Take unadjusted offset for loongson3a specific instructions.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
e44a2c9c 2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
f6ebfac0 3 2008, 2009, 2010 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
6e6718a3 22#include "sysdep.h"
2468f9c9
PB
23#include <limits.h>
24
3db64b00 25#include "bfd.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
7f266840 31
00a97672
RS
32/* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34#define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37/* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39#define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44/* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46#define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51/* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53#define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
7f266840
DJ
58#define elf_info_to_howto 0
59#define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61#define ARM_ELF_ABI_VERSION 0
62#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
3e6b1042
DJ
64static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
66 asection *sec,
67 bfd_byte *contents);
68
7f266840
DJ
69/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71 in that slot. */
72
c19d1205 73static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 74{
8029a119 75 /* No relocation. */
7f266840
DJ
76 HOWTO (R_ARM_NONE, /* type */
77 0, /* rightshift */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
79 0, /* bitsize */
80 FALSE, /* pc_relative */
81 0, /* bitpos */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
86 0, /* src_mask */
87 0, /* dst_mask */
88 FALSE), /* pcrel_offset */
89
90 HOWTO (R_ARM_PC24, /* type */
91 2, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 24, /* bitsize */
94 TRUE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
103
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
106 0, /* rightshift */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
108 32, /* bitsize */
109 FALSE, /* pc_relative */
110 0, /* bitpos */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
118
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 32, /* bitsize */
124 TRUE, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
133
c19d1205 134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 135 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
136 0, /* rightshift */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
138 32, /* bitsize */
139 TRUE, /* pc_relative */
7f266840 140 0, /* bitpos */
4962c51a 141 complain_overflow_dont,/* complain_on_overflow */
7f266840 142 bfd_elf_generic_reloc, /* special_function */
4962c51a 143 "R_ARM_LDR_PC_G0", /* name */
7f266840 144 FALSE, /* partial_inplace */
4962c51a
MS
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
7f266840
DJ
148
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
151 0, /* rightshift */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
153 16, /* bitsize */
154 FALSE, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
163
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
166 0, /* rightshift */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
168 12, /* bitsize */
169 FALSE, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
00a97672
RS
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
7f266840
DJ
177 FALSE), /* pcrel_offset */
178
179 HOWTO (R_ARM_THM_ABS5, /* type */
180 6, /* rightshift */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
182 5, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
192
193 /* 8 bit absolute */
194 HOWTO (R_ARM_ABS8, /* type */
195 0, /* rightshift */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
197 8, /* bitsize */
198 FALSE, /* pc_relative */
199 0, /* bitpos */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
207
208 HOWTO (R_ARM_SBREL32, /* type */
209 0, /* rightshift */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
211 32, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
c19d1205 222 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
223 1, /* rightshift */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 225 24, /* bitsize */
7f266840
DJ
226 TRUE, /* pc_relative */
227 0, /* bitpos */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
c19d1205 230 "R_ARM_THM_CALL", /* name */
7f266840
DJ
231 FALSE, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE), /* pcrel_offset */
235
236 HOWTO (R_ARM_THM_PC8, /* type */
237 1, /* rightshift */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
239 8, /* bitsize */
240 TRUE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
249
c19d1205 250 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
251 1, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
253 32, /* bitsize */
254 FALSE, /* pc_relative */
7f266840
DJ
255 0, /* bitpos */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
c19d1205 258 "R_ARM_BREL_ADJ", /* name */
7f266840 259 FALSE, /* partial_inplace */
c19d1205
ZW
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
7f266840 263
0855e32b 264 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 265 0, /* rightshift */
0855e32b
NS
266 2, /* size (0 = byte, 1 = short, 2 = long) */
267 32, /* bitsize */
7f266840
DJ
268 FALSE, /* pc_relative */
269 0, /* bitpos */
0855e32b 270 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 271 bfd_elf_generic_reloc, /* special_function */
0855e32b 272 "R_ARM_TLS_DESC", /* name */
7f266840 273 FALSE, /* partial_inplace */
0855e32b
NS
274 0xffffffff, /* src_mask */
275 0xffffffff, /* dst_mask */
7f266840
DJ
276 FALSE), /* pcrel_offset */
277
278 HOWTO (R_ARM_THM_SWI8, /* type */
279 0, /* rightshift */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
281 0, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
291
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
294 2, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 25, /* bitsize */
297 TRUE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
306
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
309 2, /* rightshift */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
311 22, /* bitsize */
312 TRUE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE), /* pcrel_offset */
321
ba93b8ac 322 /* Dynamic TLS relocations. */
7f266840 323
ba93b8ac
DJ
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
7f266840 337
ba93b8ac
DJ
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
7f266840 351
ba93b8ac
DJ
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
353 0, /* rightshift */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
355 32, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
7f266840
DJ
365
366 /* Relocs used in ARM Linux */
367
368 HOWTO (R_ARM_COPY, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 FALSE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
381
382 HOWTO (R_ARM_GLOB_DAT, /* type */
383 0, /* rightshift */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
385 32, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
409
410 HOWTO (R_ARM_RELATIVE, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 32, /* bitsize */
414 FALSE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
423
c19d1205 424 HOWTO (R_ARM_GOTOFF32, /* type */
7f266840
DJ
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 FALSE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
c19d1205 432 "R_ARM_GOTOFF32", /* name */
7f266840
DJ
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
437
438 HOWTO (R_ARM_GOTPC, /* type */
439 0, /* rightshift */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
441 32, /* bitsize */
442 TRUE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
451
452 HOWTO (R_ARM_GOT32, /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 HOWTO (R_ARM_PLT32, /* type */
467 2, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
ce490eda 469 24, /* bitsize */
7f266840
DJ
470 TRUE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
ce490eda 475 FALSE, /* partial_inplace */
7f266840
DJ
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
479
480 HOWTO (R_ARM_CALL, /* type */
481 2, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 24, /* bitsize */
484 TRUE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
493
494 HOWTO (R_ARM_JUMP24, /* type */
495 2, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 24, /* bitsize */
498 TRUE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
507
c19d1205
ZW
508 HOWTO (R_ARM_THM_JUMP24, /* type */
509 1, /* rightshift */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
511 24, /* bitsize */
512 TRUE, /* pc_relative */
7f266840 513 0, /* bitpos */
c19d1205 514 complain_overflow_signed,/* complain_on_overflow */
7f266840 515 bfd_elf_generic_reloc, /* special_function */
c19d1205 516 "R_ARM_THM_JUMP24", /* name */
7f266840 517 FALSE, /* partial_inplace */
c19d1205
ZW
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
7f266840 521
c19d1205 522 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 523 0, /* rightshift */
c19d1205
ZW
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
7f266840
DJ
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
c19d1205 530 "R_ARM_BASE_ABS", /* name */
7f266840 531 FALSE, /* partial_inplace */
c19d1205
ZW
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
7f266840
DJ
534 FALSE), /* pcrel_offset */
535
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 12, /* bitsize */
540 TRUE, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
549
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 12, /* bitsize */
554 TRUE, /* pc_relative */
555 8, /* bitpos */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
563
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 12, /* bitsize */
568 TRUE, /* pc_relative */
569 16, /* bitpos */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
577
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 12, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 8, /* bitsize */
596 FALSE, /* pc_relative */
597 12, /* bitpos */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
605
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 8, /* bitsize */
610 FALSE, /* pc_relative */
611 20, /* bitpos */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 HOWTO (R_ARM_TARGET1, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
633
634 HOWTO (R_ARM_ROSEGREL32, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 32, /* bitsize */
638 FALSE, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
647
648 HOWTO (R_ARM_V4BX, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 FALSE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
661
662 HOWTO (R_ARM_TARGET2, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 32, /* bitsize */
666 FALSE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 HOWTO (R_ARM_PREL31, /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 31, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
c19d1205
ZW
689
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
691 0, /* rightshift */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
693 16, /* bitsize */
694 FALSE, /* pc_relative */
695 0, /* bitpos */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
39623e12
PB
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
c19d1205
ZW
702 FALSE), /* pcrel_offset */
703
704 HOWTO (R_ARM_MOVT_ABS, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 FALSE, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
39623e12
PB
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
c19d1205
ZW
716 FALSE), /* pcrel_offset */
717
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
719 0, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 16, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
39623e12
PB
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
c19d1205
ZW
730 TRUE), /* pcrel_offset */
731
732 HOWTO (R_ARM_MOVT_PREL, /* type */
733 0, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
39623e12
PB
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
c19d1205
ZW
744 TRUE), /* pcrel_offset */
745
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 FALSE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
759
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 0, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 TRUE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
787
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
789 0, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 TRUE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
801
802 HOWTO (R_ARM_THM_JUMP19, /* type */
803 1, /* rightshift */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
805 19, /* bitsize */
806 TRUE, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
815
816 HOWTO (R_ARM_THM_JUMP6, /* type */
817 1, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 6, /* bitsize */
820 TRUE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
829
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832 versa. */
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 13, /* bitsize */
837 TRUE, /* pc_relative */
838 0, /* bitpos */
2cab6cc3 839 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
2cab6cc3
MS
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
c19d1205
ZW
845 TRUE), /* pcrel_offset */
846
847 HOWTO (R_ARM_THM_PC12, /* type */
848 0, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 13, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
2cab6cc3 853 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
2cab6cc3
MS
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
c19d1205
ZW
859 TRUE), /* pcrel_offset */
860
861 HOWTO (R_ARM_ABS32_NOI, /* type */
862 0, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 32, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
874
875 HOWTO (R_ARM_REL32_NOI, /* type */
876 0, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 32, /* bitsize */
879 TRUE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
7f266840 888
4962c51a
MS
889 /* Group relocations. */
890
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
892 0, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 32, /* bitsize */
895 TRUE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
904
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
906 0, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 32, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
920 0, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 32, /* bitsize */
923 TRUE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
932
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 32, /* bitsize */
937 TRUE, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
946
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 32, /* bitsize */
951 TRUE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
960
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 32, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
974
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 32, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
988
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 32, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1002
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1004 0, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 32, /* bitsize */
1007 TRUE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1016
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 32, /* bitsize */
1021 TRUE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1030
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 32, /* bitsize */
1035 TRUE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1044
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 32, /* bitsize */
1049 TRUE, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1058
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1060 0, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 32, /* bitsize */
1063 TRUE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1072
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 32, /* bitsize */
1077 TRUE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1086
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1088 0, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 32, /* bitsize */
1091 TRUE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1100
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1102 0, /* rightshift */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1104 32, /* bitsize */
1105 TRUE, /* pc_relative */
1106 0, /* bitpos */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1114
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1116 0, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 32, /* bitsize */
1119 TRUE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1128
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1130 0, /* rightshift */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1132 32, /* bitsize */
1133 TRUE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1142
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1144 0, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 32, /* bitsize */
1147 TRUE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1156
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1158 0, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 32, /* bitsize */
1161 TRUE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1170
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 32, /* bitsize */
1175 TRUE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1184
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1186 0, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 32, /* bitsize */
1189 TRUE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1198
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1200 0, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 32, /* bitsize */
1203 TRUE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1212
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 32, /* bitsize */
1217 TRUE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1226
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1228 0, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 32, /* bitsize */
1231 TRUE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1240
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1242 0, /* rightshift */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1244 32, /* bitsize */
1245 TRUE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1254
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1256 0, /* rightshift */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 32, /* bitsize */
1259 TRUE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1268
1269 /* End of group relocations. */
c19d1205 1270
c19d1205
ZW
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1272 0, /* rightshift */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1274 16, /* bitsize */
1275 FALSE, /* pc_relative */
1276 0, /* bitpos */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1284
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1286 0, /* rightshift */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 16, /* bitsize */
1289 FALSE, /* pc_relative */
1290 0, /* bitpos */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1298
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 16, /* bitsize */
1303 FALSE, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 16, /* bitsize */
1317 FALSE, /* pc_relative */
1318 0, /* bitpos */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1326
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1328 0, /* rightshift */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1330 16, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1340
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
0855e32b
NS
1355 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_bitfield,/* complain_on_overflow */
1362 NULL, /* special_function */
1363 "R_ARM_TLS_GOTDESC", /* name */
1364 TRUE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_TLS_CALL, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 24, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_TLS_CALL", /* name */
1378 FALSE, /* partial_inplace */
1379 0x00ffffff, /* src_mask */
1380 0x00ffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 0, /* bitsize */
1387 FALSE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_bitfield,/* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_TLS_DESCSEQ", /* name */
1392 FALSE, /* partial_inplace */
1393 0x00000000, /* src_mask */
1394 0x00000000, /* dst_mask */
1395 FALSE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 24, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_dont,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_THM_TLS_CALL", /* name */
1406 FALSE, /* partial_inplace */
1407 0x07ff07ff, /* src_mask */
1408 0x07ff07ff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
c19d1205
ZW
1410
1411 HOWTO (R_ARM_PLT32_ABS, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 32, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_dont,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_PLT32_ABS", /* name */
1420 FALSE, /* partial_inplace */
1421 0xffffffff, /* src_mask */
1422 0xffffffff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 HOWTO (R_ARM_GOT_ABS, /* type */
1426 0, /* rightshift */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1428 32, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont,/* complain_on_overflow */
1432 bfd_elf_generic_reloc, /* special_function */
1433 "R_ARM_GOT_ABS", /* name */
1434 FALSE, /* partial_inplace */
1435 0xffffffff, /* src_mask */
1436 0xffffffff, /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 HOWTO (R_ARM_GOT_PREL, /* type */
1440 0, /* rightshift */
1441 2, /* size (0 = byte, 1 = short, 2 = long) */
1442 32, /* bitsize */
1443 TRUE, /* pc_relative */
1444 0, /* bitpos */
1445 complain_overflow_dont, /* complain_on_overflow */
1446 bfd_elf_generic_reloc, /* special_function */
1447 "R_ARM_GOT_PREL", /* name */
1448 FALSE, /* partial_inplace */
1449 0xffffffff, /* src_mask */
1450 0xffffffff, /* dst_mask */
1451 TRUE), /* pcrel_offset */
1452
1453 HOWTO (R_ARM_GOT_BREL12, /* type */
1454 0, /* rightshift */
1455 2, /* size (0 = byte, 1 = short, 2 = long) */
1456 12, /* bitsize */
1457 FALSE, /* pc_relative */
1458 0, /* bitpos */
1459 complain_overflow_bitfield,/* complain_on_overflow */
1460 bfd_elf_generic_reloc, /* special_function */
1461 "R_ARM_GOT_BREL12", /* name */
1462 FALSE, /* partial_inplace */
1463 0x00000fff, /* src_mask */
1464 0x00000fff, /* dst_mask */
1465 FALSE), /* pcrel_offset */
1466
1467 HOWTO (R_ARM_GOTOFF12, /* type */
1468 0, /* rightshift */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1470 12, /* bitsize */
1471 FALSE, /* pc_relative */
1472 0, /* bitpos */
1473 complain_overflow_bitfield,/* complain_on_overflow */
1474 bfd_elf_generic_reloc, /* special_function */
1475 "R_ARM_GOTOFF12", /* name */
1476 FALSE, /* partial_inplace */
1477 0x00000fff, /* src_mask */
1478 0x00000fff, /* dst_mask */
1479 FALSE), /* pcrel_offset */
1480
1481 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1482
1483 /* GNU extension to record C++ vtable member usage */
1484 HOWTO (R_ARM_GNU_VTENTRY, /* type */
ba93b8ac
DJ
1485 0, /* rightshift */
1486 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1487 0, /* bitsize */
ba93b8ac
DJ
1488 FALSE, /* pc_relative */
1489 0, /* bitpos */
c19d1205
ZW
1490 complain_overflow_dont, /* complain_on_overflow */
1491 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1492 "R_ARM_GNU_VTENTRY", /* name */
1493 FALSE, /* partial_inplace */
1494 0, /* src_mask */
1495 0, /* dst_mask */
1496 FALSE), /* pcrel_offset */
1497
1498 /* GNU extension to record C++ vtable hierarchy */
1499 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1500 0, /* rightshift */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1502 0, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_dont, /* complain_on_overflow */
1506 NULL, /* special_function */
1507 "R_ARM_GNU_VTINHERIT", /* name */
1508 FALSE, /* partial_inplace */
1509 0, /* src_mask */
1510 0, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 HOWTO (R_ARM_THM_JUMP11, /* type */
1514 1, /* rightshift */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1516 11, /* bitsize */
1517 TRUE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_signed, /* complain_on_overflow */
1520 bfd_elf_generic_reloc, /* special_function */
1521 "R_ARM_THM_JUMP11", /* name */
1522 FALSE, /* partial_inplace */
1523 0x000007ff, /* src_mask */
1524 0x000007ff, /* dst_mask */
1525 TRUE), /* pcrel_offset */
1526
1527 HOWTO (R_ARM_THM_JUMP8, /* type */
1528 1, /* rightshift */
1529 1, /* size (0 = byte, 1 = short, 2 = long) */
1530 8, /* bitsize */
1531 TRUE, /* pc_relative */
1532 0, /* bitpos */
1533 complain_overflow_signed, /* complain_on_overflow */
1534 bfd_elf_generic_reloc, /* special_function */
1535 "R_ARM_THM_JUMP8", /* name */
1536 FALSE, /* partial_inplace */
1537 0x000000ff, /* src_mask */
1538 0x000000ff, /* dst_mask */
1539 TRUE), /* pcrel_offset */
ba93b8ac 1540
c19d1205
ZW
1541 /* TLS relocations */
1542 HOWTO (R_ARM_TLS_GD32, /* type */
ba93b8ac
DJ
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
c19d1205
ZW
1549 NULL, /* special_function */
1550 "R_ARM_TLS_GD32", /* name */
ba93b8ac
DJ
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
c19d1205 1554 FALSE), /* pcrel_offset */
ba93b8ac 1555
ba93b8ac
DJ
1556 HOWTO (R_ARM_TLS_LDM32, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 32, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDM32", /* name */
1565 TRUE, /* partial_inplace */
1566 0xffffffff, /* src_mask */
1567 0xffffffff, /* dst_mask */
c19d1205 1568 FALSE), /* pcrel_offset */
ba93b8ac 1569
c19d1205 1570 HOWTO (R_ARM_TLS_LDO32, /* type */
ba93b8ac
DJ
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 32, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
c19d1205 1578 "R_ARM_TLS_LDO32", /* name */
ba93b8ac
DJ
1579 TRUE, /* partial_inplace */
1580 0xffffffff, /* src_mask */
1581 0xffffffff, /* dst_mask */
c19d1205 1582 FALSE), /* pcrel_offset */
ba93b8ac 1583
ba93b8ac
DJ
1584 HOWTO (R_ARM_TLS_IE32, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 32, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 NULL, /* special_function */
1592 "R_ARM_TLS_IE32", /* name */
1593 TRUE, /* partial_inplace */
1594 0xffffffff, /* src_mask */
1595 0xffffffff, /* dst_mask */
c19d1205 1596 FALSE), /* pcrel_offset */
7f266840 1597
c19d1205 1598 HOWTO (R_ARM_TLS_LE32, /* type */
7f266840
DJ
1599 0, /* rightshift */
1600 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1601 32, /* bitsize */
7f266840
DJ
1602 FALSE, /* pc_relative */
1603 0, /* bitpos */
c19d1205
ZW
1604 complain_overflow_bitfield,/* complain_on_overflow */
1605 bfd_elf_generic_reloc, /* special_function */
1606 "R_ARM_TLS_LE32", /* name */
1607 TRUE, /* partial_inplace */
1608 0xffffffff, /* src_mask */
1609 0xffffffff, /* dst_mask */
1610 FALSE), /* pcrel_offset */
7f266840 1611
c19d1205
ZW
1612 HOWTO (R_ARM_TLS_LDO12, /* type */
1613 0, /* rightshift */
1614 2, /* size (0 = byte, 1 = short, 2 = long) */
1615 12, /* bitsize */
1616 FALSE, /* pc_relative */
7f266840 1617 0, /* bitpos */
c19d1205 1618 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1619 bfd_elf_generic_reloc, /* special_function */
c19d1205 1620 "R_ARM_TLS_LDO12", /* name */
7f266840 1621 FALSE, /* partial_inplace */
c19d1205
ZW
1622 0x00000fff, /* src_mask */
1623 0x00000fff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
7f266840 1625
c19d1205
ZW
1626 HOWTO (R_ARM_TLS_LE12, /* type */
1627 0, /* rightshift */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1629 12, /* bitsize */
1630 FALSE, /* pc_relative */
7f266840 1631 0, /* bitpos */
c19d1205 1632 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1633 bfd_elf_generic_reloc, /* special_function */
c19d1205 1634 "R_ARM_TLS_LE12", /* name */
7f266840 1635 FALSE, /* partial_inplace */
c19d1205
ZW
1636 0x00000fff, /* src_mask */
1637 0x00000fff, /* dst_mask */
1638 FALSE), /* pcrel_offset */
7f266840 1639
c19d1205 1640 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1641 0, /* rightshift */
1642 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1643 12, /* bitsize */
1644 FALSE, /* pc_relative */
7f266840 1645 0, /* bitpos */
c19d1205 1646 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1647 bfd_elf_generic_reloc, /* special_function */
c19d1205 1648 "R_ARM_TLS_IE12GP", /* name */
7f266840 1649 FALSE, /* partial_inplace */
c19d1205
ZW
1650 0x00000fff, /* src_mask */
1651 0x00000fff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
0855e32b
NS
1653
1654 EMPTY_HOWTO (112),
1655 EMPTY_HOWTO (113),
1656 EMPTY_HOWTO (114),
1657 EMPTY_HOWTO (115),
1658 EMPTY_HOWTO (116),
1659 EMPTY_HOWTO (117),
1660 EMPTY_HOWTO (118),
1661 EMPTY_HOWTO (119),
1662 EMPTY_HOWTO (120),
1663 EMPTY_HOWTO (121),
1664 EMPTY_HOWTO (122),
1665 EMPTY_HOWTO (123),
1666 EMPTY_HOWTO (124),
1667 EMPTY_HOWTO (125),
1668 EMPTY_HOWTO (126),
1669 EMPTY_HOWTO (127),
1670 EMPTY_HOWTO (128),
1671
1672 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1673 0, /* rightshift */
1674 1, /* size (0 = byte, 1 = short, 2 = long) */
1675 0, /* bitsize */
1676 FALSE, /* pc_relative */
1677 0, /* bitpos */
1678 complain_overflow_bitfield,/* complain_on_overflow */
1679 bfd_elf_generic_reloc, /* special_function */
1680 "R_ARM_THM_TLS_DESCSEQ",/* name */
1681 FALSE, /* partial_inplace */
1682 0x00000000, /* src_mask */
1683 0x00000000, /* dst_mask */
1684 FALSE), /* pcrel_offset */
c19d1205
ZW
1685};
1686
1687/* 112-127 private relocations
1688 128 R_ARM_ME_TOO, obsolete
1689 129-255 unallocated in AAELF.
