Rename non_ir_ref to non_ir_ref_regular
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
2571583a 2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
6034aab8 25#include "bfd_stdint.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
b38cadfb 29#include "elf-nacl.h"
00a97672 30#include "elf-vxworks.h"
ee065d83 31#include "elf/arm.h"
7f266840 32
00a97672
RS
33/* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35#define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38/* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40#define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45/* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47#define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52/* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54#define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
7f266840
DJ
59#define elf_info_to_howto 0
60#define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62#define ARM_ELF_ABI_VERSION 0
63#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
79f08007
YZ
65/* The Adjusted Place, as defined by AAELF. */
66#define Pa(X) ((X) & 0xfffffffc)
67
3e6b1042
DJ
68static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
7f266840
DJ
73/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
c19d1205 77static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 78{
8029a119 79 /* No relocation. */
7f266840
DJ
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
6346d5ca 82 3, /* size (0 = byte, 1 = short, 2 = long) */
7f266840
DJ
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
c19d1205 138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 139 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
142 32, /* bitsize */
143 TRUE, /* pc_relative */
7f266840 144 0, /* bitpos */
4962c51a 145 complain_overflow_dont,/* complain_on_overflow */
7f266840 146 bfd_elf_generic_reloc, /* special_function */
4962c51a 147 "R_ARM_LDR_PC_G0", /* name */
7f266840 148 FALSE, /* partial_inplace */
4962c51a
MS
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
7f266840
DJ
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
00a97672
RS
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
7f266840
DJ
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
c19d1205 226 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 229 24, /* bitsize */
7f266840
DJ
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
c19d1205 234 "R_ARM_THM_CALL", /* name */
7f266840 235 FALSE, /* partial_inplace */
7f6ab9f8
AM
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
7f266840
DJ
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
c19d1205 254 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
257 32, /* bitsize */
258 FALSE, /* pc_relative */
7f266840
DJ
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
c19d1205 262 "R_ARM_BREL_ADJ", /* name */
7f266840 263 FALSE, /* partial_inplace */
c19d1205
ZW
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
7f266840 267
0855e32b 268 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 269 0, /* rightshift */
0855e32b
NS
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
7f266840
DJ
272 FALSE, /* pc_relative */
273 0, /* bitpos */
0855e32b 274 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 275 bfd_elf_generic_reloc, /* special_function */
0855e32b 276 "R_ARM_TLS_DESC", /* name */
7f266840 277 FALSE, /* partial_inplace */
0855e32b
NS
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
7f266840
DJ
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 300 24, /* bitsize */
7f266840
DJ
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 315 24, /* bitsize */
7f266840
DJ
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
7f6ab9f8
AM
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
7f266840
DJ
324 TRUE), /* pcrel_offset */
325
ba93b8ac 326 /* Dynamic TLS relocations. */
7f266840 327
ba93b8ac 328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
99059e56
RM
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
7f266840 341
ba93b8ac 342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
99059e56
RM
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
7f266840 355
ba93b8ac 356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
99059e56
RM
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
7f266840
DJ
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
99059e56
RM
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
7f266840
DJ
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
99059e56
RM
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
7f266840
DJ
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
99059e56
RM
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
7f266840
DJ
413
414 HOWTO (R_ARM_RELATIVE, /* type */
99059e56
RM
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
7f266840 427
c19d1205 428 HOWTO (R_ARM_GOTOFF32, /* type */
99059e56
RM
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
7f266840
DJ
441
442 HOWTO (R_ARM_GOTPC, /* type */
99059e56
RM
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
7f266840
DJ
455
456 HOWTO (R_ARM_GOT32, /* type */
99059e56
RM
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
7f266840
DJ
469
470 HOWTO (R_ARM_PLT32, /* type */
99059e56
RM
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
7f266840
DJ
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
c19d1205
ZW
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
7f266840 517 0, /* bitpos */
c19d1205 518 complain_overflow_signed,/* complain_on_overflow */
7f266840 519 bfd_elf_generic_reloc, /* special_function */
c19d1205 520 "R_ARM_THM_JUMP24", /* name */
7f266840 521 FALSE, /* partial_inplace */
c19d1205
ZW
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
7f266840 525
c19d1205 526 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 527 0, /* rightshift */
c19d1205
ZW
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
7f266840
DJ
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
c19d1205 534 "R_ARM_BASE_ABS", /* name */
7f266840 535 FALSE, /* partial_inplace */
c19d1205
ZW
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
7f266840
DJ
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
c19d1205
ZW
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
39623e12
PB
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
c19d1205
ZW
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
39623e12
PB
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
c19d1205
ZW
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
39623e12
PB
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
c19d1205
ZW
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
39623e12
PB
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
c19d1205
ZW
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
2cab6cc3 843 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
2cab6cc3
MS
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
c19d1205
ZW
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
2cab6cc3 857 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
2cab6cc3
MS
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
c19d1205
ZW
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
7f266840 892
4962c51a
MS
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
c19d1205 1274
c19d1205
ZW
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
0855e32b
NS
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
c19d1205
ZW
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
99059e56
RM
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
c19d1205
ZW
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
99059e56
RM
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
c19d1205
ZW
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
ba93b8ac 1544
c19d1205
ZW
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
99059e56
RM
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
ba93b8ac 1559
ba93b8ac 1560 HOWTO (R_ARM_TLS_LDM32, /* type */
99059e56
RM
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
ba93b8ac 1573
c19d1205 1574 HOWTO (R_ARM_TLS_LDO32, /* type */
99059e56
RM
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
ba93b8ac 1587
ba93b8ac 1588 HOWTO (R_ARM_TLS_IE32, /* type */
99059e56
RM
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
7f266840 1601
c19d1205 1602 HOWTO (R_ARM_TLS_LE32, /* type */
99059e56
RM
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
75c11999 1609 NULL, /* special_function */
99059e56
RM
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
7f266840 1615
c19d1205
ZW
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
7f266840 1621 0, /* bitpos */
c19d1205 1622 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1623 bfd_elf_generic_reloc, /* special_function */
c19d1205 1624 "R_ARM_TLS_LDO12", /* name */
7f266840 1625 FALSE, /* partial_inplace */
c19d1205
ZW
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
7f266840 1629
c19d1205
ZW
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
7f266840 1635 0, /* bitpos */
c19d1205 1636 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1637 bfd_elf_generic_reloc, /* special_function */
c19d1205 1638 "R_ARM_TLS_LE12", /* name */
7f266840 1639 FALSE, /* partial_inplace */
c19d1205
ZW
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
7f266840 1643
c19d1205 1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
7f266840 1649 0, /* bitpos */
c19d1205 1650 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1651 bfd_elf_generic_reloc, /* special_function */
c19d1205 1652 "R_ARM_TLS_IE12GP", /* name */
7f266840 1653 FALSE, /* partial_inplace */
c19d1205
ZW
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
0855e32b 1657
34e77a92 1658 /* 112-127 private relocations. */
0855e32b
NS
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
34e77a92
RS
1675
1676 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
72d98d16
MG
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
c19d1205
ZW
1746};
1747
34e77a92
RS
1748/* 160 onwards: */
1749static reloc_howto_type elf32_arm_howto_table_2[1] =
1750{
1751 HOWTO (R_ARM_IRELATIVE, /* type */
99059e56
RM
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
34e77a92 1764};
c19d1205 1765
34e77a92
RS
1766/* 249-255 extended, currently unused, relocations: */
1767static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1768{
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824};
1825
1826static reloc_howto_type *
1827elf32_arm_howto_from_type (unsigned int r_type)
1828{
906e58ca 1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1830 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1831
34e77a92
RS
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
c19d1205 1835 if (r_type >= R_ARM_RREL32
34e77a92
RS
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1838
c19d1205 1839 return NULL;
7f266840
DJ
1840}
1841
1842static void
1843elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845{
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850}
1851
1852struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858/* All entries in this list must also be present in elf32_arm_howto_table. */
1859static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840 1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
b43420e6 1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
7f266840
DJ
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
0855e32b
NS
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
34e77a92 1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
c19d1205
ZW
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6 1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
72d98d16
MG
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
7f266840
DJ
1951 };
1952
1953static reloc_howto_type *
f1c71a59
ZW
1954elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
7f266840
DJ
1956{
1957 unsigned int i;
8029a119 1958
906e58ca 1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1962
c19d1205 1963 return NULL;
7f266840
DJ
1964}
1965
157090f7
AM
1966static reloc_howto_type *
1967elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969{
1970 unsigned int i;
1971
906e58ca 1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
906e58ca 1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
34e77a92
RS
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
157090f7
AM
1987 return NULL;
1988}
1989
906e58ca
NC
1990/* Support for core dump NOTE sections. */
1991
7f266840 1992static bfd_boolean
f1c71a59 1993elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1994{
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
8029a119 2003 case 148: /* Linux/ARM 32-bit. */
7f266840 2004 /* pr_cursig */
228e534f 2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
2006
2007 /* pr_pid */
228e534f 2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020}
2021
2022static bfd_boolean
f1c71a59 2023elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2024{
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
8029a119 2030 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 2031 elf_tdata (abfd)->core->pid
4395ee08 2032 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 2033 elf_tdata (abfd)->core->program
7f266840 2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 2035 elf_tdata (abfd)->core->command
7f266840
DJ
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
7f266840 2042 {
228e534f 2043 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051}
2052
1f20dca5
UW
2053static char *
2054elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056{
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099}
2100
6d00b590 2101#define TARGET_LITTLE_SYM arm_elf32_le_vec
7f266840 2102#define TARGET_LITTLE_NAME "elf32-littlearm"
6d00b590 2103#define TARGET_BIG_SYM arm_elf32_be_vec
7f266840
DJ
2104#define TARGET_BIG_NAME "elf32-bigarm"
2105
2106#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2108#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2109
252b5132
RH
2110typedef unsigned long int insn32;
2111typedef unsigned short int insn16;
2112
3a4a14e9
PB
2113/* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
57e8b36a 2115#define INTERWORK_FLAG(abfd) \
3a4a14e9 2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2119
252b5132
RH
2120/* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
9b485d32 2123 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2124#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
c7b8f16e
JB
2130#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
a504d23a
LA
2133#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
845b51d6
PB
2136#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
7413f23f
DJ
2139#define STUB_ENTRY_NAME "__%s_veneer"
2140
4ba2ef8f
TP
2141#define CMSE_PREFIX "__acle_se_"
2142
252b5132
RH
2143/* The name of the dynamic interpreter. This is put in the .interp
2144 section. */
2145#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2146
0855e32b 2147static const unsigned long tls_trampoline [] =
b38cadfb
NC
2148{
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2152};
0855e32b
NS
2153
2154static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2155{
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2163 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165};
0855e32b 2166
5e681ec4
PB
2167#ifdef FOUR_WORD_PLT
2168
252b5132
RH
2169/* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
59f2c4e7 2171 called before the relocation has been set up calls the dynamic
9b485d32 2172 linker first. */
e5a52504 2173static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2174{
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2179};
5e681ec4
PB
2180
2181/* Subsequent entries in a procedure linkage table look like
2182 this. */
e5a52504 2183static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2184{
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2189};
5e681ec4 2190
eed94f8f 2191#else /* not FOUR_WORD_PLT */
5e681ec4 2192
5e681ec4
PB
2193/* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2196 linker first. */
e5a52504 2197static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2198{
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2204};
252b5132 2205
1db37fe6
YG
2206/* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2209{
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213};
5e681ec4 2214
1db37fe6
YG
2215/* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217static const bfd_vma elf32_arm_plt_entry_long [] =
2218{
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223};
2224
2225static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226
eed94f8f
NC
2227#endif /* not FOUR_WORD_PLT */
2228
2229/* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232static const bfd_vma elf32_thumb2_plt0_entry [] =
2233{
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
469a3493 2238 /* add lr, pc */
eed94f8f
NC
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2241};
2242
2243/* Subsequent entries in a procedure linkage table for thumb only target
2244 look like this. */
2245static const bfd_vma elf32_thumb2_plt_entry [] =
2246{
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
469a3493 2253 /* nop */
eed94f8f 2254};
252b5132 2255
00a97672
RS
2256/* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb
NC
2259{
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264};
00a97672
RS
2265
2266/* The format of subsequent entries in a VxWorks executable. */
2267static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb
NC
2268{
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275};
00a97672
RS
2276
2277/* The format of entries in a VxWorks shared library. */
2278static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb
NC
2279{
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286};
00a97672 2287
b7693d02
DJ
2288/* An initial stub used if the PLT entry is referenced from Thumb code. */
2289#define PLT_THUMB_STUB_SIZE 4
2290static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2291{
2292 0x4778, /* bx pc */
2293 0x46c0 /* nop */
2294};
b7693d02 2295
e5a52504
MM
2296/* The entries in a PLT when using a DLL-based target with multiple
2297 address spaces. */
906e58ca 2298static const bfd_vma elf32_arm_symbian_plt_entry [] =
b38cadfb
NC
2299{
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302};
2303
2304/* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2307 linker first. */
2308static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309{
2310 /* First bundle: */
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
edccdf7c
RM
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2319 0xe12fff1c, /* bx ip */
b38cadfb 2320 /* Third bundle: */
edccdf7c
RM
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
b38cadfb
NC
2324 /* .Lplt_tail: */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
edccdf7c
RM
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2330 0xe12fff1c, /* bx ip */
b38cadfb
NC
2331};
2332#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2333
2334/* Subsequent entries in a procedure linkage table look like this. */
2335static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336{
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2341};
e5a52504 2342
906e58ca
NC
2343#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2349#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2351
461a49ca 2352enum stub_insn_type
b38cadfb
NC
2353{
2354 THUMB16_TYPE = 1,
2355 THUMB32_TYPE,
2356 ARM_TYPE,
2357 DATA_TYPE
2358};
461a49ca 2359
48229727
JB
2360#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
d5a67c02
AV
2365#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
48229727
JB
2367#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2371
2372typedef struct
2373{
b38cadfb
NC
2374 bfd_vma data;
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2377 int reloc_addend;
461a49ca
DJ
2378} insn_sequence;
2379
fea2b4d6
CL
2380/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
461a49ca 2382static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb
NC
2383{
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2386};
906e58ca 2387
fea2b4d6
CL
2388/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389 available. */
461a49ca 2390static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb
NC
2391{
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2395};
906e58ca 2396
d3626fb0 2397/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2398static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb
NC
2399{
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2407};
906e58ca 2408
80c135e5
TP
2409/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411{
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2414};
2415
d5a67c02
AV
2416/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419{
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2423};
2424
d3626fb0
CL
2425/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426 allowed. */
2427static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb
NC
2428{
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2434};
d3626fb0 2435
fea2b4d6
CL
2436/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437 available. */
461a49ca 2438static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb
NC
2439{
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2444};
906e58ca 2445
fea2b4d6
CL
2446/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
461a49ca 2448static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb
NC
2449{
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2453};
c820be07 2454
cf3eccff 2455/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2456 blx to reach the stub if necessary. */
cf3eccff 2457static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb
NC
2458{
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2462};
906e58ca 2463
cf3eccff
DJ
2464/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2467 ARMv7). */
2468static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb
NC
2469{
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2474};
cf3eccff 2475
ebe24dd4
CL
2476/* V4T ARM -> ARM long branch stub, PIC. */
2477static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb
NC
2478{
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2483};
ebe24dd4
CL
2484
2485/* V4T Thumb -> ARM long branch stub, PIC. */
2486static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb
NC
2487{
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2493};
ebe24dd4 2494
d3626fb0
CL
2495/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496 architectures. */
ebe24dd4 2497static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb
NC
2498{
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2506};
ebe24dd4 2507
d3626fb0
CL
2508/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509 allowed. */
2510static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb
NC
2511{
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2518};
d3626fb0 2519
0855e32b
NS
2520/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523{
b38cadfb
NC
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2527};
2528
2529/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532{
b38cadfb
NC
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2538};
2539
7a89b94e
NC
2540/* NaCl ARM -> ARM long branch stub. */
2541static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542{
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2551};
2552
2553/* NaCl ARM -> ARM long branch stub, PIC. */
2554static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555{
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2564};
2565
4ba2ef8f
TP
2566/* Stub used for transition to secure state (aka SG veneer). */
2567static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568{
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2571};
2572
7a89b94e 2573
48229727
JB
2574/* Cortex-A8 erratum-workaround stubs. */
2575
2576/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2578
2579static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb
NC
2580{
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2584};
48229727
JB
2585
2586/* Stub used for b.w and bl.w instructions. */
2587
2588static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2589{
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2591};
48229727
JB
2592
2593static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2594{
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2596};
48229727
JB
2597
2598/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2601
2602static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2603{
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2605};
48229727 2606
9553db3c
NC
2607/* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2610 applied.
2611
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
b38cadfb 2615
9553db3c
NC
2616 const char * stubborn_problems[] = { "np" };
2617
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619 section called:
2620
2621 .data.rel.local.stubborn_problems
2622
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2624
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 continue;
2628
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631 C identifier. */
2632#define STUB_SUFFIX ".__stub"
906e58ca 2633
738a79f6
CL
2634/* One entry per long/short branch stub defined above. */
2635#define DEF_STUBS \
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2647 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
7a89b94e
NC
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
4ba2ef8f 2652 DEF_STUB(cmse_branch_thumb_only) \
48229727
JB
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
80c135e5
TP
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
d5a67c02 2658 DEF_STUB(long_branch_thumb2_only_pure)
738a79f6
CL
2659
2660#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2661enum elf32_arm_stub_type
2662{
906e58ca 2663 arm_stub_none,
738a79f6 2664 DEF_STUBS
4f4faa4d 2665 max_stub_type
738a79f6
CL
2666};
2667#undef DEF_STUB
2668
8d9d9490
TP
2669/* Note the first a8_veneer type. */
2670const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671
738a79f6
CL
2672typedef struct
2673{
d3ce72d0 2674 const insn_sequence* template_sequence;
738a79f6
CL
2675 int template_size;
2676} stub_def;
2677
2678#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2679static const stub_def stub_definitions[] =
2680{
738a79f6
CL
2681 {NULL, 0},
2682 DEF_STUBS
906e58ca
NC
2683};
2684
2685struct elf32_arm_stub_hash_entry
2686{
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2689
2690 /* The stub section. */
2691 asection *stub_sec;
2692
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2695
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2700
8d9d9490
TP
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2705 same section. */
2706 bfd_vma source_value;
48229727
JB
2707
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2711
461a49ca 2712 /* The stub type. */
906e58ca 2713 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2714 /* Its encoding size in bytes. */
2715 int stub_size;
2716 /* Its template. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
906e58ca
NC
2720
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2723
35fc36a8
RS
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
906e58ca
NC
2726
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2729 asection *id_sec;
7413f23f
DJ
2730
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2734 char *output_name;
906e58ca
NC
2735};
2736
e489d0ae
PB
2737/* Used to build a map of a section. This is required for mixed-endian
2738 code/data. */
2739
2740typedef struct elf32_elf_section_map
2741{
2742 bfd_vma vma;
2743 char type;
2744}
2745elf32_arm_section_map;
2746
c7b8f16e
JB
2747/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2748
2749typedef enum
2750{
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2755}
2756elf32_vfp11_erratum_type;
2757
2758typedef struct elf32_vfp11_erratum_list
2759{
2760 struct elf32_vfp11_erratum_list *next;
2761 bfd_vma vma;
2762 union
2763 {
2764 struct
2765 {
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2768 } b;
2769 struct
2770 {
2771 struct elf32_vfp11_erratum_list *branch;
2772 unsigned int id;
2773 } v;
2774 } u;
2775 elf32_vfp11_erratum_type type;
2776}
2777elf32_vfp11_erratum_list;
2778
a504d23a
LA
2779/* Information about a STM32L4XX erratum veneer, or a branch to such a
2780 veneer. */
2781typedef enum
2782{
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2785}
2786elf32_stm32l4xx_erratum_type;
2787
2788typedef struct elf32_stm32l4xx_erratum_list
2789{
2790 struct elf32_stm32l4xx_erratum_list *next;
2791 bfd_vma vma;
2792 union
2793 {
2794 struct
2795 {
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2797 unsigned int insn;
2798 } b;
2799 struct
2800 {
2801 struct elf32_stm32l4xx_erratum_list *branch;
2802 unsigned int id;
2803 } v;
2804 } u;
2805 elf32_stm32l4xx_erratum_type type;
2806}
2807elf32_stm32l4xx_erratum_list;
2808
2468f9c9
PB
2809typedef enum
2810{
2811 DELETE_EXIDX_ENTRY,
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2813}
2814arm_unwind_edit_type;
2815
2816/* A (sorted) list of edits to apply to an unwind table. */
2817typedef struct arm_unwind_table_edit
2818{
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2824 unsigned int index;
2825 struct arm_unwind_table_edit *next;
2826}
2827arm_unwind_table_edit;
2828
8e3de13a 2829typedef struct _arm_elf_section_data
e489d0ae 2830{
2468f9c9 2831 /* Information about mapping symbols. */
e489d0ae 2832 struct bfd_elf_section_data elf;
8e3de13a 2833 unsigned int mapcount;
c7b8f16e 2834 unsigned int mapsize;
e489d0ae 2835 elf32_arm_section_map *map;
2468f9c9 2836 /* Information about CPU errata. */
c7b8f16e
JB
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
a504d23a
LA
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
491d01d3 2841 unsigned int additional_reloc_count;
2468f9c9
PB
2842 /* Information about unwind tables. */
2843 union
2844 {
2845 /* Unwind info attached to a text section. */
2846 struct
2847 {
2848 asection *arm_exidx_sec;
2849 } text;
2850
2851 /* Unwind info attached to an .ARM.exidx section. */
2852 struct
2853 {
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2856 } exidx;
2857 } u;
8e3de13a
NC
2858}
2859_arm_elf_section_data;
e489d0ae
PB
2860
2861#define elf32_arm_section_data(sec) \
8e3de13a 2862 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2863
48229727
JB
2864/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2869
b38cadfb
NC
2870struct a8_erratum_fix
2871{
48229727
JB
2872 bfd *input_bfd;
2873 asection *section;
2874 bfd_vma offset;
8d9d9490 2875 bfd_vma target_offset;
48229727
JB
2876 unsigned long orig_insn;
2877 char *stub_name;
2878 enum elf32_arm_stub_type stub_type;
35fc36a8 2879 enum arm_st_branch_type branch_type;
48229727
JB
2880};
2881
2882/* A table of relocs applied to branches which might trigger Cortex-A8
2883 erratum. */
2884
b38cadfb
NC
2885struct a8_erratum_reloc
2886{
48229727
JB
2887 bfd_vma from;
2888 bfd_vma destination;
92750f34
DJ
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
48229727 2891 unsigned int r_type;
35fc36a8 2892 enum arm_st_branch_type branch_type;
48229727
JB
2893 bfd_boolean non_a8_stub;
2894};
2895
ba93b8ac
DJ
2896/* The size of the thread control block. */
2897#define TCB_SIZE 8
2898
34e77a92
RS
2899/* ARM-specific information about a PLT entry, over and above the usual
2900 gotplt_union. */
b38cadfb
NC
2901struct arm_plt_info
2902{
34e77a92
RS
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2906
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2910
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2917
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2922};
2923
2924/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
2925struct arm_local_iplt_info
2926{
34e77a92
RS
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2930
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2934
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2937};
2938
0ffa91dd 2939struct elf_arm_obj_tdata
ba93b8ac
DJ
2940{
2941 struct elf_obj_tdata root;
2942
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
ee065d83 2945
0855e32b
NS
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2948
34e77a92
RS
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2951
bf21ed78
MS
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
a9dc9481
JM
2954
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
ba93b8ac
DJ
2957};
2958
0ffa91dd
NC
2959#define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2961
0ffa91dd
NC
2962#define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2964
0855e32b
NS
2965#define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967
34e77a92
RS
2968#define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2970
0ffa91dd
NC
2971#define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
4dfe6ac6 2974 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
2975
2976static bfd_boolean
2977elf32_arm_mkobject (bfd *abfd)
2978{
0ffa91dd 2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 2980 ARM_ELF_DATA);
ba93b8ac
DJ
2981}
2982
ba93b8ac
DJ
2983#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984
ba96a88f 2985/* Arm ELF linker hash entry. */
252b5132 2986struct elf32_arm_link_hash_entry
b38cadfb
NC
2987{
2988 struct elf_link_hash_entry root;
252b5132 2989
b38cadfb
NC
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
b7693d02 2992
b38cadfb
NC
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
ba93b8ac
DJ
2995
2996#define GOT_UNKNOWN 0
2997#define GOT_NORMAL 1
2998#define GOT_TLS_GD 2
2999#define GOT_TLS_IE 4
0855e32b
NS
3000#define GOT_TLS_GDESC 8
3001#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 3002 unsigned int tls_type : 8;
34e77a92 3003
b38cadfb
NC
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
34e77a92 3006
b38cadfb 3007 unsigned int unused : 23;
a4fd1a8e 3008
b38cadfb
NC
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
0855e32b 3012
b38cadfb
NC
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
906e58ca 3016
b38cadfb 3017 /* A pointer to the most recently used stub hash entry against this
8029a119 3018 symbol. */
b38cadfb
NC
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3020};
252b5132 3021
252b5132 3022/* Traverse an arm ELF linker hash table. */
252b5132
RH
3023#define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3025 (&(table)->root, \
b7693d02 3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
3027 (info)))
3028
3029/* Get the ARM elf linker hash table from a link_info structure. */
3030#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 3033
906e58ca
NC
3034#define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3037
21d799b5
NC
3038/* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3040struct map_stub
3041{
3042 /* This is the section to which stubs in the group will be
3043 attached. */
3044 asection *link_sec;
3045 /* The stub section. */
3046 asection *stub_sec;
3047};
3048
0855e32b
NS
3049#define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3051
9b485d32 3052/* ARM ELF linker hash table. */
252b5132 3053struct elf32_arm_link_hash_table
906e58ca
NC
3054{
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
252b5132 3057
906e58ca
NC
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
252b5132 3060
906e58ca
NC
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
252b5132 3063
906e58ca
NC
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
845b51d6 3066
906e58ca
NC
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
845b51d6 3070
906e58ca
NC
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3072 veneers. */
3073 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 3074
a504d23a
LA
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3076 veneers. */
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3078
48229727
JB
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3084
906e58ca
NC
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
ba96a88f 3087
906e58ca
NC
3088 /* Nonzero to output a BE8 image. */
3089 int byteswap_code;
e489d0ae 3090
906e58ca
NC
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3093 int target1_is_rel;
9c504268 3094
906e58ca
NC
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3096 int target2_reloc;
eb043451 3097
906e58ca
NC
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3101 int fix_v4bx;
319850b4 3102
48229727
JB
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3104 int fix_cortex_a8;
3105
2de70689
MGD
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3107 int fix_arm1176;
3108
906e58ca
NC
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3110 int use_blx;
33bfe774 3111
906e58ca
NC
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 3115
906e58ca
NC
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
c7b8f16e 3118
a504d23a
LA
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3125
906e58ca
NC
3126 /* Nonzero to force PIC branch veneers. */
3127 int pic_veneer;
27e55c4d 3128
906e58ca
NC
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
e5a52504 3131
906e58ca
NC
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
e5a52504 3134
906e58ca
NC
3135 /* True if the target system is VxWorks. */
3136 int vxworks_p;
00a97672 3137
906e58ca
NC
3138 /* True if the target system is Symbian OS. */
3139 int symbian_p;
e5a52504 3140
b38cadfb
NC
3141 /* True if the target system is Native Client. */
3142 int nacl_p;
3143
906e58ca
NC
3144 /* True if the target uses REL relocations. */
3145 int use_rel;
4e7fd91e 3146
54ddd295
TP
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3149 int cmse_implib;
3150
0955507f
TP
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3153 bfd *in_implib_bfd;
3154
0855e32b
NS
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3157
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3160
906e58ca
NC
3161 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3162 asection *srelplt2;
00a97672 3163
0855e32b
NS
3164 /* The offset into splt of the PLT entry for the TLS descriptor
3165 resolver. Special values are 0, if not necessary (or not found
3166 to be necessary yet), and -1 if needed but not determined
3167 yet. */
3168 bfd_vma dt_tlsdesc_plt;
3169
3170 /* The offset into sgot of the GOT entry used by the PLT entry
3171 above. */
b38cadfb 3172 bfd_vma dt_tlsdesc_got;
0855e32b
NS
3173
3174 /* Offset in .plt section of tls_arm_trampoline. */
3175 bfd_vma tls_trampoline;
3176
906e58ca
NC
3177 /* Data for R_ARM_TLS_LDM32 relocations. */
3178 union
3179 {
3180 bfd_signed_vma refcount;
3181 bfd_vma offset;
3182 } tls_ldm_got;
b7693d02 3183
87d72d41
AM
3184 /* Small local sym cache. */
3185 struct sym_cache sym_cache;
906e58ca
NC
3186
3187 /* For convenience in allocate_dynrelocs. */
3188 bfd * obfd;
3189
0855e32b
NS
3190 /* The amount of space used by the reserved portion of the sgotplt
3191 section, plus whatever space is used by the jump slots. */
3192 bfd_vma sgotplt_jump_table_size;
3193
906e58ca
NC
3194 /* The stub hash table. */
3195 struct bfd_hash_table stub_hash_table;
3196
3197 /* Linker stub bfd. */
3198 bfd *stub_bfd;
3199
3200 /* Linker call-backs. */
6bde4c52
TP
3201 asection * (*add_stub_section) (const char *, asection *, asection *,
3202 unsigned int);
906e58ca
NC
3203 void (*layout_sections_again) (void);
3204
3205 /* Array to keep track of which stub sections have been created, and
3206 information on stub grouping. */
21d799b5 3207 struct map_stub *stub_group;
906e58ca 3208
4ba2ef8f
TP
3209 /* Input stub section holding secure gateway veneers. */
3210 asection *cmse_stub_sec;
3211
0955507f
TP
3212 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3213 start to be allocated. */
3214 bfd_vma new_cmse_stub_offset;
3215
fe33d2fa 3216 /* Number of elements in stub_group. */
7292b3ac 3217 unsigned int top_id;
fe33d2fa 3218
906e58ca
NC
3219 /* Assorted information used by elf32_arm_size_stubs. */
3220 unsigned int bfd_count;
7292b3ac 3221 unsigned int top_index;
906e58ca
NC
3222 asection **input_list;
3223};
252b5132 3224
a504d23a
LA
3225static inline int
3226ctz (unsigned int mask)
3227{
3228#if GCC_VERSION >= 3004
3229 return __builtin_ctz (mask);
3230#else
3231 unsigned int i;
3232
3233 for (i = 0; i < 8 * sizeof (mask); i++)
3234 {
3235 if (mask & 0x1)
3236 break;
3237 mask = (mask >> 1);
3238 }
3239 return i;
3240#endif
3241}
3242
3243static inline int
b25e998d 3244elf32_arm_popcount (unsigned int mask)
a504d23a
LA
3245{
3246#if GCC_VERSION >= 3004
3247 return __builtin_popcount (mask);
3248#else
b25e998d
CG
3249 unsigned int i;
3250 int sum = 0;
a504d23a
LA
3251
3252 for (i = 0; i < 8 * sizeof (mask); i++)
3253 {
3254 if (mask & 0x1)
3255 sum++;
3256 mask = (mask >> 1);
3257 }
3258 return sum;
3259#endif
3260}
3261
780a67af
NC
3262/* Create an entry in an ARM ELF linker hash table. */
3263
3264static struct bfd_hash_entry *
57e8b36a 3265elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3266 struct bfd_hash_table * table,
3267 const char * string)
780a67af
NC
3268{
3269 struct elf32_arm_link_hash_entry * ret =
3270 (struct elf32_arm_link_hash_entry *) entry;
3271
3272 /* Allocate the structure if it has not already been allocated by a
3273 subclass. */
906e58ca 3274 if (ret == NULL)
21d799b5 3275 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3276 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3277 if (ret == NULL)
780a67af
NC
3278 return (struct bfd_hash_entry *) ret;
3279
3280 /* Call the allocation method of the superclass. */
3281 ret = ((struct elf32_arm_link_hash_entry *)
3282 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3283 table, string));
57e8b36a 3284 if (ret != NULL)
b7693d02 3285 {
0bdcacaf 3286 ret->dyn_relocs = NULL;
ba93b8ac 3287 ret->tls_type = GOT_UNKNOWN;
0855e32b 3288 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3289 ret->plt.thumb_refcount = 0;
3290 ret->plt.maybe_thumb_refcount = 0;
3291 ret->plt.noncall_refcount = 0;
3292 ret->plt.got_offset = -1;
3293 ret->is_iplt = FALSE;
a4fd1a8e 3294 ret->export_glue = NULL;
906e58ca
NC
3295
3296 ret->stub_cache = NULL;
b7693d02 3297 }
780a67af
NC
3298
3299 return (struct bfd_hash_entry *) ret;
3300}
3301
34e77a92
RS
3302/* Ensure that we have allocated bookkeeping structures for ABFD's local
3303 symbols. */
3304
3305static bfd_boolean
3306elf32_arm_allocate_local_sym_info (bfd *abfd)
3307{
3308 if (elf_local_got_refcounts (abfd) == NULL)
3309 {
3310 bfd_size_type num_syms;
3311 bfd_size_type size;
3312 char *data;
3313
3314 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3315 size = num_syms * (sizeof (bfd_signed_vma)
3316 + sizeof (struct arm_local_iplt_info *)
3317 + sizeof (bfd_vma)
3318 + sizeof (char));
3319 data = bfd_zalloc (abfd, size);
3320 if (data == NULL)
3321 return FALSE;
3322
3323 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3324 data += num_syms * sizeof (bfd_signed_vma);
3325
3326 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3327 data += num_syms * sizeof (struct arm_local_iplt_info *);
3328
3329 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3330 data += num_syms * sizeof (bfd_vma);
3331
3332 elf32_arm_local_got_tls_type (abfd) = data;
3333 }
3334 return TRUE;
3335}
3336
3337/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3338 to input bfd ABFD. Create the information if it doesn't already exist.
3339 Return null if an allocation fails. */
3340
3341static struct arm_local_iplt_info *
3342elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3343{
3344 struct arm_local_iplt_info **ptr;
3345
3346 if (!elf32_arm_allocate_local_sym_info (abfd))
3347 return NULL;
3348
3349 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3350 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3351 if (*ptr == NULL)
3352 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3353 return *ptr;
3354}
3355
3356/* Try to obtain PLT information for the symbol with index R_SYMNDX
3357 in ABFD's symbol table. If the symbol is global, H points to its
3358 hash table entry, otherwise H is null.
3359
3360 Return true if the symbol does have PLT information. When returning
3361 true, point *ROOT_PLT at the target-independent reference count/offset
3362 union and *ARM_PLT at the ARM-specific information. */
3363
3364static bfd_boolean
4ba2ef8f
TP
3365elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3366 struct elf32_arm_link_hash_entry *h,
34e77a92
RS
3367 unsigned long r_symndx, union gotplt_union **root_plt,
3368 struct arm_plt_info **arm_plt)
3369{
3370 struct arm_local_iplt_info *local_iplt;
3371
4ba2ef8f
TP
3372 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3373 return FALSE;
3374
34e77a92
RS
3375 if (h != NULL)
3376 {
3377 *root_plt = &h->root.plt;
3378 *arm_plt = &h->plt;
3379 return TRUE;
3380 }
3381
3382 if (elf32_arm_local_iplt (abfd) == NULL)
3383 return FALSE;
3384
3385 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3386 if (local_iplt == NULL)
3387 return FALSE;
3388
3389 *root_plt = &local_iplt->root;
3390 *arm_plt = &local_iplt->arm;
3391 return TRUE;
3392}
3393
3394/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3395 before it. */
3396
3397static bfd_boolean
3398elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3399 struct arm_plt_info *arm_plt)
3400{
3401 struct elf32_arm_link_hash_table *htab;
3402
3403 htab = elf32_arm_hash_table (info);
3404 return (arm_plt->thumb_refcount != 0
3405 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3406}
3407
3408/* Return a pointer to the head of the dynamic reloc list that should
3409 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3410 ABFD's symbol table. Return null if an error occurs. */
3411
3412static struct elf_dyn_relocs **
3413elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3414 Elf_Internal_Sym *isym)
3415{
3416 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3417 {
3418 struct arm_local_iplt_info *local_iplt;
3419
3420 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3421 if (local_iplt == NULL)
3422 return NULL;
3423 return &local_iplt->dyn_relocs;
3424 }
3425 else
3426 {
3427 /* Track dynamic relocs needed for local syms too.
3428 We really need local syms available to do this
3429 easily. Oh well. */
3430 asection *s;
3431 void *vpp;
3432
3433 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3434 if (s == NULL)
3435 abort ();
3436
3437 vpp = &elf_section_data (s)->local_dynrel;
3438 return (struct elf_dyn_relocs **) vpp;
3439 }
3440}
3441
906e58ca
NC
3442/* Initialize an entry in the stub hash table. */
3443
3444static struct bfd_hash_entry *
3445stub_hash_newfunc (struct bfd_hash_entry *entry,
3446 struct bfd_hash_table *table,
3447 const char *string)
3448{
3449 /* Allocate the structure if it has not already been allocated by a
3450 subclass. */
3451 if (entry == NULL)
3452 {
21d799b5 3453 entry = (struct bfd_hash_entry *)
99059e56 3454 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3455 if (entry == NULL)
3456 return entry;
3457 }
3458
3459 /* Call the allocation method of the superclass. */
3460 entry = bfd_hash_newfunc (entry, table, string);
3461 if (entry != NULL)
3462 {
3463 struct elf32_arm_stub_hash_entry *eh;
3464
3465 /* Initialize the local fields. */
3466 eh = (struct elf32_arm_stub_hash_entry *) entry;
3467 eh->stub_sec = NULL;
0955507f 3468 eh->stub_offset = (bfd_vma) -1;
8d9d9490 3469 eh->source_value = 0;
906e58ca
NC
3470 eh->target_value = 0;
3471 eh->target_section = NULL;
cedfb179 3472 eh->orig_insn = 0;
906e58ca 3473 eh->stub_type = arm_stub_none;
461a49ca
DJ
3474 eh->stub_size = 0;
3475 eh->stub_template = NULL;
0955507f 3476 eh->stub_template_size = -1;
906e58ca
NC
3477 eh->h = NULL;
3478 eh->id_sec = NULL;
d8d2f433 3479 eh->output_name = NULL;
906e58ca
NC
3480 }
3481
3482 return entry;
3483}
3484
00a97672 3485/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3486 shortcuts to them in our hash table. */
3487
3488static bfd_boolean
57e8b36a 3489create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3490{
3491 struct elf32_arm_link_hash_table *htab;
3492
e5a52504 3493 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3494 if (htab == NULL)
3495 return FALSE;
3496
e5a52504
MM
3497 /* BPABI objects never have a GOT, or associated sections. */
3498 if (htab->symbian_p)
3499 return TRUE;
3500
5e681ec4
PB
3501 if (! _bfd_elf_create_got_section (dynobj, info))
3502 return FALSE;
3503
5e681ec4
PB
3504 return TRUE;
3505}
3506
34e77a92
RS
3507/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3508
3509static bfd_boolean
3510create_ifunc_sections (struct bfd_link_info *info)
3511{
3512 struct elf32_arm_link_hash_table *htab;
3513 const struct elf_backend_data *bed;
3514 bfd *dynobj;
3515 asection *s;
3516 flagword flags;
b38cadfb 3517
34e77a92
RS
3518 htab = elf32_arm_hash_table (info);
3519 dynobj = htab->root.dynobj;
3520 bed = get_elf_backend_data (dynobj);
3521 flags = bed->dynamic_sec_flags;
3522
3523 if (htab->root.iplt == NULL)
3524 {
3d4d4302
AM
3525 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3526 flags | SEC_READONLY | SEC_CODE);
34e77a92 3527 if (s == NULL
a0f49396 3528 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
34e77a92
RS
3529 return FALSE;
3530 htab->root.iplt = s;
3531 }
3532
3533 if (htab->root.irelplt == NULL)
3534 {
3d4d4302
AM
3535 s = bfd_make_section_anyway_with_flags (dynobj,
3536 RELOC_SECTION (htab, ".iplt"),
3537 flags | SEC_READONLY);
34e77a92 3538 if (s == NULL
a0f49396 3539 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
34e77a92
RS
3540 return FALSE;
3541 htab->root.irelplt = s;
3542 }
3543
3544 if (htab->root.igotplt == NULL)
3545 {
3d4d4302 3546 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92
RS
3547 if (s == NULL
3548 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3549 return FALSE;
3550 htab->root.igotplt = s;
3551 }
3552 return TRUE;
3553}
3554
eed94f8f
NC
3555/* Determine if we're dealing with a Thumb only architecture. */
3556
3557static bfd_boolean
3558using_thumb_only (struct elf32_arm_link_hash_table *globals)
3559{
2fd158eb
TP
3560 int arch;
3561 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3562 Tag_CPU_arch_profile);
eed94f8f 3563
2fd158eb
TP
3564 if (profile)
3565 return profile == 'M';
eed94f8f 3566
2fd158eb 3567 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
eed94f8f 3568
60a019a0
TP
3569 /* Force return logic to be reviewed for each new architecture. */
3570 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3571 || arch == TAG_CPU_ARCH_V8M_BASE
3572 || arch == TAG_CPU_ARCH_V8M_MAIN);
3573
2fd158eb
TP
3574 if (arch == TAG_CPU_ARCH_V6_M
3575 || arch == TAG_CPU_ARCH_V6S_M
3576 || arch == TAG_CPU_ARCH_V7E_M
3577 || arch == TAG_CPU_ARCH_V8M_BASE
3578 || arch == TAG_CPU_ARCH_V8M_MAIN)
3579 return TRUE;
eed94f8f 3580
2fd158eb 3581 return FALSE;
eed94f8f
NC
3582}
3583
3584/* Determine if we're dealing with a Thumb-2 object. */
3585
3586static bfd_boolean
3587using_thumb2 (struct elf32_arm_link_hash_table *globals)
3588{
60a019a0
TP
3589 int arch;
3590 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3591 Tag_THUMB_ISA_use);
3592
3593 if (thumb_isa)
3594 return thumb_isa == 2;
3595
3596 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3597
3598 /* Force return logic to be reviewed for each new architecture. */
3599 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3600 || arch == TAG_CPU_ARCH_V8M_BASE
3601 || arch == TAG_CPU_ARCH_V8M_MAIN);
3602
3603 return (arch == TAG_CPU_ARCH_V6T2
3604 || arch == TAG_CPU_ARCH_V7
3605 || arch == TAG_CPU_ARCH_V7E_M
3606 || arch == TAG_CPU_ARCH_V8
3607 || arch == TAG_CPU_ARCH_V8M_MAIN);
eed94f8f
NC
3608}
3609
5e866f5a
TP
3610/* Determine whether Thumb-2 BL instruction is available. */
3611
3612static bfd_boolean
3613using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3614{
3615 int arch =
3616 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3617
3618 /* Force return logic to be reviewed for each new architecture. */
3619 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3620 || arch == TAG_CPU_ARCH_V8M_BASE
3621 || arch == TAG_CPU_ARCH_V8M_MAIN);
3622
3623 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3624 return (arch == TAG_CPU_ARCH_V6T2
3625 || arch >= TAG_CPU_ARCH_V7);
3626}
3627
00a97672
RS
3628/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3629 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3630 hash table. */
3631
3632static bfd_boolean
57e8b36a 3633elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3634{
3635 struct elf32_arm_link_hash_table *htab;
3636
3637 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3638 if (htab == NULL)
3639 return FALSE;
3640
362d30a1 3641 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
3642 return FALSE;
3643
3644 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3645 return FALSE;
3646
00a97672
RS
3647 if (htab->vxworks_p)
3648 {
3649 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3650 return FALSE;
3651
0e1862bb 3652 if (bfd_link_pic (info))
00a97672
RS
3653 {
3654 htab->plt_header_size = 0;
3655 htab->plt_entry_size
3656 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3657 }
3658 else
3659 {
3660 htab->plt_header_size
3661 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3662 htab->plt_entry_size
3663 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3664 }
aebf9be7
NC
3665
3666 if (elf_elfheader (dynobj))
3667 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
00a97672 3668 }
eed94f8f
NC
3669 else
3670 {
3671 /* PR ld/16017
3672 Test for thumb only architectures. Note - we cannot just call
3673 using_thumb_only() as the attributes in the output bfd have not been
3674 initialised at this point, so instead we use the input bfd. */
3675 bfd * saved_obfd = htab->obfd;
3676
3677 htab->obfd = dynobj;
3678 if (using_thumb_only (htab))
3679 {
3680 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3681 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3682 }
3683 htab->obfd = saved_obfd;
3684 }
5e681ec4 3685
362d30a1
RS
3686 if (!htab->root.splt
3687 || !htab->root.srelplt
9d19e4fd
AM
3688 || !htab->root.sdynbss
3689 || (!bfd_link_pic (info) && !htab->root.srelbss))
5e681ec4
PB
3690 abort ();
3691
3692 return TRUE;
3693}
3694
906e58ca
NC
3695/* Copy the extra info we tack onto an elf_link_hash_entry. */
3696
3697static void
3698elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3699 struct elf_link_hash_entry *dir,
3700 struct elf_link_hash_entry *ind)
3701{
3702 struct elf32_arm_link_hash_entry *edir, *eind;
3703
3704 edir = (struct elf32_arm_link_hash_entry *) dir;
3705 eind = (struct elf32_arm_link_hash_entry *) ind;
3706
0bdcacaf 3707 if (eind->dyn_relocs != NULL)
906e58ca 3708 {
0bdcacaf 3709 if (edir->dyn_relocs != NULL)
906e58ca 3710 {
0bdcacaf
RS
3711 struct elf_dyn_relocs **pp;
3712 struct elf_dyn_relocs *p;
906e58ca
NC
3713
3714 /* Add reloc counts against the indirect sym to the direct sym
3715 list. Merge any entries against the same section. */
0bdcacaf 3716 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
906e58ca 3717 {
0bdcacaf 3718 struct elf_dyn_relocs *q;
906e58ca 3719
0bdcacaf
RS
3720 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3721 if (q->sec == p->sec)
906e58ca
NC
3722 {
3723 q->pc_count += p->pc_count;
3724 q->count += p->count;
3725 *pp = p->next;
3726 break;
3727 }
3728 if (q == NULL)
3729 pp = &p->next;
3730 }
0bdcacaf 3731 *pp = edir->dyn_relocs;
906e58ca
NC
3732 }
3733
0bdcacaf
RS
3734 edir->dyn_relocs = eind->dyn_relocs;
3735 eind->dyn_relocs = NULL;
906e58ca
NC
3736 }
3737
3738 if (ind->root.type == bfd_link_hash_indirect)
3739 {
3740 /* Copy over PLT info. */
34e77a92
RS
3741 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3742 eind->plt.thumb_refcount = 0;
3743 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3744 eind->plt.maybe_thumb_refcount = 0;
3745 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3746 eind->plt.noncall_refcount = 0;
3747
3748 /* We should only allocate a function to .iplt once the final
3749 symbol information is known. */
3750 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
3751
3752 if (dir->got.refcount <= 0)
3753 {
3754 edir->tls_type = eind->tls_type;
3755 eind->tls_type = GOT_UNKNOWN;
3756 }
3757 }
3758
3759 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3760}
3761
68faa637
AM
3762/* Destroy an ARM elf linker hash table. */
3763
3764static void
d495ab0d 3765elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
3766{
3767 struct elf32_arm_link_hash_table *ret
d495ab0d 3768 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
3769
3770 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 3771 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
3772}
3773
906e58ca
NC
3774/* Create an ARM elf linker hash table. */
3775
3776static struct bfd_link_hash_table *
3777elf32_arm_link_hash_table_create (bfd *abfd)
3778{
3779 struct elf32_arm_link_hash_table *ret;
3780 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3781
7bf52ea2 3782 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
3783 if (ret == NULL)
3784 return NULL;
3785
3786 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3787 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
3788 sizeof (struct elf32_arm_link_hash_entry),
3789 ARM_ELF_DATA))
906e58ca
NC
3790 {
3791 free (ret);
3792 return NULL;
3793 }
3794
906e58ca 3795 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
a504d23a 3796 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
906e58ca
NC
3797#ifdef FOUR_WORD_PLT
3798 ret->plt_header_size = 16;
3799 ret->plt_entry_size = 16;
3800#else
3801 ret->plt_header_size = 20;
1db37fe6 3802 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 3803#endif
906e58ca 3804 ret->use_rel = 1;
906e58ca 3805 ret->obfd = abfd;
906e58ca
NC
3806
3807 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3808 sizeof (struct elf32_arm_stub_hash_entry)))
3809 {
d495ab0d 3810 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
3811 return NULL;
3812 }
d495ab0d 3813 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
3814
3815 return &ret->root.root;
3816}
3817
cd1dac3d
DG
3818/* Determine what kind of NOPs are available. */
3819
3820static bfd_boolean
3821arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3822{
3823 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3824 Tag_CPU_arch);
cd1dac3d 3825
60a019a0
TP
3826 /* Force return logic to be reviewed for each new architecture. */
3827 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3828 || arch == TAG_CPU_ARCH_V8M_BASE
3829 || arch == TAG_CPU_ARCH_V8M_MAIN);
3830
3831 return (arch == TAG_CPU_ARCH_V6T2
3832 || arch == TAG_CPU_ARCH_V6K
3833 || arch == TAG_CPU_ARCH_V7
3834 || arch == TAG_CPU_ARCH_V8);
cd1dac3d
DG
3835}
3836
f4ac8484
DJ
3837static bfd_boolean
3838arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3839{
3840 switch (stub_type)
3841 {
fea2b4d6 3842 case arm_stub_long_branch_thumb_only:
80c135e5 3843 case arm_stub_long_branch_thumb2_only:
d5a67c02 3844 case arm_stub_long_branch_thumb2_only_pure:
fea2b4d6
CL
3845 case arm_stub_long_branch_v4t_thumb_arm:
3846 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 3847 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 3848 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 3849 case arm_stub_long_branch_thumb_only_pic:
4ba2ef8f 3850 case arm_stub_cmse_branch_thumb_only:
f4ac8484
DJ
3851 return TRUE;
3852 case arm_stub_none:
3853 BFD_FAIL ();
3854 return FALSE;
3855 break;
3856 default:
3857 return FALSE;
3858 }
3859}
3860
906e58ca
NC
3861/* Determine the type of stub needed, if any, for a call. */
3862
3863static enum elf32_arm_stub_type
3864arm_type_of_stub (struct bfd_link_info *info,
3865 asection *input_sec,
3866 const Elf_Internal_Rela *rel,
34e77a92 3867 unsigned char st_type,
35fc36a8 3868 enum arm_st_branch_type *actual_branch_type,
906e58ca 3869 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3870 bfd_vma destination,
3871 asection *sym_sec,
3872 bfd *input_bfd,
3873 const char *name)
906e58ca
NC
3874{
3875 bfd_vma location;
3876 bfd_signed_vma branch_offset;
3877 unsigned int r_type;
3878 struct elf32_arm_link_hash_table * globals;
5e866f5a 3879 bfd_boolean thumb2, thumb2_bl, thumb_only;
906e58ca 3880 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3881 int use_plt = 0;
35fc36a8 3882 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
3883 union gotplt_union *root_plt;
3884 struct arm_plt_info *arm_plt;
d5a67c02
AV
3885 int arch;
3886 int thumb2_movw;
906e58ca 3887
35fc36a8 3888 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
3889 return stub_type;
3890
906e58ca 3891 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3892 if (globals == NULL)
3893 return stub_type;
906e58ca
NC
3894
3895 thumb_only = using_thumb_only (globals);
906e58ca 3896 thumb2 = using_thumb2 (globals);
5e866f5a 3897 thumb2_bl = using_thumb2_bl (globals);
906e58ca 3898
d5a67c02
AV
3899 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3900
3901 /* True for architectures that implement the thumb2 movw instruction. */
3902 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3903
906e58ca
NC
3904 /* Determine where the call point is. */
3905 location = (input_sec->output_offset
3906 + input_sec->output_section->vma
3907 + rel->r_offset);
3908
906e58ca
NC
3909 r_type = ELF32_R_TYPE (rel->r_info);
3910
39f21624
NC
3911 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3912 are considering a function call relocation. */
c5423981
TG
3913 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3914 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
3915 && branch_type == ST_BRANCH_TO_ARM)
3916 branch_type = ST_BRANCH_TO_THUMB;
3917
34e77a92
RS
3918 /* For TLS call relocs, it is the caller's responsibility to provide
3919 the address of the appropriate trampoline. */
3920 if (r_type != R_ARM_TLS_CALL
3921 && r_type != R_ARM_THM_TLS_CALL
4ba2ef8f
TP
3922 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3923 ELF32_R_SYM (rel->r_info), &root_plt,
3924 &arm_plt)
34e77a92 3925 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 3926 {
34e77a92 3927 asection *splt;
fe33d2fa 3928
34e77a92
RS
3929 if (hash == NULL || hash->is_iplt)
3930 splt = globals->root.iplt;
3931 else
3932 splt = globals->root.splt;
3933 if (splt != NULL)
b38cadfb 3934 {
34e77a92
RS
3935 use_plt = 1;
3936
3937 /* Note when dealing with PLT entries: the main PLT stub is in
3938 ARM mode, so if the branch is in Thumb mode, another
3939 Thumb->ARM stub will be inserted later just before the ARM
2df2751d
CL
3940 PLT stub. If a long branch stub is needed, we'll add a
3941 Thumb->Arm one and branch directly to the ARM PLT entry.
3942 Here, we have to check if a pre-PLT Thumb->ARM stub
3943 is needed and if it will be close enough. */
34e77a92
RS
3944
3945 destination = (splt->output_section->vma
3946 + splt->output_offset
3947 + root_plt->offset);
3948 st_type = STT_FUNC;
2df2751d
CL
3949
3950 /* Thumb branch/call to PLT: it can become a branch to ARM
3951 or to Thumb. We must perform the same checks and
3952 corrections as in elf32_arm_final_link_relocate. */
3953 if ((r_type == R_ARM_THM_CALL)
3954 || (r_type == R_ARM_THM_JUMP24))
3955 {
3956 if (globals->use_blx
3957 && r_type == R_ARM_THM_CALL
3958 && !thumb_only)
3959 {
3960 /* If the Thumb BLX instruction is available, convert
3961 the BL to a BLX instruction to call the ARM-mode
3962 PLT entry. */
3963 branch_type = ST_BRANCH_TO_ARM;
3964 }
3965 else
3966 {
3967 if (!thumb_only)
3968 /* Target the Thumb stub before the ARM PLT entry. */
3969 destination -= PLT_THUMB_STUB_SIZE;
3970 branch_type = ST_BRANCH_TO_THUMB;
3971 }
3972 }
3973 else
3974 {
3975 branch_type = ST_BRANCH_TO_ARM;
3976 }
34e77a92 3977 }
5fa9e92f 3978 }
34e77a92
RS
3979 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3980 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 3981
fe33d2fa
CL
3982 branch_offset = (bfd_signed_vma)(destination - location);
3983
0855e32b 3984 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 3985 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 3986 {
5fa9e92f
CL
3987 /* Handle cases where:
3988 - this call goes too far (different Thumb/Thumb2 max
99059e56 3989 distance)
155d87d7 3990 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
3991 Thumb->Arm branch (not bl). A stub is needed in this case,
3992 but only if this call is not through a PLT entry. Indeed,
695344c0 3993 PLT stubs handle mode switching already. */
5e866f5a 3994 if ((!thumb2_bl
906e58ca
NC
3995 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3996 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
5e866f5a 3997 || (thumb2_bl
906e58ca
NC
3998 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3999 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
4000 || (thumb2
4001 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4002 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4003 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 4004 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
4005 && (((r_type == R_ARM_THM_CALL
4006 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981
TG
4007 || (r_type == R_ARM_THM_JUMP24)
4008 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 4009 && !use_plt))
906e58ca 4010 {
2df2751d
CL
4011 /* If we need to insert a Thumb-Thumb long branch stub to a
4012 PLT, use one that branches directly to the ARM PLT
4013 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4014 stub, undo this now. */
695344c0
NC
4015 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4016 {
4017 branch_type = ST_BRANCH_TO_ARM;
4018 branch_offset += PLT_THUMB_STUB_SIZE;
4019 }
2df2751d 4020
35fc36a8 4021 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4022 {
4023 /* Thumb to thumb. */
4024 if (!thumb_only)
4025 {
d5a67c02 4026 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39
AM
4027 _bfd_error_handler
4028 (_("%B(%A): warning: long branch veneers used in"
4029 " section with SHF_ARM_PURECODE section"
4030 " attribute is only supported for M-profile"
4031 " targets that implement the movw instruction."),
4032 input_bfd, input_sec);
d5a67c02 4033
0e1862bb 4034 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4035 /* PIC stubs. */
155d87d7 4036 ? ((globals->use_blx
9553db3c 4037 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
4038 /* V5T and above. Stub starts with ARM code, so
4039 we must be able to switch mode before
4040 reaching it, which is only possible for 'bl'
4041 (ie R_ARM_THM_CALL relocation). */
cf3eccff 4042 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 4043 /* On V4T, use Thumb code only. */
d3626fb0 4044 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
4045
4046 /* non-PIC stubs. */
155d87d7 4047 : ((globals->use_blx
9553db3c 4048 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
4049 /* V5T and above. */
4050 ? arm_stub_long_branch_any_any
4051 /* V4T. */
d3626fb0 4052 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
4053 }
4054 else
4055 {
d5a67c02
AV
4056 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4057 stub_type = arm_stub_long_branch_thumb2_only_pure;
4058 else
4059 {
4060 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39
AM
4061 _bfd_error_handler
4062 (_("%B(%A): warning: long branch veneers used in"
4063 " section with SHF_ARM_PURECODE section"
4064 " attribute is only supported for M-profile"
4065 " targets that implement the movw instruction."),
4066 input_bfd, input_sec);
d5a67c02
AV
4067
4068 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4069 /* PIC stub. */
4070 ? arm_stub_long_branch_thumb_only_pic
4071 /* non-PIC stub. */
4072 : (thumb2 ? arm_stub_long_branch_thumb2_only
4073 : arm_stub_long_branch_thumb_only);
4074 }
906e58ca
NC
4075 }
4076 }
4077 else
4078 {
d5a67c02 4079 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39
AM
4080 _bfd_error_handler
4081 (_("%B(%A): warning: long branch veneers used in"
4082 " section with SHF_ARM_PURECODE section"
4083 " attribute is only supported" " for M-profile"
4084 " targets that implement the movw instruction."),
4085 input_bfd, input_sec);
d5a67c02 4086
906e58ca 4087 /* Thumb to arm. */
c820be07
NC
4088 if (sym_sec != NULL
4089 && sym_sec->owner != NULL
4090 && !INTERWORK_FLAG (sym_sec->owner))
4091 {
4eca0228 4092 _bfd_error_handler
c820be07
NC
4093 (_("%B(%s): warning: interworking not enabled.\n"
4094 " first occurrence: %B: Thumb call to ARM"),
c08bb8dd 4095 sym_sec->owner, name, input_bfd);
c820be07
NC
4096 }
4097
0855e32b 4098 stub_type =
0e1862bb 4099 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4100 /* PIC stubs. */
0855e32b 4101 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 4102 /* TLS PIC stubs. */
0855e32b
NS
4103 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4104 : arm_stub_long_branch_v4t_thumb_tls_pic)
4105 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4106 /* V5T PIC and above. */
4107 ? arm_stub_long_branch_any_arm_pic
4108 /* V4T PIC stub. */
4109 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
4110
4111 /* non-PIC stubs. */
0855e32b 4112 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
4113 /* V5T and above. */
4114 ? arm_stub_long_branch_any_any
4115 /* V4T. */
4116 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
4117
4118 /* Handle v4t short branches. */
fea2b4d6 4119 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
4120 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4121 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 4122 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
4123 }
4124 }
4125 }
fe33d2fa
CL
4126 else if (r_type == R_ARM_CALL
4127 || r_type == R_ARM_JUMP24
0855e32b
NS
4128 || r_type == R_ARM_PLT32
4129 || r_type == R_ARM_TLS_CALL)
906e58ca 4130 {
d5a67c02 4131 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39
AM
4132 _bfd_error_handler
4133 (_("%B(%A): warning: long branch veneers used in"
4134 " section with SHF_ARM_PURECODE section"
4135 " attribute is only supported for M-profile"
4136 " targets that implement the movw instruction."),
4137 input_bfd, input_sec);
35fc36a8 4138 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4139 {
4140 /* Arm to thumb. */
c820be07
NC
4141
4142 if (sym_sec != NULL
4143 && sym_sec->owner != NULL
4144 && !INTERWORK_FLAG (sym_sec->owner))
4145 {
4eca0228 4146 _bfd_error_handler
c820be07 4147 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 4148 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
4149 sym_sec->owner, input_bfd, name);
4150 }
4151
4152 /* We have an extra 2-bytes reach because of
4153 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
4154 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4155 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 4156 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
4157 || (r_type == R_ARM_JUMP24)
4158 || (r_type == R_ARM_PLT32))
906e58ca 4159 {
0e1862bb 4160 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4161 /* PIC stubs. */
ebe24dd4
CL
4162 ? ((globals->use_blx)
4163 /* V5T and above. */
4164 ? arm_stub_long_branch_any_thumb_pic
4165 /* V4T stub. */
4166 : arm_stub_long_branch_v4t_arm_thumb_pic)
4167
c2b4a39d
CL
4168 /* non-PIC stubs. */
4169 : ((globals->use_blx)
4170 /* V5T and above. */
4171 ? arm_stub_long_branch_any_any
4172 /* V4T. */
4173 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
4174 }
4175 }
4176 else
4177 {
4178 /* Arm to arm. */
4179 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4180 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4181 {
0855e32b 4182 stub_type =
0e1862bb 4183 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4184 /* PIC stubs. */
0855e32b 4185 ? (r_type == R_ARM_TLS_CALL
6a631e86 4186 /* TLS PIC Stub. */
0855e32b 4187 ? arm_stub_long_branch_any_tls_pic
7a89b94e
NC
4188 : (globals->nacl_p
4189 ? arm_stub_long_branch_arm_nacl_pic
4190 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 4191 /* non-PIC stubs. */
7a89b94e
NC
4192 : (globals->nacl_p
4193 ? arm_stub_long_branch_arm_nacl
4194 : arm_stub_long_branch_any_any);
906e58ca
NC
4195 }
4196 }
4197 }
4198
fe33d2fa
CL
4199 /* If a stub is needed, record the actual destination type. */
4200 if (stub_type != arm_stub_none)
35fc36a8 4201 *actual_branch_type = branch_type;
fe33d2fa 4202
906e58ca
NC
4203 return stub_type;
4204}
4205
4206/* Build a name for an entry in the stub hash table. */
4207
4208static char *
4209elf32_arm_stub_name (const asection *input_section,
4210 const asection *sym_sec,
4211 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
4212 const Elf_Internal_Rela *rel,
4213 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4214{
4215 char *stub_name;
4216 bfd_size_type len;
4217
4218 if (hash)
4219 {
fe33d2fa 4220 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 4221 stub_name = (char *) bfd_malloc (len);
906e58ca 4222 if (stub_name != NULL)
fe33d2fa 4223 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
4224 input_section->id & 0xffffffff,
4225 hash->root.root.root.string,
fe33d2fa
CL
4226 (int) rel->r_addend & 0xffffffff,
4227 (int) stub_type);
906e58ca
NC
4228 }
4229 else
4230 {
fe33d2fa 4231 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 4232 stub_name = (char *) bfd_malloc (len);
906e58ca 4233 if (stub_name != NULL)
fe33d2fa 4234 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
4235 input_section->id & 0xffffffff,
4236 sym_sec->id & 0xffffffff,
0855e32b
NS
4237 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4238 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4239 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
4240 (int) rel->r_addend & 0xffffffff,
4241 (int) stub_type);
906e58ca
NC
4242 }
4243
4244 return stub_name;
4245}
4246
4247/* Look up an entry in the stub hash. Stub entries are cached because
4248 creating the stub name takes a bit of time. */
4249
4250static struct elf32_arm_stub_hash_entry *
4251elf32_arm_get_stub_entry (const asection *input_section,
4252 const asection *sym_sec,
4253 struct elf_link_hash_entry *hash,
4254 const Elf_Internal_Rela *rel,
fe33d2fa
CL
4255 struct elf32_arm_link_hash_table *htab,
4256 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4257{
4258 struct elf32_arm_stub_hash_entry *stub_entry;
4259 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4260 const asection *id_sec;
4261
4262 if ((input_section->flags & SEC_CODE) == 0)
4263 return NULL;
4264
4265 /* If this input section is part of a group of sections sharing one
4266 stub section, then use the id of the first section in the group.
4267 Stub names need to include a section id, as there may well be
4268 more than one stub used to reach say, printf, and we need to
4269 distinguish between them. */
c2abbbeb 4270 BFD_ASSERT (input_section->id <= htab->top_id);
906e58ca
NC
4271 id_sec = htab->stub_group[input_section->id].link_sec;
4272
4273 if (h != NULL && h->stub_cache != NULL
4274 && h->stub_cache->h == h
fe33d2fa
CL
4275 && h->stub_cache->id_sec == id_sec
4276 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
4277 {
4278 stub_entry = h->stub_cache;
4279 }
4280 else
4281 {
4282 char *stub_name;
4283
fe33d2fa 4284 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
4285 if (stub_name == NULL)
4286 return NULL;
4287
4288 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4289 stub_name, FALSE, FALSE);
4290 if (h != NULL)
4291 h->stub_cache = stub_entry;
4292
4293 free (stub_name);
4294 }
4295
4296 return stub_entry;
4297}
4298
daa4adae
TP
4299/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4300 section. */
4301
4302static bfd_boolean
4303arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4304{
4305 if (stub_type >= max_stub_type)
4306 abort (); /* Should be unreachable. */
4307
4ba2ef8f
TP
4308 switch (stub_type)
4309 {
4310 case arm_stub_cmse_branch_thumb_only:
4311 return TRUE;
4312
4313 default:
4314 return FALSE;
4315 }
4316
4317 abort (); /* Should be unreachable. */
daa4adae
TP
4318}
4319
4320/* Required alignment (as a power of 2) for the dedicated section holding
4321 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4322 with input sections. */
4323
4324static int
4325arm_dedicated_stub_output_section_required_alignment
4326 (enum elf32_arm_stub_type stub_type)
4327{
4328 if (stub_type >= max_stub_type)
4329 abort (); /* Should be unreachable. */
4330
4ba2ef8f
TP
4331 switch (stub_type)
4332 {
4333 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4334 boundary. */
4335 case arm_stub_cmse_branch_thumb_only:
4336 return 5;
4337
4338 default:
4339 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4340 return 0;
4341 }
4342
4343 abort (); /* Should be unreachable. */
daa4adae
TP
4344}
4345
4346/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4347 NULL if veneers of this type are interspersed with input sections. */
4348
4349static const char *
4350arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4351{
4352 if (stub_type >= max_stub_type)
4353 abort (); /* Should be unreachable. */
4354
4ba2ef8f
TP
4355 switch (stub_type)
4356 {
4357 case arm_stub_cmse_branch_thumb_only:
4358 return ".gnu.sgstubs";
4359
4360 default:
4361 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4362 return NULL;
4363 }
4364
4365 abort (); /* Should be unreachable. */
daa4adae
TP
4366}
4367
4368/* If veneers of type STUB_TYPE should go in a dedicated output section,
4369 returns the address of the hash table field in HTAB holding a pointer to the
4370 corresponding input section. Otherwise, returns NULL. */
4371
4372static asection **
4ba2ef8f
TP
4373arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4374 enum elf32_arm_stub_type stub_type)
daa4adae
TP
4375{
4376 if (stub_type >= max_stub_type)
4377 abort (); /* Should be unreachable. */
4378
4ba2ef8f
TP
4379 switch (stub_type)
4380 {
4381 case arm_stub_cmse_branch_thumb_only:
4382 return &htab->cmse_stub_sec;
4383
4384 default:
4385 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4386 return NULL;
4387 }
4388
4389 abort (); /* Should be unreachable. */
daa4adae
TP
4390}
4391
4392/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4393 is the section that branch into veneer and can be NULL if stub should go in
4394 a dedicated output section. Returns a pointer to the stub section, and the
4395 section to which the stub section will be attached (in *LINK_SEC_P).
