PR gas/14255
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
e44a2c9c 2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
1d7e9d18 3 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
6e6718a3 22#include "sysdep.h"
2468f9c9
PB
23#include <limits.h>
24
3db64b00 25#include "bfd.h"
6034aab8 26#include "bfd_stdint.h"
00a97672 27#include "libiberty.h"
7f266840
DJ
28#include "libbfd.h"
29#include "elf-bfd.h"
b38cadfb 30#include "elf-nacl.h"
00a97672 31#include "elf-vxworks.h"
ee065d83 32#include "elf/arm.h"
7f266840 33
00a97672
RS
34/* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36#define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39/* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41#define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46/* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48#define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53/* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55#define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
7f266840
DJ
60#define elf_info_to_howto 0
61#define elf_info_to_howto_rel elf32_arm_info_to_howto
62
63#define ARM_ELF_ABI_VERSION 0
64#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
79f08007
YZ
66/* The Adjusted Place, as defined by AAELF. */
67#define Pa(X) ((X) & 0xfffffffc)
68
3e6b1042
DJ
69static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
73
7f266840
DJ
74/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
c19d1205 78static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 79{
8029a119 80 /* No relocation. */
7f266840
DJ
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
83 0, /* size (0 = byte, 1 = short, 2 = long) */
84 0, /* bitsize */
85 FALSE, /* pc_relative */
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
90 FALSE, /* partial_inplace */
91 0, /* src_mask */
92 0, /* dst_mask */
93 FALSE), /* pcrel_offset */
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
97 2, /* size (0 = byte, 1 = short, 2 = long) */
98 24, /* bitsize */
99 TRUE, /* pc_relative */
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
104 FALSE, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 TRUE), /* pcrel_offset */
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
112 2, /* size (0 = byte, 1 = short, 2 = long) */
113 32, /* bitsize */
114 FALSE, /* pc_relative */
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
119 FALSE, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 FALSE), /* pcrel_offset */
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 32, /* bitsize */
129 TRUE, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
134 FALSE, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 TRUE), /* pcrel_offset */
138
c19d1205 139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 140 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
141 0, /* rightshift */
142 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
143 32, /* bitsize */
144 TRUE, /* pc_relative */
7f266840 145 0, /* bitpos */
4962c51a 146 complain_overflow_dont,/* complain_on_overflow */
7f266840 147 bfd_elf_generic_reloc, /* special_function */
4962c51a 148 "R_ARM_LDR_PC_G0", /* name */
7f266840 149 FALSE, /* partial_inplace */
4962c51a
MS
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 TRUE), /* pcrel_offset */
7f266840
DJ
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
157 1, /* size (0 = byte, 1 = short, 2 = long) */
158 16, /* bitsize */
159 FALSE, /* pc_relative */
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
164 FALSE, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 FALSE), /* pcrel_offset */
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
172 2, /* size (0 = byte, 1 = short, 2 = long) */
173 12, /* bitsize */
174 FALSE, /* pc_relative */
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
179 FALSE, /* partial_inplace */
00a97672
RS
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
7f266840
DJ
182 FALSE), /* pcrel_offset */
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
186 1, /* size (0 = byte, 1 = short, 2 = long) */
187 5, /* bitsize */
188 FALSE, /* pc_relative */
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 FALSE, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 FALSE), /* pcrel_offset */
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
201 0, /* size (0 = byte, 1 = short, 2 = long) */
202 8, /* bitsize */
203 FALSE, /* pc_relative */
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
208 FALSE, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 FALSE), /* pcrel_offset */
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
215 2, /* size (0 = byte, 1 = short, 2 = long) */
216 32, /* bitsize */
217 FALSE, /* pc_relative */
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 FALSE, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226
c19d1205 227 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
228 1, /* rightshift */
229 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 230 24, /* bitsize */
7f266840
DJ
231 TRUE, /* pc_relative */
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
c19d1205 235 "R_ARM_THM_CALL", /* name */
7f266840 236 FALSE, /* partial_inplace */
7f6ab9f8
AM
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
7f266840
DJ
239 TRUE), /* pcrel_offset */
240
241 HOWTO (R_ARM_THM_PC8, /* type */
242 1, /* rightshift */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
244 8, /* bitsize */
245 TRUE, /* pc_relative */
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 FALSE, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 TRUE), /* pcrel_offset */
254
c19d1205 255 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
256 1, /* rightshift */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
258 32, /* bitsize */
259 FALSE, /* pc_relative */
7f266840
DJ
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
c19d1205 263 "R_ARM_BREL_ADJ", /* name */
7f266840 264 FALSE, /* partial_inplace */
c19d1205
ZW
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE), /* pcrel_offset */
7f266840 268
0855e32b 269 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 270 0, /* rightshift */
0855e32b
NS
271 2, /* size (0 = byte, 1 = short, 2 = long) */
272 32, /* bitsize */
7f266840
DJ
273 FALSE, /* pc_relative */
274 0, /* bitpos */
0855e32b 275 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 276 bfd_elf_generic_reloc, /* special_function */
0855e32b 277 "R_ARM_TLS_DESC", /* name */
7f266840 278 FALSE, /* partial_inplace */
0855e32b
NS
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
7f266840
DJ
281 FALSE), /* pcrel_offset */
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 0, /* bitsize */
287 FALSE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
292 FALSE, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 FALSE), /* pcrel_offset */
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 301 24, /* bitsize */
7f266840
DJ
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
307 FALSE, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 316 24, /* bitsize */
7f266840
DJ
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 FALSE, /* partial_inplace */
7f6ab9f8
AM
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
7f266840
DJ
325 TRUE), /* pcrel_offset */
326
ba93b8ac 327 /* Dynamic TLS relocations. */
7f266840 328
ba93b8ac
DJ
329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 TRUE, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
7f266840 342
ba93b8ac
DJ
343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 32, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 TRUE, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
355 FALSE), /* pcrel_offset */
7f266840 356
ba93b8ac
DJ
357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
358 0, /* rightshift */
359 2, /* size (0 = byte, 1 = short, 2 = long) */
360 32, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 TRUE, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
7f266840
DJ
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
382 TRUE, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 FALSE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 TRUE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 FALSE), /* pcrel_offset */
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 32, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 TRUE, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 HOWTO (R_ARM_RELATIVE, /* type */
416 0, /* rightshift */
417 2, /* size (0 = byte, 1 = short, 2 = long) */
418 32, /* bitsize */
419 FALSE, /* pc_relative */
420 0, /* bitpos */
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 TRUE, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
427 FALSE), /* pcrel_offset */
428
c19d1205 429 HOWTO (R_ARM_GOTOFF32, /* type */
7f266840
DJ
430 0, /* rightshift */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
432 32, /* bitsize */
433 FALSE, /* pc_relative */
434 0, /* bitpos */
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
c19d1205 437 "R_ARM_GOTOFF32", /* name */
7f266840
DJ
438 TRUE, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
441 FALSE), /* pcrel_offset */
442
443 HOWTO (R_ARM_GOTPC, /* type */
444 0, /* rightshift */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
446 32, /* bitsize */
447 TRUE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 TRUE, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 TRUE), /* pcrel_offset */
456
457 HOWTO (R_ARM_GOT32, /* type */
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 32, /* bitsize */
461 FALSE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
466 TRUE, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
470
471 HOWTO (R_ARM_PLT32, /* type */
472 2, /* rightshift */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
ce490eda 474 24, /* bitsize */
7f266840
DJ
475 TRUE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
ce490eda 480 FALSE, /* partial_inplace */
7f266840
DJ
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 TRUE), /* pcrel_offset */
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 24, /* bitsize */
489 TRUE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
494 FALSE, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 TRUE), /* pcrel_offset */
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
502 24, /* bitsize */
503 TRUE, /* pc_relative */
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 FALSE, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 TRUE), /* pcrel_offset */
512
c19d1205
ZW
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 24, /* bitsize */
517 TRUE, /* pc_relative */
7f266840 518 0, /* bitpos */
c19d1205 519 complain_overflow_signed,/* complain_on_overflow */
7f266840 520 bfd_elf_generic_reloc, /* special_function */
c19d1205 521 "R_ARM_THM_JUMP24", /* name */
7f266840 522 FALSE, /* partial_inplace */
c19d1205
ZW
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 TRUE), /* pcrel_offset */
7f266840 526
c19d1205 527 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 528 0, /* rightshift */
c19d1205
ZW
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 32, /* bitsize */
7f266840
DJ
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
c19d1205 535 "R_ARM_BASE_ABS", /* name */
7f266840 536 FALSE, /* partial_inplace */
c19d1205
ZW
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
7f266840
DJ
539 FALSE), /* pcrel_offset */
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 12, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 FALSE, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 12, /* bitsize */
559 TRUE, /* pc_relative */
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 FALSE, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 12, /* bitsize */
573 TRUE, /* pc_relative */
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 FALSE, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 12, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 FALSE, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 8, /* bitsize */
601 FALSE, /* pc_relative */
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 FALSE, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
614 8, /* bitsize */
615 FALSE, /* pc_relative */
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 FALSE, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 FALSE), /* pcrel_offset */
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 32, /* bitsize */
629 FALSE, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 FALSE, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 FALSE), /* pcrel_offset */
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 32, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 FALSE, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 32, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
662 FALSE, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
670 32, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 FALSE, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 TRUE), /* pcrel_offset */
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 31, /* bitsize */
685 TRUE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
690 FALSE, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 TRUE), /* pcrel_offset */
c19d1205
ZW
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 16, /* bitsize */
699 FALSE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 FALSE, /* partial_inplace */
39623e12
PB
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
c19d1205
ZW
707 FALSE), /* pcrel_offset */
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
712 16, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 FALSE, /* partial_inplace */
39623e12
PB
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
c19d1205
ZW
721 FALSE), /* pcrel_offset */
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 TRUE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 FALSE, /* partial_inplace */
39623e12
PB
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
c19d1205
ZW
735 TRUE), /* pcrel_offset */
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
739 2, /* size (0 = byte, 1 = short, 2 = long) */
740 16, /* bitsize */
741 TRUE, /* pc_relative */
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 FALSE, /* partial_inplace */
39623e12
PB
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
c19d1205
ZW
749 TRUE), /* pcrel_offset */
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 FALSE, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 FALSE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 FALSE, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 FALSE), /* pcrel_offset */
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
782 16, /* bitsize */
783 TRUE, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 FALSE, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 TRUE), /* pcrel_offset */
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
796 16, /* bitsize */
797 TRUE, /* pc_relative */
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 FALSE, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 TRUE), /* pcrel_offset */
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 19, /* bitsize */
811 TRUE, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 FALSE, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 TRUE), /* pcrel_offset */
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 6, /* bitsize */
825 TRUE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 FALSE, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 TRUE), /* pcrel_offset */
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
840 2, /* size (0 = byte, 1 = short, 2 = long) */
841 13, /* bitsize */
842 TRUE, /* pc_relative */
843 0, /* bitpos */
2cab6cc3 844 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 FALSE, /* partial_inplace */
2cab6cc3
MS
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
c19d1205
ZW
850 TRUE), /* pcrel_offset */
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 13, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
2cab6cc3 858 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 FALSE, /* partial_inplace */
2cab6cc3
MS
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
c19d1205
ZW
864 TRUE), /* pcrel_offset */
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
868 2, /* size (0 = byte, 1 = short, 2 = long) */
869 32, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 FALSE, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 32, /* bitsize */
884 TRUE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 FALSE, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 FALSE), /* pcrel_offset */
7f266840 893
4962c51a
MS
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
898 2, /* size (0 = byte, 1 = short, 2 = long) */
899 32, /* bitsize */
900 TRUE, /* pc_relative */
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 FALSE, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 TRUE), /* pcrel_offset */
909
910 HOWTO (R_ARM_ALU_PC_G0, /* type */
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 TRUE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_ARM_ALU_PC_G0", /* name */
919 FALSE, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 TRUE), /* pcrel_offset */
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
926 2, /* size (0 = byte, 1 = short, 2 = long) */
927 32, /* bitsize */
928 TRUE, /* pc_relative */
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 FALSE, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 TRUE), /* pcrel_offset */
937
938 HOWTO (R_ARM_ALU_PC_G1, /* type */
939 0, /* rightshift */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
941 32, /* bitsize */
942 TRUE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
946 "R_ARM_ALU_PC_G1", /* name */
947 FALSE, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 TRUE), /* pcrel_offset */
951
952 HOWTO (R_ARM_ALU_PC_G2, /* type */
953 0, /* rightshift */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
955 32, /* bitsize */
956 TRUE, /* pc_relative */
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
960 "R_ARM_ALU_PC_G2", /* name */
961 FALSE, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 TRUE), /* pcrel_offset */
965
966 HOWTO (R_ARM_LDR_PC_G1, /* type */
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 32, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 "R_ARM_LDR_PC_G1", /* name */
975 FALSE, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 HOWTO (R_ARM_LDR_PC_G2, /* type */
981 0, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 32, /* bitsize */
984 TRUE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 "R_ARM_LDR_PC_G2", /* name */
989 FALSE, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 TRUE), /* pcrel_offset */
993
994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
995 0, /* rightshift */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
997 32, /* bitsize */
998 TRUE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
1002 "R_ARM_LDRS_PC_G0", /* name */
1003 FALSE, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 TRUE), /* pcrel_offset */
1007
1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1009 0, /* rightshift */
1010 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 32, /* bitsize */
1012 TRUE, /* pc_relative */
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
1016 "R_ARM_LDRS_PC_G1", /* name */
1017 FALSE, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 TRUE), /* pcrel_offset */
1021
1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1023 0, /* rightshift */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 32, /* bitsize */
1026 TRUE, /* pc_relative */
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
1030 "R_ARM_LDRS_PC_G2", /* name */
1031 FALSE, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 TRUE), /* pcrel_offset */
1035
1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
1037 0, /* rightshift */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 32, /* bitsize */
1040 TRUE, /* pc_relative */
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
1044 "R_ARM_LDC_PC_G0", /* name */
1045 FALSE, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 TRUE), /* pcrel_offset */
1049
1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
1051 0, /* rightshift */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 32, /* bitsize */
1054 TRUE, /* pc_relative */
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
1058 "R_ARM_LDC_PC_G1", /* name */
1059 FALSE, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 TRUE), /* pcrel_offset */
1063
1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
1065 0, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 32, /* bitsize */
1068 TRUE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
1072 "R_ARM_LDC_PC_G2", /* name */
1073 FALSE, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 TRUE), /* pcrel_offset */
1077
1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1079 0, /* rightshift */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 32, /* bitsize */
1082 TRUE, /* pc_relative */
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
1086 "R_ARM_ALU_SB_G0_NC", /* name */
1087 FALSE, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 TRUE), /* pcrel_offset */
1091
1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
1093 0, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 32, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
1100 "R_ARM_ALU_SB_G0", /* name */
1101 FALSE, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 32, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 "R_ARM_ALU_SB_G1_NC", /* name */
1115 FALSE, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
1121 0, /* rightshift */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 32, /* bitsize */
1124 TRUE, /* pc_relative */
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
1128 "R_ARM_ALU_SB_G1", /* name */
1129 FALSE, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 TRUE), /* pcrel_offset */
1133
1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
1135 0, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 32, /* bitsize */
1138 TRUE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
1142 "R_ARM_ALU_SB_G2", /* name */
1143 FALSE, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 TRUE), /* pcrel_offset */
1147
1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
1149 0, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 32, /* bitsize */
1152 TRUE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
1156 "R_ARM_LDR_SB_G0", /* name */
1157 FALSE, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 TRUE), /* pcrel_offset */
1161
1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
1163 0, /* rightshift */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 32, /* bitsize */
1166 TRUE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
1170 "R_ARM_LDR_SB_G1", /* name */
1171 FALSE, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 TRUE), /* pcrel_offset */
1175
1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 32, /* bitsize */
1180 TRUE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
1184 "R_ARM_LDR_SB_G2", /* name */
1185 FALSE, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 TRUE), /* pcrel_offset */
1189
1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1191 0, /* rightshift */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 32, /* bitsize */
1194 TRUE, /* pc_relative */
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
1198 "R_ARM_LDRS_SB_G0", /* name */
1199 FALSE, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 TRUE), /* pcrel_offset */
1203
1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1205 0, /* rightshift */
1206 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 32, /* bitsize */
1208 TRUE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
1212 "R_ARM_LDRS_SB_G1", /* name */
1213 FALSE, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 TRUE), /* pcrel_offset */
1217
1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1219 0, /* rightshift */
1220 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 32, /* bitsize */
1222 TRUE, /* pc_relative */
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
1226 "R_ARM_LDRS_SB_G2", /* name */
1227 FALSE, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 TRUE), /* pcrel_offset */
1231
1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
1233 0, /* rightshift */
1234 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 32, /* bitsize */
1236 TRUE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
1240 "R_ARM_LDC_SB_G0", /* name */
1241 FALSE, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 TRUE), /* pcrel_offset */
1245
1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
1247 0, /* rightshift */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 32, /* bitsize */
1250 TRUE, /* pc_relative */
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
1254 "R_ARM_LDC_SB_G1", /* name */
1255 FALSE, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 TRUE), /* pcrel_offset */
1259
1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
1261 0, /* rightshift */
1262 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 32, /* bitsize */
1264 TRUE, /* pc_relative */
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
1268 "R_ARM_LDC_SB_G2", /* name */
1269 FALSE, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 TRUE), /* pcrel_offset */
1273
1274 /* End of group relocations. */
c19d1205 1275
c19d1205
ZW
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 16, /* bitsize */
1280 FALSE, /* pc_relative */
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 FALSE, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 FALSE), /* pcrel_offset */
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 16, /* bitsize */
1294 FALSE, /* pc_relative */
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 FALSE, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 FALSE), /* pcrel_offset */
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 FALSE, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
1320 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 FALSE, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 FALSE, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 16, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 FALSE, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
0855e32b
NS
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 TRUE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 24, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 FALSE, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 0, /* bitsize */
1392 FALSE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_bitfield,/* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 FALSE, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 FALSE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 24, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 FALSE, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
c19d1205
ZW
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 32, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 FALSE, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 32, /* bitsize */
1434 FALSE, /* pc_relative */
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 FALSE, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 TRUE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 FALSE, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 TRUE), /* pcrel_offset */
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 12, /* bitsize */
1462 FALSE, /* pc_relative */
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 FALSE, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
1474 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 12, /* bitsize */
1476 FALSE, /* pc_relative */
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 FALSE, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 FALSE), /* pcrel_offset */
1485
1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1487
1488 /* GNU extension to record C++ vtable member usage */
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
ba93b8ac
DJ
1490 0, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1492 0, /* bitsize */
ba93b8ac
DJ
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
c19d1205
ZW
1495 complain_overflow_dont, /* complain_on_overflow */
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 0, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 NULL, /* special_function */
1512 "R_ARM_GNU_VTINHERIT", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
1520 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 11, /* bitsize */
1522 TRUE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 FALSE, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 TRUE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
1534 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 8, /* bitsize */
1536 TRUE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 FALSE, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 TRUE), /* pcrel_offset */
ba93b8ac 1545
c19d1205
ZW
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
ba93b8ac
DJ
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
1553 complain_overflow_bitfield,/* complain_on_overflow */
c19d1205
ZW
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
ba93b8ac
DJ
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
c19d1205 1559 FALSE), /* pcrel_offset */
ba93b8ac 1560
ba93b8ac
DJ
1561 HOWTO (R_ARM_TLS_LDM32, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 32, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 TRUE, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
c19d1205 1573 FALSE), /* pcrel_offset */
ba93b8ac 1574
c19d1205 1575 HOWTO (R_ARM_TLS_LDO32, /* type */
ba93b8ac
DJ
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 32, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
c19d1205 1583 "R_ARM_TLS_LDO32", /* name */
ba93b8ac
DJ
1584 TRUE, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
c19d1205 1587 FALSE), /* pcrel_offset */
ba93b8ac 1588
ba93b8ac
DJ
1589 HOWTO (R_ARM_TLS_IE32, /* type */
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 32, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 TRUE, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
c19d1205 1601 FALSE), /* pcrel_offset */
7f266840 1602
c19d1205 1603 HOWTO (R_ARM_TLS_LE32, /* type */
7f266840
DJ
1604 0, /* rightshift */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1606 32, /* bitsize */
7f266840
DJ
1607 FALSE, /* pc_relative */
1608 0, /* bitpos */
c19d1205
ZW
1609 complain_overflow_bitfield,/* complain_on_overflow */
1610 bfd_elf_generic_reloc, /* special_function */
1611 "R_ARM_TLS_LE32", /* name */
1612 TRUE, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
1615 FALSE), /* pcrel_offset */
7f266840 1616
c19d1205
ZW
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 12, /* bitsize */
1621 FALSE, /* pc_relative */
7f266840 1622 0, /* bitpos */
c19d1205 1623 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1624 bfd_elf_generic_reloc, /* special_function */
c19d1205 1625 "R_ARM_TLS_LDO12", /* name */
7f266840 1626 FALSE, /* partial_inplace */
c19d1205
ZW
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 FALSE), /* pcrel_offset */
7f266840 1630
c19d1205
ZW
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 12, /* bitsize */
1635 FALSE, /* pc_relative */
7f266840 1636 0, /* bitpos */
c19d1205 1637 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1638 bfd_elf_generic_reloc, /* special_function */
c19d1205 1639 "R_ARM_TLS_LE12", /* name */
7f266840 1640 FALSE, /* partial_inplace */
c19d1205
ZW
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 FALSE), /* pcrel_offset */
7f266840 1644
c19d1205 1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1646 0, /* rightshift */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1648 12, /* bitsize */
1649 FALSE, /* pc_relative */
7f266840 1650 0, /* bitpos */
c19d1205 1651 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1652 bfd_elf_generic_reloc, /* special_function */
c19d1205 1653 "R_ARM_TLS_IE12GP", /* name */
7f266840 1654 FALSE, /* partial_inplace */
c19d1205
ZW
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 FALSE), /* pcrel_offset */
0855e32b 1658
34e77a92 1659 /* 112-127 private relocations. */
0855e32b
NS
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
34e77a92
RS
1676
1677 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
1682 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 0, /* bitsize */
1684 FALSE, /* pc_relative */
1685 0, /* bitpos */
1686 complain_overflow_bitfield,/* complain_on_overflow */
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 FALSE, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 FALSE), /* pcrel_offset */
c19d1205
ZW
1693};
1694
34e77a92
RS
1695/* 160 onwards: */
1696static reloc_howto_type elf32_arm_howto_table_2[1] =
1697{
1698 HOWTO (R_ARM_IRELATIVE, /* type */
1699 0, /* rightshift */
1700 2, /* size (0 = byte, 1 = short, 2 = long) */
1701 32, /* bitsize */
1702 FALSE, /* pc_relative */
1703 0, /* bitpos */
1704 complain_overflow_bitfield,/* complain_on_overflow */
1705 bfd_elf_generic_reloc, /* special_function */
1706 "R_ARM_IRELATIVE", /* name */
1707 TRUE, /* partial_inplace */
1708 0xffffffff, /* src_mask */
1709 0xffffffff, /* dst_mask */
1710 FALSE) /* pcrel_offset */
1711};
c19d1205 1712
34e77a92
RS
1713/* 249-255 extended, currently unused, relocations: */
1714static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1715{
1716 HOWTO (R_ARM_RREL32, /* type */
1717 0, /* rightshift */
1718 0, /* size (0 = byte, 1 = short, 2 = long) */
1719 0, /* bitsize */
1720 FALSE, /* pc_relative */
1721 0, /* bitpos */
1722 complain_overflow_dont,/* complain_on_overflow */
1723 bfd_elf_generic_reloc, /* special_function */
1724 "R_ARM_RREL32", /* name */
1725 FALSE, /* partial_inplace */
1726 0, /* src_mask */
1727 0, /* dst_mask */
1728 FALSE), /* pcrel_offset */
1729
1730 HOWTO (R_ARM_RABS32, /* type */
1731 0, /* rightshift */
1732 0, /* size (0 = byte, 1 = short, 2 = long) */
1733 0, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont,/* complain_on_overflow */
1737 bfd_elf_generic_reloc, /* special_function */
1738 "R_ARM_RABS32", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 HOWTO (R_ARM_RPC24, /* type */
1745 0, /* rightshift */
1746 0, /* size (0 = byte, 1 = short, 2 = long) */
1747 0, /* bitsize */
1748 FALSE, /* pc_relative */
1749 0, /* bitpos */
1750 complain_overflow_dont,/* complain_on_overflow */
1751 bfd_elf_generic_reloc, /* special_function */
1752 "R_ARM_RPC24", /* name */
1753 FALSE, /* partial_inplace */
1754 0, /* src_mask */
1755 0, /* dst_mask */
1756 FALSE), /* pcrel_offset */
1757
1758 HOWTO (R_ARM_RBASE, /* type */
1759 0, /* rightshift */
1760 0, /* size (0 = byte, 1 = short, 2 = long) */
1761 0, /* bitsize */
1762 FALSE, /* pc_relative */
1763 0, /* bitpos */
1764 complain_overflow_dont,/* complain_on_overflow */
1765 bfd_elf_generic_reloc, /* special_function */
1766 "R_ARM_RBASE", /* name */
1767 FALSE, /* partial_inplace */
1768 0, /* src_mask */
1769 0, /* dst_mask */
1770 FALSE) /* pcrel_offset */
1771};
1772
1773static reloc_howto_type *
1774elf32_arm_howto_from_type (unsigned int r_type)
1775{
906e58ca 1776 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1777 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1778
34e77a92
RS
1779 if (r_type == R_ARM_IRELATIVE)
1780 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1781
c19d1205 1782 if (r_type >= R_ARM_RREL32
34e77a92
RS
1783 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1784 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1785
c19d1205 1786 return NULL;
7f266840
DJ
1787}
1788
1789static void
1790elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1791 Elf_Internal_Rela * elf_reloc)
1792{
1793 unsigned int r_type;
1794
1795 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1796 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1797}
1798
1799struct elf32_arm_reloc_map
1800 {
1801 bfd_reloc_code_real_type bfd_reloc_val;
1802 unsigned char elf_reloc_val;
1803 };
1804
1805/* All entries in this list must also be present in elf32_arm_howto_table. */
1806static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1807 {
1808 {BFD_RELOC_NONE, R_ARM_NONE},
1809 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1810 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1811 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1812 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1813 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1814 {BFD_RELOC_32, R_ARM_ABS32},
1815 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1816 {BFD_RELOC_8, R_ARM_ABS8},
1817 {BFD_RELOC_16, R_ARM_ABS16},
1818 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1819 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1820 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1825 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1826 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1827 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1828 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1829 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840 1830 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
b43420e6 1831 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
7f266840
DJ
1832 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1833 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1834 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1835 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1836 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1837 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1838 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1839 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
0855e32b
NS
1840 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1841 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1842 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1843 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1845 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
1846 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1847 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1848 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1849 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1850 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1851 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1852 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1853 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
34e77a92 1854 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
c19d1205
ZW
1855 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1856 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1857 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1858 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1859 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1860 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1861 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1862 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1863 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1864 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1865 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1866 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1867 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1868 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1869 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1870 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1871 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1872 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1873 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1874 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1875 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1876 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1877 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1878 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1879 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1880 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1881 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1882 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1883 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1884 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1885 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1886 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1887 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1888 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1889 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1890 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1891 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1892 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1893 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1894 };
1895
1896static reloc_howto_type *
f1c71a59
ZW
1897elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1898 bfd_reloc_code_real_type code)
7f266840
DJ
1899{
1900 unsigned int i;
8029a119 1901
906e58ca 1902 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1903 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1904 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1905
c19d1205 1906 return NULL;
7f266840
DJ
1907}
1908
157090f7
AM
1909static reloc_howto_type *
1910elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1911 const char *r_name)
1912{
1913 unsigned int i;
1914
906e58ca 1915 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1916 if (elf32_arm_howto_table_1[i].name != NULL
1917 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1918 return &elf32_arm_howto_table_1[i];
1919
906e58ca 1920 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1921 if (elf32_arm_howto_table_2[i].name != NULL
1922 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1923 return &elf32_arm_howto_table_2[i];
1924
34e77a92
RS
1925 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1926 if (elf32_arm_howto_table_3[i].name != NULL
1927 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1928 return &elf32_arm_howto_table_3[i];
1929
157090f7
AM
1930 return NULL;
1931}
1932
906e58ca
NC
1933/* Support for core dump NOTE sections. */
1934
7f266840 1935static bfd_boolean
f1c71a59 1936elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1937{
1938 int offset;
1939 size_t size;
1940
1941 switch (note->descsz)
1942 {
1943 default:
1944 return FALSE;
1945
8029a119 1946 case 148: /* Linux/ARM 32-bit. */
7f266840
DJ
1947 /* pr_cursig */
1948 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1949
1950 /* pr_pid */
261b8d08 1951 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
1952
1953 /* pr_reg */
1954 offset = 72;
1955 size = 72;
1956
1957 break;
1958 }
1959
1960 /* Make a ".reg/999" section. */
1961 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1962 size, note->descpos + offset);
1963}
1964
1965static bfd_boolean
f1c71a59 1966elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1967{
1968 switch (note->descsz)
1969 {
1970 default:
1971 return FALSE;
1972
8029a119 1973 case 124: /* Linux/ARM elf_prpsinfo. */
4395ee08
UW
1974 elf_tdata (abfd)->core_pid
1975 = bfd_get_32 (abfd, note->descdata + 12);
7f266840
DJ
1976 elf_tdata (abfd)->core_program
1977 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1978 elf_tdata (abfd)->core_command
1979 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1980 }
1981
1982 /* Note that for some reason, a spurious space is tacked
1983 onto the end of the args in some (at least one anyway)
1984 implementations, so strip it off if it exists. */
7f266840
DJ
1985 {
1986 char *command = elf_tdata (abfd)->core_command;
1987 int n = strlen (command);
1988
1989 if (0 < n && command[n - 1] == ' ')
1990 command[n - 1] = '\0';
1991 }
1992
1993 return TRUE;
1994}
1995
1f20dca5
UW
1996static char *
1997elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1998 int note_type, ...)
1999{
2000 switch (note_type)
2001 {
2002 default:
2003 return NULL;
2004
2005 case NT_PRPSINFO:
2006 {
2007 char data[124];
2008 va_list ap;
2009
2010 va_start (ap, note_type);
2011 memset (data, 0, sizeof (data));
2012 strncpy (data + 28, va_arg (ap, const char *), 16);
2013 strncpy (data + 44, va_arg (ap, const char *), 80);
2014 va_end (ap);
2015
2016 return elfcore_write_note (abfd, buf, bufsiz,
2017 "CORE", note_type, data, sizeof (data));
2018 }
2019
2020 case NT_PRSTATUS:
2021 {
2022 char data[148];
2023 va_list ap;
2024 long pid;
2025 int cursig;
2026 const void *greg;
2027
2028 va_start (ap, note_type);
2029 memset (data, 0, sizeof (data));
2030 pid = va_arg (ap, long);
2031 bfd_put_32 (abfd, pid, data + 24);
2032 cursig = va_arg (ap, int);
2033 bfd_put_16 (abfd, cursig, data + 12);
2034 greg = va_arg (ap, const void *);
2035 memcpy (data + 72, greg, 72);
2036 va_end (ap);
2037
2038 return elfcore_write_note (abfd, buf, bufsiz,
2039 "CORE", note_type, data, sizeof (data));
2040 }
2041 }
2042}
2043
7f266840
DJ
2044#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
2045#define TARGET_LITTLE_NAME "elf32-littlearm"
2046#define TARGET_BIG_SYM bfd_elf32_bigarm_vec
2047#define TARGET_BIG_NAME "elf32-bigarm"
2048
2049#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2050#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2051#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2052
252b5132
RH
2053typedef unsigned long int insn32;
2054typedef unsigned short int insn16;
2055
3a4a14e9
PB
2056/* In lieu of proper flags, assume all EABIv4 or later objects are
2057 interworkable. */
57e8b36a 2058#define INTERWORK_FLAG(abfd) \
3a4a14e9 2059 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2060 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2061 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2062
252b5132
RH
2063/* The linker script knows the section names for placement.
2064 The entry_names are used to do simple name mangling on the stubs.
2065 Given a function name, and its type, the stub can be found. The
9b485d32 2066 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2067#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2068#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2069
2070#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2071#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2072
c7b8f16e
JB
2073#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2074#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2075
845b51d6
PB
2076#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2077#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2078
7413f23f
DJ
2079#define STUB_ENTRY_NAME "__%s_veneer"
2080
252b5132
RH
2081/* The name of the dynamic interpreter. This is put in the .interp
2082 section. */
2083#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2084
0855e32b 2085static const unsigned long tls_trampoline [] =
b38cadfb
NC
2086{
2087 0xe08e0000, /* add r0, lr, r0 */
2088 0xe5901004, /* ldr r1, [r0,#4] */
2089 0xe12fff11, /* bx r1 */
2090};
0855e32b
NS
2091
2092static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2093{
2094 0xe52d2004, /* push {r2} */
2095 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2096 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2097 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2098 0xe081100f, /* 2: add r1, pc */
2099 0xe12fff12, /* bx r2 */
2100 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
0855e32b 2101 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2102 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2103};
0855e32b 2104
5e681ec4
PB
2105#ifdef FOUR_WORD_PLT
2106
252b5132
RH
2107/* The first entry in a procedure linkage table looks like
2108 this. It is set up so that any shared library function that is
59f2c4e7 2109 called before the relocation has been set up calls the dynamic
9b485d32 2110 linker first. */
e5a52504 2111static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2112{
2113 0xe52de004, /* str lr, [sp, #-4]! */
2114 0xe59fe010, /* ldr lr, [pc, #16] */
2115 0xe08fe00e, /* add lr, pc, lr */
2116 0xe5bef008, /* ldr pc, [lr, #8]! */
2117};
5e681ec4
PB
2118
2119/* Subsequent entries in a procedure linkage table look like
2120 this. */
e5a52504 2121static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2122{
2123 0xe28fc600, /* add ip, pc, #NN */
2124 0xe28cca00, /* add ip, ip, #NN */
2125 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2126 0x00000000, /* unused */
2127};
5e681ec4
PB
2128
2129#else
2130
5e681ec4
PB
2131/* The first entry in a procedure linkage table looks like
2132 this. It is set up so that any shared library function that is
2133 called before the relocation has been set up calls the dynamic
2134 linker first. */
e5a52504 2135static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2136{
2137 0xe52de004, /* str lr, [sp, #-4]! */
2138 0xe59fe004, /* ldr lr, [pc, #4] */
2139 0xe08fe00e, /* add lr, pc, lr */
2140 0xe5bef008, /* ldr pc, [lr, #8]! */
2141 0x00000000, /* &GOT[0] - . */
2142};
252b5132
RH
2143
2144/* Subsequent entries in a procedure linkage table look like
2145 this. */
e5a52504 2146static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2147{
2148 0xe28fc600, /* add ip, pc, #0xNN00000 */
2149 0xe28cca00, /* add ip, ip, #0xNN000 */
2150 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2151};
5e681ec4
PB
2152
2153#endif
252b5132 2154
00a97672
RS
2155/* The format of the first entry in the procedure linkage table
2156 for a VxWorks executable. */
2157static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb
NC
2158{
2159 0xe52dc008, /* str ip,[sp,#-8]! */
2160 0xe59fc000, /* ldr ip,[pc] */
2161 0xe59cf008, /* ldr pc,[ip,#8] */
2162 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2163};
00a97672
RS
2164
2165/* The format of subsequent entries in a VxWorks executable. */
2166static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb
NC
2167{
2168 0xe59fc000, /* ldr ip,[pc] */
2169 0xe59cf000, /* ldr pc,[ip] */
2170 0x00000000, /* .long @got */
2171 0xe59fc000, /* ldr ip,[pc] */
2172 0xea000000, /* b _PLT */
2173 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2174};
00a97672
RS
2175
2176/* The format of entries in a VxWorks shared library. */
2177static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb
NC
2178{
2179 0xe59fc000, /* ldr ip,[pc] */
2180 0xe79cf009, /* ldr pc,[ip,r9] */
2181 0x00000000, /* .long @got */
2182 0xe59fc000, /* ldr ip,[pc] */
2183 0xe599f008, /* ldr pc,[r9,#8] */
2184 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2185};
00a97672 2186
b7693d02
DJ
2187/* An initial stub used if the PLT entry is referenced from Thumb code. */
2188#define PLT_THUMB_STUB_SIZE 4
2189static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2190{
2191 0x4778, /* bx pc */
2192 0x46c0 /* nop */
2193};
b7693d02 2194
e5a52504
MM
2195/* The entries in a PLT when using a DLL-based target with multiple
2196 address spaces. */
906e58ca 2197static const bfd_vma elf32_arm_symbian_plt_entry [] =
b38cadfb
NC
2198{
2199 0xe51ff004, /* ldr pc, [pc, #-4] */
2200 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2201};
2202
2203/* The first entry in a procedure linkage table looks like
2204 this. It is set up so that any shared library function that is
2205 called before the relocation has been set up calls the dynamic
2206 linker first. */
2207static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2208{
2209 /* First bundle: */
2210 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2211 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2212 0xe08cc00f, /* add ip, ip, pc */
2213 0xe52dc008, /* str ip, [sp, #-8]! */
2214 /* Second bundle: */
edccdf7c
RM
2215 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2216 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2217 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2218 0xe12fff1c, /* bx ip */
b38cadfb 2219 /* Third bundle: */
edccdf7c
RM
2220 0xe320f000, /* nop */
2221 0xe320f000, /* nop */
2222 0xe320f000, /* nop */
b38cadfb
NC
2223 /* .Lplt_tail: */
2224 0xe50dc004, /* str ip, [sp, #-4] */
2225 /* Fourth bundle: */
edccdf7c
RM
2226 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2227 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2228 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2229 0xe12fff1c, /* bx ip */
b38cadfb
NC
2230};
2231#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2232
2233/* Subsequent entries in a procedure linkage table look like this. */
2234static const bfd_vma elf32_arm_nacl_plt_entry [] =
2235{
2236 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2237 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2238 0xe08cc00f, /* add ip, ip, pc */
2239 0xea000000, /* b .Lplt_tail */
2240};
e5a52504 2241
906e58ca
NC
2242#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2243#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2244#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2245#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2246#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2247#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2248
461a49ca 2249enum stub_insn_type
b38cadfb
NC
2250{
2251 THUMB16_TYPE = 1,
2252 THUMB32_TYPE,
2253 ARM_TYPE,
2254 DATA_TYPE
2255};
461a49ca 2256
48229727
JB
2257#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2258/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2259 is inserted in arm_build_one_stub(). */
2260#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2261#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2262#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2263#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2264#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2265#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2266
2267typedef struct
2268{
b38cadfb
NC
2269 bfd_vma data;
2270 enum stub_insn_type type;
2271 unsigned int r_type;
2272 int reloc_addend;
461a49ca
DJ
2273} insn_sequence;
2274
fea2b4d6
CL
2275/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2276 to reach the stub if necessary. */
461a49ca 2277static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb
NC
2278{
2279 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2280 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2281};
906e58ca 2282
fea2b4d6
CL
2283/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2284 available. */
461a49ca 2285static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb
NC
2286{
2287 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2288 ARM_INSN (0xe12fff1c), /* bx ip */
2289 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2290};
906e58ca 2291
d3626fb0 2292/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2293static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb
NC
2294{
2295 THUMB16_INSN (0xb401), /* push {r0} */
2296 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2297 THUMB16_INSN (0x4684), /* mov ip, r0 */
2298 THUMB16_INSN (0xbc01), /* pop {r0} */
2299 THUMB16_INSN (0x4760), /* bx ip */
2300 THUMB16_INSN (0xbf00), /* nop */
2301 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2302};
906e58ca 2303
d3626fb0
CL
2304/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2305 allowed. */
2306static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb
NC
2307{
2308 THUMB16_INSN (0x4778), /* bx pc */
2309 THUMB16_INSN (0x46c0), /* nop */
2310 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2311 ARM_INSN (0xe12fff1c), /* bx ip */
2312 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2313};
d3626fb0 2314
fea2b4d6
CL
2315/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2316 available. */
461a49ca 2317static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb
NC
2318{
2319 THUMB16_INSN (0x4778), /* bx pc */
2320 THUMB16_INSN (0x46c0), /* nop */
2321 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2322 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2323};
906e58ca 2324
fea2b4d6
CL
2325/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2326 one, when the destination is close enough. */
461a49ca 2327static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb
NC
2328{
2329 THUMB16_INSN (0x4778), /* bx pc */
2330 THUMB16_INSN (0x46c0), /* nop */
2331 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2332};
c820be07 2333
cf3eccff 2334/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2335 blx to reach the stub if necessary. */
cf3eccff 2336static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb
NC
2337{
2338 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2339 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2340 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2341};
906e58ca 2342
cf3eccff
DJ
2343/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2344 blx to reach the stub if necessary. We can not add into pc;
2345 it is not guaranteed to mode switch (different in ARMv6 and
2346 ARMv7). */
2347static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb
NC
2348{
2349 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2350 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2351 ARM_INSN (0xe12fff1c), /* bx ip */
2352 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2353};
cf3eccff 2354
ebe24dd4
CL
2355/* V4T ARM -> ARM long branch stub, PIC. */
2356static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb
NC
2357{
2358 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2359 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2360 ARM_INSN (0xe12fff1c), /* bx ip */
2361 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2362};
ebe24dd4
CL
2363
2364/* V4T Thumb -> ARM long branch stub, PIC. */
2365static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb
NC
2366{
2367 THUMB16_INSN (0x4778), /* bx pc */
2368 THUMB16_INSN (0x46c0), /* nop */
2369 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2370 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2371 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2372};
ebe24dd4 2373
d3626fb0
CL
2374/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2375 architectures. */
ebe24dd4 2376static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb
NC
2377{
2378 THUMB16_INSN (0xb401), /* push {r0} */
2379 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2380 THUMB16_INSN (0x46fc), /* mov ip, pc */
2381 THUMB16_INSN (0x4484), /* add ip, r0 */
2382 THUMB16_INSN (0xbc01), /* pop {r0} */
2383 THUMB16_INSN (0x4760), /* bx ip */
2384 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2385};
ebe24dd4 2386
d3626fb0
CL
2387/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2388 allowed. */
2389static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb
NC
2390{
2391 THUMB16_INSN (0x4778), /* bx pc */
2392 THUMB16_INSN (0x46c0), /* nop */
2393 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2394 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2395 ARM_INSN (0xe12fff1c), /* bx ip */
2396 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2397};
d3626fb0 2398
0855e32b
NS
2399/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2400 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2401static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2402{
b38cadfb
NC
2403 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2404 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2405 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2406};
2407
2408/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2409 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2410static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2411{
b38cadfb
NC
2412 THUMB16_INSN (0x4778), /* bx pc */
2413 THUMB16_INSN (0x46c0), /* nop */
2414 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2415 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2416 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2417};
2418
48229727
JB
2419/* Cortex-A8 erratum-workaround stubs. */
2420
2421/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2422 can't use a conditional branch to reach this stub). */
2423
2424static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb
NC
2425{
2426 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2427 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2428 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2429};
48229727
JB
2430
2431/* Stub used for b.w and bl.w instructions. */
2432
2433static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2434{
2435 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2436};
48229727
JB
2437
2438static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2439{
2440 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2441};
48229727
JB
2442
2443/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2444 instruction (which switches to ARM mode) to point to this stub. Jump to the
2445 real destination using an ARM-mode branch. */
2446
2447static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2448{
2449 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2450};
48229727 2451
9553db3c
NC
2452/* For each section group there can be a specially created linker section
2453 to hold the stubs for that group. The name of the stub section is based
2454 upon the name of another section within that group with the suffix below
2455 applied.
2456
2457 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2458 create what appeared to be a linker stub section when it actually
2459 contained user code/data. For example, consider this fragment:
b38cadfb 2460
9553db3c
NC
2461 const char * stubborn_problems[] = { "np" };
2462
2463 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2464 section called:
2465
2466 .data.rel.local.stubborn_problems
2467
2468 This then causes problems in arm32_arm_build_stubs() as it triggers:
2469
2470 // Ignore non-stub sections.
2471 if (!strstr (stub_sec->name, STUB_SUFFIX))
2472 continue;
2473
2474 And so the section would be ignored instead of being processed. Hence
2475 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2476 C identifier. */
2477#define STUB_SUFFIX ".__stub"
906e58ca 2478
738a79f6
CL
2479/* One entry per long/short branch stub defined above. */
2480#define DEF_STUBS \
2481 DEF_STUB(long_branch_any_any) \
2482 DEF_STUB(long_branch_v4t_arm_thumb) \
2483 DEF_STUB(long_branch_thumb_only) \
2484 DEF_STUB(long_branch_v4t_thumb_thumb) \
2485 DEF_STUB(long_branch_v4t_thumb_arm) \
2486 DEF_STUB(short_branch_v4t_thumb_arm) \
2487 DEF_STUB(long_branch_any_arm_pic) \
2488 DEF_STUB(long_branch_any_thumb_pic) \
2489 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2490 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2491 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2492 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2493 DEF_STUB(long_branch_any_tls_pic) \
2494 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
48229727
JB
2495 DEF_STUB(a8_veneer_b_cond) \
2496 DEF_STUB(a8_veneer_b) \
2497 DEF_STUB(a8_veneer_bl) \
2498 DEF_STUB(a8_veneer_blx)
738a79f6
CL
2499
2500#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2501enum elf32_arm_stub_type
2502{
906e58ca 2503 arm_stub_none,
738a79f6 2504 DEF_STUBS
eb7c4339
NS
2505 /* Note the first a8_veneer type */
2506 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
738a79f6
CL
2507};
2508#undef DEF_STUB
2509
2510typedef struct
2511{
d3ce72d0 2512 const insn_sequence* template_sequence;
738a79f6
CL
2513 int template_size;
2514} stub_def;
2515
2516#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2517static const stub_def stub_definitions[] =
2518{
738a79f6
CL
2519 {NULL, 0},
2520 DEF_STUBS
906e58ca
NC
2521};
2522
2523struct elf32_arm_stub_hash_entry
2524{
2525 /* Base hash table entry structure. */
2526 struct bfd_hash_entry root;
2527
2528 /* The stub section. */
2529 asection *stub_sec;
2530
2531 /* Offset within stub_sec of the beginning of this stub. */
2532 bfd_vma stub_offset;
2533
2534 /* Given the symbol's value and its section we can determine its final
2535 value when building the stubs (so the stub knows where to jump). */
2536 bfd_vma target_value;
2537 asection *target_section;
2538
48229727
JB
2539 /* Offset to apply to relocation referencing target_value. */
2540 bfd_vma target_addend;
2541
2542 /* The instruction which caused this stub to be generated (only valid for
2543 Cortex-A8 erratum workaround stubs at present). */
2544 unsigned long orig_insn;
2545
461a49ca 2546 /* The stub type. */
906e58ca 2547 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2548 /* Its encoding size in bytes. */
2549 int stub_size;
2550 /* Its template. */
2551 const insn_sequence *stub_template;
2552 /* The size of the template (number of entries). */
2553 int stub_template_size;
906e58ca
NC
2554
2555 /* The symbol table entry, if any, that this was derived from. */
2556 struct elf32_arm_link_hash_entry *h;
2557
35fc36a8
RS
2558 /* Type of branch. */
2559 enum arm_st_branch_type branch_type;
906e58ca
NC
2560
2561 /* Where this stub is being called from, or, in the case of combined
2562 stub sections, the first input section in the group. */
2563 asection *id_sec;
7413f23f
DJ
2564
2565 /* The name for the local symbol at the start of this stub. The
2566 stub name in the hash table has to be unique; this does not, so
2567 it can be friendlier. */
2568 char *output_name;
906e58ca
NC
2569};
2570
e489d0ae
PB
2571/* Used to build a map of a section. This is required for mixed-endian
2572 code/data. */
2573
2574typedef struct elf32_elf_section_map
2575{
2576 bfd_vma vma;
2577 char type;
2578}
2579elf32_arm_section_map;
2580
c7b8f16e
JB
2581/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2582
2583typedef enum
2584{
2585 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2586 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2587 VFP11_ERRATUM_ARM_VENEER,
2588 VFP11_ERRATUM_THUMB_VENEER
2589}
2590elf32_vfp11_erratum_type;
2591
2592typedef struct elf32_vfp11_erratum_list
2593{
2594 struct elf32_vfp11_erratum_list *next;
2595 bfd_vma vma;
2596 union
2597 {
2598 struct
2599 {
2600 struct elf32_vfp11_erratum_list *veneer;
2601 unsigned int vfp_insn;
2602 } b;
2603 struct
2604 {
2605 struct elf32_vfp11_erratum_list *branch;
2606 unsigned int id;
2607 } v;
2608 } u;
2609 elf32_vfp11_erratum_type type;
2610}
2611elf32_vfp11_erratum_list;
2612
2468f9c9
PB
2613typedef enum
2614{
2615 DELETE_EXIDX_ENTRY,
2616 INSERT_EXIDX_CANTUNWIND_AT_END
2617}
2618arm_unwind_edit_type;
2619
2620/* A (sorted) list of edits to apply to an unwind table. */
2621typedef struct arm_unwind_table_edit
2622{
2623 arm_unwind_edit_type type;
2624 /* Note: we sometimes want to insert an unwind entry corresponding to a
2625 section different from the one we're currently writing out, so record the
2626 (text) section this edit relates to here. */
2627 asection *linked_section;
2628 unsigned int index;
2629 struct arm_unwind_table_edit *next;
2630}
2631arm_unwind_table_edit;
2632
8e3de13a 2633typedef struct _arm_elf_section_data
e489d0ae 2634{
2468f9c9 2635 /* Information about mapping symbols. */
e489d0ae 2636 struct bfd_elf_section_data elf;
8e3de13a 2637 unsigned int mapcount;
c7b8f16e 2638 unsigned int mapsize;
e489d0ae 2639 elf32_arm_section_map *map;
2468f9c9 2640 /* Information about CPU errata. */
c7b8f16e
JB
2641 unsigned int erratumcount;
2642 elf32_vfp11_erratum_list *erratumlist;
2468f9c9
PB
2643 /* Information about unwind tables. */
2644 union
2645 {
2646 /* Unwind info attached to a text section. */
2647 struct
2648 {
2649 asection *arm_exidx_sec;
2650 } text;
2651
2652 /* Unwind info attached to an .ARM.exidx section. */
2653 struct
2654 {
2655 arm_unwind_table_edit *unwind_edit_list;
2656 arm_unwind_table_edit *unwind_edit_tail;
2657 } exidx;
2658 } u;
8e3de13a
NC
2659}
2660_arm_elf_section_data;
e489d0ae
PB
2661
2662#define elf32_arm_section_data(sec) \
8e3de13a 2663 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2664
48229727
JB
2665/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2666 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2667 so may be created multiple times: we use an array of these entries whilst
2668 relaxing which we can refresh easily, then create stubs for each potentially
2669 erratum-triggering instruction once we've settled on a solution. */
2670
b38cadfb
NC
2671struct a8_erratum_fix
2672{
48229727
JB
2673 bfd *input_bfd;
2674 asection *section;
2675 bfd_vma offset;
2676 bfd_vma addend;
2677 unsigned long orig_insn;
2678 char *stub_name;
2679 enum elf32_arm_stub_type stub_type;
35fc36a8 2680 enum arm_st_branch_type branch_type;
48229727
JB
2681};
2682
2683/* A table of relocs applied to branches which might trigger Cortex-A8
2684 erratum. */
2685
b38cadfb
NC
2686struct a8_erratum_reloc
2687{
48229727
JB
2688 bfd_vma from;
2689 bfd_vma destination;
92750f34
DJ
2690 struct elf32_arm_link_hash_entry *hash;
2691 const char *sym_name;
48229727 2692 unsigned int r_type;
35fc36a8 2693 enum arm_st_branch_type branch_type;
48229727
JB
2694 bfd_boolean non_a8_stub;
2695};
2696
ba93b8ac
DJ
2697/* The size of the thread control block. */
2698#define TCB_SIZE 8
2699
34e77a92
RS
2700/* ARM-specific information about a PLT entry, over and above the usual
2701 gotplt_union. */
b38cadfb
NC
2702struct arm_plt_info
2703{
34e77a92
RS
2704 /* We reference count Thumb references to a PLT entry separately,
2705 so that we can emit the Thumb trampoline only if needed. */
2706 bfd_signed_vma thumb_refcount;
2707
2708 /* Some references from Thumb code may be eliminated by BL->BLX
2709 conversion, so record them separately. */
2710 bfd_signed_vma maybe_thumb_refcount;
2711
2712 /* How many of the recorded PLT accesses were from non-call relocations.
2713 This information is useful when deciding whether anything takes the
2714 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2715 non-call references to the function should resolve directly to the
2716 real runtime target. */
2717 unsigned int noncall_refcount;
2718
2719 /* Since PLT entries have variable size if the Thumb prologue is
2720 used, we need to record the index into .got.plt instead of
2721 recomputing it from the PLT offset. */
2722 bfd_signed_vma got_offset;
2723};
2724
2725/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
2726struct arm_local_iplt_info
2727{
34e77a92
RS
2728 /* The information that is usually found in the generic ELF part of
2729 the hash table entry. */
2730 union gotplt_union root;
2731
2732 /* The information that is usually found in the ARM-specific part of
2733 the hash table entry. */
2734 struct arm_plt_info arm;
2735
2736 /* A list of all potential dynamic relocations against this symbol. */
2737 struct elf_dyn_relocs *dyn_relocs;
2738};
2739
0ffa91dd 2740struct elf_arm_obj_tdata
ba93b8ac
DJ
2741{
2742 struct elf_obj_tdata root;
2743
2744 /* tls_type for each local got entry. */
2745 char *local_got_tls_type;
ee065d83 2746
0855e32b
NS
2747 /* GOTPLT entries for TLS descriptors. */
2748 bfd_vma *local_tlsdesc_gotent;
2749
34e77a92
RS
2750 /* Information for local symbols that need entries in .iplt. */
2751 struct arm_local_iplt_info **local_iplt;
2752
bf21ed78
MS
2753 /* Zero to warn when linking objects with incompatible enum sizes. */
2754 int no_enum_size_warning;
a9dc9481
JM
2755
2756 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2757 int no_wchar_size_warning;
ba93b8ac
DJ
2758};
2759
0ffa91dd
NC
2760#define elf_arm_tdata(bfd) \
2761 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2762
0ffa91dd
NC
2763#define elf32_arm_local_got_tls_type(bfd) \
2764 (elf_arm_tdata (bfd)->local_got_tls_type)
2765
0855e32b
NS
2766#define elf32_arm_local_tlsdesc_gotent(bfd) \
2767 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2768
34e77a92
RS
2769#define elf32_arm_local_iplt(bfd) \
2770 (elf_arm_tdata (bfd)->local_iplt)
2771
0ffa91dd
NC
2772#define is_arm_elf(bfd) \
2773 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2774 && elf_tdata (bfd) != NULL \
4dfe6ac6 2775 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
2776
2777static bfd_boolean
2778elf32_arm_mkobject (bfd *abfd)
2779{
0ffa91dd 2780 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 2781 ARM_ELF_DATA);
ba93b8ac
DJ
2782}
2783
ba93b8ac
DJ
2784#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2785
ba96a88f 2786/* Arm ELF linker hash entry. */
252b5132 2787struct elf32_arm_link_hash_entry
b38cadfb
NC
2788{
2789 struct elf_link_hash_entry root;
252b5132 2790
b38cadfb
NC
2791 /* Track dynamic relocs copied for this symbol. */
2792 struct elf_dyn_relocs *dyn_relocs;
b7693d02 2793
b38cadfb
NC
2794 /* ARM-specific PLT information. */
2795 struct arm_plt_info plt;
ba93b8ac
DJ
2796
2797#define GOT_UNKNOWN 0
2798#define GOT_NORMAL 1
2799#define GOT_TLS_GD 2
2800#define GOT_TLS_IE 4
0855e32b
NS
2801#define GOT_TLS_GDESC 8
2802#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 2803 unsigned int tls_type : 8;
34e77a92 2804
b38cadfb
NC
2805 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2806 unsigned int is_iplt : 1;
34e77a92 2807
b38cadfb 2808 unsigned int unused : 23;
a4fd1a8e 2809
b38cadfb
NC
2810 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2811 starting at the end of the jump table. */
2812 bfd_vma tlsdesc_got;
0855e32b 2813
b38cadfb
NC
2814 /* The symbol marking the real symbol location for exported thumb
2815 symbols with Arm stubs. */
2816 struct elf_link_hash_entry *export_glue;
906e58ca 2817
b38cadfb 2818 /* A pointer to the most recently used stub hash entry against this
8029a119 2819 symbol. */
b38cadfb
NC
2820 struct elf32_arm_stub_hash_entry *stub_cache;
2821};
252b5132 2822
252b5132 2823/* Traverse an arm ELF linker hash table. */
252b5132
RH
2824#define elf32_arm_link_hash_traverse(table, func, info) \
2825 (elf_link_hash_traverse \
2826 (&(table)->root, \
b7693d02 2827 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2828 (info)))
2829
2830/* Get the ARM elf linker hash table from a link_info structure. */
2831#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
2832 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2833 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 2834
906e58ca
NC
2835#define arm_stub_hash_lookup(table, string, create, copy) \
2836 ((struct elf32_arm_stub_hash_entry *) \
2837 bfd_hash_lookup ((table), (string), (create), (copy)))
2838
21d799b5
NC
2839/* Array to keep track of which stub sections have been created, and
2840 information on stub grouping. */
2841struct map_stub
2842{
2843 /* This is the section to which stubs in the group will be
2844 attached. */
2845 asection *link_sec;
2846 /* The stub section. */
2847 asection *stub_sec;
2848};
2849
0855e32b
NS
2850#define elf32_arm_compute_jump_table_size(htab) \
2851 ((htab)->next_tls_desc_index * 4)
2852
9b485d32 2853/* ARM ELF linker hash table. */
252b5132 2854struct elf32_arm_link_hash_table
906e58ca
NC
2855{
2856 /* The main hash table. */
2857 struct elf_link_hash_table root;
252b5132 2858
906e58ca
NC
2859 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2860 bfd_size_type thumb_glue_size;
252b5132 2861
906e58ca
NC
2862 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2863 bfd_size_type arm_glue_size;
252b5132 2864
906e58ca
NC
2865 /* The size in bytes of section containing the ARMv4 BX veneers. */
2866 bfd_size_type bx_glue_size;
845b51d6 2867
906e58ca
NC
2868 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2869 veneer has been populated. */
2870 bfd_vma bx_glue_offset[15];
845b51d6 2871
906e58ca
NC
2872 /* The size in bytes of the section containing glue for VFP11 erratum
2873 veneers. */
2874 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2875
48229727
JB
2876 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2877 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2878 elf32_arm_write_section(). */
2879 struct a8_erratum_fix *a8_erratum_fixes;
2880 unsigned int num_a8_erratum_fixes;
2881
906e58ca
NC
2882 /* An arbitrary input BFD chosen to hold the glue sections. */
2883 bfd * bfd_of_glue_owner;
ba96a88f 2884
906e58ca
NC
2885 /* Nonzero to output a BE8 image. */
2886 int byteswap_code;
e489d0ae 2887
906e58ca
NC
2888 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2889 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2890 int target1_is_rel;
9c504268 2891
906e58ca
NC
2892 /* The relocation to use for R_ARM_TARGET2 relocations. */
2893 int target2_reloc;
eb043451 2894
906e58ca
NC
2895 /* 0 = Ignore R_ARM_V4BX.
2896 1 = Convert BX to MOV PC.
2897 2 = Generate v4 interworing stubs. */
2898 int fix_v4bx;
319850b4 2899
48229727
JB
2900 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2901 int fix_cortex_a8;
2902
2de70689
MGD
2903 /* Whether we should fix the ARM1176 BLX immediate issue. */
2904 int fix_arm1176;
2905
906e58ca
NC
2906 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2907 int use_blx;
33bfe774 2908
906e58ca
NC
2909 /* What sort of code sequences we should look for which may trigger the
2910 VFP11 denorm erratum. */
2911 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2912
906e58ca
NC
2913 /* Global counter for the number of fixes we have emitted. */
2914 int num_vfp11_fixes;
c7b8f16e 2915
906e58ca
NC
2916 /* Nonzero to force PIC branch veneers. */
2917 int pic_veneer;
27e55c4d 2918
906e58ca
NC
2919 /* The number of bytes in the initial entry in the PLT. */
2920 bfd_size_type plt_header_size;
e5a52504 2921
906e58ca
NC
2922 /* The number of bytes in the subsequent PLT etries. */
2923 bfd_size_type plt_entry_size;
e5a52504 2924
906e58ca
NC
2925 /* True if the target system is VxWorks. */
2926 int vxworks_p;
00a97672 2927
906e58ca
NC
2928 /* True if the target system is Symbian OS. */
2929 int symbian_p;
e5a52504 2930
b38cadfb
NC
2931 /* True if the target system is Native Client. */
2932 int nacl_p;
2933
906e58ca
NC
2934 /* True if the target uses REL relocations. */
2935 int use_rel;
4e7fd91e 2936
0855e32b
NS
2937 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2938 bfd_vma next_tls_desc_index;
2939
2940 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2941 bfd_vma num_tls_desc;
2942
906e58ca 2943 /* Short-cuts to get to dynamic linker sections. */
906e58ca
NC
2944 asection *sdynbss;
2945 asection *srelbss;
5e681ec4 2946
906e58ca
NC
2947 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2948 asection *srelplt2;
00a97672 2949
0855e32b
NS
2950 /* The offset into splt of the PLT entry for the TLS descriptor
2951 resolver. Special values are 0, if not necessary (or not found
2952 to be necessary yet), and -1 if needed but not determined
2953 yet. */
2954 bfd_vma dt_tlsdesc_plt;
2955
2956 /* The offset into sgot of the GOT entry used by the PLT entry
2957 above. */
b38cadfb 2958 bfd_vma dt_tlsdesc_got;
0855e32b
NS
2959
2960 /* Offset in .plt section of tls_arm_trampoline. */
2961 bfd_vma tls_trampoline;
2962
906e58ca
NC
2963 /* Data for R_ARM_TLS_LDM32 relocations. */
2964 union
2965 {
2966 bfd_signed_vma refcount;
2967 bfd_vma offset;
2968 } tls_ldm_got;
b7693d02 2969
87d72d41
AM
2970 /* Small local sym cache. */
2971 struct sym_cache sym_cache;
906e58ca
NC
2972
2973 /* For convenience in allocate_dynrelocs. */
2974 bfd * obfd;
2975
0855e32b
NS
2976 /* The amount of space used by the reserved portion of the sgotplt
2977 section, plus whatever space is used by the jump slots. */
2978 bfd_vma sgotplt_jump_table_size;
2979
906e58ca
NC
2980 /* The stub hash table. */
2981 struct bfd_hash_table stub_hash_table;
2982
2983 /* Linker stub bfd. */
2984 bfd *stub_bfd;
2985
2986 /* Linker call-backs. */
2987 asection * (*add_stub_section) (const char *, asection *);
2988 void (*layout_sections_again) (void);
2989
2990 /* Array to keep track of which stub sections have been created, and
2991 information on stub grouping. */
21d799b5 2992 struct map_stub *stub_group;
906e58ca 2993
fe33d2fa
CL
2994 /* Number of elements in stub_group. */
2995 int top_id;
2996
906e58ca
NC
2997 /* Assorted information used by elf32_arm_size_stubs. */
2998 unsigned int bfd_count;
2999 int top_index;
3000 asection **input_list;
3001};
252b5132 3002
780a67af
NC
3003/* Create an entry in an ARM ELF linker hash table. */
3004
3005static struct bfd_hash_entry *
57e8b36a
NC
3006elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3007 struct bfd_hash_table * table,
3008 const char * string)
780a67af
NC
3009{
3010 struct elf32_arm_link_hash_entry * ret =
3011 (struct elf32_arm_link_hash_entry *) entry;
3012
3013 /* Allocate the structure if it has not already been allocated by a
3014 subclass. */
906e58ca 3015 if (ret == NULL)
21d799b5
NC
3016 ret = (struct elf32_arm_link_hash_entry *)
3017 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3018 if (ret == NULL)
780a67af
NC
3019 return (struct bfd_hash_entry *) ret;
3020
3021 /* Call the allocation method of the superclass. */
3022 ret = ((struct elf32_arm_link_hash_entry *)
3023 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3024 table, string));
57e8b36a 3025 if (ret != NULL)
b7693d02 3026 {
0bdcacaf 3027 ret->dyn_relocs = NULL;
ba93b8ac 3028 ret->tls_type = GOT_UNKNOWN;
0855e32b 3029 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3030 ret->plt.thumb_refcount = 0;
3031 ret->plt.maybe_thumb_refcount = 0;
3032 ret->plt.noncall_refcount = 0;
3033 ret->plt.got_offset = -1;
3034 ret->is_iplt = FALSE;
a4fd1a8e 3035 ret->export_glue = NULL;
906e58ca
NC
3036
3037 ret->stub_cache = NULL;
b7693d02 3038 }
780a67af
NC
3039
3040 return (struct bfd_hash_entry *) ret;
3041}
3042
34e77a92
RS
3043/* Ensure that we have allocated bookkeeping structures for ABFD's local
3044 symbols. */
3045
3046static bfd_boolean
3047elf32_arm_allocate_local_sym_info (bfd *abfd)
3048{
3049 if (elf_local_got_refcounts (abfd) == NULL)
3050 {
3051 bfd_size_type num_syms;
3052 bfd_size_type size;
3053 char *data;
3054
3055 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3056 size = num_syms * (sizeof (bfd_signed_vma)
3057 + sizeof (struct arm_local_iplt_info *)
3058 + sizeof (bfd_vma)
3059 + sizeof (char));
3060 data = bfd_zalloc (abfd, size);
3061 if (data == NULL)
3062 return FALSE;
3063
3064 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3065 data += num_syms * sizeof (bfd_signed_vma);
3066
3067 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3068 data += num_syms * sizeof (struct arm_local_iplt_info *);
3069
3070 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3071 data += num_syms * sizeof (bfd_vma);
3072
3073 elf32_arm_local_got_tls_type (abfd) = data;
3074 }
3075 return TRUE;
3076}
3077
3078/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3079 to input bfd ABFD. Create the information if it doesn't already exist.