7f266840 1690
c19d1205
ZW
1691 249-255 extended, currently unused, relocations: */
1692
4962c51a 1693static reloc_howto_type elf32_arm_howto_table_2[4] =
7f266840
DJ
1694{
1695 HOWTO (R_ARM_RREL32, /* type */
1696 0, /* rightshift */
1697 0, /* size (0 = byte, 1 = short, 2 = long) */
1698 0, /* bitsize */
1699 FALSE, /* pc_relative */
1700 0, /* bitpos */
1701 complain_overflow_dont,/* complain_on_overflow */
1702 bfd_elf_generic_reloc, /* special_function */
1703 "R_ARM_RREL32", /* name */
1704 FALSE, /* partial_inplace */
1705 0, /* src_mask */
1706 0, /* dst_mask */
1707 FALSE), /* pcrel_offset */
1708
1709 HOWTO (R_ARM_RABS32, /* type */
1710 0, /* rightshift */
1711 0, /* size (0 = byte, 1 = short, 2 = long) */
1712 0, /* bitsize */
1713 FALSE, /* pc_relative */
1714 0, /* bitpos */
1715 complain_overflow_dont,/* complain_on_overflow */
1716 bfd_elf_generic_reloc, /* special_function */
1717 "R_ARM_RABS32", /* name */
1718 FALSE, /* partial_inplace */
1719 0, /* src_mask */
1720 0, /* dst_mask */
1721 FALSE), /* pcrel_offset */
1722
1723 HOWTO (R_ARM_RPC24, /* type */
1724 0, /* rightshift */
1725 0, /* size (0 = byte, 1 = short, 2 = long) */
1726 0, /* bitsize */
1727 FALSE, /* pc_relative */
1728 0, /* bitpos */
1729 complain_overflow_dont,/* complain_on_overflow */
1730 bfd_elf_generic_reloc, /* special_function */
1731 "R_ARM_RPC24", /* name */
1732 FALSE, /* partial_inplace */
1733 0, /* src_mask */
1734 0, /* dst_mask */
1735 FALSE), /* pcrel_offset */
1736
1737 HOWTO (R_ARM_RBASE, /* type */
1738 0, /* rightshift */
1739 0, /* size (0 = byte, 1 = short, 2 = long) */
1740 0, /* bitsize */
1741 FALSE, /* pc_relative */
1742 0, /* bitpos */
1743 complain_overflow_dont,/* complain_on_overflow */
1744 bfd_elf_generic_reloc, /* special_function */
1745 "R_ARM_RBASE", /* name */
1746 FALSE, /* partial_inplace */
1747 0, /* src_mask */
1748 0, /* dst_mask */
1749 FALSE) /* pcrel_offset */
1750};
1751
1752static reloc_howto_type *
1753elf32_arm_howto_from_type (unsigned int r_type)
1754{
906e58ca 1755 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1756 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1757
c19d1205 1758 if (r_type >= R_ARM_RREL32
906e58ca 1759 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
4962c51a 1760 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
7f266840 1761
c19d1205 1762 return NULL;
7f266840
DJ
1763}
1764
1765static void
1766elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1767 Elf_Internal_Rela * elf_reloc)
1768{
1769 unsigned int r_type;
1770
1771 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1772 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1773}
1774
1775struct elf32_arm_reloc_map
1776 {
1777 bfd_reloc_code_real_type bfd_reloc_val;
1778 unsigned char elf_reloc_val;
1779 };
1780
1781/* All entries in this list must also be present in elf32_arm_howto_table. */
1782static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1783 {
1784 {BFD_RELOC_NONE, R_ARM_NONE},
1785 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1786 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1787 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1788 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1789 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1790 {BFD_RELOC_32, R_ARM_ABS32},
1791 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1792 {BFD_RELOC_8, R_ARM_ABS8},
1793 {BFD_RELOC_16, R_ARM_ABS16},
1794 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1795 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1796 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1797 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1798 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1799 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1800 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1801 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1802 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1803 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1804 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1805 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840 1806 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
b43420e6 1807 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
7f266840
DJ
1808 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1809 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1810 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1811 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1812 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1813 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1814 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1815 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
0855e32b
NS
1816 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1817 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1818 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1819 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1820 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1821 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
1822 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1823 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1824 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1825 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1826 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1827 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1828 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1829 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
c19d1205
ZW
1830 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1831 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1832 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1833 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1834 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1835 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1836 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1837 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1838 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1839 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1840 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1841 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1842 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1843 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1844 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1845 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1846 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1847 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1848 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1849 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1850 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1851 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1852 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1853 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1854 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1855 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1856 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1857 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1858 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1859 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1860 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1861 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1862 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1863 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1864 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1865 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1866 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1867 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1868 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1869 };
1870
1871static reloc_howto_type *
f1c71a59
ZW
1872elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1873 bfd_reloc_code_real_type code)
7f266840
DJ
1874{
1875 unsigned int i;
8029a119 1876
906e58ca 1877 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1878 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1879 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1880
c19d1205 1881 return NULL;
7f266840
DJ
1882}
1883
157090f7
AM
1884static reloc_howto_type *
1885elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1886 const char *r_name)
1887{
1888 unsigned int i;
1889
906e58ca 1890 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1891 if (elf32_arm_howto_table_1[i].name != NULL
1892 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1893 return &elf32_arm_howto_table_1[i];
1894
906e58ca 1895 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1896 if (elf32_arm_howto_table_2[i].name != NULL
1897 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1898 return &elf32_arm_howto_table_2[i];
1899
1900 return NULL;
1901}
1902
906e58ca
NC
1903/* Support for core dump NOTE sections. */
1904
7f266840 1905static bfd_boolean
f1c71a59 1906elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1907{
1908 int offset;
1909 size_t size;
1910
1911 switch (note->descsz)
1912 {
1913 default:
1914 return FALSE;
1915
8029a119 1916 case 148: /* Linux/ARM 32-bit. */
7f266840
DJ
1917 /* pr_cursig */
1918 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1919
1920 /* pr_pid */
261b8d08 1921 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
1922
1923 /* pr_reg */
1924 offset = 72;
1925 size = 72;
1926
1927 break;
1928 }
1929
1930 /* Make a ".reg/999" section. */
1931 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1932 size, note->descpos + offset);
1933}
1934
1935static bfd_boolean
f1c71a59 1936elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1937{
1938 switch (note->descsz)
1939 {
1940 default:
1941 return FALSE;
1942
8029a119 1943 case 124: /* Linux/ARM elf_prpsinfo. */
7f266840
DJ
1944 elf_tdata (abfd)->core_program
1945 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1946 elf_tdata (abfd)->core_command
1947 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1948 }
1949
1950 /* Note that for some reason, a spurious space is tacked
1951 onto the end of the args in some (at least one anyway)
1952 implementations, so strip it off if it exists. */
7f266840
DJ
1953 {
1954 char *command = elf_tdata (abfd)->core_command;
1955 int n = strlen (command);
1956
1957 if (0 < n && command[n - 1] == ' ')
1958 command[n - 1] = '\0';
1959 }
1960
1961 return TRUE;
1962}
1963
1964#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1965#define TARGET_LITTLE_NAME "elf32-littlearm"
1966#define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1967#define TARGET_BIG_NAME "elf32-bigarm"
1968
1969#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1970#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1971
252b5132
RH
1972typedef unsigned long int insn32;
1973typedef unsigned short int insn16;
1974
3a4a14e9
PB
1975/* In lieu of proper flags, assume all EABIv4 or later objects are
1976 interworkable. */
57e8b36a 1977#define INTERWORK_FLAG(abfd) \
3a4a14e9 1978 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
1979 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1980 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 1981
252b5132
RH
1982/* The linker script knows the section names for placement.
1983 The entry_names are used to do simple name mangling on the stubs.
1984 Given a function name, and its type, the stub can be found. The
9b485d32 1985 name can be changed. The only requirement is the %s be present. */
252b5132
RH
1986#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1987#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1988
1989#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1990#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1991
c7b8f16e
JB
1992#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1993#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1994
845b51d6
PB
1995#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1996#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1997
7413f23f
DJ
1998#define STUB_ENTRY_NAME "__%s_veneer"
1999
252b5132
RH
2000/* The name of the dynamic interpreter. This is put in the .interp
2001 section. */
2002#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2003
0855e32b
NS
2004static const unsigned long tls_trampoline [] =
2005 {
2006 0xe08e0000, /* add r0, lr, r0 */
2007 0xe5901004, /* ldr r1, [r0,#4] */
2008 0xe12fff11, /* bx r1 */
2009 };
2010
2011static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2012 {
2013 0xe52d2004, /* push {r2} */
2014 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2015 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2016 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2017 0xe081100f, /* 2: add r1, pc */
2018 0xe12fff12, /* bx r2 */
2019 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2020 + dl_tlsdesc_lazy_resolver(GOT) */
2021 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2022 };
2023
5e681ec4
PB
2024#ifdef FOUR_WORD_PLT
2025
252b5132
RH
2026/* The first entry in a procedure linkage table looks like
2027 this. It is set up so that any shared library function that is
59f2c4e7 2028 called before the relocation has been set up calls the dynamic
9b485d32 2029 linker first. */
e5a52504 2030static const bfd_vma elf32_arm_plt0_entry [] =
5e681ec4
PB
2031 {
2032 0xe52de004, /* str lr, [sp, #-4]! */
2033 0xe59fe010, /* ldr lr, [pc, #16] */
2034 0xe08fe00e, /* add lr, pc, lr */
2035 0xe5bef008, /* ldr pc, [lr, #8]! */
2036 };
2037
2038/* Subsequent entries in a procedure linkage table look like
2039 this. */
e5a52504 2040static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
2041 {
2042 0xe28fc600, /* add ip, pc, #NN */
2043 0xe28cca00, /* add ip, ip, #NN */
2044 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2045 0x00000000, /* unused */
2046 };
2047
2048#else
2049
5e681ec4
PB
2050/* The first entry in a procedure linkage table looks like
2051 this. It is set up so that any shared library function that is
2052 called before the relocation has been set up calls the dynamic
2053 linker first. */
e5a52504 2054static const bfd_vma elf32_arm_plt0_entry [] =
917583ad 2055 {
5e681ec4
PB
2056 0xe52de004, /* str lr, [sp, #-4]! */
2057 0xe59fe004, /* ldr lr, [pc, #4] */
2058 0xe08fe00e, /* add lr, pc, lr */
2059 0xe5bef008, /* ldr pc, [lr, #8]! */
2060 0x00000000, /* &GOT[0] - . */
917583ad 2061 };
252b5132
RH
2062
2063/* Subsequent entries in a procedure linkage table look like
2064 this. */
e5a52504 2065static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
2066 {
2067 0xe28fc600, /* add ip, pc, #0xNN00000 */
2068 0xe28cca00, /* add ip, ip, #0xNN000 */
2069 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2070 };
2071
2072#endif
252b5132 2073
00a97672
RS
2074/* The format of the first entry in the procedure linkage table
2075 for a VxWorks executable. */
2076static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2077 {
2078 0xe52dc008, /* str ip,[sp,#-8]! */
2079 0xe59fc000, /* ldr ip,[pc] */
2080 0xe59cf008, /* ldr pc,[ip,#8] */
2081 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2082 };
2083
2084/* The format of subsequent entries in a VxWorks executable. */
2085static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2086 {
2087 0xe59fc000, /* ldr ip,[pc] */
2088 0xe59cf000, /* ldr pc,[ip] */
2089 0x00000000, /* .long @got */
2090 0xe59fc000, /* ldr ip,[pc] */
2091 0xea000000, /* b _PLT */
2092 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2093 };
2094
2095/* The format of entries in a VxWorks shared library. */
2096static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2097 {
2098 0xe59fc000, /* ldr ip,[pc] */
2099 0xe79cf009, /* ldr pc,[ip,r9] */
2100 0x00000000, /* .long @got */
2101 0xe59fc000, /* ldr ip,[pc] */
2102 0xe599f008, /* ldr pc,[r9,#8] */
2103 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2104 };
2105
b7693d02
DJ
2106/* An initial stub used if the PLT entry is referenced from Thumb code. */
2107#define PLT_THUMB_STUB_SIZE 4
2108static const bfd_vma elf32_arm_plt_thumb_stub [] =
2109 {
2110 0x4778, /* bx pc */
2111 0x46c0 /* nop */
2112 };
2113
e5a52504
MM
2114/* The entries in a PLT when using a DLL-based target with multiple
2115 address spaces. */
906e58ca 2116static const bfd_vma elf32_arm_symbian_plt_entry [] =
e5a52504 2117 {
83a358aa 2118 0xe51ff004, /* ldr pc, [pc, #-4] */
e5a52504
MM
2119 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2120 };
2121
906e58ca
NC
2122#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2123#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2124#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2125#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2126#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2127#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2128
461a49ca
DJ
2129enum stub_insn_type
2130 {
2131 THUMB16_TYPE = 1,
2132 THUMB32_TYPE,
2133 ARM_TYPE,
2134 DATA_TYPE
2135 };
2136
48229727
JB
2137#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2138/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2139 is inserted in arm_build_one_stub(). */
2140#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2141#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2142#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2143#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2144#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2145#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2146
2147typedef struct
2148{
2149 bfd_vma data;
2150 enum stub_insn_type type;
ebe24dd4 2151 unsigned int r_type;
461a49ca
DJ
2152 int reloc_addend;
2153} insn_sequence;
2154
fea2b4d6
CL
2155/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2156 to reach the stub if necessary. */
461a49ca 2157static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
906e58ca 2158 {
461a49ca
DJ
2159 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2160 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2161 };
2162
fea2b4d6
CL
2163/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2164 available. */
461a49ca 2165static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
906e58ca 2166 {
461a49ca
DJ
2167 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2168 ARM_INSN(0xe12fff1c), /* bx ip */
2169 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2170 };
2171
d3626fb0 2172/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2173static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
906e58ca 2174 {
461a49ca
DJ
2175 THUMB16_INSN(0xb401), /* push {r0} */
2176 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2177 THUMB16_INSN(0x4684), /* mov ip, r0 */
2178 THUMB16_INSN(0xbc01), /* pop {r0} */
2179 THUMB16_INSN(0x4760), /* bx ip */
2180 THUMB16_INSN(0xbf00), /* nop */
2181 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2182 };
2183
d3626fb0
CL
2184/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2185 allowed. */
2186static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2187 {
2188 THUMB16_INSN(0x4778), /* bx pc */
2189 THUMB16_INSN(0x46c0), /* nop */
2190 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2191 ARM_INSN(0xe12fff1c), /* bx ip */
2192 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2193 };
2194
fea2b4d6
CL
2195/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2196 available. */
461a49ca 2197static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
906e58ca 2198 {
461a49ca
DJ
2199 THUMB16_INSN(0x4778), /* bx pc */
2200 THUMB16_INSN(0x46c0), /* nop */
2201 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2202 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2203 };
2204
fea2b4d6
CL
2205/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2206 one, when the destination is close enough. */
461a49ca 2207static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
c820be07 2208 {
461a49ca
DJ
2209 THUMB16_INSN(0x4778), /* bx pc */
2210 THUMB16_INSN(0x46c0), /* nop */
2211 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
c820be07
NC
2212 };
2213
cf3eccff 2214/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2215 blx to reach the stub if necessary. */
cf3eccff 2216static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
906e58ca 2217 {
9ae92b05 2218 ARM_INSN(0xe59fc000), /* ldr ip, [pc] */
461a49ca
DJ
2219 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2220 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
906e58ca
NC
2221 };
2222
cf3eccff
DJ
2223/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2224 blx to reach the stub if necessary. We can not add into pc;
2225 it is not guaranteed to mode switch (different in ARMv6 and
2226 ARMv7). */
2227static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2228 {
9ae92b05 2229 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
cf3eccff
DJ
2230 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2231 ARM_INSN(0xe12fff1c), /* bx ip */
2232 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2233 };
2234
ebe24dd4
CL
2235/* V4T ARM -> ARM long branch stub, PIC. */
2236static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2237 {
2238 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2239 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2240 ARM_INSN(0xe12fff1c), /* bx ip */
2241 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2242 };
2243
2244/* V4T Thumb -> ARM long branch stub, PIC. */
2245static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2246 {
2247 THUMB16_INSN(0x4778), /* bx pc */
2248 THUMB16_INSN(0x46c0), /* nop */
2249 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2250 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2251 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2252 };
2253
d3626fb0
CL
2254/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2255 architectures. */
ebe24dd4
CL
2256static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2257 {
2258 THUMB16_INSN(0xb401), /* push {r0} */
2259 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2260 THUMB16_INSN(0x46fc), /* mov ip, pc */
2261 THUMB16_INSN(0x4484), /* add ip, r0 */
2262 THUMB16_INSN(0xbc01), /* pop {r0} */
2263 THUMB16_INSN(0x4760), /* bx ip */
2264 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2265 };
2266
d3626fb0
CL
2267/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2268 allowed. */
2269static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2270 {
2271 THUMB16_INSN(0x4778), /* bx pc */
2272 THUMB16_INSN(0x46c0), /* nop */
2273 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2274 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2275 ARM_INSN(0xe12fff1c), /* bx ip */
2276 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2277 };
2278
0855e32b
NS
2279/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2280 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2281static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2282{
2283 ARM_INSN(0xe59f1000), /* ldr r1, [pc] */
2284 ARM_INSN(0xe08ff001), /* add pc, pc, r1 */
2285 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2286};
2287
2288/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2289 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2290static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2291{
2292 THUMB16_INSN(0x4778), /* bx pc */
2293 THUMB16_INSN(0x46c0), /* nop */
2294 ARM_INSN(0xe59f1000), /* ldr r1, [pc, #0] */
2295 ARM_INSN(0xe081f00f), /* add pc, r1, pc */
2296 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2297};
2298
48229727
JB
2299/* Cortex-A8 erratum-workaround stubs. */
2300
2301/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2302 can't use a conditional branch to reach this stub). */
2303
2304static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2305 {
2306 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2307 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2308 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2309 };
2310
2311/* Stub used for b.w and bl.w instructions. */
2312
2313static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2314 {
2315 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2316 };
2317
2318static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2319 {
2320 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2321 };
2322
2323/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2324 instruction (which switches to ARM mode) to point to this stub. Jump to the
2325 real destination using an ARM-mode branch. */
2326
2327static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2328 {
2329 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2330 };
2331
906e58ca
NC
2332/* Section name for stubs is the associated section name plus this
2333 string. */
2334#define STUB_SUFFIX ".stub"
2335
738a79f6
CL
2336/* One entry per long/short branch stub defined above. */
2337#define DEF_STUBS \
2338 DEF_STUB(long_branch_any_any) \
2339 DEF_STUB(long_branch_v4t_arm_thumb) \
2340 DEF_STUB(long_branch_thumb_only) \
2341 DEF_STUB(long_branch_v4t_thumb_thumb) \
2342 DEF_STUB(long_branch_v4t_thumb_arm) \
2343 DEF_STUB(short_branch_v4t_thumb_arm) \
2344 DEF_STUB(long_branch_any_arm_pic) \
2345 DEF_STUB(long_branch_any_thumb_pic) \
2346 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2347 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2348 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2349 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2350 DEF_STUB(long_branch_any_tls_pic) \
2351 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
48229727
JB
2352 DEF_STUB(a8_veneer_b_cond) \
2353 DEF_STUB(a8_veneer_b) \
2354 DEF_STUB(a8_veneer_bl) \
2355 DEF_STUB(a8_veneer_blx)
738a79f6
CL
2356
2357#define DEF_STUB(x) arm_stub_##x,
2358enum elf32_arm_stub_type {
906e58ca 2359 arm_stub_none,
738a79f6 2360 DEF_STUBS
eb7c4339
NS
2361 /* Note the first a8_veneer type */
2362 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
738a79f6
CL
2363};
2364#undef DEF_STUB
2365
2366typedef struct
2367{
d3ce72d0 2368 const insn_sequence* template_sequence;
738a79f6
CL
2369 int template_size;
2370} stub_def;
2371
2372#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2373static const stub_def stub_definitions[] = {
2374 {NULL, 0},
2375 DEF_STUBS
906e58ca
NC
2376};
2377
2378struct elf32_arm_stub_hash_entry
2379{
2380 /* Base hash table entry structure. */
2381 struct bfd_hash_entry root;
2382
2383 /* The stub section. */
2384 asection *stub_sec;
2385
2386 /* Offset within stub_sec of the beginning of this stub. */
2387 bfd_vma stub_offset;
2388
2389 /* Given the symbol's value and its section we can determine its final
2390 value when building the stubs (so the stub knows where to jump). */
2391 bfd_vma target_value;
2392 asection *target_section;
2393
48229727
JB
2394 /* Offset to apply to relocation referencing target_value. */
2395 bfd_vma target_addend;
2396
2397 /* The instruction which caused this stub to be generated (only valid for
2398 Cortex-A8 erratum workaround stubs at present). */
2399 unsigned long orig_insn;
2400
461a49ca 2401 /* The stub type. */
906e58ca 2402 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2403 /* Its encoding size in bytes. */
2404 int stub_size;
2405 /* Its template. */
2406 const insn_sequence *stub_template;
2407 /* The size of the template (number of entries). */
2408 int stub_template_size;
906e58ca
NC
2409
2410 /* The symbol table entry, if any, that this was derived from. */
2411 struct elf32_arm_link_hash_entry *h;
2412
2413 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2414 unsigned char st_type;
2415
2416 /* Where this stub is being called from, or, in the case of combined
2417 stub sections, the first input section in the group. */
2418 asection *id_sec;
7413f23f
DJ
2419
2420 /* The name for the local symbol at the start of this stub. The
2421 stub name in the hash table has to be unique; this does not, so
2422 it can be friendlier. */
2423 char *output_name;
906e58ca
NC
2424};
2425
e489d0ae
PB
2426/* Used to build a map of a section. This is required for mixed-endian
2427 code/data. */
2428
2429typedef struct elf32_elf_section_map
2430{
2431 bfd_vma vma;
2432 char type;
2433}
2434elf32_arm_section_map;
2435
c7b8f16e
JB
2436/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2437
2438typedef enum
2439{
2440 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2441 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2442 VFP11_ERRATUM_ARM_VENEER,
2443 VFP11_ERRATUM_THUMB_VENEER
2444}
2445elf32_vfp11_erratum_type;
2446
2447typedef struct elf32_vfp11_erratum_list
2448{
2449 struct elf32_vfp11_erratum_list *next;
2450 bfd_vma vma;
2451 union
2452 {
2453 struct
2454 {
2455 struct elf32_vfp11_erratum_list *veneer;
2456 unsigned int vfp_insn;
2457 } b;
2458 struct
2459 {
2460 struct elf32_vfp11_erratum_list *branch;
2461 unsigned int id;
2462 } v;
2463 } u;
2464 elf32_vfp11_erratum_type type;
2465}
2466elf32_vfp11_erratum_list;
2467
2468f9c9
PB
2468typedef enum
2469{
2470 DELETE_EXIDX_ENTRY,
2471 INSERT_EXIDX_CANTUNWIND_AT_END
2472}
2473arm_unwind_edit_type;
2474
2475/* A (sorted) list of edits to apply to an unwind table. */
2476typedef struct arm_unwind_table_edit
2477{
2478 arm_unwind_edit_type type;
2479 /* Note: we sometimes want to insert an unwind entry corresponding to a
2480 section different from the one we're currently writing out, so record the
2481 (text) section this edit relates to here. */
2482 asection *linked_section;
2483 unsigned int index;
2484 struct arm_unwind_table_edit *next;
2485}
2486arm_unwind_table_edit;
2487
8e3de13a 2488typedef struct _arm_elf_section_data
e489d0ae 2489{
2468f9c9 2490 /* Information about mapping symbols. */
e489d0ae 2491 struct bfd_elf_section_data elf;
8e3de13a 2492 unsigned int mapcount;
c7b8f16e 2493 unsigned int mapsize;
e489d0ae 2494 elf32_arm_section_map *map;
2468f9c9 2495 /* Information about CPU errata. */
c7b8f16e
JB
2496 unsigned int erratumcount;
2497 elf32_vfp11_erratum_list *erratumlist;
2468f9c9
PB
2498 /* Information about unwind tables. */
2499 union
2500 {
2501 /* Unwind info attached to a text section. */
2502 struct
2503 {
2504 asection *arm_exidx_sec;
2505 } text;
2506
2507 /* Unwind info attached to an .ARM.exidx section. */
2508 struct
2509 {
2510 arm_unwind_table_edit *unwind_edit_list;
2511 arm_unwind_table_edit *unwind_edit_tail;
2512 } exidx;
2513 } u;
8e3de13a
NC
2514}
2515_arm_elf_section_data;
e489d0ae
PB
2516
2517#define elf32_arm_section_data(sec) \
8e3de13a 2518 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2519
48229727
JB
2520/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2521 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2522 so may be created multiple times: we use an array of these entries whilst
2523 relaxing which we can refresh easily, then create stubs for each potentially
2524 erratum-triggering instruction once we've settled on a solution. */
2525
2526struct a8_erratum_fix {
2527 bfd *input_bfd;
2528 asection *section;
2529 bfd_vma offset;
2530 bfd_vma addend;
2531 unsigned long orig_insn;
2532 char *stub_name;
2533 enum elf32_arm_stub_type stub_type;
fe33d2fa 2534 int st_type;
48229727
JB
2535};
2536
2537/* A table of relocs applied to branches which might trigger Cortex-A8
2538 erratum. */
2539
2540struct a8_erratum_reloc {
2541 bfd_vma from;
2542 bfd_vma destination;
92750f34
DJ
2543 struct elf32_arm_link_hash_entry *hash;
2544 const char *sym_name;
48229727
JB
2545 unsigned int r_type;
2546 unsigned char st_type;
48229727
JB
2547 bfd_boolean non_a8_stub;
2548};
2549
ba93b8ac
DJ
2550/* The size of the thread control block. */
2551#define TCB_SIZE 8
2552
0ffa91dd 2553struct elf_arm_obj_tdata
ba93b8ac
DJ
2554{
2555 struct elf_obj_tdata root;
2556
2557 /* tls_type for each local got entry. */
2558 char *local_got_tls_type;
ee065d83 2559
0855e32b
NS
2560 /* GOTPLT entries for TLS descriptors. */
2561 bfd_vma *local_tlsdesc_gotent;
2562
bf21ed78
MS
2563 /* Zero to warn when linking objects with incompatible enum sizes. */
2564 int no_enum_size_warning;
a9dc9481
JM
2565
2566 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2567 int no_wchar_size_warning;
ba93b8ac
DJ
2568};
2569
0ffa91dd
NC
2570#define elf_arm_tdata(bfd) \
2571 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2572
0ffa91dd
NC
2573#define elf32_arm_local_got_tls_type(bfd) \
2574 (elf_arm_tdata (bfd)->local_got_tls_type)
2575
0855e32b
NS
2576#define elf32_arm_local_tlsdesc_gotent(bfd) \
2577 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2578
0ffa91dd
NC
2579#define is_arm_elf(bfd) \
2580 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2581 && elf_tdata (bfd) != NULL \
4dfe6ac6 2582 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
2583
2584static bfd_boolean
2585elf32_arm_mkobject (bfd *abfd)
2586{
0ffa91dd 2587 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 2588 ARM_ELF_DATA);
ba93b8ac
DJ
2589}
2590
ba93b8ac
DJ
2591#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2592
ba96a88f 2593/* Arm ELF linker hash entry. */
252b5132 2594struct elf32_arm_link_hash_entry
917583ad
NC
2595 {
2596 struct elf_link_hash_entry root;
252b5132 2597
0bdcacaf
RS
2598 /* Track dynamic relocs copied for this symbol. */
2599 struct elf_dyn_relocs *dyn_relocs;
b7693d02
DJ
2600
2601 /* We reference count Thumb references to a PLT entry separately,
2602 so that we can emit the Thumb trampoline only if needed. */
2603 bfd_signed_vma plt_thumb_refcount;
2604
bd97cb95
DJ
2605 /* Some references from Thumb code may be eliminated by BL->BLX
2606 conversion, so record them separately. */
2607 bfd_signed_vma plt_maybe_thumb_refcount;
2608
b7693d02
DJ
2609 /* Since PLT entries have variable size if the Thumb prologue is
2610 used, we need to record the index into .got.plt instead of
2611 recomputing it from the PLT offset. */
2612 bfd_signed_vma plt_got_offset;
ba93b8ac
DJ
2613
2614#define GOT_UNKNOWN 0
2615#define GOT_NORMAL 1
2616#define GOT_TLS_GD 2
2617#define GOT_TLS_IE 4
0855e32b
NS
2618#define GOT_TLS_GDESC 8
2619#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
ba93b8ac 2620 unsigned char tls_type;
a4fd1a8e 2621
0855e32b
NS
2622 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2623 starting at the end of the jump table. */
2624 bfd_vma tlsdesc_got;
2625
a4fd1a8e
PB
2626 /* The symbol marking the real symbol location for exported thumb
2627 symbols with Arm stubs. */
2628 struct elf_link_hash_entry *export_glue;
906e58ca 2629
da5938a2 2630 /* A pointer to the most recently used stub hash entry against this
8029a119 2631 symbol. */
da5938a2 2632 struct elf32_arm_stub_hash_entry *stub_cache;
917583ad 2633 };
252b5132 2634
252b5132 2635/* Traverse an arm ELF linker hash table. */
252b5132
RH
2636#define elf32_arm_link_hash_traverse(table, func, info) \
2637 (elf_link_hash_traverse \
2638 (&(table)->root, \
b7693d02 2639 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2640 (info)))
2641
2642/* Get the ARM elf linker hash table from a link_info structure. */
2643#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
2644 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2645 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 2646
906e58ca
NC
2647#define arm_stub_hash_lookup(table, string, create, copy) \
2648 ((struct elf32_arm_stub_hash_entry *) \
2649 bfd_hash_lookup ((table), (string), (create), (copy)))
2650
21d799b5
NC
2651/* Array to keep track of which stub sections have been created, and
2652 information on stub grouping. */
2653struct map_stub
2654{
2655 /* This is the section to which stubs in the group will be
2656 attached. */
2657 asection *link_sec;
2658 /* The stub section. */
2659 asection *stub_sec;
2660};
2661
0855e32b
NS
2662#define elf32_arm_compute_jump_table_size(htab) \
2663 ((htab)->next_tls_desc_index * 4)
2664
9b485d32 2665/* ARM ELF linker hash table. */
252b5132 2666struct elf32_arm_link_hash_table
906e58ca
NC
2667{
2668 /* The main hash table. */
2669 struct elf_link_hash_table root;
252b5132 2670
906e58ca
NC
2671 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2672 bfd_size_type thumb_glue_size;
252b5132 2673
906e58ca
NC
2674 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2675 bfd_size_type arm_glue_size;
252b5132 2676
906e58ca
NC
2677 /* The size in bytes of section containing the ARMv4 BX veneers. */
2678 bfd_size_type bx_glue_size;
845b51d6 2679
906e58ca
NC
2680 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2681 veneer has been populated. */
2682 bfd_vma bx_glue_offset[15];
845b51d6 2683
906e58ca
NC
2684 /* The size in bytes of the section containing glue for VFP11 erratum
2685 veneers. */
2686 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2687
48229727
JB
2688 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2689 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2690 elf32_arm_write_section(). */
2691 struct a8_erratum_fix *a8_erratum_fixes;
2692 unsigned int num_a8_erratum_fixes;
2693
906e58ca
NC
2694 /* An arbitrary input BFD chosen to hold the glue sections. */
2695 bfd * bfd_of_glue_owner;
ba96a88f 2696
906e58ca
NC
2697 /* Nonzero to output a BE8 image. */
2698 int byteswap_code;
e489d0ae 2699
906e58ca
NC
2700 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2701 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2702 int target1_is_rel;
9c504268 2703
906e58ca
NC
2704 /* The relocation to use for R_ARM_TARGET2 relocations. */
2705 int target2_reloc;
eb043451 2706
906e58ca
NC
2707 /* 0 = Ignore R_ARM_V4BX.