48229727 4396 LINK_SEC_P may be NULL. */
906e58ca 4397
48229727
JB
4398static asection *
4399elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
daa4adae
TP
4400 struct elf32_arm_link_hash_table *htab,
4401 enum elf32_arm_stub_type stub_type)
906e58ca 4402{
daa4adae
TP
4403 asection *link_sec, *out_sec, **stub_sec_p;
4404 const char *stub_sec_prefix;
4405 bfd_boolean dedicated_output_section =
4406 arm_dedicated_stub_output_section_required (stub_type);
4407 int align;
906e58ca 4408
daa4adae 4409 if (dedicated_output_section)
906e58ca 4410 {
daa4adae
TP
4411 bfd *output_bfd = htab->obfd;
4412 const char *out_sec_name =
4413 arm_dedicated_stub_output_section_name (stub_type);
4414 link_sec = NULL;
4415 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4416 stub_sec_prefix = out_sec_name;
4417 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4418 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4419 if (out_sec == NULL)
906e58ca 4420 {
4eca0228
AM
4421 _bfd_error_handler (_("No address assigned to the veneers output "
4422 "section %s"), out_sec_name);
daa4adae 4423 return NULL;
906e58ca 4424 }
daa4adae
TP
4425 }
4426 else
4427 {
c2abbbeb 4428 BFD_ASSERT (section->id <= htab->top_id);
daa4adae
TP
4429 link_sec = htab->stub_group[section->id].link_sec;
4430 BFD_ASSERT (link_sec != NULL);
4431 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4432 if (*stub_sec_p == NULL)
4433 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4434 stub_sec_prefix = link_sec->name;
4435 out_sec = link_sec->output_section;
4436 align = htab->nacl_p ? 4 : 3;
906e58ca 4437 }
b38cadfb 4438
daa4adae
TP
4439 if (*stub_sec_p == NULL)
4440 {
4441 size_t namelen;
4442 bfd_size_type len;
4443 char *s_name;
4444
4445 namelen = strlen (stub_sec_prefix);
4446 len = namelen + sizeof (STUB_SUFFIX);
4447 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4448 if (s_name == NULL)
4449 return NULL;
4450
4451 memcpy (s_name, stub_sec_prefix, namelen);
4452 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4453 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4454 align);
4455 if (*stub_sec_p == NULL)
4456 return NULL;
4457
4458 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4459 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4460 | SEC_KEEP;
4461 }
4462
4463 if (!dedicated_output_section)
4464 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4465
48229727
JB
4466 if (link_sec_p)
4467 *link_sec_p = link_sec;
b38cadfb 4468
daa4adae 4469 return *stub_sec_p;
48229727
JB
4470}
4471
4472/* Add a new stub entry to the stub hash. Not all fields of the new
4473 stub entry are initialised. */
4474
4475static struct elf32_arm_stub_hash_entry *
daa4adae
TP
4476elf32_arm_add_stub (const char *stub_name, asection *section,
4477 struct elf32_arm_link_hash_table *htab,
4478 enum elf32_arm_stub_type stub_type)
48229727
JB
4479{
4480 asection *link_sec;
4481 asection *stub_sec;
4482 struct elf32_arm_stub_hash_entry *stub_entry;
4483
daa4adae
TP
4484 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4485 stub_type);
48229727
JB
4486 if (stub_sec == NULL)
4487 return NULL;
906e58ca
NC
4488
4489 /* Enter this entry into the linker stub hash table. */
4490 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4491 TRUE, FALSE);
4492 if (stub_entry == NULL)
4493 {
6bde4c52
TP
4494 if (section == NULL)
4495 section = stub_sec;
dae82561 4496 _bfd_error_handler (_("%B: cannot create stub entry %s"),
4eca0228 4497 section->owner, stub_name);
906e58ca
NC
4498 return NULL;
4499 }
4500
4501 stub_entry->stub_sec = stub_sec;
0955507f 4502 stub_entry->stub_offset = (bfd_vma) -1;
906e58ca
NC
4503 stub_entry->id_sec = link_sec;
4504
906e58ca
NC
4505 return stub_entry;
4506}
4507
4508/* Store an Arm insn into an output section not processed by
4509 elf32_arm_write_section. */
4510
4511static void
8029a119
NC
4512put_arm_insn (struct elf32_arm_link_hash_table * htab,
4513 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4514{
4515 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4516 bfd_putl32 (val, ptr);
4517 else
4518 bfd_putb32 (val, ptr);
4519}
4520
4521/* Store a 16-bit Thumb insn into an output section not processed by
4522 elf32_arm_write_section. */
4523
4524static void
8029a119
NC
4525put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4526 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4527{
4528 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4529 bfd_putl16 (val, ptr);
4530 else
4531 bfd_putb16 (val, ptr);
4532}
4533
a504d23a
LA
4534/* Store a Thumb2 insn into an output section not processed by
4535 elf32_arm_write_section. */
4536
4537static void
4538put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
b98e6871 4539 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
a504d23a
LA
4540{
4541 /* T2 instructions are 16-bit streamed. */
4542 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4543 {
4544 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4545 bfd_putl16 ((val & 0xffff), ptr + 2);
4546 }
4547 else
4548 {
4549 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4550 bfd_putb16 ((val & 0xffff), ptr + 2);
4551 }
4552}
4553
0855e32b
NS
4554/* If it's possible to change R_TYPE to a more efficient access
4555 model, return the new reloc type. */
4556
4557static unsigned
b38cadfb 4558elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4559 struct elf_link_hash_entry *h)
4560{
4561 int is_local = (h == NULL);
4562
0e1862bb
L
4563 if (bfd_link_pic (info)
4564 || (h && h->root.type == bfd_link_hash_undefweak))
0855e32b
NS
4565 return r_type;
4566
b38cadfb 4567 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4568 switch (r_type)
4569 {
4570 case R_ARM_TLS_GOTDESC:
4571 case R_ARM_TLS_CALL:
4572 case R_ARM_THM_TLS_CALL:
4573 case R_ARM_TLS_DESCSEQ:
4574 case R_ARM_THM_TLS_DESCSEQ:
4575 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4576 }
4577
4578 return r_type;
4579}
4580
48229727
JB
4581static bfd_reloc_status_type elf32_arm_final_link_relocate
4582 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4583 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92
RS
4584 const char *, unsigned char, enum arm_st_branch_type,
4585 struct elf_link_hash_entry *, bfd_boolean *, char **);
48229727 4586
4563a860
JB
4587static unsigned int
4588arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4589{
4590 switch (stub_type)
4591 {
4592 case arm_stub_a8_veneer_b_cond:
4593 case arm_stub_a8_veneer_b:
4594 case arm_stub_a8_veneer_bl:
4595 return 2;
4596
4597 case arm_stub_long_branch_any_any:
4598 case arm_stub_long_branch_v4t_arm_thumb:
4599 case arm_stub_long_branch_thumb_only:
80c135e5 4600 case arm_stub_long_branch_thumb2_only:
d5a67c02 4601 case arm_stub_long_branch_thumb2_only_pure:
4563a860
JB
4602 case arm_stub_long_branch_v4t_thumb_thumb:
4603 case arm_stub_long_branch_v4t_thumb_arm:
4604 case arm_stub_short_branch_v4t_thumb_arm:
4605 case arm_stub_long_branch_any_arm_pic:
4606 case arm_stub_long_branch_any_thumb_pic:
4607 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4608 case arm_stub_long_branch_v4t_arm_thumb_pic:
4609 case arm_stub_long_branch_v4t_thumb_arm_pic:
4610 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4611 case arm_stub_long_branch_any_tls_pic:
4612 case arm_stub_long_branch_v4t_thumb_tls_pic:
4ba2ef8f 4613 case arm_stub_cmse_branch_thumb_only:
4563a860
JB
4614 case arm_stub_a8_veneer_blx:
4615 return 4;
b38cadfb 4616
7a89b94e
NC
4617 case arm_stub_long_branch_arm_nacl:
4618 case arm_stub_long_branch_arm_nacl_pic:
4619 return 16;
4620
4563a860
JB
4621 default:
4622 abort (); /* Should be unreachable. */
4623 }
4624}
4625
4f4faa4d
TP
4626/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4627 veneering (TRUE) or have their own symbol (FALSE). */
4628
4629static bfd_boolean
4630arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4631{
4632 if (stub_type >= max_stub_type)
4633 abort (); /* Should be unreachable. */
4634
4ba2ef8f
TP
4635 switch (stub_type)
4636 {
4637 case arm_stub_cmse_branch_thumb_only:
4638 return TRUE;
4639
4640 default:
4641 return FALSE;
4642 }
4643
4644 abort (); /* Should be unreachable. */
4f4faa4d
TP
4645}
4646
d7c5bd02
TP
4647/* Returns the padding needed for the dedicated section used stubs of type
4648 STUB_TYPE. */
4649
4650static int
4651arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4652{
4653 if (stub_type >= max_stub_type)
4654 abort (); /* Should be unreachable. */
4655
4ba2ef8f
TP
4656 switch (stub_type)
4657 {
4658 case arm_stub_cmse_branch_thumb_only:
4659 return 32;
4660
4661 default:
4662 return 0;
4663 }
4664
4665 abort (); /* Should be unreachable. */
d7c5bd02
TP
4666}
4667
0955507f
TP
4668/* If veneers of type STUB_TYPE should go in a dedicated output section,
4669 returns the address of the hash table field in HTAB holding the offset at
4670 which new veneers should be layed out in the stub section. */
4671
4672static bfd_vma*
4673arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4674 enum elf32_arm_stub_type stub_type)
4675{
4676 switch (stub_type)
4677 {
4678 case arm_stub_cmse_branch_thumb_only:
4679 return &htab->new_cmse_stub_offset;
4680
4681 default:
4682 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4683 return NULL;
4684 }
4685}
4686
906e58ca
NC
4687static bfd_boolean
4688arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4689 void * in_arg)
4690{
7a89b94e 4691#define MAXRELOCS 3
0955507f 4692 bfd_boolean removed_sg_veneer;
906e58ca 4693 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 4694 struct elf32_arm_link_hash_table *globals;
906e58ca 4695 struct bfd_link_info *info;
906e58ca
NC
4696 asection *stub_sec;
4697 bfd *stub_bfd;
906e58ca
NC
4698 bfd_byte *loc;
4699 bfd_vma sym_value;
4700 int template_size;
4701 int size;
d3ce72d0 4702 const insn_sequence *template_sequence;
906e58ca 4703 int i;
48229727
JB
4704 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4705 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4706 int nrelocs = 0;
0955507f 4707 int just_allocated = 0;
906e58ca
NC
4708
4709 /* Massage our args to the form they really have. */
4710 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4711 info = (struct bfd_link_info *) in_arg;
4712
4713 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4714 if (globals == NULL)
4715 return FALSE;
906e58ca 4716
906e58ca
NC
4717 stub_sec = stub_entry->stub_sec;
4718
4dfe6ac6 4719 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
4720 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4721 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 4722 return TRUE;
fe33d2fa 4723
0955507f
TP
4724 /* Assign a slot at the end of section if none assigned yet. */
4725 if (stub_entry->stub_offset == (bfd_vma) -1)
4726 {
4727 stub_entry->stub_offset = stub_sec->size;
4728 just_allocated = 1;
4729 }
906e58ca
NC
4730 loc = stub_sec->contents + stub_entry->stub_offset;
4731
4732 stub_bfd = stub_sec->owner;
4733
906e58ca
NC
4734 /* This is the address of the stub destination. */
4735 sym_value = (stub_entry->target_value
4736 + stub_entry->target_section->output_offset
4737 + stub_entry->target_section->output_section->vma);
4738
d3ce72d0 4739 template_sequence = stub_entry->stub_template;
461a49ca 4740 template_size = stub_entry->stub_template_size;
906e58ca
NC
4741
4742 size = 0;
461a49ca 4743 for (i = 0; i < template_size; i++)
906e58ca 4744 {
d3ce72d0 4745 switch (template_sequence[i].type)
461a49ca
DJ
4746 {
4747 case THUMB16_TYPE:
48229727 4748 {
d3ce72d0
NC
4749 bfd_vma data = (bfd_vma) template_sequence[i].data;
4750 if (template_sequence[i].reloc_addend != 0)
48229727 4751 {
99059e56
RM
4752 /* We've borrowed the reloc_addend field to mean we should
4753 insert a condition code into this (Thumb-1 branch)
4754 instruction. See THUMB16_BCOND_INSN. */
4755 BFD_ASSERT ((data & 0xff00) == 0xd000);
4756 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 4757 }
fe33d2fa 4758 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
4759 size += 2;
4760 }
461a49ca 4761 break;
906e58ca 4762
48229727 4763 case THUMB32_TYPE:
fe33d2fa
CL
4764 bfd_put_16 (stub_bfd,
4765 (template_sequence[i].data >> 16) & 0xffff,
4766 loc + size);
4767 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4768 loc + size + 2);
99059e56
RM
4769 if (template_sequence[i].r_type != R_ARM_NONE)
4770 {
4771 stub_reloc_idx[nrelocs] = i;
4772 stub_reloc_offset[nrelocs++] = size;
4773 }
4774 size += 4;
4775 break;
48229727 4776
461a49ca 4777 case ARM_TYPE:
fe33d2fa
CL
4778 bfd_put_32 (stub_bfd, template_sequence[i].data,
4779 loc + size);
461a49ca
DJ
4780 /* Handle cases where the target is encoded within the
4781 instruction. */
d3ce72d0 4782 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 4783 {
48229727
JB
4784 stub_reloc_idx[nrelocs] = i;
4785 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4786 }
4787 size += 4;
4788 break;
4789
4790 case DATA_TYPE:
d3ce72d0 4791 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
4792 stub_reloc_idx[nrelocs] = i;
4793 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4794 size += 4;
4795 break;
4796
4797 default:
4798 BFD_FAIL ();
4799 return FALSE;
4800 }
906e58ca 4801 }
461a49ca 4802
0955507f
TP
4803 if (just_allocated)
4804 stub_sec->size += size;
906e58ca 4805
461a49ca
DJ
4806 /* Stub size has already been computed in arm_size_one_stub. Check
4807 consistency. */
4808 BFD_ASSERT (size == stub_entry->stub_size);
4809
906e58ca 4810 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 4811 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4812 sym_value |= 1;
4813
0955507f
TP
4814 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4815 to relocate in each stub. */
4816 removed_sg_veneer =
4817 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4818 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
c820be07 4819
48229727 4820 for (i = 0; i < nrelocs; i++)
8d9d9490
TP
4821 {
4822 Elf_Internal_Rela rel;
4823 bfd_boolean unresolved_reloc;
4824 char *error_message;
4825 bfd_vma points_to =
4826 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4827
4828 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4829 rel.r_info = ELF32_R_INFO (0,
4830 template_sequence[stub_reloc_idx[i]].r_type);
4831 rel.r_addend = 0;
4832
4833 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4834 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4835 template should refer back to the instruction after the original
4836 branch. We use target_section as Cortex-A8 erratum workaround stubs
4837 are only generated when both source and target are in the same
4838 section. */
4839 points_to = stub_entry->target_section->output_section->vma
4840 + stub_entry->target_section->output_offset
4841 + stub_entry->source_value;
4842
4843 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4844 (template_sequence[stub_reloc_idx[i]].r_type),
4845 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4846 points_to, info, stub_entry->target_section, "", STT_FUNC,
4847 stub_entry->branch_type,
4848 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4849 &error_message);
4850 }
906e58ca
NC
4851
4852 return TRUE;
48229727 4853#undef MAXRELOCS
906e58ca
NC
4854}
4855
48229727
JB
4856/* Calculate the template, template size and instruction size for a stub.
4857 Return value is the instruction size. */
906e58ca 4858
48229727
JB
4859static unsigned int
4860find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4861 const insn_sequence **stub_template,
4862 int *stub_template_size)
906e58ca 4863{
d3ce72d0 4864 const insn_sequence *template_sequence = NULL;
48229727
JB
4865 int template_size = 0, i;
4866 unsigned int size;
906e58ca 4867
d3ce72d0 4868 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
4869 if (stub_template)
4870 *stub_template = template_sequence;
4871
48229727 4872 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
4873 if (stub_template_size)
4874 *stub_template_size = template_size;
906e58ca
NC
4875
4876 size = 0;
461a49ca
DJ
4877 for (i = 0; i < template_size; i++)
4878 {
d3ce72d0 4879 switch (template_sequence[i].type)
461a49ca
DJ
4880 {
4881 case THUMB16_TYPE:
4882 size += 2;
4883 break;
4884
4885 case ARM_TYPE:
48229727 4886 case THUMB32_TYPE:
461a49ca
DJ
4887 case DATA_TYPE:
4888 size += 4;
4889 break;
4890
4891 default:
4892 BFD_FAIL ();
2a229407 4893 return 0;
461a49ca
DJ
4894 }
4895 }
4896
48229727
JB
4897 return size;
4898}
4899
4900/* As above, but don't actually build the stub. Just bump offset so
4901 we know stub section sizes. */
4902
4903static bfd_boolean
4904arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 4905 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
4906{
4907 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 4908 const insn_sequence *template_sequence;
48229727
JB
4909 int template_size, size;
4910
4911 /* Massage our args to the form they really have. */
4912 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
4913
4914 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4915 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4916
d3ce72d0 4917 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
4918 &template_size);
4919
0955507f
TP
4920 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4921 if (stub_entry->stub_template_size)
4922 {
4923 stub_entry->stub_size = size;
4924 stub_entry->stub_template = template_sequence;
4925 stub_entry->stub_template_size = template_size;
4926 }
4927
4928 /* Already accounted for. */
4929 if (stub_entry->stub_offset != (bfd_vma) -1)
4930 return TRUE;
461a49ca 4931
906e58ca
NC
4932 size = (size + 7) & ~7;
4933 stub_entry->stub_sec->size += size;
461a49ca 4934
906e58ca
NC
4935 return TRUE;
4936}
4937
4938/* External entry points for sizing and building linker stubs. */
4939
4940/* Set up various things so that we can make a list of input sections
4941 for each output section included in the link. Returns -1 on error,
4942 0 when no stubs will be needed, and 1 on success. */
4943
4944int
4945elf32_arm_setup_section_lists (bfd *output_bfd,
4946 struct bfd_link_info *info)
4947{
4948 bfd *input_bfd;
4949 unsigned int bfd_count;
7292b3ac 4950 unsigned int top_id, top_index;
906e58ca
NC
4951 asection *section;
4952 asection **input_list, **list;
4953 bfd_size_type amt;
4954 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4955
4dfe6ac6
NC
4956 if (htab == NULL)
4957 return 0;
906e58ca
NC
4958 if (! is_elf_hash_table (htab))
4959 return 0;
4960
4961 /* Count the number of input BFDs and find the top input section id. */
4962 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4963 input_bfd != NULL;
c72f2fb2 4964 input_bfd = input_bfd->link.next)
906e58ca
NC
4965 {
4966 bfd_count += 1;
4967 for (section = input_bfd->sections;
4968 section != NULL;
4969 section = section->next)
4970 {
4971 if (top_id < section->id)
4972 top_id = section->id;
4973 }
4974 }
4975 htab->bfd_count = bfd_count;
4976
4977 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 4978 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
4979 if (htab->stub_group == NULL)
4980 return -1;
fe33d2fa 4981 htab->top_id = top_id;
906e58ca
NC
4982
4983 /* We can't use output_bfd->section_count here to find the top output
4984 section index as some sections may have been removed, and
4985 _bfd_strip_section_from_output doesn't renumber the indices. */
4986 for (section = output_bfd->sections, top_index = 0;
4987 section != NULL;
4988 section = section->next)
4989 {
4990 if (top_index < section->index)
4991 top_index = section->index;
4992 }
4993
4994 htab->top_index = top_index;
4995 amt = sizeof (asection *) * (top_index + 1);
21d799b5 4996 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
4997 htab->input_list = input_list;
4998 if (input_list == NULL)
4999 return -1;
5000
5001 /* For sections we aren't interested in, mark their entries with a
5002 value we can check later. */
5003 list = input_list + top_index;
5004 do
5005 *list = bfd_abs_section_ptr;
5006 while (list-- != input_list);
5007
5008 for (section = output_bfd->sections;
5009 section != NULL;
5010 section = section->next)
5011 {
5012 if ((section->flags & SEC_CODE) != 0)
5013 input_list[section->index] = NULL;
5014 }
5015
5016 return 1;
5017}
5018
5019/* The linker repeatedly calls this function for each input section,
5020 in the order that input sections are linked into output sections.
5021 Build lists of input sections to determine groupings between which
5022 we may insert linker stubs. */
5023
5024void
5025elf32_arm_next_input_section (struct bfd_link_info *info,
5026 asection *isec)
5027{
5028 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5029
4dfe6ac6
NC
5030 if (htab == NULL)
5031 return;
5032
906e58ca
NC
5033 if (isec->output_section->index <= htab->top_index)
5034 {
5035 asection **list = htab->input_list + isec->output_section->index;
5036
a7470592 5037 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
5038 {
5039 /* Steal the link_sec pointer for our list. */
5040#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5041 /* This happens to make the list in reverse order,
07d72278 5042 which we reverse later. */
906e58ca
NC
5043 PREV_SEC (isec) = *list;
5044 *list = isec;
5045 }
5046 }
5047}
5048
5049/* See whether we can group stub sections together. Grouping stub
5050 sections may result in fewer stubs. More importantly, we need to
07d72278 5051 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
5052 .fini output sections respectively, because glibc splits the
5053 _init and _fini functions into multiple parts. Putting a stub in
5054 the middle of a function is not a good idea. */
5055
5056static void
5057group_sections (struct elf32_arm_link_hash_table *htab,
5058 bfd_size_type stub_group_size,
07d72278 5059 bfd_boolean stubs_always_after_branch)
906e58ca 5060{
07d72278 5061 asection **list = htab->input_list;
906e58ca
NC
5062
5063 do
5064 {
5065 asection *tail = *list;
07d72278 5066 asection *head;
906e58ca
NC
5067
5068 if (tail == bfd_abs_section_ptr)
5069 continue;
5070
07d72278
DJ
5071 /* Reverse the list: we must avoid placing stubs at the
5072 beginning of the section because the beginning of the text
5073 section may be required for an interrupt vector in bare metal
5074 code. */
5075#define NEXT_SEC PREV_SEC
e780aef2
CL
5076 head = NULL;
5077 while (tail != NULL)
99059e56
RM
5078 {
5079 /* Pop from tail. */
5080 asection *item = tail;
5081 tail = PREV_SEC (item);
e780aef2 5082
99059e56
RM
5083 /* Push on head. */
5084 NEXT_SEC (item) = head;
5085 head = item;
5086 }
07d72278
DJ
5087
5088 while (head != NULL)
906e58ca
NC
5089 {
5090 asection *curr;
07d72278 5091 asection *next;
e780aef2
CL
5092 bfd_vma stub_group_start = head->output_offset;
5093 bfd_vma end_of_next;
906e58ca 5094
07d72278 5095 curr = head;
e780aef2 5096 while (NEXT_SEC (curr) != NULL)
8cd931b7 5097 {
e780aef2
CL
5098 next = NEXT_SEC (curr);
5099 end_of_next = next->output_offset + next->size;
5100 if (end_of_next - stub_group_start >= stub_group_size)
5101 /* End of NEXT is too far from start, so stop. */
8cd931b7 5102 break;
e780aef2
CL
5103 /* Add NEXT to the group. */
5104 curr = next;
8cd931b7 5105 }
906e58ca 5106
07d72278 5107 /* OK, the size from the start to the start of CURR is less
906e58ca 5108 than stub_group_size and thus can be handled by one stub
07d72278 5109 section. (Or the head section is itself larger than
906e58ca
NC
5110 stub_group_size, in which case we may be toast.)
5111 We should really be keeping track of the total size of
5112 stubs added here, as stubs contribute to the final output
7fb9f789 5113 section size. */
906e58ca
NC
5114 do
5115 {
07d72278 5116 next = NEXT_SEC (head);
906e58ca 5117 /* Set up this stub group. */
07d72278 5118 htab->stub_group[head->id].link_sec = curr;
906e58ca 5119 }
07d72278 5120 while (head != curr && (head = next) != NULL);
906e58ca
NC
5121
5122 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
5123 bytes after the stub section can be handled by it too. */
5124 if (!stubs_always_after_branch)
906e58ca 5125 {
e780aef2
CL
5126 stub_group_start = curr->output_offset + curr->size;
5127
8cd931b7 5128 while (next != NULL)
906e58ca 5129 {
e780aef2
CL
5130 end_of_next = next->output_offset + next->size;
5131 if (end_of_next - stub_group_start >= stub_group_size)
5132 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 5133 break;
e780aef2 5134 /* Add NEXT to the stub group. */
07d72278
DJ
5135 head = next;
5136 next = NEXT_SEC (head);
5137 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
5138 }
5139 }
07d72278 5140 head = next;
906e58ca
NC
5141 }
5142 }
07d72278 5143 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
5144
5145 free (htab->input_list);
5146#undef PREV_SEC
07d72278 5147#undef NEXT_SEC
906e58ca
NC
5148}
5149
48229727
JB
5150/* Comparison function for sorting/searching relocations relating to Cortex-A8
5151 erratum fix. */
5152
5153static int
5154a8_reloc_compare (const void *a, const void *b)
5155{
21d799b5
NC
5156 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5157 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
5158
5159 if (ra->from < rb->from)
5160 return -1;
5161 else if (ra->from > rb->from)
5162 return 1;
5163 else
5164 return 0;
5165}
5166
5167static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5168 const char *, char **);
5169
5170/* Helper function to scan code for sequences which might trigger the Cortex-A8
5171 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 5172 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
5173 otherwise. */
5174
81694485
NC
5175static bfd_boolean
5176cortex_a8_erratum_scan (bfd *input_bfd,
5177 struct bfd_link_info *info,
48229727
JB
5178 struct a8_erratum_fix **a8_fixes_p,
5179 unsigned int *num_a8_fixes_p,
5180 unsigned int *a8_fix_table_size_p,
5181 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
5182 unsigned int num_a8_relocs,
5183 unsigned prev_num_a8_fixes,
5184 bfd_boolean *stub_changed_p)
48229727
JB
5185{
5186 asection *section;
5187 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5188 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5189 unsigned int num_a8_fixes = *num_a8_fixes_p;
5190 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5191
4dfe6ac6
NC
5192 if (htab == NULL)
5193 return FALSE;
5194
48229727
JB
5195 for (section = input_bfd->sections;
5196 section != NULL;
5197 section = section->next)
5198 {
5199 bfd_byte *contents = NULL;
5200 struct _arm_elf_section_data *sec_data;
5201 unsigned int span;
5202 bfd_vma base_vma;
5203
5204 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
5205 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5206 || (section->flags & SEC_EXCLUDE) != 0
5207 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5208 || (section->output_section == bfd_abs_section_ptr))
5209 continue;
48229727
JB
5210
5211 base_vma = section->output_section->vma + section->output_offset;
5212
5213 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 5214 contents = elf_section_data (section)->this_hdr.contents;
48229727 5215 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
99059e56 5216 return TRUE;
48229727
JB
5217
5218 sec_data = elf32_arm_section_data (section);
5219
5220 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
5221 {
5222 unsigned int span_start = sec_data->map[span].vma;
5223 unsigned int span_end = (span == sec_data->mapcount - 1)
5224 ? section->size : sec_data->map[span + 1].vma;
5225 unsigned int i;
5226 char span_type = sec_data->map[span].type;
5227 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5228
5229 if (span_type != 't')
5230 continue;
5231
5232 /* Span is entirely within a single 4KB region: skip scanning. */
5233 if (((base_vma + span_start) & ~0xfff)
48229727 5234 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
5235 continue;
5236
5237 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5238
5239 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5240 * The branch target is in the same 4KB region as the
5241 first half of the branch.
5242 * The instruction before the branch is a 32-bit
5243 length non-branch instruction. */
5244 for (i = span_start; i < span_end;)
5245 {
5246 unsigned int insn = bfd_getl16 (&contents[i]);
5247 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
48229727
JB
5248 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5249
99059e56
RM
5250 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5251 insn_32bit = TRUE;
48229727
JB
5252
5253 if (insn_32bit)
99059e56
RM
5254 {
5255 /* Load the rest of the insn (in manual-friendly order). */
5256 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5257
5258 /* Encoding T4: B<c>.W. */
5259 is_b = (insn & 0xf800d000) == 0xf0009000;
5260 /* Encoding T1: BL<c>.W. */
5261 is_bl = (insn & 0xf800d000) == 0xf000d000;
5262 /* Encoding T2: BLX<c>.W. */
5263 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
5264 /* Encoding T3: B<c>.W (not permitted in IT block). */
5265 is_bcc = (insn & 0xf800d000) == 0xf0008000
5266 && (insn & 0x07f00000) != 0x03800000;
5267 }
5268
5269 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 5270
99059e56 5271 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
5272 && insn_32bit
5273 && is_32bit_branch
5274 && last_was_32bit
5275 && ! last_was_branch)
99059e56
RM
5276 {
5277 bfd_signed_vma offset = 0;
5278 bfd_boolean force_target_arm = FALSE;
48229727 5279 bfd_boolean force_target_thumb = FALSE;
99059e56
RM
5280 bfd_vma target;
5281 enum elf32_arm_stub_type stub_type = arm_stub_none;
5282 struct a8_erratum_reloc key, *found;
5283 bfd_boolean use_plt = FALSE;
48229727 5284
99059e56
RM
5285 key.from = base_vma + i;
5286 found = (struct a8_erratum_reloc *)
5287 bsearch (&key, a8_relocs, num_a8_relocs,
5288 sizeof (struct a8_erratum_reloc),
5289 &a8_reloc_compare);
48229727
JB
5290
5291 if (found)
5292 {
5293 char *error_message = NULL;
5294 struct elf_link_hash_entry *entry;
5295
5296 /* We don't care about the error returned from this
99059e56 5297 function, only if there is glue or not. */
48229727
JB
5298 entry = find_thumb_glue (info, found->sym_name,
5299 &error_message);
5300
5301 if (entry)
5302 found->non_a8_stub = TRUE;
5303
92750f34 5304 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 5305 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
5306 && found->hash->root.plt.offset != (bfd_vma) -1)
5307 use_plt = TRUE;
5308
5309 if (found->r_type == R_ARM_THM_CALL)
5310 {
35fc36a8
RS
5311 if (found->branch_type == ST_BRANCH_TO_ARM
5312 || use_plt)
92750f34
DJ
5313 force_target_arm = TRUE;
5314 else
5315 force_target_thumb = TRUE;
5316 }
48229727
JB
5317 }
5318
99059e56 5319 /* Check if we have an offending branch instruction. */
48229727
JB
5320
5321 if (found && found->non_a8_stub)
5322 /* We've already made a stub for this instruction, e.g.
5323 it's a long branch or a Thumb->ARM stub. Assume that
5324 stub will suffice to work around the A8 erratum (see
5325 setting of always_after_branch above). */
5326 ;
99059e56
RM
5327 else if (is_bcc)
5328 {
5329 offset = (insn & 0x7ff) << 1;
5330 offset |= (insn & 0x3f0000) >> 4;
5331 offset |= (insn & 0x2000) ? 0x40000 : 0;
5332 offset |= (insn & 0x800) ? 0x80000 : 0;
5333 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5334 if (offset & 0x100000)
5335 offset |= ~ ((bfd_signed_vma) 0xfffff);
5336 stub_type = arm_stub_a8_veneer_b_cond;
5337 }
5338 else if (is_b || is_bl || is_blx)
5339 {
5340 int s = (insn & 0x4000000) != 0;
5341 int j1 = (insn & 0x2000) != 0;
5342 int j2 = (insn & 0x800) != 0;
5343 int i1 = !(j1 ^ s);
5344 int i2 = !(j2 ^ s);
5345
5346 offset = (insn & 0x7ff) << 1;
5347 offset |= (insn & 0x3ff0000) >> 4;
5348 offset |= i2 << 22;
5349 offset |= i1 << 23;
5350 offset |= s << 24;
5351 if (offset & 0x1000000)
5352 offset |= ~ ((bfd_signed_vma) 0xffffff);
5353
5354 if (is_blx)
5355 offset &= ~ ((bfd_signed_vma) 3);
5356
5357 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5358 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5359 }
5360
5361 if (stub_type != arm_stub_none)
5362 {
5363 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
5364
5365 /* The original instruction is a BL, but the target is
99059e56 5366 an ARM instruction. If we were not making a stub,
48229727
JB
5367 the BL would have been converted to a BLX. Use the
5368 BLX stub instead in that case. */
5369 if (htab->use_blx && force_target_arm
5370 && stub_type == arm_stub_a8_veneer_bl)
5371 {
5372 stub_type = arm_stub_a8_veneer_blx;
5373 is_blx = TRUE;
5374 is_bl = FALSE;
5375 }
5376 /* Conversely, if the original instruction was
5377 BLX but the target is Thumb mode, use the BL
5378 stub. */
5379 else if (force_target_thumb
5380 && stub_type == arm_stub_a8_veneer_blx)
5381 {
5382 stub_type = arm_stub_a8_veneer_bl;
5383 is_blx = FALSE;
5384 is_bl = TRUE;
5385 }
5386
99059e56
RM
5387 if (is_blx)
5388 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 5389
99059e56
RM
5390 /* If we found a relocation, use the proper destination,
5391 not the offset in the (unrelocated) instruction.
48229727
JB
5392 Note this is always done if we switched the stub type
5393 above. */
99059e56
RM
5394 if (found)
5395 offset =
81694485 5396 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 5397
99059e56
RM
5398 /* If the stub will use a Thumb-mode branch to a
5399 PLT target, redirect it to the preceding Thumb
5400 entry point. */
5401 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5402 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 5403
99059e56 5404 target = pc_for_insn + offset;
48229727 5405
99059e56
RM
5406 /* The BLX stub is ARM-mode code. Adjust the offset to
5407 take the different PC value (+8 instead of +4) into
48229727 5408 account. */
99059e56
RM
5409 if (stub_type == arm_stub_a8_veneer_blx)
5410 offset += 4;
5411
5412 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5413 {
5414 char *stub_name = NULL;
5415
5416 if (num_a8_fixes == a8_fix_table_size)
5417 {
5418 a8_fix_table_size *= 2;
5419 a8_fixes = (struct a8_erratum_fix *)
5420 bfd_realloc (a8_fixes,
5421 sizeof (struct a8_erratum_fix)
5422 * a8_fix_table_size);
5423 }
48229727 5424
eb7c4339
NS
5425 if (num_a8_fixes < prev_num_a8_fixes)
5426 {
5427 /* If we're doing a subsequent scan,
5428 check if we've found the same fix as
5429 before, and try and reuse the stub
5430 name. */
5431 stub_name = a8_fixes[num_a8_fixes].stub_name;
5432 if ((a8_fixes[num_a8_fixes].section != section)
5433 || (a8_fixes[num_a8_fixes].offset != i))
5434 {
5435 free (stub_name);
5436 stub_name = NULL;
5437 *stub_changed_p = TRUE;
5438 }
5439 }
5440
5441 if (!stub_name)
5442 {
21d799b5 5443 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
5444 if (stub_name != NULL)
5445 sprintf (stub_name, "%x:%x", section->id, i);
5446 }
48229727 5447
99059e56
RM
5448 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5449 a8_fixes[num_a8_fixes].section = section;
5450 a8_fixes[num_a8_fixes].offset = i;
8d9d9490
TP
5451 a8_fixes[num_a8_fixes].target_offset =
5452 target - base_vma;
99059e56
RM
5453 a8_fixes[num_a8_fixes].orig_insn = insn;
5454 a8_fixes[num_a8_fixes].stub_name = stub_name;
5455 a8_fixes[num_a8_fixes].stub_type = stub_type;
5456 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 5457 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 5458
99059e56
RM
5459 num_a8_fixes++;
5460 }
5461 }
5462 }
48229727 5463
99059e56
RM
5464 i += insn_32bit ? 4 : 2;
5465 last_was_32bit = insn_32bit;
48229727 5466 last_was_branch = is_32bit_branch;
99059e56
RM
5467 }
5468 }
48229727
JB
5469
5470 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 5471 free (contents);
48229727 5472 }
fe33d2fa 5473
48229727
JB
5474 *a8_fixes_p = a8_fixes;
5475 *num_a8_fixes_p = num_a8_fixes;
5476 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 5477
81694485 5478 return FALSE;
48229727
JB
5479}
5480
b715f643
TP
5481/* Create or update a stub entry depending on whether the stub can already be
5482 found in HTAB. The stub is identified by:
5483 - its type STUB_TYPE
5484 - its source branch (note that several can share the same stub) whose
5485 section and relocation (if any) are given by SECTION and IRELA
5486 respectively
5487 - its target symbol whose input section, hash, name, value and branch type
5488 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5489 respectively
5490
5491 If found, the value of the stub's target symbol is updated from SYM_VALUE
5492 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5493 TRUE and the stub entry is initialized.
5494
0955507f
TP
5495 Returns the stub that was created or updated, or NULL if an error
5496 occurred. */
b715f643 5497
0955507f 5498static struct elf32_arm_stub_hash_entry *
b715f643
TP
5499elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5500 enum elf32_arm_stub_type stub_type, asection *section,
5501 Elf_Internal_Rela *irela, asection *sym_sec,
5502 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5503 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5504 bfd_boolean *new_stub)
5505{
5506 const asection *id_sec;
5507 char *stub_name;
5508 struct elf32_arm_stub_hash_entry *stub_entry;
5509 unsigned int r_type;
4f4faa4d 5510 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
b715f643
TP
5511
5512 BFD_ASSERT (stub_type != arm_stub_none);
5513 *new_stub = FALSE;
5514
4f4faa4d
TP
5515 if (sym_claimed)
5516 stub_name = sym_name;
5517 else
5518 {
5519 BFD_ASSERT (irela);
5520 BFD_ASSERT (section);
c2abbbeb 5521 BFD_ASSERT (section->id <= htab->top_id);
b715f643 5522
4f4faa4d
TP
5523 /* Support for grouping stub sections. */
5524 id_sec = htab->stub_group[section->id].link_sec;
b715f643 5525
4f4faa4d
TP
5526 /* Get the name of this stub. */
5527 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5528 stub_type);
5529 if (!stub_name)
0955507f 5530 return NULL;
4f4faa4d 5531 }
b715f643
TP
5532
5533 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5534 FALSE);
5535 /* The proper stub has already been created, just update its value. */
5536 if (stub_entry != NULL)
5537 {
4f4faa4d
TP
5538 if (!sym_claimed)
5539 free (stub_name);
b715f643 5540 stub_entry->target_value = sym_value;
0955507f 5541 return stub_entry;
b715f643
TP
5542 }
5543
daa4adae 5544 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
b715f643
TP
5545 if (stub_entry == NULL)
5546 {
4f4faa4d
TP
5547 if (!sym_claimed)
5548 free (stub_name);
0955507f 5549 return NULL;
b715f643
TP
5550 }
5551
5552 stub_entry->target_value = sym_value;
5553 stub_entry->target_section = sym_sec;
5554 stub_entry->stub_type = stub_type;
5555 stub_entry->h = hash;
5556 stub_entry->branch_type = branch_type;
5557
4f4faa4d
TP
5558 if (sym_claimed)
5559 stub_entry->output_name = sym_name;
5560 else
b715f643 5561 {
4f4faa4d
TP
5562 if (sym_name == NULL)
5563 sym_name = "unnamed";
5564 stub_entry->output_name = (char *)
5565 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5566 + strlen (sym_name));
5567 if (stub_entry->output_name == NULL)
5568 {
5569 free (stub_name);
0955507f 5570 return NULL;
4f4faa4d 5571 }
b715f643 5572
4f4faa4d
TP
5573 /* For historical reasons, use the existing names for ARM-to-Thumb and
5574 Thumb-to-ARM stubs. */
5575 r_type = ELF32_R_TYPE (irela->r_info);
5576 if ((r_type == (unsigned int) R_ARM_THM_CALL
5577 || r_type == (unsigned int) R_ARM_THM_JUMP24
5578 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5579 && branch_type == ST_BRANCH_TO_ARM)
5580 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5581 else if ((r_type == (unsigned int) R_ARM_CALL
5582 || r_type == (unsigned int) R_ARM_JUMP24)
5583 && branch_type == ST_BRANCH_TO_THUMB)
5584 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5585 else
5586 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5587 }
b715f643
TP
5588
5589 *new_stub = TRUE;
0955507f 5590 return stub_entry;
b715f643
TP
5591}
5592
4ba2ef8f
TP
5593/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5594 gateway veneer to transition from non secure to secure state and create them
5595 accordingly.
5596
5597 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5598 defines the conditions that govern Secure Gateway veneer creation for a
5599 given symbol <SYM> as follows:
5600 - it has function type
5601 - it has non local binding
5602 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5603 same type, binding and value as <SYM> (called normal symbol).
5604 An entry function can handle secure state transition itself in which case
5605 its special symbol would have a different value from the normal symbol.
5606
5607 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5608 entry mapping while HTAB gives the name to hash entry mapping.
0955507f
TP
5609 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5610 created.
4ba2ef8f 5611
0955507f 5612 The return value gives whether a stub failed to be allocated. */
4ba2ef8f
TP
5613
5614static bfd_boolean
5615cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5616 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
0955507f 5617 int *cmse_stub_created)
4ba2ef8f
TP
5618{
5619 const struct elf_backend_data *bed;
5620 Elf_Internal_Shdr *symtab_hdr;
5621 unsigned i, j, sym_count, ext_start;
5622 Elf_Internal_Sym *cmse_sym, *local_syms;
5623 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5624 enum arm_st_branch_type branch_type;
5625 char *sym_name, *lsym_name;
5626 bfd_vma sym_value;
5627 asection *section;
0955507f
TP
5628 struct elf32_arm_stub_hash_entry *stub_entry;
5629 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
4ba2ef8f
TP
5630
5631 bed = get_elf_backend_data (input_bfd);
5632 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5633 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5634 ext_start = symtab_hdr->sh_info;
5635 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5636 && out_attr[Tag_CPU_arch_profile].i == 'M');
5637
5638 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5639 if (local_syms == NULL)
5640 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5641 symtab_hdr->sh_info, 0, NULL, NULL,
5642 NULL);
5643 if (symtab_hdr->sh_info && local_syms == NULL)
5644 return FALSE;
5645
5646 /* Scan symbols. */
5647 for (i = 0; i < sym_count; i++)
5648 {
5649 cmse_invalid = FALSE;
5650
5651 if (i < ext_start)
5652 {
5653 cmse_sym = &local_syms[i];
5654 /* Not a special symbol. */
5655 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5656 continue;
5657 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5658 symtab_hdr->sh_link,
5659 cmse_sym->st_name);
5660 /* Special symbol with local binding. */
5661 cmse_invalid = TRUE;
5662 }
5663 else
5664 {
5665 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5666 sym_name = (char *) cmse_hash->root.root.root.string;
5667
5668 /* Not a special symbol. */
5669 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5670 continue;
5671
5672 /* Special symbol has incorrect binding or type. */
5673 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5674 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5675 || cmse_hash->root.type != STT_FUNC)
5676 cmse_invalid = TRUE;
5677 }
5678
5679 if (!is_v8m)
5680 {
4eca0228
AM
5681 _bfd_error_handler (_("%B: Special symbol `%s' only allowed for "
5682 "ARMv8-M architecture or later."),
5683 input_bfd, sym_name);
4ba2ef8f
TP
5684 is_v8m = TRUE; /* Avoid multiple warning. */
5685 ret = FALSE;
5686 }
5687
5688 if (cmse_invalid)
5689 {
4eca0228
AM
5690 _bfd_error_handler (_("%B: invalid special symbol `%s'."),
5691 input_bfd, sym_name);
5692 _bfd_error_handler (_("It must be a global or weak function "
5693 "symbol."));
4ba2ef8f
TP
5694 ret = FALSE;
5695 if (i < ext_start)
5696 continue;
5697 }
5698
5699 sym_name += strlen (CMSE_PREFIX);
5700 hash = (struct elf32_arm_link_hash_entry *)
5701 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5702
5703 /* No associated normal symbol or it is neither global nor weak. */
5704 if (!hash
5705 || (hash->root.root.type != bfd_link_hash_defined
5706 && hash->root.root.type != bfd_link_hash_defweak)
5707 || hash->root.type != STT_FUNC)
5708 {
5709 /* Initialize here to avoid warning about use of possibly
5710 uninitialized variable. */
5711 j = 0;
5712
5713 if (!hash)
5714 {
5715 /* Searching for a normal symbol with local binding. */
5716 for (; j < ext_start; j++)
5717 {
5718 lsym_name =
5719 bfd_elf_string_from_elf_section (input_bfd,
5720 symtab_hdr->sh_link,
5721 local_syms[j].st_name);
5722 if (!strcmp (sym_name, lsym_name))
5723 break;
5724 }
5725 }
5726
5727 if (hash || j < ext_start)
5728 {
4eca0228 5729 _bfd_error_handler
4ba2ef8f 5730 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
4eca0228 5731 _bfd_error_handler
4ba2ef8f
TP
5732 (_("It must be a global or weak function symbol."));
5733 }
5734 else
4eca0228 5735 _bfd_error_handler
4ba2ef8f
TP
5736 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5737 ret = FALSE;
5738 if (!hash)
5739 continue;
5740 }
5741
5742 sym_value = hash->root.root.u.def.value;
5743 section = hash->root.root.u.def.section;
5744
5745 if (cmse_hash->root.root.u.def.section != section)
5746 {
4eca0228 5747 _bfd_error_handler
4ba2ef8f
TP
5748 (_("%B: `%s' and its special symbol are in different sections."),
5749 input_bfd, sym_name);
5750 ret = FALSE;
5751 }
5752 if (cmse_hash->root.root.u.def.value != sym_value)
5753 continue; /* Ignore: could be an entry function starting with SG. */
5754
5755 /* If this section is a link-once section that will be discarded, then
5756 don't create any stubs. */
5757 if (section->output_section == NULL)
5758 {
4eca0228 5759 _bfd_error_handler
4ba2ef8f
TP
5760 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5761 continue;
5762 }
5763
5764 if (hash->root.size == 0)
5765 {
4eca0228 5766 _bfd_error_handler
4ba2ef8f
TP
5767 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5768 ret = FALSE;
5769 }
5770
5771 if (!ret)
5772 continue;
5773 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
0955507f 5774 stub_entry
4ba2ef8f
TP
5775 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5776 NULL, NULL, section, hash, sym_name,
5777 sym_value, branch_type, &new_stub);
5778
0955507f 5779 if (stub_entry == NULL)
4ba2ef8f
TP
5780 ret = FALSE;
5781 else
5782 {
5783 BFD_ASSERT (new_stub);
0955507f 5784 (*cmse_stub_created)++;
4ba2ef8f
TP
5785 }
5786 }
5787
5788 if (!symtab_hdr->contents)
5789 free (local_syms);
5790 return ret;
5791}
5792
0955507f
TP
5793/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5794 code entry function, ie can be called from non secure code without using a
5795 veneer. */
5796
5797static bfd_boolean
5798cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5799{
42484486 5800 bfd_byte contents[4];
0955507f
TP
5801 uint32_t first_insn;
5802 asection *section;
5803 file_ptr offset;
5804 bfd *abfd;
5805
5806 /* Defined symbol of function type. */
5807 if (hash->root.root.type != bfd_link_hash_defined
5808 && hash->root.root.type != bfd_link_hash_defweak)
5809 return FALSE;
5810 if (hash->root.type != STT_FUNC)
5811 return FALSE;
5812
5813 /* Read first instruction. */
5814 section = hash->root.root.u.def.section;
5815 abfd = section->owner;
5816 offset = hash->root.root.u.def.value - section->vma;
42484486
TP
5817 if (!bfd_get_section_contents (abfd, section, contents, offset,
5818 sizeof (contents)))
0955507f
TP
5819 return FALSE;
5820
42484486
TP
5821 first_insn = bfd_get_32 (abfd, contents);
5822
5823 /* Starts by SG instruction. */
0955507f
TP
5824 return first_insn == 0xe97fe97f;
5825}
5826
5827/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5828 secure gateway veneers (ie. the veneers was not in the input import library)
5829 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5830
5831static bfd_boolean
5832arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5833{
5834 struct elf32_arm_stub_hash_entry *stub_entry;
5835 struct bfd_link_info *info;
5836
5837 /* Massage our args to the form they really have. */
5838 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5839 info = (struct bfd_link_info *) gen_info;
5840
5841 if (info->out_implib_bfd)
5842 return TRUE;
5843
5844 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5845 return TRUE;
5846
5847 if (stub_entry->stub_offset == (bfd_vma) -1)
4eca0228 5848 _bfd_error_handler (" %s", stub_entry->output_name);
0955507f
TP
5849
5850 return TRUE;
5851}
5852
5853/* Set offset of each secure gateway veneers so that its address remain
5854 identical to the one in the input import library referred by
5855 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5856 (present in input import library but absent from the executable being
5857 linked) or if new veneers appeared and there is no output import library
5858 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5859 number of secure gateway veneers found in the input import library.
5860
5861 The function returns whether an error occurred. If no error occurred,
5862 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5863 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5864 veneer observed set for new veneers to be layed out after. */
5865
5866static bfd_boolean
5867set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5868 struct elf32_arm_link_hash_table *htab,
5869 int *cmse_stub_created)
5870{
5871 long symsize;
5872 char *sym_name;
5873 flagword flags;
5874 long i, symcount;
5875 bfd *in_implib_bfd;
5876 asection *stub_out_sec;
5877 bfd_boolean ret = TRUE;
5878 Elf_Internal_Sym *intsym;
5879 const char *out_sec_name;
5880 bfd_size_type cmse_stub_size;
5881 asymbol **sympp = NULL, *sym;
5882 struct elf32_arm_link_hash_entry *hash;
5883 const insn_sequence *cmse_stub_template;
5884 struct elf32_arm_stub_hash_entry *stub_entry;
5885 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5886 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5887 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5888
5889 /* No input secure gateway import library. */
5890 if (!htab->in_implib_bfd)
5891 return TRUE;
5892
5893 in_implib_bfd = htab->in_implib_bfd;
5894 if (!htab->cmse_implib)
5895 {
4eca0228
AM
5896 _bfd_error_handler (_("%B: --in-implib only supported for Secure "
5897 "Gateway import libraries."), in_implib_bfd);
0955507f
TP
5898 return FALSE;
5899 }
5900
5901 /* Get symbol table size. */
5902 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5903 if (symsize < 0)
5904 return FALSE;
5905
5906 /* Read in the input secure gateway import library's symbol table. */
5907 sympp = (asymbol **) xmalloc (symsize);
5908 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5909 if (symcount < 0)
5910 {
5911 ret = FALSE;
5912 goto free_sym_buf;
5913 }
5914
5915 htab->new_cmse_stub_offset = 0;
5916 cmse_stub_size =
5917 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5918 &cmse_stub_template,
5919 &cmse_stub_template_size);
5920 out_sec_name =
5921 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5922 stub_out_sec =
5923 bfd_get_section_by_name (htab->obfd, out_sec_name);
5924 if (stub_out_sec != NULL)
5925 cmse_stub_sec_vma = stub_out_sec->vma;
5926
5927 /* Set addresses of veneers mentionned in input secure gateway import
5928 library's symbol table. */
5929 for (i = 0; i < symcount; i++)
5930 {
5931 sym = sympp[i];
5932 flags = sym->flags;
5933 sym_name = (char *) bfd_asymbol_name (sym);
5934 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5935
5936 if (sym->section != bfd_abs_section_ptr
5937 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5938 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5939 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5940 != ST_BRANCH_TO_THUMB))
5941 {
4eca0228
AM
5942 _bfd_error_handler (_("%B: invalid import library entry: `%s'."),
5943 in_implib_bfd, sym_name);
5944 _bfd_error_handler (_("Symbol should be absolute, global and "
5945 "refer to Thumb functions."));
0955507f
TP
5946 ret = FALSE;
5947 continue;
5948 }
5949
5950 veneer_value = bfd_asymbol_value (sym);
5951 stub_offset = veneer_value - cmse_stub_sec_vma;
5952 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5953 FALSE, FALSE);
5954 hash = (struct elf32_arm_link_hash_entry *)
5955 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5956
5957 /* Stub entry should have been created by cmse_scan or the symbol be of
5958 a secure function callable from non secure code. */
5959 if (!stub_entry && !hash)
5960 {
5961 bfd_boolean new_stub;
5962
4eca0228 5963 _bfd_error_handler
0955507f
TP
5964 (_("Entry function `%s' disappeared from secure code."), sym_name);
5965 hash = (struct elf32_arm_link_hash_entry *)
5966 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5967 stub_entry
5968 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5969 NULL, NULL, bfd_abs_section_ptr, hash,
5970 sym_name, veneer_value,
5971 ST_BRANCH_TO_THUMB, &new_stub);
5972 if (stub_entry == NULL)
5973 ret = FALSE;
5974 else
5975 {
5976 BFD_ASSERT (new_stub);
5977 new_cmse_stubs_created++;
5978 (*cmse_stub_created)++;
5979 }
5980 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5981 stub_entry->stub_offset = stub_offset;
5982 }
5983 /* Symbol found is not callable from non secure code. */
5984 else if (!stub_entry)
5985 {
5986 if (!cmse_entry_fct_p (hash))
5987 {
4eca0228
AM
5988 _bfd_error_handler (_("`%s' refers to a non entry function."),
5989 sym_name);
0955507f
TP
5990 ret = FALSE;
5991 }
5992 continue;
5993 }
5994 else
5995 {
5996 /* Only stubs for SG veneers should have been created. */
5997 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5998
5999 /* Check visibility hasn't changed. */
6000 if (!!(flags & BSF_GLOBAL)
6001 != (hash->root.root.type == bfd_link_hash_defined))
4eca0228 6002 _bfd_error_handler
0955507f
TP
6003 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
6004 sym_name);
6005
6006 stub_entry->stub_offset = stub_offset;
6007 }
6008
6009 /* Size should match that of a SG veneer. */
6010 if (intsym->st_size != cmse_stub_size)
6011 {
4eca0228
AM
6012 _bfd_error_handler (_("%B: incorrect size for symbol `%s'."),
6013 in_implib_bfd, sym_name);
0955507f
TP
6014 ret = FALSE;
6015 }
6016
6017 /* Previous veneer address is before current SG veneer section. */
6018 if (veneer_value < cmse_stub_sec_vma)
6019 {
6020 /* Avoid offset underflow. */
6021 if (stub_entry)
6022 stub_entry->stub_offset = 0;
6023 stub_offset = 0;
6024 ret = FALSE;
6025 }
6026
6027 /* Complain if stub offset not a multiple of stub size. */
6028 if (stub_offset % cmse_stub_size)
6029 {
4eca0228 6030 _bfd_error_handler
0955507f
TP
6031 (_("Offset of veneer for entry function `%s' not a multiple of "
6032 "its size."), sym_name);
6033 ret = FALSE;
6034 }
6035
6036 if (!ret)
6037 continue;
6038
6039 new_cmse_stubs_created--;
6040 if (veneer_value < cmse_stub_array_start)
6041 cmse_stub_array_start = veneer_value;
6042 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6043 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6044 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6045 }
6046
6047 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6048 {
6049 BFD_ASSERT (new_cmse_stubs_created > 0);
4eca0228 6050 _bfd_error_handler
0955507f
TP
6051 (_("new entry function(s) introduced but no output import library "
6052 "specified:"));
6053 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6054 }
6055
6056 if (cmse_stub_array_start != cmse_stub_sec_vma)
6057 {
4eca0228 6058 _bfd_error_handler
0955507f
TP
6059 (_("Start address of `%s' is different from previous link."),
6060 out_sec_name);
6061 ret = FALSE;
6062 }
6063
6064free_sym_buf:
6065 free (sympp);
6066 return ret;
6067}
6068
906e58ca
NC
6069/* Determine and set the size of the stub section for a final link.
6070
6071 The basic idea here is to examine all the relocations looking for
6072 PC-relative calls to a target that is unreachable with a "bl"
6073 instruction. */
6074
6075bfd_boolean
6076elf32_arm_size_stubs (bfd *output_bfd,
6077 bfd *stub_bfd,
6078 struct bfd_link_info *info,
6079 bfd_signed_vma group_size,
7a89b94e 6080 asection * (*add_stub_section) (const char *, asection *,
6bde4c52 6081 asection *,
7a89b94e 6082 unsigned int),
906e58ca
NC
6083 void (*layout_sections_again) (void))
6084{
0955507f 6085 bfd_boolean ret = TRUE;
4ba2ef8f 6086 obj_attribute *out_attr;
0955507f 6087 int cmse_stub_created = 0;
906e58ca 6088 bfd_size_type stub_group_size;
4ba2ef8f 6089 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
906e58ca 6090 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 6091 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 6092 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
6093 struct a8_erratum_reloc *a8_relocs = NULL;
6094 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6095
4dfe6ac6
NC
6096 if (htab == NULL)
6097 return FALSE;
6098
48229727
JB
6099 if (htab->fix_cortex_a8)
6100 {
21d799b5 6101 a8_fixes = (struct a8_erratum_fix *)
99059e56 6102 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 6103 a8_relocs = (struct a8_erratum_reloc *)
99059e56 6104 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 6105 }
906e58ca
NC
6106
6107 /* Propagate mach to stub bfd, because it may not have been
6108 finalized when we created stub_bfd. */
6109 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6110 bfd_get_mach (output_bfd));
6111
6112 /* Stash our params away. */
6113 htab->stub_bfd = stub_bfd;
6114 htab->add_stub_section = add_stub_section;
6115 htab->layout_sections_again = layout_sections_again;
07d72278 6116 stubs_always_after_branch = group_size < 0;
48229727 6117
4ba2ef8f
TP
6118 out_attr = elf_known_obj_attributes_proc (output_bfd);
6119 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
0955507f 6120
48229727
JB
6121 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6122 as the first half of a 32-bit branch straddling two 4K pages. This is a
6123 crude way of enforcing that. */
6124 if (htab->fix_cortex_a8)
6125 stubs_always_after_branch = 1;
6126
906e58ca
NC
6127 if (group_size < 0)
6128 stub_group_size = -group_size;
6129 else
6130 stub_group_size = group_size;
6131
6132 if (stub_group_size == 1)
6133 {
6134 /* Default values. */
6135 /* Thumb branch range is +-4MB has to be used as the default
6136 maximum size (a given section can contain both ARM and Thumb
6137 code, so the worst case has to be taken into account).
6138
6139 This value is 24K less than that, which allows for 2025
6140 12-byte stubs. If we exceed that, then we will fail to link.
6141 The user will have to relink with an explicit group size
6142 option. */
6143 stub_group_size = 4170000;
6144 }
6145
07d72278 6146 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 6147
3ae046cc
NS
6148 /* If we're applying the cortex A8 fix, we need to determine the
6149 program header size now, because we cannot change it later --
6150 that could alter section placements. Notice the A8 erratum fix
6151 ends up requiring the section addresses to remain unchanged
6152 modulo the page size. That's something we cannot represent
6153 inside BFD, and we don't want to force the section alignment to
6154 be the page size. */
6155 if (htab->fix_cortex_a8)
6156 (*htab->layout_sections_again) ();
6157
906e58ca
NC
6158 while (1)
6159 {
6160 bfd *input_bfd;
6161 unsigned int bfd_indx;
6162 asection *stub_sec;
d7c5bd02 6163 enum elf32_arm_stub_type stub_type;
eb7c4339
NS
6164 bfd_boolean stub_changed = FALSE;
6165 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 6166
48229727 6167 num_a8_fixes = 0;
906e58ca
NC
6168 for (input_bfd = info->input_bfds, bfd_indx = 0;
6169 input_bfd != NULL;
c72f2fb2 6170 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
6171 {
6172 Elf_Internal_Shdr *symtab_hdr;
6173 asection *section;
6174 Elf_Internal_Sym *local_syms = NULL;
6175
99059e56
RM
6176 if (!is_arm_elf (input_bfd))
6177 continue;
adbcc655 6178
48229727
JB
6179 num_a8_relocs = 0;
6180
906e58ca
NC
6181 /* We'll need the symbol table in a second. */
6182 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6183 if (symtab_hdr->sh_info == 0)
6184 continue;
6185
4ba2ef8f
TP
6186 /* Limit scan of symbols to object file whose profile is
6187 Microcontroller to not hinder performance in the general case. */
6188 if (m_profile && first_veneer_scan)
6189 {
6190 struct elf_link_hash_entry **sym_hashes;
6191
6192 sym_hashes = elf_sym_hashes (input_bfd);
6193 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
0955507f 6194 &cmse_stub_created))
4ba2ef8f 6195 goto error_ret_free_local;
0955507f
TP
6196
6197 if (cmse_stub_created != 0)
6198 stub_changed = TRUE;
4ba2ef8f
TP
6199 }
6200
906e58ca
NC
6201 /* Walk over each section attached to the input bfd. */
6202 for (section = input_bfd->sections;
6203 section != NULL;
6204 section = section->next)
6205 {
6206 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6207
6208 /* If there aren't any relocs, then there's nothing more
6209 to do. */
6210 if ((section->flags & SEC_RELOC) == 0
6211 || section->reloc_count == 0
6212 || (section->flags & SEC_CODE) == 0)
6213 continue;
6214
6215 /* If this section is a link-once section that will be
6216 discarded, then don't create any stubs. */
6217 if (section->output_section == NULL
6218 || section->output_section->owner != output_bfd)
6219 continue;
6220
6221 /* Get the relocs. */
6222 internal_relocs
6223 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6224 NULL, info->keep_memory);
6225 if (internal_relocs == NULL)
6226 goto error_ret_free_local;
6227
6228 /* Now examine each relocation. */
6229 irela = internal_relocs;
6230 irelaend = irela + section->reloc_count;
6231 for (; irela < irelaend; irela++)
6232 {
6233 unsigned int r_type, r_indx;
906e58ca
NC
6234 asection *sym_sec;
6235 bfd_vma sym_value;
6236 bfd_vma destination;
6237 struct elf32_arm_link_hash_entry *hash;
7413f23f 6238 const char *sym_name;
34e77a92 6239 unsigned char st_type;
35fc36a8 6240 enum arm_st_branch_type branch_type;
48229727 6241 bfd_boolean created_stub = FALSE;
906e58ca
NC
6242
6243 r_type = ELF32_R_TYPE (irela->r_info);
6244 r_indx = ELF32_R_SYM (irela->r_info);
6245
6246 if (r_type >= (unsigned int) R_ARM_max)
6247 {
6248 bfd_set_error (bfd_error_bad_value);
6249 error_ret_free_internal:
6250 if (elf_section_data (section)->relocs == NULL)
6251 free (internal_relocs);
15dd01b1
TP
6252 /* Fall through. */
6253 error_ret_free_local:
6254 if (local_syms != NULL
6255 && (symtab_hdr->contents
6256 != (unsigned char *) local_syms))
6257 free (local_syms);
6258 return FALSE;
906e58ca 6259 }
b38cadfb 6260
0855e32b
NS
6261 hash = NULL;
6262 if (r_indx >= symtab_hdr->sh_info)
6263 hash = elf32_arm_hash_entry
6264 (elf_sym_hashes (input_bfd)
6265 [r_indx - symtab_hdr->sh_info]);
b38cadfb 6266
0855e32b
NS
6267 /* Only look for stubs on branch instructions, or
6268 non-relaxed TLSCALL */
906e58ca 6269 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
6270 && (r_type != (unsigned int) R_ARM_THM_CALL)
6271 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
6272 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6273 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 6274 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
6275 && (r_type != (unsigned int) R_ARM_PLT32)
6276 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6277 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6278 && r_type == elf32_arm_tls_transition
6279 (info, r_type, &hash->root)
6280 && ((hash ? hash->tls_type
6281 : (elf32_arm_local_got_tls_type
6282 (input_bfd)[r_indx]))
6283 & GOT_TLS_GDESC) != 0))
906e58ca
NC
6284 continue;
6285
6286 /* Now determine the call target, its name, value,
6287 section. */
6288 sym_sec = NULL;
6289 sym_value = 0;
6290 destination = 0;
7413f23f 6291 sym_name = NULL;
b38cadfb 6292
0855e32b
NS
6293 if (r_type == (unsigned int) R_ARM_TLS_CALL
6294 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6295 {
6296 /* A non-relaxed TLS call. The target is the
6297 plt-resident trampoline and nothing to do
6298 with the symbol. */
6299 BFD_ASSERT (htab->tls_trampoline > 0);
6300 sym_sec = htab->root.splt;
6301 sym_value = htab->tls_trampoline;
6302 hash = 0;
34e77a92 6303 st_type = STT_FUNC;
35fc36a8 6304 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
6305 }
6306 else if (!hash)
906e58ca
NC
6307 {
6308 /* It's a local symbol. */
6309 Elf_Internal_Sym *sym;
906e58ca
NC
6310
6311 if (local_syms == NULL)
6312 {
6313 local_syms
6314 = (Elf_Internal_Sym *) symtab_hdr->contents;
6315 if (local_syms == NULL)
6316 local_syms
6317 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6318 symtab_hdr->sh_info, 0,
6319 NULL, NULL, NULL);
6320 if (local_syms == NULL)
6321 goto error_ret_free_internal;
6322 }
6323
6324 sym = local_syms + r_indx;
f6d250ce
TS
6325 if (sym->st_shndx == SHN_UNDEF)
6326 sym_sec = bfd_und_section_ptr;
6327 else if (sym->st_shndx == SHN_ABS)
6328 sym_sec = bfd_abs_section_ptr;
6329 else if (sym->st_shndx == SHN_COMMON)
6330 sym_sec = bfd_com_section_ptr;
6331 else
6332 sym_sec =
6333 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6334
ffcb4889
NS
6335 if (!sym_sec)
6336 /* This is an undefined symbol. It can never
6a631e86 6337 be resolved. */
ffcb4889 6338 continue;
fe33d2fa 6339
906e58ca
NC
6340 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6341 sym_value = sym->st_value;
6342 destination = (sym_value + irela->r_addend
6343 + sym_sec->output_offset
6344 + sym_sec->output_section->vma);
34e77a92 6345 st_type = ELF_ST_TYPE (sym->st_info);
39d911fc
TP
6346 branch_type =
6347 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
7413f23f
DJ
6348 sym_name
6349 = bfd_elf_string_from_elf_section (input_bfd,
6350 symtab_hdr->sh_link,
6351 sym->st_name);
906e58ca
NC
6352 }
6353 else
6354 {
6355 /* It's an external symbol. */
906e58ca
NC
6356 while (hash->root.root.type == bfd_link_hash_indirect
6357 || hash->root.root.type == bfd_link_hash_warning)
6358 hash = ((struct elf32_arm_link_hash_entry *)
6359 hash->root.root.u.i.link);
6360
6361 if (hash->root.root.type == bfd_link_hash_defined
6362 || hash->root.root.type == bfd_link_hash_defweak)
6363 {
6364 sym_sec = hash->root.root.u.def.section;
6365 sym_value = hash->root.root.u.def.value;
022f8312
CL
6366
6367 struct elf32_arm_link_hash_table *globals =
6368 elf32_arm_hash_table (info);
6369
6370 /* For a destination in a shared library,
6371 use the PLT stub as target address to
6372 decide whether a branch stub is
6373 needed. */
4dfe6ac6 6374 if (globals != NULL
362d30a1 6375 && globals->root.splt != NULL
4dfe6ac6 6376 && hash != NULL
022f8312
CL
6377 && hash->root.plt.offset != (bfd_vma) -1)
6378 {
362d30a1 6379 sym_sec = globals->root.splt;
022f8312
CL
6380 sym_value = hash->root.plt.offset;
6381 if (sym_sec->output_section != NULL)
6382 destination = (sym_value
6383 + sym_sec->output_offset
6384 + sym_sec->output_section->vma);
6385 }
6386 else if (sym_sec->output_section != NULL)
906e58ca
NC
6387 destination = (sym_value + irela->r_addend
6388 + sym_sec->output_offset
6389 + sym_sec->output_section->vma);
6390 }
69c5861e
CL
6391 else if ((hash->root.root.type == bfd_link_hash_undefined)
6392 || (hash->root.root.type == bfd_link_hash_undefweak))
6393 {
6394 /* For a shared library, use the PLT stub as
6395 target address to decide whether a long
6396 branch stub is needed.
6397 For absolute code, they cannot be handled. */
6398 struct elf32_arm_link_hash_table *globals =
6399 elf32_arm_hash_table (info);
6400
4dfe6ac6 6401 if (globals != NULL
362d30a1 6402 && globals->root.splt != NULL
4dfe6ac6 6403 && hash != NULL
69c5861e
CL
6404 && hash->root.plt.offset != (bfd_vma) -1)
6405 {
362d30a1 6406 sym_sec = globals->root.splt;
69c5861e
CL
6407 sym_value = hash->root.plt.offset;
6408 if (sym_sec->output_section != NULL)
6409 destination = (sym_value
6410 + sym_sec->output_offset
6411 + sym_sec->output_section->vma);
6412 }
6413 else
6414 continue;
6415 }
906e58ca
NC
6416 else
6417 {
6418 bfd_set_error (bfd_error_bad_value);
6419 goto error_ret_free_internal;
6420 }
34e77a92 6421 st_type = hash->root.type;
39d911fc
TP
6422 branch_type =
6423 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
7413f23f 6424 sym_name = hash->root.root.root.string;
906e58ca
NC
6425 }
6426
48229727 6427 do
7413f23f 6428 {
b715f643 6429 bfd_boolean new_stub;
0955507f 6430 struct elf32_arm_stub_hash_entry *stub_entry;
b715f643 6431
48229727
JB
6432 /* Determine what (if any) linker stub is needed. */
6433 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
6434 st_type, &branch_type,
6435 hash, destination, sym_sec,
48229727
JB
6436 input_bfd, sym_name);
6437 if (stub_type == arm_stub_none)
6438 break;
6439
48229727
JB
6440 /* We've either created a stub for this reloc already,
6441 or we are about to. */
0955507f 6442 stub_entry =
b715f643
TP
6443 elf32_arm_create_stub (htab, stub_type, section, irela,
6444 sym_sec, hash,
6445 (char *) sym_name, sym_value,
6446 branch_type, &new_stub);
7413f23f 6447
0955507f 6448 created_stub = stub_entry != NULL;
b715f643
TP
6449 if (!created_stub)
6450 goto error_ret_free_internal;
6451 else if (!new_stub)
6452 break;
99059e56 6453 else
b715f643 6454 stub_changed = TRUE;
99059e56
RM
6455 }
6456 while (0);
6457
6458 /* Look for relocations which might trigger Cortex-A8
6459 erratum. */
6460 if (htab->fix_cortex_a8
6461 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6462 || r_type == (unsigned int) R_ARM_THM_JUMP19
6463 || r_type == (unsigned int) R_ARM_THM_CALL
6464 || r_type == (unsigned int) R_ARM_THM_XPC22))
6465 {
6466 bfd_vma from = section->output_section->vma
6467 + section->output_offset
6468 + irela->r_offset;
6469
6470 if ((from & 0xfff) == 0xffe)
6471 {
6472 /* Found a candidate. Note we haven't checked the
6473 destination is within 4K here: if we do so (and
6474 don't create an entry in a8_relocs) we can't tell
6475 that a branch should have been relocated when
6476 scanning later. */
6477 if (num_a8_relocs == a8_reloc_table_size)
6478 {
6479 a8_reloc_table_size *= 2;
6480 a8_relocs = (struct a8_erratum_reloc *)
6481 bfd_realloc (a8_relocs,
6482 sizeof (struct a8_erratum_reloc)
6483 * a8_reloc_table_size);
6484 }
6485
6486 a8_relocs[num_a8_relocs].from = from;
6487 a8_relocs[num_a8_relocs].destination = destination;
6488 a8_relocs[num_a8_relocs].r_type = r_type;
6489 a8_relocs[num_a8_relocs].branch_type = branch_type;
6490 a8_relocs[num_a8_relocs].sym_name = sym_name;
6491 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6492 a8_relocs[num_a8_relocs].hash = hash;
6493
6494 num_a8_relocs++;
6495 }
6496 }
906e58ca
NC
6497 }
6498
99059e56
RM
6499 /* We're done with the internal relocs, free them. */
6500 if (elf_section_data (section)->relocs == NULL)
6501 free (internal_relocs);
6502 }
48229727 6503
99059e56 6504 if (htab->fix_cortex_a8)
48229727 6505 {
99059e56
RM
6506 /* Sort relocs which might apply to Cortex-A8 erratum. */
6507 qsort (a8_relocs, num_a8_relocs,
eb7c4339 6508 sizeof (struct a8_erratum_reloc),
99059e56 6509 &a8_reloc_compare);
48229727 6510
99059e56
RM
6511 /* Scan for branches which might trigger Cortex-A8 erratum. */
6512 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 6513 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
6514 a8_relocs, num_a8_relocs,
6515 prev_num_a8_fixes, &stub_changed)
6516 != 0)
48229727 6517 goto error_ret_free_local;
5e681ec4 6518 }
7f991970
AM
6519
6520 if (local_syms != NULL
6521 && symtab_hdr->contents != (unsigned char *) local_syms)
6522 {
6523 if (!info->keep_memory)
6524 free (local_syms);
6525 else
6526 symtab_hdr->contents = (unsigned char *) local_syms;
6527 }
5e681ec4
PB
6528 }
6529
0955507f
TP
6530 if (first_veneer_scan
6531 && !set_cmse_veneer_addr_from_implib (info, htab,
6532 &cmse_stub_created))
6533 ret = FALSE;
6534
eb7c4339 6535 if (prev_num_a8_fixes != num_a8_fixes)
99059e56 6536 stub_changed = TRUE;
48229727 6537
906e58ca
NC
6538 if (!stub_changed)
6539 break;
5e681ec4 6540
906e58ca
NC
6541 /* OK, we've added some stubs. Find out the new size of the
6542 stub sections. */
6543 for (stub_sec = htab->stub_bfd->sections;
6544 stub_sec != NULL;
6545 stub_sec = stub_sec->next)
3e6b1042
DJ
6546 {
6547 /* Ignore non-stub sections. */
6548 if (!strstr (stub_sec->name, STUB_SUFFIX))
6549 continue;
6550
6551 stub_sec->size = 0;
6552 }
b34b2d70 6553
0955507f
TP
6554 /* Add new SG veneers after those already in the input import
6555 library. */
6556 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6557 stub_type++)
6558 {
6559 bfd_vma *start_offset_p;
6560 asection **stub_sec_p;
6561
6562 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6563 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6564 if (start_offset_p == NULL)
6565 continue;
6566
6567 BFD_ASSERT (stub_sec_p != NULL);
6568 if (*stub_sec_p != NULL)
6569 (*stub_sec_p)->size = *start_offset_p;
6570 }
6571
d7c5bd02 6572 /* Compute stub section size, considering padding. */
906e58ca 6573 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
d7c5bd02
TP
6574 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6575 stub_type++)
6576 {
6577 int size, padding;
6578 asection **stub_sec_p;
6579
6580 padding = arm_dedicated_stub_section_padding (stub_type);
6581 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6582 /* Skip if no stub input section or no stub section padding
6583 required. */
6584 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6585 continue;
6586 /* Stub section padding required but no dedicated section. */
6587 BFD_ASSERT (stub_sec_p);
6588
6589 size = (*stub_sec_p)->size;
6590 size = (size + padding - 1) & ~(padding - 1);
6591 (*stub_sec_p)->size = size;
6592 }
906e58ca 6593
48229727
JB
6594 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6595 if (htab->fix_cortex_a8)
99059e56
RM
6596 for (i = 0; i < num_a8_fixes; i++)
6597 {
48229727 6598 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
daa4adae 6599 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
48229727
JB
6600
6601 if (stub_sec == NULL)
7f991970 6602 return FALSE;
48229727 6603
99059e56
RM
6604 stub_sec->size
6605 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6606 NULL);
6607 }
48229727
JB
6608
6609
906e58ca
NC
6610 /* Ask the linker to do its stuff. */
6611 (*htab->layout_sections_again) ();
4ba2ef8f 6612 first_veneer_scan = FALSE;
ba93b8ac
DJ
6613 }
6614
48229727
JB
6615 /* Add stubs for Cortex-A8 erratum fixes now. */
6616 if (htab->fix_cortex_a8)
6617 {
6618 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
6619 {
6620 struct elf32_arm_stub_hash_entry *stub_entry;
6621 char *stub_name = a8_fixes[i].stub_name;
6622 asection *section = a8_fixes[i].section;
6623 unsigned int section_id = a8_fixes[i].section->id;
6624 asection *link_sec = htab->stub_group[section_id].link_sec;
6625 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6626 const insn_sequence *template_sequence;
6627 int template_size, size = 0;
6628
6629 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6630 TRUE, FALSE);
6631 if (stub_entry == NULL)
6632 {
dae82561 6633 _bfd_error_handler (_("%B: cannot create stub entry %s"),
4eca0228 6634 section->owner, stub_name);
99059e56
RM
6635 return FALSE;
6636 }
6637
6638 stub_entry->stub_sec = stub_sec;
0955507f 6639 stub_entry->stub_offset = (bfd_vma) -1;
99059e56
RM
6640 stub_entry->id_sec = link_sec;
6641 stub_entry->stub_type = a8_fixes[i].stub_type;
8d9d9490 6642 stub_entry->source_value = a8_fixes[i].offset;
99059e56 6643 stub_entry->target_section = a8_fixes[i].section;
8d9d9490 6644 stub_entry->target_value = a8_fixes[i].target_offset;
99059e56 6645 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 6646 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 6647
99059e56
RM
6648 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6649 &template_sequence,
6650 &template_size);
48229727 6651
99059e56
RM
6652 stub_entry->stub_size = size;
6653 stub_entry->stub_template = template_sequence;
6654 stub_entry->stub_template_size = template_size;
6655 }
48229727
JB
6656
6657 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 6658 elf32_arm_write_section(). */
48229727
JB
6659 htab->a8_erratum_fixes = a8_fixes;
6660 htab->num_a8_erratum_fixes = num_a8_fixes;
6661 }
6662 else
6663 {
6664 htab->a8_erratum_fixes = NULL;
6665 htab->num_a8_erratum_fixes = 0;
6666 }
0955507f 6667 return ret;
5e681ec4
PB
6668}
6669
906e58ca
NC
6670/* Build all the stubs associated with the current output file. The
6671 stubs are kept in a hash table attached to the main linker hash
6672 table. We also set up the .plt entries for statically linked PIC
6673 functions here. This function is called via arm_elf_finish in the
6674 linker. */
252b5132 6675
906e58ca
NC
6676bfd_boolean
6677elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 6678{
906e58ca
NC
6679 asection *stub_sec;
6680 struct bfd_hash_table *table;
0955507f 6681 enum elf32_arm_stub_type stub_type;
906e58ca 6682 struct elf32_arm_link_hash_table *htab;
252b5132 6683
906e58ca 6684 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
6685 if (htab == NULL)
6686 return FALSE;
252b5132 6687
906e58ca
NC
6688 for (stub_sec = htab->stub_bfd->sections;
6689 stub_sec != NULL;
6690 stub_sec = stub_sec->next)
252b5132 6691 {
906e58ca
NC
6692 bfd_size_type size;
6693
8029a119 6694 /* Ignore non-stub sections. */
906e58ca
NC
6695 if (!strstr (stub_sec->name, STUB_SUFFIX))
6696 continue;
6697
d7c5bd02 6698 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
0955507f
TP
6699 must at least be done for stub section requiring padding and for SG
6700 veneers to ensure that a non secure code branching to a removed SG
6701 veneer causes an error. */
906e58ca 6702 size = stub_sec->size;
21d799b5 6703 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
6704 if (stub_sec->contents == NULL && size != 0)
6705 return FALSE;
0955507f 6706
906e58ca 6707 stub_sec->size = 0;
252b5132
RH
6708 }
6709
0955507f
TP
6710 /* Add new SG veneers after those already in the input import library. */
6711 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6712 {
6713 bfd_vma *start_offset_p;
6714 asection **stub_sec_p;
6715
6716 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6717 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6718 if (start_offset_p == NULL)
6719 continue;
6720
6721 BFD_ASSERT (stub_sec_p != NULL);
6722 if (*stub_sec_p != NULL)
6723 (*stub_sec_p)->size = *start_offset_p;
6724 }
6725
906e58ca
NC
6726 /* Build the stubs as directed by the stub hash table. */
6727 table = &htab->stub_hash_table;
6728 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
6729 if (htab->fix_cortex_a8)
6730 {
6731 /* Place the cortex a8 stubs last. */
6732 htab->fix_cortex_a8 = -1;
6733 bfd_hash_traverse (table, arm_build_one_stub, info);
6734 }
252b5132 6735
906e58ca 6736 return TRUE;
252b5132
RH
6737}
6738
9b485d32
NC
6739/* Locate the Thumb encoded calling stub for NAME. */
6740
252b5132 6741static struct elf_link_hash_entry *
57e8b36a
NC
6742find_thumb_glue (struct bfd_link_info *link_info,
6743 const char *name,
f2a9dd69 6744 char **error_message)
252b5132
RH
6745{
6746 char *tmp_name;
6747 struct elf_link_hash_entry *hash;
6748 struct elf32_arm_link_hash_table *hash_table;
6749
6750 /* We need a pointer to the armelf specific hash table. */
6751 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6752 if (hash_table == NULL)
6753 return NULL;
252b5132 6754
21d799b5 6755 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 6756 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
6757
6758 BFD_ASSERT (tmp_name);
6759
6760 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6761
6762 hash = elf_link_hash_lookup
b34976b6 6763 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 6764
b1657152
AM
6765 if (hash == NULL
6766 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6767 tmp_name, name) == -1)
6768 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
6769
6770 free (tmp_name);
6771
6772 return hash;
6773}
6774
9b485d32
NC
6775/* Locate the ARM encoded calling stub for NAME. */
6776
252b5132 6777static struct elf_link_hash_entry *
57e8b36a
NC
6778find_arm_glue (struct bfd_link_info *link_info,
6779 const char *name,
f2a9dd69 6780 char **error_message)
252b5132
RH
6781{
6782 char *tmp_name;
6783 struct elf_link_hash_entry *myh;
6784 struct elf32_arm_link_hash_table *hash_table;
6785
6786 /* We need a pointer to the elfarm specific hash table. */
6787 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6788 if (hash_table == NULL)
6789 return NULL;
252b5132 6790
21d799b5 6791 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 6792 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
6793
6794 BFD_ASSERT (tmp_name);
6795
6796 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6797
6798 myh = elf_link_hash_lookup
b34976b6 6799 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 6800
b1657152
AM
6801 if (myh == NULL
6802 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6803 tmp_name, name) == -1)
6804 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
6805
6806 free (tmp_name);
6807
6808 return myh;
6809}
6810
8f6277f5 6811/* ARM->Thumb glue (static images):
252b5132
RH
6812
6813 .arm
6814 __func_from_arm:
6815 ldr r12, __func_addr
6816 bx r12
6817 __func_addr:
906e58ca 6818 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 6819
26079076
PB
6820 (v5t static images)
6821 .arm
6822 __func_from_arm:
6823 ldr pc, __func_addr
6824 __func_addr:
906e58ca 6825 .word func @ behave as if you saw a ARM_32 reloc.
