struct bfd_link_info *link_info,
eb043451 6942 int target1_is_rel,
319850b4 6943 char * target2_type,
99059e56 6944 int fix_v4bx,
c7b8f16e 6945 int use_blx,
99059e56 6946 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481 6947 int no_enum_warn, int no_wchar_warn,
2de70689
MGD
6948 int pic_veneer, int fix_cortex_a8,
6949 int fix_arm1176)
eb043451
PB
6950{
6951 struct elf32_arm_link_hash_table *globals;
6952
6953 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6954 if (globals == NULL)
6955 return;
eb043451
PB
6956
6957 globals->target1_is_rel = target1_is_rel;
6958 if (strcmp (target2_type, "rel") == 0)
6959 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
6960 else if (strcmp (target2_type, "abs") == 0)
6961 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
6962 else if (strcmp (target2_type, "got-rel") == 0)
6963 globals->target2_reloc = R_ARM_GOT_PREL;
6964 else
6965 {
6966 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6967 target2_type);
6968 }
319850b4 6969 globals->fix_v4bx = fix_v4bx;
33bfe774 6970 globals->use_blx |= use_blx;
c7b8f16e 6971 globals->vfp11_fix = vfp11_fix;
27e55c4d 6972 globals->pic_veneer = pic_veneer;
48229727 6973 globals->fix_cortex_a8 = fix_cortex_a8;
2de70689 6974 globals->fix_arm1176 = fix_arm1176;
bf21ed78 6975
0ffa91dd
NC
6976 BFD_ASSERT (is_arm_elf (output_bfd));
6977 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 6978 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 6979}
eb043451 6980
12a0a0fd 6981/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 6982
12a0a0fd
PB
6983static void
6984insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6985{
6986 bfd_vma upper;
6987 bfd_vma lower;
6988 int reloc_sign;
6989
6990 BFD_ASSERT ((offset & 1) == 0);
6991
6992 upper = bfd_get_16 (abfd, insn);
6993 lower = bfd_get_16 (abfd, insn + 2);
6994 reloc_sign = (offset < 0) ? 1 : 0;
6995 upper = (upper & ~(bfd_vma) 0x7ff)
6996 | ((offset >> 12) & 0x3ff)
6997 | (reloc_sign << 10);
906e58ca 6998 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
6999 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7000 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7001 | ((offset >> 1) & 0x7ff);
7002 bfd_put_16 (abfd, upper, insn);
7003 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
7004}
7005
9b485d32
NC
7006/* Thumb code calling an ARM function. */
7007
252b5132 7008static int
57e8b36a
NC
7009elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7010 const char * name,
7011 bfd * input_bfd,
7012 bfd * output_bfd,
7013 asection * input_section,
7014 bfd_byte * hit_data,
7015 asection * sym_sec,
7016 bfd_vma offset,
7017 bfd_signed_vma addend,
f2a9dd69
DJ
7018 bfd_vma val,
7019 char **error_message)
252b5132 7020{
bcbdc74c 7021 asection * s = 0;
dc810e39 7022 bfd_vma my_offset;
252b5132 7023 long int ret_offset;
bcbdc74c
NC
7024 struct elf_link_hash_entry * myh;
7025 struct elf32_arm_link_hash_table * globals;
252b5132 7026
f2a9dd69 7027 myh = find_thumb_glue (info, name, error_message);
252b5132 7028 if (myh == NULL)
b34976b6 7029 return FALSE;
252b5132
RH
7030
7031 globals = elf32_arm_hash_table (info);
252b5132
RH
7032 BFD_ASSERT (globals != NULL);
7033 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7034
7035 my_offset = myh->root.u.def.value;
7036
3d4d4302
AM
7037 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7038 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
7039
7040 BFD_ASSERT (s != NULL);
7041 BFD_ASSERT (s->contents != NULL);
7042 BFD_ASSERT (s->output_section != NULL);
7043
7044 if ((my_offset & 0x01) == 0x01)
7045 {
7046 if (sym_sec != NULL
7047 && sym_sec->owner != NULL
7048 && !INTERWORK_FLAG (sym_sec->owner))
7049 {
8f615d07 7050 (*_bfd_error_handler)
d003868e 7051 (_("%B(%s): warning: interworking not enabled.\n"
3aaeb7d3 7052 " first occurrence: %B: Thumb call to ARM"),
d003868e 7053 sym_sec->owner, input_bfd, name);
252b5132 7054
b34976b6 7055 return FALSE;
252b5132
RH
7056 }
7057
7058 --my_offset;
7059 myh->root.u.def.value = my_offset;
7060
52ab56c2
PB
7061 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7062 s->contents + my_offset);
252b5132 7063
52ab56c2
PB
7064 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7065 s->contents + my_offset + 2);
252b5132
RH
7066
7067 ret_offset =
9b485d32
NC
7068 /* Address of destination of the stub. */
7069 ((bfd_signed_vma) val)
252b5132 7070 - ((bfd_signed_vma)
57e8b36a
NC
7071 /* Offset from the start of the current section
7072 to the start of the stubs. */
9b485d32
NC
7073 (s->output_offset
7074 /* Offset of the start of this stub from the start of the stubs. */
7075 + my_offset
7076 /* Address of the start of the current section. */
7077 + s->output_section->vma)
7078 /* The branch instruction is 4 bytes into the stub. */
7079 + 4
7080 /* ARM branches work from the pc of the instruction + 8. */
7081 + 8);
252b5132 7082
52ab56c2
PB
7083 put_arm_insn (globals, output_bfd,
7084 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7085 s->contents + my_offset + 4);
252b5132
RH
7086 }
7087
7088 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7089
427bfd90
NC
7090 /* Now go back and fix up the original BL insn to point to here. */
7091 ret_offset =
7092 /* Address of where the stub is located. */
7093 (s->output_section->vma + s->output_offset + my_offset)
7094 /* Address of where the BL is located. */
57e8b36a
NC
7095 - (input_section->output_section->vma + input_section->output_offset
7096 + offset)
427bfd90
NC
7097 /* Addend in the relocation. */
7098 - addend
7099 /* Biassing for PC-relative addressing. */
7100 - 8;
252b5132 7101
12a0a0fd 7102 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 7103
b34976b6 7104 return TRUE;
252b5132
RH
7105}
7106
a4fd1a8e 7107/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 7108
a4fd1a8e
PB
7109static struct elf_link_hash_entry *
7110elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7111 const char * name,
7112 bfd * input_bfd,
7113 bfd * output_bfd,
7114 asection * sym_sec,
7115 bfd_vma val,
8029a119
NC
7116 asection * s,
7117 char ** error_message)
252b5132 7118{
dc810e39 7119 bfd_vma my_offset;
252b5132 7120 long int ret_offset;
bcbdc74c
NC
7121 struct elf_link_hash_entry * myh;
7122 struct elf32_arm_link_hash_table * globals;
252b5132 7123
f2a9dd69 7124 myh = find_arm_glue (info, name, error_message);
252b5132 7125 if (myh == NULL)
a4fd1a8e 7126 return NULL;
252b5132
RH
7127
7128 globals = elf32_arm_hash_table (info);
252b5132
RH
7129 BFD_ASSERT (globals != NULL);
7130 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7131
7132 my_offset = myh->root.u.def.value;
252b5132
RH
7133
7134 if ((my_offset & 0x01) == 0x01)
7135 {
7136 if (sym_sec != NULL
7137 && sym_sec->owner != NULL
7138 && !INTERWORK_FLAG (sym_sec->owner))
7139 {
8f615d07 7140 (*_bfd_error_handler)
d003868e
AM
7141 (_("%B(%s): warning: interworking not enabled.\n"
7142 " first occurrence: %B: arm call to thumb"),
7143 sym_sec->owner, input_bfd, name);
252b5132 7144 }
9b485d32 7145
252b5132
RH
7146 --my_offset;
7147 myh->root.u.def.value = my_offset;
7148
27e55c4d
PB
7149 if (info->shared || globals->root.is_relocatable_executable
7150 || globals->pic_veneer)
8f6277f5
PB
7151 {
7152 /* For relocatable objects we can't use absolute addresses,
7153 so construct the address from a relative offset. */
7154 /* TODO: If the offset is small it's probably worth
7155 constructing the address with adds. */
52ab56c2
PB
7156 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7157 s->contents + my_offset);
7158 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7159 s->contents + my_offset + 4);
7160 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7161 s->contents + my_offset + 8);
8f6277f5
PB
7162 /* Adjust the offset by 4 for the position of the add,
7163 and 8 for the pipeline offset. */
7164 ret_offset = (val - (s->output_offset
7165 + s->output_section->vma
7166 + my_offset + 12))
7167 | 1;
7168 bfd_put_32 (output_bfd, ret_offset,
7169 s->contents + my_offset + 12);
7170 }
26079076
PB
7171 else if (globals->use_blx)
7172 {
7173 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7174 s->contents + my_offset);
7175
7176 /* It's a thumb address. Add the low order bit. */
7177 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7178 s->contents + my_offset + 4);
7179 }
8f6277f5
PB
7180 else
7181 {
52ab56c2
PB
7182 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7183 s->contents + my_offset);
252b5132 7184
52ab56c2
PB
7185 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7186 s->contents + my_offset + 4);
252b5132 7187
8f6277f5
PB
7188 /* It's a thumb address. Add the low order bit. */
7189 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7190 s->contents + my_offset + 8);
8029a119
NC
7191
7192 my_offset += 12;
8f6277f5 7193 }
252b5132
RH
7194 }
7195
7196 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7197
a4fd1a8e
PB
7198 return myh;
7199}
7200
7201/* Arm code calling a Thumb function. */
7202
7203static int
7204elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7205 const char * name,
7206 bfd * input_bfd,
7207 bfd * output_bfd,
7208 asection * input_section,
7209 bfd_byte * hit_data,
7210 asection * sym_sec,
7211 bfd_vma offset,
7212 bfd_signed_vma addend,
f2a9dd69
DJ
7213 bfd_vma val,
7214 char **error_message)
a4fd1a8e
PB
7215{
7216 unsigned long int tmp;
7217 bfd_vma my_offset;
7218 asection * s;
7219 long int ret_offset;
7220 struct elf_link_hash_entry * myh;
7221 struct elf32_arm_link_hash_table * globals;
7222
7223 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
7224 BFD_ASSERT (globals != NULL);
7225 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7226
3d4d4302
AM
7227 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7228 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
7229 BFD_ASSERT (s != NULL);
7230 BFD_ASSERT (s->contents != NULL);
7231 BFD_ASSERT (s->output_section != NULL);
7232
7233 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 7234 sym_sec, val, s, error_message);
a4fd1a8e
PB
7235 if (!myh)
7236 return FALSE;
7237
7238 my_offset = myh->root.u.def.value;
252b5132
RH
7239 tmp = bfd_get_32 (input_bfd, hit_data);
7240 tmp = tmp & 0xFF000000;
7241
9b485d32 7242 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
7243 ret_offset = (s->output_offset
7244 + my_offset
7245 + s->output_section->vma
7246 - (input_section->output_offset
7247 + input_section->output_section->vma
7248 + offset + addend)
7249 - 8);
9a5aca8c 7250
252b5132
RH
7251 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7252
dc810e39 7253 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 7254
b34976b6 7255 return TRUE;
252b5132
RH
7256}
7257
a4fd1a8e
PB
7258/* Populate Arm stub for an exported Thumb function. */
7259
7260static bfd_boolean
7261elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7262{
7263 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7264 asection * s;
7265 struct elf_link_hash_entry * myh;
7266 struct elf32_arm_link_hash_entry *eh;
7267 struct elf32_arm_link_hash_table * globals;
7268 asection *sec;
7269 bfd_vma val;
f2a9dd69 7270 char *error_message;
a4fd1a8e 7271
906e58ca 7272 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
7273 /* Allocate stubs for exported Thumb functions on v4t. */
7274 if (eh->export_glue == NULL)
7275 return TRUE;
7276
7277 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
7278 BFD_ASSERT (globals != NULL);
7279 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7280
3d4d4302
AM
7281 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7282 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
7283 BFD_ASSERT (s != NULL);
7284 BFD_ASSERT (s->contents != NULL);
7285 BFD_ASSERT (s->output_section != NULL);
7286
7287 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
7288
7289 BFD_ASSERT (sec->output_section != NULL);
7290
a4fd1a8e
PB
7291 val = eh->export_glue->root.u.def.value + sec->output_offset
7292 + sec->output_section->vma;
8029a119 7293
a4fd1a8e
PB
7294 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7295 h->root.u.def.section->owner,
f2a9dd69
DJ
7296 globals->obfd, sec, val, s,
7297 &error_message);
a4fd1a8e
PB
7298 BFD_ASSERT (myh);
7299 return TRUE;
7300}
7301
845b51d6
PB
7302/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7303
7304static bfd_vma
7305elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7306{
7307 bfd_byte *p;
7308 bfd_vma glue_addr;
7309 asection *s;
7310 struct elf32_arm_link_hash_table *globals;
7311
7312 globals = elf32_arm_hash_table (info);
845b51d6
PB
7313 BFD_ASSERT (globals != NULL);
7314 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7315
3d4d4302
AM
7316 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7317 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
7318 BFD_ASSERT (s != NULL);
7319 BFD_ASSERT (s->contents != NULL);
7320 BFD_ASSERT (s->output_section != NULL);
7321
7322 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7323
7324 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7325
7326 if ((globals->bx_glue_offset[reg] & 1) == 0)
7327 {
7328 p = s->contents + glue_addr;
7329 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7330 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7331 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7332 globals->bx_glue_offset[reg] |= 1;
7333 }
7334
7335 return glue_addr + s->output_section->vma + s->output_offset;
7336}
7337
a4fd1a8e
PB
7338/* Generate Arm stubs for exported Thumb symbols. */
7339static void
906e58ca 7340elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
7341 struct bfd_link_info *link_info)
7342{
7343 struct elf32_arm_link_hash_table * globals;
7344
8029a119
NC
7345 if (link_info == NULL)
7346 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
7347 return;
7348
7349 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7350 if (globals == NULL)
7351 return;
7352
84c08195
PB
7353 /* If blx is available then exported Thumb symbols are OK and there is
7354 nothing to do. */
a4fd1a8e
PB
7355 if (globals->use_blx)
7356 return;
7357
7358 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7359 link_info);
7360}
7361
47beaa6a
RS
7362/* Reserve space for COUNT dynamic relocations in relocation selection
7363 SRELOC. */
7364
7365static void
7366elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7367 bfd_size_type count)
7368{
7369 struct elf32_arm_link_hash_table *htab;
7370
7371 htab = elf32_arm_hash_table (info);
7372 BFD_ASSERT (htab->root.dynamic_sections_created);
7373 if (sreloc == NULL)
7374 abort ();
7375 sreloc->size += RELOC_SIZE (htab) * count;
7376}
7377
34e77a92
RS
7378/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7379 dynamic, the relocations should go in SRELOC, otherwise they should
7380 go in the special .rel.iplt section. */
7381
7382static void
7383elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7384 bfd_size_type count)
7385{
7386 struct elf32_arm_link_hash_table *htab;
7387
7388 htab = elf32_arm_hash_table (info);
7389 if (!htab->root.dynamic_sections_created)
7390 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7391 else
7392 {
7393 BFD_ASSERT (sreloc != NULL);
7394 sreloc->size += RELOC_SIZE (htab) * count;
7395 }
7396}
7397
47beaa6a
RS
7398/* Add relocation REL to the end of relocation section SRELOC. */
7399
7400static void
7401elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7402 asection *sreloc, Elf_Internal_Rela *rel)
7403{
7404 bfd_byte *loc;
7405 struct elf32_arm_link_hash_table *htab;
7406
7407 htab = elf32_arm_hash_table (info);
34e77a92
RS
7408 if (!htab->root.dynamic_sections_created
7409 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7410 sreloc = htab->root.irelplt;
47beaa6a
RS
7411 if (sreloc == NULL)
7412 abort ();
7413 loc = sreloc->contents;
7414 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7415 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7416 abort ();
7417 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7418}
7419
34e77a92
RS
7420/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7421 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7422 to .plt. */
7423
7424static void
7425elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7426 bfd_boolean is_iplt_entry,
7427 union gotplt_union *root_plt,
7428 struct arm_plt_info *arm_plt)
7429{
7430 struct elf32_arm_link_hash_table *htab;
7431 asection *splt;
7432 asection *sgotplt;
7433
7434 htab = elf32_arm_hash_table (info);
7435
7436 if (is_iplt_entry)
7437 {
7438 splt = htab->root.iplt;
7439 sgotplt = htab->root.igotplt;
7440
99059e56
RM
7441 /* NaCl uses a special first entry in .iplt too. */
7442 if (htab->nacl_p && splt->size == 0)
7443 splt->size += htab->plt_header_size;
7444
34e77a92
RS
7445 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7446 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7447 }
7448 else
7449 {
7450 splt = htab->root.splt;
7451 sgotplt = htab->root.sgotplt;
7452
7453 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7454 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7455
7456 /* If this is the first .plt entry, make room for the special
7457 first entry. */
7458 if (splt->size == 0)
7459 splt->size += htab->plt_header_size;
7460 }
7461
7462 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7463 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7464 splt->size += PLT_THUMB_STUB_SIZE;
7465 root_plt->offset = splt->size;
7466 splt->size += htab->plt_entry_size;
7467
7468 if (!htab->symbian_p)
7469 {
7470 /* We also need to make an entry in the .got.plt section, which
7471 will be placed in the .got section by the linker script. */
7472 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7473 sgotplt->size += 4;
7474 }
7475}
7476
b38cadfb
NC
7477static bfd_vma
7478arm_movw_immediate (bfd_vma value)
7479{
7480 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7481}
7482
7483static bfd_vma
7484arm_movt_immediate (bfd_vma value)
7485{
7486 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7487}
7488
34e77a92
RS
7489/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7490 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7491 Otherwise, DYNINDX is the index of the symbol in the dynamic
7492 symbol table and SYM_VALUE is undefined.
7493
7494 ROOT_PLT points to the offset of the PLT entry from the start of its
7495 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7496 bookkeeping information. */
7497
7498static void
7499elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7500 union gotplt_union *root_plt,
7501 struct arm_plt_info *arm_plt,
7502 int dynindx, bfd_vma sym_value)
7503{
7504 struct elf32_arm_link_hash_table *htab;
7505 asection *sgot;
7506 asection *splt;
7507 asection *srel;
7508 bfd_byte *loc;
7509 bfd_vma plt_index;
7510 Elf_Internal_Rela rel;
7511 bfd_vma plt_header_size;
7512 bfd_vma got_header_size;
7513
7514 htab = elf32_arm_hash_table (info);
7515
7516 /* Pick the appropriate sections and sizes. */
7517 if (dynindx == -1)
7518 {
7519 splt = htab->root.iplt;
7520 sgot = htab->root.igotplt;
7521 srel = htab->root.irelplt;
7522
7523 /* There are no reserved entries in .igot.plt, and no special
7524 first entry in .iplt. */
7525 got_header_size = 0;
7526 plt_header_size = 0;
7527 }
7528 else
7529 {
7530 splt = htab->root.splt;
7531 sgot = htab->root.sgotplt;
7532 srel = htab->root.srelplt;
7533
7534 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7535 plt_header_size = htab->plt_header_size;
7536 }
7537 BFD_ASSERT (splt != NULL && srel != NULL);
7538
7539 /* Fill in the entry in the procedure linkage table. */
7540 if (htab->symbian_p)
7541 {
7542 BFD_ASSERT (dynindx >= 0);
7543 put_arm_insn (htab, output_bfd,
7544 elf32_arm_symbian_plt_entry[0],
7545 splt->contents + root_plt->offset);
7546 bfd_put_32 (output_bfd,
7547 elf32_arm_symbian_plt_entry[1],
7548 splt->contents + root_plt->offset + 4);
7549
7550 /* Fill in the entry in the .rel.plt section. */
7551 rel.r_offset = (splt->output_section->vma
7552 + splt->output_offset
7553 + root_plt->offset + 4);
7554 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7555
7556 /* Get the index in the procedure linkage table which
7557 corresponds to this symbol. This is the index of this symbol
7558 in all the symbols for which we are making plt entries. The
7559 first entry in the procedure linkage table is reserved. */
7560 plt_index = ((root_plt->offset - plt_header_size)
7561 / htab->plt_entry_size);
7562 }
7563 else
7564 {
7565 bfd_vma got_offset, got_address, plt_address;
7566 bfd_vma got_displacement, initial_got_entry;
7567 bfd_byte * ptr;
7568
7569 BFD_ASSERT (sgot != NULL);
7570
7571 /* Get the offset into the .(i)got.plt table of the entry that
7572 corresponds to this function. */
7573 got_offset = (arm_plt->got_offset & -2);
7574
7575 /* Get the index in the procedure linkage table which
7576 corresponds to this symbol. This is the index of this symbol
7577 in all the symbols for which we are making plt entries.
7578 After the reserved .got.plt entries, all symbols appear in
7579 the same order as in .plt. */
7580 plt_index = (got_offset - got_header_size) / 4;
7581
7582 /* Calculate the address of the GOT entry. */
7583 got_address = (sgot->output_section->vma
7584 + sgot->output_offset
7585 + got_offset);
7586
7587 /* ...and the address of the PLT entry. */
7588 plt_address = (splt->output_section->vma
7589 + splt->output_offset
7590 + root_plt->offset);
7591
7592 ptr = splt->contents + root_plt->offset;
7593 if (htab->vxworks_p && info->shared)
7594 {
7595 unsigned int i;
7596 bfd_vma val;
7597
7598 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7599 {
7600 val = elf32_arm_vxworks_shared_plt_entry[i];
7601 if (i == 2)
7602 val |= got_address - sgot->output_section->vma;
7603 if (i == 5)
7604 val |= plt_index * RELOC_SIZE (htab);
7605 if (i == 2 || i == 5)
7606 bfd_put_32 (output_bfd, val, ptr);
7607 else
7608 put_arm_insn (htab, output_bfd, val, ptr);
7609 }
7610 }
7611 else if (htab->vxworks_p)
7612 {
7613 unsigned int i;
7614 bfd_vma val;
7615
7616 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7617 {
7618 val = elf32_arm_vxworks_exec_plt_entry[i];
7619 if (i == 2)
7620 val |= got_address;
7621 if (i == 4)
7622 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7623 if (i == 5)
7624 val |= plt_index * RELOC_SIZE (htab);
7625 if (i == 2 || i == 5)
7626 bfd_put_32 (output_bfd, val, ptr);
7627 else
7628 put_arm_insn (htab, output_bfd, val, ptr);
7629 }
7630
7631 loc = (htab->srelplt2->contents
7632 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7633
7634 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7635 referencing the GOT for this PLT entry. */
7636 rel.r_offset = plt_address + 8;
7637 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7638 rel.r_addend = got_offset;
7639 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7640 loc += RELOC_SIZE (htab);
7641
7642 /* Create the R_ARM_ABS32 relocation referencing the
7643 beginning of the PLT for this GOT entry. */
7644 rel.r_offset = got_address;
7645 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7646 rel.r_addend = 0;
7647 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7648 }
b38cadfb
NC
7649 else if (htab->nacl_p)
7650 {
7651 /* Calculate the displacement between the PLT slot and the
7652 common tail that's part of the special initial PLT slot. */
6034aab8 7653 int32_t tail_displacement
b38cadfb
NC
7654 = ((splt->output_section->vma + splt->output_offset
7655 + ARM_NACL_PLT_TAIL_OFFSET)
7656 - (plt_address + htab->plt_entry_size + 4));
7657 BFD_ASSERT ((tail_displacement & 3) == 0);
7658 tail_displacement >>= 2;
7659
7660 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7661 || (-tail_displacement & 0xff000000) == 0);
7662
7663 /* Calculate the displacement between the PLT slot and the entry
7664 in the GOT. The offset accounts for the value produced by
7665 adding to pc in the penultimate instruction of the PLT stub. */
6034aab8 7666 got_displacement = (got_address
99059e56 7667 - (plt_address + htab->plt_entry_size));
b38cadfb
NC
7668
7669 /* NaCl does not support interworking at all. */
7670 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7671
7672 put_arm_insn (htab, output_bfd,
7673 elf32_arm_nacl_plt_entry[0]
7674 | arm_movw_immediate (got_displacement),
7675 ptr + 0);
7676 put_arm_insn (htab, output_bfd,
7677 elf32_arm_nacl_plt_entry[1]
7678 | arm_movt_immediate (got_displacement),
7679 ptr + 4);
7680 put_arm_insn (htab, output_bfd,
7681 elf32_arm_nacl_plt_entry[2],
7682 ptr + 8);
7683 put_arm_insn (htab, output_bfd,
7684 elf32_arm_nacl_plt_entry[3]
7685 | (tail_displacement & 0x00ffffff),
7686 ptr + 12);
7687 }
34e77a92
RS
7688 else
7689 {
7690 /* Calculate the displacement between the PLT slot and the
7691 entry in the GOT. The eight-byte offset accounts for the
7692 value produced by adding to pc in the first instruction
7693 of the PLT stub. */
7694 got_displacement = got_address - (plt_address + 8);
7695
7696 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7697
7698 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7699 {
7700 put_thumb_insn (htab, output_bfd,
7701 elf32_arm_plt_thumb_stub[0], ptr - 4);
7702 put_thumb_insn (htab, output_bfd,
7703 elf32_arm_plt_thumb_stub[1], ptr - 2);
7704 }
7705
7706 put_arm_insn (htab, output_bfd,
7707 elf32_arm_plt_entry[0]
7708 | ((got_displacement & 0x0ff00000) >> 20),
7709 ptr + 0);
7710 put_arm_insn (htab, output_bfd,
7711 elf32_arm_plt_entry[1]
7712 | ((got_displacement & 0x000ff000) >> 12),
7713 ptr+ 4);
7714 put_arm_insn (htab, output_bfd,
7715 elf32_arm_plt_entry[2]
7716 | (got_displacement & 0x00000fff),
7717 ptr + 8);
7718#ifdef FOUR_WORD_PLT
7719 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7720#endif
7721 }
7722
7723 /* Fill in the entry in the .rel(a).(i)plt section. */
7724 rel.r_offset = got_address;
7725 rel.r_addend = 0;
7726 if (dynindx == -1)
7727 {
7728 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7729 The dynamic linker or static executable then calls SYM_VALUE
7730 to determine the correct run-time value of the .igot.plt entry. */
7731 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7732 initial_got_entry = sym_value;
7733 }
7734 else
7735 {
7736 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7737 initial_got_entry = (splt->output_section->vma
7738 + splt->output_offset);
7739 }
7740
7741 /* Fill in the entry in the global offset table. */
7742 bfd_put_32 (output_bfd, initial_got_entry,
7743 sgot->contents + got_offset);
7744 }
7745
aba8c3de
WN
7746 if (dynindx == -1)
7747 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
7748 else
7749 {
7750 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7751 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7752 }
34e77a92
RS
7753}
7754
eb043451
PB
7755/* Some relocations map to different relocations depending on the
7756 target. Return the real relocation. */
8029a119 7757
eb043451
PB
7758static int
7759arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7760 int r_type)
7761{
7762 switch (r_type)
7763 {
7764 case R_ARM_TARGET1:
7765 if (globals->target1_is_rel)
7766 return R_ARM_REL32;
7767 else
7768 return R_ARM_ABS32;
7769
7770 case R_ARM_TARGET2:
7771 return globals->target2_reloc;
7772
7773 default:
7774 return r_type;
7775 }
7776}
eb043451 7777
ba93b8ac
DJ
7778/* Return the base VMA address which should be subtracted from real addresses
7779 when resolving @dtpoff relocation.
7780 This is PT_TLS segment p_vaddr. */
7781
7782static bfd_vma
7783dtpoff_base (struct bfd_link_info *info)
7784{
7785 /* If tls_sec is NULL, we should have signalled an error already. */
7786 if (elf_hash_table (info)->tls_sec == NULL)
7787 return 0;
7788 return elf_hash_table (info)->tls_sec->vma;
7789}
7790
7791/* Return the relocation value for @tpoff relocation
7792 if STT_TLS virtual address is ADDRESS. */
7793
7794static bfd_vma
7795tpoff (struct bfd_link_info *info, bfd_vma address)
7796{
7797 struct elf_link_hash_table *htab = elf_hash_table (info);
7798 bfd_vma base;
7799
7800 /* If tls_sec is NULL, we should have signalled an error already. */
7801 if (htab->tls_sec == NULL)
7802 return 0;
7803 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7804 return address - htab->tls_sec->vma + base;
7805}
7806
00a97672
RS
7807/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7808 VALUE is the relocation value. */
7809
7810static bfd_reloc_status_type
7811elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7812{
7813 if (value > 0xfff)
7814 return bfd_reloc_overflow;
7815
7816 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7817 bfd_put_32 (abfd, value, data);
7818 return bfd_reloc_ok;
7819}
7820
0855e32b
NS
7821/* Handle TLS relaxations. Relaxing is possible for symbols that use
7822 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7823 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7824
7825 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7826 is to then call final_link_relocate. Return other values in the
62672b10
NS
7827 case of error.
7828
7829 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7830 the pre-relaxed code. It would be nice if the relocs were updated
7831 to match the optimization. */
0855e32b 7832
b38cadfb 7833static bfd_reloc_status_type
0855e32b 7834elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 7835 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
7836 Elf_Internal_Rela *rel, unsigned long is_local)
7837{
7838 unsigned long insn;
b38cadfb 7839
0855e32b
NS
7840 switch (ELF32_R_TYPE (rel->r_info))
7841 {
7842 default:
7843 return bfd_reloc_notsupported;
b38cadfb 7844
0855e32b
NS
7845 case R_ARM_TLS_GOTDESC:
7846 if (is_local)
7847 insn = 0;
7848 else
7849 {
7850 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7851 if (insn & 1)
7852 insn -= 5; /* THUMB */
7853 else
7854 insn -= 8; /* ARM */
7855 }
7856 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7857 return bfd_reloc_continue;
7858
7859 case R_ARM_THM_TLS_DESCSEQ:
7860 /* Thumb insn. */
7861 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7862 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7863 {
7864 if (is_local)
7865 /* nop */
7866 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7867 }
7868 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7869 {
7870 if (is_local)
7871 /* nop */
7872 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7873 else
7874 /* ldr rx,[ry] */
7875 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7876 }
7877 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7878 {
7879 if (is_local)
7880 /* nop */
7881 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7882 else
7883 /* mov r0, rx */
7884 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7885 contents + rel->r_offset);
7886 }
7887 else
7888 {
7889 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7890 /* It's a 32 bit instruction, fetch the rest of it for
7891 error generation. */
7892 insn = (insn << 16)
7893 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7894 (*_bfd_error_handler)
7895 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7896 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7897 return bfd_reloc_notsupported;
7898 }
7899 break;
b38cadfb 7900
0855e32b
NS
7901 case R_ARM_TLS_DESCSEQ:
7902 /* arm insn. */
7903 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7904 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7905 {
7906 if (is_local)
7907 /* mov rx, ry */
7908 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7909 contents + rel->r_offset);
7910 }
7911 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7912 {
7913 if (is_local)
7914 /* nop */
7915 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7916 else
7917 /* ldr rx,[ry] */
7918 bfd_put_32 (input_bfd, insn & 0xfffff000,
7919 contents + rel->r_offset);
7920 }
7921 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7922 {
7923 if (is_local)
7924 /* nop */
7925 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7926 else
7927 /* mov r0, rx */
7928 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7929 contents + rel->r_offset);
7930 }
7931 else
7932 {
7933 (*_bfd_error_handler)
7934 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7935 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7936 return bfd_reloc_notsupported;
7937 }
7938 break;
7939
7940 case R_ARM_TLS_CALL:
7941 /* GD->IE relaxation, turn the instruction into 'nop' or
7942 'ldr r0, [pc,r0]' */
7943 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7944 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7945 break;
b38cadfb 7946
0855e32b
NS
7947 case R_ARM_THM_TLS_CALL:
7948 /* GD->IE relaxation */
7949 if (!is_local)
7950 /* add r0,pc; ldr r0, [r0] */
7951 insn = 0x44786800;
7952 else if (arch_has_thumb2_nop (globals))
7953 /* nop.w */
7954 insn = 0xf3af8000;
7955 else
7956 /* nop; nop */
7957 insn = 0xbf00bf00;
b38cadfb 7958
0855e32b
NS
7959 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7960 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7961 break;
7962 }
7963 return bfd_reloc_ok;
7964}
7965
4962c51a
MS
7966/* For a given value of n, calculate the value of G_n as required to
7967 deal with group relocations. We return it in the form of an
7968 encoded constant-and-rotation, together with the final residual. If n is
7969 specified as less than zero, then final_residual is filled with the
7970 input value and no further action is performed. */
7971
7972static bfd_vma
7973calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7974{
7975 int current_n;
7976 bfd_vma g_n;
7977 bfd_vma encoded_g_n = 0;
7978 bfd_vma residual = value; /* Also known as Y_n. */
7979
7980 for (current_n = 0; current_n <= n; current_n++)
7981 {
7982 int shift;
7983
7984 /* Calculate which part of the value to mask. */
7985 if (residual == 0)
99059e56 7986 shift = 0;
4962c51a 7987 else
99059e56
RM
7988 {
7989 int msb;
7990
7991 /* Determine the most significant bit in the residual and
7992 align the resulting value to a 2-bit boundary. */
7993 for (msb = 30; msb >= 0; msb -= 2)
7994 if (residual & (3 << msb))
7995 break;
7996
7997 /* The desired shift is now (msb - 6), or zero, whichever
7998 is the greater. */
7999 shift = msb - 6;
8000 if (shift < 0)
8001 shift = 0;
8002 }
4962c51a
MS
8003
8004 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8005 g_n = residual & (0xff << shift);
8006 encoded_g_n = (g_n >> shift)
99059e56 8007 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
8008
8009 /* Calculate the residual for the next time around. */
8010 residual &= ~g_n;
8011 }
8012
8013 *final_residual = residual;
8014
8015 return encoded_g_n;
8016}
8017
8018/* Given an ARM instruction, determine whether it is an ADD or a SUB.
8019 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 8020
4962c51a 8021static int
906e58ca 8022identify_add_or_sub (bfd_vma insn)
4962c51a
MS
8023{
8024 int opcode = insn & 0x1e00000;
8025
8026 if (opcode == 1 << 23) /* ADD */
8027 return 1;
8028
8029 if (opcode == 1 << 22) /* SUB */
8030 return -1;
8031
8032 return 0;
8033}
8034
252b5132 8035/* Perform a relocation as part of a final link. */
9b485d32 8036
252b5132 8037static bfd_reloc_status_type
57e8b36a
NC
8038elf32_arm_final_link_relocate (reloc_howto_type * howto,
8039 bfd * input_bfd,
8040 bfd * output_bfd,
8041 asection * input_section,
8042 bfd_byte * contents,
8043 Elf_Internal_Rela * rel,
8044 bfd_vma value,
8045 struct bfd_link_info * info,
8046 asection * sym_sec,
8047 const char * sym_name,
34e77a92
RS
8048 unsigned char st_type,
8049 enum arm_st_branch_type branch_type,
0945cdfd 8050 struct elf_link_hash_entry * h,
f2a9dd69 8051 bfd_boolean * unresolved_reloc_p,
8029a119 8052 char ** error_message)
252b5132
RH
8053{
8054 unsigned long r_type = howto->type;
8055 unsigned long r_symndx;
8056 bfd_byte * hit_data = contents + rel->r_offset;
252b5132 8057 bfd_vma * local_got_offsets;
0855e32b 8058 bfd_vma * local_tlsdesc_gotents;
34e77a92
RS
8059 asection * sgot;
8060 asection * splt;
252b5132 8061 asection * sreloc = NULL;
362d30a1 8062 asection * srelgot;
252b5132 8063 bfd_vma addend;
ba96a88f 8064 bfd_signed_vma signed_addend;
34e77a92
RS
8065 unsigned char dynreloc_st_type;
8066 bfd_vma dynreloc_value;
ba96a88f 8067 struct elf32_arm_link_hash_table * globals;
34e77a92
RS
8068 struct elf32_arm_link_hash_entry *eh;
8069 union gotplt_union *root_plt;
8070 struct arm_plt_info *arm_plt;
8071 bfd_vma plt_offset;
8072 bfd_vma gotplt_offset;
8073 bfd_boolean has_iplt_entry;
f21f3fe0 8074
9c504268 8075 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
8076 if (globals == NULL)
8077 return bfd_reloc_notsupported;
9c504268 8078
0ffa91dd
NC
8079 BFD_ASSERT (is_arm_elf (input_bfd));
8080
8081 /* Some relocation types map to different relocations depending on the
9c504268 8082 target. We pick the right one here. */
eb043451 8083 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
8084
8085 /* It is possible to have linker relaxations on some TLS access
8086 models. Update our information here. */
8087 r_type = elf32_arm_tls_transition (info, r_type, h);
8088
eb043451
PB
8089 if (r_type != howto->type)
8090 howto = elf32_arm_howto_from_type (r_type);
9c504268 8091
cac15327
NC
8092 /* If the start address has been set, then set the EF_ARM_HASENTRY
8093 flag. Setting this more than once is redundant, but the cost is
8094 not too high, and it keeps the code simple.
99e4ae17 8095
cac15327
NC
8096 The test is done here, rather than somewhere else, because the
8097 start address is only set just before the final link commences.