2708 1 = Convert BX to MOV PC.
2709 2 = Generate v4 interworing stubs. */
2710 int fix_v4bx;
319850b4 2711
48229727
JB
2712 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2713 int fix_cortex_a8;
2714
906e58ca
NC
2715 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2716 int use_blx;
33bfe774 2717
906e58ca
NC
2718 /* What sort of code sequences we should look for which may trigger the
2719 VFP11 denorm erratum. */
2720 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2721
906e58ca
NC
2722 /* Global counter for the number of fixes we have emitted. */
2723 int num_vfp11_fixes;
c7b8f16e 2724
906e58ca
NC
2725 /* Nonzero to force PIC branch veneers. */
2726 int pic_veneer;
27e55c4d 2727
906e58ca
NC
2728 /* The number of bytes in the initial entry in the PLT. */
2729 bfd_size_type plt_header_size;
e5a52504 2730
906e58ca
NC
2731 /* The number of bytes in the subsequent PLT etries. */
2732 bfd_size_type plt_entry_size;
e5a52504 2733
906e58ca
NC
2734 /* True if the target system is VxWorks. */
2735 int vxworks_p;
00a97672 2736
906e58ca
NC
2737 /* True if the target system is Symbian OS. */
2738 int symbian_p;
e5a52504 2739
906e58ca
NC
2740 /* True if the target uses REL relocations. */
2741 int use_rel;
4e7fd91e 2742
0855e32b
NS
2743 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2744 bfd_vma next_tls_desc_index;
2745
2746 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2747 bfd_vma num_tls_desc;
2748
906e58ca 2749 /* Short-cuts to get to dynamic linker sections. */
906e58ca
NC
2750 asection *sdynbss;
2751 asection *srelbss;
5e681ec4 2752
906e58ca
NC
2753 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2754 asection *srelplt2;
00a97672 2755
0855e32b
NS
2756 /* The offset into splt of the PLT entry for the TLS descriptor
2757 resolver. Special values are 0, if not necessary (or not found
2758 to be necessary yet), and -1 if needed but not determined
2759 yet. */
2760 bfd_vma dt_tlsdesc_plt;
2761
2762 /* The offset into sgot of the GOT entry used by the PLT entry
2763 above. */
2764 bfd_vma dt_tlsdesc_got;
2765
2766 /* Offset in .plt section of tls_arm_trampoline. */
2767 bfd_vma tls_trampoline;
2768
906e58ca
NC
2769 /* Data for R_ARM_TLS_LDM32 relocations. */
2770 union
2771 {
2772 bfd_signed_vma refcount;
2773 bfd_vma offset;
2774 } tls_ldm_got;
b7693d02 2775
87d72d41
AM
2776 /* Small local sym cache. */
2777 struct sym_cache sym_cache;
906e58ca
NC
2778
2779 /* For convenience in allocate_dynrelocs. */
2780 bfd * obfd;
2781
0855e32b
NS
2782 /* The amount of space used by the reserved portion of the sgotplt
2783 section, plus whatever space is used by the jump slots. */
2784 bfd_vma sgotplt_jump_table_size;
2785
906e58ca
NC
2786 /* The stub hash table. */
2787 struct bfd_hash_table stub_hash_table;
2788
2789 /* Linker stub bfd. */
2790 bfd *stub_bfd;
2791
2792 /* Linker call-backs. */
2793 asection * (*add_stub_section) (const char *, asection *);
2794 void (*layout_sections_again) (void);
2795
2796 /* Array to keep track of which stub sections have been created, and
2797 information on stub grouping. */
21d799b5 2798 struct map_stub *stub_group;
906e58ca 2799
fe33d2fa
CL
2800 /* Number of elements in stub_group. */
2801 int top_id;
2802
906e58ca
NC
2803 /* Assorted information used by elf32_arm_size_stubs. */
2804 unsigned int bfd_count;
2805 int top_index;
2806 asection **input_list;
2807};
252b5132 2808
780a67af
NC
2809/* Create an entry in an ARM ELF linker hash table. */
2810
2811static struct bfd_hash_entry *
57e8b36a
NC
2812elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2813 struct bfd_hash_table * table,
2814 const char * string)
780a67af
NC
2815{
2816 struct elf32_arm_link_hash_entry * ret =
2817 (struct elf32_arm_link_hash_entry *) entry;
2818
2819 /* Allocate the structure if it has not already been allocated by a
2820 subclass. */
906e58ca 2821 if (ret == NULL)
21d799b5
NC
2822 ret = (struct elf32_arm_link_hash_entry *)
2823 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 2824 if (ret == NULL)
780a67af
NC
2825 return (struct bfd_hash_entry *) ret;
2826
2827 /* Call the allocation method of the superclass. */
2828 ret = ((struct elf32_arm_link_hash_entry *)
2829 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2830 table, string));
57e8b36a 2831 if (ret != NULL)
b7693d02 2832 {
0bdcacaf 2833 ret->dyn_relocs = NULL;
ba93b8ac 2834 ret->tls_type = GOT_UNKNOWN;
0855e32b 2835 ret->tlsdesc_got = (bfd_vma) -1;
b7693d02 2836 ret->plt_thumb_refcount = 0;
bd97cb95 2837 ret->plt_maybe_thumb_refcount = 0;
b7693d02 2838 ret->plt_got_offset = -1;
a4fd1a8e 2839 ret->export_glue = NULL;
906e58ca
NC
2840
2841 ret->stub_cache = NULL;
b7693d02 2842 }
780a67af
NC
2843
2844 return (struct bfd_hash_entry *) ret;
2845}
2846
906e58ca
NC
2847/* Initialize an entry in the stub hash table. */
2848
2849static struct bfd_hash_entry *
2850stub_hash_newfunc (struct bfd_hash_entry *entry,
2851 struct bfd_hash_table *table,
2852 const char *string)
2853{
2854 /* Allocate the structure if it has not already been allocated by a
2855 subclass. */
2856 if (entry == NULL)
2857 {
21d799b5
NC
2858 entry = (struct bfd_hash_entry *)
2859 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
2860 if (entry == NULL)
2861 return entry;
2862 }
2863
2864 /* Call the allocation method of the superclass. */
2865 entry = bfd_hash_newfunc (entry, table, string);
2866 if (entry != NULL)
2867 {
2868 struct elf32_arm_stub_hash_entry *eh;
2869
2870 /* Initialize the local fields. */
2871 eh = (struct elf32_arm_stub_hash_entry *) entry;
2872 eh->stub_sec = NULL;
2873 eh->stub_offset = 0;
2874 eh->target_value = 0;
2875 eh->target_section = NULL;
cedfb179
DK
2876 eh->target_addend = 0;
2877 eh->orig_insn = 0;
906e58ca 2878 eh->stub_type = arm_stub_none;
461a49ca
DJ
2879 eh->stub_size = 0;
2880 eh->stub_template = NULL;
2881 eh->stub_template_size = 0;
906e58ca
NC
2882 eh->h = NULL;
2883 eh->id_sec = NULL;
d8d2f433 2884 eh->output_name = NULL;
906e58ca
NC
2885 }
2886
2887 return entry;
2888}
2889
00a97672 2890/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
2891 shortcuts to them in our hash table. */
2892
2893static bfd_boolean
57e8b36a 2894create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2895{
2896 struct elf32_arm_link_hash_table *htab;
2897
e5a52504 2898 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
2899 if (htab == NULL)
2900 return FALSE;
2901
e5a52504
MM
2902 /* BPABI objects never have a GOT, or associated sections. */
2903 if (htab->symbian_p)
2904 return TRUE;
2905
5e681ec4
PB
2906 if (! _bfd_elf_create_got_section (dynobj, info))
2907 return FALSE;
2908
5e681ec4
PB
2909 return TRUE;
2910}
2911
00a97672
RS
2912/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2913 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
2914 hash table. */
2915
2916static bfd_boolean
57e8b36a 2917elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2918{
2919 struct elf32_arm_link_hash_table *htab;
2920
2921 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
2922 if (htab == NULL)
2923 return FALSE;
2924
362d30a1 2925 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
2926 return FALSE;
2927
2928 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2929 return FALSE;
2930
5e681ec4
PB
2931 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2932 if (!info->shared)
00a97672
RS
2933 htab->srelbss = bfd_get_section_by_name (dynobj,
2934 RELOC_SECTION (htab, ".bss"));
2935
2936 if (htab->vxworks_p)
2937 {
2938 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2939 return FALSE;
2940
2941 if (info->shared)
2942 {
2943 htab->plt_header_size = 0;
2944 htab->plt_entry_size
2945 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2946 }
2947 else
2948 {
2949 htab->plt_header_size
2950 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2951 htab->plt_entry_size
2952 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2953 }
2954 }
5e681ec4 2955
362d30a1
RS
2956 if (!htab->root.splt
2957 || !htab->root.srelplt
e5a52504 2958 || !htab->sdynbss
5e681ec4
PB
2959 || (!info->shared && !htab->srelbss))
2960 abort ();
2961
2962 return TRUE;
2963}
2964
906e58ca
NC
2965/* Copy the extra info we tack onto an elf_link_hash_entry. */
2966
2967static void
2968elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2969 struct elf_link_hash_entry *dir,
2970 struct elf_link_hash_entry *ind)
2971{
2972 struct elf32_arm_link_hash_entry *edir, *eind;
2973
2974 edir = (struct elf32_arm_link_hash_entry *) dir;
2975 eind = (struct elf32_arm_link_hash_entry *) ind;
2976
0bdcacaf 2977 if (eind->dyn_relocs != NULL)
906e58ca 2978 {
0bdcacaf 2979 if (edir->dyn_relocs != NULL)
906e58ca 2980 {
0bdcacaf
RS
2981 struct elf_dyn_relocs **pp;
2982 struct elf_dyn_relocs *p;
906e58ca
NC
2983
2984 /* Add reloc counts against the indirect sym to the direct sym
2985 list. Merge any entries against the same section. */
0bdcacaf 2986 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
906e58ca 2987 {
0bdcacaf 2988 struct elf_dyn_relocs *q;
906e58ca 2989
0bdcacaf
RS
2990 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2991 if (q->sec == p->sec)
906e58ca
NC
2992 {
2993 q->pc_count += p->pc_count;
2994 q->count += p->count;
2995 *pp = p->next;
2996 break;
2997 }
2998 if (q == NULL)
2999 pp = &p->next;
3000 }
0bdcacaf 3001 *pp = edir->dyn_relocs;
906e58ca
NC
3002 }
3003
0bdcacaf
RS
3004 edir->dyn_relocs = eind->dyn_relocs;
3005 eind->dyn_relocs = NULL;
906e58ca
NC
3006 }
3007
3008 if (ind->root.type == bfd_link_hash_indirect)
3009 {
3010 /* Copy over PLT info. */
3011 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
3012 eind->plt_thumb_refcount = 0;
3013 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
3014 eind->plt_maybe_thumb_refcount = 0;
3015
3016 if (dir->got.refcount <= 0)
3017 {
3018 edir->tls_type = eind->tls_type;
3019 eind->tls_type = GOT_UNKNOWN;
3020 }
3021 }
3022
3023 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3024}
3025
3026/* Create an ARM elf linker hash table. */
3027
3028static struct bfd_link_hash_table *
3029elf32_arm_link_hash_table_create (bfd *abfd)
3030{
3031 struct elf32_arm_link_hash_table *ret;
3032 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3033
21d799b5 3034 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
906e58ca
NC
3035 if (ret == NULL)
3036 return NULL;
3037
3038 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3039 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
3040 sizeof (struct elf32_arm_link_hash_entry),
3041 ARM_ELF_DATA))
906e58ca
NC
3042 {
3043 free (ret);
3044 return NULL;
3045 }
3046
906e58ca
NC
3047 ret->sdynbss = NULL;
3048 ret->srelbss = NULL;
3049 ret->srelplt2 = NULL;
0855e32b
NS
3050 ret->dt_tlsdesc_plt = 0;
3051 ret->dt_tlsdesc_got = 0;
3052 ret->tls_trampoline = 0;
3053 ret->next_tls_desc_index = 0;
3054 ret->num_tls_desc = 0;
906e58ca
NC
3055 ret->thumb_glue_size = 0;
3056 ret->arm_glue_size = 0;
3057 ret->bx_glue_size = 0;
3058 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
3059 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3060 ret->vfp11_erratum_glue_size = 0;
3061 ret->num_vfp11_fixes = 0;
48229727 3062 ret->fix_cortex_a8 = 0;
906e58ca
NC
3063 ret->bfd_of_glue_owner = NULL;
3064 ret->byteswap_code = 0;
3065 ret->target1_is_rel = 0;
3066 ret->target2_reloc = R_ARM_NONE;
3067#ifdef FOUR_WORD_PLT
3068 ret->plt_header_size = 16;
3069 ret->plt_entry_size = 16;
3070#else
3071 ret->plt_header_size = 20;
3072 ret->plt_entry_size = 12;
3073#endif
3074 ret->fix_v4bx = 0;
3075 ret->use_blx = 0;
3076 ret->vxworks_p = 0;
3077 ret->symbian_p = 0;
3078 ret->use_rel = 1;
87d72d41 3079 ret->sym_cache.abfd = NULL;
906e58ca
NC
3080 ret->obfd = abfd;
3081 ret->tls_ldm_got.refcount = 0;
6cee0a6f
L
3082 ret->stub_bfd = NULL;
3083 ret->add_stub_section = NULL;
3084 ret->layout_sections_again = NULL;
3085 ret->stub_group = NULL;
fe33d2fa 3086 ret->top_id = 0;
6cee0a6f
L
3087 ret->bfd_count = 0;
3088 ret->top_index = 0;
3089 ret->input_list = NULL;
906e58ca
NC
3090
3091 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3092 sizeof (struct elf32_arm_stub_hash_entry)))
3093 {
3094 free (ret);
3095 return NULL;
3096 }
3097
3098 return &ret->root.root;
3099}
3100
3101/* Free the derived linker hash table. */
3102
3103static void
3104elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3105{
3106 struct elf32_arm_link_hash_table *ret
3107 = (struct elf32_arm_link_hash_table *) hash;
3108
3109 bfd_hash_table_free (&ret->stub_hash_table);
3110 _bfd_generic_link_hash_table_free (hash);
3111}
3112
3113/* Determine if we're dealing with a Thumb only architecture. */
3114
3115static bfd_boolean
3116using_thumb_only (struct elf32_arm_link_hash_table *globals)
3117{
3118 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3119 Tag_CPU_arch);
3120 int profile;
3121
41ed1ee7
DJ
3122 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3123 return TRUE;
3124
9e3c6df6 3125 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
906e58ca
NC
3126 return FALSE;
3127
3128 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3129 Tag_CPU_arch_profile);
3130
3131 return profile == 'M';
3132}
3133
3134/* Determine if we're dealing with a Thumb-2 object. */
3135
3136static bfd_boolean
3137using_thumb2 (struct elf32_arm_link_hash_table *globals)
3138{
3139 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3140 Tag_CPU_arch);
3141 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3142}
3143
cd1dac3d
DG
3144/* Determine what kind of NOPs are available. */
3145
3146static bfd_boolean
3147arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3148{
3149 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3150 Tag_CPU_arch);
3151 return arch == TAG_CPU_ARCH_V6T2
3152 || arch == TAG_CPU_ARCH_V6K
9e3c6df6
PB
3153 || arch == TAG_CPU_ARCH_V7
3154 || arch == TAG_CPU_ARCH_V7E_M;
cd1dac3d
DG
3155}
3156
3157static bfd_boolean
3158arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3159{
3160 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3161 Tag_CPU_arch);
9e3c6df6
PB
3162 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3163 || arch == TAG_CPU_ARCH_V7E_M);
cd1dac3d
DG
3164}
3165
f4ac8484
DJ
3166static bfd_boolean
3167arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3168{
3169 switch (stub_type)
3170 {
fea2b4d6
CL
3171 case arm_stub_long_branch_thumb_only:
3172 case arm_stub_long_branch_v4t_thumb_arm:
3173 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4
CL
3174 case arm_stub_long_branch_v4t_thumb_arm_pic:
3175 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
3176 return TRUE;
3177 case arm_stub_none:
3178 BFD_FAIL ();
3179 return FALSE;
3180 break;
3181 default:
3182 return FALSE;
3183 }
3184}
3185
906e58ca
NC
3186/* Determine the type of stub needed, if any, for a call. */
3187
3188static enum elf32_arm_stub_type
3189arm_type_of_stub (struct bfd_link_info *info,
3190 asection *input_sec,
3191 const Elf_Internal_Rela *rel,
fe33d2fa 3192 int *actual_st_type,
906e58ca 3193 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3194 bfd_vma destination,
3195 asection *sym_sec,
3196 bfd *input_bfd,
3197 const char *name)
906e58ca
NC
3198{
3199 bfd_vma location;
3200 bfd_signed_vma branch_offset;
3201 unsigned int r_type;
3202 struct elf32_arm_link_hash_table * globals;
3203 int thumb2;
3204 int thumb_only;
3205 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3206 int use_plt = 0;
fe33d2fa 3207 int st_type = *actual_st_type;
906e58ca 3208
da5938a2 3209 /* We don't know the actual type of destination in case it is of
8029a119 3210 type STT_SECTION: give up. */
da5938a2
NC
3211 if (st_type == STT_SECTION)
3212 return stub_type;
3213
906e58ca 3214 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3215 if (globals == NULL)
3216 return stub_type;
906e58ca
NC
3217
3218 thumb_only = using_thumb_only (globals);
3219
3220 thumb2 = using_thumb2 (globals);
3221
3222 /* Determine where the call point is. */
3223 location = (input_sec->output_offset
3224 + input_sec->output_section->vma
3225 + rel->r_offset);
3226
906e58ca
NC
3227 r_type = ELF32_R_TYPE (rel->r_info);
3228
5fa9e92f 3229 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 3230 if (globals->root.splt != NULL
fe33d2fa
CL
3231 && hash != NULL
3232 && hash->root.plt.offset != (bfd_vma) -1)
5fa9e92f
CL
3233 {
3234 use_plt = 1;
fe33d2fa 3235
5fa9e92f
CL
3236 /* Note when dealing with PLT entries: the main PLT stub is in
3237 ARM mode, so if the branch is in Thumb mode, another
3238 Thumb->ARM stub will be inserted later just before the ARM
3239 PLT stub. We don't take this extra distance into account
3240 here, because if a long branch stub is needed, we'll add a
3241 Thumb->Arm one and branch directly to the ARM PLT entry
3242 because it avoids spreading offset corrections in several
3243 places. */
fe33d2fa 3244
362d30a1
RS
3245 destination = (globals->root.splt->output_section->vma
3246 + globals->root.splt->output_offset
fe33d2fa
CL
3247 + hash->root.plt.offset);
3248 st_type = STT_FUNC;
5fa9e92f 3249 }
906e58ca 3250
fe33d2fa
CL
3251 branch_offset = (bfd_signed_vma)(destination - location);
3252
0855e32b
NS
3253 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3254 || r_type == R_ARM_THM_TLS_CALL)
906e58ca 3255 {
5fa9e92f
CL
3256 /* Handle cases where:
3257 - this call goes too far (different Thumb/Thumb2 max
3258 distance)