26079076 6826
8f6277f5
PB
6827 (relocatable images)
6828 .arm
6829 __func_from_arm:
6830 ldr r12, __func_offset
6831 add r12, r12, pc
6832 bx r12
6833 __func_offset:
8029a119 6834 .word func - . */
8f6277f5
PB
6835
6836#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
6837static const insn32 a2t1_ldr_insn = 0xe59fc000;
6838static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6839static const insn32 a2t3_func_addr_insn = 0x00000001;
6840
26079076
PB
6841#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6842static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6843static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6844
8f6277f5
PB
6845#define ARM2THUMB_PIC_GLUE_SIZE 16
6846static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6847static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6848static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6849
9b485d32 6850/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 6851
8029a119
NC
6852 .thumb .thumb
6853 .align 2 .align 2
6854 __func_from_thumb: __func_from_thumb:
6855 bx pc push {r6, lr}
6856 nop ldr r6, __func_addr
6857 .arm mov lr, pc
6858 b func bx r6
99059e56
RM
6859 .arm
6860 ;; back_to_thumb
6861 ldmia r13! {r6, lr}
6862 bx lr
6863 __func_addr:
6864 .word func */
252b5132
RH
6865
6866#define THUMB2ARM_GLUE_SIZE 8
6867static const insn16 t2a1_bx_pc_insn = 0x4778;
6868static const insn16 t2a2_noop_insn = 0x46c0;
6869static const insn32 t2a3_b_insn = 0xea000000;
6870
c7b8f16e 6871#define VFP11_ERRATUM_VENEER_SIZE 8
a504d23a
LA
6872#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6873#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
c7b8f16e 6874
845b51d6
PB
6875#define ARM_BX_VENEER_SIZE 12
6876static const insn32 armbx1_tst_insn = 0xe3100001;
6877static const insn32 armbx2_moveq_insn = 0x01a0f000;
6878static const insn32 armbx3_bx_insn = 0xe12fff10;
6879
7e392df6 6880#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
6881static void
6882arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
6883{
6884 asection * s;
8029a119 6885 bfd_byte * contents;
252b5132 6886
8029a119 6887 if (size == 0)
3e6b1042
DJ
6888 {
6889 /* Do not include empty glue sections in the output. */
6890 if (abfd != NULL)
6891 {
3d4d4302 6892 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
6893 if (s != NULL)
6894 s->flags |= SEC_EXCLUDE;
6895 }
6896 return;
6897 }
252b5132 6898
8029a119 6899 BFD_ASSERT (abfd != NULL);
252b5132 6900
3d4d4302 6901 s = bfd_get_linker_section (abfd, name);
8029a119 6902 BFD_ASSERT (s != NULL);
252b5132 6903
21d799b5 6904 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 6905
8029a119
NC
6906 BFD_ASSERT (s->size == size);
6907 s->contents = contents;
6908}
906e58ca 6909
8029a119
NC
6910bfd_boolean
6911bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6912{
6913 struct elf32_arm_link_hash_table * globals;
906e58ca 6914
8029a119
NC
6915 globals = elf32_arm_hash_table (info);
6916 BFD_ASSERT (globals != NULL);
906e58ca 6917
8029a119
NC
6918 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6919 globals->arm_glue_size,
6920 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 6921
8029a119
NC
6922 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6923 globals->thumb_glue_size,
6924 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 6925
8029a119
NC
6926 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6927 globals->vfp11_erratum_glue_size,
6928 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 6929
a504d23a
LA
6930 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6931 globals->stm32l4xx_erratum_glue_size,
6932 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6933
8029a119
NC
6934 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6935 globals->bx_glue_size,
845b51d6
PB
6936 ARM_BX_GLUE_SECTION_NAME);
6937
b34976b6 6938 return TRUE;
252b5132
RH
6939}
6940
a4fd1a8e 6941/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
6942 returns the symbol identifying the stub. */
6943
a4fd1a8e 6944static struct elf_link_hash_entry *
57e8b36a
NC
6945record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6946 struct elf_link_hash_entry * h)
252b5132
RH
6947{
6948 const char * name = h->root.root.string;
63b0f745 6949 asection * s;
252b5132
RH
6950 char * tmp_name;
6951 struct elf_link_hash_entry * myh;
14a793b2 6952 struct bfd_link_hash_entry * bh;
252b5132 6953 struct elf32_arm_link_hash_table * globals;
dc810e39 6954 bfd_vma val;
2f475487 6955 bfd_size_type size;
252b5132
RH
6956
6957 globals = elf32_arm_hash_table (link_info);
252b5132
RH
6958 BFD_ASSERT (globals != NULL);
6959 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6960
3d4d4302 6961 s = bfd_get_linker_section
252b5132
RH
6962 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6963
252b5132
RH
6964 BFD_ASSERT (s != NULL);
6965
21d799b5 6966 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 6967 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
6968
6969 BFD_ASSERT (tmp_name);
6970
6971 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6972
6973 myh = elf_link_hash_lookup
b34976b6 6974 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
6975
6976 if (myh != NULL)
6977 {
9b485d32 6978 /* We've already seen this guy. */
252b5132 6979 free (tmp_name);
a4fd1a8e 6980 return myh;
252b5132
RH
6981 }
6982
57e8b36a
NC
6983 /* The only trick here is using hash_table->arm_glue_size as the value.
6984 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
6985 putting it. The +1 on the value marks that the stub has not been
6986 output yet - not that it is a Thumb function. */
14a793b2 6987 bh = NULL;
dc810e39
AM
6988 val = globals->arm_glue_size + 1;
6989 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6990 tmp_name, BSF_GLOBAL, s, val,
b34976b6 6991 NULL, TRUE, FALSE, &bh);
252b5132 6992
b7693d02
DJ
6993 myh = (struct elf_link_hash_entry *) bh;
6994 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6995 myh->forced_local = 1;
6996
252b5132
RH
6997 free (tmp_name);
6998
0e1862bb
L
6999 if (bfd_link_pic (link_info)
7000 || globals->root.is_relocatable_executable
27e55c4d 7001 || globals->pic_veneer)
2f475487 7002 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
7003 else if (globals->use_blx)
7004 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 7005 else
2f475487
AM
7006 size = ARM2THUMB_STATIC_GLUE_SIZE;
7007
7008 s->size += size;
7009 globals->arm_glue_size += size;
252b5132 7010
a4fd1a8e 7011 return myh;
252b5132
RH
7012}
7013
845b51d6
PB
7014/* Allocate space for ARMv4 BX veneers. */
7015
7016static void
7017record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7018{
7019 asection * s;
7020 struct elf32_arm_link_hash_table *globals;
7021 char *tmp_name;
7022 struct elf_link_hash_entry *myh;
7023 struct bfd_link_hash_entry *bh;
7024 bfd_vma val;
7025
7026 /* BX PC does not need a veneer. */
7027 if (reg == 15)
7028 return;
7029
7030 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
7031 BFD_ASSERT (globals != NULL);
7032 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7033
7034 /* Check if this veneer has already been allocated. */
7035 if (globals->bx_glue_offset[reg])
7036 return;
7037
3d4d4302 7038 s = bfd_get_linker_section
845b51d6
PB
7039 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7040
7041 BFD_ASSERT (s != NULL);
7042
7043 /* Add symbol for veneer. */
21d799b5
NC
7044 tmp_name = (char *)
7045 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 7046
845b51d6 7047 BFD_ASSERT (tmp_name);
906e58ca 7048
845b51d6 7049 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 7050
845b51d6
PB
7051 myh = elf_link_hash_lookup
7052 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7053
845b51d6 7054 BFD_ASSERT (myh == NULL);
906e58ca 7055
845b51d6
PB
7056 bh = NULL;
7057 val = globals->bx_glue_size;
7058 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56
RM
7059 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7060 NULL, TRUE, FALSE, &bh);
845b51d6
PB
7061
7062 myh = (struct elf_link_hash_entry *) bh;
7063 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7064 myh->forced_local = 1;
7065
7066 s->size += ARM_BX_VENEER_SIZE;
7067 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7068 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7069}
7070
7071
c7b8f16e
JB
7072/* Add an entry to the code/data map for section SEC. */
7073
7074static void
7075elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7076{
7077 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7078 unsigned int newidx;
906e58ca 7079
c7b8f16e
JB
7080 if (sec_data->map == NULL)
7081 {
21d799b5 7082 sec_data->map = (elf32_arm_section_map *)
99059e56 7083 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
7084 sec_data->mapcount = 0;
7085 sec_data->mapsize = 1;
7086 }
906e58ca 7087
c7b8f16e 7088 newidx = sec_data->mapcount++;
906e58ca 7089
c7b8f16e
JB
7090 if (sec_data->mapcount > sec_data->mapsize)
7091 {
7092 sec_data->mapsize *= 2;
21d799b5 7093 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
7094 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7095 * sizeof (elf32_arm_section_map));
515ef31d
NC
7096 }
7097
7098 if (sec_data->map)
7099 {
7100 sec_data->map[newidx].vma = vma;
7101 sec_data->map[newidx].type = type;
c7b8f16e 7102 }
c7b8f16e
JB
7103}
7104
7105
7106/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7107 veneers are handled for now. */
7108
7109static bfd_vma
7110record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
7111 elf32_vfp11_erratum_list *branch,
7112 bfd *branch_bfd,
7113 asection *branch_sec,
7114 unsigned int offset)
c7b8f16e
JB
7115{
7116 asection *s;
7117 struct elf32_arm_link_hash_table *hash_table;
7118 char *tmp_name;
7119 struct elf_link_hash_entry *myh;
7120 struct bfd_link_hash_entry *bh;
7121 bfd_vma val;
7122 struct _arm_elf_section_data *sec_data;
c7b8f16e 7123 elf32_vfp11_erratum_list *newerr;
906e58ca 7124
c7b8f16e 7125 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
7126 BFD_ASSERT (hash_table != NULL);
7127 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 7128
3d4d4302 7129 s = bfd_get_linker_section
c7b8f16e 7130 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 7131
c7b8f16e 7132 sec_data = elf32_arm_section_data (s);
906e58ca 7133
c7b8f16e 7134 BFD_ASSERT (s != NULL);
906e58ca 7135
21d799b5 7136 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 7137 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 7138
c7b8f16e 7139 BFD_ASSERT (tmp_name);
906e58ca 7140
c7b8f16e
JB
7141 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7142 hash_table->num_vfp11_fixes);
906e58ca 7143
c7b8f16e
JB
7144 myh = elf_link_hash_lookup
7145 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7146
c7b8f16e 7147 BFD_ASSERT (myh == NULL);
906e58ca 7148
c7b8f16e
JB
7149 bh = NULL;
7150 val = hash_table->vfp11_erratum_glue_size;
7151 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56
RM
7152 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7153 NULL, TRUE, FALSE, &bh);
c7b8f16e
JB
7154
7155 myh = (struct elf_link_hash_entry *) bh;
7156 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7157 myh->forced_local = 1;
7158
7159 /* Link veneer back to calling location. */
c7e2358a 7160 sec_data->erratumcount += 1;
21d799b5
NC
7161 newerr = (elf32_vfp11_erratum_list *)
7162 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 7163
c7b8f16e
JB
7164 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7165 newerr->vma = -1;
7166 newerr->u.v.branch = branch;
7167 newerr->u.v.id = hash_table->num_vfp11_fixes;
7168 branch->u.b.veneer = newerr;
7169
7170 newerr->next = sec_data->erratumlist;
7171 sec_data->erratumlist = newerr;
7172
7173 /* A symbol for the return from the veneer. */
7174 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7175 hash_table->num_vfp11_fixes);
7176
7177 myh = elf_link_hash_lookup
7178 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7179
c7b8f16e
JB
7180 if (myh != NULL)
7181 abort ();
7182
7183 bh = NULL;
7184 val = offset + 4;
7185 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7186 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 7187
c7b8f16e
JB
7188 myh = (struct elf_link_hash_entry *) bh;
7189 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7190 myh->forced_local = 1;
7191
7192 free (tmp_name);
906e58ca 7193
c7b8f16e
JB
7194 /* Generate a mapping symbol for the veneer section, and explicitly add an
7195 entry for that symbol to the code/data map for the section. */
7196 if (hash_table->vfp11_erratum_glue_size == 0)
7197 {
7198 bh = NULL;
7199 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 7200 ever requires this erratum fix. */
c7b8f16e
JB
7201 _bfd_generic_link_add_one_symbol (link_info,
7202 hash_table->bfd_of_glue_owner, "$a",
7203 BSF_LOCAL, s, 0, NULL,
99059e56 7204 TRUE, FALSE, &bh);
c7b8f16e
JB
7205
7206 myh = (struct elf_link_hash_entry *) bh;
7207 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7208 myh->forced_local = 1;
906e58ca 7209
c7b8f16e 7210 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
7211 BFDs. We must make a note of this generated mapping symbol
7212 ourselves so that code byteswapping works properly in
7213 elf32_arm_write_section. */
c7b8f16e
JB
7214 elf32_arm_section_map_add (s, 'a', 0);
7215 }
906e58ca 7216
c7b8f16e
JB
7217 s->size += VFP11_ERRATUM_VENEER_SIZE;
7218 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7219 hash_table->num_vfp11_fixes++;
906e58ca 7220
c7b8f16e
JB
7221 /* The offset of the veneer. */
7222 return val;
7223}
7224
a504d23a
LA
7225/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7226 veneers need to be handled because used only in Cortex-M. */
7227
7228static bfd_vma
7229record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7230 elf32_stm32l4xx_erratum_list *branch,
7231 bfd *branch_bfd,
7232 asection *branch_sec,
7233 unsigned int offset,
7234 bfd_size_type veneer_size)
7235{
7236 asection *s;
7237 struct elf32_arm_link_hash_table *hash_table;
7238 char *tmp_name;
7239 struct elf_link_hash_entry *myh;
7240 struct bfd_link_hash_entry *bh;
7241 bfd_vma val;
7242 struct _arm_elf_section_data *sec_data;
7243 elf32_stm32l4xx_erratum_list *newerr;
7244
7245 hash_table = elf32_arm_hash_table (link_info);
7246 BFD_ASSERT (hash_table != NULL);
7247 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7248
7249 s = bfd_get_linker_section
7250 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7251
7252 BFD_ASSERT (s != NULL);
7253
7254 sec_data = elf32_arm_section_data (s);
7255
7256 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7257 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7258
7259 BFD_ASSERT (tmp_name);
7260
7261 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7262 hash_table->num_stm32l4xx_fixes);
7263
7264 myh = elf_link_hash_lookup
7265 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7266
7267 BFD_ASSERT (myh == NULL);
7268
7269 bh = NULL;
7270 val = hash_table->stm32l4xx_erratum_glue_size;
7271 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7272 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7273 NULL, TRUE, FALSE, &bh);
7274
7275 myh = (struct elf_link_hash_entry *) bh;
7276 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7277 myh->forced_local = 1;
7278
7279 /* Link veneer back to calling location. */
7280 sec_data->stm32l4xx_erratumcount += 1;
7281 newerr = (elf32_stm32l4xx_erratum_list *)
7282 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7283
7284 newerr->type = STM32L4XX_ERRATUM_VENEER;
7285 newerr->vma = -1;
7286 newerr->u.v.branch = branch;
7287 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7288 branch->u.b.veneer = newerr;
7289
7290 newerr->next = sec_data->stm32l4xx_erratumlist;
7291 sec_data->stm32l4xx_erratumlist = newerr;
7292
7293 /* A symbol for the return from the veneer. */
7294 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7295 hash_table->num_stm32l4xx_fixes);
7296
7297 myh = elf_link_hash_lookup
7298 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7299
7300 if (myh != NULL)
7301 abort ();
7302
7303 bh = NULL;
7304 val = offset + 4;
7305 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7306 branch_sec, val, NULL, TRUE, FALSE, &bh);
7307
7308 myh = (struct elf_link_hash_entry *) bh;
7309 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7310 myh->forced_local = 1;
7311
7312 free (tmp_name);
7313
7314 /* Generate a mapping symbol for the veneer section, and explicitly add an
7315 entry for that symbol to the code/data map for the section. */
7316 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7317 {
7318 bh = NULL;
7319 /* Creates a THUMB symbol since there is no other choice. */
7320 _bfd_generic_link_add_one_symbol (link_info,
7321 hash_table->bfd_of_glue_owner, "$t",
7322 BSF_LOCAL, s, 0, NULL,
7323 TRUE, FALSE, &bh);
7324
7325 myh = (struct elf_link_hash_entry *) bh;
7326 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7327 myh->forced_local = 1;
7328
7329 /* The elf32_arm_init_maps function only cares about symbols from input
7330 BFDs. We must make a note of this generated mapping symbol
7331 ourselves so that code byteswapping works properly in
7332 elf32_arm_write_section. */
7333 elf32_arm_section_map_add (s, 't', 0);
7334 }
7335
7336 s->size += veneer_size;
7337 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7338 hash_table->num_stm32l4xx_fixes++;
7339
7340 /* The offset of the veneer. */
7341 return val;
7342}
7343
8029a119 7344#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
7345 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7346 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
7347
7348/* Create a fake section for use by the ARM backend of the linker. */
7349
7350static bfd_boolean
7351arm_make_glue_section (bfd * abfd, const char * name)
7352{
7353 asection * sec;
7354
3d4d4302 7355 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
7356 if (sec != NULL)
7357 /* Already made. */
7358 return TRUE;
7359
3d4d4302 7360 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
7361
7362 if (sec == NULL
7363 || !bfd_set_section_alignment (abfd, sec, 2))
7364 return FALSE;
7365
7366 /* Set the gc mark to prevent the section from being removed by garbage
7367 collection, despite the fact that no relocs refer to this section. */
7368 sec->gc_mark = 1;
7369
7370 return TRUE;
7371}
7372
1db37fe6
YG
7373/* Set size of .plt entries. This function is called from the
7374 linker scripts in ld/emultempl/{armelf}.em. */
7375
7376void
7377bfd_elf32_arm_use_long_plt (void)
7378{
7379 elf32_arm_use_long_plt_entry = TRUE;
7380}
7381
8afb0e02
NC
7382/* Add the glue sections to ABFD. This function is called from the
7383 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 7384
b34976b6 7385bfd_boolean
57e8b36a
NC
7386bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7387 struct bfd_link_info *info)
252b5132 7388{
a504d23a
LA
7389 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7390 bfd_boolean dostm32l4xx = globals
7391 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7392 bfd_boolean addglue;
7393
8afb0e02
NC
7394 /* If we are only performing a partial
7395 link do not bother adding the glue. */
0e1862bb 7396 if (bfd_link_relocatable (info))
b34976b6 7397 return TRUE;
252b5132 7398
a504d23a 7399 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
8029a119
NC
7400 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7401 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7402 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
a504d23a
LA
7403
7404 if (!dostm32l4xx)
7405 return addglue;
7406
7407 return addglue
7408 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
8afb0e02
NC
7409}
7410
daa4adae
TP
7411/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7412 ensures they are not marked for deletion by
7413 strip_excluded_output_sections () when veneers are going to be created
7414 later. Not doing so would trigger assert on empty section size in
7415 lang_size_sections_1 (). */
7416
7417void
7418bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7419{
7420 enum elf32_arm_stub_type stub_type;
7421
7422 /* If we are only performing a partial
7423 link do not bother adding the glue. */
7424 if (bfd_link_relocatable (info))
7425 return;
7426
7427 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7428 {
7429 asection *out_sec;
7430 const char *out_sec_name;
7431
7432 if (!arm_dedicated_stub_output_section_required (stub_type))
7433 continue;
7434
7435 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7436 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7437 if (out_sec != NULL)
7438 out_sec->flags |= SEC_KEEP;
7439 }
7440}
7441
8afb0e02
NC
7442/* Select a BFD to be used to hold the sections used by the glue code.
7443 This function is called from the linker scripts in ld/emultempl/
8029a119 7444 {armelf/pe}.em. */
8afb0e02 7445
b34976b6 7446bfd_boolean
57e8b36a 7447bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
7448{
7449 struct elf32_arm_link_hash_table *globals;
7450
7451 /* If we are only performing a partial link
7452 do not bother getting a bfd to hold the glue. */
0e1862bb 7453 if (bfd_link_relocatable (info))
b34976b6 7454 return TRUE;
8afb0e02 7455
b7693d02
DJ
7456 /* Make sure we don't attach the glue sections to a dynamic object. */
7457 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7458
8afb0e02 7459 globals = elf32_arm_hash_table (info);
8afb0e02
NC
7460 BFD_ASSERT (globals != NULL);
7461
7462 if (globals->bfd_of_glue_owner != NULL)
b34976b6 7463 return TRUE;
8afb0e02 7464
252b5132
RH
7465 /* Save the bfd for later use. */
7466 globals->bfd_of_glue_owner = abfd;
cedb70c5 7467
b34976b6 7468 return TRUE;
252b5132
RH
7469}
7470
906e58ca
NC
7471static void
7472check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 7473{
2de70689
MGD
7474 int cpu_arch;
7475
b38cadfb 7476 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
7477 Tag_CPU_arch);
7478
7479 if (globals->fix_arm1176)
7480 {
7481 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7482 globals->use_blx = 1;
7483 }
7484 else
7485 {
7486 if (cpu_arch > TAG_CPU_ARCH_V4T)
7487 globals->use_blx = 1;
7488 }
39b41c9c
PB
7489}
7490
b34976b6 7491bfd_boolean
57e8b36a 7492bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 7493 struct bfd_link_info *link_info)
252b5132
RH
7494{
7495 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 7496 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
7497 Elf_Internal_Rela *irel, *irelend;
7498 bfd_byte *contents = NULL;
252b5132
RH
7499
7500 asection *sec;
7501 struct elf32_arm_link_hash_table *globals;
7502
7503 /* If we are only performing a partial link do not bother
7504 to construct any glue. */
0e1862bb 7505 if (bfd_link_relocatable (link_info))
b34976b6 7506 return TRUE;
252b5132 7507
39ce1a6a
NC
7508 /* Here we have a bfd that is to be included on the link. We have a
7509 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 7510 globals = elf32_arm_hash_table (link_info);
252b5132 7511 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
7512
7513 check_use_blx (globals);
252b5132 7514
d504ffc8 7515 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 7516 {
d003868e
AM
7517 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7518 abfd);
e489d0ae
PB
7519 return FALSE;
7520 }
f21f3fe0 7521
39ce1a6a
NC
7522 /* PR 5398: If we have not decided to include any loadable sections in
7523 the output then we will not have a glue owner bfd. This is OK, it
7524 just means that there is nothing else for us to do here. */
7525 if (globals->bfd_of_glue_owner == NULL)
7526 return TRUE;
7527
252b5132
RH
7528 /* Rummage around all the relocs and map the glue vectors. */
7529 sec = abfd->sections;
7530
7531 if (sec == NULL)
b34976b6 7532 return TRUE;
252b5132
RH
7533
7534 for (; sec != NULL; sec = sec->next)
7535 {
7536 if (sec->reloc_count == 0)
7537 continue;
7538
2f475487
AM
7539 if ((sec->flags & SEC_EXCLUDE) != 0)
7540 continue;
7541
0ffa91dd 7542 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 7543
9b485d32 7544 /* Load the relocs. */
6cdc0ccc 7545 internal_relocs
906e58ca 7546 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 7547
6cdc0ccc
AM
7548 if (internal_relocs == NULL)
7549 goto error_return;
252b5132 7550
6cdc0ccc
AM
7551 irelend = internal_relocs + sec->reloc_count;
7552 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
7553 {
7554 long r_type;
7555 unsigned long r_index;
252b5132
RH
7556
7557 struct elf_link_hash_entry *h;
7558
7559 r_type = ELF32_R_TYPE (irel->r_info);
7560 r_index = ELF32_R_SYM (irel->r_info);
7561
9b485d32 7562 /* These are the only relocation types we care about. */
ba96a88f 7563 if ( r_type != R_ARM_PC24
845b51d6 7564 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
7565 continue;
7566
7567 /* Get the section contents if we haven't done so already. */
7568 if (contents == NULL)
7569 {
7570 /* Get cached copy if it exists. */
7571 if (elf_section_data (sec)->this_hdr.contents != NULL)
7572 contents = elf_section_data (sec)->this_hdr.contents;
7573 else
7574 {
7575 /* Go get them off disk. */
57e8b36a 7576 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
7577 goto error_return;
7578 }
7579 }
7580
845b51d6
PB
7581 if (r_type == R_ARM_V4BX)
7582 {
7583 int reg;
7584
7585 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7586 record_arm_bx_glue (link_info, reg);
7587 continue;
7588 }
7589
a7c10850 7590 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
7591 h = NULL;
7592
9b485d32 7593 /* We don't care about local symbols. */
252b5132
RH
7594 if (r_index < symtab_hdr->sh_info)
7595 continue;
7596
9b485d32 7597 /* This is an external symbol. */
252b5132
RH
7598 r_index -= symtab_hdr->sh_info;
7599 h = (struct elf_link_hash_entry *)
7600 elf_sym_hashes (abfd)[r_index];
7601
7602 /* If the relocation is against a static symbol it must be within
7603 the current section and so cannot be a cross ARM/Thumb relocation. */
7604 if (h == NULL)
7605 continue;
7606
d504ffc8
DJ
7607 /* If the call will go through a PLT entry then we do not need
7608 glue. */
362d30a1 7609 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
7610 continue;
7611
252b5132
RH
7612 switch (r_type)
7613 {
7614 case R_ARM_PC24:
7615 /* This one is a call from arm code. We need to look up
99059e56
RM
7616 the target of the call. If it is a thumb target, we
7617 insert glue. */
39d911fc
TP
7618 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7619 == ST_BRANCH_TO_THUMB)
252b5132
RH
7620 record_arm_to_thumb_glue (link_info, h);
7621 break;
7622
252b5132 7623 default:
c6596c5e 7624 abort ();
252b5132
RH
7625 }
7626 }
6cdc0ccc
AM
7627
7628 if (contents != NULL
7629 && elf_section_data (sec)->this_hdr.contents != contents)
7630 free (contents);
7631 contents = NULL;
7632
7633 if (internal_relocs != NULL
7634 && elf_section_data (sec)->relocs != internal_relocs)
7635 free (internal_relocs);
7636 internal_relocs = NULL;
252b5132
RH
7637 }
7638
b34976b6 7639 return TRUE;
9a5aca8c 7640
252b5132 7641error_return:
6cdc0ccc
AM
7642 if (contents != NULL
7643 && elf_section_data (sec)->this_hdr.contents != contents)
7644 free (contents);
7645 if (internal_relocs != NULL
7646 && elf_section_data (sec)->relocs != internal_relocs)
7647 free (internal_relocs);
9a5aca8c 7648
b34976b6 7649 return FALSE;
252b5132 7650}
7e392df6 7651#endif
252b5132 7652
eb043451 7653
c7b8f16e
JB
7654/* Initialise maps of ARM/Thumb/data for input BFDs. */
7655
7656void
7657bfd_elf32_arm_init_maps (bfd *abfd)
7658{
7659 Elf_Internal_Sym *isymbuf;
7660 Elf_Internal_Shdr *hdr;
7661 unsigned int i, localsyms;
7662
af1f4419
NC
7663 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7664 if (! is_arm_elf (abfd))
7665 return;
7666
c7b8f16e
JB
7667 if ((abfd->flags & DYNAMIC) != 0)
7668 return;
7669
0ffa91dd 7670 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
7671 localsyms = hdr->sh_info;
7672
7673 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7674 should contain the number of local symbols, which should come before any
7675 global symbols. Mapping symbols are always local. */
7676 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7677 NULL);
7678
7679 /* No internal symbols read? Skip this BFD. */
7680 if (isymbuf == NULL)
7681 return;
7682
7683 for (i = 0; i < localsyms; i++)
7684 {
7685 Elf_Internal_Sym *isym = &isymbuf[i];
7686 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7687 const char *name;
906e58ca 7688
c7b8f16e 7689 if (sec != NULL
99059e56
RM
7690 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7691 {
7692 name = bfd_elf_string_from_elf_section (abfd,
7693 hdr->sh_link, isym->st_name);
906e58ca 7694
99059e56 7695 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 7696 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
7697 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7698 }
c7b8f16e
JB
7699 }
7700}
7701
7702
48229727
JB
7703/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7704 say what they wanted. */
7705
7706void
7707bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7708{
7709 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7710 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7711
4dfe6ac6
NC
7712 if (globals == NULL)
7713 return;
7714
48229727
JB
7715 if (globals->fix_cortex_a8 == -1)
7716 {
7717 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7718 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7719 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7720 || out_attr[Tag_CPU_arch_profile].i == 0))
7721 globals->fix_cortex_a8 = 1;
7722 else
7723 globals->fix_cortex_a8 = 0;
7724 }
7725}
7726
7727
c7b8f16e
JB
7728void
7729bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7730{
7731 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 7732 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 7733
4dfe6ac6
NC
7734 if (globals == NULL)
7735 return;
c7b8f16e
JB
7736 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7737 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7738 {
7739 switch (globals->vfp11_fix)
99059e56
RM
7740 {
7741 case BFD_ARM_VFP11_FIX_DEFAULT:
7742 case BFD_ARM_VFP11_FIX_NONE:
7743 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7744 break;
7745
7746 default:
7747 /* Give a warning, but do as the user requests anyway. */
4eca0228 7748 _bfd_error_handler (_("%B: warning: selected VFP11 erratum "
99059e56
RM
7749 "workaround is not necessary for target architecture"), obfd);
7750 }
c7b8f16e
JB
7751 }
7752 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7753 /* For earlier architectures, we might need the workaround, but do not
7754 enable it by default. If users is running with broken hardware, they
7755 must enable the erratum fix explicitly. */
7756 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7757}
7758
a504d23a
LA
7759void
7760bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7761{
7762 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7763 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7764
7765 if (globals == NULL)
7766 return;
7767
7768 /* We assume only Cortex-M4 may require the fix. */
7769 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7770 || out_attr[Tag_CPU_arch_profile].i != 'M')
7771 {
7772 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7773 /* Give a warning, but do as the user requests anyway. */
4eca0228 7774 _bfd_error_handler
a504d23a
LA
7775 (_("%B: warning: selected STM32L4XX erratum "
7776 "workaround is not necessary for target architecture"), obfd);
7777 }
7778}
c7b8f16e 7779
906e58ca
NC
7780enum bfd_arm_vfp11_pipe
7781{
c7b8f16e
JB
7782 VFP11_FMAC,
7783 VFP11_LS,
7784 VFP11_DS,
7785 VFP11_BAD
7786};
7787
7788/* Return a VFP register number. This is encoded as RX:X for single-precision
7789 registers, or X:RX for double-precision registers, where RX is the group of
7790 four bits in the instruction encoding and X is the single extension bit.
7791 RX and X fields are specified using their lowest (starting) bit. The return
7792 value is:
7793
7794 0...31: single-precision registers s0...s31
7795 32...63: double-precision registers d0...d31.
906e58ca 7796
c7b8f16e
JB
7797 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7798 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 7799
c7b8f16e
JB
7800static unsigned int
7801bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
99059e56 7802 unsigned int x)
c7b8f16e
JB
7803{
7804 if (is_double)
7805 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7806 else
7807 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7808}
7809
7810/* Set bits in *WMASK according to a register number REG as encoded by
7811 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7812
7813static void
7814bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7815{
7816 if (reg < 32)
7817 *wmask |= 1 << reg;
7818 else if (reg < 48)
7819 *wmask |= 3 << ((reg - 32) * 2);
7820}
7821
7822/* Return TRUE if WMASK overwrites anything in REGS. */
7823
7824static bfd_boolean
7825bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7826{
7827 int i;
906e58ca 7828
c7b8f16e
JB
7829 for (i = 0; i < numregs; i++)
7830 {
7831 unsigned int reg = regs[i];
7832
7833 if (reg < 32 && (wmask & (1 << reg)) != 0)
99059e56 7834 return TRUE;
906e58ca 7835
c7b8f16e
JB
7836 reg -= 32;
7837
7838 if (reg >= 16)
99059e56 7839 continue;
906e58ca 7840
c7b8f16e 7841 if ((wmask & (3 << (reg * 2))) != 0)
99059e56 7842 return TRUE;
c7b8f16e 7843 }
906e58ca 7844
c7b8f16e
JB
7845 return FALSE;
7846}
7847
7848/* In this function, we're interested in two things: finding input registers
7849 for VFP data-processing instructions, and finding the set of registers which
7850 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7851 hold the written set, so FLDM etc. are easy to deal with (we're only
7852 interested in 32 SP registers or 16 dp registers, due to the VFP version
7853 implemented by the chip in question). DP registers are marked by setting
7854 both SP registers in the write mask). */
7855
7856static enum bfd_arm_vfp11_pipe
7857bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 7858 int *numregs)
c7b8f16e 7859{
91d6fa6a 7860 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
7861 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7862
7863 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7864 {
7865 unsigned int pqrs;
7866 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7867 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7868
7869 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
7870 | ((insn & 0x00300000) >> 19)
7871 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
7872
7873 switch (pqrs)
99059e56
RM
7874 {
7875 case 0: /* fmac[sd]. */
7876 case 1: /* fnmac[sd]. */
7877 case 2: /* fmsc[sd]. */
7878 case 3: /* fnmsc[sd]. */
7879 vpipe = VFP11_FMAC;
7880 bfd_arm_vfp11_write_mask (destmask, fd);
7881 regs[0] = fd;
7882 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7883 regs[2] = fm;
7884 *numregs = 3;
7885 break;
7886
7887 case 4: /* fmul[sd]. */
7888 case 5: /* fnmul[sd]. */
7889 case 6: /* fadd[sd]. */
7890 case 7: /* fsub[sd]. */
7891 vpipe = VFP11_FMAC;
7892 goto vfp_binop;
7893
7894 case 8: /* fdiv[sd]. */
7895 vpipe = VFP11_DS;
7896 vfp_binop:
7897 bfd_arm_vfp11_write_mask (destmask, fd);
7898 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7899 regs[1] = fm;
7900 *numregs = 2;
7901 break;
7902
7903 case 15: /* extended opcode. */
7904 {
7905 unsigned int extn = ((insn >> 15) & 0x1e)
7906 | ((insn >> 7) & 1);
7907
7908 switch (extn)
7909 {
7910 case 0: /* fcpy[sd]. */
7911 case 1: /* fabs[sd]. */
7912 case 2: /* fneg[sd]. */
7913 case 8: /* fcmp[sd]. */
7914 case 9: /* fcmpe[sd]. */
7915 case 10: /* fcmpz[sd]. */
7916 case 11: /* fcmpez[sd]. */
7917 case 16: /* fuito[sd]. */
7918 case 17: /* fsito[sd]. */
7919 case 24: /* ftoui[sd]. */
7920 case 25: /* ftouiz[sd]. */
7921 case 26: /* ftosi[sd]. */
7922 case 27: /* ftosiz[sd]. */
7923 /* These instructions will not bounce due to underflow. */
7924 *numregs = 0;
7925 vpipe = VFP11_FMAC;
7926 break;
7927
7928 case 3: /* fsqrt[sd]. */
7929 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7930 registers to cause the erratum in previous instructions. */
7931 bfd_arm_vfp11_write_mask (destmask, fd);
7932 vpipe = VFP11_DS;
7933 break;
7934
7935 case 15: /* fcvt{ds,sd}. */
7936 {
7937 int rnum = 0;
7938
7939 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
7940
7941 /* Only FCVTSD can underflow. */
99059e56
RM
7942 if ((insn & 0x100) != 0)
7943 regs[rnum++] = fm;
c7b8f16e 7944
99059e56 7945 *numregs = rnum;
c7b8f16e 7946
99059e56
RM
7947 vpipe = VFP11_FMAC;
7948 }
7949 break;
c7b8f16e 7950
99059e56
RM
7951 default:
7952 return VFP11_BAD;
7953 }
7954 }
7955 break;
c7b8f16e 7956
99059e56
RM
7957 default:
7958 return VFP11_BAD;
7959 }
c7b8f16e
JB
7960 }
7961 /* Two-register transfer. */
7962 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7963 {
7964 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 7965
c7b8f16e
JB
7966 if ((insn & 0x100000) == 0)
7967 {
99059e56
RM
7968 if (is_double)
7969 bfd_arm_vfp11_write_mask (destmask, fm);
7970 else
7971 {
7972 bfd_arm_vfp11_write_mask (destmask, fm);
7973 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7974 }
c7b8f16e
JB
7975 }
7976
91d6fa6a 7977 vpipe = VFP11_LS;
c7b8f16e
JB
7978 }
7979 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7980 {
7981 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7982 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 7983
c7b8f16e 7984 switch (puw)
99059e56
RM
7985 {
7986 case 0: /* Two-reg transfer. We should catch these above. */
7987 abort ();
906e58ca 7988
99059e56
RM
7989 case 2: /* fldm[sdx]. */
7990 case 3:
7991 case 5:
7992 {
7993 unsigned int i, offset = insn & 0xff;
c7b8f16e 7994
99059e56
RM
7995 if (is_double)
7996 offset >>= 1;
c7b8f16e 7997
99059e56
RM
7998 for (i = fd; i < fd + offset; i++)
7999 bfd_arm_vfp11_write_mask (destmask, i);
8000 }
8001 break;
906e58ca 8002
99059e56
RM
8003 case 4: /* fld[sd]. */
8004 case 6:
8005 bfd_arm_vfp11_write_mask (destmask, fd);
8006 break;
906e58ca 8007
99059e56
RM
8008 default:
8009 return VFP11_BAD;
8010 }
c7b8f16e 8011
91d6fa6a 8012 vpipe = VFP11_LS;
c7b8f16e
JB
8013 }
8014 /* Single-register transfer. Note L==0. */
8015 else if ((insn & 0x0f100e10) == 0x0e000a10)
8016 {
8017 unsigned int opcode = (insn >> 21) & 7;
8018 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8019
8020 switch (opcode)
99059e56
RM
8021 {
8022 case 0: /* fmsr/fmdlr. */
8023 case 1: /* fmdhr. */
8024 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8025 destination register. I don't know if this is exactly right,
8026 but it is the conservative choice. */
8027 bfd_arm_vfp11_write_mask (destmask, fn);
8028 break;
8029
8030 case 7: /* fmxr. */
8031 break;
8032 }
c7b8f16e 8033
91d6fa6a 8034 vpipe = VFP11_LS;
c7b8f16e
JB
8035 }
8036
91d6fa6a 8037 return vpipe;
c7b8f16e
JB
8038}
8039
8040
8041static int elf32_arm_compare_mapping (const void * a, const void * b);
8042
8043
8044/* Look for potentially-troublesome code sequences which might trigger the
8045 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8046 (available from ARM) for details of the erratum. A short version is
8047 described in ld.texinfo. */
8048
8049bfd_boolean
8050bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8051{
8052 asection *sec;
8053 bfd_byte *contents = NULL;
8054 int state = 0;
8055 int regs[3], numregs = 0;
8056 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8057 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 8058
4dfe6ac6
NC
8059 if (globals == NULL)
8060 return FALSE;
8061
c7b8f16e
JB
8062 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8063 The states transition as follows:
906e58ca 8064
c7b8f16e 8065 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
8066 A VFP FMAC-pipeline instruction has been seen. Fill
8067 regs[0]..regs[numregs-1] with its input operands. Remember this
8068 instruction in 'first_fmac'.
c7b8f16e
JB
8069
8070 1 -> 2
99059e56
RM
8071 Any instruction, except for a VFP instruction which overwrites
8072 regs[*].
906e58ca 8073
c7b8f16e
JB
8074 1 -> 3 [ -> 0 ] or
8075 2 -> 3 [ -> 0 ]
99059e56
RM
8076 A VFP instruction has been seen which overwrites any of regs[*].
8077 We must make a veneer! Reset state to 0 before examining next
8078 instruction.
906e58ca 8079
c7b8f16e 8080 2 -> 0
99059e56
RM
8081 If we fail to match anything in state 2, reset to state 0 and reset
8082 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
8083
8084 If the VFP11 vector mode is in use, there must be at least two unrelated
8085 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 8086 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
8087
8088 /* If we are only performing a partial link do not bother
8089 to construct any glue. */
0e1862bb 8090 if (bfd_link_relocatable (link_info))
c7b8f16e
JB
8091 return TRUE;
8092
0ffa91dd
NC
8093 /* Skip if this bfd does not correspond to an ELF image. */
8094 if (! is_arm_elf (abfd))
8095 return TRUE;
906e58ca 8096
c7b8f16e
JB
8097 /* We should have chosen a fix type by the time we get here. */
8098 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8099
8100 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8101 return TRUE;
2e6030b9 8102
33a7ffc2
JM
8103 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8104 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8105 return TRUE;
8106
c7b8f16e
JB
8107 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8108 {
8109 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8110 struct _arm_elf_section_data *sec_data;
8111
8112 /* If we don't have executable progbits, we're not interested in this
99059e56 8113 section. Also skip if section is to be excluded. */
c7b8f16e 8114 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
8115 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8116 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 8117 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 8118 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
8119 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8120 continue;
c7b8f16e
JB
8121
8122 sec_data = elf32_arm_section_data (sec);
906e58ca 8123
c7b8f16e 8124 if (sec_data->mapcount == 0)
99059e56 8125 continue;
906e58ca 8126
c7b8f16e
JB
8127 if (elf_section_data (sec)->this_hdr.contents != NULL)
8128 contents = elf_section_data (sec)->this_hdr.contents;
8129 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8130 goto error_return;
8131
8132 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8133 elf32_arm_compare_mapping);
8134
8135 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
8136 {
8137 unsigned int span_start = sec_data->map[span].vma;
8138 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 8139 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
8140 char span_type = sec_data->map[span].type;
8141
8142 /* FIXME: Only ARM mode is supported at present. We may need to
8143 support Thumb-2 mode also at some point. */
8144 if (span_type != 'a')
8145 continue;
8146
8147 for (i = span_start; i < span_end;)
8148 {
8149 unsigned int next_i = i + 4;
8150 unsigned int insn = bfd_big_endian (abfd)
8151 ? (contents[i] << 24)
8152 | (contents[i + 1] << 16)
8153 | (contents[i + 2] << 8)
8154 | contents[i + 3]
8155 : (contents[i + 3] << 24)
8156 | (contents[i + 2] << 16)
8157 | (contents[i + 1] << 8)
8158 | contents[i];
8159 unsigned int writemask = 0;
8160 enum bfd_arm_vfp11_pipe vpipe;
8161
8162 switch (state)
8163 {
8164 case 0:
8165 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8166 &numregs);
8167 /* I'm assuming the VFP11 erratum can trigger with denorm
8168 operands on either the FMAC or the DS pipeline. This might
8169 lead to slightly overenthusiastic veneer insertion. */
8170 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8171 {
8172 state = use_vector ? 1 : 2;
8173 first_fmac = i;
8174 veneer_of_insn = insn;
8175 }
8176 break;
8177
8178 case 1:
8179 {
8180 int other_regs[3], other_numregs;
8181 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8182 other_regs,
99059e56
RM
8183 &other_numregs);
8184 if (vpipe != VFP11_BAD
8185 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8186 numregs))
99059e56
RM
8187 state = 3;
8188 else
8189 state = 2;
8190 }
8191 break;
8192
8193 case 2:
8194 {
8195 int other_regs[3], other_numregs;
8196 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8197 other_regs,
99059e56
RM
8198 &other_numregs);
8199 if (vpipe != VFP11_BAD
8200 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8201 numregs))
99059e56
RM
8202 state = 3;
8203 else
8204 {
8205 state = 0;
8206 next_i = first_fmac + 4;
8207 }
8208 }
8209 break;
8210
8211 case 3:
8212 abort (); /* Should be unreachable. */
8213 }
8214
8215 if (state == 3)
8216 {
8217 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8218 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8219
8220 elf32_arm_section_data (sec)->erratumcount += 1;
8221
8222 newerr->u.b.vfp_insn = veneer_of_insn;
8223
8224 switch (span_type)
8225 {
8226 case 'a':
8227 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8228 break;
8229
8230 default:
8231 abort ();
8232 }
8233
8234 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
8235 first_fmac);
8236
99059e56 8237 newerr->vma = -1;
c7b8f16e 8238
99059e56
RM
8239 newerr->next = sec_data->erratumlist;
8240 sec_data->erratumlist = newerr;
c7b8f16e 8241
99059e56
RM
8242 state = 0;
8243 }
c7b8f16e 8244
99059e56
RM
8245 i = next_i;
8246 }
8247 }
906e58ca 8248
c7b8f16e 8249 if (contents != NULL
99059e56
RM
8250 && elf_section_data (sec)->this_hdr.contents != contents)
8251 free (contents);
c7b8f16e
JB
8252 contents = NULL;
8253 }
8254
8255 return TRUE;
8256
8257error_return:
8258 if (contents != NULL
8259 && elf_section_data (sec)->this_hdr.contents != contents)
8260 free (contents);
906e58ca 8261
c7b8f16e
JB
8262 return FALSE;
8263}
8264
8265/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8266 after sections have been laid out, using specially-named symbols. */
8267
8268void
8269bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8270 struct bfd_link_info *link_info)
8271{
8272 asection *sec;
8273 struct elf32_arm_link_hash_table *globals;
8274 char *tmp_name;
906e58ca 8275
0e1862bb 8276 if (bfd_link_relocatable (link_info))
c7b8f16e 8277 return;
2e6030b9
MS
8278
8279 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 8280 if (! is_arm_elf (abfd))
2e6030b9
MS
8281 return;
8282
c7b8f16e 8283 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8284 if (globals == NULL)
8285 return;
906e58ca 8286
21d799b5 8287 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 8288 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
8289
8290 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8291 {
8292 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8293 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 8294
c7b8f16e 8295 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
8296 {
8297 struct elf_link_hash_entry *myh;
8298 bfd_vma vma;
8299
8300 switch (errnode->type)
8301 {
8302 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8303 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8304 /* Find veneer symbol. */
8305 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
8306 errnode->u.b.veneer->u.v.id);
8307
99059e56
RM
8308 myh = elf_link_hash_lookup
8309 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 8310
a504d23a 8311 if (myh == NULL)
4eca0228
AM
8312 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8313 "`%s'"), abfd, tmp_name);
a504d23a
LA
8314
8315 vma = myh->root.u.def.section->output_section->vma
8316 + myh->root.u.def.section->output_offset
8317 + myh->root.u.def.value;
8318
8319 errnode->u.b.veneer->vma = vma;
8320 break;
8321
8322 case VFP11_ERRATUM_ARM_VENEER:
8323 case VFP11_ERRATUM_THUMB_VENEER:
8324 /* Find return location. */
8325 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8326 errnode->u.v.id);
8327
8328 myh = elf_link_hash_lookup
8329 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8330
8331 if (myh == NULL)
4eca0228
AM
8332 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8333 "`%s'"), abfd, tmp_name);
a504d23a
LA
8334
8335 vma = myh->root.u.def.section->output_section->vma
8336 + myh->root.u.def.section->output_offset
8337 + myh->root.u.def.value;
8338
8339 errnode->u.v.branch->vma = vma;
8340 break;
8341
8342 default:
8343 abort ();
8344 }
8345 }
8346 }
8347
8348 free (tmp_name);
8349}
8350
8351/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8352 return locations after sections have been laid out, using
8353 specially-named symbols. */
8354
8355void
8356bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8357 struct bfd_link_info *link_info)
8358{
8359 asection *sec;
8360 struct elf32_arm_link_hash_table *globals;
8361 char *tmp_name;
8362
8363 if (bfd_link_relocatable (link_info))
8364 return;
8365
8366 /* Skip if this bfd does not correspond to an ELF image. */
8367 if (! is_arm_elf (abfd))
8368 return;
8369
8370 globals = elf32_arm_hash_table (link_info);
8371 if (globals == NULL)
8372 return;
8373
8374 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8375 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8376
8377 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8378 {
8379 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8380 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8381
8382 for (; errnode != NULL; errnode = errnode->next)
8383 {
8384 struct elf_link_hash_entry *myh;
8385 bfd_vma vma;
8386
8387 switch (errnode->type)
8388 {
8389 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8390 /* Find veneer symbol. */
8391 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8392 errnode->u.b.veneer->u.v.id);
8393
8394 myh = elf_link_hash_lookup
8395 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8396
8397 if (myh == NULL)
4eca0228
AM
8398 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8399 "`%s'"), abfd, tmp_name);
a504d23a
LA
8400
8401 vma = myh->root.u.def.section->output_section->vma
8402 + myh->root.u.def.section->output_offset
8403 + myh->root.u.def.value;
8404
8405 errnode->u.b.veneer->vma = vma;
8406 break;
8407
8408 case STM32L4XX_ERRATUM_VENEER:
8409 /* Find return location. */
8410 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8411 errnode->u.v.id);
8412
8413 myh = elf_link_hash_lookup
8414 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8415
8416 if (myh == NULL)
4eca0228
AM
8417 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8418 "`%s'"), abfd, tmp_name);
a504d23a
LA
8419
8420 vma = myh->root.u.def.section->output_section->vma
8421 + myh->root.u.def.section->output_offset
8422 + myh->root.u.def.value;
8423
8424 errnode->u.v.branch->vma = vma;
8425 break;
8426
8427 default:
8428 abort ();
8429 }
8430 }
8431 }
8432
8433 free (tmp_name);
8434}
8435
8436static inline bfd_boolean
8437is_thumb2_ldmia (const insn32 insn)
8438{
8439 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8440 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8441 return (insn & 0xffd02000) == 0xe8900000;
8442}
8443
8444static inline bfd_boolean
8445is_thumb2_ldmdb (const insn32 insn)
8446{
8447 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8448 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8449 return (insn & 0xffd02000) == 0xe9100000;
8450}
8451
8452static inline bfd_boolean
8453is_thumb2_vldm (const insn32 insn)
8454{
8455 /* A6.5 Extension register load or store instruction
8456 A7.7.229
9239bbd3
CM
8457 We look for SP 32-bit and DP 64-bit registers.
8458 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8459 <list> is consecutive 64-bit registers
8460 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
a504d23a
LA
8461 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8462 <list> is consecutive 32-bit registers
8463 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8464 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8465 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8466 return
9239bbd3
CM
8467 (((insn & 0xfe100f00) == 0xec100b00) ||
8468 ((insn & 0xfe100f00) == 0xec100a00))
a504d23a
LA
8469 && /* (IA without !). */
8470 (((((insn << 7) >> 28) & 0xd) == 0x4)
9239bbd3 8471 /* (IA with !), includes VPOP (when reg number is SP). */
a504d23a
LA
8472 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8473 /* (DB with !). */
8474 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8475}
8476
8477/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8478 VLDM opcode and:
8479 - computes the number and the mode of memory accesses
8480 - decides if the replacement should be done:
8481 . replaces only if > 8-word accesses
8482 . or (testing purposes only) replaces all accesses. */
8483
8484static bfd_boolean
8485stm32l4xx_need_create_replacing_stub (const insn32 insn,
8486 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8487{
9239bbd3 8488 int nb_words = 0;
a504d23a
LA
8489
8490 /* The field encoding the register list is the same for both LDMIA
8491 and LDMDB encodings. */
8492 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
b25e998d 8493 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
a504d23a 8494 else if (is_thumb2_vldm (insn))
9239bbd3 8495 nb_words = (insn & 0xff);
a504d23a
LA
8496
8497 /* DEFAULT mode accounts for the real bug condition situation,
8498 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8499 return
9239bbd3 8500 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
a504d23a
LA
8501 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8502}
8503
8504/* Look for potentially-troublesome code sequences which might trigger
8505 the STM STM32L4XX erratum. */
8506
8507bfd_boolean
8508bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8509 struct bfd_link_info *link_info)
8510{
8511 asection *sec;
8512 bfd_byte *contents = NULL;
8513 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8514
8515 if (globals == NULL)
8516 return FALSE;
8517
8518 /* If we are only performing a partial link do not bother
8519 to construct any glue. */
8520 if (bfd_link_relocatable (link_info))
8521 return TRUE;
8522
8523 /* Skip if this bfd does not correspond to an ELF image. */
8524 if (! is_arm_elf (abfd))
8525 return TRUE;
8526
8527 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8528 return TRUE;
8529
8530 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8531 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8532 return TRUE;
8533
8534 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8535 {
8536 unsigned int i, span;
8537 struct _arm_elf_section_data *sec_data;
8538
8539 /* If we don't have executable progbits, we're not interested in this
8540 section. Also skip if section is to be excluded. */
8541 if (elf_section_type (sec) != SHT_PROGBITS
8542 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8543 || (sec->flags & SEC_EXCLUDE) != 0
8544 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8545 || sec->output_section == bfd_abs_section_ptr
8546 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8547 continue;
8548
8549 sec_data = elf32_arm_section_data (sec);
c7b8f16e 8550
a504d23a
LA
8551 if (sec_data->mapcount == 0)
8552 continue;
c7b8f16e 8553
a504d23a
LA
8554 if (elf_section_data (sec)->this_hdr.contents != NULL)
8555 contents = elf_section_data (sec)->this_hdr.contents;
8556 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8557 goto error_return;
c7b8f16e 8558
a504d23a
LA
8559 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8560 elf32_arm_compare_mapping);
c7b8f16e 8561
a504d23a
LA
8562 for (span = 0; span < sec_data->mapcount; span++)
8563 {
8564 unsigned int span_start = sec_data->map[span].vma;
8565 unsigned int span_end = (span == sec_data->mapcount - 1)
8566 ? sec->size : sec_data->map[span + 1].vma;
8567 char span_type = sec_data->map[span].type;
8568 int itblock_current_pos = 0;
c7b8f16e 8569
a504d23a
LA
8570 /* Only Thumb2 mode need be supported with this CM4 specific
8571 code, we should not encounter any arm mode eg span_type
8572 != 'a'. */
8573 if (span_type != 't')
8574 continue;
c7b8f16e 8575
a504d23a
LA
8576 for (i = span_start; i < span_end;)
8577 {
8578 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8579 bfd_boolean insn_32bit = FALSE;
8580 bfd_boolean is_ldm = FALSE;
8581 bfd_boolean is_vldm = FALSE;
8582 bfd_boolean is_not_last_in_it_block = FALSE;
8583
8584 /* The first 16-bits of all 32-bit thumb2 instructions start
8585 with opcode[15..13]=0b111 and the encoded op1 can be anything
8586 except opcode[12..11]!=0b00.
8587 See 32-bit Thumb instruction encoding. */
8588 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8589 insn_32bit = TRUE;
c7b8f16e 8590
a504d23a
LA
8591 /* Compute the predicate that tells if the instruction
8592 is concerned by the IT block
8593 - Creates an error if there is a ldm that is not
8594 last in the IT block thus cannot be replaced
8595 - Otherwise we can create a branch at the end of the
8596 IT block, it will be controlled naturally by IT
8597 with the proper pseudo-predicate
8598 - So the only interesting predicate is the one that
8599 tells that we are not on the last item of an IT
8600 block. */
8601 if (itblock_current_pos != 0)
8602 is_not_last_in_it_block = !!--itblock_current_pos;
906e58ca 8603
a504d23a
LA
8604 if (insn_32bit)
8605 {
8606 /* Load the rest of the insn (in manual-friendly order). */
8607 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8608 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8609 is_vldm = is_thumb2_vldm (insn);
8610
8611 /* Veneers are created for (v)ldm depending on
8612 option flags and memory accesses conditions; but
8613 if the instruction is not the last instruction of
8614 an IT block, we cannot create a jump there, so we
8615 bail out. */
5025eb7c
AO
8616 if ((is_ldm || is_vldm)
8617 && stm32l4xx_need_create_replacing_stub
a504d23a
LA
8618 (insn, globals->stm32l4xx_fix))
8619 {
8620 if (is_not_last_in_it_block)
8621 {
4eca0228 8622 _bfd_error_handler
695344c0 8623 /* xgettext:c-format */
63a5468a
AM
8624 (_("%B(%A+0x%lx): error: multiple load detected"
8625 " in non-last IT block instruction :"
8626 " STM32L4XX veneer cannot be generated.\n"
8627 "Use gcc option -mrestrict-it to generate"
8628 " only one instruction per IT block.\n"),
695344c0 8629 abfd, sec, (long) i);
a504d23a
LA
8630 }
8631 else
8632 {
8633 elf32_stm32l4xx_erratum_list *newerr =
8634 (elf32_stm32l4xx_erratum_list *)
8635 bfd_zmalloc
8636 (sizeof (elf32_stm32l4xx_erratum_list));
8637
8638 elf32_arm_section_data (sec)
8639 ->stm32l4xx_erratumcount += 1;
8640 newerr->u.b.insn = insn;
8641 /* We create only thumb branches. */
8642 newerr->type =
8643 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8644 record_stm32l4xx_erratum_veneer
8645 (link_info, newerr, abfd, sec,
8646 i,
8647 is_ldm ?
8648 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8649 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8650 newerr->vma = -1;
8651 newerr->next = sec_data->stm32l4xx_erratumlist;
8652 sec_data->stm32l4xx_erratumlist = newerr;
8653 }
8654 }
8655 }
8656 else
8657 {
8658 /* A7.7.37 IT p208
8659 IT blocks are only encoded in T1
8660 Encoding T1: IT{x{y{z}}} <firstcond>
8661 1 0 1 1 - 1 1 1 1 - firstcond - mask
8662 if mask = '0000' then see 'related encodings'
8663 We don't deal with UNPREDICTABLE, just ignore these.
8664 There can be no nested IT blocks so an IT block
8665 is naturally a new one for which it is worth
8666 computing its size. */
5025eb7c
AO
8667 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8668 && ((insn & 0x000f) != 0x0000);
a504d23a
LA
8669 /* If we have a new IT block we compute its size. */
8670 if (is_newitblock)
8671 {
8672 /* Compute the number of instructions controlled
8673 by the IT block, it will be used to decide
8674 whether we are inside an IT block or not. */
8675 unsigned int mask = insn & 0x000f;
8676 itblock_current_pos = 4 - ctz (mask);
8677 }
8678 }
8679
8680 i += insn_32bit ? 4 : 2;
99059e56
RM
8681 }
8682 }
a504d23a
LA
8683
8684 if (contents != NULL
8685 && elf_section_data (sec)->this_hdr.contents != contents)
8686 free (contents);
8687 contents = NULL;
c7b8f16e 8688 }
906e58ca 8689
a504d23a
LA
8690 return TRUE;
8691
8692error_return:
8693 if (contents != NULL
8694 && elf_section_data (sec)->this_hdr.contents != contents)
8695 free (contents);
c7b8f16e 8696
a504d23a
LA
8697 return FALSE;
8698}
c7b8f16e 8699
eb043451
PB
8700/* Set target relocation values needed during linking. */
8701
8702void
68c39892 8703bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
bf21ed78 8704 struct bfd_link_info *link_info,
68c39892 8705 struct elf32_arm_params *params)
eb043451
PB
8706{
8707 struct elf32_arm_link_hash_table *globals;
8708
8709 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8710 if (globals == NULL)
8711 return;
eb043451 8712
68c39892
TP
8713 globals->target1_is_rel = params->target1_is_rel;
8714 if (strcmp (params->target2_type, "rel") == 0)
eb043451 8715 globals->target2_reloc = R_ARM_REL32;
68c39892 8716 else if (strcmp (params->target2_type, "abs") == 0)
eeac373a 8717 globals->target2_reloc = R_ARM_ABS32;
68c39892 8718 else if (strcmp (params->target2_type, "got-rel") == 0)
eb043451
PB
8719 globals->target2_reloc = R_ARM_GOT_PREL;
8720 else
8721 {
8722 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
68c39892 8723 params->target2_type);
eb043451 8724 }
68c39892
TP
8725 globals->fix_v4bx = params->fix_v4bx;
8726 globals->use_blx |= params->use_blx;
8727 globals->vfp11_fix = params->vfp11_denorm_fix;
8728 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8729 globals->pic_veneer = params->pic_veneer;
8730 globals->fix_cortex_a8 = params->fix_cortex_a8;
8731 globals->fix_arm1176 = params->fix_arm1176;
8732 globals->cmse_implib = params->cmse_implib;
8733 globals->in_implib_bfd = params->in_implib_bfd;
bf21ed78 8734
0ffa91dd 8735 BFD_ASSERT (is_arm_elf (output_bfd));
68c39892
TP
8736 elf_arm_tdata (output_bfd)->no_enum_size_warning
8737 = params->no_enum_size_warning;
8738 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8739 = params->no_wchar_size_warning;
eb043451 8740}
eb043451 8741
12a0a0fd 8742/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 8743
12a0a0fd
PB
8744static void
8745insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8746{
8747 bfd_vma upper;
8748 bfd_vma lower;
8749 int reloc_sign;
8750
8751 BFD_ASSERT ((offset & 1) == 0);
8752
8753 upper = bfd_get_16 (abfd, insn);
8754 lower = bfd_get_16 (abfd, insn + 2);
8755 reloc_sign = (offset < 0) ? 1 : 0;
8756 upper = (upper & ~(bfd_vma) 0x7ff)
8757 | ((offset >> 12) & 0x3ff)
8758 | (reloc_sign << 10);
906e58ca 8759 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
8760 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8761 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8762 | ((offset >> 1) & 0x7ff);
8763 bfd_put_16 (abfd, upper, insn);
8764 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
8765}
8766
9b485d32
NC
8767/* Thumb code calling an ARM function. */
8768
252b5132 8769static int
57e8b36a
NC
8770elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8771 const char * name,
8772 bfd * input_bfd,
8773 bfd * output_bfd,
8774 asection * input_section,
8775 bfd_byte * hit_data,
8776 asection * sym_sec,
8777 bfd_vma offset,
8778 bfd_signed_vma addend,
f2a9dd69
DJ
8779 bfd_vma val,
8780 char **error_message)
252b5132 8781{
bcbdc74c 8782 asection * s = 0;
dc810e39 8783 bfd_vma my_offset;
252b5132 8784 long int ret_offset;
bcbdc74c
NC
8785 struct elf_link_hash_entry * myh;
8786 struct elf32_arm_link_hash_table * globals;
252b5132 8787
f2a9dd69 8788 myh = find_thumb_glue (info, name, error_message);
252b5132 8789 if (myh == NULL)
b34976b6 8790 return FALSE;
252b5132
RH
8791
8792 globals = elf32_arm_hash_table (info);
252b5132
RH
8793 BFD_ASSERT (globals != NULL);
8794 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8795
8796 my_offset = myh->root.u.def.value;
8797
3d4d4302
AM
8798 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8799 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
8800
8801 BFD_ASSERT (s != NULL);
8802 BFD_ASSERT (s->contents != NULL);
8803 BFD_ASSERT (s->output_section != NULL);
8804
8805 if ((my_offset & 0x01) == 0x01)
8806 {
8807 if (sym_sec != NULL
8808 && sym_sec->owner != NULL
8809 && !INTERWORK_FLAG (sym_sec->owner))
8810 {
4eca0228 8811 _bfd_error_handler
d003868e 8812 (_("%B(%s): warning: interworking not enabled.\n"
3aaeb7d3 8813 " first occurrence: %B: Thumb call to ARM"),
c08bb8dd 8814 sym_sec->owner, name, input_bfd);
252b5132 8815
b34976b6 8816 return FALSE;
252b5132
RH
8817 }
8818
8819 --my_offset;
8820 myh->root.u.def.value = my_offset;
8821
52ab56c2
PB
8822 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8823 s->contents + my_offset);
252b5132 8824
52ab56c2
PB
8825 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8826 s->contents + my_offset + 2);
252b5132
RH
8827
8828 ret_offset =
9b485d32
NC
8829 /* Address of destination of the stub. */
8830 ((bfd_signed_vma) val)
252b5132 8831 - ((bfd_signed_vma)
57e8b36a
NC
8832 /* Offset from the start of the current section
8833 to the start of the stubs. */
9b485d32
NC
8834 (s->output_offset
8835 /* Offset of the start of this stub from the start of the stubs. */
8836 + my_offset
8837 /* Address of the start of the current section. */
8838 + s->output_section->vma)
8839 /* The branch instruction is 4 bytes into the stub. */
8840 + 4
8841 /* ARM branches work from the pc of the instruction + 8. */
8842 + 8);
252b5132 8843
52ab56c2
PB
8844 put_arm_insn (globals, output_bfd,
8845 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8846 s->contents + my_offset + 4);
252b5132
RH
8847 }
8848
8849 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8850
427bfd90
NC
8851 /* Now go back and fix up the original BL insn to point to here. */
8852 ret_offset =
8853 /* Address of where the stub is located. */
8854 (s->output_section->vma + s->output_offset + my_offset)
8855 /* Address of where the BL is located. */
57e8b36a
NC
8856 - (input_section->output_section->vma + input_section->output_offset
8857 + offset)
427bfd90
NC
8858 /* Addend in the relocation. */
8859 - addend
8860 /* Biassing for PC-relative addressing. */
8861 - 8;
252b5132 8862
12a0a0fd 8863 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 8864
b34976b6 8865 return TRUE;
252b5132
RH
8866}
8867
a4fd1a8e 8868/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 8869
a4fd1a8e
PB
8870static struct elf_link_hash_entry *
8871elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8872 const char * name,
8873 bfd * input_bfd,
8874 bfd * output_bfd,
8875 asection * sym_sec,
8876 bfd_vma val,
8029a119
NC
8877 asection * s,
8878 char ** error_message)
252b5132 8879{
dc810e39 8880 bfd_vma my_offset;
252b5132 8881 long int ret_offset;
bcbdc74c
NC
8882 struct elf_link_hash_entry * myh;
8883 struct elf32_arm_link_hash_table * globals;
252b5132 8884
f2a9dd69 8885 myh = find_arm_glue (info, name, error_message);
252b5132 8886 if (myh == NULL)
a4fd1a8e 8887 return NULL;
252b5132
RH
8888
8889 globals = elf32_arm_hash_table (info);
252b5132
RH
8890 BFD_ASSERT (globals != NULL);
8891 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8892
8893 my_offset = myh->root.u.def.value;
252b5132
RH
8894
8895 if ((my_offset & 0x01) == 0x01)
8896 {
8897 if (sym_sec != NULL
8898 && sym_sec->owner != NULL
8899 && !INTERWORK_FLAG (sym_sec->owner))
8900 {
4eca0228 8901 _bfd_error_handler
d003868e
AM
8902 (_("%B(%s): warning: interworking not enabled.\n"
8903 " first occurrence: %B: arm call to thumb"),
c08bb8dd 8904 sym_sec->owner, name, input_bfd);
252b5132 8905 }
9b485d32 8906
252b5132
RH
8907 --my_offset;
8908 myh->root.u.def.value = my_offset;
8909
0e1862bb
L
8910 if (bfd_link_pic (info)
8911 || globals->root.is_relocatable_executable
27e55c4d 8912 || globals->pic_veneer)
8f6277f5
PB
8913 {
8914 /* For relocatable objects we can't use absolute addresses,
8915 so construct the address from a relative offset. */
8916 /* TODO: If the offset is small it's probably worth
8917 constructing the address with adds. */
52ab56c2
PB
8918 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8919 s->contents + my_offset);
8920 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8921 s->contents + my_offset + 4);
8922 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8923 s->contents + my_offset + 8);
8f6277f5
PB
8924 /* Adjust the offset by 4 for the position of the add,
8925 and 8 for the pipeline offset. */
8926 ret_offset = (val - (s->output_offset
8927 + s->output_section->vma
8928 + my_offset + 12))
8929 | 1;
8930 bfd_put_32 (output_bfd, ret_offset,
8931 s->contents + my_offset + 12);
8932 }
26079076
PB
8933 else if (globals->use_blx)
8934 {
8935 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8936 s->contents + my_offset);
8937
8938 /* It's a thumb address. Add the low order bit. */
8939 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8940 s->contents + my_offset + 4);
8941 }
8f6277f5
PB
8942 else
8943 {
52ab56c2
PB
8944 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8945 s->contents + my_offset);
252b5132 8946
52ab56c2
PB
8947 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8948 s->contents + my_offset + 4);
252b5132 8949
8f6277f5
PB
8950 /* It's a thumb address. Add the low order bit. */
8951 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8952 s->contents + my_offset + 8);
8029a119
NC
8953
8954 my_offset += 12;
8f6277f5 8955 }
252b5132
RH
8956 }
8957
8958 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8959
a4fd1a8e
PB
8960 return myh;
8961}
8962
8963/* Arm code calling a Thumb function. */
8964
8965static int
8966elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8967 const char * name,
8968 bfd * input_bfd,
8969 bfd * output_bfd,
8970 asection * input_section,
8971 bfd_byte * hit_data,
8972 asection * sym_sec,
8973 bfd_vma offset,
8974 bfd_signed_vma addend,
f2a9dd69
DJ
8975 bfd_vma val,
8976 char **error_message)
a4fd1a8e
PB
8977{
8978 unsigned long int tmp;
8979 bfd_vma my_offset;
8980 asection * s;
8981 long int ret_offset;
8982 struct elf_link_hash_entry * myh;
8983 struct elf32_arm_link_hash_table * globals;
8984
8985 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
8986 BFD_ASSERT (globals != NULL);
8987 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8988
3d4d4302
AM
8989 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8990 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
8991 BFD_ASSERT (s != NULL);
8992 BFD_ASSERT (s->contents != NULL);
8993 BFD_ASSERT (s->output_section != NULL);
8994
8995 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 8996 sym_sec, val, s, error_message);
a4fd1a8e
PB
8997 if (!myh)
8998 return FALSE;
8999
9000 my_offset = myh->root.u.def.value;
252b5132
RH
9001 tmp = bfd_get_32 (input_bfd, hit_data);
9002 tmp = tmp & 0xFF000000;
9003
9b485d32 9004 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
9005 ret_offset = (s->output_offset
9006 + my_offset
9007 + s->output_section->vma
9008 - (input_section->output_offset
9009 + input_section->output_section->vma
9010 + offset + addend)
9011 - 8);
9a5aca8c 9012
252b5132
RH
9013 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9014
dc810e39 9015 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 9016
b34976b6 9017 return TRUE;
252b5132
RH
9018}
9019
a4fd1a8e
PB
9020/* Populate Arm stub for an exported Thumb function. */
9021
9022static bfd_boolean
9023elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9024{
9025 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9026 asection * s;
9027 struct elf_link_hash_entry * myh;
9028 struct elf32_arm_link_hash_entry *eh;
9029 struct elf32_arm_link_hash_table * globals;
9030 asection *sec;
9031 bfd_vma val;
f2a9dd69 9032 char *error_message;
a4fd1a8e 9033
906e58ca 9034 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
9035 /* Allocate stubs for exported Thumb functions on v4t. */
9036 if (eh->export_glue == NULL)
9037 return TRUE;
9038
9039 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9040 BFD_ASSERT (globals != NULL);
9041 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9042
3d4d4302
AM
9043 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9044 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9045 BFD_ASSERT (s != NULL);
9046 BFD_ASSERT (s->contents != NULL);
9047 BFD_ASSERT (s->output_section != NULL);
9048
9049 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
9050
9051 BFD_ASSERT (sec->output_section != NULL);
9052
a4fd1a8e
PB
9053 val = eh->export_glue->root.u.def.value + sec->output_offset
9054 + sec->output_section->vma;
8029a119 9055
a4fd1a8e
PB
9056 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9057 h->root.u.def.section->owner,
f2a9dd69
DJ
9058 globals->obfd, sec, val, s,
9059 &error_message);
a4fd1a8e
PB
9060 BFD_ASSERT (myh);
9061 return TRUE;
9062}
9063
845b51d6
PB
9064/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9065
9066static bfd_vma
9067elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9068{
9069 bfd_byte *p;
9070 bfd_vma glue_addr;
9071 asection *s;
9072 struct elf32_arm_link_hash_table *globals;
9073
9074 globals = elf32_arm_hash_table (info);
845b51d6
PB
9075 BFD_ASSERT (globals != NULL);
9076 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9077
3d4d4302
AM
9078 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9079 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
9080 BFD_ASSERT (s != NULL);
9081 BFD_ASSERT (s->contents != NULL);
9082 BFD_ASSERT (s->output_section != NULL);
9083
9084 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9085
9086 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9087
9088 if ((globals->bx_glue_offset[reg] & 1) == 0)
9089 {
9090 p = s->contents + glue_addr;
9091 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9092 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9093 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9094 globals->bx_glue_offset[reg] |= 1;
9095 }
9096
9097 return glue_addr + s->output_section->vma + s->output_offset;
9098}
9099
a4fd1a8e
PB
9100/* Generate Arm stubs for exported Thumb symbols. */
9101static void
906e58ca 9102elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
9103 struct bfd_link_info *link_info)
9104{
9105 struct elf32_arm_link_hash_table * globals;
9106
8029a119
NC
9107 if (link_info == NULL)
9108 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
9109 return;
9110
9111 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9112 if (globals == NULL)
9113 return;
9114
84c08195
PB
9115 /* If blx is available then exported Thumb symbols are OK and there is
9116 nothing to do. */
a4fd1a8e
PB
9117 if (globals->use_blx)
9118 return;
9119
9120 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9121 link_info);
9122}
9123
47beaa6a
RS
9124/* Reserve space for COUNT dynamic relocations in relocation selection
9125 SRELOC. */
9126
9127static void
9128elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9129 bfd_size_type count)
9130{
9131 struct elf32_arm_link_hash_table *htab;
9132
9133 htab = elf32_arm_hash_table (info);
9134 BFD_ASSERT (htab->root.dynamic_sections_created);
9135 if (sreloc == NULL)
9136 abort ();
9137 sreloc->size += RELOC_SIZE (htab) * count;
9138}
9139
34e77a92
RS
9140/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9141 dynamic, the relocations should go in SRELOC, otherwise they should
9142 go in the special .rel.iplt section. */
9143
9144static void
9145elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9146 bfd_size_type count)
9147{
9148 struct elf32_arm_link_hash_table *htab;
9149
9150 htab = elf32_arm_hash_table (info);
9151 if (!htab->root.dynamic_sections_created)
9152 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9153 else
9154 {
9155 BFD_ASSERT (sreloc != NULL);
9156 sreloc->size += RELOC_SIZE (htab) * count;
9157 }
9158}
9159
47beaa6a
RS
9160/* Add relocation REL to the end of relocation section SRELOC. */
9161
9162static void
9163elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9164 asection *sreloc, Elf_Internal_Rela *rel)
9165{
9166 bfd_byte *loc;
9167 struct elf32_arm_link_hash_table *htab;
9168
9169 htab = elf32_arm_hash_table (info);
34e77a92
RS
9170 if (!htab->root.dynamic_sections_created
9171 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9172 sreloc = htab->root.irelplt;
47beaa6a
RS
9173 if (sreloc == NULL)
9174 abort ();
9175 loc = sreloc->contents;
9176 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9177 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9178 abort ();
9179 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9180}
9181
34e77a92
RS
9182/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9183 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9184 to .plt. */
9185
9186static void
9187elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9188 bfd_boolean is_iplt_entry,
9189 union gotplt_union *root_plt,
9190 struct arm_plt_info *arm_plt)
9191{
9192 struct elf32_arm_link_hash_table *htab;
9193 asection *splt;
9194 asection *sgotplt;
9195
9196 htab = elf32_arm_hash_table (info);
9197
9198 if (is_iplt_entry)
9199 {
9200 splt = htab->root.iplt;
9201 sgotplt = htab->root.igotplt;
9202
99059e56
RM
9203 /* NaCl uses a special first entry in .iplt too. */
9204 if (htab->nacl_p && splt->size == 0)
9205 splt->size += htab->plt_header_size;
9206
34e77a92
RS
9207 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9208 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9209 }
9210 else
9211 {
9212 splt = htab->root.splt;
9213 sgotplt = htab->root.sgotplt;
9214
9215 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9216 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9217
9218 /* If this is the first .plt entry, make room for the special
9219 first entry. */
9220 if (splt->size == 0)
9221 splt->size += htab->plt_header_size;
9f19ab6d
WN
9222
9223 htab->next_tls_desc_index++;
34e77a92
RS
9224 }
9225
9226 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9227 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9228 splt->size += PLT_THUMB_STUB_SIZE;
9229 root_plt->offset = splt->size;
9230 splt->size += htab->plt_entry_size;
9231
9232 if (!htab->symbian_p)
9233 {
9234 /* We also need to make an entry in the .got.plt section, which
9235 will be placed in the .got section by the linker script. */
9f19ab6d
WN
9236 if (is_iplt_entry)
9237 arm_plt->got_offset = sgotplt->size;
9238 else
9239 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
34e77a92
RS
9240 sgotplt->size += 4;
9241 }
9242}
9243
b38cadfb
NC
9244static bfd_vma
9245arm_movw_immediate (bfd_vma value)
9246{
9247 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9248}
9249
9250static bfd_vma
9251arm_movt_immediate (bfd_vma value)
9252{
9253 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9254}
9255
34e77a92
RS
9256/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9257 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9258 Otherwise, DYNINDX is the index of the symbol in the dynamic
9259 symbol table and SYM_VALUE is undefined.