8098
8099 Note - if the user deliberately sets a start address of 0, the
8100 flag will not be set. */
8101 if (bfd_get_start_address (output_bfd) != 0)
8102 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 8103
34e77a92 8104 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 8105 sgot = globals->root.sgot;
252b5132 8106 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
8107 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8108
34e77a92
RS
8109 if (globals->root.dynamic_sections_created)
8110 srelgot = globals->root.srelgot;
8111 else
8112 srelgot = NULL;
8113
252b5132
RH
8114 r_symndx = ELF32_R_SYM (rel->r_info);
8115
4e7fd91e 8116 if (globals->use_rel)
ba96a88f 8117 {
4e7fd91e
PB
8118 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8119
8120 if (addend & ((howto->src_mask + 1) >> 1))
8121 {
8122 signed_addend = -1;
8123 signed_addend &= ~ howto->src_mask;
8124 signed_addend |= addend;
8125 }
8126 else
8127 signed_addend = addend;
ba96a88f
NC
8128 }
8129 else
4e7fd91e 8130 addend = signed_addend = rel->r_addend;
f21f3fe0 8131
39f21624
NC
8132 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8133 are resolving a function call relocation. */
8134 if (using_thumb_only (globals)
8135 && (r_type == R_ARM_THM_CALL
8136 || r_type == R_ARM_THM_JUMP24)
8137 && branch_type == ST_BRANCH_TO_ARM)
8138 branch_type = ST_BRANCH_TO_THUMB;
8139
34e77a92
RS
8140 /* Record the symbol information that should be used in dynamic
8141 relocations. */
8142 dynreloc_st_type = st_type;
8143 dynreloc_value = value;
8144 if (branch_type == ST_BRANCH_TO_THUMB)
8145 dynreloc_value |= 1;
8146
8147 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8148 VALUE appropriately for relocations that we resolve at link time. */
8149 has_iplt_entry = FALSE;
8150 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8151 && root_plt->offset != (bfd_vma) -1)
8152 {
8153 plt_offset = root_plt->offset;
8154 gotplt_offset = arm_plt->got_offset;
8155
8156 if (h == NULL || eh->is_iplt)
8157 {
8158 has_iplt_entry = TRUE;
8159 splt = globals->root.iplt;
8160
8161 /* Populate .iplt entries here, because not all of them will
8162 be seen by finish_dynamic_symbol. The lower bit is set if
8163 we have already populated the entry. */
8164 if (plt_offset & 1)
8165 plt_offset--;
8166 else
8167 {
8168 elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8169 -1, dynreloc_value);
8170 root_plt->offset |= 1;
8171 }
8172
8173 /* Static relocations always resolve to the .iplt entry. */
8174 st_type = STT_FUNC;
8175 value = (splt->output_section->vma
8176 + splt->output_offset
8177 + plt_offset);
8178 branch_type = ST_BRANCH_TO_ARM;
8179
8180 /* If there are non-call relocations that resolve to the .iplt
8181 entry, then all dynamic ones must too. */
8182 if (arm_plt->noncall_refcount != 0)
8183 {
8184 dynreloc_st_type = st_type;
8185 dynreloc_value = value;
8186 }
8187 }
8188 else
8189 /* We populate the .plt entry in finish_dynamic_symbol. */
8190 splt = globals->root.splt;
8191 }
8192 else
8193 {
8194 splt = NULL;
8195 plt_offset = (bfd_vma) -1;
8196 gotplt_offset = (bfd_vma) -1;
8197 }
8198
252b5132
RH
8199 switch (r_type)
8200 {
8201 case R_ARM_NONE:
28a094c2
DJ
8202 /* We don't need to find a value for this symbol. It's just a
8203 marker. */
8204 *unresolved_reloc_p = FALSE;
252b5132
RH
8205 return bfd_reloc_ok;
8206
00a97672
RS
8207 case R_ARM_ABS12:
8208 if (!globals->vxworks_p)
8209 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8210
252b5132
RH
8211 case R_ARM_PC24:
8212 case R_ARM_ABS32:
bb224fc3 8213 case R_ARM_ABS32_NOI:
252b5132 8214 case R_ARM_REL32:
bb224fc3 8215 case R_ARM_REL32_NOI:
5b5bb741
PB
8216 case R_ARM_CALL:
8217 case R_ARM_JUMP24:
dfc5f959 8218 case R_ARM_XPC25:
eb043451 8219 case R_ARM_PREL31:
7359ea65 8220 case R_ARM_PLT32:
7359ea65
DJ
8221 /* Handle relocations which should use the PLT entry. ABS32/REL32
8222 will use the symbol's value, which may point to a PLT entry, but we
8223 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
8224 branches in this object should go to it, except if the PLT is too
8225 far away, in which case a long branch stub should be inserted. */
bb224fc3 8226 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 8227 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
8228 && r_type != R_ARM_CALL
8229 && r_type != R_ARM_JUMP24
8230 && r_type != R_ARM_PLT32)
34e77a92 8231 && plt_offset != (bfd_vma) -1)
7359ea65 8232 {
34e77a92
RS
8233 /* If we've created a .plt section, and assigned a PLT entry
8234 to this function, it must either be a STT_GNU_IFUNC reference
8235 or not be known to bind locally. In other cases, we should
8236 have cleared the PLT entry by now. */
8237 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
8238
8239 value = (splt->output_section->vma
8240 + splt->output_offset
34e77a92 8241 + plt_offset);
0945cdfd 8242 *unresolved_reloc_p = FALSE;
7359ea65
DJ
8243 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8244 contents, rel->r_offset, value,
00a97672 8245 rel->r_addend);
7359ea65
DJ
8246 }
8247
67687978
PB
8248 /* When generating a shared object or relocatable executable, these
8249 relocations are copied into the output file to be resolved at
8250 run time. */
8251 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 8252 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 8253 && !(globals->vxworks_p
3348747a
NS
8254 && strcmp (input_section->output_section->name,
8255 ".tls_vars") == 0)
bb224fc3 8256 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 8257 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
8258 && !(input_bfd == globals->stub_bfd
8259 && strstr (input_section->name, STUB_SUFFIX))
7359ea65
DJ
8260 && (h == NULL
8261 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8262 || h->root.type != bfd_link_hash_undefweak)
8263 && r_type != R_ARM_PC24
5b5bb741
PB
8264 && r_type != R_ARM_CALL
8265 && r_type != R_ARM_JUMP24
ee06dc07 8266 && r_type != R_ARM_PREL31
7359ea65 8267 && r_type != R_ARM_PLT32)
252b5132 8268 {
947216bf 8269 Elf_Internal_Rela outrel;
b34976b6 8270 bfd_boolean skip, relocate;
f21f3fe0 8271
0945cdfd
DJ
8272 *unresolved_reloc_p = FALSE;
8273
34e77a92 8274 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 8275 {
83bac4b0
NC
8276 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8277 ! globals->use_rel);
f21f3fe0 8278
83bac4b0 8279 if (sreloc == NULL)
252b5132 8280 return bfd_reloc_notsupported;
252b5132 8281 }
f21f3fe0 8282
b34976b6
AM
8283 skip = FALSE;
8284 relocate = FALSE;
f21f3fe0 8285
00a97672 8286 outrel.r_addend = addend;
c629eae0
JJ
8287 outrel.r_offset =
8288 _bfd_elf_section_offset (output_bfd, info, input_section,
8289 rel->r_offset);
8290 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 8291 skip = TRUE;
0bb2d96a 8292 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 8293 skip = TRUE, relocate = TRUE;
252b5132
RH
8294 outrel.r_offset += (input_section->output_section->vma
8295 + input_section->output_offset);
f21f3fe0 8296
252b5132 8297 if (skip)
0bb2d96a 8298 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
8299 else if (h != NULL
8300 && h->dynindx != -1
7359ea65 8301 && (!info->shared
5e681ec4 8302 || !info->symbolic
f5385ebf 8303 || !h->def_regular))
5e681ec4 8304 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
8305 else
8306 {
a16385dc
MM
8307 int symbol;
8308
5e681ec4 8309 /* This symbol is local, or marked to become local. */
34e77a92 8310 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
a16385dc 8311 if (globals->symbian_p)
6366ff1e 8312 {
74541ad4
AM
8313 asection *osec;
8314
6366ff1e
MM
8315 /* On Symbian OS, the data segment and text segement
8316 can be relocated independently. Therefore, we
8317 must indicate the segment to which this
8318 relocation is relative. The BPABI allows us to
8319 use any symbol in the right segment; we just use
8320 the section symbol as it is convenient. (We
8321 cannot use the symbol given by "h" directly as it
74541ad4
AM
8322 will not appear in the dynamic symbol table.)
8323
8324 Note that the dynamic linker ignores the section
8325 symbol value, so we don't subtract osec->vma
8326 from the emitted reloc addend. */
10dbd1f3 8327 if (sym_sec)
74541ad4 8328 osec = sym_sec->output_section;
10dbd1f3 8329 else
74541ad4
AM
8330 osec = input_section->output_section;
8331 symbol = elf_section_data (osec)->dynindx;
8332 if (symbol == 0)
8333 {
8334 struct elf_link_hash_table *htab = elf_hash_table (info);
8335
8336 if ((osec->flags & SEC_READONLY) == 0
8337 && htab->data_index_section != NULL)
8338 osec = htab->data_index_section;
8339 else
8340 osec = htab->text_index_section;
8341 symbol = elf_section_data (osec)->dynindx;
8342 }
6366ff1e
MM
8343 BFD_ASSERT (symbol != 0);
8344 }
a16385dc
MM
8345 else
8346 /* On SVR4-ish systems, the dynamic loader cannot
8347 relocate the text and data segments independently,
8348 so the symbol does not matter. */
8349 symbol = 0;
34e77a92
RS
8350 if (dynreloc_st_type == STT_GNU_IFUNC)
8351 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8352 to the .iplt entry. Instead, every non-call reference
8353 must use an R_ARM_IRELATIVE relocation to obtain the
8354 correct run-time address. */
8355 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8356 else
8357 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
8358 if (globals->use_rel)
8359 relocate = TRUE;
8360 else
34e77a92 8361 outrel.r_addend += dynreloc_value;
252b5132 8362 }
f21f3fe0 8363
47beaa6a 8364 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 8365
f21f3fe0 8366 /* If this reloc is against an external symbol, we do not want to
252b5132 8367 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 8368 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
8369 if (! relocate)
8370 return bfd_reloc_ok;
9a5aca8c 8371
f21f3fe0 8372 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
8373 contents, rel->r_offset,
8374 dynreloc_value, (bfd_vma) 0);
252b5132
RH
8375 }
8376 else switch (r_type)
8377 {
00a97672
RS
8378 case R_ARM_ABS12:
8379 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8380
dfc5f959 8381 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
8382 case R_ARM_CALL:
8383 case R_ARM_JUMP24:
8029a119 8384 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 8385 case R_ARM_PLT32:
906e58ca 8386 {
906e58ca
NC
8387 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8388
dfc5f959 8389 if (r_type == R_ARM_XPC25)
252b5132 8390 {
dfc5f959
NC
8391 /* Check for Arm calling Arm function. */
8392 /* FIXME: Should we translate the instruction into a BL
8393 instruction instead ? */
35fc36a8 8394 if (branch_type != ST_BRANCH_TO_THUMB)
d003868e
AM
8395 (*_bfd_error_handler)
8396 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8397 input_bfd,
8398 h ? h->root.root.string : "(local)");
dfc5f959 8399 }
155d87d7 8400 else if (r_type == R_ARM_PC24)
dfc5f959
NC
8401 {
8402 /* Check for Arm calling Thumb function. */
35fc36a8 8403 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 8404 {
f2a9dd69
DJ
8405 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8406 output_bfd, input_section,
8407 hit_data, sym_sec, rel->r_offset,
8408 signed_addend, value,
8409 error_message))
8410 return bfd_reloc_ok;
8411 else
8412 return bfd_reloc_dangerous;
dfc5f959 8413 }
252b5132 8414 }
ba96a88f 8415
906e58ca 8416 /* Check if a stub has to be inserted because the
8029a119 8417 destination is too far or we are changing mode. */
155d87d7
CL
8418 if ( r_type == R_ARM_CALL
8419 || r_type == R_ARM_JUMP24
8420 || r_type == R_ARM_PLT32)
906e58ca 8421 {
fe33d2fa
CL
8422 enum elf32_arm_stub_type stub_type = arm_stub_none;
8423 struct elf32_arm_link_hash_entry *hash;
8424
8425 hash = (struct elf32_arm_link_hash_entry *) h;
8426 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
8427 st_type, &branch_type,
8428 hash, value, sym_sec,
fe33d2fa 8429 input_bfd, sym_name);
5fa9e92f 8430
fe33d2fa 8431 if (stub_type != arm_stub_none)
906e58ca
NC
8432 {
8433 /* The target is out of reach, so redirect the
8434 branch to the local stub for this function. */
906e58ca
NC
8435 stub_entry = elf32_arm_get_stub_entry (input_section,
8436 sym_sec, h,
fe33d2fa
CL
8437 rel, globals,
8438 stub_type);
9cd3e4e5
NC
8439 {
8440 if (stub_entry != NULL)
8441 value = (stub_entry->stub_offset
8442 + stub_entry->stub_sec->output_offset
8443 + stub_entry->stub_sec->output_section->vma);
8444
8445 if (plt_offset != (bfd_vma) -1)
8446 *unresolved_reloc_p = FALSE;
8447 }
906e58ca 8448 }
fe33d2fa
CL
8449 else
8450 {
8451 /* If the call goes through a PLT entry, make sure to
8452 check distance to the right destination address. */
34e77a92 8453 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
8454 {
8455 value = (splt->output_section->vma
8456 + splt->output_offset
34e77a92 8457 + plt_offset);
fe33d2fa
CL
8458 *unresolved_reloc_p = FALSE;
8459 /* The PLT entry is in ARM mode, regardless of the
8460 target function. */
35fc36a8 8461 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
8462 }
8463 }
906e58ca
NC
8464 }
8465
dea514f5
PB
8466 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8467 where:
8468 S is the address of the symbol in the relocation.
8469 P is address of the instruction being relocated.
8470 A is the addend (extracted from the instruction) in bytes.
8471
8472 S is held in 'value'.
8473 P is the base address of the section containing the
8474 instruction plus the offset of the reloc into that
8475 section, ie:
8476 (input_section->output_section->vma +
8477 input_section->output_offset +
8478 rel->r_offset).
8479 A is the addend, converted into bytes, ie:
8480 (signed_addend * 4)
8481
8482 Note: None of these operations have knowledge of the pipeline
8483 size of the processor, thus it is up to the assembler to
8484 encode this information into the addend. */
8485 value -= (input_section->output_section->vma
8486 + input_section->output_offset);
8487 value -= rel->r_offset;
4e7fd91e
PB
8488 if (globals->use_rel)
8489 value += (signed_addend << howto->size);
8490 else
8491 /* RELA addends do not have to be adjusted by howto->size. */
8492 value += signed_addend;
23080146 8493
dcb5e6e6
NC
8494 signed_addend = value;
8495 signed_addend >>= howto->rightshift;
9a5aca8c 8496
5ab79981 8497 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 8498 the next instruction unless a PLT entry will be created.
77b4f08f 8499 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
8500 The jump to the next instruction is optimized as a NOP depending
8501 on the architecture. */
ffcb4889 8502 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 8503 && plt_offset == (bfd_vma) -1)
77b4f08f 8504 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 8505 {
cd1dac3d
DG
8506 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8507
8508 if (arch_has_arm_nop (globals))
8509 value |= 0x0320f000;
8510 else
8511 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
8512 }
8513 else
59f2c4e7 8514 {
9b485d32 8515 /* Perform a signed range check. */
dcb5e6e6 8516 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
8517 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8518 return bfd_reloc_overflow;
9a5aca8c 8519
5ab79981 8520 addend = (value & 2);
39b41c9c 8521
5ab79981
PB
8522 value = (signed_addend & howto->dst_mask)
8523 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 8524
5ab79981
PB
8525 if (r_type == R_ARM_CALL)
8526 {
155d87d7 8527 /* Set the H bit in the BLX instruction. */
35fc36a8 8528 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
8529 {
8530 if (addend)
8531 value |= (1 << 24);
8532 else
8533 value &= ~(bfd_vma)(1 << 24);
8534 }
8535
5ab79981 8536 /* Select the correct instruction (BL or BLX). */
906e58ca 8537 /* Only if we are not handling a BL to a stub. In this
8029a119 8538 case, mode switching is performed by the stub. */
35fc36a8 8539 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 8540 value |= (1 << 28);
63e1a0fc 8541 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
8542 {
8543 value &= ~(bfd_vma)(1 << 28);
8544 value |= (1 << 24);
8545 }
39b41c9c
PB
8546 }
8547 }
906e58ca 8548 }
252b5132 8549 break;
f21f3fe0 8550
252b5132
RH
8551 case R_ARM_ABS32:
8552 value += addend;
35fc36a8 8553 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
8554 value |= 1;
8555 break;
f21f3fe0 8556
bb224fc3
MS
8557 case R_ARM_ABS32_NOI:
8558 value += addend;
8559 break;
8560
252b5132 8561 case R_ARM_REL32:
a8bc6c78 8562 value += addend;
35fc36a8 8563 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 8564 value |= 1;
252b5132 8565 value -= (input_section->output_section->vma
62efb346 8566 + input_section->output_offset + rel->r_offset);
252b5132 8567 break;
eb043451 8568
bb224fc3
MS
8569 case R_ARM_REL32_NOI:
8570 value += addend;
8571 value -= (input_section->output_section->vma
8572 + input_section->output_offset + rel->r_offset);
8573 break;
8574
eb043451
PB
8575 case R_ARM_PREL31:
8576 value -= (input_section->output_section->vma
8577 + input_section->output_offset + rel->r_offset);
8578 value += signed_addend;
8579 if (! h || h->root.type != bfd_link_hash_undefweak)
8580 {
8029a119 8581 /* Check for overflow. */
eb043451
PB
8582 if ((value ^ (value >> 1)) & (1 << 30))
8583 return bfd_reloc_overflow;
8584 }
8585 value &= 0x7fffffff;
8586 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 8587 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
8588 value |= 1;
8589 break;
252b5132 8590 }
f21f3fe0 8591
252b5132
RH
8592 bfd_put_32 (input_bfd, value, hit_data);
8593 return bfd_reloc_ok;
8594
8595 case R_ARM_ABS8:
8596 value += addend;
4e67d4ca
DG
8597
8598 /* There is no way to tell whether the user intended to use a signed or
8599 unsigned addend. When checking for overflow we accept either,
8600 as specified by the AAELF. */
8601 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
8602 return bfd_reloc_overflow;
8603
8604 bfd_put_8 (input_bfd, value, hit_data);
8605 return bfd_reloc_ok;
8606
8607 case R_ARM_ABS16:
8608 value += addend;
8609
4e67d4ca
DG
8610 /* See comment for R_ARM_ABS8. */
8611 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
8612 return bfd_reloc_overflow;
8613
8614 bfd_put_16 (input_bfd, value, hit_data);
8615 return bfd_reloc_ok;
8616
252b5132 8617 case R_ARM_THM_ABS5:
9b485d32 8618 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
8619 if (globals->use_rel)
8620 {
8621 /* Need to refetch addend. */
8622 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8623 /* ??? Need to determine shift amount from operand size. */
8624 addend >>= howto->rightshift;
8625 }
252b5132
RH
8626 value += addend;
8627
8628 /* ??? Isn't value unsigned? */
8629 if ((long) value > 0x1f || (long) value < -0x10)
8630 return bfd_reloc_overflow;
8631
8632 /* ??? Value needs to be properly shifted into place first. */
8633 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8634 bfd_put_16 (input_bfd, value, hit_data);
8635 return bfd_reloc_ok;
8636
2cab6cc3
MS
8637 case R_ARM_THM_ALU_PREL_11_0:
8638 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8639 {
8640 bfd_vma insn;
8641 bfd_signed_vma relocation;
8642
8643 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 8644 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 8645
99059e56
RM
8646 if (globals->use_rel)
8647 {
8648 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8649 | ((insn & (1 << 26)) >> 15);
8650 if (insn & 0xf00000)
8651 signed_addend = -signed_addend;
8652 }
2cab6cc3
MS
8653
8654 relocation = value + signed_addend;
79f08007 8655 relocation -= Pa (input_section->output_section->vma
99059e56
RM
8656 + input_section->output_offset
8657 + rel->r_offset);
2cab6cc3 8658
99059e56 8659 value = abs (relocation);
2cab6cc3 8660
99059e56
RM
8661 if (value >= 0x1000)
8662 return bfd_reloc_overflow;
2cab6cc3
MS
8663
8664 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
8665 | ((value & 0x700) << 4)
8666 | ((value & 0x800) << 15);
8667 if (relocation < 0)
8668 insn |= 0xa00000;
2cab6cc3
MS
8669
8670 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8671 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8672
99059e56 8673 return bfd_reloc_ok;
2cab6cc3
MS
8674 }
8675
e1ec24c6
NC
8676 case R_ARM_THM_PC8:
8677 /* PR 10073: This reloc is not generated by the GNU toolchain,
8678 but it is supported for compatibility with third party libraries
8679 generated by other compilers, specifically the ARM/IAR. */
8680 {
8681 bfd_vma insn;
8682 bfd_signed_vma relocation;
8683
8684 insn = bfd_get_16 (input_bfd, hit_data);
8685
99059e56 8686 if (globals->use_rel)
79f08007 8687 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
8688
8689 relocation = value + addend;
79f08007 8690 relocation -= Pa (input_section->output_section->vma
99059e56
RM
8691 + input_section->output_offset
8692 + rel->r_offset);
e1ec24c6 8693
99059e56 8694 value = abs (relocation);
e1ec24c6
NC
8695
8696 /* We do not check for overflow of this reloc. Although strictly
8697 speaking this is incorrect, it appears to be necessary in order
8698 to work with IAR generated relocs. Since GCC and GAS do not
8699 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8700 a problem for them. */
8701 value &= 0x3fc;
8702
8703 insn = (insn & 0xff00) | (value >> 2);
8704
8705 bfd_put_16 (input_bfd, insn, hit_data);
8706
99059e56 8707 return bfd_reloc_ok;
e1ec24c6
NC
8708 }
8709
2cab6cc3
MS
8710 case R_ARM_THM_PC12:
8711 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8712 {
8713 bfd_vma insn;
8714 bfd_signed_vma relocation;
8715
8716 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 8717 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 8718
99059e56
RM
8719 if (globals->use_rel)
8720 {
8721 signed_addend = insn & 0xfff;
8722 if (!(insn & (1 << 23)))
8723 signed_addend = -signed_addend;
8724 }
2cab6cc3
MS
8725
8726 relocation = value + signed_addend;
79f08007 8727 relocation -= Pa (input_section->output_section->vma
99059e56
RM
8728 + input_section->output_offset
8729 + rel->r_offset);
2cab6cc3 8730
99059e56 8731 value = abs (relocation);
2cab6cc3 8732
99059e56
RM
8733 if (value >= 0x1000)
8734 return bfd_reloc_overflow;
2cab6cc3
MS
8735
8736 insn = (insn & 0xff7ff000) | value;
99059e56
RM
8737 if (relocation >= 0)
8738 insn |= (1 << 23);
2cab6cc3
MS
8739
8740 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8741 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8742
99059e56 8743 return bfd_reloc_ok;
2cab6cc3
MS
8744 }
8745
dfc5f959 8746 case R_ARM_THM_XPC22:
c19d1205 8747 case R_ARM_THM_CALL:
bd97cb95 8748 case R_ARM_THM_JUMP24:
dfc5f959 8749 /* Thumb BL (branch long instruction). */
252b5132 8750 {
b34976b6 8751 bfd_vma relocation;
99059e56 8752 bfd_vma reloc_sign;
b34976b6
AM
8753 bfd_boolean overflow = FALSE;
8754 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8755 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
8756 bfd_signed_vma reloc_signed_max;
8757 bfd_signed_vma reloc_signed_min;
b34976b6 8758 bfd_vma check;
252b5132 8759 bfd_signed_vma signed_check;
e95de063 8760 int bitsize;
cd1dac3d 8761 const int thumb2 = using_thumb2 (globals);
252b5132 8762
5ab79981 8763 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
8764 the next instruction unless a PLT entry will be created.
8765 The jump to the next instruction is optimized as a NOP.W for
8766 Thumb-2 enabled architectures. */
19540007 8767 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 8768 && plt_offset == (bfd_vma) -1)
5ab79981 8769 {
cd1dac3d
DG
8770 if (arch_has_thumb2_nop (globals))
8771 {
8772 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8773 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8774 }
8775 else
8776 {
8777 bfd_put_16 (input_bfd, 0xe000, hit_data);
8778 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8779 }
5ab79981
PB
8780 return bfd_reloc_ok;
8781 }
8782
e95de063 8783 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 8784 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
8785 if (globals->use_rel)
8786 {
99059e56
RM
8787 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8788 bfd_vma upper = upper_insn & 0x3ff;
8789 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
8790 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8791 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
8792 bfd_vma i1 = j1 ^ s ? 0 : 1;
8793 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 8794
99059e56
RM
8795 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8796 /* Sign extend. */
8797 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 8798
4e7fd91e
PB
8799 signed_addend = addend;
8800 }
cb1afa5c 8801
dfc5f959
NC
8802 if (r_type == R_ARM_THM_XPC22)
8803 {
8804 /* Check for Thumb to Thumb call. */
8805 /* FIXME: Should we translate the instruction into a BL
8806 instruction instead ? */
35fc36a8 8807 if (branch_type == ST_BRANCH_TO_THUMB)
d003868e
AM
8808 (*_bfd_error_handler)
8809 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8810 input_bfd,
8811 h ? h->root.root.string : "(local)");
dfc5f959
NC
8812 }
8813 else
252b5132 8814 {
dfc5f959
NC
8815 /* If it is not a call to Thumb, assume call to Arm.
8816 If it is a call relative to a section name, then it is not a
b7693d02
DJ
8817 function call at all, but rather a long jump. Calls through
8818 the PLT do not require stubs. */
34e77a92 8819 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 8820 {
bd97cb95 8821 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
8822 {
8823 /* Convert BL to BLX. */
8824 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8825 }
155d87d7
CL
8826 else if (( r_type != R_ARM_THM_CALL)
8827 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
8828 {
8829 if (elf32_thumb_to_arm_stub
8830 (info, sym_name, input_bfd, output_bfd, input_section,
8831 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8832 error_message))
8833 return bfd_reloc_ok;
8834 else
8835 return bfd_reloc_dangerous;
8836 }
da5938a2 8837 }
35fc36a8
RS
8838 else if (branch_type == ST_BRANCH_TO_THUMB
8839 && globals->use_blx
bd97cb95 8840 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
8841 {
8842 /* Make sure this is a BL. */
8843 lower_insn |= 0x1800;
8844 }
252b5132 8845 }
f21f3fe0 8846
fe33d2fa 8847 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 8848 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
8849 {
8850 /* Check if a stub has to be inserted because the destination
8029a119 8851 is too far. */
fe33d2fa
CL
8852 struct elf32_arm_stub_hash_entry *stub_entry;
8853 struct elf32_arm_link_hash_entry *hash;
8854
8855 hash = (struct elf32_arm_link_hash_entry *) h;
8856
8857 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
8858 st_type, &branch_type,
8859 hash, value, sym_sec,
fe33d2fa
CL
8860 input_bfd, sym_name);
8861
8862 if (stub_type != arm_stub_none)
906e58ca
NC
8863 {
8864 /* The target is out of reach or we are changing modes, so
8865 redirect the branch to the local stub for this
8866 function. */
8867 stub_entry = elf32_arm_get_stub_entry (input_section,
8868 sym_sec, h,
fe33d2fa
CL
8869 rel, globals,
8870 stub_type);
906e58ca 8871 if (stub_entry != NULL)
9cd3e4e5
NC
8872 {
8873 value = (stub_entry->stub_offset
8874 + stub_entry->stub_sec->output_offset
8875 + stub_entry->stub_sec->output_section->vma);
8876
8877 if (plt_offset != (bfd_vma) -1)
8878 *unresolved_reloc_p = FALSE;
8879 }
906e58ca 8880
f4ac8484 8881 /* If this call becomes a call to Arm, force BLX. */
155d87d7 8882 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
8883 {
8884 if ((stub_entry
8885 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 8886 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
8887 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8888 }
906e58ca
NC
8889 }
8890 }
8891
fe33d2fa 8892 /* Handle calls via the PLT. */
34e77a92 8893 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
8894 {
8895 value = (splt->output_section->vma
8896 + splt->output_offset
34e77a92 8897 + plt_offset);
fe33d2fa
CL
8898
8899 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8900 {
8901 /* If the Thumb BLX instruction is available, convert
8902 the BL to a BLX instruction to call the ARM-mode
8903 PLT entry. */
8904 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 8905 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
8906 }
8907 else
8908 {
8909 /* Target the Thumb stub before the ARM PLT entry. */
8910 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 8911 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa
CL
8912 }
8913 *unresolved_reloc_p = FALSE;
8914 }
8915
ba96a88f 8916 relocation = value + signed_addend;
f21f3fe0 8917
252b5132 8918 relocation -= (input_section->output_section->vma
ba96a88f
NC
8919 + input_section->output_offset
8920 + rel->r_offset);
9a5aca8c 8921
252b5132
RH
8922 check = relocation >> howto->rightshift;
8923
8924 /* If this is a signed value, the rightshift just dropped
8925 leading 1 bits (assuming twos complement). */
8926 if ((bfd_signed_vma) relocation >= 0)
8927 signed_check = check;
8928 else
8929 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8930
e95de063
MS
8931 /* Calculate the permissable maximum and minimum values for
8932 this relocation according to whether we're relocating for
8933 Thumb-2 or not. */
8934 bitsize = howto->bitsize;
8935 if (!thumb2)
8936 bitsize -= 2;
f6ebfac0 8937 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
8938 reloc_signed_min = ~reloc_signed_max;
8939
252b5132 8940 /* Assumes two's complement. */
ba96a88f 8941 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 8942 overflow = TRUE;
252b5132 8943
bd97cb95 8944 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
8945 /* For a BLX instruction, make sure that the relocation is rounded up
8946 to a word boundary. This follows the semantics of the instruction
8947 which specifies that bit 1 of the target address will come from bit
8948 1 of the base address. */
8949 relocation = (relocation + 2) & ~ 3;
cb1afa5c 8950
e95de063
MS
8951 /* Put RELOCATION back into the insn. Assumes two's complement.
8952 We use the Thumb-2 encoding, which is safe even if dealing with
8953 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 8954 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 8955 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
8956 | ((relocation >> 12) & 0x3ff)
8957 | (reloc_sign << 10);
906e58ca 8958 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
8959 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8960 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8961 | ((relocation >> 1) & 0x7ff);
c62e1cc3 8962
252b5132
RH
8963 /* Put the relocated value back in the object file: */
8964 bfd_put_16 (input_bfd, upper_insn, hit_data);
8965 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8966
8967 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8968 }
8969 break;
8970
c19d1205
ZW
8971 case R_ARM_THM_JUMP19:
8972 /* Thumb32 conditional branch instruction. */
8973 {
8974 bfd_vma relocation;
8975 bfd_boolean overflow = FALSE;
8976 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8977 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
8978 bfd_signed_vma reloc_signed_max = 0xffffe;
8979 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205
ZW
8980 bfd_signed_vma signed_check;
8981
8982 /* Need to refetch the addend, reconstruct the top three bits,
8983 and squish the two 11 bit pieces together. */
8984 if (globals->use_rel)
8985 {
8986 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 8987 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
8988 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8989 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8990 bfd_vma lower = (lower_insn & 0x07ff);
8991
a00a1f35
MS
8992 upper |= J1 << 6;
8993 upper |= J2 << 7;
8994 upper |= (!S) << 8;
c19d1205
ZW
8995 upper -= 0x0100; /* Sign extend. */
8996
8997 addend = (upper << 12) | (lower << 1);
8998 signed_addend = addend;
8999 }
9000
bd97cb95 9001 /* Handle calls via the PLT. */
34e77a92 9002 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
9003 {
9004 value = (splt->output_section->vma
9005 + splt->output_offset
34e77a92 9006 + plt_offset);
bd97cb95
DJ
9007 /* Target the Thumb stub before the ARM PLT entry. */
9008 value -= PLT_THUMB_STUB_SIZE;
9009 *unresolved_reloc_p = FALSE;
9010 }
9011
c19d1205
ZW
9012 /* ??? Should handle interworking? GCC might someday try to
9013 use this for tail calls. */
9014
99059e56 9015 relocation = value + signed_addend;
c19d1205
ZW
9016 relocation -= (input_section->output_section->vma
9017 + input_section->output_offset
9018 + rel->r_offset);
a00a1f35 9019 signed_check = (bfd_signed_vma) relocation;
c19d1205 9020
c19d1205
ZW
9021 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9022 overflow = TRUE;
9023
9024 /* Put RELOCATION back into the insn. */
9025 {
9026 bfd_vma S = (relocation & 0x00100000) >> 20;
9027 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9028 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9029 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9030 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9031
a00a1f35 9032 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
9033 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9034 }
9035
9036 /* Put the relocated value back in the object file: */
9037 bfd_put_16 (input_bfd, upper_insn, hit_data);
9038 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9039
9040 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9041 }
9042
9043 case R_ARM_THM_JUMP11:
9044 case R_ARM_THM_JUMP8:
9045 case R_ARM_THM_JUMP6:
51c5503b
NC
9046 /* Thumb B (branch) instruction). */
9047 {
6cf9e9fe 9048 bfd_signed_vma relocation;
51c5503b
NC
9049 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9050 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
9051 bfd_signed_vma signed_check;
9052
c19d1205
ZW
9053 /* CZB cannot jump backward. */
9054 if (r_type == R_ARM_THM_JUMP6)
9055 reloc_signed_min = 0;
9056
4e7fd91e 9057 if (globals->use_rel)
6cf9e9fe 9058 {
4e7fd91e
PB
9059 /* Need to refetch addend. */
9060 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9061 if (addend & ((howto->src_mask + 1) >> 1))
9062 {
9063 signed_addend = -1;
9064 signed_addend &= ~ howto->src_mask;
9065 signed_addend |= addend;
9066 }
9067 else
9068 signed_addend = addend;
9069 /* The value in the insn has been right shifted. We need to
9070 undo this, so that we can perform the address calculation
9071 in terms of bytes. */
9072 signed_addend <<= howto->rightshift;
6cf9e9fe 9073 }
6cf9e9fe 9074 relocation = value + signed_addend;
51c5503b
NC
9075
9076 relocation -= (input_section->output_section->vma
9077 + input_section->output_offset
9078 + rel->r_offset);
9079
6cf9e9fe
NC
9080 relocation >>= howto->rightshift;
9081 signed_check = relocation;
c19d1205
ZW
9082
9083 if (r_type == R_ARM_THM_JUMP6)
9084 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9085 else
9086 relocation &= howto->dst_mask;
51c5503b 9087 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 9088
51c5503b
NC
9089 bfd_put_16 (input_bfd, relocation, hit_data);
9090
9091 /* Assumes two's complement. */
9092 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9093 return bfd_reloc_overflow;
9094
9095 return bfd_reloc_ok;
9096 }
cedb70c5 9097
8375c36b
PB
9098 case R_ARM_ALU_PCREL7_0:
9099 case R_ARM_ALU_PCREL15_8:
9100 case R_ARM_ALU_PCREL23_15:
9101 {
9102 bfd_vma insn;
9103 bfd_vma relocation;
9104
9105 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
9106 if (globals->use_rel)
9107 {
9108 /* Extract the addend. */
9109 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9110 signed_addend = addend;
9111 }
8375c36b
PB
9112 relocation = value + signed_addend;
9113
9114 relocation -= (input_section->output_section->vma
9115 + input_section->output_offset
9116 + rel->r_offset);
9117 insn = (insn & ~0xfff)
9118 | ((howto->bitpos << 7) & 0xf00)
9119 | ((relocation >> howto->bitpos) & 0xff);
9120 bfd_put_32 (input_bfd, value, hit_data);
9121 }
9122 return bfd_reloc_ok;
9123
252b5132
RH
9124 case R_ARM_GNU_VTINHERIT:
9125 case R_ARM_GNU_VTENTRY:
9126 return bfd_reloc_ok;
9127
c19d1205 9128 case R_ARM_GOTOFF32:
252b5132 9129 /* Relocation is relative to the start of the
99059e56 9130 global offset table. */
252b5132
RH
9131
9132 BFD_ASSERT (sgot != NULL);
9133 if (sgot == NULL)
99059e56 9134 return bfd_reloc_notsupported;
9a5aca8c 9135
cedb70c5 9136 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
9137 address by one, so that attempts to call the function pointer will
9138 correctly interpret it as Thumb code. */
35fc36a8 9139 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
9140 value += 1;
9141
252b5132 9142 /* Note that sgot->output_offset is not involved in this
99059e56
RM
9143 calculation. We always want the start of .got. If we
9144 define _GLOBAL_OFFSET_TABLE in a different way, as is
9145 permitted by the ABI, we might have to change this
9146 calculation. */
252b5132 9147 value -= sgot->output_section->vma;
f21f3fe0 9148 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9149 contents, rel->r_offset, value,
00a97672 9150 rel->r_addend);
252b5132
RH
9151
9152 case R_ARM_GOTPC:
a7c10850 9153 /* Use global offset table as symbol value. */
252b5132 9154 BFD_ASSERT (sgot != NULL);
f21f3fe0 9155
252b5132 9156 if (sgot == NULL)
99059e56 9157 return bfd_reloc_notsupported;
252b5132 9158
0945cdfd 9159 *unresolved_reloc_p = FALSE;
252b5132 9160 value = sgot->output_section->vma;
f21f3fe0 9161 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9162 contents, rel->r_offset, value,
00a97672 9163 rel->r_addend);
f21f3fe0 9164
252b5132 9165 case R_ARM_GOT32:
eb043451 9166 case R_ARM_GOT_PREL:
252b5132 9167 /* Relocation is to the entry for this symbol in the
99059e56 9168 global offset table. */
252b5132
RH
9169 if (sgot == NULL)
9170 return bfd_reloc_notsupported;
f21f3fe0 9171
34e77a92
RS
9172 if (dynreloc_st_type == STT_GNU_IFUNC
9173 && plt_offset != (bfd_vma) -1
9174 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9175 {
9176 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9177 symbol, and the relocation resolves directly to the runtime
9178 target rather than to the .iplt entry. This means that any
9179 .got entry would be the same value as the .igot.plt entry,
9180 so there's no point creating both. */
9181 sgot = globals->root.igotplt;
9182 value = sgot->output_offset + gotplt_offset;
9183 }
9184 else if (h != NULL)
252b5132
RH
9185 {
9186 bfd_vma off;
f21f3fe0 9187
252b5132
RH
9188 off = h->got.offset;
9189 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 9190 if ((off & 1) != 0)
252b5132 9191 {
b436d854
RS
9192 /* We have already processsed one GOT relocation against
9193 this symbol. */
9194 off &= ~1;
9195 if (globals->root.dynamic_sections_created
9196 && !SYMBOL_REFERENCES_LOCAL (info, h))
9197 *unresolved_reloc_p = FALSE;
9198 }
9199 else
9200 {
9201 Elf_Internal_Rela outrel;
9202
6f820c85 9203 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
9204 {
9205 /* If the symbol doesn't resolve locally in a static
9206 object, we have an undefined reference. If the
9207 symbol doesn't resolve locally in a dynamic object,
9208 it should be resolved by the dynamic linker. */
9209 if (globals->root.dynamic_sections_created)
9210 {
9211 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9212 *unresolved_reloc_p = FALSE;
9213 }
9214 else
9215 outrel.r_info = 0;
9216 outrel.r_addend = 0;
9217 }
252b5132
RH
9218 else
9219 {
34e77a92 9220 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 9221 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
31943882
WN
9222 else if (info->shared &&
9223 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9224 || h->root.type != bfd_link_hash_undefweak))
99059e56
RM
9225 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9226 else
9227 outrel.r_info = 0;
34e77a92 9228 outrel.r_addend = dynreloc_value;
b436d854 9229 }
ee29b9fb 9230
b436d854
RS
9231 /* The GOT entry is initialized to zero by default.