3080 Return null if an allocation fails. */
3081
3082static struct arm_local_iplt_info *
3083elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3084{
3085 struct arm_local_iplt_info **ptr;
3086
3087 if (!elf32_arm_allocate_local_sym_info (abfd))
3088 return NULL;
3089
3090 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3091 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3092 if (*ptr == NULL)
3093 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3094 return *ptr;
3095}
3096
3097/* Try to obtain PLT information for the symbol with index R_SYMNDX
3098 in ABFD's symbol table. If the symbol is global, H points to its
3099 hash table entry, otherwise H is null.
3100
3101 Return true if the symbol does have PLT information. When returning
3102 true, point *ROOT_PLT at the target-independent reference count/offset
3103 union and *ARM_PLT at the ARM-specific information. */
3104
3105static bfd_boolean
3106elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3107 unsigned long r_symndx, union gotplt_union **root_plt,
3108 struct arm_plt_info **arm_plt)
3109{
3110 struct arm_local_iplt_info *local_iplt;
3111
3112 if (h != NULL)
3113 {
3114 *root_plt = &h->root.plt;
3115 *arm_plt = &h->plt;
3116 return TRUE;
3117 }
3118
3119 if (elf32_arm_local_iplt (abfd) == NULL)
3120 return FALSE;
3121
3122 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3123 if (local_iplt == NULL)
3124 return FALSE;
3125
3126 *root_plt = &local_iplt->root;
3127 *arm_plt = &local_iplt->arm;
3128 return TRUE;
3129}
3130
3131/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3132 before it. */
3133
3134static bfd_boolean
3135elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3136 struct arm_plt_info *arm_plt)
3137{
3138 struct elf32_arm_link_hash_table *htab;
3139
3140 htab = elf32_arm_hash_table (info);
3141 return (arm_plt->thumb_refcount != 0
3142 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3143}
3144
3145/* Return a pointer to the head of the dynamic reloc list that should
3146 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3147 ABFD's symbol table. Return null if an error occurs. */
3148
3149static struct elf_dyn_relocs **
3150elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3151 Elf_Internal_Sym *isym)
3152{
3153 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3154 {
3155 struct arm_local_iplt_info *local_iplt;
3156
3157 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3158 if (local_iplt == NULL)
3159 return NULL;
3160 return &local_iplt->dyn_relocs;
3161 }
3162 else
3163 {
3164 /* Track dynamic relocs needed for local syms too.
3165 We really need local syms available to do this
3166 easily. Oh well. */
3167 asection *s;
3168 void *vpp;
3169
3170 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3171 if (s == NULL)
3172 abort ();
3173
3174 vpp = &elf_section_data (s)->local_dynrel;
3175 return (struct elf_dyn_relocs **) vpp;
3176 }
3177}
3178
906e58ca
NC
3179/* Initialize an entry in the stub hash table. */
3180
3181static struct bfd_hash_entry *
3182stub_hash_newfunc (struct bfd_hash_entry *entry,
3183 struct bfd_hash_table *table,
3184 const char *string)
3185{
3186 /* Allocate the structure if it has not already been allocated by a
3187 subclass. */
3188 if (entry == NULL)
3189 {
21d799b5
NC
3190 entry = (struct bfd_hash_entry *)
3191 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3192 if (entry == NULL)
3193 return entry;
3194 }
3195
3196 /* Call the allocation method of the superclass. */
3197 entry = bfd_hash_newfunc (entry, table, string);
3198 if (entry != NULL)
3199 {
3200 struct elf32_arm_stub_hash_entry *eh;
3201
3202 /* Initialize the local fields. */
3203 eh = (struct elf32_arm_stub_hash_entry *) entry;
3204 eh->stub_sec = NULL;
3205 eh->stub_offset = 0;
3206 eh->target_value = 0;
3207 eh->target_section = NULL;
cedfb179
DK
3208 eh->target_addend = 0;
3209 eh->orig_insn = 0;
906e58ca 3210 eh->stub_type = arm_stub_none;
461a49ca
DJ
3211 eh->stub_size = 0;
3212 eh->stub_template = NULL;
3213 eh->stub_template_size = 0;
906e58ca
NC
3214 eh->h = NULL;
3215 eh->id_sec = NULL;
d8d2f433 3216 eh->output_name = NULL;
906e58ca
NC
3217 }
3218
3219 return entry;
3220}
3221
00a97672 3222/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3223 shortcuts to them in our hash table. */
3224
3225static bfd_boolean
57e8b36a 3226create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3227{
3228 struct elf32_arm_link_hash_table *htab;
3229
e5a52504 3230 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3231 if (htab == NULL)
3232 return FALSE;
3233
e5a52504
MM
3234 /* BPABI objects never have a GOT, or associated sections. */
3235 if (htab->symbian_p)
3236 return TRUE;
3237
5e681ec4
PB
3238 if (! _bfd_elf_create_got_section (dynobj, info))
3239 return FALSE;
3240
5e681ec4
PB
3241 return TRUE;
3242}
3243
34e77a92
RS
3244/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3245
3246static bfd_boolean
3247create_ifunc_sections (struct bfd_link_info *info)
3248{
3249 struct elf32_arm_link_hash_table *htab;
3250 const struct elf_backend_data *bed;
3251 bfd *dynobj;
3252 asection *s;
3253 flagword flags;
b38cadfb 3254
34e77a92
RS
3255 htab = elf32_arm_hash_table (info);
3256 dynobj = htab->root.dynobj;
3257 bed = get_elf_backend_data (dynobj);
3258 flags = bed->dynamic_sec_flags;
3259
3260 if (htab->root.iplt == NULL)
3261 {
3d4d4302
AM
3262 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3263 flags | SEC_READONLY | SEC_CODE);
34e77a92 3264 if (s == NULL
a0f49396 3265 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
34e77a92
RS
3266 return FALSE;
3267 htab->root.iplt = s;
3268 }
3269
3270 if (htab->root.irelplt == NULL)
3271 {
3d4d4302
AM
3272 s = bfd_make_section_anyway_with_flags (dynobj,
3273 RELOC_SECTION (htab, ".iplt"),
3274 flags | SEC_READONLY);
34e77a92 3275 if (s == NULL
a0f49396 3276 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
34e77a92
RS
3277 return FALSE;
3278 htab->root.irelplt = s;
3279 }
3280
3281 if (htab->root.igotplt == NULL)
3282 {
3d4d4302 3283 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92
RS
3284 if (s == NULL
3285 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3286 return FALSE;
3287 htab->root.igotplt = s;
3288 }
3289 return TRUE;
3290}
3291
00a97672
RS
3292/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3293 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3294 hash table. */
3295
3296static bfd_boolean
57e8b36a 3297elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3298{
3299 struct elf32_arm_link_hash_table *htab;
3300
3301 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3302 if (htab == NULL)
3303 return FALSE;
3304
362d30a1 3305 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
3306 return FALSE;
3307
3308 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3309 return FALSE;
3310
3d4d4302 3311 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5e681ec4 3312 if (!info->shared)
3d4d4302
AM
3313 htab->srelbss = bfd_get_linker_section (dynobj,
3314 RELOC_SECTION (htab, ".bss"));
00a97672
RS
3315
3316 if (htab->vxworks_p)
3317 {
3318 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3319 return FALSE;
3320
3321 if (info->shared)
3322 {
3323 htab->plt_header_size = 0;
3324 htab->plt_entry_size
3325 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3326 }
3327 else
3328 {
3329 htab->plt_header_size
3330 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3331 htab->plt_entry_size
3332 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3333 }
3334 }
5e681ec4 3335
362d30a1
RS
3336 if (!htab->root.splt
3337 || !htab->root.srelplt
e5a52504 3338 || !htab->sdynbss
5e681ec4
PB
3339 || (!info->shared && !htab->srelbss))
3340 abort ();
3341
3342 return TRUE;
3343}
3344
906e58ca
NC
3345/* Copy the extra info we tack onto an elf_link_hash_entry. */
3346
3347static void
3348elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3349 struct elf_link_hash_entry *dir,
3350 struct elf_link_hash_entry *ind)
3351{
3352 struct elf32_arm_link_hash_entry *edir, *eind;
3353
3354 edir = (struct elf32_arm_link_hash_entry *) dir;
3355 eind = (struct elf32_arm_link_hash_entry *) ind;
3356
0bdcacaf 3357 if (eind->dyn_relocs != NULL)
906e58ca 3358 {
0bdcacaf 3359 if (edir->dyn_relocs != NULL)
906e58ca 3360 {
0bdcacaf
RS
3361 struct elf_dyn_relocs **pp;
3362 struct elf_dyn_relocs *p;
906e58ca
NC
3363
3364 /* Add reloc counts against the indirect sym to the direct sym
3365 list. Merge any entries against the same section. */
0bdcacaf 3366 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
906e58ca 3367 {
0bdcacaf 3368 struct elf_dyn_relocs *q;
906e58ca 3369
0bdcacaf
RS
3370 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3371 if (q->sec == p->sec)
906e58ca
NC
3372 {
3373 q->pc_count += p->pc_count;
3374 q->count += p->count;
3375 *pp = p->next;
3376 break;
3377 }
3378 if (q == NULL)
3379 pp = &p->next;
3380 }
0bdcacaf 3381 *pp = edir->dyn_relocs;
906e58ca
NC
3382 }
3383
0bdcacaf
RS
3384 edir->dyn_relocs = eind->dyn_relocs;
3385 eind->dyn_relocs = NULL;
906e58ca
NC
3386 }
3387
3388 if (ind->root.type == bfd_link_hash_indirect)
3389 {
3390 /* Copy over PLT info. */
34e77a92
RS
3391 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3392 eind->plt.thumb_refcount = 0;
3393 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3394 eind->plt.maybe_thumb_refcount = 0;
3395 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3396 eind->plt.noncall_refcount = 0;
3397
3398 /* We should only allocate a function to .iplt once the final
3399 symbol information is known. */
3400 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
3401
3402 if (dir->got.refcount <= 0)
3403 {
3404 edir->tls_type = eind->tls_type;
3405 eind->tls_type = GOT_UNKNOWN;
3406 }
3407 }
3408
3409 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3410}
3411
3412/* Create an ARM elf linker hash table. */
3413
3414static struct bfd_link_hash_table *
3415elf32_arm_link_hash_table_create (bfd *abfd)
3416{
3417 struct elf32_arm_link_hash_table *ret;
3418 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3419
21d799b5 3420 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
906e58ca
NC
3421 if (ret == NULL)
3422 return NULL;
3423
3424 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3425 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
3426 sizeof (struct elf32_arm_link_hash_entry),
3427 ARM_ELF_DATA))
906e58ca
NC
3428 {
3429 free (ret);
3430 return NULL;
3431 }
3432
906e58ca
NC
3433 ret->sdynbss = NULL;
3434 ret->srelbss = NULL;
3435 ret->srelplt2 = NULL;
0855e32b
NS
3436 ret->dt_tlsdesc_plt = 0;
3437 ret->dt_tlsdesc_got = 0;
3438 ret->tls_trampoline = 0;
3439 ret->next_tls_desc_index = 0;
3440 ret->num_tls_desc = 0;
906e58ca
NC
3441 ret->thumb_glue_size = 0;
3442 ret->arm_glue_size = 0;
3443 ret->bx_glue_size = 0;
3444 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
3445 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3446 ret->vfp11_erratum_glue_size = 0;
3447 ret->num_vfp11_fixes = 0;
48229727 3448 ret->fix_cortex_a8 = 0;
2de70689 3449 ret->fix_arm1176 = 0;
906e58ca
NC
3450 ret->bfd_of_glue_owner = NULL;
3451 ret->byteswap_code = 0;
3452 ret->target1_is_rel = 0;
3453 ret->target2_reloc = R_ARM_NONE;
3454#ifdef FOUR_WORD_PLT
3455 ret->plt_header_size = 16;
3456 ret->plt_entry_size = 16;
3457#else
3458 ret->plt_header_size = 20;
3459 ret->plt_entry_size = 12;
3460#endif
3461 ret->fix_v4bx = 0;
3462 ret->use_blx = 0;
3463 ret->vxworks_p = 0;
3464 ret->symbian_p = 0;
b38cadfb 3465 ret->nacl_p = 0;
906e58ca 3466 ret->use_rel = 1;
87d72d41 3467 ret->sym_cache.abfd = NULL;
906e58ca
NC
3468 ret->obfd = abfd;
3469 ret->tls_ldm_got.refcount = 0;
6cee0a6f
L
3470 ret->stub_bfd = NULL;
3471 ret->add_stub_section = NULL;
3472 ret->layout_sections_again = NULL;
3473 ret->stub_group = NULL;
fe33d2fa 3474 ret->top_id = 0;
6cee0a6f
L
3475 ret->bfd_count = 0;
3476 ret->top_index = 0;
3477 ret->input_list = NULL;
906e58ca
NC
3478
3479 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3480 sizeof (struct elf32_arm_stub_hash_entry)))
3481 {
3482 free (ret);
3483 return NULL;
3484 }
3485
3486 return &ret->root.root;
3487}
3488
3489/* Free the derived linker hash table. */
3490
3491static void
3492elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3493{
3494 struct elf32_arm_link_hash_table *ret
3495 = (struct elf32_arm_link_hash_table *) hash;
3496
3497 bfd_hash_table_free (&ret->stub_hash_table);
3498 _bfd_generic_link_hash_table_free (hash);
3499}
3500
3501/* Determine if we're dealing with a Thumb only architecture. */
3502
3503static bfd_boolean
3504using_thumb_only (struct elf32_arm_link_hash_table *globals)
3505{
3506 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3507 Tag_CPU_arch);
3508 int profile;
3509
41ed1ee7
DJ
3510 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3511 return TRUE;
3512
9e3c6df6 3513 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
906e58ca
NC
3514 return FALSE;
3515
3516 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3517 Tag_CPU_arch_profile);
3518
3519 return profile == 'M';
3520}
3521
3522/* Determine if we're dealing with a Thumb-2 object. */
3523
3524static bfd_boolean
3525using_thumb2 (struct elf32_arm_link_hash_table *globals)
3526{
3527 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3528 Tag_CPU_arch);
3529 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3530}
3531
cd1dac3d
DG
3532/* Determine what kind of NOPs are available. */
3533
3534static bfd_boolean
3535arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3536{
3537 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3538 Tag_CPU_arch);
3539 return arch == TAG_CPU_ARCH_V6T2
3540 || arch == TAG_CPU_ARCH_V6K
9e3c6df6
PB
3541 || arch == TAG_CPU_ARCH_V7
3542 || arch == TAG_CPU_ARCH_V7E_M;
cd1dac3d
DG
3543}
3544
3545static bfd_boolean
3546arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3547{
3548 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3549 Tag_CPU_arch);
9e3c6df6
PB
3550 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3551 || arch == TAG_CPU_ARCH_V7E_M);
cd1dac3d
DG
3552}
3553
f4ac8484
DJ
3554static bfd_boolean
3555arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3556{
3557 switch (stub_type)
3558 {
fea2b4d6
CL
3559 case arm_stub_long_branch_thumb_only:
3560 case arm_stub_long_branch_v4t_thumb_arm:
3561 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 3562 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 3563 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 3564 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
3565 return TRUE;
3566 case arm_stub_none:
3567 BFD_FAIL ();
3568 return FALSE;
3569 break;
3570 default:
3571 return FALSE;
3572 }
3573}
3574
906e58ca
NC
3575/* Determine the type of stub needed, if any, for a call. */
3576
3577static enum elf32_arm_stub_type
3578arm_type_of_stub (struct bfd_link_info *info,
3579 asection *input_sec,
3580 const Elf_Internal_Rela *rel,
34e77a92 3581 unsigned char st_type,
35fc36a8 3582 enum arm_st_branch_type *actual_branch_type,
906e58ca 3583 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3584 bfd_vma destination,
3585 asection *sym_sec,
3586 bfd *input_bfd,
3587 const char *name)
906e58ca
NC
3588{
3589 bfd_vma location;
3590 bfd_signed_vma branch_offset;
3591 unsigned int r_type;
3592 struct elf32_arm_link_hash_table * globals;
3593 int thumb2;
3594 int thumb_only;
3595 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3596 int use_plt = 0;
35fc36a8 3597 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
3598 union gotplt_union *root_plt;
3599 struct arm_plt_info *arm_plt;
906e58ca 3600
35fc36a8 3601 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
3602 return stub_type;
3603
906e58ca 3604 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3605 if (globals == NULL)
3606 return stub_type;
906e58ca
NC
3607
3608 thumb_only = using_thumb_only (globals);
3609
3610 thumb2 = using_thumb2 (globals);
3611
3612 /* Determine where the call point is. */
3613 location = (input_sec->output_offset
3614 + input_sec->output_section->vma
3615 + rel->r_offset);
3616
906e58ca
NC
3617 r_type = ELF32_R_TYPE (rel->r_info);
3618
34e77a92
RS
3619 /* For TLS call relocs, it is the caller's responsibility to provide
3620 the address of the appropriate trampoline. */
3621 if (r_type != R_ARM_TLS_CALL
3622 && r_type != R_ARM_THM_TLS_CALL
3623 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3624 &root_plt, &arm_plt)
3625 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 3626 {
34e77a92 3627 asection *splt;
fe33d2fa 3628
34e77a92
RS
3629 if (hash == NULL || hash->is_iplt)
3630 splt = globals->root.iplt;
3631 else
3632 splt = globals->root.splt;
3633 if (splt != NULL)
b38cadfb 3634 {
34e77a92
RS
3635 use_plt = 1;
3636
3637 /* Note when dealing with PLT entries: the main PLT stub is in
3638 ARM mode, so if the branch is in Thumb mode, another
3639 Thumb->ARM stub will be inserted later just before the ARM
3640 PLT stub. We don't take this extra distance into account
3641 here, because if a long branch stub is needed, we'll add a
3642 Thumb->Arm one and branch directly to the ARM PLT entry
3643 because it avoids spreading offset corrections in several
3644 places. */
3645
3646 destination = (splt->output_section->vma
3647 + splt->output_offset
3648 + root_plt->offset);
3649 st_type = STT_FUNC;
3650 branch_type = ST_BRANCH_TO_ARM;
3651 }
5fa9e92f 3652 }
34e77a92
RS
3653 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3654 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 3655
fe33d2fa
CL
3656 branch_offset = (bfd_signed_vma)(destination - location);
3657
0855e32b
NS
3658 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3659 || r_type == R_ARM_THM_TLS_CALL)
906e58ca 3660 {
5fa9e92f
CL
3661 /* Handle cases where:
3662 - this call goes too far (different Thumb/Thumb2 max
3663 distance)
155d87d7
CL
3664 - it's a Thumb->Arm call and blx is not available, or it's a
3665 Thumb->Arm branch (not bl). A stub is needed in this case,
3666 but only if this call is not through a PLT entry. Indeed,
3667 PLT stubs handle mode switching already.
5fa9e92f 3668 */
906e58ca
NC
3669 if ((!thumb2
3670 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3671 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3672 || (thumb2
3673 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3674 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
35fc36a8 3675 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
3676 && (((r_type == R_ARM_THM_CALL
3677 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
155d87d7 3678 || (r_type == R_ARM_THM_JUMP24))
5fa9e92f 3679 && !use_plt))
906e58ca 3680 {
35fc36a8 3681 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
3682 {
3683 /* Thumb to thumb. */
3684 if (!thumb_only)
3685 {
3686 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3687 /* PIC stubs. */
155d87d7 3688 ? ((globals->use_blx
9553db3c 3689 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
3690 /* V5T and above. Stub starts with ARM code, so
3691 we must be able to switch mode before
3692 reaching it, which is only possible for 'bl'
3693 (ie R_ARM_THM_CALL relocation). */
cf3eccff 3694 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 3695 /* On V4T, use Thumb code only. */
d3626fb0 3696 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
3697
3698 /* non-PIC stubs. */
155d87d7 3699 : ((globals->use_blx
9553db3c 3700 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
3701 /* V5T and above. */
3702 ? arm_stub_long_branch_any_any
3703 /* V4T. */
d3626fb0 3704 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
3705 }
3706 else
3707 {
3708 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
3709 /* PIC stub. */
3710 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
3711 /* non-PIC stub. */
3712 : arm_stub_long_branch_thumb_only;
906e58ca
NC
3713 }
3714 }
3715 else
3716 {
3717 /* Thumb to arm. */
c820be07
NC
3718 if (sym_sec != NULL
3719 && sym_sec->owner != NULL
3720 && !INTERWORK_FLAG (sym_sec->owner))
3721 {
3722 (*_bfd_error_handler)
3723 (_("%B(%s): warning: interworking not enabled.\n"
3724 " first occurrence: %B: Thumb call to ARM"),
3725 sym_sec->owner, input_bfd, name);
3726 }
3727
0855e32b
NS
3728 stub_type =
3729 (info->shared | globals->pic_veneer)
c2b4a39d 3730 /* PIC stubs. */
0855e32b
NS
3731 ? (r_type == R_ARM_THM_TLS_CALL
3732 /* TLS PIC stubs */
3733 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3734 : arm_stub_long_branch_v4t_thumb_tls_pic)
3735 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3736 /* V5T PIC and above. */
3737 ? arm_stub_long_branch_any_arm_pic
3738 /* V4T PIC stub. */
3739 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
3740
3741 /* non-PIC stubs. */
0855e32b 3742 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
3743 /* V5T and above. */
3744 ? arm_stub_long_branch_any_any
3745 /* V4T. */
3746 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
3747
3748 /* Handle v4t short branches. */
fea2b4d6 3749 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
3750 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3751 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 3752 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
3753 }
3754 }
3755 }
fe33d2fa
CL
3756 else if (r_type == R_ARM_CALL
3757 || r_type == R_ARM_JUMP24
0855e32b
NS
3758 || r_type == R_ARM_PLT32
3759 || r_type == R_ARM_TLS_CALL)
906e58ca 3760 {
35fc36a8 3761 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
3762 {
3763 /* Arm to thumb. */
c820be07
NC
3764
3765 if (sym_sec != NULL
3766 && sym_sec->owner != NULL
3767 && !INTERWORK_FLAG (sym_sec->owner))
3768 {
3769 (*_bfd_error_handler)
3770 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 3771 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
3772 sym_sec->owner, input_bfd, name);
3773 }
3774
3775 /* We have an extra 2-bytes reach because of
3776 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
3777 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3778 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 3779 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
3780 || (r_type == R_ARM_JUMP24)
3781 || (r_type == R_ARM_PLT32))
906e58ca
NC
3782 {
3783 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3784 /* PIC stubs. */
ebe24dd4
CL
3785 ? ((globals->use_blx)
3786 /* V5T and above. */
3787 ? arm_stub_long_branch_any_thumb_pic
3788 /* V4T stub. */
3789 : arm_stub_long_branch_v4t_arm_thumb_pic)
3790
c2b4a39d
CL
3791 /* non-PIC stubs. */
3792 : ((globals->use_blx)
3793 /* V5T and above. */
3794 ? arm_stub_long_branch_any_any
3795 /* V4T. */
3796 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3797 }
3798 }
3799 else
3800 {
3801 /* Arm to arm. */
3802 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3803 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3804 {
0855e32b
NS
3805 stub_type =
3806 (info->shared | globals->pic_veneer)
c2b4a39d 3807 /* PIC stubs. */
0855e32b
NS
3808 ? (r_type == R_ARM_TLS_CALL
3809 /* TLS PIC Stub */
3810 ? arm_stub_long_branch_any_tls_pic
3811 : arm_stub_long_branch_any_arm_pic)
c2b4a39d 3812 /* non-PIC stubs. */
fea2b4d6 3813 : arm_stub_long_branch_any_any;
906e58ca
NC
3814 }
3815 }
3816 }
3817
fe33d2fa
CL
3818 /* If a stub is needed, record the actual destination type. */
3819 if (stub_type != arm_stub_none)
35fc36a8 3820 *actual_branch_type = branch_type;
fe33d2fa 3821
906e58ca
NC
3822 return stub_type;
3823}
3824
3825/* Build a name for an entry in the stub hash table. */
3826
3827static char *
3828elf32_arm_stub_name (const asection *input_section,
3829 const asection *sym_sec,
3830 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
3831 const Elf_Internal_Rela *rel,
3832 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3833{
3834 char *stub_name;
3835 bfd_size_type len;
3836
3837 if (hash)
3838 {
fe33d2fa 3839 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 3840 stub_name = (char *) bfd_malloc (len);
906e58ca 3841 if (stub_name != NULL)
fe33d2fa 3842 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
3843 input_section->id & 0xffffffff,
3844 hash->root.root.root.string,
fe33d2fa
CL
3845 (int) rel->r_addend & 0xffffffff,
3846 (int) stub_type);
906e58ca
NC
3847 }
3848 else
3849 {
fe33d2fa 3850 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 3851 stub_name = (char *) bfd_malloc (len);
906e58ca 3852 if (stub_name != NULL)
fe33d2fa 3853 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
3854 input_section->id & 0xffffffff,
3855 sym_sec->id & 0xffffffff,
0855e32b
NS
3856 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3857 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3858 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
3859 (int) rel->r_addend & 0xffffffff,
3860 (int) stub_type);
906e58ca
NC
3861 }
3862
3863 return stub_name;
3864}
3865
3866/* Look up an entry in the stub hash. Stub entries are cached because
3867 creating the stub name takes a bit of time. */
3868
3869static struct elf32_arm_stub_hash_entry *
3870elf32_arm_get_stub_entry (const asection *input_section,
3871 const asection *sym_sec,
3872 struct elf_link_hash_entry *hash,
3873 const Elf_Internal_Rela *rel,
fe33d2fa
CL
3874 struct elf32_arm_link_hash_table *htab,
3875 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3876{
3877 struct elf32_arm_stub_hash_entry *stub_entry;
3878 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3879 const asection *id_sec;
3880
3881 if ((input_section->flags & SEC_CODE) == 0)
3882 return NULL;
3883
3884 /* If this input section is part of a group of sections sharing one
3885 stub section, then use the id of the first section in the group.
3886 Stub names need to include a section id, as there may well be
3887 more than one stub used to reach say, printf, and we need to
3888 distinguish between them. */
3889 id_sec = htab->stub_group[input_section->id].link_sec;
3890
3891 if (h != NULL && h->stub_cache != NULL
3892 && h->stub_cache->h == h
fe33d2fa
CL
3893 && h->stub_cache->id_sec == id_sec
3894 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
3895 {
3896 stub_entry = h->stub_cache;
3897 }
3898 else
3899 {
3900 char *stub_name;
3901
fe33d2fa 3902 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
3903 if (stub_name == NULL)
3904 return NULL;
3905
3906 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3907 stub_name, FALSE, FALSE);
3908 if (h != NULL)
3909 h->stub_cache = stub_entry;
3910
3911 free (stub_name);
3912 }
3913
3914 return stub_entry;
3915}
3916
48229727 3917/* Find or create a stub section. Returns a pointer to the stub section, and
b38cadfb 3918 the section to which the stub section will be attached (in *LINK_SEC_P).
48229727 3919 LINK_SEC_P may be NULL. */
906e58ca 3920
48229727
JB
3921static asection *
3922elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3923 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3924{
3925 asection *link_sec;
3926 asection *stub_sec;
906e58ca
NC
3927
3928 link_sec = htab->stub_group[section->id].link_sec;
9553db3c 3929 BFD_ASSERT (link_sec != NULL);
906e58ca 3930 stub_sec = htab->stub_group[section->id].stub_sec;
9553db3c 3931
906e58ca
NC
3932 if (stub_sec == NULL)
3933 {
3934 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3935 if (stub_sec == NULL)
3936 {
3937 size_t namelen;
3938 bfd_size_type len;
3939 char *s_name;
3940
3941 namelen = strlen (link_sec->name);
3942 len = namelen + sizeof (STUB_SUFFIX);
21d799b5 3943 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
906e58ca
NC
3944 if (s_name == NULL)
3945 return NULL;
3946
3947 memcpy (s_name, link_sec->name, namelen);
3948 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3949 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3950 if (stub_sec == NULL)
3951 return NULL;
3952 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3953 }
3954 htab->stub_group[section->id].stub_sec = stub_sec;
3955 }
b38cadfb 3956
48229727
JB
3957 if (link_sec_p)
3958 *link_sec_p = link_sec;
b38cadfb 3959
48229727
JB
3960 return stub_sec;
3961}
3962
3963/* Add a new stub entry to the stub hash. Not all fields of the new
3964 stub entry are initialised. */
3965
3966static struct elf32_arm_stub_hash_entry *
3967elf32_arm_add_stub (const char *stub_name,
3968 asection *section,
3969 struct elf32_arm_link_hash_table *htab)
3970{
3971 asection *link_sec;
3972 asection *stub_sec;
3973 struct elf32_arm_stub_hash_entry *stub_entry;
3974
3975 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3976 if (stub_sec == NULL)
3977 return NULL;
906e58ca
NC
3978
3979 /* Enter this entry into the linker stub hash table. */
3980 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3981 TRUE, FALSE);
3982 if (stub_entry == NULL)
3983 {
3984 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3985 section->owner,
3986 stub_name);
3987 return NULL;
3988 }
3989
3990 stub_entry->stub_sec = stub_sec;
3991 stub_entry->stub_offset = 0;
3992 stub_entry->id_sec = link_sec;
3993
906e58ca
NC
3994 return stub_entry;
3995}
3996
3997/* Store an Arm insn into an output section not processed by
3998 elf32_arm_write_section. */
3999
4000static void
8029a119
NC
4001put_arm_insn (struct elf32_arm_link_hash_table * htab,
4002 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4003{
4004 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4005 bfd_putl32 (val, ptr);
4006 else
4007 bfd_putb32 (val, ptr);
4008}
4009
4010/* Store a 16-bit Thumb insn into an output section not processed by
4011 elf32_arm_write_section. */
4012
4013static void
8029a119
NC
4014put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4015 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4016{
4017 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4018 bfd_putl16 (val, ptr);
4019 else
4020 bfd_putb16 (val, ptr);
4021}
4022
0855e32b
NS
4023/* If it's possible to change R_TYPE to a more efficient access
4024 model, return the new reloc type. */
4025
4026static unsigned
b38cadfb 4027elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4028 struct elf_link_hash_entry *h)
4029{
4030 int is_local = (h == NULL);
4031
4032 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
4033 return r_type;
4034
b38cadfb 4035 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4036 switch (r_type)
4037 {
4038 case R_ARM_TLS_GOTDESC:
4039 case R_ARM_TLS_CALL:
4040 case R_ARM_THM_TLS_CALL:
4041 case R_ARM_TLS_DESCSEQ:
4042 case R_ARM_THM_TLS_DESCSEQ:
4043 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4044 }
4045
4046 return r_type;
4047}
4048
48229727
JB
4049static bfd_reloc_status_type elf32_arm_final_link_relocate
4050 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4051 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92
RS
4052 const char *, unsigned char, enum arm_st_branch_type,
4053 struct elf_link_hash_entry *, bfd_boolean *, char **);
48229727 4054
4563a860
JB
4055static unsigned int
4056arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4057{
4058 switch (stub_type)
4059 {
4060 case arm_stub_a8_veneer_b_cond:
4061 case arm_stub_a8_veneer_b:
4062 case arm_stub_a8_veneer_bl:
4063 return 2;
4064
4065 case arm_stub_long_branch_any_any:
4066 case arm_stub_long_branch_v4t_arm_thumb:
4067 case arm_stub_long_branch_thumb_only:
4068 case arm_stub_long_branch_v4t_thumb_thumb:
4069 case arm_stub_long_branch_v4t_thumb_arm:
4070 case arm_stub_short_branch_v4t_thumb_arm:
4071 case arm_stub_long_branch_any_arm_pic:
4072 case arm_stub_long_branch_any_thumb_pic:
4073 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4074 case arm_stub_long_branch_v4t_arm_thumb_pic:
4075 case arm_stub_long_branch_v4t_thumb_arm_pic:
4076 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4077 case arm_stub_long_branch_any_tls_pic:
4078 case arm_stub_long_branch_v4t_thumb_tls_pic:
4563a860
JB
4079 case arm_stub_a8_veneer_blx:
4080 return 4;
b38cadfb 4081
4563a860
JB
4082 default:
4083 abort (); /* Should be unreachable. */
4084 }
4085}
4086
906e58ca
NC
4087static bfd_boolean
4088arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4089 void * in_arg)
4090{
48229727 4091#define MAXRELOCS 2
906e58ca 4092 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 4093 struct elf32_arm_link_hash_table *globals;
906e58ca 4094 struct bfd_link_info *info;
906e58ca
NC
4095 asection *stub_sec;
4096 bfd *stub_bfd;
906e58ca
NC
4097 bfd_byte *loc;
4098 bfd_vma sym_value;
4099 int template_size;
4100 int size;
d3ce72d0 4101 const insn_sequence *template_sequence;
906e58ca 4102 int i;
48229727
JB
4103 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4104 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4105 int nrelocs = 0;
906e58ca
NC
4106
4107 /* Massage our args to the form they really have. */
4108 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4109 info = (struct bfd_link_info *) in_arg;
4110
4111 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4112 if (globals == NULL)
4113 return FALSE;
906e58ca 4114
906e58ca
NC
4115 stub_sec = stub_entry->stub_sec;
4116
4dfe6ac6 4117 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
4118 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4119 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 4120 return TRUE;
fe33d2fa 4121
906e58ca
NC
4122 /* Make a note of the offset within the stubs for this entry. */
4123 stub_entry->stub_offset = stub_sec->size;
4124 loc = stub_sec->contents + stub_entry->stub_offset;
4125
4126 stub_bfd = stub_sec->owner;
4127
906e58ca
NC
4128 /* This is the address of the stub destination. */
4129 sym_value = (stub_entry->target_value
4130 + stub_entry->target_section->output_offset
4131 + stub_entry->target_section->output_section->vma);
4132
d3ce72d0 4133 template_sequence = stub_entry->stub_template;
461a49ca 4134 template_size = stub_entry->stub_template_size;
906e58ca
NC
4135
4136 size = 0;
461a49ca 4137 for (i = 0; i < template_size; i++)
906e58ca 4138 {
d3ce72d0 4139 switch (template_sequence[i].type)
461a49ca
DJ
4140 {
4141 case THUMB16_TYPE:
48229727 4142 {
d3ce72d0
NC
4143 bfd_vma data = (bfd_vma) template_sequence[i].data;
4144 if (template_sequence[i].reloc_addend != 0)
48229727
JB
4145 {
4146 /* We've borrowed the reloc_addend field to mean we should
4147 insert a condition code into this (Thumb-1 branch)
4148 instruction. See THUMB16_BCOND_INSN. */
4149 BFD_ASSERT ((data & 0xff00) == 0xd000);
4150 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4151 }
fe33d2fa 4152 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
4153 size += 2;
4154 }
461a49ca 4155 break;
906e58ca 4156
48229727 4157 case THUMB32_TYPE:
fe33d2fa
CL
4158 bfd_put_16 (stub_bfd,
4159 (template_sequence[i].data >> 16) & 0xffff,
4160 loc + size);
4161 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4162 loc + size + 2);
d3ce72d0 4163 if (template_sequence[i].r_type != R_ARM_NONE)
48229727
JB
4164 {
4165 stub_reloc_idx[nrelocs] = i;
4166 stub_reloc_offset[nrelocs++] = size;
4167 }
4168 size += 4;
4169 break;
4170
461a49ca 4171 case ARM_TYPE:
fe33d2fa
CL
4172 bfd_put_32 (stub_bfd, template_sequence[i].data,
4173 loc + size);
461a49ca
DJ
4174 /* Handle cases where the target is encoded within the
4175 instruction. */
d3ce72d0 4176 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 4177 {
48229727
JB
4178 stub_reloc_idx[nrelocs] = i;
4179 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4180 }
4181 size += 4;
4182 break;
4183
4184 case DATA_TYPE:
d3ce72d0 4185 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
4186 stub_reloc_idx[nrelocs] = i;
4187 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4188 size += 4;
4189 break;
4190
4191 default:
4192 BFD_FAIL ();
4193 return FALSE;
4194 }
906e58ca 4195 }
461a49ca 4196
906e58ca
NC
4197 stub_sec->size += size;
4198
461a49ca
DJ
4199 /* Stub size has already been computed in arm_size_one_stub. Check
4200 consistency. */
4201 BFD_ASSERT (size == stub_entry->stub_size);
4202
906e58ca 4203 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 4204 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4205 sym_value |= 1;
4206
48229727
JB
4207 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4208 in each stub. */
4209 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
c820be07 4210
48229727 4211 for (i = 0; i < nrelocs; i++)
d3ce72d0
NC
4212 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4213 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4214 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4215 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
48229727
JB
4216 {
4217 Elf_Internal_Rela rel;
4218 bfd_boolean unresolved_reloc;
4219 char *error_message;
35fc36a8
RS
4220 enum arm_st_branch_type branch_type
4221 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4222 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
48229727
JB
4223 bfd_vma points_to = sym_value + stub_entry->target_addend;
4224
4225 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
d3ce72d0
NC
4226 rel.r_info = ELF32_R_INFO (0,
4227 template_sequence[stub_reloc_idx[i]].r_type);
4228 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
48229727
JB
4229
4230 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4231 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4232 template should refer back to the instruction after the original
4233 branch. */
4234 points_to = sym_value;
4235
33c6a8fc
JB
4236 /* There may be unintended consequences if this is not true. */
4237 BFD_ASSERT (stub_entry->h == NULL);
4238
48229727
JB
4239 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4240 properly. We should probably use this function unconditionally,
4241 rather than only for certain relocations listed in the enclosing
4242 conditional, for the sake of consistency. */
4243 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 4244 (template_sequence[stub_reloc_idx[i]].r_type),
48229727 4245 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
34e77a92
RS
4246 points_to, info, stub_entry->target_section, "", STT_FUNC,
4247 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4248 &unresolved_reloc, &error_message);
48229727
JB
4249 }
4250 else
4251 {
fe33d2fa
CL
4252 Elf_Internal_Rela rel;
4253 bfd_boolean unresolved_reloc;
4254 char *error_message;
4255 bfd_vma points_to = sym_value + stub_entry->target_addend
4256 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4257
4258 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4259 rel.r_info = ELF32_R_INFO (0,
4260 template_sequence[stub_reloc_idx[i]].r_type);
4261 rel.r_addend = 0;
4262
4263 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4264 (template_sequence[stub_reloc_idx[i]].r_type),
4265 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
34e77a92 4266 points_to, info, stub_entry->target_section, "", STT_FUNC,
35fc36a8 4267 stub_entry->branch_type,
fe33d2fa
CL
4268 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4269 &error_message);
48229727 4270 }
906e58ca
NC
4271
4272 return TRUE;
48229727 4273#undef MAXRELOCS
906e58ca
NC
4274}
4275
48229727
JB
4276/* Calculate the template, template size and instruction size for a stub.
4277 Return value is the instruction size. */
906e58ca 4278
48229727
JB
4279static unsigned int
4280find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4281 const insn_sequence **stub_template,
4282 int *stub_template_size)
906e58ca 4283{
d3ce72d0 4284 const insn_sequence *template_sequence = NULL;
48229727
JB
4285 int template_size = 0, i;
4286 unsigned int size;
906e58ca 4287
d3ce72d0 4288 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
4289 if (stub_template)
4290 *stub_template = template_sequence;
4291
48229727 4292 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
4293 if (stub_template_size)
4294 *stub_template_size = template_size;
906e58ca
NC
4295
4296 size = 0;
461a49ca
DJ
4297 for (i = 0; i < template_size; i++)
4298 {
d3ce72d0 4299 switch (template_sequence[i].type)
461a49ca
DJ
4300 {
4301 case THUMB16_TYPE:
4302 size += 2;
4303 break;
4304
4305 case ARM_TYPE:
48229727 4306 case THUMB32_TYPE:
461a49ca
DJ
4307 case DATA_TYPE:
4308 size += 4;
4309 break;
4310
4311 default:
4312 BFD_FAIL ();
2a229407 4313 return 0;
461a49ca
DJ
4314 }
4315 }
4316
48229727
JB
4317 return size;
4318}
4319
4320/* As above, but don't actually build the stub. Just bump offset so
4321 we know stub section sizes. */
4322
4323static bfd_boolean
4324arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 4325 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
4326{
4327 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 4328 const insn_sequence *template_sequence;
48229727
JB
4329 int template_size, size;
4330
4331 /* Massage our args to the form they really have. */
4332 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
4333
4334 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4335 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4336
d3ce72d0 4337 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
4338 &template_size);
4339
461a49ca 4340 stub_entry->stub_size = size;
d3ce72d0 4341 stub_entry->stub_template = template_sequence;
461a49ca
DJ
4342 stub_entry->stub_template_size = template_size;
4343
906e58ca
NC
4344 size = (size + 7) & ~7;
4345 stub_entry->stub_sec->size += size;
461a49ca 4346
906e58ca
NC
4347 return TRUE;
4348}
4349
4350/* External entry points for sizing and building linker stubs. */
4351
4352/* Set up various things so that we can make a list of input sections
4353 for each output section included in the link. Returns -1 on error,
4354 0 when no stubs will be needed, and 1 on success. */
4355
4356int
4357elf32_arm_setup_section_lists (bfd *output_bfd,
4358 struct bfd_link_info *info)
4359{
4360 bfd *input_bfd;
4361 unsigned int bfd_count;
4362 int top_id, top_index;
4363 asection *section;
4364 asection **input_list, **list;
4365 bfd_size_type amt;
4366 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4367
4dfe6ac6
NC
4368 if (htab == NULL)
4369 return 0;
906e58ca
NC
4370 if (! is_elf_hash_table (htab))
4371 return 0;
4372
4373 /* Count the number of input BFDs and find the top input section id. */
4374 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4375 input_bfd != NULL;
4376 input_bfd = input_bfd->link_next)
4377 {
4378 bfd_count += 1;
4379 for (section = input_bfd->sections;
4380 section != NULL;
4381 section = section->next)
4382 {
4383 if (top_id < section->id)
4384 top_id = section->id;
4385 }
4386 }
4387 htab->bfd_count = bfd_count;
4388
4389 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 4390 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
4391 if (htab->stub_group == NULL)
4392 return -1;
fe33d2fa 4393 htab->top_id = top_id;
906e58ca
NC
4394
4395 /* We can't use output_bfd->section_count here to find the top output
4396 section index as some sections may have been removed, and
4397 _bfd_strip_section_from_output doesn't renumber the indices. */
4398 for (section = output_bfd->sections, top_index = 0;
4399 section != NULL;
4400 section = section->next)
4401 {
4402 if (top_index < section->index)
4403 top_index = section->index;
4404 }
4405
4406 htab->top_index = top_index;
4407 amt = sizeof (asection *) * (top_index + 1);
21d799b5 4408 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
4409 htab->input_list = input_list;
4410 if (input_list == NULL)
4411 return -1;
4412
4413 /* For sections we aren't interested in, mark their entries with a
4414 value we can check later. */
4415 list = input_list + top_index;
4416 do
4417 *list = bfd_abs_section_ptr;
4418 while (list-- != input_list);
4419
4420 for (section = output_bfd->sections;
4421 section != NULL;
4422 section = section->next)
4423 {
4424 if ((section->flags & SEC_CODE) != 0)
4425 input_list[section->index] = NULL;
4426 }
4427
4428 return 1;
4429}
4430
4431/* The linker repeatedly calls this function for each input section,
4432 in the order that input sections are linked into output sections.
4433 Build lists of input sections to determine groupings between which
4434 we may insert linker stubs. */
4435
4436void
4437elf32_arm_next_input_section (struct bfd_link_info *info,
4438 asection *isec)
4439{
4440 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4441
4dfe6ac6
NC
4442 if (htab == NULL)
4443 return;
4444
906e58ca
NC
4445 if (isec->output_section->index <= htab->top_index)
4446 {
4447 asection **list = htab->input_list + isec->output_section->index;
4448
a7470592 4449 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
4450 {
4451 /* Steal the link_sec pointer for our list. */
4452#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4453 /* This happens to make the list in reverse order,
07d72278 4454 which we reverse later. */
906e58ca
NC
4455 PREV_SEC (isec) = *list;
4456 *list = isec;
4457 }
4458 }
4459}
4460
4461/* See whether we can group stub sections together. Grouping stub
4462 sections may result in fewer stubs. More importantly, we need to
07d72278 4463 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
4464 .fini output sections respectively, because glibc splits the
4465 _init and _fini functions into multiple parts. Putting a stub in
4466 the middle of a function is not a good idea. */
4467
4468static void
4469group_sections (struct elf32_arm_link_hash_table *htab,
4470 bfd_size_type stub_group_size,
07d72278 4471 bfd_boolean stubs_always_after_branch)
906e58ca 4472{
07d72278 4473 asection **list = htab->input_list;
906e58ca
NC
4474
4475 do
4476 {
4477 asection *tail = *list;
07d72278 4478 asection *head;
906e58ca
NC
4479
4480 if (tail == bfd_abs_section_ptr)
4481 continue;
4482
07d72278
DJ
4483 /* Reverse the list: we must avoid placing stubs at the
4484 beginning of the section because the beginning of the text
4485 section may be required for an interrupt vector in bare metal
4486 code. */
4487#define NEXT_SEC PREV_SEC
e780aef2
CL
4488 head = NULL;
4489 while (tail != NULL)
4490 {
4491 /* Pop from tail. */
4492 asection *item = tail;
4493 tail = PREV_SEC (item);
4494
4495 /* Push on head. */
4496 NEXT_SEC (item) = head;
4497 head = item;
4498 }
07d72278
DJ
4499
4500 while (head != NULL)
906e58ca
NC
4501 {
4502 asection *curr;
07d72278 4503 asection *next;
e780aef2
CL
4504 bfd_vma stub_group_start = head->output_offset;
4505 bfd_vma end_of_next;
906e58ca 4506
07d72278 4507 curr = head;
e780aef2 4508 while (NEXT_SEC (curr) != NULL)
8cd931b7 4509 {
e780aef2
CL
4510 next = NEXT_SEC (curr);
4511 end_of_next = next->output_offset + next->size;
4512 if (end_of_next - stub_group_start >= stub_group_size)
4513 /* End of NEXT is too far from start, so stop. */
8cd931b7 4514 break;
e780aef2
CL
4515 /* Add NEXT to the group. */
4516 curr = next;
8cd931b7 4517 }
906e58ca 4518
07d72278 4519 /* OK, the size from the start to the start of CURR is less
906e58ca 4520 than stub_group_size and thus can be handled by one stub
07d72278 4521 section. (Or the head section is itself larger than
906e58ca
NC
4522 stub_group_size, in which case we may be toast.)
4523 We should really be keeping track of the total size of
4524 stubs added here, as stubs contribute to the final output
7fb9f789 4525 section size. */
906e58ca
NC
4526 do
4527 {
07d72278 4528 next = NEXT_SEC (head);
906e58ca 4529 /* Set up this stub group. */
07d72278 4530 htab->stub_group[head->id].link_sec = curr;
906e58ca 4531 }
07d72278 4532 while (head != curr && (head = next) != NULL);
906e58ca
NC
4533
4534 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
4535 bytes after the stub section can be handled by it too. */
4536 if (!stubs_always_after_branch)
906e58ca 4537 {
e780aef2
CL
4538 stub_group_start = curr->output_offset + curr->size;
4539
8cd931b7 4540 while (next != NULL)
906e58ca 4541 {
e780aef2
CL
4542 end_of_next = next->output_offset + next->size;
4543 if (end_of_next - stub_group_start >= stub_group_size)
4544 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 4545 break;
e780aef2 4546 /* Add NEXT to the stub group. */
07d72278
DJ
4547 head = next;
4548 next = NEXT_SEC (head);
4549 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
4550 }
4551 }
07d72278 4552 head = next;
906e58ca
NC
4553 }
4554 }
07d72278 4555 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
4556
4557 free (htab->input_list);
4558#undef PREV_SEC
07d72278 4559#undef NEXT_SEC
906e58ca
NC
4560}
4561
48229727
JB
4562/* Comparison function for sorting/searching relocations relating to Cortex-A8
4563 erratum fix. */
4564
4565static int
4566a8_reloc_compare (const void *a, const void *b)
4567{
21d799b5
NC
4568 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4569 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
4570
4571 if (ra->from < rb->from)
4572 return -1;
4573 else if (ra->from > rb->from)
4574 return 1;
4575 else
4576 return 0;
4577}
4578
4579static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4580 const char *, char **);
4581
4582/* Helper function to scan code for sequences which might trigger the Cortex-A8
4583 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 4584 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
4585 otherwise. */
4586
81694485
NC
4587static bfd_boolean
4588cortex_a8_erratum_scan (bfd *input_bfd,
4589 struct bfd_link_info *info,
48229727
JB
4590 struct a8_erratum_fix **a8_fixes_p,
4591 unsigned int *num_a8_fixes_p,
4592 unsigned int *a8_fix_table_size_p,
4593 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
4594 unsigned int num_a8_relocs,
4595 unsigned prev_num_a8_fixes,
4596 bfd_boolean *stub_changed_p)
48229727
JB
4597{
4598 asection *section;
4599 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4600 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4601 unsigned int num_a8_fixes = *num_a8_fixes_p;
4602 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4603
4dfe6ac6
NC
4604 if (htab == NULL)
4605 return FALSE;
4606
48229727
JB
4607 for (section = input_bfd->sections;
4608 section != NULL;
4609 section = section->next)
4610 {
4611 bfd_byte *contents = NULL;
4612 struct _arm_elf_section_data *sec_data;
4613 unsigned int span;
4614 bfd_vma base_vma;
4615
4616 if (elf_section_type (section) != SHT_PROGBITS
4617 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4618 || (section->flags & SEC_EXCLUDE) != 0
dbaa2011 4619 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
48229727
JB
4620 || (section->output_section == bfd_abs_section_ptr))
4621 continue;
4622
4623 base_vma = section->output_section->vma + section->output_offset;
4624
4625 if (elf_section_data (section)->this_hdr.contents != NULL)
4626 contents = elf_section_data (section)->this_hdr.contents;
4627 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
81694485 4628 return TRUE;
48229727
JB
4629
4630 sec_data = elf32_arm_section_data (section);
4631
4632 for (span = 0; span < sec_data->mapcount; span++)
4633 {
4634 unsigned int span_start = sec_data->map[span].vma;
4635 unsigned int span_end = (span == sec_data->mapcount - 1)
4636 ? section->size : sec_data->map[span + 1].vma;
4637 unsigned int i;
4638 char span_type = sec_data->map[span].type;
4639 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4640
4641 if (span_type != 't')
4642 continue;
4643
4644 /* Span is entirely within a single 4KB region: skip scanning. */
4645 if (((base_vma + span_start) & ~0xfff)
4646 == ((base_vma + span_end) & ~0xfff))
4647 continue;
4648
4649 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4650
4651 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4652 * The branch target is in the same 4KB region as the
4653 first half of the branch.
4654 * The instruction before the branch is a 32-bit
81694485 4655 length non-branch instruction. */
48229727
JB
4656 for (i = span_start; i < span_end;)
4657 {
4658 unsigned int insn = bfd_getl16 (&contents[i]);
4659 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4660 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4661
4662 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4663 insn_32bit = TRUE;
4664
4665 if (insn_32bit)
4666 {
4667 /* Load the rest of the insn (in manual-friendly order). */
4668 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4669
4670 /* Encoding T4: B<c>.W. */
4671 is_b = (insn & 0xf800d000) == 0xf0009000;
4672 /* Encoding T1: BL<c>.W. */
4673 is_bl = (insn & 0xf800d000) == 0xf000d000;
4674 /* Encoding T2: BLX<c>.W. */
4675 is_blx = (insn & 0xf800d000) == 0xf000c000;
4676 /* Encoding T3: B<c>.W (not permitted in IT block). */
4677 is_bcc = (insn & 0xf800d000) == 0xf0008000
4678 && (insn & 0x07f00000) != 0x03800000;
4679 }
4680
4681 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 4682
81694485
NC
4683 if (((base_vma + i) & 0xfff) == 0xffe
4684 && insn_32bit
4685 && is_32bit_branch
4686 && last_was_32bit
4687 && ! last_was_branch)
48229727 4688 {
8f73510c 4689 bfd_signed_vma offset = 0;
48229727
JB
4690 bfd_boolean force_target_arm = FALSE;
4691 bfd_boolean force_target_thumb = FALSE;
4692 bfd_vma target;
4693 enum elf32_arm_stub_type stub_type = arm_stub_none;
4694 struct a8_erratum_reloc key, *found;
7d24e6a6 4695 bfd_boolean use_plt = FALSE;
48229727
JB
4696
4697 key.from = base_vma + i;
21d799b5
NC
4698 found = (struct a8_erratum_reloc *)
4699 bsearch (&key, a8_relocs, num_a8_relocs,
4700 sizeof (struct a8_erratum_reloc),
4701 &a8_reloc_compare);
48229727
JB
4702
4703 if (found)
4704 {
4705 char *error_message = NULL;
4706 struct elf_link_hash_entry *entry;
4707
4708 /* We don't care about the error returned from this
4709 function, only if there is glue or not. */
4710 entry = find_thumb_glue (info, found->sym_name,
4711 &error_message);
4712
4713 if (entry)
4714 found->non_a8_stub = TRUE;
4715
92750f34 4716 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 4717 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
4718 && found->hash->root.plt.offset != (bfd_vma) -1)
4719 use_plt = TRUE;
4720
4721 if (found->r_type == R_ARM_THM_CALL)
4722 {
35fc36a8
RS
4723 if (found->branch_type == ST_BRANCH_TO_ARM
4724 || use_plt)
92750f34
DJ
4725 force_target_arm = TRUE;
4726 else
4727 force_target_thumb = TRUE;
4728 }
48229727
JB
4729 }
4730
4731 /* Check if we have an offending branch instruction. */
4732
4733 if (found && found->non_a8_stub)
4734 /* We've already made a stub for this instruction, e.g.
4735 it's a long branch or a Thumb->ARM stub. Assume that
4736 stub will suffice to work around the A8 erratum (see
4737 setting of always_after_branch above). */
4738 ;
4739 else if (is_bcc)
4740 {
4741 offset = (insn & 0x7ff) << 1;
4742 offset |= (insn & 0x3f0000) >> 4;
4743 offset |= (insn & 0x2000) ? 0x40000 : 0;
4744 offset |= (insn & 0x800) ? 0x80000 : 0;
4745 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4746 if (offset & 0x100000)
81694485 4747 offset |= ~ ((bfd_signed_vma) 0xfffff);
48229727
JB
4748 stub_type = arm_stub_a8_veneer_b_cond;
4749 }
4750 else if (is_b || is_bl || is_blx)
4751 {
4752 int s = (insn & 0x4000000) != 0;
4753 int j1 = (insn & 0x2000) != 0;
4754 int j2 = (insn & 0x800) != 0;
4755 int i1 = !(j1 ^ s);
4756 int i2 = !(j2 ^ s);
4757
4758 offset = (insn & 0x7ff) << 1;
4759 offset |= (insn & 0x3ff0000) >> 4;
4760 offset |= i2 << 22;
4761 offset |= i1 << 23;
4762 offset |= s << 24;
4763 if (offset & 0x1000000)
81694485 4764 offset |= ~ ((bfd_signed_vma) 0xffffff);
48229727
JB
4765
4766 if (is_blx)
81694485 4767 offset &= ~ ((bfd_signed_vma) 3);
48229727
JB
4768
4769 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4770 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4771 }
4772
4773 if (stub_type != arm_stub_none)
4774 {
4775 bfd_vma pc_for_insn = base_vma + i + 4;
4776
4777 /* The original instruction is a BL, but the target is
4778 an ARM instruction. If we were not making a stub,
4779 the BL would have been converted to a BLX. Use the
4780 BLX stub instead in that case. */
4781 if (htab->use_blx && force_target_arm
4782 && stub_type == arm_stub_a8_veneer_bl)
4783 {
4784 stub_type = arm_stub_a8_veneer_blx;
4785 is_blx = TRUE;
4786 is_bl = FALSE;
4787 }
4788 /* Conversely, if the original instruction was
4789 BLX but the target is Thumb mode, use the BL
4790 stub. */
4791 else if (force_target_thumb
4792 && stub_type == arm_stub_a8_veneer_blx)
4793 {
4794 stub_type = arm_stub_a8_veneer_bl;
4795 is_blx = FALSE;
4796 is_bl = TRUE;
4797 }
4798
4799 if (is_blx)
81694485 4800 pc_for_insn &= ~ ((bfd_vma) 3);
48229727
JB
4801
4802 /* If we found a relocation, use the proper destination,
4803 not the offset in the (unrelocated) instruction.
4804 Note this is always done if we switched the stub type
4805 above. */
4806 if (found)
81694485
NC
4807 offset =
4808 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 4809
7d24e6a6
RS
4810 /* If the stub will use a Thumb-mode branch to a
4811 PLT target, redirect it to the preceding Thumb
4812 entry point. */
4813 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4814 offset -= PLT_THUMB_STUB_SIZE;
4815
48229727
JB
4816 target = pc_for_insn + offset;
4817
4818 /* The BLX stub is ARM-mode code. Adjust the offset to
4819 take the different PC value (+8 instead of +4) into
4820 account. */
4821 if (stub_type == arm_stub_a8_veneer_blx)
4822 offset += 4;
4823
4824 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4825 {
eb7c4339 4826 char *stub_name = NULL;
48229727
JB
4827
4828 if (num_a8_fixes == a8_fix_table_size)
4829 {
4830 a8_fix_table_size *= 2;
21d799b5
NC
4831 a8_fixes = (struct a8_erratum_fix *)
4832 bfd_realloc (a8_fixes,
4833 sizeof (struct a8_erratum_fix)
4834 * a8_fix_table_size);
48229727
JB
4835 }
4836
eb7c4339
NS
4837 if (num_a8_fixes < prev_num_a8_fixes)
4838 {
4839 /* If we're doing a subsequent scan,
4840 check if we've found the same fix as
4841 before, and try and reuse the stub
4842 name. */
4843 stub_name = a8_fixes[num_a8_fixes].stub_name;
4844 if ((a8_fixes[num_a8_fixes].section != section)
4845 || (a8_fixes[num_a8_fixes].offset != i))
4846 {
4847 free (stub_name);
4848 stub_name = NULL;
4849 *stub_changed_p = TRUE;
4850 }
4851 }
4852
4853 if (!stub_name)
4854 {
21d799b5 4855 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
4856 if (stub_name != NULL)
4857 sprintf (stub_name, "%x:%x", section->id, i);
4858 }
48229727
JB
4859
4860 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4861 a8_fixes[num_a8_fixes].section = section;
4862 a8_fixes[num_a8_fixes].offset = i;
4863 a8_fixes[num_a8_fixes].addend = offset;
4864 a8_fixes[num_a8_fixes].orig_insn = insn;
4865 a8_fixes[num_a8_fixes].stub_name = stub_name;
4866 a8_fixes[num_a8_fixes].stub_type = stub_type;
35fc36a8
RS
4867 a8_fixes[num_a8_fixes].branch_type =
4868 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727
JB
4869
4870 num_a8_fixes++;
4871 }
4872 }
4873 }
4874
4875 i += insn_32bit ? 4 : 2;
4876 last_was_32bit = insn_32bit;
4877 last_was_branch = is_32bit_branch;
4878 }
4879 }
4880
4881 if (elf_section_data (section)->this_hdr.contents == NULL)
4882 free (contents);
4883 }
fe33d2fa 4884
48229727
JB
4885 *a8_fixes_p = a8_fixes;
4886 *num_a8_fixes_p = num_a8_fixes;
4887 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 4888
81694485 4889 return FALSE;
48229727
JB
4890}
4891
906e58ca
NC
4892/* Determine and set the size of the stub section for a final link.