9260
9261 ROOT_PLT points to the offset of the PLT entry from the start of its
9262 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 9263 bookkeeping information.
34e77a92 9264
57460bcf
NC
9265 Returns FALSE if there was a problem. */
9266
9267static bfd_boolean
34e77a92
RS
9268elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9269 union gotplt_union *root_plt,
9270 struct arm_plt_info *arm_plt,
9271 int dynindx, bfd_vma sym_value)
9272{
9273 struct elf32_arm_link_hash_table *htab;
9274 asection *sgot;
9275 asection *splt;
9276 asection *srel;
9277 bfd_byte *loc;
9278 bfd_vma plt_index;
9279 Elf_Internal_Rela rel;
9280 bfd_vma plt_header_size;
9281 bfd_vma got_header_size;
9282
9283 htab = elf32_arm_hash_table (info);
9284
9285 /* Pick the appropriate sections and sizes. */
9286 if (dynindx == -1)
9287 {
9288 splt = htab->root.iplt;
9289 sgot = htab->root.igotplt;
9290 srel = htab->root.irelplt;
9291
9292 /* There are no reserved entries in .igot.plt, and no special
9293 first entry in .iplt. */
9294 got_header_size = 0;
9295 plt_header_size = 0;
9296 }
9297 else
9298 {
9299 splt = htab->root.splt;
9300 sgot = htab->root.sgotplt;
9301 srel = htab->root.srelplt;
9302
9303 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9304 plt_header_size = htab->plt_header_size;
9305 }
9306 BFD_ASSERT (splt != NULL && srel != NULL);
9307
9308 /* Fill in the entry in the procedure linkage table. */
9309 if (htab->symbian_p)
9310 {
9311 BFD_ASSERT (dynindx >= 0);
9312 put_arm_insn (htab, output_bfd,
9313 elf32_arm_symbian_plt_entry[0],
9314 splt->contents + root_plt->offset);
9315 bfd_put_32 (output_bfd,
9316 elf32_arm_symbian_plt_entry[1],
9317 splt->contents + root_plt->offset + 4);
9318
9319 /* Fill in the entry in the .rel.plt section. */
9320 rel.r_offset = (splt->output_section->vma
9321 + splt->output_offset
9322 + root_plt->offset + 4);
9323 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9324
9325 /* Get the index in the procedure linkage table which
9326 corresponds to this symbol. This is the index of this symbol
9327 in all the symbols for which we are making plt entries. The
9328 first entry in the procedure linkage table is reserved. */
9329 plt_index = ((root_plt->offset - plt_header_size)
9330 / htab->plt_entry_size);
9331 }
9332 else
9333 {
9334 bfd_vma got_offset, got_address, plt_address;
9335 bfd_vma got_displacement, initial_got_entry;
9336 bfd_byte * ptr;
9337
9338 BFD_ASSERT (sgot != NULL);
9339
9340 /* Get the offset into the .(i)got.plt table of the entry that
9341 corresponds to this function. */
9342 got_offset = (arm_plt->got_offset & -2);
9343
9344 /* Get the index in the procedure linkage table which
9345 corresponds to this symbol. This is the index of this symbol
9346 in all the symbols for which we are making plt entries.
9347 After the reserved .got.plt entries, all symbols appear in
9348 the same order as in .plt. */
9349 plt_index = (got_offset - got_header_size) / 4;
9350
9351 /* Calculate the address of the GOT entry. */
9352 got_address = (sgot->output_section->vma
9353 + sgot->output_offset
9354 + got_offset);
9355
9356 /* ...and the address of the PLT entry. */
9357 plt_address = (splt->output_section->vma
9358 + splt->output_offset
9359 + root_plt->offset);
9360
9361 ptr = splt->contents + root_plt->offset;
0e1862bb 9362 if (htab->vxworks_p && bfd_link_pic (info))
34e77a92
RS
9363 {
9364 unsigned int i;
9365 bfd_vma val;
9366
9367 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9368 {
9369 val = elf32_arm_vxworks_shared_plt_entry[i];
9370 if (i == 2)
9371 val |= got_address - sgot->output_section->vma;
9372 if (i == 5)
9373 val |= plt_index * RELOC_SIZE (htab);
9374 if (i == 2 || i == 5)
9375 bfd_put_32 (output_bfd, val, ptr);
9376 else
9377 put_arm_insn (htab, output_bfd, val, ptr);
9378 }
9379 }
9380 else if (htab->vxworks_p)
9381 {
9382 unsigned int i;
9383 bfd_vma val;
9384
9385 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9386 {
9387 val = elf32_arm_vxworks_exec_plt_entry[i];
9388 if (i == 2)
9389 val |= got_address;
9390 if (i == 4)
9391 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9392 if (i == 5)
9393 val |= plt_index * RELOC_SIZE (htab);
9394 if (i == 2 || i == 5)
9395 bfd_put_32 (output_bfd, val, ptr);
9396 else
9397 put_arm_insn (htab, output_bfd, val, ptr);
9398 }
9399
9400 loc = (htab->srelplt2->contents
9401 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9402
9403 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9404 referencing the GOT for this PLT entry. */
9405 rel.r_offset = plt_address + 8;
9406 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9407 rel.r_addend = got_offset;
9408 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9409 loc += RELOC_SIZE (htab);
9410
9411 /* Create the R_ARM_ABS32 relocation referencing the
9412 beginning of the PLT for this GOT entry. */
9413 rel.r_offset = got_address;
9414 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9415 rel.r_addend = 0;
9416 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9417 }
b38cadfb
NC
9418 else if (htab->nacl_p)
9419 {
9420 /* Calculate the displacement between the PLT slot and the
9421 common tail that's part of the special initial PLT slot. */
6034aab8 9422 int32_t tail_displacement
b38cadfb
NC
9423 = ((splt->output_section->vma + splt->output_offset
9424 + ARM_NACL_PLT_TAIL_OFFSET)
9425 - (plt_address + htab->plt_entry_size + 4));
9426 BFD_ASSERT ((tail_displacement & 3) == 0);
9427 tail_displacement >>= 2;
9428
9429 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9430 || (-tail_displacement & 0xff000000) == 0);
9431
9432 /* Calculate the displacement between the PLT slot and the entry
9433 in the GOT. The offset accounts for the value produced by
9434 adding to pc in the penultimate instruction of the PLT stub. */
6034aab8 9435 got_displacement = (got_address
99059e56 9436 - (plt_address + htab->plt_entry_size));
b38cadfb
NC
9437
9438 /* NaCl does not support interworking at all. */
9439 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9440
9441 put_arm_insn (htab, output_bfd,
9442 elf32_arm_nacl_plt_entry[0]
9443 | arm_movw_immediate (got_displacement),
9444 ptr + 0);
9445 put_arm_insn (htab, output_bfd,
9446 elf32_arm_nacl_plt_entry[1]
9447 | arm_movt_immediate (got_displacement),
9448 ptr + 4);
9449 put_arm_insn (htab, output_bfd,
9450 elf32_arm_nacl_plt_entry[2],
9451 ptr + 8);
9452 put_arm_insn (htab, output_bfd,
9453 elf32_arm_nacl_plt_entry[3]
9454 | (tail_displacement & 0x00ffffff),
9455 ptr + 12);
9456 }
57460bcf
NC
9457 else if (using_thumb_only (htab))
9458 {
eed94f8f 9459 /* PR ld/16017: Generate thumb only PLT entries. */
469a3493 9460 if (!using_thumb2 (htab))
eed94f8f
NC
9461 {
9462 /* FIXME: We ought to be able to generate thumb-1 PLT
9463 instructions... */
9464 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9465 output_bfd);
9466 return FALSE;
9467 }
57460bcf 9468
eed94f8f
NC
9469 /* Calculate the displacement between the PLT slot and the entry in
9470 the GOT. The 12-byte offset accounts for the value produced by
9471 adding to pc in the 3rd instruction of the PLT stub. */
9472 got_displacement = got_address - (plt_address + 12);
9473
9474 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9475 instead of 'put_thumb_insn'. */
9476 put_arm_insn (htab, output_bfd,
9477 elf32_thumb2_plt_entry[0]
9478 | ((got_displacement & 0x000000ff) << 16)
9479 | ((got_displacement & 0x00000700) << 20)
9480 | ((got_displacement & 0x00000800) >> 1)
9481 | ((got_displacement & 0x0000f000) >> 12),
9482 ptr + 0);
9483 put_arm_insn (htab, output_bfd,
9484 elf32_thumb2_plt_entry[1]
9485 | ((got_displacement & 0x00ff0000) )
9486 | ((got_displacement & 0x07000000) << 4)
9487 | ((got_displacement & 0x08000000) >> 17)
9488 | ((got_displacement & 0xf0000000) >> 28),
9489 ptr + 4);
9490 put_arm_insn (htab, output_bfd,
9491 elf32_thumb2_plt_entry[2],
9492 ptr + 8);
9493 put_arm_insn (htab, output_bfd,
9494 elf32_thumb2_plt_entry[3],
9495 ptr + 12);
57460bcf 9496 }
34e77a92
RS
9497 else
9498 {
9499 /* Calculate the displacement between the PLT slot and the
9500 entry in the GOT. The eight-byte offset accounts for the
9501 value produced by adding to pc in the first instruction
9502 of the PLT stub. */
9503 got_displacement = got_address - (plt_address + 8);
9504
34e77a92
RS
9505 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9506 {
9507 put_thumb_insn (htab, output_bfd,
9508 elf32_arm_plt_thumb_stub[0], ptr - 4);
9509 put_thumb_insn (htab, output_bfd,
9510 elf32_arm_plt_thumb_stub[1], ptr - 2);
9511 }
9512
1db37fe6
YG
9513 if (!elf32_arm_use_long_plt_entry)
9514 {
9515 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9516
9517 put_arm_insn (htab, output_bfd,
9518 elf32_arm_plt_entry_short[0]
9519 | ((got_displacement & 0x0ff00000) >> 20),
9520 ptr + 0);
9521 put_arm_insn (htab, output_bfd,
9522 elf32_arm_plt_entry_short[1]
9523 | ((got_displacement & 0x000ff000) >> 12),
9524 ptr+ 4);
9525 put_arm_insn (htab, output_bfd,
9526 elf32_arm_plt_entry_short[2]
9527 | (got_displacement & 0x00000fff),
9528 ptr + 8);
34e77a92 9529#ifdef FOUR_WORD_PLT
1db37fe6 9530 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
34e77a92 9531#endif
1db37fe6
YG
9532 }
9533 else
9534 {
9535 put_arm_insn (htab, output_bfd,
9536 elf32_arm_plt_entry_long[0]
9537 | ((got_displacement & 0xf0000000) >> 28),
9538 ptr + 0);
9539 put_arm_insn (htab, output_bfd,
9540 elf32_arm_plt_entry_long[1]
9541 | ((got_displacement & 0x0ff00000) >> 20),
9542 ptr + 4);
9543 put_arm_insn (htab, output_bfd,
9544 elf32_arm_plt_entry_long[2]
9545 | ((got_displacement & 0x000ff000) >> 12),
9546 ptr+ 8);
9547 put_arm_insn (htab, output_bfd,
9548 elf32_arm_plt_entry_long[3]
9549 | (got_displacement & 0x00000fff),
9550 ptr + 12);
9551 }
34e77a92
RS
9552 }
9553
9554 /* Fill in the entry in the .rel(a).(i)plt section. */
9555 rel.r_offset = got_address;
9556 rel.r_addend = 0;
9557 if (dynindx == -1)
9558 {
9559 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9560 The dynamic linker or static executable then calls SYM_VALUE
9561 to determine the correct run-time value of the .igot.plt entry. */
9562 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9563 initial_got_entry = sym_value;
9564 }
9565 else
9566 {
9567 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9568 initial_got_entry = (splt->output_section->vma
9569 + splt->output_offset);
9570 }
9571
9572 /* Fill in the entry in the global offset table. */
9573 bfd_put_32 (output_bfd, initial_got_entry,
9574 sgot->contents + got_offset);
9575 }
9576
aba8c3de
WN
9577 if (dynindx == -1)
9578 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9579 else
9580 {
9581 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9582 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9583 }
57460bcf
NC
9584
9585 return TRUE;
34e77a92
RS
9586}
9587
eb043451
PB
9588/* Some relocations map to different relocations depending on the
9589 target. Return the real relocation. */
8029a119 9590
eb043451
PB
9591static int
9592arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9593 int r_type)
9594{
9595 switch (r_type)
9596 {
9597 case R_ARM_TARGET1:
9598 if (globals->target1_is_rel)
9599 return R_ARM_REL32;
9600 else
9601 return R_ARM_ABS32;
9602
9603 case R_ARM_TARGET2:
9604 return globals->target2_reloc;
9605
9606 default:
9607 return r_type;
9608 }
9609}
eb043451 9610
ba93b8ac
DJ
9611/* Return the base VMA address which should be subtracted from real addresses
9612 when resolving @dtpoff relocation.
9613 This is PT_TLS segment p_vaddr. */
9614
9615static bfd_vma
9616dtpoff_base (struct bfd_link_info *info)
9617{
9618 /* If tls_sec is NULL, we should have signalled an error already. */
9619 if (elf_hash_table (info)->tls_sec == NULL)
9620 return 0;
9621 return elf_hash_table (info)->tls_sec->vma;
9622}
9623
9624/* Return the relocation value for @tpoff relocation
9625 if STT_TLS virtual address is ADDRESS. */
9626
9627static bfd_vma
9628tpoff (struct bfd_link_info *info, bfd_vma address)
9629{
9630 struct elf_link_hash_table *htab = elf_hash_table (info);
9631 bfd_vma base;
9632
9633 /* If tls_sec is NULL, we should have signalled an error already. */
9634 if (htab->tls_sec == NULL)
9635 return 0;
9636 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9637 return address - htab->tls_sec->vma + base;
9638}
9639
00a97672
RS
9640/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9641 VALUE is the relocation value. */
9642
9643static bfd_reloc_status_type
9644elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9645{
9646 if (value > 0xfff)
9647 return bfd_reloc_overflow;
9648
9649 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9650 bfd_put_32 (abfd, value, data);
9651 return bfd_reloc_ok;
9652}
9653
0855e32b
NS
9654/* Handle TLS relaxations. Relaxing is possible for symbols that use
9655 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9656 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9657
9658 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9659 is to then call final_link_relocate. Return other values in the
62672b10
NS
9660 case of error.
9661
9662 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9663 the pre-relaxed code. It would be nice if the relocs were updated
9664 to match the optimization. */
0855e32b 9665
b38cadfb 9666static bfd_reloc_status_type
0855e32b 9667elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 9668 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
9669 Elf_Internal_Rela *rel, unsigned long is_local)
9670{
9671 unsigned long insn;
b38cadfb 9672
0855e32b
NS
9673 switch (ELF32_R_TYPE (rel->r_info))
9674 {
9675 default:
9676 return bfd_reloc_notsupported;
b38cadfb 9677
0855e32b
NS
9678 case R_ARM_TLS_GOTDESC:
9679 if (is_local)
9680 insn = 0;
9681 else
9682 {
9683 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9684 if (insn & 1)
9685 insn -= 5; /* THUMB */
9686 else
9687 insn -= 8; /* ARM */
9688 }
9689 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9690 return bfd_reloc_continue;
9691
9692 case R_ARM_THM_TLS_DESCSEQ:
9693 /* Thumb insn. */
9694 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9695 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9696 {
9697 if (is_local)
9698 /* nop */
9699 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9700 }
9701 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9702 {
9703 if (is_local)
9704 /* nop */
9705 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9706 else
9707 /* ldr rx,[ry] */
9708 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9709 }
9710 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9711 {
9712 if (is_local)
9713 /* nop */
9714 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9715 else
9716 /* mov r0, rx */
9717 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9718 contents + rel->r_offset);
9719 }
9720 else
9721 {
9722 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9723 /* It's a 32 bit instruction, fetch the rest of it for
9724 error generation. */
9725 insn = (insn << 16)
9726 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
4eca0228 9727 _bfd_error_handler
695344c0
NC
9728 /* xgettext:c-format */
9729 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' in TLS trampoline"),
0855e32b
NS
9730 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9731 return bfd_reloc_notsupported;
9732 }
9733 break;
b38cadfb 9734
0855e32b
NS
9735 case R_ARM_TLS_DESCSEQ:
9736 /* arm insn. */
9737 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9738 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9739 {
9740 if (is_local)
9741 /* mov rx, ry */
9742 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9743 contents + rel->r_offset);
9744 }
9745 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9746 {
9747 if (is_local)
9748 /* nop */
9749 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9750 else
9751 /* ldr rx,[ry] */
9752 bfd_put_32 (input_bfd, insn & 0xfffff000,
9753 contents + rel->r_offset);
9754 }
9755 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9756 {
9757 if (is_local)
9758 /* nop */
9759 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9760 else
9761 /* mov r0, rx */
9762 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9763 contents + rel->r_offset);
9764 }
9765 else
9766 {
4eca0228 9767 _bfd_error_handler
695344c0
NC
9768 /* xgettext:c-format */
9769 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' in TLS trampoline"),
0855e32b
NS
9770 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9771 return bfd_reloc_notsupported;
9772 }
9773 break;
9774
9775 case R_ARM_TLS_CALL:
9776 /* GD->IE relaxation, turn the instruction into 'nop' or
9777 'ldr r0, [pc,r0]' */
9778 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9779 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9780 break;
b38cadfb 9781
0855e32b 9782 case R_ARM_THM_TLS_CALL:
6a631e86 9783 /* GD->IE relaxation. */
0855e32b
NS
9784 if (!is_local)
9785 /* add r0,pc; ldr r0, [r0] */
9786 insn = 0x44786800;
60a019a0 9787 else if (using_thumb2 (globals))
0855e32b
NS
9788 /* nop.w */
9789 insn = 0xf3af8000;
9790 else
9791 /* nop; nop */
9792 insn = 0xbf00bf00;
b38cadfb 9793
0855e32b
NS
9794 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9795 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9796 break;
9797 }
9798 return bfd_reloc_ok;
9799}
9800
4962c51a
MS
9801/* For a given value of n, calculate the value of G_n as required to
9802 deal with group relocations. We return it in the form of an
9803 encoded constant-and-rotation, together with the final residual. If n is
9804 specified as less than zero, then final_residual is filled with the
9805 input value and no further action is performed. */
9806
9807static bfd_vma
9808calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9809{
9810 int current_n;
9811 bfd_vma g_n;
9812 bfd_vma encoded_g_n = 0;
9813 bfd_vma residual = value; /* Also known as Y_n. */
9814
9815 for (current_n = 0; current_n <= n; current_n++)
9816 {
9817 int shift;
9818
9819 /* Calculate which part of the value to mask. */
9820 if (residual == 0)
99059e56 9821 shift = 0;
4962c51a 9822 else
99059e56
RM
9823 {
9824 int msb;
9825
9826 /* Determine the most significant bit in the residual and
9827 align the resulting value to a 2-bit boundary. */
9828 for (msb = 30; msb >= 0; msb -= 2)
9829 if (residual & (3 << msb))
9830 break;
9831
9832 /* The desired shift is now (msb - 6), or zero, whichever
9833 is the greater. */
9834 shift = msb - 6;
9835 if (shift < 0)
9836 shift = 0;
9837 }
4962c51a
MS
9838
9839 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9840 g_n = residual & (0xff << shift);
9841 encoded_g_n = (g_n >> shift)
99059e56 9842 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
9843
9844 /* Calculate the residual for the next time around. */
9845 residual &= ~g_n;
9846 }
9847
9848 *final_residual = residual;
9849
9850 return encoded_g_n;
9851}
9852
9853/* Given an ARM instruction, determine whether it is an ADD or a SUB.
9854 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 9855
4962c51a 9856static int
906e58ca 9857identify_add_or_sub (bfd_vma insn)
4962c51a
MS
9858{
9859 int opcode = insn & 0x1e00000;
9860
9861 if (opcode == 1 << 23) /* ADD */
9862 return 1;
9863
9864 if (opcode == 1 << 22) /* SUB */
9865 return -1;
9866
9867 return 0;
9868}
9869
252b5132 9870/* Perform a relocation as part of a final link. */
9b485d32 9871
252b5132 9872static bfd_reloc_status_type
57e8b36a
NC
9873elf32_arm_final_link_relocate (reloc_howto_type * howto,
9874 bfd * input_bfd,
9875 bfd * output_bfd,
9876 asection * input_section,
9877 bfd_byte * contents,
9878 Elf_Internal_Rela * rel,
9879 bfd_vma value,
9880 struct bfd_link_info * info,
9881 asection * sym_sec,
9882 const char * sym_name,
34e77a92
RS
9883 unsigned char st_type,
9884 enum arm_st_branch_type branch_type,
0945cdfd 9885 struct elf_link_hash_entry * h,
f2a9dd69 9886 bfd_boolean * unresolved_reloc_p,
8029a119 9887 char ** error_message)
252b5132
RH
9888{
9889 unsigned long r_type = howto->type;
9890 unsigned long r_symndx;
9891 bfd_byte * hit_data = contents + rel->r_offset;
252b5132 9892 bfd_vma * local_got_offsets;
0855e32b 9893 bfd_vma * local_tlsdesc_gotents;
34e77a92
RS
9894 asection * sgot;
9895 asection * splt;
252b5132 9896 asection * sreloc = NULL;
362d30a1 9897 asection * srelgot;
252b5132 9898 bfd_vma addend;
ba96a88f 9899 bfd_signed_vma signed_addend;
34e77a92
RS
9900 unsigned char dynreloc_st_type;
9901 bfd_vma dynreloc_value;
ba96a88f 9902 struct elf32_arm_link_hash_table * globals;
34e77a92
RS
9903 struct elf32_arm_link_hash_entry *eh;
9904 union gotplt_union *root_plt;
9905 struct arm_plt_info *arm_plt;
9906 bfd_vma plt_offset;
9907 bfd_vma gotplt_offset;
9908 bfd_boolean has_iplt_entry;
f21f3fe0 9909
9c504268 9910 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
9911 if (globals == NULL)
9912 return bfd_reloc_notsupported;
9c504268 9913
0ffa91dd
NC
9914 BFD_ASSERT (is_arm_elf (input_bfd));
9915
9916 /* Some relocation types map to different relocations depending on the
9c504268 9917 target. We pick the right one here. */
eb043451 9918 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
9919
9920 /* It is possible to have linker relaxations on some TLS access
9921 models. Update our information here. */
9922 r_type = elf32_arm_tls_transition (info, r_type, h);
9923
eb043451
PB
9924 if (r_type != howto->type)
9925 howto = elf32_arm_howto_from_type (r_type);
9c504268 9926
34e77a92 9927 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 9928 sgot = globals->root.sgot;
252b5132 9929 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
9930 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9931
34e77a92
RS
9932 if (globals->root.dynamic_sections_created)
9933 srelgot = globals->root.srelgot;
9934 else
9935 srelgot = NULL;
9936
252b5132
RH
9937 r_symndx = ELF32_R_SYM (rel->r_info);
9938
4e7fd91e 9939 if (globals->use_rel)
ba96a88f 9940 {
4e7fd91e
PB
9941 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9942
9943 if (addend & ((howto->src_mask + 1) >> 1))
9944 {
9945 signed_addend = -1;
9946 signed_addend &= ~ howto->src_mask;
9947 signed_addend |= addend;
9948 }
9949 else
9950 signed_addend = addend;
ba96a88f
NC
9951 }
9952 else
4e7fd91e 9953 addend = signed_addend = rel->r_addend;
f21f3fe0 9954
39f21624
NC
9955 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9956 are resolving a function call relocation. */
9957 if (using_thumb_only (globals)
9958 && (r_type == R_ARM_THM_CALL
9959 || r_type == R_ARM_THM_JUMP24)
9960 && branch_type == ST_BRANCH_TO_ARM)
9961 branch_type = ST_BRANCH_TO_THUMB;
9962
34e77a92
RS
9963 /* Record the symbol information that should be used in dynamic
9964 relocations. */
9965 dynreloc_st_type = st_type;
9966 dynreloc_value = value;
9967 if (branch_type == ST_BRANCH_TO_THUMB)
9968 dynreloc_value |= 1;
9969
9970 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9971 VALUE appropriately for relocations that we resolve at link time. */
9972 has_iplt_entry = FALSE;
4ba2ef8f
TP
9973 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9974 &arm_plt)
34e77a92
RS
9975 && root_plt->offset != (bfd_vma) -1)
9976 {
9977 plt_offset = root_plt->offset;
9978 gotplt_offset = arm_plt->got_offset;
9979
9980 if (h == NULL || eh->is_iplt)
9981 {
9982 has_iplt_entry = TRUE;
9983 splt = globals->root.iplt;
9984
9985 /* Populate .iplt entries here, because not all of them will
9986 be seen by finish_dynamic_symbol. The lower bit is set if
9987 we have already populated the entry. */
9988 if (plt_offset & 1)
9989 plt_offset--;
9990 else
9991 {
57460bcf
NC
9992 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9993 -1, dynreloc_value))
9994 root_plt->offset |= 1;
9995 else
9996 return bfd_reloc_notsupported;
34e77a92
RS
9997 }
9998
9999 /* Static relocations always resolve to the .iplt entry. */
10000 st_type = STT_FUNC;
10001 value = (splt->output_section->vma
10002 + splt->output_offset
10003 + plt_offset);
10004 branch_type = ST_BRANCH_TO_ARM;
10005
10006 /* If there are non-call relocations that resolve to the .iplt
10007 entry, then all dynamic ones must too. */
10008 if (arm_plt->noncall_refcount != 0)
10009 {
10010 dynreloc_st_type = st_type;
10011 dynreloc_value = value;
10012 }
10013 }
10014 else
10015 /* We populate the .plt entry in finish_dynamic_symbol. */
10016 splt = globals->root.splt;
10017 }
10018 else
10019 {
10020 splt = NULL;
10021 plt_offset = (bfd_vma) -1;
10022 gotplt_offset = (bfd_vma) -1;
10023 }
10024
252b5132
RH
10025 switch (r_type)
10026 {
10027 case R_ARM_NONE:
28a094c2
DJ
10028 /* We don't need to find a value for this symbol. It's just a
10029 marker. */
10030 *unresolved_reloc_p = FALSE;
252b5132
RH
10031 return bfd_reloc_ok;
10032
00a97672
RS
10033 case R_ARM_ABS12:
10034 if (!globals->vxworks_p)
10035 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
1a0670f3 10036 /* Fall through. */
00a97672 10037
252b5132
RH
10038 case R_ARM_PC24:
10039 case R_ARM_ABS32:
bb224fc3 10040 case R_ARM_ABS32_NOI:
252b5132 10041 case R_ARM_REL32:
bb224fc3 10042 case R_ARM_REL32_NOI:
5b5bb741
PB
10043 case R_ARM_CALL:
10044 case R_ARM_JUMP24:
dfc5f959 10045 case R_ARM_XPC25:
eb043451 10046 case R_ARM_PREL31:
7359ea65 10047 case R_ARM_PLT32:
7359ea65
DJ
10048 /* Handle relocations which should use the PLT entry. ABS32/REL32
10049 will use the symbol's value, which may point to a PLT entry, but we
10050 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
10051 branches in this object should go to it, except if the PLT is too
10052 far away, in which case a long branch stub should be inserted. */
bb224fc3 10053 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 10054 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
10055 && r_type != R_ARM_CALL
10056 && r_type != R_ARM_JUMP24
10057 && r_type != R_ARM_PLT32)
34e77a92 10058 && plt_offset != (bfd_vma) -1)
7359ea65 10059 {
34e77a92
RS
10060 /* If we've created a .plt section, and assigned a PLT entry
10061 to this function, it must either be a STT_GNU_IFUNC reference
10062 or not be known to bind locally. In other cases, we should
10063 have cleared the PLT entry by now. */
10064 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
10065
10066 value = (splt->output_section->vma
10067 + splt->output_offset
34e77a92 10068 + plt_offset);
0945cdfd 10069 *unresolved_reloc_p = FALSE;
7359ea65
DJ
10070 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10071 contents, rel->r_offset, value,
00a97672 10072 rel->r_addend);
7359ea65
DJ
10073 }
10074
67687978
PB
10075 /* When generating a shared object or relocatable executable, these
10076 relocations are copied into the output file to be resolved at
10077 run time. */
0e1862bb
L
10078 if ((bfd_link_pic (info)
10079 || globals->root.is_relocatable_executable)
7359ea65 10080 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 10081 && !(globals->vxworks_p
3348747a
NS
10082 && strcmp (input_section->output_section->name,
10083 ".tls_vars") == 0)
bb224fc3 10084 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 10085 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
10086 && !(input_bfd == globals->stub_bfd
10087 && strstr (input_section->name, STUB_SUFFIX))
7359ea65
DJ
10088 && (h == NULL
10089 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10090 || h->root.type != bfd_link_hash_undefweak)
10091 && r_type != R_ARM_PC24
5b5bb741
PB
10092 && r_type != R_ARM_CALL
10093 && r_type != R_ARM_JUMP24
ee06dc07 10094 && r_type != R_ARM_PREL31
7359ea65 10095 && r_type != R_ARM_PLT32)
252b5132 10096 {
947216bf 10097 Elf_Internal_Rela outrel;
b34976b6 10098 bfd_boolean skip, relocate;
f21f3fe0 10099
52db4ec2
JW
10100 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10101 && !h->def_regular)
10102 {
10103 char *v = _("shared object");
10104
0e1862bb 10105 if (bfd_link_executable (info))
52db4ec2
JW
10106 v = _("PIE executable");
10107
4eca0228 10108 _bfd_error_handler
52db4ec2
JW
10109 (_("%B: relocation %s against external or undefined symbol `%s'"
10110 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10111 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10112 return bfd_reloc_notsupported;
10113 }
10114
0945cdfd
DJ
10115 *unresolved_reloc_p = FALSE;
10116
34e77a92 10117 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 10118 {
83bac4b0
NC
10119 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10120 ! globals->use_rel);
f21f3fe0 10121
83bac4b0 10122 if (sreloc == NULL)
252b5132 10123 return bfd_reloc_notsupported;
252b5132 10124 }
f21f3fe0 10125
b34976b6
AM
10126 skip = FALSE;
10127 relocate = FALSE;
f21f3fe0 10128
00a97672 10129 outrel.r_addend = addend;
c629eae0
JJ
10130 outrel.r_offset =
10131 _bfd_elf_section_offset (output_bfd, info, input_section,
10132 rel->r_offset);
10133 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 10134 skip = TRUE;
0bb2d96a 10135 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 10136 skip = TRUE, relocate = TRUE;
252b5132
RH
10137 outrel.r_offset += (input_section->output_section->vma
10138 + input_section->output_offset);
f21f3fe0 10139
252b5132 10140 if (skip)
0bb2d96a 10141 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
10142 else if (h != NULL
10143 && h->dynindx != -1
0e1862bb 10144 && (!bfd_link_pic (info)
1dcb9720
JW
10145 || !(bfd_link_pie (info)
10146 || SYMBOLIC_BIND (info, h))
f5385ebf 10147 || !h->def_regular))
5e681ec4 10148 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
10149 else
10150 {
a16385dc
MM
10151 int symbol;
10152
5e681ec4 10153 /* This symbol is local, or marked to become local. */
34e77a92 10154 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
a16385dc 10155 if (globals->symbian_p)
6366ff1e 10156 {
74541ad4
AM
10157 asection *osec;
10158
6366ff1e
MM
10159 /* On Symbian OS, the data segment and text segement
10160 can be relocated independently. Therefore, we
10161 must indicate the segment to which this
10162 relocation is relative. The BPABI allows us to
10163 use any symbol in the right segment; we just use
10164 the section symbol as it is convenient. (We
10165 cannot use the symbol given by "h" directly as it
74541ad4
AM
10166 will not appear in the dynamic symbol table.)
10167
10168 Note that the dynamic linker ignores the section
10169 symbol value, so we don't subtract osec->vma
10170 from the emitted reloc addend. */
10dbd1f3 10171 if (sym_sec)
74541ad4 10172 osec = sym_sec->output_section;
10dbd1f3 10173 else
74541ad4
AM
10174 osec = input_section->output_section;
10175 symbol = elf_section_data (osec)->dynindx;
10176 if (symbol == 0)
10177 {
10178 struct elf_link_hash_table *htab = elf_hash_table (info);
10179
10180 if ((osec->flags & SEC_READONLY) == 0
10181 && htab->data_index_section != NULL)
10182 osec = htab->data_index_section;
10183 else
10184 osec = htab->text_index_section;
10185 symbol = elf_section_data (osec)->dynindx;
10186 }
6366ff1e
MM
10187 BFD_ASSERT (symbol != 0);
10188 }
a16385dc
MM
10189 else
10190 /* On SVR4-ish systems, the dynamic loader cannot
10191 relocate the text and data segments independently,
10192 so the symbol does not matter. */
10193 symbol = 0;
34e77a92
RS
10194 if (dynreloc_st_type == STT_GNU_IFUNC)
10195 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10196 to the .iplt entry. Instead, every non-call reference
10197 must use an R_ARM_IRELATIVE relocation to obtain the
10198 correct run-time address. */
10199 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10200 else
10201 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
10202 if (globals->use_rel)
10203 relocate = TRUE;
10204 else
34e77a92 10205 outrel.r_addend += dynreloc_value;
252b5132 10206 }
f21f3fe0 10207
47beaa6a 10208 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 10209
f21f3fe0 10210 /* If this reloc is against an external symbol, we do not want to
252b5132 10211 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 10212 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
10213 if (! relocate)
10214 return bfd_reloc_ok;
9a5aca8c 10215
f21f3fe0 10216 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
10217 contents, rel->r_offset,
10218 dynreloc_value, (bfd_vma) 0);
252b5132
RH
10219 }
10220 else switch (r_type)
10221 {
00a97672
RS
10222 case R_ARM_ABS12:
10223 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10224
dfc5f959 10225 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
10226 case R_ARM_CALL:
10227 case R_ARM_JUMP24:
8029a119 10228 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 10229 case R_ARM_PLT32:
906e58ca 10230 {
906e58ca
NC
10231 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10232
dfc5f959 10233 if (r_type == R_ARM_XPC25)
252b5132 10234 {
dfc5f959
NC
10235 /* Check for Arm calling Arm function. */
10236 /* FIXME: Should we translate the instruction into a BL
10237 instruction instead ? */
35fc36a8 10238 if (branch_type != ST_BRANCH_TO_THUMB)
4eca0228 10239 _bfd_error_handler
d003868e
AM
10240 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10241 input_bfd,
10242 h ? h->root.root.string : "(local)");
dfc5f959 10243 }
155d87d7 10244 else if (r_type == R_ARM_PC24)
dfc5f959
NC
10245 {
10246 /* Check for Arm calling Thumb function. */
35fc36a8 10247 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 10248 {
f2a9dd69
DJ
10249 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10250 output_bfd, input_section,
10251 hit_data, sym_sec, rel->r_offset,
10252 signed_addend, value,
10253 error_message))
10254 return bfd_reloc_ok;
10255 else
10256 return bfd_reloc_dangerous;
dfc5f959 10257 }
252b5132 10258 }
ba96a88f 10259
906e58ca 10260 /* Check if a stub has to be inserted because the
8029a119 10261 destination is too far or we are changing mode. */
155d87d7
CL
10262 if ( r_type == R_ARM_CALL
10263 || r_type == R_ARM_JUMP24
10264 || r_type == R_ARM_PLT32)
906e58ca 10265 {
fe33d2fa
CL
10266 enum elf32_arm_stub_type stub_type = arm_stub_none;
10267 struct elf32_arm_link_hash_entry *hash;
10268
10269 hash = (struct elf32_arm_link_hash_entry *) h;
10270 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10271 st_type, &branch_type,
10272 hash, value, sym_sec,
fe33d2fa 10273 input_bfd, sym_name);
5fa9e92f 10274
fe33d2fa 10275 if (stub_type != arm_stub_none)
906e58ca
NC
10276 {
10277 /* The target is out of reach, so redirect the
10278 branch to the local stub for this function. */
906e58ca
NC
10279 stub_entry = elf32_arm_get_stub_entry (input_section,
10280 sym_sec, h,
fe33d2fa
CL
10281 rel, globals,
10282 stub_type);
9cd3e4e5
NC
10283 {
10284 if (stub_entry != NULL)
10285 value = (stub_entry->stub_offset
10286 + stub_entry->stub_sec->output_offset
10287 + stub_entry->stub_sec->output_section->vma);
10288
10289 if (plt_offset != (bfd_vma) -1)
10290 *unresolved_reloc_p = FALSE;
10291 }
906e58ca 10292 }
fe33d2fa
CL
10293 else
10294 {
10295 /* If the call goes through a PLT entry, make sure to
10296 check distance to the right destination address. */
34e77a92 10297 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10298 {
10299 value = (splt->output_section->vma
10300 + splt->output_offset
34e77a92 10301 + plt_offset);
fe33d2fa
CL
10302 *unresolved_reloc_p = FALSE;
10303 /* The PLT entry is in ARM mode, regardless of the
10304 target function. */
35fc36a8 10305 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10306 }
10307 }
906e58ca
NC
10308 }
10309
dea514f5
PB
10310 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10311 where:
10312 S is the address of the symbol in the relocation.
10313 P is address of the instruction being relocated.
10314 A is the addend (extracted from the instruction) in bytes.
10315
10316 S is held in 'value'.
10317 P is the base address of the section containing the
10318 instruction plus the offset of the reloc into that
10319 section, ie:
10320 (input_section->output_section->vma +
10321 input_section->output_offset +
10322 rel->r_offset).
10323 A is the addend, converted into bytes, ie:
10324 (signed_addend * 4)
10325
10326 Note: None of these operations have knowledge of the pipeline
10327 size of the processor, thus it is up to the assembler to
10328 encode this information into the addend. */
10329 value -= (input_section->output_section->vma
10330 + input_section->output_offset);
10331 value -= rel->r_offset;
4e7fd91e
PB
10332 if (globals->use_rel)
10333 value += (signed_addend << howto->size);
10334 else
10335 /* RELA addends do not have to be adjusted by howto->size. */
10336 value += signed_addend;
23080146 10337
dcb5e6e6
NC
10338 signed_addend = value;
10339 signed_addend >>= howto->rightshift;
9a5aca8c 10340
5ab79981 10341 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 10342 the next instruction unless a PLT entry will be created.
77b4f08f 10343 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
10344 The jump to the next instruction is optimized as a NOP depending
10345 on the architecture. */
ffcb4889 10346 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 10347 && plt_offset == (bfd_vma) -1)
77b4f08f 10348 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 10349 {
cd1dac3d
DG
10350 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10351
10352 if (arch_has_arm_nop (globals))
10353 value |= 0x0320f000;
10354 else
10355 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
10356 }
10357 else
59f2c4e7 10358 {
9b485d32 10359 /* Perform a signed range check. */
dcb5e6e6 10360 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
10361 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10362 return bfd_reloc_overflow;
9a5aca8c 10363
5ab79981 10364 addend = (value & 2);
39b41c9c 10365
5ab79981
PB
10366 value = (signed_addend & howto->dst_mask)
10367 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 10368
5ab79981
PB
10369 if (r_type == R_ARM_CALL)
10370 {
155d87d7 10371 /* Set the H bit in the BLX instruction. */
35fc36a8 10372 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
10373 {
10374 if (addend)
10375 value |= (1 << 24);
10376 else
10377 value &= ~(bfd_vma)(1 << 24);
10378 }
10379
5ab79981 10380 /* Select the correct instruction (BL or BLX). */
906e58ca 10381 /* Only if we are not handling a BL to a stub. In this
8029a119 10382 case, mode switching is performed by the stub. */
35fc36a8 10383 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 10384 value |= (1 << 28);
63e1a0fc 10385 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
10386 {
10387 value &= ~(bfd_vma)(1 << 28);
10388 value |= (1 << 24);
10389 }
39b41c9c
PB
10390 }
10391 }
906e58ca 10392 }
252b5132 10393 break;
f21f3fe0 10394
252b5132
RH
10395 case R_ARM_ABS32:
10396 value += addend;
35fc36a8 10397 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
10398 value |= 1;
10399 break;
f21f3fe0 10400
bb224fc3
MS
10401 case R_ARM_ABS32_NOI:
10402 value += addend;
10403 break;
10404
252b5132 10405 case R_ARM_REL32:
a8bc6c78 10406 value += addend;
35fc36a8 10407 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 10408 value |= 1;
252b5132 10409 value -= (input_section->output_section->vma
62efb346 10410 + input_section->output_offset + rel->r_offset);
252b5132 10411 break;
eb043451 10412
bb224fc3
MS
10413 case R_ARM_REL32_NOI:
10414 value += addend;
10415 value -= (input_section->output_section->vma
10416 + input_section->output_offset + rel->r_offset);
10417 break;
10418
eb043451
PB
10419 case R_ARM_PREL31:
10420 value -= (input_section->output_section->vma
10421 + input_section->output_offset + rel->r_offset);
10422 value += signed_addend;
10423 if (! h || h->root.type != bfd_link_hash_undefweak)
10424 {
8029a119 10425 /* Check for overflow. */
eb043451
PB
10426 if ((value ^ (value >> 1)) & (1 << 30))
10427 return bfd_reloc_overflow;
10428 }
10429 value &= 0x7fffffff;
10430 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 10431 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
10432 value |= 1;
10433 break;
252b5132 10434 }
f21f3fe0 10435
252b5132
RH
10436 bfd_put_32 (input_bfd, value, hit_data);
10437 return bfd_reloc_ok;
10438
10439 case R_ARM_ABS8:
fd0fd00c
MJ
10440 /* PR 16202: Refectch the addend using the correct size. */
10441 if (globals->use_rel)
10442 addend = bfd_get_8 (input_bfd, hit_data);
252b5132 10443 value += addend;
4e67d4ca
DG
10444
10445 /* There is no way to tell whether the user intended to use a signed or
10446 unsigned addend. When checking for overflow we accept either,
10447 as specified by the AAELF. */
10448 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
10449 return bfd_reloc_overflow;
10450
10451 bfd_put_8 (input_bfd, value, hit_data);
10452 return bfd_reloc_ok;
10453
10454 case R_ARM_ABS16:
fd0fd00c
MJ
10455 /* PR 16202: Refectch the addend using the correct size. */
10456 if (globals->use_rel)
10457 addend = bfd_get_16 (input_bfd, hit_data);
252b5132
RH
10458 value += addend;
10459
4e67d4ca
DG
10460 /* See comment for R_ARM_ABS8. */
10461 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
10462 return bfd_reloc_overflow;
10463
10464 bfd_put_16 (input_bfd, value, hit_data);
10465 return bfd_reloc_ok;
10466
252b5132 10467 case R_ARM_THM_ABS5:
9b485d32 10468 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
10469 if (globals->use_rel)
10470 {
10471 /* Need to refetch addend. */
10472 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10473 /* ??? Need to determine shift amount from operand size. */
10474 addend >>= howto->rightshift;
10475 }
252b5132
RH
10476 value += addend;
10477
10478 /* ??? Isn't value unsigned? */
10479 if ((long) value > 0x1f || (long) value < -0x10)
10480 return bfd_reloc_overflow;
10481
10482 /* ??? Value needs to be properly shifted into place first. */
10483 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10484 bfd_put_16 (input_bfd, value, hit_data);
10485 return bfd_reloc_ok;
10486
2cab6cc3
MS
10487 case R_ARM_THM_ALU_PREL_11_0:
10488 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10489 {
10490 bfd_vma insn;
10491 bfd_signed_vma relocation;
10492
10493 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10494 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10495
99059e56
RM
10496 if (globals->use_rel)
10497 {
10498 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10499 | ((insn & (1 << 26)) >> 15);
10500 if (insn & 0xf00000)
10501 signed_addend = -signed_addend;
10502 }
2cab6cc3
MS
10503
10504 relocation = value + signed_addend;
79f08007 10505 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10506 + input_section->output_offset
10507 + rel->r_offset);
2cab6cc3 10508
b6518b38 10509 value = relocation;
2cab6cc3 10510
99059e56
RM
10511 if (value >= 0x1000)
10512 return bfd_reloc_overflow;
2cab6cc3 10513
e645cf40
AG
10514 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10515 if (branch_type == ST_BRANCH_TO_THUMB)
10516 value |= 1;
10517
2cab6cc3 10518 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
10519 | ((value & 0x700) << 4)
10520 | ((value & 0x800) << 15);
10521 if (relocation < 0)
10522 insn |= 0xa00000;
2cab6cc3
MS
10523
10524 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10525 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10526
99059e56 10527 return bfd_reloc_ok;
2cab6cc3
MS
10528 }
10529
e1ec24c6
NC
10530 case R_ARM_THM_PC8:
10531 /* PR 10073: This reloc is not generated by the GNU toolchain,
10532 but it is supported for compatibility with third party libraries
10533 generated by other compilers, specifically the ARM/IAR. */
10534 {
10535 bfd_vma insn;
10536 bfd_signed_vma relocation;
10537
10538 insn = bfd_get_16 (input_bfd, hit_data);
10539
99059e56 10540 if (globals->use_rel)
79f08007 10541 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
10542
10543 relocation = value + addend;
79f08007 10544 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10545 + input_section->output_offset
10546 + rel->r_offset);
e1ec24c6 10547
b6518b38 10548 value = relocation;
e1ec24c6
NC
10549
10550 /* We do not check for overflow of this reloc. Although strictly
10551 speaking this is incorrect, it appears to be necessary in order
10552 to work with IAR generated relocs. Since GCC and GAS do not
10553 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10554 a problem for them. */
10555 value &= 0x3fc;
10556
10557 insn = (insn & 0xff00) | (value >> 2);
10558
10559 bfd_put_16 (input_bfd, insn, hit_data);
10560
99059e56 10561 return bfd_reloc_ok;
e1ec24c6
NC
10562 }
10563
2cab6cc3
MS
10564 case R_ARM_THM_PC12:
10565 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10566 {
10567 bfd_vma insn;
10568 bfd_signed_vma relocation;
10569
10570 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10571 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10572
99059e56
RM
10573 if (globals->use_rel)
10574 {
10575 signed_addend = insn & 0xfff;
10576 if (!(insn & (1 << 23)))
10577 signed_addend = -signed_addend;
10578 }
2cab6cc3
MS
10579
10580 relocation = value + signed_addend;
79f08007 10581 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10582 + input_section->output_offset
10583 + rel->r_offset);
2cab6cc3 10584
b6518b38 10585 value = relocation;
2cab6cc3 10586
99059e56
RM
10587 if (value >= 0x1000)
10588 return bfd_reloc_overflow;
2cab6cc3
MS
10589
10590 insn = (insn & 0xff7ff000) | value;
99059e56
RM
10591 if (relocation >= 0)
10592 insn |= (1 << 23);
2cab6cc3
MS
10593
10594 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10595 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10596
99059e56 10597 return bfd_reloc_ok;
2cab6cc3
MS
10598 }
10599
dfc5f959 10600 case R_ARM_THM_XPC22:
c19d1205 10601 case R_ARM_THM_CALL:
bd97cb95 10602 case R_ARM_THM_JUMP24:
dfc5f959 10603 /* Thumb BL (branch long instruction). */
252b5132 10604 {
b34976b6 10605 bfd_vma relocation;
99059e56 10606 bfd_vma reloc_sign;
b34976b6
AM
10607 bfd_boolean overflow = FALSE;
10608 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10609 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
10610 bfd_signed_vma reloc_signed_max;
10611 bfd_signed_vma reloc_signed_min;
b34976b6 10612 bfd_vma check;
252b5132 10613 bfd_signed_vma signed_check;
e95de063 10614 int bitsize;
cd1dac3d 10615 const int thumb2 = using_thumb2 (globals);
5e866f5a 10616 const int thumb2_bl = using_thumb2_bl (globals);
252b5132 10617
5ab79981 10618 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
10619 the next instruction unless a PLT entry will be created.
10620 The jump to the next instruction is optimized as a NOP.W for
10621 Thumb-2 enabled architectures. */
19540007 10622 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 10623 && plt_offset == (bfd_vma) -1)
5ab79981 10624 {
60a019a0 10625 if (thumb2)
cd1dac3d
DG
10626 {
10627 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10628 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10629 }
10630 else
10631 {
10632 bfd_put_16 (input_bfd, 0xe000, hit_data);
10633 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10634 }
5ab79981
PB
10635 return bfd_reloc_ok;
10636 }
10637
e95de063 10638 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 10639 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
10640 if (globals->use_rel)
10641 {
99059e56
RM
10642 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10643 bfd_vma upper = upper_insn & 0x3ff;
10644 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
10645 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10646 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
10647 bfd_vma i1 = j1 ^ s ? 0 : 1;
10648 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 10649
99059e56
RM
10650 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10651 /* Sign extend. */
10652 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 10653
4e7fd91e
PB
10654 signed_addend = addend;
10655 }
cb1afa5c 10656
dfc5f959
NC
10657 if (r_type == R_ARM_THM_XPC22)
10658 {
10659 /* Check for Thumb to Thumb call. */
10660 /* FIXME: Should we translate the instruction into a BL
10661 instruction instead ? */
35fc36a8 10662 if (branch_type == ST_BRANCH_TO_THUMB)
4eca0228 10663 _bfd_error_handler
d003868e
AM
10664 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10665 input_bfd,
10666 h ? h->root.root.string : "(local)");
dfc5f959
NC
10667 }
10668 else
252b5132 10669 {
dfc5f959
NC
10670 /* If it is not a call to Thumb, assume call to Arm.
10671 If it is a call relative to a section name, then it is not a
b7693d02
DJ
10672 function call at all, but rather a long jump. Calls through
10673 the PLT do not require stubs. */
34e77a92 10674 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 10675 {
bd97cb95 10676 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
10677 {
10678 /* Convert BL to BLX. */
10679 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10680 }
155d87d7
CL
10681 else if (( r_type != R_ARM_THM_CALL)
10682 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
10683 {
10684 if (elf32_thumb_to_arm_stub
10685 (info, sym_name, input_bfd, output_bfd, input_section,
10686 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10687 error_message))
10688 return bfd_reloc_ok;
10689 else
10690 return bfd_reloc_dangerous;
10691 }
da5938a2 10692 }
35fc36a8
RS
10693 else if (branch_type == ST_BRANCH_TO_THUMB
10694 && globals->use_blx
bd97cb95 10695 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
10696 {
10697 /* Make sure this is a BL. */
10698 lower_insn |= 0x1800;
10699 }
252b5132 10700 }
f21f3fe0 10701
fe33d2fa 10702 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 10703 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
10704 {
10705 /* Check if a stub has to be inserted because the destination
8029a119 10706 is too far. */
fe33d2fa
CL
10707 struct elf32_arm_stub_hash_entry *stub_entry;
10708 struct elf32_arm_link_hash_entry *hash;
10709
10710 hash = (struct elf32_arm_link_hash_entry *) h;
10711
10712 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10713 st_type, &branch_type,
10714 hash, value, sym_sec,
fe33d2fa
CL
10715 input_bfd, sym_name);
10716
10717 if (stub_type != arm_stub_none)
906e58ca
NC
10718 {
10719 /* The target is out of reach or we are changing modes, so
10720 redirect the branch to the local stub for this
10721 function. */
10722 stub_entry = elf32_arm_get_stub_entry (input_section,
10723 sym_sec, h,
fe33d2fa
CL
10724 rel, globals,
10725 stub_type);
906e58ca 10726 if (stub_entry != NULL)
9cd3e4e5
NC
10727 {
10728 value = (stub_entry->stub_offset
10729 + stub_entry->stub_sec->output_offset
10730 + stub_entry->stub_sec->output_section->vma);
10731
10732 if (plt_offset != (bfd_vma) -1)
10733 *unresolved_reloc_p = FALSE;
10734 }
906e58ca 10735
f4ac8484 10736 /* If this call becomes a call to Arm, force BLX. */
155d87d7 10737 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
10738 {
10739 if ((stub_entry
10740 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 10741 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
10742 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10743 }
906e58ca
NC
10744 }
10745 }
10746
fe33d2fa 10747 /* Handle calls via the PLT. */
34e77a92 10748 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10749 {
10750 value = (splt->output_section->vma
10751 + splt->output_offset
34e77a92 10752 + plt_offset);
fe33d2fa 10753
eed94f8f
NC
10754 if (globals->use_blx
10755 && r_type == R_ARM_THM_CALL
10756 && ! using_thumb_only (globals))
fe33d2fa
CL
10757 {
10758 /* If the Thumb BLX instruction is available, convert
10759 the BL to a BLX instruction to call the ARM-mode
10760 PLT entry. */
10761 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 10762 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10763 }
10764 else
10765 {
eed94f8f
NC
10766 if (! using_thumb_only (globals))
10767 /* Target the Thumb stub before the ARM PLT entry. */
10768 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 10769 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa
CL
10770 }
10771 *unresolved_reloc_p = FALSE;
10772 }
10773
ba96a88f 10774 relocation = value + signed_addend;
f21f3fe0 10775
252b5132 10776 relocation -= (input_section->output_section->vma
ba96a88f
NC
10777 + input_section->output_offset
10778 + rel->r_offset);
9a5aca8c 10779
252b5132
RH
10780 check = relocation >> howto->rightshift;
10781
10782 /* If this is a signed value, the rightshift just dropped
10783 leading 1 bits (assuming twos complement). */
10784 if ((bfd_signed_vma) relocation >= 0)
10785 signed_check = check;
10786 else
10787 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10788
e95de063
MS
10789 /* Calculate the permissable maximum and minimum values for
10790 this relocation according to whether we're relocating for
10791 Thumb-2 or not. */
10792 bitsize = howto->bitsize;
5e866f5a 10793 if (!thumb2_bl)
e95de063 10794 bitsize -= 2;
f6ebfac0 10795 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
10796 reloc_signed_min = ~reloc_signed_max;
10797
252b5132 10798 /* Assumes two's complement. */
ba96a88f 10799 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 10800 overflow = TRUE;
252b5132 10801
bd97cb95 10802 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
10803 /* For a BLX instruction, make sure that the relocation is rounded up
10804 to a word boundary. This follows the semantics of the instruction
10805 which specifies that bit 1 of the target address will come from bit
10806 1 of the base address. */
10807 relocation = (relocation + 2) & ~ 3;
cb1afa5c 10808
e95de063
MS
10809 /* Put RELOCATION back into the insn. Assumes two's complement.
10810 We use the Thumb-2 encoding, which is safe even if dealing with
10811 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 10812 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 10813 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
10814 | ((relocation >> 12) & 0x3ff)
10815 | (reloc_sign << 10);
906e58ca 10816 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
10817 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10818 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10819 | ((relocation >> 1) & 0x7ff);
c62e1cc3 10820
252b5132
RH
10821 /* Put the relocated value back in the object file: */
10822 bfd_put_16 (input_bfd, upper_insn, hit_data);
10823 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10824
10825 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10826 }
10827 break;
10828
c19d1205
ZW
10829 case R_ARM_THM_JUMP19:
10830 /* Thumb32 conditional branch instruction. */
10831 {
10832 bfd_vma relocation;
10833 bfd_boolean overflow = FALSE;
10834 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10835 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
10836 bfd_signed_vma reloc_signed_max = 0xffffe;
10837 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 10838 bfd_signed_vma signed_check;
c5423981
TG
10839 enum elf32_arm_stub_type stub_type = arm_stub_none;
10840 struct elf32_arm_stub_hash_entry *stub_entry;
10841 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
10842
10843 /* Need to refetch the addend, reconstruct the top three bits,
10844 and squish the two 11 bit pieces together. */
10845 if (globals->use_rel)
10846 {
10847 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 10848 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
10849 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10850 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10851 bfd_vma lower = (lower_insn & 0x07ff);
10852
a00a1f35
MS
10853 upper |= J1 << 6;
10854 upper |= J2 << 7;
10855 upper |= (!S) << 8;
c19d1205
ZW
10856 upper -= 0x0100; /* Sign extend. */
10857
10858 addend = (upper << 12) | (lower << 1);
10859 signed_addend = addend;
10860 }
10861
bd97cb95 10862 /* Handle calls via the PLT. */
34e77a92 10863 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
10864 {
10865 value = (splt->output_section->vma
10866 + splt->output_offset
34e77a92 10867 + plt_offset);
bd97cb95
DJ
10868 /* Target the Thumb stub before the ARM PLT entry. */
10869 value -= PLT_THUMB_STUB_SIZE;
10870 *unresolved_reloc_p = FALSE;
10871 }
10872
c5423981
TG
10873 hash = (struct elf32_arm_link_hash_entry *)h;
10874
10875 stub_type = arm_type_of_stub (info, input_section, rel,
10876 st_type, &branch_type,
10877 hash, value, sym_sec,
10878 input_bfd, sym_name);
10879 if (stub_type != arm_stub_none)
10880 {
10881 stub_entry = elf32_arm_get_stub_entry (input_section,
10882 sym_sec, h,
10883 rel, globals,
10884 stub_type);
10885 if (stub_entry != NULL)
10886 {
10887 value = (stub_entry->stub_offset
10888 + stub_entry->stub_sec->output_offset
10889 + stub_entry->stub_sec->output_section->vma);
10890 }
10891 }
c19d1205 10892
99059e56 10893 relocation = value + signed_addend;
c19d1205
ZW
10894 relocation -= (input_section->output_section->vma
10895 + input_section->output_offset
10896 + rel->r_offset);
a00a1f35 10897 signed_check = (bfd_signed_vma) relocation;
c19d1205 10898
c19d1205
ZW
10899 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10900 overflow = TRUE;
10901
10902 /* Put RELOCATION back into the insn. */
10903 {
10904 bfd_vma S = (relocation & 0x00100000) >> 20;
10905 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10906 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10907 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10908 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10909
a00a1f35 10910 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
10911 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10912 }
10913
10914 /* Put the relocated value back in the object file: */
10915 bfd_put_16 (input_bfd, upper_insn, hit_data);
10916 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10917
10918 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10919 }
10920
10921 case R_ARM_THM_JUMP11:
10922 case R_ARM_THM_JUMP8:
10923 case R_ARM_THM_JUMP6:
51c5503b
NC
10924 /* Thumb B (branch) instruction). */
10925 {
6cf9e9fe 10926 bfd_signed_vma relocation;
51c5503b
NC
10927 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10928 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
10929 bfd_signed_vma signed_check;
10930
c19d1205
ZW
10931 /* CZB cannot jump backward. */
10932 if (r_type == R_ARM_THM_JUMP6)
10933 reloc_signed_min = 0;
10934
4e7fd91e 10935 if (globals->use_rel)
6cf9e9fe 10936 {
4e7fd91e
PB
10937 /* Need to refetch addend. */
10938 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10939 if (addend & ((howto->src_mask + 1) >> 1))
10940 {
10941 signed_addend = -1;
10942 signed_addend &= ~ howto->src_mask;
10943 signed_addend |= addend;
10944 }
10945 else
10946 signed_addend = addend;
10947 /* The value in the insn has been right shifted. We need to
10948 undo this, so that we can perform the address calculation
10949 in terms of bytes. */
10950 signed_addend <<= howto->rightshift;
6cf9e9fe 10951 }
6cf9e9fe 10952 relocation = value + signed_addend;
51c5503b
NC
10953
10954 relocation -= (input_section->output_section->vma
10955 + input_section->output_offset
10956 + rel->r_offset);
10957
6cf9e9fe
NC
10958 relocation >>= howto->rightshift;
10959 signed_check = relocation;
c19d1205
ZW
10960
10961 if (r_type == R_ARM_THM_JUMP6)
10962 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10963 else
10964 relocation &= howto->dst_mask;
51c5503b 10965 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 10966
51c5503b
NC
10967 bfd_put_16 (input_bfd, relocation, hit_data);
10968
10969 /* Assumes two's complement. */
10970 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10971 return bfd_reloc_overflow;
10972
10973 return bfd_reloc_ok;
10974 }
cedb70c5 10975
8375c36b
PB
10976 case R_ARM_ALU_PCREL7_0:
10977 case R_ARM_ALU_PCREL15_8:
10978 case R_ARM_ALU_PCREL23_15:
10979 {
10980 bfd_vma insn;
10981 bfd_vma relocation;
10982
10983 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
10984 if (globals->use_rel)
10985 {
10986 /* Extract the addend. */
10987 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10988 signed_addend = addend;
10989 }
8375c36b
PB
10990 relocation = value + signed_addend;
10991
10992 relocation -= (input_section->output_section->vma
10993 + input_section->output_offset
10994 + rel->r_offset);
10995 insn = (insn & ~0xfff)
10996 | ((howto->bitpos << 7) & 0xf00)
10997 | ((relocation >> howto->bitpos) & 0xff);
10998 bfd_put_32 (input_bfd, value, hit_data);
10999 }
11000 return bfd_reloc_ok;
11001
252b5132
RH
11002 case R_ARM_GNU_VTINHERIT:
11003 case R_ARM_GNU_VTENTRY:
11004 return bfd_reloc_ok;
11005
c19d1205 11006 case R_ARM_GOTOFF32:
252b5132 11007 /* Relocation is relative to the start of the
99059e56 11008 global offset table. */
252b5132
RH
11009
11010 BFD_ASSERT (sgot != NULL);
11011 if (sgot == NULL)
99059e56 11012 return bfd_reloc_notsupported;
9a5aca8c 11013
cedb70c5 11014 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
11015 address by one, so that attempts to call the function pointer will
11016 correctly interpret it as Thumb code. */
35fc36a8 11017 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
11018 value += 1;
11019
252b5132 11020 /* Note that sgot->output_offset is not involved in this
99059e56
RM
11021 calculation. We always want the start of .got. If we
11022 define _GLOBAL_OFFSET_TABLE in a different way, as is
11023 permitted by the ABI, we might have to change this
11024 calculation. */
252b5132 11025 value -= sgot->output_section->vma;
f21f3fe0 11026 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11027 contents, rel->r_offset, value,
00a97672 11028 rel->r_addend);
252b5132
RH
11029
11030 case R_ARM_GOTPC:
a7c10850 11031 /* Use global offset table as symbol value. */
252b5132 11032 BFD_ASSERT (sgot != NULL);
f21f3fe0 11033
252b5132 11034 if (sgot == NULL)
99059e56 11035 return bfd_reloc_notsupported;
252b5132 11036
0945cdfd 11037 *unresolved_reloc_p = FALSE;
252b5132 11038 value = sgot->output_section->vma;
f21f3fe0 11039 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11040 contents, rel->r_offset, value,
00a97672 11041 rel->r_addend);
f21f3fe0 11042
252b5132 11043 case R_ARM_GOT32:
eb043451 11044 case R_ARM_GOT_PREL:
252b5132 11045 /* Relocation is to the entry for this symbol in the
99059e56 11046 global offset table. */
252b5132
RH
11047 if (sgot == NULL)
11048 return bfd_reloc_notsupported;
f21f3fe0 11049
34e77a92
RS
11050 if (dynreloc_st_type == STT_GNU_IFUNC
11051 && plt_offset != (bfd_vma) -1
11052 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11053 {
11054 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11055 symbol, and the relocation resolves directly to the runtime
11056 target rather than to the .iplt entry. This means that any
11057 .got entry would be the same value as the .igot.plt entry,
11058 so there's no point creating both. */
11059 sgot = globals->root.igotplt;
11060 value = sgot->output_offset + gotplt_offset;
11061 }
11062 else if (h != NULL)
252b5132
RH
11063 {
11064 bfd_vma off;
f21f3fe0 11065
252b5132
RH
11066 off = h->got.offset;
11067 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 11068 if ((off & 1) != 0)
252b5132 11069 {
b436d854
RS
11070 /* We have already processsed one GOT relocation against
11071 this symbol. */
11072 off &= ~1;
11073 if (globals->root.dynamic_sections_created
11074 && !SYMBOL_REFERENCES_LOCAL (info, h))
11075 *unresolved_reloc_p = FALSE;
11076 }
11077 else
11078 {
11079 Elf_Internal_Rela outrel;
11080
6f820c85 11081 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
11082 {
11083 /* If the symbol doesn't resolve locally in a static
11084 object, we have an undefined reference. If the
11085 symbol doesn't resolve locally in a dynamic object,
11086 it should be resolved by the dynamic linker. */
11087 if (globals->root.dynamic_sections_created)
11088 {
11089 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11090 *unresolved_reloc_p = FALSE;
11091 }
11092 else
11093 outrel.r_info = 0;
11094 outrel.r_addend = 0;
11095 }
252b5132
RH
11096 else
11097 {
34e77a92 11098 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11099 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
5025eb7c
AO
11100 else if (bfd_link_pic (info)
11101 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11102 || h->root.type != bfd_link_hash_undefweak))
99059e56
RM
11103 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11104 else
11105 outrel.r_info = 0;
34e77a92 11106 outrel.r_addend = dynreloc_value;
b436d854 11107 }
ee29b9fb 11108
b436d854
RS
11109 /* The GOT entry is initialized to zero by default.