9232 See if we should install a different value. */
9233 if (outrel.r_addend != 0
9234 && (outrel.r_info == 0 || globals->use_rel))
9235 {
9236 bfd_put_32 (output_bfd, outrel.r_addend,
9237 sgot->contents + off);
9238 outrel.r_addend = 0;
252b5132 9239 }
f21f3fe0 9240
b436d854
RS
9241 if (outrel.r_info != 0)
9242 {
9243 outrel.r_offset = (sgot->output_section->vma
9244 + sgot->output_offset
9245 + off);
9246 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9247 }
9248 h->got.offset |= 1;
9249 }
252b5132
RH
9250 value = sgot->output_offset + off;
9251 }
9252 else
9253 {
9254 bfd_vma off;
f21f3fe0 9255
252b5132
RH
9256 BFD_ASSERT (local_got_offsets != NULL &&
9257 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 9258
252b5132 9259 off = local_got_offsets[r_symndx];
f21f3fe0 9260
252b5132
RH
9261 /* The offset must always be a multiple of 4. We use the
9262 least significant bit to record whether we have already
9b485d32 9263 generated the necessary reloc. */
252b5132
RH
9264 if ((off & 1) != 0)
9265 off &= ~1;
9266 else
9267 {
00a97672 9268 if (globals->use_rel)
34e77a92 9269 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
f21f3fe0 9270
34e77a92 9271 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
252b5132 9272 {
947216bf 9273 Elf_Internal_Rela outrel;
f21f3fe0 9274
34e77a92 9275 outrel.r_addend = addend + dynreloc_value;
252b5132 9276 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 9277 + sgot->output_offset
252b5132 9278 + off);
34e77a92 9279 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 9280 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
34e77a92
RS
9281 else
9282 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
47beaa6a 9283 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 9284 }
f21f3fe0 9285
252b5132
RH
9286 local_got_offsets[r_symndx] |= 1;
9287 }
f21f3fe0 9288
252b5132
RH
9289 value = sgot->output_offset + off;
9290 }
eb043451
PB
9291 if (r_type != R_ARM_GOT32)
9292 value += sgot->output_section->vma;
9a5aca8c 9293
f21f3fe0 9294 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9295 contents, rel->r_offset, value,
00a97672 9296 rel->r_addend);
f21f3fe0 9297
ba93b8ac
DJ
9298 case R_ARM_TLS_LDO32:
9299 value = value - dtpoff_base (info);
9300
9301 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
9302 contents, rel->r_offset, value,
9303 rel->r_addend);
ba93b8ac
DJ
9304
9305 case R_ARM_TLS_LDM32:
9306 {
9307 bfd_vma off;
9308
362d30a1 9309 if (sgot == NULL)
ba93b8ac
DJ
9310 abort ();
9311
9312 off = globals->tls_ldm_got.offset;
9313
9314 if ((off & 1) != 0)
9315 off &= ~1;
9316 else
9317 {
9318 /* If we don't know the module number, create a relocation
9319 for it. */
9320 if (info->shared)
9321 {
9322 Elf_Internal_Rela outrel;
ba93b8ac 9323
362d30a1 9324 if (srelgot == NULL)
ba93b8ac
DJ
9325 abort ();
9326
00a97672 9327 outrel.r_addend = 0;
362d30a1
RS
9328 outrel.r_offset = (sgot->output_section->vma
9329 + sgot->output_offset + off);
ba93b8ac
DJ
9330 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9331
00a97672
RS
9332 if (globals->use_rel)
9333 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9334 sgot->contents + off);
ba93b8ac 9335
47beaa6a 9336 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9337 }
9338 else
362d30a1 9339 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
9340
9341 globals->tls_ldm_got.offset |= 1;
9342 }
9343
362d30a1 9344 value = sgot->output_section->vma + sgot->output_offset + off
ba93b8ac
DJ
9345 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9346
9347 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9348 contents, rel->r_offset, value,
00a97672 9349 rel->r_addend);
ba93b8ac
DJ
9350 }
9351
0855e32b
NS
9352 case R_ARM_TLS_CALL:
9353 case R_ARM_THM_TLS_CALL:
ba93b8ac
DJ
9354 case R_ARM_TLS_GD32:
9355 case R_ARM_TLS_IE32:
0855e32b
NS
9356 case R_ARM_TLS_GOTDESC:
9357 case R_ARM_TLS_DESCSEQ:
9358 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 9359 {
0855e32b
NS
9360 bfd_vma off, offplt;
9361 int indx = 0;
ba93b8ac
DJ
9362 char tls_type;
9363
0855e32b 9364 BFD_ASSERT (sgot != NULL);
ba93b8ac 9365
ba93b8ac
DJ
9366 if (h != NULL)
9367 {
9368 bfd_boolean dyn;
9369 dyn = globals->root.dynamic_sections_created;
9370 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9371 && (!info->shared
9372 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9373 {
9374 *unresolved_reloc_p = FALSE;
9375 indx = h->dynindx;
9376 }
9377 off = h->got.offset;
0855e32b 9378 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
9379 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9380 }
9381 else
9382 {
0855e32b 9383 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 9384 off = local_got_offsets[r_symndx];
0855e32b 9385 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
9386 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9387 }
9388
0855e32b 9389 /* Linker relaxations happens from one of the
b38cadfb 9390 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
0855e32b 9391 if (ELF32_R_TYPE(rel->r_info) != r_type)
b38cadfb 9392 tls_type = GOT_TLS_IE;
0855e32b
NS
9393
9394 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
9395
9396 if ((off & 1) != 0)
9397 off &= ~1;
9398 else
9399 {
9400 bfd_boolean need_relocs = FALSE;
9401 Elf_Internal_Rela outrel;
ba93b8ac
DJ
9402 int cur_off = off;
9403
9404 /* The GOT entries have not been initialized yet. Do it
9405 now, and emit any relocations. If both an IE GOT and a
9406 GD GOT are necessary, we emit the GD first. */
9407
9408 if ((info->shared || indx != 0)
9409 && (h == NULL
9410 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9411 || h->root.type != bfd_link_hash_undefweak))
9412 {
9413 need_relocs = TRUE;
0855e32b 9414 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
9415 }
9416
0855e32b
NS
9417 if (tls_type & GOT_TLS_GDESC)
9418 {
47beaa6a
RS
9419 bfd_byte *loc;
9420
0855e32b
NS
9421 /* We should have relaxed, unless this is an undefined
9422 weak symbol. */
9423 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9424 || info->shared);
9425 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 9426 <= globals->root.sgotplt->size);
0855e32b
NS
9427
9428 outrel.r_addend = 0;
9429 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9430 + globals->root.sgotplt->output_offset
9431 + offplt
9432 + globals->sgotplt_jump_table_size);
b38cadfb 9433
0855e32b
NS
9434 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9435 sreloc = globals->root.srelplt;
9436 loc = sreloc->contents;
9437 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9438 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 9439 <= sreloc->contents + sreloc->size);
0855e32b
NS
9440
9441 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9442
9443 /* For globals, the first word in the relocation gets
9444 the relocation index and the top bit set, or zero,
9445 if we're binding now. For locals, it gets the
9446 symbol's offset in the tls section. */
99059e56 9447 bfd_put_32 (output_bfd,
0855e32b
NS
9448 !h ? value - elf_hash_table (info)->tls_sec->vma
9449 : info->flags & DF_BIND_NOW ? 0
9450 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
9451 globals->root.sgotplt->contents + offplt
9452 + globals->sgotplt_jump_table_size);
9453
0855e32b 9454 /* Second word in the relocation is always zero. */
99059e56 9455 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
9456 globals->root.sgotplt->contents + offplt
9457 + globals->sgotplt_jump_table_size + 4);
0855e32b 9458 }
ba93b8ac
DJ
9459 if (tls_type & GOT_TLS_GD)
9460 {
9461 if (need_relocs)
9462 {
00a97672 9463 outrel.r_addend = 0;
362d30a1
RS
9464 outrel.r_offset = (sgot->output_section->vma
9465 + sgot->output_offset
00a97672 9466 + cur_off);
ba93b8ac 9467 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 9468
00a97672
RS
9469 if (globals->use_rel)
9470 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9471 sgot->contents + cur_off);
00a97672 9472
47beaa6a 9473 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9474
9475 if (indx == 0)
9476 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 9477 sgot->contents + cur_off + 4);
ba93b8ac
DJ
9478 else
9479 {
00a97672 9480 outrel.r_addend = 0;
ba93b8ac
DJ
9481 outrel.r_info = ELF32_R_INFO (indx,
9482 R_ARM_TLS_DTPOFF32);
9483 outrel.r_offset += 4;
00a97672
RS
9484
9485 if (globals->use_rel)
9486 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9487 sgot->contents + cur_off + 4);
00a97672 9488
47beaa6a
RS
9489 elf32_arm_add_dynreloc (output_bfd, info,
9490 srelgot, &outrel);
ba93b8ac
DJ
9491 }
9492 }
9493 else
9494 {
9495 /* If we are not emitting relocations for a
9496 general dynamic reference, then we must be in a
9497 static link or an executable link with the
9498 symbol binding locally. Mark it as belonging
9499 to module 1, the executable. */
9500 bfd_put_32 (output_bfd, 1,
362d30a1 9501 sgot->contents + cur_off);
ba93b8ac 9502 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 9503 sgot->contents + cur_off + 4);
ba93b8ac
DJ
9504 }
9505
9506 cur_off += 8;
9507 }
9508
9509 if (tls_type & GOT_TLS_IE)
9510 {
9511 if (need_relocs)
9512 {
00a97672
RS
9513 if (indx == 0)
9514 outrel.r_addend = value - dtpoff_base (info);
9515 else
9516 outrel.r_addend = 0;
362d30a1
RS
9517 outrel.r_offset = (sgot->output_section->vma
9518 + sgot->output_offset
ba93b8ac
DJ
9519 + cur_off);
9520 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9521
00a97672
RS
9522 if (globals->use_rel)
9523 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9524 sgot->contents + cur_off);
ba93b8ac 9525
47beaa6a 9526 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9527 }
9528 else
9529 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 9530 sgot->contents + cur_off);
ba93b8ac
DJ
9531 cur_off += 4;
9532 }
9533
9534 if (h != NULL)
9535 h->got.offset |= 1;
9536 else
9537 local_got_offsets[r_symndx] |= 1;
9538 }
9539
9540 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9541 off += 8;
0855e32b
NS
9542 else if (tls_type & GOT_TLS_GDESC)
9543 off = offplt;
9544
9545 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9546 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9547 {
9548 bfd_signed_vma offset;
12352d3f
PB
9549 /* TLS stubs are arm mode. The original symbol is a
9550 data object, so branch_type is bogus. */
9551 branch_type = ST_BRANCH_TO_ARM;
0855e32b 9552 enum elf32_arm_stub_type stub_type
34e77a92
RS
9553 = arm_type_of_stub (info, input_section, rel,
9554 st_type, &branch_type,
0855e32b
NS
9555 (struct elf32_arm_link_hash_entry *)h,
9556 globals->tls_trampoline, globals->root.splt,
9557 input_bfd, sym_name);
9558
9559 if (stub_type != arm_stub_none)
9560 {
9561 struct elf32_arm_stub_hash_entry *stub_entry
9562 = elf32_arm_get_stub_entry
9563 (input_section, globals->root.splt, 0, rel,
9564 globals, stub_type);
9565 offset = (stub_entry->stub_offset
9566 + stub_entry->stub_sec->output_offset
9567 + stub_entry->stub_sec->output_section->vma);
9568 }
9569 else
9570 offset = (globals->root.splt->output_section->vma
9571 + globals->root.splt->output_offset
9572 + globals->tls_trampoline);
9573
9574 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9575 {
9576 unsigned long inst;
b38cadfb
NC
9577
9578 offset -= (input_section->output_section->vma
9579 + input_section->output_offset
9580 + rel->r_offset + 8);
0855e32b
NS
9581
9582 inst = offset >> 2;
9583 inst &= 0x00ffffff;
9584 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9585 }
9586 else
9587 {
9588 /* Thumb blx encodes the offset in a complicated
9589 fashion. */
9590 unsigned upper_insn, lower_insn;
9591 unsigned neg;
9592
b38cadfb
NC
9593 offset -= (input_section->output_section->vma
9594 + input_section->output_offset
0855e32b 9595 + rel->r_offset + 4);
b38cadfb 9596
12352d3f
PB
9597 if (stub_type != arm_stub_none
9598 && arm_stub_is_thumb (stub_type))
9599 {
9600 lower_insn = 0xd000;
9601 }
9602 else
9603 {
9604 lower_insn = 0xc000;
9605 /* Round up the offset to a word boundary */
9606 offset = (offset + 2) & ~2;
9607 }
9608
0855e32b
NS
9609 neg = offset < 0;
9610 upper_insn = (0xf000
9611 | ((offset >> 12) & 0x3ff)
9612 | (neg << 10));
12352d3f 9613 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 9614 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 9615 | ((offset >> 1) & 0x7ff);
0855e32b
NS
9616 bfd_put_16 (input_bfd, upper_insn, hit_data);
9617 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9618 return bfd_reloc_ok;
9619 }
9620 }
9621 /* These relocations needs special care, as besides the fact
9622 they point somewhere in .gotplt, the addend must be
9623 adjusted accordingly depending on the type of instruction
9624 we refer to */
9625 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9626 {
9627 unsigned long data, insn;
9628 unsigned thumb;
b38cadfb 9629
0855e32b
NS
9630 data = bfd_get_32 (input_bfd, hit_data);
9631 thumb = data & 1;
9632 data &= ~1u;
b38cadfb 9633
0855e32b
NS
9634 if (thumb)
9635 {
9636 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9637 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9638 insn = (insn << 16)
9639 | bfd_get_16 (input_bfd,
9640 contents + rel->r_offset - data + 2);
9641 if ((insn & 0xf800c000) == 0xf000c000)
9642 /* bl/blx */
9643 value = -6;
9644 else if ((insn & 0xffffff00) == 0x4400)
9645 /* add */
9646 value = -5;
9647 else
9648 {
9649 (*_bfd_error_handler)
9650 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9651 input_bfd, input_section,
9652 (unsigned long)rel->r_offset, insn);
9653 return bfd_reloc_notsupported;
9654 }
9655 }
9656 else
9657 {
9658 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9659
9660 switch (insn >> 24)
9661 {
9662 case 0xeb: /* bl */
9663 case 0xfa: /* blx */
9664 value = -4;
9665 break;
9666
9667 case 0xe0: /* add */
9668 value = -8;
9669 break;
b38cadfb 9670
0855e32b
NS
9671 default:
9672 (*_bfd_error_handler)
9673 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9674 input_bfd, input_section,
9675 (unsigned long)rel->r_offset, insn);
9676 return bfd_reloc_notsupported;
9677 }
9678 }
b38cadfb 9679
0855e32b
NS
9680 value += ((globals->root.sgotplt->output_section->vma
9681 + globals->root.sgotplt->output_offset + off)
9682 - (input_section->output_section->vma
9683 + input_section->output_offset
9684 + rel->r_offset)
9685 + globals->sgotplt_jump_table_size);
9686 }
9687 else
9688 value = ((globals->root.sgot->output_section->vma
9689 + globals->root.sgot->output_offset + off)
9690 - (input_section->output_section->vma
9691 + input_section->output_offset + rel->r_offset));
ba93b8ac
DJ
9692
9693 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9694 contents, rel->r_offset, value,
00a97672 9695 rel->r_addend);
ba93b8ac
DJ
9696 }
9697
9698 case R_ARM_TLS_LE32:
9ec0c936 9699 if (info->shared && !info->pie)
ba93b8ac
DJ
9700 {
9701 (*_bfd_error_handler)
9702 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9703 input_bfd, input_section,
9704 (long) rel->r_offset, howto->name);
46691134 9705 return bfd_reloc_notsupported;
ba93b8ac
DJ
9706 }
9707 else
9708 value = tpoff (info, value);
906e58ca 9709
ba93b8ac 9710 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
9711 contents, rel->r_offset, value,
9712 rel->r_addend);
ba93b8ac 9713
319850b4
JB
9714 case R_ARM_V4BX:
9715 if (globals->fix_v4bx)
845b51d6
PB
9716 {
9717 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 9718
845b51d6
PB
9719 /* Ensure that we have a BX instruction. */
9720 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 9721
845b51d6
PB
9722 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9723 {
9724 /* Branch to veneer. */
9725 bfd_vma glue_addr;
9726 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9727 glue_addr -= input_section->output_section->vma
9728 + input_section->output_offset
9729 + rel->r_offset + 8;
9730 insn = (insn & 0xf0000000) | 0x0a000000
9731 | ((glue_addr >> 2) & 0x00ffffff);
9732 }
9733 else
9734 {
9735 /* Preserve Rm (lowest four bits) and the condition code
9736 (highest four bits). Other bits encode MOV PC,Rm. */
9737 insn = (insn & 0xf000000f) | 0x01a0f000;
9738 }
319850b4 9739
845b51d6
PB
9740 bfd_put_32 (input_bfd, insn, hit_data);
9741 }
319850b4
JB
9742 return bfd_reloc_ok;
9743
b6895b4f
PB
9744 case R_ARM_MOVW_ABS_NC:
9745 case R_ARM_MOVT_ABS:
9746 case R_ARM_MOVW_PREL_NC:
9747 case R_ARM_MOVT_PREL:
92f5d02b
MS
9748 /* Until we properly support segment-base-relative addressing then
9749 we assume the segment base to be zero, as for the group relocations.
9750 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9751 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9752 case R_ARM_MOVW_BREL_NC:
9753 case R_ARM_MOVW_BREL:
9754 case R_ARM_MOVT_BREL:
b6895b4f
PB
9755 {
9756 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9757
9758 if (globals->use_rel)
9759 {
9760 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 9761 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 9762 }
92f5d02b 9763
b6895b4f 9764 value += signed_addend;
b6895b4f
PB
9765
9766 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9767 value -= (input_section->output_section->vma
9768 + input_section->output_offset + rel->r_offset);
9769
92f5d02b 9770 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 9771 return bfd_reloc_overflow;
92f5d02b 9772
35fc36a8 9773 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
9774 value |= 1;
9775
9776 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 9777 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
9778 value >>= 16;
9779
9780 insn &= 0xfff0f000;
9781 insn |= value & 0xfff;
9782 insn |= (value & 0xf000) << 4;
9783 bfd_put_32 (input_bfd, insn, hit_data);
9784 }
9785 return bfd_reloc_ok;
9786
9787 case R_ARM_THM_MOVW_ABS_NC:
9788 case R_ARM_THM_MOVT_ABS:
9789 case R_ARM_THM_MOVW_PREL_NC:
9790 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
9791 /* Until we properly support segment-base-relative addressing then
9792 we assume the segment base to be zero, as for the above relocations.
9793 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9794 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9795 as R_ARM_THM_MOVT_ABS. */
9796 case R_ARM_THM_MOVW_BREL_NC:
9797 case R_ARM_THM_MOVW_BREL:
9798 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
9799 {
9800 bfd_vma insn;
906e58ca 9801
b6895b4f
PB
9802 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9803 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9804
9805 if (globals->use_rel)
9806 {
9807 addend = ((insn >> 4) & 0xf000)
9808 | ((insn >> 15) & 0x0800)
9809 | ((insn >> 4) & 0x0700)
9810 | (insn & 0x00ff);
39623e12 9811 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 9812 }
92f5d02b 9813
b6895b4f 9814 value += signed_addend;
b6895b4f
PB
9815
9816 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9817 value -= (input_section->output_section->vma
9818 + input_section->output_offset + rel->r_offset);
9819
92f5d02b 9820 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 9821 return bfd_reloc_overflow;
92f5d02b 9822
35fc36a8 9823 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
9824 value |= 1;
9825
9826 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 9827 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
9828 value >>= 16;
9829
9830 insn &= 0xfbf08f00;
9831 insn |= (value & 0xf000) << 4;
9832 insn |= (value & 0x0800) << 15;
9833 insn |= (value & 0x0700) << 4;
9834 insn |= (value & 0x00ff);
9835
9836 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9837 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9838 }
9839 return bfd_reloc_ok;
9840
4962c51a
MS
9841 case R_ARM_ALU_PC_G0_NC:
9842 case R_ARM_ALU_PC_G1_NC:
9843 case R_ARM_ALU_PC_G0:
9844 case R_ARM_ALU_PC_G1:
9845 case R_ARM_ALU_PC_G2:
9846 case R_ARM_ALU_SB_G0_NC:
9847 case R_ARM_ALU_SB_G1_NC:
9848 case R_ARM_ALU_SB_G0:
9849 case R_ARM_ALU_SB_G1:
9850 case R_ARM_ALU_SB_G2:
9851 {
9852 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 9853 bfd_vma pc = input_section->output_section->vma
4962c51a 9854 + input_section->output_offset + rel->r_offset;
99059e56
RM
9855 /* sb should be the origin of the *segment* containing the symbol.
9856 It is not clear how to obtain this OS-dependent value, so we
9857 make an arbitrary choice of zero. */
9858 bfd_vma sb = 0;
9859 bfd_vma residual;
9860 bfd_vma g_n;
4962c51a 9861 bfd_signed_vma signed_value;
99059e56
RM
9862 int group = 0;
9863
9864 /* Determine which group of bits to select. */
9865 switch (r_type)
9866 {
9867 case R_ARM_ALU_PC_G0_NC:
9868 case R_ARM_ALU_PC_G0:
9869 case R_ARM_ALU_SB_G0_NC:
9870 case R_ARM_ALU_SB_G0:
9871 group = 0;
9872 break;
9873
9874 case R_ARM_ALU_PC_G1_NC:
9875 case R_ARM_ALU_PC_G1:
9876 case R_ARM_ALU_SB_G1_NC:
9877 case R_ARM_ALU_SB_G1:
9878 group = 1;
9879 break;
9880
9881 case R_ARM_ALU_PC_G2:
9882 case R_ARM_ALU_SB_G2:
9883 group = 2;
9884 break;
9885
9886 default:
9887 abort ();
9888 }
9889
9890 /* If REL, extract the addend from the insn. If RELA, it will
9891 have already been fetched for us. */
4962c51a 9892 if (globals->use_rel)
99059e56
RM
9893 {
9894 int negative;
9895 bfd_vma constant = insn & 0xff;
9896 bfd_vma rotation = (insn & 0xf00) >> 8;
9897
9898 if (rotation == 0)
9899 signed_addend = constant;
9900 else
9901 {
9902 /* Compensate for the fact that in the instruction, the
9903 rotation is stored in multiples of 2 bits. */
9904 rotation *= 2;
9905
9906 /* Rotate "constant" right by "rotation" bits. */
9907 signed_addend = (constant >> rotation) |
9908 (constant << (8 * sizeof (bfd_vma) - rotation));
9909 }
9910
9911 /* Determine if the instruction is an ADD or a SUB.
9912 (For REL, this determines the sign of the addend.) */
9913 negative = identify_add_or_sub (insn);
9914 if (negative == 0)
9915 {
9916 (*_bfd_error_handler)
9917 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9918 input_bfd, input_section,
9919 (long) rel->r_offset, howto->name);
9920 return bfd_reloc_overflow;
9921 }
9922
9923 signed_addend *= negative;
9924 }
4962c51a
MS
9925
9926 /* Compute the value (X) to go in the place. */
99059e56
RM
9927 if (r_type == R_ARM_ALU_PC_G0_NC
9928 || r_type == R_ARM_ALU_PC_G1_NC
9929 || r_type == R_ARM_ALU_PC_G0
9930 || r_type == R_ARM_ALU_PC_G1
9931 || r_type == R_ARM_ALU_PC_G2)
9932 /* PC relative. */
9933 signed_value = value - pc + signed_addend;
9934 else
9935 /* Section base relative. */
9936 signed_value = value - sb + signed_addend;
9937
9938 /* If the target symbol is a Thumb function, then set the
9939 Thumb bit in the address. */
35fc36a8 9940 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
9941 signed_value |= 1;
9942
99059e56
RM
9943 /* Calculate the value of the relevant G_n, in encoded
9944 constant-with-rotation format. */
9945 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9946 &residual);
9947
9948 /* Check for overflow if required. */
9949 if ((r_type == R_ARM_ALU_PC_G0
9950 || r_type == R_ARM_ALU_PC_G1
9951 || r_type == R_ARM_ALU_PC_G2
9952 || r_type == R_ARM_ALU_SB_G0
9953 || r_type == R_ARM_ALU_SB_G1
9954 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9955 {
9956 (*_bfd_error_handler)
9957 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9958 input_bfd, input_section,
9959 (long) rel->r_offset, abs (signed_value), howto->name);
9960 return bfd_reloc_overflow;
9961 }
9962
9963 /* Mask out the value and the ADD/SUB part of the opcode; take care
9964 not to destroy the S bit. */
9965 insn &= 0xff1ff000;
9966
9967 /* Set the opcode according to whether the value to go in the
9968 place is negative. */
9969 if (signed_value < 0)
9970 insn |= 1 << 22;
9971 else
9972 insn |= 1 << 23;
9973
9974 /* Encode the offset. */
9975 insn |= g_n;
4962c51a
MS
9976
9977 bfd_put_32 (input_bfd, insn, hit_data);
9978 }
9979 return bfd_reloc_ok;
9980
9981 case R_ARM_LDR_PC_G0:
9982 case R_ARM_LDR_PC_G1:
9983 case R_ARM_LDR_PC_G2:
9984 case R_ARM_LDR_SB_G0:
9985 case R_ARM_LDR_SB_G1:
9986 case R_ARM_LDR_SB_G2:
9987 {
9988 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 9989 bfd_vma pc = input_section->output_section->vma
4962c51a 9990 + input_section->output_offset + rel->r_offset;
99059e56
RM
9991 bfd_vma sb = 0; /* See note above. */
9992 bfd_vma residual;
4962c51a 9993 bfd_signed_vma signed_value;
99059e56
RM
9994 int group = 0;
9995
9996 /* Determine which groups of bits to calculate. */
9997 switch (r_type)
9998 {
9999 case R_ARM_LDR_PC_G0:
10000 case R_ARM_LDR_SB_G0:
10001 group = 0;
10002 break;
10003
10004 case R_ARM_LDR_PC_G1:
10005 case R_ARM_LDR_SB_G1:
10006 group = 1;
10007 break;
10008
10009 case R_ARM_LDR_PC_G2:
10010 case R_ARM_LDR_SB_G2:
10011 group = 2;
10012 break;
10013
10014 default:
10015 abort ();
10016 }
10017
10018 /* If REL, extract the addend from the insn. If RELA, it will
10019 have already been fetched for us. */
4962c51a 10020 if (globals->use_rel)
99059e56
RM
10021 {
10022 int negative = (insn & (1 << 23)) ? 1 : -1;
10023 signed_addend = negative * (insn & 0xfff);
10024 }
4962c51a
MS
10025
10026 /* Compute the value (X) to go in the place. */
99059e56
RM
10027 if (r_type == R_ARM_LDR_PC_G0
10028 || r_type == R_ARM_LDR_PC_G1
10029 || r_type == R_ARM_LDR_PC_G2)
10030 /* PC relative. */
10031 signed_value = value - pc + signed_addend;
10032 else
10033 /* Section base relative. */
10034 signed_value = value - sb + signed_addend;
10035
10036 /* Calculate the value of the relevant G_{n-1} to obtain
10037 the residual at that stage. */
10038 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10039
10040 /* Check for overflow. */
10041 if (residual >= 0x1000)
10042 {
10043 (*_bfd_error_handler)
10044 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10045 input_bfd, input_section,
10046 (long) rel->r_offset, abs (signed_value), howto->name);
10047 return bfd_reloc_overflow;
10048 }
10049
10050 /* Mask out the value and U bit. */
10051 insn &= 0xff7ff000;
10052
10053 /* Set the U bit if the value to go in the place is non-negative. */
10054 if (signed_value >= 0)
10055 insn |= 1 << 23;
10056
10057 /* Encode the offset. */
10058 insn |= residual;
4962c51a
MS
10059
10060 bfd_put_32 (input_bfd, insn, hit_data);
10061 }
10062 return bfd_reloc_ok;
10063
10064 case R_ARM_LDRS_PC_G0:
10065 case R_ARM_LDRS_PC_G1:
10066 case R_ARM_LDRS_PC_G2:
10067 case R_ARM_LDRS_SB_G0:
10068 case R_ARM_LDRS_SB_G1:
10069 case R_ARM_LDRS_SB_G2:
10070 {
10071 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10072 bfd_vma pc = input_section->output_section->vma
4962c51a 10073 + input_section->output_offset + rel->r_offset;
99059e56
RM
10074 bfd_vma sb = 0; /* See note above. */
10075 bfd_vma residual;
4962c51a 10076 bfd_signed_vma signed_value;
99059e56
RM
10077 int group = 0;
10078
10079 /* Determine which groups of bits to calculate. */
10080 switch (r_type)
10081 {
10082 case R_ARM_LDRS_PC_G0:
10083 case R_ARM_LDRS_SB_G0:
10084 group = 0;
10085 break;
10086
10087 case R_ARM_LDRS_PC_G1:
10088 case R_ARM_LDRS_SB_G1:
10089 group = 1;
10090 break;
10091
10092 case R_ARM_LDRS_PC_G2:
10093 case R_ARM_LDRS_SB_G2:
10094 group = 2;
10095 break;
10096
10097 default:
10098 abort ();
10099 }
10100
10101 /* If REL, extract the addend from the insn. If RELA, it will
10102 have already been fetched for us. */
4962c51a 10103 if (globals->use_rel)
99059e56
RM
10104 {
10105 int negative = (insn & (1 << 23)) ? 1 : -1;
10106 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10107 }
4962c51a
MS
10108
10109 /* Compute the value (X) to go in the place. */
99059e56
RM
10110 if (r_type == R_ARM_LDRS_PC_G0
10111 || r_type == R_ARM_LDRS_PC_G1
10112 || r_type == R_ARM_LDRS_PC_G2)
10113 /* PC relative. */
10114 signed_value = value - pc + signed_addend;
10115 else
10116 /* Section base relative. */
10117 signed_value = value - sb + signed_addend;
10118
10119 /* Calculate the value of the relevant G_{n-1} to obtain
10120 the residual at that stage. */
10121 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10122
10123 /* Check for overflow. */
10124 if (residual >= 0x100)
10125 {
10126 (*_bfd_error_handler)
10127 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10128 input_bfd, input_section,
10129 (long) rel->r_offset, abs (signed_value), howto->name);
10130 return bfd_reloc_overflow;
10131 }
10132
10133 /* Mask out the value and U bit. */
10134 insn &= 0xff7ff0f0;
10135
10136 /* Set the U bit if the value to go in the place is non-negative. */
10137 if (signed_value >= 0)
10138 insn |= 1 << 23;
10139
10140 /* Encode the offset. */
10141 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
10142
10143 bfd_put_32 (input_bfd, insn, hit_data);
10144 }
10145 return bfd_reloc_ok;
10146
10147 case R_ARM_LDC_PC_G0:
10148 case R_ARM_LDC_PC_G1:
10149 case R_ARM_LDC_PC_G2:
10150 case R_ARM_LDC_SB_G0:
10151 case R_ARM_LDC_SB_G1:
10152 case R_ARM_LDC_SB_G2:
10153 {
10154 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10155 bfd_vma pc = input_section->output_section->vma
4962c51a 10156 + input_section->output_offset + rel->r_offset;
99059e56
RM
10157 bfd_vma sb = 0; /* See note above. */
10158 bfd_vma residual;
4962c51a 10159 bfd_signed_vma signed_value;
99059e56
RM
10160 int group = 0;
10161
10162 /* Determine which groups of bits to calculate. */
10163 switch (r_type)
10164 {
10165 case R_ARM_LDC_PC_G0:
10166 case R_ARM_LDC_SB_G0:
10167 group = 0;
10168 break;
10169
10170 case R_ARM_LDC_PC_G1:
10171 case R_ARM_LDC_SB_G1:
10172 group = 1;
10173 break;
10174
10175 case R_ARM_LDC_PC_G2:
10176 case R_ARM_LDC_SB_G2:
10177 group = 2;
10178 break;
10179
10180 default:
10181 abort ();
10182 }
10183
10184 /* If REL, extract the addend from the insn. If RELA, it will
10185 have already been fetched for us. */
4962c51a 10186 if (globals->use_rel)
99059e56
RM
10187 {
10188 int negative = (insn & (1 << 23)) ? 1 : -1;
10189 signed_addend = negative * ((insn & 0xff) << 2);
10190 }
4962c51a
MS
10191
10192 /* Compute the value (X) to go in the place. */
99059e56
RM
10193 if (r_type == R_ARM_LDC_PC_G0
10194 || r_type == R_ARM_LDC_PC_G1
10195 || r_type == R_ARM_LDC_PC_G2)
10196 /* PC relative. */
10197 signed_value = value - pc + signed_addend;
10198 else
10199 /* Section base relative. */
10200 signed_value = value - sb + signed_addend;
10201
10202 /* Calculate the value of the relevant G_{n-1} to obtain
10203 the residual at that stage. */
10204 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10205
10206 /* Check for overflow. (The absolute value to go in the place must be
10207 divisible by four and, after having been divided by four, must
10208 fit in eight bits.) */
10209 if ((residual & 0x3) != 0 || residual >= 0x400)
10210 {
10211 (*_bfd_error_handler)
10212 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10213 input_bfd, input_section,
10214 (long) rel->r_offset, abs (signed_value), howto->name);
10215 return bfd_reloc_overflow;
10216 }
10217
10218 /* Mask out the value and U bit. */
10219 insn &= 0xff7fff00;
10220
10221 /* Set the U bit if the value to go in the place is non-negative. */
10222 if (signed_value >= 0)
10223 insn |= 1 << 23;
10224
10225 /* Encode the offset. */
10226 insn |= residual >> 2;
4962c51a
MS
10227
10228 bfd_put_32 (input_bfd, insn, hit_data);
10229 }
10230 return bfd_reloc_ok;
10231
252b5132
RH
10232 default:
10233 return bfd_reloc_notsupported;
10234 }
10235}
10236
98c1d4aa
NC
10237/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10238static void
57e8b36a
NC
10239arm_add_to_rel (bfd * abfd,
10240 bfd_byte * address,
10241 reloc_howto_type * howto,
10242 bfd_signed_vma increment)
98c1d4aa 10243{
98c1d4aa
NC
10244 bfd_signed_vma addend;
10245
bd97cb95
DJ
10246 if (howto->type == R_ARM_THM_CALL
10247 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 10248 {
9a5aca8c
AM
10249 int upper_insn, lower_insn;
10250 int upper, lower;
98c1d4aa 10251
9a5aca8c
AM
10252 upper_insn = bfd_get_16 (abfd, address);
10253 lower_insn = bfd_get_16 (abfd, address + 2);
10254 upper = upper_insn & 0x7ff;
10255 lower = lower_insn & 0x7ff;
10256
10257 addend = (upper << 12) | (lower << 1);
ddda4409 10258 addend += increment;
9a5aca8c 10259 addend >>= 1;
98c1d4aa 10260
9a5aca8c
AM
10261 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10262 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10263
dc810e39
AM
10264 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10265 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
10266 }
10267 else
10268 {
10269 bfd_vma contents;
10270
10271 contents = bfd_get_32 (abfd, address);
10272
10273 /* Get the (signed) value from the instruction. */
10274 addend = contents & howto->src_mask;
10275 if (addend & ((howto->src_mask + 1) >> 1))
10276 {
10277 bfd_signed_vma mask;
10278
10279 mask = -1;
10280 mask &= ~ howto->src_mask;
10281 addend |= mask;
10282 }
10283
10284 /* Add in the increment, (which is a byte value). */
10285 switch (howto->type)
10286 {
10287 default:
10288 addend += increment;
10289 break;
10290
10291 case R_ARM_PC24:
c6596c5e 10292 case R_ARM_PLT32:
5b5bb741
PB
10293 case R_ARM_CALL:
10294 case R_ARM_JUMP24:
9a5aca8c 10295 addend <<= howto->size;
dc810e39 10296 addend += increment;
9a5aca8c
AM
10297
10298 /* Should we check for overflow here ? */
10299
10300 /* Drop any undesired bits. */
10301 addend >>= howto->rightshift;
10302 break;
10303 }
10304
10305 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10306
10307 bfd_put_32 (abfd, contents, address);
ddda4409 10308 }
98c1d4aa 10309}
252b5132 10310
ba93b8ac
DJ
10311#define IS_ARM_TLS_RELOC(R_TYPE) \
10312 ((R_TYPE) == R_ARM_TLS_GD32 \
10313 || (R_TYPE) == R_ARM_TLS_LDO32 \
10314 || (R_TYPE) == R_ARM_TLS_LDM32 \
10315 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10316 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10317 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10318 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b
NS
10319 || (R_TYPE) == R_ARM_TLS_IE32 \
10320 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10321
10322/* Specific set of relocations for the gnu tls dialect. */
10323#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10324 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10325 || (R_TYPE) == R_ARM_TLS_CALL \
10326 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10327 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10328 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 10329
252b5132 10330/* Relocate an ARM ELF section. */
906e58ca 10331
b34976b6 10332static bfd_boolean
57e8b36a
NC
10333elf32_arm_relocate_section (bfd * output_bfd,
10334 struct bfd_link_info * info,
10335 bfd * input_bfd,
10336 asection * input_section,
10337 bfd_byte * contents,
10338 Elf_Internal_Rela * relocs,
10339 Elf_Internal_Sym * local_syms,
10340 asection ** local_sections)
252b5132 10341{
b34976b6
AM
10342 Elf_Internal_Shdr *symtab_hdr;
10343 struct elf_link_hash_entry **sym_hashes;
10344 Elf_Internal_Rela *rel;
10345 Elf_Internal_Rela *relend;
10346 const char *name;
b32d3aa2 10347 struct elf32_arm_link_hash_table * globals;
252b5132 10348
4e7fd91e 10349 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10350 if (globals == NULL)
10351 return FALSE;
b491616a 10352
0ffa91dd 10353 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
10354 sym_hashes = elf_sym_hashes (input_bfd);
10355
10356 rel = relocs;
10357 relend = relocs + input_section->reloc_count;
10358 for (; rel < relend; rel++)
10359 {
ba96a88f
NC
10360 int r_type;
10361 reloc_howto_type * howto;
10362 unsigned long r_symndx;
10363 Elf_Internal_Sym * sym;
10364 asection * sec;
252b5132 10365 struct elf_link_hash_entry * h;
ba96a88f
NC
10366 bfd_vma relocation;
10367 bfd_reloc_status_type r;
10368 arelent bfd_reloc;
ba93b8ac 10369 char sym_type;
0945cdfd 10370 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 10371 char *error_message = NULL;
f21f3fe0 10372
252b5132 10373 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 10374 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 10375 r_type = arm_real_reloc_type (globals, r_type);
252b5132 10376
ba96a88f 10377 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
10378 || r_type == R_ARM_GNU_VTINHERIT)
10379 continue;
252b5132 10380
b32d3aa2 10381 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 10382 howto = bfd_reloc.howto;
252b5132 10383
252b5132
RH
10384 h = NULL;
10385 sym = NULL;
10386 sec = NULL;
9b485d32 10387
252b5132
RH
10388 if (r_symndx < symtab_hdr->sh_info)
10389 {
10390 sym = local_syms + r_symndx;
ba93b8ac 10391 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 10392 sec = local_sections[r_symndx];
ffcb4889
NS
10393
10394 /* An object file might have a reference to a local
10395 undefined symbol. This is a daft object file, but we
10396 should at least do something about it. V4BX & NONE
10397 relocations do not use the symbol and are explicitly
77b4f08f
TS
10398 allowed to use the undefined symbol, so allow those.