4893
4894 The basic idea here is to examine all the relocations looking for
4895 PC-relative calls to a target that is unreachable with a "bl"
4896 instruction. */
4897
4898bfd_boolean
4899elf32_arm_size_stubs (bfd *output_bfd,
4900 bfd *stub_bfd,
4901 struct bfd_link_info *info,
4902 bfd_signed_vma group_size,
4903 asection * (*add_stub_section) (const char *, asection *),
4904 void (*layout_sections_again) (void))
4905{
4906 bfd_size_type stub_group_size;
07d72278 4907 bfd_boolean stubs_always_after_branch;
906e58ca 4908 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 4909 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 4910 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
4911 struct a8_erratum_reloc *a8_relocs = NULL;
4912 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4913
4dfe6ac6
NC
4914 if (htab == NULL)
4915 return FALSE;
4916
48229727
JB
4917 if (htab->fix_cortex_a8)
4918 {
21d799b5
NC
4919 a8_fixes = (struct a8_erratum_fix *)
4920 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4921 a8_relocs = (struct a8_erratum_reloc *)
4922 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 4923 }
906e58ca
NC
4924
4925 /* Propagate mach to stub bfd, because it may not have been
4926 finalized when we created stub_bfd. */
4927 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4928 bfd_get_mach (output_bfd));
4929
4930 /* Stash our params away. */
4931 htab->stub_bfd = stub_bfd;
4932 htab->add_stub_section = add_stub_section;
4933 htab->layout_sections_again = layout_sections_again;
07d72278 4934 stubs_always_after_branch = group_size < 0;
48229727
JB
4935
4936 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4937 as the first half of a 32-bit branch straddling two 4K pages. This is a
4938 crude way of enforcing that. */
4939 if (htab->fix_cortex_a8)
4940 stubs_always_after_branch = 1;
4941
906e58ca
NC
4942 if (group_size < 0)
4943 stub_group_size = -group_size;
4944 else
4945 stub_group_size = group_size;
4946
4947 if (stub_group_size == 1)
4948 {
4949 /* Default values. */
4950 /* Thumb branch range is +-4MB has to be used as the default
4951 maximum size (a given section can contain both ARM and Thumb
4952 code, so the worst case has to be taken into account).
4953
4954 This value is 24K less than that, which allows for 2025
4955 12-byte stubs. If we exceed that, then we will fail to link.
4956 The user will have to relink with an explicit group size
4957 option. */
4958 stub_group_size = 4170000;
4959 }
4960
07d72278 4961 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 4962
3ae046cc
NS
4963 /* If we're applying the cortex A8 fix, we need to determine the
4964 program header size now, because we cannot change it later --
4965 that could alter section placements. Notice the A8 erratum fix
4966 ends up requiring the section addresses to remain unchanged
4967 modulo the page size. That's something we cannot represent
4968 inside BFD, and we don't want to force the section alignment to
4969 be the page size. */
4970 if (htab->fix_cortex_a8)
4971 (*htab->layout_sections_again) ();
4972
906e58ca
NC
4973 while (1)
4974 {
4975 bfd *input_bfd;
4976 unsigned int bfd_indx;
4977 asection *stub_sec;
eb7c4339
NS
4978 bfd_boolean stub_changed = FALSE;
4979 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 4980
48229727 4981 num_a8_fixes = 0;
906e58ca
NC
4982 for (input_bfd = info->input_bfds, bfd_indx = 0;
4983 input_bfd != NULL;
4984 input_bfd = input_bfd->link_next, bfd_indx++)
4985 {
4986 Elf_Internal_Shdr *symtab_hdr;
4987 asection *section;
4988 Elf_Internal_Sym *local_syms = NULL;
4989
adbcc655
RM
4990 if (!is_arm_elf (input_bfd))
4991 continue;
4992
48229727
JB
4993 num_a8_relocs = 0;
4994
906e58ca
NC
4995 /* We'll need the symbol table in a second. */
4996 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4997 if (symtab_hdr->sh_info == 0)
4998 continue;
4999
5000 /* Walk over each section attached to the input bfd. */
5001 for (section = input_bfd->sections;
5002 section != NULL;
5003 section = section->next)
5004 {
5005 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5006
5007 /* If there aren't any relocs, then there's nothing more
5008 to do. */
5009 if ((section->flags & SEC_RELOC) == 0
5010 || section->reloc_count == 0
5011 || (section->flags & SEC_CODE) == 0)
5012 continue;
5013
5014 /* If this section is a link-once section that will be
5015 discarded, then don't create any stubs. */
5016 if (section->output_section == NULL
5017 || section->output_section->owner != output_bfd)
5018 continue;
5019
5020 /* Get the relocs. */
5021 internal_relocs
5022 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5023 NULL, info->keep_memory);
5024 if (internal_relocs == NULL)
5025 goto error_ret_free_local;
5026
5027 /* Now examine each relocation. */
5028 irela = internal_relocs;
5029 irelaend = irela + section->reloc_count;
5030 for (; irela < irelaend; irela++)
5031 {
5032 unsigned int r_type, r_indx;
5033 enum elf32_arm_stub_type stub_type;
5034 struct elf32_arm_stub_hash_entry *stub_entry;
5035 asection *sym_sec;
5036 bfd_vma sym_value;
5037 bfd_vma destination;
5038 struct elf32_arm_link_hash_entry *hash;
7413f23f 5039 const char *sym_name;
906e58ca
NC
5040 char *stub_name;
5041 const asection *id_sec;
34e77a92 5042 unsigned char st_type;
35fc36a8 5043 enum arm_st_branch_type branch_type;
48229727 5044 bfd_boolean created_stub = FALSE;
906e58ca
NC
5045
5046 r_type = ELF32_R_TYPE (irela->r_info);
5047 r_indx = ELF32_R_SYM (irela->r_info);
5048
5049 if (r_type >= (unsigned int) R_ARM_max)
5050 {
5051 bfd_set_error (bfd_error_bad_value);
5052 error_ret_free_internal:
5053 if (elf_section_data (section)->relocs == NULL)
5054 free (internal_relocs);
5055 goto error_ret_free_local;
5056 }
b38cadfb 5057
0855e32b
NS
5058 hash = NULL;
5059 if (r_indx >= symtab_hdr->sh_info)
5060 hash = elf32_arm_hash_entry
5061 (elf_sym_hashes (input_bfd)
5062 [r_indx - symtab_hdr->sh_info]);
b38cadfb 5063
0855e32b
NS
5064 /* Only look for stubs on branch instructions, or
5065 non-relaxed TLSCALL */
906e58ca 5066 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
5067 && (r_type != (unsigned int) R_ARM_THM_CALL)
5068 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
5069 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5070 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 5071 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
5072 && (r_type != (unsigned int) R_ARM_PLT32)
5073 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5074 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5075 && r_type == elf32_arm_tls_transition
5076 (info, r_type, &hash->root)
5077 && ((hash ? hash->tls_type
5078 : (elf32_arm_local_got_tls_type
5079 (input_bfd)[r_indx]))
5080 & GOT_TLS_GDESC) != 0))
906e58ca
NC
5081 continue;
5082
5083 /* Now determine the call target, its name, value,
5084 section. */
5085 sym_sec = NULL;
5086 sym_value = 0;
5087 destination = 0;
7413f23f 5088 sym_name = NULL;
b38cadfb 5089
0855e32b
NS
5090 if (r_type == (unsigned int) R_ARM_TLS_CALL
5091 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5092 {
5093 /* A non-relaxed TLS call. The target is the
5094 plt-resident trampoline and nothing to do
5095 with the symbol. */
5096 BFD_ASSERT (htab->tls_trampoline > 0);
5097 sym_sec = htab->root.splt;
5098 sym_value = htab->tls_trampoline;
5099 hash = 0;
34e77a92 5100 st_type = STT_FUNC;
35fc36a8 5101 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
5102 }
5103 else if (!hash)
906e58ca
NC
5104 {
5105 /* It's a local symbol. */
5106 Elf_Internal_Sym *sym;
906e58ca
NC
5107
5108 if (local_syms == NULL)
5109 {
5110 local_syms
5111 = (Elf_Internal_Sym *) symtab_hdr->contents;
5112 if (local_syms == NULL)
5113 local_syms
5114 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5115 symtab_hdr->sh_info, 0,
5116 NULL, NULL, NULL);
5117 if (local_syms == NULL)
5118 goto error_ret_free_internal;
5119 }
5120
5121 sym = local_syms + r_indx;
f6d250ce
TS
5122 if (sym->st_shndx == SHN_UNDEF)
5123 sym_sec = bfd_und_section_ptr;
5124 else if (sym->st_shndx == SHN_ABS)
5125 sym_sec = bfd_abs_section_ptr;
5126 else if (sym->st_shndx == SHN_COMMON)
5127 sym_sec = bfd_com_section_ptr;
5128 else
5129 sym_sec =
5130 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5131
ffcb4889
NS
5132 if (!sym_sec)
5133 /* This is an undefined symbol. It can never
5134 be resolved. */
5135 continue;
fe33d2fa 5136
906e58ca
NC
5137 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5138 sym_value = sym->st_value;
5139 destination = (sym_value + irela->r_addend
5140 + sym_sec->output_offset
5141 + sym_sec->output_section->vma);
34e77a92 5142 st_type = ELF_ST_TYPE (sym->st_info);
35fc36a8 5143 branch_type = ARM_SYM_BRANCH_TYPE (sym);
7413f23f
DJ
5144 sym_name
5145 = bfd_elf_string_from_elf_section (input_bfd,
5146 symtab_hdr->sh_link,
5147 sym->st_name);
906e58ca
NC
5148 }
5149 else
5150 {
5151 /* It's an external symbol. */
906e58ca
NC
5152 while (hash->root.root.type == bfd_link_hash_indirect
5153 || hash->root.root.type == bfd_link_hash_warning)
5154 hash = ((struct elf32_arm_link_hash_entry *)
5155 hash->root.root.u.i.link);
5156
5157 if (hash->root.root.type == bfd_link_hash_defined
5158 || hash->root.root.type == bfd_link_hash_defweak)
5159 {
5160 sym_sec = hash->root.root.u.def.section;
5161 sym_value = hash->root.root.u.def.value;
022f8312
CL
5162
5163 struct elf32_arm_link_hash_table *globals =
5164 elf32_arm_hash_table (info);
5165
5166 /* For a destination in a shared library,
5167 use the PLT stub as target address to
5168 decide whether a branch stub is
5169 needed. */
4dfe6ac6 5170 if (globals != NULL
362d30a1 5171 && globals->root.splt != NULL
4dfe6ac6 5172 && hash != NULL
022f8312
CL
5173 && hash->root.plt.offset != (bfd_vma) -1)
5174 {
362d30a1 5175 sym_sec = globals->root.splt;
022f8312
CL
5176 sym_value = hash->root.plt.offset;
5177 if (sym_sec->output_section != NULL)
5178 destination = (sym_value
5179 + sym_sec->output_offset
5180 + sym_sec->output_section->vma);
5181 }
5182 else if (sym_sec->output_section != NULL)
906e58ca
NC
5183 destination = (sym_value + irela->r_addend
5184 + sym_sec->output_offset
5185 + sym_sec->output_section->vma);
5186 }
69c5861e
CL
5187 else if ((hash->root.root.type == bfd_link_hash_undefined)
5188 || (hash->root.root.type == bfd_link_hash_undefweak))
5189 {
5190 /* For a shared library, use the PLT stub as
5191 target address to decide whether a long
5192 branch stub is needed.
5193 For absolute code, they cannot be handled. */
5194 struct elf32_arm_link_hash_table *globals =
5195 elf32_arm_hash_table (info);
5196
4dfe6ac6 5197 if (globals != NULL
362d30a1 5198 && globals->root.splt != NULL
4dfe6ac6 5199 && hash != NULL
69c5861e
CL
5200 && hash->root.plt.offset != (bfd_vma) -1)
5201 {
362d30a1 5202 sym_sec = globals->root.splt;
69c5861e
CL
5203 sym_value = hash->root.plt.offset;
5204 if (sym_sec->output_section != NULL)
5205 destination = (sym_value
5206 + sym_sec->output_offset
5207 + sym_sec->output_section->vma);
5208 }
5209 else
5210 continue;
5211 }
906e58ca
NC
5212 else
5213 {
5214 bfd_set_error (bfd_error_bad_value);
5215 goto error_ret_free_internal;
5216 }
34e77a92 5217 st_type = hash->root.type;
35fc36a8 5218 branch_type = hash->root.target_internal;
7413f23f 5219 sym_name = hash->root.root.root.string;
906e58ca
NC
5220 }
5221
48229727 5222 do
7413f23f 5223 {
48229727
JB
5224 /* Determine what (if any) linker stub is needed. */
5225 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
5226 st_type, &branch_type,
5227 hash, destination, sym_sec,
48229727
JB
5228 input_bfd, sym_name);
5229 if (stub_type == arm_stub_none)
5230 break;
5231
5232 /* Support for grouping stub sections. */
5233 id_sec = htab->stub_group[section->id].link_sec;
5234
5235 /* Get the name of this stub. */
5236 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
fe33d2fa 5237 irela, stub_type);
48229727
JB
5238 if (!stub_name)
5239 goto error_ret_free_internal;
5240
5241 /* We've either created a stub for this reloc already,
5242 or we are about to. */
5243 created_stub = TRUE;
5244
5245 stub_entry = arm_stub_hash_lookup
5246 (&htab->stub_hash_table, stub_name,
5247 FALSE, FALSE);
5248 if (stub_entry != NULL)
5249 {
5250 /* The proper stub has already been created. */
5251 free (stub_name);
eb7c4339 5252 stub_entry->target_value = sym_value;
48229727
JB
5253 break;
5254 }
7413f23f 5255
48229727
JB
5256 stub_entry = elf32_arm_add_stub (stub_name, section,
5257 htab);
5258 if (stub_entry == NULL)
5259 {
5260 free (stub_name);
5261 goto error_ret_free_internal;
5262 }
7413f23f 5263
48229727
JB
5264 stub_entry->target_value = sym_value;
5265 stub_entry->target_section = sym_sec;
5266 stub_entry->stub_type = stub_type;
5267 stub_entry->h = hash;
35fc36a8 5268 stub_entry->branch_type = branch_type;
48229727
JB
5269
5270 if (sym_name == NULL)
5271 sym_name = "unnamed";
21d799b5
NC
5272 stub_entry->output_name = (char *)
5273 bfd_alloc (htab->stub_bfd,
48229727
JB
5274 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5275 + strlen (sym_name));
5276 if (stub_entry->output_name == NULL)
5277 {
5278 free (stub_name);
5279 goto error_ret_free_internal;
5280 }
5281
5282 /* For historical reasons, use the existing names for
5283 ARM-to-Thumb and Thumb-to-ARM stubs. */
35fc36a8
RS
5284 if ((r_type == (unsigned int) R_ARM_THM_CALL
5285 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5286 && branch_type == ST_BRANCH_TO_ARM)
48229727
JB
5287 sprintf (stub_entry->output_name,
5288 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
35fc36a8
RS
5289 else if ((r_type == (unsigned int) R_ARM_CALL
5290 || r_type == (unsigned int) R_ARM_JUMP24)
5291 && branch_type == ST_BRANCH_TO_THUMB)
48229727
JB
5292 sprintf (stub_entry->output_name,
5293 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5294 else
5295 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5296 sym_name);
5297
5298 stub_changed = TRUE;
5299 }
5300 while (0);
5301
5302 /* Look for relocations which might trigger Cortex-A8
5303 erratum. */
5304 if (htab->fix_cortex_a8
5305 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5306 || r_type == (unsigned int) R_ARM_THM_JUMP19
5307 || r_type == (unsigned int) R_ARM_THM_CALL
5308 || r_type == (unsigned int) R_ARM_THM_XPC22))
5309 {
5310 bfd_vma from = section->output_section->vma
5311 + section->output_offset
5312 + irela->r_offset;
5313
5314 if ((from & 0xfff) == 0xffe)
5315 {
5316 /* Found a candidate. Note we haven't checked the
5317 destination is within 4K here: if we do so (and
5318 don't create an entry in a8_relocs) we can't tell
5319 that a branch should have been relocated when
5320 scanning later. */
5321 if (num_a8_relocs == a8_reloc_table_size)
5322 {
5323 a8_reloc_table_size *= 2;
21d799b5
NC
5324 a8_relocs = (struct a8_erratum_reloc *)
5325 bfd_realloc (a8_relocs,
5326 sizeof (struct a8_erratum_reloc)
5327 * a8_reloc_table_size);
48229727
JB
5328 }
5329
5330 a8_relocs[num_a8_relocs].from = from;
5331 a8_relocs[num_a8_relocs].destination = destination;
5332 a8_relocs[num_a8_relocs].r_type = r_type;
35fc36a8 5333 a8_relocs[num_a8_relocs].branch_type = branch_type;
48229727
JB
5334 a8_relocs[num_a8_relocs].sym_name = sym_name;
5335 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
92750f34 5336 a8_relocs[num_a8_relocs].hash = hash;
48229727
JB
5337
5338 num_a8_relocs++;
5339 }
5340 }
906e58ca
NC
5341 }
5342
48229727
JB
5343 /* We're done with the internal relocs, free them. */
5344 if (elf_section_data (section)->relocs == NULL)
5345 free (internal_relocs);
5346 }
5347
5348 if (htab->fix_cortex_a8)
5349 {
5350 /* Sort relocs which might apply to Cortex-A8 erratum. */
eb7c4339
NS
5351 qsort (a8_relocs, num_a8_relocs,
5352 sizeof (struct a8_erratum_reloc),
48229727
JB
5353 &a8_reloc_compare);
5354
5355 /* Scan for branches which might trigger Cortex-A8 erratum. */
5356 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5357 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
5358 a8_relocs, num_a8_relocs,
5359 prev_num_a8_fixes, &stub_changed)
5360 != 0)
48229727 5361 goto error_ret_free_local;
5e681ec4 5362 }
5e681ec4
PB
5363 }
5364
eb7c4339 5365 if (prev_num_a8_fixes != num_a8_fixes)
48229727
JB
5366 stub_changed = TRUE;
5367
906e58ca
NC
5368 if (!stub_changed)
5369 break;
5e681ec4 5370
906e58ca
NC
5371 /* OK, we've added some stubs. Find out the new size of the
5372 stub sections. */
5373 for (stub_sec = htab->stub_bfd->sections;
5374 stub_sec != NULL;
5375 stub_sec = stub_sec->next)
3e6b1042
DJ
5376 {
5377 /* Ignore non-stub sections. */
5378 if (!strstr (stub_sec->name, STUB_SUFFIX))
5379 continue;
5380
5381 stub_sec->size = 0;
5382 }
b34b2d70 5383
906e58ca
NC
5384 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5385
48229727
JB
5386 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5387 if (htab->fix_cortex_a8)
5388 for (i = 0; i < num_a8_fixes; i++)
5389 {
5390 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5391 a8_fixes[i].section, htab);
5392
5393 if (stub_sec == NULL)
5394 goto error_ret_free_local;
5395
5396 stub_sec->size
5397 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5398 NULL);
5399 }
5400
5401
906e58ca
NC
5402 /* Ask the linker to do its stuff. */
5403 (*htab->layout_sections_again) ();
ba93b8ac
DJ
5404 }
5405
48229727
JB
5406 /* Add stubs for Cortex-A8 erratum fixes now. */
5407 if (htab->fix_cortex_a8)
5408 {
5409 for (i = 0; i < num_a8_fixes; i++)
5410 {
5411 struct elf32_arm_stub_hash_entry *stub_entry;
5412 char *stub_name = a8_fixes[i].stub_name;
5413 asection *section = a8_fixes[i].section;
5414 unsigned int section_id = a8_fixes[i].section->id;
5415 asection *link_sec = htab->stub_group[section_id].link_sec;
5416 asection *stub_sec = htab->stub_group[section_id].stub_sec;
d3ce72d0 5417 const insn_sequence *template_sequence;
48229727
JB
5418 int template_size, size = 0;
5419
5420 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5421 TRUE, FALSE);
5422 if (stub_entry == NULL)
5423 {
5424 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5425 section->owner,
5426 stub_name);
5427 return FALSE;
5428 }
5429
5430 stub_entry->stub_sec = stub_sec;
5431 stub_entry->stub_offset = 0;
5432 stub_entry->id_sec = link_sec;
5433 stub_entry->stub_type = a8_fixes[i].stub_type;
5434 stub_entry->target_section = a8_fixes[i].section;
5435 stub_entry->target_value = a8_fixes[i].offset;
5436 stub_entry->target_addend = a8_fixes[i].addend;
5437 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 5438 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 5439
d3ce72d0
NC
5440 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5441 &template_sequence,
48229727
JB
5442 &template_size);
5443
5444 stub_entry->stub_size = size;
d3ce72d0 5445 stub_entry->stub_template = template_sequence;
48229727
JB
5446 stub_entry->stub_template_size = template_size;
5447 }
5448
5449 /* Stash the Cortex-A8 erratum fix array for use later in
5450 elf32_arm_write_section(). */
5451 htab->a8_erratum_fixes = a8_fixes;
5452 htab->num_a8_erratum_fixes = num_a8_fixes;
5453 }
5454 else
5455 {
5456 htab->a8_erratum_fixes = NULL;
5457 htab->num_a8_erratum_fixes = 0;
5458 }
906e58ca
NC
5459 return TRUE;
5460
5461 error_ret_free_local:
5462 return FALSE;
5e681ec4
PB
5463}
5464
906e58ca
NC
5465/* Build all the stubs associated with the current output file. The
5466 stubs are kept in a hash table attached to the main linker hash
5467 table. We also set up the .plt entries for statically linked PIC
5468 functions here. This function is called via arm_elf_finish in the
5469 linker. */
252b5132 5470
906e58ca
NC
5471bfd_boolean
5472elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 5473{
906e58ca
NC
5474 asection *stub_sec;
5475 struct bfd_hash_table *table;
5476 struct elf32_arm_link_hash_table *htab;
252b5132 5477
906e58ca 5478 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
5479 if (htab == NULL)
5480 return FALSE;
252b5132 5481
906e58ca
NC
5482 for (stub_sec = htab->stub_bfd->sections;
5483 stub_sec != NULL;
5484 stub_sec = stub_sec->next)
252b5132 5485 {
906e58ca
NC
5486 bfd_size_type size;
5487
8029a119 5488 /* Ignore non-stub sections. */
906e58ca
NC
5489 if (!strstr (stub_sec->name, STUB_SUFFIX))
5490 continue;
5491
5492 /* Allocate memory to hold the linker stubs. */
5493 size = stub_sec->size;
21d799b5 5494 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
5495 if (stub_sec->contents == NULL && size != 0)
5496 return FALSE;
5497 stub_sec->size = 0;
252b5132
RH
5498 }
5499
906e58ca
NC
5500 /* Build the stubs as directed by the stub hash table. */
5501 table = &htab->stub_hash_table;
5502 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
5503 if (htab->fix_cortex_a8)
5504 {
5505 /* Place the cortex a8 stubs last. */
5506 htab->fix_cortex_a8 = -1;
5507 bfd_hash_traverse (table, arm_build_one_stub, info);
5508 }
252b5132 5509
906e58ca 5510 return TRUE;
252b5132
RH
5511}
5512
9b485d32
NC
5513/* Locate the Thumb encoded calling stub for NAME. */
5514
252b5132 5515static struct elf_link_hash_entry *
57e8b36a
NC
5516find_thumb_glue (struct bfd_link_info *link_info,
5517 const char *name,
f2a9dd69 5518 char **error_message)
252b5132
RH
5519{
5520 char *tmp_name;
5521 struct elf_link_hash_entry *hash;
5522 struct elf32_arm_link_hash_table *hash_table;
5523
5524 /* We need a pointer to the armelf specific hash table. */
5525 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5526 if (hash_table == NULL)
5527 return NULL;
252b5132 5528
21d799b5
NC
5529 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5530 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5531
5532 BFD_ASSERT (tmp_name);
5533
5534 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5535
5536 hash = elf_link_hash_lookup
b34976b6 5537 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5538
b1657152
AM
5539 if (hash == NULL
5540 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5541 tmp_name, name) == -1)
5542 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5543
5544 free (tmp_name);
5545
5546 return hash;
5547}
5548
9b485d32
NC
5549/* Locate the ARM encoded calling stub for NAME. */
5550
252b5132 5551static struct elf_link_hash_entry *
57e8b36a
NC
5552find_arm_glue (struct bfd_link_info *link_info,
5553 const char *name,
f2a9dd69 5554 char **error_message)
252b5132
RH
5555{
5556 char *tmp_name;
5557 struct elf_link_hash_entry *myh;
5558 struct elf32_arm_link_hash_table *hash_table;
5559
5560 /* We need a pointer to the elfarm specific hash table. */
5561 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5562 if (hash_table == NULL)
5563 return NULL;
252b5132 5564
21d799b5
NC
5565 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5566 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5567
5568 BFD_ASSERT (tmp_name);
5569
5570 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5571
5572 myh = elf_link_hash_lookup
b34976b6 5573 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5574
b1657152
AM
5575 if (myh == NULL
5576 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5577 tmp_name, name) == -1)
5578 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5579
5580 free (tmp_name);
5581
5582 return myh;
5583}
5584
8f6277f5 5585/* ARM->Thumb glue (static images):
252b5132
RH
5586
5587 .arm
5588 __func_from_arm:
5589 ldr r12, __func_addr
5590 bx r12
5591 __func_addr:
906e58ca 5592 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 5593
26079076
PB
5594 (v5t static images)
5595 .arm
5596 __func_from_arm:
5597 ldr pc, __func_addr
5598 __func_addr:
906e58ca 5599 .word func @ behave as if you saw a ARM_32 reloc.
26079076 5600
8f6277f5
PB
5601 (relocatable images)
5602 .arm
5603 __func_from_arm:
5604 ldr r12, __func_offset
5605 add r12, r12, pc
5606 bx r12
5607 __func_offset:
8029a119 5608 .word func - . */
8f6277f5
PB
5609
5610#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
5611static const insn32 a2t1_ldr_insn = 0xe59fc000;
5612static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5613static const insn32 a2t3_func_addr_insn = 0x00000001;
5614
26079076
PB
5615#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5616static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5617static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5618
8f6277f5
PB
5619#define ARM2THUMB_PIC_GLUE_SIZE 16
5620static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5621static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5622static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5623
9b485d32 5624/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 5625
8029a119
NC
5626 .thumb .thumb
5627 .align 2 .align 2
5628 __func_from_thumb: __func_from_thumb:
5629 bx pc push {r6, lr}
5630 nop ldr r6, __func_addr
5631 .arm mov lr, pc
5632 b func bx r6
fcef9eb7 5633 .arm
b38cadfb 5634 ;; back_to_thumb
fcef9eb7 5635 ldmia r13! {r6, lr}
b38cadfb 5636 bx lr
8029a119
NC
5637 __func_addr:
5638 .word func */
252b5132
RH
5639
5640#define THUMB2ARM_GLUE_SIZE 8
5641static const insn16 t2a1_bx_pc_insn = 0x4778;
5642static const insn16 t2a2_noop_insn = 0x46c0;
5643static const insn32 t2a3_b_insn = 0xea000000;
5644
c7b8f16e
JB
5645#define VFP11_ERRATUM_VENEER_SIZE 8
5646
845b51d6
PB
5647#define ARM_BX_VENEER_SIZE 12
5648static const insn32 armbx1_tst_insn = 0xe3100001;
5649static const insn32 armbx2_moveq_insn = 0x01a0f000;
5650static const insn32 armbx3_bx_insn = 0xe12fff10;
5651
7e392df6 5652#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
5653static void
5654arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
5655{
5656 asection * s;
8029a119 5657 bfd_byte * contents;
252b5132 5658
8029a119 5659 if (size == 0)
3e6b1042
DJ
5660 {
5661 /* Do not include empty glue sections in the output. */
5662 if (abfd != NULL)
5663 {
3d4d4302 5664 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
5665 if (s != NULL)
5666 s->flags |= SEC_EXCLUDE;
5667 }
5668 return;
5669 }
252b5132 5670
8029a119 5671 BFD_ASSERT (abfd != NULL);
252b5132 5672
3d4d4302 5673 s = bfd_get_linker_section (abfd, name);
8029a119 5674 BFD_ASSERT (s != NULL);
252b5132 5675
21d799b5 5676 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 5677
8029a119
NC
5678 BFD_ASSERT (s->size == size);
5679 s->contents = contents;
5680}
906e58ca 5681
8029a119
NC
5682bfd_boolean
5683bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5684{
5685 struct elf32_arm_link_hash_table * globals;
906e58ca 5686
8029a119
NC
5687 globals = elf32_arm_hash_table (info);
5688 BFD_ASSERT (globals != NULL);
906e58ca 5689
8029a119
NC
5690 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5691 globals->arm_glue_size,
5692 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 5693
8029a119
NC
5694 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5695 globals->thumb_glue_size,
5696 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 5697
8029a119
NC
5698 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5699 globals->vfp11_erratum_glue_size,
5700 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 5701
8029a119
NC
5702 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5703 globals->bx_glue_size,
845b51d6
PB
5704 ARM_BX_GLUE_SECTION_NAME);
5705
b34976b6 5706 return TRUE;
252b5132
RH
5707}
5708
a4fd1a8e 5709/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
5710 returns the symbol identifying the stub. */
5711
a4fd1a8e 5712static struct elf_link_hash_entry *
57e8b36a
NC
5713record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5714 struct elf_link_hash_entry * h)
252b5132
RH
5715{
5716 const char * name = h->root.root.string;
63b0f745 5717 asection * s;
252b5132
RH
5718 char * tmp_name;
5719 struct elf_link_hash_entry * myh;
14a793b2 5720 struct bfd_link_hash_entry * bh;
252b5132 5721 struct elf32_arm_link_hash_table * globals;
dc810e39 5722 bfd_vma val;
2f475487 5723 bfd_size_type size;
252b5132
RH
5724
5725 globals = elf32_arm_hash_table (link_info);
252b5132
RH
5726 BFD_ASSERT (globals != NULL);
5727 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5728
3d4d4302 5729 s = bfd_get_linker_section
252b5132
RH
5730 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5731
252b5132
RH
5732 BFD_ASSERT (s != NULL);
5733
21d799b5
NC
5734 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5735 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5736
5737 BFD_ASSERT (tmp_name);
5738
5739 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5740
5741 myh = elf_link_hash_lookup
b34976b6 5742 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
5743
5744 if (myh != NULL)
5745 {
9b485d32 5746 /* We've already seen this guy. */
252b5132 5747 free (tmp_name);
a4fd1a8e 5748 return myh;
252b5132
RH
5749 }
5750
57e8b36a
NC
5751 /* The only trick here is using hash_table->arm_glue_size as the value.
5752 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
5753 putting it. The +1 on the value marks that the stub has not been
5754 output yet - not that it is a Thumb function. */
14a793b2 5755 bh = NULL;
dc810e39
AM
5756 val = globals->arm_glue_size + 1;
5757 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5758 tmp_name, BSF_GLOBAL, s, val,
b34976b6 5759 NULL, TRUE, FALSE, &bh);
252b5132 5760
b7693d02
DJ
5761 myh = (struct elf_link_hash_entry *) bh;
5762 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5763 myh->forced_local = 1;
5764
252b5132
RH
5765 free (tmp_name);
5766
27e55c4d
PB
5767 if (link_info->shared || globals->root.is_relocatable_executable
5768 || globals->pic_veneer)
2f475487 5769 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
5770 else if (globals->use_blx)
5771 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 5772 else
2f475487
AM
5773 size = ARM2THUMB_STATIC_GLUE_SIZE;
5774
5775 s->size += size;
5776 globals->arm_glue_size += size;
252b5132 5777
a4fd1a8e 5778 return myh;
252b5132
RH
5779}
5780
845b51d6
PB
5781/* Allocate space for ARMv4 BX veneers. */
5782
5783static void
5784record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5785{
5786 asection * s;
5787 struct elf32_arm_link_hash_table *globals;
5788 char *tmp_name;
5789 struct elf_link_hash_entry *myh;
5790 struct bfd_link_hash_entry *bh;
5791 bfd_vma val;
5792
5793 /* BX PC does not need a veneer. */
5794 if (reg == 15)
5795 return;
5796
5797 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
5798 BFD_ASSERT (globals != NULL);
5799 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5800
5801 /* Check if this veneer has already been allocated. */
5802 if (globals->bx_glue_offset[reg])
5803 return;
5804
3d4d4302 5805 s = bfd_get_linker_section
845b51d6
PB
5806 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5807
5808 BFD_ASSERT (s != NULL);
5809
5810 /* Add symbol for veneer. */
21d799b5
NC
5811 tmp_name = (char *)
5812 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 5813
845b51d6 5814 BFD_ASSERT (tmp_name);
906e58ca 5815
845b51d6 5816 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 5817
845b51d6
PB
5818 myh = elf_link_hash_lookup
5819 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5820
845b51d6 5821 BFD_ASSERT (myh == NULL);
906e58ca 5822
845b51d6
PB
5823 bh = NULL;
5824 val = globals->bx_glue_size;
5825 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5826 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5827 NULL, TRUE, FALSE, &bh);
5828
5829 myh = (struct elf_link_hash_entry *) bh;
5830 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5831 myh->forced_local = 1;
5832
5833 s->size += ARM_BX_VENEER_SIZE;
5834 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5835 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5836}
5837
5838
c7b8f16e
JB
5839/* Add an entry to the code/data map for section SEC. */
5840
5841static void
5842elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5843{
5844 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5845 unsigned int newidx;
906e58ca 5846
c7b8f16e
JB
5847 if (sec_data->map == NULL)
5848 {
21d799b5
NC
5849 sec_data->map = (elf32_arm_section_map *)
5850 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
5851 sec_data->mapcount = 0;
5852 sec_data->mapsize = 1;
5853 }
906e58ca 5854
c7b8f16e 5855 newidx = sec_data->mapcount++;
906e58ca 5856
c7b8f16e
JB
5857 if (sec_data->mapcount > sec_data->mapsize)
5858 {
5859 sec_data->mapsize *= 2;
21d799b5
NC
5860 sec_data->map = (elf32_arm_section_map *)
5861 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5862 * sizeof (elf32_arm_section_map));
515ef31d
NC
5863 }
5864
5865 if (sec_data->map)
5866 {
5867 sec_data->map[newidx].vma = vma;
5868 sec_data->map[newidx].type = type;
c7b8f16e 5869 }
c7b8f16e
JB
5870}
5871
5872
5873/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5874 veneers are handled for now. */
5875
5876static bfd_vma
5877record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5878 elf32_vfp11_erratum_list *branch,
5879 bfd *branch_bfd,
5880 asection *branch_sec,
5881 unsigned int offset)
5882{
5883 asection *s;
5884 struct elf32_arm_link_hash_table *hash_table;
5885 char *tmp_name;
5886 struct elf_link_hash_entry *myh;
5887 struct bfd_link_hash_entry *bh;
5888 bfd_vma val;
5889 struct _arm_elf_section_data *sec_data;
c7b8f16e 5890 elf32_vfp11_erratum_list *newerr;
906e58ca 5891
c7b8f16e 5892 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
5893 BFD_ASSERT (hash_table != NULL);
5894 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 5895
3d4d4302 5896 s = bfd_get_linker_section
c7b8f16e 5897 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 5898
c7b8f16e 5899 sec_data = elf32_arm_section_data (s);
906e58ca 5900
c7b8f16e 5901 BFD_ASSERT (s != NULL);
906e58ca 5902
21d799b5
NC
5903 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5904 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 5905
c7b8f16e 5906 BFD_ASSERT (tmp_name);
906e58ca 5907
c7b8f16e
JB
5908 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5909 hash_table->num_vfp11_fixes);
906e58ca 5910
c7b8f16e
JB
5911 myh = elf_link_hash_lookup
5912 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5913
c7b8f16e 5914 BFD_ASSERT (myh == NULL);
906e58ca 5915
c7b8f16e
JB
5916 bh = NULL;
5917 val = hash_table->vfp11_erratum_glue_size;
5918 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5919 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5920 NULL, TRUE, FALSE, &bh);
5921
5922 myh = (struct elf_link_hash_entry *) bh;
5923 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5924 myh->forced_local = 1;
5925
5926 /* Link veneer back to calling location. */
c7e2358a 5927 sec_data->erratumcount += 1;
21d799b5
NC
5928 newerr = (elf32_vfp11_erratum_list *)
5929 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 5930
c7b8f16e
JB
5931 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5932 newerr->vma = -1;
5933 newerr->u.v.branch = branch;
5934 newerr->u.v.id = hash_table->num_vfp11_fixes;
5935 branch->u.b.veneer = newerr;
5936
5937 newerr->next = sec_data->erratumlist;
5938 sec_data->erratumlist = newerr;
5939
5940 /* A symbol for the return from the veneer. */
5941 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5942 hash_table->num_vfp11_fixes);
5943
5944 myh = elf_link_hash_lookup
5945 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5946
c7b8f16e
JB
5947 if (myh != NULL)
5948 abort ();
5949
5950 bh = NULL;
5951 val = offset + 4;
5952 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5953 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 5954
c7b8f16e
JB
5955 myh = (struct elf_link_hash_entry *) bh;
5956 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5957 myh->forced_local = 1;
5958
5959 free (tmp_name);
906e58ca 5960
c7b8f16e
JB
5961 /* Generate a mapping symbol for the veneer section, and explicitly add an
5962 entry for that symbol to the code/data map for the section. */
5963 if (hash_table->vfp11_erratum_glue_size == 0)
5964 {
5965 bh = NULL;
5966 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5967 ever requires this erratum fix. */
5968 _bfd_generic_link_add_one_symbol (link_info,
5969 hash_table->bfd_of_glue_owner, "$a",
5970 BSF_LOCAL, s, 0, NULL,
5971 TRUE, FALSE, &bh);
5972
5973 myh = (struct elf_link_hash_entry *) bh;
5974 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5975 myh->forced_local = 1;
906e58ca 5976
c7b8f16e
JB
5977 /* The elf32_arm_init_maps function only cares about symbols from input
5978 BFDs. We must make a note of this generated mapping symbol
5979 ourselves so that code byteswapping works properly in
5980 elf32_arm_write_section. */
5981 elf32_arm_section_map_add (s, 'a', 0);
5982 }
906e58ca 5983
c7b8f16e
JB
5984 s->size += VFP11_ERRATUM_VENEER_SIZE;
5985 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5986 hash_table->num_vfp11_fixes++;
906e58ca 5987
c7b8f16e
JB
5988 /* The offset of the veneer. */
5989 return val;
5990}
5991
8029a119 5992#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
5993 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5994 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
5995
5996/* Create a fake section for use by the ARM backend of the linker. */
5997
5998static bfd_boolean
5999arm_make_glue_section (bfd * abfd, const char * name)
6000{
6001 asection * sec;
6002
3d4d4302 6003 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
6004 if (sec != NULL)
6005 /* Already made. */
6006 return TRUE;
6007
3d4d4302 6008 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
6009
6010 if (sec == NULL
6011 || !bfd_set_section_alignment (abfd, sec, 2))
6012 return FALSE;
6013
6014 /* Set the gc mark to prevent the section from being removed by garbage
6015 collection, despite the fact that no relocs refer to this section. */
6016 sec->gc_mark = 1;
6017
6018 return TRUE;
6019}
6020
8afb0e02
NC
6021/* Add the glue sections to ABFD. This function is called from the
6022 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 6023
b34976b6 6024bfd_boolean
57e8b36a
NC
6025bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6026 struct bfd_link_info *info)
252b5132 6027{
8afb0e02
NC
6028 /* If we are only performing a partial
6029 link do not bother adding the glue. */
1049f94e 6030 if (info->relocatable)
b34976b6 6031 return TRUE;
252b5132 6032
8029a119
NC
6033 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6034 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6035 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6036 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
6037}
6038
6039/* Select a BFD to be used to hold the sections used by the glue code.
6040 This function is called from the linker scripts in ld/emultempl/
8029a119 6041 {armelf/pe}.em. */
8afb0e02 6042
b34976b6 6043bfd_boolean
57e8b36a 6044bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
6045{
6046 struct elf32_arm_link_hash_table *globals;
6047
6048 /* If we are only performing a partial link
6049 do not bother getting a bfd to hold the glue. */
1049f94e 6050 if (info->relocatable)
b34976b6 6051 return TRUE;
8afb0e02 6052
b7693d02
DJ
6053 /* Make sure we don't attach the glue sections to a dynamic object. */
6054 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6055
8afb0e02 6056 globals = elf32_arm_hash_table (info);
8afb0e02
NC
6057 BFD_ASSERT (globals != NULL);
6058
6059 if (globals->bfd_of_glue_owner != NULL)
b34976b6 6060 return TRUE;
8afb0e02 6061
252b5132
RH
6062 /* Save the bfd for later use. */
6063 globals->bfd_of_glue_owner = abfd;
cedb70c5 6064
b34976b6 6065 return TRUE;
252b5132
RH
6066}
6067
906e58ca
NC
6068static void
6069check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 6070{
2de70689
MGD
6071 int cpu_arch;
6072
b38cadfb 6073 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
6074 Tag_CPU_arch);
6075
6076 if (globals->fix_arm1176)
6077 {
6078 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6079 globals->use_blx = 1;
6080 }
6081 else
6082 {
6083 if (cpu_arch > TAG_CPU_ARCH_V4T)
6084 globals->use_blx = 1;
6085 }
39b41c9c
PB
6086}
6087
b34976b6 6088bfd_boolean
57e8b36a 6089bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 6090 struct bfd_link_info *link_info)
252b5132
RH
6091{
6092 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 6093 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
6094 Elf_Internal_Rela *irel, *irelend;
6095 bfd_byte *contents = NULL;
252b5132
RH
6096
6097 asection *sec;
6098 struct elf32_arm_link_hash_table *globals;
6099
6100 /* If we are only performing a partial link do not bother
6101 to construct any glue. */
1049f94e 6102 if (link_info->relocatable)
b34976b6 6103 return TRUE;
252b5132 6104
39ce1a6a
NC
6105 /* Here we have a bfd that is to be included on the link. We have a
6106 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 6107 globals = elf32_arm_hash_table (link_info);
252b5132 6108 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
6109
6110 check_use_blx (globals);
252b5132 6111
d504ffc8 6112 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 6113 {
d003868e
AM
6114 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6115 abfd);
e489d0ae
PB
6116 return FALSE;
6117 }
f21f3fe0 6118
39ce1a6a
NC
6119 /* PR 5398: If we have not decided to include any loadable sections in
6120 the output then we will not have a glue owner bfd. This is OK, it
6121 just means that there is nothing else for us to do here. */
6122 if (globals->bfd_of_glue_owner == NULL)
6123 return TRUE;
6124
252b5132
RH
6125 /* Rummage around all the relocs and map the glue vectors. */
6126 sec = abfd->sections;
6127
6128 if (sec == NULL)
b34976b6 6129 return TRUE;
252b5132
RH
6130
6131 for (; sec != NULL; sec = sec->next)
6132 {
6133 if (sec->reloc_count == 0)
6134 continue;
6135
2f475487
AM
6136 if ((sec->flags & SEC_EXCLUDE) != 0)
6137 continue;
6138
0ffa91dd 6139 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 6140
9b485d32 6141 /* Load the relocs. */
6cdc0ccc 6142 internal_relocs
906e58ca 6143 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 6144
6cdc0ccc
AM
6145 if (internal_relocs == NULL)
6146 goto error_return;
252b5132 6147
6cdc0ccc
AM
6148 irelend = internal_relocs + sec->reloc_count;
6149 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
6150 {
6151 long r_type;
6152 unsigned long r_index;
252b5132
RH
6153
6154 struct elf_link_hash_entry *h;
6155
6156 r_type = ELF32_R_TYPE (irel->r_info);
6157 r_index = ELF32_R_SYM (irel->r_info);
6158
9b485d32 6159 /* These are the only relocation types we care about. */
ba96a88f 6160 if ( r_type != R_ARM_PC24
845b51d6 6161 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
6162 continue;
6163
6164 /* Get the section contents if we haven't done so already. */
6165 if (contents == NULL)
6166 {
6167 /* Get cached copy if it exists. */
6168 if (elf_section_data (sec)->this_hdr.contents != NULL)
6169 contents = elf_section_data (sec)->this_hdr.contents;
6170 else
6171 {
6172 /* Go get them off disk. */
57e8b36a 6173 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
6174 goto error_return;
6175 }
6176 }
6177
845b51d6
PB
6178 if (r_type == R_ARM_V4BX)
6179 {
6180 int reg;
6181
6182 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6183 record_arm_bx_glue (link_info, reg);
6184 continue;
6185 }
6186
a7c10850 6187 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
6188 h = NULL;
6189
9b485d32 6190 /* We don't care about local symbols. */
252b5132
RH
6191 if (r_index < symtab_hdr->sh_info)
6192 continue;
6193
9b485d32 6194 /* This is an external symbol. */
252b5132
RH
6195 r_index -= symtab_hdr->sh_info;
6196 h = (struct elf_link_hash_entry *)
6197 elf_sym_hashes (abfd)[r_index];
6198
6199 /* If the relocation is against a static symbol it must be within
6200 the current section and so cannot be a cross ARM/Thumb relocation. */
6201 if (h == NULL)
6202 continue;
6203
d504ffc8
DJ
6204 /* If the call will go through a PLT entry then we do not need
6205 glue. */
362d30a1 6206 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
6207 continue;
6208
252b5132
RH
6209 switch (r_type)
6210 {
6211 case R_ARM_PC24:
6212 /* This one is a call from arm code. We need to look up
2f0ca46a 6213 the target of the call. If it is a thumb target, we
252b5132 6214 insert glue. */
35fc36a8 6215 if (h->target_internal == ST_BRANCH_TO_THUMB)
252b5132
RH
6216 record_arm_to_thumb_glue (link_info, h);
6217 break;
6218
252b5132 6219 default:
c6596c5e 6220 abort ();
252b5132
RH
6221 }
6222 }
6cdc0ccc
AM
6223
6224 if (contents != NULL
6225 && elf_section_data (sec)->this_hdr.contents != contents)
6226 free (contents);
6227 contents = NULL;
6228
6229 if (internal_relocs != NULL
6230 && elf_section_data (sec)->relocs != internal_relocs)
6231 free (internal_relocs);
6232 internal_relocs = NULL;
252b5132
RH
6233 }
6234
b34976b6 6235 return TRUE;
9a5aca8c 6236
252b5132 6237error_return:
6cdc0ccc
AM
6238 if (contents != NULL
6239 && elf_section_data (sec)->this_hdr.contents != contents)
6240 free (contents);
6241 if (internal_relocs != NULL
6242 && elf_section_data (sec)->relocs != internal_relocs)
6243 free (internal_relocs);
9a5aca8c 6244
b34976b6 6245 return FALSE;
252b5132 6246}
7e392df6 6247#endif
252b5132 6248
eb043451 6249
c7b8f16e
JB
6250/* Initialise maps of ARM/Thumb/data for input BFDs. */
6251
6252void
6253bfd_elf32_arm_init_maps (bfd *abfd)
6254{
6255 Elf_Internal_Sym *isymbuf;
6256 Elf_Internal_Shdr *hdr;
6257 unsigned int i, localsyms;
6258
af1f4419
NC
6259 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6260 if (! is_arm_elf (abfd))
6261 return;
6262
c7b8f16e
JB
6263 if ((abfd->flags & DYNAMIC) != 0)
6264 return;
6265
0ffa91dd 6266 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
6267 localsyms = hdr->sh_info;
6268
6269 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6270 should contain the number of local symbols, which should come before any
6271 global symbols. Mapping symbols are always local. */
6272 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6273 NULL);
6274
6275 /* No internal symbols read? Skip this BFD. */
6276 if (isymbuf == NULL)
6277 return;
6278
6279 for (i = 0; i < localsyms; i++)
6280 {
6281 Elf_Internal_Sym *isym = &isymbuf[i];
6282 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6283 const char *name;
906e58ca 6284
c7b8f16e
JB
6285 if (sec != NULL
6286 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6287 {
6288 name = bfd_elf_string_from_elf_section (abfd,
6289 hdr->sh_link, isym->st_name);
906e58ca 6290
c7b8f16e
JB
6291 if (bfd_is_arm_special_symbol_name (name,
6292 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6293 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6294 }
6295 }
6296}
6297
6298
48229727
JB
6299/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6300 say what they wanted. */
6301
6302void
6303bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6304{
6305 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6306 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6307
4dfe6ac6
NC
6308 if (globals == NULL)
6309 return;
6310
48229727
JB
6311 if (globals->fix_cortex_a8 == -1)
6312 {
6313 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6314 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6315 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6316 || out_attr[Tag_CPU_arch_profile].i == 0))
6317 globals->fix_cortex_a8 = 1;
6318 else
6319 globals->fix_cortex_a8 = 0;
6320 }
6321}
6322
6323
c7b8f16e
JB
6324void
6325bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6326{
6327 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 6328 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 6329
4dfe6ac6
NC
6330 if (globals == NULL)
6331 return;
c7b8f16e
JB
6332 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6333 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6334 {
6335 switch (globals->vfp11_fix)
6336 {
6337 case BFD_ARM_VFP11_FIX_DEFAULT:
6338 case BFD_ARM_VFP11_FIX_NONE:
6339 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6340 break;
906e58ca 6341
c7b8f16e
JB
6342 default:
6343 /* Give a warning, but do as the user requests anyway. */
6344 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6345 "workaround is not necessary for target architecture"), obfd);
6346 }
6347 }
6348 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6349 /* For earlier architectures, we might need the workaround, but do not
6350 enable it by default. If users is running with broken hardware, they
6351 must enable the erratum fix explicitly. */
6352 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6353}
6354
6355
906e58ca
NC
6356enum bfd_arm_vfp11_pipe
6357{
c7b8f16e
JB
6358 VFP11_FMAC,
6359 VFP11_LS,
6360 VFP11_DS,
6361 VFP11_BAD
6362};
6363
6364/* Return a VFP register number. This is encoded as RX:X for single-precision
6365 registers, or X:RX for double-precision registers, where RX is the group of
6366 four bits in the instruction encoding and X is the single extension bit.
6367 RX and X fields are specified using their lowest (starting) bit. The return
6368 value is:
6369
6370 0...31: single-precision registers s0...s31
6371 32...63: double-precision registers d0...d31.
906e58ca 6372
c7b8f16e
JB
6373 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6374 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 6375
c7b8f16e
JB
6376static unsigned int
6377bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6378 unsigned int x)
6379{
6380 if (is_double)
6381 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6382 else
6383 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6384}
6385
6386/* Set bits in *WMASK according to a register number REG as encoded by
6387 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6388
6389static void
6390bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6391{
6392 if (reg < 32)
6393 *wmask |= 1 << reg;
6394 else if (reg < 48)
6395 *wmask |= 3 << ((reg - 32) * 2);
6396}
6397
6398/* Return TRUE if WMASK overwrites anything in REGS. */
6399
6400static bfd_boolean
6401bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6402{
6403 int i;
906e58ca 6404
c7b8f16e
JB
6405 for (i = 0; i < numregs; i++)
6406 {
6407 unsigned int reg = regs[i];
6408
6409 if (reg < 32 && (wmask & (1 << reg)) != 0)
6410 return TRUE;
906e58ca 6411
c7b8f16e
JB
6412 reg -= 32;
6413
6414 if (reg >= 16)
6415 continue;
906e58ca 6416
c7b8f16e
JB
6417 if ((wmask & (3 << (reg * 2))) != 0)
6418 return TRUE;
6419 }
906e58ca 6420
c7b8f16e
JB
6421 return FALSE;
6422}
6423
6424/* In this function, we're interested in two things: finding input registers
6425 for VFP data-processing instructions, and finding the set of registers which
6426 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6427 hold the written set, so FLDM etc. are easy to deal with (we're only
6428 interested in 32 SP registers or 16 dp registers, due to the VFP version
6429 implemented by the chip in question). DP registers are marked by setting
6430 both SP registers in the write mask). */
6431
6432static enum bfd_arm_vfp11_pipe
6433bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6434 int *numregs)
6435{
91d6fa6a 6436 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
6437 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6438
6439 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6440 {
6441 unsigned int pqrs;
6442 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6443 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6444
6445 pqrs = ((insn & 0x00800000) >> 20)
6446 | ((insn & 0x00300000) >> 19)
6447 | ((insn & 0x00000040) >> 6);
6448
6449 switch (pqrs)
6450 {
6451 case 0: /* fmac[sd]. */
6452 case 1: /* fnmac[sd]. */
6453 case 2: /* fmsc[sd]. */
6454 case 3: /* fnmsc[sd]. */
91d6fa6a 6455 vpipe = VFP11_FMAC;
c7b8f16e
JB
6456 bfd_arm_vfp11_write_mask (destmask, fd);
6457 regs[0] = fd;
6458 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6459 regs[2] = fm;
6460 *numregs = 3;
6461 break;
6462
6463 case 4: /* fmul[sd]. */
6464 case 5: /* fnmul[sd]. */
6465 case 6: /* fadd[sd]. */
6466 case 7: /* fsub[sd]. */
91d6fa6a 6467 vpipe = VFP11_FMAC;
c7b8f16e
JB
6468 goto vfp_binop;
6469
6470 case 8: /* fdiv[sd]. */
91d6fa6a 6471 vpipe = VFP11_DS;
c7b8f16e
JB
6472 vfp_binop:
6473 bfd_arm_vfp11_write_mask (destmask, fd);
6474 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6475 regs[1] = fm;
6476 *numregs = 2;
6477 break;
6478
6479 case 15: /* extended opcode. */
6480 {
6481 unsigned int extn = ((insn >> 15) & 0x1e)
6482 | ((insn >> 7) & 1);
6483
6484 switch (extn)
6485 {
6486 case 0: /* fcpy[sd]. */
6487 case 1: /* fabs[sd]. */
6488 case 2: /* fneg[sd]. */
6489 case 8: /* fcmp[sd]. */
6490 case 9: /* fcmpe[sd]. */
6491 case 10: /* fcmpz[sd]. */
6492 case 11: /* fcmpez[sd]. */
6493 case 16: /* fuito[sd]. */
6494 case 17: /* fsito[sd]. */
6495 case 24: /* ftoui[sd]. */
6496 case 25: /* ftouiz[sd]. */
6497 case 26: /* ftosi[sd]. */
6498 case 27: /* ftosiz[sd]. */
6499 /* These instructions will not bounce due to underflow. */
6500 *numregs = 0;
91d6fa6a 6501 vpipe = VFP11_FMAC;
c7b8f16e
JB
6502 break;
6503
6504 case 3: /* fsqrt[sd]. */
6505 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6506 registers to cause the erratum in previous instructions. */
6507 bfd_arm_vfp11_write_mask (destmask, fd);
91d6fa6a 6508 vpipe = VFP11_DS;
c7b8f16e
JB
6509 break;
6510
6511 case 15: /* fcvt{ds,sd}. */
6512 {
6513 int rnum = 0;
6514
6515 bfd_arm_vfp11_write_mask (destmask, fd);
6516
6517 /* Only FCVTSD can underflow. */
6518 if ((insn & 0x100) != 0)
6519 regs[rnum++] = fm;
6520
6521 *numregs = rnum;
6522
91d6fa6a 6523 vpipe = VFP11_FMAC;
c7b8f16e
JB
6524 }
6525 break;
6526
6527 default:
6528 return VFP11_BAD;
6529 }
6530 }
6531 break;
6532
6533 default:
6534 return VFP11_BAD;
6535 }
6536 }
6537 /* Two-register transfer. */
6538 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6539 {
6540 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 6541
c7b8f16e
JB
6542 if ((insn & 0x100000) == 0)
6543 {
6544 if (is_double)
6545 bfd_arm_vfp11_write_mask (destmask, fm);
6546 else
6547 {
6548 bfd_arm_vfp11_write_mask (destmask, fm);
6549 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6550 }
6551 }
6552
91d6fa6a 6553 vpipe = VFP11_LS;
c7b8f16e
JB
6554 }
6555 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6556 {
6557 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6558 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 6559
c7b8f16e
JB
6560 switch (puw)
6561 {
6562 case 0: /* Two-reg transfer. We should catch these above. */
6563 abort ();
906e58ca 6564
c7b8f16e
JB
6565 case 2: /* fldm[sdx]. */
6566 case 3:
6567 case 5:
6568 {
6569 unsigned int i, offset = insn & 0xff;
6570
6571 if (is_double)
6572 offset >>= 1;
6573
6574 for (i = fd; i < fd + offset; i++)
6575 bfd_arm_vfp11_write_mask (destmask, i);
6576 }
6577 break;
906e58ca 6578
c7b8f16e
JB
6579 case 4: /* fld[sd]. */
6580 case 6:
6581 bfd_arm_vfp11_write_mask (destmask, fd);
6582 break;
906e58ca 6583
c7b8f16e
JB
6584 default:
6585 return VFP11_BAD;
6586 }
6587
91d6fa6a 6588 vpipe = VFP11_LS;
c7b8f16e
JB
6589 }
6590 /* Single-register transfer. Note L==0. */
6591 else if ((insn & 0x0f100e10) == 0x0e000a10)
6592 {
6593 unsigned int opcode = (insn >> 21) & 7;
6594 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6595
6596 switch (opcode)
6597 {
6598 case 0: /* fmsr/fmdlr. */
6599 case 1: /* fmdhr. */
6600 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6601 destination register. I don't know if this is exactly right,
6602 but it is the conservative choice. */
6603 bfd_arm_vfp11_write_mask (destmask, fn);
6604 break;
6605
6606 case 7: /* fmxr. */
6607 break;
6608 }
6609
91d6fa6a 6610 vpipe = VFP11_LS;
c7b8f16e
JB
6611 }
6612
91d6fa6a 6613 return vpipe;
c7b8f16e
JB
6614}
6615
6616
6617static int elf32_arm_compare_mapping (const void * a, const void * b);
6618
6619
6620/* Look for potentially-troublesome code sequences which might trigger the
6621 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6622 (available from ARM) for details of the erratum. A short version is
6623 described in ld.texinfo. */
6624
6625bfd_boolean
6626bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6627{
6628 asection *sec;
6629 bfd_byte *contents = NULL;
6630 int state = 0;
6631 int regs[3], numregs = 0;
6632 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6633 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 6634
4dfe6ac6
NC
6635 if (globals == NULL)
6636 return FALSE;
6637
c7b8f16e
JB
6638 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6639 The states transition as follows:
906e58ca 6640
c7b8f16e
JB
6641 0 -> 1 (vector) or 0 -> 2 (scalar)
6642 A VFP FMAC-pipeline instruction has been seen. Fill
6643 regs[0]..regs[numregs-1] with its input operands. Remember this
6644 instruction in 'first_fmac'.
6645
6646 1 -> 2
6647 Any instruction, except for a VFP instruction which overwrites
6648 regs[*].
906e58ca 6649
c7b8f16e
JB
6650 1 -> 3 [ -> 0 ] or
6651 2 -> 3 [ -> 0 ]
6652 A VFP instruction has been seen which overwrites any of regs[*].
6653 We must make a veneer! Reset state to 0 before examining next
6654 instruction.
906e58ca 6655
c7b8f16e
JB
6656 2 -> 0
6657 If we fail to match anything in state 2, reset to state 0 and reset
6658 the instruction pointer to the instruction after 'first_fmac'.