11110 See if we should install a different value. */
11111 if (outrel.r_addend != 0
11112 && (outrel.r_info == 0 || globals->use_rel))
11113 {
11114 bfd_put_32 (output_bfd, outrel.r_addend,
11115 sgot->contents + off);
11116 outrel.r_addend = 0;
252b5132 11117 }
f21f3fe0 11118
b436d854
RS
11119 if (outrel.r_info != 0)
11120 {
11121 outrel.r_offset = (sgot->output_section->vma
11122 + sgot->output_offset
11123 + off);
11124 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11125 }
11126 h->got.offset |= 1;
11127 }
252b5132
RH
11128 value = sgot->output_offset + off;
11129 }
11130 else
11131 {
11132 bfd_vma off;
f21f3fe0 11133
5025eb7c
AO
11134 BFD_ASSERT (local_got_offsets != NULL
11135 && local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 11136
252b5132 11137 off = local_got_offsets[r_symndx];
f21f3fe0 11138
252b5132
RH
11139 /* The offset must always be a multiple of 4. We use the
11140 least significant bit to record whether we have already
9b485d32 11141 generated the necessary reloc. */
252b5132
RH
11142 if ((off & 1) != 0)
11143 off &= ~1;
11144 else
11145 {
00a97672 11146 if (globals->use_rel)
34e77a92 11147 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
f21f3fe0 11148
0e1862bb 11149 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
252b5132 11150 {
947216bf 11151 Elf_Internal_Rela outrel;
f21f3fe0 11152
34e77a92 11153 outrel.r_addend = addend + dynreloc_value;
252b5132 11154 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 11155 + sgot->output_offset
252b5132 11156 + off);
34e77a92 11157 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11158 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
34e77a92
RS
11159 else
11160 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
47beaa6a 11161 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 11162 }
f21f3fe0 11163
252b5132
RH
11164 local_got_offsets[r_symndx] |= 1;
11165 }
f21f3fe0 11166
252b5132
RH
11167 value = sgot->output_offset + off;
11168 }
eb043451
PB
11169 if (r_type != R_ARM_GOT32)
11170 value += sgot->output_section->vma;
9a5aca8c 11171
f21f3fe0 11172 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11173 contents, rel->r_offset, value,
00a97672 11174 rel->r_addend);
f21f3fe0 11175
ba93b8ac
DJ
11176 case R_ARM_TLS_LDO32:
11177 value = value - dtpoff_base (info);
11178
11179 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11180 contents, rel->r_offset, value,
11181 rel->r_addend);
ba93b8ac
DJ
11182
11183 case R_ARM_TLS_LDM32:
11184 {
11185 bfd_vma off;
11186
362d30a1 11187 if (sgot == NULL)
ba93b8ac
DJ
11188 abort ();
11189
11190 off = globals->tls_ldm_got.offset;
11191
11192 if ((off & 1) != 0)
11193 off &= ~1;
11194 else
11195 {
11196 /* If we don't know the module number, create a relocation
11197 for it. */
0e1862bb 11198 if (bfd_link_pic (info))
ba93b8ac
DJ
11199 {
11200 Elf_Internal_Rela outrel;
ba93b8ac 11201
362d30a1 11202 if (srelgot == NULL)
ba93b8ac
DJ
11203 abort ();
11204
00a97672 11205 outrel.r_addend = 0;
362d30a1
RS
11206 outrel.r_offset = (sgot->output_section->vma
11207 + sgot->output_offset + off);
ba93b8ac
DJ
11208 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11209
00a97672
RS
11210 if (globals->use_rel)
11211 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11212 sgot->contents + off);
ba93b8ac 11213
47beaa6a 11214 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11215 }
11216 else
362d30a1 11217 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
11218
11219 globals->tls_ldm_got.offset |= 1;
11220 }
11221
362d30a1 11222 value = sgot->output_section->vma + sgot->output_offset + off
ba93b8ac
DJ
11223 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11224
11225 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11226 contents, rel->r_offset, value,
00a97672 11227 rel->r_addend);
ba93b8ac
DJ
11228 }
11229
0855e32b
NS
11230 case R_ARM_TLS_CALL:
11231 case R_ARM_THM_TLS_CALL:
ba93b8ac
DJ
11232 case R_ARM_TLS_GD32:
11233 case R_ARM_TLS_IE32:
0855e32b
NS
11234 case R_ARM_TLS_GOTDESC:
11235 case R_ARM_TLS_DESCSEQ:
11236 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 11237 {
0855e32b
NS
11238 bfd_vma off, offplt;
11239 int indx = 0;
ba93b8ac
DJ
11240 char tls_type;
11241
0855e32b 11242 BFD_ASSERT (sgot != NULL);
ba93b8ac 11243
ba93b8ac
DJ
11244 if (h != NULL)
11245 {
11246 bfd_boolean dyn;
11247 dyn = globals->root.dynamic_sections_created;
0e1862bb
L
11248 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11249 bfd_link_pic (info),
11250 h)
11251 && (!bfd_link_pic (info)
ba93b8ac
DJ
11252 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11253 {
11254 *unresolved_reloc_p = FALSE;
11255 indx = h->dynindx;
11256 }
11257 off = h->got.offset;
0855e32b 11258 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
11259 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11260 }
11261 else
11262 {
0855e32b 11263 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 11264 off = local_got_offsets[r_symndx];
0855e32b 11265 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
11266 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11267 }
11268
0855e32b 11269 /* Linker relaxations happens from one of the
b38cadfb 11270 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
0855e32b 11271 if (ELF32_R_TYPE(rel->r_info) != r_type)
b38cadfb 11272 tls_type = GOT_TLS_IE;
0855e32b
NS
11273
11274 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
11275
11276 if ((off & 1) != 0)
11277 off &= ~1;
11278 else
11279 {
11280 bfd_boolean need_relocs = FALSE;
11281 Elf_Internal_Rela outrel;
ba93b8ac
DJ
11282 int cur_off = off;
11283
11284 /* The GOT entries have not been initialized yet. Do it
11285 now, and emit any relocations. If both an IE GOT and a
11286 GD GOT are necessary, we emit the GD first. */
11287
0e1862bb 11288 if ((bfd_link_pic (info) || indx != 0)
ba93b8ac
DJ
11289 && (h == NULL
11290 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11291 || h->root.type != bfd_link_hash_undefweak))
11292 {
11293 need_relocs = TRUE;
0855e32b 11294 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
11295 }
11296
0855e32b
NS
11297 if (tls_type & GOT_TLS_GDESC)
11298 {
47beaa6a
RS
11299 bfd_byte *loc;
11300
0855e32b
NS
11301 /* We should have relaxed, unless this is an undefined
11302 weak symbol. */
11303 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
0e1862bb 11304 || bfd_link_pic (info));
0855e32b 11305 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 11306 <= globals->root.sgotplt->size);
0855e32b
NS
11307
11308 outrel.r_addend = 0;
11309 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11310 + globals->root.sgotplt->output_offset
11311 + offplt
11312 + globals->sgotplt_jump_table_size);
b38cadfb 11313
0855e32b
NS
11314 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11315 sreloc = globals->root.srelplt;
11316 loc = sreloc->contents;
11317 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11318 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 11319 <= sreloc->contents + sreloc->size);
0855e32b
NS
11320
11321 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11322
11323 /* For globals, the first word in the relocation gets
11324 the relocation index and the top bit set, or zero,
11325 if we're binding now. For locals, it gets the
11326 symbol's offset in the tls section. */
99059e56 11327 bfd_put_32 (output_bfd,
0855e32b
NS
11328 !h ? value - elf_hash_table (info)->tls_sec->vma
11329 : info->flags & DF_BIND_NOW ? 0
11330 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
11331 globals->root.sgotplt->contents + offplt
11332 + globals->sgotplt_jump_table_size);
11333
0855e32b 11334 /* Second word in the relocation is always zero. */
99059e56 11335 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
11336 globals->root.sgotplt->contents + offplt
11337 + globals->sgotplt_jump_table_size + 4);
0855e32b 11338 }
ba93b8ac
DJ
11339 if (tls_type & GOT_TLS_GD)
11340 {
11341 if (need_relocs)
11342 {
00a97672 11343 outrel.r_addend = 0;
362d30a1
RS
11344 outrel.r_offset = (sgot->output_section->vma
11345 + sgot->output_offset
00a97672 11346 + cur_off);
ba93b8ac 11347 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 11348
00a97672
RS
11349 if (globals->use_rel)
11350 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11351 sgot->contents + cur_off);
00a97672 11352
47beaa6a 11353 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11354
11355 if (indx == 0)
11356 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11357 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11358 else
11359 {
00a97672 11360 outrel.r_addend = 0;
ba93b8ac
DJ
11361 outrel.r_info = ELF32_R_INFO (indx,
11362 R_ARM_TLS_DTPOFF32);
11363 outrel.r_offset += 4;
00a97672
RS
11364
11365 if (globals->use_rel)
11366 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11367 sgot->contents + cur_off + 4);
00a97672 11368
47beaa6a
RS
11369 elf32_arm_add_dynreloc (output_bfd, info,
11370 srelgot, &outrel);
ba93b8ac
DJ
11371 }
11372 }
11373 else
11374 {
11375 /* If we are not emitting relocations for a
11376 general dynamic reference, then we must be in a
11377 static link or an executable link with the
11378 symbol binding locally. Mark it as belonging
11379 to module 1, the executable. */
11380 bfd_put_32 (output_bfd, 1,
362d30a1 11381 sgot->contents + cur_off);
ba93b8ac 11382 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11383 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11384 }
11385
11386 cur_off += 8;
11387 }
11388
11389 if (tls_type & GOT_TLS_IE)
11390 {
11391 if (need_relocs)
11392 {
00a97672
RS
11393 if (indx == 0)
11394 outrel.r_addend = value - dtpoff_base (info);
11395 else
11396 outrel.r_addend = 0;
362d30a1
RS
11397 outrel.r_offset = (sgot->output_section->vma
11398 + sgot->output_offset
ba93b8ac
DJ
11399 + cur_off);
11400 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11401
00a97672
RS
11402 if (globals->use_rel)
11403 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11404 sgot->contents + cur_off);
ba93b8ac 11405
47beaa6a 11406 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11407 }
11408 else
11409 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 11410 sgot->contents + cur_off);
ba93b8ac
DJ
11411 cur_off += 4;
11412 }
11413
11414 if (h != NULL)
11415 h->got.offset |= 1;
11416 else
11417 local_got_offsets[r_symndx] |= 1;
11418 }
11419
11420 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11421 off += 8;
0855e32b
NS
11422 else if (tls_type & GOT_TLS_GDESC)
11423 off = offplt;
11424
11425 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11426 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11427 {
11428 bfd_signed_vma offset;
12352d3f
PB
11429 /* TLS stubs are arm mode. The original symbol is a
11430 data object, so branch_type is bogus. */
11431 branch_type = ST_BRANCH_TO_ARM;
0855e32b 11432 enum elf32_arm_stub_type stub_type
34e77a92
RS
11433 = arm_type_of_stub (info, input_section, rel,
11434 st_type, &branch_type,
0855e32b
NS
11435 (struct elf32_arm_link_hash_entry *)h,
11436 globals->tls_trampoline, globals->root.splt,
11437 input_bfd, sym_name);
11438
11439 if (stub_type != arm_stub_none)
11440 {
11441 struct elf32_arm_stub_hash_entry *stub_entry
11442 = elf32_arm_get_stub_entry
11443 (input_section, globals->root.splt, 0, rel,
11444 globals, stub_type);
11445 offset = (stub_entry->stub_offset
11446 + stub_entry->stub_sec->output_offset
11447 + stub_entry->stub_sec->output_section->vma);
11448 }
11449 else
11450 offset = (globals->root.splt->output_section->vma
11451 + globals->root.splt->output_offset
11452 + globals->tls_trampoline);
11453
11454 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11455 {
11456 unsigned long inst;
b38cadfb
NC
11457
11458 offset -= (input_section->output_section->vma
11459 + input_section->output_offset
11460 + rel->r_offset + 8);
0855e32b
NS
11461
11462 inst = offset >> 2;
11463 inst &= 0x00ffffff;
11464 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11465 }
11466 else
11467 {
11468 /* Thumb blx encodes the offset in a complicated
11469 fashion. */
11470 unsigned upper_insn, lower_insn;
11471 unsigned neg;
11472
b38cadfb
NC
11473 offset -= (input_section->output_section->vma
11474 + input_section->output_offset
0855e32b 11475 + rel->r_offset + 4);
b38cadfb 11476
12352d3f
PB
11477 if (stub_type != arm_stub_none
11478 && arm_stub_is_thumb (stub_type))
11479 {
11480 lower_insn = 0xd000;
11481 }
11482 else
11483 {
11484 lower_insn = 0xc000;
6a631e86 11485 /* Round up the offset to a word boundary. */
12352d3f
PB
11486 offset = (offset + 2) & ~2;
11487 }
11488
0855e32b
NS
11489 neg = offset < 0;
11490 upper_insn = (0xf000
11491 | ((offset >> 12) & 0x3ff)
11492 | (neg << 10));
12352d3f 11493 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 11494 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 11495 | ((offset >> 1) & 0x7ff);
0855e32b
NS
11496 bfd_put_16 (input_bfd, upper_insn, hit_data);
11497 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11498 return bfd_reloc_ok;
11499 }
11500 }
11501 /* These relocations needs special care, as besides the fact
11502 they point somewhere in .gotplt, the addend must be
11503 adjusted accordingly depending on the type of instruction
6a631e86 11504 we refer to. */
0855e32b
NS
11505 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11506 {
11507 unsigned long data, insn;
11508 unsigned thumb;
b38cadfb 11509
0855e32b
NS
11510 data = bfd_get_32 (input_bfd, hit_data);
11511 thumb = data & 1;
11512 data &= ~1u;
b38cadfb 11513
0855e32b
NS
11514 if (thumb)
11515 {
11516 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11517 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11518 insn = (insn << 16)
11519 | bfd_get_16 (input_bfd,
11520 contents + rel->r_offset - data + 2);
11521 if ((insn & 0xf800c000) == 0xf000c000)
11522 /* bl/blx */
11523 value = -6;
11524 else if ((insn & 0xffffff00) == 0x4400)
11525 /* add */
11526 value = -5;
11527 else
11528 {
4eca0228 11529 _bfd_error_handler
695344c0
NC
11530 /* xgettext:c-format */
11531 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
0855e32b
NS
11532 input_bfd, input_section,
11533 (unsigned long)rel->r_offset, insn);
11534 return bfd_reloc_notsupported;
11535 }
11536 }
11537 else
11538 {
11539 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11540
11541 switch (insn >> 24)
11542 {
11543 case 0xeb: /* bl */
11544 case 0xfa: /* blx */
11545 value = -4;
11546 break;
11547
11548 case 0xe0: /* add */
11549 value = -8;
11550 break;
b38cadfb 11551
0855e32b 11552 default:
4eca0228 11553 _bfd_error_handler
695344c0
NC
11554 /* xgettext:c-format */
11555 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
0855e32b
NS
11556 input_bfd, input_section,
11557 (unsigned long)rel->r_offset, insn);
11558 return bfd_reloc_notsupported;
11559 }
11560 }
b38cadfb 11561
0855e32b
NS
11562 value += ((globals->root.sgotplt->output_section->vma
11563 + globals->root.sgotplt->output_offset + off)
11564 - (input_section->output_section->vma
11565 + input_section->output_offset
11566 + rel->r_offset)
11567 + globals->sgotplt_jump_table_size);
11568 }
11569 else
11570 value = ((globals->root.sgot->output_section->vma
11571 + globals->root.sgot->output_offset + off)
11572 - (input_section->output_section->vma
11573 + input_section->output_offset + rel->r_offset));
ba93b8ac
DJ
11574
11575 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11576 contents, rel->r_offset, value,
00a97672 11577 rel->r_addend);
ba93b8ac
DJ
11578 }
11579
11580 case R_ARM_TLS_LE32:
3cbc1e5e 11581 if (bfd_link_dll (info))
ba93b8ac 11582 {
4eca0228 11583 _bfd_error_handler
695344c0 11584 /* xgettext:c-format */
ba93b8ac
DJ
11585 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11586 input_bfd, input_section,
11587 (long) rel->r_offset, howto->name);
46691134 11588 return bfd_reloc_notsupported;
ba93b8ac
DJ
11589 }
11590 else
11591 value = tpoff (info, value);
906e58ca 11592
ba93b8ac 11593 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11594 contents, rel->r_offset, value,
11595 rel->r_addend);
ba93b8ac 11596
319850b4
JB
11597 case R_ARM_V4BX:
11598 if (globals->fix_v4bx)
845b51d6
PB
11599 {
11600 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 11601
845b51d6
PB
11602 /* Ensure that we have a BX instruction. */
11603 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 11604
845b51d6
PB
11605 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11606 {
11607 /* Branch to veneer. */
11608 bfd_vma glue_addr;
11609 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11610 glue_addr -= input_section->output_section->vma
11611 + input_section->output_offset
11612 + rel->r_offset + 8;
11613 insn = (insn & 0xf0000000) | 0x0a000000
11614 | ((glue_addr >> 2) & 0x00ffffff);
11615 }
11616 else
11617 {
11618 /* Preserve Rm (lowest four bits) and the condition code
11619 (highest four bits). Other bits encode MOV PC,Rm. */
11620 insn = (insn & 0xf000000f) | 0x01a0f000;
11621 }
319850b4 11622
845b51d6
PB
11623 bfd_put_32 (input_bfd, insn, hit_data);
11624 }
319850b4
JB
11625 return bfd_reloc_ok;
11626
b6895b4f
PB
11627 case R_ARM_MOVW_ABS_NC:
11628 case R_ARM_MOVT_ABS:
11629 case R_ARM_MOVW_PREL_NC:
11630 case R_ARM_MOVT_PREL:
92f5d02b
MS
11631 /* Until we properly support segment-base-relative addressing then
11632 we assume the segment base to be zero, as for the group relocations.
11633 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11634 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11635 case R_ARM_MOVW_BREL_NC:
11636 case R_ARM_MOVW_BREL:
11637 case R_ARM_MOVT_BREL:
b6895b4f
PB
11638 {
11639 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11640
11641 if (globals->use_rel)
11642 {
11643 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 11644 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 11645 }
92f5d02b 11646
b6895b4f 11647 value += signed_addend;
b6895b4f
PB
11648
11649 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11650 value -= (input_section->output_section->vma
11651 + input_section->output_offset + rel->r_offset);
11652
92f5d02b 11653 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 11654 return bfd_reloc_overflow;
92f5d02b 11655
35fc36a8 11656 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
11657 value |= 1;
11658
11659 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 11660 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
11661 value >>= 16;
11662
11663 insn &= 0xfff0f000;
11664 insn |= value & 0xfff;
11665 insn |= (value & 0xf000) << 4;
11666 bfd_put_32 (input_bfd, insn, hit_data);
11667 }
11668 return bfd_reloc_ok;
11669
11670 case R_ARM_THM_MOVW_ABS_NC:
11671 case R_ARM_THM_MOVT_ABS:
11672 case R_ARM_THM_MOVW_PREL_NC:
11673 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
11674 /* Until we properly support segment-base-relative addressing then
11675 we assume the segment base to be zero, as for the above relocations.
11676 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11677 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11678 as R_ARM_THM_MOVT_ABS. */
11679 case R_ARM_THM_MOVW_BREL_NC:
11680 case R_ARM_THM_MOVW_BREL:
11681 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
11682 {
11683 bfd_vma insn;
906e58ca 11684
b6895b4f
PB
11685 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11686 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11687
11688 if (globals->use_rel)
11689 {
11690 addend = ((insn >> 4) & 0xf000)
11691 | ((insn >> 15) & 0x0800)
11692 | ((insn >> 4) & 0x0700)
11693 | (insn & 0x00ff);
39623e12 11694 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 11695 }
92f5d02b 11696
b6895b4f 11697 value += signed_addend;
b6895b4f
PB
11698
11699 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11700 value -= (input_section->output_section->vma
11701 + input_section->output_offset + rel->r_offset);
11702
92f5d02b 11703 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 11704 return bfd_reloc_overflow;
92f5d02b 11705
35fc36a8 11706 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
11707 value |= 1;
11708
11709 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 11710 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
11711 value >>= 16;
11712
11713 insn &= 0xfbf08f00;
11714 insn |= (value & 0xf000) << 4;
11715 insn |= (value & 0x0800) << 15;
11716 insn |= (value & 0x0700) << 4;
11717 insn |= (value & 0x00ff);
11718
11719 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11720 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11721 }
11722 return bfd_reloc_ok;
11723
4962c51a
MS
11724 case R_ARM_ALU_PC_G0_NC:
11725 case R_ARM_ALU_PC_G1_NC:
11726 case R_ARM_ALU_PC_G0:
11727 case R_ARM_ALU_PC_G1:
11728 case R_ARM_ALU_PC_G2:
11729 case R_ARM_ALU_SB_G0_NC:
11730 case R_ARM_ALU_SB_G1_NC:
11731 case R_ARM_ALU_SB_G0:
11732 case R_ARM_ALU_SB_G1:
11733 case R_ARM_ALU_SB_G2:
11734 {
11735 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 11736 bfd_vma pc = input_section->output_section->vma
4962c51a 11737 + input_section->output_offset + rel->r_offset;
31a91d61 11738 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 11739 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
11740 bfd_vma residual;
11741 bfd_vma g_n;
4962c51a 11742 bfd_signed_vma signed_value;
99059e56
RM
11743 int group = 0;
11744
11745 /* Determine which group of bits to select. */
11746 switch (r_type)
11747 {
11748 case R_ARM_ALU_PC_G0_NC:
11749 case R_ARM_ALU_PC_G0:
11750 case R_ARM_ALU_SB_G0_NC:
11751 case R_ARM_ALU_SB_G0:
11752 group = 0;
11753 break;
11754
11755 case R_ARM_ALU_PC_G1_NC:
11756 case R_ARM_ALU_PC_G1:
11757 case R_ARM_ALU_SB_G1_NC:
11758 case R_ARM_ALU_SB_G1:
11759 group = 1;
11760 break;
11761
11762 case R_ARM_ALU_PC_G2:
11763 case R_ARM_ALU_SB_G2:
11764 group = 2;
11765 break;
11766
11767 default:
11768 abort ();
11769 }
11770
11771 /* If REL, extract the addend from the insn. If RELA, it will
11772 have already been fetched for us. */
4962c51a 11773 if (globals->use_rel)
99059e56
RM
11774 {
11775 int negative;
11776 bfd_vma constant = insn & 0xff;
11777 bfd_vma rotation = (insn & 0xf00) >> 8;
11778
11779 if (rotation == 0)
11780 signed_addend = constant;
11781 else
11782 {
11783 /* Compensate for the fact that in the instruction, the
11784 rotation is stored in multiples of 2 bits. */
11785 rotation *= 2;
11786
11787 /* Rotate "constant" right by "rotation" bits. */
11788 signed_addend = (constant >> rotation) |
11789 (constant << (8 * sizeof (bfd_vma) - rotation));
11790 }
11791
11792 /* Determine if the instruction is an ADD or a SUB.
11793 (For REL, this determines the sign of the addend.) */
11794 negative = identify_add_or_sub (insn);
11795 if (negative == 0)
11796 {
4eca0228 11797 _bfd_error_handler
695344c0 11798 /* xgettext:c-format */
99059e56
RM
11799 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11800 input_bfd, input_section,
11801 (long) rel->r_offset, howto->name);
11802 return bfd_reloc_overflow;
11803 }
11804
11805 signed_addend *= negative;
11806 }
4962c51a
MS
11807
11808 /* Compute the value (X) to go in the place. */
99059e56
RM
11809 if (r_type == R_ARM_ALU_PC_G0_NC
11810 || r_type == R_ARM_ALU_PC_G1_NC
11811 || r_type == R_ARM_ALU_PC_G0
11812 || r_type == R_ARM_ALU_PC_G1
11813 || r_type == R_ARM_ALU_PC_G2)
11814 /* PC relative. */
11815 signed_value = value - pc + signed_addend;
11816 else
11817 /* Section base relative. */
11818 signed_value = value - sb + signed_addend;
11819
11820 /* If the target symbol is a Thumb function, then set the
11821 Thumb bit in the address. */
35fc36a8 11822 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
11823 signed_value |= 1;
11824
99059e56
RM
11825 /* Calculate the value of the relevant G_n, in encoded
11826 constant-with-rotation format. */
b6518b38
NC
11827 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11828 group, &residual);
99059e56
RM
11829
11830 /* Check for overflow if required. */
11831 if ((r_type == R_ARM_ALU_PC_G0
11832 || r_type == R_ARM_ALU_PC_G1
11833 || r_type == R_ARM_ALU_PC_G2
11834 || r_type == R_ARM_ALU_SB_G0
11835 || r_type == R_ARM_ALU_SB_G1
11836 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11837 {
4eca0228 11838 _bfd_error_handler
695344c0 11839 /* xgettext:c-format */
99059e56
RM
11840 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11841 input_bfd, input_section,
b6518b38
NC
11842 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11843 howto->name);
99059e56
RM
11844 return bfd_reloc_overflow;
11845 }
11846
11847 /* Mask out the value and the ADD/SUB part of the opcode; take care
11848 not to destroy the S bit. */
11849 insn &= 0xff1ff000;
11850
11851 /* Set the opcode according to whether the value to go in the
11852 place is negative. */
11853 if (signed_value < 0)
11854 insn |= 1 << 22;
11855 else
11856 insn |= 1 << 23;
11857
11858 /* Encode the offset. */
11859 insn |= g_n;
4962c51a
MS
11860
11861 bfd_put_32 (input_bfd, insn, hit_data);
11862 }
11863 return bfd_reloc_ok;
11864
11865 case R_ARM_LDR_PC_G0:
11866 case R_ARM_LDR_PC_G1:
11867 case R_ARM_LDR_PC_G2:
11868 case R_ARM_LDR_SB_G0:
11869 case R_ARM_LDR_SB_G1:
11870 case R_ARM_LDR_SB_G2:
11871 {
11872 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 11873 bfd_vma pc = input_section->output_section->vma
4962c51a 11874 + input_section->output_offset + rel->r_offset;
31a91d61 11875 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 11876 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 11877 bfd_vma residual;
4962c51a 11878 bfd_signed_vma signed_value;
99059e56
RM
11879 int group = 0;
11880
11881 /* Determine which groups of bits to calculate. */
11882 switch (r_type)
11883 {
11884 case R_ARM_LDR_PC_G0:
11885 case R_ARM_LDR_SB_G0:
11886 group = 0;
11887 break;
11888
11889 case R_ARM_LDR_PC_G1:
11890 case R_ARM_LDR_SB_G1:
11891 group = 1;
11892 break;
11893
11894 case R_ARM_LDR_PC_G2:
11895 case R_ARM_LDR_SB_G2:
11896 group = 2;
11897 break;
11898
11899 default:
11900 abort ();
11901 }
11902
11903 /* If REL, extract the addend from the insn. If RELA, it will
11904 have already been fetched for us. */
4962c51a 11905 if (globals->use_rel)
99059e56
RM
11906 {
11907 int negative = (insn & (1 << 23)) ? 1 : -1;
11908 signed_addend = negative * (insn & 0xfff);
11909 }
4962c51a
MS
11910
11911 /* Compute the value (X) to go in the place. */
99059e56
RM
11912 if (r_type == R_ARM_LDR_PC_G0
11913 || r_type == R_ARM_LDR_PC_G1
11914 || r_type == R_ARM_LDR_PC_G2)
11915 /* PC relative. */
11916 signed_value = value - pc + signed_addend;
11917 else
11918 /* Section base relative. */
11919 signed_value = value - sb + signed_addend;
11920
11921 /* Calculate the value of the relevant G_{n-1} to obtain
11922 the residual at that stage. */
b6518b38
NC
11923 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11924 group - 1, &residual);
99059e56
RM
11925
11926 /* Check for overflow. */
11927 if (residual >= 0x1000)
11928 {
4eca0228 11929 _bfd_error_handler
695344c0 11930 /* xgettext:c-format */
99059e56 11931 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
b6518b38
NC
11932 input_bfd, input_section,
11933 (long) rel->r_offset, labs (signed_value), howto->name);
99059e56
RM
11934 return bfd_reloc_overflow;
11935 }
11936
11937 /* Mask out the value and U bit. */
11938 insn &= 0xff7ff000;
11939
11940 /* Set the U bit if the value to go in the place is non-negative. */
11941 if (signed_value >= 0)
11942 insn |= 1 << 23;
11943
11944 /* Encode the offset. */
11945 insn |= residual;
4962c51a
MS
11946
11947 bfd_put_32 (input_bfd, insn, hit_data);
11948 }
11949 return bfd_reloc_ok;
11950
11951 case R_ARM_LDRS_PC_G0:
11952 case R_ARM_LDRS_PC_G1:
11953 case R_ARM_LDRS_PC_G2:
11954 case R_ARM_LDRS_SB_G0:
11955 case R_ARM_LDRS_SB_G1:
11956 case R_ARM_LDRS_SB_G2:
11957 {
11958 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 11959 bfd_vma pc = input_section->output_section->vma
4962c51a 11960 + input_section->output_offset + rel->r_offset;
31a91d61 11961 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 11962 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 11963 bfd_vma residual;
4962c51a 11964 bfd_signed_vma signed_value;
99059e56
RM
11965 int group = 0;
11966
11967 /* Determine which groups of bits to calculate. */
11968 switch (r_type)
11969 {
11970 case R_ARM_LDRS_PC_G0:
11971 case R_ARM_LDRS_SB_G0:
11972 group = 0;
11973 break;
11974
11975 case R_ARM_LDRS_PC_G1:
11976 case R_ARM_LDRS_SB_G1:
11977 group = 1;
11978 break;
11979
11980 case R_ARM_LDRS_PC_G2:
11981 case R_ARM_LDRS_SB_G2:
11982 group = 2;
11983 break;
11984
11985 default:
11986 abort ();
11987 }
11988
11989 /* If REL, extract the addend from the insn. If RELA, it will
11990 have already been fetched for us. */
4962c51a 11991 if (globals->use_rel)
99059e56
RM
11992 {
11993 int negative = (insn & (1 << 23)) ? 1 : -1;
11994 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11995 }
4962c51a
MS
11996
11997 /* Compute the value (X) to go in the place. */
99059e56
RM
11998 if (r_type == R_ARM_LDRS_PC_G0
11999 || r_type == R_ARM_LDRS_PC_G1
12000 || r_type == R_ARM_LDRS_PC_G2)
12001 /* PC relative. */
12002 signed_value = value - pc + signed_addend;
12003 else
12004 /* Section base relative. */
12005 signed_value = value - sb + signed_addend;
12006
12007 /* Calculate the value of the relevant G_{n-1} to obtain
12008 the residual at that stage. */
b6518b38
NC
12009 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12010 group - 1, &residual);
99059e56
RM
12011
12012 /* Check for overflow. */
12013 if (residual >= 0x100)
12014 {
4eca0228 12015 _bfd_error_handler
695344c0 12016 /* xgettext:c-format */
99059e56 12017 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
b6518b38
NC
12018 input_bfd, input_section,
12019 (long) rel->r_offset, labs (signed_value), howto->name);
99059e56
RM
12020 return bfd_reloc_overflow;
12021 }
12022
12023 /* Mask out the value and U bit. */
12024 insn &= 0xff7ff0f0;
12025
12026 /* Set the U bit if the value to go in the place is non-negative. */
12027 if (signed_value >= 0)
12028 insn |= 1 << 23;
12029
12030 /* Encode the offset. */
12031 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
12032
12033 bfd_put_32 (input_bfd, insn, hit_data);
12034 }
12035 return bfd_reloc_ok;
12036
12037 case R_ARM_LDC_PC_G0:
12038 case R_ARM_LDC_PC_G1:
12039 case R_ARM_LDC_PC_G2:
12040 case R_ARM_LDC_SB_G0:
12041 case R_ARM_LDC_SB_G1:
12042 case R_ARM_LDC_SB_G2:
12043 {
12044 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12045 bfd_vma pc = input_section->output_section->vma
4962c51a 12046 + input_section->output_offset + rel->r_offset;
31a91d61 12047 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12048 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12049 bfd_vma residual;
4962c51a 12050 bfd_signed_vma signed_value;
99059e56
RM
12051 int group = 0;
12052
12053 /* Determine which groups of bits to calculate. */
12054 switch (r_type)
12055 {
12056 case R_ARM_LDC_PC_G0:
12057 case R_ARM_LDC_SB_G0:
12058 group = 0;
12059 break;
12060
12061 case R_ARM_LDC_PC_G1:
12062 case R_ARM_LDC_SB_G1:
12063 group = 1;
12064 break;
12065
12066 case R_ARM_LDC_PC_G2:
12067 case R_ARM_LDC_SB_G2:
12068 group = 2;
12069 break;
12070
12071 default:
12072 abort ();
12073 }
12074
12075 /* If REL, extract the addend from the insn. If RELA, it will
12076 have already been fetched for us. */
4962c51a 12077 if (globals->use_rel)
99059e56
RM
12078 {
12079 int negative = (insn & (1 << 23)) ? 1 : -1;
12080 signed_addend = negative * ((insn & 0xff) << 2);
12081 }
4962c51a
MS
12082
12083 /* Compute the value (X) to go in the place. */
99059e56
RM
12084 if (r_type == R_ARM_LDC_PC_G0
12085 || r_type == R_ARM_LDC_PC_G1
12086 || r_type == R_ARM_LDC_PC_G2)
12087 /* PC relative. */
12088 signed_value = value - pc + signed_addend;
12089 else
12090 /* Section base relative. */
12091 signed_value = value - sb + signed_addend;
12092
12093 /* Calculate the value of the relevant G_{n-1} to obtain
12094 the residual at that stage. */
b6518b38
NC
12095 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12096 group - 1, &residual);
99059e56
RM
12097
12098 /* Check for overflow. (The absolute value to go in the place must be
12099 divisible by four and, after having been divided by four, must
12100 fit in eight bits.) */
12101 if ((residual & 0x3) != 0 || residual >= 0x400)
12102 {
4eca0228 12103 _bfd_error_handler
695344c0 12104 /* xgettext:c-format */
99059e56
RM
12105 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12106 input_bfd, input_section,
b6518b38 12107 (long) rel->r_offset, labs (signed_value), howto->name);
99059e56
RM
12108 return bfd_reloc_overflow;
12109 }
12110
12111 /* Mask out the value and U bit. */
12112 insn &= 0xff7fff00;
12113
12114 /* Set the U bit if the value to go in the place is non-negative. */
12115 if (signed_value >= 0)
12116 insn |= 1 << 23;
12117
12118 /* Encode the offset. */
12119 insn |= residual >> 2;
4962c51a
MS
12120
12121 bfd_put_32 (input_bfd, insn, hit_data);
12122 }
12123 return bfd_reloc_ok;
12124
72d98d16
MG
12125 case R_ARM_THM_ALU_ABS_G0_NC:
12126 case R_ARM_THM_ALU_ABS_G1_NC:
12127 case R_ARM_THM_ALU_ABS_G2_NC:
12128 case R_ARM_THM_ALU_ABS_G3_NC:
12129 {
12130 const int shift_array[4] = {0, 8, 16, 24};
12131 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12132 bfd_vma addr = value;
12133 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12134
12135 /* Compute address. */
12136 if (globals->use_rel)
12137 signed_addend = insn & 0xff;
12138 addr += signed_addend;
12139 if (branch_type == ST_BRANCH_TO_THUMB)
12140 addr |= 1;
12141 /* Clean imm8 insn. */
12142 insn &= 0xff00;
12143 /* And update with correct part of address. */
12144 insn |= (addr >> shift) & 0xff;
12145 /* Update insn. */
12146 bfd_put_16 (input_bfd, insn, hit_data);
12147 }
12148
12149 *unresolved_reloc_p = FALSE;
12150 return bfd_reloc_ok;
12151
252b5132
RH
12152 default:
12153 return bfd_reloc_notsupported;
12154 }
12155}
12156
98c1d4aa
NC
12157/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12158static void
57e8b36a
NC
12159arm_add_to_rel (bfd * abfd,
12160 bfd_byte * address,
12161 reloc_howto_type * howto,
12162 bfd_signed_vma increment)
98c1d4aa 12163{
98c1d4aa
NC
12164 bfd_signed_vma addend;
12165
bd97cb95
DJ
12166 if (howto->type == R_ARM_THM_CALL
12167 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 12168 {
9a5aca8c
AM
12169 int upper_insn, lower_insn;
12170 int upper, lower;
98c1d4aa 12171
9a5aca8c
AM
12172 upper_insn = bfd_get_16 (abfd, address);
12173 lower_insn = bfd_get_16 (abfd, address + 2);
12174 upper = upper_insn & 0x7ff;
12175 lower = lower_insn & 0x7ff;
12176
12177 addend = (upper << 12) | (lower << 1);
ddda4409 12178 addend += increment;
9a5aca8c 12179 addend >>= 1;
98c1d4aa 12180
9a5aca8c
AM
12181 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12182 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12183
dc810e39
AM
12184 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12185 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
12186 }
12187 else
12188 {
12189 bfd_vma contents;
12190
12191 contents = bfd_get_32 (abfd, address);
12192
12193 /* Get the (signed) value from the instruction. */
12194 addend = contents & howto->src_mask;
12195 if (addend & ((howto->src_mask + 1) >> 1))
12196 {
12197 bfd_signed_vma mask;
12198
12199 mask = -1;
12200 mask &= ~ howto->src_mask;
12201 addend |= mask;
12202 }
12203
12204 /* Add in the increment, (which is a byte value). */
12205 switch (howto->type)
12206 {
12207 default:
12208 addend += increment;
12209 break;
12210
12211 case R_ARM_PC24:
c6596c5e 12212 case R_ARM_PLT32:
5b5bb741
PB
12213 case R_ARM_CALL:
12214 case R_ARM_JUMP24:
9a5aca8c 12215 addend <<= howto->size;
dc810e39 12216 addend += increment;
9a5aca8c
AM
12217
12218 /* Should we check for overflow here ? */
12219
12220 /* Drop any undesired bits. */
12221 addend >>= howto->rightshift;
12222 break;
12223 }
12224
12225 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12226
12227 bfd_put_32 (abfd, contents, address);
ddda4409 12228 }
98c1d4aa 12229}
252b5132 12230
ba93b8ac
DJ
12231#define IS_ARM_TLS_RELOC(R_TYPE) \
12232 ((R_TYPE) == R_ARM_TLS_GD32 \
12233 || (R_TYPE) == R_ARM_TLS_LDO32 \
12234 || (R_TYPE) == R_ARM_TLS_LDM32 \
12235 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12236 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12237 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12238 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b
NS
12239 || (R_TYPE) == R_ARM_TLS_IE32 \
12240 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12241
12242/* Specific set of relocations for the gnu tls dialect. */
12243#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12244 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12245 || (R_TYPE) == R_ARM_TLS_CALL \
12246 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12247 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12248 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 12249
252b5132 12250/* Relocate an ARM ELF section. */
906e58ca 12251
b34976b6 12252static bfd_boolean
57e8b36a
NC
12253elf32_arm_relocate_section (bfd * output_bfd,
12254 struct bfd_link_info * info,
12255 bfd * input_bfd,
12256 asection * input_section,
12257 bfd_byte * contents,
12258 Elf_Internal_Rela * relocs,
12259 Elf_Internal_Sym * local_syms,
12260 asection ** local_sections)
252b5132 12261{
b34976b6
AM
12262 Elf_Internal_Shdr *symtab_hdr;
12263 struct elf_link_hash_entry **sym_hashes;
12264 Elf_Internal_Rela *rel;
12265 Elf_Internal_Rela *relend;
12266 const char *name;
b32d3aa2 12267 struct elf32_arm_link_hash_table * globals;
252b5132 12268
4e7fd91e 12269 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
12270 if (globals == NULL)
12271 return FALSE;
b491616a 12272
0ffa91dd 12273 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
12274 sym_hashes = elf_sym_hashes (input_bfd);
12275
12276 rel = relocs;
12277 relend = relocs + input_section->reloc_count;
12278 for (; rel < relend; rel++)
12279 {
ba96a88f
NC
12280 int r_type;
12281 reloc_howto_type * howto;
12282 unsigned long r_symndx;
12283 Elf_Internal_Sym * sym;
12284 asection * sec;
252b5132 12285 struct elf_link_hash_entry * h;
ba96a88f
NC
12286 bfd_vma relocation;
12287 bfd_reloc_status_type r;
12288 arelent bfd_reloc;
ba93b8ac 12289 char sym_type;
0945cdfd 12290 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 12291 char *error_message = NULL;
f21f3fe0 12292
252b5132 12293 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 12294 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 12295 r_type = arm_real_reloc_type (globals, r_type);
252b5132 12296
ba96a88f 12297 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
12298 || r_type == R_ARM_GNU_VTINHERIT)
12299 continue;
252b5132 12300
b32d3aa2 12301 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 12302 howto = bfd_reloc.howto;
252b5132 12303
252b5132
RH
12304 h = NULL;
12305 sym = NULL;
12306 sec = NULL;
9b485d32 12307
252b5132
RH
12308 if (r_symndx < symtab_hdr->sh_info)
12309 {
12310 sym = local_syms + r_symndx;
ba93b8ac 12311 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 12312 sec = local_sections[r_symndx];
ffcb4889
NS
12313
12314 /* An object file might have a reference to a local
12315 undefined symbol. This is a daft object file, but we
12316 should at least do something about it. V4BX & NONE
12317 relocations do not use the symbol and are explicitly
77b4f08f
TS
12318 allowed to use the undefined symbol, so allow those.
12319 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
12320 if (r_type != R_ARM_V4BX
12321 && r_type != R_ARM_NONE
77b4f08f 12322 && r_symndx != STN_UNDEF
ffcb4889
NS
12323 && bfd_is_und_section (sec)
12324 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
12325 (*info->callbacks->undefined_symbol)
12326 (info, bfd_elf_string_from_elf_section
12327 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12328 input_bfd, input_section,
12329 rel->r_offset, TRUE);
b38cadfb 12330
4e7fd91e 12331 if (globals->use_rel)
f8df10f4 12332 {
4e7fd91e
PB
12333 relocation = (sec->output_section->vma
12334 + sec->output_offset
12335 + sym->st_value);
0e1862bb 12336 if (!bfd_link_relocatable (info)
ab96bf03
AM
12337 && (sec->flags & SEC_MERGE)
12338 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 12339 {
4e7fd91e
PB
12340 asection *msec;
12341 bfd_vma addend, value;
12342
39623e12 12343 switch (r_type)
4e7fd91e 12344 {
39623e12
PB
12345 case R_ARM_MOVW_ABS_NC:
12346 case R_ARM_MOVT_ABS:
12347 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12348 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12349 addend = (addend ^ 0x8000) - 0x8000;
12350 break;
f8df10f4 12351
39623e12
PB
12352 case R_ARM_THM_MOVW_ABS_NC:
12353 case R_ARM_THM_MOVT_ABS:
12354 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12355 << 16;
12356 value |= bfd_get_16 (input_bfd,
12357 contents + rel->r_offset + 2);
12358 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12359 | ((value & 0x04000000) >> 15);
12360 addend = (addend ^ 0x8000) - 0x8000;
12361 break;
f8df10f4 12362
39623e12
PB
12363 default:
12364 if (howto->rightshift
12365 || (howto->src_mask & (howto->src_mask + 1)))
12366 {
4eca0228 12367 _bfd_error_handler
695344c0 12368 /* xgettext:c-format */
39623e12
PB
12369 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12370 input_bfd, input_section,
12371 (long) rel->r_offset, howto->name);
12372 return FALSE;
12373 }
12374
12375 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12376
12377 /* Get the (signed) value from the instruction. */
12378 addend = value & howto->src_mask;
12379 if (addend & ((howto->src_mask + 1) >> 1))
12380 {
12381 bfd_signed_vma mask;
12382
12383 mask = -1;
12384 mask &= ~ howto->src_mask;
12385 addend |= mask;
12386 }
12387 break;
4e7fd91e 12388 }
39623e12 12389
4e7fd91e
PB
12390 msec = sec;
12391 addend =
12392 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12393 - relocation;
12394 addend += msec->output_section->vma + msec->output_offset;
39623e12 12395
cc643b88 12396 /* Cases here must match those in the preceding
39623e12
PB
12397 switch statement. */
12398 switch (r_type)
12399 {
12400 case R_ARM_MOVW_ABS_NC:
12401 case R_ARM_MOVT_ABS:
12402 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12403 | (addend & 0xfff);
12404 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12405 break;
12406
12407 case R_ARM_THM_MOVW_ABS_NC:
12408 case R_ARM_THM_MOVT_ABS:
12409 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12410 | (addend & 0xff) | ((addend & 0x0800) << 15);
12411 bfd_put_16 (input_bfd, value >> 16,
12412 contents + rel->r_offset);
12413 bfd_put_16 (input_bfd, value,
12414 contents + rel->r_offset + 2);
12415 break;
12416
12417 default:
12418 value = (value & ~ howto->dst_mask)
12419 | (addend & howto->dst_mask);
12420 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12421 break;
12422 }
f8df10f4 12423 }
f8df10f4 12424 }
4e7fd91e
PB
12425 else
12426 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
12427 }
12428 else
12429 {
62d887d4 12430 bfd_boolean warned, ignored;
560e09e9 12431
b2a8e766
AM
12432 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12433 r_symndx, symtab_hdr, sym_hashes,
12434 h, sec, relocation,
62d887d4 12435 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
12436
12437 sym_type = h->type;
252b5132
RH
12438 }
12439
dbaa2011 12440 if (sec != NULL && discarded_section (sec))
e4067dbb 12441 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 12442 rel, 1, relend, howto, 0, contents);
ab96bf03 12443
0e1862bb 12444 if (bfd_link_relocatable (info))
ab96bf03
AM
12445 {
12446 /* This is a relocatable link. We don't have to change
12447 anything, unless the reloc is against a section symbol,
12448 in which case we have to adjust according to where the
12449 section symbol winds up in the output section. */
12450 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12451 {
12452 if (globals->use_rel)
12453 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12454 howto, (bfd_signed_vma) sec->output_offset);
12455 else
12456 rel->r_addend += sec->output_offset;
12457 }
12458 continue;
12459 }
12460
252b5132
RH
12461 if (h != NULL)
12462 name = h->root.root.string;
12463 else
12464 {
12465 name = (bfd_elf_string_from_elf_section
12466 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12467 if (name == NULL || *name == '\0')
12468 name = bfd_section_name (input_bfd, sec);
12469 }
f21f3fe0 12470
cf35638d 12471 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
12472 && r_type != R_ARM_NONE
12473 && (h == NULL
12474 || h->root.type == bfd_link_hash_defined
12475 || h->root.type == bfd_link_hash_defweak)
12476 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12477 {
4eca0228 12478 _bfd_error_handler
ba93b8ac 12479 ((sym_type == STT_TLS
695344c0 12480 /* xgettext:c-format */
ba93b8ac 12481 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
695344c0 12482 /* xgettext:c-format */
ba93b8ac
DJ
12483 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12484 input_bfd,
12485 input_section,
12486 (long) rel->r_offset,
12487 howto->name,
12488 name);
12489 }
12490
0855e32b 12491 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
12492 done, i.e., the relaxation produced the final output we want,
12493 and we won't let anybody mess with it. Also, we have to do
12494 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 12495 both in relaxed and non-relaxed cases. */
39d911fc
TP
12496 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12497 || (IS_ARM_TLS_GNU_RELOC (r_type)
12498 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12499 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12500 & GOT_TLS_GDESC)))
12501 {
12502 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12503 contents, rel, h == NULL);
12504 /* This may have been marked unresolved because it came from
12505 a shared library. But we've just dealt with that. */
12506 unresolved_reloc = 0;
12507 }
12508 else
12509 r = bfd_reloc_continue;
b38cadfb 12510
39d911fc
TP
12511 if (r == bfd_reloc_continue)
12512 {
12513 unsigned char branch_type =
12514 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12515 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12516
12517 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12518 input_section, contents, rel,
12519 relocation, info, sec, name,
12520 sym_type, branch_type, h,
12521 &unresolved_reloc,
12522 &error_message);
12523 }
0945cdfd
DJ
12524
12525 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12526 because such sections are not SEC_ALLOC and thus ld.so will
12527 not process them. */
12528 if (unresolved_reloc
99059e56
RM
12529 && !((input_section->flags & SEC_DEBUGGING) != 0
12530 && h->def_dynamic)
1d5316ab
AM
12531 && _bfd_elf_section_offset (output_bfd, info, input_section,
12532 rel->r_offset) != (bfd_vma) -1)
0945cdfd 12533 {
4eca0228 12534 _bfd_error_handler
695344c0 12535 /* xgettext:c-format */
843fe662
L
12536 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12537 input_bfd,
12538 input_section,
12539 (long) rel->r_offset,
12540 howto->name,
12541 h->root.root.string);
0945cdfd
DJ
12542 return FALSE;
12543 }
252b5132
RH
12544
12545 if (r != bfd_reloc_ok)
12546 {
252b5132
RH
12547 switch (r)
12548 {
12549 case bfd_reloc_overflow:
cf919dfd
PB
12550 /* If the overflowing reloc was to an undefined symbol,
12551 we have already printed one error message and there
12552 is no point complaining again. */
1a72702b
AM
12553 if (!h || h->root.type != bfd_link_hash_undefined)
12554 (*info->callbacks->reloc_overflow)
12555 (info, (h ? &h->root : NULL), name, howto->name,
12556 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
252b5132
RH
12557 break;
12558
12559 case bfd_reloc_undefined:
1a72702b
AM
12560 (*info->callbacks->undefined_symbol)
12561 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
252b5132
RH
12562 break;
12563
12564 case bfd_reloc_outofrange:
f2a9dd69 12565 error_message = _("out of range");
252b5132
RH
12566 goto common_error;
12567
12568 case bfd_reloc_notsupported:
f2a9dd69 12569 error_message = _("unsupported relocation");
252b5132
RH
12570 goto common_error;
12571
12572 case bfd_reloc_dangerous:
f2a9dd69 12573 /* error_message should already be set. */
252b5132
RH
12574 goto common_error;
12575
12576 default:
f2a9dd69 12577 error_message = _("unknown error");
8029a119 12578 /* Fall through. */
252b5132
RH
12579
12580 common_error:
f2a9dd69 12581 BFD_ASSERT (error_message != NULL);
1a72702b
AM
12582 (*info->callbacks->reloc_dangerous)
12583 (info, error_message, input_bfd, input_section, rel->r_offset);
252b5132
RH
12584 break;
12585 }
12586 }
12587 }
12588
b34976b6 12589 return TRUE;
252b5132
RH
12590}
12591
91d6fa6a 12592/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 12593 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 12594 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
12595 maintaining that condition). */
12596
12597static void
12598add_unwind_table_edit (arm_unwind_table_edit **head,
12599 arm_unwind_table_edit **tail,
12600 arm_unwind_edit_type type,
12601 asection *linked_section,
91d6fa6a 12602 unsigned int tindex)
2468f9c9 12603{
21d799b5
NC
12604 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12605 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 12606
2468f9c9
PB
12607 new_edit->type = type;
12608 new_edit->linked_section = linked_section;
91d6fa6a 12609 new_edit->index = tindex;
b38cadfb 12610
91d6fa6a 12611 if (tindex > 0)
2468f9c9
PB
12612 {
12613 new_edit->next = NULL;
12614
12615 if (*tail)
12616 (*tail)->next = new_edit;
12617
12618 (*tail) = new_edit;
12619
12620 if (!*head)
12621 (*head) = new_edit;
12622 }
12623 else
12624 {
12625 new_edit->next = *head;
12626
12627 if (!*tail)
12628 *tail = new_edit;
12629
12630 *head = new_edit;
12631 }
12632}
12633
12634static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12635
12636/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12637static void
12638adjust_exidx_size(asection *exidx_sec, int adjust)
12639{
12640 asection *out_sec;
12641
12642 if (!exidx_sec->rawsize)
12643 exidx_sec->rawsize = exidx_sec->size;
12644
12645 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12646 out_sec = exidx_sec->output_section;
12647 /* Adjust size of output section. */
12648 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12649}
12650
12651/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12652static void
12653insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12654{
12655 struct _arm_elf_section_data *exidx_arm_data;
12656
12657 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12658 add_unwind_table_edit (
12659 &exidx_arm_data->u.exidx.unwind_edit_list,
12660 &exidx_arm_data->u.exidx.unwind_edit_tail,
12661 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12662
491d01d3
YU
12663 exidx_arm_data->additional_reloc_count++;
12664
2468f9c9
PB
12665 adjust_exidx_size(exidx_sec, 8);
12666}
12667
12668/* Scan .ARM.exidx tables, and create a list describing edits which should be
12669 made to those tables, such that:
b38cadfb 12670
2468f9c9
PB
12671 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12672 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 12673 codes which have been inlined into the index).
2468f9c9 12674
85fdf906
AH
12675 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12676
2468f9c9 12677 The edits are applied when the tables are written
b38cadfb 12678 (in elf32_arm_write_section). */
2468f9c9
PB
12679
12680bfd_boolean
12681elf32_arm_fix_exidx_coverage (asection **text_section_order,
12682 unsigned int num_text_sections,
85fdf906
AH
12683 struct bfd_link_info *info,
12684 bfd_boolean merge_exidx_entries)
2468f9c9
PB
12685{
12686 bfd *inp;
12687 unsigned int last_second_word = 0, i;
12688 asection *last_exidx_sec = NULL;
12689 asection *last_text_sec = NULL;
12690 int last_unwind_type = -1;
12691
12692 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12693 text sections. */
c72f2fb2 12694 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
12695 {
12696 asection *sec;
b38cadfb 12697
2468f9c9 12698 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 12699 {
2468f9c9
PB
12700 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12701 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 12702
dec9d5df 12703 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 12704 continue;
b38cadfb 12705
2468f9c9
PB
12706 if (elf_sec->linked_to)
12707 {
12708 Elf_Internal_Shdr *linked_hdr
99059e56 12709 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 12710 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 12711 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
12712
12713 if (linked_sec_arm_data == NULL)
99059e56 12714 continue;
2468f9c9
PB
12715
12716 /* Link this .ARM.exidx section back from the text section it
99059e56 12717 describes. */
2468f9c9
PB
12718 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12719 }
12720 }
12721 }
12722
12723 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12724 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 12725 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
12726
12727 for (i = 0; i < num_text_sections; i++)
12728 {
12729 asection *sec = text_section_order[i];
12730 asection *exidx_sec;
12731 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12732 struct _arm_elf_section_data *exidx_arm_data;
12733 bfd_byte *contents = NULL;
12734 int deleted_exidx_bytes = 0;
12735 bfd_vma j;
12736 arm_unwind_table_edit *unwind_edit_head = NULL;
12737 arm_unwind_table_edit *unwind_edit_tail = NULL;
12738 Elf_Internal_Shdr *hdr;
12739 bfd *ibfd;
12740
12741 if (arm_data == NULL)
99059e56 12742 continue;
2468f9c9
PB
12743
12744 exidx_sec = arm_data->u.text.arm_exidx_sec;
12745 if (exidx_sec == NULL)
12746 {
12747 /* Section has no unwind data. */
12748 if (last_unwind_type == 0 || !last_exidx_sec)
12749 continue;
12750
12751 /* Ignore zero sized sections. */
12752 if (sec->size == 0)
12753 continue;
12754
12755 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12756 last_unwind_type = 0;
12757 continue;
12758 }
12759
22a8f80e
PB
12760 /* Skip /DISCARD/ sections. */
12761 if (bfd_is_abs_section (exidx_sec->output_section))
12762 continue;
12763
2468f9c9
PB
12764 hdr = &elf_section_data (exidx_sec)->this_hdr;
12765 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 12766 continue;
b38cadfb 12767
2468f9c9
PB
12768 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12769 if (exidx_arm_data == NULL)
99059e56 12770 continue;
b38cadfb 12771
2468f9c9 12772 ibfd = exidx_sec->owner;
b38cadfb 12773
2468f9c9
PB
12774 if (hdr->contents != NULL)
12775 contents = hdr->contents;
12776 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12777 /* An error? */
12778 continue;
12779
ac06903d
YU
12780 if (last_unwind_type > 0)
12781 {
12782 unsigned int first_word = bfd_get_32 (ibfd, contents);
12783 /* Add cantunwind if first unwind item does not match section
12784 start. */
12785 if (first_word != sec->vma)
12786 {
12787 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12788 last_unwind_type = 0;
12789 }
12790 }
12791
2468f9c9
PB
12792 for (j = 0; j < hdr->sh_size; j += 8)
12793 {
12794 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12795 int unwind_type;
12796 int elide = 0;
12797
12798 /* An EXIDX_CANTUNWIND entry. */
12799 if (second_word == 1)
12800 {
12801 if (last_unwind_type == 0)
12802 elide = 1;
12803 unwind_type = 0;
12804 }
12805 /* Inlined unwinding data. Merge if equal to previous. */
12806 else if ((second_word & 0x80000000) != 0)
12807 {
85fdf906
AH
12808 if (merge_exidx_entries
12809 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
12810 elide = 1;
12811 unwind_type = 1;
12812 last_second_word = second_word;
12813 }
12814 /* Normal table entry. In theory we could merge these too,
12815 but duplicate entries are likely to be much less common. */
12816 else
12817 unwind_type = 2;
12818
491d01d3 12819 if (elide && !bfd_link_relocatable (info))
2468f9c9
PB
12820 {
12821 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12822 DELETE_EXIDX_ENTRY, NULL, j / 8);
12823
12824 deleted_exidx_bytes += 8;
12825 }
12826
12827 last_unwind_type = unwind_type;
12828 }
12829
12830 /* Free contents if we allocated it ourselves. */
12831 if (contents != hdr->contents)
99059e56 12832 free (contents);
2468f9c9
PB
12833
12834 /* Record edits to be applied later (in elf32_arm_write_section). */
12835 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12836 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 12837
2468f9c9
PB
12838 if (deleted_exidx_bytes > 0)
12839 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12840
12841 last_exidx_sec = exidx_sec;
12842 last_text_sec = sec;
12843 }
12844
12845 /* Add terminating CANTUNWIND entry. */
491d01d3
YU
12846 if (!bfd_link_relocatable (info) && last_exidx_sec
12847 && last_unwind_type != 0)
2468f9c9
PB
12848 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12849
12850 return TRUE;
12851}
12852
3e6b1042
DJ
12853static bfd_boolean
12854elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12855 bfd *ibfd, const char *name)
12856{
12857 asection *sec, *osec;
12858
3d4d4302 12859 sec = bfd_get_linker_section (ibfd, name);
3e6b1042
DJ
12860 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12861 return TRUE;
12862
12863 osec = sec->output_section;
12864 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12865 return TRUE;
12866
12867 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12868 sec->output_offset, sec->size))
12869 return FALSE;
12870
12871 return TRUE;
12872}
12873
12874static bfd_boolean
12875elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12876{
12877 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 12878 asection *sec, *osec;
3e6b1042 12879
4dfe6ac6
NC
12880 if (globals == NULL)
12881 return FALSE;
12882
3e6b1042
DJ
12883 /* Invoke the regular ELF backend linker to do all the work. */
12884 if (!bfd_elf_final_link (abfd, info))
12885 return FALSE;
12886
fe33d2fa
CL
12887 /* Process stub sections (eg BE8 encoding, ...). */
12888 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
7292b3ac 12889 unsigned int i;
cdb21a0a
NS
12890 for (i=0; i<htab->top_id; i++)
12891 {
12892 sec = htab->stub_group[i].stub_sec;
12893 /* Only process it once, in its link_sec slot. */
12894 if (sec && i == htab->stub_group[i].link_sec->id)
12895 {
12896 osec = sec->output_section;
12897 elf32_arm_write_section (abfd, info, sec, sec->contents);
12898 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12899 sec->output_offset, sec->size))
12900 return FALSE;
12901 }
fe33d2fa 12902 }
fe33d2fa 12903
3e6b1042
DJ
12904 /* Write out any glue sections now that we have created all the
12905 stubs. */
12906 if (globals->bfd_of_glue_owner != NULL)
12907 {
12908 if (! elf32_arm_output_glue_section (info, abfd,
12909 globals->bfd_of_glue_owner,
12910 ARM2THUMB_GLUE_SECTION_NAME))
12911 return FALSE;
12912
12913 if (! elf32_arm_output_glue_section (info, abfd,
12914 globals->bfd_of_glue_owner,
12915 THUMB2ARM_GLUE_SECTION_NAME))
12916 return FALSE;
12917
12918 if (! elf32_arm_output_glue_section (info, abfd,
12919 globals->bfd_of_glue_owner,
12920 VFP11_ERRATUM_VENEER_SECTION_NAME))
12921 return FALSE;
12922
a504d23a
LA
12923 if (! elf32_arm_output_glue_section (info, abfd,
12924 globals->bfd_of_glue_owner,
12925 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12926 return FALSE;
12927
3e6b1042
DJ
12928 if (! elf32_arm_output_glue_section (info, abfd,
12929 globals->bfd_of_glue_owner,
12930 ARM_BX_GLUE_SECTION_NAME))
12931 return FALSE;
12932 }
12933
12934 return TRUE;
12935}
12936
5968a7b8
NC
12937/* Return a best guess for the machine number based on the attributes. */
12938
12939static unsigned int
12940bfd_arm_get_mach_from_attributes (bfd * abfd)
12941{
12942 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12943
12944 switch (arch)
12945 {
12946 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12947 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12948 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12949
12950 case TAG_CPU_ARCH_V5TE:
12951 {
12952 char * name;
12953
12954 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12955 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12956
12957 if (name)
12958 {
12959 if (strcmp (name, "IWMMXT2") == 0)
12960 return bfd_mach_arm_iWMMXt2;
12961
12962 if (strcmp (name, "IWMMXT") == 0)
6034aab8 12963 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
12964
12965 if (strcmp (name, "XSCALE") == 0)
12966 {
12967 int wmmx;
12968
12969 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12970 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12971 switch (wmmx)
12972 {
12973 case 1: return bfd_mach_arm_iWMMXt;
12974 case 2: return bfd_mach_arm_iWMMXt2;
12975 default: return bfd_mach_arm_XScale;
12976 }
12977 }
5968a7b8
NC
12978 }
12979
12980 return bfd_mach_arm_5TE;
12981 }
12982
12983 default:
12984 return bfd_mach_arm_unknown;
12985 }
12986}
12987
c178919b
NC
12988/* Set the right machine number. */
12989
12990static bfd_boolean
57e8b36a 12991elf32_arm_object_p (bfd *abfd)
c178919b 12992{
5a6c6817 12993 unsigned int mach;
57e8b36a 12994
5a6c6817 12995 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 12996
5968a7b8
NC
12997 if (mach == bfd_mach_arm_unknown)
12998 {
12999 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13000 mach = bfd_mach_arm_ep9312;
13001 else
13002 mach = bfd_arm_get_mach_from_attributes (abfd);
13003 }
c178919b 13004
5968a7b8 13005 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
13006 return TRUE;
13007}
13008
fc830a83 13009/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 13010
b34976b6 13011static bfd_boolean
57e8b36a 13012elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
13013{
13014 if (elf_flags_init (abfd)
13015 && elf_elfheader (abfd)->e_flags != flags)
13016 {
fc830a83
NC
13017 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13018 {
fd2ec330 13019 if (flags & EF_ARM_INTERWORK)
4eca0228 13020 _bfd_error_handler
d003868e
AM
13021 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
13022 abfd);
fc830a83 13023 else
d003868e
AM
13024 _bfd_error_handler
13025 (_("Warning: Clearing the interworking flag of %B due to outside request"),
13026 abfd);
fc830a83 13027 }
252b5132
RH
13028 }
13029 else
13030 {
13031 elf_elfheader (abfd)->e_flags = flags;
b34976b6 13032 elf_flags_init (abfd) = TRUE;
252b5132
RH
13033 }
13034
b34976b6 13035 return TRUE;
252b5132
RH
13036}
13037
fc830a83 13038/* Copy backend specific data from one object module to another. */
9b485d32 13039
b34976b6 13040static bfd_boolean
57e8b36a 13041elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
13042{
13043 flagword in_flags;
13044 flagword out_flags;
13045
0ffa91dd 13046 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 13047 return TRUE;
252b5132 13048
fc830a83 13049 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
13050 out_flags = elf_elfheader (obfd)->e_flags;
13051
fc830a83
NC
13052 if (elf_flags_init (obfd)
13053 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13054 && in_flags != out_flags)
252b5132 13055 {
252b5132 13056 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 13057 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 13058 return FALSE;
252b5132
RH
13059
13060 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 13061 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 13062 return FALSE;
252b5132
RH
13063
13064 /* If the src and dest have different interworking flags
99059e56 13065 then turn off the interworking bit. */
fd2ec330 13066 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 13067 {
fd2ec330 13068 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
13069 _bfd_error_handler
13070 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13071 obfd, ibfd);
252b5132 13072
fd2ec330 13073 in_flags &= ~EF_ARM_INTERWORK;
252b5132 13074 }
1006ba19
PB
13075
13076 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
13077 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13078 in_flags &= ~EF_ARM_PIC;
252b5132
RH
13079 }
13080
13081 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 13082 elf_flags_init (obfd) = TRUE;
252b5132 13083
e2349352 13084 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
13085}
13086
13087/* Values for Tag_ABI_PCS_R9_use. */
13088enum
13089{
13090 AEABI_R9_V6,
13091 AEABI_R9_SB,
13092 AEABI_R9_TLS,
13093 AEABI_R9_unused
13094};
13095
13096/* Values for Tag_ABI_PCS_RW_data. */
13097enum
13098{
13099 AEABI_PCS_RW_data_absolute,
13100 AEABI_PCS_RW_data_PCrel,
13101 AEABI_PCS_RW_data_SBrel,
13102 AEABI_PCS_RW_data_unused
13103};
13104
13105/* Values for Tag_ABI_enum_size. */
13106enum
13107{
13108 AEABI_enum_unused,
13109 AEABI_enum_short,
13110 AEABI_enum_wide,
13111 AEABI_enum_forced_wide
13112};
13113
104d59d1
JM
13114/* Determine whether an object attribute tag takes an integer, a
13115 string or both. */
906e58ca 13116
104d59d1
JM
13117static int
13118elf32_arm_obj_attrs_arg_type (int tag)
13119{
13120 if (tag == Tag_compatibility)
3483fe2e 13121 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 13122 else if (tag == Tag_nodefaults)
3483fe2e
AS
13123 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13124 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13125 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 13126 else if (tag < 32)
3483fe2e 13127 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 13128 else
3483fe2e 13129 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
13130}
13131
5aa6ff7c
AS
13132/* The ABI defines that Tag_conformance should be emitted first, and that
13133 Tag_nodefaults should be second (if either is defined). This sets those
13134 two positions, and bumps up the position of all the remaining tags to
13135 compensate. */
13136static int
13137elf32_arm_obj_attrs_order (int num)
13138{
3de4a297 13139 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 13140 return Tag_conformance;
3de4a297 13141 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
13142 return Tag_nodefaults;
13143 if ((num - 2) < Tag_nodefaults)
13144 return num - 2;
13145 if ((num - 1) < Tag_conformance)
13146 return num - 1;
13147 return num;
13148}
13149
e8b36cd1
JM
13150/* Attribute numbers >=64 (mod 128) can be safely ignored. */
13151static bfd_boolean
13152elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13153{
13154 if ((tag & 127) < 64)
13155 {
13156 _bfd_error_handler
13157 (_("%B: Unknown mandatory EABI object attribute %d"),
13158 abfd, tag);
13159 bfd_set_error (bfd_error_bad_value);
13160 return FALSE;
13161 }
13162 else
13163 {
13164 _bfd_error_handler
13165 (_("Warning: %B: Unknown EABI object attribute %d"),
13166 abfd, tag);
13167 return TRUE;
13168 }
13169}
13170
91e22acd
AS
13171/* Read the architecture from the Tag_also_compatible_with attribute, if any.
13172 Returns -1 if no architecture could be read. */
13173
13174static int
13175get_secondary_compatible_arch (bfd *abfd)
13176{
13177 obj_attribute *attr =
13178 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13179
13180 /* Note: the tag and its argument below are uleb128 values, though
13181 currently-defined values fit in one byte for each. */
13182 if (attr->s
13183 && attr->s[0] == Tag_CPU_arch
13184 && (attr->s[1] & 128) != 128
13185 && attr->s[2] == 0)
13186 return attr->s[1];
13187
13188 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13189 return -1;
13190}
13191
13192/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13193 The tag is removed if ARCH is -1. */
13194
8e79c3df 13195static void
91e22acd 13196set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 13197{
91e22acd
AS
13198 obj_attribute *attr =
13199 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 13200
91e22acd
AS
13201 if (arch == -1)
13202 {
13203 attr->s = NULL;
13204 return;
8e79c3df 13205 }
91e22acd
AS
13206
13207 /* Note: the tag and its argument below are uleb128 values, though
13208 currently-defined values fit in one byte for each. */
13209 if (!attr->s)
21d799b5 13210 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
13211 attr->s[0] = Tag_CPU_arch;
13212 attr->s[1] = arch;
13213 attr->s[2] = '\0';
8e79c3df
CM
13214}
13215
91e22acd
AS
13216/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13217 into account. */
13218
13219static int
13220tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13221 int newtag, int secondary_compat)
8e79c3df 13222{
91e22acd
AS
13223#define T(X) TAG_CPU_ARCH_##X
13224 int tagl, tagh, result;
13225 const int v6t2[] =
13226 {
13227 T(V6T2), /* PRE_V4. */
13228 T(V6T2), /* V4. */
13229 T(V6T2), /* V4T. */
13230 T(V6T2), /* V5T. */
13231 T(V6T2), /* V5TE. */
13232 T(V6T2), /* V5TEJ. */
13233 T(V6T2), /* V6. */
13234 T(V7), /* V6KZ. */
13235 T(V6T2) /* V6T2. */
13236 };
13237 const int v6k[] =
13238 {
13239 T(V6K), /* PRE_V4. */
13240 T(V6K), /* V4. */
13241 T(V6K), /* V4T. */
13242 T(V6K), /* V5T. */
13243 T(V6K), /* V5TE. */
13244 T(V6K), /* V5TEJ. */
13245 T(V6K), /* V6. */
13246 T(V6KZ), /* V6KZ. */
13247 T(V7), /* V6T2. */
13248 T(V6K) /* V6K. */
13249 };
13250 const int v7[] =
13251 {
13252 T(V7), /* PRE_V4. */
13253 T(V7), /* V4. */
13254 T(V7), /* V4T. */
13255 T(V7), /* V5T. */
13256 T(V7), /* V5TE. */
13257 T(V7), /* V5TEJ. */
13258 T(V7), /* V6. */
13259 T(V7), /* V6KZ. */
13260 T(V7), /* V6T2. */
13261 T(V7), /* V6K. */
13262 T(V7) /* V7. */
13263 };
13264 const int v6_m[] =
13265 {
13266 -1, /* PRE_V4. */
13267 -1, /* V4. */
13268 T(V6K), /* V4T. */
13269 T(V6K), /* V5T. */
13270 T(V6K), /* V5TE. */
13271 T(V6K), /* V5TEJ. */
13272 T(V6K), /* V6. */
13273 T(V6KZ), /* V6KZ. */
13274 T(V7), /* V6T2. */
13275 T(V6K), /* V6K. */
13276 T(V7), /* V7. */
13277 T(V6_M) /* V6_M. */
13278 };
13279 const int v6s_m[] =
13280 {
13281 -1, /* PRE_V4. */
13282 -1, /* V4. */
13283 T(V6K), /* V4T. */
13284 T(V6K), /* V5T. */
13285 T(V6K), /* V5TE. */
13286 T(V6K), /* V5TEJ. */
13287 T(V6K), /* V6. */
13288 T(V6KZ), /* V6KZ. */
13289 T(V7), /* V6T2. */
13290 T(V6K), /* V6K. */
13291 T(V7), /* V7. */
13292 T(V6S_M), /* V6_M. */
13293 T(V6S_M) /* V6S_M. */
13294 };
9e3c6df6
PB
13295 const int v7e_m[] =
13296 {
13297 -1, /* PRE_V4. */
13298 -1, /* V4. */
13299 T(V7E_M), /* V4T. */
13300 T(V7E_M), /* V5T. */
13301 T(V7E_M), /* V5TE. */
13302 T(V7E_M), /* V5TEJ. */
13303 T(V7E_M), /* V6. */
13304 T(V7E_M), /* V6KZ. */
13305 T(V7E_M), /* V6T2. */
13306 T(V7E_M), /* V6K. */
13307 T(V7E_M), /* V7. */
13308 T(V7E_M), /* V6_M. */
13309 T(V7E_M), /* V6S_M. */
13310 T(V7E_M) /* V7E_M. */
13311 };
bca38921
MGD
13312 const int v8[] =
13313 {
13314 T(V8), /* PRE_V4. */
13315 T(V8), /* V4. */
13316 T(V8), /* V4T. */
13317 T(V8), /* V5T. */
13318 T(V8), /* V5TE. */
13319 T(V8), /* V5TEJ. */
13320 T(V8), /* V6. */
13321 T(V8), /* V6KZ. */
13322 T(V8), /* V6T2. */
13323 T(V8), /* V6K. */
13324 T(V8), /* V7. */
13325 T(V8), /* V6_M. */
13326 T(V8), /* V6S_M. */
13327 T(V8), /* V7E_M. */
13328 T(V8) /* V8. */
13329 };
2fd158eb
TP
13330 const int v8m_baseline[] =
13331 {
13332 -1, /* PRE_V4. */
13333 -1, /* V4. */
13334 -1, /* V4T. */
13335 -1, /* V5T. */
13336 -1, /* V5TE. */
13337 -1, /* V5TEJ. */
13338 -1, /* V6. */
13339 -1, /* V6KZ. */
13340 -1, /* V6T2. */
13341 -1, /* V6K. */
13342 -1, /* V7. */
13343 T(V8M_BASE), /* V6_M. */
13344 T(V8M_BASE), /* V6S_M. */
13345 -1, /* V7E_M. */
13346 -1, /* V8. */
13347 -1,
13348 T(V8M_BASE) /* V8-M BASELINE. */
13349 };
13350 const int v8m_mainline[] =
13351 {
13352 -1, /* PRE_V4. */
13353 -1, /* V4. */
13354 -1, /* V4T. */
13355 -1, /* V5T. */
13356 -1, /* V5TE. */
13357 -1, /* V5TEJ. */
13358 -1, /* V6. */
13359 -1, /* V6KZ. */
13360 -1, /* V6T2. */
13361 -1, /* V6K. */
13362 T(V8M_MAIN), /* V7. */
13363 T(V8M_MAIN), /* V6_M. */
13364 T(V8M_MAIN), /* V6S_M. */
13365 T(V8M_MAIN), /* V7E_M. */
13366 -1, /* V8. */
13367 -1,
13368 T(V8M_MAIN), /* V8-M BASELINE. */
13369 T(V8M_MAIN) /* V8-M MAINLINE. */
13370 };
91e22acd
AS
13371 const int v4t_plus_v6_m[] =
13372 {
13373 -1, /* PRE_V4. */
13374 -1, /* V4. */
13375 T(V4T), /* V4T. */
13376 T(V5T), /* V5T. */
13377 T(V5TE), /* V5TE. */
13378 T(V5TEJ), /* V5TEJ. */
13379 T(V6), /* V6. */
13380 T(V6KZ), /* V6KZ. */
13381 T(V6T2), /* V6T2. */
13382 T(V6K), /* V6K. */
13383 T(V7), /* V7. */
13384 T(V6_M), /* V6_M. */
13385 T(V6S_M), /* V6S_M. */
9e3c6df6 13386 T(V7E_M), /* V7E_M. */
bca38921 13387 T(V8), /* V8. */
4ed7ed8d 13388 -1, /* Unused. */
2fd158eb
TP
13389 T(V8M_BASE), /* V8-M BASELINE. */
13390 T(V8M_MAIN), /* V8-M MAINLINE. */
91e22acd
AS
13391 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13392 };
13393 const int *comb[] =
13394 {
13395 v6t2,
13396 v6k,
13397 v7,
13398 v6_m,
13399 v6s_m,
9e3c6df6 13400 v7e_m,
bca38921 13401 v8,
4ed7ed8d 13402 NULL,
2fd158eb
TP
13403 v8m_baseline,
13404 v8m_mainline,
91e22acd
AS
13405 /* Pseudo-architecture. */
13406 v4t_plus_v6_m
13407 };
13408
13409 /* Check we've not got a higher architecture than we know about. */
13410
9e3c6df6 13411 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 13412 {
3895f852 13413 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
13414 return -1;
13415 }
13416
13417 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13418
13419 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13420 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13421 oldtag = T(V4T_PLUS_V6_M);
13422
13423 /* And override the new tag if we have a Tag_also_compatible_with on the
13424 input. */
13425
13426 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13427 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13428 newtag = T(V4T_PLUS_V6_M);
13429
13430 tagl = (oldtag < newtag) ? oldtag : newtag;
13431 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13432
13433 /* Architectures before V6KZ add features monotonically. */
13434 if (tagh <= TAG_CPU_ARCH_V6KZ)
13435 return result;
13436
4ed7ed8d 13437 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
91e22acd
AS
13438
13439 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13440 as the canonical version. */
13441 if (result == T(V4T_PLUS_V6_M))
13442 {
13443 result = T(V4T);
13444 *secondary_compat_out = T(V6_M);
13445 }
13446 else
13447 *secondary_compat_out = -1;
13448
13449 if (result == -1)
13450 {
3895f852 13451 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
13452 ibfd, oldtag, newtag);
13453 return -1;
13454 }
13455
13456 return result;
13457#undef T
8e79c3df
CM
13458}
13459
ac56ee8f
MGD
13460/* Query attributes object to see if integer divide instructions may be
13461 present in an object. */
13462static bfd_boolean
13463elf32_arm_attributes_accept_div (const obj_attribute *attr)
13464{
13465 int arch = attr[Tag_CPU_arch].i;
13466 int profile = attr[Tag_CPU_arch_profile].i;
13467
13468 switch (attr[Tag_DIV_use].i)
13469 {
13470 case 0:
13471 /* Integer divide allowed if instruction contained in archetecture. */
13472 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13473 return TRUE;
13474 else if (arch >= TAG_CPU_ARCH_V7E_M)
13475 return TRUE;
13476 else
13477 return FALSE;
13478
13479 case 1:
13480 /* Integer divide explicitly prohibited. */
13481 return FALSE;
13482
13483 default:
13484 /* Unrecognised case - treat as allowing divide everywhere. */
13485 case 2:
13486 /* Integer divide allowed in ARM state. */
13487 return TRUE;
13488 }
13489}
13490
13491/* Query attributes object to see if integer divide instructions are
13492 forbidden to be in the object. This is not the inverse of
13493 elf32_arm_attributes_accept_div. */
13494static bfd_boolean
13495elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13496{
13497 return attr[Tag_DIV_use].i == 1;
13498}
13499
ee065d83
PB
13500/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13501 are conflicting attributes. */
906e58ca 13502
ee065d83 13503static bfd_boolean
50e03d47 13504elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
ee065d83 13505{
50e03d47 13506 bfd *obfd = info->output_bfd;
104d59d1
JM
13507 obj_attribute *in_attr;
13508 obj_attribute *out_attr;
ee065d83
PB
13509 /* Some tags have 0 = don't care, 1 = strong requirement,
13510 2 = weak requirement. */
91e22acd 13511 static const int order_021[3] = {0, 2, 1};
ee065d83 13512 int i;
91e22acd 13513 bfd_boolean result = TRUE;
9274e9de 13514 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 13515
3e6b1042
DJ
13516 /* Skip the linker stubs file. This preserves previous behavior
13517 of accepting unknown attributes in the first input file - but
13518 is that a bug? */
13519 if (ibfd->flags & BFD_LINKER_CREATED)
13520 return TRUE;
13521
9274e9de
TG
13522 /* Skip any input that hasn't attribute section.