155d87d7
CL
3259 - it's a Thumb->Arm call and blx is not available, or it's a
3260 Thumb->Arm branch (not bl). A stub is needed in this case,
3261 but only if this call is not through a PLT entry. Indeed,
3262 PLT stubs handle mode switching already.
5fa9e92f 3263 */
906e58ca
NC
3264 if ((!thumb2
3265 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3266 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3267 || (thumb2
3268 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3269 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
5fa9e92f 3270 || ((st_type != STT_ARM_TFUNC)
0855e32b
NS
3271 && (((r_type == R_ARM_THM_CALL
3272 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
155d87d7 3273 || (r_type == R_ARM_THM_JUMP24))
5fa9e92f 3274 && !use_plt))
906e58ca
NC
3275 {
3276 if (st_type == STT_ARM_TFUNC)
3277 {
3278 /* Thumb to thumb. */
3279 if (!thumb_only)
3280 {
3281 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3282 /* PIC stubs. */
155d87d7
CL
3283 ? ((globals->use_blx
3284 && (r_type ==R_ARM_THM_CALL))
3285 /* V5T and above. Stub starts with ARM code, so
3286 we must be able to switch mode before
3287 reaching it, which is only possible for 'bl'
3288 (ie R_ARM_THM_CALL relocation). */
cf3eccff 3289 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 3290 /* On V4T, use Thumb code only. */
d3626fb0 3291 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
3292
3293 /* non-PIC stubs. */
155d87d7
CL
3294 : ((globals->use_blx
3295 && (r_type ==R_ARM_THM_CALL))
c2b4a39d
CL
3296 /* V5T and above. */
3297 ? arm_stub_long_branch_any_any
3298 /* V4T. */
d3626fb0 3299 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
3300 }
3301 else
3302 {
3303 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
3304 /* PIC stub. */
3305 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
3306 /* non-PIC stub. */
3307 : arm_stub_long_branch_thumb_only;
906e58ca
NC
3308 }
3309 }
3310 else
3311 {
3312 /* Thumb to arm. */
c820be07
NC
3313 if (sym_sec != NULL
3314 && sym_sec->owner != NULL
3315 && !INTERWORK_FLAG (sym_sec->owner))
3316 {
3317 (*_bfd_error_handler)
3318 (_("%B(%s): warning: interworking not enabled.\n"
3319 " first occurrence: %B: Thumb call to ARM"),
3320 sym_sec->owner, input_bfd, name);
3321 }
3322
0855e32b
NS
3323 stub_type =
3324 (info->shared | globals->pic_veneer)
c2b4a39d 3325 /* PIC stubs. */
0855e32b
NS
3326 ? (r_type == R_ARM_THM_TLS_CALL
3327 /* TLS PIC stubs */
3328 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3329 : arm_stub_long_branch_v4t_thumb_tls_pic)
3330 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3331 /* V5T PIC and above. */
3332 ? arm_stub_long_branch_any_arm_pic
3333 /* V4T PIC stub. */
3334 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
3335
3336 /* non-PIC stubs. */
0855e32b 3337 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
3338 /* V5T and above. */
3339 ? arm_stub_long_branch_any_any
3340 /* V4T. */
3341 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
3342
3343 /* Handle v4t short branches. */
fea2b4d6 3344 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
3345 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3346 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 3347 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
3348 }
3349 }
3350 }
fe33d2fa
CL
3351 else if (r_type == R_ARM_CALL
3352 || r_type == R_ARM_JUMP24
0855e32b
NS
3353 || r_type == R_ARM_PLT32
3354 || r_type == R_ARM_TLS_CALL)
906e58ca
NC
3355 {
3356 if (st_type == STT_ARM_TFUNC)
3357 {
3358 /* Arm to thumb. */
c820be07
NC
3359
3360 if (sym_sec != NULL
3361 && sym_sec->owner != NULL
3362 && !INTERWORK_FLAG (sym_sec->owner))
3363 {
3364 (*_bfd_error_handler)
3365 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 3366 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
3367 sym_sec->owner, input_bfd, name);
3368 }
3369
3370 /* We have an extra 2-bytes reach because of
3371 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
3372 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3373 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 3374 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
3375 || (r_type == R_ARM_JUMP24)
3376 || (r_type == R_ARM_PLT32))
906e58ca
NC
3377 {
3378 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3379 /* PIC stubs. */
ebe24dd4
CL
3380 ? ((globals->use_blx)
3381 /* V5T and above. */
3382 ? arm_stub_long_branch_any_thumb_pic
3383 /* V4T stub. */
3384 : arm_stub_long_branch_v4t_arm_thumb_pic)
3385
c2b4a39d
CL
3386 /* non-PIC stubs. */
3387 : ((globals->use_blx)
3388 /* V5T and above. */
3389 ? arm_stub_long_branch_any_any
3390 /* V4T. */
3391 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3392 }
3393 }
3394 else
3395 {
3396 /* Arm to arm. */
3397 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3398 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3399 {
0855e32b
NS
3400 stub_type =
3401 (info->shared | globals->pic_veneer)
c2b4a39d 3402 /* PIC stubs. */
0855e32b
NS
3403 ? (r_type == R_ARM_TLS_CALL
3404 /* TLS PIC Stub */
3405 ? arm_stub_long_branch_any_tls_pic
3406 : arm_stub_long_branch_any_arm_pic)
c2b4a39d 3407 /* non-PIC stubs. */
fea2b4d6 3408 : arm_stub_long_branch_any_any;
906e58ca
NC
3409 }
3410 }
3411 }
3412
fe33d2fa
CL
3413 /* If a stub is needed, record the actual destination type. */
3414 if (stub_type != arm_stub_none)
9ae92b05 3415 *actual_st_type = st_type;
fe33d2fa 3416
906e58ca
NC
3417 return stub_type;
3418}
3419
3420/* Build a name for an entry in the stub hash table. */
3421
3422static char *
3423elf32_arm_stub_name (const asection *input_section,
3424 const asection *sym_sec,
3425 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
3426 const Elf_Internal_Rela *rel,
3427 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3428{
3429 char *stub_name;
3430 bfd_size_type len;
3431
3432 if (hash)
3433 {
fe33d2fa 3434 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 3435 stub_name = (char *) bfd_malloc (len);
906e58ca 3436 if (stub_name != NULL)
fe33d2fa 3437 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
3438 input_section->id & 0xffffffff,
3439 hash->root.root.root.string,
fe33d2fa
CL
3440 (int) rel->r_addend & 0xffffffff,
3441 (int) stub_type);
906e58ca
NC
3442 }
3443 else
3444 {
fe33d2fa 3445 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 3446 stub_name = (char *) bfd_malloc (len);
906e58ca 3447 if (stub_name != NULL)
fe33d2fa 3448 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
3449 input_section->id & 0xffffffff,
3450 sym_sec->id & 0xffffffff,
0855e32b
NS
3451 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3452 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3453 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
3454 (int) rel->r_addend & 0xffffffff,
3455 (int) stub_type);
906e58ca
NC
3456 }
3457
3458 return stub_name;
3459}
3460
3461/* Look up an entry in the stub hash. Stub entries are cached because
3462 creating the stub name takes a bit of time. */
3463
3464static struct elf32_arm_stub_hash_entry *
3465elf32_arm_get_stub_entry (const asection *input_section,
3466 const asection *sym_sec,
3467 struct elf_link_hash_entry *hash,
3468 const Elf_Internal_Rela *rel,
fe33d2fa
CL
3469 struct elf32_arm_link_hash_table *htab,
3470 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3471{
3472 struct elf32_arm_stub_hash_entry *stub_entry;
3473 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3474 const asection *id_sec;
3475
3476 if ((input_section->flags & SEC_CODE) == 0)
3477 return NULL;
3478
3479 /* If this input section is part of a group of sections sharing one
3480 stub section, then use the id of the first section in the group.
3481 Stub names need to include a section id, as there may well be
3482 more than one stub used to reach say, printf, and we need to
3483 distinguish between them. */
3484 id_sec = htab->stub_group[input_section->id].link_sec;
3485
3486 if (h != NULL && h->stub_cache != NULL
3487 && h->stub_cache->h == h
fe33d2fa
CL
3488 && h->stub_cache->id_sec == id_sec
3489 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
3490 {
3491 stub_entry = h->stub_cache;
3492 }
3493 else
3494 {
3495 char *stub_name;
3496
fe33d2fa 3497 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
3498 if (stub_name == NULL)
3499 return NULL;
3500
3501 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3502 stub_name, FALSE, FALSE);
3503 if (h != NULL)
3504 h->stub_cache = stub_entry;
3505
3506 free (stub_name);
3507 }
3508
3509 return stub_entry;
3510}
3511
48229727
JB
3512/* Find or create a stub section. Returns a pointer to the stub section, and
3513 the section to which the stub section will be attached (in *LINK_SEC_P).
3514 LINK_SEC_P may be NULL. */
906e58ca 3515
48229727
JB
3516static asection *
3517elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3518 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3519{
3520 asection *link_sec;
3521 asection *stub_sec;
906e58ca
NC
3522
3523 link_sec = htab->stub_group[section->id].link_sec;
3524 stub_sec = htab->stub_group[section->id].stub_sec;
3525 if (stub_sec == NULL)
3526 {
3527 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3528 if (stub_sec == NULL)
3529 {
3530 size_t namelen;
3531 bfd_size_type len;
3532 char *s_name;
3533
3534 namelen = strlen (link_sec->name);
3535 len = namelen + sizeof (STUB_SUFFIX);
21d799b5 3536 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
906e58ca
NC
3537 if (s_name == NULL)
3538 return NULL;
3539
3540 memcpy (s_name, link_sec->name, namelen);
3541 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3542 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3543 if (stub_sec == NULL)
3544 return NULL;
3545 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3546 }
3547 htab->stub_group[section->id].stub_sec = stub_sec;
3548 }
48229727
JB
3549
3550 if (link_sec_p)
3551 *link_sec_p = link_sec;
3552
3553 return stub_sec;
3554}
3555
3556/* Add a new stub entry to the stub hash. Not all fields of the new
3557 stub entry are initialised. */
3558
3559static struct elf32_arm_stub_hash_entry *
3560elf32_arm_add_stub (const char *stub_name,
3561 asection *section,
3562 struct elf32_arm_link_hash_table *htab)
3563{
3564 asection *link_sec;
3565 asection *stub_sec;
3566 struct elf32_arm_stub_hash_entry *stub_entry;
3567
3568 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3569 if (stub_sec == NULL)
3570 return NULL;
906e58ca
NC
3571
3572 /* Enter this entry into the linker stub hash table. */
3573 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3574 TRUE, FALSE);
3575 if (stub_entry == NULL)
3576 {
3577 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3578 section->owner,
3579 stub_name);
3580 return NULL;
3581 }
3582
3583 stub_entry->stub_sec = stub_sec;
3584 stub_entry->stub_offset = 0;
3585 stub_entry->id_sec = link_sec;
3586
906e58ca
NC
3587 return stub_entry;
3588}
3589
3590/* Store an Arm insn into an output section not processed by
3591 elf32_arm_write_section. */
3592
3593static void
8029a119
NC
3594put_arm_insn (struct elf32_arm_link_hash_table * htab,
3595 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3596{
3597 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3598 bfd_putl32 (val, ptr);
3599 else
3600 bfd_putb32 (val, ptr);
3601}
3602
3603/* Store a 16-bit Thumb insn into an output section not processed by
3604 elf32_arm_write_section. */
3605
3606static void
8029a119
NC
3607put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3608 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3609{
3610 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3611 bfd_putl16 (val, ptr);
3612 else
3613 bfd_putb16 (val, ptr);
3614}
3615
0855e32b
NS
3616/* If it's possible to change R_TYPE to a more efficient access
3617 model, return the new reloc type. */
3618
3619static unsigned
3620elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3621 struct elf_link_hash_entry *h)
3622{
3623 int is_local = (h == NULL);
3624
3625 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3626 return r_type;
3627
3628 /* We do not support relaxations for Old TLS models. */
3629 switch (r_type)
3630 {
3631 case R_ARM_TLS_GOTDESC:
3632 case R_ARM_TLS_CALL:
3633 case R_ARM_THM_TLS_CALL:
3634 case R_ARM_TLS_DESCSEQ:
3635 case R_ARM_THM_TLS_DESCSEQ:
3636 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
3637 }
3638
3639 return r_type;
3640}
3641
48229727
JB
3642static bfd_reloc_status_type elf32_arm_final_link_relocate
3643 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3644 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3645 const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3646
4563a860
JB
3647static unsigned int
3648arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
3649{
3650 switch (stub_type)
3651 {
3652 case arm_stub_a8_veneer_b_cond:
3653 case arm_stub_a8_veneer_b:
3654 case arm_stub_a8_veneer_bl:
3655 return 2;
3656
3657 case arm_stub_long_branch_any_any:
3658 case arm_stub_long_branch_v4t_arm_thumb:
3659 case arm_stub_long_branch_thumb_only:
3660 case arm_stub_long_branch_v4t_thumb_thumb:
3661 case arm_stub_long_branch_v4t_thumb_arm:
3662 case arm_stub_short_branch_v4t_thumb_arm:
3663 case arm_stub_long_branch_any_arm_pic:
3664 case arm_stub_long_branch_any_thumb_pic:
3665 case arm_stub_long_branch_v4t_thumb_thumb_pic:
3666 case arm_stub_long_branch_v4t_arm_thumb_pic:
3667 case arm_stub_long_branch_v4t_thumb_arm_pic:
3668 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
3669 case arm_stub_long_branch_any_tls_pic:
3670 case arm_stub_long_branch_v4t_thumb_tls_pic:
4563a860
JB
3671 case arm_stub_a8_veneer_blx:
3672 return 4;
3673
3674 default:
3675 abort (); /* Should be unreachable. */
3676 }
3677}
3678
906e58ca
NC
3679static bfd_boolean
3680arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3681 void * in_arg)
3682{
48229727 3683#define MAXRELOCS 2
906e58ca 3684 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 3685 struct elf32_arm_link_hash_table *globals;
906e58ca 3686 struct bfd_link_info *info;
906e58ca
NC
3687 asection *stub_sec;
3688 bfd *stub_bfd;
906e58ca
NC
3689 bfd_byte *loc;
3690 bfd_vma sym_value;
3691 int template_size;
3692 int size;
d3ce72d0 3693 const insn_sequence *template_sequence;
906e58ca 3694 int i;
48229727
JB
3695 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3696 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3697 int nrelocs = 0;
906e58ca
NC
3698
3699 /* Massage our args to the form they really have. */
3700 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3701 info = (struct bfd_link_info *) in_arg;
3702
3703 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3704 if (globals == NULL)
3705 return FALSE;
906e58ca 3706
906e58ca
NC
3707 stub_sec = stub_entry->stub_sec;
3708
4dfe6ac6 3709 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
3710 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
3711 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 3712 return TRUE;
fe33d2fa 3713
906e58ca
NC
3714 /* Make a note of the offset within the stubs for this entry. */
3715 stub_entry->stub_offset = stub_sec->size;
3716 loc = stub_sec->contents + stub_entry->stub_offset;
3717
3718 stub_bfd = stub_sec->owner;
3719
906e58ca
NC
3720 /* This is the address of the stub destination. */
3721 sym_value = (stub_entry->target_value
3722 + stub_entry->target_section->output_offset
3723 + stub_entry->target_section->output_section->vma);
3724
d3ce72d0 3725 template_sequence = stub_entry->stub_template;
461a49ca 3726 template_size = stub_entry->stub_template_size;
906e58ca
NC
3727
3728 size = 0;
461a49ca 3729 for (i = 0; i < template_size; i++)
906e58ca 3730 {
d3ce72d0 3731 switch (template_sequence[i].type)
461a49ca
DJ
3732 {
3733 case THUMB16_TYPE:
48229727 3734 {
d3ce72d0
NC
3735 bfd_vma data = (bfd_vma) template_sequence[i].data;
3736 if (template_sequence[i].reloc_addend != 0)
48229727
JB
3737 {
3738 /* We've borrowed the reloc_addend field to mean we should
3739 insert a condition code into this (Thumb-1 branch)
3740 instruction. See THUMB16_BCOND_INSN. */
3741 BFD_ASSERT ((data & 0xff00) == 0xd000);
3742 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3743 }
fe33d2fa 3744 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
3745 size += 2;
3746 }
461a49ca 3747 break;
906e58ca 3748
48229727 3749 case THUMB32_TYPE:
fe33d2fa
CL
3750 bfd_put_16 (stub_bfd,
3751 (template_sequence[i].data >> 16) & 0xffff,
3752 loc + size);
3753 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
3754 loc + size + 2);
d3ce72d0 3755 if (template_sequence[i].r_type != R_ARM_NONE)
48229727
JB
3756 {
3757 stub_reloc_idx[nrelocs] = i;
3758 stub_reloc_offset[nrelocs++] = size;
3759 }
3760 size += 4;
3761 break;
3762
461a49ca 3763 case ARM_TYPE:
fe33d2fa
CL
3764 bfd_put_32 (stub_bfd, template_sequence[i].data,
3765 loc + size);
461a49ca
DJ
3766 /* Handle cases where the target is encoded within the
3767 instruction. */
d3ce72d0 3768 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 3769 {
48229727
JB
3770 stub_reloc_idx[nrelocs] = i;
3771 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
3772 }
3773 size += 4;
3774 break;
3775
3776 case DATA_TYPE:
d3ce72d0 3777 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
3778 stub_reloc_idx[nrelocs] = i;
3779 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
3780 size += 4;
3781 break;
3782
3783 default:
3784 BFD_FAIL ();
3785 return FALSE;
3786 }
906e58ca 3787 }
461a49ca 3788
906e58ca
NC
3789 stub_sec->size += size;
3790
461a49ca
DJ
3791 /* Stub size has already been computed in arm_size_one_stub. Check
3792 consistency. */
3793 BFD_ASSERT (size == stub_entry->stub_size);
3794
906e58ca
NC
3795 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3796 if (stub_entry->st_type == STT_ARM_TFUNC)
3797 sym_value |= 1;
3798
48229727
JB
3799 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3800 in each stub. */
3801 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
c820be07 3802
48229727 3803 for (i = 0; i < nrelocs; i++)
d3ce72d0
NC
3804 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3805 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3806 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3807 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
48229727
JB
3808 {
3809 Elf_Internal_Rela rel;
3810 bfd_boolean unresolved_reloc;
3811 char *error_message;
3812 int sym_flags
d3ce72d0 3813 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
48229727
JB
3814 ? STT_ARM_TFUNC : 0;
3815 bfd_vma points_to = sym_value + stub_entry->target_addend;
3816
3817 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
d3ce72d0
NC
3818 rel.r_info = ELF32_R_INFO (0,
3819 template_sequence[stub_reloc_idx[i]].r_type);
3820 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
48229727
JB
3821
3822 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3823 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3824 template should refer back to the instruction after the original
3825 branch. */
3826 points_to = sym_value;
3827
33c6a8fc
JB
3828 /* There may be unintended consequences if this is not true. */
3829 BFD_ASSERT (stub_entry->h == NULL);
3830
48229727
JB
3831 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3832 properly. We should probably use this function unconditionally,
3833 rather than only for certain relocations listed in the enclosing
3834 conditional, for the sake of consistency. */
3835 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 3836 (template_sequence[stub_reloc_idx[i]].r_type),
48229727
JB
3837 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3838 points_to, info, stub_entry->target_section, "", sym_flags,
33c6a8fc 3839 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
48229727
JB
3840 &error_message);
3841 }
3842 else
3843 {
fe33d2fa
CL
3844 Elf_Internal_Rela rel;
3845 bfd_boolean unresolved_reloc;
3846 char *error_message;
3847 bfd_vma points_to = sym_value + stub_entry->target_addend
3848 + template_sequence[stub_reloc_idx[i]].reloc_addend;
3849
3850 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3851 rel.r_info = ELF32_R_INFO (0,
3852 template_sequence[stub_reloc_idx[i]].r_type);
3853 rel.r_addend = 0;
3854
3855 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3856 (template_sequence[stub_reloc_idx[i]].r_type),
3857 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3858 points_to, info, stub_entry->target_section, "", stub_entry->st_type,
3859 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3860 &error_message);
48229727 3861 }
906e58ca
NC
3862
3863 return TRUE;
48229727 3864#undef MAXRELOCS
906e58ca
NC
3865}
3866
48229727
JB
3867/* Calculate the template, template size and instruction size for a stub.
3868 Return value is the instruction size. */
906e58ca 3869
48229727
JB
3870static unsigned int
3871find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3872 const insn_sequence **stub_template,
3873 int *stub_template_size)
906e58ca 3874{
d3ce72d0 3875 const insn_sequence *template_sequence = NULL;
48229727
JB
3876 int template_size = 0, i;
3877 unsigned int size;
906e58ca 3878
d3ce72d0 3879 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
3880 if (stub_template)
3881 *stub_template = template_sequence;
3882
48229727 3883 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
3884 if (stub_template_size)
3885 *stub_template_size = template_size;
906e58ca
NC
3886
3887 size = 0;
461a49ca
DJ
3888 for (i = 0; i < template_size; i++)
3889 {
d3ce72d0 3890 switch (template_sequence[i].type)
461a49ca
DJ
3891 {
3892 case THUMB16_TYPE:
3893 size += 2;
3894 break;
3895
3896 case ARM_TYPE:
48229727 3897 case THUMB32_TYPE:
461a49ca
DJ
3898 case DATA_TYPE:
3899 size += 4;
3900 break;
3901
3902 default:
3903 BFD_FAIL ();
2a229407 3904 return 0;
461a49ca
DJ
3905 }
3906 }
3907
48229727
JB
3908 return size;
3909}
3910
3911/* As above, but don't actually build the stub. Just bump offset so
3912 we know stub section sizes. */
3913
3914static bfd_boolean
3915arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 3916 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
3917{
3918 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 3919 const insn_sequence *template_sequence;
48229727
JB
3920 int template_size, size;
3921
3922 /* Massage our args to the form they really have. */
3923 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
3924
3925 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3926 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3927
d3ce72d0 3928 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
3929 &template_size);
3930
461a49ca 3931 stub_entry->stub_size = size;
d3ce72d0 3932 stub_entry->stub_template = template_sequence;
461a49ca
DJ
3933 stub_entry->stub_template_size = template_size;
3934
906e58ca
NC
3935 size = (size + 7) & ~7;
3936 stub_entry->stub_sec->size += size;
461a49ca 3937
906e58ca
NC
3938 return TRUE;
3939}
3940
3941/* External entry points for sizing and building linker stubs. */
3942
3943/* Set up various things so that we can make a list of input sections
3944 for each output section included in the link. Returns -1 on error,
3945 0 when no stubs will be needed, and 1 on success. */
3946
3947int
3948elf32_arm_setup_section_lists (bfd *output_bfd,
3949 struct bfd_link_info *info)
3950{
3951 bfd *input_bfd;
3952 unsigned int bfd_count;
3953 int top_id, top_index;
3954 asection *section;
3955 asection **input_list, **list;
3956 bfd_size_type amt;
3957 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3958
4dfe6ac6
NC
3959 if (htab == NULL)
3960 return 0;
906e58ca
NC
3961 if (! is_elf_hash_table (htab))
3962 return 0;
3963
3964 /* Count the number of input BFDs and find the top input section id. */
3965 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3966 input_bfd != NULL;
3967 input_bfd = input_bfd->link_next)
3968 {
3969 bfd_count += 1;
3970 for (section = input_bfd->sections;
3971 section != NULL;
3972 section = section->next)
3973 {
3974 if (top_id < section->id)
3975 top_id = section->id;
3976 }
3977 }
3978 htab->bfd_count = bfd_count;
3979
3980 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 3981 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
3982 if (htab->stub_group == NULL)
3983 return -1;
fe33d2fa 3984 htab->top_id = top_id;
906e58ca
NC
3985
3986 /* We can't use output_bfd->section_count here to find the top output
3987 section index as some sections may have been removed, and
3988 _bfd_strip_section_from_output doesn't renumber the indices. */
3989 for (section = output_bfd->sections, top_index = 0;
3990 section != NULL;
3991 section = section->next)
3992 {
3993 if (top_index < section->index)
3994 top_index = section->index;
3995 }
3996
3997 htab->top_index = top_index;
3998 amt = sizeof (asection *) * (top_index + 1);
21d799b5 3999 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
4000 htab->input_list = input_list;
4001 if (input_list == NULL)
4002 return -1;
4003
4004 /* For sections we aren't interested in, mark their entries with a
4005 value we can check later. */
4006 list = input_list + top_index;
4007 do
4008 *list = bfd_abs_section_ptr;
4009 while (list-- != input_list);
4010
4011 for (section = output_bfd->sections;
4012 section != NULL;
4013 section = section->next)
4014 {
4015 if ((section->flags & SEC_CODE) != 0)
4016 input_list[section->index] = NULL;
4017 }
4018
4019 return 1;
4020}
4021
4022/* The linker repeatedly calls this function for each input section,
4023 in the order that input sections are linked into output sections.