6659
6660 If the VFP11 vector mode is in use, there must be at least two unrelated
6661 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 6662 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
6663
6664 /* If we are only performing a partial link do not bother
6665 to construct any glue. */
6666 if (link_info->relocatable)
6667 return TRUE;
6668
0ffa91dd
NC
6669 /* Skip if this bfd does not correspond to an ELF image. */
6670 if (! is_arm_elf (abfd))
6671 return TRUE;
906e58ca 6672
c7b8f16e
JB
6673 /* We should have chosen a fix type by the time we get here. */
6674 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6675
6676 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6677 return TRUE;
2e6030b9 6678
33a7ffc2
JM
6679 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6680 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6681 return TRUE;
6682
c7b8f16e
JB
6683 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6684 {
6685 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6686 struct _arm_elf_section_data *sec_data;
6687
6688 /* If we don't have executable progbits, we're not interested in this
6689 section. Also skip if section is to be excluded. */
6690 if (elf_section_type (sec) != SHT_PROGBITS
6691 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6692 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 6693 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 6694 || sec->output_section == bfd_abs_section_ptr
c7b8f16e
JB
6695 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6696 continue;
6697
6698 sec_data = elf32_arm_section_data (sec);
906e58ca 6699
c7b8f16e
JB
6700 if (sec_data->mapcount == 0)
6701 continue;
906e58ca 6702
c7b8f16e
JB
6703 if (elf_section_data (sec)->this_hdr.contents != NULL)
6704 contents = elf_section_data (sec)->this_hdr.contents;
6705 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6706 goto error_return;
6707
6708 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6709 elf32_arm_compare_mapping);
6710
6711 for (span = 0; span < sec_data->mapcount; span++)
6712 {
6713 unsigned int span_start = sec_data->map[span].vma;
6714 unsigned int span_end = (span == sec_data->mapcount - 1)
6715 ? sec->size : sec_data->map[span + 1].vma;
6716 char span_type = sec_data->map[span].type;
906e58ca 6717
c7b8f16e
JB
6718 /* FIXME: Only ARM mode is supported at present. We may need to
6719 support Thumb-2 mode also at some point. */
6720 if (span_type != 'a')
6721 continue;
6722
6723 for (i = span_start; i < span_end;)
6724 {
6725 unsigned int next_i = i + 4;
6726 unsigned int insn = bfd_big_endian (abfd)
6727 ? (contents[i] << 24)
6728 | (contents[i + 1] << 16)
6729 | (contents[i + 2] << 8)
6730 | contents[i + 3]
6731 : (contents[i + 3] << 24)
6732 | (contents[i + 2] << 16)
6733 | (contents[i + 1] << 8)
6734 | contents[i];
6735 unsigned int writemask = 0;
91d6fa6a 6736 enum bfd_arm_vfp11_pipe vpipe;
c7b8f16e
JB
6737
6738 switch (state)
6739 {
6740 case 0:
91d6fa6a 6741 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
c7b8f16e
JB
6742 &numregs);
6743 /* I'm assuming the VFP11 erratum can trigger with denorm
6744 operands on either the FMAC or the DS pipeline. This might
6745 lead to slightly overenthusiastic veneer insertion. */
91d6fa6a 6746 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
c7b8f16e
JB
6747 {
6748 state = use_vector ? 1 : 2;
6749 first_fmac = i;
6750 veneer_of_insn = insn;
6751 }
6752 break;
6753
6754 case 1:
6755 {
6756 int other_regs[3], other_numregs;
91d6fa6a 6757 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e
JB
6758 other_regs,
6759 &other_numregs);
91d6fa6a 6760 if (vpipe != VFP11_BAD
c7b8f16e
JB
6761 && bfd_arm_vfp11_antidependency (writemask, regs,
6762 numregs))
6763 state = 3;
6764 else
6765 state = 2;
6766 }
6767 break;
6768
6769 case 2:
6770 {
6771 int other_regs[3], other_numregs;
91d6fa6a 6772 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e
JB
6773 other_regs,
6774 &other_numregs);
91d6fa6a 6775 if (vpipe != VFP11_BAD
c7b8f16e
JB
6776 && bfd_arm_vfp11_antidependency (writemask, regs,
6777 numregs))
6778 state = 3;
6779 else
6780 {
6781 state = 0;
6782 next_i = first_fmac + 4;
6783 }
6784 }
6785 break;
6786
6787 case 3:
6788 abort (); /* Should be unreachable. */
6789 }
6790
6791 if (state == 3)
6792 {
21d799b5
NC
6793 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6794 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
c7b8f16e 6795
c7e2358a 6796 elf32_arm_section_data (sec)->erratumcount += 1;
c7b8f16e
JB
6797
6798 newerr->u.b.vfp_insn = veneer_of_insn;
6799
6800 switch (span_type)
6801 {
6802 case 'a':
6803 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6804 break;
906e58ca 6805
c7b8f16e
JB
6806 default:
6807 abort ();
6808 }
6809
6810 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6811 first_fmac);
6812
6813 newerr->vma = -1;
6814
6815 newerr->next = sec_data->erratumlist;
6816 sec_data->erratumlist = newerr;
6817
6818 state = 0;
6819 }
6820
6821 i = next_i;
6822 }
6823 }
906e58ca 6824
c7b8f16e
JB
6825 if (contents != NULL
6826 && elf_section_data (sec)->this_hdr.contents != contents)
6827 free (contents);
6828 contents = NULL;
6829 }
6830
6831 return TRUE;
6832
6833error_return:
6834 if (contents != NULL
6835 && elf_section_data (sec)->this_hdr.contents != contents)
6836 free (contents);
906e58ca 6837
c7b8f16e
JB
6838 return FALSE;
6839}
6840
6841/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6842 after sections have been laid out, using specially-named symbols. */
6843
6844void
6845bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6846 struct bfd_link_info *link_info)
6847{
6848 asection *sec;
6849 struct elf32_arm_link_hash_table *globals;
6850 char *tmp_name;
906e58ca 6851
c7b8f16e
JB
6852 if (link_info->relocatable)
6853 return;
2e6030b9
MS
6854
6855 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 6856 if (! is_arm_elf (abfd))
2e6030b9
MS
6857 return;
6858
c7b8f16e 6859 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6860 if (globals == NULL)
6861 return;
906e58ca 6862
21d799b5
NC
6863 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6864 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
6865
6866 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6867 {
6868 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6869 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 6870
c7b8f16e
JB
6871 for (; errnode != NULL; errnode = errnode->next)
6872 {
6873 struct elf_link_hash_entry *myh;
6874 bfd_vma vma;
6875
6876 switch (errnode->type)
6877 {
6878 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6879 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6880 /* Find veneer symbol. */
6881 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6882 errnode->u.b.veneer->u.v.id);
6883
6884 myh = elf_link_hash_lookup
6885 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6886
6887 if (myh == NULL)
6888 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6889 "`%s'"), abfd, tmp_name);
6890
6891 vma = myh->root.u.def.section->output_section->vma
6892 + myh->root.u.def.section->output_offset
6893 + myh->root.u.def.value;
6894
6895 errnode->u.b.veneer->vma = vma;
6896 break;
6897
6898 case VFP11_ERRATUM_ARM_VENEER:
6899 case VFP11_ERRATUM_THUMB_VENEER:
6900 /* Find return location. */
6901 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6902 errnode->u.v.id);
6903
6904 myh = elf_link_hash_lookup
6905 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6906
6907 if (myh == NULL)
6908 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6909 "`%s'"), abfd, tmp_name);
6910
6911 vma = myh->root.u.def.section->output_section->vma
6912 + myh->root.u.def.section->output_offset
6913 + myh->root.u.def.value;
6914
6915 errnode->u.v.branch->vma = vma;
6916 break;
906e58ca 6917
c7b8f16e
JB
6918 default:
6919 abort ();
6920 }
6921 }
6922 }
906e58ca 6923
c7b8f16e
JB
6924 free (tmp_name);
6925}
6926
6927
eb043451
PB
6928/* Set target relocation values needed during linking. */
6929
6930void
bf21ed78
MS
6931bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6932 struct bfd_link_info *link_info,
eb043451 6933 int target1_is_rel,
319850b4 6934 char * target2_type,
33bfe774 6935 int fix_v4bx,
c7b8f16e 6936 int use_blx,
bf21ed78 6937 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481 6938 int no_enum_warn, int no_wchar_warn,
2de70689
MGD
6939 int pic_veneer, int fix_cortex_a8,
6940 int fix_arm1176)
eb043451
PB
6941{
6942 struct elf32_arm_link_hash_table *globals;
6943
6944 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6945 if (globals == NULL)
6946 return;
eb043451
PB
6947
6948 globals->target1_is_rel = target1_is_rel;
6949 if (strcmp (target2_type, "rel") == 0)
6950 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
6951 else if (strcmp (target2_type, "abs") == 0)
6952 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
6953 else if (strcmp (target2_type, "got-rel") == 0)
6954 globals->target2_reloc = R_ARM_GOT_PREL;
6955 else
6956 {
6957 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6958 target2_type);
6959 }
319850b4 6960 globals->fix_v4bx = fix_v4bx;
33bfe774 6961 globals->use_blx |= use_blx;
c7b8f16e 6962 globals->vfp11_fix = vfp11_fix;
27e55c4d 6963 globals->pic_veneer = pic_veneer;
48229727 6964 globals->fix_cortex_a8 = fix_cortex_a8;
2de70689 6965 globals->fix_arm1176 = fix_arm1176;
bf21ed78 6966
0ffa91dd
NC
6967 BFD_ASSERT (is_arm_elf (output_bfd));
6968 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 6969 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 6970}
eb043451 6971
12a0a0fd 6972/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 6973
12a0a0fd
PB
6974static void
6975insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6976{
6977 bfd_vma upper;
6978 bfd_vma lower;
6979 int reloc_sign;
6980
6981 BFD_ASSERT ((offset & 1) == 0);
6982
6983 upper = bfd_get_16 (abfd, insn);
6984 lower = bfd_get_16 (abfd, insn + 2);
6985 reloc_sign = (offset < 0) ? 1 : 0;
6986 upper = (upper & ~(bfd_vma) 0x7ff)
6987 | ((offset >> 12) & 0x3ff)
6988 | (reloc_sign << 10);
906e58ca 6989 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
6990 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6991 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6992 | ((offset >> 1) & 0x7ff);
6993 bfd_put_16 (abfd, upper, insn);
6994 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
6995}
6996
9b485d32
NC
6997/* Thumb code calling an ARM function. */
6998
252b5132 6999static int
57e8b36a
NC
7000elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7001 const char * name,
7002 bfd * input_bfd,
7003 bfd * output_bfd,
7004 asection * input_section,
7005 bfd_byte * hit_data,
7006 asection * sym_sec,
7007 bfd_vma offset,
7008 bfd_signed_vma addend,
f2a9dd69
DJ
7009 bfd_vma val,
7010 char **error_message)
252b5132 7011{
bcbdc74c 7012 asection * s = 0;
dc810e39 7013 bfd_vma my_offset;
252b5132 7014 long int ret_offset;
bcbdc74c
NC
7015 struct elf_link_hash_entry * myh;
7016 struct elf32_arm_link_hash_table * globals;
252b5132 7017
f2a9dd69 7018 myh = find_thumb_glue (info, name, error_message);
252b5132 7019 if (myh == NULL)
b34976b6 7020 return FALSE;
252b5132
RH
7021
7022 globals = elf32_arm_hash_table (info);
252b5132
RH
7023 BFD_ASSERT (globals != NULL);
7024 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7025
7026 my_offset = myh->root.u.def.value;
7027
3d4d4302
AM
7028 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7029 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
7030
7031 BFD_ASSERT (s != NULL);
7032 BFD_ASSERT (s->contents != NULL);
7033 BFD_ASSERT (s->output_section != NULL);
7034
7035 if ((my_offset & 0x01) == 0x01)
7036 {
7037 if (sym_sec != NULL
7038 && sym_sec->owner != NULL
7039 && !INTERWORK_FLAG (sym_sec->owner))
7040 {
8f615d07 7041 (*_bfd_error_handler)
d003868e 7042 (_("%B(%s): warning: interworking not enabled.\n"
3aaeb7d3 7043 " first occurrence: %B: Thumb call to ARM"),
d003868e 7044 sym_sec->owner, input_bfd, name);
252b5132 7045
b34976b6 7046 return FALSE;
252b5132
RH
7047 }
7048
7049 --my_offset;
7050 myh->root.u.def.value = my_offset;
7051
52ab56c2
PB
7052 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7053 s->contents + my_offset);
252b5132 7054
52ab56c2
PB
7055 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7056 s->contents + my_offset + 2);
252b5132
RH
7057
7058 ret_offset =
9b485d32
NC
7059 /* Address of destination of the stub. */
7060 ((bfd_signed_vma) val)
252b5132 7061 - ((bfd_signed_vma)
57e8b36a
NC
7062 /* Offset from the start of the current section
7063 to the start of the stubs. */
9b485d32
NC
7064 (s->output_offset
7065 /* Offset of the start of this stub from the start of the stubs. */
7066 + my_offset
7067 /* Address of the start of the current section. */
7068 + s->output_section->vma)
7069 /* The branch instruction is 4 bytes into the stub. */
7070 + 4
7071 /* ARM branches work from the pc of the instruction + 8. */
7072 + 8);
252b5132 7073
52ab56c2
PB
7074 put_arm_insn (globals, output_bfd,
7075 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7076 s->contents + my_offset + 4);
252b5132
RH
7077 }
7078
7079 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7080
427bfd90
NC
7081 /* Now go back and fix up the original BL insn to point to here. */
7082 ret_offset =
7083 /* Address of where the stub is located. */
7084 (s->output_section->vma + s->output_offset + my_offset)
7085 /* Address of where the BL is located. */
57e8b36a
NC
7086 - (input_section->output_section->vma + input_section->output_offset
7087 + offset)
427bfd90
NC
7088 /* Addend in the relocation. */
7089 - addend
7090 /* Biassing for PC-relative addressing. */
7091 - 8;
252b5132 7092
12a0a0fd 7093 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 7094
b34976b6 7095 return TRUE;
252b5132
RH
7096}
7097
a4fd1a8e 7098/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 7099
a4fd1a8e
PB
7100static struct elf_link_hash_entry *
7101elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7102 const char * name,
7103 bfd * input_bfd,
7104 bfd * output_bfd,
7105 asection * sym_sec,
7106 bfd_vma val,
8029a119
NC
7107 asection * s,
7108 char ** error_message)
252b5132 7109{
dc810e39 7110 bfd_vma my_offset;
252b5132 7111 long int ret_offset;
bcbdc74c
NC
7112 struct elf_link_hash_entry * myh;
7113 struct elf32_arm_link_hash_table * globals;
252b5132 7114
f2a9dd69 7115 myh = find_arm_glue (info, name, error_message);
252b5132 7116 if (myh == NULL)
a4fd1a8e 7117 return NULL;
252b5132
RH
7118
7119 globals = elf32_arm_hash_table (info);
252b5132
RH
7120 BFD_ASSERT (globals != NULL);
7121 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7122
7123 my_offset = myh->root.u.def.value;
252b5132
RH
7124
7125 if ((my_offset & 0x01) == 0x01)
7126 {
7127 if (sym_sec != NULL
7128 && sym_sec->owner != NULL
7129 && !INTERWORK_FLAG (sym_sec->owner))
7130 {
8f615d07 7131 (*_bfd_error_handler)
d003868e
AM
7132 (_("%B(%s): warning: interworking not enabled.\n"
7133 " first occurrence: %B: arm call to thumb"),
7134 sym_sec->owner, input_bfd, name);
252b5132 7135 }
9b485d32 7136
252b5132
RH
7137 --my_offset;
7138 myh->root.u.def.value = my_offset;
7139
27e55c4d
PB
7140 if (info->shared || globals->root.is_relocatable_executable
7141 || globals->pic_veneer)
8f6277f5
PB
7142 {
7143 /* For relocatable objects we can't use absolute addresses,
7144 so construct the address from a relative offset. */
7145 /* TODO: If the offset is small it's probably worth
7146 constructing the address with adds. */
52ab56c2
PB
7147 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7148 s->contents + my_offset);
7149 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7150 s->contents + my_offset + 4);
7151 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7152 s->contents + my_offset + 8);
8f6277f5
PB
7153 /* Adjust the offset by 4 for the position of the add,
7154 and 8 for the pipeline offset. */
7155 ret_offset = (val - (s->output_offset
7156 + s->output_section->vma
7157 + my_offset + 12))
7158 | 1;
7159 bfd_put_32 (output_bfd, ret_offset,
7160 s->contents + my_offset + 12);
7161 }
26079076
PB
7162 else if (globals->use_blx)
7163 {
7164 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7165 s->contents + my_offset);
7166
7167 /* It's a thumb address. Add the low order bit. */
7168 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7169 s->contents + my_offset + 4);
7170 }
8f6277f5
PB
7171 else
7172 {
52ab56c2
PB
7173 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7174 s->contents + my_offset);
252b5132 7175
52ab56c2
PB
7176 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7177 s->contents + my_offset + 4);
252b5132 7178
8f6277f5
PB
7179 /* It's a thumb address. Add the low order bit. */
7180 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7181 s->contents + my_offset + 8);
8029a119
NC
7182
7183 my_offset += 12;
8f6277f5 7184 }
252b5132
RH
7185 }
7186
7187 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7188
a4fd1a8e
PB
7189 return myh;
7190}
7191
7192/* Arm code calling a Thumb function. */
7193
7194static int
7195elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7196 const char * name,
7197 bfd * input_bfd,
7198 bfd * output_bfd,
7199 asection * input_section,
7200 bfd_byte * hit_data,
7201 asection * sym_sec,
7202 bfd_vma offset,
7203 bfd_signed_vma addend,
f2a9dd69
DJ
7204 bfd_vma val,
7205 char **error_message)
a4fd1a8e
PB
7206{
7207 unsigned long int tmp;
7208 bfd_vma my_offset;
7209 asection * s;
7210 long int ret_offset;
7211 struct elf_link_hash_entry * myh;
7212 struct elf32_arm_link_hash_table * globals;
7213
7214 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
7215 BFD_ASSERT (globals != NULL);
7216 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7217
3d4d4302
AM
7218 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7219 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
7220 BFD_ASSERT (s != NULL);
7221 BFD_ASSERT (s->contents != NULL);
7222 BFD_ASSERT (s->output_section != NULL);
7223
7224 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 7225 sym_sec, val, s, error_message);
a4fd1a8e
PB
7226 if (!myh)
7227 return FALSE;
7228
7229 my_offset = myh->root.u.def.value;
252b5132
RH
7230 tmp = bfd_get_32 (input_bfd, hit_data);
7231 tmp = tmp & 0xFF000000;
7232
9b485d32 7233 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
7234 ret_offset = (s->output_offset
7235 + my_offset
7236 + s->output_section->vma
7237 - (input_section->output_offset
7238 + input_section->output_section->vma
7239 + offset + addend)
7240 - 8);
9a5aca8c 7241
252b5132
RH
7242 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7243
dc810e39 7244 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 7245
b34976b6 7246 return TRUE;
252b5132
RH
7247}
7248
a4fd1a8e
PB
7249/* Populate Arm stub for an exported Thumb function. */
7250
7251static bfd_boolean
7252elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7253{
7254 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7255 asection * s;
7256 struct elf_link_hash_entry * myh;
7257 struct elf32_arm_link_hash_entry *eh;
7258 struct elf32_arm_link_hash_table * globals;
7259 asection *sec;
7260 bfd_vma val;
f2a9dd69 7261 char *error_message;
a4fd1a8e 7262
906e58ca 7263 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
7264 /* Allocate stubs for exported Thumb functions on v4t. */
7265 if (eh->export_glue == NULL)
7266 return TRUE;
7267
7268 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
7269 BFD_ASSERT (globals != NULL);
7270 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7271
3d4d4302
AM
7272 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7273 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
7274 BFD_ASSERT (s != NULL);
7275 BFD_ASSERT (s->contents != NULL);
7276 BFD_ASSERT (s->output_section != NULL);
7277
7278 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
7279
7280 BFD_ASSERT (sec->output_section != NULL);
7281
a4fd1a8e
PB
7282 val = eh->export_glue->root.u.def.value + sec->output_offset
7283 + sec->output_section->vma;
8029a119 7284
a4fd1a8e
PB
7285 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7286 h->root.u.def.section->owner,
f2a9dd69
DJ
7287 globals->obfd, sec, val, s,
7288 &error_message);
a4fd1a8e
PB
7289 BFD_ASSERT (myh);
7290 return TRUE;
7291}
7292
845b51d6
PB
7293/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7294
7295static bfd_vma
7296elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7297{
7298 bfd_byte *p;
7299 bfd_vma glue_addr;
7300 asection *s;
7301 struct elf32_arm_link_hash_table *globals;
7302
7303 globals = elf32_arm_hash_table (info);
845b51d6
PB
7304 BFD_ASSERT (globals != NULL);
7305 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7306
3d4d4302
AM
7307 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7308 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
7309 BFD_ASSERT (s != NULL);
7310 BFD_ASSERT (s->contents != NULL);
7311 BFD_ASSERT (s->output_section != NULL);
7312
7313 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7314
7315 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7316
7317 if ((globals->bx_glue_offset[reg] & 1) == 0)
7318 {
7319 p = s->contents + glue_addr;
7320 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7321 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7322 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7323 globals->bx_glue_offset[reg] |= 1;
7324 }
7325
7326 return glue_addr + s->output_section->vma + s->output_offset;
7327}
7328
a4fd1a8e
PB
7329/* Generate Arm stubs for exported Thumb symbols. */
7330static void
906e58ca 7331elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
7332 struct bfd_link_info *link_info)
7333{
7334 struct elf32_arm_link_hash_table * globals;
7335
8029a119
NC
7336 if (link_info == NULL)
7337 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
7338 return;
7339
7340 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7341 if (globals == NULL)
7342 return;
7343
84c08195
PB
7344 /* If blx is available then exported Thumb symbols are OK and there is
7345 nothing to do. */
a4fd1a8e
PB
7346 if (globals->use_blx)
7347 return;
7348
7349 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7350 link_info);
7351}
7352
47beaa6a
RS
7353/* Reserve space for COUNT dynamic relocations in relocation selection
7354 SRELOC. */
7355
7356static void
7357elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7358 bfd_size_type count)
7359{
7360 struct elf32_arm_link_hash_table *htab;
7361
7362 htab = elf32_arm_hash_table (info);
7363 BFD_ASSERT (htab->root.dynamic_sections_created);
7364 if (sreloc == NULL)
7365 abort ();
7366 sreloc->size += RELOC_SIZE (htab) * count;
7367}
7368
34e77a92
RS
7369/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7370 dynamic, the relocations should go in SRELOC, otherwise they should
7371 go in the special .rel.iplt section. */
7372
7373static void
7374elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7375 bfd_size_type count)
7376{
7377 struct elf32_arm_link_hash_table *htab;
7378
7379 htab = elf32_arm_hash_table (info);
7380 if (!htab->root.dynamic_sections_created)
7381 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7382 else
7383 {
7384 BFD_ASSERT (sreloc != NULL);
7385 sreloc->size += RELOC_SIZE (htab) * count;
7386 }
7387}
7388
47beaa6a
RS
7389/* Add relocation REL to the end of relocation section SRELOC. */
7390
7391static void
7392elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7393 asection *sreloc, Elf_Internal_Rela *rel)
7394{
7395 bfd_byte *loc;
7396 struct elf32_arm_link_hash_table *htab;
7397
7398 htab = elf32_arm_hash_table (info);
34e77a92
RS
7399 if (!htab->root.dynamic_sections_created
7400 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7401 sreloc = htab->root.irelplt;
47beaa6a
RS
7402 if (sreloc == NULL)
7403 abort ();
7404 loc = sreloc->contents;
7405 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7406 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7407 abort ();
7408 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7409}
7410
34e77a92
RS
7411/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7412 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7413 to .plt. */
7414
7415static void
7416elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7417 bfd_boolean is_iplt_entry,
7418 union gotplt_union *root_plt,
7419 struct arm_plt_info *arm_plt)
7420{
7421 struct elf32_arm_link_hash_table *htab;
7422 asection *splt;
7423 asection *sgotplt;
7424
7425 htab = elf32_arm_hash_table (info);
7426
7427 if (is_iplt_entry)
7428 {
7429 splt = htab->root.iplt;
7430 sgotplt = htab->root.igotplt;
7431
7432 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7433 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7434 }
7435 else
7436 {
7437 splt = htab->root.splt;
7438 sgotplt = htab->root.sgotplt;
7439
7440 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7441 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7442
7443 /* If this is the first .plt entry, make room for the special
7444 first entry. */
7445 if (splt->size == 0)
7446 splt->size += htab->plt_header_size;
7447 }
7448
7449 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7450 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7451 splt->size += PLT_THUMB_STUB_SIZE;
7452 root_plt->offset = splt->size;
7453 splt->size += htab->plt_entry_size;
7454
7455 if (!htab->symbian_p)
7456 {
7457 /* We also need to make an entry in the .got.plt section, which
7458 will be placed in the .got section by the linker script. */
7459 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7460 sgotplt->size += 4;
7461 }
7462}
7463
b38cadfb
NC
7464static bfd_vma
7465arm_movw_immediate (bfd_vma value)
7466{
7467 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7468}
7469
7470static bfd_vma
7471arm_movt_immediate (bfd_vma value)
7472{
7473 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7474}
7475
34e77a92
RS
7476/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7477 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7478 Otherwise, DYNINDX is the index of the symbol in the dynamic
7479 symbol table and SYM_VALUE is undefined.
7480
7481 ROOT_PLT points to the offset of the PLT entry from the start of its
7482 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7483 bookkeeping information. */
7484
7485static void
7486elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7487 union gotplt_union *root_plt,
7488 struct arm_plt_info *arm_plt,
7489 int dynindx, bfd_vma sym_value)
7490{
7491 struct elf32_arm_link_hash_table *htab;
7492 asection *sgot;
7493 asection *splt;
7494 asection *srel;
7495 bfd_byte *loc;
7496 bfd_vma plt_index;
7497 Elf_Internal_Rela rel;
7498 bfd_vma plt_header_size;
7499 bfd_vma got_header_size;
7500
7501 htab = elf32_arm_hash_table (info);
7502
7503 /* Pick the appropriate sections and sizes. */
7504 if (dynindx == -1)
7505 {
7506 splt = htab->root.iplt;
7507 sgot = htab->root.igotplt;
7508 srel = htab->root.irelplt;
7509
7510 /* There are no reserved entries in .igot.plt, and no special
7511 first entry in .iplt. */
7512 got_header_size = 0;
7513 plt_header_size = 0;
7514 }
7515 else
7516 {
7517 splt = htab->root.splt;
7518 sgot = htab->root.sgotplt;
7519 srel = htab->root.srelplt;
7520
7521 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7522 plt_header_size = htab->plt_header_size;
7523 }
7524 BFD_ASSERT (splt != NULL && srel != NULL);
7525
7526 /* Fill in the entry in the procedure linkage table. */
7527 if (htab->symbian_p)
7528 {
7529 BFD_ASSERT (dynindx >= 0);
7530 put_arm_insn (htab, output_bfd,
7531 elf32_arm_symbian_plt_entry[0],
7532 splt->contents + root_plt->offset);
7533 bfd_put_32 (output_bfd,
7534 elf32_arm_symbian_plt_entry[1],
7535 splt->contents + root_plt->offset + 4);
7536
7537 /* Fill in the entry in the .rel.plt section. */
7538 rel.r_offset = (splt->output_section->vma
7539 + splt->output_offset
7540 + root_plt->offset + 4);
7541 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7542
7543 /* Get the index in the procedure linkage table which
7544 corresponds to this symbol. This is the index of this symbol
7545 in all the symbols for which we are making plt entries. The
7546 first entry in the procedure linkage table is reserved. */
7547 plt_index = ((root_plt->offset - plt_header_size)
7548 / htab->plt_entry_size);
7549 }
7550 else
7551 {
7552 bfd_vma got_offset, got_address, plt_address;
7553 bfd_vma got_displacement, initial_got_entry;
7554 bfd_byte * ptr;
7555
7556 BFD_ASSERT (sgot != NULL);
7557
7558 /* Get the offset into the .(i)got.plt table of the entry that
7559 corresponds to this function. */
7560 got_offset = (arm_plt->got_offset & -2);
7561
7562 /* Get the index in the procedure linkage table which
7563 corresponds to this symbol. This is the index of this symbol
7564 in all the symbols for which we are making plt entries.
7565 After the reserved .got.plt entries, all symbols appear in
7566 the same order as in .plt. */
7567 plt_index = (got_offset - got_header_size) / 4;
7568
7569 /* Calculate the address of the GOT entry. */
7570 got_address = (sgot->output_section->vma
7571 + sgot->output_offset
7572 + got_offset);
7573
7574 /* ...and the address of the PLT entry. */
7575 plt_address = (splt->output_section->vma
7576 + splt->output_offset
7577 + root_plt->offset);
7578
7579 ptr = splt->contents + root_plt->offset;
7580 if (htab->vxworks_p && info->shared)
7581 {
7582 unsigned int i;
7583 bfd_vma val;
7584
7585 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7586 {
7587 val = elf32_arm_vxworks_shared_plt_entry[i];
7588 if (i == 2)
7589 val |= got_address - sgot->output_section->vma;
7590 if (i == 5)
7591 val |= plt_index * RELOC_SIZE (htab);
7592 if (i == 2 || i == 5)
7593 bfd_put_32 (output_bfd, val, ptr);
7594 else
7595 put_arm_insn (htab, output_bfd, val, ptr);
7596 }
7597 }
7598 else if (htab->vxworks_p)
7599 {
7600 unsigned int i;
7601 bfd_vma val;
7602
7603 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7604 {
7605 val = elf32_arm_vxworks_exec_plt_entry[i];
7606 if (i == 2)
7607 val |= got_address;
7608 if (i == 4)
7609 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7610 if (i == 5)
7611 val |= plt_index * RELOC_SIZE (htab);
7612 if (i == 2 || i == 5)
7613 bfd_put_32 (output_bfd, val, ptr);
7614 else
7615 put_arm_insn (htab, output_bfd, val, ptr);
7616 }
7617
7618 loc = (htab->srelplt2->contents
7619 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7620
7621 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7622 referencing the GOT for this PLT entry. */
7623 rel.r_offset = plt_address + 8;
7624 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7625 rel.r_addend = got_offset;
7626 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7627 loc += RELOC_SIZE (htab);
7628
7629 /* Create the R_ARM_ABS32 relocation referencing the
7630 beginning of the PLT for this GOT entry. */
7631 rel.r_offset = got_address;
7632 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7633 rel.r_addend = 0;
7634 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7635 }
b38cadfb
NC
7636 else if (htab->nacl_p)
7637 {
7638 /* Calculate the displacement between the PLT slot and the
7639 common tail that's part of the special initial PLT slot. */
6034aab8 7640 int32_t tail_displacement
b38cadfb
NC
7641 = ((splt->output_section->vma + splt->output_offset
7642 + ARM_NACL_PLT_TAIL_OFFSET)
7643 - (plt_address + htab->plt_entry_size + 4));
7644 BFD_ASSERT ((tail_displacement & 3) == 0);
7645 tail_displacement >>= 2;
7646
7647 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7648 || (-tail_displacement & 0xff000000) == 0);
7649
7650 /* Calculate the displacement between the PLT slot and the entry
7651 in the GOT. The offset accounts for the value produced by
7652 adding to pc in the penultimate instruction of the PLT stub. */
6034aab8
RM
7653 got_displacement = (got_address
7654 - (plt_address + htab->plt_entry_size));
b38cadfb
NC
7655
7656 /* NaCl does not support interworking at all. */
7657 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7658
7659 put_arm_insn (htab, output_bfd,
7660 elf32_arm_nacl_plt_entry[0]
7661 | arm_movw_immediate (got_displacement),
7662 ptr + 0);
7663 put_arm_insn (htab, output_bfd,
7664 elf32_arm_nacl_plt_entry[1]
7665 | arm_movt_immediate (got_displacement),
7666 ptr + 4);
7667 put_arm_insn (htab, output_bfd,
7668 elf32_arm_nacl_plt_entry[2],
7669 ptr + 8);
7670 put_arm_insn (htab, output_bfd,
7671 elf32_arm_nacl_plt_entry[3]
7672 | (tail_displacement & 0x00ffffff),
7673 ptr + 12);
7674 }
34e77a92
RS
7675 else
7676 {
7677 /* Calculate the displacement between the PLT slot and the
7678 entry in the GOT. The eight-byte offset accounts for the
7679 value produced by adding to pc in the first instruction
7680 of the PLT stub. */
7681 got_displacement = got_address - (plt_address + 8);
7682
7683 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7684
7685 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7686 {
7687 put_thumb_insn (htab, output_bfd,
7688 elf32_arm_plt_thumb_stub[0], ptr - 4);
7689 put_thumb_insn (htab, output_bfd,
7690 elf32_arm_plt_thumb_stub[1], ptr - 2);
7691 }
7692
7693 put_arm_insn (htab, output_bfd,
7694 elf32_arm_plt_entry[0]
7695 | ((got_displacement & 0x0ff00000) >> 20),
7696 ptr + 0);
7697 put_arm_insn (htab, output_bfd,
7698 elf32_arm_plt_entry[1]
7699 | ((got_displacement & 0x000ff000) >> 12),
7700 ptr+ 4);
7701 put_arm_insn (htab, output_bfd,
7702 elf32_arm_plt_entry[2]
7703 | (got_displacement & 0x00000fff),
7704 ptr + 8);
7705#ifdef FOUR_WORD_PLT
7706 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7707#endif
7708 }
7709
7710 /* Fill in the entry in the .rel(a).(i)plt section. */
7711 rel.r_offset = got_address;
7712 rel.r_addend = 0;
7713 if (dynindx == -1)
7714 {
7715 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7716 The dynamic linker or static executable then calls SYM_VALUE
7717 to determine the correct run-time value of the .igot.plt entry. */
7718 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7719 initial_got_entry = sym_value;
7720 }
7721 else
7722 {
7723 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7724 initial_got_entry = (splt->output_section->vma
7725 + splt->output_offset);
7726 }
7727
7728 /* Fill in the entry in the global offset table. */
7729 bfd_put_32 (output_bfd, initial_got_entry,
7730 sgot->contents + got_offset);
7731 }
7732
7733 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7734 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7735}
7736
eb043451
PB
7737/* Some relocations map to different relocations depending on the
7738 target. Return the real relocation. */
8029a119 7739
eb043451
PB
7740static int
7741arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7742 int r_type)
7743{
7744 switch (r_type)
7745 {
7746 case R_ARM_TARGET1:
7747 if (globals->target1_is_rel)
7748 return R_ARM_REL32;
7749 else
7750 return R_ARM_ABS32;
7751
7752 case R_ARM_TARGET2:
7753 return globals->target2_reloc;
7754
7755 default:
7756 return r_type;
7757 }
7758}
eb043451 7759
ba93b8ac
DJ
7760/* Return the base VMA address which should be subtracted from real addresses
7761 when resolving @dtpoff relocation.
7762 This is PT_TLS segment p_vaddr. */
7763
7764static bfd_vma
7765dtpoff_base (struct bfd_link_info *info)
7766{
7767 /* If tls_sec is NULL, we should have signalled an error already. */
7768 if (elf_hash_table (info)->tls_sec == NULL)
7769 return 0;
7770 return elf_hash_table (info)->tls_sec->vma;
7771}
7772
7773/* Return the relocation value for @tpoff relocation
7774 if STT_TLS virtual address is ADDRESS. */
7775
7776static bfd_vma
7777tpoff (struct bfd_link_info *info, bfd_vma address)
7778{
7779 struct elf_link_hash_table *htab = elf_hash_table (info);
7780 bfd_vma base;
7781
7782 /* If tls_sec is NULL, we should have signalled an error already. */
7783 if (htab->tls_sec == NULL)
7784 return 0;
7785 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7786 return address - htab->tls_sec->vma + base;
7787}
7788
00a97672
RS
7789/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7790 VALUE is the relocation value. */
7791
7792static bfd_reloc_status_type
7793elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7794{
7795 if (value > 0xfff)
7796 return bfd_reloc_overflow;
7797
7798 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7799 bfd_put_32 (abfd, value, data);
7800 return bfd_reloc_ok;
7801}
7802
0855e32b
NS
7803/* Handle TLS relaxations. Relaxing is possible for symbols that use
7804 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7805 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7806
7807 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7808 is to then call final_link_relocate. Return other values in the
62672b10
NS
7809 case of error.
7810
7811 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7812 the pre-relaxed code. It would be nice if the relocs were updated
7813 to match the optimization. */
0855e32b 7814
b38cadfb 7815static bfd_reloc_status_type
0855e32b 7816elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 7817 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
7818 Elf_Internal_Rela *rel, unsigned long is_local)
7819{
7820 unsigned long insn;
b38cadfb 7821
0855e32b
NS
7822 switch (ELF32_R_TYPE (rel->r_info))
7823 {
7824 default:
7825 return bfd_reloc_notsupported;
b38cadfb 7826
0855e32b
NS
7827 case R_ARM_TLS_GOTDESC:
7828 if (is_local)
7829 insn = 0;
7830 else
7831 {
7832 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7833 if (insn & 1)
7834 insn -= 5; /* THUMB */
7835 else
7836 insn -= 8; /* ARM */
7837 }
7838 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7839 return bfd_reloc_continue;
7840
7841 case R_ARM_THM_TLS_DESCSEQ:
7842 /* Thumb insn. */
7843 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7844 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7845 {
7846 if (is_local)
7847 /* nop */
7848 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7849 }
7850 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7851 {
7852 if (is_local)
7853 /* nop */
7854 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7855 else
7856 /* ldr rx,[ry] */
7857 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7858 }
7859 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7860 {
7861 if (is_local)
7862 /* nop */
7863 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7864 else
7865 /* mov r0, rx */
7866 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7867 contents + rel->r_offset);
7868 }
7869 else
7870 {
7871 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7872 /* It's a 32 bit instruction, fetch the rest of it for
7873 error generation. */
7874 insn = (insn << 16)
7875 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7876 (*_bfd_error_handler)
7877 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7878 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7879 return bfd_reloc_notsupported;
7880 }
7881 break;
b38cadfb 7882
0855e32b
NS
7883 case R_ARM_TLS_DESCSEQ:
7884 /* arm insn. */
7885 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7886 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7887 {
7888 if (is_local)
7889 /* mov rx, ry */
7890 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7891 contents + rel->r_offset);
7892 }
7893 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7894 {
7895 if (is_local)
7896 /* nop */
7897 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7898 else
7899 /* ldr rx,[ry] */
7900 bfd_put_32 (input_bfd, insn & 0xfffff000,
7901 contents + rel->r_offset);
7902 }
7903 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7904 {
7905 if (is_local)
7906 /* nop */
7907 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7908 else
7909 /* mov r0, rx */
7910 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7911 contents + rel->r_offset);
7912 }
7913 else
7914 {
7915 (*_bfd_error_handler)
7916 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7917 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7918 return bfd_reloc_notsupported;
7919 }
7920 break;
7921
7922 case R_ARM_TLS_CALL:
7923 /* GD->IE relaxation, turn the instruction into 'nop' or
7924 'ldr r0, [pc,r0]' */
7925 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7926 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7927 break;
b38cadfb 7928
0855e32b
NS
7929 case R_ARM_THM_TLS_CALL:
7930 /* GD->IE relaxation */
7931 if (!is_local)
7932 /* add r0,pc; ldr r0, [r0] */
7933 insn = 0x44786800;
7934 else if (arch_has_thumb2_nop (globals))
7935 /* nop.w */
7936 insn = 0xf3af8000;
7937 else
7938 /* nop; nop */
7939 insn = 0xbf00bf00;
b38cadfb 7940
0855e32b
NS
7941 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7942 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7943 break;
7944 }
7945 return bfd_reloc_ok;
7946}
7947
4962c51a
MS
7948/* For a given value of n, calculate the value of G_n as required to
7949 deal with group relocations. We return it in the form of an
7950 encoded constant-and-rotation, together with the final residual. If n is
7951 specified as less than zero, then final_residual is filled with the
7952 input value and no further action is performed. */
7953
7954static bfd_vma
7955calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7956{
7957 int current_n;
7958 bfd_vma g_n;
7959 bfd_vma encoded_g_n = 0;
7960 bfd_vma residual = value; /* Also known as Y_n. */
7961
7962 for (current_n = 0; current_n <= n; current_n++)
7963 {
7964 int shift;
7965
7966 /* Calculate which part of the value to mask. */
7967 if (residual == 0)
7968 shift = 0;
7969 else
7970 {
7971 int msb;
7972
7973 /* Determine the most significant bit in the residual and
7974 align the resulting value to a 2-bit boundary. */
7975 for (msb = 30; msb >= 0; msb -= 2)
7976 if (residual & (3 << msb))
7977 break;
7978
7979 /* The desired shift is now (msb - 6), or zero, whichever
7980 is the greater. */
7981 shift = msb - 6;
7982 if (shift < 0)
7983 shift = 0;
7984 }
7985
7986 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7987 g_n = residual & (0xff << shift);
7988 encoded_g_n = (g_n >> shift)
7989 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7990
7991 /* Calculate the residual for the next time around. */
7992 residual &= ~g_n;
7993 }
7994
7995 *final_residual = residual;
7996
7997 return encoded_g_n;
7998}
7999
8000/* Given an ARM instruction, determine whether it is an ADD or a SUB.
8001 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 8002
4962c51a 8003static int
906e58ca 8004identify_add_or_sub (bfd_vma insn)
4962c51a
MS
8005{
8006 int opcode = insn & 0x1e00000;
8007
8008 if (opcode == 1 << 23) /* ADD */
8009 return 1;
8010
8011 if (opcode == 1 << 22) /* SUB */
8012 return -1;
8013
8014 return 0;
8015}
8016
252b5132 8017/* Perform a relocation as part of a final link. */
9b485d32 8018
252b5132 8019static bfd_reloc_status_type
57e8b36a
NC
8020elf32_arm_final_link_relocate (reloc_howto_type * howto,
8021 bfd * input_bfd,
8022 bfd * output_bfd,
8023 asection * input_section,
8024 bfd_byte * contents,
8025 Elf_Internal_Rela * rel,
8026 bfd_vma value,
8027 struct bfd_link_info * info,
8028 asection * sym_sec,
8029 const char * sym_name,
34e77a92
RS
8030 unsigned char st_type,
8031 enum arm_st_branch_type branch_type,
0945cdfd 8032 struct elf_link_hash_entry * h,
f2a9dd69 8033 bfd_boolean * unresolved_reloc_p,
8029a119 8034 char ** error_message)
252b5132
RH
8035{
8036 unsigned long r_type = howto->type;
8037 unsigned long r_symndx;
8038 bfd_byte * hit_data = contents + rel->r_offset;
252b5132 8039 bfd_vma * local_got_offsets;
0855e32b 8040 bfd_vma * local_tlsdesc_gotents;
34e77a92
RS
8041 asection * sgot;
8042 asection * splt;
252b5132 8043 asection * sreloc = NULL;
362d30a1 8044 asection * srelgot;
252b5132 8045 bfd_vma addend;
ba96a88f 8046 bfd_signed_vma signed_addend;
34e77a92
RS
8047 unsigned char dynreloc_st_type;
8048 bfd_vma dynreloc_value;
ba96a88f 8049 struct elf32_arm_link_hash_table * globals;
34e77a92
RS
8050 struct elf32_arm_link_hash_entry *eh;
8051 union gotplt_union *root_plt;
8052 struct arm_plt_info *arm_plt;
8053 bfd_vma plt_offset;
8054 bfd_vma gotplt_offset;
8055 bfd_boolean has_iplt_entry;
f21f3fe0 8056
9c504268 8057 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
8058 if (globals == NULL)
8059 return bfd_reloc_notsupported;
9c504268 8060
0ffa91dd
NC
8061 BFD_ASSERT (is_arm_elf (input_bfd));
8062
8063 /* Some relocation types map to different relocations depending on the
9c504268 8064 target. We pick the right one here. */
eb043451 8065 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
8066
8067 /* It is possible to have linker relaxations on some TLS access
8068 models. Update our information here. */
8069 r_type = elf32_arm_tls_transition (info, r_type, h);
8070
eb043451
PB
8071 if (r_type != howto->type)
8072 howto = elf32_arm_howto_from_type (r_type);
9c504268 8073
cac15327
NC
8074 /* If the start address has been set, then set the EF_ARM_HASENTRY
8075 flag. Setting this more than once is redundant, but the cost is
8076 not too high, and it keeps the code simple.
99e4ae17 8077
cac15327
NC
8078 The test is done here, rather than somewhere else, because the
8079 start address is only set just before the final link commences.
8080
8081 Note - if the user deliberately sets a start address of 0, the
8082 flag will not be set. */
8083 if (bfd_get_start_address (output_bfd) != 0)
8084 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 8085
34e77a92 8086 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 8087 sgot = globals->root.sgot;
252b5132 8088 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
8089 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8090
34e77a92
RS
8091 if (globals->root.dynamic_sections_created)
8092 srelgot = globals->root.srelgot;
8093 else
8094 srelgot = NULL;
8095
252b5132
RH
8096 r_symndx = ELF32_R_SYM (rel->r_info);
8097
4e7fd91e 8098 if (globals->use_rel)
ba96a88f 8099 {
4e7fd91e
PB
8100 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8101
8102 if (addend & ((howto->src_mask + 1) >> 1))
8103 {
8104 signed_addend = -1;
8105 signed_addend &= ~ howto->src_mask;
8106 signed_addend |= addend;
8107 }
8108 else
8109 signed_addend = addend;
ba96a88f
NC
8110 }
8111 else
4e7fd91e 8112 addend = signed_addend = rel->r_addend;
f21f3fe0 8113
34e77a92
RS
8114 /* Record the symbol information that should be used in dynamic
8115 relocations. */
8116 dynreloc_st_type = st_type;
8117 dynreloc_value = value;
8118 if (branch_type == ST_BRANCH_TO_THUMB)
8119 dynreloc_value |= 1;
8120
8121 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8122 VALUE appropriately for relocations that we resolve at link time. */
8123 has_iplt_entry = FALSE;
8124 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8125 && root_plt->offset != (bfd_vma) -1)
8126 {
8127 plt_offset = root_plt->offset;
8128 gotplt_offset = arm_plt->got_offset;
8129
8130 if (h == NULL || eh->is_iplt)
8131 {
8132 has_iplt_entry = TRUE;
8133 splt = globals->root.iplt;
8134
8135 /* Populate .iplt entries here, because not all of them will
8136 be seen by finish_dynamic_symbol. The lower bit is set if
8137 we have already populated the entry. */
8138 if (plt_offset & 1)
8139 plt_offset--;
8140 else
8141 {
8142 elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8143 -1, dynreloc_value);
8144 root_plt->offset |= 1;
8145 }
8146
8147 /* Static relocations always resolve to the .iplt entry. */
8148 st_type = STT_FUNC;
8149 value = (splt->output_section->vma
8150 + splt->output_offset
8151 + plt_offset);
8152 branch_type = ST_BRANCH_TO_ARM;
8153
8154 /* If there are non-call relocations that resolve to the .iplt
8155 entry, then all dynamic ones must too. */
8156 if (arm_plt->noncall_refcount != 0)
8157 {
8158 dynreloc_st_type = st_type;
8159 dynreloc_value = value;
8160 }
8161 }
8162 else
8163 /* We populate the .plt entry in finish_dynamic_symbol. */
8164 splt = globals->root.splt;
8165 }
8166 else
8167 {
8168 splt = NULL;
8169 plt_offset = (bfd_vma) -1;
8170 gotplt_offset = (bfd_vma) -1;
8171 }
8172
252b5132
RH
8173 switch (r_type)
8174 {
8175 case R_ARM_NONE:
28a094c2
DJ
8176 /* We don't need to find a value for this symbol. It's just a
8177 marker. */
8178 *unresolved_reloc_p = FALSE;
252b5132
RH
8179 return bfd_reloc_ok;
8180
00a97672
RS
8181 case R_ARM_ABS12:
8182 if (!globals->vxworks_p)
8183 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8184
252b5132
RH
8185 case R_ARM_PC24:
8186 case R_ARM_ABS32:
bb224fc3 8187 case R_ARM_ABS32_NOI:
252b5132 8188 case R_ARM_REL32:
bb224fc3 8189 case R_ARM_REL32_NOI:
5b5bb741
PB
8190 case R_ARM_CALL:
8191 case R_ARM_JUMP24:
dfc5f959 8192 case R_ARM_XPC25:
eb043451 8193 case R_ARM_PREL31:
7359ea65 8194 case R_ARM_PLT32:
7359ea65
DJ
8195 /* Handle relocations which should use the PLT entry. ABS32/REL32
8196 will use the symbol's value, which may point to a PLT entry, but we
8197 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
8198 branches in this object should go to it, except if the PLT is too
8199 far away, in which case a long branch stub should be inserted. */
bb224fc3 8200 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5fa9e92f 8201 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
8202 && r_type != R_ARM_CALL
8203 && r_type != R_ARM_JUMP24
8204 && r_type != R_ARM_PLT32)
34e77a92 8205 && plt_offset != (bfd_vma) -1)
7359ea65 8206 {
34e77a92
RS
8207 /* If we've created a .plt section, and assigned a PLT entry
8208 to this function, it must either be a STT_GNU_IFUNC reference
8209 or not be known to bind locally. In other cases, we should
8210 have cleared the PLT entry by now. */
8211 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
8212
8213 value = (splt->output_section->vma
8214 + splt->output_offset
34e77a92 8215 + plt_offset);
0945cdfd 8216 *unresolved_reloc_p = FALSE;
7359ea65
DJ
8217 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8218 contents, rel->r_offset, value,
00a97672 8219 rel->r_addend);
7359ea65
DJ
8220 }
8221
67687978
PB
8222 /* When generating a shared object or relocatable executable, these
8223 relocations are copied into the output file to be resolved at
8224 run time. */
8225 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 8226 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 8227 && !(globals->vxworks_p
3348747a
NS
8228 && strcmp (input_section->output_section->name,
8229 ".tls_vars") == 0)
bb224fc3 8230 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 8231 || !SYMBOL_CALLS_LOCAL (info, h))
fe33d2fa 8232 && (!strstr (input_section->name, STUB_SUFFIX))
7359ea65
DJ
8233 && (h == NULL
8234 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8235 || h->root.type != bfd_link_hash_undefweak)
8236 && r_type != R_ARM_PC24
5b5bb741
PB
8237 && r_type != R_ARM_CALL
8238 && r_type != R_ARM_JUMP24
ee06dc07 8239 && r_type != R_ARM_PREL31
7359ea65 8240 && r_type != R_ARM_PLT32)
252b5132 8241 {
947216bf 8242 Elf_Internal_Rela outrel;
b34976b6 8243 bfd_boolean skip, relocate;
f21f3fe0 8244
0945cdfd
DJ
8245 *unresolved_reloc_p = FALSE;
8246
34e77a92 8247 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 8248 {
83bac4b0
NC
8249 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8250 ! globals->use_rel);
f21f3fe0 8251
83bac4b0 8252 if (sreloc == NULL)
252b5132 8253 return bfd_reloc_notsupported;
252b5132 8254 }
f21f3fe0 8255
b34976b6
AM
8256 skip = FALSE;
8257 relocate = FALSE;
f21f3fe0 8258
00a97672 8259 outrel.r_addend = addend;
c629eae0
JJ
8260 outrel.r_offset =
8261 _bfd_elf_section_offset (output_bfd, info, input_section,
8262 rel->r_offset);
8263 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 8264 skip = TRUE;
0bb2d96a 8265 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 8266 skip = TRUE, relocate = TRUE;
252b5132
RH
8267 outrel.r_offset += (input_section->output_section->vma
8268 + input_section->output_offset);
f21f3fe0 8269
252b5132 8270 if (skip)
0bb2d96a 8271 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
8272 else if (h != NULL
8273 && h->dynindx != -1
7359ea65 8274 && (!info->shared
5e681ec4 8275 || !info->symbolic
f5385ebf 8276 || !h->def_regular))
5e681ec4 8277 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
8278 else
8279 {
a16385dc
MM
8280 int symbol;
8281
5e681ec4 8282 /* This symbol is local, or marked to become local. */
34e77a92 8283 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
a16385dc 8284 if (globals->symbian_p)
6366ff1e 8285 {
74541ad4
AM
8286 asection *osec;
8287
6366ff1e
MM
8288 /* On Symbian OS, the data segment and text segement
8289 can be relocated independently. Therefore, we
8290 must indicate the segment to which this
8291 relocation is relative. The BPABI allows us to
8292 use any symbol in the right segment; we just use
8293 the section symbol as it is convenient. (We
8294 cannot use the symbol given by "h" directly as it
74541ad4
AM
8295 will not appear in the dynamic symbol table.)
8296
8297 Note that the dynamic linker ignores the section
8298 symbol value, so we don't subtract osec->vma
8299 from the emitted reloc addend. */
10dbd1f3 8300 if (sym_sec)
74541ad4 8301 osec = sym_sec->output_section;
10dbd1f3 8302 else
74541ad4
AM
8303 osec = input_section->output_section;
8304 symbol = elf_section_data (osec)->dynindx;
8305 if (symbol == 0)
8306 {
8307 struct elf_link_hash_table *htab = elf_hash_table (info);
8308
8309 if ((osec->flags & SEC_READONLY) == 0
8310 && htab->data_index_section != NULL)
8311 osec = htab->data_index_section;
8312 else
8313 osec = htab->text_index_section;
8314 symbol = elf_section_data (osec)->dynindx;
8315 }
6366ff1e
MM
8316 BFD_ASSERT (symbol != 0);
8317 }
a16385dc
MM
8318 else
8319 /* On SVR4-ish systems, the dynamic loader cannot
8320 relocate the text and data segments independently,
8321 so the symbol does not matter. */
8322 symbol = 0;
34e77a92
RS
8323 if (dynreloc_st_type == STT_GNU_IFUNC)
8324 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8325 to the .iplt entry. Instead, every non-call reference
8326 must use an R_ARM_IRELATIVE relocation to obtain the
8327 correct run-time address. */
8328 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8329 else
8330 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
8331 if (globals->use_rel)
8332 relocate = TRUE;
8333 else
34e77a92 8334 outrel.r_addend += dynreloc_value;
252b5132 8335 }
f21f3fe0 8336
47beaa6a 8337 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 8338
f21f3fe0 8339 /* If this reloc is against an external symbol, we do not want to
252b5132 8340 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 8341 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
8342 if (! relocate)
8343 return bfd_reloc_ok;
9a5aca8c 8344
f21f3fe0 8345 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
8346 contents, rel->r_offset,
8347 dynreloc_value, (bfd_vma) 0);
252b5132
RH
8348 }
8349 else switch (r_type)
8350 {
00a97672
RS
8351 case R_ARM_ABS12:
8352 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8353
dfc5f959 8354 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
8355 case R_ARM_CALL:
8356 case R_ARM_JUMP24:
8029a119 8357 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 8358 case R_ARM_PLT32:
906e58ca 8359 {
906e58ca
NC
8360 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8361
dfc5f959 8362 if (r_type == R_ARM_XPC25)
252b5132 8363 {
dfc5f959
NC
8364 /* Check for Arm calling Arm function. */
8365 /* FIXME: Should we translate the instruction into a BL
8366 instruction instead ? */
35fc36a8 8367 if (branch_type != ST_BRANCH_TO_THUMB)
d003868e
AM
8368 (*_bfd_error_handler)
8369 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8370 input_bfd,
8371 h ? h->root.root.string : "(local)");
dfc5f959 8372 }
155d87d7 8373 else if (r_type == R_ARM_PC24)
dfc5f959
NC
8374 {
8375 /* Check for Arm calling Thumb function. */
35fc36a8 8376 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 8377 {
f2a9dd69
DJ
8378 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8379 output_bfd, input_section,
8380 hit_data, sym_sec, rel->r_offset,
8381 signed_addend, value,
8382 error_message))
8383 return bfd_reloc_ok;
8384 else
8385 return bfd_reloc_dangerous;
dfc5f959 8386 }
252b5132 8387 }
ba96a88f 8388
906e58ca 8389 /* Check if a stub has to be inserted because the
8029a119 8390 destination is too far or we are changing mode. */
155d87d7
CL
8391 if ( r_type == R_ARM_CALL
8392 || r_type == R_ARM_JUMP24
8393 || r_type == R_ARM_PLT32)
906e58ca 8394 {
fe33d2fa
CL
8395 enum elf32_arm_stub_type stub_type = arm_stub_none;
8396 struct elf32_arm_link_hash_entry *hash;
8397
8398 hash = (struct elf32_arm_link_hash_entry *) h;
8399 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
8400 st_type, &branch_type,
8401 hash, value, sym_sec,
fe33d2fa 8402 input_bfd, sym_name);
5fa9e92f 8403
fe33d2fa 8404 if (stub_type != arm_stub_none)
906e58ca
NC
8405 {
8406 /* The target is out of reach, so redirect the
8407 branch to the local stub for this function. */
906e58ca
NC
8408 stub_entry = elf32_arm_get_stub_entry (input_section,
8409 sym_sec, h,
fe33d2fa
CL
8410 rel, globals,
8411 stub_type);
9cd3e4e5
NC
8412 {
8413 if (stub_entry != NULL)
8414 value = (stub_entry->stub_offset
8415 + stub_entry->stub_sec->output_offset
8416 + stub_entry->stub_sec->output_section->vma);
8417
8418 if (plt_offset != (bfd_vma) -1)
8419 *unresolved_reloc_p = FALSE;
8420 }
906e58ca 8421 }
fe33d2fa
CL
8422 else
8423 {
8424 /* If the call goes through a PLT entry, make sure to
8425 check distance to the right destination address. */
34e77a92 8426 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
8427 {
8428 value = (splt->output_section->vma
8429 + splt->output_offset
34e77a92 8430 + plt_offset);
fe33d2fa
CL
8431 *unresolved_reloc_p = FALSE;
8432 /* The PLT entry is in ARM mode, regardless of the
8433 target function. */
35fc36a8 8434 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
8435 }
8436 }
906e58ca
NC
8437 }
8438
dea514f5
PB
8439 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8440 where:
8441 S is the address of the symbol in the relocation.
8442 P is address of the instruction being relocated.
8443 A is the addend (extracted from the instruction) in bytes.
8444
8445 S is held in 'value'.
8446 P is the base address of the section containing the
8447 instruction plus the offset of the reloc into that
8448 section, ie:
8449 (input_section->output_section->vma +
8450 input_section->output_offset +
8451 rel->r_offset).
8452 A is the addend, converted into bytes, ie:
8453 (signed_addend * 4)
8454
8455 Note: None of these operations have knowledge of the pipeline
8456 size of the processor, thus it is up to the assembler to
8457 encode this information into the addend. */
8458 value -= (input_section->output_section->vma
8459 + input_section->output_offset);
8460 value -= rel->r_offset;
4e7fd91e
PB
8461 if (globals->use_rel)
8462 value += (signed_addend << howto->size);
8463 else
8464 /* RELA addends do not have to be adjusted by howto->size. */
8465 value += signed_addend;
23080146 8466
dcb5e6e6
NC
8467 signed_addend = value;
8468 signed_addend >>= howto->rightshift;
9a5aca8c 8469
5ab79981 8470 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 8471 the next instruction unless a PLT entry will be created.
77b4f08f 8472 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
8473 The jump to the next instruction is optimized as a NOP depending
8474 on the architecture. */
ffcb4889 8475 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 8476 && plt_offset == (bfd_vma) -1)
77b4f08f 8477 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 8478 {
cd1dac3d
DG
8479 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8480
8481 if (arch_has_arm_nop (globals))
8482 value |= 0x0320f000;
8483 else
8484 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
8485 }
8486 else
59f2c4e7 8487 {
9b485d32 8488 /* Perform a signed range check. */
dcb5e6e6 8489 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
8490 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8491 return bfd_reloc_overflow;
9a5aca8c 8492
5ab79981 8493 addend = (value & 2);
39b41c9c 8494
5ab79981
PB
8495 value = (signed_addend & howto->dst_mask)
8496 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 8497
5ab79981
PB
8498 if (r_type == R_ARM_CALL)
8499 {
155d87d7 8500 /* Set the H bit in the BLX instruction. */
35fc36a8 8501 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
8502 {
8503 if (addend)
8504 value |= (1 << 24);
8505 else
8506 value &= ~(bfd_vma)(1 << 24);
8507 }
8508
5ab79981 8509 /* Select the correct instruction (BL or BLX). */
906e58ca 8510 /* Only if we are not handling a BL to a stub. In this
8029a119 8511 case, mode switching is performed by the stub. */
35fc36a8 8512 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 8513 value |= (1 << 28);
63e1a0fc 8514 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
8515 {
8516 value &= ~(bfd_vma)(1 << 28);
8517 value |= (1 << 24);
8518 }
39b41c9c
PB
8519 }
8520 }
906e58ca 8521 }
252b5132 8522 break;
f21f3fe0 8523
252b5132
RH
8524 case R_ARM_ABS32:
8525 value += addend;
35fc36a8 8526 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
8527 value |= 1;
8528 break;
f21f3fe0 8529
bb224fc3
MS
8530 case R_ARM_ABS32_NOI:
8531 value += addend;
8532 break;
8533
252b5132 8534 case R_ARM_REL32:
a8bc6c78 8535 value += addend;
35fc36a8 8536 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 8537 value |= 1;
252b5132 8538 value -= (input_section->output_section->vma
62efb346 8539 + input_section->output_offset + rel->r_offset);
252b5132 8540 break;
eb043451 8541
bb224fc3
MS
8542 case R_ARM_REL32_NOI:
8543 value += addend;
8544 value -= (input_section->output_section->vma
8545 + input_section->output_offset + rel->r_offset);
8546 break;
8547
eb043451
PB
8548 case R_ARM_PREL31:
8549 value -= (input_section->output_section->vma
8550 + input_section->output_offset + rel->r_offset);
8551 value += signed_addend;
8552 if (! h || h->root.type != bfd_link_hash_undefweak)
8553 {
8029a119 8554 /* Check for overflow. */
eb043451
PB
8555 if ((value ^ (value >> 1)) & (1 << 30))
8556 return bfd_reloc_overflow;
8557 }
8558 value &= 0x7fffffff;
8559 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 8560 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
8561 value |= 1;
8562 break;
252b5132 8563 }
f21f3fe0 8564
252b5132
RH
8565 bfd_put_32 (input_bfd, value, hit_data);
8566 return bfd_reloc_ok;
8567
8568 case R_ARM_ABS8:
8569 value += addend;
4e67d4ca
DG
8570
8571 /* There is no way to tell whether the user intended to use a signed or
8572 unsigned addend. When checking for overflow we accept either,
8573 as specified by the AAELF. */
8574 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
8575 return bfd_reloc_overflow;
8576
8577 bfd_put_8 (input_bfd, value, hit_data);
8578 return bfd_reloc_ok;
8579
8580 case R_ARM_ABS16:
8581 value += addend;
8582
4e67d4ca
DG
8583 /* See comment for R_ARM_ABS8. */
8584 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
8585 return bfd_reloc_overflow;
8586
8587 bfd_put_16 (input_bfd, value, hit_data);
8588 return bfd_reloc_ok;
8589
252b5132 8590 case R_ARM_THM_ABS5:
9b485d32 8591 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
8592 if (globals->use_rel)
8593 {
8594 /* Need to refetch addend. */
8595 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8596 /* ??? Need to determine shift amount from operand size. */
8597 addend >>= howto->rightshift;
8598 }
252b5132
RH
8599 value += addend;
8600
8601 /* ??? Isn't value unsigned? */
8602 if ((long) value > 0x1f || (long) value < -0x10)
8603 return bfd_reloc_overflow;
8604
8605 /* ??? Value needs to be properly shifted into place first. */
8606 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8607 bfd_put_16 (input_bfd, value, hit_data);
8608 return bfd_reloc_ok;
8609
2cab6cc3
MS
8610 case R_ARM_THM_ALU_PREL_11_0:
8611 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8612 {
8613 bfd_vma insn;
8614 bfd_signed_vma relocation;
8615
8616 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8617 | bfd_get_16 (input_bfd, hit_data + 2);
8618
8619 if (globals->use_rel)
8620 {
8621 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8622 | ((insn & (1 << 26)) >> 15);
8623 if (insn & 0xf00000)
8624 signed_addend = -signed_addend;
8625 }
8626
8627 relocation = value + signed_addend;
79f08007
YZ
8628 relocation -= Pa (input_section->output_section->vma
8629 + input_section->output_offset
8630 + rel->r_offset);
2cab6cc3
MS
8631
8632 value = abs (relocation);
8633
8634 if (value >= 0x1000)
8635 return bfd_reloc_overflow;
8636
8637 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8638 | ((value & 0x700) << 4)
8639 | ((value & 0x800) << 15);
8640 if (relocation < 0)
8641 insn |= 0xa00000;
8642
8643 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8644 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8645
8646 return bfd_reloc_ok;
8647 }
8648
e1ec24c6
NC
8649 case R_ARM_THM_PC8:
8650 /* PR 10073: This reloc is not generated by the GNU toolchain,
8651 but it is supported for compatibility with third party libraries
8652 generated by other compilers, specifically the ARM/IAR. */
8653 {
8654 bfd_vma insn;
8655 bfd_signed_vma relocation;
8656
8657 insn = bfd_get_16 (input_bfd, hit_data);
8658
8659 if (globals->use_rel)
79f08007 8660 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
8661
8662 relocation = value + addend;
79f08007
YZ
8663 relocation -= Pa (input_section->output_section->vma
8664 + input_section->output_offset
8665 + rel->r_offset);
e1ec24c6
NC
8666
8667 value = abs (relocation);
8668
8669 /* We do not check for overflow of this reloc. Although strictly
8670 speaking this is incorrect, it appears to be necessary in order
8671 to work with IAR generated relocs. Since GCC and GAS do not
8672 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8673 a problem for them. */
8674 value &= 0x3fc;
8675
8676 insn = (insn & 0xff00) | (value >> 2);
8677
8678 bfd_put_16 (input_bfd, insn, hit_data);
8679
8680 return bfd_reloc_ok;
8681 }
8682
2cab6cc3
MS
8683 case R_ARM_THM_PC12:
8684 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8685 {
8686 bfd_vma insn;
8687 bfd_signed_vma relocation;
8688
8689 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8690 | bfd_get_16 (input_bfd, hit_data + 2);
8691
8692 if (globals->use_rel)
8693 {
8694 signed_addend = insn & 0xfff;
8695 if (!(insn & (1 << 23)))
8696 signed_addend = -signed_addend;
8697 }
8698
8699 relocation = value + signed_addend;
79f08007
YZ
8700 relocation -= Pa (input_section->output_section->vma
8701 + input_section->output_offset
8702 + rel->r_offset);
2cab6cc3
MS
8703
8704 value = abs (relocation);
8705
8706 if (value >= 0x1000)
8707 return bfd_reloc_overflow;
8708
8709 insn = (insn & 0xff7ff000) | value;
8710 if (relocation >= 0)
8711 insn |= (1 << 23);
8712
8713 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8714 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8715
8716 return bfd_reloc_ok;
8717 }
8718
dfc5f959 8719 case R_ARM_THM_XPC22:
c19d1205 8720 case R_ARM_THM_CALL:
bd97cb95 8721 case R_ARM_THM_JUMP24:
dfc5f959 8722 /* Thumb BL (branch long instruction). */
252b5132 8723 {
b34976b6 8724 bfd_vma relocation;
e95de063 8725 bfd_vma reloc_sign;
b34976b6
AM
8726 bfd_boolean overflow = FALSE;
8727 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8728 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
8729 bfd_signed_vma reloc_signed_max;
8730 bfd_signed_vma reloc_signed_min;
b34976b6 8731 bfd_vma check;
252b5132 8732 bfd_signed_vma signed_check;
e95de063 8733 int bitsize;
cd1dac3d 8734 const int thumb2 = using_thumb2 (globals);
252b5132 8735
5ab79981 8736 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
8737 the next instruction unless a PLT entry will be created.