13523 This enables to link object files without attribute section with
13524 any others. */
13525 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13526 return TRUE;
13527
104d59d1 13528 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
13529 {
13530 /* This is the first object. Copy the attributes. */
104d59d1 13531 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 13532
cd21e546
MGD
13533 out_attr = elf_known_obj_attributes_proc (obfd);
13534
004ae526
PB
13535 /* Use the Tag_null value to indicate the attributes have been
13536 initialized. */
cd21e546 13537 out_attr[0].i = 1;
004ae526 13538
cd21e546
MGD
13539 /* We do not output objects with Tag_MPextension_use_legacy - we move
13540 the attribute's value to Tag_MPextension_use. */
13541 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13542 {
13543 if (out_attr[Tag_MPextension_use].i != 0
13544 && out_attr[Tag_MPextension_use_legacy].i
99059e56 13545 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
13546 {
13547 _bfd_error_handler
13548 (_("Error: %B has both the current and legacy "
13549 "Tag_MPextension_use attributes"), ibfd);
13550 result = FALSE;
13551 }
13552
13553 out_attr[Tag_MPextension_use] =
13554 out_attr[Tag_MPextension_use_legacy];
13555 out_attr[Tag_MPextension_use_legacy].type = 0;
13556 out_attr[Tag_MPextension_use_legacy].i = 0;
13557 }
13558
13559 return result;
ee065d83
PB
13560 }
13561
104d59d1
JM
13562 in_attr = elf_known_obj_attributes_proc (ibfd);
13563 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
13564 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13565 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13566 {
5c294fee
TG
13567 /* Ignore mismatches if the object doesn't use floating point or is
13568 floating point ABI independent. */
13569 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13570 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13571 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 13572 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
13573 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13574 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
13575 {
13576 _bfd_error_handler
3895f852 13577 (_("error: %B uses VFP register arguments, %B does not"),
deddc40b
NS
13578 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13579 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 13580 result = FALSE;
ee065d83
PB
13581 }
13582 }
13583
3de4a297 13584 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
13585 {
13586 /* Merge this attribute with existing attributes. */
13587 switch (i)
13588 {
13589 case Tag_CPU_raw_name:
13590 case Tag_CPU_name:
6a631e86 13591 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
13592 break;
13593
13594 case Tag_ABI_optimization_goals:
13595 case Tag_ABI_FP_optimization_goals:
13596 /* Use the first value seen. */
13597 break;
13598
13599 case Tag_CPU_arch:
91e22acd
AS
13600 {
13601 int secondary_compat = -1, secondary_compat_out = -1;
13602 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
13603 int arch_attr;
13604 static const char *name_table[] =
13605 {
91e22acd
AS
13606 /* These aren't real CPU names, but we can't guess
13607 that from the architecture version alone. */
13608 "Pre v4",
13609 "ARM v4",
13610 "ARM v4T",
13611 "ARM v5T",
13612 "ARM v5TE",
13613 "ARM v5TEJ",
13614 "ARM v6",
13615 "ARM v6KZ",
13616 "ARM v6T2",
13617 "ARM v6K",
13618 "ARM v7",
13619 "ARM v6-M",
bca38921 13620 "ARM v6S-M",
2fd158eb
TP
13621 "ARM v8",
13622 "",
13623 "ARM v8-M.baseline",
13624 "ARM v8-M.mainline",
91e22acd
AS
13625 };
13626
13627 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13628 secondary_compat = get_secondary_compatible_arch (ibfd);
13629 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
13630 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13631 &secondary_compat_out,
13632 in_attr[i].i,
13633 secondary_compat);
13634
13635 /* Return with error if failed to merge. */
13636 if (arch_attr == -1)
13637 return FALSE;
13638
13639 out_attr[i].i = arch_attr;
13640
91e22acd
AS
13641 set_secondary_compatible_arch (obfd, secondary_compat_out);
13642
13643 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13644 if (out_attr[i].i == saved_out_attr)
13645 ; /* Leave the names alone. */
13646 else if (out_attr[i].i == in_attr[i].i)
13647 {
13648 /* The output architecture has been changed to match the
13649 input architecture. Use the input names. */
13650 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13651 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13652 : NULL;
13653 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13654 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13655 : NULL;
13656 }
13657 else
13658 {
13659 out_attr[Tag_CPU_name].s = NULL;
13660 out_attr[Tag_CPU_raw_name].s = NULL;
13661 }
13662
13663 /* If we still don't have a value for Tag_CPU_name,
13664 make one up now. Tag_CPU_raw_name remains blank. */
13665 if (out_attr[Tag_CPU_name].s == NULL
13666 && out_attr[i].i < ARRAY_SIZE (name_table))
13667 out_attr[Tag_CPU_name].s =
13668 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13669 }
13670 break;
13671
ee065d83
PB
13672 case Tag_ARM_ISA_use:
13673 case Tag_THUMB_ISA_use:
ee065d83 13674 case Tag_WMMX_arch:
91e22acd
AS
13675 case Tag_Advanced_SIMD_arch:
13676 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 13677 case Tag_ABI_FP_rounding:
ee065d83
PB
13678 case Tag_ABI_FP_exceptions:
13679 case Tag_ABI_FP_user_exceptions:
13680 case Tag_ABI_FP_number_model:
75375b3e 13681 case Tag_FP_HP_extension:
91e22acd
AS
13682 case Tag_CPU_unaligned_access:
13683 case Tag_T2EE_use:
91e22acd 13684 case Tag_MPextension_use:
ee065d83
PB
13685 /* Use the largest value specified. */
13686 if (in_attr[i].i > out_attr[i].i)
13687 out_attr[i].i = in_attr[i].i;
13688 break;
13689
75375b3e 13690 case Tag_ABI_align_preserved:
91e22acd
AS
13691 case Tag_ABI_PCS_RO_data:
13692 /* Use the smallest value specified. */
13693 if (in_attr[i].i < out_attr[i].i)
13694 out_attr[i].i = in_attr[i].i;
13695 break;
13696
75375b3e 13697 case Tag_ABI_align_needed:
91e22acd 13698 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
13699 && (in_attr[Tag_ABI_align_preserved].i == 0
13700 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 13701 {
91e22acd
AS
13702 /* This error message should be enabled once all non-conformant
13703 binaries in the toolchain have had the attributes set
13704 properly.
ee065d83 13705 _bfd_error_handler
3895f852 13706 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
13707 obfd, ibfd);
13708 result = FALSE; */
ee065d83 13709 }
91e22acd
AS
13710 /* Fall through. */
13711 case Tag_ABI_FP_denormal:
13712 case Tag_ABI_PCS_GOT_use:
13713 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13714 value if greater than 2 (for future-proofing). */
13715 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13716 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13717 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
13718 out_attr[i].i = in_attr[i].i;
13719 break;
91e22acd 13720
75375b3e
MGD
13721 case Tag_Virtualization_use:
13722 /* The virtualization tag effectively stores two bits of
13723 information: the intended use of TrustZone (in bit 0), and the
13724 intended use of Virtualization (in bit 1). */
13725 if (out_attr[i].i == 0)
13726 out_attr[i].i = in_attr[i].i;
13727 else if (in_attr[i].i != 0
13728 && in_attr[i].i != out_attr[i].i)
13729 {
13730 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13731 out_attr[i].i = 3;
13732 else
13733 {
13734 _bfd_error_handler
13735 (_("error: %B: unable to merge virtualization attributes "
13736 "with %B"),
13737 obfd, ibfd);
13738 result = FALSE;
13739 }
13740 }
13741 break;
91e22acd
AS
13742
13743 case Tag_CPU_arch_profile:
13744 if (out_attr[i].i != in_attr[i].i)
13745 {
13746 /* 0 will merge with anything.
13747 'A' and 'S' merge to 'A'.
13748 'R' and 'S' merge to 'R'.
99059e56 13749 'M' and 'A|R|S' is an error. */
91e22acd
AS
13750 if (out_attr[i].i == 0
13751 || (out_attr[i].i == 'S'
13752 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13753 out_attr[i].i = in_attr[i].i;
13754 else if (in_attr[i].i == 0
13755 || (in_attr[i].i == 'S'
13756 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 13757 ; /* Do nothing. */
91e22acd
AS
13758 else
13759 {
13760 _bfd_error_handler
3895f852 13761 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
13762 ibfd,
13763 in_attr[i].i ? in_attr[i].i : '0',
13764 out_attr[i].i ? out_attr[i].i : '0');
13765 result = FALSE;
13766 }
13767 }
13768 break;
15afaa63
TP
13769
13770 case Tag_DSP_extension:
13771 /* No need to change output value if any of:
13772 - pre (<=) ARMv5T input architecture (do not have DSP)
13773 - M input profile not ARMv7E-M and do not have DSP. */
13774 if (in_attr[Tag_CPU_arch].i <= 3
13775 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13776 && in_attr[Tag_CPU_arch].i != 13
13777 && in_attr[i].i == 0))
13778 ; /* Do nothing. */
13779 /* Output value should be 0 if DSP part of architecture, ie.
13780 - post (>=) ARMv5te architecture output
13781 - A, R or S profile output or ARMv7E-M output architecture. */
13782 else if (out_attr[Tag_CPU_arch].i >= 4
13783 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13784 || out_attr[Tag_CPU_arch_profile].i == 'R'
13785 || out_attr[Tag_CPU_arch_profile].i == 'S'
13786 || out_attr[Tag_CPU_arch].i == 13))
13787 out_attr[i].i = 0;
13788 /* Otherwise, DSP instructions are added and not part of output
13789 architecture. */
13790 else
13791 out_attr[i].i = 1;
13792 break;
13793
75375b3e 13794 case Tag_FP_arch:
62f3b8c8 13795 {
4547cb56
NC
13796 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13797 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13798 when it's 0. It might mean absence of FP hardware if
99654aaf 13799 Tag_FP_arch is zero. */
4547cb56 13800
a715796b 13801#define VFP_VERSION_COUNT 9
62f3b8c8
PB
13802 static const struct
13803 {
13804 int ver;
13805 int regs;
bca38921 13806 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
13807 {
13808 {0, 0},
13809 {1, 16},
13810 {2, 16},
13811 {3, 32},
13812 {3, 16},
13813 {4, 32},
bca38921 13814 {4, 16},
a715796b
TG
13815 {8, 32},
13816 {8, 16}
62f3b8c8
PB
13817 };
13818 int ver;
13819 int regs;
13820 int newval;
13821
4547cb56
NC
13822 /* If the output has no requirement about FP hardware,
13823 follow the requirement of the input. */
13824 if (out_attr[i].i == 0)
13825 {
13826 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13827 out_attr[i].i = in_attr[i].i;
13828 out_attr[Tag_ABI_HardFP_use].i
13829 = in_attr[Tag_ABI_HardFP_use].i;
13830 break;
13831 }
13832 /* If the input has no requirement about FP hardware, do
13833 nothing. */
13834 else if (in_attr[i].i == 0)
13835 {
13836 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13837 break;
13838 }
13839
13840 /* Both the input and the output have nonzero Tag_FP_arch.
99654aaf 13841 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
4547cb56
NC
13842
13843 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13844 do nothing. */
13845 if (in_attr[Tag_ABI_HardFP_use].i == 0
13846 && out_attr[Tag_ABI_HardFP_use].i == 0)
13847 ;
13848 /* If the input and the output have different Tag_ABI_HardFP_use,
99654aaf 13849 the combination of them is 0 (implied by Tag_FP_arch). */
4547cb56
NC
13850 else if (in_attr[Tag_ABI_HardFP_use].i
13851 != out_attr[Tag_ABI_HardFP_use].i)
99654aaf 13852 out_attr[Tag_ABI_HardFP_use].i = 0;
4547cb56
NC
13853
13854 /* Now we can handle Tag_FP_arch. */
13855
bca38921
MGD
13856 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13857 pick the biggest. */
13858 if (in_attr[i].i >= VFP_VERSION_COUNT
13859 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
13860 {
13861 out_attr[i] = in_attr[i];
13862 break;
13863 }
13864 /* The output uses the superset of input features
13865 (ISA version) and registers. */
13866 ver = vfp_versions[in_attr[i].i].ver;
13867 if (ver < vfp_versions[out_attr[i].i].ver)
13868 ver = vfp_versions[out_attr[i].i].ver;
13869 regs = vfp_versions[in_attr[i].i].regs;
13870 if (regs < vfp_versions[out_attr[i].i].regs)
13871 regs = vfp_versions[out_attr[i].i].regs;
13872 /* This assumes all possible supersets are also a valid
99059e56 13873 options. */
bca38921 13874 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
13875 {
13876 if (regs == vfp_versions[newval].regs
13877 && ver == vfp_versions[newval].ver)
13878 break;
13879 }
13880 out_attr[i].i = newval;
13881 }
b1cc4aeb 13882 break;
ee065d83
PB
13883 case Tag_PCS_config:
13884 if (out_attr[i].i == 0)
13885 out_attr[i].i = in_attr[i].i;
b6009aca 13886 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
13887 {
13888 /* It's sometimes ok to mix different configs, so this is only
99059e56 13889 a warning. */
ee065d83
PB
13890 _bfd_error_handler
13891 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13892 }
13893 break;
13894 case Tag_ABI_PCS_R9_use:
004ae526
PB
13895 if (in_attr[i].i != out_attr[i].i
13896 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
13897 && in_attr[i].i != AEABI_R9_unused)
13898 {
13899 _bfd_error_handler
3895f852 13900 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 13901 result = FALSE;
ee065d83
PB
13902 }
13903 if (out_attr[i].i == AEABI_R9_unused)
13904 out_attr[i].i = in_attr[i].i;
13905 break;
13906 case Tag_ABI_PCS_RW_data:
13907 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13908 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13909 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13910 {
13911 _bfd_error_handler
3895f852 13912 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 13913 ibfd);
91e22acd 13914 result = FALSE;
ee065d83
PB
13915 }
13916 /* Use the smallest value specified. */
13917 if (in_attr[i].i < out_attr[i].i)
13918 out_attr[i].i = in_attr[i].i;
13919 break;
ee065d83 13920 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
13921 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13922 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
13923 {
13924 _bfd_error_handler
a9dc9481
JM
13925 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13926 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 13927 }
a9dc9481 13928 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
13929 out_attr[i].i = in_attr[i].i;
13930 break;
ee065d83
PB
13931 case Tag_ABI_enum_size:
13932 if (in_attr[i].i != AEABI_enum_unused)
13933 {
13934 if (out_attr[i].i == AEABI_enum_unused
13935 || out_attr[i].i == AEABI_enum_forced_wide)
13936 {
13937 /* The existing object is compatible with anything.
13938 Use whatever requirements the new object has. */
13939 out_attr[i].i = in_attr[i].i;
13940 }
13941 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 13942 && out_attr[i].i != in_attr[i].i
0ffa91dd 13943 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 13944 {
91e22acd 13945 static const char *aeabi_enum_names[] =
bf21ed78 13946 { "", "variable-size", "32-bit", "" };
91e22acd
AS
13947 const char *in_name =
13948 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13949 ? aeabi_enum_names[in_attr[i].i]
13950 : "<unknown>";
13951 const char *out_name =
13952 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13953 ? aeabi_enum_names[out_attr[i].i]
13954 : "<unknown>";
ee065d83 13955 _bfd_error_handler
bf21ed78 13956 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 13957 ibfd, in_name, out_name);
ee065d83
PB
13958 }
13959 }
13960 break;
13961 case Tag_ABI_VFP_args:
13962 /* Aready done. */
13963 break;
13964 case Tag_ABI_WMMX_args:
13965 if (in_attr[i].i != out_attr[i].i)
13966 {
13967 _bfd_error_handler
3895f852 13968 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 13969 ibfd, obfd);
91e22acd 13970 result = FALSE;
ee065d83
PB
13971 }
13972 break;
7b86a9fa
AS
13973 case Tag_compatibility:
13974 /* Merged in target-independent code. */
13975 break;
91e22acd 13976 case Tag_ABI_HardFP_use:
4547cb56 13977 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
13978 break;
13979 case Tag_ABI_FP_16bit_format:
13980 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13981 {
13982 if (in_attr[i].i != out_attr[i].i)
13983 {
13984 _bfd_error_handler
3895f852 13985 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
13986 ibfd, obfd);
13987 result = FALSE;
13988 }
13989 }
13990 if (in_attr[i].i != 0)
13991 out_attr[i].i = in_attr[i].i;
13992 break;
7b86a9fa 13993
cd21e546 13994 case Tag_DIV_use:
ac56ee8f
MGD
13995 /* A value of zero on input means that the divide instruction may
13996 be used if available in the base architecture as specified via
13997 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13998 the user did not want divide instructions. A value of 2
13999 explicitly means that divide instructions were allowed in ARM
14000 and Thumb state. */
14001 if (in_attr[i].i == out_attr[i].i)
14002 /* Do nothing. */ ;
14003 else if (elf32_arm_attributes_forbid_div (in_attr)
14004 && !elf32_arm_attributes_accept_div (out_attr))
14005 out_attr[i].i = 1;
14006 else if (elf32_arm_attributes_forbid_div (out_attr)
14007 && elf32_arm_attributes_accept_div (in_attr))
14008 out_attr[i].i = in_attr[i].i;
14009 else if (in_attr[i].i == 2)
14010 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
14011 break;
14012
14013 case Tag_MPextension_use_legacy:
14014 /* We don't output objects with Tag_MPextension_use_legacy - we
14015 move the value to Tag_MPextension_use. */
14016 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14017 {
14018 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14019 {
14020 _bfd_error_handler
14021 (_("%B has has both the current and legacy "
b38cadfb 14022 "Tag_MPextension_use attributes"),
cd21e546
MGD
14023 ibfd);
14024 result = FALSE;
14025 }
14026 }
14027
14028 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14029 out_attr[Tag_MPextension_use] = in_attr[i];
14030
14031 break;
14032
91e22acd 14033 case Tag_nodefaults:
2d0bb761
AS
14034 /* This tag is set if it exists, but the value is unused (and is
14035 typically zero). We don't actually need to do anything here -
14036 the merge happens automatically when the type flags are merged
14037 below. */
91e22acd
AS
14038 break;
14039 case Tag_also_compatible_with:
14040 /* Already done in Tag_CPU_arch. */
14041 break;
14042 case Tag_conformance:
14043 /* Keep the attribute if it matches. Throw it away otherwise.
14044 No attribute means no claim to conform. */
14045 if (!in_attr[i].s || !out_attr[i].s
14046 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14047 out_attr[i].s = NULL;
14048 break;
3cfad14c 14049
91e22acd 14050 default:
e8b36cd1
JM
14051 result
14052 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
14053 }
14054
14055 /* If out_attr was copied from in_attr then it won't have a type yet. */
14056 if (in_attr[i].type && !out_attr[i].type)
14057 out_attr[i].type = in_attr[i].type;
ee065d83
PB
14058 }
14059
104d59d1 14060 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 14061 if (!_bfd_elf_merge_object_attributes (ibfd, info))
5488d830 14062 return FALSE;
ee065d83 14063
104d59d1 14064 /* Check for any attributes not known on ARM. */
e8b36cd1 14065 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 14066
91e22acd 14067 return result;
252b5132
RH
14068}
14069
3a4a14e9
PB
14070
14071/* Return TRUE if the two EABI versions are incompatible. */
14072
14073static bfd_boolean
14074elf32_arm_versions_compatible (unsigned iver, unsigned over)
14075{
14076 /* v4 and v5 are the same spec before and after it was released,
14077 so allow mixing them. */
14078 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14079 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14080 return TRUE;
14081
14082 return (iver == over);
14083}
14084
252b5132
RH
14085/* Merge backend specific data from an object file to the output
14086 object file when linking. */
9b485d32 14087
b34976b6 14088static bfd_boolean
50e03d47 14089elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
252b5132 14090
9b485d32
NC
14091/* Display the flags field. */
14092
b34976b6 14093static bfd_boolean
57e8b36a 14094elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 14095{
fc830a83
NC
14096 FILE * file = (FILE *) ptr;
14097 unsigned long flags;
252b5132
RH
14098
14099 BFD_ASSERT (abfd != NULL && ptr != NULL);
14100
14101 /* Print normal ELF private data. */
14102 _bfd_elf_print_private_bfd_data (abfd, ptr);
14103
fc830a83 14104 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
14105 /* Ignore init flag - it may not be set, despite the flags field
14106 containing valid data. */
252b5132 14107
9b485d32 14108 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 14109
fc830a83
NC
14110 switch (EF_ARM_EABI_VERSION (flags))
14111 {
14112 case EF_ARM_EABI_UNKNOWN:
4cc11e76 14113 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
14114 official ARM ELF extended ABI. Hence they are only decoded if
14115 the EABI version is not set. */
fd2ec330 14116 if (flags & EF_ARM_INTERWORK)
9b485d32 14117 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 14118
fd2ec330 14119 if (flags & EF_ARM_APCS_26)
6c571f00 14120 fprintf (file, " [APCS-26]");
fc830a83 14121 else
6c571f00 14122 fprintf (file, " [APCS-32]");
9a5aca8c 14123
96a846ea
RE
14124 if (flags & EF_ARM_VFP_FLOAT)
14125 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
14126 else if (flags & EF_ARM_MAVERICK_FLOAT)
14127 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
14128 else
14129 fprintf (file, _(" [FPA float format]"));
14130
fd2ec330 14131 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 14132 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 14133
fd2ec330 14134 if (flags & EF_ARM_PIC)
9b485d32 14135 fprintf (file, _(" [position independent]"));
fc830a83 14136
fd2ec330 14137 if (flags & EF_ARM_NEW_ABI)
9b485d32 14138 fprintf (file, _(" [new ABI]"));
9a5aca8c 14139
fd2ec330 14140 if (flags & EF_ARM_OLD_ABI)
9b485d32 14141 fprintf (file, _(" [old ABI]"));
9a5aca8c 14142
fd2ec330 14143 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 14144 fprintf (file, _(" [software FP]"));
9a5aca8c 14145
96a846ea
RE
14146 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14147 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
14148 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14149 | EF_ARM_MAVERICK_FLOAT);
fc830a83 14150 break;
9a5aca8c 14151
fc830a83 14152 case EF_ARM_EABI_VER1:
9b485d32 14153 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 14154
fc830a83 14155 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 14156 fprintf (file, _(" [sorted symbol table]"));
fc830a83 14157 else
9b485d32 14158 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 14159
fc830a83
NC
14160 flags &= ~ EF_ARM_SYMSARESORTED;
14161 break;
9a5aca8c 14162
fd2ec330
PB
14163 case EF_ARM_EABI_VER2:
14164 fprintf (file, _(" [Version2 EABI]"));
14165
14166 if (flags & EF_ARM_SYMSARESORTED)
14167 fprintf (file, _(" [sorted symbol table]"));
14168 else
14169 fprintf (file, _(" [unsorted symbol table]"));
14170
14171 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14172 fprintf (file, _(" [dynamic symbols use segment index]"));
14173
14174 if (flags & EF_ARM_MAPSYMSFIRST)
14175 fprintf (file, _(" [mapping symbols precede others]"));
14176
99e4ae17 14177 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
14178 | EF_ARM_MAPSYMSFIRST);
14179 break;
14180
d507cf36
PB
14181 case EF_ARM_EABI_VER3:
14182 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
14183 break;
14184
14185 case EF_ARM_EABI_VER4:
14186 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 14187 goto eabi;
d507cf36 14188
3a4a14e9
PB
14189 case EF_ARM_EABI_VER5:
14190 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
14191
14192 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14193 fprintf (file, _(" [soft-float ABI]"));
14194
14195 if (flags & EF_ARM_ABI_FLOAT_HARD)
14196 fprintf (file, _(" [hard-float ABI]"));
14197
14198 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14199
3a4a14e9 14200 eabi:
d507cf36
PB
14201 if (flags & EF_ARM_BE8)
14202 fprintf (file, _(" [BE8]"));
14203
14204 if (flags & EF_ARM_LE8)
14205 fprintf (file, _(" [LE8]"));
14206
14207 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14208 break;
14209
fc830a83 14210 default:
9b485d32 14211 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
14212 break;
14213 }
252b5132 14214
fc830a83 14215 flags &= ~ EF_ARM_EABIMASK;
252b5132 14216
fc830a83 14217 if (flags & EF_ARM_RELEXEC)
9b485d32 14218 fprintf (file, _(" [relocatable executable]"));
252b5132 14219
a5721edd 14220 flags &= ~EF_ARM_RELEXEC;
fc830a83
NC
14221
14222 if (flags)
9b485d32 14223 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 14224
252b5132
RH
14225 fputc ('\n', file);
14226
b34976b6 14227 return TRUE;
252b5132
RH
14228}
14229
14230static int
57e8b36a 14231elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 14232{
2f0ca46a
NC
14233 switch (ELF_ST_TYPE (elf_sym->st_info))
14234 {
14235 case STT_ARM_TFUNC:
14236 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 14237
2f0ca46a
NC
14238 case STT_ARM_16BIT:
14239 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14240 This allows us to distinguish between data used by Thumb instructions
14241 and non-data (which is probably code) inside Thumb regions of an
14242 executable. */
1a0eb693 14243 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
14244 return ELF_ST_TYPE (elf_sym->st_info);
14245 break;
9a5aca8c 14246
ce855c42
NC
14247 default:
14248 break;
2f0ca46a
NC
14249 }
14250
14251 return type;
252b5132 14252}
f21f3fe0 14253
252b5132 14254static asection *
07adf181
AM
14255elf32_arm_gc_mark_hook (asection *sec,
14256 struct bfd_link_info *info,
14257 Elf_Internal_Rela *rel,
14258 struct elf_link_hash_entry *h,
14259 Elf_Internal_Sym *sym)
252b5132
RH
14260{
14261 if (h != NULL)
07adf181 14262 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
14263 {
14264 case R_ARM_GNU_VTINHERIT:
14265 case R_ARM_GNU_VTENTRY:
07adf181
AM
14266 return NULL;
14267 }
9ad5cbcf 14268
07adf181 14269 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
14270}
14271
780a67af
NC
14272/* Update the got entry reference counts for the section being removed. */
14273
b34976b6 14274static bfd_boolean
ba93b8ac
DJ
14275elf32_arm_gc_sweep_hook (bfd * abfd,
14276 struct bfd_link_info * info,
14277 asection * sec,
14278 const Elf_Internal_Rela * relocs)
252b5132 14279{
5e681ec4
PB
14280 Elf_Internal_Shdr *symtab_hdr;
14281 struct elf_link_hash_entry **sym_hashes;
14282 bfd_signed_vma *local_got_refcounts;
14283 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
14284 struct elf32_arm_link_hash_table * globals;
14285
0e1862bb 14286 if (bfd_link_relocatable (info))
7dda2462
TG
14287 return TRUE;
14288
eb043451 14289 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
14290 if (globals == NULL)
14291 return FALSE;
5e681ec4
PB
14292
14293 elf_section_data (sec)->local_dynrel = NULL;
14294
0ffa91dd 14295 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
14296 sym_hashes = elf_sym_hashes (abfd);
14297 local_got_refcounts = elf_local_got_refcounts (abfd);
14298
906e58ca 14299 check_use_blx (globals);
bd97cb95 14300
5e681ec4
PB
14301 relend = relocs + sec->reloc_count;
14302 for (rel = relocs; rel < relend; rel++)
eb043451 14303 {
3eb128b2
AM
14304 unsigned long r_symndx;
14305 struct elf_link_hash_entry *h = NULL;
f6e32f6d 14306 struct elf32_arm_link_hash_entry *eh;
eb043451 14307 int r_type;
34e77a92 14308 bfd_boolean call_reloc_p;
f6e32f6d
RS
14309 bfd_boolean may_become_dynamic_p;
14310 bfd_boolean may_need_local_target_p;
34e77a92
RS
14311 union gotplt_union *root_plt;
14312 struct arm_plt_info *arm_plt;
5e681ec4 14313
3eb128b2
AM
14314 r_symndx = ELF32_R_SYM (rel->r_info);
14315 if (r_symndx >= symtab_hdr->sh_info)
14316 {
14317 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14318 while (h->root.type == bfd_link_hash_indirect
14319 || h->root.type == bfd_link_hash_warning)
14320 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14321 }
f6e32f6d
RS
14322 eh = (struct elf32_arm_link_hash_entry *) h;
14323
34e77a92 14324 call_reloc_p = FALSE;
f6e32f6d
RS
14325 may_become_dynamic_p = FALSE;
14326 may_need_local_target_p = FALSE;
3eb128b2 14327
eb043451 14328 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 14329 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
14330 switch (r_type)
14331 {
14332 case R_ARM_GOT32:
eb043451 14333 case R_ARM_GOT_PREL:
ba93b8ac
DJ
14334 case R_ARM_TLS_GD32:
14335 case R_ARM_TLS_IE32:
3eb128b2 14336 if (h != NULL)
eb043451 14337 {
eb043451
PB
14338 if (h->got.refcount > 0)
14339 h->got.refcount -= 1;
14340 }
14341 else if (local_got_refcounts != NULL)
14342 {
14343 if (local_got_refcounts[r_symndx] > 0)
14344 local_got_refcounts[r_symndx] -= 1;
14345 }
14346 break;
14347
ba93b8ac 14348 case R_ARM_TLS_LDM32:
4dfe6ac6 14349 globals->tls_ldm_got.refcount -= 1;
ba93b8ac
DJ
14350 break;
14351
eb043451
PB
14352 case R_ARM_PC24:
14353 case R_ARM_PLT32:
5b5bb741
PB
14354 case R_ARM_CALL:
14355 case R_ARM_JUMP24:
eb043451 14356 case R_ARM_PREL31:
c19d1205 14357 case R_ARM_THM_CALL:
bd97cb95
DJ
14358 case R_ARM_THM_JUMP24:
14359 case R_ARM_THM_JUMP19:
34e77a92 14360 call_reloc_p = TRUE;
f6e32f6d
RS
14361 may_need_local_target_p = TRUE;
14362 break;
14363
14364 case R_ARM_ABS12:
14365 if (!globals->vxworks_p)
14366 {
14367 may_need_local_target_p = TRUE;
14368 break;
14369 }
14370 /* Fall through. */
14371 case R_ARM_ABS32:
14372 case R_ARM_ABS32_NOI:
14373 case R_ARM_REL32:
14374 case R_ARM_REL32_NOI:
b6895b4f
PB
14375 case R_ARM_MOVW_ABS_NC:
14376 case R_ARM_MOVT_ABS:
14377 case R_ARM_MOVW_PREL_NC:
14378 case R_ARM_MOVT_PREL:
14379 case R_ARM_THM_MOVW_ABS_NC:
14380 case R_ARM_THM_MOVT_ABS:
14381 case R_ARM_THM_MOVW_PREL_NC:
14382 case R_ARM_THM_MOVT_PREL:
b7693d02 14383 /* Should the interworking branches be here also? */
0e1862bb 14384 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
34e77a92
RS
14385 && (sec->flags & SEC_ALLOC) != 0)
14386 {
14387 if (h == NULL
469a3493 14388 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
14389 {
14390 call_reloc_p = TRUE;
14391 may_need_local_target_p = TRUE;
14392 }
14393 else
14394 may_become_dynamic_p = TRUE;
14395 }
f6e32f6d
RS
14396 else
14397 may_need_local_target_p = TRUE;
14398 break;
b7693d02 14399
f6e32f6d
RS
14400 default:
14401 break;
14402 }
5e681ec4 14403
34e77a92 14404 if (may_need_local_target_p
4ba2ef8f
TP
14405 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14406 &arm_plt))
f6e32f6d 14407 {
27586251
HPN
14408 /* If PLT refcount book-keeping is wrong and too low, we'll
14409 see a zero value (going to -1) for the root PLT reference
14410 count. */
14411 if (root_plt->refcount >= 0)
14412 {
14413 BFD_ASSERT (root_plt->refcount != 0);
14414 root_plt->refcount -= 1;
14415 }
14416 else
14417 /* A value of -1 means the symbol has become local, forced
14418 or seeing a hidden definition. Any other negative value
14419 is an error. */
14420 BFD_ASSERT (root_plt->refcount == -1);
34e77a92
RS
14421
14422 if (!call_reloc_p)
14423 arm_plt->noncall_refcount--;
5e681ec4 14424
f6e32f6d 14425 if (r_type == R_ARM_THM_CALL)
34e77a92 14426 arm_plt->maybe_thumb_refcount--;
bd97cb95 14427
f6e32f6d
RS
14428 if (r_type == R_ARM_THM_JUMP24
14429 || r_type == R_ARM_THM_JUMP19)
34e77a92 14430 arm_plt->thumb_refcount--;
f6e32f6d 14431 }
5e681ec4 14432
34e77a92 14433 if (may_become_dynamic_p)
f6e32f6d
RS
14434 {
14435 struct elf_dyn_relocs **pp;
14436 struct elf_dyn_relocs *p;
5e681ec4 14437
34e77a92 14438 if (h != NULL)
9c489990 14439 pp = &(eh->dyn_relocs);
34e77a92
RS
14440 else
14441 {
14442 Elf_Internal_Sym *isym;
14443
14444 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14445 abfd, r_symndx);
14446 if (isym == NULL)
14447 return FALSE;
14448 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14449 if (pp == NULL)
14450 return FALSE;
14451 }
9c489990 14452 for (; (p = *pp) != NULL; pp = &p->next)
f6e32f6d
RS
14453 if (p->sec == sec)
14454 {
14455 /* Everything must go for SEC. */
14456 *pp = p->next;
14457 break;
14458 }
eb043451
PB
14459 }
14460 }
5e681ec4 14461
b34976b6 14462 return TRUE;
252b5132
RH
14463}
14464
780a67af
NC
14465/* Look through the relocs for a section during the first phase. */
14466
b34976b6 14467static bfd_boolean
57e8b36a
NC
14468elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14469 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 14470{
b34976b6
AM
14471 Elf_Internal_Shdr *symtab_hdr;
14472 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
14473 const Elf_Internal_Rela *rel;
14474 const Elf_Internal_Rela *rel_end;
14475 bfd *dynobj;
5e681ec4 14476 asection *sreloc;
5e681ec4 14477 struct elf32_arm_link_hash_table *htab;
f6e32f6d
RS
14478 bfd_boolean call_reloc_p;
14479 bfd_boolean may_become_dynamic_p;
14480 bfd_boolean may_need_local_target_p;
ce98a316 14481 unsigned long nsyms;
9a5aca8c 14482
0e1862bb 14483 if (bfd_link_relocatable (info))
b34976b6 14484 return TRUE;
9a5aca8c 14485
0ffa91dd
NC
14486 BFD_ASSERT (is_arm_elf (abfd));
14487
5e681ec4 14488 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
14489 if (htab == NULL)
14490 return FALSE;
14491
5e681ec4 14492 sreloc = NULL;
9a5aca8c 14493
67687978
PB
14494 /* Create dynamic sections for relocatable executables so that we can
14495 copy relocations. */
14496 if (htab->root.is_relocatable_executable
14497 && ! htab->root.dynamic_sections_created)
14498 {
14499 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14500 return FALSE;
14501 }
14502
cbc704f3
RS
14503 if (htab->root.dynobj == NULL)
14504 htab->root.dynobj = abfd;
34e77a92
RS
14505 if (!create_ifunc_sections (info))
14506 return FALSE;
cbc704f3
RS
14507
14508 dynobj = htab->root.dynobj;
14509
0ffa91dd 14510 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 14511 sym_hashes = elf_sym_hashes (abfd);
ce98a316 14512 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 14513
252b5132
RH
14514 rel_end = relocs + sec->reloc_count;
14515 for (rel = relocs; rel < rel_end; rel++)
14516 {
34e77a92 14517 Elf_Internal_Sym *isym;
252b5132 14518 struct elf_link_hash_entry *h;
b7693d02 14519 struct elf32_arm_link_hash_entry *eh;
252b5132 14520 unsigned long r_symndx;
eb043451 14521 int r_type;
9a5aca8c 14522
252b5132 14523 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 14524 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 14525 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 14526
ce98a316
NC
14527 if (r_symndx >= nsyms
14528 /* PR 9934: It is possible to have relocations that do not
14529 refer to symbols, thus it is also possible to have an
14530 object file containing relocations but no symbol table. */
cf35638d 14531 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac 14532 {
4eca0228
AM
14533 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd,
14534 r_symndx);
ba93b8ac
DJ
14535 return FALSE;
14536 }
14537
34e77a92
RS
14538 h = NULL;
14539 isym = NULL;
14540 if (nsyms > 0)
973a3492 14541 {
34e77a92
RS
14542 if (r_symndx < symtab_hdr->sh_info)
14543 {
14544 /* A local symbol. */
14545 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14546 abfd, r_symndx);
14547 if (isym == NULL)
14548 return FALSE;
14549 }
14550 else
14551 {
14552 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14553 while (h->root.type == bfd_link_hash_indirect
14554 || h->root.type == bfd_link_hash_warning)
14555 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
14556
14557 /* PR15323, ref flags aren't set for references in the
14558 same object. */
bc4e12de 14559 h->root.non_ir_ref_regular = 1;
34e77a92 14560 }
973a3492 14561 }
9a5aca8c 14562
b7693d02
DJ
14563 eh = (struct elf32_arm_link_hash_entry *) h;
14564
f6e32f6d
RS
14565 call_reloc_p = FALSE;
14566 may_become_dynamic_p = FALSE;
14567 may_need_local_target_p = FALSE;
14568
0855e32b
NS
14569 /* Could be done earlier, if h were already available. */
14570 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 14571 switch (r_type)
99059e56 14572 {
5e681ec4 14573 case R_ARM_GOT32:
eb043451 14574 case R_ARM_GOT_PREL:
ba93b8ac
DJ
14575 case R_ARM_TLS_GD32:
14576 case R_ARM_TLS_IE32:
0855e32b
NS
14577 case R_ARM_TLS_GOTDESC:
14578 case R_ARM_TLS_DESCSEQ:
14579 case R_ARM_THM_TLS_DESCSEQ:
14580 case R_ARM_TLS_CALL:
14581 case R_ARM_THM_TLS_CALL:
5e681ec4 14582 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
14583 {
14584 int tls_type, old_tls_type;
5e681ec4 14585
ba93b8ac
DJ
14586 switch (r_type)
14587 {
14588 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
b38cadfb 14589
ba93b8ac 14590 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
b38cadfb 14591
0855e32b
NS
14592 case R_ARM_TLS_GOTDESC:
14593 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14594 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14595 tls_type = GOT_TLS_GDESC; break;
b38cadfb 14596
ba93b8ac
DJ
14597 default: tls_type = GOT_NORMAL; break;
14598 }
252b5132 14599
0e1862bb 14600 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
eea6dad2
KM
14601 info->flags |= DF_STATIC_TLS;
14602
ba93b8ac
DJ
14603 if (h != NULL)
14604 {
14605 h->got.refcount++;
14606 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14607 }
14608 else
14609 {
ba93b8ac 14610 /* This is a global offset table entry for a local symbol. */
34e77a92
RS
14611 if (!elf32_arm_allocate_local_sym_info (abfd))
14612 return FALSE;
14613 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
14614 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14615 }
14616
0855e32b 14617 /* If a variable is accessed with both tls methods, two
99059e56 14618 slots may be created. */
0855e32b
NS
14619 if (GOT_TLS_GD_ANY_P (old_tls_type)
14620 && GOT_TLS_GD_ANY_P (tls_type))
14621 tls_type |= old_tls_type;
14622
14623 /* We will already have issued an error message if there
14624 is a TLS/non-TLS mismatch, based on the symbol
14625 type. So just combine any TLS types needed. */
ba93b8ac
DJ
14626 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14627 && tls_type != GOT_NORMAL)
14628 tls_type |= old_tls_type;
14629
0855e32b 14630 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
14631 method, we're able to relax. Turn off the GDESC flag,
14632 without messing up with any other kind of tls types
6a631e86 14633 that may be involved. */
0855e32b
NS
14634 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14635 tls_type &= ~GOT_TLS_GDESC;
14636
ba93b8ac
DJ
14637 if (old_tls_type != tls_type)
14638 {
14639 if (h != NULL)
14640 elf32_arm_hash_entry (h)->tls_type = tls_type;
14641 else
14642 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14643 }
14644 }
8029a119 14645 /* Fall through. */
ba93b8ac
DJ
14646
14647 case R_ARM_TLS_LDM32:
14648 if (r_type == R_ARM_TLS_LDM32)
14649 htab->tls_ldm_got.refcount++;
8029a119 14650 /* Fall through. */
252b5132 14651
c19d1205 14652 case R_ARM_GOTOFF32:
5e681ec4 14653 case R_ARM_GOTPC:
cbc704f3
RS
14654 if (htab->root.sgot == NULL
14655 && !create_got_section (htab->root.dynobj, info))
14656 return FALSE;
252b5132
RH
14657 break;
14658
252b5132 14659 case R_ARM_PC24:
7359ea65 14660 case R_ARM_PLT32:
5b5bb741
PB
14661 case R_ARM_CALL:
14662 case R_ARM_JUMP24:
eb043451 14663 case R_ARM_PREL31:
c19d1205 14664 case R_ARM_THM_CALL:
bd97cb95
DJ
14665 case R_ARM_THM_JUMP24:
14666 case R_ARM_THM_JUMP19:
f6e32f6d
RS
14667 call_reloc_p = TRUE;
14668 may_need_local_target_p = TRUE;
14669 break;
14670
14671 case R_ARM_ABS12:
14672 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14673 ldr __GOTT_INDEX__ offsets. */
14674 if (!htab->vxworks_p)
14675 {
14676 may_need_local_target_p = TRUE;
14677 break;
14678 }
aebf9be7 14679 else goto jump_over;
9eaff861 14680
f6e32f6d 14681 /* Fall through. */
39623e12 14682
96c23d59
JM
14683 case R_ARM_MOVW_ABS_NC:
14684 case R_ARM_MOVT_ABS:
14685 case R_ARM_THM_MOVW_ABS_NC:
14686 case R_ARM_THM_MOVT_ABS:
0e1862bb 14687 if (bfd_link_pic (info))
96c23d59 14688 {
4eca0228 14689 _bfd_error_handler
96c23d59
JM
14690 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14691 abfd, elf32_arm_howto_table_1[r_type].name,
14692 (h) ? h->root.root.string : "a local symbol");
14693 bfd_set_error (bfd_error_bad_value);
14694 return FALSE;
14695 }
14696
14697 /* Fall through. */
39623e12
PB
14698 case R_ARM_ABS32:
14699 case R_ARM_ABS32_NOI:
aebf9be7 14700 jump_over:
0e1862bb 14701 if (h != NULL && bfd_link_executable (info))
97323ad1
WN
14702 {
14703 h->pointer_equality_needed = 1;
14704 }
14705 /* Fall through. */
39623e12
PB
14706 case R_ARM_REL32:
14707 case R_ARM_REL32_NOI:
b6895b4f
PB
14708 case R_ARM_MOVW_PREL_NC:
14709 case R_ARM_MOVT_PREL:
b6895b4f
PB
14710 case R_ARM_THM_MOVW_PREL_NC:
14711 case R_ARM_THM_MOVT_PREL:
39623e12 14712
b7693d02 14713 /* Should the interworking branches be listed here? */
0e1862bb 14714 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
34e77a92
RS
14715 && (sec->flags & SEC_ALLOC) != 0)
14716 {
14717 if (h == NULL
469a3493 14718 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
14719 {
14720 /* In shared libraries and relocatable executables,
14721 we treat local relative references as calls;
14722 see the related SYMBOL_CALLS_LOCAL code in
14723 allocate_dynrelocs. */
14724 call_reloc_p = TRUE;
14725 may_need_local_target_p = TRUE;
14726 }
14727 else
14728 /* We are creating a shared library or relocatable
14729 executable, and this is a reloc against a global symbol,
14730 or a non-PC-relative reloc against a local symbol.
14731 We may need to copy the reloc into the output. */
14732 may_become_dynamic_p = TRUE;
14733 }
f6e32f6d
RS
14734 else
14735 may_need_local_target_p = TRUE;
252b5132
RH
14736 break;
14737
99059e56
RM
14738 /* This relocation describes the C++ object vtable hierarchy.
14739 Reconstruct it for later use during GC. */
14740 case R_ARM_GNU_VTINHERIT:
14741 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14742 return FALSE;
14743 break;
14744
14745 /* This relocation describes which C++ vtable entries are actually
14746 used. Record for later use during GC. */
14747 case R_ARM_GNU_VTENTRY:
14748 BFD_ASSERT (h != NULL);
14749 if (h != NULL
14750 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14751 return FALSE;
14752 break;
14753 }
f6e32f6d
RS
14754
14755 if (h != NULL)
14756 {
14757 if (call_reloc_p)
14758 /* We may need a .plt entry if the function this reloc
14759 refers to is in a different object, regardless of the
14760 symbol's type. We can't tell for sure yet, because
14761 something later might force the symbol local. */
14762 h->needs_plt = 1;
14763 else if (may_need_local_target_p)
14764 /* If this reloc is in a read-only section, we might
14765 need a copy reloc. We can't check reliably at this
14766 stage whether the section is read-only, as input
14767 sections have not yet been mapped to output sections.
14768 Tentatively set the flag for now, and correct in
14769 adjust_dynamic_symbol. */
14770 h->non_got_ref = 1;
14771 }
14772
34e77a92
RS
14773 if (may_need_local_target_p
14774 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 14775 {
34e77a92
RS
14776 union gotplt_union *root_plt;
14777 struct arm_plt_info *arm_plt;
14778 struct arm_local_iplt_info *local_iplt;
14779
14780 if (h != NULL)
14781 {
14782 root_plt = &h->plt;
14783 arm_plt = &eh->plt;
14784 }
14785 else
14786 {
14787 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14788 if (local_iplt == NULL)
14789 return FALSE;
14790 root_plt = &local_iplt->root;
14791 arm_plt = &local_iplt->arm;
14792 }
14793
f6e32f6d
RS
14794 /* If the symbol is a function that doesn't bind locally,
14795 this relocation will need a PLT entry. */
a8c887dd
NC
14796 if (root_plt->refcount != -1)
14797 root_plt->refcount += 1;
34e77a92
RS
14798
14799 if (!call_reloc_p)
14800 arm_plt->noncall_refcount++;
f6e32f6d
RS
14801
14802 /* It's too early to use htab->use_blx here, so we have to
14803 record possible blx references separately from
14804 relocs that definitely need a thumb stub. */
14805
14806 if (r_type == R_ARM_THM_CALL)
34e77a92 14807 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
14808
14809 if (r_type == R_ARM_THM_JUMP24
14810 || r_type == R_ARM_THM_JUMP19)
34e77a92 14811 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
14812 }
14813
14814 if (may_become_dynamic_p)
14815 {
14816 struct elf_dyn_relocs *p, **head;
14817
14818 /* Create a reloc section in dynobj. */
14819 if (sreloc == NULL)
14820 {
14821 sreloc = _bfd_elf_make_dynamic_reloc_section
14822 (sec, dynobj, 2, abfd, ! htab->use_rel);
14823
14824 if (sreloc == NULL)
14825 return FALSE;
14826
14827 /* BPABI objects never have dynamic relocations mapped. */
14828 if (htab->symbian_p)
14829 {
14830 flagword flags;
14831
14832 flags = bfd_get_section_flags (dynobj, sreloc);
14833 flags &= ~(SEC_LOAD | SEC_ALLOC);
14834 bfd_set_section_flags (dynobj, sreloc, flags);
14835 }
14836 }
14837
14838 /* If this is a global symbol, count the number of
14839 relocations we need for this symbol. */
14840 if (h != NULL)
14841 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14842 else
14843 {
34e77a92
RS
14844 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14845 if (head == NULL)
f6e32f6d 14846 return FALSE;
f6e32f6d
RS
14847 }
14848
14849 p = *head;
14850 if (p == NULL || p->sec != sec)
14851 {
14852 bfd_size_type amt = sizeof *p;
14853
14854 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14855 if (p == NULL)
14856 return FALSE;
14857 p->next = *head;
14858 *head = p;
14859 p->sec = sec;
14860 p->count = 0;
14861 p->pc_count = 0;
14862 }
14863
469a3493 14864 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
14865 p->pc_count += 1;
14866 p->count += 1;
14867 }
252b5132 14868 }
f21f3fe0 14869
b34976b6 14870 return TRUE;
252b5132
RH
14871}
14872
9eaff861
AO
14873static void
14874elf32_arm_update_relocs (asection *o,
14875 struct bfd_elf_section_reloc_data *reldata)
14876{
14877 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
14878 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
14879 const struct elf_backend_data *bed;
14880 _arm_elf_section_data *eado;
14881 struct bfd_link_order *p;
14882 bfd_byte *erela_head, *erela;
14883 Elf_Internal_Rela *irela_head, *irela;
14884 Elf_Internal_Shdr *rel_hdr;
14885 bfd *abfd;
14886 unsigned int count;
14887
14888 eado = get_arm_elf_section_data (o);
14889
14890 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
14891 return;
14892
14893 abfd = o->owner;
14894 bed = get_elf_backend_data (abfd);
14895 rel_hdr = reldata->hdr;
14896
14897 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
14898 {
14899 swap_in = bed->s->swap_reloc_in;
14900 swap_out = bed->s->swap_reloc_out;
14901 }
14902 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
14903 {
14904 swap_in = bed->s->swap_reloca_in;
14905 swap_out = bed->s->swap_reloca_out;
14906 }
14907 else
14908 abort ();
14909
14910 erela_head = rel_hdr->contents;
14911 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
14912 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
14913
14914 erela = erela_head;
14915 irela = irela_head;
14916 count = 0;
14917
14918 for (p = o->map_head.link_order; p; p = p->next)
14919 {
14920 if (p->type == bfd_section_reloc_link_order
14921 || p->type == bfd_symbol_reloc_link_order)
14922 {
14923 (*swap_in) (abfd, erela, irela);
14924 erela += rel_hdr->sh_entsize;
14925 irela++;
14926 count++;
14927 }
14928 else if (p->type == bfd_indirect_link_order)
14929 {
14930 struct bfd_elf_section_reloc_data *input_reldata;
14931 arm_unwind_table_edit *edit_list, *edit_tail;
14932 _arm_elf_section_data *eadi;
14933 bfd_size_type j;
14934 bfd_vma offset;
14935 asection *i;
14936
14937 i = p->u.indirect.section;
14938
14939 eadi = get_arm_elf_section_data (i);
14940 edit_list = eadi->u.exidx.unwind_edit_list;
14941 edit_tail = eadi->u.exidx.unwind_edit_tail;
14942 offset = o->vma + i->output_offset;
14943
14944 if (eadi->elf.rel.hdr &&
14945 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
14946 input_reldata = &eadi->elf.rel;
14947 else if (eadi->elf.rela.hdr &&
14948 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
14949 input_reldata = &eadi->elf.rela;
14950 else
14951 abort ();
14952
14953 if (edit_list)
14954 {
14955 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14956 {
14957 arm_unwind_table_edit *edit_node, *edit_next;
14958 bfd_vma bias;
c48182bf 14959 bfd_vma reloc_index;
9eaff861
AO
14960
14961 (*swap_in) (abfd, erela, irela);
c48182bf 14962 reloc_index = (irela->r_offset - offset) / 8;
9eaff861
AO
14963
14964 bias = 0;
14965 edit_node = edit_list;
14966 for (edit_next = edit_list;
c48182bf 14967 edit_next && edit_next->index <= reloc_index;
9eaff861
AO
14968 edit_next = edit_node->next)
14969 {
14970 bias++;
14971 edit_node = edit_next;
14972 }
14973
14974 if (edit_node->type != DELETE_EXIDX_ENTRY
c48182bf 14975 || edit_node->index != reloc_index)
9eaff861
AO
14976 {
14977 irela->r_offset -= bias * 8;
14978 irela++;
14979 count++;
14980 }
14981
14982 erela += rel_hdr->sh_entsize;
14983 }
14984
14985 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
14986 {
14987 /* New relocation entity. */
14988 asection *text_sec = edit_tail->linked_section;
14989 asection *text_out = text_sec->output_section;
14990 bfd_vma exidx_offset = offset + i->size - 8;
14991
14992 irela->r_addend = 0;
14993 irela->r_offset = exidx_offset;
14994 irela->r_info = ELF32_R_INFO
14995 (text_out->target_index, R_ARM_PREL31);
14996 irela++;
14997 count++;
14998 }
14999 }
15000 else
15001 {
15002 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15003 {
15004 (*swap_in) (abfd, erela, irela);
15005 erela += rel_hdr->sh_entsize;
15006 irela++;
15007 }
15008
15009 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15010 }
15011 }
15012 }
15013
15014 reldata->count = count;
15015 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15016
15017 erela = erela_head;
15018 irela = irela_head;
15019 while (count > 0)
15020 {
15021 (*swap_out) (abfd, irela, erela);
15022 erela += rel_hdr->sh_entsize;
15023 irela++;
15024 count--;
15025 }
15026
15027 free (irela_head);
15028
15029 /* Hashes are no longer valid. */
15030 free (reldata->hashes);
15031 reldata->hashes = NULL;
15032}
15033
6a5bb875 15034/* Unwinding tables are not referenced directly. This pass marks them as
4ba2ef8f
TP
15035 required if the corresponding code section is marked. Similarly, ARMv8-M
15036 secure entry functions can only be referenced by SG veneers which are
15037 created after the GC process. They need to be marked in case they reside in
15038 their own section (as would be the case if code was compiled with
15039 -ffunction-sections). */
6a5bb875
PB
15040
15041static bfd_boolean
906e58ca
NC
15042elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15043 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
15044{
15045 bfd *sub;
15046 Elf_Internal_Shdr **elf_shdrp;
4ba2ef8f
TP
15047 asection *cmse_sec;
15048 obj_attribute *out_attr;
15049 Elf_Internal_Shdr *symtab_hdr;
15050 unsigned i, sym_count, ext_start;
15051 const struct elf_backend_data *bed;
15052 struct elf_link_hash_entry **sym_hashes;
15053 struct elf32_arm_link_hash_entry *cmse_hash;
15054 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
6a5bb875 15055
7f6ab9f8
AM
15056 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15057
4ba2ef8f
TP
15058 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15059 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15060 && out_attr[Tag_CPU_arch_profile].i == 'M';
15061
6a5bb875
PB
15062 /* Marking EH data may cause additional code sections to be marked,
15063 requiring multiple passes. */
15064 again = TRUE;
15065 while (again)
15066 {
15067 again = FALSE;
c72f2fb2 15068 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
15069 {
15070 asection *o;
15071
0ffa91dd 15072 if (! is_arm_elf (sub))
6a5bb875
PB
15073 continue;
15074
15075 elf_shdrp = elf_elfsections (sub);
15076 for (o = sub->sections; o != NULL; o = o->next)
15077 {
15078 Elf_Internal_Shdr *hdr;
0ffa91dd 15079
6a5bb875 15080 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
15081 if (hdr->sh_type == SHT_ARM_EXIDX
15082 && hdr->sh_link
15083 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
15084 && !o->gc_mark
15085 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15086 {
15087 again = TRUE;
15088 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15089 return FALSE;
15090 }
15091 }
4ba2ef8f
TP
15092
15093 /* Mark section holding ARMv8-M secure entry functions. We mark all
15094 of them so no need for a second browsing. */
15095 if (is_v8m && first_bfd_browse)
15096 {
15097 sym_hashes = elf_sym_hashes (sub);
15098 bed = get_elf_backend_data (sub);
15099 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15100 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15101 ext_start = symtab_hdr->sh_info;
15102
15103 /* Scan symbols. */
15104 for (i = ext_start; i < sym_count; i++)
15105 {
15106 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15107
15108 /* Assume it is a special symbol. If not, cmse_scan will
15109 warn about it and user can do something about it. */
15110 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15111 {
15112 cmse_sec = cmse_hash->root.root.u.def.section;
5025eb7c
AO
15113 if (!cmse_sec->gc_mark
15114 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
4ba2ef8f
TP
15115 return FALSE;
15116 }
15117 }
15118 }
6a5bb875 15119 }
4ba2ef8f 15120 first_bfd_browse = FALSE;
6a5bb875
PB
15121 }
15122
15123 return TRUE;
15124}
15125
3c9458e9
NC
15126/* Treat mapping symbols as special target symbols. */
15127
15128static bfd_boolean
15129elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15130{
b0796911
PB
15131 return bfd_is_arm_special_symbol_name (sym->name,
15132 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
15133}
15134
0367ecfb
NC
15135/* This is a copy of elf_find_function() from elf.c except that
15136 ARM mapping symbols are ignored when looking for function names
15137 and STT_ARM_TFUNC is considered to a function type. */
252b5132 15138
0367ecfb
NC
15139static bfd_boolean
15140arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
0367ecfb 15141 asymbol ** symbols,
fb167eb2 15142 asection * section,
0367ecfb
NC
15143 bfd_vma offset,
15144 const char ** filename_ptr,
15145 const char ** functionname_ptr)
15146{
15147 const char * filename = NULL;
15148 asymbol * func = NULL;
15149 bfd_vma low_func = 0;
15150 asymbol ** p;
252b5132
RH
15151
15152 for (p = symbols; *p != NULL; p++)
15153 {
15154 elf_symbol_type *q;
15155
15156 q = (elf_symbol_type *) *p;
15157
252b5132
RH
15158 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15159 {
15160 default:
15161 break;
15162 case STT_FILE:
15163 filename = bfd_asymbol_name (&q->symbol);
15164 break;
252b5132
RH
15165 case STT_FUNC:
15166 case STT_ARM_TFUNC:
9d2da7ca 15167 case STT_NOTYPE:
b0796911 15168 /* Skip mapping symbols. */
0367ecfb 15169 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
15170 && bfd_is_arm_special_symbol_name (q->symbol.name,
15171 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
15172 continue;
15173 /* Fall through. */
6b40fcba 15174 if (bfd_get_section (&q->symbol) == section
252b5132
RH
15175 && q->symbol.value >= low_func
15176 && q->symbol.value <= offset)
15177 {
15178 func = (asymbol *) q;
15179 low_func = q->symbol.value;
15180 }
15181 break;
15182 }
15183 }
15184
15185 if (func == NULL)
b34976b6 15186 return FALSE;
252b5132 15187
0367ecfb
NC
15188 if (filename_ptr)
15189 *filename_ptr = filename;
15190 if (functionname_ptr)
15191 *functionname_ptr = bfd_asymbol_name (func);
15192
15193 return TRUE;
906e58ca 15194}
0367ecfb
NC
15195
15196
15197/* Find the nearest line to a particular section and offset, for error
15198 reporting. This code is a duplicate of the code in elf.c, except
15199 that it uses arm_elf_find_function. */
15200
15201static bfd_boolean
15202elf32_arm_find_nearest_line (bfd * abfd,
0367ecfb 15203 asymbol ** symbols,
fb167eb2 15204 asection * section,
0367ecfb
NC
15205 bfd_vma offset,
15206 const char ** filename_ptr,
15207 const char ** functionname_ptr,
fb167eb2
AM
15208 unsigned int * line_ptr,
15209 unsigned int * discriminator_ptr)
0367ecfb
NC
15210{
15211 bfd_boolean found = FALSE;
15212
fb167eb2 15213 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
0367ecfb 15214 filename_ptr, functionname_ptr,
fb167eb2
AM
15215 line_ptr, discriminator_ptr,
15216 dwarf_debug_sections, 0,
0367ecfb
NC
15217 & elf_tdata (abfd)->dwarf2_find_line_info))
15218 {
15219 if (!*functionname_ptr)
fb167eb2 15220 arm_elf_find_function (abfd, symbols, section, offset,
0367ecfb
NC
15221 *filename_ptr ? NULL : filename_ptr,
15222 functionname_ptr);
f21f3fe0 15223
0367ecfb
NC
15224 return TRUE;
15225 }
15226
fb167eb2
AM
15227 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15228 uses DWARF1. */
15229
0367ecfb
NC
15230 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15231 & found, filename_ptr,
15232 functionname_ptr, line_ptr,
15233 & elf_tdata (abfd)->line_info))
15234 return FALSE;
15235
15236 if (found && (*functionname_ptr || *line_ptr))
15237 return TRUE;
15238
15239 if (symbols == NULL)
15240 return FALSE;
15241
fb167eb2 15242 if (! arm_elf_find_function (abfd, symbols, section, offset,
0367ecfb
NC
15243 filename_ptr, functionname_ptr))
15244 return FALSE;
15245
15246 *line_ptr = 0;
b34976b6 15247 return TRUE;
252b5132
RH
15248}
15249
4ab527b0
FF
15250static bfd_boolean
15251elf32_arm_find_inliner_info (bfd * abfd,
15252 const char ** filename_ptr,
15253 const char ** functionname_ptr,
15254 unsigned int * line_ptr)
15255{
15256 bfd_boolean found;
15257 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15258 functionname_ptr, line_ptr,
15259 & elf_tdata (abfd)->dwarf2_find_line_info);
15260 return found;
15261}
15262
252b5132
RH
15263/* Adjust a symbol defined by a dynamic object and referenced by a
15264 regular object. The current definition is in some section of the
15265 dynamic object, but we're not including those sections. We have to
15266 change the definition to something the rest of the link can
15267 understand. */
15268
b34976b6 15269static bfd_boolean
57e8b36a
NC
15270elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15271 struct elf_link_hash_entry * h)
252b5132
RH
15272{
15273 bfd * dynobj;
5474d94f 15274 asection *s, *srel;
b7693d02 15275 struct elf32_arm_link_hash_entry * eh;
67687978 15276 struct elf32_arm_link_hash_table *globals;
252b5132 15277
67687978 15278 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
15279 if (globals == NULL)
15280 return FALSE;
15281
252b5132
RH
15282 dynobj = elf_hash_table (info)->dynobj;
15283
15284 /* Make sure we know what is going on here. */
15285 BFD_ASSERT (dynobj != NULL
f5385ebf 15286 && (h->needs_plt
34e77a92 15287 || h->type == STT_GNU_IFUNC
f6e332e6 15288 || h->u.weakdef != NULL
f5385ebf
AM
15289 || (h->def_dynamic
15290 && h->ref_regular
15291 && !h->def_regular)));
252b5132 15292
b7693d02
DJ
15293 eh = (struct elf32_arm_link_hash_entry *) h;
15294
252b5132
RH
15295 /* If this is a function, put it in the procedure linkage table. We
15296 will fill in the contents of the procedure linkage table later,
15297 when we know the address of the .got section. */
34e77a92 15298 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 15299 {
34e77a92
RS
15300 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15301 symbol binds locally. */
5e681ec4 15302 if (h->plt.refcount <= 0
34e77a92
RS
15303 || (h->type != STT_GNU_IFUNC
15304 && (SYMBOL_CALLS_LOCAL (info, h)
15305 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15306 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
15307 {
15308 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
15309 file, but the symbol was never referred to by a dynamic
15310 object, or if all references were garbage collected. In
15311 such a case, we don't actually need to build a procedure
15312 linkage table, and we can just do a PC24 reloc instead. */
15313 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
15314 eh->plt.thumb_refcount = 0;
15315 eh->plt.maybe_thumb_refcount = 0;
15316 eh->plt.noncall_refcount = 0;
f5385ebf 15317 h->needs_plt = 0;
252b5132
RH
15318 }
15319
b34976b6 15320 return TRUE;
252b5132 15321 }
5e681ec4 15322 else
b7693d02
DJ
15323 {
15324 /* It's possible that we incorrectly decided a .plt reloc was
15325 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15326 in check_relocs. We can't decide accurately between function
15327 and non-function syms in check-relocs; Objects loaded later in
15328 the link may change h->type. So fix it now. */
15329 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
15330 eh->plt.thumb_refcount = 0;
15331 eh->plt.maybe_thumb_refcount = 0;
15332 eh->plt.noncall_refcount = 0;
b7693d02 15333 }
252b5132
RH
15334
15335 /* If this is a weak symbol, and there is a real definition, the
15336 processor independent code will have arranged for us to see the
15337 real definition first, and we can just use the same value. */
f6e332e6 15338 if (h->u.weakdef != NULL)
252b5132 15339 {
f6e332e6
AM
15340 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15341 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15342 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15343 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 15344 return TRUE;
252b5132
RH
15345 }
15346
ba93b8ac
DJ
15347 /* If there are no non-GOT references, we do not need a copy
15348 relocation. */
15349 if (!h->non_got_ref)
15350 return TRUE;
15351
252b5132
RH
15352 /* This is a reference to a symbol defined by a dynamic object which
15353 is not a function. */
15354
15355 /* If we are creating a shared library, we must presume that the
15356 only references to the symbol are via the global offset table.
15357 For such cases we need not do anything here; the relocations will
67687978
PB
15358 be handled correctly by relocate_section. Relocatable executables
15359 can reference data in shared objects directly, so we don't need to
15360 do anything here. */
0e1862bb 15361 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
b34976b6 15362 return TRUE;
252b5132
RH
15363
15364 /* We must allocate the symbol in our .dynbss section, which will
15365 become part of the .bss section of the executable. There will be
15366 an entry for this symbol in the .dynsym section. The dynamic
15367 object will contain position independent code, so all references
15368 from the dynamic object to this symbol will go through the global
15369 offset table. The dynamic linker will use the .dynsym entry to
15370 determine the address it must put in the global offset table, so
15371 both the dynamic object and the regular object will refer to the
15372 same memory location for the variable. */
5522f910
NC
15373 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15374 linker to copy the initial value out of the dynamic object and into
15375 the runtime process image. We need to remember the offset into the
00a97672 15376 .rel(a).bss section we are going to use. */
5474d94f
AM
15377 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
15378 {
15379 s = globals->root.sdynrelro;
15380 srel = globals->root.sreldynrelro;
15381 }
15382 else
15383 {
15384 s = globals->root.sdynbss;
15385 srel = globals->root.srelbss;
15386 }
5522f910
NC
15387 if (info->nocopyreloc == 0
15388 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
5522f910 15389 && h->size != 0)
252b5132 15390 {
47beaa6a 15391 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 15392 h->needs_copy = 1;
252b5132
RH
15393 }
15394
6cabe1ea 15395 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
15396}
15397
5e681ec4
PB
15398/* Allocate space in .plt, .got and associated reloc sections for
15399 dynamic relocs. */
15400
15401static bfd_boolean
47beaa6a 15402allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
15403{
15404 struct bfd_link_info *info;
15405 struct elf32_arm_link_hash_table *htab;
15406 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 15407 struct elf_dyn_relocs *p;
5e681ec4
PB
15408
15409 if (h->root.type == bfd_link_hash_indirect)
15410 return TRUE;
15411
e6a6bb22
AM
15412 eh = (struct elf32_arm_link_hash_entry *) h;
15413
5e681ec4
PB
15414 info = (struct bfd_link_info *) inf;
15415 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
15416 if (htab == NULL)
15417 return FALSE;
5e681ec4 15418
34e77a92 15419 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
15420 && h->plt.refcount > 0)
15421 {
15422 /* Make sure this symbol is output as a dynamic symbol.
15423 Undefined weak syms won't yet be marked as dynamic. */
15424 if (h->dynindx == -1
f5385ebf 15425 && !h->forced_local)
5e681ec4 15426 {
c152c796 15427 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
15428 return FALSE;
15429 }
15430
34e77a92
RS
15431 /* If the call in the PLT entry binds locally, the associated
15432 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15433 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15434 than the .plt section. */
15435 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15436 {
15437 eh->is_iplt = 1;
15438 if (eh->plt.noncall_refcount == 0
15439 && SYMBOL_REFERENCES_LOCAL (info, h))
15440 /* All non-call references can be resolved directly.