4024 Build lists of input sections to determine groupings between which
4025 we may insert linker stubs. */
4026
4027void
4028elf32_arm_next_input_section (struct bfd_link_info *info,
4029 asection *isec)
4030{
4031 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4032
4dfe6ac6
NC
4033 if (htab == NULL)
4034 return;
4035
906e58ca
NC
4036 if (isec->output_section->index <= htab->top_index)
4037 {
4038 asection **list = htab->input_list + isec->output_section->index;
4039
a7470592 4040 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
4041 {
4042 /* Steal the link_sec pointer for our list. */
4043#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4044 /* This happens to make the list in reverse order,
07d72278 4045 which we reverse later. */
906e58ca
NC
4046 PREV_SEC (isec) = *list;
4047 *list = isec;
4048 }
4049 }
4050}
4051
4052/* See whether we can group stub sections together. Grouping stub
4053 sections may result in fewer stubs. More importantly, we need to
07d72278 4054 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
4055 .fini output sections respectively, because glibc splits the
4056 _init and _fini functions into multiple parts. Putting a stub in
4057 the middle of a function is not a good idea. */
4058
4059static void
4060group_sections (struct elf32_arm_link_hash_table *htab,
4061 bfd_size_type stub_group_size,
07d72278 4062 bfd_boolean stubs_always_after_branch)
906e58ca 4063{
07d72278 4064 asection **list = htab->input_list;
906e58ca
NC
4065
4066 do
4067 {
4068 asection *tail = *list;
07d72278 4069 asection *head;
906e58ca
NC
4070
4071 if (tail == bfd_abs_section_ptr)
4072 continue;
4073
07d72278
DJ
4074 /* Reverse the list: we must avoid placing stubs at the
4075 beginning of the section because the beginning of the text
4076 section may be required for an interrupt vector in bare metal
4077 code. */
4078#define NEXT_SEC PREV_SEC
e780aef2
CL
4079 head = NULL;
4080 while (tail != NULL)
4081 {
4082 /* Pop from tail. */
4083 asection *item = tail;
4084 tail = PREV_SEC (item);
4085
4086 /* Push on head. */
4087 NEXT_SEC (item) = head;
4088 head = item;
4089 }
07d72278
DJ
4090
4091 while (head != NULL)
906e58ca
NC
4092 {
4093 asection *curr;
07d72278 4094 asection *next;
e780aef2
CL
4095 bfd_vma stub_group_start = head->output_offset;
4096 bfd_vma end_of_next;
906e58ca 4097
07d72278 4098 curr = head;
e780aef2 4099 while (NEXT_SEC (curr) != NULL)
8cd931b7 4100 {
e780aef2
CL
4101 next = NEXT_SEC (curr);
4102 end_of_next = next->output_offset + next->size;
4103 if (end_of_next - stub_group_start >= stub_group_size)
4104 /* End of NEXT is too far from start, so stop. */
8cd931b7 4105 break;
e780aef2
CL
4106 /* Add NEXT to the group. */
4107 curr = next;
8cd931b7 4108 }
906e58ca 4109
07d72278 4110 /* OK, the size from the start to the start of CURR is less
906e58ca 4111 than stub_group_size and thus can be handled by one stub
07d72278 4112 section. (Or the head section is itself larger than
906e58ca
NC
4113 stub_group_size, in which case we may be toast.)
4114 We should really be keeping track of the total size of
4115 stubs added here, as stubs contribute to the final output
7fb9f789 4116 section size. */
906e58ca
NC
4117 do
4118 {
07d72278 4119 next = NEXT_SEC (head);
906e58ca 4120 /* Set up this stub group. */
07d72278 4121 htab->stub_group[head->id].link_sec = curr;
906e58ca 4122 }
07d72278 4123 while (head != curr && (head = next) != NULL);
906e58ca
NC
4124
4125 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
4126 bytes after the stub section can be handled by it too. */
4127 if (!stubs_always_after_branch)
906e58ca 4128 {
e780aef2
CL
4129 stub_group_start = curr->output_offset + curr->size;
4130
8cd931b7 4131 while (next != NULL)
906e58ca 4132 {
e780aef2
CL
4133 end_of_next = next->output_offset + next->size;
4134 if (end_of_next - stub_group_start >= stub_group_size)
4135 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 4136 break;
e780aef2 4137 /* Add NEXT to the stub group. */
07d72278
DJ
4138 head = next;
4139 next = NEXT_SEC (head);
4140 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
4141 }
4142 }
07d72278 4143 head = next;
906e58ca
NC
4144 }
4145 }
07d72278 4146 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
4147
4148 free (htab->input_list);
4149#undef PREV_SEC
07d72278 4150#undef NEXT_SEC
906e58ca
NC
4151}
4152
48229727
JB
4153/* Comparison function for sorting/searching relocations relating to Cortex-A8
4154 erratum fix. */
4155
4156static int
4157a8_reloc_compare (const void *a, const void *b)
4158{
21d799b5
NC
4159 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4160 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
4161
4162 if (ra->from < rb->from)
4163 return -1;
4164 else if (ra->from > rb->from)
4165 return 1;
4166 else
4167 return 0;
4168}
4169
4170static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4171 const char *, char **);
4172
4173/* Helper function to scan code for sequences which might trigger the Cortex-A8
4174 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 4175 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
4176 otherwise. */
4177
81694485
NC
4178static bfd_boolean
4179cortex_a8_erratum_scan (bfd *input_bfd,
4180 struct bfd_link_info *info,
48229727
JB
4181 struct a8_erratum_fix **a8_fixes_p,
4182 unsigned int *num_a8_fixes_p,
4183 unsigned int *a8_fix_table_size_p,
4184 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
4185 unsigned int num_a8_relocs,
4186 unsigned prev_num_a8_fixes,
4187 bfd_boolean *stub_changed_p)
48229727
JB
4188{
4189 asection *section;
4190 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4191 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4192 unsigned int num_a8_fixes = *num_a8_fixes_p;
4193 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4194
4dfe6ac6
NC
4195 if (htab == NULL)
4196 return FALSE;
4197
48229727
JB
4198 for (section = input_bfd->sections;
4199 section != NULL;
4200 section = section->next)
4201 {
4202 bfd_byte *contents = NULL;
4203 struct _arm_elf_section_data *sec_data;
4204 unsigned int span;
4205 bfd_vma base_vma;
4206
4207 if (elf_section_type (section) != SHT_PROGBITS
4208 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4209 || (section->flags & SEC_EXCLUDE) != 0
4210 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4211 || (section->output_section == bfd_abs_section_ptr))
4212 continue;
4213
4214 base_vma = section->output_section->vma + section->output_offset;
4215
4216 if (elf_section_data (section)->this_hdr.contents != NULL)
4217 contents = elf_section_data (section)->this_hdr.contents;
4218 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
81694485 4219 return TRUE;
48229727
JB
4220
4221 sec_data = elf32_arm_section_data (section);
4222
4223 for (span = 0; span < sec_data->mapcount; span++)
4224 {
4225 unsigned int span_start = sec_data->map[span].vma;
4226 unsigned int span_end = (span == sec_data->mapcount - 1)
4227 ? section->size : sec_data->map[span + 1].vma;
4228 unsigned int i;
4229 char span_type = sec_data->map[span].type;
4230 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4231
4232 if (span_type != 't')
4233 continue;
4234
4235 /* Span is entirely within a single 4KB region: skip scanning. */
4236 if (((base_vma + span_start) & ~0xfff)
4237 == ((base_vma + span_end) & ~0xfff))
4238 continue;
4239
4240 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4241
4242 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4243 * The branch target is in the same 4KB region as the
4244 first half of the branch.
4245 * The instruction before the branch is a 32-bit
81694485 4246 length non-branch instruction. */
48229727
JB
4247 for (i = span_start; i < span_end;)
4248 {
4249 unsigned int insn = bfd_getl16 (&contents[i]);
4250 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4251 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4252
4253 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4254 insn_32bit = TRUE;
4255
4256 if (insn_32bit)
4257 {
4258 /* Load the rest of the insn (in manual-friendly order). */
4259 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4260
4261 /* Encoding T4: B<c>.W. */
4262 is_b = (insn & 0xf800d000) == 0xf0009000;
4263 /* Encoding T1: BL<c>.W. */
4264 is_bl = (insn & 0xf800d000) == 0xf000d000;
4265 /* Encoding T2: BLX<c>.W. */
4266 is_blx = (insn & 0xf800d000) == 0xf000c000;
4267 /* Encoding T3: B<c>.W (not permitted in IT block). */
4268 is_bcc = (insn & 0xf800d000) == 0xf0008000
4269 && (insn & 0x07f00000) != 0x03800000;
4270 }
4271
4272 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 4273
81694485
NC
4274 if (((base_vma + i) & 0xfff) == 0xffe
4275 && insn_32bit
4276 && is_32bit_branch
4277 && last_was_32bit
4278 && ! last_was_branch)
48229727 4279 {
8f73510c 4280 bfd_signed_vma offset = 0;
48229727
JB
4281 bfd_boolean force_target_arm = FALSE;
4282 bfd_boolean force_target_thumb = FALSE;
4283 bfd_vma target;
4284 enum elf32_arm_stub_type stub_type = arm_stub_none;
4285 struct a8_erratum_reloc key, *found;
4286
4287 key.from = base_vma + i;
21d799b5
NC
4288 found = (struct a8_erratum_reloc *)
4289 bsearch (&key, a8_relocs, num_a8_relocs,
4290 sizeof (struct a8_erratum_reloc),
4291 &a8_reloc_compare);
48229727
JB
4292
4293 if (found)
4294 {
4295 char *error_message = NULL;
4296 struct elf_link_hash_entry *entry;
92750f34 4297 bfd_boolean use_plt = FALSE;
48229727
JB
4298
4299 /* We don't care about the error returned from this
4300 function, only if there is glue or not. */
4301 entry = find_thumb_glue (info, found->sym_name,
4302 &error_message);
4303
4304 if (entry)
4305 found->non_a8_stub = TRUE;
4306
92750f34 4307 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 4308 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
4309 && found->hash->root.plt.offset != (bfd_vma) -1)
4310 use_plt = TRUE;
4311
4312 if (found->r_type == R_ARM_THM_CALL)
4313 {
4314 if (found->st_type != STT_ARM_TFUNC || use_plt)
4315 force_target_arm = TRUE;
4316 else
4317 force_target_thumb = TRUE;
4318 }
48229727
JB
4319 }
4320
4321 /* Check if we have an offending branch instruction. */
4322
4323 if (found && found->non_a8_stub)
4324 /* We've already made a stub for this instruction, e.g.
4325 it's a long branch or a Thumb->ARM stub. Assume that
4326 stub will suffice to work around the A8 erratum (see
4327 setting of always_after_branch above). */
4328 ;
4329 else if (is_bcc)
4330 {
4331 offset = (insn & 0x7ff) << 1;
4332 offset |= (insn & 0x3f0000) >> 4;
4333 offset |= (insn & 0x2000) ? 0x40000 : 0;
4334 offset |= (insn & 0x800) ? 0x80000 : 0;
4335 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4336 if (offset & 0x100000)
81694485 4337 offset |= ~ ((bfd_signed_vma) 0xfffff);
48229727
JB
4338 stub_type = arm_stub_a8_veneer_b_cond;
4339 }
4340 else if (is_b || is_bl || is_blx)
4341 {
4342 int s = (insn & 0x4000000) != 0;
4343 int j1 = (insn & 0x2000) != 0;
4344 int j2 = (insn & 0x800) != 0;
4345 int i1 = !(j1 ^ s);
4346 int i2 = !(j2 ^ s);
4347
4348 offset = (insn & 0x7ff) << 1;
4349 offset |= (insn & 0x3ff0000) >> 4;
4350 offset |= i2 << 22;
4351 offset |= i1 << 23;
4352 offset |= s << 24;
4353 if (offset & 0x1000000)
81694485 4354 offset |= ~ ((bfd_signed_vma) 0xffffff);
48229727
JB
4355
4356 if (is_blx)
81694485 4357 offset &= ~ ((bfd_signed_vma) 3);
48229727
JB
4358
4359 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4360 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4361 }
4362
4363 if (stub_type != arm_stub_none)
4364 {
4365 bfd_vma pc_for_insn = base_vma + i + 4;
4366
4367 /* The original instruction is a BL, but the target is
4368 an ARM instruction. If we were not making a stub,
4369 the BL would have been converted to a BLX. Use the
4370 BLX stub instead in that case. */
4371 if (htab->use_blx && force_target_arm
4372 && stub_type == arm_stub_a8_veneer_bl)
4373 {
4374 stub_type = arm_stub_a8_veneer_blx;
4375 is_blx = TRUE;
4376 is_bl = FALSE;
4377 }
4378 /* Conversely, if the original instruction was
4379 BLX but the target is Thumb mode, use the BL
4380 stub. */
4381 else if (force_target_thumb
4382 && stub_type == arm_stub_a8_veneer_blx)
4383 {
4384 stub_type = arm_stub_a8_veneer_bl;
4385 is_blx = FALSE;
4386 is_bl = TRUE;
4387 }
4388
4389 if (is_blx)
81694485 4390 pc_for_insn &= ~ ((bfd_vma) 3);
48229727
JB
4391
4392 /* If we found a relocation, use the proper destination,
4393 not the offset in the (unrelocated) instruction.
4394 Note this is always done if we switched the stub type
4395 above. */
4396 if (found)
81694485
NC
4397 offset =
4398 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727
JB
4399
4400 target = pc_for_insn + offset;
4401
4402 /* The BLX stub is ARM-mode code. Adjust the offset to
4403 take the different PC value (+8 instead of +4) into
4404 account. */
4405 if (stub_type == arm_stub_a8_veneer_blx)
4406 offset += 4;
4407
4408 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4409 {
eb7c4339 4410 char *stub_name = NULL;
48229727
JB
4411
4412 if (num_a8_fixes == a8_fix_table_size)
4413 {
4414 a8_fix_table_size *= 2;
21d799b5
NC
4415 a8_fixes = (struct a8_erratum_fix *)
4416 bfd_realloc (a8_fixes,
4417 sizeof (struct a8_erratum_fix)
4418 * a8_fix_table_size);
48229727
JB
4419 }
4420
eb7c4339
NS
4421 if (num_a8_fixes < prev_num_a8_fixes)
4422 {
4423 /* If we're doing a subsequent scan,
4424 check if we've found the same fix as
4425 before, and try and reuse the stub
4426 name. */
4427 stub_name = a8_fixes[num_a8_fixes].stub_name;
4428 if ((a8_fixes[num_a8_fixes].section != section)
4429 || (a8_fixes[num_a8_fixes].offset != i))
4430 {
4431 free (stub_name);
4432 stub_name = NULL;
4433 *stub_changed_p = TRUE;
4434 }
4435 }
4436
4437 if (!stub_name)
4438 {
21d799b5 4439 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
4440 if (stub_name != NULL)
4441 sprintf (stub_name, "%x:%x", section->id, i);
4442 }
48229727
JB
4443
4444 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4445 a8_fixes[num_a8_fixes].section = section;
4446 a8_fixes[num_a8_fixes].offset = i;
4447 a8_fixes[num_a8_fixes].addend = offset;
4448 a8_fixes[num_a8_fixes].orig_insn = insn;
4449 a8_fixes[num_a8_fixes].stub_name = stub_name;
4450 a8_fixes[num_a8_fixes].stub_type = stub_type;
fe33d2fa
CL
4451 a8_fixes[num_a8_fixes].st_type =
4452 is_blx ? STT_FUNC : STT_ARM_TFUNC;
48229727
JB
4453
4454 num_a8_fixes++;
4455 }
4456 }
4457 }
4458
4459 i += insn_32bit ? 4 : 2;
4460 last_was_32bit = insn_32bit;
4461 last_was_branch = is_32bit_branch;
4462 }
4463 }
4464
4465 if (elf_section_data (section)->this_hdr.contents == NULL)
4466 free (contents);
4467 }
fe33d2fa 4468
48229727
JB
4469 *a8_fixes_p = a8_fixes;
4470 *num_a8_fixes_p = num_a8_fixes;
4471 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 4472
81694485 4473 return FALSE;
48229727
JB
4474}
4475
906e58ca
NC
4476/* Determine and set the size of the stub section for a final link.
4477
4478 The basic idea here is to examine all the relocations looking for
4479 PC-relative calls to a target that is unreachable with a "bl"
4480 instruction. */
4481
4482bfd_boolean
4483elf32_arm_size_stubs (bfd *output_bfd,
4484 bfd *stub_bfd,
4485 struct bfd_link_info *info,
4486 bfd_signed_vma group_size,
4487 asection * (*add_stub_section) (const char *, asection *),
4488 void (*layout_sections_again) (void))
4489{
4490 bfd_size_type stub_group_size;
07d72278 4491 bfd_boolean stubs_always_after_branch;
906e58ca 4492 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 4493 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 4494 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
4495 struct a8_erratum_reloc *a8_relocs = NULL;
4496 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4497
4dfe6ac6
NC
4498 if (htab == NULL)
4499 return FALSE;
4500
48229727
JB
4501 if (htab->fix_cortex_a8)
4502 {
21d799b5
NC
4503 a8_fixes = (struct a8_erratum_fix *)
4504 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4505 a8_relocs = (struct a8_erratum_reloc *)
4506 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 4507 }
906e58ca
NC
4508
4509 /* Propagate mach to stub bfd, because it may not have been
4510 finalized when we created stub_bfd. */
4511 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4512 bfd_get_mach (output_bfd));
4513
4514 /* Stash our params away. */
4515 htab->stub_bfd = stub_bfd;
4516 htab->add_stub_section = add_stub_section;
4517 htab->layout_sections_again = layout_sections_again;
07d72278 4518 stubs_always_after_branch = group_size < 0;
48229727
JB
4519
4520 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4521 as the first half of a 32-bit branch straddling two 4K pages. This is a
4522 crude way of enforcing that. */
4523 if (htab->fix_cortex_a8)
4524 stubs_always_after_branch = 1;
4525
906e58ca
NC
4526 if (group_size < 0)
4527 stub_group_size = -group_size;
4528 else
4529 stub_group_size = group_size;
4530
4531 if (stub_group_size == 1)
4532 {
4533 /* Default values. */
4534 /* Thumb branch range is +-4MB has to be used as the default
4535 maximum size (a given section can contain both ARM and Thumb
4536 code, so the worst case has to be taken into account).
4537
4538 This value is 24K less than that, which allows for 2025
4539 12-byte stubs. If we exceed that, then we will fail to link.
4540 The user will have to relink with an explicit group size
4541 option. */
4542 stub_group_size = 4170000;
4543 }
4544
07d72278 4545 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 4546
3ae046cc
NS
4547 /* If we're applying the cortex A8 fix, we need to determine the
4548 program header size now, because we cannot change it later --
4549 that could alter section placements. Notice the A8 erratum fix
4550 ends up requiring the section addresses to remain unchanged
4551 modulo the page size. That's something we cannot represent
4552 inside BFD, and we don't want to force the section alignment to
4553 be the page size. */
4554 if (htab->fix_cortex_a8)
4555 (*htab->layout_sections_again) ();
4556
906e58ca
NC
4557 while (1)
4558 {
4559 bfd *input_bfd;
4560 unsigned int bfd_indx;
4561 asection *stub_sec;
eb7c4339
NS
4562 bfd_boolean stub_changed = FALSE;
4563 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 4564
48229727 4565 num_a8_fixes = 0;
906e58ca
NC
4566 for (input_bfd = info->input_bfds, bfd_indx = 0;
4567 input_bfd != NULL;
4568 input_bfd = input_bfd->link_next, bfd_indx++)
4569 {
4570 Elf_Internal_Shdr *symtab_hdr;
4571 asection *section;
4572 Elf_Internal_Sym *local_syms = NULL;
4573
48229727
JB
4574 num_a8_relocs = 0;
4575
906e58ca
NC
4576 /* We'll need the symbol table in a second. */
4577 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4578 if (symtab_hdr->sh_info == 0)
4579 continue;
4580
4581 /* Walk over each section attached to the input bfd. */
4582 for (section = input_bfd->sections;
4583 section != NULL;
4584 section = section->next)
4585 {
4586 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4587
4588 /* If there aren't any relocs, then there's nothing more
4589 to do. */
4590 if ((section->flags & SEC_RELOC) == 0
4591 || section->reloc_count == 0
4592 || (section->flags & SEC_CODE) == 0)
4593 continue;
4594
4595 /* If this section is a link-once section that will be
4596 discarded, then don't create any stubs. */
4597 if (section->output_section == NULL
4598 || section->output_section->owner != output_bfd)
4599 continue;
4600
4601 /* Get the relocs. */
4602 internal_relocs
4603 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4604 NULL, info->keep_memory);
4605 if (internal_relocs == NULL)
4606 goto error_ret_free_local;
4607
4608 /* Now examine each relocation. */
4609 irela = internal_relocs;
4610 irelaend = irela + section->reloc_count;
4611 for (; irela < irelaend; irela++)
4612 {
4613 unsigned int r_type, r_indx;
4614 enum elf32_arm_stub_type stub_type;
4615 struct elf32_arm_stub_hash_entry *stub_entry;
4616 asection *sym_sec;
4617 bfd_vma sym_value;
4618 bfd_vma destination;
4619 struct elf32_arm_link_hash_entry *hash;
7413f23f 4620 const char *sym_name;
906e58ca
NC
4621 char *stub_name;
4622 const asection *id_sec;
fe33d2fa 4623 int st_type;
48229727 4624 bfd_boolean created_stub = FALSE;
906e58ca
NC
4625
4626 r_type = ELF32_R_TYPE (irela->r_info);
4627 r_indx = ELF32_R_SYM (irela->r_info);
4628
4629 if (r_type >= (unsigned int) R_ARM_max)
4630 {
4631 bfd_set_error (bfd_error_bad_value);
4632 error_ret_free_internal:
4633 if (elf_section_data (section)->relocs == NULL)
4634 free (internal_relocs);
4635 goto error_ret_free_local;
4636 }
0855e32b
NS
4637
4638 hash = NULL;
4639 if (r_indx >= symtab_hdr->sh_info)
4640 hash = elf32_arm_hash_entry
4641 (elf_sym_hashes (input_bfd)
4642 [r_indx - symtab_hdr->sh_info]);
4643
4644 /* Only look for stubs on branch instructions, or
4645 non-relaxed TLSCALL */
906e58ca 4646 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
4647 && (r_type != (unsigned int) R_ARM_THM_CALL)
4648 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
4649 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4650 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 4651 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
4652 && (r_type != (unsigned int) R_ARM_PLT32)
4653 && !((r_type == (unsigned int) R_ARM_TLS_CALL
4654 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4655 && r_type == elf32_arm_tls_transition
4656 (info, r_type, &hash->root)
4657 && ((hash ? hash->tls_type
4658 : (elf32_arm_local_got_tls_type
4659 (input_bfd)[r_indx]))
4660 & GOT_TLS_GDESC) != 0))
906e58ca
NC
4661 continue;
4662
4663 /* Now determine the call target, its name, value,
4664 section. */
4665 sym_sec = NULL;
4666 sym_value = 0;
4667 destination = 0;
7413f23f 4668 sym_name = NULL;
0855e32b
NS
4669
4670 if (r_type == (unsigned int) R_ARM_TLS_CALL
4671 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4672 {
4673 /* A non-relaxed TLS call. The target is the
4674 plt-resident trampoline and nothing to do
4675 with the symbol. */
4676 BFD_ASSERT (htab->tls_trampoline > 0);
4677 sym_sec = htab->root.splt;
4678 sym_value = htab->tls_trampoline;
4679 hash = 0;
4680 st_type = STT_FUNC;
4681 }
4682 else if (!hash)
906e58ca
NC
4683 {
4684 /* It's a local symbol. */
4685 Elf_Internal_Sym *sym;
906e58ca
NC
4686
4687 if (local_syms == NULL)
4688 {
4689 local_syms
4690 = (Elf_Internal_Sym *) symtab_hdr->contents;
4691 if (local_syms == NULL)
4692 local_syms
4693 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4694 symtab_hdr->sh_info, 0,
4695 NULL, NULL, NULL);
4696 if (local_syms == NULL)
4697 goto error_ret_free_internal;
4698 }
4699
4700 sym = local_syms + r_indx;
f6d250ce
TS
4701 if (sym->st_shndx == SHN_UNDEF)
4702 sym_sec = bfd_und_section_ptr;
4703 else if (sym->st_shndx == SHN_ABS)
4704 sym_sec = bfd_abs_section_ptr;
4705 else if (sym->st_shndx == SHN_COMMON)
4706 sym_sec = bfd_com_section_ptr;
4707 else
4708 sym_sec =
4709 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
4710
ffcb4889
NS
4711 if (!sym_sec)
4712 /* This is an undefined symbol. It can never
4713 be resolved. */
4714 continue;
fe33d2fa 4715
906e58ca
NC
4716 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4717 sym_value = sym->st_value;
4718 destination = (sym_value + irela->r_addend
4719 + sym_sec->output_offset
4720 + sym_sec->output_section->vma);
4721 st_type = ELF_ST_TYPE (sym->st_info);
7413f23f
DJ
4722 sym_name
4723 = bfd_elf_string_from_elf_section (input_bfd,
4724 symtab_hdr->sh_link,
4725 sym->st_name);
906e58ca
NC
4726 }
4727 else
4728 {
4729 /* It's an external symbol. */
906e58ca
NC
4730 while (hash->root.root.type == bfd_link_hash_indirect
4731 || hash->root.root.type == bfd_link_hash_warning)
4732 hash = ((struct elf32_arm_link_hash_entry *)
4733 hash->root.root.u.i.link);
4734
4735 if (hash->root.root.type == bfd_link_hash_defined
4736 || hash->root.root.type == bfd_link_hash_defweak)
4737 {
4738 sym_sec = hash->root.root.u.def.section;
4739 sym_value = hash->root.root.u.def.value;
022f8312
CL
4740
4741 struct elf32_arm_link_hash_table *globals =
4742 elf32_arm_hash_table (info);
4743
4744 /* For a destination in a shared library,
4745 use the PLT stub as target address to
4746 decide whether a branch stub is
4747 needed. */
4dfe6ac6 4748 if (globals != NULL
362d30a1 4749 && globals->root.splt != NULL
4dfe6ac6 4750 && hash != NULL
022f8312
CL
4751 && hash->root.plt.offset != (bfd_vma) -1)
4752 {
362d30a1 4753 sym_sec = globals->root.splt;
022f8312
CL
4754 sym_value = hash->root.plt.offset;
4755 if (sym_sec->output_section != NULL)
4756 destination = (sym_value
4757 + sym_sec->output_offset
4758 + sym_sec->output_section->vma);
4759 }
4760 else if (sym_sec->output_section != NULL)
906e58ca
NC
4761 destination = (sym_value + irela->r_addend
4762 + sym_sec->output_offset
4763 + sym_sec->output_section->vma);
4764 }
69c5861e
CL
4765 else if ((hash->root.root.type == bfd_link_hash_undefined)
4766 || (hash->root.root.type == bfd_link_hash_undefweak))
4767 {
4768 /* For a shared library, use the PLT stub as
4769 target address to decide whether a long
4770 branch stub is needed.