8738 The jump to the next instruction is optimized as a NOP.W for
8739 Thumb-2 enabled architectures. */
19540007 8740 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 8741 && plt_offset == (bfd_vma) -1)
5ab79981 8742 {
cd1dac3d
DG
8743 if (arch_has_thumb2_nop (globals))
8744 {
8745 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8746 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8747 }
8748 else
8749 {
8750 bfd_put_16 (input_bfd, 0xe000, hit_data);
8751 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8752 }
5ab79981
PB
8753 return bfd_reloc_ok;
8754 }
8755
e95de063
MS
8756 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8757 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
8758 if (globals->use_rel)
8759 {
e95de063
MS
8760 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8761 bfd_vma upper = upper_insn & 0x3ff;
8762 bfd_vma lower = lower_insn & 0x7ff;
8763 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8764 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8765 bfd_vma i1 = j1 ^ s ? 0 : 1;
8766 bfd_vma i2 = j2 ^ s ? 0 : 1;
8767
8768 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8769 /* Sign extend. */
8770 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8771
4e7fd91e
PB
8772 signed_addend = addend;
8773 }
cb1afa5c 8774
dfc5f959
NC
8775 if (r_type == R_ARM_THM_XPC22)
8776 {
8777 /* Check for Thumb to Thumb call. */
8778 /* FIXME: Should we translate the instruction into a BL
8779 instruction instead ? */
35fc36a8 8780 if (branch_type == ST_BRANCH_TO_THUMB)
d003868e
AM
8781 (*_bfd_error_handler)
8782 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8783 input_bfd,
8784 h ? h->root.root.string : "(local)");
dfc5f959
NC
8785 }
8786 else
252b5132 8787 {
dfc5f959
NC
8788 /* If it is not a call to Thumb, assume call to Arm.
8789 If it is a call relative to a section name, then it is not a
b7693d02
DJ
8790 function call at all, but rather a long jump. Calls through
8791 the PLT do not require stubs. */
34e77a92 8792 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 8793 {
bd97cb95 8794 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
8795 {
8796 /* Convert BL to BLX. */
8797 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8798 }
155d87d7
CL
8799 else if (( r_type != R_ARM_THM_CALL)
8800 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
8801 {
8802 if (elf32_thumb_to_arm_stub
8803 (info, sym_name, input_bfd, output_bfd, input_section,
8804 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8805 error_message))
8806 return bfd_reloc_ok;
8807 else
8808 return bfd_reloc_dangerous;
8809 }
da5938a2 8810 }
35fc36a8
RS
8811 else if (branch_type == ST_BRANCH_TO_THUMB
8812 && globals->use_blx
bd97cb95 8813 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
8814 {
8815 /* Make sure this is a BL. */
8816 lower_insn |= 0x1800;
8817 }
252b5132 8818 }
f21f3fe0 8819
fe33d2fa 8820 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 8821 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
8822 {
8823 /* Check if a stub has to be inserted because the destination
8029a119 8824 is too far. */
fe33d2fa
CL
8825 struct elf32_arm_stub_hash_entry *stub_entry;
8826 struct elf32_arm_link_hash_entry *hash;
8827
8828 hash = (struct elf32_arm_link_hash_entry *) h;
8829
8830 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
8831 st_type, &branch_type,
8832 hash, value, sym_sec,
fe33d2fa
CL
8833 input_bfd, sym_name);
8834
8835 if (stub_type != arm_stub_none)
906e58ca
NC
8836 {
8837 /* The target is out of reach or we are changing modes, so
8838 redirect the branch to the local stub for this
8839 function. */
8840 stub_entry = elf32_arm_get_stub_entry (input_section,
8841 sym_sec, h,
fe33d2fa
CL
8842 rel, globals,
8843 stub_type);
906e58ca 8844 if (stub_entry != NULL)
9cd3e4e5
NC
8845 {
8846 value = (stub_entry->stub_offset
8847 + stub_entry->stub_sec->output_offset
8848 + stub_entry->stub_sec->output_section->vma);
8849
8850 if (plt_offset != (bfd_vma) -1)
8851 *unresolved_reloc_p = FALSE;
8852 }
906e58ca 8853
f4ac8484 8854 /* If this call becomes a call to Arm, force BLX. */
155d87d7 8855 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
8856 {
8857 if ((stub_entry
8858 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 8859 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
8860 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8861 }
906e58ca
NC
8862 }
8863 }
8864
fe33d2fa 8865 /* Handle calls via the PLT. */
34e77a92 8866 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
8867 {
8868 value = (splt->output_section->vma
8869 + splt->output_offset
34e77a92 8870 + plt_offset);
fe33d2fa
CL
8871
8872 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8873 {
8874 /* If the Thumb BLX instruction is available, convert
8875 the BL to a BLX instruction to call the ARM-mode
8876 PLT entry. */
8877 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 8878 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
8879 }
8880 else
8881 {
8882 /* Target the Thumb stub before the ARM PLT entry. */
8883 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 8884 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa
CL
8885 }
8886 *unresolved_reloc_p = FALSE;
8887 }
8888
ba96a88f 8889 relocation = value + signed_addend;
f21f3fe0 8890
252b5132 8891 relocation -= (input_section->output_section->vma
ba96a88f
NC
8892 + input_section->output_offset
8893 + rel->r_offset);
9a5aca8c 8894
252b5132
RH
8895 check = relocation >> howto->rightshift;
8896
8897 /* If this is a signed value, the rightshift just dropped
8898 leading 1 bits (assuming twos complement). */
8899 if ((bfd_signed_vma) relocation >= 0)
8900 signed_check = check;
8901 else
8902 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8903
e95de063
MS
8904 /* Calculate the permissable maximum and minimum values for
8905 this relocation according to whether we're relocating for
8906 Thumb-2 or not. */
8907 bitsize = howto->bitsize;
8908 if (!thumb2)
8909 bitsize -= 2;
f6ebfac0 8910 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
8911 reloc_signed_min = ~reloc_signed_max;
8912
252b5132 8913 /* Assumes two's complement. */
ba96a88f 8914 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 8915 overflow = TRUE;
252b5132 8916
bd97cb95 8917 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
8918 /* For a BLX instruction, make sure that the relocation is rounded up
8919 to a word boundary. This follows the semantics of the instruction
8920 which specifies that bit 1 of the target address will come from bit
8921 1 of the base address. */
8922 relocation = (relocation + 2) & ~ 3;
cb1afa5c 8923
e95de063
MS
8924 /* Put RELOCATION back into the insn. Assumes two's complement.
8925 We use the Thumb-2 encoding, which is safe even if dealing with
8926 a Thumb-1 instruction by virtue of our overflow check above. */
8927 reloc_sign = (signed_check < 0) ? 1 : 0;
8928 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8929 | ((relocation >> 12) & 0x3ff)
8930 | (reloc_sign << 10);
906e58ca 8931 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
e95de063
MS
8932 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8933 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8934 | ((relocation >> 1) & 0x7ff);
c62e1cc3 8935
252b5132
RH
8936 /* Put the relocated value back in the object file: */
8937 bfd_put_16 (input_bfd, upper_insn, hit_data);
8938 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8939
8940 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8941 }
8942 break;
8943
c19d1205
ZW
8944 case R_ARM_THM_JUMP19:
8945 /* Thumb32 conditional branch instruction. */
8946 {
8947 bfd_vma relocation;
8948 bfd_boolean overflow = FALSE;
8949 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8950 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
8951 bfd_signed_vma reloc_signed_max = 0xffffe;
8952 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205
ZW
8953 bfd_signed_vma signed_check;
8954
8955 /* Need to refetch the addend, reconstruct the top three bits,
8956 and squish the two 11 bit pieces together. */
8957 if (globals->use_rel)
8958 {
8959 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 8960 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
8961 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8962 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8963 bfd_vma lower = (lower_insn & 0x07ff);
8964
a00a1f35
MS
8965 upper |= J1 << 6;
8966 upper |= J2 << 7;
8967 upper |= (!S) << 8;
c19d1205
ZW
8968 upper -= 0x0100; /* Sign extend. */
8969
8970 addend = (upper << 12) | (lower << 1);
8971 signed_addend = addend;
8972 }
8973
bd97cb95 8974 /* Handle calls via the PLT. */
34e77a92 8975 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
8976 {
8977 value = (splt->output_section->vma
8978 + splt->output_offset
34e77a92 8979 + plt_offset);
bd97cb95
DJ
8980 /* Target the Thumb stub before the ARM PLT entry. */
8981 value -= PLT_THUMB_STUB_SIZE;
8982 *unresolved_reloc_p = FALSE;
8983 }
8984
c19d1205
ZW
8985 /* ??? Should handle interworking? GCC might someday try to
8986 use this for tail calls. */
8987
8988 relocation = value + signed_addend;
8989 relocation -= (input_section->output_section->vma
8990 + input_section->output_offset
8991 + rel->r_offset);
a00a1f35 8992 signed_check = (bfd_signed_vma) relocation;
c19d1205 8993
c19d1205
ZW
8994 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8995 overflow = TRUE;
8996
8997 /* Put RELOCATION back into the insn. */
8998 {
8999 bfd_vma S = (relocation & 0x00100000) >> 20;
9000 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9001 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9002 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9003 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9004
a00a1f35 9005 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
9006 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9007 }
9008
9009 /* Put the relocated value back in the object file: */
9010 bfd_put_16 (input_bfd, upper_insn, hit_data);
9011 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9012
9013 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9014 }
9015
9016 case R_ARM_THM_JUMP11:
9017 case R_ARM_THM_JUMP8:
9018 case R_ARM_THM_JUMP6:
51c5503b
NC
9019 /* Thumb B (branch) instruction). */
9020 {
6cf9e9fe 9021 bfd_signed_vma relocation;
51c5503b
NC
9022 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9023 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
9024 bfd_signed_vma signed_check;
9025
c19d1205
ZW
9026 /* CZB cannot jump backward. */
9027 if (r_type == R_ARM_THM_JUMP6)
9028 reloc_signed_min = 0;
9029
4e7fd91e 9030 if (globals->use_rel)
6cf9e9fe 9031 {
4e7fd91e
PB
9032 /* Need to refetch addend. */
9033 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9034 if (addend & ((howto->src_mask + 1) >> 1))
9035 {
9036 signed_addend = -1;
9037 signed_addend &= ~ howto->src_mask;
9038 signed_addend |= addend;
9039 }
9040 else
9041 signed_addend = addend;
9042 /* The value in the insn has been right shifted. We need to
9043 undo this, so that we can perform the address calculation
9044 in terms of bytes. */
9045 signed_addend <<= howto->rightshift;
6cf9e9fe 9046 }
6cf9e9fe 9047 relocation = value + signed_addend;
51c5503b
NC
9048
9049 relocation -= (input_section->output_section->vma
9050 + input_section->output_offset
9051 + rel->r_offset);
9052
6cf9e9fe
NC
9053 relocation >>= howto->rightshift;
9054 signed_check = relocation;
c19d1205
ZW
9055
9056 if (r_type == R_ARM_THM_JUMP6)
9057 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9058 else
9059 relocation &= howto->dst_mask;
51c5503b 9060 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 9061
51c5503b
NC
9062 bfd_put_16 (input_bfd, relocation, hit_data);
9063
9064 /* Assumes two's complement. */
9065 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9066 return bfd_reloc_overflow;
9067
9068 return bfd_reloc_ok;
9069 }
cedb70c5 9070
8375c36b
PB
9071 case R_ARM_ALU_PCREL7_0:
9072 case R_ARM_ALU_PCREL15_8:
9073 case R_ARM_ALU_PCREL23_15:
9074 {
9075 bfd_vma insn;
9076 bfd_vma relocation;
9077
9078 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
9079 if (globals->use_rel)
9080 {
9081 /* Extract the addend. */
9082 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9083 signed_addend = addend;
9084 }
8375c36b
PB
9085 relocation = value + signed_addend;
9086
9087 relocation -= (input_section->output_section->vma
9088 + input_section->output_offset
9089 + rel->r_offset);
9090 insn = (insn & ~0xfff)
9091 | ((howto->bitpos << 7) & 0xf00)
9092 | ((relocation >> howto->bitpos) & 0xff);
9093 bfd_put_32 (input_bfd, value, hit_data);
9094 }
9095 return bfd_reloc_ok;
9096
252b5132
RH
9097 case R_ARM_GNU_VTINHERIT:
9098 case R_ARM_GNU_VTENTRY:
9099 return bfd_reloc_ok;
9100
c19d1205 9101 case R_ARM_GOTOFF32:
252b5132
RH
9102 /* Relocation is relative to the start of the
9103 global offset table. */
9104
9105 BFD_ASSERT (sgot != NULL);
9106 if (sgot == NULL)
9107 return bfd_reloc_notsupported;
9a5aca8c 9108
cedb70c5 9109 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
9110 address by one, so that attempts to call the function pointer will
9111 correctly interpret it as Thumb code. */
35fc36a8 9112 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
9113 value += 1;
9114
252b5132
RH
9115 /* Note that sgot->output_offset is not involved in this
9116 calculation. We always want the start of .got. If we
9117 define _GLOBAL_OFFSET_TABLE in a different way, as is
9118 permitted by the ABI, we might have to change this
9b485d32 9119 calculation. */
252b5132 9120 value -= sgot->output_section->vma;
f21f3fe0 9121 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9122 contents, rel->r_offset, value,
00a97672 9123 rel->r_addend);
252b5132
RH
9124
9125 case R_ARM_GOTPC:
a7c10850 9126 /* Use global offset table as symbol value. */
252b5132 9127 BFD_ASSERT (sgot != NULL);
f21f3fe0 9128
252b5132
RH
9129 if (sgot == NULL)
9130 return bfd_reloc_notsupported;
9131
0945cdfd 9132 *unresolved_reloc_p = FALSE;
252b5132 9133 value = sgot->output_section->vma;
f21f3fe0 9134 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9135 contents, rel->r_offset, value,
00a97672 9136 rel->r_addend);
f21f3fe0 9137
252b5132 9138 case R_ARM_GOT32:
eb043451 9139 case R_ARM_GOT_PREL:
252b5132 9140 /* Relocation is to the entry for this symbol in the
9b485d32 9141 global offset table. */
252b5132
RH
9142 if (sgot == NULL)
9143 return bfd_reloc_notsupported;
f21f3fe0 9144
34e77a92
RS
9145 if (dynreloc_st_type == STT_GNU_IFUNC
9146 && plt_offset != (bfd_vma) -1
9147 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9148 {
9149 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9150 symbol, and the relocation resolves directly to the runtime
9151 target rather than to the .iplt entry. This means that any
9152 .got entry would be the same value as the .igot.plt entry,
9153 so there's no point creating both. */
9154 sgot = globals->root.igotplt;
9155 value = sgot->output_offset + gotplt_offset;
9156 }
9157 else if (h != NULL)
252b5132
RH
9158 {
9159 bfd_vma off;
f21f3fe0 9160
252b5132
RH
9161 off = h->got.offset;
9162 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 9163 if ((off & 1) != 0)
252b5132 9164 {
b436d854
RS
9165 /* We have already processsed one GOT relocation against
9166 this symbol. */
9167 off &= ~1;
9168 if (globals->root.dynamic_sections_created
9169 && !SYMBOL_REFERENCES_LOCAL (info, h))
9170 *unresolved_reloc_p = FALSE;
9171 }
9172 else
9173 {
9174 Elf_Internal_Rela outrel;
9175
9176 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9177 {
9178 /* If the symbol doesn't resolve locally in a static
9179 object, we have an undefined reference. If the
9180 symbol doesn't resolve locally in a dynamic object,
9181 it should be resolved by the dynamic linker. */
9182 if (globals->root.dynamic_sections_created)
9183 {
9184 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9185 *unresolved_reloc_p = FALSE;
9186 }
9187 else
9188 outrel.r_info = 0;
9189 outrel.r_addend = 0;
9190 }
252b5132
RH
9191 else
9192 {
34e77a92
RS
9193 if (dynreloc_st_type == STT_GNU_IFUNC)
9194 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9195 else if (info->shared)
9196 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9197 else
9198 outrel.r_info = 0;
9199 outrel.r_addend = dynreloc_value;
b436d854 9200 }
ee29b9fb 9201
b436d854
RS
9202 /* The GOT entry is initialized to zero by default.
9203 See if we should install a different value. */
9204 if (outrel.r_addend != 0
9205 && (outrel.r_info == 0 || globals->use_rel))
9206 {
9207 bfd_put_32 (output_bfd, outrel.r_addend,
9208 sgot->contents + off);
9209 outrel.r_addend = 0;
252b5132 9210 }
f21f3fe0 9211
b436d854
RS
9212 if (outrel.r_info != 0)
9213 {
9214 outrel.r_offset = (sgot->output_section->vma
9215 + sgot->output_offset
9216 + off);
9217 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9218 }
9219 h->got.offset |= 1;
9220 }
252b5132
RH
9221 value = sgot->output_offset + off;
9222 }
9223 else
9224 {
9225 bfd_vma off;
f21f3fe0 9226
252b5132
RH
9227 BFD_ASSERT (local_got_offsets != NULL &&
9228 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 9229
252b5132 9230 off = local_got_offsets[r_symndx];
f21f3fe0 9231
252b5132
RH
9232 /* The offset must always be a multiple of 4. We use the
9233 least significant bit to record whether we have already
9b485d32 9234 generated the necessary reloc. */
252b5132
RH
9235 if ((off & 1) != 0)
9236 off &= ~1;
9237 else
9238 {
00a97672 9239 if (globals->use_rel)
34e77a92 9240 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
f21f3fe0 9241
34e77a92 9242 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
252b5132 9243 {
947216bf 9244 Elf_Internal_Rela outrel;
f21f3fe0 9245
34e77a92 9246 outrel.r_addend = addend + dynreloc_value;
252b5132 9247 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 9248 + sgot->output_offset
252b5132 9249 + off);
34e77a92
RS
9250 if (dynreloc_st_type == STT_GNU_IFUNC)
9251 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9252 else
9253 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
47beaa6a 9254 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 9255 }
f21f3fe0 9256
252b5132
RH
9257 local_got_offsets[r_symndx] |= 1;
9258 }
f21f3fe0 9259
252b5132
RH
9260 value = sgot->output_offset + off;
9261 }
eb043451
PB
9262 if (r_type != R_ARM_GOT32)
9263 value += sgot->output_section->vma;
9a5aca8c 9264
f21f3fe0 9265 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9266 contents, rel->r_offset, value,
00a97672 9267 rel->r_addend);
f21f3fe0 9268
ba93b8ac
DJ
9269 case R_ARM_TLS_LDO32:
9270 value = value - dtpoff_base (info);
9271
9272 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
9273 contents, rel->r_offset, value,
9274 rel->r_addend);
ba93b8ac
DJ
9275
9276 case R_ARM_TLS_LDM32:
9277 {
9278 bfd_vma off;
9279
362d30a1 9280 if (sgot == NULL)
ba93b8ac
DJ
9281 abort ();
9282
9283 off = globals->tls_ldm_got.offset;
9284
9285 if ((off & 1) != 0)
9286 off &= ~1;
9287 else
9288 {
9289 /* If we don't know the module number, create a relocation
9290 for it. */
9291 if (info->shared)
9292 {
9293 Elf_Internal_Rela outrel;
ba93b8ac 9294
362d30a1 9295 if (srelgot == NULL)
ba93b8ac
DJ
9296 abort ();
9297
00a97672 9298 outrel.r_addend = 0;
362d30a1
RS
9299 outrel.r_offset = (sgot->output_section->vma
9300 + sgot->output_offset + off);
ba93b8ac
DJ
9301 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9302
00a97672
RS
9303 if (globals->use_rel)
9304 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9305 sgot->contents + off);
ba93b8ac 9306
47beaa6a 9307 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9308 }
9309 else
362d30a1 9310 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
9311
9312 globals->tls_ldm_got.offset |= 1;
9313 }
9314
362d30a1 9315 value = sgot->output_section->vma + sgot->output_offset + off
ba93b8ac
DJ
9316 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9317
9318 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9319 contents, rel->r_offset, value,
00a97672 9320 rel->r_addend);
ba93b8ac
DJ
9321 }
9322
0855e32b
NS
9323 case R_ARM_TLS_CALL:
9324 case R_ARM_THM_TLS_CALL:
ba93b8ac
DJ
9325 case R_ARM_TLS_GD32:
9326 case R_ARM_TLS_IE32:
0855e32b
NS
9327 case R_ARM_TLS_GOTDESC:
9328 case R_ARM_TLS_DESCSEQ:
9329 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 9330 {
0855e32b
NS
9331 bfd_vma off, offplt;
9332 int indx = 0;
ba93b8ac
DJ
9333 char tls_type;
9334
0855e32b 9335 BFD_ASSERT (sgot != NULL);
ba93b8ac 9336
ba93b8ac
DJ
9337 if (h != NULL)
9338 {
9339 bfd_boolean dyn;
9340 dyn = globals->root.dynamic_sections_created;
9341 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9342 && (!info->shared
9343 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9344 {
9345 *unresolved_reloc_p = FALSE;
9346 indx = h->dynindx;
9347 }
9348 off = h->got.offset;
0855e32b 9349 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
9350 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9351 }
9352 else
9353 {
0855e32b 9354 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 9355 off = local_got_offsets[r_symndx];
0855e32b 9356 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
9357 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9358 }
9359
0855e32b 9360 /* Linker relaxations happens from one of the
b38cadfb 9361 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
0855e32b 9362 if (ELF32_R_TYPE(rel->r_info) != r_type)
b38cadfb 9363 tls_type = GOT_TLS_IE;
0855e32b
NS
9364
9365 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
9366
9367 if ((off & 1) != 0)
9368 off &= ~1;
9369 else
9370 {
9371 bfd_boolean need_relocs = FALSE;
9372 Elf_Internal_Rela outrel;
ba93b8ac
DJ
9373 int cur_off = off;
9374
9375 /* The GOT entries have not been initialized yet. Do it
9376 now, and emit any relocations. If both an IE GOT and a
9377 GD GOT are necessary, we emit the GD first. */
9378
9379 if ((info->shared || indx != 0)
9380 && (h == NULL
9381 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9382 || h->root.type != bfd_link_hash_undefweak))
9383 {
9384 need_relocs = TRUE;
0855e32b 9385 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
9386 }
9387
0855e32b
NS
9388 if (tls_type & GOT_TLS_GDESC)
9389 {
47beaa6a
RS
9390 bfd_byte *loc;
9391
0855e32b
NS
9392 /* We should have relaxed, unless this is an undefined
9393 weak symbol. */
9394 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9395 || info->shared);
9396 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9397 <= globals->root.sgotplt->size);
9398
9399 outrel.r_addend = 0;
9400 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9401 + globals->root.sgotplt->output_offset
9402 + offplt
9403 + globals->sgotplt_jump_table_size);
b38cadfb 9404
0855e32b
NS
9405 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9406 sreloc = globals->root.srelplt;
9407 loc = sreloc->contents;
9408 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9409 BFD_ASSERT (loc + RELOC_SIZE (globals)
9410 <= sreloc->contents + sreloc->size);
9411
9412 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9413
9414 /* For globals, the first word in the relocation gets
9415 the relocation index and the top bit set, or zero,
9416 if we're binding now. For locals, it gets the
9417 symbol's offset in the tls section. */
9418 bfd_put_32 (output_bfd,
9419 !h ? value - elf_hash_table (info)->tls_sec->vma
9420 : info->flags & DF_BIND_NOW ? 0
9421 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
9422 globals->root.sgotplt->contents + offplt
9423 + globals->sgotplt_jump_table_size);
9424
0855e32b
NS
9425 /* Second word in the relocation is always zero. */
9426 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
9427 globals->root.sgotplt->contents + offplt
9428 + globals->sgotplt_jump_table_size + 4);
0855e32b 9429 }
ba93b8ac
DJ
9430 if (tls_type & GOT_TLS_GD)
9431 {
9432 if (need_relocs)
9433 {
00a97672 9434 outrel.r_addend = 0;
362d30a1
RS
9435 outrel.r_offset = (sgot->output_section->vma
9436 + sgot->output_offset
00a97672 9437 + cur_off);
ba93b8ac 9438 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 9439
00a97672
RS
9440 if (globals->use_rel)
9441 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9442 sgot->contents + cur_off);
00a97672 9443
47beaa6a 9444 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9445
9446 if (indx == 0)
9447 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 9448 sgot->contents + cur_off + 4);
ba93b8ac
DJ
9449 else
9450 {
00a97672 9451 outrel.r_addend = 0;
ba93b8ac
DJ
9452 outrel.r_info = ELF32_R_INFO (indx,
9453 R_ARM_TLS_DTPOFF32);
9454 outrel.r_offset += 4;
00a97672
RS
9455
9456 if (globals->use_rel)
9457 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9458 sgot->contents + cur_off + 4);
00a97672 9459
47beaa6a
RS
9460 elf32_arm_add_dynreloc (output_bfd, info,
9461 srelgot, &outrel);
ba93b8ac
DJ
9462 }
9463 }
9464 else
9465 {
9466 /* If we are not emitting relocations for a
9467 general dynamic reference, then we must be in a
9468 static link or an executable link with the
9469 symbol binding locally. Mark it as belonging
9470 to module 1, the executable. */
9471 bfd_put_32 (output_bfd, 1,
362d30a1 9472 sgot->contents + cur_off);
ba93b8ac 9473 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 9474 sgot->contents + cur_off + 4);
ba93b8ac
DJ
9475 }
9476
9477 cur_off += 8;
9478 }
9479
9480 if (tls_type & GOT_TLS_IE)
9481 {
9482 if (need_relocs)
9483 {
00a97672
RS
9484 if (indx == 0)
9485 outrel.r_addend = value - dtpoff_base (info);
9486 else
9487 outrel.r_addend = 0;
362d30a1
RS
9488 outrel.r_offset = (sgot->output_section->vma
9489 + sgot->output_offset
ba93b8ac
DJ
9490 + cur_off);
9491 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9492
00a97672
RS
9493 if (globals->use_rel)
9494 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9495 sgot->contents + cur_off);
ba93b8ac 9496
47beaa6a 9497 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9498 }
9499 else
9500 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 9501 sgot->contents + cur_off);
ba93b8ac
DJ
9502 cur_off += 4;
9503 }
9504
9505 if (h != NULL)
9506 h->got.offset |= 1;
9507 else
9508 local_got_offsets[r_symndx] |= 1;
9509 }
9510
9511 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9512 off += 8;
0855e32b
NS
9513 else if (tls_type & GOT_TLS_GDESC)
9514 off = offplt;
9515
9516 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9517 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9518 {
9519 bfd_signed_vma offset;
12352d3f
PB
9520 /* TLS stubs are arm mode. The original symbol is a
9521 data object, so branch_type is bogus. */
9522 branch_type = ST_BRANCH_TO_ARM;
0855e32b 9523 enum elf32_arm_stub_type stub_type
34e77a92
RS
9524 = arm_type_of_stub (info, input_section, rel,
9525 st_type, &branch_type,
0855e32b
NS
9526 (struct elf32_arm_link_hash_entry *)h,
9527 globals->tls_trampoline, globals->root.splt,
9528 input_bfd, sym_name);
9529
9530 if (stub_type != arm_stub_none)
9531 {
9532 struct elf32_arm_stub_hash_entry *stub_entry
9533 = elf32_arm_get_stub_entry
9534 (input_section, globals->root.splt, 0, rel,
9535 globals, stub_type);
9536 offset = (stub_entry->stub_offset
9537 + stub_entry->stub_sec->output_offset
9538 + stub_entry->stub_sec->output_section->vma);
9539 }
9540 else
9541 offset = (globals->root.splt->output_section->vma
9542 + globals->root.splt->output_offset
9543 + globals->tls_trampoline);
9544
9545 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9546 {
9547 unsigned long inst;
b38cadfb
NC
9548
9549 offset -= (input_section->output_section->vma
9550 + input_section->output_offset
9551 + rel->r_offset + 8);
0855e32b
NS
9552
9553 inst = offset >> 2;
9554 inst &= 0x00ffffff;
9555 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9556 }
9557 else
9558 {
9559 /* Thumb blx encodes the offset in a complicated
9560 fashion. */
9561 unsigned upper_insn, lower_insn;
9562 unsigned neg;
9563
b38cadfb
NC
9564 offset -= (input_section->output_section->vma
9565 + input_section->output_offset
0855e32b 9566 + rel->r_offset + 4);
b38cadfb 9567
12352d3f
PB
9568 if (stub_type != arm_stub_none
9569 && arm_stub_is_thumb (stub_type))
9570 {
9571 lower_insn = 0xd000;
9572 }
9573 else
9574 {
9575 lower_insn = 0xc000;
9576 /* Round up the offset to a word boundary */
9577 offset = (offset + 2) & ~2;
9578 }
9579
0855e32b
NS
9580 neg = offset < 0;
9581 upper_insn = (0xf000
9582 | ((offset >> 12) & 0x3ff)
9583 | (neg << 10));
12352d3f 9584 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 9585 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 9586 | ((offset >> 1) & 0x7ff);
0855e32b
NS
9587 bfd_put_16 (input_bfd, upper_insn, hit_data);
9588 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9589 return bfd_reloc_ok;
9590 }
9591 }
9592 /* These relocations needs special care, as besides the fact
9593 they point somewhere in .gotplt, the addend must be
9594 adjusted accordingly depending on the type of instruction
9595 we refer to */
9596 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9597 {
9598 unsigned long data, insn;
9599 unsigned thumb;
b38cadfb 9600
0855e32b
NS
9601 data = bfd_get_32 (input_bfd, hit_data);
9602 thumb = data & 1;
9603 data &= ~1u;
b38cadfb 9604
0855e32b
NS
9605 if (thumb)
9606 {
9607 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9608 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9609 insn = (insn << 16)
9610 | bfd_get_16 (input_bfd,
9611 contents + rel->r_offset - data + 2);
9612 if ((insn & 0xf800c000) == 0xf000c000)
9613 /* bl/blx */
9614 value = -6;
9615 else if ((insn & 0xffffff00) == 0x4400)
9616 /* add */
9617 value = -5;
9618 else
9619 {
9620 (*_bfd_error_handler)
9621 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9622 input_bfd, input_section,
9623 (unsigned long)rel->r_offset, insn);
9624 return bfd_reloc_notsupported;
9625 }
9626 }
9627 else
9628 {
9629 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9630
9631 switch (insn >> 24)
9632 {
9633 case 0xeb: /* bl */
9634 case 0xfa: /* blx */
9635 value = -4;
9636 break;
9637
9638 case 0xe0: /* add */
9639 value = -8;
9640 break;
b38cadfb 9641
0855e32b
NS
9642 default:
9643 (*_bfd_error_handler)
9644 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9645 input_bfd, input_section,
9646 (unsigned long)rel->r_offset, insn);
9647 return bfd_reloc_notsupported;
9648 }
9649 }
b38cadfb 9650
0855e32b
NS
9651 value += ((globals->root.sgotplt->output_section->vma
9652 + globals->root.sgotplt->output_offset + off)
9653 - (input_section->output_section->vma
9654 + input_section->output_offset
9655 + rel->r_offset)
9656 + globals->sgotplt_jump_table_size);
9657 }
9658 else
9659 value = ((globals->root.sgot->output_section->vma
9660 + globals->root.sgot->output_offset + off)
9661 - (input_section->output_section->vma
9662 + input_section->output_offset + rel->r_offset));
ba93b8ac
DJ
9663
9664 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9665 contents, rel->r_offset, value,
00a97672 9666 rel->r_addend);
ba93b8ac
DJ
9667 }
9668
9669 case R_ARM_TLS_LE32:
9ec0c936 9670 if (info->shared && !info->pie)
ba93b8ac
DJ
9671 {
9672 (*_bfd_error_handler)
9673 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9674 input_bfd, input_section,
9675 (long) rel->r_offset, howto->name);
46691134 9676 return bfd_reloc_notsupported;
ba93b8ac
DJ
9677 }
9678 else
9679 value = tpoff (info, value);
906e58ca 9680
ba93b8ac 9681 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
9682 contents, rel->r_offset, value,
9683 rel->r_addend);
ba93b8ac 9684
319850b4
JB
9685 case R_ARM_V4BX:
9686 if (globals->fix_v4bx)
845b51d6
PB
9687 {
9688 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 9689
845b51d6
PB
9690 /* Ensure that we have a BX instruction. */
9691 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 9692
845b51d6
PB
9693 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9694 {
9695 /* Branch to veneer. */
9696 bfd_vma glue_addr;
9697 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9698 glue_addr -= input_section->output_section->vma
9699 + input_section->output_offset
9700 + rel->r_offset + 8;
9701 insn = (insn & 0xf0000000) | 0x0a000000
9702 | ((glue_addr >> 2) & 0x00ffffff);
9703 }
9704 else
9705 {
9706 /* Preserve Rm (lowest four bits) and the condition code
9707 (highest four bits). Other bits encode MOV PC,Rm. */
9708 insn = (insn & 0xf000000f) | 0x01a0f000;
9709 }
319850b4 9710
845b51d6
PB
9711 bfd_put_32 (input_bfd, insn, hit_data);
9712 }
319850b4
JB
9713 return bfd_reloc_ok;
9714
b6895b4f
PB
9715 case R_ARM_MOVW_ABS_NC:
9716 case R_ARM_MOVT_ABS:
9717 case R_ARM_MOVW_PREL_NC:
9718 case R_ARM_MOVT_PREL:
92f5d02b
MS
9719 /* Until we properly support segment-base-relative addressing then
9720 we assume the segment base to be zero, as for the group relocations.
9721 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9722 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9723 case R_ARM_MOVW_BREL_NC:
9724 case R_ARM_MOVW_BREL:
9725 case R_ARM_MOVT_BREL:
b6895b4f
PB
9726 {
9727 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9728
9729 if (globals->use_rel)
9730 {
9731 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 9732 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 9733 }
92f5d02b 9734
b6895b4f 9735 value += signed_addend;
b6895b4f
PB
9736
9737 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9738 value -= (input_section->output_section->vma
9739 + input_section->output_offset + rel->r_offset);
9740
92f5d02b
MS
9741 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9742 return bfd_reloc_overflow;
9743
35fc36a8 9744 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
9745 value |= 1;
9746
9747 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9748 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
9749 value >>= 16;
9750
9751 insn &= 0xfff0f000;
9752 insn |= value & 0xfff;
9753 insn |= (value & 0xf000) << 4;
9754 bfd_put_32 (input_bfd, insn, hit_data);
9755 }
9756 return bfd_reloc_ok;
9757
9758 case R_ARM_THM_MOVW_ABS_NC:
9759 case R_ARM_THM_MOVT_ABS:
9760 case R_ARM_THM_MOVW_PREL_NC:
9761 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
9762 /* Until we properly support segment-base-relative addressing then
9763 we assume the segment base to be zero, as for the above relocations.
9764 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9765 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9766 as R_ARM_THM_MOVT_ABS. */
9767 case R_ARM_THM_MOVW_BREL_NC:
9768 case R_ARM_THM_MOVW_BREL:
9769 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
9770 {
9771 bfd_vma insn;
906e58ca 9772
b6895b4f
PB
9773 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9774 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9775
9776 if (globals->use_rel)
9777 {
9778 addend = ((insn >> 4) & 0xf000)
9779 | ((insn >> 15) & 0x0800)
9780 | ((insn >> 4) & 0x0700)
9781 | (insn & 0x00ff);
39623e12 9782 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 9783 }
92f5d02b 9784
b6895b4f 9785 value += signed_addend;
b6895b4f
PB
9786
9787 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9788 value -= (input_section->output_section->vma
9789 + input_section->output_offset + rel->r_offset);
9790
92f5d02b
MS
9791 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9792 return bfd_reloc_overflow;
9793
35fc36a8 9794 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
9795 value |= 1;
9796
9797 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9798 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
9799 value >>= 16;
9800
9801 insn &= 0xfbf08f00;
9802 insn |= (value & 0xf000) << 4;
9803 insn |= (value & 0x0800) << 15;
9804 insn |= (value & 0x0700) << 4;
9805 insn |= (value & 0x00ff);
9806
9807 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9808 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9809 }
9810 return bfd_reloc_ok;
9811
4962c51a
MS
9812 case R_ARM_ALU_PC_G0_NC:
9813 case R_ARM_ALU_PC_G1_NC:
9814 case R_ARM_ALU_PC_G0:
9815 case R_ARM_ALU_PC_G1:
9816 case R_ARM_ALU_PC_G2:
9817 case R_ARM_ALU_SB_G0_NC:
9818 case R_ARM_ALU_SB_G1_NC:
9819 case R_ARM_ALU_SB_G0:
9820 case R_ARM_ALU_SB_G1:
9821 case R_ARM_ALU_SB_G2:
9822 {
9823 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9824 bfd_vma pc = input_section->output_section->vma
9825 + input_section->output_offset + rel->r_offset;
9826 /* sb should be the origin of the *segment* containing the symbol.
9827 It is not clear how to obtain this OS-dependent value, so we
9828 make an arbitrary choice of zero. */
9829 bfd_vma sb = 0;
9830 bfd_vma residual;
9831 bfd_vma g_n;
9832 bfd_signed_vma signed_value;
9833 int group = 0;
9834
9835 /* Determine which group of bits to select. */
9836 switch (r_type)
9837 {
9838 case R_ARM_ALU_PC_G0_NC:
9839 case R_ARM_ALU_PC_G0:
9840 case R_ARM_ALU_SB_G0_NC:
9841 case R_ARM_ALU_SB_G0:
9842 group = 0;
9843 break;
9844
9845 case R_ARM_ALU_PC_G1_NC:
9846 case R_ARM_ALU_PC_G1:
9847 case R_ARM_ALU_SB_G1_NC:
9848 case R_ARM_ALU_SB_G1:
9849 group = 1;
9850 break;
9851
9852 case R_ARM_ALU_PC_G2:
9853 case R_ARM_ALU_SB_G2:
9854 group = 2;
9855 break;
9856
9857 default:
906e58ca 9858 abort ();
4962c51a
MS
9859 }
9860
9861 /* If REL, extract the addend from the insn. If RELA, it will
9862 have already been fetched for us. */
9863 if (globals->use_rel)
9864 {
9865 int negative;
9866 bfd_vma constant = insn & 0xff;
9867 bfd_vma rotation = (insn & 0xf00) >> 8;
9868
9869 if (rotation == 0)
9870 signed_addend = constant;
9871 else
9872 {
9873 /* Compensate for the fact that in the instruction, the
9874 rotation is stored in multiples of 2 bits. */
9875 rotation *= 2;
9876
9877 /* Rotate "constant" right by "rotation" bits. */
9878 signed_addend = (constant >> rotation) |
9879 (constant << (8 * sizeof (bfd_vma) - rotation));
9880 }
9881
9882 /* Determine if the instruction is an ADD or a SUB.
9883 (For REL, this determines the sign of the addend.) */
9884 negative = identify_add_or_sub (insn);
9885 if (negative == 0)
9886 {
9887 (*_bfd_error_handler)
9888 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9889 input_bfd, input_section,
9890 (long) rel->r_offset, howto->name);
906e58ca 9891 return bfd_reloc_overflow;
4962c51a
MS
9892 }
9893
9894 signed_addend *= negative;
9895 }
9896
9897 /* Compute the value (X) to go in the place. */
9898 if (r_type == R_ARM_ALU_PC_G0_NC
9899 || r_type == R_ARM_ALU_PC_G1_NC
9900 || r_type == R_ARM_ALU_PC_G0
9901 || r_type == R_ARM_ALU_PC_G1
9902 || r_type == R_ARM_ALU_PC_G2)
9903 /* PC relative. */
9904 signed_value = value - pc + signed_addend;
9905 else
9906 /* Section base relative. */
9907 signed_value = value - sb + signed_addend;
9908
9909 /* If the target symbol is a Thumb function, then set the
9910 Thumb bit in the address. */
35fc36a8 9911 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
9912 signed_value |= 1;
9913
9914 /* Calculate the value of the relevant G_n, in encoded
9915 constant-with-rotation format. */
9916 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9917 &residual);
9918
9919 /* Check for overflow if required. */
9920 if ((r_type == R_ARM_ALU_PC_G0
9921 || r_type == R_ARM_ALU_PC_G1
9922 || r_type == R_ARM_ALU_PC_G2
9923 || r_type == R_ARM_ALU_SB_G0
9924 || r_type == R_ARM_ALU_SB_G1
9925 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9926 {
9927 (*_bfd_error_handler)
9928 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9929 input_bfd, input_section,
9930 (long) rel->r_offset, abs (signed_value), howto->name);
9931 return bfd_reloc_overflow;
9932 }
9933
9934 /* Mask out the value and the ADD/SUB part of the opcode; take care
9935 not to destroy the S bit. */
9936 insn &= 0xff1ff000;
9937
9938 /* Set the opcode according to whether the value to go in the
9939 place is negative. */
9940 if (signed_value < 0)
9941 insn |= 1 << 22;
9942 else
9943 insn |= 1 << 23;
9944
9945 /* Encode the offset. */
9946 insn |= g_n;
9947
9948 bfd_put_32 (input_bfd, insn, hit_data);
9949 }
9950 return bfd_reloc_ok;
9951
9952 case R_ARM_LDR_PC_G0:
9953 case R_ARM_LDR_PC_G1:
9954 case R_ARM_LDR_PC_G2:
9955 case R_ARM_LDR_SB_G0:
9956 case R_ARM_LDR_SB_G1:
9957 case R_ARM_LDR_SB_G2:
9958 {
9959 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9960 bfd_vma pc = input_section->output_section->vma
9961 + input_section->output_offset + rel->r_offset;
9962 bfd_vma sb = 0; /* See note above. */
9963 bfd_vma residual;
9964 bfd_signed_vma signed_value;
9965 int group = 0;
9966
9967 /* Determine which groups of bits to calculate. */
9968 switch (r_type)
9969 {
9970 case R_ARM_LDR_PC_G0:
9971 case R_ARM_LDR_SB_G0:
9972 group = 0;
9973 break;
9974
9975 case R_ARM_LDR_PC_G1:
9976 case R_ARM_LDR_SB_G1:
9977 group = 1;
9978 break;
9979
9980 case R_ARM_LDR_PC_G2:
9981 case R_ARM_LDR_SB_G2:
9982 group = 2;
9983 break;
9984
9985 default:
906e58ca 9986 abort ();
4962c51a
MS
9987 }
9988
9989 /* If REL, extract the addend from the insn. If RELA, it will
9990 have already been fetched for us. */
9991 if (globals->use_rel)
9992 {
9993 int negative = (insn & (1 << 23)) ? 1 : -1;
9994 signed_addend = negative * (insn & 0xfff);
9995 }
9996
9997 /* Compute the value (X) to go in the place. */
9998 if (r_type == R_ARM_LDR_PC_G0
9999 || r_type == R_ARM_LDR_PC_G1
10000 || r_type == R_ARM_LDR_PC_G2)
10001 /* PC relative. */
10002 signed_value = value - pc + signed_addend;
10003 else
10004 /* Section base relative. */
10005 signed_value = value - sb + signed_addend;
10006
10007 /* Calculate the value of the relevant G_{n-1} to obtain
10008 the residual at that stage. */
10009 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10010
10011 /* Check for overflow. */
10012 if (residual >= 0x1000)
10013 {
10014 (*_bfd_error_handler)
10015 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10016 input_bfd, input_section,
10017 (long) rel->r_offset, abs (signed_value), howto->name);
10018 return bfd_reloc_overflow;
10019 }
10020
10021 /* Mask out the value and U bit. */
10022 insn &= 0xff7ff000;
10023
10024 /* Set the U bit if the value to go in the place is non-negative. */
10025 if (signed_value >= 0)
10026 insn |= 1 << 23;
10027
10028 /* Encode the offset. */
10029 insn |= residual;
10030
10031 bfd_put_32 (input_bfd, insn, hit_data);
10032 }
10033 return bfd_reloc_ok;
10034
10035 case R_ARM_LDRS_PC_G0:
10036 case R_ARM_LDRS_PC_G1:
10037 case R_ARM_LDRS_PC_G2:
10038 case R_ARM_LDRS_SB_G0:
10039 case R_ARM_LDRS_SB_G1:
10040 case R_ARM_LDRS_SB_G2:
10041 {
10042 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10043 bfd_vma pc = input_section->output_section->vma
10044 + input_section->output_offset + rel->r_offset;
10045 bfd_vma sb = 0; /* See note above. */
10046 bfd_vma residual;
10047 bfd_signed_vma signed_value;
10048 int group = 0;
10049
10050 /* Determine which groups of bits to calculate. */
10051 switch (r_type)
10052 {
10053 case R_ARM_LDRS_PC_G0:
10054 case R_ARM_LDRS_SB_G0:
10055 group = 0;
10056 break;
10057
10058 case R_ARM_LDRS_PC_G1:
10059 case R_ARM_LDRS_SB_G1:
10060 group = 1;
10061 break;
10062
10063 case R_ARM_LDRS_PC_G2:
10064 case R_ARM_LDRS_SB_G2:
10065 group = 2;
10066 break;
10067
10068 default:
906e58ca 10069 abort ();
4962c51a
MS
10070 }
10071
10072 /* If REL, extract the addend from the insn. If RELA, it will
10073 have already been fetched for us. */
10074 if (globals->use_rel)
10075 {
10076 int negative = (insn & (1 << 23)) ? 1 : -1;
10077 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10078 }
10079
10080 /* Compute the value (X) to go in the place. */
10081 if (r_type == R_ARM_LDRS_PC_G0
10082 || r_type == R_ARM_LDRS_PC_G1
10083 || r_type == R_ARM_LDRS_PC_G2)
10084 /* PC relative. */
10085 signed_value = value - pc + signed_addend;
10086 else
10087 /* Section base relative. */
10088 signed_value = value - sb + signed_addend;
10089
10090 /* Calculate the value of the relevant G_{n-1} to obtain
10091 the residual at that stage. */
10092 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10093
10094 /* Check for overflow. */
10095 if (residual >= 0x100)
10096 {
10097 (*_bfd_error_handler)
10098 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10099 input_bfd, input_section,
10100 (long) rel->r_offset, abs (signed_value), howto->name);
10101 return bfd_reloc_overflow;
10102 }
10103
10104 /* Mask out the value and U bit. */
10105 insn &= 0xff7ff0f0;
10106
10107 /* Set the U bit if the value to go in the place is non-negative. */
10108 if (signed_value >= 0)
10109 insn |= 1 << 23;
10110
10111 /* Encode the offset. */
10112 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10113
10114 bfd_put_32 (input_bfd, insn, hit_data);
10115 }
10116 return bfd_reloc_ok;
10117
10118 case R_ARM_LDC_PC_G0:
10119 case R_ARM_LDC_PC_G1:
10120 case R_ARM_LDC_PC_G2:
10121 case R_ARM_LDC_SB_G0:
10122 case R_ARM_LDC_SB_G1:
10123 case R_ARM_LDC_SB_G2:
10124 {
10125 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10126 bfd_vma pc = input_section->output_section->vma
10127 + input_section->output_offset + rel->r_offset;
10128 bfd_vma sb = 0; /* See note above. */
10129 bfd_vma residual;
10130 bfd_signed_vma signed_value;
10131 int group = 0;
10132
10133 /* Determine which groups of bits to calculate. */
10134 switch (r_type)
10135 {
10136 case R_ARM_LDC_PC_G0:
10137 case R_ARM_LDC_SB_G0:
10138 group = 0;
10139 break;
10140
10141 case R_ARM_LDC_PC_G1:
10142 case R_ARM_LDC_SB_G1:
10143 group = 1;
10144 break;
10145
10146 case R_ARM_LDC_PC_G2:
10147 case R_ARM_LDC_SB_G2:
10148 group = 2;
10149 break;
10150
10151 default:
906e58ca 10152 abort ();
4962c51a
MS
10153 }
10154
10155 /* If REL, extract the addend from the insn. If RELA, it will
10156 have already been fetched for us. */
10157 if (globals->use_rel)
10158 {
10159 int negative = (insn & (1 << 23)) ? 1 : -1;
10160 signed_addend = negative * ((insn & 0xff) << 2);
10161 }
10162
10163 /* Compute the value (X) to go in the place. */
10164 if (r_type == R_ARM_LDC_PC_G0
10165 || r_type == R_ARM_LDC_PC_G1
10166 || r_type == R_ARM_LDC_PC_G2)
10167 /* PC relative. */
10168 signed_value = value - pc + signed_addend;
10169 else
10170 /* Section base relative. */
10171 signed_value = value - sb + signed_addend;
10172
10173 /* Calculate the value of the relevant G_{n-1} to obtain
10174 the residual at that stage. */
10175 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10176
10177 /* Check for overflow. (The absolute value to go in the place must be
10178 divisible by four and, after having been divided by four, must
10179 fit in eight bits.) */
10180 if ((residual & 0x3) != 0 || residual >= 0x400)
10181 {
10182 (*_bfd_error_handler)
10183 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10184 input_bfd, input_section,
10185 (long) rel->r_offset, abs (signed_value), howto->name);
10186 return bfd_reloc_overflow;
10187 }
10188
10189 /* Mask out the value and U bit. */
10190 insn &= 0xff7fff00;
10191
10192 /* Set the U bit if the value to go in the place is non-negative. */
10193 if (signed_value >= 0)
10194 insn |= 1 << 23;
10195
10196 /* Encode the offset. */
10197 insn |= residual >> 2;
10198
10199 bfd_put_32 (input_bfd, insn, hit_data);
10200 }
10201 return bfd_reloc_ok;
10202
252b5132
RH
10203 default:
10204 return bfd_reloc_notsupported;
10205 }
10206}
10207
98c1d4aa
NC
10208/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10209static void
57e8b36a
NC
10210arm_add_to_rel (bfd * abfd,
10211 bfd_byte * address,
10212 reloc_howto_type * howto,
10213 bfd_signed_vma increment)
98c1d4aa 10214{
98c1d4aa
NC
10215 bfd_signed_vma addend;
10216
bd97cb95
DJ
10217 if (howto->type == R_ARM_THM_CALL
10218 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 10219 {
9a5aca8c
AM
10220 int upper_insn, lower_insn;
10221 int upper, lower;
98c1d4aa 10222
9a5aca8c
AM
10223 upper_insn = bfd_get_16 (abfd, address);
10224 lower_insn = bfd_get_16 (abfd, address + 2);
10225 upper = upper_insn & 0x7ff;
10226 lower = lower_insn & 0x7ff;
10227
10228 addend = (upper << 12) | (lower << 1);
ddda4409 10229 addend += increment;
9a5aca8c 10230 addend >>= 1;
98c1d4aa 10231
9a5aca8c
AM
10232 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10233 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10234
dc810e39
AM
10235 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10236 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
10237 }
10238 else
10239 {
10240 bfd_vma contents;
10241
10242 contents = bfd_get_32 (abfd, address);
10243
10244 /* Get the (signed) value from the instruction. */
10245 addend = contents & howto->src_mask;
10246 if (addend & ((howto->src_mask + 1) >> 1))
10247 {
10248 bfd_signed_vma mask;
10249
10250 mask = -1;
10251 mask &= ~ howto->src_mask;
10252 addend |= mask;
10253 }
10254
10255 /* Add in the increment, (which is a byte value). */
10256 switch (howto->type)
10257 {
10258 default:
10259 addend += increment;
10260 break;
10261
10262 case R_ARM_PC24:
c6596c5e 10263 case R_ARM_PLT32:
5b5bb741
PB
10264 case R_ARM_CALL:
10265 case R_ARM_JUMP24:
9a5aca8c 10266 addend <<= howto->size;
dc810e39 10267 addend += increment;
9a5aca8c
AM
10268
10269 /* Should we check for overflow here ? */
10270
10271 /* Drop any undesired bits. */
10272 addend >>= howto->rightshift;
10273 break;
10274 }
10275
10276 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10277
10278 bfd_put_32 (abfd, contents, address);
ddda4409 10279 }
98c1d4aa 10280}
252b5132 10281
ba93b8ac
DJ
10282#define IS_ARM_TLS_RELOC(R_TYPE) \
10283 ((R_TYPE) == R_ARM_TLS_GD32 \
10284 || (R_TYPE) == R_ARM_TLS_LDO32 \
10285 || (R_TYPE) == R_ARM_TLS_LDM32 \
10286 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10287 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10288 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10289 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b
NS
10290 || (R_TYPE) == R_ARM_TLS_IE32 \
10291 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10292
10293/* Specific set of relocations for the gnu tls dialect. */
10294#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10295 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10296 || (R_TYPE) == R_ARM_TLS_CALL \
10297 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10298 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10299 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 10300
252b5132 10301/* Relocate an ARM ELF section. */
906e58ca 10302
b34976b6 10303static bfd_boolean
57e8b36a
NC
10304elf32_arm_relocate_section (bfd * output_bfd,
10305 struct bfd_link_info * info,
10306 bfd * input_bfd,
10307 asection * input_section,
10308 bfd_byte * contents,
10309 Elf_Internal_Rela * relocs,
10310 Elf_Internal_Sym * local_syms,
10311 asection ** local_sections)
252b5132 10312{
b34976b6
AM
10313 Elf_Internal_Shdr *symtab_hdr;
10314 struct elf_link_hash_entry **sym_hashes;
10315 Elf_Internal_Rela *rel;
10316 Elf_Internal_Rela *relend;
10317 const char *name;
b32d3aa2 10318 struct elf32_arm_link_hash_table * globals;
252b5132 10319
4e7fd91e 10320 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10321 if (globals == NULL)
10322 return FALSE;
b491616a 10323
0ffa91dd 10324 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
10325 sym_hashes = elf_sym_hashes (input_bfd);
10326
10327 rel = relocs;
10328 relend = relocs + input_section->reloc_count;
10329 for (; rel < relend; rel++)
10330 {
ba96a88f
NC
10331 int r_type;
10332 reloc_howto_type * howto;
10333 unsigned long r_symndx;
10334 Elf_Internal_Sym * sym;
10335 asection * sec;
252b5132 10336 struct elf_link_hash_entry * h;
ba96a88f
NC
10337 bfd_vma relocation;
10338 bfd_reloc_status_type r;
10339 arelent bfd_reloc;
ba93b8ac 10340 char sym_type;
0945cdfd 10341 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 10342 char *error_message = NULL;
f21f3fe0 10343
252b5132 10344 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 10345 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 10346 r_type = arm_real_reloc_type (globals, r_type);
252b5132 10347
ba96a88f
NC
10348 if ( r_type == R_ARM_GNU_VTENTRY
10349 || r_type == R_ARM_GNU_VTINHERIT)
252b5132
RH
10350 continue;
10351
b32d3aa2 10352 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 10353 howto = bfd_reloc.howto;
252b5132 10354
252b5132
RH
10355 h = NULL;
10356 sym = NULL;
10357 sec = NULL;
9b485d32 10358
252b5132
RH
10359 if (r_symndx < symtab_hdr->sh_info)
10360 {
10361 sym = local_syms + r_symndx;
ba93b8ac 10362 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 10363 sec = local_sections[r_symndx];
ffcb4889
NS
10364
10365 /* An object file might have a reference to a local
10366 undefined symbol. This is a daft object file, but we
10367 should at least do something about it. V4BX & NONE
10368 relocations do not use the symbol and are explicitly
77b4f08f
TS
10369 allowed to use the undefined symbol, so allow those.
10370 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
10371 if (r_type != R_ARM_V4BX
10372 && r_type != R_ARM_NONE
77b4f08f 10373 && r_symndx != STN_UNDEF
ffcb4889
NS
10374 && bfd_is_und_section (sec)
10375 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10376 {
10377 if (!info->callbacks->undefined_symbol
10378 (info, bfd_elf_string_from_elf_section
10379 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10380 input_bfd, input_section,
10381 rel->r_offset, TRUE))
10382 return FALSE;
10383 }
b38cadfb 10384
4e7fd91e 10385 if (globals->use_rel)
f8df10f4 10386 {
4e7fd91e
PB
10387 relocation = (sec->output_section->vma
10388 + sec->output_offset
10389 + sym->st_value);
ab96bf03
AM
10390 if (!info->relocatable
10391 && (sec->flags & SEC_MERGE)
10392 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 10393 {
4e7fd91e
PB
10394 asection *msec;
10395 bfd_vma addend, value;
10396
39623e12 10397 switch (r_type)
4e7fd91e 10398 {
39623e12
PB
10399 case R_ARM_MOVW_ABS_NC:
10400 case R_ARM_MOVT_ABS:
10401 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10402 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10403 addend = (addend ^ 0x8000) - 0x8000;
10404 break;
f8df10f4 10405
39623e12
PB
10406 case R_ARM_THM_MOVW_ABS_NC:
10407 case R_ARM_THM_MOVT_ABS:
10408 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10409 << 16;
10410 value |= bfd_get_16 (input_bfd,
10411 contents + rel->r_offset + 2);
10412 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10413 | ((value & 0x04000000) >> 15);
10414 addend = (addend ^ 0x8000) - 0x8000;
10415 break;
f8df10f4 10416
39623e12
PB
10417 default:
10418 if (howto->rightshift
10419 || (howto->src_mask & (howto->src_mask + 1)))
10420 {
10421 (*_bfd_error_handler)
10422 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10423 input_bfd, input_section,
10424 (long) rel->r_offset, howto->name);
10425 return FALSE;
10426 }
10427
10428 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10429
10430 /* Get the (signed) value from the instruction. */
10431 addend = value & howto->src_mask;
10432 if (addend & ((howto->src_mask + 1) >> 1))
10433 {
10434 bfd_signed_vma mask;
10435
10436 mask = -1;
10437 mask &= ~ howto->src_mask;
10438 addend |= mask;
10439 }
10440 break;
4e7fd91e 10441 }
39623e12 10442
4e7fd91e
PB
10443 msec = sec;
10444 addend =
10445 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10446 - relocation;
10447 addend += msec->output_section->vma + msec->output_offset;
39623e12 10448
cc643b88 10449 /* Cases here must match those in the preceding
39623e12
PB
10450 switch statement. */
10451 switch (r_type)
10452 {
10453 case R_ARM_MOVW_ABS_NC:
10454 case R_ARM_MOVT_ABS:
10455 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10456 | (addend & 0xfff);
10457 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10458 break;
10459
10460 case R_ARM_THM_MOVW_ABS_NC:
10461 case R_ARM_THM_MOVT_ABS:
10462 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10463 | (addend & 0xff) | ((addend & 0x0800) << 15);
10464 bfd_put_16 (input_bfd, value >> 16,
10465 contents + rel->r_offset);
10466 bfd_put_16 (input_bfd, value,
10467 contents + rel->r_offset + 2);
10468 break;
10469
10470 default:
10471 value = (value & ~ howto->dst_mask)
10472 | (addend & howto->dst_mask);
10473 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10474 break;
10475 }
f8df10f4 10476 }
f8df10f4 10477 }
4e7fd91e
PB
10478 else
10479 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
10480 }
10481 else
10482 {
560e09e9 10483 bfd_boolean warned;
560e09e9 10484
b2a8e766
AM
10485 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10486 r_symndx, symtab_hdr, sym_hashes,
10487 h, sec, relocation,
10488 unresolved_reloc, warned);
ba93b8ac
DJ
10489
10490 sym_type = h->type;
252b5132
RH
10491 }
10492
dbaa2011 10493 if (sec != NULL && discarded_section (sec))
e4067dbb 10494 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 10495 rel, 1, relend, howto, 0, contents);
ab96bf03
AM
10496
10497 if (info->relocatable)
10498 {
10499 /* This is a relocatable link. We don't have to change
10500 anything, unless the reloc is against a section symbol,
10501 in which case we have to adjust according to where the
10502 section symbol winds up in the output section. */
10503 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10504 {
10505 if (globals->use_rel)
10506 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10507 howto, (bfd_signed_vma) sec->output_offset);
10508 else
10509 rel->r_addend += sec->output_offset;
10510 }
10511 continue;
10512 }
10513
252b5132
RH
10514 if (h != NULL)
10515 name = h->root.root.string;
10516 else
10517 {
10518 name = (bfd_elf_string_from_elf_section
10519 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10520 if (name == NULL || *name == '\0')
10521 name = bfd_section_name (input_bfd, sec);
10522 }
f21f3fe0 10523
cf35638d 10524 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
10525 && r_type != R_ARM_NONE
10526 && (h == NULL
10527 || h->root.type == bfd_link_hash_defined
10528 || h->root.type == bfd_link_hash_defweak)
10529 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10530 {
10531 (*_bfd_error_handler)
10532 ((sym_type == STT_TLS
10533 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10534 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10535 input_bfd,
10536 input_section,
10537 (long) rel->r_offset,
10538 howto->name,
10539 name);
10540 }
10541
0855e32b
NS
10542 /* We call elf32_arm_final_link_relocate unless we're completely
10543 done, i.e., the relaxation produced the final output we want,
10544 and we won't let anybody mess with it. Also, we have to do
10545 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10546 both in relaxed and non-relaxed cases */
10547 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10548 || (IS_ARM_TLS_GNU_RELOC (r_type)
b38cadfb 10549 && !((h ? elf32_arm_hash_entry (h)->tls_type :
0855e32b
NS
10550 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10551 & GOT_TLS_GDESC)))
10552 {
10553 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10554 contents, rel, h == NULL);
10555 /* This may have been marked unresolved because it came from
10556 a shared library. But we've just dealt with that. */
10557 unresolved_reloc = 0;
10558 }
10559 else
10560 r = bfd_reloc_continue;
b38cadfb 10561
0855e32b
NS
10562 if (r == bfd_reloc_continue)
10563 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10564 input_section, contents, rel,
34e77a92 10565 relocation, info, sec, name, sym_type,
35fc36a8
RS
10566 (h ? h->target_internal
10567 : ARM_SYM_BRANCH_TYPE (sym)), h,
0855e32b 10568 &unresolved_reloc, &error_message);
0945cdfd
DJ
10569
10570 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10571 because such sections are not SEC_ALLOC and thus ld.so will
10572 not process them. */
10573 if (unresolved_reloc
10574 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
10575 && h->def_dynamic)
10576 && _bfd_elf_section_offset (output_bfd, info, input_section,
10577 rel->r_offset) != (bfd_vma) -1)
0945cdfd
DJ
10578 {
10579 (*_bfd_error_handler)
843fe662
L
10580 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10581 input_bfd,
10582 input_section,
10583 (long) rel->r_offset,
10584 howto->name,
10585 h->root.root.string);
0945cdfd
DJ
10586 return FALSE;
10587 }
252b5132
RH
10588
10589 if (r != bfd_reloc_ok)
10590 {
252b5132
RH
10591 switch (r)
10592 {
10593 case bfd_reloc_overflow:
cf919dfd
PB
10594 /* If the overflowing reloc was to an undefined symbol,
10595 we have already printed one error message and there
10596 is no point complaining again. */
10597 if ((! h ||
10598 h->root.type != bfd_link_hash_undefined)
10599 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
10600 (info, (h ? &h->root : NULL), name, howto->name,
10601 (bfd_vma) 0, input_bfd, input_section,
10602 rel->r_offset))))
b34976b6 10603 return FALSE;
252b5132
RH
10604 break;
10605
10606 case bfd_reloc_undefined:
10607 if (!((*info->callbacks->undefined_symbol)
10608 (info, name, input_bfd, input_section,
b34976b6
AM
10609 rel->r_offset, TRUE)))
10610 return FALSE;
252b5132
RH
10611 break;
10612
10613 case bfd_reloc_outofrange:
f2a9dd69 10614 error_message = _("out of range");
252b5132
RH
10615 goto common_error;
10616
10617 case bfd_reloc_notsupported:
f2a9dd69 10618 error_message = _("unsupported relocation");
252b5132
RH
10619 goto common_error;
10620
10621 case bfd_reloc_dangerous:
f2a9dd69 10622 /* error_message should already be set. */
252b5132
RH
10623 goto common_error;
10624
10625 default:
f2a9dd69 10626 error_message = _("unknown error");
8029a119 10627 /* Fall through. */
252b5132
RH
10628
10629 common_error:
f2a9dd69
DJ
10630 BFD_ASSERT (error_message != NULL);
10631 if (!((*info->callbacks->reloc_dangerous)
10632 (info, error_message, input_bfd, input_section,
252b5132 10633 rel->r_offset)))
b34976b6 10634 return FALSE;
252b5132
RH
10635 break;
10636 }
10637 }
10638 }
10639
b34976b6 10640 return TRUE;
252b5132
RH
10641}
10642
91d6fa6a 10643/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 10644 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 10645 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
10646 maintaining that condition). */
10647
10648static void
10649add_unwind_table_edit (arm_unwind_table_edit **head,
10650 arm_unwind_table_edit **tail,
10651 arm_unwind_edit_type type,
10652 asection *linked_section,
91d6fa6a 10653 unsigned int tindex)
2468f9c9 10654{
21d799b5
NC
10655 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10656 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 10657
2468f9c9
PB
10658 new_edit->type = type;
10659 new_edit->linked_section = linked_section;
91d6fa6a 10660 new_edit->index = tindex;
b38cadfb 10661
91d6fa6a 10662 if (tindex > 0)
2468f9c9
PB
10663 {
10664 new_edit->next = NULL;
10665
10666 if (*tail)
10667 (*tail)->next = new_edit;
10668
10669 (*tail) = new_edit;
10670
10671 if (!*head)
10672 (*head) = new_edit;
10673 }
10674 else
10675 {
10676 new_edit->next = *head;
10677
10678 if (!*tail)
10679 *tail = new_edit;
10680
10681 *head = new_edit;
10682 }
10683}
10684
10685static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10686
10687/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10688static void
10689adjust_exidx_size(asection *exidx_sec, int adjust)
10690{
10691 asection *out_sec;
10692
10693 if (!exidx_sec->rawsize)
10694 exidx_sec->rawsize = exidx_sec->size;
10695
10696 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10697 out_sec = exidx_sec->output_section;
10698 /* Adjust size of output section. */
10699 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10700}
10701
10702/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10703static void
10704insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10705{
10706 struct _arm_elf_section_data *exidx_arm_data;
10707
10708 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10709 add_unwind_table_edit (
10710 &exidx_arm_data->u.exidx.unwind_edit_list,
10711 &exidx_arm_data->u.exidx.unwind_edit_tail,
10712 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10713
10714 adjust_exidx_size(exidx_sec, 8);
10715}
10716
10717/* Scan .ARM.exidx tables, and create a list describing edits which should be
10718 made to those tables, such that:
b38cadfb 10719
2468f9c9
PB
10720 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10721 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10722 codes which have been inlined into the index).