15441 This means that they can (and in some cases, must)
15442 resolve directly to the run-time target, rather than
15443 to the PLT. That in turns means that any .got entry
15444 would be equal to the .igot.plt entry, so there's
15445 no point having both. */
15446 h->got.refcount = 0;
15447 }
15448
0e1862bb 15449 if (bfd_link_pic (info)
34e77a92 15450 || eh->is_iplt
7359ea65 15451 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 15452 {
34e77a92 15453 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 15454
5e681ec4
PB
15455 /* If this symbol is not defined in a regular file, and we are
15456 not generating a shared library, then set the symbol to this
15457 location in the .plt. This is required to make function
15458 pointers compare as equal between the normal executable and
15459 the shared library. */
0e1862bb 15460 if (! bfd_link_pic (info)
f5385ebf 15461 && !h->def_regular)
5e681ec4 15462 {
34e77a92 15463 h->root.u.def.section = htab->root.splt;
5e681ec4 15464 h->root.u.def.value = h->plt.offset;
5e681ec4 15465
67d74e43
DJ
15466 /* Make sure the function is not marked as Thumb, in case
15467 it is the target of an ABS32 relocation, which will
15468 point to the PLT entry. */
39d911fc 15469 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
67d74e43 15470 }
022f8312 15471
00a97672
RS
15472 /* VxWorks executables have a second set of relocations for
15473 each PLT entry. They go in a separate relocation section,
15474 which is processed by the kernel loader. */
0e1862bb 15475 if (htab->vxworks_p && !bfd_link_pic (info))
00a97672
RS
15476 {
15477 /* There is a relocation for the initial PLT entry:
15478 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15479 if (h->plt.offset == htab->plt_header_size)
47beaa6a 15480 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
15481
15482 /* There are two extra relocations for each subsequent
15483 PLT entry: an R_ARM_32 relocation for the GOT entry,
15484 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 15485 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 15486 }
5e681ec4
PB
15487 }
15488 else
15489 {
15490 h->plt.offset = (bfd_vma) -1;
f5385ebf 15491 h->needs_plt = 0;
5e681ec4
PB
15492 }
15493 }
15494 else
15495 {
15496 h->plt.offset = (bfd_vma) -1;
f5385ebf 15497 h->needs_plt = 0;
5e681ec4
PB
15498 }
15499
0855e32b
NS
15500 eh = (struct elf32_arm_link_hash_entry *) h;
15501 eh->tlsdesc_got = (bfd_vma) -1;
15502
5e681ec4
PB
15503 if (h->got.refcount > 0)
15504 {
15505 asection *s;
15506 bfd_boolean dyn;
ba93b8ac
DJ
15507 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15508 int indx;
5e681ec4
PB
15509
15510 /* Make sure this symbol is output as a dynamic symbol.
15511 Undefined weak syms won't yet be marked as dynamic. */
15512 if (h->dynindx == -1
f5385ebf 15513 && !h->forced_local)
5e681ec4 15514 {
c152c796 15515 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
15516 return FALSE;
15517 }
15518
e5a52504
MM
15519 if (!htab->symbian_p)
15520 {
362d30a1 15521 s = htab->root.sgot;
e5a52504 15522 h->got.offset = s->size;
ba93b8ac
DJ
15523
15524 if (tls_type == GOT_UNKNOWN)
15525 abort ();
15526
15527 if (tls_type == GOT_NORMAL)
15528 /* Non-TLS symbols need one GOT slot. */
15529 s->size += 4;
15530 else
15531 {
99059e56
RM
15532 if (tls_type & GOT_TLS_GDESC)
15533 {
0855e32b 15534 /* R_ARM_TLS_DESC needs 2 GOT slots. */
99059e56 15535 eh->tlsdesc_got
0855e32b
NS
15536 = (htab->root.sgotplt->size
15537 - elf32_arm_compute_jump_table_size (htab));
99059e56
RM
15538 htab->root.sgotplt->size += 8;
15539 h->got.offset = (bfd_vma) -2;
34e77a92 15540 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 15541 reloc in the middle of .got.plt. */
99059e56
RM
15542 htab->num_tls_desc++;
15543 }
0855e32b 15544
ba93b8ac 15545 if (tls_type & GOT_TLS_GD)
0855e32b
NS
15546 {
15547 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15548 the symbol is both GD and GDESC, got.offset may
15549 have been overwritten. */
15550 h->got.offset = s->size;
15551 s->size += 8;
15552 }
15553
ba93b8ac
DJ
15554 if (tls_type & GOT_TLS_IE)
15555 /* R_ARM_TLS_IE32 needs one GOT slot. */
15556 s->size += 4;
15557 }
15558
e5a52504 15559 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
15560
15561 indx = 0;
0e1862bb
L
15562 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15563 bfd_link_pic (info),
15564 h)
15565 && (!bfd_link_pic (info)
ba93b8ac
DJ
15566 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15567 indx = h->dynindx;
15568
15569 if (tls_type != GOT_NORMAL
0e1862bb 15570 && (bfd_link_pic (info) || indx != 0)
ba93b8ac
DJ
15571 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15572 || h->root.type != bfd_link_hash_undefweak))
15573 {
15574 if (tls_type & GOT_TLS_IE)
47beaa6a 15575 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
15576
15577 if (tls_type & GOT_TLS_GD)
47beaa6a 15578 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 15579
b38cadfb 15580 if (tls_type & GOT_TLS_GDESC)
0855e32b 15581 {
47beaa6a 15582 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
15583 /* GDESC needs a trampoline to jump to. */
15584 htab->tls_trampoline = -1;
15585 }
15586
15587 /* Only GD needs it. GDESC just emits one relocation per
15588 2 entries. */
b38cadfb 15589 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 15590 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 15591 }
6f820c85 15592 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
15593 {
15594 if (htab->root.dynamic_sections_created)
15595 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15596 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15597 }
34e77a92
RS
15598 else if (h->type == STT_GNU_IFUNC
15599 && eh->plt.noncall_refcount == 0)
15600 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15601 they all resolve dynamically instead. Reserve room for the
15602 GOT entry's R_ARM_IRELATIVE relocation. */
15603 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
0e1862bb
L
15604 else if (bfd_link_pic (info)
15605 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15606 || h->root.type != bfd_link_hash_undefweak))
b436d854 15607 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
47beaa6a 15608 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 15609 }
5e681ec4
PB
15610 }
15611 else
15612 h->got.offset = (bfd_vma) -1;
15613
a4fd1a8e
PB
15614 /* Allocate stubs for exported Thumb functions on v4t. */
15615 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 15616 && h->def_regular
39d911fc 15617 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
15618 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15619 {
15620 struct elf_link_hash_entry * th;
15621 struct bfd_link_hash_entry * bh;
15622 struct elf_link_hash_entry * myh;
15623 char name[1024];
15624 asection *s;
15625 bh = NULL;
15626 /* Create a new symbol to regist the real location of the function. */
15627 s = h->root.u.def.section;
906e58ca 15628 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
15629 _bfd_generic_link_add_one_symbol (info, s->owner,
15630 name, BSF_GLOBAL, s,
15631 h->root.u.def.value,
15632 NULL, TRUE, FALSE, &bh);
15633
15634 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 15635 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 15636 myh->forced_local = 1;
39d911fc 15637 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
a4fd1a8e
PB
15638 eh->export_glue = myh;
15639 th = record_arm_to_thumb_glue (info, h);
15640 /* Point the symbol at the stub. */
15641 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
39d911fc 15642 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
a4fd1a8e
PB
15643 h->root.u.def.section = th->root.u.def.section;
15644 h->root.u.def.value = th->root.u.def.value & ~1;
15645 }
15646
0bdcacaf 15647 if (eh->dyn_relocs == NULL)
5e681ec4
PB
15648 return TRUE;
15649
15650 /* In the shared -Bsymbolic case, discard space allocated for
15651 dynamic pc-relative relocs against symbols which turn out to be
15652 defined in regular objects. For the normal shared case, discard
15653 space for pc-relative relocs that have become local due to symbol
15654 visibility changes. */
15655
0e1862bb 15656 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
5e681ec4 15657 {
469a3493
RM
15658 /* Relocs that use pc_count are PC-relative forms, which will appear
15659 on something like ".long foo - ." or "movw REG, foo - .". We want
15660 calls to protected symbols to resolve directly to the function
15661 rather than going via the plt. If people want function pointer
15662 comparisons to work as expected then they should avoid writing
15663 assembly like ".long foo - .". */
ba93b8ac
DJ
15664 if (SYMBOL_CALLS_LOCAL (info, h))
15665 {
0bdcacaf 15666 struct elf_dyn_relocs **pp;
ba93b8ac 15667
0bdcacaf 15668 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
15669 {
15670 p->count -= p->pc_count;
15671 p->pc_count = 0;
15672 if (p->count == 0)
15673 *pp = p->next;
15674 else
15675 pp = &p->next;
15676 }
15677 }
15678
4dfe6ac6 15679 if (htab->vxworks_p)
3348747a 15680 {
0bdcacaf 15681 struct elf_dyn_relocs **pp;
3348747a 15682
0bdcacaf 15683 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
3348747a 15684 {
0bdcacaf 15685 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
15686 *pp = p->next;
15687 else
15688 pp = &p->next;
15689 }
15690 }
15691
ba93b8ac 15692 /* Also discard relocs on undefined weak syms with non-default
99059e56 15693 visibility. */
0bdcacaf 15694 if (eh->dyn_relocs != NULL
5e681ec4 15695 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
15696 {
15697 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
0bdcacaf 15698 eh->dyn_relocs = NULL;
22d606e9
AM
15699
15700 /* Make sure undefined weak symbols are output as a dynamic
15701 symbol in PIEs. */
15702 else if (h->dynindx == -1
15703 && !h->forced_local)
15704 {
15705 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15706 return FALSE;
15707 }
15708 }
15709
67687978
PB
15710 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15711 && h->root.type == bfd_link_hash_new)
15712 {
15713 /* Output absolute symbols so that we can create relocations
15714 against them. For normal symbols we output a relocation
15715 against the section that contains them. */
15716 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15717 return FALSE;
15718 }
15719
5e681ec4
PB
15720 }
15721 else
15722 {
15723 /* For the non-shared case, discard space for relocs against
15724 symbols which turn out to need copy relocs or are not
15725 dynamic. */
15726
f5385ebf
AM
15727 if (!h->non_got_ref
15728 && ((h->def_dynamic
15729 && !h->def_regular)
5e681ec4
PB
15730 || (htab->root.dynamic_sections_created
15731 && (h->root.type == bfd_link_hash_undefweak
15732 || h->root.type == bfd_link_hash_undefined))))
15733 {
15734 /* Make sure this symbol is output as a dynamic symbol.
15735 Undefined weak syms won't yet be marked as dynamic. */
15736 if (h->dynindx == -1
f5385ebf 15737 && !h->forced_local)
5e681ec4 15738 {
c152c796 15739 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
15740 return FALSE;
15741 }
15742
15743 /* If that succeeded, we know we'll be keeping all the
15744 relocs. */
15745 if (h->dynindx != -1)
15746 goto keep;
15747 }
15748
0bdcacaf 15749 eh->dyn_relocs = NULL;
5e681ec4
PB
15750
15751 keep: ;
15752 }
15753
15754 /* Finally, allocate space. */
0bdcacaf 15755 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5e681ec4 15756 {
0bdcacaf 15757 asection *sreloc = elf_section_data (p->sec)->sreloc;
34e77a92
RS
15758 if (h->type == STT_GNU_IFUNC
15759 && eh->plt.noncall_refcount == 0
15760 && SYMBOL_REFERENCES_LOCAL (info, h))
15761 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15762 else
15763 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
15764 }
15765
15766 return TRUE;
15767}
15768
08d1f311
DJ
15769/* Find any dynamic relocs that apply to read-only sections. */
15770
15771static bfd_boolean
8029a119 15772elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 15773{
8029a119 15774 struct elf32_arm_link_hash_entry * eh;
0bdcacaf 15775 struct elf_dyn_relocs * p;
08d1f311 15776
08d1f311 15777 eh = (struct elf32_arm_link_hash_entry *) h;
0bdcacaf 15778 for (p = eh->dyn_relocs; p != NULL; p = p->next)
08d1f311 15779 {
0bdcacaf 15780 asection *s = p->sec;
08d1f311
DJ
15781
15782 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15783 {
15784 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15785
15786 info->flags |= DF_TEXTREL;
15787
15788 /* Not an error, just cut short the traversal. */
15789 return FALSE;
15790 }
15791 }
15792 return TRUE;
15793}
15794
d504ffc8
DJ
15795void
15796bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15797 int byteswap_code)
15798{
15799 struct elf32_arm_link_hash_table *globals;
15800
15801 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
15802 if (globals == NULL)
15803 return;
15804
d504ffc8
DJ
15805 globals->byteswap_code = byteswap_code;
15806}
15807
252b5132
RH
15808/* Set the sizes of the dynamic sections. */
15809
b34976b6 15810static bfd_boolean
57e8b36a
NC
15811elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15812 struct bfd_link_info * info)
252b5132
RH
15813{
15814 bfd * dynobj;
15815 asection * s;
b34976b6
AM
15816 bfd_boolean plt;
15817 bfd_boolean relocs;
5e681ec4
PB
15818 bfd *ibfd;
15819 struct elf32_arm_link_hash_table *htab;
252b5132 15820
5e681ec4 15821 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
15822 if (htab == NULL)
15823 return FALSE;
15824
252b5132
RH
15825 dynobj = elf_hash_table (info)->dynobj;
15826 BFD_ASSERT (dynobj != NULL);
39b41c9c 15827 check_use_blx (htab);
252b5132
RH
15828
15829 if (elf_hash_table (info)->dynamic_sections_created)
15830 {
15831 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 15832 if (bfd_link_executable (info) && !info->nointerp)
252b5132 15833 {
3d4d4302 15834 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 15835 BFD_ASSERT (s != NULL);
eea6121a 15836 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
15837 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15838 }
15839 }
5e681ec4
PB
15840
15841 /* Set up .got offsets for local syms, and space for local dynamic
15842 relocs. */
c72f2fb2 15843 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 15844 {
5e681ec4
PB
15845 bfd_signed_vma *local_got;
15846 bfd_signed_vma *end_local_got;
34e77a92 15847 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 15848 char *local_tls_type;
0855e32b 15849 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
15850 bfd_size_type locsymcount;
15851 Elf_Internal_Shdr *symtab_hdr;
15852 asection *srel;
4dfe6ac6 15853 bfd_boolean is_vxworks = htab->vxworks_p;
34e77a92 15854 unsigned int symndx;
5e681ec4 15855
0ffa91dd 15856 if (! is_arm_elf (ibfd))
5e681ec4
PB
15857 continue;
15858
15859 for (s = ibfd->sections; s != NULL; s = s->next)
15860 {
0bdcacaf 15861 struct elf_dyn_relocs *p;
5e681ec4 15862
0bdcacaf 15863 for (p = (struct elf_dyn_relocs *)
99059e56 15864 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 15865 {
0bdcacaf
RS
15866 if (!bfd_is_abs_section (p->sec)
15867 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
15868 {
15869 /* Input section has been discarded, either because
15870 it is a copy of a linkonce section or due to
15871 linker script /DISCARD/, so we'll be discarding
15872 the relocs too. */
15873 }
3348747a 15874 else if (is_vxworks
0bdcacaf 15875 && strcmp (p->sec->output_section->name,
3348747a
NS
15876 ".tls_vars") == 0)
15877 {
15878 /* Relocations in vxworks .tls_vars sections are
15879 handled specially by the loader. */
15880 }
5e681ec4
PB
15881 else if (p->count != 0)
15882 {
0bdcacaf 15883 srel = elf_section_data (p->sec)->sreloc;
47beaa6a 15884 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 15885 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
15886 info->flags |= DF_TEXTREL;
15887 }
15888 }
15889 }
15890
15891 local_got = elf_local_got_refcounts (ibfd);
15892 if (!local_got)
15893 continue;
15894
0ffa91dd 15895 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
15896 locsymcount = symtab_hdr->sh_info;
15897 end_local_got = local_got + locsymcount;
34e77a92 15898 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 15899 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 15900 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
34e77a92 15901 symndx = 0;
362d30a1
RS
15902 s = htab->root.sgot;
15903 srel = htab->root.srelgot;
0855e32b 15904 for (; local_got < end_local_got;
34e77a92
RS
15905 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15906 ++local_tlsdesc_gotent, ++symndx)
5e681ec4 15907 {
0855e32b 15908 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92
RS
15909 local_iplt = *local_iplt_ptr;
15910 if (local_iplt != NULL)
15911 {
15912 struct elf_dyn_relocs *p;
15913
15914 if (local_iplt->root.refcount > 0)
15915 {
15916 elf32_arm_allocate_plt_entry (info, TRUE,
15917 &local_iplt->root,
15918 &local_iplt->arm);
15919 if (local_iplt->arm.noncall_refcount == 0)
15920 /* All references to the PLT are calls, so all
15921 non-call references can resolve directly to the
15922 run-time target. This means that the .got entry
15923 would be the same as the .igot.plt entry, so there's
15924 no point creating both. */
15925 *local_got = 0;
15926 }
15927 else
15928 {
15929 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15930 local_iplt->root.offset = (bfd_vma) -1;
15931 }
15932
15933 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15934 {
15935 asection *psrel;
15936
15937 psrel = elf_section_data (p->sec)->sreloc;
15938 if (local_iplt->arm.noncall_refcount == 0)
15939 elf32_arm_allocate_irelocs (info, psrel, p->count);
15940 else
15941 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15942 }
15943 }
5e681ec4
PB
15944 if (*local_got > 0)
15945 {
34e77a92
RS
15946 Elf_Internal_Sym *isym;
15947
eea6121a 15948 *local_got = s->size;
ba93b8ac
DJ
15949 if (*local_tls_type & GOT_TLS_GD)
15950 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15951 s->size += 8;
0855e32b
NS
15952 if (*local_tls_type & GOT_TLS_GDESC)
15953 {
15954 *local_tlsdesc_gotent = htab->root.sgotplt->size
15955 - elf32_arm_compute_jump_table_size (htab);
15956 htab->root.sgotplt->size += 8;
15957 *local_got = (bfd_vma) -2;
34e77a92 15958 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 15959 reloc in the middle of .got.plt. */
99059e56 15960 htab->num_tls_desc++;
0855e32b 15961 }
ba93b8ac
DJ
15962 if (*local_tls_type & GOT_TLS_IE)
15963 s->size += 4;
ba93b8ac 15964
0855e32b
NS
15965 if (*local_tls_type & GOT_NORMAL)
15966 {
15967 /* If the symbol is both GD and GDESC, *local_got
15968 may have been overwritten. */
15969 *local_got = s->size;
15970 s->size += 4;
15971 }
15972
34e77a92
RS
15973 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15974 if (isym == NULL)
15975 return FALSE;
15976
15977 /* If all references to an STT_GNU_IFUNC PLT are calls,
15978 then all non-call references, including this GOT entry,
15979 resolve directly to the run-time target. */
15980 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15981 && (local_iplt == NULL
15982 || local_iplt->arm.noncall_refcount == 0))
15983 elf32_arm_allocate_irelocs (info, srel, 1);
0e1862bb 15984 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
0855e32b 15985 {
0e1862bb 15986 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
3064e1ff
JB
15987 || *local_tls_type & GOT_TLS_GD)
15988 elf32_arm_allocate_dynrelocs (info, srel, 1);
99059e56 15989
0e1862bb 15990 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
3064e1ff
JB
15991 {
15992 elf32_arm_allocate_dynrelocs (info,
15993 htab->root.srelplt, 1);
15994 htab->tls_trampoline = -1;
15995 }
0855e32b 15996 }
5e681ec4
PB
15997 }
15998 else
15999 *local_got = (bfd_vma) -1;
16000 }
252b5132
RH
16001 }
16002
ba93b8ac
DJ
16003 if (htab->tls_ldm_got.refcount > 0)
16004 {
16005 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16006 for R_ARM_TLS_LDM32 relocations. */
362d30a1
RS
16007 htab->tls_ldm_got.offset = htab->root.sgot->size;
16008 htab->root.sgot->size += 8;
0e1862bb 16009 if (bfd_link_pic (info))
47beaa6a 16010 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
16011 }
16012 else
16013 htab->tls_ldm_got.offset = -1;
16014
5e681ec4
PB
16015 /* Allocate global sym .plt and .got entries, and space for global
16016 sym dynamic relocs. */
47beaa6a 16017 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 16018
d504ffc8 16019 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 16020 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 16021 {
0ffa91dd 16022 if (! is_arm_elf (ibfd))
e44a2c9c
AM
16023 continue;
16024
c7b8f16e
JB
16025 /* Initialise mapping tables for code/data. */
16026 bfd_elf32_arm_init_maps (ibfd);
906e58ca 16027
c7b8f16e 16028 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
a504d23a
LA
16029 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16030 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
dae82561 16031 _bfd_error_handler (_("Errors encountered processing file %B"), ibfd);
c7b8f16e 16032 }
d504ffc8 16033
3e6b1042
DJ
16034 /* Allocate space for the glue sections now that we've sized them. */
16035 bfd_elf32_arm_allocate_interworking_sections (info);
16036
0855e32b
NS
16037 /* For every jump slot reserved in the sgotplt, reloc_count is
16038 incremented. However, when we reserve space for TLS descriptors,
16039 it's not incremented, so in order to compute the space reserved
16040 for them, it suffices to multiply the reloc count by the jump
16041 slot size. */
16042 if (htab->root.srelplt)
16043 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16044
16045 if (htab->tls_trampoline)
16046 {
16047 if (htab->root.splt->size == 0)
16048 htab->root.splt->size += htab->plt_header_size;
b38cadfb 16049
0855e32b
NS
16050 htab->tls_trampoline = htab->root.splt->size;
16051 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 16052
0855e32b 16053 /* If we're not using lazy TLS relocations, don't generate the
99059e56 16054 PLT and GOT entries they require. */
0855e32b
NS
16055 if (!(info->flags & DF_BIND_NOW))
16056 {
16057 htab->dt_tlsdesc_got = htab->root.sgot->size;
16058 htab->root.sgot->size += 4;
16059
16060 htab->dt_tlsdesc_plt = htab->root.splt->size;
16061 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16062 }
16063 }
16064
252b5132
RH
16065 /* The check_relocs and adjust_dynamic_symbol entry points have
16066 determined the sizes of the various dynamic sections. Allocate
16067 memory for them. */
b34976b6
AM
16068 plt = FALSE;
16069 relocs = FALSE;
252b5132
RH
16070 for (s = dynobj->sections; s != NULL; s = s->next)
16071 {
16072 const char * name;
252b5132
RH
16073
16074 if ((s->flags & SEC_LINKER_CREATED) == 0)
16075 continue;
16076
16077 /* It's OK to base decisions on the section name, because none
16078 of the dynobj section names depend upon the input files. */
16079 name = bfd_get_section_name (dynobj, s);
16080
34e77a92 16081 if (s == htab->root.splt)
252b5132 16082 {
c456f082
AM
16083 /* Remember whether there is a PLT. */
16084 plt = s->size != 0;
252b5132 16085 }
0112cd26 16086 else if (CONST_STRNEQ (name, ".rel"))
252b5132 16087 {
c456f082 16088 if (s->size != 0)
252b5132 16089 {
252b5132 16090 /* Remember whether there are any reloc sections other
00a97672 16091 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 16092 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 16093 relocs = TRUE;
252b5132
RH
16094
16095 /* We use the reloc_count field as a counter if we need
16096 to copy relocs into the output file. */
16097 s->reloc_count = 0;
16098 }
16099 }
34e77a92
RS
16100 else if (s != htab->root.sgot
16101 && s != htab->root.sgotplt
16102 && s != htab->root.iplt
16103 && s != htab->root.igotplt
5474d94f
AM
16104 && s != htab->root.sdynbss
16105 && s != htab->root.sdynrelro)
252b5132
RH
16106 {
16107 /* It's not one of our sections, so don't allocate space. */
16108 continue;
16109 }
16110
c456f082 16111 if (s->size == 0)
252b5132 16112 {
c456f082 16113 /* If we don't need this section, strip it from the
00a97672
RS
16114 output file. This is mostly to handle .rel(a).bss and
16115 .rel(a).plt. We must create both sections in
c456f082
AM
16116 create_dynamic_sections, because they must be created
16117 before the linker maps input sections to output
16118 sections. The linker does that before
16119 adjust_dynamic_symbol is called, and it is that
16120 function which decides whether anything needs to go
16121 into these sections. */
8423293d 16122 s->flags |= SEC_EXCLUDE;
252b5132
RH
16123 continue;
16124 }
16125
c456f082
AM
16126 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16127 continue;
16128
252b5132 16129 /* Allocate memory for the section contents. */
21d799b5 16130 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 16131 if (s->contents == NULL)
b34976b6 16132 return FALSE;
252b5132
RH
16133 }
16134
16135 if (elf_hash_table (info)->dynamic_sections_created)
16136 {
16137 /* Add some entries to the .dynamic section. We fill in the
16138 values later, in elf32_arm_finish_dynamic_sections, but we
16139 must add the entries now so that we get the correct size for
16140 the .dynamic section. The DT_DEBUG entry is filled in by the
16141 dynamic linker and used by the debugger. */
dc810e39 16142#define add_dynamic_entry(TAG, VAL) \
5a580b3a 16143 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 16144
0e1862bb 16145 if (bfd_link_executable (info))
252b5132 16146 {
dc810e39 16147 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 16148 return FALSE;
252b5132
RH
16149 }
16150
16151 if (plt)
16152 {
dc810e39
AM
16153 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16154 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
16155 || !add_dynamic_entry (DT_PLTREL,
16156 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 16157 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 16158 return FALSE;
0855e32b 16159
5025eb7c
AO
16160 if (htab->dt_tlsdesc_plt
16161 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16162 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
b38cadfb 16163 return FALSE;
252b5132
RH
16164 }
16165
16166 if (relocs)
16167 {
00a97672
RS
16168 if (htab->use_rel)
16169 {
16170 if (!add_dynamic_entry (DT_REL, 0)
16171 || !add_dynamic_entry (DT_RELSZ, 0)
16172 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16173 return FALSE;
16174 }
16175 else
16176 {
16177 if (!add_dynamic_entry (DT_RELA, 0)
16178 || !add_dynamic_entry (DT_RELASZ, 0)
16179 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16180 return FALSE;
16181 }
252b5132
RH
16182 }
16183
08d1f311
DJ
16184 /* If any dynamic relocs apply to a read-only section,
16185 then we need a DT_TEXTREL entry. */
16186 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
16187 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
16188 info);
08d1f311 16189
99e4ae17 16190 if ((info->flags & DF_TEXTREL) != 0)
252b5132 16191 {
dc810e39 16192 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 16193 return FALSE;
252b5132 16194 }
7a2b07ff
NS
16195 if (htab->vxworks_p
16196 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16197 return FALSE;
252b5132 16198 }
8532796c 16199#undef add_dynamic_entry
252b5132 16200
b34976b6 16201 return TRUE;
252b5132
RH
16202}
16203
0855e32b
NS
16204/* Size sections even though they're not dynamic. We use it to setup
16205 _TLS_MODULE_BASE_, if needed. */
16206
16207static bfd_boolean
16208elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 16209 struct bfd_link_info *info)
0855e32b
NS
16210{
16211 asection *tls_sec;
16212
0e1862bb 16213 if (bfd_link_relocatable (info))
0855e32b
NS
16214 return TRUE;
16215
16216 tls_sec = elf_hash_table (info)->tls_sec;
16217
16218 if (tls_sec)
16219 {
16220 struct elf_link_hash_entry *tlsbase;
16221
16222 tlsbase = elf_link_hash_lookup
16223 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16224
16225 if (tlsbase)
99059e56
RM
16226 {
16227 struct bfd_link_hash_entry *bh = NULL;
0855e32b 16228 const struct elf_backend_data *bed
99059e56 16229 = get_elf_backend_data (output_bfd);
0855e32b 16230
99059e56 16231 if (!(_bfd_generic_link_add_one_symbol
0855e32b
NS
16232 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16233 tls_sec, 0, NULL, FALSE,
16234 bed->collect, &bh)))
16235 return FALSE;
b38cadfb 16236
99059e56
RM
16237 tlsbase->type = STT_TLS;
16238 tlsbase = (struct elf_link_hash_entry *)bh;
16239 tlsbase->def_regular = 1;
16240 tlsbase->other = STV_HIDDEN;
16241 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
0855e32b
NS
16242 }
16243 }
16244 return TRUE;
16245}
16246
252b5132
RH
16247/* Finish up dynamic symbol handling. We set the contents of various
16248 dynamic sections here. */
16249
b34976b6 16250static bfd_boolean
906e58ca
NC
16251elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16252 struct bfd_link_info * info,
16253 struct elf_link_hash_entry * h,
16254 Elf_Internal_Sym * sym)
252b5132 16255{
e5a52504 16256 struct elf32_arm_link_hash_table *htab;
b7693d02 16257 struct elf32_arm_link_hash_entry *eh;
252b5132 16258
e5a52504 16259 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
16260 if (htab == NULL)
16261 return FALSE;
16262
b7693d02 16263 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
16264
16265 if (h->plt.offset != (bfd_vma) -1)
16266 {
34e77a92 16267 if (!eh->is_iplt)
e5a52504 16268 {
34e77a92 16269 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
16270 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16271 h->dynindx, 0))
16272 return FALSE;
e5a52504 16273 }
57e8b36a 16274
f5385ebf 16275 if (!h->def_regular)
252b5132
RH
16276 {
16277 /* Mark the symbol as undefined, rather than as defined in
3a635617 16278 the .plt section. */
252b5132 16279 sym->st_shndx = SHN_UNDEF;
3a635617 16280 /* If the symbol is weak we need to clear the value.
d982ba73
PB
16281 Otherwise, the PLT entry would provide a definition for
16282 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
16283 and so the symbol would never be NULL. Leave the value if
16284 there were any relocations where pointer equality matters
16285 (this is a clue for the dynamic linker, to make function
16286 pointer comparisons work between an application and shared
16287 library). */
97323ad1 16288 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 16289 sym->st_value = 0;
252b5132 16290 }
34e77a92
RS
16291 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16292 {
16293 /* At least one non-call relocation references this .iplt entry,
16294 so the .iplt entry is the function's canonical address. */
16295 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
39d911fc 16296 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
34e77a92
RS
16297 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16298 (output_bfd, htab->root.iplt->output_section));
16299 sym->st_value = (h->plt.offset
16300 + htab->root.iplt->output_section->vma
16301 + htab->root.iplt->output_offset);
16302 }
252b5132
RH
16303 }
16304
f5385ebf 16305 if (h->needs_copy)
252b5132
RH
16306 {
16307 asection * s;
947216bf 16308 Elf_Internal_Rela rel;
252b5132
RH
16309
16310 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
16311 BFD_ASSERT (h->dynindx != -1
16312 && (h->root.type == bfd_link_hash_defined
16313 || h->root.type == bfd_link_hash_defweak));
16314
00a97672 16315 rel.r_addend = 0;
252b5132
RH
16316 rel.r_offset = (h->root.u.def.value
16317 + h->root.u.def.section->output_section->vma
16318 + h->root.u.def.section->output_offset);
16319 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
afbf7e8e 16320 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
16321 s = htab->root.sreldynrelro;
16322 else
16323 s = htab->root.srelbss;
47beaa6a 16324 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
16325 }
16326
00a97672
RS
16327 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16328 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16329 to the ".got" section. */
9637f6ef 16330 if (h == htab->root.hdynamic
00a97672 16331 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
16332 sym->st_shndx = SHN_ABS;
16333
b34976b6 16334 return TRUE;
252b5132
RH
16335}
16336
0855e32b
NS
16337static void
16338arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16339 void *contents,
16340 const unsigned long *template, unsigned count)
16341{
16342 unsigned ix;
b38cadfb 16343
0855e32b
NS
16344 for (ix = 0; ix != count; ix++)
16345 {
16346 unsigned long insn = template[ix];
16347
16348 /* Emit mov pc,rx if bx is not permitted. */
16349 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16350 insn = (insn & 0xf000000f) | 0x01a0f000;
16351 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16352 }
16353}
16354
99059e56
RM
16355/* Install the special first PLT entry for elf32-arm-nacl. Unlike
16356 other variants, NaCl needs this entry in a static executable's
16357 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16358 zero. For .iplt really only the last bundle is useful, and .iplt
16359 could have a shorter first entry, with each individual PLT entry's
16360 relative branch calculated differently so it targets the last
16361 bundle instead of the instruction before it (labelled .Lplt_tail
16362 above). But it's simpler to keep the size and layout of PLT0
16363 consistent with the dynamic case, at the cost of some dead code at
16364 the start of .iplt and the one dead store to the stack at the start
16365 of .Lplt_tail. */
16366static void
16367arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16368 asection *plt, bfd_vma got_displacement)
16369{
16370 unsigned int i;
16371
16372 put_arm_insn (htab, output_bfd,
16373 elf32_arm_nacl_plt0_entry[0]
16374 | arm_movw_immediate (got_displacement),
16375 plt->contents + 0);
16376 put_arm_insn (htab, output_bfd,
16377 elf32_arm_nacl_plt0_entry[1]
16378 | arm_movt_immediate (got_displacement),
16379 plt->contents + 4);
16380
16381 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16382 put_arm_insn (htab, output_bfd,
16383 elf32_arm_nacl_plt0_entry[i],
16384 plt->contents + (i * 4));
16385}
16386
252b5132
RH
16387/* Finish up the dynamic sections. */
16388
b34976b6 16389static bfd_boolean
57e8b36a 16390elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
16391{
16392 bfd * dynobj;
16393 asection * sgot;
16394 asection * sdyn;
4dfe6ac6
NC
16395 struct elf32_arm_link_hash_table *htab;
16396
16397 htab = elf32_arm_hash_table (info);
16398 if (htab == NULL)
16399 return FALSE;
252b5132
RH
16400
16401 dynobj = elf_hash_table (info)->dynobj;
16402
362d30a1 16403 sgot = htab->root.sgotplt;
894891db
NC
16404 /* A broken linker script might have discarded the dynamic sections.
16405 Catch this here so that we do not seg-fault later on. */
16406 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16407 return FALSE;
3d4d4302 16408 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
16409
16410 if (elf_hash_table (info)->dynamic_sections_created)
16411 {
16412 asection *splt;
16413 Elf32_External_Dyn *dyncon, *dynconend;
16414
362d30a1 16415 splt = htab->root.splt;
24a1ba0f 16416 BFD_ASSERT (splt != NULL && sdyn != NULL);
cbc704f3 16417 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
16418
16419 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 16420 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 16421
252b5132
RH
16422 for (; dyncon < dynconend; dyncon++)
16423 {
16424 Elf_Internal_Dyn dyn;
16425 const char * name;
16426 asection * s;
16427
16428 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16429
16430 switch (dyn.d_tag)
16431 {
229fcec5
MM
16432 unsigned int type;
16433
252b5132 16434 default:
7a2b07ff
NS
16435 if (htab->vxworks_p
16436 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16437 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
16438 break;
16439
229fcec5
MM
16440 case DT_HASH:
16441 name = ".hash";
16442 goto get_vma_if_bpabi;
16443 case DT_STRTAB:
16444 name = ".dynstr";
16445 goto get_vma_if_bpabi;
16446 case DT_SYMTAB:
16447 name = ".dynsym";
16448 goto get_vma_if_bpabi;
c0042f5d
MM
16449 case DT_VERSYM:
16450 name = ".gnu.version";
16451 goto get_vma_if_bpabi;
16452 case DT_VERDEF:
16453 name = ".gnu.version_d";
16454 goto get_vma_if_bpabi;
16455 case DT_VERNEED:
16456 name = ".gnu.version_r";
16457 goto get_vma_if_bpabi;
16458
252b5132 16459 case DT_PLTGOT:
4ade44b7 16460 name = htab->symbian_p ? ".got" : ".got.plt";
252b5132
RH
16461 goto get_vma;
16462 case DT_JMPREL:
00a97672 16463 name = RELOC_SECTION (htab, ".plt");
252b5132 16464 get_vma:
4ade44b7 16465 s = bfd_get_linker_section (dynobj, name);
05456594
NC
16466 if (s == NULL)
16467 {
4eca0228 16468 _bfd_error_handler
4ade44b7 16469 (_("could not find section %s"), name);
05456594
NC
16470 bfd_set_error (bfd_error_invalid_operation);
16471 return FALSE;
16472 }
229fcec5 16473 if (!htab->symbian_p)
4ade44b7 16474 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
229fcec5
MM
16475 else
16476 /* In the BPABI, tags in the PT_DYNAMIC section point
16477 at the file offset, not the memory address, for the
16478 convenience of the post linker. */
4ade44b7 16479 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
252b5132
RH
16480 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16481 break;
16482
229fcec5
MM
16483 get_vma_if_bpabi:
16484 if (htab->symbian_p)
16485 goto get_vma;
16486 break;
16487
252b5132 16488 case DT_PLTRELSZ:
362d30a1 16489 s = htab->root.srelplt;
252b5132 16490 BFD_ASSERT (s != NULL);
eea6121a 16491 dyn.d_un.d_val = s->size;
252b5132
RH
16492 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16493 break;
906e58ca 16494
252b5132 16495 case DT_RELSZ:
00a97672 16496 case DT_RELASZ:
229fcec5
MM
16497 case DT_REL:
16498 case DT_RELA:
229fcec5
MM
16499 /* In the BPABI, the DT_REL tag must point at the file
16500 offset, not the VMA, of the first relocation
16501 section. So, we use code similar to that in
16502 elflink.c, but do not check for SHF_ALLOC on the
64f52338
AM
16503 relocation section, since relocation sections are
16504 never allocated under the BPABI. PLT relocs are also
16505 included. */
229fcec5
MM
16506 if (htab->symbian_p)
16507 {
16508 unsigned int i;
16509 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16510 ? SHT_REL : SHT_RELA);
16511 dyn.d_un.d_val = 0;
16512 for (i = 1; i < elf_numsections (output_bfd); i++)
16513 {
906e58ca 16514 Elf_Internal_Shdr *hdr
229fcec5
MM
16515 = elf_elfsections (output_bfd)[i];
16516 if (hdr->sh_type == type)
16517 {
906e58ca 16518 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
16519 || dyn.d_tag == DT_RELASZ)
16520 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
16521 else if ((ufile_ptr) hdr->sh_offset
16522 <= dyn.d_un.d_val - 1)
229fcec5
MM
16523 dyn.d_un.d_val = hdr->sh_offset;
16524 }
16525 }
16526 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16527 }
252b5132 16528 break;
88f7bcd5 16529
0855e32b 16530 case DT_TLSDESC_PLT:
99059e56 16531 s = htab->root.splt;
0855e32b
NS
16532 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16533 + htab->dt_tlsdesc_plt);
16534 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16535 break;
16536
16537 case DT_TLSDESC_GOT:
99059e56 16538 s = htab->root.sgot;
0855e32b 16539 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
99059e56 16540 + htab->dt_tlsdesc_got);
0855e32b
NS
16541 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16542 break;
16543
88f7bcd5
NC
16544 /* Set the bottom bit of DT_INIT/FINI if the
16545 corresponding function is Thumb. */
16546 case DT_INIT:
16547 name = info->init_function;
16548 goto get_sym;
16549 case DT_FINI:
16550 name = info->fini_function;
16551 get_sym:
16552 /* If it wasn't set by elf_bfd_final_link
4cc11e76 16553 then there is nothing to adjust. */
88f7bcd5
NC
16554 if (dyn.d_un.d_val != 0)
16555 {
16556 struct elf_link_hash_entry * eh;
16557
16558 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 16559 FALSE, FALSE, TRUE);
39d911fc
TP
16560 if (eh != NULL
16561 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16562 == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
16563 {
16564 dyn.d_un.d_val |= 1;
b34976b6 16565 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
16566 }
16567 }
16568 break;
252b5132
RH
16569 }
16570 }
16571
24a1ba0f 16572 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 16573 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 16574 {
00a97672
RS
16575 const bfd_vma *plt0_entry;
16576 bfd_vma got_address, plt_address, got_displacement;
16577
16578 /* Calculate the addresses of the GOT and PLT. */
16579 got_address = sgot->output_section->vma + sgot->output_offset;
16580 plt_address = splt->output_section->vma + splt->output_offset;
16581
16582 if (htab->vxworks_p)
16583 {
16584 /* The VxWorks GOT is relocated by the dynamic linker.
16585 Therefore, we must emit relocations rather than simply
16586 computing the values now. */
16587 Elf_Internal_Rela rel;
16588
16589 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
16590 put_arm_insn (htab, output_bfd, plt0_entry[0],
16591 splt->contents + 0);
16592 put_arm_insn (htab, output_bfd, plt0_entry[1],
16593 splt->contents + 4);
16594 put_arm_insn (htab, output_bfd, plt0_entry[2],
16595 splt->contents + 8);
00a97672
RS
16596 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16597
8029a119 16598 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
16599 rel.r_offset = plt_address + 12;
16600 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16601 rel.r_addend = 0;
16602 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16603 htab->srelplt2->contents);
16604 }
b38cadfb 16605 else if (htab->nacl_p)
99059e56
RM
16606 arm_nacl_put_plt0 (htab, output_bfd, splt,
16607 got_address + 8 - (plt_address + 16));
eed94f8f
NC
16608 else if (using_thumb_only (htab))
16609 {
16610 got_displacement = got_address - (plt_address + 12);
16611
16612 plt0_entry = elf32_thumb2_plt0_entry;
16613 put_arm_insn (htab, output_bfd, plt0_entry[0],
16614 splt->contents + 0);
16615 put_arm_insn (htab, output_bfd, plt0_entry[1],
16616 splt->contents + 4);
16617 put_arm_insn (htab, output_bfd, plt0_entry[2],
16618 splt->contents + 8);
16619
16620 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16621 }
00a97672
RS
16622 else
16623 {
16624 got_displacement = got_address - (plt_address + 16);
16625
16626 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
16627 put_arm_insn (htab, output_bfd, plt0_entry[0],
16628 splt->contents + 0);
16629 put_arm_insn (htab, output_bfd, plt0_entry[1],
16630 splt->contents + 4);
16631 put_arm_insn (htab, output_bfd, plt0_entry[2],
16632 splt->contents + 8);
16633 put_arm_insn (htab, output_bfd, plt0_entry[3],
16634 splt->contents + 12);
5e681ec4 16635
5e681ec4 16636#ifdef FOUR_WORD_PLT
00a97672
RS
16637 /* The displacement value goes in the otherwise-unused
16638 last word of the second entry. */
16639 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 16640#else
00a97672 16641 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 16642#endif
00a97672 16643 }
f7a74f8c 16644 }
252b5132
RH
16645
16646 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16647 really seem like the right value. */
74541ad4
AM
16648 if (splt->output_section->owner == output_bfd)
16649 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 16650
0855e32b
NS
16651 if (htab->dt_tlsdesc_plt)
16652 {
16653 bfd_vma got_address
16654 = sgot->output_section->vma + sgot->output_offset;
16655 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16656 + htab->root.sgot->output_offset);
16657 bfd_vma plt_address
16658 = splt->output_section->vma + splt->output_offset;
16659
b38cadfb 16660 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
16661 splt->contents + htab->dt_tlsdesc_plt,
16662 dl_tlsdesc_lazy_trampoline, 6);
16663
16664 bfd_put_32 (output_bfd,
16665 gotplt_address + htab->dt_tlsdesc_got
16666 - (plt_address + htab->dt_tlsdesc_plt)
16667 - dl_tlsdesc_lazy_trampoline[6],
16668 splt->contents + htab->dt_tlsdesc_plt + 24);
16669 bfd_put_32 (output_bfd,
16670 got_address - (plt_address + htab->dt_tlsdesc_plt)
16671 - dl_tlsdesc_lazy_trampoline[7],
16672 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16673 }
16674
16675 if (htab->tls_trampoline)
16676 {
b38cadfb 16677 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
16678 splt->contents + htab->tls_trampoline,
16679 tls_trampoline, 3);
16680#ifdef FOUR_WORD_PLT
16681 bfd_put_32 (output_bfd, 0x00000000,
16682 splt->contents + htab->tls_trampoline + 12);
b38cadfb 16683#endif
0855e32b
NS
16684 }
16685
0e1862bb
L
16686 if (htab->vxworks_p
16687 && !bfd_link_pic (info)
16688 && htab->root.splt->size > 0)
00a97672
RS
16689 {
16690 /* Correct the .rel(a).plt.unloaded relocations. They will have
16691 incorrect symbol indexes. */
16692 int num_plts;
eed62c48 16693 unsigned char *p;
00a97672 16694
362d30a1 16695 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
16696 / htab->plt_entry_size);
16697 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16698
16699 for (; num_plts; num_plts--)
16700 {
16701 Elf_Internal_Rela rel;
16702
16703 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16704 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16705 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16706 p += RELOC_SIZE (htab);
16707
16708 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16709 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16710 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16711 p += RELOC_SIZE (htab);
16712 }
16713 }
252b5132
RH
16714 }
16715
99059e56
RM
16716 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16717 /* NaCl uses a special first entry in .iplt too. */
16718 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16719
252b5132 16720 /* Fill in the first three entries in the global offset table. */
229fcec5 16721 if (sgot)
252b5132 16722 {
229fcec5
MM
16723 if (sgot->size > 0)
16724 {
16725 if (sdyn == NULL)
16726 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16727 else
16728 bfd_put_32 (output_bfd,
16729 sdyn->output_section->vma + sdyn->output_offset,
16730 sgot->contents);
16731 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16732 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16733 }
252b5132 16734
229fcec5
MM
16735 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16736 }
252b5132 16737
b34976b6 16738 return TRUE;
252b5132
RH
16739}
16740
ba96a88f 16741static void
57e8b36a 16742elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 16743{
9b485d32 16744 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 16745 struct elf32_arm_link_hash_table *globals;
ac4c9b04 16746 struct elf_segment_map *m;
ba96a88f
NC
16747
16748 i_ehdrp = elf_elfheader (abfd);
16749
94a3258f
PB
16750 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16751 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16752 else
7394f108 16753 _bfd_elf_post_process_headers (abfd, link_info);
ba96a88f 16754 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 16755
93204d3a
PB
16756 if (link_info)
16757 {
16758 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 16759 if (globals != NULL && globals->byteswap_code)
93204d3a
PB
16760 i_ehdrp->e_flags |= EF_ARM_BE8;
16761 }
3bfcb652
NC
16762
16763 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16764 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16765 {
16766 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 16767 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
16768 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16769 else
16770 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16771 }
ac4c9b04
MG
16772
16773 /* Scan segment to set p_flags attribute if it contains only sections with
f0728ee3 16774 SHF_ARM_PURECODE flag. */
ac4c9b04
MG
16775 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16776 {
16777 unsigned int j;
16778
16779 if (m->count == 0)
16780 continue;
16781 for (j = 0; j < m->count; j++)
16782 {
f0728ee3 16783 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
ac4c9b04
MG
16784 break;
16785 }
16786 if (j == m->count)
16787 {
16788 m->p_flags = PF_X;
16789 m->p_flags_valid = 1;
16790 }
16791 }
ba96a88f
NC
16792}
16793
99e4ae17 16794static enum elf_reloc_type_class
7e612e98
AM
16795elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16796 const asection *rel_sec ATTRIBUTE_UNUSED,
16797 const Elf_Internal_Rela *rela)
99e4ae17 16798{
f51e552e 16799 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
16800 {
16801 case R_ARM_RELATIVE:
16802 return reloc_class_relative;
16803 case R_ARM_JUMP_SLOT:
16804 return reloc_class_plt;
16805 case R_ARM_COPY:
16806 return reloc_class_copy;
109575d7
JW
16807 case R_ARM_IRELATIVE:
16808 return reloc_class_ifunc;
99e4ae17
AJ
16809 default:
16810 return reloc_class_normal;
16811 }
16812}
16813
e489d0ae 16814static void
57e8b36a 16815elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 16816{
5a6c6817 16817 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
16818}
16819
40a18ebd
NC
16820/* Return TRUE if this is an unwinding table entry. */
16821
16822static bfd_boolean
16823is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16824{
0112cd26
NC
16825 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16826 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
16827}
16828
16829
16830/* Set the type and flags for an ARM section. We do this by
16831 the section name, which is a hack, but ought to work. */
16832
16833static bfd_boolean
16834elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16835{
16836 const char * name;
16837
16838 name = bfd_get_section_name (abfd, sec);
16839
16840 if (is_arm_elf_unwind_section_name (abfd, name))
16841 {
16842 hdr->sh_type = SHT_ARM_EXIDX;
16843 hdr->sh_flags |= SHF_LINK_ORDER;
16844 }
ac4c9b04 16845
f0728ee3
AV
16846 if (sec->flags & SEC_ELF_PURECODE)
16847 hdr->sh_flags |= SHF_ARM_PURECODE;
ac4c9b04 16848
40a18ebd
NC
16849 return TRUE;
16850}
16851
6dc132d9
L
16852/* Handle an ARM specific section when reading an object file. This is
16853 called when bfd_section_from_shdr finds a section with an unknown
16854 type. */
40a18ebd
NC
16855
16856static bfd_boolean
16857elf32_arm_section_from_shdr (bfd *abfd,
16858 Elf_Internal_Shdr * hdr,
6dc132d9
L
16859 const char *name,
16860 int shindex)
40a18ebd
NC
16861{
16862 /* There ought to be a place to keep ELF backend specific flags, but
16863 at the moment there isn't one. We just keep track of the
16864 sections by their name, instead. Fortunately, the ABI gives
16865 names for all the ARM specific sections, so we will probably get
16866 away with this. */
16867 switch (hdr->sh_type)
16868 {
16869 case SHT_ARM_EXIDX:
0951f019
RE
16870 case SHT_ARM_PREEMPTMAP:
16871 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
16872 break;
16873
16874 default:
16875 return FALSE;
16876 }
16877
6dc132d9 16878 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
16879 return FALSE;
16880
16881 return TRUE;
16882}
e489d0ae 16883
44444f50
NC
16884static _arm_elf_section_data *
16885get_arm_elf_section_data (asection * sec)
16886{
47b2e99c
JZ
16887 if (sec && sec->owner && is_arm_elf (sec->owner))
16888 return elf32_arm_section_data (sec);
44444f50
NC
16889 else
16890 return NULL;
8e3de13a
NC
16891}
16892
4e617b1e
PB
16893typedef struct
16894{
57402f1e 16895 void *flaginfo;
4e617b1e 16896 struct bfd_link_info *info;
91a5743d
PB
16897 asection *sec;
16898 int sec_shndx;
6e0b88f1
AM
16899 int (*func) (void *, const char *, Elf_Internal_Sym *,
16900 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
16901} output_arch_syminfo;
16902
16903enum map_symbol_type
16904{
16905 ARM_MAP_ARM,
16906 ARM_MAP_THUMB,
16907 ARM_MAP_DATA
16908};
16909
16910
7413f23f 16911/* Output a single mapping symbol. */
4e617b1e
PB
16912
16913static bfd_boolean
7413f23f
DJ
16914elf32_arm_output_map_sym (output_arch_syminfo *osi,
16915 enum map_symbol_type type,
16916 bfd_vma offset)
4e617b1e
PB
16917{
16918 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
16919 Elf_Internal_Sym sym;
16920
91a5743d
PB
16921 sym.st_value = osi->sec->output_section->vma
16922 + osi->sec->output_offset
16923 + offset;
4e617b1e
PB
16924 sym.st_size = 0;
16925 sym.st_other = 0;
16926 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 16927 sym.st_shndx = osi->sec_shndx;
35fc36a8 16928 sym.st_target_internal = 0;
fe33d2fa 16929 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 16930 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
16931}
16932
34e77a92
RS
16933/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16934 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e
PB
16935
16936static bfd_boolean
34e77a92
RS
16937elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16938 bfd_boolean is_iplt_entry_p,
16939 union gotplt_union *root_plt,
16940 struct arm_plt_info *arm_plt)
4e617b1e 16941{
4e617b1e 16942 struct elf32_arm_link_hash_table *htab;
34e77a92 16943 bfd_vma addr, plt_header_size;
4e617b1e 16944
34e77a92 16945 if (root_plt->offset == (bfd_vma) -1)
4e617b1e
PB
16946 return TRUE;
16947
4dfe6ac6
NC
16948 htab = elf32_arm_hash_table (osi->info);
16949 if (htab == NULL)
16950 return FALSE;
16951
34e77a92
RS
16952 if (is_iplt_entry_p)
16953 {
16954 osi->sec = htab->root.iplt;
16955 plt_header_size = 0;
16956 }
16957 else
16958 {
16959 osi->sec = htab->root.splt;
16960 plt_header_size = htab->plt_header_size;
16961 }
16962 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16963 (osi->info->output_bfd, osi->sec->output_section));
16964
16965 addr = root_plt->offset & -2;
4e617b1e
PB
16966 if (htab->symbian_p)
16967 {
7413f23f 16968 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 16969 return FALSE;
7413f23f 16970 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
16971 return FALSE;
16972 }
16973 else if (htab->vxworks_p)
16974 {
7413f23f 16975 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 16976 return FALSE;
7413f23f 16977 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 16978 return FALSE;
7413f23f 16979 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 16980 return FALSE;
7413f23f 16981 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
16982 return FALSE;
16983 }
b38cadfb
NC
16984 else if (htab->nacl_p)
16985 {
16986 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16987 return FALSE;
16988 }
eed94f8f
NC
16989 else if (using_thumb_only (htab))
16990 {
16991 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
16992 return FALSE;
6a631e86 16993 }
4e617b1e
PB
16994 else
16995 {
34e77a92 16996 bfd_boolean thumb_stub_p;
bd97cb95 16997
34e77a92
RS
16998 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
16999 if (thumb_stub_p)
4e617b1e 17000 {
7413f23f 17001 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
17002 return FALSE;
17003 }
17004#ifdef FOUR_WORD_PLT
7413f23f 17005 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 17006 return FALSE;
7413f23f 17007 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
17008 return FALSE;
17009#else
906e58ca 17010 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
17011 so only need to output a mapping symbol for the first PLT entry and
17012 entries with thumb thunks. */
34e77a92 17013 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 17014 {
7413f23f 17015 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
17016 return FALSE;
17017 }
17018#endif
17019 }
17020
17021 return TRUE;
17022}
17023
34e77a92
RS
17024/* Output mapping symbols for PLT entries associated with H. */
17025
17026static bfd_boolean
17027elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17028{
17029 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17030 struct elf32_arm_link_hash_entry *eh;
17031
17032 if (h->root.type == bfd_link_hash_indirect)
17033 return TRUE;
17034
17035 if (h->root.type == bfd_link_hash_warning)
17036 /* When warning symbols are created, they **replace** the "real"
17037 entry in the hash table, thus we never get to see the real
17038 symbol in a hash traversal. So look at it now. */
17039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17040
17041 eh = (struct elf32_arm_link_hash_entry *) h;
17042 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17043 &h->plt, &eh->plt);
17044}
17045
4f4faa4d
TP
17046/* Bind a veneered symbol to its veneer identified by its hash entry
17047 STUB_ENTRY. The veneered location thus loose its symbol. */
17048
17049static void
17050arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17051{
17052 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17053
17054 BFD_ASSERT (hash);
17055 hash->root.root.u.def.section = stub_entry->stub_sec;
17056 hash->root.root.u.def.value = stub_entry->stub_offset;
17057 hash->root.size = stub_entry->stub_size;
17058}
17059
7413f23f
DJ
17060/* Output a single local symbol for a generated stub. */
17061
17062static bfd_boolean
17063elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17064 bfd_vma offset, bfd_vma size)
17065{
7413f23f
DJ
17066 Elf_Internal_Sym sym;
17067
7413f23f
DJ
17068 sym.st_value = osi->sec->output_section->vma
17069 + osi->sec->output_offset
17070 + offset;
17071 sym.st_size = size;
17072 sym.st_other = 0;
17073 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17074 sym.st_shndx = osi->sec_shndx;
35fc36a8 17075 sym.st_target_internal = 0;
57402f1e 17076 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 17077}
4e617b1e 17078
da5938a2 17079static bfd_boolean
8029a119
NC
17080arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17081 void * in_arg)
da5938a2
NC
17082{
17083 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
17084 asection *stub_sec;
17085 bfd_vma addr;
7413f23f 17086 char *stub_name;
9a008db3 17087 output_arch_syminfo *osi;
d3ce72d0 17088 const insn_sequence *template_sequence;
461a49ca
DJ
17089 enum stub_insn_type prev_type;
17090 int size;
17091 int i;
17092 enum map_symbol_type sym_type;
da5938a2
NC
17093
17094 /* Massage our args to the form they really have. */
17095 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 17096 osi = (output_arch_syminfo *) in_arg;
da5938a2 17097
da5938a2
NC
17098 stub_sec = stub_entry->stub_sec;
17099
17100 /* Ensure this stub is attached to the current section being
7413f23f 17101 processed. */
da5938a2
NC
17102 if (stub_sec != osi->sec)
17103 return TRUE;
17104
7413f23f 17105 addr = (bfd_vma) stub_entry->stub_offset;
d3ce72d0 17106 template_sequence = stub_entry->stub_template;
4f4faa4d
TP
17107
17108 if (arm_stub_sym_claimed (stub_entry->stub_type))
17109 arm_stub_claim_sym (stub_entry);
17110 else
7413f23f 17111 {
4f4faa4d
TP
17112 stub_name = stub_entry->output_name;
17113 switch (template_sequence[0].type)
17114 {
17115 case ARM_TYPE:
17116 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17117 stub_entry->stub_size))
17118 return FALSE;
17119 break;
17120 case THUMB16_TYPE:
17121 case THUMB32_TYPE:
17122 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17123 stub_entry->stub_size))
17124 return FALSE;
17125 break;
17126 default:
17127 BFD_FAIL ();
17128 return 0;
17129 }
7413f23f 17130 }
da5938a2 17131
461a49ca
DJ
17132 prev_type = DATA_TYPE;
17133 size = 0;
17134 for (i = 0; i < stub_entry->stub_template_size; i++)
17135 {
d3ce72d0 17136 switch (template_sequence[i].type)
461a49ca
DJ
17137 {
17138 case ARM_TYPE:
17139 sym_type = ARM_MAP_ARM;
17140 break;
17141
17142 case THUMB16_TYPE:
48229727 17143 case THUMB32_TYPE:
461a49ca
DJ
17144 sym_type = ARM_MAP_THUMB;
17145 break;
17146
17147 case DATA_TYPE:
17148 sym_type = ARM_MAP_DATA;
17149 break;
17150
17151 default:
17152 BFD_FAIL ();
4e31c731 17153 return FALSE;
461a49ca
DJ
17154 }
17155
d3ce72d0 17156 if (template_sequence[i].type != prev_type)
461a49ca 17157 {
d3ce72d0 17158 prev_type = template_sequence[i].type;
461a49ca
DJ
17159 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17160 return FALSE;
17161 }
17162
d3ce72d0 17163 switch (template_sequence[i].type)
461a49ca
DJ
17164 {
17165 case ARM_TYPE:
48229727 17166 case THUMB32_TYPE:
461a49ca
DJ
17167 size += 4;
17168 break;
17169
17170 case THUMB16_TYPE:
17171 size += 2;
17172 break;
17173
17174 case DATA_TYPE:
17175 size += 4;
17176 break;
17177
17178 default:
17179 BFD_FAIL ();
4e31c731 17180 return FALSE;
461a49ca
DJ
17181 }
17182 }
17183
da5938a2
NC
17184 return TRUE;
17185}
17186
33811162
DG
17187/* Output mapping symbols for linker generated sections,
17188 and for those data-only sections that do not have a
17189 $d. */
4e617b1e
PB
17190
17191static bfd_boolean
17192elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 17193 struct bfd_link_info *info,
57402f1e 17194 void *flaginfo,
6e0b88f1
AM
17195 int (*func) (void *, const char *,
17196 Elf_Internal_Sym *,
17197 asection *,
17198 struct elf_link_hash_entry *))
4e617b1e
PB
17199{
17200 output_arch_syminfo osi;
17201 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
17202 bfd_vma offset;
17203 bfd_size_type size;
33811162 17204 bfd *input_bfd;
4e617b1e
PB
17205
17206 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
17207 if (htab == NULL)
17208 return FALSE;
17209
906e58ca 17210 check_use_blx (htab);
91a5743d 17211
57402f1e 17212 osi.flaginfo = flaginfo;
4e617b1e
PB
17213 osi.info = info;
17214 osi.func = func;
906e58ca 17215
33811162
DG
17216 /* Add a $d mapping symbol to data-only sections that
17217 don't have any mapping symbol. This may result in (harmless) redundant
17218 mapping symbols. */
17219 for (input_bfd = info->input_bfds;
17220 input_bfd != NULL;
c72f2fb2 17221 input_bfd = input_bfd->link.next)
33811162
DG
17222 {
17223 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17224 for (osi.sec = input_bfd->sections;
17225 osi.sec != NULL;
17226 osi.sec = osi.sec->next)
17227 {
17228 if (osi.sec->output_section != NULL
f7dd8c79
DJ
17229 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17230 != 0)
33811162
DG
17231 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17232 == SEC_HAS_CONTENTS
17233 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 17234 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
17235 && osi.sec->size > 0
17236 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
17237 {
17238 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17239 (output_bfd, osi.sec->output_section);
17240 if (osi.sec_shndx != (int)SHN_BAD)
17241 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17242 }
17243 }
17244 }
17245
91a5743d
PB
17246 /* ARM->Thumb glue. */
17247 if (htab->arm_glue_size > 0)
17248 {
3d4d4302
AM
17249 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17250 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
17251
17252 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17253 (output_bfd, osi.sec->output_section);
0e1862bb 17254 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
91a5743d
PB
17255 || htab->pic_veneer)
17256 size = ARM2THUMB_PIC_GLUE_SIZE;
17257 else if (htab->use_blx)
17258 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17259 else
17260 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 17261
91a5743d
PB
17262 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17263 {
7413f23f
DJ
17264 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17265 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
17266 }
17267 }
17268
17269 /* Thumb->ARM glue. */
17270 if (htab->thumb_glue_size > 0)
17271 {
3d4d4302
AM
17272 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17273 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
17274
17275 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17276 (output_bfd, osi.sec->output_section);
17277 size = THUMB2ARM_GLUE_SIZE;
17278
17279 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17280 {
7413f23f
DJ
17281 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17282 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
17283 }
17284 }
17285
845b51d6
PB
17286 /* ARMv4 BX veneers. */
17287 if (htab->bx_glue_size > 0)
17288 {
3d4d4302
AM
17289 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17290 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
17291
17292 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17293 (output_bfd, osi.sec->output_section);
17294
7413f23f 17295 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
17296 }
17297
8029a119
NC
17298 /* Long calls stubs. */
17299 if (htab->stub_bfd && htab->stub_bfd->sections)
17300 {
da5938a2 17301 asection* stub_sec;
8029a119 17302
da5938a2
NC
17303 for (stub_sec = htab->stub_bfd->sections;
17304 stub_sec != NULL;
8029a119
NC
17305 stub_sec = stub_sec->next)
17306 {
17307 /* Ignore non-stub sections. */
17308 if (!strstr (stub_sec->name, STUB_SUFFIX))
17309 continue;
da5938a2 17310
8029a119 17311 osi.sec = stub_sec;
da5938a2 17312
8029a119
NC
17313 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17314 (output_bfd, osi.sec->output_section);
da5938a2 17315
8029a119
NC
17316 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17317 }
17318 }
da5938a2 17319
91a5743d 17320 /* Finally, output mapping symbols for the PLT. */
34e77a92 17321 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 17322 {
34e77a92
RS
17323 osi.sec = htab->root.splt;
17324 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17325 (output_bfd, osi.sec->output_section));
17326
17327 /* Output mapping symbols for the plt header. SymbianOS does not have a
17328 plt header. */
17329 if (htab->vxworks_p)
17330 {
17331 /* VxWorks shared libraries have no PLT header. */
0e1862bb 17332 if (!bfd_link_pic (info))
34e77a92
RS
17333 {
17334 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17335 return FALSE;
17336 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17337 return FALSE;
17338 }
17339 }
b38cadfb
NC
17340 else if (htab->nacl_p)
17341 {
17342 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17343 return FALSE;
17344 }
eed94f8f
NC
17345 else if (using_thumb_only (htab))
17346 {
17347 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17348 return FALSE;
17349 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17350 return FALSE;
17351 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17352 return FALSE;
17353 }
34e77a92 17354 else if (!htab->symbian_p)
4e617b1e 17355 {
7413f23f 17356 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 17357 return FALSE;
34e77a92
RS
17358#ifndef FOUR_WORD_PLT
17359 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e 17360 return FALSE;
34e77a92 17361#endif
4e617b1e
PB
17362 }
17363 }
99059e56
RM
17364 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17365 {
17366 /* NaCl uses a special first entry in .iplt too. */
17367 osi.sec = htab->root.iplt;
17368 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17369 (output_bfd, osi.sec->output_section));
17370 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17371 return FALSE;
17372 }
34e77a92
RS
17373 if ((htab->root.splt && htab->root.splt->size > 0)
17374 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 17375 {
34e77a92
RS
17376 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17377 for (input_bfd = info->input_bfds;
17378 input_bfd != NULL;
c72f2fb2 17379 input_bfd = input_bfd->link.next)
34e77a92
RS
17380 {
17381 struct arm_local_iplt_info **local_iplt;
17382 unsigned int i, num_syms;
4e617b1e 17383
34e77a92
RS
17384 local_iplt = elf32_arm_local_iplt (input_bfd);
17385 if (local_iplt != NULL)
17386 {
17387 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17388 for (i = 0; i < num_syms; i++)
17389 if (local_iplt[i] != NULL
17390 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17391 &local_iplt[i]->root,
17392 &local_iplt[i]->arm))
17393 return FALSE;
17394 }
17395 }
17396 }
0855e32b
NS
17397 if (htab->dt_tlsdesc_plt != 0)
17398 {
17399 /* Mapping symbols for the lazy tls trampoline. */
17400 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17401 return FALSE;
b38cadfb 17402
0855e32b
NS
17403 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17404 htab->dt_tlsdesc_plt + 24))
17405 return FALSE;
17406 }
17407 if (htab->tls_trampoline != 0)
17408 {
17409 /* Mapping symbols for the tls trampoline. */
17410 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17411 return FALSE;
17412#ifdef FOUR_WORD_PLT
17413 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17414 htab->tls_trampoline + 12))
17415 return FALSE;
b38cadfb 17416#endif
0855e32b 17417 }
b38cadfb 17418
4e617b1e
PB
17419 return TRUE;
17420}
17421
54ddd295
TP
17422/* Filter normal symbols of CMSE entry functions of ABFD to include in
17423 the import library. All SYMCOUNT symbols of ABFD can be examined
17424 from their pointers in SYMS. Pointers of symbols to keep should be
17425 stored continuously at the beginning of that array.
17426
17427 Returns the number of symbols to keep. */
17428
17429static unsigned int
17430elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17431 struct bfd_link_info *info,
17432 asymbol **syms, long symcount)
17433{
17434 size_t maxnamelen;
17435 char *cmse_name;
17436 long src_count, dst_count = 0;
17437 struct elf32_arm_link_hash_table *htab;
17438
17439 htab = elf32_arm_hash_table (info);
17440 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17441 symcount = 0;
17442
17443 maxnamelen = 128;
17444 cmse_name = (char *) bfd_malloc (maxnamelen);
17445 for (src_count = 0; src_count < symcount; src_count++)
17446 {
17447 struct elf32_arm_link_hash_entry *cmse_hash;
17448 asymbol *sym;
17449 flagword flags;
17450 char *name;
17451 size_t namelen;
17452
17453 sym = syms[src_count];
17454 flags = sym->flags;
17455 name = (char *) bfd_asymbol_name (sym);
17456
17457 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17458 continue;
17459 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17460 continue;
17461
17462 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17463 if (namelen > maxnamelen)
17464 {
17465 cmse_name = (char *)
17466 bfd_realloc (cmse_name, namelen);
17467 maxnamelen = namelen;
17468 }
17469 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17470 cmse_hash = (struct elf32_arm_link_hash_entry *)
17471 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17472
17473 if (!cmse_hash
17474 || (cmse_hash->root.root.type != bfd_link_hash_defined
17475 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17476 || cmse_hash->root.type != STT_FUNC)
17477 continue;
17478
17479 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17480 continue;
17481
17482 syms[dst_count++] = sym;
17483 }
17484 free (cmse_name);
17485
17486 syms[dst_count] = NULL;
17487
17488 return dst_count;
17489}
17490
17491/* Filter symbols of ABFD to include in the import library. All
17492 SYMCOUNT symbols of ABFD can be examined from their pointers in
17493 SYMS. Pointers of symbols to keep should be stored continuously at
17494 the beginning of that array.
17495
17496 Returns the number of symbols to keep. */
17497
17498static unsigned int
17499elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17500 struct bfd_link_info *info,
17501 asymbol **syms, long symcount)
17502{
17503 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17504
046734ff
TP
17505 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
17506 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
17507 library to be a relocatable object file. */
17508 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
54ddd295
TP
17509 if (globals->cmse_implib)
17510 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17511 else
17512 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17513}
17514
e489d0ae
PB
17515/* Allocate target specific section data. */
17516
17517static bfd_boolean
17518elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17519{
f592407e
AM
17520 if (!sec->used_by_bfd)
17521 {
17522 _arm_elf_section_data *sdata;
17523 bfd_size_type amt = sizeof (*sdata);
e489d0ae 17524
21d799b5 17525 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
17526 if (sdata == NULL)
17527 return FALSE;
17528 sec->used_by_bfd = sdata;
17529 }
e489d0ae
PB
17530
17531 return _bfd_elf_new_section_hook (abfd, sec);
17532}
17533
17534
17535/* Used to order a list of mapping symbols by address. */
17536
17537static int
17538elf32_arm_compare_mapping (const void * a, const void * b)
17539{
7f6a71ff
JM
17540 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17541 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17542
17543 if (amap->vma > bmap->vma)
17544 return 1;
17545 else if (amap->vma < bmap->vma)
17546 return -1;
17547 else if (amap->type > bmap->type)
17548 /* Ensure results do not depend on the host qsort for objects with
17549 multiple mapping symbols at the same address by sorting on type
17550 after vma. */
17551 return 1;
17552 else if (amap->type < bmap->type)
17553 return -1;
17554 else
17555 return 0;
e489d0ae
PB
17556}
17557
2468f9c9
PB
17558/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17559
17560static unsigned long
17561offset_prel31 (unsigned long addr, bfd_vma offset)
17562{
17563 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17564}
17565
17566/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17567 relocations. */
17568
17569static void
17570copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17571{
17572 unsigned long first_word = bfd_get_32 (output_bfd, from);
17573 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 17574
2468f9c9
PB
17575 /* High bit of first word is supposed to be zero. */
17576 if ((first_word & 0x80000000ul) == 0)
17577 first_word = offset_prel31 (first_word, offset);
b38cadfb 17578
2468f9c9
PB
17579 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17580 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17581 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17582 second_word = offset_prel31 (second_word, offset);
b38cadfb 17583
2468f9c9
PB
17584 bfd_put_32 (output_bfd, first_word, to);
17585 bfd_put_32 (output_bfd, second_word, to + 4);
17586}
e489d0ae 17587
48229727
JB
17588/* Data for make_branch_to_a8_stub(). */
17589
b38cadfb
NC
17590struct a8_branch_to_stub_data
17591{
48229727
JB
17592 asection *writing_section;
17593 bfd_byte *contents;
17594};
17595
17596
17597/* Helper to insert branches to Cortex-A8 erratum stubs in the right
17598 places for a particular section. */
17599
17600static bfd_boolean
17601make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 17602 void *in_arg)
48229727
JB
17603{
17604 struct elf32_arm_stub_hash_entry *stub_entry;
17605 struct a8_branch_to_stub_data *data;
17606 bfd_byte *contents;
17607 unsigned long branch_insn;
17608 bfd_vma veneered_insn_loc, veneer_entry_loc;
17609 bfd_signed_vma branch_offset;
17610 bfd *abfd;
8d9d9490 17611 unsigned int loc;
48229727
JB
17612
17613 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17614 data = (struct a8_branch_to_stub_data *) in_arg;
17615
17616 if (stub_entry->target_section != data->writing_section
4563a860 17617 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
17618 return TRUE;
17619
17620 contents = data->contents;
17621
8d9d9490
TP
17622 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17623 generated when both source and target are in the same section. */
48229727
JB
17624 veneered_insn_loc = stub_entry->target_section->output_section->vma
17625 + stub_entry->target_section->output_offset
8d9d9490 17626 + stub_entry->source_value;
48229727
JB
17627
17628 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17629 + stub_entry->stub_sec->output_offset
17630 + stub_entry->stub_offset;
17631
17632 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17633 veneered_insn_loc &= ~3u;
17634
17635 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17636
17637 abfd = stub_entry->target_section->owner;
8d9d9490 17638 loc = stub_entry->source_value;
48229727
JB
17639
17640 /* We attempt to avoid this condition by setting stubs_always_after_branch
17641 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17642 This check is just to be on the safe side... */
17643 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17644 {
4eca0228
AM
17645 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is "
17646 "allocated in unsafe location"), abfd);
48229727
JB
17647 return FALSE;
17648 }
17649
17650 switch (stub_entry->stub_type)
17651 {
17652 case arm_stub_a8_veneer_b:
17653 case arm_stub_a8_veneer_b_cond:
17654 branch_insn = 0xf0009000;
17655 goto jump24;
17656
17657 case arm_stub_a8_veneer_blx:
17658 branch_insn = 0xf000e800;
17659 goto jump24;
17660
17661 case arm_stub_a8_veneer_bl:
17662 {
17663 unsigned int i1, j1, i2, j2, s;
17664
17665 branch_insn = 0xf000d000;
17666
17667 jump24:
17668 if (branch_offset < -16777216 || branch_offset > 16777214)
17669 {
17670 /* There's not much we can do apart from complain if this
17671 happens. */
4eca0228
AM
17672 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out "
17673 "of range (input file too large)"), abfd);
48229727
JB
17674 return FALSE;
17675 }
17676
17677 /* i1 = not(j1 eor s), so:
17678 not i1 = j1 eor s
17679 j1 = (not i1) eor s. */
17680
17681 branch_insn |= (branch_offset >> 1) & 0x7ff;
17682 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17683 i2 = (branch_offset >> 22) & 1;
17684 i1 = (branch_offset >> 23) & 1;
17685 s = (branch_offset >> 24) & 1;
17686 j1 = (!i1) ^ s;
17687 j2 = (!i2) ^ s;
17688 branch_insn |= j2 << 11;
17689 branch_insn |= j1 << 13;
17690 branch_insn |= s << 26;
17691 }
17692 break;
17693
17694 default:
17695 BFD_FAIL ();
17696 return FALSE;
17697 }
17698
8d9d9490
TP
17699 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17700 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
48229727
JB
17701
17702 return TRUE;
17703}
17704
a504d23a
LA
17705/* Beginning of stm32l4xx work-around. */
17706
17707/* Functions encoding instructions necessary for the emission of the
17708 fix-stm32l4xx-629360.