4771 For absolute code, they cannot be handled. */
4772 struct elf32_arm_link_hash_table *globals =
4773 elf32_arm_hash_table (info);
4774
4dfe6ac6 4775 if (globals != NULL
362d30a1 4776 && globals->root.splt != NULL
4dfe6ac6 4777 && hash != NULL
69c5861e
CL
4778 && hash->root.plt.offset != (bfd_vma) -1)
4779 {
362d30a1 4780 sym_sec = globals->root.splt;
69c5861e
CL
4781 sym_value = hash->root.plt.offset;
4782 if (sym_sec->output_section != NULL)
4783 destination = (sym_value
4784 + sym_sec->output_offset
4785 + sym_sec->output_section->vma);
4786 }
4787 else
4788 continue;
4789 }
906e58ca
NC
4790 else
4791 {
4792 bfd_set_error (bfd_error_bad_value);
4793 goto error_ret_free_internal;
4794 }
4795 st_type = ELF_ST_TYPE (hash->root.type);
7413f23f 4796 sym_name = hash->root.root.root.string;
906e58ca
NC
4797 }
4798
48229727 4799 do
7413f23f 4800 {
48229727
JB
4801 /* Determine what (if any) linker stub is needed. */
4802 stub_type = arm_type_of_stub (info, section, irela,
fe33d2fa 4803 &st_type, hash,
48229727
JB
4804 destination, sym_sec,
4805 input_bfd, sym_name);
4806 if (stub_type == arm_stub_none)
4807 break;
4808
4809 /* Support for grouping stub sections. */
4810 id_sec = htab->stub_group[section->id].link_sec;
4811
4812 /* Get the name of this stub. */
4813 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
fe33d2fa 4814 irela, stub_type);
48229727
JB
4815 if (!stub_name)
4816 goto error_ret_free_internal;
4817
4818 /* We've either created a stub for this reloc already,
4819 or we are about to. */
4820 created_stub = TRUE;
4821
4822 stub_entry = arm_stub_hash_lookup
4823 (&htab->stub_hash_table, stub_name,
4824 FALSE, FALSE);
4825 if (stub_entry != NULL)
4826 {
4827 /* The proper stub has already been created. */
4828 free (stub_name);
eb7c4339 4829 stub_entry->target_value = sym_value;
48229727
JB
4830 break;
4831 }
7413f23f 4832
48229727
JB
4833 stub_entry = elf32_arm_add_stub (stub_name, section,
4834 htab);
4835 if (stub_entry == NULL)
4836 {
4837 free (stub_name);
4838 goto error_ret_free_internal;
4839 }
7413f23f 4840
48229727
JB
4841 stub_entry->target_value = sym_value;
4842 stub_entry->target_section = sym_sec;
4843 stub_entry->stub_type = stub_type;
4844 stub_entry->h = hash;
4845 stub_entry->st_type = st_type;
4846
4847 if (sym_name == NULL)
4848 sym_name = "unnamed";
21d799b5
NC
4849 stub_entry->output_name = (char *)
4850 bfd_alloc (htab->stub_bfd,
48229727
JB
4851 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4852 + strlen (sym_name));
4853 if (stub_entry->output_name == NULL)
4854 {
4855 free (stub_name);
4856 goto error_ret_free_internal;
4857 }
4858
4859 /* For historical reasons, use the existing names for
4860 ARM-to-Thumb and Thumb-to-ARM stubs. */
4861 if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4862 || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4863 && st_type != STT_ARM_TFUNC)
4864 sprintf (stub_entry->output_name,
4865 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4866 else if ( ((r_type == (unsigned int) R_ARM_CALL)
4867 || (r_type == (unsigned int) R_ARM_JUMP24))
4868 && st_type == STT_ARM_TFUNC)
4869 sprintf (stub_entry->output_name,
4870 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4871 else
4872 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4873 sym_name);
4874
4875 stub_changed = TRUE;
4876 }
4877 while (0);
4878
4879 /* Look for relocations which might trigger Cortex-A8
4880 erratum. */
4881 if (htab->fix_cortex_a8
4882 && (r_type == (unsigned int) R_ARM_THM_JUMP24
4883 || r_type == (unsigned int) R_ARM_THM_JUMP19
4884 || r_type == (unsigned int) R_ARM_THM_CALL
4885 || r_type == (unsigned int) R_ARM_THM_XPC22))
4886 {
4887 bfd_vma from = section->output_section->vma
4888 + section->output_offset
4889 + irela->r_offset;
4890
4891 if ((from & 0xfff) == 0xffe)
4892 {
4893 /* Found a candidate. Note we haven't checked the
4894 destination is within 4K here: if we do so (and
4895 don't create an entry in a8_relocs) we can't tell
4896 that a branch should have been relocated when
4897 scanning later. */
4898 if (num_a8_relocs == a8_reloc_table_size)
4899 {
4900 a8_reloc_table_size *= 2;
21d799b5
NC
4901 a8_relocs = (struct a8_erratum_reloc *)
4902 bfd_realloc (a8_relocs,
4903 sizeof (struct a8_erratum_reloc)
4904 * a8_reloc_table_size);
48229727
JB
4905 }
4906
4907 a8_relocs[num_a8_relocs].from = from;
4908 a8_relocs[num_a8_relocs].destination = destination;
4909 a8_relocs[num_a8_relocs].r_type = r_type;
4910 a8_relocs[num_a8_relocs].st_type = st_type;
4911 a8_relocs[num_a8_relocs].sym_name = sym_name;
4912 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
92750f34 4913 a8_relocs[num_a8_relocs].hash = hash;
48229727
JB
4914
4915 num_a8_relocs++;
4916 }
4917 }
906e58ca
NC
4918 }
4919
48229727
JB
4920 /* We're done with the internal relocs, free them. */
4921 if (elf_section_data (section)->relocs == NULL)
4922 free (internal_relocs);
4923 }
4924
4925 if (htab->fix_cortex_a8)
4926 {
4927 /* Sort relocs which might apply to Cortex-A8 erratum. */
eb7c4339
NS
4928 qsort (a8_relocs, num_a8_relocs,
4929 sizeof (struct a8_erratum_reloc),
48229727
JB
4930 &a8_reloc_compare);
4931
4932 /* Scan for branches which might trigger Cortex-A8 erratum. */
4933 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4934 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
4935 a8_relocs, num_a8_relocs,
4936 prev_num_a8_fixes, &stub_changed)
4937 != 0)
48229727 4938 goto error_ret_free_local;
5e681ec4 4939 }
5e681ec4
PB
4940 }
4941
eb7c4339 4942 if (prev_num_a8_fixes != num_a8_fixes)
48229727
JB
4943 stub_changed = TRUE;
4944
906e58ca
NC
4945 if (!stub_changed)
4946 break;
5e681ec4 4947
906e58ca
NC
4948 /* OK, we've added some stubs. Find out the new size of the
4949 stub sections. */
4950 for (stub_sec = htab->stub_bfd->sections;
4951 stub_sec != NULL;
4952 stub_sec = stub_sec->next)
3e6b1042
DJ
4953 {
4954 /* Ignore non-stub sections. */
4955 if (!strstr (stub_sec->name, STUB_SUFFIX))
4956 continue;
4957
4958 stub_sec->size = 0;
4959 }
b34b2d70 4960
906e58ca
NC
4961 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4962
48229727
JB
4963 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4964 if (htab->fix_cortex_a8)
4965 for (i = 0; i < num_a8_fixes; i++)
4966 {
4967 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4968 a8_fixes[i].section, htab);
4969
4970 if (stub_sec == NULL)
4971 goto error_ret_free_local;
4972
4973 stub_sec->size
4974 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4975 NULL);
4976 }
4977
4978
906e58ca
NC
4979 /* Ask the linker to do its stuff. */
4980 (*htab->layout_sections_again) ();
ba93b8ac
DJ
4981 }
4982
48229727
JB
4983 /* Add stubs for Cortex-A8 erratum fixes now. */
4984 if (htab->fix_cortex_a8)
4985 {
4986 for (i = 0; i < num_a8_fixes; i++)
4987 {
4988 struct elf32_arm_stub_hash_entry *stub_entry;
4989 char *stub_name = a8_fixes[i].stub_name;
4990 asection *section = a8_fixes[i].section;
4991 unsigned int section_id = a8_fixes[i].section->id;
4992 asection *link_sec = htab->stub_group[section_id].link_sec;
4993 asection *stub_sec = htab->stub_group[section_id].stub_sec;
d3ce72d0 4994 const insn_sequence *template_sequence;
48229727
JB
4995 int template_size, size = 0;
4996
4997 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4998 TRUE, FALSE);
4999 if (stub_entry == NULL)
5000 {
5001 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5002 section->owner,
5003 stub_name);
5004 return FALSE;
5005 }
5006
5007 stub_entry->stub_sec = stub_sec;
5008 stub_entry->stub_offset = 0;
5009 stub_entry->id_sec = link_sec;
5010 stub_entry->stub_type = a8_fixes[i].stub_type;
5011 stub_entry->target_section = a8_fixes[i].section;
5012 stub_entry->target_value = a8_fixes[i].offset;
5013 stub_entry->target_addend = a8_fixes[i].addend;
5014 stub_entry->orig_insn = a8_fixes[i].orig_insn;
fe33d2fa 5015 stub_entry->st_type = a8_fixes[i].st_type;
48229727 5016
d3ce72d0
NC
5017 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5018 &template_sequence,
48229727
JB
5019 &template_size);
5020
5021 stub_entry->stub_size = size;
d3ce72d0 5022 stub_entry->stub_template = template_sequence;
48229727
JB
5023 stub_entry->stub_template_size = template_size;
5024 }
5025
5026 /* Stash the Cortex-A8 erratum fix array for use later in
5027 elf32_arm_write_section(). */
5028 htab->a8_erratum_fixes = a8_fixes;
5029 htab->num_a8_erratum_fixes = num_a8_fixes;
5030 }
5031 else
5032 {
5033 htab->a8_erratum_fixes = NULL;
5034 htab->num_a8_erratum_fixes = 0;
5035 }
906e58ca
NC
5036 return TRUE;
5037
5038 error_ret_free_local:
5039 return FALSE;
5e681ec4
PB
5040}
5041
906e58ca
NC
5042/* Build all the stubs associated with the current output file. The
5043 stubs are kept in a hash table attached to the main linker hash
5044 table. We also set up the .plt entries for statically linked PIC
5045 functions here. This function is called via arm_elf_finish in the
5046 linker. */
252b5132 5047
906e58ca
NC
5048bfd_boolean
5049elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 5050{
906e58ca
NC
5051 asection *stub_sec;
5052 struct bfd_hash_table *table;
5053 struct elf32_arm_link_hash_table *htab;
252b5132 5054
906e58ca 5055 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
5056 if (htab == NULL)
5057 return FALSE;
252b5132 5058
906e58ca
NC
5059 for (stub_sec = htab->stub_bfd->sections;
5060 stub_sec != NULL;
5061 stub_sec = stub_sec->next)
252b5132 5062 {
906e58ca
NC
5063 bfd_size_type size;
5064
8029a119 5065 /* Ignore non-stub sections. */
906e58ca
NC
5066 if (!strstr (stub_sec->name, STUB_SUFFIX))
5067 continue;
5068
5069 /* Allocate memory to hold the linker stubs. */
5070 size = stub_sec->size;
21d799b5 5071 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
5072 if (stub_sec->contents == NULL && size != 0)
5073 return FALSE;
5074 stub_sec->size = 0;
252b5132
RH
5075 }
5076
906e58ca
NC
5077 /* Build the stubs as directed by the stub hash table. */
5078 table = &htab->stub_hash_table;
5079 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
5080 if (htab->fix_cortex_a8)
5081 {
5082 /* Place the cortex a8 stubs last. */
5083 htab->fix_cortex_a8 = -1;
5084 bfd_hash_traverse (table, arm_build_one_stub, info);
5085 }
252b5132 5086
906e58ca 5087 return TRUE;
252b5132
RH
5088}
5089
9b485d32
NC
5090/* Locate the Thumb encoded calling stub for NAME. */
5091
252b5132 5092static struct elf_link_hash_entry *
57e8b36a
NC
5093find_thumb_glue (struct bfd_link_info *link_info,
5094 const char *name,
f2a9dd69 5095 char **error_message)
252b5132
RH
5096{
5097 char *tmp_name;
5098 struct elf_link_hash_entry *hash;
5099 struct elf32_arm_link_hash_table *hash_table;
5100
5101 /* We need a pointer to the armelf specific hash table. */
5102 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5103 if (hash_table == NULL)
5104 return NULL;
252b5132 5105
21d799b5
NC
5106 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5107 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5108
5109 BFD_ASSERT (tmp_name);
5110
5111 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5112
5113 hash = elf_link_hash_lookup
b34976b6 5114 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5115
b1657152
AM
5116 if (hash == NULL
5117 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5118 tmp_name, name) == -1)
5119 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5120
5121 free (tmp_name);
5122
5123 return hash;
5124}
5125
9b485d32
NC
5126/* Locate the ARM encoded calling stub for NAME. */
5127
252b5132 5128static struct elf_link_hash_entry *
57e8b36a
NC
5129find_arm_glue (struct bfd_link_info *link_info,
5130 const char *name,
f2a9dd69 5131 char **error_message)
252b5132
RH
5132{
5133 char *tmp_name;
5134 struct elf_link_hash_entry *myh;
5135 struct elf32_arm_link_hash_table *hash_table;
5136
5137 /* We need a pointer to the elfarm specific hash table. */
5138 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5139 if (hash_table == NULL)
5140 return NULL;
252b5132 5141
21d799b5
NC
5142 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5143 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5144
5145 BFD_ASSERT (tmp_name);
5146
5147 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5148
5149 myh = elf_link_hash_lookup
b34976b6 5150 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5151
b1657152
AM
5152 if (myh == NULL
5153 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5154 tmp_name, name) == -1)
5155 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5156
5157 free (tmp_name);
5158
5159 return myh;
5160}
5161
8f6277f5 5162/* ARM->Thumb glue (static images):
252b5132
RH
5163
5164 .arm
5165 __func_from_arm:
5166 ldr r12, __func_addr
5167 bx r12
5168 __func_addr:
906e58ca 5169 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 5170
26079076
PB
5171 (v5t static images)
5172 .arm
5173 __func_from_arm:
5174 ldr pc, __func_addr
5175 __func_addr:
906e58ca 5176 .word func @ behave as if you saw a ARM_32 reloc.
26079076 5177
8f6277f5
PB
5178 (relocatable images)
5179 .arm
5180 __func_from_arm:
5181 ldr r12, __func_offset
5182 add r12, r12, pc
5183 bx r12
5184 __func_offset:
8029a119 5185 .word func - . */
8f6277f5
PB
5186
5187#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
5188static const insn32 a2t1_ldr_insn = 0xe59fc000;
5189static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5190static const insn32 a2t3_func_addr_insn = 0x00000001;
5191
26079076
PB
5192#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5193static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5194static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5195
8f6277f5
PB
5196#define ARM2THUMB_PIC_GLUE_SIZE 16
5197static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5198static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5199static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5200
9b485d32 5201/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 5202
8029a119
NC
5203 .thumb .thumb
5204 .align 2 .align 2
5205 __func_from_thumb: __func_from_thumb:
5206 bx pc push {r6, lr}
5207 nop ldr r6, __func_addr
5208 .arm mov lr, pc
5209 b func bx r6
fcef9eb7
NC
5210 .arm
5211 ;; back_to_thumb
5212 ldmia r13! {r6, lr}
5213 bx lr
8029a119
NC
5214 __func_addr:
5215 .word func */
252b5132
RH
5216
5217#define THUMB2ARM_GLUE_SIZE 8
5218static const insn16 t2a1_bx_pc_insn = 0x4778;
5219static const insn16 t2a2_noop_insn = 0x46c0;
5220static const insn32 t2a3_b_insn = 0xea000000;
5221
c7b8f16e
JB
5222#define VFP11_ERRATUM_VENEER_SIZE 8
5223
845b51d6
PB
5224#define ARM_BX_VENEER_SIZE 12
5225static const insn32 armbx1_tst_insn = 0xe3100001;
5226static const insn32 armbx2_moveq_insn = 0x01a0f000;
5227static const insn32 armbx3_bx_insn = 0xe12fff10;
5228
7e392df6 5229#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
5230static void
5231arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
5232{
5233 asection * s;
8029a119 5234 bfd_byte * contents;
252b5132 5235
8029a119 5236 if (size == 0)
3e6b1042
DJ
5237 {
5238 /* Do not include empty glue sections in the output. */
5239 if (abfd != NULL)
5240 {
5241 s = bfd_get_section_by_name (abfd, name);
5242 if (s != NULL)
5243 s->flags |= SEC_EXCLUDE;
5244 }
5245 return;
5246 }
252b5132 5247
8029a119 5248 BFD_ASSERT (abfd != NULL);
252b5132 5249
8029a119
NC
5250 s = bfd_get_section_by_name (abfd, name);
5251 BFD_ASSERT (s != NULL);
252b5132 5252
21d799b5 5253 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 5254
8029a119
NC
5255 BFD_ASSERT (s->size == size);
5256 s->contents = contents;
5257}
906e58ca 5258
8029a119
NC
5259bfd_boolean
5260bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5261{
5262 struct elf32_arm_link_hash_table * globals;
906e58ca 5263
8029a119
NC
5264 globals = elf32_arm_hash_table (info);
5265 BFD_ASSERT (globals != NULL);
906e58ca 5266
8029a119
NC
5267 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5268 globals->arm_glue_size,
5269 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 5270
8029a119
NC
5271 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5272 globals->thumb_glue_size,
5273 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 5274
8029a119
NC
5275 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5276 globals->vfp11_erratum_glue_size,
5277 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 5278
8029a119
NC
5279 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5280 globals->bx_glue_size,
845b51d6
PB
5281 ARM_BX_GLUE_SECTION_NAME);
5282
b34976b6 5283 return TRUE;
252b5132
RH
5284}
5285
a4fd1a8e 5286/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
5287 returns the symbol identifying the stub. */
5288
a4fd1a8e 5289static struct elf_link_hash_entry *
57e8b36a
NC
5290record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5291 struct elf_link_hash_entry * h)
252b5132
RH
5292{
5293 const char * name = h->root.root.string;
63b0f745 5294 asection * s;
252b5132
RH
5295 char * tmp_name;
5296 struct elf_link_hash_entry * myh;
14a793b2 5297 struct bfd_link_hash_entry * bh;
252b5132 5298 struct elf32_arm_link_hash_table * globals;
dc810e39 5299 bfd_vma val;
2f475487 5300 bfd_size_type size;
252b5132
RH
5301
5302 globals = elf32_arm_hash_table (link_info);
252b5132
RH
5303 BFD_ASSERT (globals != NULL);
5304 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5305
5306 s = bfd_get_section_by_name
5307 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5308
252b5132
RH
5309 BFD_ASSERT (s != NULL);
5310
21d799b5
NC
5311 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5312 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5313
5314 BFD_ASSERT (tmp_name);
5315
5316 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5317
5318 myh = elf_link_hash_lookup
b34976b6 5319 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
5320
5321 if (myh != NULL)
5322 {
9b485d32 5323 /* We've already seen this guy. */
252b5132 5324 free (tmp_name);
a4fd1a8e 5325 return myh;
252b5132
RH
5326 }
5327
57e8b36a
NC
5328 /* The only trick here is using hash_table->arm_glue_size as the value.