10723
85fdf906
AH
10724 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10725
2468f9c9 10726 The edits are applied when the tables are written
b38cadfb 10727 (in elf32_arm_write_section). */
2468f9c9
PB
10728
10729bfd_boolean
10730elf32_arm_fix_exidx_coverage (asection **text_section_order,
10731 unsigned int num_text_sections,
85fdf906
AH
10732 struct bfd_link_info *info,
10733 bfd_boolean merge_exidx_entries)
2468f9c9
PB
10734{
10735 bfd *inp;
10736 unsigned int last_second_word = 0, i;
10737 asection *last_exidx_sec = NULL;
10738 asection *last_text_sec = NULL;
10739 int last_unwind_type = -1;
10740
10741 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10742 text sections. */
10743 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10744 {
10745 asection *sec;
b38cadfb 10746
2468f9c9
PB
10747 for (sec = inp->sections; sec != NULL; sec = sec->next)
10748 {
10749 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10750 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 10751
dec9d5df 10752 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 10753 continue;
b38cadfb 10754
2468f9c9
PB
10755 if (elf_sec->linked_to)
10756 {
10757 Elf_Internal_Shdr *linked_hdr
10758 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10759 struct _arm_elf_section_data *linked_sec_arm_data
10760 = get_arm_elf_section_data (linked_hdr->bfd_section);
10761
10762 if (linked_sec_arm_data == NULL)
10763 continue;
10764
10765 /* Link this .ARM.exidx section back from the text section it
10766 describes. */
10767 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10768 }
10769 }
10770 }
10771
10772 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10773 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 10774 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
10775
10776 for (i = 0; i < num_text_sections; i++)
10777 {
10778 asection *sec = text_section_order[i];
10779 asection *exidx_sec;
10780 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10781 struct _arm_elf_section_data *exidx_arm_data;
10782 bfd_byte *contents = NULL;
10783 int deleted_exidx_bytes = 0;
10784 bfd_vma j;
10785 arm_unwind_table_edit *unwind_edit_head = NULL;
10786 arm_unwind_table_edit *unwind_edit_tail = NULL;
10787 Elf_Internal_Shdr *hdr;
10788 bfd *ibfd;
10789
10790 if (arm_data == NULL)
10791 continue;
10792
10793 exidx_sec = arm_data->u.text.arm_exidx_sec;
10794 if (exidx_sec == NULL)
10795 {
10796 /* Section has no unwind data. */
10797 if (last_unwind_type == 0 || !last_exidx_sec)
10798 continue;
10799
10800 /* Ignore zero sized sections. */
10801 if (sec->size == 0)
10802 continue;
10803
10804 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10805 last_unwind_type = 0;
10806 continue;
10807 }
10808
22a8f80e
PB
10809 /* Skip /DISCARD/ sections. */
10810 if (bfd_is_abs_section (exidx_sec->output_section))
10811 continue;
10812
2468f9c9
PB
10813 hdr = &elf_section_data (exidx_sec)->this_hdr;
10814 if (hdr->sh_type != SHT_ARM_EXIDX)
10815 continue;
b38cadfb 10816
2468f9c9
PB
10817 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10818 if (exidx_arm_data == NULL)
10819 continue;
b38cadfb 10820
2468f9c9 10821 ibfd = exidx_sec->owner;
b38cadfb 10822
2468f9c9
PB
10823 if (hdr->contents != NULL)
10824 contents = hdr->contents;
10825 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10826 /* An error? */
10827 continue;
10828
10829 for (j = 0; j < hdr->sh_size; j += 8)
10830 {
10831 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10832 int unwind_type;
10833 int elide = 0;
10834
10835 /* An EXIDX_CANTUNWIND entry. */
10836 if (second_word == 1)
10837 {
10838 if (last_unwind_type == 0)
10839 elide = 1;
10840 unwind_type = 0;
10841 }
10842 /* Inlined unwinding data. Merge if equal to previous. */
10843 else if ((second_word & 0x80000000) != 0)
10844 {
85fdf906
AH
10845 if (merge_exidx_entries
10846 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
10847 elide = 1;
10848 unwind_type = 1;
10849 last_second_word = second_word;
10850 }
10851 /* Normal table entry. In theory we could merge these too,
10852 but duplicate entries are likely to be much less common. */
10853 else
10854 unwind_type = 2;
10855
10856 if (elide)
10857 {
10858 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10859 DELETE_EXIDX_ENTRY, NULL, j / 8);
10860
10861 deleted_exidx_bytes += 8;
10862 }
10863
10864 last_unwind_type = unwind_type;
10865 }
10866
10867 /* Free contents if we allocated it ourselves. */
10868 if (contents != hdr->contents)
10869 free (contents);
10870
10871 /* Record edits to be applied later (in elf32_arm_write_section). */
10872 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10873 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 10874
2468f9c9
PB
10875 if (deleted_exidx_bytes > 0)
10876 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10877
10878 last_exidx_sec = exidx_sec;
10879 last_text_sec = sec;
10880 }
10881
10882 /* Add terminating CANTUNWIND entry. */
10883 if (last_exidx_sec && last_unwind_type != 0)
10884 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10885
10886 return TRUE;
10887}
10888
3e6b1042
DJ
10889static bfd_boolean
10890elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10891 bfd *ibfd, const char *name)
10892{
10893 asection *sec, *osec;
10894
3d4d4302 10895 sec = bfd_get_linker_section (ibfd, name);
3e6b1042
DJ
10896 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10897 return TRUE;
10898
10899 osec = sec->output_section;
10900 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10901 return TRUE;
10902
10903 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10904 sec->output_offset, sec->size))
10905 return FALSE;
10906
10907 return TRUE;
10908}
10909
10910static bfd_boolean
10911elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10912{
10913 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 10914 asection *sec, *osec;
3e6b1042 10915
4dfe6ac6
NC
10916 if (globals == NULL)
10917 return FALSE;
10918
3e6b1042
DJ
10919 /* Invoke the regular ELF backend linker to do all the work. */
10920 if (!bfd_elf_final_link (abfd, info))
10921 return FALSE;
10922
fe33d2fa
CL
10923 /* Process stub sections (eg BE8 encoding, ...). */
10924 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10925 int i;
cdb21a0a
NS
10926 for (i=0; i<htab->top_id; i++)
10927 {
10928 sec = htab->stub_group[i].stub_sec;
10929 /* Only process it once, in its link_sec slot. */
10930 if (sec && i == htab->stub_group[i].link_sec->id)
10931 {
10932 osec = sec->output_section;
10933 elf32_arm_write_section (abfd, info, sec, sec->contents);
10934 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10935 sec->output_offset, sec->size))
10936 return FALSE;
10937 }
fe33d2fa 10938 }
fe33d2fa 10939
3e6b1042
DJ
10940 /* Write out any glue sections now that we have created all the
10941 stubs. */
10942 if (globals->bfd_of_glue_owner != NULL)
10943 {
10944 if (! elf32_arm_output_glue_section (info, abfd,
10945 globals->bfd_of_glue_owner,
10946 ARM2THUMB_GLUE_SECTION_NAME))
10947 return FALSE;
10948
10949 if (! elf32_arm_output_glue_section (info, abfd,
10950 globals->bfd_of_glue_owner,
10951 THUMB2ARM_GLUE_SECTION_NAME))
10952 return FALSE;
10953
10954 if (! elf32_arm_output_glue_section (info, abfd,
10955 globals->bfd_of_glue_owner,
10956 VFP11_ERRATUM_VENEER_SECTION_NAME))
10957 return FALSE;
10958
10959 if (! elf32_arm_output_glue_section (info, abfd,
10960 globals->bfd_of_glue_owner,
10961 ARM_BX_GLUE_SECTION_NAME))
10962 return FALSE;
10963 }
10964
10965 return TRUE;
10966}
10967
5968a7b8
NC
10968/* Return a best guess for the machine number based on the attributes. */
10969
10970static unsigned int
10971bfd_arm_get_mach_from_attributes (bfd * abfd)
10972{
10973 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
10974
10975 switch (arch)
10976 {
10977 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
10978 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
10979 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
10980
10981 case TAG_CPU_ARCH_V5TE:
10982 {
10983 char * name;
10984
10985 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
10986 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
10987
10988 if (name)
10989 {
10990 if (strcmp (name, "IWMMXT2") == 0)
10991 return bfd_mach_arm_iWMMXt2;
10992
10993 if (strcmp (name, "IWMMXT") == 0)
6034aab8 10994 return bfd_mach_arm_iWMMXt;
5968a7b8
NC
10995 }
10996
10997 return bfd_mach_arm_5TE;
10998 }
10999
11000 default:
11001 return bfd_mach_arm_unknown;
11002 }
11003}
11004
c178919b
NC
11005/* Set the right machine number. */
11006
11007static bfd_boolean
57e8b36a 11008elf32_arm_object_p (bfd *abfd)
c178919b 11009{
5a6c6817 11010 unsigned int mach;
57e8b36a 11011
5a6c6817 11012 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 11013
5968a7b8
NC
11014 if (mach == bfd_mach_arm_unknown)
11015 {
11016 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11017 mach = bfd_mach_arm_ep9312;
11018 else
11019 mach = bfd_arm_get_mach_from_attributes (abfd);
11020 }
c178919b 11021
5968a7b8 11022 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
11023 return TRUE;
11024}
11025
fc830a83 11026/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 11027
b34976b6 11028static bfd_boolean
57e8b36a 11029elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
11030{
11031 if (elf_flags_init (abfd)
11032 && elf_elfheader (abfd)->e_flags != flags)
11033 {
fc830a83
NC
11034 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11035 {
fd2ec330 11036 if (flags & EF_ARM_INTERWORK)
d003868e
AM
11037 (*_bfd_error_handler)
11038 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11039 abfd);
fc830a83 11040 else
d003868e
AM
11041 _bfd_error_handler
11042 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11043 abfd);
fc830a83 11044 }
252b5132
RH
11045 }
11046 else
11047 {
11048 elf_elfheader (abfd)->e_flags = flags;
b34976b6 11049 elf_flags_init (abfd) = TRUE;
252b5132
RH
11050 }
11051
b34976b6 11052 return TRUE;
252b5132
RH
11053}
11054
fc830a83 11055/* Copy backend specific data from one object module to another. */
9b485d32 11056
b34976b6 11057static bfd_boolean
57e8b36a 11058elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
11059{
11060 flagword in_flags;
11061 flagword out_flags;
11062
0ffa91dd 11063 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 11064 return TRUE;
252b5132 11065
fc830a83 11066 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
11067 out_flags = elf_elfheader (obfd)->e_flags;
11068
fc830a83
NC
11069 if (elf_flags_init (obfd)
11070 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11071 && in_flags != out_flags)
252b5132 11072 {
252b5132 11073 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 11074 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 11075 return FALSE;
252b5132
RH
11076
11077 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 11078 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 11079 return FALSE;
252b5132
RH
11080
11081 /* If the src and dest have different interworking flags
11082 then turn off the interworking bit. */
fd2ec330 11083 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 11084 {
fd2ec330 11085 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
11086 _bfd_error_handler
11087 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11088 obfd, ibfd);
252b5132 11089
fd2ec330 11090 in_flags &= ~EF_ARM_INTERWORK;
252b5132 11091 }
1006ba19
PB
11092
11093 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
11094 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11095 in_flags &= ~EF_ARM_PIC;
252b5132
RH
11096 }
11097
11098 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 11099 elf_flags_init (obfd) = TRUE;
252b5132 11100
94a3258f
PB
11101 /* Also copy the EI_OSABI field. */
11102 elf_elfheader (obfd)->e_ident[EI_OSABI] =
11103 elf_elfheader (ibfd)->e_ident[EI_OSABI];
11104
104d59d1
JM
11105 /* Copy object attributes. */
11106 _bfd_elf_copy_obj_attributes (ibfd, obfd);
ee065d83
PB
11107
11108 return TRUE;
11109}
11110
11111/* Values for Tag_ABI_PCS_R9_use. */
11112enum
11113{
11114 AEABI_R9_V6,
11115 AEABI_R9_SB,
11116 AEABI_R9_TLS,
11117 AEABI_R9_unused
11118};
11119
11120/* Values for Tag_ABI_PCS_RW_data. */
11121enum
11122{
11123 AEABI_PCS_RW_data_absolute,
11124 AEABI_PCS_RW_data_PCrel,
11125 AEABI_PCS_RW_data_SBrel,
11126 AEABI_PCS_RW_data_unused
11127};
11128
11129/* Values for Tag_ABI_enum_size. */
11130enum
11131{
11132 AEABI_enum_unused,
11133 AEABI_enum_short,
11134 AEABI_enum_wide,
11135 AEABI_enum_forced_wide
11136};
11137
104d59d1
JM
11138/* Determine whether an object attribute tag takes an integer, a
11139 string or both. */
906e58ca 11140
104d59d1
JM
11141static int
11142elf32_arm_obj_attrs_arg_type (int tag)
11143{
11144 if (tag == Tag_compatibility)
3483fe2e 11145 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 11146 else if (tag == Tag_nodefaults)
3483fe2e
AS
11147 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11148 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11149 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 11150 else if (tag < 32)
3483fe2e 11151 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 11152 else
3483fe2e 11153 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
11154}
11155
5aa6ff7c
AS
11156/* The ABI defines that Tag_conformance should be emitted first, and that
11157 Tag_nodefaults should be second (if either is defined). This sets those
11158 two positions, and bumps up the position of all the remaining tags to
11159 compensate. */
11160static int
11161elf32_arm_obj_attrs_order (int num)
11162{
3de4a297 11163 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 11164 return Tag_conformance;
3de4a297 11165 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
11166 return Tag_nodefaults;
11167 if ((num - 2) < Tag_nodefaults)
11168 return num - 2;
11169 if ((num - 1) < Tag_conformance)
11170 return num - 1;
11171 return num;
11172}
11173
e8b36cd1
JM
11174/* Attribute numbers >=64 (mod 128) can be safely ignored. */
11175static bfd_boolean
11176elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11177{
11178 if ((tag & 127) < 64)
11179 {
11180 _bfd_error_handler
11181 (_("%B: Unknown mandatory EABI object attribute %d"),
11182 abfd, tag);
11183 bfd_set_error (bfd_error_bad_value);
11184 return FALSE;
11185 }
11186 else
11187 {
11188 _bfd_error_handler
11189 (_("Warning: %B: Unknown EABI object attribute %d"),
11190 abfd, tag);
11191 return TRUE;
11192 }
11193}
11194
91e22acd
AS
11195/* Read the architecture from the Tag_also_compatible_with attribute, if any.
11196 Returns -1 if no architecture could be read. */
11197
11198static int
11199get_secondary_compatible_arch (bfd *abfd)
11200{
11201 obj_attribute *attr =
11202 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11203
11204 /* Note: the tag and its argument below are uleb128 values, though
11205 currently-defined values fit in one byte for each. */
11206 if (attr->s
11207 && attr->s[0] == Tag_CPU_arch
11208 && (attr->s[1] & 128) != 128
11209 && attr->s[2] == 0)
11210 return attr->s[1];
11211
11212 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11213 return -1;
11214}
11215
11216/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11217 The tag is removed if ARCH is -1. */
11218
8e79c3df 11219static void
91e22acd 11220set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 11221{
91e22acd
AS
11222 obj_attribute *attr =
11223 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 11224
91e22acd
AS
11225 if (arch == -1)
11226 {
11227 attr->s = NULL;
11228 return;
8e79c3df 11229 }
91e22acd
AS
11230
11231 /* Note: the tag and its argument below are uleb128 values, though
11232 currently-defined values fit in one byte for each. */
11233 if (!attr->s)
21d799b5 11234 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
11235 attr->s[0] = Tag_CPU_arch;
11236 attr->s[1] = arch;
11237 attr->s[2] = '\0';
8e79c3df
CM
11238}
11239
91e22acd
AS
11240/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11241 into account. */
11242
11243static int
11244tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11245 int newtag, int secondary_compat)
8e79c3df 11246{
91e22acd
AS
11247#define T(X) TAG_CPU_ARCH_##X
11248 int tagl, tagh, result;
11249 const int v6t2[] =
11250 {
11251 T(V6T2), /* PRE_V4. */
11252 T(V6T2), /* V4. */
11253 T(V6T2), /* V4T. */
11254 T(V6T2), /* V5T. */
11255 T(V6T2), /* V5TE. */
11256 T(V6T2), /* V5TEJ. */
11257 T(V6T2), /* V6. */
11258 T(V7), /* V6KZ. */
11259 T(V6T2) /* V6T2. */
11260 };
11261 const int v6k[] =
11262 {
11263 T(V6K), /* PRE_V4. */
11264 T(V6K), /* V4. */
11265 T(V6K), /* V4T. */
11266 T(V6K), /* V5T. */
11267 T(V6K), /* V5TE. */
11268 T(V6K), /* V5TEJ. */
11269 T(V6K), /* V6. */
11270 T(V6KZ), /* V6KZ. */
11271 T(V7), /* V6T2. */
11272 T(V6K) /* V6K. */
11273 };
11274 const int v7[] =
11275 {
11276 T(V7), /* PRE_V4. */
11277 T(V7), /* V4. */
11278 T(V7), /* V4T. */
11279 T(V7), /* V5T. */
11280 T(V7), /* V5TE. */
11281 T(V7), /* V5TEJ. */
11282 T(V7), /* V6. */
11283 T(V7), /* V6KZ. */
11284 T(V7), /* V6T2. */
11285 T(V7), /* V6K. */
11286 T(V7) /* V7. */
11287 };
11288 const int v6_m[] =
11289 {
11290 -1, /* PRE_V4. */
11291 -1, /* V4. */
11292 T(V6K), /* V4T. */
11293 T(V6K), /* V5T. */
11294 T(V6K), /* V5TE. */
11295 T(V6K), /* V5TEJ. */
11296 T(V6K), /* V6. */
11297 T(V6KZ), /* V6KZ. */
11298 T(V7), /* V6T2. */
11299 T(V6K), /* V6K. */
11300 T(V7), /* V7. */
11301 T(V6_M) /* V6_M. */
11302 };
11303 const int v6s_m[] =
11304 {
11305 -1, /* PRE_V4. */
11306 -1, /* V4. */
11307 T(V6K), /* V4T. */
11308 T(V6K), /* V5T. */
11309 T(V6K), /* V5TE. */
11310 T(V6K), /* V5TEJ. */
11311 T(V6K), /* V6. */
11312 T(V6KZ), /* V6KZ. */
11313 T(V7), /* V6T2. */
11314 T(V6K), /* V6K. */
11315 T(V7), /* V7. */
11316 T(V6S_M), /* V6_M. */
11317 T(V6S_M) /* V6S_M. */
11318 };
9e3c6df6
PB
11319 const int v7e_m[] =
11320 {
11321 -1, /* PRE_V4. */
11322 -1, /* V4. */
11323 T(V7E_M), /* V4T. */
11324 T(V7E_M), /* V5T. */
11325 T(V7E_M), /* V5TE. */
11326 T(V7E_M), /* V5TEJ. */
11327 T(V7E_M), /* V6. */
11328 T(V7E_M), /* V6KZ. */
11329 T(V7E_M), /* V6T2. */
11330 T(V7E_M), /* V6K. */
11331 T(V7E_M), /* V7. */
11332 T(V7E_M), /* V6_M. */
11333 T(V7E_M), /* V6S_M. */
11334 T(V7E_M) /* V7E_M. */
11335 };
bca38921
MGD
11336 const int v8[] =
11337 {
11338 T(V8), /* PRE_V4. */
11339 T(V8), /* V4. */
11340 T(V8), /* V4T. */
11341 T(V8), /* V5T. */
11342 T(V8), /* V5TE. */
11343 T(V8), /* V5TEJ. */
11344 T(V8), /* V6. */
11345 T(V8), /* V6KZ. */
11346 T(V8), /* V6T2. */
11347 T(V8), /* V6K. */
11348 T(V8), /* V7. */
11349 T(V8), /* V6_M. */
11350 T(V8), /* V6S_M. */
11351 T(V8), /* V7E_M. */
11352 T(V8) /* V8. */
11353 };
91e22acd
AS
11354 const int v4t_plus_v6_m[] =
11355 {
11356 -1, /* PRE_V4. */
11357 -1, /* V4. */
11358 T(V4T), /* V4T. */
11359 T(V5T), /* V5T. */
11360 T(V5TE), /* V5TE. */
11361 T(V5TEJ), /* V5TEJ. */
11362 T(V6), /* V6. */
11363 T(V6KZ), /* V6KZ. */
11364 T(V6T2), /* V6T2. */
11365 T(V6K), /* V6K. */
11366 T(V7), /* V7. */
11367 T(V6_M), /* V6_M. */
11368 T(V6S_M), /* V6S_M. */
9e3c6df6 11369 T(V7E_M), /* V7E_M. */
bca38921 11370 T(V8), /* V8. */
91e22acd
AS
11371 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11372 };
11373 const int *comb[] =
11374 {
11375 v6t2,
11376 v6k,
11377 v7,
11378 v6_m,
11379 v6s_m,
9e3c6df6 11380 v7e_m,
bca38921 11381 v8,
91e22acd
AS
11382 /* Pseudo-architecture. */
11383 v4t_plus_v6_m
11384 };
11385
11386 /* Check we've not got a higher architecture than we know about. */
11387
9e3c6df6 11388 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 11389 {
3895f852 11390 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
11391 return -1;
11392 }
11393
11394 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11395
11396 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11397 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11398 oldtag = T(V4T_PLUS_V6_M);
11399
11400 /* And override the new tag if we have a Tag_also_compatible_with on the
11401 input. */
11402
11403 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11404 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11405 newtag = T(V4T_PLUS_V6_M);
11406
11407 tagl = (oldtag < newtag) ? oldtag : newtag;
11408 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11409
11410 /* Architectures before V6KZ add features monotonically. */
11411 if (tagh <= TAG_CPU_ARCH_V6KZ)
11412 return result;
11413
11414 result = comb[tagh - T(V6T2)][tagl];
11415
11416 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11417 as the canonical version. */
11418 if (result == T(V4T_PLUS_V6_M))
11419 {
11420 result = T(V4T);
11421 *secondary_compat_out = T(V6_M);
11422 }
11423 else
11424 *secondary_compat_out = -1;
11425
11426 if (result == -1)
11427 {
3895f852 11428 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
11429 ibfd, oldtag, newtag);
11430 return -1;
11431 }
11432
11433 return result;
11434#undef T
8e79c3df
CM
11435}
11436
ac56ee8f
MGD
11437/* Query attributes object to see if integer divide instructions may be
11438 present in an object. */
11439static bfd_boolean
11440elf32_arm_attributes_accept_div (const obj_attribute *attr)
11441{
11442 int arch = attr[Tag_CPU_arch].i;
11443 int profile = attr[Tag_CPU_arch_profile].i;
11444
11445 switch (attr[Tag_DIV_use].i)
11446 {
11447 case 0:
11448 /* Integer divide allowed if instruction contained in archetecture. */
11449 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11450 return TRUE;
11451 else if (arch >= TAG_CPU_ARCH_V7E_M)
11452 return TRUE;
11453 else
11454 return FALSE;
11455
11456 case 1:
11457 /* Integer divide explicitly prohibited. */
11458 return FALSE;
11459
11460 default:
11461 /* Unrecognised case - treat as allowing divide everywhere. */
11462 case 2:
11463 /* Integer divide allowed in ARM state. */
11464 return TRUE;
11465 }
11466}
11467
11468/* Query attributes object to see if integer divide instructions are
11469 forbidden to be in the object. This is not the inverse of
11470 elf32_arm_attributes_accept_div. */
11471static bfd_boolean
11472elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11473{
11474 return attr[Tag_DIV_use].i == 1;
11475}
11476
ee065d83
PB
11477/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11478 are conflicting attributes. */
906e58ca 11479
ee065d83
PB
11480static bfd_boolean
11481elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11482{
104d59d1
JM
11483 obj_attribute *in_attr;
11484 obj_attribute *out_attr;
ee065d83
PB
11485 /* Some tags have 0 = don't care, 1 = strong requirement,
11486 2 = weak requirement. */
91e22acd 11487 static const int order_021[3] = {0, 2, 1};
ee065d83 11488 int i;
91e22acd 11489 bfd_boolean result = TRUE;
ee065d83 11490
3e6b1042
DJ
11491 /* Skip the linker stubs file. This preserves previous behavior
11492 of accepting unknown attributes in the first input file - but
11493 is that a bug? */
11494 if (ibfd->flags & BFD_LINKER_CREATED)
11495 return TRUE;
11496
104d59d1 11497 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
11498 {
11499 /* This is the first object. Copy the attributes. */
104d59d1 11500 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 11501
cd21e546
MGD
11502 out_attr = elf_known_obj_attributes_proc (obfd);
11503
004ae526
PB
11504 /* Use the Tag_null value to indicate the attributes have been
11505 initialized. */
cd21e546 11506 out_attr[0].i = 1;
004ae526 11507
cd21e546
MGD
11508 /* We do not output objects with Tag_MPextension_use_legacy - we move
11509 the attribute's value to Tag_MPextension_use. */
11510 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11511 {
11512 if (out_attr[Tag_MPextension_use].i != 0
11513 && out_attr[Tag_MPextension_use_legacy].i
11514 != out_attr[Tag_MPextension_use].i)
11515 {
11516 _bfd_error_handler
11517 (_("Error: %B has both the current and legacy "
11518 "Tag_MPextension_use attributes"), ibfd);
11519 result = FALSE;
11520 }
11521
11522 out_attr[Tag_MPextension_use] =
11523 out_attr[Tag_MPextension_use_legacy];
11524 out_attr[Tag_MPextension_use_legacy].type = 0;
11525 out_attr[Tag_MPextension_use_legacy].i = 0;
11526 }
11527
11528 return result;
ee065d83
PB
11529 }
11530
104d59d1
JM
11531 in_attr = elf_known_obj_attributes_proc (ibfd);
11532 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
11533 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11534 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11535 {
8e79c3df 11536 /* Ignore mismatches if the object doesn't use floating point. */
ee065d83
PB
11537 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11538 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11539 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11540 {
11541 _bfd_error_handler
3895f852 11542 (_("error: %B uses VFP register arguments, %B does not"),
deddc40b
NS
11543 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11544 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 11545 result = FALSE;
ee065d83
PB
11546 }
11547 }
11548
3de4a297 11549 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
11550 {
11551 /* Merge this attribute with existing attributes. */
11552 switch (i)
11553 {
11554 case Tag_CPU_raw_name:
11555 case Tag_CPU_name:
91e22acd 11556 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
11557 break;
11558
11559 case Tag_ABI_optimization_goals:
11560 case Tag_ABI_FP_optimization_goals:
11561 /* Use the first value seen. */
11562 break;
11563
11564 case Tag_CPU_arch:
91e22acd
AS
11565 {
11566 int secondary_compat = -1, secondary_compat_out = -1;
11567 unsigned int saved_out_attr = out_attr[i].i;
11568 static const char *name_table[] = {
11569 /* These aren't real CPU names, but we can't guess
11570 that from the architecture version alone. */
11571 "Pre v4",
11572 "ARM v4",
11573 "ARM v4T",
11574 "ARM v5T",
11575 "ARM v5TE",
11576 "ARM v5TEJ",
11577 "ARM v6",
11578 "ARM v6KZ",
11579 "ARM v6T2",
11580 "ARM v6K",
11581 "ARM v7",
11582 "ARM v6-M",
bca38921
MGD
11583 "ARM v6S-M",
11584 "ARM v8"
91e22acd
AS
11585 };
11586
11587 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11588 secondary_compat = get_secondary_compatible_arch (ibfd);
11589 secondary_compat_out = get_secondary_compatible_arch (obfd);
11590 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11591 &secondary_compat_out,
11592 in_attr[i].i,
11593 secondary_compat);
11594 set_secondary_compatible_arch (obfd, secondary_compat_out);
11595
11596 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11597 if (out_attr[i].i == saved_out_attr)
11598 ; /* Leave the names alone. */
11599 else if (out_attr[i].i == in_attr[i].i)
11600 {
11601 /* The output architecture has been changed to match the
11602 input architecture. Use the input names. */
11603 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11604 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11605 : NULL;
11606 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11607 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11608 : NULL;
11609 }
11610 else
11611 {
11612 out_attr[Tag_CPU_name].s = NULL;
11613 out_attr[Tag_CPU_raw_name].s = NULL;
11614 }
11615
11616 /* If we still don't have a value for Tag_CPU_name,
11617 make one up now. Tag_CPU_raw_name remains blank. */
11618 if (out_attr[Tag_CPU_name].s == NULL
11619 && out_attr[i].i < ARRAY_SIZE (name_table))
11620 out_attr[Tag_CPU_name].s =
11621 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11622 }
11623 break;
11624
ee065d83
PB
11625 case Tag_ARM_ISA_use:
11626 case Tag_THUMB_ISA_use:
ee065d83 11627 case Tag_WMMX_arch:
91e22acd
AS
11628 case Tag_Advanced_SIMD_arch:
11629 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 11630 case Tag_ABI_FP_rounding:
ee065d83
PB
11631 case Tag_ABI_FP_exceptions:
11632 case Tag_ABI_FP_user_exceptions:
11633 case Tag_ABI_FP_number_model:
75375b3e 11634 case Tag_FP_HP_extension:
91e22acd
AS
11635 case Tag_CPU_unaligned_access:
11636 case Tag_T2EE_use:
91e22acd 11637 case Tag_MPextension_use:
ee065d83
PB
11638 /* Use the largest value specified. */
11639 if (in_attr[i].i > out_attr[i].i)
11640 out_attr[i].i = in_attr[i].i;
11641 break;
11642
75375b3e 11643 case Tag_ABI_align_preserved:
91e22acd
AS
11644 case Tag_ABI_PCS_RO_data:
11645 /* Use the smallest value specified. */
11646 if (in_attr[i].i < out_attr[i].i)
11647 out_attr[i].i = in_attr[i].i;
11648 break;
11649
75375b3e 11650 case Tag_ABI_align_needed:
91e22acd 11651 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
11652 && (in_attr[Tag_ABI_align_preserved].i == 0
11653 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 11654 {
91e22acd
AS
11655 /* This error message should be enabled once all non-conformant
11656 binaries in the toolchain have had the attributes set
11657 properly.
ee065d83 11658 _bfd_error_handler
3895f852 11659 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
11660 obfd, ibfd);
11661 result = FALSE; */
ee065d83 11662 }
91e22acd
AS
11663 /* Fall through. */
11664 case Tag_ABI_FP_denormal:
11665 case Tag_ABI_PCS_GOT_use:
11666 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11667 value if greater than 2 (for future-proofing). */
11668 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11669 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11670 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
11671 out_attr[i].i = in_attr[i].i;
11672 break;
91e22acd 11673
75375b3e
MGD
11674 case Tag_Virtualization_use:
11675 /* The virtualization tag effectively stores two bits of
11676 information: the intended use of TrustZone (in bit 0), and the
11677 intended use of Virtualization (in bit 1). */
11678 if (out_attr[i].i == 0)
11679 out_attr[i].i = in_attr[i].i;
11680 else if (in_attr[i].i != 0
11681 && in_attr[i].i != out_attr[i].i)
11682 {
11683 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11684 out_attr[i].i = 3;
11685 else
11686 {
11687 _bfd_error_handler
11688 (_("error: %B: unable to merge virtualization attributes "
11689 "with %B"),
11690 obfd, ibfd);
11691 result = FALSE;
11692 }
11693 }
11694 break;
91e22acd
AS
11695
11696 case Tag_CPU_arch_profile:
11697 if (out_attr[i].i != in_attr[i].i)
11698 {
11699 /* 0 will merge with anything.
11700 'A' and 'S' merge to 'A'.
11701 'R' and 'S' merge to 'R'.
11702 'M' and 'A|R|S' is an error. */
11703 if (out_attr[i].i == 0
11704 || (out_attr[i].i == 'S'
11705 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11706 out_attr[i].i = in_attr[i].i;
11707 else if (in_attr[i].i == 0
11708 || (in_attr[i].i == 'S'
11709 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11710 ; /* Do nothing. */
11711 else
11712 {
11713 _bfd_error_handler
3895f852 11714 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
11715 ibfd,
11716 in_attr[i].i ? in_attr[i].i : '0',
11717 out_attr[i].i ? out_attr[i].i : '0');
11718 result = FALSE;
11719 }
11720 }
11721 break;
75375b3e 11722 case Tag_FP_arch:
62f3b8c8 11723 {
4547cb56
NC
11724 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11725 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11726 when it's 0. It might mean absence of FP hardware if
11727 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11728
bca38921 11729#define VFP_VERSION_COUNT 8
62f3b8c8
PB
11730 static const struct
11731 {
11732 int ver;
11733 int regs;
bca38921 11734 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
11735 {
11736 {0, 0},
11737 {1, 16},
11738 {2, 16},
11739 {3, 32},
11740 {3, 16},
11741 {4, 32},
bca38921
MGD
11742 {4, 16},
11743 {8, 32}
62f3b8c8
PB
11744 };
11745 int ver;
11746 int regs;
11747 int newval;
11748
4547cb56
NC
11749 /* If the output has no requirement about FP hardware,
11750 follow the requirement of the input. */
11751 if (out_attr[i].i == 0)
11752 {
11753 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11754 out_attr[i].i = in_attr[i].i;
11755 out_attr[Tag_ABI_HardFP_use].i
11756 = in_attr[Tag_ABI_HardFP_use].i;
11757 break;
11758 }
11759 /* If the input has no requirement about FP hardware, do
11760 nothing. */
11761 else if (in_attr[i].i == 0)
11762 {
11763 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11764 break;
11765 }
11766
11767 /* Both the input and the output have nonzero Tag_FP_arch.
11768 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11769
11770 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11771 do nothing. */
11772 if (in_attr[Tag_ABI_HardFP_use].i == 0
11773 && out_attr[Tag_ABI_HardFP_use].i == 0)
11774 ;
11775 /* If the input and the output have different Tag_ABI_HardFP_use,
11776 the combination of them is 3 (SP & DP). */
11777 else if (in_attr[Tag_ABI_HardFP_use].i
11778 != out_attr[Tag_ABI_HardFP_use].i)
11779 out_attr[Tag_ABI_HardFP_use].i = 3;
11780
11781 /* Now we can handle Tag_FP_arch. */
11782
bca38921
MGD
11783 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11784 pick the biggest. */
11785 if (in_attr[i].i >= VFP_VERSION_COUNT
11786 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
11787 {
11788 out_attr[i] = in_attr[i];
11789 break;
11790 }
11791 /* The output uses the superset of input features
11792 (ISA version) and registers. */
11793 ver = vfp_versions[in_attr[i].i].ver;
11794 if (ver < vfp_versions[out_attr[i].i].ver)
11795 ver = vfp_versions[out_attr[i].i].ver;
11796 regs = vfp_versions[in_attr[i].i].regs;
11797 if (regs < vfp_versions[out_attr[i].i].regs)
11798 regs = vfp_versions[out_attr[i].i].regs;
11799 /* This assumes all possible supersets are also a valid
11800 options. */
bca38921 11801 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
11802 {
11803 if (regs == vfp_versions[newval].regs
11804 && ver == vfp_versions[newval].ver)
11805 break;
11806 }
11807 out_attr[i].i = newval;
11808 }
b1cc4aeb 11809 break;
ee065d83
PB
11810 case Tag_PCS_config:
11811 if (out_attr[i].i == 0)
11812 out_attr[i].i = in_attr[i].i;
b6009aca 11813 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
11814 {
11815 /* It's sometimes ok to mix different configs, so this is only
11816 a warning. */
11817 _bfd_error_handler
11818 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11819 }
11820 break;
11821 case Tag_ABI_PCS_R9_use:
004ae526
PB
11822 if (in_attr[i].i != out_attr[i].i
11823 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
11824 && in_attr[i].i != AEABI_R9_unused)
11825 {
11826 _bfd_error_handler
3895f852 11827 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 11828 result = FALSE;
ee065d83
PB
11829 }
11830 if (out_attr[i].i == AEABI_R9_unused)
11831 out_attr[i].i = in_attr[i].i;
11832 break;
11833 case Tag_ABI_PCS_RW_data:
11834 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11835 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11836 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11837 {
11838 _bfd_error_handler
3895f852 11839 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 11840 ibfd);
91e22acd 11841 result = FALSE;
ee065d83
PB
11842 }
11843 /* Use the smallest value specified. */
11844 if (in_attr[i].i < out_attr[i].i)
11845 out_attr[i].i = in_attr[i].i;
11846 break;
ee065d83 11847 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
11848 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11849 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
11850 {
11851 _bfd_error_handler
a9dc9481
JM
11852 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11853 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 11854 }
a9dc9481 11855 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
11856 out_attr[i].i = in_attr[i].i;
11857 break;
ee065d83
PB
11858 case Tag_ABI_enum_size:
11859 if (in_attr[i].i != AEABI_enum_unused)
11860 {
11861 if (out_attr[i].i == AEABI_enum_unused
11862 || out_attr[i].i == AEABI_enum_forced_wide)
11863 {
11864 /* The existing object is compatible with anything.
11865 Use whatever requirements the new object has. */
11866 out_attr[i].i = in_attr[i].i;
11867 }
11868 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 11869 && out_attr[i].i != in_attr[i].i
0ffa91dd 11870 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 11871 {
91e22acd 11872 static const char *aeabi_enum_names[] =
bf21ed78 11873 { "", "variable-size", "32-bit", "" };
91e22acd
AS
11874 const char *in_name =
11875 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11876 ? aeabi_enum_names[in_attr[i].i]
11877 : "<unknown>";
11878 const char *out_name =
11879 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11880 ? aeabi_enum_names[out_attr[i].i]
11881 : "<unknown>";
ee065d83 11882 _bfd_error_handler
bf21ed78 11883 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 11884 ibfd, in_name, out_name);
ee065d83
PB
11885 }
11886 }
11887 break;
11888 case Tag_ABI_VFP_args:
11889 /* Aready done. */
11890 break;
11891 case Tag_ABI_WMMX_args:
11892 if (in_attr[i].i != out_attr[i].i)
11893 {
11894 _bfd_error_handler
3895f852 11895 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 11896 ibfd, obfd);
91e22acd 11897 result = FALSE;
ee065d83
PB
11898 }
11899 break;
7b86a9fa
AS
11900 case Tag_compatibility:
11901 /* Merged in target-independent code. */
11902 break;
91e22acd 11903 case Tag_ABI_HardFP_use:
4547cb56 11904 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
11905 break;
11906 case Tag_ABI_FP_16bit_format:
11907 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11908 {
11909 if (in_attr[i].i != out_attr[i].i)
11910 {
11911 _bfd_error_handler
3895f852 11912 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
11913 ibfd, obfd);
11914 result = FALSE;
11915 }
11916 }
11917 if (in_attr[i].i != 0)
11918 out_attr[i].i = in_attr[i].i;
11919 break;
7b86a9fa 11920
cd21e546 11921 case Tag_DIV_use:
ac56ee8f
MGD
11922 /* A value of zero on input means that the divide instruction may
11923 be used if available in the base architecture as specified via
11924 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
11925 the user did not want divide instructions. A value of 2
11926 explicitly means that divide instructions were allowed in ARM
11927 and Thumb state. */
11928 if (in_attr[i].i == out_attr[i].i)
11929 /* Do nothing. */ ;
11930 else if (elf32_arm_attributes_forbid_div (in_attr)
11931 && !elf32_arm_attributes_accept_div (out_attr))
11932 out_attr[i].i = 1;
11933 else if (elf32_arm_attributes_forbid_div (out_attr)
11934 && elf32_arm_attributes_accept_div (in_attr))
11935 out_attr[i].i = in_attr[i].i;
11936 else if (in_attr[i].i == 2)
11937 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
11938 break;
11939
11940 case Tag_MPextension_use_legacy:
11941 /* We don't output objects with Tag_MPextension_use_legacy - we
11942 move the value to Tag_MPextension_use. */
11943 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11944 {
11945 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11946 {
11947 _bfd_error_handler
11948 (_("%B has has both the current and legacy "
b38cadfb 11949 "Tag_MPextension_use attributes"),
cd21e546
MGD
11950 ibfd);
11951 result = FALSE;
11952 }
11953 }
11954
11955 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11956 out_attr[Tag_MPextension_use] = in_attr[i];
11957
11958 break;
11959
91e22acd 11960 case Tag_nodefaults:
2d0bb761
AS
11961 /* This tag is set if it exists, but the value is unused (and is
11962 typically zero). We don't actually need to do anything here -
11963 the merge happens automatically when the type flags are merged
11964 below. */
91e22acd
AS
11965 break;
11966 case Tag_also_compatible_with:
11967 /* Already done in Tag_CPU_arch. */
11968 break;
11969 case Tag_conformance:
11970 /* Keep the attribute if it matches. Throw it away otherwise.
11971 No attribute means no claim to conform. */
11972 if (!in_attr[i].s || !out_attr[i].s
11973 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11974 out_attr[i].s = NULL;
11975 break;
3cfad14c 11976
91e22acd 11977 default:
e8b36cd1
JM
11978 result
11979 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
11980 }
11981
11982 /* If out_attr was copied from in_attr then it won't have a type yet. */
11983 if (in_attr[i].type && !out_attr[i].type)
11984 out_attr[i].type = in_attr[i].type;
ee065d83
PB
11985 }
11986
104d59d1 11987 /* Merge Tag_compatibility attributes and any common GNU ones. */
5488d830
MGD
11988 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11989 return FALSE;
ee065d83 11990
104d59d1 11991 /* Check for any attributes not known on ARM. */
e8b36cd1 11992 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 11993
91e22acd 11994 return result;
252b5132
RH
11995}
11996
3a4a14e9
PB
11997
11998/* Return TRUE if the two EABI versions are incompatible. */
11999
12000static bfd_boolean
12001elf32_arm_versions_compatible (unsigned iver, unsigned over)
12002{
12003 /* v4 and v5 are the same spec before and after it was released,
12004 so allow mixing them. */
12005 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12006 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12007 return TRUE;
12008
12009 return (iver == over);
12010}
12011
252b5132
RH
12012/* Merge backend specific data from an object file to the output
12013 object file when linking. */
9b485d32 12014
b34976b6 12015static bfd_boolean
21d799b5 12016elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
252b5132 12017
9b485d32
NC
12018/* Display the flags field. */
12019
b34976b6 12020static bfd_boolean
57e8b36a 12021elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 12022{
fc830a83
NC
12023 FILE * file = (FILE *) ptr;
12024 unsigned long flags;
252b5132
RH
12025
12026 BFD_ASSERT (abfd != NULL && ptr != NULL);
12027
12028 /* Print normal ELF private data. */
12029 _bfd_elf_print_private_bfd_data (abfd, ptr);
12030
fc830a83 12031 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
12032 /* Ignore init flag - it may not be set, despite the flags field
12033 containing valid data. */
252b5132
RH
12034
12035 /* xgettext:c-format */
9b485d32 12036 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 12037
fc830a83
NC
12038 switch (EF_ARM_EABI_VERSION (flags))
12039 {
12040 case EF_ARM_EABI_UNKNOWN:
4cc11e76 12041 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
12042 official ARM ELF extended ABI. Hence they are only decoded if
12043 the EABI version is not set. */
fd2ec330 12044 if (flags & EF_ARM_INTERWORK)
9b485d32 12045 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 12046
fd2ec330 12047 if (flags & EF_ARM_APCS_26)
6c571f00 12048 fprintf (file, " [APCS-26]");
fc830a83 12049 else
6c571f00 12050 fprintf (file, " [APCS-32]");
9a5aca8c 12051
96a846ea
RE
12052 if (flags & EF_ARM_VFP_FLOAT)
12053 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
12054 else if (flags & EF_ARM_MAVERICK_FLOAT)
12055 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
12056 else
12057 fprintf (file, _(" [FPA float format]"));
12058
fd2ec330 12059 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 12060 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 12061
fd2ec330 12062 if (flags & EF_ARM_PIC)
9b485d32 12063 fprintf (file, _(" [position independent]"));
fc830a83 12064
fd2ec330 12065 if (flags & EF_ARM_NEW_ABI)
9b485d32 12066 fprintf (file, _(" [new ABI]"));
9a5aca8c 12067
fd2ec330 12068 if (flags & EF_ARM_OLD_ABI)
9b485d32 12069 fprintf (file, _(" [old ABI]"));
9a5aca8c 12070
fd2ec330 12071 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 12072 fprintf (file, _(" [software FP]"));
9a5aca8c 12073
96a846ea
RE
12074 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12075 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
12076 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12077 | EF_ARM_MAVERICK_FLOAT);
fc830a83 12078 break;
9a5aca8c 12079
fc830a83 12080 case EF_ARM_EABI_VER1:
9b485d32 12081 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 12082
fc830a83 12083 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 12084 fprintf (file, _(" [sorted symbol table]"));
fc830a83 12085 else
9b485d32 12086 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 12087
fc830a83
NC
12088 flags &= ~ EF_ARM_SYMSARESORTED;
12089 break;
9a5aca8c 12090
fd2ec330
PB
12091 case EF_ARM_EABI_VER2:
12092 fprintf (file, _(" [Version2 EABI]"));
12093
12094 if (flags & EF_ARM_SYMSARESORTED)
12095 fprintf (file, _(" [sorted symbol table]"));
12096 else
12097 fprintf (file, _(" [unsorted symbol table]"));
12098
12099 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12100 fprintf (file, _(" [dynamic symbols use segment index]"));
12101
12102 if (flags & EF_ARM_MAPSYMSFIRST)
12103 fprintf (file, _(" [mapping symbols precede others]"));
12104
99e4ae17 12105 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
12106 | EF_ARM_MAPSYMSFIRST);
12107 break;
12108
d507cf36
PB
12109 case EF_ARM_EABI_VER3:
12110 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
12111 break;
12112
12113 case EF_ARM_EABI_VER4:
12114 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 12115 goto eabi;
d507cf36 12116
3a4a14e9
PB
12117 case EF_ARM_EABI_VER5:
12118 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
12119
12120 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12121 fprintf (file, _(" [soft-float ABI]"));
12122
12123 if (flags & EF_ARM_ABI_FLOAT_HARD)
12124 fprintf (file, _(" [hard-float ABI]"));
12125
12126 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12127
3a4a14e9 12128 eabi:
d507cf36
PB
12129 if (flags & EF_ARM_BE8)
12130 fprintf (file, _(" [BE8]"));
12131
12132 if (flags & EF_ARM_LE8)
12133 fprintf (file, _(" [LE8]"));
12134
12135 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12136 break;
12137
fc830a83 12138 default:
9b485d32 12139 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
12140 break;
12141 }
252b5132 12142
fc830a83 12143 flags &= ~ EF_ARM_EABIMASK;
252b5132 12144
fc830a83 12145 if (flags & EF_ARM_RELEXEC)
9b485d32 12146 fprintf (file, _(" [relocatable executable]"));
252b5132 12147
fc830a83 12148 if (flags & EF_ARM_HASENTRY)
9b485d32 12149 fprintf (file, _(" [has entry point]"));
252b5132 12150
fc830a83
NC
12151 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12152
12153 if (flags)
9b485d32 12154 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 12155
252b5132
RH
12156 fputc ('\n', file);
12157
b34976b6 12158 return TRUE;
252b5132
RH
12159}
12160
12161static int
57e8b36a 12162elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 12163{
2f0ca46a
NC
12164 switch (ELF_ST_TYPE (elf_sym->st_info))
12165 {
12166 case STT_ARM_TFUNC:
12167 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 12168
2f0ca46a
NC
12169 case STT_ARM_16BIT:
12170 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12171 This allows us to distinguish between data used by Thumb instructions
12172 and non-data (which is probably code) inside Thumb regions of an
12173 executable. */
1a0eb693 12174 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
12175 return ELF_ST_TYPE (elf_sym->st_info);
12176 break;
9a5aca8c 12177
ce855c42
NC
12178 default:
12179 break;
2f0ca46a
NC
12180 }
12181
12182 return type;
252b5132 12183}
f21f3fe0 12184
252b5132 12185static asection *
07adf181
AM
12186elf32_arm_gc_mark_hook (asection *sec,
12187 struct bfd_link_info *info,
12188 Elf_Internal_Rela *rel,
12189 struct elf_link_hash_entry *h,
12190 Elf_Internal_Sym *sym)
252b5132
RH
12191{
12192 if (h != NULL)
07adf181 12193 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
12194 {
12195 case R_ARM_GNU_VTINHERIT:
12196 case R_ARM_GNU_VTENTRY:
07adf181
AM
12197 return NULL;
12198 }
9ad5cbcf 12199
07adf181 12200 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
12201}
12202
780a67af
NC
12203/* Update the got entry reference counts for the section being removed. */
12204
b34976b6 12205static bfd_boolean
ba93b8ac
DJ
12206elf32_arm_gc_sweep_hook (bfd * abfd,
12207 struct bfd_link_info * info,
12208 asection * sec,
12209 const Elf_Internal_Rela * relocs)
252b5132 12210{
5e681ec4
PB
12211 Elf_Internal_Shdr *symtab_hdr;
12212 struct elf_link_hash_entry **sym_hashes;
12213 bfd_signed_vma *local_got_refcounts;
12214 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
12215 struct elf32_arm_link_hash_table * globals;
12216
7dda2462
TG
12217 if (info->relocatable)
12218 return TRUE;
12219
eb043451 12220 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
12221 if (globals == NULL)
12222 return FALSE;
5e681ec4
PB
12223
12224 elf_section_data (sec)->local_dynrel = NULL;
12225
0ffa91dd 12226 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
12227 sym_hashes = elf_sym_hashes (abfd);
12228 local_got_refcounts = elf_local_got_refcounts (abfd);
12229
906e58ca 12230 check_use_blx (globals);
bd97cb95 12231
5e681ec4
PB
12232 relend = relocs + sec->reloc_count;
12233 for (rel = relocs; rel < relend; rel++)
eb043451 12234 {
3eb128b2
AM
12235 unsigned long r_symndx;
12236 struct elf_link_hash_entry *h = NULL;
f6e32f6d 12237 struct elf32_arm_link_hash_entry *eh;
eb043451 12238 int r_type;
34e77a92 12239 bfd_boolean call_reloc_p;
f6e32f6d
RS
12240 bfd_boolean may_become_dynamic_p;
12241 bfd_boolean may_need_local_target_p;
34e77a92
RS
12242 union gotplt_union *root_plt;
12243 struct arm_plt_info *arm_plt;
5e681ec4 12244
3eb128b2
AM
12245 r_symndx = ELF32_R_SYM (rel->r_info);
12246 if (r_symndx >= symtab_hdr->sh_info)
12247 {
12248 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12249 while (h->root.type == bfd_link_hash_indirect
12250 || h->root.type == bfd_link_hash_warning)
12251 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12252 }
f6e32f6d
RS
12253 eh = (struct elf32_arm_link_hash_entry *) h;
12254
34e77a92 12255 call_reloc_p = FALSE;
f6e32f6d
RS
12256 may_become_dynamic_p = FALSE;
12257 may_need_local_target_p = FALSE;
3eb128b2 12258
eb043451 12259 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 12260 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
12261 switch (r_type)
12262 {
12263 case R_ARM_GOT32:
eb043451 12264 case R_ARM_GOT_PREL:
ba93b8ac
DJ
12265 case R_ARM_TLS_GD32:
12266 case R_ARM_TLS_IE32:
3eb128b2 12267 if (h != NULL)
eb043451 12268 {
eb043451
PB
12269 if (h->got.refcount > 0)
12270 h->got.refcount -= 1;
12271 }
12272 else if (local_got_refcounts != NULL)
12273 {
12274 if (local_got_refcounts[r_symndx] > 0)
12275 local_got_refcounts[r_symndx] -= 1;
12276 }
12277 break;
12278
ba93b8ac 12279 case R_ARM_TLS_LDM32:
4dfe6ac6 12280 globals->tls_ldm_got.refcount -= 1;
ba93b8ac
DJ
12281 break;
12282
eb043451
PB
12283 case R_ARM_PC24:
12284 case R_ARM_PLT32:
5b5bb741
PB
12285 case R_ARM_CALL:
12286 case R_ARM_JUMP24:
eb043451 12287 case R_ARM_PREL31:
c19d1205 12288 case R_ARM_THM_CALL:
bd97cb95
DJ
12289 case R_ARM_THM_JUMP24:
12290 case R_ARM_THM_JUMP19:
34e77a92 12291 call_reloc_p = TRUE;
f6e32f6d
RS
12292 may_need_local_target_p = TRUE;
12293 break;
12294
12295 case R_ARM_ABS12:
12296 if (!globals->vxworks_p)
12297 {
12298 may_need_local_target_p = TRUE;
12299 break;
12300 }
12301 /* Fall through. */
12302 case R_ARM_ABS32:
12303 case R_ARM_ABS32_NOI:
12304 case R_ARM_REL32:
12305 case R_ARM_REL32_NOI:
b6895b4f
PB
12306 case R_ARM_MOVW_ABS_NC:
12307 case R_ARM_MOVT_ABS:
12308 case R_ARM_MOVW_PREL_NC:
12309 case R_ARM_MOVT_PREL:
12310 case R_ARM_THM_MOVW_ABS_NC:
12311 case R_ARM_THM_MOVT_ABS:
12312 case R_ARM_THM_MOVW_PREL_NC:
12313 case R_ARM_THM_MOVT_PREL:
b7693d02 12314 /* Should the interworking branches be here also? */
f6e32f6d 12315 if ((info->shared || globals->root.is_relocatable_executable)
34e77a92
RS
12316 && (sec->flags & SEC_ALLOC) != 0)
12317 {
12318 if (h == NULL
12319 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12320 {
12321 call_reloc_p = TRUE;
12322 may_need_local_target_p = TRUE;
12323 }
12324 else
12325 may_become_dynamic_p = TRUE;
12326 }
f6e32f6d
RS
12327 else
12328 may_need_local_target_p = TRUE;
12329 break;
b7693d02 12330
f6e32f6d
RS
12331 default:
12332 break;
12333 }
5e681ec4 12334
34e77a92
RS
12335 if (may_need_local_target_p
12336 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
f6e32f6d 12337 {
27586251
HPN
12338 /* If PLT refcount book-keeping is wrong and too low, we'll
12339 see a zero value (going to -1) for the root PLT reference
12340 count. */
12341 if (root_plt->refcount >= 0)
12342 {
12343 BFD_ASSERT (root_plt->refcount != 0);
12344 root_plt->refcount -= 1;
12345 }
12346 else
12347 /* A value of -1 means the symbol has become local, forced
12348 or seeing a hidden definition. Any other negative value
12349 is an error. */
12350 BFD_ASSERT (root_plt->refcount == -1);
34e77a92
RS
12351
12352 if (!call_reloc_p)
12353 arm_plt->noncall_refcount--;
5e681ec4 12354
f6e32f6d 12355 if (r_type == R_ARM_THM_CALL)
34e77a92 12356 arm_plt->maybe_thumb_refcount--;
bd97cb95 12357
f6e32f6d
RS
12358 if (r_type == R_ARM_THM_JUMP24
12359 || r_type == R_ARM_THM_JUMP19)
34e77a92 12360 arm_plt->thumb_refcount--;
f6e32f6d 12361 }
5e681ec4 12362
34e77a92 12363 if (may_become_dynamic_p)
f6e32f6d
RS
12364 {
12365 struct elf_dyn_relocs **pp;
12366 struct elf_dyn_relocs *p;
5e681ec4 12367
34e77a92 12368 if (h != NULL)
9c489990 12369 pp = &(eh->dyn_relocs);
34e77a92
RS
12370 else
12371 {
12372 Elf_Internal_Sym *isym;
12373
12374 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12375 abfd, r_symndx);
12376 if (isym == NULL)
12377 return FALSE;
12378 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12379 if (pp == NULL)
12380 return FALSE;
12381 }
9c489990 12382 for (; (p = *pp) != NULL; pp = &p->next)
f6e32f6d
RS
12383 if (p->sec == sec)
12384 {
12385 /* Everything must go for SEC. */
12386 *pp = p->next;
12387 break;
12388 }
eb043451
PB
12389 }
12390 }
5e681ec4 12391
b34976b6 12392 return TRUE;
252b5132
RH
12393}
12394
780a67af
NC
12395/* Look through the relocs for a section during the first phase. */
12396
b34976b6 12397static bfd_boolean
57e8b36a
NC
12398elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12399 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 12400{
b34976b6
AM
12401 Elf_Internal_Shdr *symtab_hdr;
12402 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
12403 const Elf_Internal_Rela *rel;
12404 const Elf_Internal_Rela *rel_end;
12405 bfd *dynobj;
5e681ec4 12406 asection *sreloc;
5e681ec4 12407 struct elf32_arm_link_hash_table *htab;
f6e32f6d
RS
12408 bfd_boolean call_reloc_p;
12409 bfd_boolean may_become_dynamic_p;
12410 bfd_boolean may_need_local_target_p;
ce98a316 12411 unsigned long nsyms;
9a5aca8c 12412
1049f94e 12413 if (info->relocatable)
b34976b6 12414 return TRUE;
9a5aca8c 12415
0ffa91dd
NC
12416 BFD_ASSERT (is_arm_elf (abfd));
12417
5e681ec4 12418 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
12419 if (htab == NULL)
12420 return FALSE;
12421
5e681ec4 12422 sreloc = NULL;
9a5aca8c 12423
67687978
PB
12424 /* Create dynamic sections for relocatable executables so that we can
12425 copy relocations. */
12426 if (htab->root.is_relocatable_executable
12427 && ! htab->root.dynamic_sections_created)
12428 {
12429 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12430 return FALSE;
12431 }
12432
cbc704f3
RS
12433 if (htab->root.dynobj == NULL)
12434 htab->root.dynobj = abfd;
34e77a92
RS
12435 if (!create_ifunc_sections (info))
12436 return FALSE;
cbc704f3
RS
12437
12438 dynobj = htab->root.dynobj;
12439
0ffa91dd 12440 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 12441 sym_hashes = elf_sym_hashes (abfd);
ce98a316 12442 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 12443
252b5132
RH
12444 rel_end = relocs + sec->reloc_count;
12445 for (rel = relocs; rel < rel_end; rel++)
12446 {
34e77a92 12447 Elf_Internal_Sym *isym;
252b5132 12448 struct elf_link_hash_entry *h;
b7693d02 12449 struct elf32_arm_link_hash_entry *eh;
252b5132 12450 unsigned long r_symndx;
eb043451 12451 int r_type;
9a5aca8c 12452
252b5132 12453 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 12454 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 12455 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 12456
ce98a316
NC
12457 if (r_symndx >= nsyms
12458 /* PR 9934: It is possible to have relocations that do not
12459 refer to symbols, thus it is also possible to have an
12460 object file containing relocations but no symbol table. */
cf35638d 12461 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac
DJ
12462 {
12463 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
ce98a316 12464 r_symndx);
ba93b8ac
DJ
12465 return FALSE;
12466 }
12467
34e77a92
RS
12468 h = NULL;
12469 isym = NULL;
12470 if (nsyms > 0)
973a3492 12471 {
34e77a92
RS
12472 if (r_symndx < symtab_hdr->sh_info)
12473 {
12474 /* A local symbol. */
12475 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12476 abfd, r_symndx);
12477 if (isym == NULL)
12478 return FALSE;
12479 }
12480 else
12481 {
12482 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12483 while (h->root.type == bfd_link_hash_indirect
12484 || h->root.type == bfd_link_hash_warning)
12485 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12486 }
973a3492 12487 }
9a5aca8c 12488
b7693d02
DJ
12489 eh = (struct elf32_arm_link_hash_entry *) h;
12490
f6e32f6d
RS
12491 call_reloc_p = FALSE;
12492 may_become_dynamic_p = FALSE;
12493 may_need_local_target_p = FALSE;
12494
0855e32b
NS
12495 /* Could be done earlier, if h were already available. */
12496 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 12497 switch (r_type)
252b5132 12498 {
5e681ec4 12499 case R_ARM_GOT32:
eb043451 12500 case R_ARM_GOT_PREL:
ba93b8ac
DJ
12501 case R_ARM_TLS_GD32:
12502 case R_ARM_TLS_IE32:
0855e32b
NS
12503 case R_ARM_TLS_GOTDESC:
12504 case R_ARM_TLS_DESCSEQ:
12505 case R_ARM_THM_TLS_DESCSEQ:
12506 case R_ARM_TLS_CALL:
12507 case R_ARM_THM_TLS_CALL:
5e681ec4 12508 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
12509 {
12510 int tls_type, old_tls_type;
5e681ec4 12511
ba93b8ac
DJ
12512 switch (r_type)
12513 {
12514 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
b38cadfb 12515
ba93b8ac 12516 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
b38cadfb 12517
0855e32b
NS
12518 case R_ARM_TLS_GOTDESC:
12519 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12520 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12521 tls_type = GOT_TLS_GDESC; break;
b38cadfb 12522
ba93b8ac
DJ
12523 default: tls_type = GOT_NORMAL; break;
12524 }
252b5132 12525
ba93b8ac
DJ
12526 if (h != NULL)
12527 {
12528 h->got.refcount++;
12529 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12530 }
12531 else
12532 {
ba93b8ac 12533 /* This is a global offset table entry for a local symbol. */
34e77a92
RS
12534 if (!elf32_arm_allocate_local_sym_info (abfd))
12535 return FALSE;
12536 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
12537 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12538 }
12539
0855e32b
NS
12540 /* If a variable is accessed with both tls methods, two
12541 slots may be created. */
12542 if (GOT_TLS_GD_ANY_P (old_tls_type)
12543 && GOT_TLS_GD_ANY_P (tls_type))
12544 tls_type |= old_tls_type;
12545
12546 /* We will already have issued an error message if there
12547 is a TLS/non-TLS mismatch, based on the symbol
12548 type. So just combine any TLS types needed. */
ba93b8ac
DJ
12549 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12550 && tls_type != GOT_NORMAL)
12551 tls_type |= old_tls_type;
12552
0855e32b
NS
12553 /* If the symbol is accessed in both IE and GDESC
12554 method, we're able to relax. Turn off the GDESC flag,
12555 without messing up with any other kind of tls types
12556 that may be involved */
12557 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12558 tls_type &= ~GOT_TLS_GDESC;
12559
ba93b8ac
DJ
12560 if (old_tls_type != tls_type)
12561 {
12562 if (h != NULL)
12563 elf32_arm_hash_entry (h)->tls_type = tls_type;
12564 else
12565 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12566 }
12567 }
8029a119 12568 /* Fall through. */
ba93b8ac
DJ
12569
12570 case R_ARM_TLS_LDM32:
12571 if (r_type == R_ARM_TLS_LDM32)
12572 htab->tls_ldm_got.refcount++;
8029a119 12573 /* Fall through. */
252b5132 12574
c19d1205 12575 case R_ARM_GOTOFF32:
5e681ec4 12576 case R_ARM_GOTPC:
cbc704f3
RS
12577 if (htab->root.sgot == NULL
12578 && !create_got_section (htab->root.dynobj, info))
12579 return FALSE;
252b5132
RH
12580 break;
12581
252b5132 12582 case R_ARM_PC24:
7359ea65 12583 case R_ARM_PLT32:
5b5bb741
PB
12584 case R_ARM_CALL:
12585 case R_ARM_JUMP24:
eb043451 12586 case R_ARM_PREL31:
c19d1205 12587 case R_ARM_THM_CALL:
bd97cb95
DJ
12588 case R_ARM_THM_JUMP24:
12589 case R_ARM_THM_JUMP19:
f6e32f6d
RS
12590 call_reloc_p = TRUE;
12591 may_need_local_target_p = TRUE;
12592 break;
12593
12594 case R_ARM_ABS12:
12595 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12596 ldr __GOTT_INDEX__ offsets. */
12597 if (!htab->vxworks_p)
12598 {
12599 may_need_local_target_p = TRUE;
12600 break;
12601 }
12602 /* Fall through. */
39623e12 12603
96c23d59
JM
12604 case R_ARM_MOVW_ABS_NC:
12605 case R_ARM_MOVT_ABS:
12606 case R_ARM_THM_MOVW_ABS_NC:
12607 case R_ARM_THM_MOVT_ABS:
12608 if (info->shared)
12609 {
12610 (*_bfd_error_handler)
12611 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12612 abfd, elf32_arm_howto_table_1[r_type].name,
12613 (h) ? h->root.root.string : "a local symbol");
12614 bfd_set_error (bfd_error_bad_value);
12615 return FALSE;
12616 }
12617
12618 /* Fall through. */
39623e12
PB
12619 case R_ARM_ABS32:
12620 case R_ARM_ABS32_NOI:
12621 case R_ARM_REL32:
12622 case R_ARM_REL32_NOI:
b6895b4f
PB
12623 case R_ARM_MOVW_PREL_NC:
12624 case R_ARM_MOVT_PREL:
b6895b4f
PB
12625 case R_ARM_THM_MOVW_PREL_NC:
12626 case R_ARM_THM_MOVT_PREL:
39623e12 12627
b7693d02 12628 /* Should the interworking branches be listed here? */
67687978 12629 if ((info->shared || htab->root.is_relocatable_executable)
34e77a92
RS
12630 && (sec->flags & SEC_ALLOC) != 0)
12631 {
12632 if (h == NULL
12633 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12634 {
12635 /* In shared libraries and relocatable executables,
12636 we treat local relative references as calls;
12637 see the related SYMBOL_CALLS_LOCAL code in
12638 allocate_dynrelocs. */
12639 call_reloc_p = TRUE;
12640 may_need_local_target_p = TRUE;
12641 }
12642 else
12643 /* We are creating a shared library or relocatable
12644 executable, and this is a reloc against a global symbol,
12645 or a non-PC-relative reloc against a local symbol.