17709 Encoding is extracted from the
17710 ARM (C) Architecture Reference Manual
17711 ARMv7-A and ARMv7-R edition
17712 ARM DDI 0406C.b (ID072512). */
17713
17714static inline bfd_vma
82188b29 17715create_instruction_branch_absolute (int branch_offset)
a504d23a
LA
17716{
17717 /* A8.8.18 B (A8-334)
17718 B target_address (Encoding T4). */
17719 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17720 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17721 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17722
a504d23a
LA
17723 int s = ((branch_offset & 0x1000000) >> 24);
17724 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17725 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17726
17727 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17728 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17729
17730 bfd_vma patched_inst = 0xf0009000
17731 | s << 26 /* S. */
17732 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17733 | j1 << 13 /* J1. */
17734 | j2 << 11 /* J2. */
17735 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17736
17737 return patched_inst;
17738}
17739
17740static inline bfd_vma
17741create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17742{
17743 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17744 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17745 bfd_vma patched_inst = 0xe8900000
17746 | (/*W=*/wback << 21)
17747 | (base_reg << 16)
17748 | (reg_mask & 0x0000ffff);
17749
17750 return patched_inst;
17751}
17752
17753static inline bfd_vma
17754create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17755{
17756 /* A8.8.60 LDMDB/LDMEA (A8-402)
17757 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17758 bfd_vma patched_inst = 0xe9100000
17759 | (/*W=*/wback << 21)
17760 | (base_reg << 16)
17761 | (reg_mask & 0x0000ffff);
17762
17763 return patched_inst;
17764}
17765
17766static inline bfd_vma
17767create_instruction_mov (int target_reg, int source_reg)
17768{
17769 /* A8.8.103 MOV (register) (A8-486)
17770 MOV Rd, Rm (Encoding T1). */
17771 bfd_vma patched_inst = 0x4600
17772 | (target_reg & 0x7)
17773 | ((target_reg & 0x8) >> 3) << 7
17774 | (source_reg << 3);
17775
17776 return patched_inst;
17777}
17778
17779static inline bfd_vma
17780create_instruction_sub (int target_reg, int source_reg, int value)
17781{
17782 /* A8.8.221 SUB (immediate) (A8-708)
17783 SUB Rd, Rn, #value (Encoding T3). */
17784 bfd_vma patched_inst = 0xf1a00000
17785 | (target_reg << 8)
17786 | (source_reg << 16)
17787 | (/*S=*/0 << 20)
17788 | ((value & 0x800) >> 11) << 26
17789 | ((value & 0x700) >> 8) << 12
17790 | (value & 0x0ff);
17791
17792 return patched_inst;
17793}
17794
17795static inline bfd_vma
9239bbd3 17796create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
a504d23a
LA
17797 int first_reg)
17798{
17799 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
17800 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17801 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
a504d23a
LA
17802 | (/*W=*/wback << 21)
17803 | (base_reg << 16)
9239bbd3
CM
17804 | (num_words & 0x000000ff)
17805 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
a504d23a
LA
17806 | (first_reg & 0x00000001) << 22;
17807
17808 return patched_inst;
17809}
17810
17811static inline bfd_vma
9239bbd3
CM
17812create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17813 int first_reg)
a504d23a
LA
17814{
17815 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
17816 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17817 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
a504d23a 17818 | (base_reg << 16)
9239bbd3
CM
17819 | (num_words & 0x000000ff)
17820 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
a504d23a
LA
17821 | (first_reg & 0x00000001) << 22;
17822
17823 return patched_inst;
17824}
17825
17826static inline bfd_vma
17827create_instruction_udf_w (int value)
17828{
17829 /* A8.8.247 UDF (A8-758)
17830 Undefined (Encoding T2). */
17831 bfd_vma patched_inst = 0xf7f0a000
17832 | (value & 0x00000fff)
17833 | (value & 0x000f0000) << 16;
17834
17835 return patched_inst;
17836}
17837
17838static inline bfd_vma
17839create_instruction_udf (int value)
17840{
17841 /* A8.8.247 UDF (A8-758)
17842 Undefined (Encoding T1). */
17843 bfd_vma patched_inst = 0xde00
17844 | (value & 0xff);
17845
17846 return patched_inst;
17847}
17848
17849/* Functions writing an instruction in memory, returning the next
17850 memory position to write to. */
17851
17852static inline bfd_byte *
17853push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17854 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17855{
17856 put_thumb2_insn (htab, output_bfd, insn, pt);
17857 return pt + 4;
17858}
17859
17860static inline bfd_byte *
17861push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17862 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17863{
17864 put_thumb_insn (htab, output_bfd, insn, pt);
17865 return pt + 2;
17866}
17867
17868/* Function filling up a region in memory with T1 and T2 UDFs taking
17869 care of alignment. */
17870
17871static bfd_byte *
17872stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17873 bfd * output_bfd,
17874 const bfd_byte * const base_stub_contents,
17875 bfd_byte * const from_stub_contents,
17876 const bfd_byte * const end_stub_contents)
17877{
17878 bfd_byte *current_stub_contents = from_stub_contents;
17879
17880 /* Fill the remaining of the stub with deterministic contents : UDF
17881 instructions.
17882 Check if realignment is needed on modulo 4 frontier using T1, to
17883 further use T2. */
17884 if ((current_stub_contents < end_stub_contents)
17885 && !((current_stub_contents - base_stub_contents) % 2)
17886 && ((current_stub_contents - base_stub_contents) % 4))
17887 current_stub_contents =
17888 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17889 create_instruction_udf (0));
17890
17891 for (; current_stub_contents < end_stub_contents;)
17892 current_stub_contents =
17893 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17894 create_instruction_udf_w (0));
17895
17896 return current_stub_contents;
17897}
17898
17899/* Functions writing the stream of instructions equivalent to the
17900 derived sequence for ldmia, ldmdb, vldm respectively. */
17901
17902static void
17903stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17904 bfd * output_bfd,
17905 const insn32 initial_insn,
17906 const bfd_byte *const initial_insn_addr,
17907 bfd_byte *const base_stub_contents)
17908{
17909 int wback = (initial_insn & 0x00200000) >> 21;
17910 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17911 int insn_all_registers = initial_insn & 0x0000ffff;
17912 int insn_low_registers, insn_high_registers;
17913 int usable_register_mask;
b25e998d 17914 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
17915 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17916 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17917 bfd_byte *current_stub_contents = base_stub_contents;
17918
17919 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17920
17921 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17922 smaller than 8 registers load sequences that do not cause the
17923 hardware issue. */
17924 if (nb_registers <= 8)
17925 {
17926 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17927 current_stub_contents =
17928 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17929 initial_insn);
17930
17931 /* B initial_insn_addr+4. */
17932 if (!restore_pc)
17933 current_stub_contents =
17934 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17935 create_instruction_branch_absolute
82188b29 17936 (initial_insn_addr - current_stub_contents));
a504d23a
LA
17937
17938 /* Fill the remaining of the stub with deterministic contents. */
17939 current_stub_contents =
17940 stm32l4xx_fill_stub_udf (htab, output_bfd,
17941 base_stub_contents, current_stub_contents,
17942 base_stub_contents +
17943 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17944
17945 return;
17946 }
17947
17948 /* - reg_list[13] == 0. */
17949 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17950
17951 /* - reg_list[14] & reg_list[15] != 1. */
17952 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17953
17954 /* - if (wback==1) reg_list[rn] == 0. */
17955 BFD_ASSERT (!wback || !restore_rn);
17956
17957 /* - nb_registers > 8. */
b25e998d 17958 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
17959
17960 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17961
17962 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17963 - One with the 7 lowest registers (register mask 0x007F)
17964 This LDM will finally contain between 2 and 7 registers
17965 - One with the 7 highest registers (register mask 0xDF80)
17966 This ldm will finally contain between 2 and 7 registers. */
17967 insn_low_registers = insn_all_registers & 0x007F;
17968 insn_high_registers = insn_all_registers & 0xDF80;
17969
17970 /* A spare register may be needed during this veneer to temporarily
17971 handle the base register. This register will be restored with the
17972 last LDM operation.
17973 The usable register may be any general purpose register (that
17974 excludes PC, SP, LR : register mask is 0x1FFF). */
17975 usable_register_mask = 0x1FFF;
17976
17977 /* Generate the stub function. */
17978 if (wback)
17979 {
17980 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17981 current_stub_contents =
17982 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17983 create_instruction_ldmia
17984 (rn, /*wback=*/1, insn_low_registers));
17985
17986 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17987 current_stub_contents =
17988 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17989 create_instruction_ldmia
17990 (rn, /*wback=*/1, insn_high_registers));
17991 if (!restore_pc)
17992 {
17993 /* B initial_insn_addr+4. */
17994 current_stub_contents =
17995 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17996 create_instruction_branch_absolute
82188b29 17997 (initial_insn_addr - current_stub_contents));
a504d23a
LA
17998 }
17999 }
18000 else /* if (!wback). */
18001 {
18002 ri = rn;
18003
18004 /* If Rn is not part of the high-register-list, move it there. */
18005 if (!(insn_high_registers & (1 << rn)))
18006 {
18007 /* Choose a Ri in the high-register-list that will be restored. */
18008 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18009
18010 /* MOV Ri, Rn. */
18011 current_stub_contents =
18012 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18013 create_instruction_mov (ri, rn));
18014 }
18015
18016 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18017 current_stub_contents =
18018 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18019 create_instruction_ldmia
18020 (ri, /*wback=*/1, insn_low_registers));
18021
18022 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18023 current_stub_contents =
18024 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18025 create_instruction_ldmia
18026 (ri, /*wback=*/0, insn_high_registers));
18027
18028 if (!restore_pc)
18029 {
18030 /* B initial_insn_addr+4. */
18031 current_stub_contents =
18032 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18033 create_instruction_branch_absolute
82188b29 18034 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18035 }
18036 }
18037
18038 /* Fill the remaining of the stub with deterministic contents. */
18039 current_stub_contents =
18040 stm32l4xx_fill_stub_udf (htab, output_bfd,
18041 base_stub_contents, current_stub_contents,
18042 base_stub_contents +
18043 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18044}
18045
18046static void
18047stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18048 bfd * output_bfd,
18049 const insn32 initial_insn,
18050 const bfd_byte *const initial_insn_addr,
18051 bfd_byte *const base_stub_contents)
18052{
18053 int wback = (initial_insn & 0x00200000) >> 21;
18054 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18055 int insn_all_registers = initial_insn & 0x0000ffff;
18056 int insn_low_registers, insn_high_registers;
18057 int usable_register_mask;
18058 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18059 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
b25e998d 18060 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18061 bfd_byte *current_stub_contents = base_stub_contents;
18062
18063 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18064
18065 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18066 smaller than 8 registers load sequences that do not cause the
18067 hardware issue. */
18068 if (nb_registers <= 8)
18069 {
18070 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18071 current_stub_contents =
18072 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18073 initial_insn);
18074
18075 /* B initial_insn_addr+4. */
18076 current_stub_contents =
18077 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18078 create_instruction_branch_absolute
82188b29 18079 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18080
18081 /* Fill the remaining of the stub with deterministic contents. */
18082 current_stub_contents =
18083 stm32l4xx_fill_stub_udf (htab, output_bfd,
18084 base_stub_contents, current_stub_contents,
18085 base_stub_contents +
18086 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18087
18088 return;
18089 }
18090
18091 /* - reg_list[13] == 0. */
18092 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18093
18094 /* - reg_list[14] & reg_list[15] != 1. */
18095 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18096
18097 /* - if (wback==1) reg_list[rn] == 0. */
18098 BFD_ASSERT (!wback || !restore_rn);
18099
18100 /* - nb_registers > 8. */
b25e998d 18101 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
18102
18103 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18104
18105 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18106 - One with the 7 lowest registers (register mask 0x007F)
18107 This LDM will finally contain between 2 and 7 registers
18108 - One with the 7 highest registers (register mask 0xDF80)
18109 This ldm will finally contain between 2 and 7 registers. */
18110 insn_low_registers = insn_all_registers & 0x007F;
18111 insn_high_registers = insn_all_registers & 0xDF80;
18112
18113 /* A spare register may be needed during this veneer to temporarily
18114 handle the base register. This register will be restored with
18115 the last LDM operation.
18116 The usable register may be any general purpose register (that excludes
18117 PC, SP, LR : register mask is 0x1FFF). */
18118 usable_register_mask = 0x1FFF;
18119
18120 /* Generate the stub function. */
18121 if (!wback && !restore_pc && !restore_rn)
18122 {
18123 /* Choose a Ri in the low-register-list that will be restored. */
18124 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18125
18126 /* MOV Ri, Rn. */
18127 current_stub_contents =
18128 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18129 create_instruction_mov (ri, rn));
18130
18131 /* LDMDB Ri!, {R-high-register-list}. */
18132 current_stub_contents =
18133 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18134 create_instruction_ldmdb
18135 (ri, /*wback=*/1, insn_high_registers));
18136
18137 /* LDMDB Ri, {R-low-register-list}. */
18138 current_stub_contents =
18139 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18140 create_instruction_ldmdb
18141 (ri, /*wback=*/0, insn_low_registers));
18142
18143 /* B initial_insn_addr+4. */
18144 current_stub_contents =
18145 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18146 create_instruction_branch_absolute
82188b29 18147 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18148 }
18149 else if (wback && !restore_pc && !restore_rn)
18150 {
18151 /* LDMDB Rn!, {R-high-register-list}. */
18152 current_stub_contents =
18153 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18154 create_instruction_ldmdb
18155 (rn, /*wback=*/1, insn_high_registers));
18156
18157 /* LDMDB Rn!, {R-low-register-list}. */
18158 current_stub_contents =
18159 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18160 create_instruction_ldmdb
18161 (rn, /*wback=*/1, insn_low_registers));
18162
18163 /* B initial_insn_addr+4. */
18164 current_stub_contents =
18165 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18166 create_instruction_branch_absolute
82188b29 18167 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18168 }
18169 else if (!wback && restore_pc && !restore_rn)
18170 {
18171 /* Choose a Ri in the high-register-list that will be restored. */
18172 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18173
18174 /* SUB Ri, Rn, #(4*nb_registers). */
18175 current_stub_contents =
18176 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18177 create_instruction_sub (ri, rn, (4 * nb_registers)));
18178
18179 /* LDMIA Ri!, {R-low-register-list}. */
18180 current_stub_contents =
18181 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18182 create_instruction_ldmia
18183 (ri, /*wback=*/1, insn_low_registers));
18184
18185 /* LDMIA Ri, {R-high-register-list}. */
18186 current_stub_contents =
18187 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18188 create_instruction_ldmia
18189 (ri, /*wback=*/0, insn_high_registers));
18190 }
18191 else if (wback && restore_pc && !restore_rn)
18192 {
18193 /* Choose a Ri in the high-register-list that will be restored. */
18194 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18195
18196 /* SUB Rn, Rn, #(4*nb_registers) */
18197 current_stub_contents =
18198 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18199 create_instruction_sub (rn, rn, (4 * nb_registers)));
18200
18201 /* MOV Ri, Rn. */
18202 current_stub_contents =
18203 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18204 create_instruction_mov (ri, rn));
18205
18206 /* LDMIA Ri!, {R-low-register-list}. */
18207 current_stub_contents =
18208 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18209 create_instruction_ldmia
18210 (ri, /*wback=*/1, insn_low_registers));
18211
18212 /* LDMIA Ri, {R-high-register-list}. */
18213 current_stub_contents =
18214 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18215 create_instruction_ldmia
18216 (ri, /*wback=*/0, insn_high_registers));
18217 }
18218 else if (!wback && !restore_pc && restore_rn)
18219 {
18220 ri = rn;
18221 if (!(insn_low_registers & (1 << rn)))
18222 {
18223 /* Choose a Ri in the low-register-list that will be restored. */
18224 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18225
18226 /* MOV Ri, Rn. */
18227 current_stub_contents =
18228 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18229 create_instruction_mov (ri, rn));
18230 }
18231
18232 /* LDMDB Ri!, {R-high-register-list}. */
18233 current_stub_contents =
18234 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18235 create_instruction_ldmdb
18236 (ri, /*wback=*/1, insn_high_registers));
18237
18238 /* LDMDB Ri, {R-low-register-list}. */
18239 current_stub_contents =
18240 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18241 create_instruction_ldmdb
18242 (ri, /*wback=*/0, insn_low_registers));
18243
18244 /* B initial_insn_addr+4. */
18245 current_stub_contents =
18246 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18247 create_instruction_branch_absolute
82188b29 18248 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18249 }
18250 else if (!wback && restore_pc && restore_rn)
18251 {
18252 ri = rn;
18253 if (!(insn_high_registers & (1 << rn)))
18254 {
18255 /* Choose a Ri in the high-register-list that will be restored. */
18256 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18257 }
18258
18259 /* SUB Ri, Rn, #(4*nb_registers). */
18260 current_stub_contents =
18261 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18262 create_instruction_sub (ri, rn, (4 * nb_registers)));
18263
18264 /* LDMIA Ri!, {R-low-register-list}. */
18265 current_stub_contents =
18266 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18267 create_instruction_ldmia
18268 (ri, /*wback=*/1, insn_low_registers));
18269
18270 /* LDMIA Ri, {R-high-register-list}. */
18271 current_stub_contents =
18272 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18273 create_instruction_ldmia
18274 (ri, /*wback=*/0, insn_high_registers));
18275 }
18276 else if (wback && restore_rn)
18277 {
18278 /* The assembler should not have accepted to encode this. */
18279 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18280 "undefined behavior.\n");
18281 }
18282
18283 /* Fill the remaining of the stub with deterministic contents. */
18284 current_stub_contents =
18285 stm32l4xx_fill_stub_udf (htab, output_bfd,
18286 base_stub_contents, current_stub_contents,
18287 base_stub_contents +
18288 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18289
18290}
18291
18292static void
18293stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18294 bfd * output_bfd,
18295 const insn32 initial_insn,
18296 const bfd_byte *const initial_insn_addr,
18297 bfd_byte *const base_stub_contents)
18298{
9239bbd3 18299 int num_words = ((unsigned int) initial_insn << 24) >> 24;
a504d23a
LA
18300 bfd_byte *current_stub_contents = base_stub_contents;
18301
18302 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18303
18304 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
9239bbd3 18305 smaller than 8 words load sequences that do not cause the
a504d23a 18306 hardware issue. */
9239bbd3 18307 if (num_words <= 8)
a504d23a
LA
18308 {
18309 /* Untouched instruction. */
18310 current_stub_contents =
18311 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18312 initial_insn);
18313
18314 /* B initial_insn_addr+4. */
18315 current_stub_contents =
18316 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18317 create_instruction_branch_absolute
82188b29 18318 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18319 }
18320 else
18321 {
9eaff861 18322 bfd_boolean is_dp = /* DP encoding. */
9239bbd3 18323 (initial_insn & 0xfe100f00) == 0xec100b00;
a504d23a
LA
18324 bfd_boolean is_ia_nobang = /* (IA without !). */
18325 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18326 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18327 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18328 bfd_boolean is_db_bang = /* (DB with !). */
18329 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
9239bbd3 18330 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
a504d23a 18331 /* d = UInt (Vd:D);. */
9239bbd3 18332 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
a504d23a
LA
18333 | (((unsigned int)initial_insn << 9) >> 31);
18334
9239bbd3
CM
18335 /* Compute the number of 8-words chunks needed to split. */
18336 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
a504d23a
LA
18337 int chunk;
18338
18339 /* The test coverage has been done assuming the following
18340 hypothesis that exactly one of the previous is_ predicates is
18341 true. */
9239bbd3
CM
18342 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18343 && !(is_ia_nobang & is_ia_bang & is_db_bang));
a504d23a 18344
9239bbd3 18345 /* We treat the cutting of the words in one pass for all
a504d23a
LA
18346 cases, then we emit the adjustments:
18347
18348 vldm rx, {...}
18349 -> vldm rx!, {8_words_or_less} for each needed 8_word
18350 -> sub rx, rx, #size (list)
18351
18352 vldm rx!, {...}
18353 -> vldm rx!, {8_words_or_less} for each needed 8_word
18354 This also handles vpop instruction (when rx is sp)
18355
18356 vldmd rx!, {...}
18357 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
9239bbd3 18358 for (chunk = 0; chunk < chunks; ++chunk)
a504d23a 18359 {
9239bbd3
CM
18360 bfd_vma new_insn = 0;
18361
a504d23a
LA
18362 if (is_ia_nobang || is_ia_bang)
18363 {
9239bbd3
CM
18364 new_insn = create_instruction_vldmia
18365 (base_reg,
18366 is_dp,
18367 /*wback= . */1,
18368 chunks - (chunk + 1) ?
18369 8 : num_words - chunk * 8,
18370 first_reg + chunk * 8);
a504d23a
LA
18371 }
18372 else if (is_db_bang)
18373 {
9239bbd3
CM
18374 new_insn = create_instruction_vldmdb
18375 (base_reg,
18376 is_dp,
18377 chunks - (chunk + 1) ?
18378 8 : num_words - chunk * 8,
18379 first_reg + chunk * 8);
a504d23a 18380 }
9239bbd3
CM
18381
18382 if (new_insn)
18383 current_stub_contents =
18384 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18385 new_insn);
a504d23a
LA
18386 }
18387
18388 /* Only this case requires the base register compensation
18389 subtract. */
18390 if (is_ia_nobang)
18391 {
18392 current_stub_contents =
18393 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18394 create_instruction_sub
9239bbd3 18395 (base_reg, base_reg, 4*num_words));
a504d23a
LA
18396 }
18397
18398 /* B initial_insn_addr+4. */
18399 current_stub_contents =
18400 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18401 create_instruction_branch_absolute
82188b29 18402 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18403 }
18404
18405 /* Fill the remaining of the stub with deterministic contents. */
18406 current_stub_contents =
18407 stm32l4xx_fill_stub_udf (htab, output_bfd,
18408 base_stub_contents, current_stub_contents,
18409 base_stub_contents +
18410 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18411}
18412
18413static void
18414stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18415 bfd * output_bfd,
18416 const insn32 wrong_insn,
18417 const bfd_byte *const wrong_insn_addr,
18418 bfd_byte *const stub_contents)
18419{
18420 if (is_thumb2_ldmia (wrong_insn))
18421 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18422 wrong_insn, wrong_insn_addr,
18423 stub_contents);
18424 else if (is_thumb2_ldmdb (wrong_insn))
18425 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18426 wrong_insn, wrong_insn_addr,
18427 stub_contents);
18428 else if (is_thumb2_vldm (wrong_insn))
18429 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18430 wrong_insn, wrong_insn_addr,
18431 stub_contents);
18432}
18433
18434/* End of stm32l4xx work-around. */
18435
18436
e489d0ae
PB
18437/* Do code byteswapping. Return FALSE afterwards so that the section is
18438 written out as normal. */
18439
18440static bfd_boolean
c7b8f16e 18441elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
18442 struct bfd_link_info *link_info,
18443 asection *sec,
e489d0ae
PB
18444 bfd_byte *contents)
18445{
48229727 18446 unsigned int mapcount, errcount;
8e3de13a 18447 _arm_elf_section_data *arm_data;
c7b8f16e 18448 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 18449 elf32_arm_section_map *map;
c7b8f16e 18450 elf32_vfp11_erratum_list *errnode;
a504d23a 18451 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
e489d0ae
PB
18452 bfd_vma ptr;
18453 bfd_vma end;
c7b8f16e 18454 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 18455 bfd_byte tmp;
48229727 18456 unsigned int i;
57e8b36a 18457
4dfe6ac6
NC
18458 if (globals == NULL)
18459 return FALSE;
18460
8e3de13a
NC
18461 /* If this section has not been allocated an _arm_elf_section_data
18462 structure then we cannot record anything. */
18463 arm_data = get_arm_elf_section_data (sec);
18464 if (arm_data == NULL)
18465 return FALSE;
18466
18467 mapcount = arm_data->mapcount;
18468 map = arm_data->map;
c7b8f16e
JB
18469 errcount = arm_data->erratumcount;
18470
18471 if (errcount != 0)
18472 {
18473 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18474
18475 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
18476 errnode = errnode->next)
18477 {
18478 bfd_vma target = errnode->vma - offset;
18479
18480 switch (errnode->type)
18481 {
18482 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18483 {
18484 bfd_vma branch_to_veneer;
18485 /* Original condition code of instruction, plus bit mask for
18486 ARM B instruction. */
18487 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18488 | 0x0a000000;
c7b8f16e
JB
18489
18490 /* The instruction is before the label. */
91d6fa6a 18491 target -= 4;
c7b8f16e
JB
18492
18493 /* Above offset included in -4 below. */
18494 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 18495 - errnode->vma - 4;
c7b8f16e
JB
18496
18497 if ((signed) branch_to_veneer < -(1 << 25)
18498 || (signed) branch_to_veneer >= (1 << 25))
4eca0228
AM
18499 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18500 "range"), output_bfd);
c7b8f16e 18501
99059e56
RM
18502 insn |= (branch_to_veneer >> 2) & 0xffffff;
18503 contents[endianflip ^ target] = insn & 0xff;
18504 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18505 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18506 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18507 }
18508 break;
c7b8f16e
JB
18509
18510 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
18511 {
18512 bfd_vma branch_from_veneer;
18513 unsigned int insn;
c7b8f16e 18514
99059e56
RM
18515 /* Take size of veneer into account. */
18516 branch_from_veneer = errnode->u.v.branch->vma
18517 - errnode->vma - 12;
c7b8f16e
JB
18518
18519 if ((signed) branch_from_veneer < -(1 << 25)
18520 || (signed) branch_from_veneer >= (1 << 25))
4eca0228
AM
18521 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18522 "range"), output_bfd);
c7b8f16e 18523
99059e56
RM
18524 /* Original instruction. */
18525 insn = errnode->u.v.branch->u.b.vfp_insn;
18526 contents[endianflip ^ target] = insn & 0xff;
18527 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18528 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18529 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18530
18531 /* Branch back to insn after original insn. */
18532 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18533 contents[endianflip ^ (target + 4)] = insn & 0xff;
18534 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18535 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18536 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18537 }
18538 break;
c7b8f16e 18539
99059e56
RM
18540 default:
18541 abort ();
18542 }
18543 }
c7b8f16e 18544 }
e489d0ae 18545
a504d23a
LA
18546 if (arm_data->stm32l4xx_erratumcount != 0)
18547 {
18548 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18549 stm32l4xx_errnode != 0;
18550 stm32l4xx_errnode = stm32l4xx_errnode->next)
18551 {
18552 bfd_vma target = stm32l4xx_errnode->vma - offset;
18553
18554 switch (stm32l4xx_errnode->type)
18555 {
18556 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18557 {
18558 unsigned int insn;
18559 bfd_vma branch_to_veneer =
18560 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18561
18562 if ((signed) branch_to_veneer < -(1 << 24)
18563 || (signed) branch_to_veneer >= (1 << 24))
18564 {
18565 bfd_vma out_of_range =
18566 ((signed) branch_to_veneer < -(1 << 24)) ?
18567 - branch_to_veneer - (1 << 24) :
18568 ((signed) branch_to_veneer >= (1 << 24)) ?
18569 branch_to_veneer - (1 << 24) : 0;
18570
4eca0228 18571 _bfd_error_handler
a504d23a 18572 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
eee926f2 18573 "Jump out of range by %ld bytes. "
a504d23a
LA
18574 "Cannot encode branch instruction. "),
18575 output_bfd,
eee926f2 18576 (long) (stm32l4xx_errnode->vma - 4),
a504d23a
LA
18577 out_of_range);
18578 continue;
18579 }
18580
18581 insn = create_instruction_branch_absolute
82188b29 18582 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
a504d23a
LA
18583
18584 /* The instruction is before the label. */
18585 target -= 4;
18586
18587 put_thumb2_insn (globals, output_bfd,
18588 (bfd_vma) insn, contents + target);
18589 }
18590 break;
18591
18592 case STM32L4XX_ERRATUM_VENEER:
18593 {
82188b29
NC
18594 bfd_byte * veneer;
18595 bfd_byte * veneer_r;
a504d23a
LA
18596 unsigned int insn;
18597
82188b29
NC
18598 veneer = contents + target;
18599 veneer_r = veneer
18600 + stm32l4xx_errnode->u.b.veneer->vma
18601 - stm32l4xx_errnode->vma - 4;
a504d23a
LA
18602
18603 if ((signed) (veneer_r - veneer -
18604 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18605 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18606 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18607 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18608 || (signed) (veneer_r - veneer) >= (1 << 24))
18609 {
4eca0228
AM
18610 _bfd_error_handler (_("%B: error: Cannot create STM32L4XX "
18611 "veneer."), output_bfd);
a504d23a
LA
18612 continue;
18613 }
18614
18615 /* Original instruction. */
18616 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18617
18618 stm32l4xx_create_replacing_stub
18619 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18620 }
18621 break;
18622
18623 default:
18624 abort ();
18625 }
18626 }
18627 }
18628
2468f9c9
PB
18629 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18630 {
18631 arm_unwind_table_edit *edit_node
99059e56 18632 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 18633 /* Now, sec->size is the size of the section we will write. The original
99059e56 18634 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
18635 markers) was sec->rawsize. (This isn't the case if we perform no
18636 edits, then rawsize will be zero and we should use size). */
21d799b5 18637 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
18638 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18639 unsigned int in_index, out_index;
18640 bfd_vma add_to_offsets = 0;
18641
18642 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 18643 {
2468f9c9
PB
18644 if (edit_node)
18645 {
18646 unsigned int edit_index = edit_node->index;
b38cadfb 18647
2468f9c9 18648 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 18649 {
2468f9c9
PB
18650 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18651 contents + in_index * 8, add_to_offsets);
18652 out_index++;
18653 in_index++;
18654 }
18655 else if (in_index == edit_index
18656 || (in_index * 8 >= input_size
18657 && edit_index == UINT_MAX))
99059e56 18658 {
2468f9c9
PB
18659 switch (edit_node->type)
18660 {
18661 case DELETE_EXIDX_ENTRY:
18662 in_index++;
18663 add_to_offsets += 8;
18664 break;
b38cadfb 18665
2468f9c9
PB
18666 case INSERT_EXIDX_CANTUNWIND_AT_END:
18667 {
99059e56 18668 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
18669 bfd_vma text_offset = text_sec->output_section->vma
18670 + text_sec->output_offset
18671 + text_sec->size;
18672 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 18673 unsigned long prel31_offset;
2468f9c9
PB
18674
18675 /* Note: this is meant to be equivalent to an
18676 R_ARM_PREL31 relocation. These synthetic
18677 EXIDX_CANTUNWIND markers are not relocated by the
18678 usual BFD method. */
18679 prel31_offset = (text_offset - exidx_offset)
18680 & 0x7ffffffful;
491d01d3
YU
18681 if (bfd_link_relocatable (link_info))
18682 {
18683 /* Here relocation for new EXIDX_CANTUNWIND is
18684 created, so there is no need to
18685 adjust offset by hand. */
18686 prel31_offset = text_sec->output_offset
18687 + text_sec->size;
491d01d3 18688 }
2468f9c9
PB
18689
18690 /* First address we can't unwind. */
18691 bfd_put_32 (output_bfd, prel31_offset,
18692 &edited_contents[out_index * 8]);
18693
18694 /* Code for EXIDX_CANTUNWIND. */
18695 bfd_put_32 (output_bfd, 0x1,
18696 &edited_contents[out_index * 8 + 4]);
18697
18698 out_index++;
18699 add_to_offsets -= 8;
18700 }
18701 break;
18702 }
b38cadfb 18703
2468f9c9
PB
18704 edit_node = edit_node->next;
18705 }
18706 }
18707 else
18708 {
18709 /* No more edits, copy remaining entries verbatim. */
18710 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18711 contents + in_index * 8, add_to_offsets);
18712 out_index++;
18713 in_index++;
18714 }
18715 }
18716
18717 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18718 bfd_set_section_contents (output_bfd, sec->output_section,
18719 edited_contents,
18720 (file_ptr) sec->output_offset, sec->size);
18721
18722 return TRUE;
18723 }
18724
48229727
JB
18725 /* Fix code to point to Cortex-A8 erratum stubs. */
18726 if (globals->fix_cortex_a8)
18727 {
18728 struct a8_branch_to_stub_data data;
18729
18730 data.writing_section = sec;
18731 data.contents = contents;
18732
a504d23a
LA
18733 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18734 & data);
48229727
JB
18735 }
18736
e489d0ae
PB
18737 if (mapcount == 0)
18738 return FALSE;
18739
c7b8f16e 18740 if (globals->byteswap_code)
e489d0ae 18741 {
c7b8f16e 18742 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 18743
c7b8f16e
JB
18744 ptr = map[0].vma;
18745 for (i = 0; i < mapcount; i++)
99059e56
RM
18746 {
18747 if (i == mapcount - 1)
c7b8f16e 18748 end = sec->size;
99059e56
RM
18749 else
18750 end = map[i + 1].vma;
e489d0ae 18751
99059e56 18752 switch (map[i].type)
e489d0ae 18753 {
c7b8f16e
JB
18754 case 'a':
18755 /* Byte swap code words. */
18756 while (ptr + 3 < end)
99059e56
RM
18757 {
18758 tmp = contents[ptr];
18759 contents[ptr] = contents[ptr + 3];
18760 contents[ptr + 3] = tmp;
18761 tmp = contents[ptr + 1];
18762 contents[ptr + 1] = contents[ptr + 2];
18763 contents[ptr + 2] = tmp;
18764 ptr += 4;
18765 }
c7b8f16e 18766 break;
e489d0ae 18767
c7b8f16e
JB
18768 case 't':
18769 /* Byte swap code halfwords. */
18770 while (ptr + 1 < end)
99059e56
RM
18771 {
18772 tmp = contents[ptr];
18773 contents[ptr] = contents[ptr + 1];
18774 contents[ptr + 1] = tmp;
18775 ptr += 2;
18776 }
c7b8f16e
JB
18777 break;
18778
18779 case 'd':
18780 /* Leave data alone. */
18781 break;
18782 }
99059e56
RM
18783 ptr = end;
18784 }
e489d0ae 18785 }
8e3de13a 18786
93204d3a 18787 free (map);
47b2e99c 18788 arm_data->mapcount = -1;
c7b8f16e 18789 arm_data->mapsize = 0;
8e3de13a 18790 arm_data->map = NULL;
8e3de13a 18791
e489d0ae
PB
18792 return FALSE;
18793}
18794
0beaef2b
PB
18795/* Mangle thumb function symbols as we read them in. */
18796
8384fb8f 18797static bfd_boolean
0beaef2b
PB
18798elf32_arm_swap_symbol_in (bfd * abfd,
18799 const void *psrc,
18800 const void *pshn,
18801 Elf_Internal_Sym *dst)
18802{
4ba2ef8f
TP
18803 Elf_Internal_Shdr *symtab_hdr;
18804 const char *name = NULL;
18805
8384fb8f
AM
18806 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18807 return FALSE;
39d911fc 18808 dst->st_target_internal = 0;
0beaef2b
PB
18809
18810 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 18811 the address. */
63e1a0fc
PB
18812 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18813 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 18814 {
63e1a0fc
PB
18815 if (dst->st_value & 1)
18816 {
18817 dst->st_value &= ~(bfd_vma) 1;
39d911fc
TP
18818 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18819 ST_BRANCH_TO_THUMB);
63e1a0fc
PB
18820 }
18821 else
39d911fc 18822 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
35fc36a8
RS
18823 }
18824 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18825 {
18826 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
39d911fc 18827 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
0beaef2b 18828 }
35fc36a8 18829 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
39d911fc 18830 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
35fc36a8 18831 else
39d911fc 18832 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
35fc36a8 18833
4ba2ef8f
TP
18834 /* Mark CMSE special symbols. */
18835 symtab_hdr = & elf_symtab_hdr (abfd);
18836 if (symtab_hdr->sh_size)
18837 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18838 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18839 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18840
8384fb8f 18841 return TRUE;
0beaef2b
PB
18842}
18843
18844
18845/* Mangle thumb function symbols as we write them out. */
18846
18847static void
18848elf32_arm_swap_symbol_out (bfd *abfd,
18849 const Elf_Internal_Sym *src,
18850 void *cdst,
18851 void *shndx)
18852{
18853 Elf_Internal_Sym newsym;
18854
18855 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18856 of the address set, as per the new EABI. We do this unconditionally
18857 because objcopy does not set the elf header flags until after
18858 it writes out the symbol table. */
39d911fc 18859 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
0beaef2b
PB
18860 {
18861 newsym = *src;
34e77a92
RS
18862 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18863 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 18864 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
18865 {
18866 /* Do this only for defined symbols. At link type, the static
18867 linker will simulate the work of dynamic linker of resolving
18868 symbols and will carry over the thumbness of found symbols to
18869 the output symbol table. It's not clear how it happens, but
18870 the thumbness of undefined symbols can well be different at
18871 runtime, and writing '1' for them will be confusing for users
18872 and possibly for dynamic linker itself.
18873 */
18874 newsym.st_value |= 1;
18875 }
906e58ca 18876
0beaef2b
PB
18877 src = &newsym;
18878 }
18879 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18880}
18881
b294bdf8
MM
18882/* Add the PT_ARM_EXIDX program header. */
18883
18884static bfd_boolean
906e58ca 18885elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
18886 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18887{
18888 struct elf_segment_map *m;
18889 asection *sec;
18890
18891 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18892 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18893 {
18894 /* If there is already a PT_ARM_EXIDX header, then we do not
18895 want to add another one. This situation arises when running
18896 "strip"; the input binary already has the header. */
12bd6957 18897 m = elf_seg_map (abfd);
b294bdf8
MM
18898 while (m && m->p_type != PT_ARM_EXIDX)
18899 m = m->next;
18900 if (!m)
18901 {
21d799b5 18902 m = (struct elf_segment_map *)
99059e56 18903 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
18904 if (m == NULL)
18905 return FALSE;
18906 m->p_type = PT_ARM_EXIDX;
18907 m->count = 1;
18908 m->sections[0] = sec;
18909
12bd6957
AM
18910 m->next = elf_seg_map (abfd);
18911 elf_seg_map (abfd) = m;
b294bdf8
MM
18912 }
18913 }
18914
18915 return TRUE;
18916}
18917
18918/* We may add a PT_ARM_EXIDX program header. */
18919
18920static int
a6b96beb
AM
18921elf32_arm_additional_program_headers (bfd *abfd,
18922 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
18923{
18924 asection *sec;
18925
18926 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18927 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18928 return 1;
18929 else
18930 return 0;
18931}
18932
34e77a92
RS
18933/* Hook called by the linker routine which adds symbols from an object
18934 file. */
18935
18936static bfd_boolean
18937elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18938 Elf_Internal_Sym *sym, const char **namep,
18939 flagword *flagsp, asection **secp, bfd_vma *valp)
18940{
a43942db 18941 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
f1885d1e
AM
18942 && (abfd->flags & DYNAMIC) == 0
18943 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
a43942db 18944 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
34e77a92 18945
c792917c
NC
18946 if (elf32_arm_hash_table (info) == NULL)
18947 return FALSE;
18948
34e77a92
RS
18949 if (elf32_arm_hash_table (info)->vxworks_p
18950 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18951 flagsp, secp, valp))
18952 return FALSE;
18953
18954 return TRUE;
18955}
18956
0beaef2b 18957/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
18958const struct elf_size_info elf32_arm_size_info =
18959{
0beaef2b
PB
18960 sizeof (Elf32_External_Ehdr),
18961 sizeof (Elf32_External_Phdr),
18962 sizeof (Elf32_External_Shdr),
18963 sizeof (Elf32_External_Rel),
18964 sizeof (Elf32_External_Rela),
18965 sizeof (Elf32_External_Sym),
18966 sizeof (Elf32_External_Dyn),
18967 sizeof (Elf_External_Note),
18968 4,
18969 1,
18970 32, 2,
18971 ELFCLASS32, EV_CURRENT,
18972 bfd_elf32_write_out_phdrs,
18973 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 18974 bfd_elf32_checksum_contents,
0beaef2b
PB
18975 bfd_elf32_write_relocs,
18976 elf32_arm_swap_symbol_in,
18977 elf32_arm_swap_symbol_out,
18978 bfd_elf32_slurp_reloc_table,
18979 bfd_elf32_slurp_symbol_table,
18980 bfd_elf32_swap_dyn_in,
18981 bfd_elf32_swap_dyn_out,
18982 bfd_elf32_swap_reloc_in,
18983 bfd_elf32_swap_reloc_out,
18984 bfd_elf32_swap_reloca_in,
18985 bfd_elf32_swap_reloca_out
18986};
18987
685e70ae
VK
18988static bfd_vma
18989read_code32 (const bfd *abfd, const bfd_byte *addr)
18990{
18991 /* V7 BE8 code is always little endian. */
18992 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18993 return bfd_getl32 (addr);
18994
18995 return bfd_get_32 (abfd, addr);
18996}
18997
18998static bfd_vma
18999read_code16 (const bfd *abfd, const bfd_byte *addr)
19000{
19001 /* V7 BE8 code is always little endian. */
19002 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19003 return bfd_getl16 (addr);
19004
19005 return bfd_get_16 (abfd, addr);
19006}
19007
6a631e86
YG
19008/* Return size of plt0 entry starting at ADDR
19009 or (bfd_vma) -1 if size can not be determined. */
19010
19011static bfd_vma
19012elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19013{
19014 bfd_vma first_word;
19015 bfd_vma plt0_size;
19016
685e70ae 19017 first_word = read_code32 (abfd, addr);
6a631e86
YG
19018
19019 if (first_word == elf32_arm_plt0_entry[0])
19020 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19021 else if (first_word == elf32_thumb2_plt0_entry[0])
19022 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19023 else
19024 /* We don't yet handle this PLT format. */
19025 return (bfd_vma) -1;
19026
19027 return plt0_size;
19028}
19029
19030/* Return size of plt entry starting at offset OFFSET
19031 of plt section located at address START
19032 or (bfd_vma) -1 if size can not be determined. */
19033
19034static bfd_vma
19035elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19036{
19037 bfd_vma first_insn;
19038 bfd_vma plt_size = 0;
19039 const bfd_byte *addr = start + offset;
19040
19041 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 19042 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
6a631e86
YG
19043 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19044
19045 /* Respect Thumb stub if necessary. */
685e70ae 19046 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
6a631e86
YG
19047 {
19048 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19049 }
19050
19051 /* Strip immediate from first add. */
685e70ae 19052 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
6a631e86
YG
19053
19054#ifdef FOUR_WORD_PLT
19055 if (first_insn == elf32_arm_plt_entry[0])
19056 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19057#else
19058 if (first_insn == elf32_arm_plt_entry_long[0])
19059 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19060 else if (first_insn == elf32_arm_plt_entry_short[0])
19061 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19062#endif
19063 else
19064 /* We don't yet handle this PLT format. */
19065 return (bfd_vma) -1;
19066
19067 return plt_size;
19068}
19069
19070/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19071
19072static long
19073elf32_arm_get_synthetic_symtab (bfd *abfd,
19074 long symcount ATTRIBUTE_UNUSED,
19075 asymbol **syms ATTRIBUTE_UNUSED,
19076 long dynsymcount,
19077 asymbol **dynsyms,
19078 asymbol **ret)
19079{
19080 asection *relplt;
19081 asymbol *s;
19082 arelent *p;
19083 long count, i, n;
19084 size_t size;
19085 Elf_Internal_Shdr *hdr;
19086 char *names;
19087 asection *plt;
19088 bfd_vma offset;
19089 bfd_byte *data;
19090
19091 *ret = NULL;
19092
19093 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19094 return 0;
19095
19096 if (dynsymcount <= 0)
19097 return 0;
19098
19099 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19100 if (relplt == NULL)
19101 return 0;
19102
19103 hdr = &elf_section_data (relplt)->this_hdr;
19104 if (hdr->sh_link != elf_dynsymtab (abfd)
19105 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19106 return 0;
19107
19108 plt = bfd_get_section_by_name (abfd, ".plt");
19109 if (plt == NULL)
19110 return 0;
19111
19112 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19113 return -1;
19114
19115 data = plt->contents;
19116 if (data == NULL)
19117 {
19118 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19119 return -1;
19120 bfd_cache_section_contents((asection *) plt, data);
19121 }
19122
19123 count = relplt->size / hdr->sh_entsize;
19124 size = count * sizeof (asymbol);
19125 p = relplt->relocation;
19126 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19127 {
19128 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19129 if (p->addend != 0)
19130 size += sizeof ("+0x") - 1 + 8;
19131 }
19132
19133 s = *ret = (asymbol *) bfd_malloc (size);
19134 if (s == NULL)
19135 return -1;
19136
19137 offset = elf32_arm_plt0_size (abfd, data);
19138 if (offset == (bfd_vma) -1)
19139 return -1;
19140
19141 names = (char *) (s + count);
19142 p = relplt->relocation;
19143 n = 0;
19144 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19145 {
19146 size_t len;
19147
19148 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19149 if (plt_size == (bfd_vma) -1)
19150 break;
19151
19152 *s = **p->sym_ptr_ptr;
19153 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19154 we are defining a symbol, ensure one of them is set. */
19155 if ((s->flags & BSF_LOCAL) == 0)
19156 s->flags |= BSF_GLOBAL;
19157 s->flags |= BSF_SYNTHETIC;
19158 s->section = plt;
19159 s->value = offset;
19160 s->name = names;
19161 s->udata.p = NULL;
19162 len = strlen ((*p->sym_ptr_ptr)->name);
19163 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19164 names += len;
19165 if (p->addend != 0)
19166 {
19167 char buf[30], *a;
19168
19169 memcpy (names, "+0x", sizeof ("+0x") - 1);
19170 names += sizeof ("+0x") - 1;
19171 bfd_sprintf_vma (abfd, buf, p->addend);
19172 for (a = buf; *a == '0'; ++a)
19173 ;
19174 len = strlen (a);
19175 memcpy (names, a, len);
19176 names += len;
19177 }
19178 memcpy (names, "@plt", sizeof ("@plt"));
19179 names += sizeof ("@plt");
19180 ++s, ++n;
19181 offset += plt_size;
19182 }
19183
19184 return n;
19185}
19186
ac4c9b04
MG
19187static bfd_boolean
19188elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19189{
f0728ee3
AV
19190 if (hdr->sh_flags & SHF_ARM_PURECODE)
19191 *flags |= SEC_ELF_PURECODE;
ac4c9b04
MG
19192 return TRUE;
19193}
19194
19195static flagword
19196elf32_arm_lookup_section_flags (char *flag_name)
19197{
f0728ee3
AV
19198 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19199 return SHF_ARM_PURECODE;
ac4c9b04
MG
19200
19201 return SEC_NO_FLAGS;
19202}
19203
491d01d3
YU
19204static unsigned int
19205elf32_arm_count_additional_relocs (asection *sec)
19206{
19207 struct _arm_elf_section_data *arm_data;
19208 arm_data = get_arm_elf_section_data (sec);
5025eb7c 19209
6342be70 19210 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
491d01d3
YU
19211}
19212
5522f910 19213/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
9eaff861 19214 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
5522f910
NC
19215 FALSE otherwise. ISECTION is the best guess matching section from the
19216 input bfd IBFD, but it might be NULL. */
19217
19218static bfd_boolean
19219elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19220 bfd *obfd ATTRIBUTE_UNUSED,
19221 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19222 Elf_Internal_Shdr *osection)
19223{
19224 switch (osection->sh_type)
19225 {
19226 case SHT_ARM_EXIDX:
19227 {
19228 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19229 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19230 unsigned i = 0;
19231
19232 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19233 osection->sh_info = 0;
19234
19235 /* The sh_link field must be set to the text section associated with
19236 this index section. Unfortunately the ARM EHABI does not specify
19237 exactly how to determine this association. Our caller does try
19238 to match up OSECTION with its corresponding input section however
19239 so that is a good first guess. */
19240 if (isection != NULL
19241 && osection->bfd_section != NULL
19242 && isection->bfd_section != NULL
19243 && isection->bfd_section->output_section != NULL
19244 && isection->bfd_section->output_section == osection->bfd_section
19245 && iheaders != NULL
19246 && isection->sh_link > 0
19247 && isection->sh_link < elf_numsections (ibfd)
19248 && iheaders[isection->sh_link]->bfd_section != NULL
19249 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19250 )
19251 {
19252 for (i = elf_numsections (obfd); i-- > 0;)
19253 if (oheaders[i]->bfd_section
19254 == iheaders[isection->sh_link]->bfd_section->output_section)
19255 break;
19256 }
9eaff861 19257
5522f910
NC
19258 if (i == 0)
19259 {
19260 /* Failing that we have to find a matching section ourselves. If
19261 we had the output section name available we could compare that
19262 with input section names. Unfortunately we don't. So instead
19263 we use a simple heuristic and look for the nearest executable
19264 section before this one. */
19265 for (i = elf_numsections (obfd); i-- > 0;)
19266 if (oheaders[i] == osection)
19267 break;
19268 if (i == 0)
19269 break;
19270
19271 while (i-- > 0)
19272 if (oheaders[i]->sh_type == SHT_PROGBITS
19273 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19274 == (SHF_ALLOC | SHF_EXECINSTR))
19275 break;
19276 }
19277
19278 if (i)
19279 {
19280 osection->sh_link = i;
19281 /* If the text section was part of a group
19282 then the index section should be too. */
19283 if (oheaders[i]->sh_flags & SHF_GROUP)
19284 osection->sh_flags |= SHF_GROUP;
19285 return TRUE;
19286 }
19287 }
19288 break;
19289
19290 case SHT_ARM_PREEMPTMAP:
19291 osection->sh_flags = SHF_ALLOC;
19292 break;
19293
19294 case SHT_ARM_ATTRIBUTES:
19295 case SHT_ARM_DEBUGOVERLAY:
19296 case SHT_ARM_OVERLAYSECTION:
19297 default:
19298 break;
19299 }
19300
19301 return FALSE;
19302}
19303
d691934d
NC
19304/* Returns TRUE if NAME is an ARM mapping symbol.
19305 Traditionally the symbols $a, $d and $t have been used.
19306 The ARM ELF standard also defines $x (for A64 code). It also allows a
19307 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19308 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19309 not support them here. $t.x indicates the start of ThumbEE instructions. */
19310
19311static bfd_boolean
19312is_arm_mapping_symbol (const char * name)
19313{
19314 return name != NULL /* Paranoia. */
19315 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19316 the mapping symbols could have acquired a prefix.
19317 We do not support this here, since such symbols no
19318 longer conform to the ARM ELF ABI. */
19319 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19320 && (name[2] == 0 || name[2] == '.');
19321 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19322 any characters that follow the period are legal characters for the body
19323 of a symbol's name. For now we just assume that this is the case. */
19324}
19325
fca2a38f
NC
19326/* Make sure that mapping symbols in object files are not removed via the
19327 "strip --strip-unneeded" tool. These symbols are needed in order to
19328 correctly generate interworking veneers, and for byte swapping code
19329 regions. Once an object file has been linked, it is safe to remove the
19330 symbols as they will no longer be needed. */
19331
19332static void
19333elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19334{
19335 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
fca2a38f 19336 && sym->section != bfd_abs_section_ptr
d691934d 19337 && is_arm_mapping_symbol (sym->name))
fca2a38f
NC
19338 sym->flags |= BSF_KEEP;
19339}
19340
5522f910
NC
19341#undef elf_backend_copy_special_section_fields
19342#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19343
252b5132 19344#define ELF_ARCH bfd_arch_arm
ae95ffa6 19345#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 19346#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
19347#ifdef __QNXTARGET__
19348#define ELF_MAXPAGESIZE 0x1000
19349#else
7572ca89 19350#define ELF_MAXPAGESIZE 0x10000
d0facd1b 19351#endif
b1342370 19352#define ELF_MINPAGESIZE 0x1000
24718e3b 19353#define ELF_COMMONPAGESIZE 0x1000
252b5132 19354
ba93b8ac
DJ
19355#define bfd_elf32_mkobject elf32_arm_mkobject
19356
99e4ae17
AJ
19357#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19358#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
19359#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19360#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19361#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 19362#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 19363#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 19364#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 19365#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 19366#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 19367#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 19368#define bfd_elf32_bfd_final_link elf32_arm_final_link
6a631e86 19369#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132
RH
19370
19371#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19372#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 19373#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
19374#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19375#define elf_backend_check_relocs elf32_arm_check_relocs
9eaff861 19376#define elf_backend_update_relocs elf32_arm_update_relocs
dc810e39 19377#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 19378#define elf_backend_write_section elf32_arm_write_section
252b5132 19379#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 19380#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
19381#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19382#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19383#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 19384#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 19385#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 19386#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 19387#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 19388#define elf_backend_object_p elf32_arm_object_p
40a18ebd
NC
19389#define elf_backend_fake_sections elf32_arm_fake_sections
19390#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 19391#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 19392#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 19393#define elf_backend_size_info elf32_arm_size_info
b294bdf8 19394#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
19395#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19396#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
54ddd295 19397#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
906e58ca 19398#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 19399#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
491d01d3 19400#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
fca2a38f 19401#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
906e58ca
NC
19402
19403#define elf_backend_can_refcount 1
19404#define elf_backend_can_gc_sections 1
19405#define elf_backend_plt_readonly 1
19406#define elf_backend_want_got_plt 1
19407#define elf_backend_want_plt_sym 0
5474d94f 19408#define elf_backend_want_dynrelro 1
906e58ca
NC
19409#define elf_backend_may_use_rel_p 1
19410#define elf_backend_may_use_rela_p 0
4e7fd91e 19411#define elf_backend_default_use_rela_p 0
64f52338 19412#define elf_backend_dtrel_excludes_plt 1
252b5132 19413
04f7c78d 19414#define elf_backend_got_header_size 12
b68a20d6 19415#define elf_backend_extern_protected_data 1
04f7c78d 19416
906e58ca
NC
19417#undef elf_backend_obj_attrs_vendor
19418#define elf_backend_obj_attrs_vendor "aeabi"
19419#undef elf_backend_obj_attrs_section
19420#define elf_backend_obj_attrs_section ".ARM.attributes"
19421#undef elf_backend_obj_attrs_arg_type
19422#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19423#undef elf_backend_obj_attrs_section_type
104d59d1 19424#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb
NC
19425#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19426#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 19427
5025eb7c 19428#undef elf_backend_section_flags
ac4c9b04 19429#define elf_backend_section_flags elf32_arm_section_flags
5025eb7c 19430#undef elf_backend_lookup_section_flags_hook
ac4c9b04
MG
19431#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19432
252b5132 19433#include "elf32-target.h"
7f266840 19434
b38cadfb
NC
19435/* Native Client targets. */
19436
19437#undef TARGET_LITTLE_SYM
6d00b590 19438#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
19439#undef TARGET_LITTLE_NAME
19440#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19441#undef TARGET_BIG_SYM
6d00b590 19442#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
19443#undef TARGET_BIG_NAME
19444#define TARGET_BIG_NAME "elf32-bigarm-nacl"
19445
19446/* Like elf32_arm_link_hash_table_create -- but overrides
19447 appropriately for NaCl. */
19448
19449static struct bfd_link_hash_table *
19450elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19451{
19452 struct bfd_link_hash_table *ret;
19453
19454 ret = elf32_arm_link_hash_table_create (abfd);
19455 if (ret)
19456 {
19457 struct elf32_arm_link_hash_table *htab
19458 = (struct elf32_arm_link_hash_table *) ret;
19459
19460 htab->nacl_p = 1;
19461
19462 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19463 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19464 }
19465 return ret;
19466}
19467
19468/* Since NaCl doesn't use the ARM-specific unwind format, we don't
19469 really need to use elf32_arm_modify_segment_map. But we do it
19470 anyway just to reduce gratuitous differences with the stock ARM backend. */
19471
19472static bfd_boolean
19473elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19474{
19475 return (elf32_arm_modify_segment_map (abfd, info)
19476 && nacl_modify_segment_map (abfd, info));
19477}
19478
887badb3
RM
19479static void
19480elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19481{
19482 elf32_arm_final_write_processing (abfd, linker);
19483 nacl_final_write_processing (abfd, linker);
19484}
19485
6a631e86
YG
19486static bfd_vma
19487elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19488 const arelent *rel ATTRIBUTE_UNUSED)
19489{
19490 return plt->vma
19491 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19492 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19493}
887badb3 19494
b38cadfb 19495#undef elf32_bed
6a631e86 19496#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
19497#undef bfd_elf32_bfd_link_hash_table_create
19498#define bfd_elf32_bfd_link_hash_table_create \
19499 elf32_arm_nacl_link_hash_table_create
19500#undef elf_backend_plt_alignment
6a631e86 19501#define elf_backend_plt_alignment 4
b38cadfb
NC
19502#undef elf_backend_modify_segment_map
19503#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19504#undef elf_backend_modify_program_headers
19505#define elf_backend_modify_program_headers nacl_modify_program_headers
887badb3
RM
19506#undef elf_backend_final_write_processing
19507#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
19508#undef bfd_elf32_get_synthetic_symtab
19509#undef elf_backend_plt_sym_val
19510#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
5522f910 19511#undef elf_backend_copy_special_section_fields
b38cadfb 19512
887badb3
RM
19513#undef ELF_MINPAGESIZE
19514#undef ELF_COMMONPAGESIZE
19515
b38cadfb
NC
19516
19517#include "elf32-target.h"
19518
19519/* Reset to defaults. */
19520#undef elf_backend_plt_alignment
19521#undef elf_backend_modify_segment_map
19522#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19523#undef elf_backend_modify_program_headers
887badb3
RM
19524#undef elf_backend_final_write_processing
19525#define elf_backend_final_write_processing elf32_arm_final_write_processing
19526#undef ELF_MINPAGESIZE
19527#define ELF_MINPAGESIZE 0x1000
19528#undef ELF_COMMONPAGESIZE
19529#define ELF_COMMONPAGESIZE 0x1000
19530
b38cadfb 19531
906e58ca 19532/* VxWorks Targets. */
4e7fd91e 19533
906e58ca 19534#undef TARGET_LITTLE_SYM
6d00b590 19535#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
906e58ca 19536#undef TARGET_LITTLE_NAME
4e7fd91e 19537#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 19538#undef TARGET_BIG_SYM
6d00b590 19539#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
906e58ca 19540#undef TARGET_BIG_NAME
4e7fd91e
PB
19541#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19542
19543/* Like elf32_arm_link_hash_table_create -- but overrides
19544 appropriately for VxWorks. */
906e58ca 19545
4e7fd91e
PB
19546static struct bfd_link_hash_table *
19547elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19548{
19549 struct bfd_link_hash_table *ret;
19550
19551 ret = elf32_arm_link_hash_table_create (abfd);
19552 if (ret)
19553 {
19554 struct elf32_arm_link_hash_table *htab
00a97672 19555 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 19556 htab->use_rel = 0;
00a97672 19557 htab->vxworks_p = 1;
4e7fd91e
PB
19558 }
19559 return ret;
906e58ca 19560}
4e7fd91e 19561
00a97672
RS
19562static void
19563elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19564{
19565 elf32_arm_final_write_processing (abfd, linker);
19566 elf_vxworks_final_write_processing (abfd, linker);
19567}
19568
906e58ca 19569#undef elf32_bed
4e7fd91e
PB
19570#define elf32_bed elf32_arm_vxworks_bed
19571
906e58ca
NC
19572#undef bfd_elf32_bfd_link_hash_table_create
19573#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
19574#undef elf_backend_final_write_processing
19575#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19576#undef elf_backend_emit_relocs
9eaff861 19577#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 19578
906e58ca 19579#undef elf_backend_may_use_rel_p
00a97672 19580#define elf_backend_may_use_rel_p 0
906e58ca 19581#undef elf_backend_may_use_rela_p
00a97672 19582#define elf_backend_may_use_rela_p 1
906e58ca 19583#undef elf_backend_default_use_rela_p
00a97672 19584#define elf_backend_default_use_rela_p 1
906e58ca 19585#undef elf_backend_want_plt_sym
00a97672 19586#define elf_backend_want_plt_sym 1
906e58ca 19587#undef ELF_MAXPAGESIZE
00a97672 19588#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
19589
19590#include "elf32-target.h"
19591
19592
21d799b5
NC
19593/* Merge backend specific data from an object file to the output
19594 object file when linking. */
19595
19596static bfd_boolean
50e03d47 19597elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
21d799b5 19598{
50e03d47 19599 bfd *obfd = info->output_bfd;
21d799b5
NC
19600 flagword out_flags;
19601 flagword in_flags;
19602 bfd_boolean flags_compatible = TRUE;
19603 asection *sec;
19604
cc643b88 19605 /* Check if we have the same endianness. */
50e03d47 19606 if (! _bfd_generic_verify_endian_match (ibfd, info))
21d799b5
NC
19607 return FALSE;
19608
19609 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19610 return TRUE;
19611
50e03d47 19612 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
21d799b5
NC
19613 return FALSE;
19614
19615 /* The input BFD must have had its flags initialised. */
19616 /* The following seems bogus to me -- The flags are initialized in
19617 the assembler but I don't think an elf_flags_init field is
19618 written into the object. */
19619 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19620
19621 in_flags = elf_elfheader (ibfd)->e_flags;
19622 out_flags = elf_elfheader (obfd)->e_flags;
19623
19624 /* In theory there is no reason why we couldn't handle this. However
19625 in practice it isn't even close to working and there is no real
19626 reason to want it. */
19627 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19628 && !(ibfd->flags & DYNAMIC)
19629 && (in_flags & EF_ARM_BE8))
19630 {
19631 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19632 ibfd);
19633 return FALSE;
19634 }
19635
19636 if (!elf_flags_init (obfd))
19637 {
19638 /* If the input is the default architecture and had the default
19639 flags then do not bother setting the flags for the output
19640 architecture, instead allow future merges to do this. If no
19641 future merges ever set these flags then they will retain their
99059e56
RM
19642 uninitialised values, which surprise surprise, correspond
19643 to the default values. */
21d799b5
NC
19644 if (bfd_get_arch_info (ibfd)->the_default
19645 && elf_elfheader (ibfd)->e_flags == 0)
19646 return TRUE;
19647
19648 elf_flags_init (obfd) = TRUE;
19649 elf_elfheader (obfd)->e_flags = in_flags;
19650
19651 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19652 && bfd_get_arch_info (obfd)->the_default)
19653 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19654
19655 return TRUE;
19656 }
19657
19658 /* Determine what should happen if the input ARM architecture
19659 does not match the output ARM architecture. */
19660 if (! bfd_arm_merge_machines (ibfd, obfd))
19661 return FALSE;
19662
19663 /* Identical flags must be compatible. */
19664 if (in_flags == out_flags)
19665 return TRUE;
19666
19667 /* Check to see if the input BFD actually contains any sections. If
19668 not, its flags may not have been initialised either, but it
19669 cannot actually cause any incompatiblity. Do not short-circuit
19670 dynamic objects; their section list may be emptied by
19671 elf_link_add_object_symbols.
19672
19673 Also check to see if there are no code sections in the input.
19674 In this case there is no need to check for code specific flags.
19675 XXX - do we need to worry about floating-point format compatability
19676 in data sections ? */
19677 if (!(ibfd->flags & DYNAMIC))
19678 {
19679 bfd_boolean null_input_bfd = TRUE;
19680 bfd_boolean only_data_sections = TRUE;
19681
19682 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19683 {
19684 /* Ignore synthetic glue sections. */
19685 if (strcmp (sec->name, ".glue_7")
19686 && strcmp (sec->name, ".glue_7t"))
19687 {
19688 if ((bfd_get_section_flags (ibfd, sec)
19689 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19690 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
99059e56 19691 only_data_sections = FALSE;
21d799b5
NC
19692
19693 null_input_bfd = FALSE;
19694 break;
19695 }
19696 }
19697
19698 if (null_input_bfd || only_data_sections)
19699 return TRUE;
19700 }
19701
19702 /* Complain about various flag mismatches. */
19703 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19704 EF_ARM_EABI_VERSION (out_flags)))
19705 {
19706 _bfd_error_handler
19707 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
c08bb8dd
AM
19708 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
19709 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
21d799b5
NC
19710 return FALSE;
19711 }
19712
19713 /* Not sure what needs to be checked for EABI versions >= 1. */
19714 /* VxWorks libraries do not use these flags. */
19715 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19716 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19717 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19718 {
19719 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19720 {
19721 _bfd_error_handler
19722 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
c08bb8dd
AM
19723 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
19724 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
21d799b5
NC
19725 flags_compatible = FALSE;
19726 }
19727
19728 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19729 {
19730 if (in_flags & EF_ARM_APCS_FLOAT)
19731 _bfd_error_handler
19732 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19733 ibfd, obfd);
19734 else
19735 _bfd_error_handler
19736 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19737 ibfd, obfd);
19738
19739 flags_compatible = FALSE;
19740 }
19741
19742 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19743 {
19744 if (in_flags & EF_ARM_VFP_FLOAT)
19745 _bfd_error_handler
19746 (_("error: %B uses VFP instructions, whereas %B does not"),
19747 ibfd, obfd);
19748 else
19749 _bfd_error_handler
19750 (_("error: %B uses FPA instructions, whereas %B does not"),
19751 ibfd, obfd);
19752
19753 flags_compatible = FALSE;
19754 }
19755
19756 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19757 {
19758 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19759 _bfd_error_handler
19760 (_("error: %B uses Maverick instructions, whereas %B does not"),
19761 ibfd, obfd);
19762 else
19763 _bfd_error_handler
19764 (_("error: %B does not use Maverick instructions, whereas %B does"),
19765 ibfd, obfd);
19766
19767 flags_compatible = FALSE;
19768 }
19769
19770#ifdef EF_ARM_SOFT_FLOAT
19771 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19772 {
19773 /* We can allow interworking between code that is VFP format
19774 layout, and uses either soft float or integer regs for
19775 passing floating point arguments and results. We already
19776 know that the APCS_FLOAT flags match; similarly for VFP
19777 flags. */
19778 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19779 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19780 {
19781 if (in_flags & EF_ARM_SOFT_FLOAT)
19782 _bfd_error_handler
19783 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19784 ibfd, obfd);
19785 else
19786 _bfd_error_handler
19787 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19788 ibfd, obfd);
19789
19790 flags_compatible = FALSE;
19791 }
19792 }
19793#endif
19794
19795 /* Interworking mismatch is only a warning. */
19796 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19797 {
19798 if (in_flags & EF_ARM_INTERWORK)
19799 {
19800 _bfd_error_handler
19801 (_("Warning: %B supports interworking, whereas %B does not"),
19802 ibfd, obfd);
19803 }
19804 else
19805 {
19806 _bfd_error_handler
19807 (_("Warning: %B does not support interworking, whereas %B does"),
19808 ibfd, obfd);
19809 }
19810 }
19811 }
19812
19813 return flags_compatible;
19814}
19815
19816
906e58ca 19817/* Symbian OS Targets. */
7f266840 19818
906e58ca 19819#undef TARGET_LITTLE_SYM
6d00b590 19820#define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
906e58ca 19821#undef TARGET_LITTLE_NAME
7f266840 19822#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 19823#undef TARGET_BIG_SYM
6d00b590 19824#define TARGET_BIG_SYM arm_elf32_symbian_be_vec
906e58ca 19825#undef TARGET_BIG_NAME
7f266840
DJ
19826#define TARGET_BIG_NAME "elf32-bigarm-symbian"
19827
19828/* Like elf32_arm_link_hash_table_create -- but overrides
19829 appropriately for Symbian OS. */
906e58ca 19830
7f266840
DJ
19831static struct bfd_link_hash_table *
19832elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19833{
19834 struct bfd_link_hash_table *ret;
19835
19836 ret = elf32_arm_link_hash_table_create (abfd);
19837 if (ret)
19838 {
19839 struct elf32_arm_link_hash_table *htab
19840 = (struct elf32_arm_link_hash_table *)ret;
19841 /* There is no PLT header for Symbian OS. */
19842 htab->plt_header_size = 0;
95720a86
DJ
19843 /* The PLT entries are each one instruction and one word. */
19844 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 19845 htab->symbian_p = 1;
33bfe774
JB
19846 /* Symbian uses armv5t or above, so use_blx is always true. */
19847 htab->use_blx = 1;
67687978 19848 htab->root.is_relocatable_executable = 1;
7f266840
DJ
19849 }
19850 return ret;
906e58ca 19851}
7f266840 19852
b35d266b 19853static const struct bfd_elf_special_section
551b43fd 19854elf32_arm_symbian_special_sections[] =
7f266840 19855{
5cd3778d
MM
19856 /* In a BPABI executable, the dynamic linking sections do not go in
19857 the loadable read-only segment. The post-linker may wish to
19858 refer to these sections, but they are not part of the final
19859 program image. */
0112cd26
NC
19860 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19861 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19862 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19863 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19864 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
19865 /* These sections do not need to be writable as the SymbianOS
19866 postlinker will arrange things so that no dynamic relocation is
19867 required. */
0112cd26
NC
19868 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19869 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19870 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19871 { NULL, 0, 0, 0, 0 }
7f266840
DJ
19872};
19873
c3c76620 19874static void
906e58ca 19875elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 19876 struct bfd_link_info *link_info)
c3c76620
MM
19877{
19878 /* BPABI objects are never loaded directly by an OS kernel; they are
19879 processed by a postlinker first, into an OS-specific format. If
19880 the D_PAGED bit is set on the file, BFD will align segments on
19881 page boundaries, so that an OS can directly map the file. With
19882 BPABI objects, that just results in wasted space. In addition,
19883 because we clear the D_PAGED bit, map_sections_to_segments will
19884 recognize that the program headers should not be mapped into any
19885 loadable segment. */
19886 abfd->flags &= ~D_PAGED;
906e58ca 19887 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 19888}
7f266840
DJ
19889
19890static bfd_boolean
906e58ca 19891elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 19892 struct bfd_link_info *info)
7f266840
DJ
19893{
19894 struct elf_segment_map *m;
19895 asection *dynsec;
19896
7f266840
DJ
19897 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19898 segment. However, because the .dynamic section is not marked
19899 with SEC_LOAD, the generic ELF code will not create such a
19900 segment. */
19901 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19902 if (dynsec)
19903 {
12bd6957 19904 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8ded5a0f
AM
19905 if (m->p_type == PT_DYNAMIC)
19906 break;
19907
19908 if (m == NULL)
19909 {
19910 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12bd6957
AM
19911 m->next = elf_seg_map (abfd);
19912 elf_seg_map (abfd) = m;
8ded5a0f 19913 }
7f266840
DJ
19914 }
19915
b294bdf8
MM
19916 /* Also call the generic arm routine. */
19917 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
19918}
19919
95720a86
DJ
19920/* Return address for Ith PLT stub in section PLT, for relocation REL
19921 or (bfd_vma) -1 if it should not be included. */
19922
19923static bfd_vma
19924elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19925 const arelent *rel ATTRIBUTE_UNUSED)
19926{
19927 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19928}
19929
8029a119 19930#undef elf32_bed
7f266840
DJ
19931#define elf32_bed elf32_arm_symbian_bed
19932
19933/* The dynamic sections are not allocated on SymbianOS; the postlinker
19934 will process them and then discard them. */
906e58ca 19935#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
19936#define ELF_DYNAMIC_SEC_FLAGS \
19937 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19938
9eaff861 19939#undef elf_backend_emit_relocs
c3c76620 19940
906e58ca
NC
19941#undef bfd_elf32_bfd_link_hash_table_create
19942#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19943#undef elf_backend_special_sections
19944#define elf_backend_special_sections elf32_arm_symbian_special_sections
19945#undef elf_backend_begin_write_processing
19946#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19947#undef elf_backend_final_write_processing
19948#define elf_backend_final_write_processing elf32_arm_final_write_processing
19949
19950#undef elf_backend_modify_segment_map
7f266840
DJ
19951#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19952
19953/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 19954#undef elf_backend_got_header_size
7f266840
DJ
19955#define elf_backend_got_header_size 0
19956
19957/* Similarly, there is no .got.plt section. */
906e58ca 19958#undef elf_backend_want_got_plt
7f266840
DJ
19959#define elf_backend_want_got_plt 0
19960
906e58ca 19961#undef elf_backend_plt_sym_val
95720a86
DJ
19962#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19963
906e58ca 19964#undef elf_backend_may_use_rel_p
00a97672 19965#define elf_backend_may_use_rel_p 1
906e58ca 19966#undef elf_backend_may_use_rela_p
00a97672 19967#define elf_backend_may_use_rela_p 0
906e58ca 19968#undef elf_backend_default_use_rela_p
00a97672 19969#define elf_backend_default_use_rela_p 0
906e58ca 19970#undef elf_backend_want_plt_sym
00a97672 19971#define elf_backend_want_plt_sym 0
64f52338
AM
19972#undef elf_backend_dtrel_excludes_plt
19973#define elf_backend_dtrel_excludes_plt 0
906e58ca 19974#undef ELF_MAXPAGESIZE
00a97672 19975#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 19976
7f266840 19977#include "elf32-target.h"
This page took 3.082879 seconds and 4 git commands to generate.