5329 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
5330 putting it. The +1 on the value marks that the stub has not been
5331 output yet - not that it is a Thumb function. */
14a793b2 5332 bh = NULL;
dc810e39
AM
5333 val = globals->arm_glue_size + 1;
5334 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5335 tmp_name, BSF_GLOBAL, s, val,
b34976b6 5336 NULL, TRUE, FALSE, &bh);
252b5132 5337
b7693d02
DJ
5338 myh = (struct elf_link_hash_entry *) bh;
5339 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5340 myh->forced_local = 1;
5341
252b5132
RH
5342 free (tmp_name);
5343
27e55c4d
PB
5344 if (link_info->shared || globals->root.is_relocatable_executable
5345 || globals->pic_veneer)
2f475487 5346 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
5347 else if (globals->use_blx)
5348 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 5349 else
2f475487
AM
5350 size = ARM2THUMB_STATIC_GLUE_SIZE;
5351
5352 s->size += size;
5353 globals->arm_glue_size += size;
252b5132 5354
a4fd1a8e 5355 return myh;
252b5132
RH
5356}
5357
845b51d6
PB
5358/* Allocate space for ARMv4 BX veneers. */
5359
5360static void
5361record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5362{
5363 asection * s;
5364 struct elf32_arm_link_hash_table *globals;
5365 char *tmp_name;
5366 struct elf_link_hash_entry *myh;
5367 struct bfd_link_hash_entry *bh;
5368 bfd_vma val;
5369
5370 /* BX PC does not need a veneer. */
5371 if (reg == 15)
5372 return;
5373
5374 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
5375 BFD_ASSERT (globals != NULL);
5376 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5377
5378 /* Check if this veneer has already been allocated. */
5379 if (globals->bx_glue_offset[reg])
5380 return;
5381
5382 s = bfd_get_section_by_name
5383 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5384
5385 BFD_ASSERT (s != NULL);
5386
5387 /* Add symbol for veneer. */
21d799b5
NC
5388 tmp_name = (char *)
5389 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 5390
845b51d6 5391 BFD_ASSERT (tmp_name);
906e58ca 5392
845b51d6 5393 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 5394
845b51d6
PB
5395 myh = elf_link_hash_lookup
5396 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5397
845b51d6 5398 BFD_ASSERT (myh == NULL);
906e58ca 5399
845b51d6
PB
5400 bh = NULL;
5401 val = globals->bx_glue_size;
5402 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5403 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5404 NULL, TRUE, FALSE, &bh);
5405
5406 myh = (struct elf_link_hash_entry *) bh;
5407 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5408 myh->forced_local = 1;
5409
5410 s->size += ARM_BX_VENEER_SIZE;
5411 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5412 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5413}
5414
5415
c7b8f16e
JB
5416/* Add an entry to the code/data map for section SEC. */
5417
5418static void
5419elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5420{
5421 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5422 unsigned int newidx;
906e58ca 5423
c7b8f16e
JB
5424 if (sec_data->map == NULL)
5425 {
21d799b5
NC
5426 sec_data->map = (elf32_arm_section_map *)
5427 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
5428 sec_data->mapcount = 0;
5429 sec_data->mapsize = 1;
5430 }
906e58ca 5431
c7b8f16e 5432 newidx = sec_data->mapcount++;
906e58ca 5433
c7b8f16e
JB
5434 if (sec_data->mapcount > sec_data->mapsize)
5435 {
5436 sec_data->mapsize *= 2;
21d799b5
NC
5437 sec_data->map = (elf32_arm_section_map *)
5438 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5439 * sizeof (elf32_arm_section_map));
515ef31d
NC
5440 }
5441
5442 if (sec_data->map)
5443 {
5444 sec_data->map[newidx].vma = vma;
5445 sec_data->map[newidx].type = type;
c7b8f16e 5446 }
c7b8f16e
JB
5447}
5448
5449
5450/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5451 veneers are handled for now. */
5452
5453static bfd_vma
5454record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5455 elf32_vfp11_erratum_list *branch,
5456 bfd *branch_bfd,
5457 asection *branch_sec,
5458 unsigned int offset)
5459{
5460 asection *s;
5461 struct elf32_arm_link_hash_table *hash_table;
5462 char *tmp_name;
5463 struct elf_link_hash_entry *myh;
5464 struct bfd_link_hash_entry *bh;
5465 bfd_vma val;
5466 struct _arm_elf_section_data *sec_data;
c7b8f16e 5467 elf32_vfp11_erratum_list *newerr;
906e58ca 5468
c7b8f16e 5469 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
5470 BFD_ASSERT (hash_table != NULL);
5471 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 5472
c7b8f16e
JB
5473 s = bfd_get_section_by_name
5474 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 5475
c7b8f16e 5476 sec_data = elf32_arm_section_data (s);
906e58ca 5477
c7b8f16e 5478 BFD_ASSERT (s != NULL);
906e58ca 5479
21d799b5
NC
5480 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5481 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 5482
c7b8f16e 5483 BFD_ASSERT (tmp_name);
906e58ca 5484
c7b8f16e
JB
5485 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5486 hash_table->num_vfp11_fixes);
906e58ca 5487
c7b8f16e
JB
5488 myh = elf_link_hash_lookup
5489 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5490
c7b8f16e 5491 BFD_ASSERT (myh == NULL);
906e58ca 5492
c7b8f16e
JB
5493 bh = NULL;
5494 val = hash_table->vfp11_erratum_glue_size;
5495 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5496 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5497 NULL, TRUE, FALSE, &bh);
5498
5499 myh = (struct elf_link_hash_entry *) bh;
5500 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5501 myh->forced_local = 1;
5502
5503 /* Link veneer back to calling location. */
c7e2358a 5504 sec_data->erratumcount += 1;
21d799b5
NC
5505 newerr = (elf32_vfp11_erratum_list *)
5506 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 5507
c7b8f16e
JB
5508 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5509 newerr->vma = -1;
5510 newerr->u.v.branch = branch;
5511 newerr->u.v.id = hash_table->num_vfp11_fixes;
5512 branch->u.b.veneer = newerr;
5513
5514 newerr->next = sec_data->erratumlist;
5515 sec_data->erratumlist = newerr;
5516
5517 /* A symbol for the return from the veneer. */
5518 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5519 hash_table->num_vfp11_fixes);
5520
5521 myh = elf_link_hash_lookup
5522 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5523
c7b8f16e
JB
5524 if (myh != NULL)
5525 abort ();
5526
5527 bh = NULL;
5528 val = offset + 4;
5529 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5530 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 5531
c7b8f16e
JB
5532 myh = (struct elf_link_hash_entry *) bh;
5533 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5534 myh->forced_local = 1;
5535
5536 free (tmp_name);
906e58ca 5537
c7b8f16e
JB
5538 /* Generate a mapping symbol for the veneer section, and explicitly add an
5539 entry for that symbol to the code/data map for the section. */
5540 if (hash_table->vfp11_erratum_glue_size == 0)
5541 {
5542 bh = NULL;
5543 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5544 ever requires this erratum fix. */
5545 _bfd_generic_link_add_one_symbol (link_info,
5546 hash_table->bfd_of_glue_owner, "$a",
5547 BSF_LOCAL, s, 0, NULL,
5548 TRUE, FALSE, &bh);
5549
5550 myh = (struct elf_link_hash_entry *) bh;
5551 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5552 myh->forced_local = 1;
906e58ca 5553
c7b8f16e
JB
5554 /* The elf32_arm_init_maps function only cares about symbols from input
5555 BFDs. We must make a note of this generated mapping symbol
5556 ourselves so that code byteswapping works properly in
5557 elf32_arm_write_section. */
5558 elf32_arm_section_map_add (s, 'a', 0);
5559 }
906e58ca 5560
c7b8f16e
JB
5561 s->size += VFP11_ERRATUM_VENEER_SIZE;
5562 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5563 hash_table->num_vfp11_fixes++;
906e58ca 5564
c7b8f16e
JB
5565 /* The offset of the veneer. */
5566 return val;
5567}
5568
8029a119 5569#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
5570 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5571 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
5572
5573/* Create a fake section for use by the ARM backend of the linker. */
5574
5575static bfd_boolean
5576arm_make_glue_section (bfd * abfd, const char * name)
5577{
5578 asection * sec;
5579
5580 sec = bfd_get_section_by_name (abfd, name);
5581 if (sec != NULL)
5582 /* Already made. */
5583 return TRUE;
5584
5585 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5586
5587 if (sec == NULL
5588 || !bfd_set_section_alignment (abfd, sec, 2))
5589 return FALSE;
5590
5591 /* Set the gc mark to prevent the section from being removed by garbage
5592 collection, despite the fact that no relocs refer to this section. */
5593 sec->gc_mark = 1;
5594
5595 return TRUE;
5596}
5597
8afb0e02
NC
5598/* Add the glue sections to ABFD. This function is called from the
5599 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 5600
b34976b6 5601bfd_boolean
57e8b36a
NC
5602bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5603 struct bfd_link_info *info)
252b5132 5604{
8afb0e02
NC
5605 /* If we are only performing a partial
5606 link do not bother adding the glue. */
1049f94e 5607 if (info->relocatable)
b34976b6 5608 return TRUE;
252b5132 5609
8029a119
NC
5610 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5611 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5612 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5613 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
5614}
5615
5616/* Select a BFD to be used to hold the sections used by the glue code.
5617 This function is called from the linker scripts in ld/emultempl/
8029a119 5618 {armelf/pe}.em. */
8afb0e02 5619
b34976b6 5620bfd_boolean
57e8b36a 5621bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
5622{
5623 struct elf32_arm_link_hash_table *globals;
5624
5625 /* If we are only performing a partial link
5626 do not bother getting a bfd to hold the glue. */
1049f94e 5627 if (info->relocatable)
b34976b6 5628 return TRUE;
8afb0e02 5629
b7693d02
DJ
5630 /* Make sure we don't attach the glue sections to a dynamic object. */
5631 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5632
8afb0e02 5633 globals = elf32_arm_hash_table (info);
8afb0e02
NC
5634 BFD_ASSERT (globals != NULL);
5635
5636 if (globals->bfd_of_glue_owner != NULL)
b34976b6 5637 return TRUE;
8afb0e02 5638
252b5132
RH
5639 /* Save the bfd for later use. */
5640 globals->bfd_of_glue_owner = abfd;
cedb70c5 5641
b34976b6 5642 return TRUE;
252b5132
RH
5643}
5644
906e58ca
NC
5645static void
5646check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 5647{
104d59d1
JM
5648 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5649 Tag_CPU_arch) > 2)
39b41c9c
PB
5650 globals->use_blx = 1;
5651}
5652
b34976b6 5653bfd_boolean
57e8b36a 5654bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 5655 struct bfd_link_info *link_info)
252b5132
RH
5656{
5657 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 5658 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
5659 Elf_Internal_Rela *irel, *irelend;
5660 bfd_byte *contents = NULL;
252b5132
RH
5661
5662 asection *sec;
5663 struct elf32_arm_link_hash_table *globals;
5664
5665 /* If we are only performing a partial link do not bother
5666 to construct any glue. */
1049f94e 5667 if (link_info->relocatable)
b34976b6 5668 return TRUE;
252b5132 5669
39ce1a6a
NC
5670 /* Here we have a bfd that is to be included on the link. We have a
5671 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 5672 globals = elf32_arm_hash_table (link_info);
252b5132 5673 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
5674
5675 check_use_blx (globals);
252b5132 5676
d504ffc8 5677 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 5678 {
d003868e
AM
5679 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5680 abfd);
e489d0ae
PB
5681 return FALSE;
5682 }
f21f3fe0 5683
39ce1a6a
NC
5684 /* PR 5398: If we have not decided to include any loadable sections in
5685 the output then we will not have a glue owner bfd. This is OK, it
5686 just means that there is nothing else for us to do here. */
5687 if (globals->bfd_of_glue_owner == NULL)
5688 return TRUE;
5689
252b5132
RH
5690 /* Rummage around all the relocs and map the glue vectors. */
5691 sec = abfd->sections;
5692
5693 if (sec == NULL)
b34976b6 5694 return TRUE;
252b5132
RH
5695
5696 for (; sec != NULL; sec = sec->next)
5697 {
5698 if (sec->reloc_count == 0)
5699 continue;
5700
2f475487
AM
5701 if ((sec->flags & SEC_EXCLUDE) != 0)
5702 continue;
5703
0ffa91dd 5704 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 5705
9b485d32 5706 /* Load the relocs. */
6cdc0ccc 5707 internal_relocs
906e58ca 5708 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 5709
6cdc0ccc
AM
5710 if (internal_relocs == NULL)
5711 goto error_return;
252b5132 5712
6cdc0ccc
AM
5713 irelend = internal_relocs + sec->reloc_count;
5714 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
5715 {
5716 long r_type;
5717 unsigned long r_index;
252b5132
RH
5718
5719 struct elf_link_hash_entry *h;
5720
5721 r_type = ELF32_R_TYPE (irel->r_info);
5722 r_index = ELF32_R_SYM (irel->r_info);
5723
9b485d32 5724 /* These are the only relocation types we care about. */
ba96a88f 5725 if ( r_type != R_ARM_PC24
845b51d6 5726 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
5727 continue;
5728
5729 /* Get the section contents if we haven't done so already. */
5730 if (contents == NULL)
5731 {
5732 /* Get cached copy if it exists. */
5733 if (elf_section_data (sec)->this_hdr.contents != NULL)
5734 contents = elf_section_data (sec)->this_hdr.contents;
5735 else
5736 {
5737 /* Go get them off disk. */
57e8b36a 5738 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
5739 goto error_return;
5740 }
5741 }
5742
845b51d6
PB
5743 if (r_type == R_ARM_V4BX)
5744 {
5745 int reg;
5746
5747 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5748 record_arm_bx_glue (link_info, reg);
5749 continue;
5750 }
5751
a7c10850 5752 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
5753 h = NULL;
5754
9b485d32 5755 /* We don't care about local symbols. */
252b5132
RH
5756 if (r_index < symtab_hdr->sh_info)
5757 continue;
5758
9b485d32 5759 /* This is an external symbol. */
252b5132
RH
5760 r_index -= symtab_hdr->sh_info;
5761 h = (struct elf_link_hash_entry *)
5762 elf_sym_hashes (abfd)[r_index];
5763
5764 /* If the relocation is against a static symbol it must be within
5765 the current section and so cannot be a cross ARM/Thumb relocation. */
5766 if (h == NULL)
5767 continue;
5768
d504ffc8
DJ
5769 /* If the call will go through a PLT entry then we do not need
5770 glue. */
362d30a1 5771 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
5772 continue;
5773
252b5132
RH
5774 switch (r_type)
5775 {
5776 case R_ARM_PC24:
5777 /* This one is a call from arm code. We need to look up
2f0ca46a 5778 the target of the call. If it is a thumb target, we
252b5132 5779 insert glue. */
ebe24dd4 5780 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
252b5132
RH
5781 record_arm_to_thumb_glue (link_info, h);
5782 break;
5783
252b5132 5784 default:
c6596c5e 5785 abort ();
252b5132
RH
5786 }
5787 }
6cdc0ccc
AM
5788
5789 if (contents != NULL
5790 && elf_section_data (sec)->this_hdr.contents != contents)
5791 free (contents);
5792 contents = NULL;
5793
5794 if (internal_relocs != NULL
5795 && elf_section_data (sec)->relocs != internal_relocs)
5796 free (internal_relocs);
5797 internal_relocs = NULL;
252b5132
RH
5798 }
5799
b34976b6 5800 return TRUE;
9a5aca8c 5801
252b5132 5802error_return:
6cdc0ccc
AM
5803 if (contents != NULL
5804 && elf_section_data (sec)->this_hdr.contents != contents)
5805 free (contents);
5806 if (internal_relocs != NULL
5807 && elf_section_data (sec)->relocs != internal_relocs)
5808 free (internal_relocs);
9a5aca8c 5809
b34976b6 5810 return FALSE;
252b5132 5811}
7e392df6 5812#endif
252b5132 5813
eb043451 5814
c7b8f16e
JB
5815/* Initialise maps of ARM/Thumb/data for input BFDs. */
5816
5817void
5818bfd_elf32_arm_init_maps (bfd *abfd)
5819{
5820 Elf_Internal_Sym *isymbuf;
5821 Elf_Internal_Shdr *hdr;
5822 unsigned int i, localsyms;
5823
af1f4419
NC
5824 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5825 if (! is_arm_elf (abfd))
5826 return;
5827
c7b8f16e
JB
5828 if ((abfd->flags & DYNAMIC) != 0)
5829 return;
5830
0ffa91dd 5831 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
5832 localsyms = hdr->sh_info;
5833
5834 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5835 should contain the number of local symbols, which should come before any
5836 global symbols. Mapping symbols are always local. */
5837 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5838 NULL);
5839
5840 /* No internal symbols read? Skip this BFD. */
5841 if (isymbuf == NULL)
5842 return;
5843
5844 for (i = 0; i < localsyms; i++)
5845 {
5846 Elf_Internal_Sym *isym = &isymbuf[i];
5847 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5848 const char *name;
906e58ca 5849
c7b8f16e
JB
5850 if (sec != NULL
5851 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5852 {
5853 name = bfd_elf_string_from_elf_section (abfd,
5854 hdr->sh_link, isym->st_name);
906e58ca 5855
c7b8f16e
JB
5856 if (bfd_is_arm_special_symbol_name (name,
5857 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5858 elf32_arm_section_map_add (sec, name[1], isym->st_value);
5859 }
5860 }
5861}
5862
5863
48229727
JB
5864/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5865 say what they wanted. */
5866
5867void
5868bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5869{
5870 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5871 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5872
4dfe6ac6
NC
5873 if (globals == NULL)
5874 return;
5875
48229727
JB
5876 if (globals->fix_cortex_a8 == -1)
5877 {
5878 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5879 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5880 && (out_attr[Tag_CPU_arch_profile].i == 'A'
5881 || out_attr[Tag_CPU_arch_profile].i == 0))
5882 globals->fix_cortex_a8 = 1;
5883 else
5884 globals->fix_cortex_a8 = 0;
5885 }
5886}
5887
5888
c7b8f16e
JB
5889void
5890bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5891{
5892 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 5893 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 5894
4dfe6ac6
NC
5895 if (globals == NULL)
5896 return;
c7b8f16e
JB
5897 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5898 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5899 {
5900 switch (globals->vfp11_fix)
5901 {
5902 case BFD_ARM_VFP11_FIX_DEFAULT:
5903 case BFD_ARM_VFP11_FIX_NONE:
5904 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5905 break;
906e58ca 5906
c7b8f16e
JB
5907 default:
5908 /* Give a warning, but do as the user requests anyway. */
5909 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5910 "workaround is not necessary for target architecture"), obfd);
5911 }
5912 }
5913 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5914 /* For earlier architectures, we might need the workaround, but do not
5915 enable it by default. If users is running with broken hardware, they
5916 must enable the erratum fix explicitly. */
5917 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5918}
5919
5920
906e58ca
NC
5921enum bfd_arm_vfp11_pipe
5922{
c7b8f16e
JB
5923 VFP11_FMAC,
5924 VFP11_LS,
5925 VFP11_DS,
5926 VFP11_BAD
5927};
5928
5929/* Return a VFP register number. This is encoded as RX:X for single-precision
5930 registers, or X:RX for double-precision registers, where RX is the group of
5931 four bits in the instruction encoding and X is the single extension bit.
5932 RX and X fields are specified using their lowest (starting) bit. The return
5933 value is:
5934
5935 0...31: single-precision registers s0...s31
5936 32...63: double-precision registers d0...d31.
906e58ca 5937
c7b8f16e
JB
5938 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5939 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 5940
c7b8f16e
JB
5941static unsigned int
5942bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5943 unsigned int x)
5944{
5945 if (is_double)
5946 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5947 else
5948 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5949}
5950
5951/* Set bits in *WMASK according to a register number REG as encoded by
5952 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5953
5954static void
5955bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5956{
5957 if (reg < 32)
5958 *wmask |= 1 << reg;
5959 else if (reg < 48)
5960 *wmask |= 3 << ((reg - 32) * 2);
5961}
5962
5963/* Return TRUE if WMASK overwrites anything in REGS. */
5964
5965static bfd_boolean
5966bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5967{
5968 int i;
906e58ca 5969
c7b8f16e
JB
5970 for (i = 0; i < numregs; i++)
5971 {
5972 unsigned int reg = regs[i];
5973
5974 if (reg < 32 && (wmask & (1 << reg)) != 0)
5975 return TRUE;
906e58ca 5976
c7b8f16e
JB
5977 reg -= 32;
5978
5979 if (reg >= 16)
5980 continue;
906e58ca 5981
c7b8f16e
JB
5982 if ((wmask & (3 << (reg * 2))) != 0)
5983 return TRUE;
5984 }
906e58ca 5985
c7b8f16e
JB
5986 return FALSE;
5987}
5988
5989/* In this function, we're interested in two things: finding input registers
5990 for VFP data-processing instructions, and finding the set of registers which
5991 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5992 hold the written set, so FLDM etc. are easy to deal with (we're only
5993 interested in 32 SP registers or 16 dp registers, due to the VFP version
5994 implemented by the chip in question). DP registers are marked by setting
5995 both SP registers in the write mask). */
5996
5997static enum bfd_arm_vfp11_pipe
5998bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5999 int *numregs)
6000{
91d6fa6a 6001 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
6002 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6003
6004 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6005 {
6006 unsigned int pqrs;
6007 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6008 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6009
6010 pqrs = ((insn & 0x00800000) >> 20)
6011 | ((insn & 0x00300000) >> 19)
6012 | ((insn & 0x00000040) >> 6);
6013
6014 switch (pqrs)
6015 {
6016 case 0: /* fmac[sd]. */
6017 case 1: /* fnmac[sd]. */
6018 case 2: /* fmsc[sd]. */
6019 case 3: /* fnmsc[sd]. */
91d6fa6a 6020 vpipe = VFP11_FMAC;
c7b8f16e
JB
6021 bfd_arm_vfp11_write_mask (destmask, fd);
6022 regs[0] = fd;
6023 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6024 regs[2] = fm;
6025 *numregs = 3;
6026 break;
6027
6028 case 4: /* fmul[sd]. */
6029 case 5: /* fnmul[sd]. */
6030 case 6: /* fadd[sd]. */
6031 case 7: /* fsub[sd]. */
91d6fa6a 6032 vpipe = VFP11_FMAC;
c7b8f16e
JB
6033 goto vfp_binop;
6034
6035 case 8: /* fdiv[sd]. */
91d6fa6a 6036 vpipe = VFP11_DS;
c7b8f16e
JB
6037 vfp_binop:
6038 bfd_arm_vfp11_write_mask (destmask, fd);
6039 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6040 regs[1] = fm;
6041 *numregs = 2;
6042 break;
6043
6044 case 15: /* extended opcode. */
6045 {
6046 unsigned int extn = ((insn >> 15) & 0x1e)
6047 | ((insn >> 7) & 1);
6048
6049 switch (extn)
6050 {
6051 case 0: /* fcpy[sd]. */
6052 case 1: /* fabs[sd]. */
6053 case 2: /* fneg[sd]. */
6054 case 8: /* fcmp[sd]. */
6055 case 9: /* fcmpe[sd]. */
6056 case 10: /* fcmpz[sd]. */
6057 case 11: /* fcmpez[sd]. */
6058 case 16: /* fuito[sd]. */
6059 case 17: /* fsito[sd]. */
6060 case 24: /* ftoui[sd]. */
6061 case 25: /* ftouiz[sd]. */
6062 case 26: /* ftosi[sd]. */
6063 case 27: /* ftosiz[sd]. */
6064 /* These instructions will not bounce due to underflow. */
6065 *numregs = 0;
91d6fa6a 6066 vpipe = VFP11_FMAC;
c7b8f16e
JB
6067 break;
6068
6069 case 3: /* fsqrt[sd]. */
6070 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6071 registers to cause the erratum in previous instructions. */
6072 bfd_arm_vfp11_write_mask (destmask, fd);
91d6fa6a 6073 vpipe = VFP11_DS;
c7b8f16e
JB
6074 break;
6075
6076 case 15: /* fcvt{ds,sd}. */
6077 {
6078 int rnum = 0;
6079
6080 bfd_arm_vfp11_write_mask (destmask, fd);
6081
6082 /* Only FCVTSD can underflow. */
6083 if ((insn & 0x100) != 0)
6084 regs[rnum++] = fm;
6085
6086 *numregs = rnum;
6087
91d6fa6a 6088 vpipe = VFP11_FMAC;
c7b8f16e
JB
6089 }
6090 break;
6091
6092 default:
6093 return VFP11_BAD;
6094 }
6095 }
6096 break;
6097
6098 default:
6099 return VFP11_BAD;
6100 }
6101 }
6102 /* Two-register transfer. */
6103 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6104 {
6105 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 6106
c7b8f16e
JB
6107 if ((insn & 0x100000) == 0)
6108 {
6109 if (is_double)
6110 bfd_arm_vfp11_write_mask (destmask, fm);
6111 else
6112 {
6113 bfd_arm_vfp11_write_mask (destmask, fm);
6114 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6115 }
6116 }
6117
91d6fa6a 6118 vpipe = VFP11_LS;
c7b8f16e
JB
6119 }
6120 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6121 {
6122 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6123 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 6124
c7b8f16e
JB
6125 switch (puw)
6126 {
6127 case 0: /* Two-reg transfer. We should catch these above. */
6128 abort ();
906e58ca 6129
c7b8f16e
JB
6130 case 2: /* fldm[sdx]. */
6131 case 3:
6132 case 5:
6133 {
6134 unsigned int i, offset = insn & 0xff;
6135
6136 if (is_double)
6137 offset >>= 1;
6138
6139 for (i = fd; i < fd + offset; i++)
6140 bfd_arm_vfp11_write_mask (destmask, i);
6141 }
6142 break;
906e58ca 6143
c7b8f16e
JB
6144 case 4: /* fld[sd]. */
6145 case 6:
6146 bfd_arm_vfp11_write_mask (destmask, fd);
6147 break;
906e58ca 6148
c7b8f16e
JB
6149 default:
6150 return VFP11_BAD;
6151 }
6152
91d6fa6a 6153 vpipe = VFP11_LS;
c7b8f16e
JB
6154 }
6155 /* Single-register transfer. Note L==0. */
6156 else if ((insn & 0x0f100e10) == 0x0e000a10)
6157 {
6158 unsigned int opcode = (insn >> 21) & 7;
6159 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6160
6161 switch (opcode)
6162 {
6163 case 0: /* fmsr/fmdlr. */
6164 case 1: /* fmdhr. */
6165 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6166 destination register. I don't know if this is exactly right,
6167 but it is the conservative choice. */
6168 bfd_arm_vfp11_write_mask (destmask, fn);
6169 break;
6170
6171 case 7: /* fmxr. */
6172 break;
6173 }
6174
91d6fa6a 6175 vpipe = VFP11_LS;
c7b8f16e
JB
6176 }
6177
91d6fa6a 6178 return vpipe;
c7b8f16e
JB
6179}
6180
6181
6182static int elf32_arm_compare_mapping (const void * a, const void * b);
6183
6184
6185/* Look for potentially-troublesome code sequences which might trigger the
6186 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6187 (available from ARM) for details of the erratum. A short version is
6188 described in ld.texinfo. */
6189
6190bfd_boolean
6191bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6192{
6193 asection *sec;
6194 bfd_byte *contents = NULL;
6195 int state = 0;
6196 int regs[3], numregs = 0;
6197 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6198 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 6199
4dfe6ac6
NC
6200 if (globals == NULL)
6201 return FALSE;
6202
c7b8f16e
JB
6203 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6204 The states transition as follows:
906e58ca 6205
c7b8f16e
JB
6206 0 -> 1 (vector) or 0 -> 2 (scalar)
6207 A VFP FMAC-pipeline instruction has been seen. Fill
6208 regs[0]..regs[numregs-1] with its input operands. Remember this
6209 instruction in 'first_fmac'.