12646 We may need to copy the reloc into the output. */
12647 may_become_dynamic_p = TRUE;
12648 }
f6e32f6d
RS
12649 else
12650 may_need_local_target_p = TRUE;
252b5132
RH
12651 break;
12652
12653 /* This relocation describes the C++ object vtable hierarchy.
12654 Reconstruct it for later use during GC. */
12655 case R_ARM_GNU_VTINHERIT:
c152c796 12656 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 12657 return FALSE;
252b5132 12658 break;
9a5aca8c 12659
252b5132
RH
12660 /* This relocation describes which C++ vtable entries are actually
12661 used. Record for later use during GC. */
12662 case R_ARM_GNU_VTENTRY:
d17e0c6e
JB
12663 BFD_ASSERT (h != NULL);
12664 if (h != NULL
12665 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 12666 return FALSE;
252b5132
RH
12667 break;
12668 }
f6e32f6d
RS
12669
12670 if (h != NULL)
12671 {
12672 if (call_reloc_p)
12673 /* We may need a .plt entry if the function this reloc
12674 refers to is in a different object, regardless of the
12675 symbol's type. We can't tell for sure yet, because
12676 something later might force the symbol local. */
12677 h->needs_plt = 1;
12678 else if (may_need_local_target_p)
12679 /* If this reloc is in a read-only section, we might
12680 need a copy reloc. We can't check reliably at this
12681 stage whether the section is read-only, as input
12682 sections have not yet been mapped to output sections.
12683 Tentatively set the flag for now, and correct in
12684 adjust_dynamic_symbol. */
12685 h->non_got_ref = 1;
12686 }
12687
34e77a92
RS
12688 if (may_need_local_target_p
12689 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 12690 {
34e77a92
RS
12691 union gotplt_union *root_plt;
12692 struct arm_plt_info *arm_plt;
12693 struct arm_local_iplt_info *local_iplt;
12694
12695 if (h != NULL)
12696 {
12697 root_plt = &h->plt;
12698 arm_plt = &eh->plt;
12699 }
12700 else
12701 {
12702 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12703 if (local_iplt == NULL)
12704 return FALSE;
12705 root_plt = &local_iplt->root;
12706 arm_plt = &local_iplt->arm;
12707 }
12708
f6e32f6d
RS
12709 /* If the symbol is a function that doesn't bind locally,
12710 this relocation will need a PLT entry. */
a8c887dd
NC
12711 if (root_plt->refcount != -1)
12712 root_plt->refcount += 1;
34e77a92
RS
12713
12714 if (!call_reloc_p)
12715 arm_plt->noncall_refcount++;
f6e32f6d
RS
12716
12717 /* It's too early to use htab->use_blx here, so we have to
12718 record possible blx references separately from
12719 relocs that definitely need a thumb stub. */
12720
12721 if (r_type == R_ARM_THM_CALL)
34e77a92 12722 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
12723
12724 if (r_type == R_ARM_THM_JUMP24
12725 || r_type == R_ARM_THM_JUMP19)
34e77a92 12726 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
12727 }
12728
12729 if (may_become_dynamic_p)
12730 {
12731 struct elf_dyn_relocs *p, **head;
12732
12733 /* Create a reloc section in dynobj. */
12734 if (sreloc == NULL)
12735 {
12736 sreloc = _bfd_elf_make_dynamic_reloc_section
12737 (sec, dynobj, 2, abfd, ! htab->use_rel);
12738
12739 if (sreloc == NULL)
12740 return FALSE;
12741
12742 /* BPABI objects never have dynamic relocations mapped. */
12743 if (htab->symbian_p)
12744 {
12745 flagword flags;
12746
12747 flags = bfd_get_section_flags (dynobj, sreloc);
12748 flags &= ~(SEC_LOAD | SEC_ALLOC);
12749 bfd_set_section_flags (dynobj, sreloc, flags);
12750 }
12751 }
12752
12753 /* If this is a global symbol, count the number of
12754 relocations we need for this symbol. */
12755 if (h != NULL)
12756 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12757 else
12758 {
34e77a92
RS
12759 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12760 if (head == NULL)
f6e32f6d 12761 return FALSE;
f6e32f6d
RS
12762 }
12763
12764 p = *head;
12765 if (p == NULL || p->sec != sec)
12766 {
12767 bfd_size_type amt = sizeof *p;
12768
12769 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12770 if (p == NULL)
12771 return FALSE;
12772 p->next = *head;
12773 *head = p;
12774 p->sec = sec;
12775 p->count = 0;
12776 p->pc_count = 0;
12777 }
12778
12779 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12780 p->pc_count += 1;
12781 p->count += 1;
12782 }
252b5132 12783 }
f21f3fe0 12784
b34976b6 12785 return TRUE;
252b5132
RH
12786}
12787
6a5bb875
PB
12788/* Unwinding tables are not referenced directly. This pass marks them as
12789 required if the corresponding code section is marked. */
12790
12791static bfd_boolean
906e58ca
NC
12792elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12793 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
12794{
12795 bfd *sub;
12796 Elf_Internal_Shdr **elf_shdrp;
12797 bfd_boolean again;
12798
7f6ab9f8
AM
12799 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12800
6a5bb875
PB
12801 /* Marking EH data may cause additional code sections to be marked,
12802 requiring multiple passes. */
12803 again = TRUE;
12804 while (again)
12805 {
12806 again = FALSE;
12807 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12808 {
12809 asection *o;
12810
0ffa91dd 12811 if (! is_arm_elf (sub))
6a5bb875
PB
12812 continue;
12813
12814 elf_shdrp = elf_elfsections (sub);
12815 for (o = sub->sections; o != NULL; o = o->next)
12816 {
12817 Elf_Internal_Shdr *hdr;
0ffa91dd 12818
6a5bb875 12819 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
12820 if (hdr->sh_type == SHT_ARM_EXIDX
12821 && hdr->sh_link
12822 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
12823 && !o->gc_mark
12824 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12825 {
12826 again = TRUE;
12827 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12828 return FALSE;
12829 }
12830 }
12831 }
12832 }
12833
12834 return TRUE;
12835}
12836
3c9458e9
NC
12837/* Treat mapping symbols as special target symbols. */
12838
12839static bfd_boolean
12840elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12841{
b0796911
PB
12842 return bfd_is_arm_special_symbol_name (sym->name,
12843 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
12844}
12845
0367ecfb
NC
12846/* This is a copy of elf_find_function() from elf.c except that
12847 ARM mapping symbols are ignored when looking for function names
12848 and STT_ARM_TFUNC is considered to a function type. */
252b5132 12849
0367ecfb
NC
12850static bfd_boolean
12851arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12852 asection * section,
12853 asymbol ** symbols,
12854 bfd_vma offset,
12855 const char ** filename_ptr,
12856 const char ** functionname_ptr)
12857{
12858 const char * filename = NULL;
12859 asymbol * func = NULL;
12860 bfd_vma low_func = 0;
12861 asymbol ** p;
252b5132
RH
12862
12863 for (p = symbols; *p != NULL; p++)
12864 {
12865 elf_symbol_type *q;
12866
12867 q = (elf_symbol_type *) *p;
12868
252b5132
RH
12869 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12870 {
12871 default:
12872 break;
12873 case STT_FILE:
12874 filename = bfd_asymbol_name (&q->symbol);
12875 break;
252b5132
RH
12876 case STT_FUNC:
12877 case STT_ARM_TFUNC:
9d2da7ca 12878 case STT_NOTYPE:
b0796911 12879 /* Skip mapping symbols. */
0367ecfb 12880 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
12881 && bfd_is_arm_special_symbol_name (q->symbol.name,
12882 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
12883 continue;
12884 /* Fall through. */
6b40fcba 12885 if (bfd_get_section (&q->symbol) == section
252b5132
RH
12886 && q->symbol.value >= low_func
12887 && q->symbol.value <= offset)
12888 {
12889 func = (asymbol *) q;
12890 low_func = q->symbol.value;
12891 }
12892 break;
12893 }
12894 }
12895
12896 if (func == NULL)
b34976b6 12897 return FALSE;
252b5132 12898
0367ecfb
NC
12899 if (filename_ptr)
12900 *filename_ptr = filename;
12901 if (functionname_ptr)
12902 *functionname_ptr = bfd_asymbol_name (func);
12903
12904 return TRUE;
906e58ca 12905}
0367ecfb
NC
12906
12907
12908/* Find the nearest line to a particular section and offset, for error
12909 reporting. This code is a duplicate of the code in elf.c, except
12910 that it uses arm_elf_find_function. */
12911
12912static bfd_boolean
12913elf32_arm_find_nearest_line (bfd * abfd,
12914 asection * section,
12915 asymbol ** symbols,
12916 bfd_vma offset,
12917 const char ** filename_ptr,
12918 const char ** functionname_ptr,
12919 unsigned int * line_ptr)
12920{
12921 bfd_boolean found = FALSE;
12922
12923 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12924
fc28f9aa
TG
12925 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12926 section, symbols, offset,
0367ecfb 12927 filename_ptr, functionname_ptr,
9b8d1a36 12928 line_ptr, NULL, 0,
0367ecfb
NC
12929 & elf_tdata (abfd)->dwarf2_find_line_info))
12930 {
12931 if (!*functionname_ptr)
12932 arm_elf_find_function (abfd, section, symbols, offset,
12933 *filename_ptr ? NULL : filename_ptr,
12934 functionname_ptr);
f21f3fe0 12935
0367ecfb
NC
12936 return TRUE;
12937 }
12938
12939 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12940 & found, filename_ptr,
12941 functionname_ptr, line_ptr,
12942 & elf_tdata (abfd)->line_info))
12943 return FALSE;
12944
12945 if (found && (*functionname_ptr || *line_ptr))
12946 return TRUE;
12947
12948 if (symbols == NULL)
12949 return FALSE;
12950
12951 if (! arm_elf_find_function (abfd, section, symbols, offset,
12952 filename_ptr, functionname_ptr))
12953 return FALSE;
12954
12955 *line_ptr = 0;
b34976b6 12956 return TRUE;
252b5132
RH
12957}
12958
4ab527b0
FF
12959static bfd_boolean
12960elf32_arm_find_inliner_info (bfd * abfd,
12961 const char ** filename_ptr,
12962 const char ** functionname_ptr,
12963 unsigned int * line_ptr)
12964{
12965 bfd_boolean found;
12966 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12967 functionname_ptr, line_ptr,
12968 & elf_tdata (abfd)->dwarf2_find_line_info);
12969 return found;
12970}
12971
252b5132
RH
12972/* Adjust a symbol defined by a dynamic object and referenced by a
12973 regular object. The current definition is in some section of the
12974 dynamic object, but we're not including those sections. We have to
12975 change the definition to something the rest of the link can
12976 understand. */
12977
b34976b6 12978static bfd_boolean
57e8b36a
NC
12979elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12980 struct elf_link_hash_entry * h)
252b5132
RH
12981{
12982 bfd * dynobj;
12983 asection * s;
b7693d02 12984 struct elf32_arm_link_hash_entry * eh;
67687978 12985 struct elf32_arm_link_hash_table *globals;
252b5132 12986
67687978 12987 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
12988 if (globals == NULL)
12989 return FALSE;
12990
252b5132
RH
12991 dynobj = elf_hash_table (info)->dynobj;
12992
12993 /* Make sure we know what is going on here. */
12994 BFD_ASSERT (dynobj != NULL
f5385ebf 12995 && (h->needs_plt
34e77a92 12996 || h->type == STT_GNU_IFUNC
f6e332e6 12997 || h->u.weakdef != NULL
f5385ebf
AM
12998 || (h->def_dynamic
12999 && h->ref_regular
13000 && !h->def_regular)));
252b5132 13001
b7693d02
DJ
13002 eh = (struct elf32_arm_link_hash_entry *) h;
13003
252b5132
RH
13004 /* If this is a function, put it in the procedure linkage table. We
13005 will fill in the contents of the procedure linkage table later,
13006 when we know the address of the .got section. */
34e77a92 13007 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 13008 {
34e77a92
RS
13009 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13010 symbol binds locally. */
5e681ec4 13011 if (h->plt.refcount <= 0
34e77a92
RS
13012 || (h->type != STT_GNU_IFUNC
13013 && (SYMBOL_CALLS_LOCAL (info, h)
13014 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13015 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
13016 {
13017 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
13018 file, but the symbol was never referred to by a dynamic
13019 object, or if all references were garbage collected. In
13020 such a case, we don't actually need to build a procedure
13021 linkage table, and we can just do a PC24 reloc instead. */
13022 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
13023 eh->plt.thumb_refcount = 0;
13024 eh->plt.maybe_thumb_refcount = 0;
13025 eh->plt.noncall_refcount = 0;
f5385ebf 13026 h->needs_plt = 0;
252b5132
RH
13027 }
13028
b34976b6 13029 return TRUE;
252b5132 13030 }
5e681ec4 13031 else
b7693d02
DJ
13032 {
13033 /* It's possible that we incorrectly decided a .plt reloc was
13034 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13035 in check_relocs. We can't decide accurately between function
13036 and non-function syms in check-relocs; Objects loaded later in
13037 the link may change h->type. So fix it now. */
13038 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
13039 eh->plt.thumb_refcount = 0;
13040 eh->plt.maybe_thumb_refcount = 0;
13041 eh->plt.noncall_refcount = 0;
b7693d02 13042 }
252b5132
RH
13043
13044 /* If this is a weak symbol, and there is a real definition, the
13045 processor independent code will have arranged for us to see the
13046 real definition first, and we can just use the same value. */
f6e332e6 13047 if (h->u.weakdef != NULL)
252b5132 13048 {
f6e332e6
AM
13049 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13050 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13051 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13052 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 13053 return TRUE;
252b5132
RH
13054 }
13055
ba93b8ac
DJ
13056 /* If there are no non-GOT references, we do not need a copy
13057 relocation. */
13058 if (!h->non_got_ref)
13059 return TRUE;
13060
252b5132
RH
13061 /* This is a reference to a symbol defined by a dynamic object which
13062 is not a function. */
13063
13064 /* If we are creating a shared library, we must presume that the
13065 only references to the symbol are via the global offset table.
13066 For such cases we need not do anything here; the relocations will
67687978
PB
13067 be handled correctly by relocate_section. Relocatable executables
13068 can reference data in shared objects directly, so we don't need to
13069 do anything here. */
13070 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 13071 return TRUE;
252b5132
RH
13072
13073 /* We must allocate the symbol in our .dynbss section, which will
13074 become part of the .bss section of the executable. There will be
13075 an entry for this symbol in the .dynsym section. The dynamic
13076 object will contain position independent code, so all references
13077 from the dynamic object to this symbol will go through the global
13078 offset table. The dynamic linker will use the .dynsym entry to
13079 determine the address it must put in the global offset table, so
13080 both the dynamic object and the regular object will refer to the
13081 same memory location for the variable. */
3d4d4302 13082 s = bfd_get_linker_section (dynobj, ".dynbss");
252b5132
RH
13083 BFD_ASSERT (s != NULL);
13084
13085 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13086 copy the initial value out of the dynamic object and into the
13087 runtime process image. We need to remember the offset into the
00a97672 13088 .rel(a).bss section we are going to use. */
1d7e9d18 13089 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
252b5132
RH
13090 {
13091 asection *srel;
13092
3d4d4302 13093 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
47beaa6a 13094 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 13095 h->needs_copy = 1;
252b5132
RH
13096 }
13097
027297b7 13098 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
13099}
13100
5e681ec4
PB
13101/* Allocate space in .plt, .got and associated reloc sections for
13102 dynamic relocs. */
13103
13104static bfd_boolean
47beaa6a 13105allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
13106{
13107 struct bfd_link_info *info;
13108 struct elf32_arm_link_hash_table *htab;
13109 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 13110 struct elf_dyn_relocs *p;
5e681ec4
PB
13111
13112 if (h->root.type == bfd_link_hash_indirect)
13113 return TRUE;
13114
e6a6bb22
AM
13115 eh = (struct elf32_arm_link_hash_entry *) h;
13116
5e681ec4
PB
13117 info = (struct bfd_link_info *) inf;
13118 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13119 if (htab == NULL)
13120 return FALSE;
5e681ec4 13121
34e77a92 13122 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
13123 && h->plt.refcount > 0)
13124 {
13125 /* Make sure this symbol is output as a dynamic symbol.
13126 Undefined weak syms won't yet be marked as dynamic. */
13127 if (h->dynindx == -1
f5385ebf 13128 && !h->forced_local)
5e681ec4 13129 {
c152c796 13130 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13131 return FALSE;
13132 }
13133
34e77a92
RS
13134 /* If the call in the PLT entry binds locally, the associated
13135 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13136 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13137 than the .plt section. */
13138 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13139 {
13140 eh->is_iplt = 1;
13141 if (eh->plt.noncall_refcount == 0
13142 && SYMBOL_REFERENCES_LOCAL (info, h))
13143 /* All non-call references can be resolved directly.
13144 This means that they can (and in some cases, must)
13145 resolve directly to the run-time target, rather than
13146 to the PLT. That in turns means that any .got entry
13147 would be equal to the .igot.plt entry, so there's
13148 no point having both. */
13149 h->got.refcount = 0;
13150 }
13151
5e681ec4 13152 if (info->shared
34e77a92 13153 || eh->is_iplt
7359ea65 13154 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 13155 {
34e77a92 13156 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 13157
5e681ec4
PB
13158 /* If this symbol is not defined in a regular file, and we are
13159 not generating a shared library, then set the symbol to this
13160 location in the .plt. This is required to make function
13161 pointers compare as equal between the normal executable and
13162 the shared library. */
13163 if (! info->shared
f5385ebf 13164 && !h->def_regular)
5e681ec4 13165 {
34e77a92 13166 h->root.u.def.section = htab->root.splt;
5e681ec4 13167 h->root.u.def.value = h->plt.offset;
5e681ec4 13168
67d74e43
DJ
13169 /* Make sure the function is not marked as Thumb, in case
13170 it is the target of an ABS32 relocation, which will
13171 point to the PLT entry. */
35fc36a8 13172 h->target_internal = ST_BRANCH_TO_ARM;
67d74e43 13173 }
022f8312 13174
0855e32b 13175 htab->next_tls_desc_index++;
00a97672
RS
13176
13177 /* VxWorks executables have a second set of relocations for
13178 each PLT entry. They go in a separate relocation section,
13179 which is processed by the kernel loader. */
13180 if (htab->vxworks_p && !info->shared)
13181 {
13182 /* There is a relocation for the initial PLT entry:
13183 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13184 if (h->plt.offset == htab->plt_header_size)
47beaa6a 13185 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
13186
13187 /* There are two extra relocations for each subsequent
13188 PLT entry: an R_ARM_32 relocation for the GOT entry,
13189 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 13190 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 13191 }
5e681ec4
PB
13192 }
13193 else
13194 {
13195 h->plt.offset = (bfd_vma) -1;
f5385ebf 13196 h->needs_plt = 0;
5e681ec4
PB
13197 }
13198 }
13199 else
13200 {
13201 h->plt.offset = (bfd_vma) -1;
f5385ebf 13202 h->needs_plt = 0;
5e681ec4
PB
13203 }
13204
0855e32b
NS
13205 eh = (struct elf32_arm_link_hash_entry *) h;
13206 eh->tlsdesc_got = (bfd_vma) -1;
13207
5e681ec4
PB
13208 if (h->got.refcount > 0)
13209 {
13210 asection *s;
13211 bfd_boolean dyn;
ba93b8ac
DJ
13212 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13213 int indx;
5e681ec4
PB
13214
13215 /* Make sure this symbol is output as a dynamic symbol.
13216 Undefined weak syms won't yet be marked as dynamic. */
13217 if (h->dynindx == -1
f5385ebf 13218 && !h->forced_local)
5e681ec4 13219 {
c152c796 13220 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13221 return FALSE;
13222 }
13223
e5a52504
MM
13224 if (!htab->symbian_p)
13225 {
362d30a1 13226 s = htab->root.sgot;
e5a52504 13227 h->got.offset = s->size;
ba93b8ac
DJ
13228
13229 if (tls_type == GOT_UNKNOWN)
13230 abort ();
13231
13232 if (tls_type == GOT_NORMAL)
13233 /* Non-TLS symbols need one GOT slot. */
13234 s->size += 4;
13235 else
13236 {
0855e32b
NS
13237 if (tls_type & GOT_TLS_GDESC)
13238 {
13239 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13240 eh->tlsdesc_got
13241 = (htab->root.sgotplt->size
13242 - elf32_arm_compute_jump_table_size (htab));
13243 htab->root.sgotplt->size += 8;
13244 h->got.offset = (bfd_vma) -2;
34e77a92 13245 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b
NS
13246 reloc in the middle of .got.plt. */
13247 htab->num_tls_desc++;
13248 }
13249
ba93b8ac 13250 if (tls_type & GOT_TLS_GD)
0855e32b
NS
13251 {
13252 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13253 the symbol is both GD and GDESC, got.offset may
13254 have been overwritten. */
13255 h->got.offset = s->size;
13256 s->size += 8;
13257 }
13258
ba93b8ac
DJ
13259 if (tls_type & GOT_TLS_IE)
13260 /* R_ARM_TLS_IE32 needs one GOT slot. */
13261 s->size += 4;
13262 }
13263
e5a52504 13264 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
13265
13266 indx = 0;
13267 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13268 && (!info->shared
13269 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13270 indx = h->dynindx;
13271
13272 if (tls_type != GOT_NORMAL
13273 && (info->shared || indx != 0)
13274 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13275 || h->root.type != bfd_link_hash_undefweak))
13276 {
13277 if (tls_type & GOT_TLS_IE)
47beaa6a 13278 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
13279
13280 if (tls_type & GOT_TLS_GD)
47beaa6a 13281 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 13282
b38cadfb 13283 if (tls_type & GOT_TLS_GDESC)
0855e32b 13284 {
47beaa6a 13285 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
13286 /* GDESC needs a trampoline to jump to. */
13287 htab->tls_trampoline = -1;
13288 }
13289
13290 /* Only GD needs it. GDESC just emits one relocation per
13291 2 entries. */
b38cadfb 13292 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 13293 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 13294 }
b436d854
RS
13295 else if (!SYMBOL_REFERENCES_LOCAL (info, h))
13296 {
13297 if (htab->root.dynamic_sections_created)
13298 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13299 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13300 }
34e77a92
RS
13301 else if (h->type == STT_GNU_IFUNC
13302 && eh->plt.noncall_refcount == 0)
13303 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13304 they all resolve dynamically instead. Reserve room for the
13305 GOT entry's R_ARM_IRELATIVE relocation. */
13306 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
b436d854
RS
13307 else if (info->shared)
13308 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
47beaa6a 13309 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 13310 }
5e681ec4
PB
13311 }
13312 else
13313 h->got.offset = (bfd_vma) -1;
13314
a4fd1a8e
PB
13315 /* Allocate stubs for exported Thumb functions on v4t. */
13316 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 13317 && h->def_regular
35fc36a8 13318 && h->target_internal == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
13319 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13320 {
13321 struct elf_link_hash_entry * th;
13322 struct bfd_link_hash_entry * bh;
13323 struct elf_link_hash_entry * myh;
13324 char name[1024];
13325 asection *s;
13326 bh = NULL;
13327 /* Create a new symbol to regist the real location of the function. */
13328 s = h->root.u.def.section;
906e58ca 13329 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
13330 _bfd_generic_link_add_one_symbol (info, s->owner,
13331 name, BSF_GLOBAL, s,
13332 h->root.u.def.value,
13333 NULL, TRUE, FALSE, &bh);
13334
13335 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 13336 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 13337 myh->forced_local = 1;
35fc36a8 13338 myh->target_internal = ST_BRANCH_TO_THUMB;
a4fd1a8e
PB
13339 eh->export_glue = myh;
13340 th = record_arm_to_thumb_glue (info, h);
13341 /* Point the symbol at the stub. */
13342 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
35fc36a8 13343 h->target_internal = ST_BRANCH_TO_ARM;
a4fd1a8e
PB
13344 h->root.u.def.section = th->root.u.def.section;
13345 h->root.u.def.value = th->root.u.def.value & ~1;
13346 }
13347
0bdcacaf 13348 if (eh->dyn_relocs == NULL)
5e681ec4
PB
13349 return TRUE;
13350
13351 /* In the shared -Bsymbolic case, discard space allocated for
13352 dynamic pc-relative relocs against symbols which turn out to be
13353 defined in regular objects. For the normal shared case, discard
13354 space for pc-relative relocs that have become local due to symbol
13355 visibility changes. */
13356
67687978 13357 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 13358 {
7bdca076 13359 /* The only relocs that use pc_count are R_ARM_REL32 and
bb224fc3
MS
13360 R_ARM_REL32_NOI, which will appear on something like
13361 ".long foo - .". We want calls to protected symbols to resolve
13362 directly to the function rather than going via the plt. If people
13363 want function pointer comparisons to work as expected then they
13364 should avoid writing assembly like ".long foo - .". */
ba93b8ac
DJ
13365 if (SYMBOL_CALLS_LOCAL (info, h))
13366 {
0bdcacaf 13367 struct elf_dyn_relocs **pp;
ba93b8ac 13368
0bdcacaf 13369 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
13370 {
13371 p->count -= p->pc_count;
13372 p->pc_count = 0;
13373 if (p->count == 0)
13374 *pp = p->next;
13375 else
13376 pp = &p->next;
13377 }
13378 }
13379
4dfe6ac6 13380 if (htab->vxworks_p)
3348747a 13381 {
0bdcacaf 13382 struct elf_dyn_relocs **pp;
3348747a 13383
0bdcacaf 13384 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
3348747a 13385 {
0bdcacaf 13386 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
13387 *pp = p->next;
13388 else
13389 pp = &p->next;
13390 }
13391 }
13392
ba93b8ac 13393 /* Also discard relocs on undefined weak syms with non-default
7359ea65 13394 visibility. */
0bdcacaf 13395 if (eh->dyn_relocs != NULL
5e681ec4 13396 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
13397 {
13398 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
0bdcacaf 13399 eh->dyn_relocs = NULL;
22d606e9
AM
13400
13401 /* Make sure undefined weak symbols are output as a dynamic
13402 symbol in PIEs. */
13403 else if (h->dynindx == -1
13404 && !h->forced_local)
13405 {
13406 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13407 return FALSE;
13408 }
13409 }
13410
67687978
PB
13411 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13412 && h->root.type == bfd_link_hash_new)
13413 {
13414 /* Output absolute symbols so that we can create relocations
13415 against them. For normal symbols we output a relocation
13416 against the section that contains them. */
13417 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13418 return FALSE;
13419 }
13420
5e681ec4
PB
13421 }
13422 else
13423 {
13424 /* For the non-shared case, discard space for relocs against
13425 symbols which turn out to need copy relocs or are not
13426 dynamic. */
13427
f5385ebf
AM
13428 if (!h->non_got_ref
13429 && ((h->def_dynamic
13430 && !h->def_regular)
5e681ec4
PB
13431 || (htab->root.dynamic_sections_created
13432 && (h->root.type == bfd_link_hash_undefweak
13433 || h->root.type == bfd_link_hash_undefined))))
13434 {
13435 /* Make sure this symbol is output as a dynamic symbol.
13436 Undefined weak syms won't yet be marked as dynamic. */
13437 if (h->dynindx == -1
f5385ebf 13438 && !h->forced_local)
5e681ec4 13439 {
c152c796 13440 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13441 return FALSE;
13442 }
13443
13444 /* If that succeeded, we know we'll be keeping all the
13445 relocs. */
13446 if (h->dynindx != -1)
13447 goto keep;
13448 }
13449
0bdcacaf 13450 eh->dyn_relocs = NULL;
5e681ec4
PB
13451
13452 keep: ;
13453 }
13454
13455 /* Finally, allocate space. */
0bdcacaf 13456 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5e681ec4 13457 {
0bdcacaf 13458 asection *sreloc = elf_section_data (p->sec)->sreloc;
34e77a92
RS
13459 if (h->type == STT_GNU_IFUNC
13460 && eh->plt.noncall_refcount == 0
13461 && SYMBOL_REFERENCES_LOCAL (info, h))
13462 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13463 else
13464 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
13465 }
13466
13467 return TRUE;
13468}
13469
08d1f311
DJ
13470/* Find any dynamic relocs that apply to read-only sections. */
13471
13472static bfd_boolean
8029a119 13473elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 13474{
8029a119 13475 struct elf32_arm_link_hash_entry * eh;
0bdcacaf 13476 struct elf_dyn_relocs * p;
08d1f311 13477
08d1f311 13478 eh = (struct elf32_arm_link_hash_entry *) h;
0bdcacaf 13479 for (p = eh->dyn_relocs; p != NULL; p = p->next)
08d1f311 13480 {
0bdcacaf 13481 asection *s = p->sec;
08d1f311
DJ
13482
13483 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13484 {
13485 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13486
13487 info->flags |= DF_TEXTREL;
13488
13489 /* Not an error, just cut short the traversal. */
13490 return FALSE;
13491 }
13492 }
13493 return TRUE;
13494}
13495
d504ffc8
DJ
13496void
13497bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13498 int byteswap_code)
13499{
13500 struct elf32_arm_link_hash_table *globals;
13501
13502 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
13503 if (globals == NULL)
13504 return;
13505
d504ffc8
DJ
13506 globals->byteswap_code = byteswap_code;
13507}
13508
252b5132
RH
13509/* Set the sizes of the dynamic sections. */
13510
b34976b6 13511static bfd_boolean
57e8b36a
NC
13512elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13513 struct bfd_link_info * info)
252b5132
RH
13514{
13515 bfd * dynobj;
13516 asection * s;
b34976b6
AM
13517 bfd_boolean plt;
13518 bfd_boolean relocs;
5e681ec4
PB
13519 bfd *ibfd;
13520 struct elf32_arm_link_hash_table *htab;
252b5132 13521
5e681ec4 13522 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13523 if (htab == NULL)
13524 return FALSE;
13525
252b5132
RH
13526 dynobj = elf_hash_table (info)->dynobj;
13527 BFD_ASSERT (dynobj != NULL);
39b41c9c 13528 check_use_blx (htab);
252b5132
RH
13529
13530 if (elf_hash_table (info)->dynamic_sections_created)
13531 {
13532 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 13533 if (info->executable)
252b5132 13534 {
3d4d4302 13535 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 13536 BFD_ASSERT (s != NULL);
eea6121a 13537 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
13538 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13539 }
13540 }
5e681ec4
PB
13541
13542 /* Set up .got offsets for local syms, and space for local dynamic
13543 relocs. */
13544 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
252b5132 13545 {
5e681ec4
PB
13546 bfd_signed_vma *local_got;
13547 bfd_signed_vma *end_local_got;
34e77a92 13548 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 13549 char *local_tls_type;
0855e32b 13550 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
13551 bfd_size_type locsymcount;
13552 Elf_Internal_Shdr *symtab_hdr;
13553 asection *srel;
4dfe6ac6 13554 bfd_boolean is_vxworks = htab->vxworks_p;
34e77a92 13555 unsigned int symndx;
5e681ec4 13556
0ffa91dd 13557 if (! is_arm_elf (ibfd))
5e681ec4
PB
13558 continue;
13559
13560 for (s = ibfd->sections; s != NULL; s = s->next)
13561 {
0bdcacaf 13562 struct elf_dyn_relocs *p;
5e681ec4 13563
0bdcacaf 13564 for (p = (struct elf_dyn_relocs *)
21d799b5 13565 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 13566 {
0bdcacaf
RS
13567 if (!bfd_is_abs_section (p->sec)
13568 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
13569 {
13570 /* Input section has been discarded, either because
13571 it is a copy of a linkonce section or due to
13572 linker script /DISCARD/, so we'll be discarding
13573 the relocs too. */
13574 }
3348747a 13575 else if (is_vxworks
0bdcacaf 13576 && strcmp (p->sec->output_section->name,
3348747a
NS
13577 ".tls_vars") == 0)
13578 {
13579 /* Relocations in vxworks .tls_vars sections are
13580 handled specially by the loader. */
13581 }
5e681ec4
PB
13582 else if (p->count != 0)
13583 {
0bdcacaf 13584 srel = elf_section_data (p->sec)->sreloc;
47beaa6a 13585 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 13586 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
13587 info->flags |= DF_TEXTREL;
13588 }
13589 }
13590 }
13591
13592 local_got = elf_local_got_refcounts (ibfd);
13593 if (!local_got)
13594 continue;
13595
0ffa91dd 13596 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
13597 locsymcount = symtab_hdr->sh_info;
13598 end_local_got = local_got + locsymcount;
34e77a92 13599 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 13600 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 13601 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
34e77a92 13602 symndx = 0;
362d30a1
RS
13603 s = htab->root.sgot;
13604 srel = htab->root.srelgot;
0855e32b 13605 for (; local_got < end_local_got;
34e77a92
RS
13606 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13607 ++local_tlsdesc_gotent, ++symndx)
5e681ec4 13608 {
0855e32b 13609 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92
RS
13610 local_iplt = *local_iplt_ptr;
13611 if (local_iplt != NULL)
13612 {
13613 struct elf_dyn_relocs *p;
13614
13615 if (local_iplt->root.refcount > 0)
13616 {
13617 elf32_arm_allocate_plt_entry (info, TRUE,
13618 &local_iplt->root,
13619 &local_iplt->arm);
13620 if (local_iplt->arm.noncall_refcount == 0)
13621 /* All references to the PLT are calls, so all
13622 non-call references can resolve directly to the
13623 run-time target. This means that the .got entry
13624 would be the same as the .igot.plt entry, so there's
13625 no point creating both. */
13626 *local_got = 0;
13627 }
13628 else
13629 {
13630 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13631 local_iplt->root.offset = (bfd_vma) -1;
13632 }
13633
13634 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13635 {
13636 asection *psrel;
13637
13638 psrel = elf_section_data (p->sec)->sreloc;
13639 if (local_iplt->arm.noncall_refcount == 0)
13640 elf32_arm_allocate_irelocs (info, psrel, p->count);
13641 else
13642 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13643 }
13644 }
5e681ec4
PB
13645 if (*local_got > 0)
13646 {
34e77a92
RS
13647 Elf_Internal_Sym *isym;
13648
eea6121a 13649 *local_got = s->size;
ba93b8ac
DJ
13650 if (*local_tls_type & GOT_TLS_GD)
13651 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13652 s->size += 8;
0855e32b
NS
13653 if (*local_tls_type & GOT_TLS_GDESC)
13654 {
13655 *local_tlsdesc_gotent = htab->root.sgotplt->size
13656 - elf32_arm_compute_jump_table_size (htab);
13657 htab->root.sgotplt->size += 8;
13658 *local_got = (bfd_vma) -2;
34e77a92 13659 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b
NS
13660 reloc in the middle of .got.plt. */
13661 htab->num_tls_desc++;
13662 }
ba93b8ac
DJ
13663 if (*local_tls_type & GOT_TLS_IE)
13664 s->size += 4;
ba93b8ac 13665
0855e32b
NS
13666 if (*local_tls_type & GOT_NORMAL)
13667 {
13668 /* If the symbol is both GD and GDESC, *local_got
13669 may have been overwritten. */
13670 *local_got = s->size;
13671 s->size += 4;
13672 }
13673
34e77a92
RS
13674 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13675 if (isym == NULL)
13676 return FALSE;
13677
13678 /* If all references to an STT_GNU_IFUNC PLT are calls,
13679 then all non-call references, including this GOT entry,
13680 resolve directly to the run-time target. */
13681 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13682 && (local_iplt == NULL
13683 || local_iplt->arm.noncall_refcount == 0))
13684 elf32_arm_allocate_irelocs (info, srel, 1);
13685 else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13686 || *local_tls_type & GOT_TLS_GD)
47beaa6a 13687 elf32_arm_allocate_dynrelocs (info, srel, 1);
0855e32b
NS
13688
13689 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13690 {
47beaa6a 13691 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
13692 htab->tls_trampoline = -1;
13693 }
5e681ec4
PB
13694 }
13695 else
13696 *local_got = (bfd_vma) -1;
13697 }
252b5132
RH
13698 }
13699
ba93b8ac
DJ
13700 if (htab->tls_ldm_got.refcount > 0)
13701 {
13702 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13703 for R_ARM_TLS_LDM32 relocations. */
362d30a1
RS
13704 htab->tls_ldm_got.offset = htab->root.sgot->size;
13705 htab->root.sgot->size += 8;
ba93b8ac 13706 if (info->shared)
47beaa6a 13707 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
13708 }
13709 else
13710 htab->tls_ldm_got.offset = -1;
13711
5e681ec4
PB
13712 /* Allocate global sym .plt and .got entries, and space for global
13713 sym dynamic relocs. */
47beaa6a 13714 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 13715
d504ffc8
DJ
13716 /* Here we rummage through the found bfds to collect glue information. */
13717 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
c7b8f16e 13718 {
0ffa91dd 13719 if (! is_arm_elf (ibfd))
e44a2c9c
AM
13720 continue;
13721
c7b8f16e
JB
13722 /* Initialise mapping tables for code/data. */
13723 bfd_elf32_arm_init_maps (ibfd);
906e58ca 13724
c7b8f16e
JB
13725 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13726 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13727 /* xgettext:c-format */
13728 _bfd_error_handler (_("Errors encountered processing file %s"),
13729 ibfd->filename);
13730 }
d504ffc8 13731
3e6b1042
DJ
13732 /* Allocate space for the glue sections now that we've sized them. */
13733 bfd_elf32_arm_allocate_interworking_sections (info);
13734
0855e32b
NS
13735 /* For every jump slot reserved in the sgotplt, reloc_count is
13736 incremented. However, when we reserve space for TLS descriptors,
13737 it's not incremented, so in order to compute the space reserved
13738 for them, it suffices to multiply the reloc count by the jump
13739 slot size. */
13740 if (htab->root.srelplt)
13741 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13742
13743 if (htab->tls_trampoline)
13744 {
13745 if (htab->root.splt->size == 0)
13746 htab->root.splt->size += htab->plt_header_size;
b38cadfb 13747
0855e32b
NS
13748 htab->tls_trampoline = htab->root.splt->size;
13749 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 13750
0855e32b
NS
13751 /* If we're not using lazy TLS relocations, don't generate the
13752 PLT and GOT entries they require. */
13753 if (!(info->flags & DF_BIND_NOW))
13754 {
13755 htab->dt_tlsdesc_got = htab->root.sgot->size;
13756 htab->root.sgot->size += 4;
13757
13758 htab->dt_tlsdesc_plt = htab->root.splt->size;
13759 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13760 }
13761 }
13762
252b5132
RH
13763 /* The check_relocs and adjust_dynamic_symbol entry points have
13764 determined the sizes of the various dynamic sections. Allocate
13765 memory for them. */
b34976b6
AM
13766 plt = FALSE;
13767 relocs = FALSE;
252b5132
RH
13768 for (s = dynobj->sections; s != NULL; s = s->next)
13769 {
13770 const char * name;
252b5132
RH
13771
13772 if ((s->flags & SEC_LINKER_CREATED) == 0)
13773 continue;
13774
13775 /* It's OK to base decisions on the section name, because none
13776 of the dynobj section names depend upon the input files. */
13777 name = bfd_get_section_name (dynobj, s);
13778
34e77a92 13779 if (s == htab->root.splt)
252b5132 13780 {
c456f082
AM
13781 /* Remember whether there is a PLT. */
13782 plt = s->size != 0;
252b5132 13783 }
0112cd26 13784 else if (CONST_STRNEQ (name, ".rel"))
252b5132 13785 {
c456f082 13786 if (s->size != 0)
252b5132 13787 {
252b5132 13788 /* Remember whether there are any reloc sections other
00a97672 13789 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 13790 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 13791 relocs = TRUE;
252b5132
RH
13792
13793 /* We use the reloc_count field as a counter if we need
13794 to copy relocs into the output file. */
13795 s->reloc_count = 0;
13796 }
13797 }
34e77a92
RS
13798 else if (s != htab->root.sgot
13799 && s != htab->root.sgotplt
13800 && s != htab->root.iplt
13801 && s != htab->root.igotplt
13802 && s != htab->sdynbss)
252b5132
RH
13803 {
13804 /* It's not one of our sections, so don't allocate space. */
13805 continue;
13806 }
13807
c456f082 13808 if (s->size == 0)
252b5132 13809 {
c456f082 13810 /* If we don't need this section, strip it from the
00a97672
RS
13811 output file. This is mostly to handle .rel(a).bss and
13812 .rel(a).plt. We must create both sections in
c456f082
AM
13813 create_dynamic_sections, because they must be created
13814 before the linker maps input sections to output
13815 sections. The linker does that before
13816 adjust_dynamic_symbol is called, and it is that
13817 function which decides whether anything needs to go
13818 into these sections. */
8423293d 13819 s->flags |= SEC_EXCLUDE;
252b5132
RH
13820 continue;
13821 }
13822
c456f082
AM
13823 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13824 continue;
13825
252b5132 13826 /* Allocate memory for the section contents. */
21d799b5 13827 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 13828 if (s->contents == NULL)
b34976b6 13829 return FALSE;
252b5132
RH
13830 }
13831
13832 if (elf_hash_table (info)->dynamic_sections_created)
13833 {
13834 /* Add some entries to the .dynamic section. We fill in the
13835 values later, in elf32_arm_finish_dynamic_sections, but we
13836 must add the entries now so that we get the correct size for
13837 the .dynamic section. The DT_DEBUG entry is filled in by the
13838 dynamic linker and used by the debugger. */
dc810e39 13839#define add_dynamic_entry(TAG, VAL) \
5a580b3a 13840 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 13841
8532796c 13842 if (info->executable)
252b5132 13843 {
dc810e39 13844 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 13845 return FALSE;
252b5132
RH
13846 }
13847
13848 if (plt)
13849 {
dc810e39
AM
13850 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13851 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
13852 || !add_dynamic_entry (DT_PLTREL,
13853 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 13854 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 13855 return FALSE;
0855e32b
NS
13856
13857 if (htab->dt_tlsdesc_plt &&
b38cadfb 13858 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
0855e32b 13859 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
b38cadfb 13860 return FALSE;
252b5132
RH
13861 }
13862
13863 if (relocs)
13864 {
00a97672
RS
13865 if (htab->use_rel)
13866 {
13867 if (!add_dynamic_entry (DT_REL, 0)
13868 || !add_dynamic_entry (DT_RELSZ, 0)
13869 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13870 return FALSE;
13871 }
13872 else
13873 {
13874 if (!add_dynamic_entry (DT_RELA, 0)
13875 || !add_dynamic_entry (DT_RELASZ, 0)
13876 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13877 return FALSE;
13878 }
252b5132
RH
13879 }
13880
08d1f311
DJ
13881 /* If any dynamic relocs apply to a read-only section,
13882 then we need a DT_TEXTREL entry. */
13883 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
13884 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13885 info);
08d1f311 13886
99e4ae17 13887 if ((info->flags & DF_TEXTREL) != 0)
252b5132 13888 {
dc810e39 13889 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 13890 return FALSE;
252b5132 13891 }
7a2b07ff
NS
13892 if (htab->vxworks_p
13893 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13894 return FALSE;
252b5132 13895 }
8532796c 13896#undef add_dynamic_entry
252b5132 13897
b34976b6 13898 return TRUE;
252b5132
RH
13899}
13900
0855e32b
NS
13901/* Size sections even though they're not dynamic. We use it to setup
13902 _TLS_MODULE_BASE_, if needed. */
13903
13904static bfd_boolean
13905elf32_arm_always_size_sections (bfd *output_bfd,
13906 struct bfd_link_info *info)
13907{
13908 asection *tls_sec;
13909
13910 if (info->relocatable)
13911 return TRUE;
13912
13913 tls_sec = elf_hash_table (info)->tls_sec;
13914
13915 if (tls_sec)
13916 {
13917 struct elf_link_hash_entry *tlsbase;
13918
13919 tlsbase = elf_link_hash_lookup
13920 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13921
13922 if (tlsbase)
13923 {
13924 struct bfd_link_hash_entry *bh = NULL;
13925 const struct elf_backend_data *bed
13926 = get_elf_backend_data (output_bfd);
13927
13928 if (!(_bfd_generic_link_add_one_symbol
13929 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13930 tls_sec, 0, NULL, FALSE,
13931 bed->collect, &bh)))
13932 return FALSE;
b38cadfb 13933
0855e32b
NS
13934 tlsbase->type = STT_TLS;
13935 tlsbase = (struct elf_link_hash_entry *)bh;
13936 tlsbase->def_regular = 1;
13937 tlsbase->other = STV_HIDDEN;
13938 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13939 }
13940 }
13941 return TRUE;
13942}
13943
252b5132
RH
13944/* Finish up dynamic symbol handling. We set the contents of various
13945 dynamic sections here. */
13946
b34976b6 13947static bfd_boolean
906e58ca
NC
13948elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13949 struct bfd_link_info * info,
13950 struct elf_link_hash_entry * h,
13951 Elf_Internal_Sym * sym)
252b5132 13952{
e5a52504 13953 struct elf32_arm_link_hash_table *htab;
b7693d02 13954 struct elf32_arm_link_hash_entry *eh;
252b5132 13955
e5a52504 13956 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13957 if (htab == NULL)
13958 return FALSE;
13959
b7693d02 13960 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
13961
13962 if (h->plt.offset != (bfd_vma) -1)
13963 {
34e77a92 13964 if (!eh->is_iplt)
e5a52504 13965 {
34e77a92
RS
13966 BFD_ASSERT (h->dynindx != -1);
13967 elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13968 h->dynindx, 0);
e5a52504 13969 }
57e8b36a 13970
f5385ebf 13971 if (!h->def_regular)
252b5132
RH
13972 {
13973 /* Mark the symbol as undefined, rather than as defined in
13974 the .plt section. Leave the value alone. */
13975 sym->st_shndx = SHN_UNDEF;
d982ba73
PB
13976 /* If the symbol is weak, we do need to clear the value.
13977 Otherwise, the PLT entry would provide a definition for
13978 the symbol even if the symbol wasn't defined anywhere,
13979 and so the symbol would never be NULL. */
f5385ebf 13980 if (!h->ref_regular_nonweak)
d982ba73 13981 sym->st_value = 0;
252b5132 13982 }
34e77a92
RS
13983 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13984 {
13985 /* At least one non-call relocation references this .iplt entry,
13986 so the .iplt entry is the function's canonical address. */
13987 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13988 sym->st_target_internal = ST_BRANCH_TO_ARM;
13989 sym->st_shndx = (_bfd_elf_section_from_bfd_section
13990 (output_bfd, htab->root.iplt->output_section));
13991 sym->st_value = (h->plt.offset
13992 + htab->root.iplt->output_section->vma
13993 + htab->root.iplt->output_offset);
13994 }
252b5132
RH
13995 }
13996
f5385ebf 13997 if (h->needs_copy)
252b5132
RH
13998 {
13999 asection * s;
947216bf 14000 Elf_Internal_Rela rel;
252b5132
RH
14001
14002 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
14003 BFD_ASSERT (h->dynindx != -1
14004 && (h->root.type == bfd_link_hash_defined
14005 || h->root.type == bfd_link_hash_defweak));
14006
362d30a1 14007 s = htab->srelbss;
252b5132
RH
14008 BFD_ASSERT (s != NULL);
14009
00a97672 14010 rel.r_addend = 0;
252b5132
RH
14011 rel.r_offset = (h->root.u.def.value
14012 + h->root.u.def.section->output_section->vma
14013 + h->root.u.def.section->output_offset);
14014 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
47beaa6a 14015 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
14016 }
14017
00a97672
RS
14018 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14019 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14020 to the ".got" section. */
9637f6ef 14021 if (h == htab->root.hdynamic
00a97672 14022 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
14023 sym->st_shndx = SHN_ABS;
14024
b34976b6 14025 return TRUE;
252b5132
RH
14026}
14027
0855e32b
NS
14028static void
14029arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14030 void *contents,
14031 const unsigned long *template, unsigned count)
14032{
14033 unsigned ix;
b38cadfb 14034
0855e32b
NS
14035 for (ix = 0; ix != count; ix++)
14036 {
14037 unsigned long insn = template[ix];
14038
14039 /* Emit mov pc,rx if bx is not permitted. */
14040 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14041 insn = (insn & 0xf000000f) | 0x01a0f000;
14042 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14043 }
14044}
14045
252b5132
RH
14046/* Finish up the dynamic sections. */
14047
b34976b6 14048static bfd_boolean
57e8b36a 14049elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
14050{
14051 bfd * dynobj;
14052 asection * sgot;
14053 asection * sdyn;
4dfe6ac6
NC
14054 struct elf32_arm_link_hash_table *htab;
14055
14056 htab = elf32_arm_hash_table (info);
14057 if (htab == NULL)
14058 return FALSE;
252b5132
RH
14059
14060 dynobj = elf_hash_table (info)->dynobj;
14061
362d30a1 14062 sgot = htab->root.sgotplt;
894891db
NC
14063 /* A broken linker script might have discarded the dynamic sections.
14064 Catch this here so that we do not seg-fault later on. */
14065 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14066 return FALSE;
3d4d4302 14067 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
14068
14069 if (elf_hash_table (info)->dynamic_sections_created)
14070 {
14071 asection *splt;
14072 Elf32_External_Dyn *dyncon, *dynconend;
14073
362d30a1 14074 splt = htab->root.splt;
24a1ba0f 14075 BFD_ASSERT (splt != NULL && sdyn != NULL);
cbc704f3 14076 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
14077
14078 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 14079 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 14080
252b5132
RH
14081 for (; dyncon < dynconend; dyncon++)
14082 {
14083 Elf_Internal_Dyn dyn;
14084 const char * name;
14085 asection * s;
14086
14087 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14088
14089 switch (dyn.d_tag)
14090 {
229fcec5
MM
14091 unsigned int type;
14092
252b5132 14093 default:
7a2b07ff
NS
14094 if (htab->vxworks_p
14095 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14096 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
14097 break;
14098
229fcec5
MM
14099 case DT_HASH:
14100 name = ".hash";
14101 goto get_vma_if_bpabi;
14102 case DT_STRTAB:
14103 name = ".dynstr";
14104 goto get_vma_if_bpabi;
14105 case DT_SYMTAB:
14106 name = ".dynsym";
14107 goto get_vma_if_bpabi;
c0042f5d
MM
14108 case DT_VERSYM:
14109 name = ".gnu.version";
14110 goto get_vma_if_bpabi;
14111 case DT_VERDEF:
14112 name = ".gnu.version_d";
14113 goto get_vma_if_bpabi;
14114 case DT_VERNEED:
14115 name = ".gnu.version_r";
14116 goto get_vma_if_bpabi;
14117
252b5132
RH
14118 case DT_PLTGOT:
14119 name = ".got";
14120 goto get_vma;
14121 case DT_JMPREL:
00a97672 14122 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
14123 get_vma:
14124 s = bfd_get_section_by_name (output_bfd, name);
05456594
NC
14125 if (s == NULL)
14126 {
14127 /* PR ld/14397: Issue an error message if a required section is missing. */
14128 (*_bfd_error_handler)
14129 (_("error: required section '%s' not found in the linker script"), name);
14130 bfd_set_error (bfd_error_invalid_operation);
14131 return FALSE;
14132 }
229fcec5
MM
14133 if (!htab->symbian_p)
14134 dyn.d_un.d_ptr = s->vma;
14135 else
14136 /* In the BPABI, tags in the PT_DYNAMIC section point
14137 at the file offset, not the memory address, for the
14138 convenience of the post linker. */
14139 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
14140 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14141 break;
14142
229fcec5
MM
14143 get_vma_if_bpabi:
14144 if (htab->symbian_p)
14145 goto get_vma;
14146 break;
14147
252b5132 14148 case DT_PLTRELSZ:
362d30a1 14149 s = htab->root.srelplt;
252b5132 14150 BFD_ASSERT (s != NULL);
eea6121a 14151 dyn.d_un.d_val = s->size;
252b5132
RH
14152 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14153 break;
906e58ca 14154
252b5132 14155 case DT_RELSZ:
00a97672 14156 case DT_RELASZ:
229fcec5
MM
14157 if (!htab->symbian_p)
14158 {
14159 /* My reading of the SVR4 ABI indicates that the
14160 procedure linkage table relocs (DT_JMPREL) should be
14161 included in the overall relocs (DT_REL). This is
14162 what Solaris does. However, UnixWare can not handle
14163 that case. Therefore, we override the DT_RELSZ entry
14164 here to make it not include the JMPREL relocs. Since
00a97672 14165 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
14166 other relocation sections, we don't have to worry
14167 about changing the DT_REL entry. */
362d30a1 14168 s = htab->root.srelplt;
229fcec5
MM
14169 if (s != NULL)
14170 dyn.d_un.d_val -= s->size;
14171 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14172 break;
14173 }
8029a119 14174 /* Fall through. */
229fcec5
MM
14175
14176 case DT_REL:
14177 case DT_RELA:
229fcec5
MM
14178 /* In the BPABI, the DT_REL tag must point at the file
14179 offset, not the VMA, of the first relocation
14180 section. So, we use code similar to that in
14181 elflink.c, but do not check for SHF_ALLOC on the
14182 relcoation section, since relocations sections are
14183 never allocated under the BPABI. The comments above
14184 about Unixware notwithstanding, we include all of the
14185 relocations here. */
14186 if (htab->symbian_p)
14187 {
14188 unsigned int i;
14189 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14190 ? SHT_REL : SHT_RELA);
14191 dyn.d_un.d_val = 0;
14192 for (i = 1; i < elf_numsections (output_bfd); i++)
14193 {
906e58ca 14194 Elf_Internal_Shdr *hdr
229fcec5
MM
14195 = elf_elfsections (output_bfd)[i];
14196 if (hdr->sh_type == type)
14197 {
906e58ca 14198 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
14199 || dyn.d_tag == DT_RELASZ)
14200 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
14201 else if ((ufile_ptr) hdr->sh_offset
14202 <= dyn.d_un.d_val - 1)
229fcec5
MM
14203 dyn.d_un.d_val = hdr->sh_offset;
14204 }
14205 }
14206 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14207 }
252b5132 14208 break;
88f7bcd5 14209
0855e32b
NS
14210 case DT_TLSDESC_PLT:
14211 s = htab->root.splt;
14212 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14213 + htab->dt_tlsdesc_plt);
14214 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14215 break;
14216
14217 case DT_TLSDESC_GOT:
14218 s = htab->root.sgot;
14219 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14220 + htab->dt_tlsdesc_got);
14221 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14222 break;
14223
88f7bcd5
NC
14224 /* Set the bottom bit of DT_INIT/FINI if the
14225 corresponding function is Thumb. */
14226 case DT_INIT:
14227 name = info->init_function;
14228 goto get_sym;
14229 case DT_FINI:
14230 name = info->fini_function;
14231 get_sym:
14232 /* If it wasn't set by elf_bfd_final_link
4cc11e76 14233 then there is nothing to adjust. */
88f7bcd5
NC
14234 if (dyn.d_un.d_val != 0)
14235 {
14236 struct elf_link_hash_entry * eh;
14237
14238 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 14239 FALSE, FALSE, TRUE);
35fc36a8 14240 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
14241 {
14242 dyn.d_un.d_val |= 1;
b34976b6 14243 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
14244 }
14245 }
14246 break;
252b5132
RH
14247 }
14248 }
14249
24a1ba0f 14250 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 14251 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 14252 {
00a97672
RS
14253 const bfd_vma *plt0_entry;
14254 bfd_vma got_address, plt_address, got_displacement;
14255
14256 /* Calculate the addresses of the GOT and PLT. */
14257 got_address = sgot->output_section->vma + sgot->output_offset;
14258 plt_address = splt->output_section->vma + splt->output_offset;
14259
14260 if (htab->vxworks_p)
14261 {
14262 /* The VxWorks GOT is relocated by the dynamic linker.