10399 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
10400 if (r_type != R_ARM_V4BX
10401 && r_type != R_ARM_NONE
77b4f08f 10402 && r_symndx != STN_UNDEF
ffcb4889
NS
10403 && bfd_is_und_section (sec)
10404 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10405 {
10406 if (!info->callbacks->undefined_symbol
10407 (info, bfd_elf_string_from_elf_section
10408 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10409 input_bfd, input_section,
10410 rel->r_offset, TRUE))
10411 return FALSE;
10412 }
b38cadfb 10413
4e7fd91e 10414 if (globals->use_rel)
f8df10f4 10415 {
4e7fd91e
PB
10416 relocation = (sec->output_section->vma
10417 + sec->output_offset
10418 + sym->st_value);
ab96bf03
AM
10419 if (!info->relocatable
10420 && (sec->flags & SEC_MERGE)
10421 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 10422 {
4e7fd91e
PB
10423 asection *msec;
10424 bfd_vma addend, value;
10425
39623e12 10426 switch (r_type)
4e7fd91e 10427 {
39623e12
PB
10428 case R_ARM_MOVW_ABS_NC:
10429 case R_ARM_MOVT_ABS:
10430 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10431 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10432 addend = (addend ^ 0x8000) - 0x8000;
10433 break;
f8df10f4 10434
39623e12
PB
10435 case R_ARM_THM_MOVW_ABS_NC:
10436 case R_ARM_THM_MOVT_ABS:
10437 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10438 << 16;
10439 value |= bfd_get_16 (input_bfd,
10440 contents + rel->r_offset + 2);
10441 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10442 | ((value & 0x04000000) >> 15);
10443 addend = (addend ^ 0x8000) - 0x8000;
10444 break;
f8df10f4 10445
39623e12
PB
10446 default:
10447 if (howto->rightshift
10448 || (howto->src_mask & (howto->src_mask + 1)))
10449 {
10450 (*_bfd_error_handler)
10451 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10452 input_bfd, input_section,
10453 (long) rel->r_offset, howto->name);
10454 return FALSE;
10455 }
10456
10457 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10458
10459 /* Get the (signed) value from the instruction. */
10460 addend = value & howto->src_mask;
10461 if (addend & ((howto->src_mask + 1) >> 1))
10462 {
10463 bfd_signed_vma mask;
10464
10465 mask = -1;
10466 mask &= ~ howto->src_mask;
10467 addend |= mask;
10468 }
10469 break;
4e7fd91e 10470 }
39623e12 10471
4e7fd91e
PB
10472 msec = sec;
10473 addend =
10474 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10475 - relocation;
10476 addend += msec->output_section->vma + msec->output_offset;
39623e12 10477
cc643b88 10478 /* Cases here must match those in the preceding
39623e12
PB
10479 switch statement. */
10480 switch (r_type)
10481 {
10482 case R_ARM_MOVW_ABS_NC:
10483 case R_ARM_MOVT_ABS:
10484 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10485 | (addend & 0xfff);
10486 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10487 break;
10488
10489 case R_ARM_THM_MOVW_ABS_NC:
10490 case R_ARM_THM_MOVT_ABS:
10491 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10492 | (addend & 0xff) | ((addend & 0x0800) << 15);
10493 bfd_put_16 (input_bfd, value >> 16,
10494 contents + rel->r_offset);
10495 bfd_put_16 (input_bfd, value,
10496 contents + rel->r_offset + 2);
10497 break;
10498
10499 default:
10500 value = (value & ~ howto->dst_mask)
10501 | (addend & howto->dst_mask);
10502 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10503 break;
10504 }
f8df10f4 10505 }
f8df10f4 10506 }
4e7fd91e
PB
10507 else
10508 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
10509 }
10510 else
10511 {
560e09e9 10512 bfd_boolean warned;
560e09e9 10513
b2a8e766
AM
10514 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10515 r_symndx, symtab_hdr, sym_hashes,
10516 h, sec, relocation,
10517 unresolved_reloc, warned);
ba93b8ac
DJ
10518
10519 sym_type = h->type;
252b5132
RH
10520 }
10521
dbaa2011 10522 if (sec != NULL && discarded_section (sec))
e4067dbb 10523 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 10524 rel, 1, relend, howto, 0, contents);
ab96bf03
AM
10525
10526 if (info->relocatable)
10527 {
10528 /* This is a relocatable link. We don't have to change
10529 anything, unless the reloc is against a section symbol,
10530 in which case we have to adjust according to where the
10531 section symbol winds up in the output section. */
10532 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10533 {
10534 if (globals->use_rel)
10535 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10536 howto, (bfd_signed_vma) sec->output_offset);
10537 else
10538 rel->r_addend += sec->output_offset;
10539 }
10540 continue;
10541 }
10542
252b5132
RH
10543 if (h != NULL)
10544 name = h->root.root.string;
10545 else
10546 {
10547 name = (bfd_elf_string_from_elf_section
10548 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10549 if (name == NULL || *name == '\0')
10550 name = bfd_section_name (input_bfd, sec);
10551 }
f21f3fe0 10552
cf35638d 10553 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
10554 && r_type != R_ARM_NONE
10555 && (h == NULL
10556 || h->root.type == bfd_link_hash_defined
10557 || h->root.type == bfd_link_hash_defweak)
10558 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10559 {
10560 (*_bfd_error_handler)
10561 ((sym_type == STT_TLS
10562 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10563 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10564 input_bfd,
10565 input_section,
10566 (long) rel->r_offset,
10567 howto->name,
10568 name);
10569 }
10570
0855e32b 10571 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
10572 done, i.e., the relaxation produced the final output we want,
10573 and we won't let anybody mess with it. Also, we have to do
10574 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10575 both in relaxed and non-relaxed cases */
0855e32b
NS
10576 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10577 || (IS_ARM_TLS_GNU_RELOC (r_type)
b38cadfb 10578 && !((h ? elf32_arm_hash_entry (h)->tls_type :
0855e32b
NS
10579 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10580 & GOT_TLS_GDESC)))
10581 {
10582 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10583 contents, rel, h == NULL);
10584 /* This may have been marked unresolved because it came from
10585 a shared library. But we've just dealt with that. */
10586 unresolved_reloc = 0;
10587 }
10588 else
10589 r = bfd_reloc_continue;
b38cadfb 10590
0855e32b
NS
10591 if (r == bfd_reloc_continue)
10592 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10593 input_section, contents, rel,
34e77a92 10594 relocation, info, sec, name, sym_type,
35fc36a8
RS
10595 (h ? h->target_internal
10596 : ARM_SYM_BRANCH_TYPE (sym)), h,
0855e32b 10597 &unresolved_reloc, &error_message);
0945cdfd
DJ
10598
10599 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10600 because such sections are not SEC_ALLOC and thus ld.so will
10601 not process them. */
10602 if (unresolved_reloc
99059e56
RM
10603 && !((input_section->flags & SEC_DEBUGGING) != 0
10604 && h->def_dynamic)
1d5316ab
AM
10605 && _bfd_elf_section_offset (output_bfd, info, input_section,
10606 rel->r_offset) != (bfd_vma) -1)
0945cdfd
DJ
10607 {
10608 (*_bfd_error_handler)
843fe662
L
10609 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10610 input_bfd,
10611 input_section,
10612 (long) rel->r_offset,
10613 howto->name,
10614 h->root.root.string);
0945cdfd
DJ
10615 return FALSE;
10616 }
252b5132
RH
10617
10618 if (r != bfd_reloc_ok)
10619 {
252b5132
RH
10620 switch (r)
10621 {
10622 case bfd_reloc_overflow:
cf919dfd
PB
10623 /* If the overflowing reloc was to an undefined symbol,
10624 we have already printed one error message and there
10625 is no point complaining again. */
10626 if ((! h ||
10627 h->root.type != bfd_link_hash_undefined)
10628 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
10629 (info, (h ? &h->root : NULL), name, howto->name,
10630 (bfd_vma) 0, input_bfd, input_section,
10631 rel->r_offset))))
b34976b6 10632 return FALSE;
252b5132
RH
10633 break;
10634
10635 case bfd_reloc_undefined:
10636 if (!((*info->callbacks->undefined_symbol)
10637 (info, name, input_bfd, input_section,
b34976b6
AM
10638 rel->r_offset, TRUE)))
10639 return FALSE;
252b5132
RH
10640 break;
10641
10642 case bfd_reloc_outofrange:
f2a9dd69 10643 error_message = _("out of range");
252b5132
RH
10644 goto common_error;
10645
10646 case bfd_reloc_notsupported:
f2a9dd69 10647 error_message = _("unsupported relocation");
252b5132
RH
10648 goto common_error;
10649
10650 case bfd_reloc_dangerous:
f2a9dd69 10651 /* error_message should already be set. */
252b5132
RH
10652 goto common_error;
10653
10654 default:
f2a9dd69 10655 error_message = _("unknown error");
8029a119 10656 /* Fall through. */
252b5132
RH
10657
10658 common_error:
f2a9dd69
DJ
10659 BFD_ASSERT (error_message != NULL);
10660 if (!((*info->callbacks->reloc_dangerous)
10661 (info, error_message, input_bfd, input_section,
252b5132 10662 rel->r_offset)))
b34976b6 10663 return FALSE;
252b5132
RH
10664 break;
10665 }
10666 }
10667 }
10668
b34976b6 10669 return TRUE;
252b5132
RH
10670}
10671
91d6fa6a 10672/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 10673 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 10674 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
10675 maintaining that condition). */
10676
10677static void
10678add_unwind_table_edit (arm_unwind_table_edit **head,
10679 arm_unwind_table_edit **tail,
10680 arm_unwind_edit_type type,
10681 asection *linked_section,
91d6fa6a 10682 unsigned int tindex)
2468f9c9 10683{
21d799b5
NC
10684 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10685 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 10686
2468f9c9
PB
10687 new_edit->type = type;
10688 new_edit->linked_section = linked_section;
91d6fa6a 10689 new_edit->index = tindex;
b38cadfb 10690
91d6fa6a 10691 if (tindex > 0)
2468f9c9
PB
10692 {
10693 new_edit->next = NULL;
10694
10695 if (*tail)
10696 (*tail)->next = new_edit;
10697
10698 (*tail) = new_edit;
10699
10700 if (!*head)
10701 (*head) = new_edit;
10702 }
10703 else
10704 {
10705 new_edit->next = *head;
10706
10707 if (!*tail)
10708 *tail = new_edit;
10709
10710 *head = new_edit;
10711 }
10712}
10713
10714static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10715
10716/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10717static void
10718adjust_exidx_size(asection *exidx_sec, int adjust)
10719{
10720 asection *out_sec;
10721
10722 if (!exidx_sec->rawsize)
10723 exidx_sec->rawsize = exidx_sec->size;
10724
10725 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10726 out_sec = exidx_sec->output_section;
10727 /* Adjust size of output section. */
10728 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10729}
10730
10731/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10732static void
10733insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10734{
10735 struct _arm_elf_section_data *exidx_arm_data;
10736
10737 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10738 add_unwind_table_edit (
10739 &exidx_arm_data->u.exidx.unwind_edit_list,
10740 &exidx_arm_data->u.exidx.unwind_edit_tail,
10741 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10742
10743 adjust_exidx_size(exidx_sec, 8);
10744}
10745
10746/* Scan .ARM.exidx tables, and create a list describing edits which should be
10747 made to those tables, such that:
b38cadfb 10748
2468f9c9
PB
10749 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10750 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 10751 codes which have been inlined into the index).
2468f9c9 10752
85fdf906
AH
10753 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10754
2468f9c9 10755 The edits are applied when the tables are written
b38cadfb 10756 (in elf32_arm_write_section). */
2468f9c9
PB
10757
10758bfd_boolean
10759elf32_arm_fix_exidx_coverage (asection **text_section_order,
10760 unsigned int num_text_sections,
85fdf906
AH
10761 struct bfd_link_info *info,
10762 bfd_boolean merge_exidx_entries)
2468f9c9
PB
10763{
10764 bfd *inp;
10765 unsigned int last_second_word = 0, i;
10766 asection *last_exidx_sec = NULL;
10767 asection *last_text_sec = NULL;
10768 int last_unwind_type = -1;
10769
10770 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10771 text sections. */
10772 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10773 {
10774 asection *sec;
b38cadfb 10775
2468f9c9 10776 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 10777 {
2468f9c9
PB
10778 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10779 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 10780
dec9d5df 10781 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 10782 continue;
b38cadfb 10783
2468f9c9
PB
10784 if (elf_sec->linked_to)
10785 {
10786 Elf_Internal_Shdr *linked_hdr
99059e56 10787 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 10788 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 10789 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
10790
10791 if (linked_sec_arm_data == NULL)
99059e56 10792 continue;
2468f9c9
PB
10793
10794 /* Link this .ARM.exidx section back from the text section it
99059e56 10795 describes. */
2468f9c9
PB
10796 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10797 }
10798 }
10799 }
10800
10801 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10802 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 10803 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
10804
10805 for (i = 0; i < num_text_sections; i++)
10806 {
10807 asection *sec = text_section_order[i];
10808 asection *exidx_sec;
10809 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10810 struct _arm_elf_section_data *exidx_arm_data;
10811 bfd_byte *contents = NULL;
10812 int deleted_exidx_bytes = 0;
10813 bfd_vma j;
10814 arm_unwind_table_edit *unwind_edit_head = NULL;
10815 arm_unwind_table_edit *unwind_edit_tail = NULL;
10816 Elf_Internal_Shdr *hdr;
10817 bfd *ibfd;
10818
10819 if (arm_data == NULL)
99059e56 10820 continue;
2468f9c9
PB
10821
10822 exidx_sec = arm_data->u.text.arm_exidx_sec;
10823 if (exidx_sec == NULL)
10824 {
10825 /* Section has no unwind data. */
10826 if (last_unwind_type == 0 || !last_exidx_sec)
10827 continue;
10828
10829 /* Ignore zero sized sections. */
10830 if (sec->size == 0)
10831 continue;
10832
10833 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10834 last_unwind_type = 0;
10835 continue;
10836 }
10837
22a8f80e
PB
10838 /* Skip /DISCARD/ sections. */
10839 if (bfd_is_abs_section (exidx_sec->output_section))
10840 continue;
10841
2468f9c9
PB
10842 hdr = &elf_section_data (exidx_sec)->this_hdr;
10843 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 10844 continue;
b38cadfb 10845
2468f9c9
PB
10846 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10847 if (exidx_arm_data == NULL)
99059e56 10848 continue;
b38cadfb 10849
2468f9c9 10850 ibfd = exidx_sec->owner;
b38cadfb 10851
2468f9c9
PB
10852 if (hdr->contents != NULL)
10853 contents = hdr->contents;
10854 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10855 /* An error? */
10856 continue;
10857
10858 for (j = 0; j < hdr->sh_size; j += 8)
10859 {
10860 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10861 int unwind_type;
10862 int elide = 0;
10863
10864 /* An EXIDX_CANTUNWIND entry. */
10865 if (second_word == 1)
10866 {
10867 if (last_unwind_type == 0)
10868 elide = 1;
10869 unwind_type = 0;
10870 }
10871 /* Inlined unwinding data. Merge if equal to previous. */
10872 else if ((second_word & 0x80000000) != 0)
10873 {
85fdf906
AH
10874 if (merge_exidx_entries
10875 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
10876 elide = 1;
10877 unwind_type = 1;
10878 last_second_word = second_word;
10879 }
10880 /* Normal table entry. In theory we could merge these too,
10881 but duplicate entries are likely to be much less common. */
10882 else
10883 unwind_type = 2;
10884
10885 if (elide)
10886 {
10887 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10888 DELETE_EXIDX_ENTRY, NULL, j / 8);
10889
10890 deleted_exidx_bytes += 8;
10891 }
10892
10893 last_unwind_type = unwind_type;
10894 }
10895
10896 /* Free contents if we allocated it ourselves. */
10897 if (contents != hdr->contents)
99059e56 10898 free (contents);
2468f9c9
PB
10899
10900 /* Record edits to be applied later (in elf32_arm_write_section). */
10901 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10902 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 10903
2468f9c9
PB
10904 if (deleted_exidx_bytes > 0)
10905 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10906
10907 last_exidx_sec = exidx_sec;
10908 last_text_sec = sec;
10909 }
10910
10911 /* Add terminating CANTUNWIND entry. */
10912 if (last_exidx_sec && last_unwind_type != 0)
10913 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10914
10915 return TRUE;
10916}
10917
3e6b1042
DJ
10918static bfd_boolean
10919elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10920 bfd *ibfd, const char *name)
10921{
10922 asection *sec, *osec;
10923
3d4d4302 10924 sec = bfd_get_linker_section (ibfd, name);
3e6b1042
DJ
10925 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10926 return TRUE;
10927
10928 osec = sec->output_section;
10929 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10930 return TRUE;
10931
10932 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10933 sec->output_offset, sec->size))
10934 return FALSE;
10935
10936 return TRUE;
10937}
10938
10939static bfd_boolean
10940elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10941{
10942 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 10943 asection *sec, *osec;
3e6b1042 10944
4dfe6ac6
NC
10945 if (globals == NULL)
10946 return FALSE;
10947
3e6b1042
DJ
10948 /* Invoke the regular ELF backend linker to do all the work. */
10949 if (!bfd_elf_final_link (abfd, info))
10950 return FALSE;
10951
fe33d2fa
CL
10952 /* Process stub sections (eg BE8 encoding, ...). */
10953 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10954 int i;
cdb21a0a
NS
10955 for (i=0; i<htab->top_id; i++)
10956 {
10957 sec = htab->stub_group[i].stub_sec;
10958 /* Only process it once, in its link_sec slot. */
10959 if (sec && i == htab->stub_group[i].link_sec->id)
10960 {
10961 osec = sec->output_section;
10962 elf32_arm_write_section (abfd, info, sec, sec->contents);
10963 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10964 sec->output_offset, sec->size))
10965 return FALSE;
10966 }
fe33d2fa 10967 }
fe33d2fa 10968
3e6b1042
DJ
10969 /* Write out any glue sections now that we have created all the
10970 stubs. */
10971 if (globals->bfd_of_glue_owner != NULL)
10972 {
10973 if (! elf32_arm_output_glue_section (info, abfd,
10974 globals->bfd_of_glue_owner,
10975 ARM2THUMB_GLUE_SECTION_NAME))
10976 return FALSE;
10977
10978 if (! elf32_arm_output_glue_section (info, abfd,
10979 globals->bfd_of_glue_owner,
10980 THUMB2ARM_GLUE_SECTION_NAME))
10981 return FALSE;
10982
10983 if (! elf32_arm_output_glue_section (info, abfd,
10984 globals->bfd_of_glue_owner,
10985 VFP11_ERRATUM_VENEER_SECTION_NAME))
10986 return FALSE;
10987
10988 if (! elf32_arm_output_glue_section (info, abfd,
10989 globals->bfd_of_glue_owner,
10990 ARM_BX_GLUE_SECTION_NAME))
10991 return FALSE;
10992 }
10993
10994 return TRUE;
10995}
10996
5968a7b8
NC
10997/* Return a best guess for the machine number based on the attributes. */
10998
10999static unsigned int
11000bfd_arm_get_mach_from_attributes (bfd * abfd)
11001{
11002 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11003
11004 switch (arch)
11005 {
11006 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11007 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11008 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11009
11010 case TAG_CPU_ARCH_V5TE:
11011 {
11012 char * name;
11013
11014 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11015 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11016
11017 if (name)
11018 {
11019 if (strcmp (name, "IWMMXT2") == 0)
11020 return bfd_mach_arm_iWMMXt2;
11021
11022 if (strcmp (name, "IWMMXT") == 0)
6034aab8 11023 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
11024
11025 if (strcmp (name, "XSCALE") == 0)
11026 {
11027 int wmmx;
11028
11029 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11030 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11031 switch (wmmx)
11032 {
11033 case 1: return bfd_mach_arm_iWMMXt;
11034 case 2: return bfd_mach_arm_iWMMXt2;
11035 default: return bfd_mach_arm_XScale;
11036 }
11037 }
5968a7b8
NC
11038 }
11039
11040 return bfd_mach_arm_5TE;
11041 }
11042
11043 default:
11044 return bfd_mach_arm_unknown;
11045 }
11046}
11047
c178919b
NC
11048/* Set the right machine number. */
11049
11050static bfd_boolean
57e8b36a 11051elf32_arm_object_p (bfd *abfd)
c178919b 11052{
5a6c6817 11053 unsigned int mach;
57e8b36a 11054
5a6c6817 11055 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 11056
5968a7b8
NC
11057 if (mach == bfd_mach_arm_unknown)
11058 {
11059 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11060 mach = bfd_mach_arm_ep9312;
11061 else
11062 mach = bfd_arm_get_mach_from_attributes (abfd);
11063 }
c178919b 11064
5968a7b8 11065 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
11066 return TRUE;
11067}
11068
fc830a83 11069/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 11070
b34976b6 11071static bfd_boolean
57e8b36a 11072elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
11073{
11074 if (elf_flags_init (abfd)
11075 && elf_elfheader (abfd)->e_flags != flags)
11076 {
fc830a83
NC
11077 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11078 {
fd2ec330 11079 if (flags & EF_ARM_INTERWORK)
d003868e
AM
11080 (*_bfd_error_handler)
11081 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11082 abfd);
fc830a83 11083 else
d003868e
AM
11084 _bfd_error_handler
11085 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11086 abfd);
fc830a83 11087 }
252b5132
RH
11088 }
11089 else
11090 {
11091 elf_elfheader (abfd)->e_flags = flags;
b34976b6 11092 elf_flags_init (abfd) = TRUE;
252b5132
RH
11093 }
11094
b34976b6 11095 return TRUE;
252b5132
RH
11096}
11097
fc830a83 11098/* Copy backend specific data from one object module to another. */
9b485d32 11099
b34976b6 11100static bfd_boolean
57e8b36a 11101elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
11102{
11103 flagword in_flags;
11104 flagword out_flags;
11105
0ffa91dd 11106 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 11107 return TRUE;
252b5132 11108
fc830a83 11109 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
11110 out_flags = elf_elfheader (obfd)->e_flags;
11111
fc830a83
NC
11112 if (elf_flags_init (obfd)
11113 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11114 && in_flags != out_flags)
252b5132 11115 {
252b5132 11116 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 11117 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 11118 return FALSE;
252b5132
RH
11119
11120 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 11121 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 11122 return FALSE;
252b5132
RH
11123
11124 /* If the src and dest have different interworking flags
99059e56 11125 then turn off the interworking bit. */
fd2ec330 11126 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 11127 {
fd2ec330 11128 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
11129 _bfd_error_handler
11130 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11131 obfd, ibfd);
252b5132 11132
fd2ec330 11133 in_flags &= ~EF_ARM_INTERWORK;
252b5132 11134 }
1006ba19
PB
11135
11136 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
11137 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11138 in_flags &= ~EF_ARM_PIC;
252b5132
RH
11139 }
11140
11141 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 11142 elf_flags_init (obfd) = TRUE;
252b5132 11143
94a3258f
PB
11144 /* Also copy the EI_OSABI field. */
11145 elf_elfheader (obfd)->e_ident[EI_OSABI] =
11146 elf_elfheader (ibfd)->e_ident[EI_OSABI];
11147
104d59d1
JM
11148 /* Copy object attributes. */
11149 _bfd_elf_copy_obj_attributes (ibfd, obfd);
ee065d83
PB
11150
11151 return TRUE;
11152}
11153
11154/* Values for Tag_ABI_PCS_R9_use. */
11155enum
11156{
11157 AEABI_R9_V6,
11158 AEABI_R9_SB,
11159 AEABI_R9_TLS,
11160 AEABI_R9_unused
11161};
11162
11163/* Values for Tag_ABI_PCS_RW_data. */
11164enum
11165{
11166 AEABI_PCS_RW_data_absolute,
11167 AEABI_PCS_RW_data_PCrel,
11168 AEABI_PCS_RW_data_SBrel,
11169 AEABI_PCS_RW_data_unused
11170};
11171
11172/* Values for Tag_ABI_enum_size. */
11173enum
11174{
11175 AEABI_enum_unused,
11176 AEABI_enum_short,
11177 AEABI_enum_wide,
11178 AEABI_enum_forced_wide
11179};
11180
104d59d1
JM
11181/* Determine whether an object attribute tag takes an integer, a
11182 string or both. */
906e58ca 11183
104d59d1
JM
11184static int
11185elf32_arm_obj_attrs_arg_type (int tag)
11186{
11187 if (tag == Tag_compatibility)
3483fe2e 11188 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 11189 else if (tag == Tag_nodefaults)
3483fe2e
AS
11190 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11191 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11192 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 11193 else if (tag < 32)
3483fe2e 11194 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 11195 else
3483fe2e 11196 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
11197}
11198
5aa6ff7c
AS
11199/* The ABI defines that Tag_conformance should be emitted first, and that
11200 Tag_nodefaults should be second (if either is defined). This sets those
11201 two positions, and bumps up the position of all the remaining tags to
11202 compensate. */
11203static int
11204elf32_arm_obj_attrs_order (int num)
11205{
3de4a297 11206 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 11207 return Tag_conformance;
3de4a297 11208 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
11209 return Tag_nodefaults;
11210 if ((num - 2) < Tag_nodefaults)
11211 return num - 2;
11212 if ((num - 1) < Tag_conformance)
11213 return num - 1;
11214 return num;
11215}
11216
e8b36cd1
JM
11217/* Attribute numbers >=64 (mod 128) can be safely ignored. */
11218static bfd_boolean
11219elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11220{
11221 if ((tag & 127) < 64)
11222 {
11223 _bfd_error_handler
11224 (_("%B: Unknown mandatory EABI object attribute %d"),
11225 abfd, tag);
11226 bfd_set_error (bfd_error_bad_value);
11227 return FALSE;
11228 }
11229 else
11230 {
11231 _bfd_error_handler
11232 (_("Warning: %B: Unknown EABI object attribute %d"),
11233 abfd, tag);
11234 return TRUE;
11235 }
11236}
11237
91e22acd
AS
11238/* Read the architecture from the Tag_also_compatible_with attribute, if any.
11239 Returns -1 if no architecture could be read. */
11240
11241static int
11242get_secondary_compatible_arch (bfd *abfd)
11243{
11244 obj_attribute *attr =
11245 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11246
11247 /* Note: the tag and its argument below are uleb128 values, though
11248 currently-defined values fit in one byte for each. */
11249 if (attr->s
11250 && attr->s[0] == Tag_CPU_arch
11251 && (attr->s[1] & 128) != 128
11252 && attr->s[2] == 0)
11253 return attr->s[1];
11254
11255 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11256 return -1;
11257}
11258
11259/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11260 The tag is removed if ARCH is -1. */
11261
8e79c3df 11262static void
91e22acd 11263set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 11264{
91e22acd
AS
11265 obj_attribute *attr =
11266 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 11267
91e22acd
AS
11268 if (arch == -1)
11269 {
11270 attr->s = NULL;
11271 return;
8e79c3df 11272 }
91e22acd
AS
11273
11274 /* Note: the tag and its argument below are uleb128 values, though
11275 currently-defined values fit in one byte for each. */
11276 if (!attr->s)
21d799b5 11277 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
11278 attr->s[0] = Tag_CPU_arch;
11279 attr->s[1] = arch;
11280 attr->s[2] = '\0';
8e79c3df
CM
11281}
11282
91e22acd
AS
11283/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11284 into account. */
11285
11286static int
11287tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11288 int newtag, int secondary_compat)
8e79c3df 11289{
91e22acd
AS
11290#define T(X) TAG_CPU_ARCH_##X
11291 int tagl, tagh, result;
11292 const int v6t2[] =
11293 {
11294 T(V6T2), /* PRE_V4. */
11295 T(V6T2), /* V4. */
11296 T(V6T2), /* V4T. */
11297 T(V6T2), /* V5T. */
11298 T(V6T2), /* V5TE. */
11299 T(V6T2), /* V5TEJ. */
11300 T(V6T2), /* V6. */
11301 T(V7), /* V6KZ. */
11302 T(V6T2) /* V6T2. */
11303 };
11304 const int v6k[] =
11305 {
11306 T(V6K), /* PRE_V4. */
11307 T(V6K), /* V4. */
11308 T(V6K), /* V4T. */
11309 T(V6K), /* V5T. */
11310 T(V6K), /* V5TE. */
11311 T(V6K), /* V5TEJ. */
11312 T(V6K), /* V6. */
11313 T(V6KZ), /* V6KZ. */
11314 T(V7), /* V6T2. */
11315 T(V6K) /* V6K. */
11316 };
11317 const int v7[] =
11318 {
11319 T(V7), /* PRE_V4. */
11320 T(V7), /* V4. */
11321 T(V7), /* V4T. */
11322 T(V7), /* V5T. */
11323 T(V7), /* V5TE. */
11324 T(V7), /* V5TEJ. */
11325 T(V7), /* V6. */
11326 T(V7), /* V6KZ. */
11327 T(V7), /* V6T2. */
11328 T(V7), /* V6K. */
11329 T(V7) /* V7. */
11330 };
11331 const int v6_m[] =
11332 {
11333 -1, /* PRE_V4. */
11334 -1, /* V4. */
11335 T(V6K), /* V4T. */
11336 T(V6K), /* V5T. */
11337 T(V6K), /* V5TE. */
11338 T(V6K), /* V5TEJ. */
11339 T(V6K), /* V6. */
11340 T(V6KZ), /* V6KZ. */
11341 T(V7), /* V6T2. */
11342 T(V6K), /* V6K. */
11343 T(V7), /* V7. */
11344 T(V6_M) /* V6_M. */
11345 };
11346 const int v6s_m[] =
11347 {
11348 -1, /* PRE_V4. */
11349 -1, /* V4. */
11350 T(V6K), /* V4T. */
11351 T(V6K), /* V5T. */
11352 T(V6K), /* V5TE. */
11353 T(V6K), /* V5TEJ. */
11354 T(V6K), /* V6. */
11355 T(V6KZ), /* V6KZ. */
11356 T(V7), /* V6T2. */
11357 T(V6K), /* V6K. */
11358 T(V7), /* V7. */
11359 T(V6S_M), /* V6_M. */
11360 T(V6S_M) /* V6S_M. */
11361 };
9e3c6df6
PB
11362 const int v7e_m[] =
11363 {
11364 -1, /* PRE_V4. */
11365 -1, /* V4. */
11366 T(V7E_M), /* V4T. */
11367 T(V7E_M), /* V5T. */
11368 T(V7E_M), /* V5TE. */
11369 T(V7E_M), /* V5TEJ. */
11370 T(V7E_M), /* V6. */
11371 T(V7E_M), /* V6KZ. */
11372 T(V7E_M), /* V6T2. */
11373 T(V7E_M), /* V6K. */
11374 T(V7E_M), /* V7. */
11375 T(V7E_M), /* V6_M. */
11376 T(V7E_M), /* V6S_M. */
11377 T(V7E_M) /* V7E_M. */
11378 };
bca38921
MGD
11379 const int v8[] =
11380 {
11381 T(V8), /* PRE_V4. */
11382 T(V8), /* V4. */
11383 T(V8), /* V4T. */
11384 T(V8), /* V5T. */
11385 T(V8), /* V5TE. */
11386 T(V8), /* V5TEJ. */
11387 T(V8), /* V6. */
11388 T(V8), /* V6KZ. */
11389 T(V8), /* V6T2. */
11390 T(V8), /* V6K. */
11391 T(V8), /* V7. */
11392 T(V8), /* V6_M. */
11393 T(V8), /* V6S_M. */
11394 T(V8), /* V7E_M. */
11395 T(V8) /* V8. */
11396 };
91e22acd
AS
11397 const int v4t_plus_v6_m[] =
11398 {
11399 -1, /* PRE_V4. */
11400 -1, /* V4. */
11401 T(V4T), /* V4T. */
11402 T(V5T), /* V5T. */
11403 T(V5TE), /* V5TE. */
11404 T(V5TEJ), /* V5TEJ. */
11405 T(V6), /* V6. */
11406 T(V6KZ), /* V6KZ. */
11407 T(V6T2), /* V6T2. */
11408 T(V6K), /* V6K. */
11409 T(V7), /* V7. */
11410 T(V6_M), /* V6_M. */
11411 T(V6S_M), /* V6S_M. */
9e3c6df6 11412 T(V7E_M), /* V7E_M. */
bca38921 11413 T(V8), /* V8. */
91e22acd
AS
11414 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11415 };
11416 const int *comb[] =
11417 {
11418 v6t2,
11419 v6k,
11420 v7,
11421 v6_m,
11422 v6s_m,
9e3c6df6 11423 v7e_m,
bca38921 11424 v8,
91e22acd
AS
11425 /* Pseudo-architecture. */
11426 v4t_plus_v6_m
11427 };
11428
11429 /* Check we've not got a higher architecture than we know about. */
11430
9e3c6df6 11431 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 11432 {
3895f852 11433 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
11434 return -1;
11435 }
11436
11437 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11438
11439 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11440 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11441 oldtag = T(V4T_PLUS_V6_M);
11442
11443 /* And override the new tag if we have a Tag_also_compatible_with on the
11444 input. */
11445
11446 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11447 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11448 newtag = T(V4T_PLUS_V6_M);
11449
11450 tagl = (oldtag < newtag) ? oldtag : newtag;
11451 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11452
11453 /* Architectures before V6KZ add features monotonically. */
11454 if (tagh <= TAG_CPU_ARCH_V6KZ)
11455 return result;
11456
11457 result = comb[tagh - T(V6T2)][tagl];
11458
11459 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11460 as the canonical version. */
11461 if (result == T(V4T_PLUS_V6_M))
11462 {
11463 result = T(V4T);
11464 *secondary_compat_out = T(V6_M);
11465 }
11466 else
11467 *secondary_compat_out = -1;
11468
11469 if (result == -1)
11470 {
3895f852 11471 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
11472 ibfd, oldtag, newtag);
11473 return -1;
11474 }
11475
11476 return result;
11477#undef T
8e79c3df
CM
11478}
11479
ac56ee8f
MGD
11480/* Query attributes object to see if integer divide instructions may be
11481 present in an object. */
11482static bfd_boolean
11483elf32_arm_attributes_accept_div (const obj_attribute *attr)
11484{
11485 int arch = attr[Tag_CPU_arch].i;
11486 int profile = attr[Tag_CPU_arch_profile].i;
11487
11488 switch (attr[Tag_DIV_use].i)
11489 {
11490 case 0:
11491 /* Integer divide allowed if instruction contained in archetecture. */
11492 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11493 return TRUE;
11494 else if (arch >= TAG_CPU_ARCH_V7E_M)
11495 return TRUE;
11496 else
11497 return FALSE;
11498
11499 case 1:
11500 /* Integer divide explicitly prohibited. */
11501 return FALSE;
11502
11503 default:
11504 /* Unrecognised case - treat as allowing divide everywhere. */
11505 case 2:
11506 /* Integer divide allowed in ARM state. */
11507 return TRUE;
11508 }
11509}
11510
11511/* Query attributes object to see if integer divide instructions are
11512 forbidden to be in the object. This is not the inverse of
11513 elf32_arm_attributes_accept_div. */
11514static bfd_boolean
11515elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11516{
11517 return attr[Tag_DIV_use].i == 1;
11518}
11519
ee065d83
PB
11520/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11521 are conflicting attributes. */
906e58ca 11522
ee065d83
PB
11523static bfd_boolean
11524elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11525{
104d59d1
JM
11526 obj_attribute *in_attr;
11527 obj_attribute *out_attr;
ee065d83
PB
11528 /* Some tags have 0 = don't care, 1 = strong requirement,
11529 2 = weak requirement. */
91e22acd 11530 static const int order_021[3] = {0, 2, 1};
ee065d83 11531 int i;
91e22acd 11532 bfd_boolean result = TRUE;
ee065d83 11533
3e6b1042
DJ
11534 /* Skip the linker stubs file. This preserves previous behavior
11535 of accepting unknown attributes in the first input file - but
11536 is that a bug? */
11537 if (ibfd->flags & BFD_LINKER_CREATED)
11538 return TRUE;
11539
104d59d1 11540 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
11541 {
11542 /* This is the first object. Copy the attributes. */
104d59d1 11543 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 11544
cd21e546
MGD
11545 out_attr = elf_known_obj_attributes_proc (obfd);
11546
004ae526
PB
11547 /* Use the Tag_null value to indicate the attributes have been
11548 initialized. */
cd21e546 11549 out_attr[0].i = 1;
004ae526 11550
cd21e546
MGD
11551 /* We do not output objects with Tag_MPextension_use_legacy - we move
11552 the attribute's value to Tag_MPextension_use. */
11553 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11554 {
11555 if (out_attr[Tag_MPextension_use].i != 0
11556 && out_attr[Tag_MPextension_use_legacy].i
99059e56 11557 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
11558 {
11559 _bfd_error_handler
11560 (_("Error: %B has both the current and legacy "
11561 "Tag_MPextension_use attributes"), ibfd);
11562 result = FALSE;
11563 }
11564
11565 out_attr[Tag_MPextension_use] =
11566 out_attr[Tag_MPextension_use_legacy];
11567 out_attr[Tag_MPextension_use_legacy].type = 0;
11568 out_attr[Tag_MPextension_use_legacy].i = 0;
11569 }
11570
11571 return result;
ee065d83
PB
11572 }
11573
104d59d1
JM
11574 in_attr = elf_known_obj_attributes_proc (ibfd);
11575 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
11576 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11577 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11578 {
8e79c3df 11579 /* Ignore mismatches if the object doesn't use floating point. */
ee065d83
PB
11580 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11581 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11582 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11583 {
11584 _bfd_error_handler
3895f852 11585 (_("error: %B uses VFP register arguments, %B does not"),
deddc40b
NS
11586 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11587 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 11588 result = FALSE;
ee065d83
PB
11589 }
11590 }
11591
3de4a297 11592 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
11593 {
11594 /* Merge this attribute with existing attributes. */
11595 switch (i)
11596 {
11597 case Tag_CPU_raw_name:
11598 case Tag_CPU_name:
91e22acd 11599 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
11600 break;
11601
11602 case Tag_ABI_optimization_goals:
11603 case Tag_ABI_FP_optimization_goals:
11604 /* Use the first value seen. */
11605 break;
11606
11607 case Tag_CPU_arch:
91e22acd
AS
11608 {
11609 int secondary_compat = -1, secondary_compat_out = -1;
11610 unsigned int saved_out_attr = out_attr[i].i;
11611 static const char *name_table[] = {
11612 /* These aren't real CPU names, but we can't guess
11613 that from the architecture version alone. */
11614 "Pre v4",
11615 "ARM v4",
11616 "ARM v4T",
11617 "ARM v5T",
11618 "ARM v5TE",
11619 "ARM v5TEJ",
11620 "ARM v6",
11621 "ARM v6KZ",
11622 "ARM v6T2",
11623 "ARM v6K",
11624 "ARM v7",
11625 "ARM v6-M",
bca38921
MGD
11626 "ARM v6S-M",
11627 "ARM v8"
91e22acd
AS
11628 };
11629
11630 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11631 secondary_compat = get_secondary_compatible_arch (ibfd);
11632 secondary_compat_out = get_secondary_compatible_arch (obfd);
11633 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11634 &secondary_compat_out,
11635 in_attr[i].i,
11636 secondary_compat);
11637 set_secondary_compatible_arch (obfd, secondary_compat_out);
11638
11639 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11640 if (out_attr[i].i == saved_out_attr)
11641 ; /* Leave the names alone. */
11642 else if (out_attr[i].i == in_attr[i].i)
11643 {
11644 /* The output architecture has been changed to match the
11645 input architecture. Use the input names. */
11646 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11647 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11648 : NULL;
11649 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11650 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11651 : NULL;
11652 }
11653 else
11654 {
11655 out_attr[Tag_CPU_name].s = NULL;
11656 out_attr[Tag_CPU_raw_name].s = NULL;
11657 }
11658
11659 /* If we still don't have a value for Tag_CPU_name,
11660 make one up now. Tag_CPU_raw_name remains blank. */
11661 if (out_attr[Tag_CPU_name].s == NULL
11662 && out_attr[i].i < ARRAY_SIZE (name_table))
11663 out_attr[Tag_CPU_name].s =
11664 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11665 }
11666 break;
11667
ee065d83
PB
11668 case Tag_ARM_ISA_use:
11669 case Tag_THUMB_ISA_use:
ee065d83 11670 case Tag_WMMX_arch:
91e22acd
AS
11671 case Tag_Advanced_SIMD_arch:
11672 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 11673 case Tag_ABI_FP_rounding:
ee065d83
PB
11674 case Tag_ABI_FP_exceptions:
11675 case Tag_ABI_FP_user_exceptions:
11676 case Tag_ABI_FP_number_model:
75375b3e 11677 case Tag_FP_HP_extension:
91e22acd
AS
11678 case Tag_CPU_unaligned_access:
11679 case Tag_T2EE_use:
91e22acd 11680 case Tag_MPextension_use:
ee065d83
PB
11681 /* Use the largest value specified. */
11682 if (in_attr[i].i > out_attr[i].i)
11683 out_attr[i].i = in_attr[i].i;
11684 break;
11685
75375b3e 11686 case Tag_ABI_align_preserved:
91e22acd
AS
11687 case Tag_ABI_PCS_RO_data:
11688 /* Use the smallest value specified. */
11689 if (in_attr[i].i < out_attr[i].i)
11690 out_attr[i].i = in_attr[i].i;
11691 break;
11692
75375b3e 11693 case Tag_ABI_align_needed:
91e22acd 11694 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
11695 && (in_attr[Tag_ABI_align_preserved].i == 0
11696 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 11697 {
91e22acd
AS
11698 /* This error message should be enabled once all non-conformant
11699 binaries in the toolchain have had the attributes set
11700 properly.
ee065d83 11701 _bfd_error_handler
3895f852 11702 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
11703 obfd, ibfd);
11704 result = FALSE; */
ee065d83 11705 }
91e22acd
AS
11706 /* Fall through. */
11707 case Tag_ABI_FP_denormal:
11708 case Tag_ABI_PCS_GOT_use:
11709 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11710 value if greater than 2 (for future-proofing). */
11711 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11712 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11713 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
11714 out_attr[i].i = in_attr[i].i;
11715 break;
91e22acd 11716
75375b3e
MGD
11717 case Tag_Virtualization_use:
11718 /* The virtualization tag effectively stores two bits of
11719 information: the intended use of TrustZone (in bit 0), and the
11720 intended use of Virtualization (in bit 1). */
11721 if (out_attr[i].i == 0)
11722 out_attr[i].i = in_attr[i].i;
11723 else if (in_attr[i].i != 0
11724 && in_attr[i].i != out_attr[i].i)
11725 {
11726 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11727 out_attr[i].i = 3;
11728 else
11729 {
11730 _bfd_error_handler
11731 (_("error: %B: unable to merge virtualization attributes "
11732 "with %B"),
11733 obfd, ibfd);
11734 result = FALSE;
11735 }
11736 }
11737 break;
91e22acd
AS
11738
11739 case Tag_CPU_arch_profile:
11740 if (out_attr[i].i != in_attr[i].i)
11741 {
11742 /* 0 will merge with anything.
11743 'A' and 'S' merge to 'A'.
11744 'R' and 'S' merge to 'R'.
99059e56 11745 'M' and 'A|R|S' is an error. */
91e22acd
AS
11746 if (out_attr[i].i == 0
11747 || (out_attr[i].i == 'S'
11748 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11749 out_attr[i].i = in_attr[i].i;
11750 else if (in_attr[i].i == 0
11751 || (in_attr[i].i == 'S'
11752 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11753 ; /* Do nothing. */
11754 else
11755 {
11756 _bfd_error_handler
3895f852 11757 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
11758 ibfd,
11759 in_attr[i].i ? in_attr[i].i : '0',
11760 out_attr[i].i ? out_attr[i].i : '0');
11761 result = FALSE;
11762 }
11763 }
11764 break;
75375b3e 11765 case Tag_FP_arch:
62f3b8c8 11766 {
4547cb56
NC
11767 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11768 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11769 when it's 0. It might mean absence of FP hardware if
11770 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11771
bca38921 11772#define VFP_VERSION_COUNT 8
62f3b8c8
PB
11773 static const struct
11774 {
11775 int ver;
11776 int regs;
bca38921 11777 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
11778 {
11779 {0, 0},
11780 {1, 16},
11781 {2, 16},
11782 {3, 32},
11783 {3, 16},
11784 {4, 32},
bca38921
MGD
11785 {4, 16},
11786 {8, 32}
62f3b8c8
PB
11787 };
11788 int ver;
11789 int regs;
11790 int newval;
11791
4547cb56
NC
11792 /* If the output has no requirement about FP hardware,
11793 follow the requirement of the input. */
11794 if (out_attr[i].i == 0)
11795 {
11796 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11797 out_attr[i].i = in_attr[i].i;
11798 out_attr[Tag_ABI_HardFP_use].i
11799 = in_attr[Tag_ABI_HardFP_use].i;
11800 break;
11801 }
11802 /* If the input has no requirement about FP hardware, do
11803 nothing. */
11804 else if (in_attr[i].i == 0)
11805 {
11806 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11807 break;
11808 }
11809
11810 /* Both the input and the output have nonzero Tag_FP_arch.
11811 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11812
11813 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11814 do nothing. */
11815 if (in_attr[Tag_ABI_HardFP_use].i == 0
11816 && out_attr[Tag_ABI_HardFP_use].i == 0)
11817 ;
11818 /* If the input and the output have different Tag_ABI_HardFP_use,
11819 the combination of them is 3 (SP & DP). */
11820 else if (in_attr[Tag_ABI_HardFP_use].i
11821 != out_attr[Tag_ABI_HardFP_use].i)
11822 out_attr[Tag_ABI_HardFP_use].i = 3;
11823
11824 /* Now we can handle Tag_FP_arch. */
11825
bca38921
MGD
11826 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11827 pick the biggest. */
11828 if (in_attr[i].i >= VFP_VERSION_COUNT
11829 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
11830 {
11831 out_attr[i] = in_attr[i];
11832 break;
11833 }
11834 /* The output uses the superset of input features
11835 (ISA version) and registers. */
11836 ver = vfp_versions[in_attr[i].i].ver;
11837 if (ver < vfp_versions[out_attr[i].i].ver)
11838 ver = vfp_versions[out_attr[i].i].ver;
11839 regs = vfp_versions[in_attr[i].i].regs;
11840 if (regs < vfp_versions[out_attr[i].i].regs)
11841 regs = vfp_versions[out_attr[i].i].regs;
11842 /* This assumes all possible supersets are also a valid
99059e56 11843 options. */
bca38921 11844 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
11845 {
11846 if (regs == vfp_versions[newval].regs
11847 && ver == vfp_versions[newval].ver)
11848 break;
11849 }
11850 out_attr[i].i = newval;
11851 }
b1cc4aeb 11852 break;
ee065d83
PB
11853 case Tag_PCS_config:
11854 if (out_attr[i].i == 0)
11855 out_attr[i].i = in_attr[i].i;
b6009aca 11856 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
11857 {
11858 /* It's sometimes ok to mix different configs, so this is only
99059e56 11859 a warning. */
ee065d83
PB
11860 _bfd_error_handler
11861 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11862 }
11863 break;
11864 case Tag_ABI_PCS_R9_use:
004ae526
PB
11865 if (in_attr[i].i != out_attr[i].i
11866 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
11867 && in_attr[i].i != AEABI_R9_unused)
11868 {
11869 _bfd_error_handler
3895f852 11870 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 11871 result = FALSE;
ee065d83
PB
11872 }
11873 if (out_attr[i].i == AEABI_R9_unused)
11874 out_attr[i].i = in_attr[i].i;
11875 break;
11876 case Tag_ABI_PCS_RW_data:
11877 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11878 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11879 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11880 {
11881 _bfd_error_handler
3895f852 11882 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 11883 ibfd);
91e22acd 11884 result = FALSE;
ee065d83
PB
11885 }
11886 /* Use the smallest value specified. */
11887 if (in_attr[i].i < out_attr[i].i)
11888 out_attr[i].i = in_attr[i].i;
11889 break;
ee065d83 11890 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
11891 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11892 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
11893 {
11894 _bfd_error_handler
a9dc9481
JM
11895 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11896 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 11897 }
a9dc9481 11898 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
11899 out_attr[i].i = in_attr[i].i;
11900 break;
ee065d83
PB
11901 case Tag_ABI_enum_size:
11902 if (in_attr[i].i != AEABI_enum_unused)
11903 {
11904 if (out_attr[i].i == AEABI_enum_unused
11905 || out_attr[i].i == AEABI_enum_forced_wide)
11906 {
11907 /* The existing object is compatible with anything.
11908 Use whatever requirements the new object has. */
11909 out_attr[i].i = in_attr[i].i;
11910 }
11911 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 11912 && out_attr[i].i != in_attr[i].i
0ffa91dd 11913 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 11914 {
91e22acd 11915 static const char *aeabi_enum_names[] =
bf21ed78 11916 { "", "variable-size", "32-bit", "" };
91e22acd
AS
11917 const char *in_name =
11918 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11919 ? aeabi_enum_names[in_attr[i].i]
11920 : "<unknown>";
11921 const char *out_name =
11922 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11923 ? aeabi_enum_names[out_attr[i].i]
11924 : "<unknown>";
ee065d83 11925 _bfd_error_handler
bf21ed78 11926 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 11927 ibfd, in_name, out_name);
ee065d83
PB
11928 }
11929 }
11930 break;
11931 case Tag_ABI_VFP_args:
11932 /* Aready done. */
11933 break;
11934 case Tag_ABI_WMMX_args:
11935 if (in_attr[i].i != out_attr[i].i)
11936 {
11937 _bfd_error_handler
3895f852 11938 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 11939 ibfd, obfd);
91e22acd 11940 result = FALSE;
ee065d83
PB
11941 }
11942 break;
7b86a9fa
AS
11943 case Tag_compatibility:
11944 /* Merged in target-independent code. */
11945 break;
91e22acd 11946 case Tag_ABI_HardFP_use:
4547cb56 11947 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
11948 break;
11949 case Tag_ABI_FP_16bit_format:
11950 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11951 {
11952 if (in_attr[i].i != out_attr[i].i)
11953 {
11954 _bfd_error_handler
3895f852 11955 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
11956 ibfd, obfd);
11957 result = FALSE;
11958 }
11959 }
11960 if (in_attr[i].i != 0)
11961 out_attr[i].i = in_attr[i].i;
11962 break;
7b86a9fa 11963
cd21e546 11964 case Tag_DIV_use:
ac56ee8f
MGD
11965 /* A value of zero on input means that the divide instruction may
11966 be used if available in the base architecture as specified via
11967 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
11968 the user did not want divide instructions. A value of 2
11969 explicitly means that divide instructions were allowed in ARM
11970 and Thumb state. */
11971 if (in_attr[i].i == out_attr[i].i)
11972 /* Do nothing. */ ;
11973 else if (elf32_arm_attributes_forbid_div (in_attr)
11974 && !elf32_arm_attributes_accept_div (out_attr))
11975 out_attr[i].i = 1;
11976 else if (elf32_arm_attributes_forbid_div (out_attr)
11977 && elf32_arm_attributes_accept_div (in_attr))
11978 out_attr[i].i = in_attr[i].i;
11979 else if (in_attr[i].i == 2)
11980 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
11981 break;
11982
11983 case Tag_MPextension_use_legacy:
11984 /* We don't output objects with Tag_MPextension_use_legacy - we
11985 move the value to Tag_MPextension_use. */
11986 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11987 {
11988 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11989 {
11990 _bfd_error_handler
11991 (_("%B has has both the current and legacy "
b38cadfb 11992 "Tag_MPextension_use attributes"),
cd21e546
MGD
11993 ibfd);
11994 result = FALSE;
11995 }
11996 }
11997
11998 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11999 out_attr[Tag_MPextension_use] = in_attr[i];
12000
12001 break;
12002
91e22acd 12003 case Tag_nodefaults:
2d0bb761
AS
12004 /* This tag is set if it exists, but the value is unused (and is
12005 typically zero). We don't actually need to do anything here -
12006 the merge happens automatically when the type flags are merged
12007 below. */
91e22acd
AS
12008 break;
12009 case Tag_also_compatible_with:
12010 /* Already done in Tag_CPU_arch. */
12011 break;
12012 case Tag_conformance:
12013 /* Keep the attribute if it matches. Throw it away otherwise.
12014 No attribute means no claim to conform. */
12015 if (!in_attr[i].s || !out_attr[i].s
12016 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12017 out_attr[i].s = NULL;
12018 break;
3cfad14c 12019
91e22acd 12020 default:
e8b36cd1
JM
12021 result
12022 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
12023 }
12024
12025 /* If out_attr was copied from in_attr then it won't have a type yet. */
12026 if (in_attr[i].type && !out_attr[i].type)
12027 out_attr[i].type = in_attr[i].type;
ee065d83
PB
12028 }
12029
104d59d1 12030 /* Merge Tag_compatibility attributes and any common GNU ones. */
5488d830
MGD
12031 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
12032 return FALSE;
ee065d83 12033
104d59d1 12034 /* Check for any attributes not known on ARM. */
e8b36cd1 12035 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 12036
91e22acd 12037 return result;
252b5132
RH
12038}
12039
3a4a14e9
PB
12040
12041/* Return TRUE if the two EABI versions are incompatible. */
12042
12043static bfd_boolean
12044elf32_arm_versions_compatible (unsigned iver, unsigned over)
12045{
12046 /* v4 and v5 are the same spec before and after it was released,
12047 so allow mixing them. */
12048 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12049 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12050 return TRUE;
12051
12052 return (iver == over);
12053}
12054
252b5132
RH
12055/* Merge backend specific data from an object file to the output
12056 object file when linking. */
9b485d32 12057
b34976b6 12058static bfd_boolean
21d799b5 12059elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
252b5132 12060
9b485d32
NC
12061/* Display the flags field. */
12062
b34976b6 12063static bfd_boolean
57e8b36a 12064elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 12065{
fc830a83
NC
12066 FILE * file = (FILE *) ptr;
12067 unsigned long flags;
252b5132
RH
12068
12069 BFD_ASSERT (abfd != NULL && ptr != NULL);
12070
12071 /* Print normal ELF private data. */
12072 _bfd_elf_print_private_bfd_data (abfd, ptr);
12073
fc830a83 12074 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
12075 /* Ignore init flag - it may not be set, despite the flags field
12076 containing valid data. */
252b5132
RH
12077
12078 /* xgettext:c-format */
9b485d32 12079 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 12080
fc830a83
NC
12081 switch (EF_ARM_EABI_VERSION (flags))
12082 {
12083 case EF_ARM_EABI_UNKNOWN:
4cc11e76 12084 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
12085 official ARM ELF extended ABI. Hence they are only decoded if
12086 the EABI version is not set. */
fd2ec330 12087 if (flags & EF_ARM_INTERWORK)
9b485d32 12088 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 12089
fd2ec330 12090 if (flags & EF_ARM_APCS_26)
6c571f00 12091 fprintf (file, " [APCS-26]");
fc830a83 12092 else
6c571f00 12093 fprintf (file, " [APCS-32]");
9a5aca8c 12094
96a846ea
RE
12095 if (flags & EF_ARM_VFP_FLOAT)
12096 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
12097 else if (flags & EF_ARM_MAVERICK_FLOAT)
12098 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
12099 else
12100 fprintf (file, _(" [FPA float format]"));
12101
fd2ec330 12102 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 12103 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 12104
fd2ec330 12105 if (flags & EF_ARM_PIC)
9b485d32 12106 fprintf (file, _(" [position independent]"));
fc830a83 12107
fd2ec330 12108 if (flags & EF_ARM_NEW_ABI)
9b485d32 12109 fprintf (file, _(" [new ABI]"));
9a5aca8c 12110
fd2ec330 12111 if (flags & EF_ARM_OLD_ABI)
9b485d32 12112 fprintf (file, _(" [old ABI]"));
9a5aca8c 12113
fd2ec330 12114 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 12115 fprintf (file, _(" [software FP]"));
9a5aca8c 12116
96a846ea
RE
12117 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12118 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
12119 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12120 | EF_ARM_MAVERICK_FLOAT);
fc830a83 12121 break;
9a5aca8c 12122
fc830a83 12123 case EF_ARM_EABI_VER1:
9b485d32 12124 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 12125
fc830a83 12126 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 12127 fprintf (file, _(" [sorted symbol table]"));
fc830a83 12128 else
9b485d32 12129 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 12130
fc830a83
NC
12131 flags &= ~ EF_ARM_SYMSARESORTED;
12132 break;
9a5aca8c 12133
fd2ec330
PB
12134 case EF_ARM_EABI_VER2:
12135 fprintf (file, _(" [Version2 EABI]"));
12136
12137 if (flags & EF_ARM_SYMSARESORTED)
12138 fprintf (file, _(" [sorted symbol table]"));
12139 else
12140 fprintf (file, _(" [unsorted symbol table]"));
12141
12142 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12143 fprintf (file, _(" [dynamic symbols use segment index]"));
12144
12145 if (flags & EF_ARM_MAPSYMSFIRST)
12146 fprintf (file, _(" [mapping symbols precede others]"));
12147
99e4ae17 12148 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
12149 | EF_ARM_MAPSYMSFIRST);
12150 break;
12151
d507cf36
PB
12152 case EF_ARM_EABI_VER3:
12153 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
12154 break;
12155
12156 case EF_ARM_EABI_VER4:
12157 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 12158 goto eabi;
d507cf36 12159
3a4a14e9
PB
12160 case EF_ARM_EABI_VER5:
12161 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
12162
12163 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12164 fprintf (file, _(" [soft-float ABI]"));
12165
12166 if (flags & EF_ARM_ABI_FLOAT_HARD)
12167 fprintf (file, _(" [hard-float ABI]"));
12168
12169 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12170
3a4a14e9 12171 eabi:
d507cf36
PB
12172 if (flags & EF_ARM_BE8)
12173 fprintf (file, _(" [BE8]"));
12174
12175 if (flags & EF_ARM_LE8)
12176 fprintf (file, _(" [LE8]"));
12177
12178 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12179 break;
12180
fc830a83 12181 default:
9b485d32 12182 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
12183 break;
12184 }
252b5132 12185
fc830a83 12186 flags &= ~ EF_ARM_EABIMASK;
252b5132 12187
fc830a83 12188 if (flags & EF_ARM_RELEXEC)
9b485d32 12189 fprintf (file, _(" [relocatable executable]"));
252b5132 12190
fc830a83 12191 if (flags & EF_ARM_HASENTRY)
9b485d32 12192 fprintf (file, _(" [has entry point]"));
252b5132 12193
fc830a83
NC
12194 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12195
12196 if (flags)
9b485d32 12197 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 12198
252b5132
RH
12199 fputc ('\n', file);
12200
b34976b6 12201 return TRUE;
252b5132
RH
12202}
12203
12204static int
57e8b36a 12205elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 12206{
2f0ca46a
NC
12207 switch (ELF_ST_TYPE (elf_sym->st_info))
12208 {
12209 case STT_ARM_TFUNC:
12210 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 12211
2f0ca46a
NC
12212 case STT_ARM_16BIT:
12213 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12214 This allows us to distinguish between data used by Thumb instructions
12215 and non-data (which is probably code) inside Thumb regions of an
12216 executable. */
1a0eb693 12217 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
12218 return ELF_ST_TYPE (elf_sym->st_info);
12219 break;
9a5aca8c 12220
ce855c42
NC
12221 default:
12222 break;
2f0ca46a
NC
12223 }
12224
12225 return type;
252b5132 12226}
f21f3fe0 12227
252b5132 12228static asection *
07adf181
AM
12229elf32_arm_gc_mark_hook (asection *sec,
12230 struct bfd_link_info *info,
12231 Elf_Internal_Rela *rel,
12232 struct elf_link_hash_entry *h,
12233 Elf_Internal_Sym *sym)
252b5132
RH
12234{
12235 if (h != NULL)
07adf181 12236 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
12237 {
12238 case R_ARM_GNU_VTINHERIT:
12239 case R_ARM_GNU_VTENTRY:
07adf181
AM
12240 return NULL;
12241 }
9ad5cbcf 12242
07adf181 12243 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
12244}
12245
780a67af
NC
12246/* Update the got entry reference counts for the section being removed. */
12247
b34976b6 12248static bfd_boolean
ba93b8ac
DJ
12249elf32_arm_gc_sweep_hook (bfd * abfd,
12250 struct bfd_link_info * info,
12251 asection * sec,
12252 const Elf_Internal_Rela * relocs)
252b5132 12253{
5e681ec4
PB
12254 Elf_Internal_Shdr *symtab_hdr;
12255 struct elf_link_hash_entry **sym_hashes;
12256 bfd_signed_vma *local_got_refcounts;
12257 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
12258 struct elf32_arm_link_hash_table * globals;
12259
7dda2462
TG
12260 if (info->relocatable)
12261 return TRUE;
12262
eb043451 12263 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
12264 if (globals == NULL)
12265 return FALSE;
5e681ec4
PB
12266
12267 elf_section_data (sec)->local_dynrel = NULL;
12268
0ffa91dd 12269 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
12270 sym_hashes = elf_sym_hashes (abfd);
12271 local_got_refcounts = elf_local_got_refcounts (abfd);
12272
906e58ca 12273 check_use_blx (globals);
bd97cb95 12274
5e681ec4
PB
12275 relend = relocs + sec->reloc_count;
12276 for (rel = relocs; rel < relend; rel++)
eb043451 12277 {
3eb128b2
AM
12278 unsigned long r_symndx;
12279 struct elf_link_hash_entry *h = NULL;
f6e32f6d 12280 struct elf32_arm_link_hash_entry *eh;
eb043451 12281 int r_type;
34e77a92 12282 bfd_boolean call_reloc_p;
f6e32f6d
RS
12283 bfd_boolean may_become_dynamic_p;
12284 bfd_boolean may_need_local_target_p;
34e77a92
RS
12285 union gotplt_union *root_plt;
12286 struct arm_plt_info *arm_plt;
5e681ec4 12287
3eb128b2
AM
12288 r_symndx = ELF32_R_SYM (rel->r_info);
12289 if (r_symndx >= symtab_hdr->sh_info)
12290 {
12291 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12292 while (h->root.type == bfd_link_hash_indirect
12293 || h->root.type == bfd_link_hash_warning)
12294 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12295 }
f6e32f6d
RS
12296 eh = (struct elf32_arm_link_hash_entry *) h;
12297
34e77a92 12298 call_reloc_p = FALSE;
f6e32f6d
RS
12299 may_become_dynamic_p = FALSE;
12300 may_need_local_target_p = FALSE;
3eb128b2 12301
eb043451 12302 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 12303 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
12304 switch (r_type)
12305 {
12306 case R_ARM_GOT32:
eb043451 12307 case R_ARM_GOT_PREL:
ba93b8ac
DJ
12308 case R_ARM_TLS_GD32:
12309 case R_ARM_TLS_IE32:
3eb128b2 12310 if (h != NULL)
eb043451 12311 {
eb043451
PB
12312 if (h->got.refcount > 0)
12313 h->got.refcount -= 1;
12314 }
12315 else if (local_got_refcounts != NULL)
12316 {
12317 if (local_got_refcounts[r_symndx] > 0)
12318 local_got_refcounts[r_symndx] -= 1;
12319 }
12320 break;
12321
ba93b8ac 12322 case R_ARM_TLS_LDM32:
4dfe6ac6 12323 globals->tls_ldm_got.refcount -= 1;
ba93b8ac
DJ
12324 break;
12325
eb043451
PB
12326 case R_ARM_PC24:
12327 case R_ARM_PLT32:
5b5bb741
PB
12328 case R_ARM_CALL:
12329 case R_ARM_JUMP24:
eb043451 12330 case R_ARM_PREL31:
c19d1205 12331 case R_ARM_THM_CALL:
bd97cb95
DJ
12332 case R_ARM_THM_JUMP24:
12333 case R_ARM_THM_JUMP19:
34e77a92 12334 call_reloc_p = TRUE;
f6e32f6d
RS
12335 may_need_local_target_p = TRUE;
12336 break;
12337
12338 case R_ARM_ABS12:
12339 if (!globals->vxworks_p)
12340 {
12341 may_need_local_target_p = TRUE;
12342 break;
12343 }
12344 /* Fall through. */
12345 case R_ARM_ABS32:
12346 case R_ARM_ABS32_NOI:
12347 case R_ARM_REL32:
12348 case R_ARM_REL32_NOI:
b6895b4f
PB
12349 case R_ARM_MOVW_ABS_NC:
12350 case R_ARM_MOVT_ABS:
12351 case R_ARM_MOVW_PREL_NC:
12352 case R_ARM_MOVT_PREL:
12353 case R_ARM_THM_MOVW_ABS_NC:
12354 case R_ARM_THM_MOVT_ABS:
12355 case R_ARM_THM_MOVW_PREL_NC:
12356 case R_ARM_THM_MOVT_PREL:
b7693d02 12357 /* Should the interworking branches be here also? */
f6e32f6d 12358 if ((info->shared || globals->root.is_relocatable_executable)
34e77a92
RS
12359 && (sec->flags & SEC_ALLOC) != 0)
12360 {
12361 if (h == NULL
12362 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12363 {
12364 call_reloc_p = TRUE;
12365 may_need_local_target_p = TRUE;
12366 }
12367 else
12368 may_become_dynamic_p = TRUE;
12369 }
f6e32f6d
RS
12370 else
12371 may_need_local_target_p = TRUE;
12372 break;
b7693d02 12373
f6e32f6d
RS
12374 default:
12375 break;
12376 }
5e681ec4 12377
34e77a92
RS
12378 if (may_need_local_target_p
12379 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
f6e32f6d 12380 {
27586251
HPN
12381 /* If PLT refcount book-keeping is wrong and too low, we'll
12382 see a zero value (going to -1) for the root PLT reference
12383 count. */
12384 if (root_plt->refcount >= 0)
12385 {
12386 BFD_ASSERT (root_plt->refcount != 0);
12387 root_plt->refcount -= 1;
12388 }
12389 else
12390 /* A value of -1 means the symbol has become local, forced
12391 or seeing a hidden definition. Any other negative value
12392 is an error. */
12393 BFD_ASSERT (root_plt->refcount == -1);
34e77a92
RS
12394
12395 if (!call_reloc_p)
12396 arm_plt->noncall_refcount--;
5e681ec4 12397
f6e32f6d 12398 if (r_type == R_ARM_THM_CALL)
34e77a92 12399 arm_plt->maybe_thumb_refcount--;
bd97cb95 12400
f6e32f6d
RS
12401 if (r_type == R_ARM_THM_JUMP24
12402 || r_type == R_ARM_THM_JUMP19)
34e77a92 12403 arm_plt->thumb_refcount--;
f6e32f6d 12404 }
5e681ec4 12405
34e77a92 12406 if (may_become_dynamic_p)
f6e32f6d
RS
12407 {
12408 struct elf_dyn_relocs **pp;
12409 struct elf_dyn_relocs *p;
5e681ec4 12410
34e77a92 12411 if (h != NULL)
9c489990 12412 pp = &(eh->dyn_relocs);
34e77a92
RS
12413 else
12414 {
12415 Elf_Internal_Sym *isym;
12416
12417 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12418 abfd, r_symndx);
12419 if (isym == NULL)
12420 return FALSE;
12421 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12422 if (pp == NULL)
12423 return FALSE;
12424 }
9c489990 12425 for (; (p = *pp) != NULL; pp = &p->next)
f6e32f6d
RS
12426 if (p->sec == sec)
12427 {
12428 /* Everything must go for SEC. */
12429 *pp = p->next;
12430 break;
12431 }
eb043451
PB
12432 }
12433 }
5e681ec4 12434
b34976b6 12435 return TRUE;
252b5132
RH
12436}
12437
780a67af
NC
12438/* Look through the relocs for a section during the first phase. */
12439
b34976b6 12440static bfd_boolean
57e8b36a
NC
12441elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12442 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 12443{
b34976b6
AM
12444 Elf_Internal_Shdr *symtab_hdr;
12445 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
12446 const Elf_Internal_Rela *rel;
12447 const Elf_Internal_Rela *rel_end;
12448 bfd *dynobj;
5e681ec4 12449 asection *sreloc;
5e681ec4 12450 struct elf32_arm_link_hash_table *htab;
f6e32f6d
RS
12451 bfd_boolean call_reloc_p;
12452 bfd_boolean may_become_dynamic_p;
12453 bfd_boolean may_need_local_target_p;
ce98a316 12454 unsigned long nsyms;
9a5aca8c 12455
1049f94e 12456 if (info->relocatable)
b34976b6 12457 return TRUE;
9a5aca8c 12458
0ffa91dd
NC
12459 BFD_ASSERT (is_arm_elf (abfd));
12460
5e681ec4 12461 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
12462 if (htab == NULL)
12463 return FALSE;
12464
5e681ec4 12465 sreloc = NULL;
9a5aca8c 12466
67687978
PB
12467 /* Create dynamic sections for relocatable executables so that we can
12468 copy relocations. */
12469 if (htab->root.is_relocatable_executable
12470 && ! htab->root.dynamic_sections_created)
12471 {
12472 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12473 return FALSE;
12474 }
12475
cbc704f3
RS
12476 if (htab->root.dynobj == NULL)
12477 htab->root.dynobj = abfd;
34e77a92
RS
12478 if (!create_ifunc_sections (info))
12479 return FALSE;
cbc704f3
RS
12480
12481 dynobj = htab->root.dynobj;
12482
0ffa91dd 12483 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 12484 sym_hashes = elf_sym_hashes (abfd);
ce98a316 12485 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 12486
252b5132
RH
12487 rel_end = relocs + sec->reloc_count;
12488 for (rel = relocs; rel < rel_end; rel++)
12489 {
34e77a92 12490 Elf_Internal_Sym *isym;
252b5132 12491 struct elf_link_hash_entry *h;
b7693d02 12492 struct elf32_arm_link_hash_entry *eh;
252b5132 12493 unsigned long r_symndx;
eb043451 12494 int r_type;
9a5aca8c 12495
252b5132 12496 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 12497 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 12498 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 12499
ce98a316
NC
12500 if (r_symndx >= nsyms
12501 /* PR 9934: It is possible to have relocations that do not
12502 refer to symbols, thus it is also possible to have an
12503 object file containing relocations but no symbol table. */
cf35638d 12504 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac
DJ
12505 {
12506 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
ce98a316 12507 r_symndx);
ba93b8ac
DJ
12508 return FALSE;
12509 }
12510
34e77a92
RS
12511 h = NULL;
12512 isym = NULL;
12513 if (nsyms > 0)
973a3492 12514 {
34e77a92
RS
12515 if (r_symndx < symtab_hdr->sh_info)
12516 {
12517 /* A local symbol. */
12518 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12519 abfd, r_symndx);
12520 if (isym == NULL)
12521 return FALSE;
12522 }
12523 else
12524 {
12525 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12526 while (h->root.type == bfd_link_hash_indirect
12527 || h->root.type == bfd_link_hash_warning)
12528 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
12529
12530 /* PR15323, ref flags aren't set for references in the
12531 same object. */
12532 h->root.non_ir_ref = 1;
34e77a92 12533 }
973a3492 12534 }
9a5aca8c 12535
b7693d02
DJ
12536 eh = (struct elf32_arm_link_hash_entry *) h;
12537
f6e32f6d
RS
12538 call_reloc_p = FALSE;
12539 may_become_dynamic_p = FALSE;
12540 may_need_local_target_p = FALSE;
12541
0855e32b
NS
12542 /* Could be done earlier, if h were already available. */
12543 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 12544 switch (r_type)
99059e56 12545 {
5e681ec4 12546 case R_ARM_GOT32:
eb043451 12547 case R_ARM_GOT_PREL:
ba93b8ac
DJ
12548 case R_ARM_TLS_GD32:
12549 case R_ARM_TLS_IE32:
0855e32b
NS
12550 case R_ARM_TLS_GOTDESC:
12551 case R_ARM_TLS_DESCSEQ:
12552 case R_ARM_THM_TLS_DESCSEQ:
12553 case R_ARM_TLS_CALL:
12554 case R_ARM_THM_TLS_CALL:
5e681ec4 12555 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
12556 {
12557 int tls_type, old_tls_type;
5e681ec4 12558
ba93b8ac
DJ
12559 switch (r_type)
12560 {
12561 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
b38cadfb 12562
ba93b8ac 12563 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
b38cadfb 12564
0855e32b
NS
12565 case R_ARM_TLS_GOTDESC:
12566 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12567 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12568 tls_type = GOT_TLS_GDESC; break;
b38cadfb 12569
ba93b8ac
DJ
12570 default: tls_type = GOT_NORMAL; break;
12571 }
252b5132 12572
ba93b8ac
DJ
12573 if (h != NULL)
12574 {
12575 h->got.refcount++;
12576 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12577 }
12578 else
12579 {
ba93b8ac 12580 /* This is a global offset table entry for a local symbol. */
34e77a92
RS
12581 if (!elf32_arm_allocate_local_sym_info (abfd))
12582 return FALSE;
12583 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
12584 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12585 }
12586
0855e32b 12587 /* If a variable is accessed with both tls methods, two
99059e56 12588 slots may be created. */
0855e32b
NS
12589 if (GOT_TLS_GD_ANY_P (old_tls_type)
12590 && GOT_TLS_GD_ANY_P (tls_type))
12591 tls_type |= old_tls_type;
12592
12593 /* We will already have issued an error message if there
12594 is a TLS/non-TLS mismatch, based on the symbol
12595 type. So just combine any TLS types needed. */
ba93b8ac
DJ
12596 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12597 && tls_type != GOT_NORMAL)
12598 tls_type |= old_tls_type;
12599
0855e32b 12600 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
12601 method, we're able to relax. Turn off the GDESC flag,
12602 without messing up with any other kind of tls types
12603 that may be involved */
0855e32b
NS
12604 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12605 tls_type &= ~GOT_TLS_GDESC;
12606
ba93b8ac
DJ
12607 if (old_tls_type != tls_type)
12608 {
12609 if (h != NULL)
12610 elf32_arm_hash_entry (h)->tls_type = tls_type;
12611 else
12612 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12613 }
12614 }
8029a119 12615 /* Fall through. */
ba93b8ac
DJ
12616
12617 case R_ARM_TLS_LDM32:
12618 if (r_type == R_ARM_TLS_LDM32)
12619 htab->tls_ldm_got.refcount++;
8029a119 12620 /* Fall through. */
252b5132 12621
c19d1205 12622 case R_ARM_GOTOFF32:
5e681ec4 12623 case R_ARM_GOTPC:
cbc704f3
RS
12624 if (htab->root.sgot == NULL
12625 && !create_got_section (htab->root.dynobj, info))
12626 return FALSE;
252b5132
RH
12627 break;
12628
252b5132 12629 case R_ARM_PC24:
7359ea65 12630 case R_ARM_PLT32:
5b5bb741
PB
12631 case R_ARM_CALL:
12632 case R_ARM_JUMP24:
eb043451 12633 case R_ARM_PREL31:
c19d1205 12634 case R_ARM_THM_CALL:
bd97cb95
DJ
12635 case R_ARM_THM_JUMP24:
12636 case R_ARM_THM_JUMP19:
f6e32f6d
RS
12637 call_reloc_p = TRUE;
12638 may_need_local_target_p = TRUE;
12639 break;
12640
12641 case R_ARM_ABS12:
12642 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12643 ldr __GOTT_INDEX__ offsets. */
12644 if (!htab->vxworks_p)
12645 {
12646 may_need_local_target_p = TRUE;
12647 break;
12648 }
12649 /* Fall through. */
39623e12 12650
96c23d59
JM
12651 case R_ARM_MOVW_ABS_NC:
12652 case R_ARM_MOVT_ABS:
12653 case R_ARM_THM_MOVW_ABS_NC:
12654 case R_ARM_THM_MOVT_ABS:
12655 if (info->shared)
12656 {
12657 (*_bfd_error_handler)
12658 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12659 abfd, elf32_arm_howto_table_1[r_type].name,
12660 (h) ? h->root.root.string : "a local symbol");
12661 bfd_set_error (bfd_error_bad_value);
12662 return FALSE;
12663 }
12664
12665 /* Fall through. */
39623e12
PB
12666 case R_ARM_ABS32:
12667 case R_ARM_ABS32_NOI:
12668 case R_ARM_REL32:
12669 case R_ARM_REL32_NOI:
b6895b4f
PB
12670 case R_ARM_MOVW_PREL_NC:
12671 case R_ARM_MOVT_PREL:
b6895b4f
PB
12672 case R_ARM_THM_MOVW_PREL_NC:
12673 case R_ARM_THM_MOVT_PREL:
39623e12 12674
b7693d02 12675 /* Should the interworking branches be listed here? */
67687978 12676 if ((info->shared || htab->root.is_relocatable_executable)
34e77a92
RS
12677 && (sec->flags & SEC_ALLOC) != 0)
12678 {
12679 if (h == NULL
12680 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12681 {
12682 /* In shared libraries and relocatable executables,
12683 we treat local relative references as calls;
12684 see the related SYMBOL_CALLS_LOCAL code in
12685 allocate_dynrelocs. */
12686 call_reloc_p = TRUE;
12687 may_need_local_target_p = TRUE;
12688 }
12689 else
12690 /* We are creating a shared library or relocatable
12691 executable, and this is a reloc against a global symbol,
12692 or a non-PC-relative reloc against a local symbol.
12693 We may need to copy the reloc into the output. */
12694 may_become_dynamic_p = TRUE;
12695 }
f6e32f6d
RS
12696 else
12697 may_need_local_target_p = TRUE;
252b5132
RH
12698 break;
12699
99059e56
RM
12700 /* This relocation describes the C++ object vtable hierarchy.
12701 Reconstruct it for later use during GC. */
12702 case R_ARM_GNU_VTINHERIT:
12703 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12704 return FALSE;
12705 break;
12706
12707 /* This relocation describes which C++ vtable entries are actually
12708 used. Record for later use during GC. */
12709 case R_ARM_GNU_VTENTRY:
12710 BFD_ASSERT (h != NULL);
12711 if (h != NULL
12712 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12713 return FALSE;
12714 break;
12715 }
f6e32f6d
RS
12716
12717 if (h != NULL)
12718 {
12719 if (call_reloc_p)
12720 /* We may need a .plt entry if the function this reloc
12721 refers to is in a different object, regardless of the
12722 symbol's type. We can't tell for sure yet, because
12723 something later might force the symbol local. */
12724 h->needs_plt = 1;
12725 else if (may_need_local_target_p)
12726 /* If this reloc is in a read-only section, we might
12727 need a copy reloc. We can't check reliably at this
12728 stage whether the section is read-only, as input
12729 sections have not yet been mapped to output sections.