14263 Therefore, we must emit relocations rather than simply
14264 computing the values now. */
14265 Elf_Internal_Rela rel;
14266
14267 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
14268 put_arm_insn (htab, output_bfd, plt0_entry[0],
14269 splt->contents + 0);
14270 put_arm_insn (htab, output_bfd, plt0_entry[1],
14271 splt->contents + 4);
14272 put_arm_insn (htab, output_bfd, plt0_entry[2],
14273 splt->contents + 8);
00a97672
RS
14274 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14275
8029a119 14276 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
14277 rel.r_offset = plt_address + 12;
14278 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14279 rel.r_addend = 0;
14280 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14281 htab->srelplt2->contents);
14282 }
b38cadfb
NC
14283 else if (htab->nacl_p)
14284 {
14285 unsigned int i;
14286
14287 got_displacement = got_address + 8 - (plt_address + 16);
14288
14289 put_arm_insn (htab, output_bfd,
14290 elf32_arm_nacl_plt0_entry[0]
14291 | arm_movw_immediate (got_displacement),
14292 splt->contents + 0);
14293 put_arm_insn (htab, output_bfd,
14294 elf32_arm_nacl_plt0_entry[1]
14295 | arm_movt_immediate (got_displacement),
14296 splt->contents + 4);
14297 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14298 put_arm_insn (htab, output_bfd,
14299 elf32_arm_nacl_plt0_entry[i],
14300 splt->contents + (i * 4));
14301 }
00a97672
RS
14302 else
14303 {
14304 got_displacement = got_address - (plt_address + 16);
14305
14306 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
14307 put_arm_insn (htab, output_bfd, plt0_entry[0],
14308 splt->contents + 0);
14309 put_arm_insn (htab, output_bfd, plt0_entry[1],
14310 splt->contents + 4);
14311 put_arm_insn (htab, output_bfd, plt0_entry[2],
14312 splt->contents + 8);
14313 put_arm_insn (htab, output_bfd, plt0_entry[3],
14314 splt->contents + 12);
5e681ec4 14315
5e681ec4 14316#ifdef FOUR_WORD_PLT
00a97672
RS
14317 /* The displacement value goes in the otherwise-unused
14318 last word of the second entry. */
14319 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 14320#else
00a97672 14321 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 14322#endif
00a97672 14323 }
f7a74f8c 14324 }
252b5132
RH
14325
14326 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14327 really seem like the right value. */
74541ad4
AM
14328 if (splt->output_section->owner == output_bfd)
14329 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 14330
0855e32b
NS
14331 if (htab->dt_tlsdesc_plt)
14332 {
14333 bfd_vma got_address
14334 = sgot->output_section->vma + sgot->output_offset;
14335 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14336 + htab->root.sgot->output_offset);
14337 bfd_vma plt_address
14338 = splt->output_section->vma + splt->output_offset;
14339
b38cadfb 14340 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
14341 splt->contents + htab->dt_tlsdesc_plt,
14342 dl_tlsdesc_lazy_trampoline, 6);
14343
14344 bfd_put_32 (output_bfd,
14345 gotplt_address + htab->dt_tlsdesc_got
14346 - (plt_address + htab->dt_tlsdesc_plt)
14347 - dl_tlsdesc_lazy_trampoline[6],
14348 splt->contents + htab->dt_tlsdesc_plt + 24);
14349 bfd_put_32 (output_bfd,
14350 got_address - (plt_address + htab->dt_tlsdesc_plt)
14351 - dl_tlsdesc_lazy_trampoline[7],
14352 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14353 }
14354
14355 if (htab->tls_trampoline)
14356 {
b38cadfb 14357 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
14358 splt->contents + htab->tls_trampoline,
14359 tls_trampoline, 3);
14360#ifdef FOUR_WORD_PLT
14361 bfd_put_32 (output_bfd, 0x00000000,
14362 splt->contents + htab->tls_trampoline + 12);
b38cadfb 14363#endif
0855e32b
NS
14364 }
14365
362d30a1 14366 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
00a97672
RS
14367 {
14368 /* Correct the .rel(a).plt.unloaded relocations. They will have
14369 incorrect symbol indexes. */
14370 int num_plts;
eed62c48 14371 unsigned char *p;
00a97672 14372
362d30a1 14373 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
14374 / htab->plt_entry_size);
14375 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14376
14377 for (; num_plts; num_plts--)
14378 {
14379 Elf_Internal_Rela rel;
14380
14381 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14382 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14383 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14384 p += RELOC_SIZE (htab);
14385
14386 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14387 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14388 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14389 p += RELOC_SIZE (htab);
14390 }
14391 }
252b5132
RH
14392 }
14393
14394 /* Fill in the first three entries in the global offset table. */
229fcec5 14395 if (sgot)
252b5132 14396 {
229fcec5
MM
14397 if (sgot->size > 0)
14398 {
14399 if (sdyn == NULL)
14400 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14401 else
14402 bfd_put_32 (output_bfd,
14403 sdyn->output_section->vma + sdyn->output_offset,
14404 sgot->contents);
14405 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14406 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14407 }
252b5132 14408
229fcec5
MM
14409 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14410 }
252b5132 14411
b34976b6 14412 return TRUE;
252b5132
RH
14413}
14414
ba96a88f 14415static void
57e8b36a 14416elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 14417{
9b485d32 14418 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 14419 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
14420
14421 i_ehdrp = elf_elfheader (abfd);
14422
94a3258f
PB
14423 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14424 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14425 else
14426 i_ehdrp->e_ident[EI_OSABI] = 0;
ba96a88f 14427 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 14428
93204d3a
PB
14429 if (link_info)
14430 {
14431 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 14432 if (globals != NULL && globals->byteswap_code)
93204d3a
PB
14433 i_ehdrp->e_flags |= EF_ARM_BE8;
14434 }
3bfcb652
NC
14435
14436 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14437 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14438 {
14439 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14440 if (abi)
14441 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14442 else
14443 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14444 }
ba96a88f
NC
14445}
14446
99e4ae17 14447static enum elf_reloc_type_class
57e8b36a 14448elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
99e4ae17 14449{
f51e552e 14450 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
14451 {
14452 case R_ARM_RELATIVE:
14453 return reloc_class_relative;
14454 case R_ARM_JUMP_SLOT:
14455 return reloc_class_plt;
14456 case R_ARM_COPY:
14457 return reloc_class_copy;
14458 default:
14459 return reloc_class_normal;
14460 }
14461}
14462
e489d0ae 14463static void
57e8b36a 14464elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 14465{
5a6c6817 14466 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
14467}
14468
40a18ebd
NC
14469/* Return TRUE if this is an unwinding table entry. */
14470
14471static bfd_boolean
14472is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14473{
0112cd26
NC
14474 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14475 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
14476}
14477
14478
14479/* Set the type and flags for an ARM section. We do this by
14480 the section name, which is a hack, but ought to work. */
14481
14482static bfd_boolean
14483elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14484{
14485 const char * name;
14486
14487 name = bfd_get_section_name (abfd, sec);
14488
14489 if (is_arm_elf_unwind_section_name (abfd, name))
14490 {
14491 hdr->sh_type = SHT_ARM_EXIDX;
14492 hdr->sh_flags |= SHF_LINK_ORDER;
14493 }
14494 return TRUE;
14495}
14496
6dc132d9
L
14497/* Handle an ARM specific section when reading an object file. This is
14498 called when bfd_section_from_shdr finds a section with an unknown
14499 type. */
40a18ebd
NC
14500
14501static bfd_boolean
14502elf32_arm_section_from_shdr (bfd *abfd,
14503 Elf_Internal_Shdr * hdr,
6dc132d9
L
14504 const char *name,
14505 int shindex)
40a18ebd
NC
14506{
14507 /* There ought to be a place to keep ELF backend specific flags, but
14508 at the moment there isn't one. We just keep track of the
14509 sections by their name, instead. Fortunately, the ABI gives
14510 names for all the ARM specific sections, so we will probably get
14511 away with this. */
14512 switch (hdr->sh_type)
14513 {
14514 case SHT_ARM_EXIDX:
0951f019
RE
14515 case SHT_ARM_PREEMPTMAP:
14516 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
14517 break;
14518
14519 default:
14520 return FALSE;
14521 }
14522
6dc132d9 14523 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
14524 return FALSE;
14525
14526 return TRUE;
14527}
e489d0ae 14528
44444f50
NC
14529static _arm_elf_section_data *
14530get_arm_elf_section_data (asection * sec)
14531{
47b2e99c
JZ
14532 if (sec && sec->owner && is_arm_elf (sec->owner))
14533 return elf32_arm_section_data (sec);
44444f50
NC
14534 else
14535 return NULL;
8e3de13a
NC
14536}
14537
4e617b1e
PB
14538typedef struct
14539{
57402f1e 14540 void *flaginfo;
4e617b1e 14541 struct bfd_link_info *info;
91a5743d
PB
14542 asection *sec;
14543 int sec_shndx;
6e0b88f1
AM
14544 int (*func) (void *, const char *, Elf_Internal_Sym *,
14545 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
14546} output_arch_syminfo;
14547
14548enum map_symbol_type
14549{
14550 ARM_MAP_ARM,
14551 ARM_MAP_THUMB,
14552 ARM_MAP_DATA
14553};
14554
14555
7413f23f 14556/* Output a single mapping symbol. */
4e617b1e
PB
14557
14558static bfd_boolean
7413f23f
DJ
14559elf32_arm_output_map_sym (output_arch_syminfo *osi,
14560 enum map_symbol_type type,
14561 bfd_vma offset)
4e617b1e
PB
14562{
14563 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
14564 Elf_Internal_Sym sym;
14565
91a5743d
PB
14566 sym.st_value = osi->sec->output_section->vma
14567 + osi->sec->output_offset
14568 + offset;
4e617b1e
PB
14569 sym.st_size = 0;
14570 sym.st_other = 0;
14571 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 14572 sym.st_shndx = osi->sec_shndx;
35fc36a8 14573 sym.st_target_internal = 0;
fe33d2fa 14574 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 14575 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
14576}
14577
34e77a92
RS
14578/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14579 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e
PB
14580
14581static bfd_boolean
34e77a92
RS
14582elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14583 bfd_boolean is_iplt_entry_p,
14584 union gotplt_union *root_plt,
14585 struct arm_plt_info *arm_plt)
4e617b1e 14586{
4e617b1e 14587 struct elf32_arm_link_hash_table *htab;
34e77a92 14588 bfd_vma addr, plt_header_size;
4e617b1e 14589
34e77a92 14590 if (root_plt->offset == (bfd_vma) -1)
4e617b1e
PB
14591 return TRUE;
14592
4dfe6ac6
NC
14593 htab = elf32_arm_hash_table (osi->info);
14594 if (htab == NULL)
14595 return FALSE;
14596
34e77a92
RS
14597 if (is_iplt_entry_p)
14598 {
14599 osi->sec = htab->root.iplt;
14600 plt_header_size = 0;
14601 }
14602 else
14603 {
14604 osi->sec = htab->root.splt;
14605 plt_header_size = htab->plt_header_size;
14606 }
14607 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14608 (osi->info->output_bfd, osi->sec->output_section));
14609
14610 addr = root_plt->offset & -2;
4e617b1e
PB
14611 if (htab->symbian_p)
14612 {
7413f23f 14613 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14614 return FALSE;
7413f23f 14615 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
14616 return FALSE;
14617 }
14618 else if (htab->vxworks_p)
14619 {
7413f23f 14620 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14621 return FALSE;
7413f23f 14622 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 14623 return FALSE;
7413f23f 14624 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 14625 return FALSE;
7413f23f 14626 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
14627 return FALSE;
14628 }
b38cadfb
NC
14629 else if (htab->nacl_p)
14630 {
14631 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14632 return FALSE;
14633 }
4e617b1e
PB
14634 else
14635 {
34e77a92 14636 bfd_boolean thumb_stub_p;
bd97cb95 14637
34e77a92
RS
14638 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14639 if (thumb_stub_p)
4e617b1e 14640 {
7413f23f 14641 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
14642 return FALSE;
14643 }
14644#ifdef FOUR_WORD_PLT
7413f23f 14645 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14646 return FALSE;
7413f23f 14647 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
14648 return FALSE;
14649#else
906e58ca 14650 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
14651 so only need to output a mapping symbol for the first PLT entry and
14652 entries with thumb thunks. */
34e77a92 14653 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 14654 {
7413f23f 14655 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
14656 return FALSE;
14657 }
14658#endif
14659 }
14660
14661 return TRUE;
14662}
14663
34e77a92
RS
14664/* Output mapping symbols for PLT entries associated with H. */
14665
14666static bfd_boolean
14667elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14668{
14669 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14670 struct elf32_arm_link_hash_entry *eh;
14671
14672 if (h->root.type == bfd_link_hash_indirect)
14673 return TRUE;
14674
14675 if (h->root.type == bfd_link_hash_warning)
14676 /* When warning symbols are created, they **replace** the "real"
14677 entry in the hash table, thus we never get to see the real
14678 symbol in a hash traversal. So look at it now. */
14679 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14680
14681 eh = (struct elf32_arm_link_hash_entry *) h;
14682 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14683 &h->plt, &eh->plt);
14684}
14685
7413f23f
DJ
14686/* Output a single local symbol for a generated stub. */
14687
14688static bfd_boolean
14689elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14690 bfd_vma offset, bfd_vma size)
14691{
7413f23f
DJ
14692 Elf_Internal_Sym sym;
14693
7413f23f
DJ
14694 sym.st_value = osi->sec->output_section->vma
14695 + osi->sec->output_offset
14696 + offset;
14697 sym.st_size = size;
14698 sym.st_other = 0;
14699 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14700 sym.st_shndx = osi->sec_shndx;
35fc36a8 14701 sym.st_target_internal = 0;
57402f1e 14702 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 14703}
4e617b1e 14704
da5938a2 14705static bfd_boolean
8029a119
NC
14706arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14707 void * in_arg)
da5938a2
NC
14708{
14709 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
14710 asection *stub_sec;
14711 bfd_vma addr;
7413f23f 14712 char *stub_name;
9a008db3 14713 output_arch_syminfo *osi;
d3ce72d0 14714 const insn_sequence *template_sequence;
461a49ca
DJ
14715 enum stub_insn_type prev_type;
14716 int size;
14717 int i;
14718 enum map_symbol_type sym_type;
da5938a2
NC
14719
14720 /* Massage our args to the form they really have. */
14721 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 14722 osi = (output_arch_syminfo *) in_arg;
da5938a2 14723
da5938a2
NC
14724 stub_sec = stub_entry->stub_sec;
14725
14726 /* Ensure this stub is attached to the current section being
7413f23f 14727 processed. */
da5938a2
NC
14728 if (stub_sec != osi->sec)
14729 return TRUE;
14730
7413f23f
DJ
14731 addr = (bfd_vma) stub_entry->stub_offset;
14732 stub_name = stub_entry->output_name;
da5938a2 14733
d3ce72d0
NC
14734 template_sequence = stub_entry->stub_template;
14735 switch (template_sequence[0].type)
7413f23f 14736 {
461a49ca
DJ
14737 case ARM_TYPE:
14738 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
14739 return FALSE;
14740 break;
461a49ca 14741 case THUMB16_TYPE:
48229727 14742 case THUMB32_TYPE:
461a49ca
DJ
14743 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14744 stub_entry->stub_size))
da5938a2
NC
14745 return FALSE;
14746 break;
14747 default:
14748 BFD_FAIL ();
48229727 14749 return 0;
7413f23f 14750 }
da5938a2 14751
461a49ca
DJ
14752 prev_type = DATA_TYPE;
14753 size = 0;
14754 for (i = 0; i < stub_entry->stub_template_size; i++)
14755 {
d3ce72d0 14756 switch (template_sequence[i].type)
461a49ca
DJ
14757 {
14758 case ARM_TYPE:
14759 sym_type = ARM_MAP_ARM;
14760 break;
14761
14762 case THUMB16_TYPE:
48229727 14763 case THUMB32_TYPE:
461a49ca
DJ
14764 sym_type = ARM_MAP_THUMB;
14765 break;
14766
14767 case DATA_TYPE:
14768 sym_type = ARM_MAP_DATA;
14769 break;
14770
14771 default:
14772 BFD_FAIL ();
4e31c731 14773 return FALSE;
461a49ca
DJ
14774 }
14775
d3ce72d0 14776 if (template_sequence[i].type != prev_type)
461a49ca 14777 {
d3ce72d0 14778 prev_type = template_sequence[i].type;
461a49ca
DJ
14779 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14780 return FALSE;
14781 }
14782
d3ce72d0 14783 switch (template_sequence[i].type)
461a49ca
DJ
14784 {
14785 case ARM_TYPE:
48229727 14786 case THUMB32_TYPE:
461a49ca
DJ
14787 size += 4;
14788 break;
14789
14790 case THUMB16_TYPE:
14791 size += 2;
14792 break;
14793
14794 case DATA_TYPE:
14795 size += 4;
14796 break;
14797
14798 default:
14799 BFD_FAIL ();
4e31c731 14800 return FALSE;
461a49ca
DJ
14801 }
14802 }
14803
da5938a2
NC
14804 return TRUE;
14805}
14806
33811162
DG
14807/* Output mapping symbols for linker generated sections,
14808 and for those data-only sections that do not have a
14809 $d. */
4e617b1e
PB
14810
14811static bfd_boolean
14812elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 14813 struct bfd_link_info *info,
57402f1e 14814 void *flaginfo,
6e0b88f1
AM
14815 int (*func) (void *, const char *,
14816 Elf_Internal_Sym *,
14817 asection *,
14818 struct elf_link_hash_entry *))
4e617b1e
PB
14819{
14820 output_arch_syminfo osi;
14821 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
14822 bfd_vma offset;
14823 bfd_size_type size;
33811162 14824 bfd *input_bfd;
4e617b1e
PB
14825
14826 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
14827 if (htab == NULL)
14828 return FALSE;
14829
906e58ca 14830 check_use_blx (htab);
91a5743d 14831
57402f1e 14832 osi.flaginfo = flaginfo;
4e617b1e
PB
14833 osi.info = info;
14834 osi.func = func;
906e58ca 14835
33811162
DG
14836 /* Add a $d mapping symbol to data-only sections that
14837 don't have any mapping symbol. This may result in (harmless) redundant
14838 mapping symbols. */
14839 for (input_bfd = info->input_bfds;
14840 input_bfd != NULL;
14841 input_bfd = input_bfd->link_next)
14842 {
14843 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14844 for (osi.sec = input_bfd->sections;
14845 osi.sec != NULL;
14846 osi.sec = osi.sec->next)
14847 {
14848 if (osi.sec->output_section != NULL
f7dd8c79
DJ
14849 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14850 != 0)
33811162
DG
14851 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14852 == SEC_HAS_CONTENTS
14853 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 14854 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
14855 && osi.sec->size > 0
14856 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
14857 {
14858 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14859 (output_bfd, osi.sec->output_section);
14860 if (osi.sec_shndx != (int)SHN_BAD)
14861 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14862 }
14863 }
14864 }
14865
91a5743d
PB
14866 /* ARM->Thumb glue. */
14867 if (htab->arm_glue_size > 0)
14868 {
3d4d4302
AM
14869 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14870 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
14871
14872 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14873 (output_bfd, osi.sec->output_section);
14874 if (info->shared || htab->root.is_relocatable_executable
14875 || htab->pic_veneer)
14876 size = ARM2THUMB_PIC_GLUE_SIZE;
14877 else if (htab->use_blx)
14878 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14879 else
14880 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 14881
91a5743d
PB
14882 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14883 {
7413f23f
DJ
14884 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14885 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
14886 }
14887 }
14888
14889 /* Thumb->ARM glue. */
14890 if (htab->thumb_glue_size > 0)
14891 {
3d4d4302
AM
14892 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14893 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
14894
14895 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14896 (output_bfd, osi.sec->output_section);
14897 size = THUMB2ARM_GLUE_SIZE;
14898
14899 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14900 {
7413f23f
DJ
14901 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14902 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
14903 }
14904 }
14905
845b51d6
PB
14906 /* ARMv4 BX veneers. */
14907 if (htab->bx_glue_size > 0)
14908 {
3d4d4302
AM
14909 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14910 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
14911
14912 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14913 (output_bfd, osi.sec->output_section);
14914
7413f23f 14915 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
14916 }
14917
8029a119
NC
14918 /* Long calls stubs. */
14919 if (htab->stub_bfd && htab->stub_bfd->sections)
14920 {
da5938a2 14921 asection* stub_sec;
8029a119 14922
da5938a2
NC
14923 for (stub_sec = htab->stub_bfd->sections;
14924 stub_sec != NULL;
8029a119
NC
14925 stub_sec = stub_sec->next)
14926 {
14927 /* Ignore non-stub sections. */
14928 if (!strstr (stub_sec->name, STUB_SUFFIX))
14929 continue;
da5938a2 14930
8029a119 14931 osi.sec = stub_sec;
da5938a2 14932
8029a119
NC
14933 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14934 (output_bfd, osi.sec->output_section);
da5938a2 14935
8029a119
NC
14936 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14937 }
14938 }
da5938a2 14939
91a5743d 14940 /* Finally, output mapping symbols for the PLT. */
34e77a92 14941 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 14942 {
34e77a92
RS
14943 osi.sec = htab->root.splt;
14944 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14945 (output_bfd, osi.sec->output_section));
14946
14947 /* Output mapping symbols for the plt header. SymbianOS does not have a
14948 plt header. */
14949 if (htab->vxworks_p)
14950 {
14951 /* VxWorks shared libraries have no PLT header. */
14952 if (!info->shared)
14953 {
14954 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14955 return FALSE;
14956 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14957 return FALSE;
14958 }
14959 }
b38cadfb
NC
14960 else if (htab->nacl_p)
14961 {
14962 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14963 return FALSE;
14964 }
34e77a92 14965 else if (!htab->symbian_p)
4e617b1e 14966 {
7413f23f 14967 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 14968 return FALSE;
34e77a92
RS
14969#ifndef FOUR_WORD_PLT
14970 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e 14971 return FALSE;
34e77a92 14972#endif
4e617b1e
PB
14973 }
14974 }
34e77a92
RS
14975 if ((htab->root.splt && htab->root.splt->size > 0)
14976 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 14977 {
34e77a92
RS
14978 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14979 for (input_bfd = info->input_bfds;
14980 input_bfd != NULL;
14981 input_bfd = input_bfd->link_next)
14982 {
14983 struct arm_local_iplt_info **local_iplt;
14984 unsigned int i, num_syms;
4e617b1e 14985
34e77a92
RS
14986 local_iplt = elf32_arm_local_iplt (input_bfd);
14987 if (local_iplt != NULL)
14988 {
14989 num_syms = elf_symtab_hdr (input_bfd).sh_info;
14990 for (i = 0; i < num_syms; i++)
14991 if (local_iplt[i] != NULL
14992 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14993 &local_iplt[i]->root,
14994 &local_iplt[i]->arm))
14995 return FALSE;
14996 }
14997 }
14998 }
0855e32b
NS
14999 if (htab->dt_tlsdesc_plt != 0)
15000 {
15001 /* Mapping symbols for the lazy tls trampoline. */
15002 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15003 return FALSE;
b38cadfb 15004
0855e32b
NS
15005 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15006 htab->dt_tlsdesc_plt + 24))
15007 return FALSE;
15008 }
15009 if (htab->tls_trampoline != 0)
15010 {
15011 /* Mapping symbols for the tls trampoline. */
15012 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15013 return FALSE;
15014#ifdef FOUR_WORD_PLT
15015 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15016 htab->tls_trampoline + 12))
15017 return FALSE;
b38cadfb 15018#endif
0855e32b 15019 }
b38cadfb 15020
4e617b1e
PB
15021 return TRUE;
15022}
15023
e489d0ae
PB
15024/* Allocate target specific section data. */
15025
15026static bfd_boolean
15027elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15028{
f592407e
AM
15029 if (!sec->used_by_bfd)
15030 {
15031 _arm_elf_section_data *sdata;
15032 bfd_size_type amt = sizeof (*sdata);
e489d0ae 15033
21d799b5 15034 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
15035 if (sdata == NULL)
15036 return FALSE;
15037 sec->used_by_bfd = sdata;
15038 }
e489d0ae
PB
15039
15040 return _bfd_elf_new_section_hook (abfd, sec);
15041}
15042
15043
15044/* Used to order a list of mapping symbols by address. */
15045
15046static int
15047elf32_arm_compare_mapping (const void * a, const void * b)
15048{
7f6a71ff
JM
15049 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15050 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15051
15052 if (amap->vma > bmap->vma)
15053 return 1;
15054 else if (amap->vma < bmap->vma)
15055 return -1;
15056 else if (amap->type > bmap->type)
15057 /* Ensure results do not depend on the host qsort for objects with
15058 multiple mapping symbols at the same address by sorting on type
15059 after vma. */
15060 return 1;
15061 else if (amap->type < bmap->type)
15062 return -1;
15063 else
15064 return 0;
e489d0ae
PB
15065}
15066
2468f9c9
PB
15067/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15068
15069static unsigned long
15070offset_prel31 (unsigned long addr, bfd_vma offset)
15071{
15072 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15073}
15074
15075/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15076 relocations. */
15077
15078static void
15079copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15080{
15081 unsigned long first_word = bfd_get_32 (output_bfd, from);
15082 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 15083
2468f9c9
PB
15084 /* High bit of first word is supposed to be zero. */
15085 if ((first_word & 0x80000000ul) == 0)
15086 first_word = offset_prel31 (first_word, offset);
b38cadfb 15087
2468f9c9
PB
15088 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15089 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15090 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15091 second_word = offset_prel31 (second_word, offset);
b38cadfb 15092
2468f9c9
PB
15093 bfd_put_32 (output_bfd, first_word, to);
15094 bfd_put_32 (output_bfd, second_word, to + 4);
15095}
e489d0ae 15096
48229727
JB
15097/* Data for make_branch_to_a8_stub(). */
15098
b38cadfb
NC
15099struct a8_branch_to_stub_data
15100{
48229727
JB
15101 asection *writing_section;
15102 bfd_byte *contents;
15103};
15104
15105
15106/* Helper to insert branches to Cortex-A8 erratum stubs in the right
15107 places for a particular section. */
15108
15109static bfd_boolean
15110make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
15111 void *in_arg)
15112{
15113 struct elf32_arm_stub_hash_entry *stub_entry;
15114 struct a8_branch_to_stub_data *data;
15115 bfd_byte *contents;
15116 unsigned long branch_insn;
15117 bfd_vma veneered_insn_loc, veneer_entry_loc;
15118 bfd_signed_vma branch_offset;
15119 bfd *abfd;
91d6fa6a 15120 unsigned int target;
48229727
JB
15121
15122 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15123 data = (struct a8_branch_to_stub_data *) in_arg;
15124
15125 if (stub_entry->target_section != data->writing_section
4563a860 15126 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
15127 return TRUE;
15128
15129 contents = data->contents;
15130
15131 veneered_insn_loc = stub_entry->target_section->output_section->vma
15132 + stub_entry->target_section->output_offset
15133 + stub_entry->target_value;
15134
15135 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15136 + stub_entry->stub_sec->output_offset
15137 + stub_entry->stub_offset;
15138
15139 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15140 veneered_insn_loc &= ~3u;
15141
15142 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15143
15144 abfd = stub_entry->target_section->owner;
91d6fa6a 15145 target = stub_entry->target_value;
48229727
JB
15146
15147 /* We attempt to avoid this condition by setting stubs_always_after_branch
15148 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15149 This check is just to be on the safe side... */
15150 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15151 {
15152 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15153 "allocated in unsafe location"), abfd);
15154 return FALSE;
15155 }
15156
15157 switch (stub_entry->stub_type)
15158 {
15159 case arm_stub_a8_veneer_b:
15160 case arm_stub_a8_veneer_b_cond:
15161 branch_insn = 0xf0009000;
15162 goto jump24;
15163
15164 case arm_stub_a8_veneer_blx:
15165 branch_insn = 0xf000e800;
15166 goto jump24;
15167
15168 case arm_stub_a8_veneer_bl:
15169 {
15170 unsigned int i1, j1, i2, j2, s;
15171
15172 branch_insn = 0xf000d000;
15173
15174 jump24:
15175 if (branch_offset < -16777216 || branch_offset > 16777214)
15176 {
15177 /* There's not much we can do apart from complain if this
15178 happens. */
15179 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15180 "of range (input file too large)"), abfd);
15181 return FALSE;
15182 }
15183
15184 /* i1 = not(j1 eor s), so:
15185 not i1 = j1 eor s
15186 j1 = (not i1) eor s. */
15187
15188 branch_insn |= (branch_offset >> 1) & 0x7ff;
15189 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15190 i2 = (branch_offset >> 22) & 1;
15191 i1 = (branch_offset >> 23) & 1;
15192 s = (branch_offset >> 24) & 1;
15193 j1 = (!i1) ^ s;
15194 j2 = (!i2) ^ s;
15195 branch_insn |= j2 << 11;
15196 branch_insn |= j1 << 13;
15197 branch_insn |= s << 26;
15198 }
15199 break;
15200
15201 default:
15202 BFD_FAIL ();
15203 return FALSE;
15204 }
15205
91d6fa6a
NC
15206 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15207 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
48229727
JB
15208
15209 return TRUE;
15210}
15211
e489d0ae
PB
15212/* Do code byteswapping. Return FALSE afterwards so that the section is
15213 written out as normal. */
15214
15215static bfd_boolean
c7b8f16e 15216elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
15217 struct bfd_link_info *link_info,
15218 asection *sec,
e489d0ae
PB
15219 bfd_byte *contents)
15220{
48229727 15221 unsigned int mapcount, errcount;
8e3de13a 15222 _arm_elf_section_data *arm_data;
c7b8f16e 15223 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 15224 elf32_arm_section_map *map;
c7b8f16e 15225 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
15226 bfd_vma ptr;
15227 bfd_vma end;
c7b8f16e 15228 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 15229 bfd_byte tmp;
48229727 15230 unsigned int i;
57e8b36a 15231
4dfe6ac6
NC
15232 if (globals == NULL)
15233 return FALSE;
15234
8e3de13a
NC
15235 /* If this section has not been allocated an _arm_elf_section_data
15236 structure then we cannot record anything. */
15237 arm_data = get_arm_elf_section_data (sec);
15238 if (arm_data == NULL)
15239 return FALSE;
15240
15241 mapcount = arm_data->mapcount;
15242 map = arm_data->map;
c7b8f16e
JB
15243 errcount = arm_data->erratumcount;
15244
15245 if (errcount != 0)
15246 {
15247 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15248
15249 for (errnode = arm_data->erratumlist; errnode != 0;
15250 errnode = errnode->next)
15251 {
91d6fa6a 15252 bfd_vma target = errnode->vma - offset;
c7b8f16e
JB
15253
15254 switch (errnode->type)
15255 {
15256 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15257 {
15258 bfd_vma branch_to_veneer;
15259 /* Original condition code of instruction, plus bit mask for
15260 ARM B instruction. */
15261 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15262 | 0x0a000000;
15263
15264 /* The instruction is before the label. */
91d6fa6a 15265 target -= 4;
c7b8f16e
JB
15266
15267 /* Above offset included in -4 below. */
15268 branch_to_veneer = errnode->u.b.veneer->vma
15269 - errnode->vma - 4;
15270
15271 if ((signed) branch_to_veneer < -(1 << 25)
15272 || (signed) branch_to_veneer >= (1 << 25))
15273 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15274 "range"), output_bfd);
15275
15276 insn |= (branch_to_veneer >> 2) & 0xffffff;
91d6fa6a
NC
15277 contents[endianflip ^ target] = insn & 0xff;
15278 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15279 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15280 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
c7b8f16e
JB
15281 }
15282 break;
15283
15284 case VFP11_ERRATUM_ARM_VENEER:
15285 {
15286 bfd_vma branch_from_veneer;
15287 unsigned int insn;
15288
15289 /* Take size of veneer into account. */
15290 branch_from_veneer = errnode->u.v.branch->vma
15291 - errnode->vma - 12;
15292
15293 if ((signed) branch_from_veneer < -(1 << 25)
15294 || (signed) branch_from_veneer >= (1 << 25))
15295 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15296 "range"), output_bfd);
15297
15298 /* Original instruction. */
15299 insn = errnode->u.v.branch->u.b.vfp_insn;
91d6fa6a
NC
15300 contents[endianflip ^ target] = insn & 0xff;
15301 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15302 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15303 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
c7b8f16e
JB
15304
15305 /* Branch back to insn after original insn. */
15306 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
91d6fa6a
NC
15307 contents[endianflip ^ (target + 4)] = insn & 0xff;
15308 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15309 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15310 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
c7b8f16e
JB
15311 }
15312 break;
15313
15314 default:
15315 abort ();
15316 }
15317 }
15318 }
e489d0ae 15319
2468f9c9
PB
15320 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15321 {
15322 arm_unwind_table_edit *edit_node
15323 = arm_data->u.exidx.unwind_edit_list;
15324 /* Now, sec->size is the size of the section we will write. The original
15325 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15326 markers) was sec->rawsize. (This isn't the case if we perform no
15327 edits, then rawsize will be zero and we should use size). */
21d799b5 15328 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
15329 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15330 unsigned int in_index, out_index;
15331 bfd_vma add_to_offsets = 0;
15332
15333 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15334 {
15335 if (edit_node)
15336 {
15337 unsigned int edit_index = edit_node->index;
b38cadfb 15338
2468f9c9
PB
15339 if (in_index < edit_index && in_index * 8 < input_size)
15340 {
15341 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15342 contents + in_index * 8, add_to_offsets);
15343 out_index++;
15344 in_index++;
15345 }
15346 else if (in_index == edit_index
15347 || (in_index * 8 >= input_size
15348 && edit_index == UINT_MAX))
15349 {
15350 switch (edit_node->type)
15351 {
15352 case DELETE_EXIDX_ENTRY:
15353 in_index++;
15354 add_to_offsets += 8;
15355 break;
b38cadfb 15356
2468f9c9
PB
15357 case INSERT_EXIDX_CANTUNWIND_AT_END:
15358 {
15359 asection *text_sec = edit_node->linked_section;
15360 bfd_vma text_offset = text_sec->output_section->vma
15361 + text_sec->output_offset
15362 + text_sec->size;
15363 bfd_vma exidx_offset = offset + out_index * 8;
15364 unsigned long prel31_offset;
15365
15366 /* Note: this is meant to be equivalent to an
15367 R_ARM_PREL31 relocation. These synthetic
15368 EXIDX_CANTUNWIND markers are not relocated by the
15369 usual BFD method. */
15370 prel31_offset = (text_offset - exidx_offset)
15371 & 0x7ffffffful;
15372
15373 /* First address we can't unwind. */
15374 bfd_put_32 (output_bfd, prel31_offset,
15375 &edited_contents[out_index * 8]);
15376
15377 /* Code for EXIDX_CANTUNWIND. */
15378 bfd_put_32 (output_bfd, 0x1,
15379 &edited_contents[out_index * 8 + 4]);
15380
15381 out_index++;
15382 add_to_offsets -= 8;
15383 }
15384 break;
15385 }
b38cadfb 15386
2468f9c9
PB
15387 edit_node = edit_node->next;
15388 }
15389 }
15390 else
15391 {
15392 /* No more edits, copy remaining entries verbatim. */
15393 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15394 contents + in_index * 8, add_to_offsets);
15395 out_index++;
15396 in_index++;
15397 }
15398 }
15399
15400 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15401 bfd_set_section_contents (output_bfd, sec->output_section,
15402 edited_contents,
15403 (file_ptr) sec->output_offset, sec->size);
15404
15405 return TRUE;
15406 }
15407
48229727
JB
15408 /* Fix code to point to Cortex-A8 erratum stubs. */
15409 if (globals->fix_cortex_a8)
15410 {
15411 struct a8_branch_to_stub_data data;
15412
15413 data.writing_section = sec;
15414 data.contents = contents;
15415
15416 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15417 &data);
15418 }
15419
e489d0ae
PB
15420 if (mapcount == 0)
15421 return FALSE;
15422
c7b8f16e 15423 if (globals->byteswap_code)
e489d0ae 15424 {
c7b8f16e 15425 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 15426
c7b8f16e
JB
15427 ptr = map[0].vma;
15428 for (i = 0; i < mapcount; i++)
15429 {
15430 if (i == mapcount - 1)
15431 end = sec->size;
15432 else
15433 end = map[i + 1].vma;
e489d0ae 15434
c7b8f16e 15435 switch (map[i].type)
e489d0ae 15436 {
c7b8f16e
JB
15437 case 'a':
15438 /* Byte swap code words. */
15439 while (ptr + 3 < end)
15440 {
15441 tmp = contents[ptr];
15442 contents[ptr] = contents[ptr + 3];
15443 contents[ptr + 3] = tmp;
15444 tmp = contents[ptr + 1];
15445 contents[ptr + 1] = contents[ptr + 2];
15446 contents[ptr + 2] = tmp;
15447 ptr += 4;
15448 }
15449 break;
e489d0ae 15450
c7b8f16e
JB
15451 case 't':
15452 /* Byte swap code halfwords. */
15453 while (ptr + 1 < end)
15454 {
15455 tmp = contents[ptr];
15456 contents[ptr] = contents[ptr + 1];
15457 contents[ptr + 1] = tmp;
15458 ptr += 2;
15459 }
15460 break;
15461
15462 case 'd':
15463 /* Leave data alone. */
15464 break;
15465 }
15466 ptr = end;
15467 }
e489d0ae 15468 }
8e3de13a 15469
93204d3a 15470 free (map);
47b2e99c 15471 arm_data->mapcount = -1;
c7b8f16e 15472 arm_data->mapsize = 0;
8e3de13a 15473 arm_data->map = NULL;
8e3de13a 15474
e489d0ae
PB
15475 return FALSE;
15476}
15477
0beaef2b
PB
15478/* Mangle thumb function symbols as we read them in. */
15479
8384fb8f 15480static bfd_boolean
0beaef2b
PB
15481elf32_arm_swap_symbol_in (bfd * abfd,
15482 const void *psrc,
15483 const void *pshn,
15484 Elf_Internal_Sym *dst)
15485{
8384fb8f
AM
15486 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15487 return FALSE;
0beaef2b
PB
15488
15489 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 15490 the address. */
63e1a0fc
PB
15491 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15492 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 15493 {
63e1a0fc
PB
15494 if (dst->st_value & 1)
15495 {
15496 dst->st_value &= ~(bfd_vma) 1;
15497 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15498 }
15499 else
15500 dst->st_target_internal = ST_BRANCH_TO_ARM;
35fc36a8
RS
15501 }
15502 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15503 {
15504 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15505 dst->st_target_internal = ST_BRANCH_TO_THUMB;
0beaef2b 15506 }
35fc36a8
RS
15507 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15508 dst->st_target_internal = ST_BRANCH_LONG;
15509 else
63e1a0fc 15510 dst->st_target_internal = ST_BRANCH_UNKNOWN;
35fc36a8 15511
8384fb8f 15512 return TRUE;
0beaef2b
PB
15513}
15514
15515
15516/* Mangle thumb function symbols as we write them out. */
15517
15518static void
15519elf32_arm_swap_symbol_out (bfd *abfd,
15520 const Elf_Internal_Sym *src,
15521 void *cdst,
15522 void *shndx)
15523{
15524 Elf_Internal_Sym newsym;
15525
15526 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15527 of the address set, as per the new EABI. We do this unconditionally
15528 because objcopy does not set the elf header flags until after
15529 it writes out the symbol table. */
35fc36a8 15530 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
0beaef2b
PB
15531 {
15532 newsym = *src;
34e77a92
RS
15533 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15534 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad
PB
15535 if (newsym.st_shndx != SHN_UNDEF)
15536 {
15537 /* Do this only for defined symbols. At link type, the static
15538 linker will simulate the work of dynamic linker of resolving
15539 symbols and will carry over the thumbness of found symbols to
15540 the output symbol table. It's not clear how it happens, but
b0fead2b 15541 the thumbness of undefined symbols can well be different at
0fa3dcad
PB
15542 runtime, and writing '1' for them will be confusing for users
15543 and possibly for dynamic linker itself.
15544 */
15545 newsym.st_value |= 1;
15546 }
906e58ca 15547
0beaef2b
PB
15548 src = &newsym;
15549 }
15550 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15551}
15552
b294bdf8
MM
15553/* Add the PT_ARM_EXIDX program header. */
15554
15555static bfd_boolean
906e58ca 15556elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
15557 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15558{
15559 struct elf_segment_map *m;
15560 asection *sec;
15561
15562 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15563 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15564 {
15565 /* If there is already a PT_ARM_EXIDX header, then we do not
15566 want to add another one. This situation arises when running
15567 "strip"; the input binary already has the header. */
15568 m = elf_tdata (abfd)->segment_map;
15569 while (m && m->p_type != PT_ARM_EXIDX)
15570 m = m->next;
15571 if (!m)
15572 {
21d799b5
NC
15573 m = (struct elf_segment_map *)
15574 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
15575 if (m == NULL)
15576 return FALSE;
15577 m->p_type = PT_ARM_EXIDX;
15578 m->count = 1;
15579 m->sections[0] = sec;
15580
15581 m->next = elf_tdata (abfd)->segment_map;
15582 elf_tdata (abfd)->segment_map = m;
15583 }
15584 }
15585
15586 return TRUE;
15587}
15588
15589/* We may add a PT_ARM_EXIDX program header. */
15590
15591static int
a6b96beb
AM
15592elf32_arm_additional_program_headers (bfd *abfd,
15593 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
15594{
15595 asection *sec;
15596
15597 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15598 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15599 return 1;
15600 else
15601 return 0;
15602}
15603
34e77a92
RS
15604/* Hook called by the linker routine which adds symbols from an object
15605 file. */
15606
15607static bfd_boolean
15608elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15609 Elf_Internal_Sym *sym, const char **namep,
15610 flagword *flagsp, asection **secp, bfd_vma *valp)
15611{
15612 if ((abfd->flags & DYNAMIC) == 0
f64b2e8d
NC
15613 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15614 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15615 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
34e77a92
RS
15616
15617 if (elf32_arm_hash_table (info)->vxworks_p
15618 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15619 flagsp, secp, valp))
15620 return FALSE;
15621
15622 return TRUE;
15623}
15624
0beaef2b 15625/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
15626const struct elf_size_info elf32_arm_size_info =
15627{
0beaef2b
PB
15628 sizeof (Elf32_External_Ehdr),
15629 sizeof (Elf32_External_Phdr),
15630 sizeof (Elf32_External_Shdr),
15631 sizeof (Elf32_External_Rel),
15632 sizeof (Elf32_External_Rela),
15633 sizeof (Elf32_External_Sym),
15634 sizeof (Elf32_External_Dyn),
15635 sizeof (Elf_External_Note),
15636 4,
15637 1,
15638 32, 2,
15639 ELFCLASS32, EV_CURRENT,
15640 bfd_elf32_write_out_phdrs,
15641 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 15642 bfd_elf32_checksum_contents,
0beaef2b
PB
15643 bfd_elf32_write_relocs,
15644 elf32_arm_swap_symbol_in,
15645 elf32_arm_swap_symbol_out,
15646 bfd_elf32_slurp_reloc_table,
15647 bfd_elf32_slurp_symbol_table,
15648 bfd_elf32_swap_dyn_in,
15649 bfd_elf32_swap_dyn_out,
15650 bfd_elf32_swap_reloc_in,
15651 bfd_elf32_swap_reloc_out,
15652 bfd_elf32_swap_reloca_in,
15653 bfd_elf32_swap_reloca_out
15654};
15655
252b5132 15656#define ELF_ARCH bfd_arch_arm
ae95ffa6 15657#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 15658#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
15659#ifdef __QNXTARGET__
15660#define ELF_MAXPAGESIZE 0x1000
15661#else
f21f3fe0 15662#define ELF_MAXPAGESIZE 0x8000
d0facd1b 15663#endif
b1342370 15664#define ELF_MINPAGESIZE 0x1000
24718e3b 15665#define ELF_COMMONPAGESIZE 0x1000
252b5132 15666
ba93b8ac
DJ
15667#define bfd_elf32_mkobject elf32_arm_mkobject
15668
99e4ae17
AJ
15669#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15670#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
15671#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15672#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15673#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
906e58ca 15674#define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
dc810e39 15675#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 15676#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 15677#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 15678#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 15679#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 15680#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 15681#define bfd_elf32_bfd_final_link elf32_arm_final_link
252b5132
RH
15682
15683#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15684#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 15685#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
15686#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15687#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 15688#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 15689#define elf_backend_write_section elf32_arm_write_section
252b5132 15690#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 15691#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
15692#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15693#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15694#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 15695#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 15696#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 15697#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 15698#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 15699#define elf_backend_object_p elf32_arm_object_p
40a18ebd
NC
15700#define elf_backend_fake_sections elf32_arm_fake_sections
15701#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 15702#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 15703#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 15704#define elf_backend_size_info elf32_arm_size_info
b294bdf8 15705#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
15706#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15707#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15708#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 15709#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
906e58ca
NC
15710
15711#define elf_backend_can_refcount 1
15712#define elf_backend_can_gc_sections 1
15713#define elf_backend_plt_readonly 1
15714#define elf_backend_want_got_plt 1
15715#define elf_backend_want_plt_sym 0
15716#define elf_backend_may_use_rel_p 1
15717#define elf_backend_may_use_rela_p 0
4e7fd91e 15718#define elf_backend_default_use_rela_p 0
252b5132 15719
04f7c78d 15720#define elf_backend_got_header_size 12
04f7c78d 15721
906e58ca
NC
15722#undef elf_backend_obj_attrs_vendor
15723#define elf_backend_obj_attrs_vendor "aeabi"
15724#undef elf_backend_obj_attrs_section
15725#define elf_backend_obj_attrs_section ".ARM.attributes"
15726#undef elf_backend_obj_attrs_arg_type
15727#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15728#undef elf_backend_obj_attrs_section_type
104d59d1 15729#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb
NC
15730#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15731#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 15732
252b5132 15733#include "elf32-target.h"
7f266840 15734
b38cadfb
NC
15735/* Native Client targets. */
15736
15737#undef TARGET_LITTLE_SYM
15738#define TARGET_LITTLE_SYM bfd_elf32_littlearm_nacl_vec
15739#undef TARGET_LITTLE_NAME
15740#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
15741#undef TARGET_BIG_SYM
15742#define TARGET_BIG_SYM bfd_elf32_bigarm_nacl_vec
15743#undef TARGET_BIG_NAME
15744#define TARGET_BIG_NAME "elf32-bigarm-nacl"
15745
15746/* Like elf32_arm_link_hash_table_create -- but overrides
15747 appropriately for NaCl. */
15748
15749static struct bfd_link_hash_table *
15750elf32_arm_nacl_link_hash_table_create (bfd *abfd)
15751{
15752 struct bfd_link_hash_table *ret;
15753
15754 ret = elf32_arm_link_hash_table_create (abfd);
15755 if (ret)
15756 {
15757 struct elf32_arm_link_hash_table *htab
15758 = (struct elf32_arm_link_hash_table *) ret;
15759
15760 htab->nacl_p = 1;
15761
15762 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
15763 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
15764 }
15765 return ret;
15766}
15767
15768/* Since NaCl doesn't use the ARM-specific unwind format, we don't
15769 really need to use elf32_arm_modify_segment_map. But we do it
15770 anyway just to reduce gratuitous differences with the stock ARM backend. */
15771
15772static bfd_boolean
15773elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
15774{
15775 return (elf32_arm_modify_segment_map (abfd, info)
15776 && nacl_modify_segment_map (abfd, info));
15777}
15778
15779#undef elf32_bed
15780#define elf32_bed elf32_arm_nacl_bed
15781#undef bfd_elf32_bfd_link_hash_table_create
15782#define bfd_elf32_bfd_link_hash_table_create \
15783 elf32_arm_nacl_link_hash_table_create
15784#undef elf_backend_plt_alignment
15785#define elf_backend_plt_alignment 4
15786#undef elf_backend_modify_segment_map
15787#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
15788#undef elf_backend_modify_program_headers
15789#define elf_backend_modify_program_headers nacl_modify_program_headers
15790
15791#undef ELF_MAXPAGESIZE
15792#define ELF_MAXPAGESIZE 0x10000
15793
15794#include "elf32-target.h"
15795
15796/* Reset to defaults. */
15797#undef elf_backend_plt_alignment
15798#undef elf_backend_modify_segment_map
15799#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15800#undef elf_backend_modify_program_headers
15801
906e58ca 15802/* VxWorks Targets. */
4e7fd91e 15803
906e58ca 15804#undef TARGET_LITTLE_SYM
4e7fd91e 15805#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
906e58ca 15806#undef TARGET_LITTLE_NAME
4e7fd91e 15807#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 15808#undef TARGET_BIG_SYM
4e7fd91e 15809#define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
906e58ca 15810#undef TARGET_BIG_NAME
4e7fd91e
PB
15811#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15812
15813/* Like elf32_arm_link_hash_table_create -- but overrides
15814 appropriately for VxWorks. */
906e58ca 15815
4e7fd91e
PB
15816static struct bfd_link_hash_table *
15817elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15818{
15819 struct bfd_link_hash_table *ret;
15820
15821 ret = elf32_arm_link_hash_table_create (abfd);
15822 if (ret)
15823 {
15824 struct elf32_arm_link_hash_table *htab
00a97672 15825 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 15826 htab->use_rel = 0;
00a97672 15827 htab->vxworks_p = 1;
4e7fd91e
PB
15828 }
15829 return ret;
906e58ca 15830}
4e7fd91e 15831
00a97672
RS
15832static void
15833elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15834{
15835 elf32_arm_final_write_processing (abfd, linker);
15836 elf_vxworks_final_write_processing (abfd, linker);
15837}
15838
906e58ca 15839#undef elf32_bed
4e7fd91e
PB
15840#define elf32_bed elf32_arm_vxworks_bed
15841
906e58ca
NC
15842#undef bfd_elf32_bfd_link_hash_table_create
15843#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
15844#undef elf_backend_final_write_processing
15845#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15846#undef elf_backend_emit_relocs
15847#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 15848
906e58ca 15849#undef elf_backend_may_use_rel_p
00a97672 15850#define elf_backend_may_use_rel_p 0
906e58ca 15851#undef elf_backend_may_use_rela_p
00a97672 15852#define elf_backend_may_use_rela_p 1
906e58ca 15853#undef elf_backend_default_use_rela_p
00a97672 15854#define elf_backend_default_use_rela_p 1
906e58ca 15855#undef elf_backend_want_plt_sym
00a97672 15856#define elf_backend_want_plt_sym 1
906e58ca 15857#undef ELF_MAXPAGESIZE
00a97672 15858#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
15859
15860#include "elf32-target.h"
15861
15862
21d799b5
NC
15863/* Merge backend specific data from an object file to the output
15864 object file when linking. */
15865
15866static bfd_boolean
15867elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15868{
15869 flagword out_flags;
15870 flagword in_flags;
15871 bfd_boolean flags_compatible = TRUE;
15872 asection *sec;
15873
cc643b88 15874 /* Check if we have the same endianness. */
21d799b5
NC
15875 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15876 return FALSE;
15877
15878 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15879 return TRUE;
15880
15881 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15882 return FALSE;
15883
15884 /* The input BFD must have had its flags initialised. */
15885 /* The following seems bogus to me -- The flags are initialized in
15886 the assembler but I don't think an elf_flags_init field is
15887 written into the object. */
15888 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15889
15890 in_flags = elf_elfheader (ibfd)->e_flags;
15891 out_flags = elf_elfheader (obfd)->e_flags;
15892
15893 /* In theory there is no reason why we couldn't handle this. However
15894 in practice it isn't even close to working and there is no real
15895 reason to want it. */
15896 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15897 && !(ibfd->flags & DYNAMIC)
15898 && (in_flags & EF_ARM_BE8))
15899 {
15900 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15901 ibfd);
15902 return FALSE;
15903 }
15904
15905 if (!elf_flags_init (obfd))
15906 {
15907 /* If the input is the default architecture and had the default
15908 flags then do not bother setting the flags for the output
15909 architecture, instead allow future merges to do this. If no
15910 future merges ever set these flags then they will retain their
15911 uninitialised values, which surprise surprise, correspond
15912 to the default values. */
15913 if (bfd_get_arch_info (ibfd)->the_default
15914 && elf_elfheader (ibfd)->e_flags == 0)
15915 return TRUE;
15916
15917 elf_flags_init (obfd) = TRUE;
15918 elf_elfheader (obfd)->e_flags = in_flags;
15919
15920 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15921 && bfd_get_arch_info (obfd)->the_default)
15922 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15923
15924 return TRUE;
15925 }
15926
15927 /* Determine what should happen if the input ARM architecture
15928 does not match the output ARM architecture. */
15929 if (! bfd_arm_merge_machines (ibfd, obfd))
15930 return FALSE;
15931
15932 /* Identical flags must be compatible. */
15933 if (in_flags == out_flags)
15934 return TRUE;
15935
15936 /* Check to see if the input BFD actually contains any sections. If
15937 not, its flags may not have been initialised either, but it
15938 cannot actually cause any incompatiblity. Do not short-circuit
15939 dynamic objects; their section list may be emptied by
15940 elf_link_add_object_symbols.
15941
15942 Also check to see if there are no code sections in the input.
15943 In this case there is no need to check for code specific flags.
15944 XXX - do we need to worry about floating-point format compatability
15945 in data sections ? */
15946 if (!(ibfd->flags & DYNAMIC))
15947 {
15948 bfd_boolean null_input_bfd = TRUE;
15949 bfd_boolean only_data_sections = TRUE;
15950
15951 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15952 {
15953 /* Ignore synthetic glue sections. */
15954 if (strcmp (sec->name, ".glue_7")
15955 && strcmp (sec->name, ".glue_7t"))
15956 {
15957 if ((bfd_get_section_flags (ibfd, sec)
15958 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15959 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15960 only_data_sections = FALSE;
15961
15962 null_input_bfd = FALSE;
15963 break;
15964 }
15965 }
15966
15967 if (null_input_bfd || only_data_sections)
15968 return TRUE;
15969 }
15970
15971 /* Complain about various flag mismatches. */
15972 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15973 EF_ARM_EABI_VERSION (out_flags)))
15974 {
15975 _bfd_error_handler
15976 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15977 ibfd, obfd,
15978 (in_flags & EF_ARM_EABIMASK) >> 24,
15979 (out_flags & EF_ARM_EABIMASK) >> 24);
15980 return FALSE;
15981 }
15982
15983 /* Not sure what needs to be checked for EABI versions >= 1. */
15984 /* VxWorks libraries do not use these flags. */
15985 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15986 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15987 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15988 {
15989 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15990 {
15991 _bfd_error_handler
15992 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15993 ibfd, obfd,
15994 in_flags & EF_ARM_APCS_26 ? 26 : 32,
15995 out_flags & EF_ARM_APCS_26 ? 26 : 32);
15996 flags_compatible = FALSE;
15997 }
15998
15999 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16000 {
16001 if (in_flags & EF_ARM_APCS_FLOAT)
16002 _bfd_error_handler
16003 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16004 ibfd, obfd);
16005 else
16006 _bfd_error_handler
16007 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16008 ibfd, obfd);
16009
16010 flags_compatible = FALSE;
16011 }
16012
16013 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16014 {
16015 if (in_flags & EF_ARM_VFP_FLOAT)
16016 _bfd_error_handler
16017 (_("error: %B uses VFP instructions, whereas %B does not"),
16018 ibfd, obfd);
16019 else
16020 _bfd_error_handler
16021 (_("error: %B uses FPA instructions, whereas %B does not"),
16022 ibfd, obfd);
16023
16024 flags_compatible = FALSE;
16025 }
16026
16027 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16028 {
16029 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16030 _bfd_error_handler
16031 (_("error: %B uses Maverick instructions, whereas %B does not"),
16032 ibfd, obfd);
16033 else
16034 _bfd_error_handler
16035 (_("error: %B does not use Maverick instructions, whereas %B does"),
16036 ibfd, obfd);
16037
16038 flags_compatible = FALSE;
16039 }
16040
16041#ifdef EF_ARM_SOFT_FLOAT
16042 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16043 {
16044 /* We can allow interworking between code that is VFP format
16045 layout, and uses either soft float or integer regs for
16046 passing floating point arguments and results. We already
16047 know that the APCS_FLOAT flags match; similarly for VFP
16048 flags. */
16049 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16050 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16051 {
16052 if (in_flags & EF_ARM_SOFT_FLOAT)
16053 _bfd_error_handler
16054 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16055 ibfd, obfd);
16056 else
16057 _bfd_error_handler
16058 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16059 ibfd, obfd);
16060
16061 flags_compatible = FALSE;
16062 }
16063 }
16064#endif
16065
16066 /* Interworking mismatch is only a warning. */
16067 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16068 {
16069 if (in_flags & EF_ARM_INTERWORK)
16070 {
16071 _bfd_error_handler
16072 (_("Warning: %B supports interworking, whereas %B does not"),
16073 ibfd, obfd);
16074 }
16075 else
16076 {
16077 _bfd_error_handler
16078 (_("Warning: %B does not support interworking, whereas %B does"),
16079 ibfd, obfd);
16080 }
16081 }
16082 }
16083
16084 return flags_compatible;
16085}
16086
16087
906e58ca 16088/* Symbian OS Targets. */
7f266840 16089
906e58ca 16090#undef TARGET_LITTLE_SYM
7f266840 16091#define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
906e58ca 16092#undef TARGET_LITTLE_NAME
7f266840 16093#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 16094#undef TARGET_BIG_SYM
7f266840 16095#define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
906e58ca 16096#undef TARGET_BIG_NAME
7f266840
DJ
16097#define TARGET_BIG_NAME "elf32-bigarm-symbian"
16098
16099/* Like elf32_arm_link_hash_table_create -- but overrides
16100 appropriately for Symbian OS. */
906e58ca 16101
7f266840
DJ
16102static struct bfd_link_hash_table *
16103elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16104{
16105 struct bfd_link_hash_table *ret;
16106
16107 ret = elf32_arm_link_hash_table_create (abfd);
16108 if (ret)
16109 {
16110 struct elf32_arm_link_hash_table *htab
16111 = (struct elf32_arm_link_hash_table *)ret;
16112 /* There is no PLT header for Symbian OS. */
16113 htab->plt_header_size = 0;
95720a86
DJ
16114 /* The PLT entries are each one instruction and one word. */
16115 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 16116 htab->symbian_p = 1;
33bfe774
JB
16117 /* Symbian uses armv5t or above, so use_blx is always true. */
16118 htab->use_blx = 1;
67687978 16119 htab->root.is_relocatable_executable = 1;
7f266840
DJ
16120 }
16121 return ret;
906e58ca 16122}
7f266840 16123
b35d266b 16124static const struct bfd_elf_special_section
551b43fd 16125elf32_arm_symbian_special_sections[] =
7f266840 16126{
5cd3778d
MM
16127 /* In a BPABI executable, the dynamic linking sections do not go in
16128 the loadable read-only segment. The post-linker may wish to
16129 refer to these sections, but they are not part of the final
16130 program image. */
0112cd26
NC
16131 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16132 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16133 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16134 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16135 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
16136 /* These sections do not need to be writable as the SymbianOS
16137 postlinker will arrange things so that no dynamic relocation is
16138 required. */
0112cd26
NC
16139 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16140 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16141 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16142 { NULL, 0, 0, 0, 0 }
7f266840
DJ
16143};
16144
c3c76620 16145static void
906e58ca 16146elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 16147 struct bfd_link_info *link_info)
c3c76620
MM
16148{
16149 /* BPABI objects are never loaded directly by an OS kernel; they are
16150 processed by a postlinker first, into an OS-specific format. If
16151 the D_PAGED bit is set on the file, BFD will align segments on
16152 page boundaries, so that an OS can directly map the file. With
16153 BPABI objects, that just results in wasted space. In addition,
16154 because we clear the D_PAGED bit, map_sections_to_segments will
16155 recognize that the program headers should not be mapped into any
16156 loadable segment. */
16157 abfd->flags &= ~D_PAGED;
906e58ca 16158 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 16159}
7f266840
DJ
16160
16161static bfd_boolean
906e58ca 16162elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 16163 struct bfd_link_info *info)
7f266840
DJ
16164{
16165 struct elf_segment_map *m;
16166 asection *dynsec;
16167
7f266840
DJ
16168 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16169 segment. However, because the .dynamic section is not marked
16170 with SEC_LOAD, the generic ELF code will not create such a
16171 segment. */
16172 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16173 if (dynsec)
16174 {
8ded5a0f
AM
16175 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
16176 if (m->p_type == PT_DYNAMIC)
16177 break;
16178
16179 if (m == NULL)
16180 {
16181 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
16182 m->next = elf_tdata (abfd)->segment_map;
16183 elf_tdata (abfd)->segment_map = m;
16184 }
7f266840
DJ
16185 }
16186
b294bdf8
MM
16187 /* Also call the generic arm routine. */
16188 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
16189}
16190
95720a86
DJ
16191/* Return address for Ith PLT stub in section PLT, for relocation REL
16192 or (bfd_vma) -1 if it should not be included. */
16193
16194static bfd_vma
16195elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16196 const arelent *rel ATTRIBUTE_UNUSED)
16197{
16198 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16199}
16200
16201
8029a119 16202#undef elf32_bed
7f266840
DJ
16203#define elf32_bed elf32_arm_symbian_bed
16204
16205/* The dynamic sections are not allocated on SymbianOS; the postlinker
16206 will process them and then discard them. */
906e58ca 16207#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
16208#define ELF_DYNAMIC_SEC_FLAGS \
16209 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16210
00a97672 16211#undef elf_backend_emit_relocs
c3c76620 16212
906e58ca
NC
16213#undef bfd_elf32_bfd_link_hash_table_create
16214#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16215#undef elf_backend_special_sections
16216#define elf_backend_special_sections elf32_arm_symbian_special_sections
16217#undef elf_backend_begin_write_processing
16218#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16219#undef elf_backend_final_write_processing
16220#define elf_backend_final_write_processing elf32_arm_final_write_processing
16221
16222#undef elf_backend_modify_segment_map
7f266840
DJ
16223#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16224
16225/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 16226#undef elf_backend_got_header_size
7f266840
DJ
16227#define elf_backend_got_header_size 0
16228
16229/* Similarly, there is no .got.plt section. */
906e58ca 16230#undef elf_backend_want_got_plt
7f266840
DJ
16231#define elf_backend_want_got_plt 0
16232
906e58ca 16233#undef elf_backend_plt_sym_val
95720a86
DJ
16234#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16235
906e58ca 16236#undef elf_backend_may_use_rel_p
00a97672 16237#define elf_backend_may_use_rel_p 1
906e58ca 16238#undef elf_backend_may_use_rela_p
00a97672 16239#define elf_backend_may_use_rela_p 0
906e58ca 16240#undef elf_backend_default_use_rela_p
00a97672 16241#define elf_backend_default_use_rela_p 0
906e58ca 16242#undef elf_backend_want_plt_sym
00a97672 16243#define elf_backend_want_plt_sym 0
906e58ca 16244#undef ELF_MAXPAGESIZE
00a97672 16245#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 16246
7f266840 16247#include "elf32-target.h"
This page took 1.828967 seconds and 4 git commands to generate.