12730 Tentatively set the flag for now, and correct in
12731 adjust_dynamic_symbol. */
12732 h->non_got_ref = 1;
12733 }
12734
34e77a92
RS
12735 if (may_need_local_target_p
12736 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 12737 {
34e77a92
RS
12738 union gotplt_union *root_plt;
12739 struct arm_plt_info *arm_plt;
12740 struct arm_local_iplt_info *local_iplt;
12741
12742 if (h != NULL)
12743 {
12744 root_plt = &h->plt;
12745 arm_plt = &eh->plt;
12746 }
12747 else
12748 {
12749 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12750 if (local_iplt == NULL)
12751 return FALSE;
12752 root_plt = &local_iplt->root;
12753 arm_plt = &local_iplt->arm;
12754 }
12755
f6e32f6d
RS
12756 /* If the symbol is a function that doesn't bind locally,
12757 this relocation will need a PLT entry. */
a8c887dd
NC
12758 if (root_plt->refcount != -1)
12759 root_plt->refcount += 1;
34e77a92
RS
12760
12761 if (!call_reloc_p)
12762 arm_plt->noncall_refcount++;
f6e32f6d
RS
12763
12764 /* It's too early to use htab->use_blx here, so we have to
12765 record possible blx references separately from
12766 relocs that definitely need a thumb stub. */
12767
12768 if (r_type == R_ARM_THM_CALL)
34e77a92 12769 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
12770
12771 if (r_type == R_ARM_THM_JUMP24
12772 || r_type == R_ARM_THM_JUMP19)
34e77a92 12773 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
12774 }
12775
12776 if (may_become_dynamic_p)
12777 {
12778 struct elf_dyn_relocs *p, **head;
12779
12780 /* Create a reloc section in dynobj. */
12781 if (sreloc == NULL)
12782 {
12783 sreloc = _bfd_elf_make_dynamic_reloc_section
12784 (sec, dynobj, 2, abfd, ! htab->use_rel);
12785
12786 if (sreloc == NULL)
12787 return FALSE;
12788
12789 /* BPABI objects never have dynamic relocations mapped. */
12790 if (htab->symbian_p)
12791 {
12792 flagword flags;
12793
12794 flags = bfd_get_section_flags (dynobj, sreloc);
12795 flags &= ~(SEC_LOAD | SEC_ALLOC);
12796 bfd_set_section_flags (dynobj, sreloc, flags);
12797 }
12798 }
12799
12800 /* If this is a global symbol, count the number of
12801 relocations we need for this symbol. */
12802 if (h != NULL)
12803 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12804 else
12805 {
34e77a92
RS
12806 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12807 if (head == NULL)
f6e32f6d 12808 return FALSE;
f6e32f6d
RS
12809 }
12810
12811 p = *head;
12812 if (p == NULL || p->sec != sec)
12813 {
12814 bfd_size_type amt = sizeof *p;
12815
12816 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12817 if (p == NULL)
12818 return FALSE;
12819 p->next = *head;
12820 *head = p;
12821 p->sec = sec;
12822 p->count = 0;
12823 p->pc_count = 0;
12824 }
12825
12826 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12827 p->pc_count += 1;
12828 p->count += 1;
12829 }
252b5132 12830 }
f21f3fe0 12831
b34976b6 12832 return TRUE;
252b5132
RH
12833}
12834
6a5bb875
PB
12835/* Unwinding tables are not referenced directly. This pass marks them as
12836 required if the corresponding code section is marked. */
12837
12838static bfd_boolean
906e58ca
NC
12839elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12840 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
12841{
12842 bfd *sub;
12843 Elf_Internal_Shdr **elf_shdrp;
12844 bfd_boolean again;
12845
7f6ab9f8
AM
12846 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12847
6a5bb875
PB
12848 /* Marking EH data may cause additional code sections to be marked,
12849 requiring multiple passes. */
12850 again = TRUE;
12851 while (again)
12852 {
12853 again = FALSE;
12854 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12855 {
12856 asection *o;
12857
0ffa91dd 12858 if (! is_arm_elf (sub))
6a5bb875
PB
12859 continue;
12860
12861 elf_shdrp = elf_elfsections (sub);
12862 for (o = sub->sections; o != NULL; o = o->next)
12863 {
12864 Elf_Internal_Shdr *hdr;
0ffa91dd 12865
6a5bb875 12866 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
12867 if (hdr->sh_type == SHT_ARM_EXIDX
12868 && hdr->sh_link
12869 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
12870 && !o->gc_mark
12871 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12872 {
12873 again = TRUE;
12874 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12875 return FALSE;
12876 }
12877 }
12878 }
12879 }
12880
12881 return TRUE;
12882}
12883
3c9458e9
NC
12884/* Treat mapping symbols as special target symbols. */
12885
12886static bfd_boolean
12887elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12888{
b0796911
PB
12889 return bfd_is_arm_special_symbol_name (sym->name,
12890 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
12891}
12892
0367ecfb
NC
12893/* This is a copy of elf_find_function() from elf.c except that
12894 ARM mapping symbols are ignored when looking for function names
12895 and STT_ARM_TFUNC is considered to a function type. */
252b5132 12896
0367ecfb
NC
12897static bfd_boolean
12898arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12899 asection * section,
12900 asymbol ** symbols,
12901 bfd_vma offset,
12902 const char ** filename_ptr,
12903 const char ** functionname_ptr)
12904{
12905 const char * filename = NULL;
12906 asymbol * func = NULL;
12907 bfd_vma low_func = 0;
12908 asymbol ** p;
252b5132
RH
12909
12910 for (p = symbols; *p != NULL; p++)
12911 {
12912 elf_symbol_type *q;
12913
12914 q = (elf_symbol_type *) *p;
12915
252b5132
RH
12916 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12917 {
12918 default:
12919 break;
12920 case STT_FILE:
12921 filename = bfd_asymbol_name (&q->symbol);
12922 break;
252b5132
RH
12923 case STT_FUNC:
12924 case STT_ARM_TFUNC:
9d2da7ca 12925 case STT_NOTYPE:
b0796911 12926 /* Skip mapping symbols. */
0367ecfb 12927 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
12928 && bfd_is_arm_special_symbol_name (q->symbol.name,
12929 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
12930 continue;
12931 /* Fall through. */
6b40fcba 12932 if (bfd_get_section (&q->symbol) == section
252b5132
RH
12933 && q->symbol.value >= low_func
12934 && q->symbol.value <= offset)
12935 {
12936 func = (asymbol *) q;
12937 low_func = q->symbol.value;
12938 }
12939 break;
12940 }
12941 }
12942
12943 if (func == NULL)
b34976b6 12944 return FALSE;
252b5132 12945
0367ecfb
NC
12946 if (filename_ptr)
12947 *filename_ptr = filename;
12948 if (functionname_ptr)
12949 *functionname_ptr = bfd_asymbol_name (func);
12950
12951 return TRUE;
906e58ca 12952}
0367ecfb
NC
12953
12954
12955/* Find the nearest line to a particular section and offset, for error
12956 reporting. This code is a duplicate of the code in elf.c, except
12957 that it uses arm_elf_find_function. */
12958
12959static bfd_boolean
12960elf32_arm_find_nearest_line (bfd * abfd,
12961 asection * section,
12962 asymbol ** symbols,
12963 bfd_vma offset,
12964 const char ** filename_ptr,
12965 const char ** functionname_ptr,
12966 unsigned int * line_ptr)
12967{
12968 bfd_boolean found = FALSE;
12969
12970 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12971
fc28f9aa 12972 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
99059e56 12973 section, symbols, offset,
0367ecfb 12974 filename_ptr, functionname_ptr,
9b8d1a36 12975 line_ptr, NULL, 0,
0367ecfb
NC
12976 & elf_tdata (abfd)->dwarf2_find_line_info))
12977 {
12978 if (!*functionname_ptr)
12979 arm_elf_find_function (abfd, section, symbols, offset,
12980 *filename_ptr ? NULL : filename_ptr,
12981 functionname_ptr);
f21f3fe0 12982
0367ecfb
NC
12983 return TRUE;
12984 }
12985
12986 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12987 & found, filename_ptr,
12988 functionname_ptr, line_ptr,
12989 & elf_tdata (abfd)->line_info))
12990 return FALSE;
12991
12992 if (found && (*functionname_ptr || *line_ptr))
12993 return TRUE;
12994
12995 if (symbols == NULL)
12996 return FALSE;
12997
12998 if (! arm_elf_find_function (abfd, section, symbols, offset,
12999 filename_ptr, functionname_ptr))
13000 return FALSE;
13001
13002 *line_ptr = 0;
b34976b6 13003 return TRUE;
252b5132
RH
13004}
13005
4ab527b0
FF
13006static bfd_boolean
13007elf32_arm_find_inliner_info (bfd * abfd,
13008 const char ** filename_ptr,
13009 const char ** functionname_ptr,
13010 unsigned int * line_ptr)
13011{
13012 bfd_boolean found;
13013 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13014 functionname_ptr, line_ptr,
13015 & elf_tdata (abfd)->dwarf2_find_line_info);
13016 return found;
13017}
13018
252b5132
RH
13019/* Adjust a symbol defined by a dynamic object and referenced by a
13020 regular object. The current definition is in some section of the
13021 dynamic object, but we're not including those sections. We have to
13022 change the definition to something the rest of the link can
13023 understand. */
13024
b34976b6 13025static bfd_boolean
57e8b36a
NC
13026elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
13027 struct elf_link_hash_entry * h)
252b5132
RH
13028{
13029 bfd * dynobj;
13030 asection * s;
b7693d02 13031 struct elf32_arm_link_hash_entry * eh;
67687978 13032 struct elf32_arm_link_hash_table *globals;
252b5132 13033
67687978 13034 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
13035 if (globals == NULL)
13036 return FALSE;
13037
252b5132
RH
13038 dynobj = elf_hash_table (info)->dynobj;
13039
13040 /* Make sure we know what is going on here. */
13041 BFD_ASSERT (dynobj != NULL
f5385ebf 13042 && (h->needs_plt
34e77a92 13043 || h->type == STT_GNU_IFUNC
f6e332e6 13044 || h->u.weakdef != NULL
f5385ebf
AM
13045 || (h->def_dynamic
13046 && h->ref_regular
13047 && !h->def_regular)));
252b5132 13048
b7693d02
DJ
13049 eh = (struct elf32_arm_link_hash_entry *) h;
13050
252b5132
RH
13051 /* If this is a function, put it in the procedure linkage table. We
13052 will fill in the contents of the procedure linkage table later,
13053 when we know the address of the .got section. */
34e77a92 13054 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 13055 {
34e77a92
RS
13056 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13057 symbol binds locally. */
5e681ec4 13058 if (h->plt.refcount <= 0
34e77a92
RS
13059 || (h->type != STT_GNU_IFUNC
13060 && (SYMBOL_CALLS_LOCAL (info, h)
13061 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13062 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
13063 {
13064 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
13065 file, but the symbol was never referred to by a dynamic
13066 object, or if all references were garbage collected. In
13067 such a case, we don't actually need to build a procedure
13068 linkage table, and we can just do a PC24 reloc instead. */
13069 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
13070 eh->plt.thumb_refcount = 0;
13071 eh->plt.maybe_thumb_refcount = 0;
13072 eh->plt.noncall_refcount = 0;
f5385ebf 13073 h->needs_plt = 0;
252b5132
RH
13074 }
13075
b34976b6 13076 return TRUE;
252b5132 13077 }
5e681ec4 13078 else
b7693d02
DJ
13079 {
13080 /* It's possible that we incorrectly decided a .plt reloc was
13081 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13082 in check_relocs. We can't decide accurately between function
13083 and non-function syms in check-relocs; Objects loaded later in
13084 the link may change h->type. So fix it now. */
13085 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
13086 eh->plt.thumb_refcount = 0;
13087 eh->plt.maybe_thumb_refcount = 0;
13088 eh->plt.noncall_refcount = 0;
b7693d02 13089 }
252b5132
RH
13090
13091 /* If this is a weak symbol, and there is a real definition, the
13092 processor independent code will have arranged for us to see the
13093 real definition first, and we can just use the same value. */
f6e332e6 13094 if (h->u.weakdef != NULL)
252b5132 13095 {
f6e332e6
AM
13096 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13097 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13098 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13099 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 13100 return TRUE;
252b5132
RH
13101 }
13102
ba93b8ac
DJ
13103 /* If there are no non-GOT references, we do not need a copy
13104 relocation. */
13105 if (!h->non_got_ref)
13106 return TRUE;
13107
252b5132
RH
13108 /* This is a reference to a symbol defined by a dynamic object which
13109 is not a function. */
13110
13111 /* If we are creating a shared library, we must presume that the
13112 only references to the symbol are via the global offset table.
13113 For such cases we need not do anything here; the relocations will
67687978
PB
13114 be handled correctly by relocate_section. Relocatable executables
13115 can reference data in shared objects directly, so we don't need to
13116 do anything here. */
13117 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 13118 return TRUE;
252b5132
RH
13119
13120 /* We must allocate the symbol in our .dynbss section, which will
13121 become part of the .bss section of the executable. There will be
13122 an entry for this symbol in the .dynsym section. The dynamic
13123 object will contain position independent code, so all references
13124 from the dynamic object to this symbol will go through the global
13125 offset table. The dynamic linker will use the .dynsym entry to
13126 determine the address it must put in the global offset table, so
13127 both the dynamic object and the regular object will refer to the
13128 same memory location for the variable. */
3d4d4302 13129 s = bfd_get_linker_section (dynobj, ".dynbss");
252b5132
RH
13130 BFD_ASSERT (s != NULL);
13131
13132 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13133 copy the initial value out of the dynamic object and into the
13134 runtime process image. We need to remember the offset into the
00a97672 13135 .rel(a).bss section we are going to use. */
1d7e9d18 13136 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
252b5132
RH
13137 {
13138 asection *srel;
13139
3d4d4302 13140 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
47beaa6a 13141 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 13142 h->needs_copy = 1;
252b5132
RH
13143 }
13144
027297b7 13145 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
13146}
13147
5e681ec4
PB
13148/* Allocate space in .plt, .got and associated reloc sections for
13149 dynamic relocs. */
13150
13151static bfd_boolean
47beaa6a 13152allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
13153{
13154 struct bfd_link_info *info;
13155 struct elf32_arm_link_hash_table *htab;
13156 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 13157 struct elf_dyn_relocs *p;
5e681ec4
PB
13158
13159 if (h->root.type == bfd_link_hash_indirect)
13160 return TRUE;
13161
e6a6bb22
AM
13162 eh = (struct elf32_arm_link_hash_entry *) h;
13163
5e681ec4
PB
13164 info = (struct bfd_link_info *) inf;
13165 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13166 if (htab == NULL)
13167 return FALSE;
5e681ec4 13168
34e77a92 13169 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
13170 && h->plt.refcount > 0)
13171 {
13172 /* Make sure this symbol is output as a dynamic symbol.
13173 Undefined weak syms won't yet be marked as dynamic. */
13174 if (h->dynindx == -1
f5385ebf 13175 && !h->forced_local)
5e681ec4 13176 {
c152c796 13177 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13178 return FALSE;
13179 }
13180
34e77a92
RS
13181 /* If the call in the PLT entry binds locally, the associated
13182 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13183 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13184 than the .plt section. */
13185 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13186 {
13187 eh->is_iplt = 1;
13188 if (eh->plt.noncall_refcount == 0
13189 && SYMBOL_REFERENCES_LOCAL (info, h))
13190 /* All non-call references can be resolved directly.
13191 This means that they can (and in some cases, must)
13192 resolve directly to the run-time target, rather than
13193 to the PLT. That in turns means that any .got entry
13194 would be equal to the .igot.plt entry, so there's
13195 no point having both. */
13196 h->got.refcount = 0;
13197 }
13198
5e681ec4 13199 if (info->shared
34e77a92 13200 || eh->is_iplt
7359ea65 13201 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 13202 {
34e77a92 13203 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 13204
5e681ec4
PB
13205 /* If this symbol is not defined in a regular file, and we are
13206 not generating a shared library, then set the symbol to this
13207 location in the .plt. This is required to make function
13208 pointers compare as equal between the normal executable and
13209 the shared library. */
13210 if (! info->shared
f5385ebf 13211 && !h->def_regular)
5e681ec4 13212 {
34e77a92 13213 h->root.u.def.section = htab->root.splt;
5e681ec4 13214 h->root.u.def.value = h->plt.offset;
5e681ec4 13215
67d74e43
DJ
13216 /* Make sure the function is not marked as Thumb, in case
13217 it is the target of an ABS32 relocation, which will
13218 point to the PLT entry. */
35fc36a8 13219 h->target_internal = ST_BRANCH_TO_ARM;
67d74e43 13220 }
022f8312 13221
0855e32b 13222 htab->next_tls_desc_index++;
00a97672
RS
13223
13224 /* VxWorks executables have a second set of relocations for
13225 each PLT entry. They go in a separate relocation section,
13226 which is processed by the kernel loader. */
13227 if (htab->vxworks_p && !info->shared)
13228 {
13229 /* There is a relocation for the initial PLT entry:
13230 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13231 if (h->plt.offset == htab->plt_header_size)
47beaa6a 13232 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
13233
13234 /* There are two extra relocations for each subsequent
13235 PLT entry: an R_ARM_32 relocation for the GOT entry,
13236 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 13237 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 13238 }
5e681ec4
PB
13239 }
13240 else
13241 {
13242 h->plt.offset = (bfd_vma) -1;
f5385ebf 13243 h->needs_plt = 0;
5e681ec4
PB
13244 }
13245 }
13246 else
13247 {
13248 h->plt.offset = (bfd_vma) -1;
f5385ebf 13249 h->needs_plt = 0;
5e681ec4
PB
13250 }
13251
0855e32b
NS
13252 eh = (struct elf32_arm_link_hash_entry *) h;
13253 eh->tlsdesc_got = (bfd_vma) -1;
13254
5e681ec4
PB
13255 if (h->got.refcount > 0)
13256 {
13257 asection *s;
13258 bfd_boolean dyn;
ba93b8ac
DJ
13259 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13260 int indx;
5e681ec4
PB
13261
13262 /* Make sure this symbol is output as a dynamic symbol.
13263 Undefined weak syms won't yet be marked as dynamic. */
13264 if (h->dynindx == -1
f5385ebf 13265 && !h->forced_local)
5e681ec4 13266 {
c152c796 13267 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13268 return FALSE;
13269 }
13270
e5a52504
MM
13271 if (!htab->symbian_p)
13272 {
362d30a1 13273 s = htab->root.sgot;
e5a52504 13274 h->got.offset = s->size;
ba93b8ac
DJ
13275
13276 if (tls_type == GOT_UNKNOWN)
13277 abort ();
13278
13279 if (tls_type == GOT_NORMAL)
13280 /* Non-TLS symbols need one GOT slot. */
13281 s->size += 4;
13282 else
13283 {
99059e56
RM
13284 if (tls_type & GOT_TLS_GDESC)
13285 {
0855e32b 13286 /* R_ARM_TLS_DESC needs 2 GOT slots. */
99059e56 13287 eh->tlsdesc_got
0855e32b
NS
13288 = (htab->root.sgotplt->size
13289 - elf32_arm_compute_jump_table_size (htab));
99059e56
RM
13290 htab->root.sgotplt->size += 8;
13291 h->got.offset = (bfd_vma) -2;
34e77a92 13292 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 13293 reloc in the middle of .got.plt. */
99059e56
RM
13294 htab->num_tls_desc++;
13295 }
0855e32b 13296
ba93b8ac 13297 if (tls_type & GOT_TLS_GD)
0855e32b
NS
13298 {
13299 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13300 the symbol is both GD and GDESC, got.offset may
13301 have been overwritten. */
13302 h->got.offset = s->size;
13303 s->size += 8;
13304 }
13305
ba93b8ac
DJ
13306 if (tls_type & GOT_TLS_IE)
13307 /* R_ARM_TLS_IE32 needs one GOT slot. */
13308 s->size += 4;
13309 }
13310
e5a52504 13311 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
13312
13313 indx = 0;
13314 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13315 && (!info->shared
13316 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13317 indx = h->dynindx;
13318
13319 if (tls_type != GOT_NORMAL
13320 && (info->shared || indx != 0)
13321 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13322 || h->root.type != bfd_link_hash_undefweak))
13323 {
13324 if (tls_type & GOT_TLS_IE)
47beaa6a 13325 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
13326
13327 if (tls_type & GOT_TLS_GD)
47beaa6a 13328 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 13329
b38cadfb 13330 if (tls_type & GOT_TLS_GDESC)
0855e32b 13331 {
47beaa6a 13332 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
13333 /* GDESC needs a trampoline to jump to. */
13334 htab->tls_trampoline = -1;
13335 }
13336
13337 /* Only GD needs it. GDESC just emits one relocation per
13338 2 entries. */
b38cadfb 13339 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 13340 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 13341 }
6f820c85 13342 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
13343 {
13344 if (htab->root.dynamic_sections_created)
13345 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13346 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13347 }
34e77a92
RS
13348 else if (h->type == STT_GNU_IFUNC
13349 && eh->plt.noncall_refcount == 0)
13350 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13351 they all resolve dynamically instead. Reserve room for the
13352 GOT entry's R_ARM_IRELATIVE relocation. */
13353 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
31943882
WN
13354 else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13355 || h->root.type != bfd_link_hash_undefweak))
b436d854 13356 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
47beaa6a 13357 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 13358 }
5e681ec4
PB
13359 }
13360 else
13361 h->got.offset = (bfd_vma) -1;
13362
a4fd1a8e
PB
13363 /* Allocate stubs for exported Thumb functions on v4t. */
13364 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 13365 && h->def_regular
35fc36a8 13366 && h->target_internal == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
13367 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13368 {
13369 struct elf_link_hash_entry * th;
13370 struct bfd_link_hash_entry * bh;
13371 struct elf_link_hash_entry * myh;
13372 char name[1024];
13373 asection *s;
13374 bh = NULL;
13375 /* Create a new symbol to regist the real location of the function. */
13376 s = h->root.u.def.section;
906e58ca 13377 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
13378 _bfd_generic_link_add_one_symbol (info, s->owner,
13379 name, BSF_GLOBAL, s,
13380 h->root.u.def.value,
13381 NULL, TRUE, FALSE, &bh);
13382
13383 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 13384 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 13385 myh->forced_local = 1;
35fc36a8 13386 myh->target_internal = ST_BRANCH_TO_THUMB;
a4fd1a8e
PB
13387 eh->export_glue = myh;
13388 th = record_arm_to_thumb_glue (info, h);
13389 /* Point the symbol at the stub. */
13390 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
35fc36a8 13391 h->target_internal = ST_BRANCH_TO_ARM;
a4fd1a8e
PB
13392 h->root.u.def.section = th->root.u.def.section;
13393 h->root.u.def.value = th->root.u.def.value & ~1;
13394 }
13395
0bdcacaf 13396 if (eh->dyn_relocs == NULL)
5e681ec4
PB
13397 return TRUE;
13398
13399 /* In the shared -Bsymbolic case, discard space allocated for
13400 dynamic pc-relative relocs against symbols which turn out to be
13401 defined in regular objects. For the normal shared case, discard
13402 space for pc-relative relocs that have become local due to symbol
13403 visibility changes. */
13404
67687978 13405 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 13406 {
7bdca076 13407 /* The only relocs that use pc_count are R_ARM_REL32 and
99059e56
RM
13408 R_ARM_REL32_NOI, which will appear on something like
13409 ".long foo - .". We want calls to protected symbols to resolve
13410 directly to the function rather than going via the plt. If people
13411 want function pointer comparisons to work as expected then they
13412 should avoid writing assembly like ".long foo - .". */
ba93b8ac
DJ
13413 if (SYMBOL_CALLS_LOCAL (info, h))
13414 {
0bdcacaf 13415 struct elf_dyn_relocs **pp;
ba93b8ac 13416
0bdcacaf 13417 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
13418 {
13419 p->count -= p->pc_count;
13420 p->pc_count = 0;
13421 if (p->count == 0)
13422 *pp = p->next;
13423 else
13424 pp = &p->next;
13425 }
13426 }
13427
4dfe6ac6 13428 if (htab->vxworks_p)
3348747a 13429 {
0bdcacaf 13430 struct elf_dyn_relocs **pp;
3348747a 13431
0bdcacaf 13432 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
3348747a 13433 {
0bdcacaf 13434 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
13435 *pp = p->next;
13436 else
13437 pp = &p->next;
13438 }
13439 }
13440
ba93b8ac 13441 /* Also discard relocs on undefined weak syms with non-default
99059e56 13442 visibility. */
0bdcacaf 13443 if (eh->dyn_relocs != NULL
5e681ec4 13444 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
13445 {
13446 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
0bdcacaf 13447 eh->dyn_relocs = NULL;
22d606e9
AM
13448
13449 /* Make sure undefined weak symbols are output as a dynamic
13450 symbol in PIEs. */
13451 else if (h->dynindx == -1
13452 && !h->forced_local)
13453 {
13454 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13455 return FALSE;
13456 }
13457 }
13458
67687978
PB
13459 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13460 && h->root.type == bfd_link_hash_new)
13461 {
13462 /* Output absolute symbols so that we can create relocations
13463 against them. For normal symbols we output a relocation
13464 against the section that contains them. */
13465 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13466 return FALSE;
13467 }
13468
5e681ec4
PB
13469 }
13470 else
13471 {
13472 /* For the non-shared case, discard space for relocs against
13473 symbols which turn out to need copy relocs or are not
13474 dynamic. */
13475
f5385ebf
AM
13476 if (!h->non_got_ref
13477 && ((h->def_dynamic
13478 && !h->def_regular)
5e681ec4
PB
13479 || (htab->root.dynamic_sections_created
13480 && (h->root.type == bfd_link_hash_undefweak
13481 || h->root.type == bfd_link_hash_undefined))))
13482 {
13483 /* Make sure this symbol is output as a dynamic symbol.
13484 Undefined weak syms won't yet be marked as dynamic. */
13485 if (h->dynindx == -1
f5385ebf 13486 && !h->forced_local)
5e681ec4 13487 {
c152c796 13488 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13489 return FALSE;
13490 }
13491
13492 /* If that succeeded, we know we'll be keeping all the
13493 relocs. */
13494 if (h->dynindx != -1)
13495 goto keep;
13496 }
13497
0bdcacaf 13498 eh->dyn_relocs = NULL;
5e681ec4
PB
13499
13500 keep: ;
13501 }
13502
13503 /* Finally, allocate space. */
0bdcacaf 13504 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5e681ec4 13505 {
0bdcacaf 13506 asection *sreloc = elf_section_data (p->sec)->sreloc;
34e77a92
RS
13507 if (h->type == STT_GNU_IFUNC
13508 && eh->plt.noncall_refcount == 0
13509 && SYMBOL_REFERENCES_LOCAL (info, h))
13510 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13511 else
13512 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
13513 }
13514
13515 return TRUE;
13516}
13517
08d1f311
DJ
13518/* Find any dynamic relocs that apply to read-only sections. */
13519
13520static bfd_boolean
8029a119 13521elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 13522{
8029a119 13523 struct elf32_arm_link_hash_entry * eh;
0bdcacaf 13524 struct elf_dyn_relocs * p;
08d1f311 13525
08d1f311 13526 eh = (struct elf32_arm_link_hash_entry *) h;
0bdcacaf 13527 for (p = eh->dyn_relocs; p != NULL; p = p->next)
08d1f311 13528 {
0bdcacaf 13529 asection *s = p->sec;
08d1f311
DJ
13530
13531 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13532 {
13533 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13534
13535 info->flags |= DF_TEXTREL;
13536
13537 /* Not an error, just cut short the traversal. */
13538 return FALSE;
13539 }
13540 }
13541 return TRUE;
13542}
13543
d504ffc8
DJ
13544void
13545bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13546 int byteswap_code)
13547{
13548 struct elf32_arm_link_hash_table *globals;
13549
13550 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
13551 if (globals == NULL)
13552 return;
13553
d504ffc8
DJ
13554 globals->byteswap_code = byteswap_code;
13555}
13556
252b5132
RH
13557/* Set the sizes of the dynamic sections. */
13558
b34976b6 13559static bfd_boolean
57e8b36a
NC
13560elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13561 struct bfd_link_info * info)
252b5132
RH
13562{
13563 bfd * dynobj;
13564 asection * s;
b34976b6
AM
13565 bfd_boolean plt;
13566 bfd_boolean relocs;
5e681ec4
PB
13567 bfd *ibfd;
13568 struct elf32_arm_link_hash_table *htab;
252b5132 13569
5e681ec4 13570 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13571 if (htab == NULL)
13572 return FALSE;
13573
252b5132
RH
13574 dynobj = elf_hash_table (info)->dynobj;
13575 BFD_ASSERT (dynobj != NULL);
39b41c9c 13576 check_use_blx (htab);
252b5132
RH
13577
13578 if (elf_hash_table (info)->dynamic_sections_created)
13579 {
13580 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 13581 if (info->executable)
252b5132 13582 {
3d4d4302 13583 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 13584 BFD_ASSERT (s != NULL);
eea6121a 13585 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
13586 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13587 }
13588 }
5e681ec4
PB
13589
13590 /* Set up .got offsets for local syms, and space for local dynamic
13591 relocs. */
13592 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
252b5132 13593 {
5e681ec4
PB
13594 bfd_signed_vma *local_got;
13595 bfd_signed_vma *end_local_got;
34e77a92 13596 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 13597 char *local_tls_type;
0855e32b 13598 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
13599 bfd_size_type locsymcount;
13600 Elf_Internal_Shdr *symtab_hdr;
13601 asection *srel;
4dfe6ac6 13602 bfd_boolean is_vxworks = htab->vxworks_p;
34e77a92 13603 unsigned int symndx;
5e681ec4 13604
0ffa91dd 13605 if (! is_arm_elf (ibfd))
5e681ec4
PB
13606 continue;
13607
13608 for (s = ibfd->sections; s != NULL; s = s->next)
13609 {
0bdcacaf 13610 struct elf_dyn_relocs *p;
5e681ec4 13611
0bdcacaf 13612 for (p = (struct elf_dyn_relocs *)
99059e56 13613 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 13614 {
0bdcacaf
RS
13615 if (!bfd_is_abs_section (p->sec)
13616 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
13617 {
13618 /* Input section has been discarded, either because
13619 it is a copy of a linkonce section or due to
13620 linker script /DISCARD/, so we'll be discarding
13621 the relocs too. */
13622 }
3348747a 13623 else if (is_vxworks
0bdcacaf 13624 && strcmp (p->sec->output_section->name,
3348747a
NS
13625 ".tls_vars") == 0)
13626 {
13627 /* Relocations in vxworks .tls_vars sections are
13628 handled specially by the loader. */
13629 }
5e681ec4
PB
13630 else if (p->count != 0)
13631 {
0bdcacaf 13632 srel = elf_section_data (p->sec)->sreloc;
47beaa6a 13633 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 13634 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
13635 info->flags |= DF_TEXTREL;
13636 }
13637 }
13638 }
13639
13640 local_got = elf_local_got_refcounts (ibfd);
13641 if (!local_got)
13642 continue;
13643
0ffa91dd 13644 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
13645 locsymcount = symtab_hdr->sh_info;
13646 end_local_got = local_got + locsymcount;
34e77a92 13647 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 13648 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 13649 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
34e77a92 13650 symndx = 0;
362d30a1
RS
13651 s = htab->root.sgot;
13652 srel = htab->root.srelgot;
0855e32b 13653 for (; local_got < end_local_got;
34e77a92
RS
13654 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13655 ++local_tlsdesc_gotent, ++symndx)
5e681ec4 13656 {
0855e32b 13657 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92
RS
13658 local_iplt = *local_iplt_ptr;
13659 if (local_iplt != NULL)
13660 {
13661 struct elf_dyn_relocs *p;
13662
13663 if (local_iplt->root.refcount > 0)
13664 {
13665 elf32_arm_allocate_plt_entry (info, TRUE,
13666 &local_iplt->root,
13667 &local_iplt->arm);
13668 if (local_iplt->arm.noncall_refcount == 0)
13669 /* All references to the PLT are calls, so all
13670 non-call references can resolve directly to the
13671 run-time target. This means that the .got entry
13672 would be the same as the .igot.plt entry, so there's
13673 no point creating both. */
13674 *local_got = 0;
13675 }
13676 else
13677 {
13678 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13679 local_iplt->root.offset = (bfd_vma) -1;
13680 }
13681
13682 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13683 {
13684 asection *psrel;
13685
13686 psrel = elf_section_data (p->sec)->sreloc;
13687 if (local_iplt->arm.noncall_refcount == 0)
13688 elf32_arm_allocate_irelocs (info, psrel, p->count);
13689 else
13690 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13691 }
13692 }
5e681ec4
PB
13693 if (*local_got > 0)
13694 {
34e77a92
RS
13695 Elf_Internal_Sym *isym;
13696
eea6121a 13697 *local_got = s->size;
ba93b8ac
DJ
13698 if (*local_tls_type & GOT_TLS_GD)
13699 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13700 s->size += 8;
0855e32b
NS
13701 if (*local_tls_type & GOT_TLS_GDESC)
13702 {
13703 *local_tlsdesc_gotent = htab->root.sgotplt->size
13704 - elf32_arm_compute_jump_table_size (htab);
13705 htab->root.sgotplt->size += 8;
13706 *local_got = (bfd_vma) -2;
34e77a92 13707 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 13708 reloc in the middle of .got.plt. */
99059e56 13709 htab->num_tls_desc++;
0855e32b 13710 }
ba93b8ac
DJ
13711 if (*local_tls_type & GOT_TLS_IE)
13712 s->size += 4;
ba93b8ac 13713
0855e32b
NS
13714 if (*local_tls_type & GOT_NORMAL)
13715 {
13716 /* If the symbol is both GD and GDESC, *local_got
13717 may have been overwritten. */
13718 *local_got = s->size;
13719 s->size += 4;
13720 }
13721
34e77a92
RS
13722 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13723 if (isym == NULL)
13724 return FALSE;
13725
13726 /* If all references to an STT_GNU_IFUNC PLT are calls,
13727 then all non-call references, including this GOT entry,
13728 resolve directly to the run-time target. */
13729 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13730 && (local_iplt == NULL
13731 || local_iplt->arm.noncall_refcount == 0))
13732 elf32_arm_allocate_irelocs (info, srel, 1);
3064e1ff 13733 else if (info->shared || output_bfd->flags & DYNAMIC)
0855e32b 13734 {
3064e1ff
JB
13735 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13736 || *local_tls_type & GOT_TLS_GD)
13737 elf32_arm_allocate_dynrelocs (info, srel, 1);
99059e56 13738
3064e1ff
JB
13739 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13740 {
13741 elf32_arm_allocate_dynrelocs (info,
13742 htab->root.srelplt, 1);
13743 htab->tls_trampoline = -1;
13744 }
0855e32b 13745 }
5e681ec4
PB
13746 }
13747 else
13748 *local_got = (bfd_vma) -1;
13749 }
252b5132
RH
13750 }
13751
ba93b8ac
DJ
13752 if (htab->tls_ldm_got.refcount > 0)
13753 {
13754 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13755 for R_ARM_TLS_LDM32 relocations. */
362d30a1
RS
13756 htab->tls_ldm_got.offset = htab->root.sgot->size;
13757 htab->root.sgot->size += 8;
ba93b8ac 13758 if (info->shared)
47beaa6a 13759 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
13760 }
13761 else
13762 htab->tls_ldm_got.offset = -1;
13763
5e681ec4
PB
13764 /* Allocate global sym .plt and .got entries, and space for global
13765 sym dynamic relocs. */
47beaa6a 13766 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 13767
d504ffc8
DJ
13768 /* Here we rummage through the found bfds to collect glue information. */
13769 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
c7b8f16e 13770 {
0ffa91dd 13771 if (! is_arm_elf (ibfd))
e44a2c9c
AM
13772 continue;
13773
c7b8f16e
JB
13774 /* Initialise mapping tables for code/data. */
13775 bfd_elf32_arm_init_maps (ibfd);
906e58ca 13776
c7b8f16e
JB
13777 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13778 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
99059e56
RM
13779 /* xgettext:c-format */
13780 _bfd_error_handler (_("Errors encountered processing file %s"),
c7b8f16e
JB
13781 ibfd->filename);
13782 }
d504ffc8 13783
3e6b1042
DJ
13784 /* Allocate space for the glue sections now that we've sized them. */
13785 bfd_elf32_arm_allocate_interworking_sections (info);
13786
0855e32b
NS
13787 /* For every jump slot reserved in the sgotplt, reloc_count is
13788 incremented. However, when we reserve space for TLS descriptors,
13789 it's not incremented, so in order to compute the space reserved
13790 for them, it suffices to multiply the reloc count by the jump
13791 slot size. */
13792 if (htab->root.srelplt)
13793 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13794
13795 if (htab->tls_trampoline)
13796 {
13797 if (htab->root.splt->size == 0)
13798 htab->root.splt->size += htab->plt_header_size;
b38cadfb 13799
0855e32b
NS
13800 htab->tls_trampoline = htab->root.splt->size;
13801 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 13802
0855e32b 13803 /* If we're not using lazy TLS relocations, don't generate the
99059e56 13804 PLT and GOT entries they require. */
0855e32b
NS
13805 if (!(info->flags & DF_BIND_NOW))
13806 {
13807 htab->dt_tlsdesc_got = htab->root.sgot->size;
13808 htab->root.sgot->size += 4;
13809
13810 htab->dt_tlsdesc_plt = htab->root.splt->size;
13811 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13812 }
13813 }
13814
252b5132
RH
13815 /* The check_relocs and adjust_dynamic_symbol entry points have
13816 determined the sizes of the various dynamic sections. Allocate
13817 memory for them. */
b34976b6
AM
13818 plt = FALSE;
13819 relocs = FALSE;
252b5132
RH
13820 for (s = dynobj->sections; s != NULL; s = s->next)
13821 {
13822 const char * name;
252b5132
RH
13823
13824 if ((s->flags & SEC_LINKER_CREATED) == 0)
13825 continue;
13826
13827 /* It's OK to base decisions on the section name, because none
13828 of the dynobj section names depend upon the input files. */
13829 name = bfd_get_section_name (dynobj, s);
13830
34e77a92 13831 if (s == htab->root.splt)
252b5132 13832 {
c456f082
AM
13833 /* Remember whether there is a PLT. */
13834 plt = s->size != 0;
252b5132 13835 }
0112cd26 13836 else if (CONST_STRNEQ (name, ".rel"))
252b5132 13837 {
c456f082 13838 if (s->size != 0)
252b5132 13839 {
252b5132 13840 /* Remember whether there are any reloc sections other
00a97672 13841 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 13842 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 13843 relocs = TRUE;
252b5132
RH
13844
13845 /* We use the reloc_count field as a counter if we need
13846 to copy relocs into the output file. */
13847 s->reloc_count = 0;
13848 }
13849 }
34e77a92
RS
13850 else if (s != htab->root.sgot
13851 && s != htab->root.sgotplt
13852 && s != htab->root.iplt
13853 && s != htab->root.igotplt
13854 && s != htab->sdynbss)
252b5132
RH
13855 {
13856 /* It's not one of our sections, so don't allocate space. */
13857 continue;
13858 }
13859
c456f082 13860 if (s->size == 0)
252b5132 13861 {
c456f082 13862 /* If we don't need this section, strip it from the
00a97672
RS
13863 output file. This is mostly to handle .rel(a).bss and
13864 .rel(a).plt. We must create both sections in
c456f082
AM
13865 create_dynamic_sections, because they must be created
13866 before the linker maps input sections to output
13867 sections. The linker does that before
13868 adjust_dynamic_symbol is called, and it is that
13869 function which decides whether anything needs to go
13870 into these sections. */
8423293d 13871 s->flags |= SEC_EXCLUDE;
252b5132
RH
13872 continue;
13873 }
13874
c456f082
AM
13875 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13876 continue;
13877
252b5132 13878 /* Allocate memory for the section contents. */
21d799b5 13879 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 13880 if (s->contents == NULL)
b34976b6 13881 return FALSE;
252b5132
RH
13882 }
13883
13884 if (elf_hash_table (info)->dynamic_sections_created)
13885 {
13886 /* Add some entries to the .dynamic section. We fill in the
13887 values later, in elf32_arm_finish_dynamic_sections, but we
13888 must add the entries now so that we get the correct size for
13889 the .dynamic section. The DT_DEBUG entry is filled in by the
13890 dynamic linker and used by the debugger. */
dc810e39 13891#define add_dynamic_entry(TAG, VAL) \
5a580b3a 13892 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 13893
8532796c 13894 if (info->executable)
252b5132 13895 {
dc810e39 13896 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 13897 return FALSE;
252b5132
RH
13898 }
13899
13900 if (plt)
13901 {
dc810e39
AM
13902 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13903 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
13904 || !add_dynamic_entry (DT_PLTREL,
13905 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 13906 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 13907 return FALSE;
0855e32b
NS
13908
13909 if (htab->dt_tlsdesc_plt &&
b38cadfb 13910 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
0855e32b 13911 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
b38cadfb 13912 return FALSE;
252b5132
RH
13913 }
13914
13915 if (relocs)
13916 {
00a97672
RS
13917 if (htab->use_rel)
13918 {
13919 if (!add_dynamic_entry (DT_REL, 0)
13920 || !add_dynamic_entry (DT_RELSZ, 0)
13921 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13922 return FALSE;
13923 }
13924 else
13925 {
13926 if (!add_dynamic_entry (DT_RELA, 0)
13927 || !add_dynamic_entry (DT_RELASZ, 0)
13928 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13929 return FALSE;
13930 }
252b5132
RH
13931 }
13932
08d1f311
DJ
13933 /* If any dynamic relocs apply to a read-only section,
13934 then we need a DT_TEXTREL entry. */
13935 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
13936 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13937 info);
08d1f311 13938
99e4ae17 13939 if ((info->flags & DF_TEXTREL) != 0)
252b5132 13940 {
dc810e39 13941 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 13942 return FALSE;
252b5132 13943 }
7a2b07ff
NS
13944 if (htab->vxworks_p
13945 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13946 return FALSE;
252b5132 13947 }
8532796c 13948#undef add_dynamic_entry
252b5132 13949
b34976b6 13950 return TRUE;
252b5132
RH
13951}
13952
0855e32b
NS
13953/* Size sections even though they're not dynamic. We use it to setup
13954 _TLS_MODULE_BASE_, if needed. */
13955
13956static bfd_boolean
13957elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 13958 struct bfd_link_info *info)
0855e32b
NS
13959{
13960 asection *tls_sec;
13961
13962 if (info->relocatable)
13963 return TRUE;
13964
13965 tls_sec = elf_hash_table (info)->tls_sec;
13966
13967 if (tls_sec)
13968 {
13969 struct elf_link_hash_entry *tlsbase;
13970
13971 tlsbase = elf_link_hash_lookup
13972 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13973
13974 if (tlsbase)
99059e56
RM
13975 {
13976 struct bfd_link_hash_entry *bh = NULL;
0855e32b 13977 const struct elf_backend_data *bed
99059e56 13978 = get_elf_backend_data (output_bfd);
0855e32b 13979
99059e56 13980 if (!(_bfd_generic_link_add_one_symbol
0855e32b
NS
13981 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13982 tls_sec, 0, NULL, FALSE,
13983 bed->collect, &bh)))
13984 return FALSE;
b38cadfb 13985
99059e56
RM
13986 tlsbase->type = STT_TLS;
13987 tlsbase = (struct elf_link_hash_entry *)bh;
13988 tlsbase->def_regular = 1;
13989 tlsbase->other = STV_HIDDEN;
13990 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
0855e32b
NS
13991 }
13992 }
13993 return TRUE;
13994}
13995
252b5132
RH
13996/* Finish up dynamic symbol handling. We set the contents of various
13997 dynamic sections here. */
13998
b34976b6 13999static bfd_boolean
906e58ca
NC
14000elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14001 struct bfd_link_info * info,
14002 struct elf_link_hash_entry * h,
14003 Elf_Internal_Sym * sym)
252b5132 14004{
e5a52504 14005 struct elf32_arm_link_hash_table *htab;
b7693d02 14006 struct elf32_arm_link_hash_entry *eh;
252b5132 14007
e5a52504 14008 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
14009 if (htab == NULL)
14010 return FALSE;
14011
b7693d02 14012 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
14013
14014 if (h->plt.offset != (bfd_vma) -1)
14015 {
34e77a92 14016 if (!eh->is_iplt)
e5a52504 14017 {
34e77a92
RS
14018 BFD_ASSERT (h->dynindx != -1);
14019 elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
14020 h->dynindx, 0);
e5a52504 14021 }
57e8b36a 14022
f5385ebf 14023 if (!h->def_regular)
252b5132
RH
14024 {
14025 /* Mark the symbol as undefined, rather than as defined in
14026 the .plt section. Leave the value alone. */
14027 sym->st_shndx = SHN_UNDEF;
d982ba73
PB
14028 /* If the symbol is weak, we do need to clear the value.
14029 Otherwise, the PLT entry would provide a definition for
14030 the symbol even if the symbol wasn't defined anywhere,
14031 and so the symbol would never be NULL. */
f5385ebf 14032 if (!h->ref_regular_nonweak)
d982ba73 14033 sym->st_value = 0;
252b5132 14034 }
34e77a92
RS
14035 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
14036 {
14037 /* At least one non-call relocation references this .iplt entry,
14038 so the .iplt entry is the function's canonical address. */
14039 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
14040 sym->st_target_internal = ST_BRANCH_TO_ARM;
14041 sym->st_shndx = (_bfd_elf_section_from_bfd_section
14042 (output_bfd, htab->root.iplt->output_section));
14043 sym->st_value = (h->plt.offset
14044 + htab->root.iplt->output_section->vma
14045 + htab->root.iplt->output_offset);
14046 }
252b5132
RH
14047 }
14048
f5385ebf 14049 if (h->needs_copy)
252b5132
RH
14050 {
14051 asection * s;
947216bf 14052 Elf_Internal_Rela rel;
252b5132
RH
14053
14054 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
14055 BFD_ASSERT (h->dynindx != -1
14056 && (h->root.type == bfd_link_hash_defined
14057 || h->root.type == bfd_link_hash_defweak));
14058
362d30a1 14059 s = htab->srelbss;
252b5132
RH
14060 BFD_ASSERT (s != NULL);
14061
00a97672 14062 rel.r_addend = 0;
252b5132
RH
14063 rel.r_offset = (h->root.u.def.value
14064 + h->root.u.def.section->output_section->vma
14065 + h->root.u.def.section->output_offset);
14066 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
47beaa6a 14067 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
14068 }
14069
00a97672
RS
14070 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14071 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14072 to the ".got" section. */
9637f6ef 14073 if (h == htab->root.hdynamic
00a97672 14074 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
14075 sym->st_shndx = SHN_ABS;
14076
b34976b6 14077 return TRUE;
252b5132
RH
14078}
14079
0855e32b
NS
14080static void
14081arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14082 void *contents,
14083 const unsigned long *template, unsigned count)
14084{
14085 unsigned ix;
b38cadfb 14086
0855e32b
NS
14087 for (ix = 0; ix != count; ix++)
14088 {
14089 unsigned long insn = template[ix];
14090
14091 /* Emit mov pc,rx if bx is not permitted. */
14092 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14093 insn = (insn & 0xf000000f) | 0x01a0f000;
14094 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14095 }
14096}
14097
99059e56
RM
14098/* Install the special first PLT entry for elf32-arm-nacl. Unlike
14099 other variants, NaCl needs this entry in a static executable's
14100 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
14101 zero. For .iplt really only the last bundle is useful, and .iplt
14102 could have a shorter first entry, with each individual PLT entry's
14103 relative branch calculated differently so it targets the last
14104 bundle instead of the instruction before it (labelled .Lplt_tail
14105 above). But it's simpler to keep the size and layout of PLT0
14106 consistent with the dynamic case, at the cost of some dead code at
14107 the start of .iplt and the one dead store to the stack at the start
14108 of .Lplt_tail. */
14109static void
14110arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14111 asection *plt, bfd_vma got_displacement)
14112{
14113 unsigned int i;
14114
14115 put_arm_insn (htab, output_bfd,
14116 elf32_arm_nacl_plt0_entry[0]
14117 | arm_movw_immediate (got_displacement),
14118 plt->contents + 0);
14119 put_arm_insn (htab, output_bfd,
14120 elf32_arm_nacl_plt0_entry[1]
14121 | arm_movt_immediate (got_displacement),
14122 plt->contents + 4);
14123
14124 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14125 put_arm_insn (htab, output_bfd,
14126 elf32_arm_nacl_plt0_entry[i],
14127 plt->contents + (i * 4));
14128}
14129
252b5132
RH
14130/* Finish up the dynamic sections. */
14131
b34976b6 14132static bfd_boolean
57e8b36a 14133elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
14134{
14135 bfd * dynobj;
14136 asection * sgot;
14137 asection * sdyn;
4dfe6ac6
NC
14138 struct elf32_arm_link_hash_table *htab;
14139
14140 htab = elf32_arm_hash_table (info);
14141 if (htab == NULL)
14142 return FALSE;
252b5132
RH
14143
14144 dynobj = elf_hash_table (info)->dynobj;
14145
362d30a1 14146 sgot = htab->root.sgotplt;
894891db
NC
14147 /* A broken linker script might have discarded the dynamic sections.
14148 Catch this here so that we do not seg-fault later on. */
14149 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14150 return FALSE;
3d4d4302 14151 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
14152
14153 if (elf_hash_table (info)->dynamic_sections_created)
14154 {
14155 asection *splt;
14156 Elf32_External_Dyn *dyncon, *dynconend;
14157
362d30a1 14158 splt = htab->root.splt;
24a1ba0f 14159 BFD_ASSERT (splt != NULL && sdyn != NULL);
cbc704f3 14160 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
14161
14162 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 14163 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 14164
252b5132
RH
14165 for (; dyncon < dynconend; dyncon++)
14166 {
14167 Elf_Internal_Dyn dyn;
14168 const char * name;
14169 asection * s;
14170
14171 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14172
14173 switch (dyn.d_tag)
14174 {
229fcec5
MM
14175 unsigned int type;
14176
252b5132 14177 default:
7a2b07ff
NS
14178 if (htab->vxworks_p
14179 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14180 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
14181 break;
14182
229fcec5
MM
14183 case DT_HASH:
14184 name = ".hash";
14185 goto get_vma_if_bpabi;
14186 case DT_STRTAB:
14187 name = ".dynstr";
14188 goto get_vma_if_bpabi;
14189 case DT_SYMTAB:
14190 name = ".dynsym";
14191 goto get_vma_if_bpabi;
c0042f5d
MM
14192 case DT_VERSYM:
14193 name = ".gnu.version";
14194 goto get_vma_if_bpabi;
14195 case DT_VERDEF:
14196 name = ".gnu.version_d";
14197 goto get_vma_if_bpabi;
14198 case DT_VERNEED:
14199 name = ".gnu.version_r";
14200 goto get_vma_if_bpabi;
14201
252b5132
RH
14202 case DT_PLTGOT:
14203 name = ".got";
14204 goto get_vma;
14205 case DT_JMPREL:
00a97672 14206 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
14207 get_vma:
14208 s = bfd_get_section_by_name (output_bfd, name);
05456594
NC
14209 if (s == NULL)
14210 {
14211 /* PR ld/14397: Issue an error message if a required section is missing. */
14212 (*_bfd_error_handler)
14213 (_("error: required section '%s' not found in the linker script"), name);
14214 bfd_set_error (bfd_error_invalid_operation);
14215 return FALSE;
14216 }
229fcec5
MM
14217 if (!htab->symbian_p)
14218 dyn.d_un.d_ptr = s->vma;
14219 else
14220 /* In the BPABI, tags in the PT_DYNAMIC section point
14221 at the file offset, not the memory address, for the
14222 convenience of the post linker. */
14223 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
14224 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14225 break;
14226
229fcec5
MM
14227 get_vma_if_bpabi:
14228 if (htab->symbian_p)
14229 goto get_vma;
14230 break;
14231
252b5132 14232 case DT_PLTRELSZ:
362d30a1 14233 s = htab->root.srelplt;
252b5132 14234 BFD_ASSERT (s != NULL);
eea6121a 14235 dyn.d_un.d_val = s->size;
252b5132
RH
14236 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14237 break;
906e58ca 14238
252b5132 14239 case DT_RELSZ:
00a97672 14240 case DT_RELASZ:
229fcec5
MM
14241 if (!htab->symbian_p)
14242 {
14243 /* My reading of the SVR4 ABI indicates that the
14244 procedure linkage table relocs (DT_JMPREL) should be
14245 included in the overall relocs (DT_REL). This is
14246 what Solaris does. However, UnixWare can not handle
14247 that case. Therefore, we override the DT_RELSZ entry
14248 here to make it not include the JMPREL relocs. Since
00a97672 14249 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
14250 other relocation sections, we don't have to worry
14251 about changing the DT_REL entry. */
362d30a1 14252 s = htab->root.srelplt;
229fcec5
MM
14253 if (s != NULL)
14254 dyn.d_un.d_val -= s->size;
14255 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14256 break;
14257 }
8029a119 14258 /* Fall through. */
229fcec5
MM
14259
14260 case DT_REL:
14261 case DT_RELA:
229fcec5
MM
14262 /* In the BPABI, the DT_REL tag must point at the file
14263 offset, not the VMA, of the first relocation
14264 section. So, we use code similar to that in
14265 elflink.c, but do not check for SHF_ALLOC on the
14266 relcoation section, since relocations sections are
14267 never allocated under the BPABI. The comments above
14268 about Unixware notwithstanding, we include all of the
14269 relocations here. */
14270 if (htab->symbian_p)
14271 {
14272 unsigned int i;
14273 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14274 ? SHT_REL : SHT_RELA);
14275 dyn.d_un.d_val = 0;
14276 for (i = 1; i < elf_numsections (output_bfd); i++)
14277 {
906e58ca 14278 Elf_Internal_Shdr *hdr
229fcec5
MM
14279 = elf_elfsections (output_bfd)[i];
14280 if (hdr->sh_type == type)
14281 {
906e58ca 14282 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
14283 || dyn.d_tag == DT_RELASZ)
14284 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
14285 else if ((ufile_ptr) hdr->sh_offset
14286 <= dyn.d_un.d_val - 1)
229fcec5
MM
14287 dyn.d_un.d_val = hdr->sh_offset;
14288 }
14289 }
14290 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14291 }
252b5132 14292 break;
88f7bcd5 14293
0855e32b 14294 case DT_TLSDESC_PLT:
99059e56 14295 s = htab->root.splt;
0855e32b
NS
14296 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14297 + htab->dt_tlsdesc_plt);
14298 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14299 break;
14300
14301 case DT_TLSDESC_GOT:
99059e56 14302 s = htab->root.sgot;
0855e32b 14303 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
99059e56 14304 + htab->dt_tlsdesc_got);
0855e32b
NS
14305 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14306 break;
14307
88f7bcd5
NC
14308 /* Set the bottom bit of DT_INIT/FINI if the
14309 corresponding function is Thumb. */
14310 case DT_INIT:
14311 name = info->init_function;
14312 goto get_sym;
14313 case DT_FINI:
14314 name = info->fini_function;
14315 get_sym:
14316 /* If it wasn't set by elf_bfd_final_link
4cc11e76 14317 then there is nothing to adjust. */
88f7bcd5
NC
14318 if (dyn.d_un.d_val != 0)
14319 {
14320 struct elf_link_hash_entry * eh;
14321
14322 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 14323 FALSE, FALSE, TRUE);
35fc36a8 14324 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
14325 {
14326 dyn.d_un.d_val |= 1;
b34976b6 14327 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
14328 }
14329 }
14330 break;
252b5132
RH
14331 }
14332 }
14333
24a1ba0f 14334 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 14335 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 14336 {
00a97672
RS
14337 const bfd_vma *plt0_entry;
14338 bfd_vma got_address, plt_address, got_displacement;
14339
14340 /* Calculate the addresses of the GOT and PLT. */
14341 got_address = sgot->output_section->vma + sgot->output_offset;
14342 plt_address = splt->output_section->vma + splt->output_offset;
14343
14344 if (htab->vxworks_p)
14345 {
14346 /* The VxWorks GOT is relocated by the dynamic linker.
14347 Therefore, we must emit relocations rather than simply
14348 computing the values now. */
14349 Elf_Internal_Rela rel;
14350
14351 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
14352 put_arm_insn (htab, output_bfd, plt0_entry[0],
14353 splt->contents + 0);
14354 put_arm_insn (htab, output_bfd, plt0_entry[1],
14355 splt->contents + 4);
14356 put_arm_insn (htab, output_bfd, plt0_entry[2],
14357 splt->contents + 8);
00a97672
RS
14358 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14359
8029a119 14360 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
14361 rel.r_offset = plt_address + 12;
14362 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14363 rel.r_addend = 0;
14364 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14365 htab->srelplt2->contents);
14366 }
b38cadfb 14367 else if (htab->nacl_p)
99059e56
RM
14368 arm_nacl_put_plt0 (htab, output_bfd, splt,
14369 got_address + 8 - (plt_address + 16));
00a97672
RS
14370 else
14371 {
14372 got_displacement = got_address - (plt_address + 16);
14373
14374 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
14375 put_arm_insn (htab, output_bfd, plt0_entry[0],
14376 splt->contents + 0);
14377 put_arm_insn (htab, output_bfd, plt0_entry[1],
14378 splt->contents + 4);
14379 put_arm_insn (htab, output_bfd, plt0_entry[2],
14380 splt->contents + 8);
14381 put_arm_insn (htab, output_bfd, plt0_entry[3],
14382 splt->contents + 12);
5e681ec4 14383
5e681ec4 14384#ifdef FOUR_WORD_PLT
00a97672
RS
14385 /* The displacement value goes in the otherwise-unused
14386 last word of the second entry. */
14387 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 14388#else
00a97672 14389 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 14390#endif
00a97672 14391 }
f7a74f8c 14392 }
252b5132
RH
14393
14394 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14395 really seem like the right value. */
74541ad4
AM
14396 if (splt->output_section->owner == output_bfd)
14397 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 14398
0855e32b
NS
14399 if (htab->dt_tlsdesc_plt)
14400 {
14401 bfd_vma got_address
14402 = sgot->output_section->vma + sgot->output_offset;
14403 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14404 + htab->root.sgot->output_offset);
14405 bfd_vma plt_address
14406 = splt->output_section->vma + splt->output_offset;
14407
b38cadfb 14408 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
14409 splt->contents + htab->dt_tlsdesc_plt,
14410 dl_tlsdesc_lazy_trampoline, 6);
14411
14412 bfd_put_32 (output_bfd,
14413 gotplt_address + htab->dt_tlsdesc_got
14414 - (plt_address + htab->dt_tlsdesc_plt)
14415 - dl_tlsdesc_lazy_trampoline[6],
14416 splt->contents + htab->dt_tlsdesc_plt + 24);
14417 bfd_put_32 (output_bfd,
14418 got_address - (plt_address + htab->dt_tlsdesc_plt)
14419 - dl_tlsdesc_lazy_trampoline[7],
14420 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14421 }
14422
14423 if (htab->tls_trampoline)
14424 {
b38cadfb 14425 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
14426 splt->contents + htab->tls_trampoline,
14427 tls_trampoline, 3);
14428#ifdef FOUR_WORD_PLT
14429 bfd_put_32 (output_bfd, 0x00000000,
14430 splt->contents + htab->tls_trampoline + 12);
b38cadfb 14431#endif
0855e32b
NS
14432 }
14433
362d30a1 14434 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
00a97672
RS
14435 {
14436 /* Correct the .rel(a).plt.unloaded relocations. They will have
14437 incorrect symbol indexes. */
14438 int num_plts;
eed62c48 14439 unsigned char *p;
00a97672 14440
362d30a1 14441 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
14442 / htab->plt_entry_size);
14443 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14444
14445 for (; num_plts; num_plts--)
14446 {
14447 Elf_Internal_Rela rel;
14448
14449 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14450 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14451 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14452 p += RELOC_SIZE (htab);
14453
14454 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14455 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14456 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14457 p += RELOC_SIZE (htab);
14458 }
14459 }
252b5132
RH
14460 }
14461
99059e56
RM
14462 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
14463 /* NaCl uses a special first entry in .iplt too. */
14464 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
14465
252b5132 14466 /* Fill in the first three entries in the global offset table. */
229fcec5 14467 if (sgot)
252b5132 14468 {
229fcec5
MM
14469 if (sgot->size > 0)
14470 {
14471 if (sdyn == NULL)
14472 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14473 else
14474 bfd_put_32 (output_bfd,
14475 sdyn->output_section->vma + sdyn->output_offset,
14476 sgot->contents);
14477 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14478 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14479 }
252b5132 14480
229fcec5
MM
14481 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14482 }
252b5132 14483
b34976b6 14484 return TRUE;
252b5132
RH
14485}
14486
ba96a88f 14487static void
57e8b36a 14488elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 14489{
9b485d32 14490 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 14491 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
14492
14493 i_ehdrp = elf_elfheader (abfd);
14494
94a3258f
PB
14495 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14496 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14497 else
14498 i_ehdrp->e_ident[EI_OSABI] = 0;
ba96a88f 14499 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 14500
93204d3a
PB
14501 if (link_info)
14502 {
14503 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 14504 if (globals != NULL && globals->byteswap_code)
93204d3a
PB
14505 i_ehdrp->e_flags |= EF_ARM_BE8;
14506 }
3bfcb652
NC
14507
14508 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14509 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14510 {
14511 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14512 if (abi)
14513 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14514 else
14515 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14516 }
ba96a88f
NC
14517}
14518
99e4ae17 14519static enum elf_reloc_type_class
7e612e98
AM
14520elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14521 const asection *rel_sec ATTRIBUTE_UNUSED,
14522 const Elf_Internal_Rela *rela)
99e4ae17 14523{
f51e552e 14524 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
14525 {
14526 case R_ARM_RELATIVE:
14527 return reloc_class_relative;
14528 case R_ARM_JUMP_SLOT:
14529 return reloc_class_plt;
14530 case R_ARM_COPY:
14531 return reloc_class_copy;
14532 default:
14533 return reloc_class_normal;
14534 }
14535}
14536
e489d0ae 14537static void
57e8b36a 14538elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 14539{
5a6c6817 14540 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
14541}
14542
40a18ebd
NC
14543/* Return TRUE if this is an unwinding table entry. */
14544
14545static bfd_boolean
14546is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14547{
0112cd26
NC
14548 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14549 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
14550}
14551
14552
14553/* Set the type and flags for an ARM section. We do this by
14554 the section name, which is a hack, but ought to work. */
14555
14556static bfd_boolean
14557elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14558{
14559 const char * name;
14560
14561 name = bfd_get_section_name (abfd, sec);
14562
14563 if (is_arm_elf_unwind_section_name (abfd, name))
14564 {
14565 hdr->sh_type = SHT_ARM_EXIDX;
14566 hdr->sh_flags |= SHF_LINK_ORDER;
14567 }
14568 return TRUE;
14569}
14570
6dc132d9
L
14571/* Handle an ARM specific section when reading an object file. This is
14572 called when bfd_section_from_shdr finds a section with an unknown
14573 type. */
40a18ebd
NC
14574
14575static bfd_boolean
14576elf32_arm_section_from_shdr (bfd *abfd,
14577 Elf_Internal_Shdr * hdr,
6dc132d9
L
14578 const char *name,
14579 int shindex)
40a18ebd
NC
14580{
14581 /* There ought to be a place to keep ELF backend specific flags, but
14582 at the moment there isn't one. We just keep track of the
14583 sections by their name, instead. Fortunately, the ABI gives
14584 names for all the ARM specific sections, so we will probably get
14585 away with this. */
14586 switch (hdr->sh_type)
14587 {
14588 case SHT_ARM_EXIDX:
0951f019
RE
14589 case SHT_ARM_PREEMPTMAP:
14590 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
14591 break;
14592
14593 default:
14594 return FALSE;
14595 }
14596
6dc132d9 14597 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
14598 return FALSE;
14599
14600 return TRUE;
14601}
e489d0ae 14602
44444f50
NC
14603static _arm_elf_section_data *
14604get_arm_elf_section_data (asection * sec)
14605{
47b2e99c
JZ
14606 if (sec && sec->owner && is_arm_elf (sec->owner))
14607 return elf32_arm_section_data (sec);
44444f50
NC
14608 else
14609 return NULL;
8e3de13a
NC
14610}
14611
4e617b1e
PB
14612typedef struct
14613{
57402f1e 14614 void *flaginfo;
4e617b1e 14615 struct bfd_link_info *info;
91a5743d
PB
14616 asection *sec;
14617 int sec_shndx;
6e0b88f1
AM
14618 int (*func) (void *, const char *, Elf_Internal_Sym *,
14619 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
14620} output_arch_syminfo;
14621
14622enum map_symbol_type
14623{
14624 ARM_MAP_ARM,
14625 ARM_MAP_THUMB,
14626 ARM_MAP_DATA
14627};
14628
14629
7413f23f 14630/* Output a single mapping symbol. */
4e617b1e
PB
14631
14632static bfd_boolean
7413f23f
DJ
14633elf32_arm_output_map_sym (output_arch_syminfo *osi,
14634 enum map_symbol_type type,
14635 bfd_vma offset)
4e617b1e
PB
14636{
14637 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
14638 Elf_Internal_Sym sym;
14639
91a5743d
PB
14640 sym.st_value = osi->sec->output_section->vma
14641 + osi->sec->output_offset
14642 + offset;
4e617b1e
PB
14643 sym.st_size = 0;
14644 sym.st_other = 0;
14645 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 14646 sym.st_shndx = osi->sec_shndx;
35fc36a8 14647 sym.st_target_internal = 0;
fe33d2fa 14648 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 14649 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
14650}
14651
34e77a92
RS
14652/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14653 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e
PB
14654
14655static bfd_boolean
34e77a92
RS
14656elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14657 bfd_boolean is_iplt_entry_p,
14658 union gotplt_union *root_plt,
14659 struct arm_plt_info *arm_plt)
4e617b1e 14660{
4e617b1e 14661 struct elf32_arm_link_hash_table *htab;
34e77a92 14662 bfd_vma addr, plt_header_size;
4e617b1e 14663
34e77a92 14664 if (root_plt->offset == (bfd_vma) -1)
4e617b1e
PB
14665 return TRUE;
14666
4dfe6ac6
NC
14667 htab = elf32_arm_hash_table (osi->info);
14668 if (htab == NULL)
14669 return FALSE;
14670
34e77a92
RS
14671 if (is_iplt_entry_p)
14672 {
14673 osi->sec = htab->root.iplt;
14674 plt_header_size = 0;
14675 }
14676 else
14677 {
14678 osi->sec = htab->root.splt;
14679 plt_header_size = htab->plt_header_size;
14680 }
14681 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14682 (osi->info->output_bfd, osi->sec->output_section));
14683
14684 addr = root_plt->offset & -2;
4e617b1e
PB
14685 if (htab->symbian_p)
14686 {
7413f23f 14687 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14688 return FALSE;
7413f23f 14689 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
14690 return FALSE;
14691 }
14692 else if (htab->vxworks_p)
14693 {
7413f23f 14694 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14695 return FALSE;
7413f23f 14696 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 14697 return FALSE;
7413f23f 14698 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 14699 return FALSE;
7413f23f 14700 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
14701 return FALSE;
14702 }
b38cadfb
NC
14703 else if (htab->nacl_p)
14704 {
14705 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14706 return FALSE;
14707 }
4e617b1e
PB
14708 else
14709 {
34e77a92 14710 bfd_boolean thumb_stub_p;
bd97cb95 14711
34e77a92
RS
14712 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14713 if (thumb_stub_p)
4e617b1e 14714 {
7413f23f 14715 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
14716 return FALSE;
14717 }
14718#ifdef FOUR_WORD_PLT
7413f23f 14719 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14720 return FALSE;
7413f23f 14721 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
14722 return FALSE;
14723#else
906e58ca 14724 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
14725 so only need to output a mapping symbol for the first PLT entry and
14726 entries with thumb thunks. */
34e77a92 14727 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 14728 {
7413f23f 14729 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
14730 return FALSE;
14731 }
14732#endif
14733 }
14734
14735 return TRUE;
14736}
14737
34e77a92
RS
14738/* Output mapping symbols for PLT entries associated with H. */
14739
14740static bfd_boolean
14741elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14742{
14743 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14744 struct elf32_arm_link_hash_entry *eh;
14745
14746 if (h->root.type == bfd_link_hash_indirect)
14747 return TRUE;
14748
14749 if (h->root.type == bfd_link_hash_warning)
14750 /* When warning symbols are created, they **replace** the "real"
14751 entry in the hash table, thus we never get to see the real
14752 symbol in a hash traversal. So look at it now. */
14753 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14754
14755 eh = (struct elf32_arm_link_hash_entry *) h;
14756 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14757 &h->plt, &eh->plt);
14758}
14759
7413f23f
DJ
14760/* Output a single local symbol for a generated stub. */
14761
14762static bfd_boolean
14763elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14764 bfd_vma offset, bfd_vma size)
14765{
7413f23f
DJ
14766 Elf_Internal_Sym sym;
14767
7413f23f
DJ
14768 sym.st_value = osi->sec->output_section->vma
14769 + osi->sec->output_offset
14770 + offset;
14771 sym.st_size = size;
14772 sym.st_other = 0;
14773 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14774 sym.st_shndx = osi->sec_shndx;
35fc36a8 14775 sym.st_target_internal = 0;
57402f1e 14776 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 14777}
4e617b1e 14778
da5938a2 14779static bfd_boolean
8029a119
NC
14780arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14781 void * in_arg)
da5938a2
NC
14782{
14783 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
14784 asection *stub_sec;
14785 bfd_vma addr;
7413f23f 14786 char *stub_name;
9a008db3 14787 output_arch_syminfo *osi;
d3ce72d0 14788 const insn_sequence *template_sequence;
461a49ca
DJ
14789 enum stub_insn_type prev_type;
14790 int size;
14791 int i;
14792 enum map_symbol_type sym_type;
da5938a2
NC
14793
14794 /* Massage our args to the form they really have. */
14795 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 14796 osi = (output_arch_syminfo *) in_arg;
da5938a2 14797
da5938a2
NC
14798 stub_sec = stub_entry->stub_sec;
14799
14800 /* Ensure this stub is attached to the current section being
7413f23f 14801 processed. */
da5938a2
NC
14802 if (stub_sec != osi->sec)
14803 return TRUE;
14804
7413f23f
DJ
14805 addr = (bfd_vma) stub_entry->stub_offset;
14806 stub_name = stub_entry->output_name;
da5938a2 14807
d3ce72d0
NC
14808 template_sequence = stub_entry->stub_template;
14809 switch (template_sequence[0].type)
7413f23f 14810 {
461a49ca
DJ
14811 case ARM_TYPE:
14812 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
14813 return FALSE;
14814 break;
461a49ca 14815 case THUMB16_TYPE:
48229727 14816 case THUMB32_TYPE:
461a49ca
DJ
14817 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14818 stub_entry->stub_size))
da5938a2
NC
14819 return FALSE;
14820 break;
14821 default:
14822 BFD_FAIL ();
48229727 14823 return 0;
7413f23f 14824 }
da5938a2 14825
461a49ca
DJ
14826 prev_type = DATA_TYPE;
14827 size = 0;
14828 for (i = 0; i < stub_entry->stub_template_size; i++)
14829 {
d3ce72d0 14830 switch (template_sequence[i].type)
461a49ca
DJ
14831 {
14832 case ARM_TYPE:
14833 sym_type = ARM_MAP_ARM;
14834 break;
14835
14836 case THUMB16_TYPE:
48229727 14837 case THUMB32_TYPE:
461a49ca
DJ
14838 sym_type = ARM_MAP_THUMB;
14839 break;
14840
14841 case DATA_TYPE:
14842 sym_type = ARM_MAP_DATA;
14843 break;
14844
14845 default:
14846 BFD_FAIL ();
4e31c731 14847 return FALSE;
461a49ca
DJ
14848 }
14849
d3ce72d0 14850 if (template_sequence[i].type != prev_type)
461a49ca 14851 {
d3ce72d0 14852 prev_type = template_sequence[i].type;
461a49ca
DJ
14853 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14854 return FALSE;
14855 }
14856
d3ce72d0 14857 switch (template_sequence[i].type)
461a49ca
DJ
14858 {
14859 case ARM_TYPE:
48229727 14860 case THUMB32_TYPE:
461a49ca
DJ
14861 size += 4;
14862 break;
14863
14864 case THUMB16_TYPE:
14865 size += 2;
14866 break;
14867
14868 case DATA_TYPE:
14869 size += 4;
14870 break;
14871
14872 default:
14873 BFD_FAIL ();
4e31c731 14874 return FALSE;
461a49ca
DJ
14875 }
14876 }
14877
da5938a2
NC
14878 return TRUE;
14879}
14880
33811162
DG
14881/* Output mapping symbols for linker generated sections,
14882 and for those data-only sections that do not have a
14883 $d. */
4e617b1e
PB
14884
14885static bfd_boolean
14886elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 14887 struct bfd_link_info *info,
57402f1e 14888 void *flaginfo,
6e0b88f1
AM
14889 int (*func) (void *, const char *,
14890 Elf_Internal_Sym *,
14891 asection *,
14892 struct elf_link_hash_entry *))
4e617b1e
PB
14893{
14894 output_arch_syminfo osi;
14895 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
14896 bfd_vma offset;
14897 bfd_size_type size;
33811162 14898 bfd *input_bfd;
4e617b1e
PB
14899
14900 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
14901 if (htab == NULL)
14902 return FALSE;
14903
906e58ca 14904 check_use_blx (htab);
91a5743d 14905
57402f1e 14906 osi.flaginfo = flaginfo;
4e617b1e
PB
14907 osi.info = info;
14908 osi.func = func;
906e58ca 14909
33811162
DG
14910 /* Add a $d mapping symbol to data-only sections that
14911 don't have any mapping symbol. This may result in (harmless) redundant
14912 mapping symbols. */
14913 for (input_bfd = info->input_bfds;
14914 input_bfd != NULL;
14915 input_bfd = input_bfd->link_next)
14916 {
14917 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14918 for (osi.sec = input_bfd->sections;
14919 osi.sec != NULL;
14920 osi.sec = osi.sec->next)
14921 {
14922 if (osi.sec->output_section != NULL
f7dd8c79
DJ
14923 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14924 != 0)
33811162
DG
14925 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14926 == SEC_HAS_CONTENTS
14927 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 14928 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
14929 && osi.sec->size > 0
14930 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
14931 {
14932 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14933 (output_bfd, osi.sec->output_section);
14934 if (osi.sec_shndx != (int)SHN_BAD)
14935 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14936 }
14937 }
14938 }
14939
91a5743d
PB
14940 /* ARM->Thumb glue. */
14941 if (htab->arm_glue_size > 0)
14942 {
3d4d4302
AM
14943 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14944 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
14945
14946 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14947 (output_bfd, osi.sec->output_section);
14948 if (info->shared || htab->root.is_relocatable_executable
14949 || htab->pic_veneer)
14950 size = ARM2THUMB_PIC_GLUE_SIZE;
14951 else if (htab->use_blx)
14952 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14953 else
14954 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 14955
91a5743d
PB
14956 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14957 {
7413f23f
DJ
14958 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14959 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
14960 }
14961 }
14962
14963 /* Thumb->ARM glue. */
14964 if (htab->thumb_glue_size > 0)
14965 {
3d4d4302
AM
14966 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14967 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
14968
14969 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14970 (output_bfd, osi.sec->output_section);
14971 size = THUMB2ARM_GLUE_SIZE;
14972
14973 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14974 {
7413f23f
DJ
14975 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14976 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
14977 }
14978 }
14979
845b51d6
PB
14980 /* ARMv4 BX veneers. */
14981 if (htab->bx_glue_size > 0)
14982 {
3d4d4302
AM
14983 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14984 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
14985
14986 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14987 (output_bfd, osi.sec->output_section);
14988
7413f23f 14989 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
14990 }
14991
8029a119
NC
14992 /* Long calls stubs. */
14993 if (htab->stub_bfd && htab->stub_bfd->sections)
14994 {
da5938a2 14995 asection* stub_sec;
8029a119 14996
da5938a2
NC
14997 for (stub_sec = htab->stub_bfd->sections;
14998 stub_sec != NULL;
8029a119
NC
14999 stub_sec = stub_sec->next)
15000 {
15001 /* Ignore non-stub sections. */
15002 if (!strstr (stub_sec->name, STUB_SUFFIX))
15003 continue;
da5938a2 15004
8029a119 15005 osi.sec = stub_sec;
da5938a2 15006
8029a119
NC
15007 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15008 (output_bfd, osi.sec->output_section);
da5938a2 15009
8029a119
NC
15010 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
15011 }
15012 }
da5938a2 15013
91a5743d 15014 /* Finally, output mapping symbols for the PLT. */
34e77a92 15015 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 15016 {
34e77a92
RS
15017 osi.sec = htab->root.splt;
15018 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15019 (output_bfd, osi.sec->output_section));
15020
15021 /* Output mapping symbols for the plt header. SymbianOS does not have a
15022 plt header. */
15023 if (htab->vxworks_p)
15024 {
15025 /* VxWorks shared libraries have no PLT header. */
15026 if (!info->shared)
15027 {
15028 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15029 return FALSE;
15030 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15031 return FALSE;
15032 }
15033 }
b38cadfb
NC
15034 else if (htab->nacl_p)
15035 {
15036 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15037 return FALSE;
15038 }
34e77a92 15039 else if (!htab->symbian_p)
4e617b1e 15040 {
7413f23f 15041 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 15042 return FALSE;
34e77a92
RS
15043#ifndef FOUR_WORD_PLT
15044 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e 15045 return FALSE;
34e77a92 15046#endif
4e617b1e
PB
15047 }
15048 }
99059e56
RM
15049 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
15050 {
15051 /* NaCl uses a special first entry in .iplt too. */
15052 osi.sec = htab->root.iplt;
15053 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15054 (output_bfd, osi.sec->output_section));
15055 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15056 return FALSE;
15057 }
34e77a92
RS
15058 if ((htab->root.splt && htab->root.splt->size > 0)
15059 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 15060 {
34e77a92
RS
15061 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
15062 for (input_bfd = info->input_bfds;
15063 input_bfd != NULL;
15064 input_bfd = input_bfd->link_next)
15065 {
15066 struct arm_local_iplt_info **local_iplt;
15067 unsigned int i, num_syms;
4e617b1e 15068
34e77a92
RS
15069 local_iplt = elf32_arm_local_iplt (input_bfd);
15070 if (local_iplt != NULL)
15071 {
15072 num_syms = elf_symtab_hdr (input_bfd).sh_info;
15073 for (i = 0; i < num_syms; i++)
15074 if (local_iplt[i] != NULL
15075 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
15076 &local_iplt[i]->root,
15077 &local_iplt[i]->arm))
15078 return FALSE;
15079 }
15080 }
15081 }
0855e32b
NS
15082 if (htab->dt_tlsdesc_plt != 0)
15083 {
15084 /* Mapping symbols for the lazy tls trampoline. */
15085 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15086 return FALSE;
b38cadfb 15087
0855e32b
NS
15088 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15089 htab->dt_tlsdesc_plt + 24))
15090 return FALSE;
15091 }
15092 if (htab->tls_trampoline != 0)
15093 {
15094 /* Mapping symbols for the tls trampoline. */
15095 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15096 return FALSE;
15097#ifdef FOUR_WORD_PLT
15098 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15099 htab->tls_trampoline + 12))
15100 return FALSE;
b38cadfb 15101#endif
0855e32b 15102 }
b38cadfb 15103
4e617b1e
PB
15104 return TRUE;
15105}
15106
e489d0ae
PB
15107/* Allocate target specific section data. */
15108
15109static bfd_boolean
15110elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15111{
f592407e
AM
15112 if (!sec->used_by_bfd)
15113 {
15114 _arm_elf_section_data *sdata;
15115 bfd_size_type amt = sizeof (*sdata);
e489d0ae 15116
21d799b5 15117 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
15118 if (sdata == NULL)
15119 return FALSE;
15120 sec->used_by_bfd = sdata;
15121 }
e489d0ae
PB
15122
15123 return _bfd_elf_new_section_hook (abfd, sec);
15124}
15125
15126
15127/* Used to order a list of mapping symbols by address. */
15128
15129static int
15130elf32_arm_compare_mapping (const void * a, const void * b)
15131{
7f6a71ff
JM
15132 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15133 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15134
15135 if (amap->vma > bmap->vma)
15136 return 1;
15137 else if (amap->vma < bmap->vma)
15138 return -1;
15139 else if (amap->type > bmap->type)
15140 /* Ensure results do not depend on the host qsort for objects with
15141 multiple mapping symbols at the same address by sorting on type
15142 after vma. */
15143 return 1;
15144 else if (amap->type < bmap->type)
15145 return -1;
15146 else
15147 return 0;
e489d0ae
PB
15148}
15149
2468f9c9
PB
15150/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15151
15152static unsigned long
15153offset_prel31 (unsigned long addr, bfd_vma offset)
15154{
15155 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15156}
15157
15158/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15159 relocations. */
15160
15161static void
15162copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15163{
15164 unsigned long first_word = bfd_get_32 (output_bfd, from);
15165 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 15166
2468f9c9
PB
15167 /* High bit of first word is supposed to be zero. */
15168 if ((first_word & 0x80000000ul) == 0)
15169 first_word = offset_prel31 (first_word, offset);
b38cadfb 15170
2468f9c9
PB
15171 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15172 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15173 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15174 second_word = offset_prel31 (second_word, offset);
b38cadfb 15175
2468f9c9
PB
15176 bfd_put_32 (output_bfd, first_word, to);
15177 bfd_put_32 (output_bfd, second_word, to + 4);
15178}
e489d0ae 15179
48229727
JB
15180/* Data for make_branch_to_a8_stub(). */
15181
b38cadfb
NC
15182struct a8_branch_to_stub_data
15183{
48229727
JB
15184 asection *writing_section;
15185 bfd_byte *contents;
15186};
15187
15188
15189/* Helper to insert branches to Cortex-A8 erratum stubs in the right
15190 places for a particular section. */
15191
15192static bfd_boolean
15193make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 15194 void *in_arg)
48229727
JB
15195{
15196 struct elf32_arm_stub_hash_entry *stub_entry;
15197 struct a8_branch_to_stub_data *data;
15198 bfd_byte *contents;
15199 unsigned long branch_insn;
15200 bfd_vma veneered_insn_loc, veneer_entry_loc;
15201 bfd_signed_vma branch_offset;
15202 bfd *abfd;
91d6fa6a 15203 unsigned int target;
48229727
JB
15204
15205 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15206 data = (struct a8_branch_to_stub_data *) in_arg;
15207
15208 if (stub_entry->target_section != data->writing_section
4563a860 15209 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
15210 return TRUE;
15211
15212 contents = data->contents;
15213
15214 veneered_insn_loc = stub_entry->target_section->output_section->vma
15215 + stub_entry->target_section->output_offset
15216 + stub_entry->target_value;
15217
15218 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15219 + stub_entry->stub_sec->output_offset
15220 + stub_entry->stub_offset;
15221
15222 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15223 veneered_insn_loc &= ~3u;
15224
15225 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15226
15227 abfd = stub_entry->target_section->owner;
91d6fa6a 15228 target = stub_entry->target_value;
48229727
JB
15229
15230 /* We attempt to avoid this condition by setting stubs_always_after_branch
15231 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15232 This check is just to be on the safe side... */
15233 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15234 {
15235 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15236 "allocated in unsafe location"), abfd);
15237 return FALSE;
15238 }
15239
15240 switch (stub_entry->stub_type)
15241 {
15242 case arm_stub_a8_veneer_b:
15243 case arm_stub_a8_veneer_b_cond:
15244 branch_insn = 0xf0009000;
15245 goto jump24;
15246
15247 case arm_stub_a8_veneer_blx:
15248 branch_insn = 0xf000e800;
15249 goto jump24;
15250
15251 case arm_stub_a8_veneer_bl:
15252 {
15253 unsigned int i1, j1, i2, j2, s;
15254
15255 branch_insn = 0xf000d000;
15256
15257 jump24:
15258 if (branch_offset < -16777216 || branch_offset > 16777214)
15259 {
15260 /* There's not much we can do apart from complain if this
15261 happens. */
15262 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15263 "of range (input file too large)"), abfd);
15264 return FALSE;
15265 }
15266
15267 /* i1 = not(j1 eor s), so:
15268 not i1 = j1 eor s
15269 j1 = (not i1) eor s. */
15270
15271 branch_insn |= (branch_offset >> 1) & 0x7ff;
15272 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15273 i2 = (branch_offset >> 22) & 1;
15274 i1 = (branch_offset >> 23) & 1;
15275 s = (branch_offset >> 24) & 1;
15276 j1 = (!i1) ^ s;
15277 j2 = (!i2) ^ s;
15278 branch_insn |= j2 << 11;
15279 branch_insn |= j1 << 13;
15280 branch_insn |= s << 26;
15281 }
15282 break;
15283
15284 default:
15285 BFD_FAIL ();
15286 return FALSE;
15287 }
15288
91d6fa6a
NC
15289 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15290 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
48229727
JB
15291
15292 return TRUE;
15293}
15294
e489d0ae
PB
15295/* Do code byteswapping. Return FALSE afterwards so that the section is
15296 written out as normal. */
15297
15298static bfd_boolean
c7b8f16e 15299elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
15300 struct bfd_link_info *link_info,
15301 asection *sec,
e489d0ae
PB
15302 bfd_byte *contents)
15303{
48229727 15304 unsigned int mapcount, errcount;
8e3de13a 15305 _arm_elf_section_data *arm_data;
c7b8f16e 15306 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 15307 elf32_arm_section_map *map;
c7b8f16e 15308 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
15309 bfd_vma ptr;
15310 bfd_vma end;
c7b8f16e 15311 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 15312 bfd_byte tmp;
48229727 15313 unsigned int i;
57e8b36a 15314
4dfe6ac6
NC
15315 if (globals == NULL)
15316 return FALSE;
15317
8e3de13a
NC
15318 /* If this section has not been allocated an _arm_elf_section_data
15319 structure then we cannot record anything. */
15320 arm_data = get_arm_elf_section_data (sec);
15321 if (arm_data == NULL)
15322 return FALSE;
15323
15324 mapcount = arm_data->mapcount;
15325 map = arm_data->map;
c7b8f16e
JB
15326 errcount = arm_data->erratumcount;
15327
15328 if (errcount != 0)
15329 {
15330 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15331
15332 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
15333 errnode = errnode->next)
15334 {
15335 bfd_vma target = errnode->vma - offset;
15336
15337 switch (errnode->type)
15338 {
15339 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15340 {
15341 bfd_vma branch_to_veneer;
15342 /* Original condition code of instruction, plus bit mask for
15343 ARM B instruction. */
15344 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15345 | 0x0a000000;
c7b8f16e
JB
15346
15347 /* The instruction is before the label. */
91d6fa6a 15348 target -= 4;
c7b8f16e
JB
15349
15350 /* Above offset included in -4 below. */
15351 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 15352 - errnode->vma - 4;
c7b8f16e
JB
15353
15354 if ((signed) branch_to_veneer < -(1 << 25)
15355 || (signed) branch_to_veneer >= (1 << 25))
15356 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15357 "range"), output_bfd);
15358
99059e56
RM
15359 insn |= (branch_to_veneer >> 2) & 0xffffff;
15360 contents[endianflip ^ target] = insn & 0xff;
15361 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15362 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15363 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15364 }
15365 break;
c7b8f16e
JB
15366
15367 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
15368 {
15369 bfd_vma branch_from_veneer;
15370 unsigned int insn;
c7b8f16e 15371
99059e56
RM
15372 /* Take size of veneer into account. */
15373 branch_from_veneer = errnode->u.v.branch->vma
15374 - errnode->vma - 12;
c7b8f16e
JB
15375
15376 if ((signed) branch_from_veneer < -(1 << 25)
15377 || (signed) branch_from_veneer >= (1 << 25))
15378 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15379 "range"), output_bfd);
15380
99059e56
RM
15381 /* Original instruction. */
15382 insn = errnode->u.v.branch->u.b.vfp_insn;
15383 contents[endianflip ^ target] = insn & 0xff;
15384 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15385 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15386 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15387
15388 /* Branch back to insn after original insn. */
15389 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15390 contents[endianflip ^ (target + 4)] = insn & 0xff;
15391 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15392 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15393 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15394 }
15395 break;
c7b8f16e 15396
99059e56
RM
15397 default:
15398 abort ();
15399 }
15400 }
c7b8f16e 15401 }
e489d0ae 15402
2468f9c9
PB
15403 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15404 {
15405 arm_unwind_table_edit *edit_node
99059e56 15406 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 15407 /* Now, sec->size is the size of the section we will write. The original
99059e56 15408 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
15409 markers) was sec->rawsize. (This isn't the case if we perform no
15410 edits, then rawsize will be zero and we should use size). */
21d799b5 15411 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
15412 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15413 unsigned int in_index, out_index;
15414 bfd_vma add_to_offsets = 0;
15415
15416 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 15417 {
2468f9c9
PB
15418 if (edit_node)
15419 {
15420 unsigned int edit_index = edit_node->index;
b38cadfb 15421
2468f9c9 15422 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 15423 {
2468f9c9
PB
15424 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15425 contents + in_index * 8, add_to_offsets);
15426 out_index++;
15427 in_index++;
15428 }
15429 else if (in_index == edit_index
15430 || (in_index * 8 >= input_size
15431 && edit_index == UINT_MAX))
99059e56 15432 {
2468f9c9
PB
15433 switch (edit_node->type)
15434 {
15435 case DELETE_EXIDX_ENTRY:
15436 in_index++;
15437 add_to_offsets += 8;
15438 break;
b38cadfb 15439
2468f9c9
PB
15440 case INSERT_EXIDX_CANTUNWIND_AT_END:
15441 {
99059e56 15442 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
15443 bfd_vma text_offset = text_sec->output_section->vma
15444 + text_sec->output_offset
15445 + text_sec->size;
15446 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 15447 unsigned long prel31_offset;
2468f9c9
PB
15448
15449 /* Note: this is meant to be equivalent to an
15450 R_ARM_PREL31 relocation. These synthetic
15451 EXIDX_CANTUNWIND markers are not relocated by the
15452 usual BFD method. */
15453 prel31_offset = (text_offset - exidx_offset)
15454 & 0x7ffffffful;
15455
15456 /* First address we can't unwind. */
15457 bfd_put_32 (output_bfd, prel31_offset,
15458 &edited_contents[out_index * 8]);
15459
15460 /* Code for EXIDX_CANTUNWIND. */
15461 bfd_put_32 (output_bfd, 0x1,
15462 &edited_contents[out_index * 8 + 4]);
15463
15464 out_index++;
15465 add_to_offsets -= 8;
15466 }
15467 break;
15468 }
b38cadfb 15469
2468f9c9
PB
15470 edit_node = edit_node->next;
15471 }
15472 }
15473 else
15474 {
15475 /* No more edits, copy remaining entries verbatim. */
15476 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15477 contents + in_index * 8, add_to_offsets);
15478 out_index++;
15479 in_index++;
15480 }
15481 }
15482
15483 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15484 bfd_set_section_contents (output_bfd, sec->output_section,
15485 edited_contents,
15486 (file_ptr) sec->output_offset, sec->size);
15487
15488 return TRUE;
15489 }
15490
48229727
JB
15491 /* Fix code to point to Cortex-A8 erratum stubs. */
15492 if (globals->fix_cortex_a8)
15493 {
15494 struct a8_branch_to_stub_data data;
15495
15496 data.writing_section = sec;
15497 data.contents = contents;
15498
15499 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15500 &data);
15501 }
15502
e489d0ae
PB
15503 if (mapcount == 0)
15504 return FALSE;
15505
c7b8f16e 15506 if (globals->byteswap_code)
e489d0ae 15507 {
c7b8f16e 15508 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 15509
c7b8f16e
JB
15510 ptr = map[0].vma;
15511 for (i = 0; i < mapcount; i++)
99059e56
RM
15512 {
15513 if (i == mapcount - 1)
c7b8f16e 15514 end = sec->size;
99059e56
RM
15515 else
15516 end = map[i + 1].vma;
e489d0ae 15517
99059e56 15518 switch (map[i].type)
e489d0ae 15519 {
c7b8f16e
JB
15520 case 'a':
15521 /* Byte swap code words. */
15522 while (ptr + 3 < end)
99059e56
RM
15523 {
15524 tmp = contents[ptr];
15525 contents[ptr] = contents[ptr + 3];
15526 contents[ptr + 3] = tmp;
15527 tmp = contents[ptr + 1];
15528 contents[ptr + 1] = contents[ptr + 2];
15529 contents[ptr + 2] = tmp;
15530 ptr += 4;
15531 }
c7b8f16e 15532 break;
e489d0ae 15533
c7b8f16e
JB
15534 case 't':
15535 /* Byte swap code halfwords. */
15536 while (ptr + 1 < end)
99059e56
RM
15537 {
15538 tmp = contents[ptr];
15539 contents[ptr] = contents[ptr + 1];
15540 contents[ptr + 1] = tmp;
15541 ptr += 2;
15542 }
c7b8f16e
JB
15543 break;
15544
15545 case 'd':
15546 /* Leave data alone. */
15547 break;
15548 }
99059e56
RM
15549 ptr = end;
15550 }
e489d0ae 15551 }
8e3de13a 15552
93204d3a 15553 free (map);
47b2e99c 15554 arm_data->mapcount = -1;
c7b8f16e 15555 arm_data->mapsize = 0;
8e3de13a 15556 arm_data->map = NULL;
8e3de13a 15557
e489d0ae
PB
15558 return FALSE;
15559}
15560
0beaef2b
PB
15561/* Mangle thumb function symbols as we read them in. */
15562
8384fb8f 15563static bfd_boolean
0beaef2b
PB
15564elf32_arm_swap_symbol_in (bfd * abfd,
15565 const void *psrc,
15566 const void *pshn,
15567 Elf_Internal_Sym *dst)
15568{
8384fb8f
AM
15569 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15570 return FALSE;
0beaef2b
PB
15571
15572 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 15573 the address. */
63e1a0fc
PB
15574 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15575 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 15576 {
63e1a0fc
PB
15577 if (dst->st_value & 1)
15578 {
15579 dst->st_value &= ~(bfd_vma) 1;
15580 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15581 }
15582 else
15583 dst->st_target_internal = ST_BRANCH_TO_ARM;
35fc36a8
RS
15584 }
15585 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15586 {
15587 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15588 dst->st_target_internal = ST_BRANCH_TO_THUMB;
0beaef2b 15589 }
35fc36a8
RS
15590 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15591 dst->st_target_internal = ST_BRANCH_LONG;
15592 else
63e1a0fc 15593 dst->st_target_internal = ST_BRANCH_UNKNOWN;
35fc36a8 15594
8384fb8f 15595 return TRUE;
0beaef2b
PB
15596}
15597
15598
15599/* Mangle thumb function symbols as we write them out. */
15600
15601static void
15602elf32_arm_swap_symbol_out (bfd *abfd,
15603 const Elf_Internal_Sym *src,
15604 void *cdst,
15605 void *shndx)
15606{
15607 Elf_Internal_Sym newsym;
15608
15609 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15610 of the address set, as per the new EABI. We do this unconditionally
15611 because objcopy does not set the elf header flags until after
15612 it writes out the symbol table. */
35fc36a8 15613 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
0beaef2b
PB
15614 {
15615 newsym = *src;
34e77a92
RS
15616 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15617 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 15618 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
15619 {
15620 /* Do this only for defined symbols. At link type, the static
15621 linker will simulate the work of dynamic linker of resolving
15622 symbols and will carry over the thumbness of found symbols to
15623 the output symbol table. It's not clear how it happens, but
15624 the thumbness of undefined symbols can well be different at
15625 runtime, and writing '1' for them will be confusing for users
15626 and possibly for dynamic linker itself.
15627 */
15628 newsym.st_value |= 1;
15629 }
906e58ca 15630
0beaef2b
PB
15631 src = &newsym;
15632 }
15633 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15634}
15635
b294bdf8
MM
15636/* Add the PT_ARM_EXIDX program header. */
15637
15638static bfd_boolean
906e58ca 15639elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
15640 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15641{
15642 struct elf_segment_map *m;
15643 asection *sec;
15644
15645 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15646 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15647 {
15648 /* If there is already a PT_ARM_EXIDX header, then we do not
15649 want to add another one. This situation arises when running
15650 "strip"; the input binary already has the header. */
12bd6957 15651 m = elf_seg_map (abfd);
b294bdf8
MM
15652 while (m && m->p_type != PT_ARM_EXIDX)
15653 m = m->next;
15654 if (!m)
15655 {
21d799b5 15656 m = (struct elf_segment_map *)
99059e56 15657 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
15658 if (m == NULL)
15659 return FALSE;
15660 m->p_type = PT_ARM_EXIDX;
15661 m->count = 1;
15662 m->sections[0] = sec;
15663
12bd6957
AM
15664 m->next = elf_seg_map (abfd);
15665 elf_seg_map (abfd) = m;
b294bdf8
MM
15666 }
15667 }
15668
15669 return TRUE;
15670}
15671
15672/* We may add a PT_ARM_EXIDX program header. */
15673
15674static int
a6b96beb
AM
15675elf32_arm_additional_program_headers (bfd *abfd,
15676 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
15677{
15678 asection *sec;
15679
15680 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15681 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15682 return 1;
15683 else
15684 return 0;
15685}
15686
34e77a92
RS
15687/* Hook called by the linker routine which adds symbols from an object
15688 file. */
15689
15690static bfd_boolean
15691elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15692 Elf_Internal_Sym *sym, const char **namep,
15693 flagword *flagsp, asection **secp, bfd_vma *valp)
15694{
15695 if ((abfd->flags & DYNAMIC) == 0
f64b2e8d
NC
15696 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15697 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15698 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
34e77a92
RS
15699
15700 if (elf32_arm_hash_table (info)->vxworks_p
15701 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15702 flagsp, secp, valp))
15703 return FALSE;
15704
15705 return TRUE;
15706}
15707
0beaef2b 15708/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
15709const struct elf_size_info elf32_arm_size_info =
15710{
0beaef2b
PB
15711 sizeof (Elf32_External_Ehdr),
15712 sizeof (Elf32_External_Phdr),
15713 sizeof (Elf32_External_Shdr),
15714 sizeof (Elf32_External_Rel),
15715 sizeof (Elf32_External_Rela),
15716 sizeof (Elf32_External_Sym),
15717 sizeof (Elf32_External_Dyn),
15718 sizeof (Elf_External_Note),
15719 4,
15720 1,
15721 32, 2,
15722 ELFCLASS32, EV_CURRENT,
15723 bfd_elf32_write_out_phdrs,
15724 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 15725 bfd_elf32_checksum_contents,
0beaef2b
PB
15726 bfd_elf32_write_relocs,
15727 elf32_arm_swap_symbol_in,
15728 elf32_arm_swap_symbol_out,
15729 bfd_elf32_slurp_reloc_table,
15730 bfd_elf32_slurp_symbol_table,
15731 bfd_elf32_swap_dyn_in,
15732 bfd_elf32_swap_dyn_out,
15733 bfd_elf32_swap_reloc_in,
15734 bfd_elf32_swap_reloc_out,
15735 bfd_elf32_swap_reloca_in,
15736 bfd_elf32_swap_reloca_out
15737};
15738
252b5132 15739#define ELF_ARCH bfd_arch_arm
ae95ffa6 15740#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 15741#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
15742#ifdef __QNXTARGET__
15743#define ELF_MAXPAGESIZE 0x1000
15744#else
f21f3fe0 15745#define ELF_MAXPAGESIZE 0x8000
d0facd1b 15746#endif
b1342370 15747#define ELF_MINPAGESIZE 0x1000
24718e3b 15748#define ELF_COMMONPAGESIZE 0x1000
252b5132 15749
ba93b8ac
DJ
15750#define bfd_elf32_mkobject elf32_arm_mkobject
15751
99e4ae17
AJ
15752#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15753#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
15754#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15755#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15756#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
906e58ca 15757#define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
dc810e39 15758#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 15759#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 15760#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 15761#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 15762#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 15763#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 15764#define bfd_elf32_bfd_final_link elf32_arm_final_link
252b5132
RH
15765
15766#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15767#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 15768#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
15769#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15770#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 15771#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 15772#define elf_backend_write_section elf32_arm_write_section
252b5132 15773#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 15774#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
15775#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15776#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15777#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 15778#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 15779#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 15780#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 15781#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 15782#define elf_backend_object_p elf32_arm_object_p
40a18ebd
NC
15783#define elf_backend_fake_sections elf32_arm_fake_sections
15784#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 15785#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 15786#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 15787#define elf_backend_size_info elf32_arm_size_info
b294bdf8 15788#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
15789#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15790#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15791#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 15792#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
906e58ca
NC
15793
15794#define elf_backend_can_refcount 1
15795#define elf_backend_can_gc_sections 1
15796#define elf_backend_plt_readonly 1
15797#define elf_backend_want_got_plt 1
15798#define elf_backend_want_plt_sym 0
15799#define elf_backend_may_use_rel_p 1
15800#define elf_backend_may_use_rela_p 0
4e7fd91e 15801#define elf_backend_default_use_rela_p 0
252b5132 15802
04f7c78d 15803#define elf_backend_got_header_size 12
04f7c78d 15804
906e58ca
NC
15805#undef elf_backend_obj_attrs_vendor
15806#define elf_backend_obj_attrs_vendor "aeabi"
15807#undef elf_backend_obj_attrs_section
15808#define elf_backend_obj_attrs_section ".ARM.attributes"
15809#undef elf_backend_obj_attrs_arg_type
15810#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15811#undef elf_backend_obj_attrs_section_type
104d59d1 15812#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb
NC
15813#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15814#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 15815
252b5132 15816#include "elf32-target.h"
7f266840 15817
b38cadfb
NC
15818/* Native Client targets. */
15819
15820#undef TARGET_LITTLE_SYM
15821#define TARGET_LITTLE_SYM bfd_elf32_littlearm_nacl_vec
15822#undef TARGET_LITTLE_NAME
15823#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
15824#undef TARGET_BIG_SYM
15825#define TARGET_BIG_SYM bfd_elf32_bigarm_nacl_vec
15826#undef TARGET_BIG_NAME
15827#define TARGET_BIG_NAME "elf32-bigarm-nacl"
15828
15829/* Like elf32_arm_link_hash_table_create -- but overrides
15830 appropriately for NaCl. */
15831
15832static struct bfd_link_hash_table *
15833elf32_arm_nacl_link_hash_table_create (bfd *abfd)
15834{
15835 struct bfd_link_hash_table *ret;
15836
15837 ret = elf32_arm_link_hash_table_create (abfd);
15838 if (ret)
15839 {
15840 struct elf32_arm_link_hash_table *htab
15841 = (struct elf32_arm_link_hash_table *) ret;
15842
15843 htab->nacl_p = 1;
15844
15845 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
15846 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
15847 }
15848 return ret;
15849}
15850
15851/* Since NaCl doesn't use the ARM-specific unwind format, we don't
15852 really need to use elf32_arm_modify_segment_map. But we do it
15853 anyway just to reduce gratuitous differences with the stock ARM backend. */
15854
15855static bfd_boolean
15856elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
15857{
15858 return (elf32_arm_modify_segment_map (abfd, info)
15859 && nacl_modify_segment_map (abfd, info));
15860}
15861
15862#undef elf32_bed
15863#define elf32_bed elf32_arm_nacl_bed
15864#undef bfd_elf32_bfd_link_hash_table_create
15865#define bfd_elf32_bfd_link_hash_table_create \
15866 elf32_arm_nacl_link_hash_table_create
15867#undef elf_backend_plt_alignment
15868#define elf_backend_plt_alignment 4
15869#undef elf_backend_modify_segment_map
15870#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
15871#undef elf_backend_modify_program_headers
15872#define elf_backend_modify_program_headers nacl_modify_program_headers
15873
15874#undef ELF_MAXPAGESIZE
15875#define ELF_MAXPAGESIZE 0x10000
15876
15877#include "elf32-target.h"
15878
15879/* Reset to defaults. */
15880#undef elf_backend_plt_alignment
15881#undef elf_backend_modify_segment_map
15882#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15883#undef elf_backend_modify_program_headers
15884
906e58ca 15885/* VxWorks Targets. */
4e7fd91e 15886
906e58ca 15887#undef TARGET_LITTLE_SYM
4e7fd91e 15888#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
906e58ca 15889#undef TARGET_LITTLE_NAME
4e7fd91e 15890#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 15891#undef TARGET_BIG_SYM
4e7fd91e 15892#define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
906e58ca 15893#undef TARGET_BIG_NAME
4e7fd91e
PB
15894#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15895
15896/* Like elf32_arm_link_hash_table_create -- but overrides
15897 appropriately for VxWorks. */
906e58ca 15898
4e7fd91e
PB
15899static struct bfd_link_hash_table *
15900elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15901{
15902 struct bfd_link_hash_table *ret;
15903
15904 ret = elf32_arm_link_hash_table_create (abfd);
15905 if (ret)
15906 {
15907 struct elf32_arm_link_hash_table *htab
00a97672 15908 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 15909 htab->use_rel = 0;
00a97672 15910 htab->vxworks_p = 1;
4e7fd91e
PB
15911 }
15912 return ret;
906e58ca 15913}
4e7fd91e 15914
00a97672
RS
15915static void
15916elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15917{
15918 elf32_arm_final_write_processing (abfd, linker);
15919 elf_vxworks_final_write_processing (abfd, linker);
15920}
15921
906e58ca 15922#undef elf32_bed
4e7fd91e
PB
15923#define elf32_bed elf32_arm_vxworks_bed
15924
906e58ca
NC
15925#undef bfd_elf32_bfd_link_hash_table_create
15926#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
15927#undef elf_backend_final_write_processing
15928#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15929#undef elf_backend_emit_relocs
15930#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 15931
906e58ca 15932#undef elf_backend_may_use_rel_p
00a97672 15933#define elf_backend_may_use_rel_p 0
906e58ca 15934#undef elf_backend_may_use_rela_p
00a97672 15935#define elf_backend_may_use_rela_p 1
906e58ca 15936#undef elf_backend_default_use_rela_p
00a97672 15937#define elf_backend_default_use_rela_p 1
906e58ca 15938#undef elf_backend_want_plt_sym
00a97672 15939#define elf_backend_want_plt_sym 1
906e58ca 15940#undef ELF_MAXPAGESIZE
00a97672 15941#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
15942
15943#include "elf32-target.h"
15944
15945
21d799b5
NC
15946/* Merge backend specific data from an object file to the output
15947 object file when linking. */
15948
15949static bfd_boolean
15950elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15951{
15952 flagword out_flags;
15953 flagword in_flags;
15954 bfd_boolean flags_compatible = TRUE;
15955 asection *sec;
15956
cc643b88 15957 /* Check if we have the same endianness. */
21d799b5
NC
15958 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15959 return FALSE;
15960
15961 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15962 return TRUE;
15963
15964 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15965 return FALSE;
15966
15967 /* The input BFD must have had its flags initialised. */
15968 /* The following seems bogus to me -- The flags are initialized in
15969 the assembler but I don't think an elf_flags_init field is
15970 written into the object. */
15971 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15972
15973 in_flags = elf_elfheader (ibfd)->e_flags;
15974 out_flags = elf_elfheader (obfd)->e_flags;
15975
15976 /* In theory there is no reason why we couldn't handle this. However
15977 in practice it isn't even close to working and there is no real
15978 reason to want it. */
15979 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15980 && !(ibfd->flags & DYNAMIC)
15981 && (in_flags & EF_ARM_BE8))
15982 {
15983 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15984 ibfd);
15985 return FALSE;
15986 }
15987
15988 if (!elf_flags_init (obfd))
15989 {
15990 /* If the input is the default architecture and had the default
15991 flags then do not bother setting the flags for the output
15992 architecture, instead allow future merges to do this. If no
15993 future merges ever set these flags then they will retain their
99059e56
RM
15994 uninitialised values, which surprise surprise, correspond
15995 to the default values. */
21d799b5
NC
15996 if (bfd_get_arch_info (ibfd)->the_default
15997 && elf_elfheader (ibfd)->e_flags == 0)
15998 return TRUE;
15999
16000 elf_flags_init (obfd) = TRUE;
16001 elf_elfheader (obfd)->e_flags = in_flags;
16002
16003 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
16004 && bfd_get_arch_info (obfd)->the_default)
16005 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
16006
16007 return TRUE;
16008 }
16009
16010 /* Determine what should happen if the input ARM architecture
16011 does not match the output ARM architecture. */
16012 if (! bfd_arm_merge_machines (ibfd, obfd))
16013 return FALSE;
16014
16015 /* Identical flags must be compatible. */
16016 if (in_flags == out_flags)
16017 return TRUE;
16018
16019 /* Check to see if the input BFD actually contains any sections. If
16020 not, its flags may not have been initialised either, but it
16021 cannot actually cause any incompatiblity. Do not short-circuit
16022 dynamic objects; their section list may be emptied by
16023 elf_link_add_object_symbols.
16024
16025 Also check to see if there are no code sections in the input.
16026 In this case there is no need to check for code specific flags.
16027 XXX - do we need to worry about floating-point format compatability
16028 in data sections ? */
16029 if (!(ibfd->flags & DYNAMIC))
16030 {
16031 bfd_boolean null_input_bfd = TRUE;
16032 bfd_boolean only_data_sections = TRUE;
16033
16034 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
16035 {
16036 /* Ignore synthetic glue sections. */
16037 if (strcmp (sec->name, ".glue_7")
16038 && strcmp (sec->name, ".glue_7t"))
16039 {
16040 if ((bfd_get_section_flags (ibfd, sec)
16041 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16042 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
99059e56 16043 only_data_sections = FALSE;
21d799b5
NC
16044
16045 null_input_bfd = FALSE;
16046 break;
16047 }
16048 }
16049
16050 if (null_input_bfd || only_data_sections)
16051 return TRUE;
16052 }
16053
16054 /* Complain about various flag mismatches. */
16055 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
16056 EF_ARM_EABI_VERSION (out_flags)))
16057 {
16058 _bfd_error_handler
16059 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16060 ibfd, obfd,
16061 (in_flags & EF_ARM_EABIMASK) >> 24,
16062 (out_flags & EF_ARM_EABIMASK) >> 24);
16063 return FALSE;
16064 }
16065
16066 /* Not sure what needs to be checked for EABI versions >= 1. */
16067 /* VxWorks libraries do not use these flags. */
16068 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
16069 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
16070 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
16071 {
16072 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
16073 {
16074 _bfd_error_handler
16075 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16076 ibfd, obfd,
16077 in_flags & EF_ARM_APCS_26 ? 26 : 32,
16078 out_flags & EF_ARM_APCS_26 ? 26 : 32);
16079 flags_compatible = FALSE;
16080 }
16081
16082 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16083 {
16084 if (in_flags & EF_ARM_APCS_FLOAT)
16085 _bfd_error_handler
16086 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16087 ibfd, obfd);
16088 else
16089 _bfd_error_handler
16090 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16091 ibfd, obfd);
16092
16093 flags_compatible = FALSE;
16094 }
16095
16096 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16097 {
16098 if (in_flags & EF_ARM_VFP_FLOAT)
16099 _bfd_error_handler
16100 (_("error: %B uses VFP instructions, whereas %B does not"),
16101 ibfd, obfd);
16102 else
16103 _bfd_error_handler
16104 (_("error: %B uses FPA instructions, whereas %B does not"),
16105 ibfd, obfd);
16106
16107 flags_compatible = FALSE;
16108 }
16109
16110 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16111 {
16112 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16113 _bfd_error_handler
16114 (_("error: %B uses Maverick instructions, whereas %B does not"),
16115 ibfd, obfd);
16116 else
16117 _bfd_error_handler
16118 (_("error: %B does not use Maverick instructions, whereas %B does"),
16119 ibfd, obfd);
16120
16121 flags_compatible = FALSE;
16122 }
16123
16124#ifdef EF_ARM_SOFT_FLOAT
16125 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16126 {
16127 /* We can allow interworking between code that is VFP format
16128 layout, and uses either soft float or integer regs for
16129 passing floating point arguments and results. We already
16130 know that the APCS_FLOAT flags match; similarly for VFP
16131 flags. */
16132 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16133 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16134 {
16135 if (in_flags & EF_ARM_SOFT_FLOAT)
16136 _bfd_error_handler
16137 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16138 ibfd, obfd);
16139 else
16140 _bfd_error_handler
16141 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16142 ibfd, obfd);
16143
16144 flags_compatible = FALSE;
16145 }
16146 }
16147#endif
16148
16149 /* Interworking mismatch is only a warning. */
16150 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16151 {
16152 if (in_flags & EF_ARM_INTERWORK)
16153 {
16154 _bfd_error_handler
16155 (_("Warning: %B supports interworking, whereas %B does not"),
16156 ibfd, obfd);
16157 }
16158 else
16159 {
16160 _bfd_error_handler
16161 (_("Warning: %B does not support interworking, whereas %B does"),
16162 ibfd, obfd);
16163 }
16164 }
16165 }
16166
16167 return flags_compatible;
16168}
16169
16170
906e58ca 16171/* Symbian OS Targets. */
7f266840 16172
906e58ca 16173#undef TARGET_LITTLE_SYM
7f266840 16174#define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
906e58ca 16175#undef TARGET_LITTLE_NAME
7f266840 16176#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 16177#undef TARGET_BIG_SYM
7f266840 16178#define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
906e58ca 16179#undef TARGET_BIG_NAME
7f266840
DJ
16180#define TARGET_BIG_NAME "elf32-bigarm-symbian"
16181
16182/* Like elf32_arm_link_hash_table_create -- but overrides
16183 appropriately for Symbian OS. */
906e58ca 16184
7f266840
DJ
16185static struct bfd_link_hash_table *
16186elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16187{
16188 struct bfd_link_hash_table *ret;
16189
16190 ret = elf32_arm_link_hash_table_create (abfd);
16191 if (ret)
16192 {
16193 struct elf32_arm_link_hash_table *htab
16194 = (struct elf32_arm_link_hash_table *)ret;
16195 /* There is no PLT header for Symbian OS. */
16196 htab->plt_header_size = 0;
95720a86
DJ
16197 /* The PLT entries are each one instruction and one word. */
16198 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 16199 htab->symbian_p = 1;
33bfe774
JB
16200 /* Symbian uses armv5t or above, so use_blx is always true. */
16201 htab->use_blx = 1;
67687978 16202 htab->root.is_relocatable_executable = 1;
7f266840
DJ
16203 }
16204 return ret;
906e58ca 16205}
7f266840 16206
b35d266b 16207static const struct bfd_elf_special_section
551b43fd 16208elf32_arm_symbian_special_sections[] =
7f266840 16209{
5cd3778d
MM
16210 /* In a BPABI executable, the dynamic linking sections do not go in
16211 the loadable read-only segment. The post-linker may wish to
16212 refer to these sections, but they are not part of the final
16213 program image. */
0112cd26
NC
16214 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16215 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16216 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16217 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16218 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
16219 /* These sections do not need to be writable as the SymbianOS
16220 postlinker will arrange things so that no dynamic relocation is
16221 required. */
0112cd26
NC
16222 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16223 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16224 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16225 { NULL, 0, 0, 0, 0 }
7f266840
DJ
16226};
16227
c3c76620 16228static void
906e58ca 16229elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 16230 struct bfd_link_info *link_info)
c3c76620
MM
16231{
16232 /* BPABI objects are never loaded directly by an OS kernel; they are
16233 processed by a postlinker first, into an OS-specific format. If
16234 the D_PAGED bit is set on the file, BFD will align segments on
16235 page boundaries, so that an OS can directly map the file. With
16236 BPABI objects, that just results in wasted space. In addition,
16237 because we clear the D_PAGED bit, map_sections_to_segments will
16238 recognize that the program headers should not be mapped into any
16239 loadable segment. */
16240 abfd->flags &= ~D_PAGED;
906e58ca 16241 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 16242}
7f266840
DJ
16243
16244static bfd_boolean
906e58ca 16245elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 16246 struct bfd_link_info *info)
7f266840
DJ
16247{
16248 struct elf_segment_map *m;
16249 asection *dynsec;
16250
7f266840
DJ
16251 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16252 segment. However, because the .dynamic section is not marked
16253 with SEC_LOAD, the generic ELF code will not create such a
16254 segment. */
16255 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16256 if (dynsec)
16257 {
12bd6957 16258 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8ded5a0f
AM
16259 if (m->p_type == PT_DYNAMIC)
16260 break;
16261
16262 if (m == NULL)
16263 {
16264 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12bd6957
AM
16265 m->next = elf_seg_map (abfd);
16266 elf_seg_map (abfd) = m;
8ded5a0f 16267 }
7f266840
DJ
16268 }
16269
b294bdf8
MM
16270 /* Also call the generic arm routine. */
16271 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
16272}
16273
95720a86
DJ
16274/* Return address for Ith PLT stub in section PLT, for relocation REL
16275 or (bfd_vma) -1 if it should not be included. */
16276
16277static bfd_vma
16278elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16279 const arelent *rel ATTRIBUTE_UNUSED)
16280{
16281 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16282}
16283
16284
8029a119 16285#undef elf32_bed
7f266840
DJ
16286#define elf32_bed elf32_arm_symbian_bed
16287
16288/* The dynamic sections are not allocated on SymbianOS; the postlinker
16289 will process them and then discard them. */
906e58ca 16290#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
16291#define ELF_DYNAMIC_SEC_FLAGS \
16292 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16293
00a97672 16294#undef elf_backend_emit_relocs
c3c76620 16295
906e58ca
NC
16296#undef bfd_elf32_bfd_link_hash_table_create
16297#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16298#undef elf_backend_special_sections
16299#define elf_backend_special_sections elf32_arm_symbian_special_sections
16300#undef elf_backend_begin_write_processing
16301#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16302#undef elf_backend_final_write_processing
16303#define elf_backend_final_write_processing elf32_arm_final_write_processing
16304
16305#undef elf_backend_modify_segment_map
7f266840
DJ
16306#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16307
16308/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 16309#undef elf_backend_got_header_size
7f266840
DJ
16310#define elf_backend_got_header_size 0
16311
16312/* Similarly, there is no .got.plt section. */
906e58ca 16313#undef elf_backend_want_got_plt
7f266840
DJ
16314#define elf_backend_want_got_plt 0
16315
906e58ca 16316#undef elf_backend_plt_sym_val
95720a86
DJ
16317#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16318
906e58ca 16319#undef elf_backend_may_use_rel_p
00a97672 16320#define elf_backend_may_use_rel_p 1
906e58ca 16321#undef elf_backend_may_use_rela_p
00a97672 16322#define elf_backend_may_use_rela_p 0
906e58ca 16323#undef elf_backend_default_use_rela_p
00a97672 16324#define elf_backend_default_use_rela_p 0
906e58ca 16325#undef elf_backend_want_plt_sym
00a97672 16326#define elf_backend_want_plt_sym 0
906e58ca 16327#undef ELF_MAXPAGESIZE
00a97672 16328#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 16329
7f266840 16330#include "elf32-target.h"
This page took 2.448755 seconds and 4 git commands to generate.