6210
6211 1 -> 2
6212 Any instruction, except for a VFP instruction which overwrites
6213 regs[*].
906e58ca 6214
c7b8f16e
JB
6215 1 -> 3 [ -> 0 ] or
6216 2 -> 3 [ -> 0 ]
6217 A VFP instruction has been seen which overwrites any of regs[*].
6218 We must make a veneer! Reset state to 0 before examining next
6219 instruction.
906e58ca 6220
c7b8f16e
JB
6221 2 -> 0
6222 If we fail to match anything in state 2, reset to state 0 and reset
6223 the instruction pointer to the instruction after 'first_fmac'.
6224
6225 If the VFP11 vector mode is in use, there must be at least two unrelated
6226 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 6227 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
6228
6229 /* If we are only performing a partial link do not bother
6230 to construct any glue. */
6231 if (link_info->relocatable)
6232 return TRUE;
6233
0ffa91dd
NC
6234 /* Skip if this bfd does not correspond to an ELF image. */
6235 if (! is_arm_elf (abfd))
6236 return TRUE;
906e58ca 6237
c7b8f16e
JB
6238 /* We should have chosen a fix type by the time we get here. */
6239 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6240
6241 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6242 return TRUE;
2e6030b9 6243
33a7ffc2
JM
6244 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6245 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6246 return TRUE;
6247
c7b8f16e
JB
6248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6249 {
6250 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6251 struct _arm_elf_section_data *sec_data;
6252
6253 /* If we don't have executable progbits, we're not interested in this
6254 section. Also skip if section is to be excluded. */
6255 if (elf_section_type (sec) != SHT_PROGBITS
6256 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6257 || (sec->flags & SEC_EXCLUDE) != 0
33a7ffc2
JM
6258 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6259 || sec->output_section == bfd_abs_section_ptr
c7b8f16e
JB
6260 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6261 continue;
6262
6263 sec_data = elf32_arm_section_data (sec);
906e58ca 6264
c7b8f16e
JB
6265 if (sec_data->mapcount == 0)
6266 continue;
906e58ca 6267
c7b8f16e
JB
6268 if (elf_section_data (sec)->this_hdr.contents != NULL)
6269 contents = elf_section_data (sec)->this_hdr.contents;
6270 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6271 goto error_return;
6272
6273 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6274 elf32_arm_compare_mapping);
6275
6276 for (span = 0; span < sec_data->mapcount; span++)
6277 {
6278 unsigned int span_start = sec_data->map[span].vma;
6279 unsigned int span_end = (span == sec_data->mapcount - 1)
6280 ? sec->size : sec_data->map[span + 1].vma;
6281 char span_type = sec_data->map[span].type;
906e58ca 6282
c7b8f16e
JB
6283 /* FIXME: Only ARM mode is supported at present. We may need to
6284 support Thumb-2 mode also at some point. */
6285 if (span_type != 'a')
6286 continue;
6287
6288 for (i = span_start; i < span_end;)
6289 {
6290 unsigned int next_i = i + 4;
6291 unsigned int insn = bfd_big_endian (abfd)
6292 ? (contents[i] << 24)
6293 | (contents[i + 1] << 16)
6294 | (contents[i + 2] << 8)
6295 | contents[i + 3]
6296 : (contents[i + 3] << 24)
6297 | (contents[i + 2] << 16)
6298 | (contents[i + 1] << 8)
6299 | contents[i];
6300 unsigned int writemask = 0;
91d6fa6a 6301 enum bfd_arm_vfp11_pipe vpipe;
c7b8f16e
JB
6302
6303 switch (state)
6304 {
6305 case 0:
91d6fa6a 6306 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
c7b8f16e
JB
6307 &numregs);
6308 /* I'm assuming the VFP11 erratum can trigger with denorm
6309 operands on either the FMAC or the DS pipeline. This might
6310 lead to slightly overenthusiastic veneer insertion. */
91d6fa6a 6311 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
c7b8f16e
JB
6312 {
6313 state = use_vector ? 1 : 2;
6314 first_fmac = i;
6315 veneer_of_insn = insn;
6316 }
6317 break;
6318
6319 case 1:
6320 {
6321 int other_regs[3], other_numregs;
91d6fa6a 6322 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e
JB
6323 other_regs,
6324 &other_numregs);
91d6fa6a 6325 if (vpipe != VFP11_BAD
c7b8f16e
JB
6326 && bfd_arm_vfp11_antidependency (writemask, regs,
6327 numregs))
6328 state = 3;
6329 else
6330 state = 2;
6331 }
6332 break;
6333
6334 case 2:
6335 {
6336 int other_regs[3], other_numregs;
91d6fa6a 6337 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e
JB
6338 other_regs,
6339 &other_numregs);
91d6fa6a 6340 if (vpipe != VFP11_BAD
c7b8f16e
JB
6341 && bfd_arm_vfp11_antidependency (writemask, regs,
6342 numregs))
6343 state = 3;
6344 else
6345 {
6346 state = 0;
6347 next_i = first_fmac + 4;
6348 }
6349 }
6350 break;
6351
6352 case 3:
6353 abort (); /* Should be unreachable. */
6354 }
6355
6356 if (state == 3)
6357 {
21d799b5
NC
6358 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6359 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
c7b8f16e 6360
c7e2358a 6361 elf32_arm_section_data (sec)->erratumcount += 1;
c7b8f16e
JB
6362
6363 newerr->u.b.vfp_insn = veneer_of_insn;
6364
6365 switch (span_type)
6366 {
6367 case 'a':
6368 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6369 break;
906e58ca 6370
c7b8f16e
JB
6371 default:
6372 abort ();
6373 }
6374
6375 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6376 first_fmac);
6377
6378 newerr->vma = -1;
6379
6380 newerr->next = sec_data->erratumlist;
6381 sec_data->erratumlist = newerr;
6382
6383 state = 0;
6384 }
6385
6386 i = next_i;
6387 }
6388 }
906e58ca 6389
c7b8f16e
JB
6390 if (contents != NULL
6391 && elf_section_data (sec)->this_hdr.contents != contents)
6392 free (contents);
6393 contents = NULL;
6394 }
6395
6396 return TRUE;
6397
6398error_return:
6399 if (contents != NULL
6400 && elf_section_data (sec)->this_hdr.contents != contents)
6401 free (contents);
906e58ca 6402
c7b8f16e
JB
6403 return FALSE;
6404}
6405
6406/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6407 after sections have been laid out, using specially-named symbols. */
6408
6409void
6410bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6411 struct bfd_link_info *link_info)
6412{
6413 asection *sec;
6414 struct elf32_arm_link_hash_table *globals;
6415 char *tmp_name;
906e58ca 6416
c7b8f16e
JB
6417 if (link_info->relocatable)
6418 return;
2e6030b9
MS
6419
6420 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 6421 if (! is_arm_elf (abfd))
2e6030b9
MS
6422 return;
6423
c7b8f16e 6424 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6425 if (globals == NULL)
6426 return;
906e58ca 6427
21d799b5
NC
6428 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6429 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
6430
6431 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6432 {
6433 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6434 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 6435
c7b8f16e
JB
6436 for (; errnode != NULL; errnode = errnode->next)
6437 {
6438 struct elf_link_hash_entry *myh;
6439 bfd_vma vma;
6440
6441 switch (errnode->type)
6442 {
6443 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6444 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6445 /* Find veneer symbol. */
6446 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6447 errnode->u.b.veneer->u.v.id);
6448
6449 myh = elf_link_hash_lookup
6450 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6451
6452 if (myh == NULL)
6453 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6454 "`%s'"), abfd, tmp_name);
6455
6456 vma = myh->root.u.def.section->output_section->vma
6457 + myh->root.u.def.section->output_offset
6458 + myh->root.u.def.value;
6459
6460 errnode->u.b.veneer->vma = vma;
6461 break;
6462
6463 case VFP11_ERRATUM_ARM_VENEER:
6464 case VFP11_ERRATUM_THUMB_VENEER:
6465 /* Find return location. */
6466 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6467 errnode->u.v.id);
6468
6469 myh = elf_link_hash_lookup
6470 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6471
6472 if (myh == NULL)
6473 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6474 "`%s'"), abfd, tmp_name);
6475
6476 vma = myh->root.u.def.section->output_section->vma
6477 + myh->root.u.def.section->output_offset
6478 + myh->root.u.def.value;
6479
6480 errnode->u.v.branch->vma = vma;
6481 break;
906e58ca 6482
c7b8f16e
JB
6483 default:
6484 abort ();
6485 }
6486 }
6487 }
906e58ca 6488
c7b8f16e
JB
6489 free (tmp_name);
6490}
6491
6492
eb043451
PB
6493/* Set target relocation values needed during linking. */
6494
6495void
bf21ed78
MS
6496bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6497 struct bfd_link_info *link_info,
eb043451 6498 int target1_is_rel,
319850b4 6499 char * target2_type,
33bfe774 6500 int fix_v4bx,
c7b8f16e 6501 int use_blx,
bf21ed78 6502 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481 6503 int no_enum_warn, int no_wchar_warn,
48229727 6504 int pic_veneer, int fix_cortex_a8)
eb043451
PB
6505{
6506 struct elf32_arm_link_hash_table *globals;
6507
6508 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6509 if (globals == NULL)
6510 return;
eb043451
PB
6511
6512 globals->target1_is_rel = target1_is_rel;
6513 if (strcmp (target2_type, "rel") == 0)
6514 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
6515 else if (strcmp (target2_type, "abs") == 0)
6516 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
6517 else if (strcmp (target2_type, "got-rel") == 0)
6518 globals->target2_reloc = R_ARM_GOT_PREL;
6519 else
6520 {
6521 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6522 target2_type);
6523 }
319850b4 6524 globals->fix_v4bx = fix_v4bx;
33bfe774 6525 globals->use_blx |= use_blx;
c7b8f16e 6526 globals->vfp11_fix = vfp11_fix;
27e55c4d 6527 globals->pic_veneer = pic_veneer;
48229727 6528 globals->fix_cortex_a8 = fix_cortex_a8;
bf21ed78 6529
0ffa91dd
NC
6530 BFD_ASSERT (is_arm_elf (output_bfd));
6531 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 6532 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 6533}
eb043451 6534
12a0a0fd 6535/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 6536
12a0a0fd
PB
6537static void
6538insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6539{
6540 bfd_vma upper;
6541 bfd_vma lower;
6542 int reloc_sign;
6543
6544 BFD_ASSERT ((offset & 1) == 0);
6545
6546 upper = bfd_get_16 (abfd, insn);
6547 lower = bfd_get_16 (abfd, insn + 2);
6548 reloc_sign = (offset < 0) ? 1 : 0;
6549 upper = (upper & ~(bfd_vma) 0x7ff)
6550 | ((offset >> 12) & 0x3ff)
6551 | (reloc_sign << 10);
906e58ca 6552 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
6553 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6554 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6555 | ((offset >> 1) & 0x7ff);
6556 bfd_put_16 (abfd, upper, insn);
6557 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
6558}
6559
9b485d32
NC
6560/* Thumb code calling an ARM function. */
6561
252b5132 6562static int
57e8b36a
NC
6563elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6564 const char * name,
6565 bfd * input_bfd,
6566 bfd * output_bfd,
6567 asection * input_section,
6568 bfd_byte * hit_data,
6569 asection * sym_sec,
6570 bfd_vma offset,
6571 bfd_signed_vma addend,
f2a9dd69
DJ
6572 bfd_vma val,
6573 char **error_message)
252b5132 6574{
bcbdc74c 6575 asection * s = 0;
dc810e39 6576 bfd_vma my_offset;
252b5132 6577 long int ret_offset;
bcbdc74c
NC
6578 struct elf_link_hash_entry * myh;
6579 struct elf32_arm_link_hash_table * globals;
252b5132 6580
f2a9dd69 6581 myh = find_thumb_glue (info, name, error_message);
252b5132 6582 if (myh == NULL)
b34976b6 6583 return FALSE;
252b5132
RH
6584
6585 globals = elf32_arm_hash_table (info);
252b5132
RH
6586 BFD_ASSERT (globals != NULL);
6587 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6588
6589 my_offset = myh->root.u.def.value;
6590
6591 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6592 THUMB2ARM_GLUE_SECTION_NAME);
6593
6594 BFD_ASSERT (s != NULL);
6595 BFD_ASSERT (s->contents != NULL);
6596 BFD_ASSERT (s->output_section != NULL);
6597
6598 if ((my_offset & 0x01) == 0x01)
6599 {
6600 if (sym_sec != NULL
6601 && sym_sec->owner != NULL
6602 && !INTERWORK_FLAG (sym_sec->owner))
6603 {
8f615d07 6604 (*_bfd_error_handler)
d003868e
AM
6605 (_("%B(%s): warning: interworking not enabled.\n"
6606 " first occurrence: %B: thumb call to arm"),
6607 sym_sec->owner, input_bfd, name);
252b5132 6608
b34976b6 6609 return FALSE;
252b5132
RH
6610 }
6611
6612 --my_offset;
6613 myh->root.u.def.value = my_offset;
6614
52ab56c2
PB
6615 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6616 s->contents + my_offset);
252b5132 6617
52ab56c2
PB
6618 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6619 s->contents + my_offset + 2);
252b5132
RH
6620
6621 ret_offset =
9b485d32
NC
6622 /* Address of destination of the stub. */
6623 ((bfd_signed_vma) val)
252b5132 6624 - ((bfd_signed_vma)
57e8b36a
NC
6625 /* Offset from the start of the current section
6626 to the start of the stubs. */
9b485d32
NC
6627 (s->output_offset
6628 /* Offset of the start of this stub from the start of the stubs. */
6629 + my_offset
6630 /* Address of the start of the current section. */
6631 + s->output_section->vma)
6632 /* The branch instruction is 4 bytes into the stub. */
6633 + 4
6634 /* ARM branches work from the pc of the instruction + 8. */
6635 + 8);
252b5132 6636
52ab56c2
PB
6637 put_arm_insn (globals, output_bfd,
6638 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6639 s->contents + my_offset + 4);
252b5132
RH
6640 }
6641
6642 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6643
427bfd90
NC
6644 /* Now go back and fix up the original BL insn to point to here. */
6645 ret_offset =
6646 /* Address of where the stub is located. */
6647 (s->output_section->vma + s->output_offset + my_offset)
6648 /* Address of where the BL is located. */
57e8b36a
NC
6649 - (input_section->output_section->vma + input_section->output_offset
6650 + offset)
427bfd90
NC
6651 /* Addend in the relocation. */
6652 - addend
6653 /* Biassing for PC-relative addressing. */
6654 - 8;
252b5132 6655
12a0a0fd 6656 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 6657
b34976b6 6658 return TRUE;
252b5132
RH
6659}
6660
a4fd1a8e 6661/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 6662
a4fd1a8e
PB
6663static struct elf_link_hash_entry *
6664elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6665 const char * name,
6666 bfd * input_bfd,
6667 bfd * output_bfd,
6668 asection * sym_sec,
6669 bfd_vma val,
8029a119
NC
6670 asection * s,
6671 char ** error_message)
252b5132 6672{
dc810e39 6673 bfd_vma my_offset;
252b5132 6674 long int ret_offset;
bcbdc74c
NC
6675 struct elf_link_hash_entry * myh;
6676 struct elf32_arm_link_hash_table * globals;
252b5132 6677
f2a9dd69 6678 myh = find_arm_glue (info, name, error_message);
252b5132 6679 if (myh == NULL)
a4fd1a8e 6680 return NULL;
252b5132
RH
6681
6682 globals = elf32_arm_hash_table (info);
252b5132
RH
6683 BFD_ASSERT (globals != NULL);
6684 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6685
6686 my_offset = myh->root.u.def.value;
252b5132
RH
6687
6688 if ((my_offset & 0x01) == 0x01)
6689 {
6690 if (sym_sec != NULL
6691 && sym_sec->owner != NULL
6692 && !INTERWORK_FLAG (sym_sec->owner))
6693 {
8f615d07 6694 (*_bfd_error_handler)
d003868e
AM
6695 (_("%B(%s): warning: interworking not enabled.\n"
6696 " first occurrence: %B: arm call to thumb"),
6697 sym_sec->owner, input_bfd, name);
252b5132 6698 }
9b485d32 6699
252b5132
RH
6700 --my_offset;
6701 myh->root.u.def.value = my_offset;
6702
27e55c4d
PB
6703 if (info->shared || globals->root.is_relocatable_executable
6704 || globals->pic_veneer)
8f6277f5
PB
6705 {
6706 /* For relocatable objects we can't use absolute addresses,
6707 so construct the address from a relative offset. */
6708 /* TODO: If the offset is small it's probably worth
6709 constructing the address with adds. */
52ab56c2
PB
6710 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6711 s->contents + my_offset);
6712 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6713 s->contents + my_offset + 4);
6714 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6715 s->contents + my_offset + 8);
8f6277f5
PB
6716 /* Adjust the offset by 4 for the position of the add,
6717 and 8 for the pipeline offset. */
6718 ret_offset = (val - (s->output_offset
6719 + s->output_section->vma
6720 + my_offset + 12))
6721 | 1;
6722 bfd_put_32 (output_bfd, ret_offset,
6723 s->contents + my_offset + 12);
6724 }
26079076
PB
6725 else if (globals->use_blx)
6726 {
6727 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6728 s->contents + my_offset);
6729
6730 /* It's a thumb address. Add the low order bit. */
6731 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6732 s->contents + my_offset + 4);
6733 }
8f6277f5
PB
6734 else
6735 {
52ab56c2
PB
6736 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6737 s->contents + my_offset);
252b5132 6738
52ab56c2
PB
6739 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6740 s->contents + my_offset + 4);
252b5132 6741
8f6277f5
PB
6742 /* It's a thumb address. Add the low order bit. */
6743 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6744 s->contents + my_offset + 8);
8029a119
NC
6745
6746 my_offset += 12;
8f6277f5 6747 }
252b5132
RH
6748 }
6749
6750 BFD_ASSERT (my_offset <= globals->arm_glue_size);
6751
a4fd1a8e
PB
6752 return myh;
6753}
6754
6755/* Arm code calling a Thumb function. */
6756
6757static int
6758elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6759 const char * name,
6760 bfd * input_bfd,
6761 bfd * output_bfd,
6762 asection * input_section,
6763 bfd_byte * hit_data,
6764 asection * sym_sec,
6765 bfd_vma offset,
6766 bfd_signed_vma addend,
f2a9dd69
DJ
6767 bfd_vma val,
6768 char **error_message)
a4fd1a8e
PB
6769{
6770 unsigned long int tmp;
6771 bfd_vma my_offset;
6772 asection * s;
6773 long int ret_offset;
6774 struct elf_link_hash_entry * myh;
6775 struct elf32_arm_link_hash_table * globals;
6776
6777 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
6778 BFD_ASSERT (globals != NULL);
6779 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6780
6781 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6782 ARM2THUMB_GLUE_SECTION_NAME);
6783 BFD_ASSERT (s != NULL);
6784 BFD_ASSERT (s->contents != NULL);
6785 BFD_ASSERT (s->output_section != NULL);
6786
6787 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 6788 sym_sec, val, s, error_message);
a4fd1a8e
PB
6789 if (!myh)
6790 return FALSE;
6791
6792 my_offset = myh->root.u.def.value;
252b5132
RH
6793 tmp = bfd_get_32 (input_bfd, hit_data);
6794 tmp = tmp & 0xFF000000;
6795
9b485d32 6796 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
6797 ret_offset = (s->output_offset
6798 + my_offset
6799 + s->output_section->vma
6800 - (input_section->output_offset
6801 + input_section->output_section->vma
6802 + offset + addend)
6803 - 8);
9a5aca8c 6804
252b5132
RH
6805 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6806
dc810e39 6807 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 6808
b34976b6 6809 return TRUE;
252b5132
RH
6810}
6811
a4fd1a8e
PB
6812/* Populate Arm stub for an exported Thumb function. */
6813
6814static bfd_boolean
6815elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6816{
6817 struct bfd_link_info * info = (struct bfd_link_info *) inf;
6818 asection * s;
6819 struct elf_link_hash_entry * myh;
6820 struct elf32_arm_link_hash_entry *eh;
6821 struct elf32_arm_link_hash_table * globals;
6822 asection *sec;
6823 bfd_vma val;
f2a9dd69 6824 char *error_message;
a4fd1a8e 6825
906e58ca 6826 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
6827 /* Allocate stubs for exported Thumb functions on v4t. */
6828 if (eh->export_glue == NULL)
6829 return TRUE;
6830
6831 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
6832 BFD_ASSERT (globals != NULL);
6833 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6834
6835 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6836 ARM2THUMB_GLUE_SECTION_NAME);
6837 BFD_ASSERT (s != NULL);
6838 BFD_ASSERT (s->contents != NULL);
6839 BFD_ASSERT (s->output_section != NULL);
6840
6841 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
6842
6843 BFD_ASSERT (sec->output_section != NULL);
6844
a4fd1a8e
PB
6845 val = eh->export_glue->root.u.def.value + sec->output_offset
6846 + sec->output_section->vma;
8029a119 6847
a4fd1a8e
PB
6848 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6849 h->root.u.def.section->owner,
f2a9dd69
DJ
6850 globals->obfd, sec, val, s,
6851 &error_message);
a4fd1a8e
PB
6852 BFD_ASSERT (myh);
6853 return TRUE;
6854}
6855
845b51d6
PB
6856/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6857
6858static bfd_vma
6859elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6860{
6861 bfd_byte *p;
6862 bfd_vma glue_addr;
6863 asection *s;
6864 struct elf32_arm_link_hash_table *globals;
6865
6866 globals = elf32_arm_hash_table (info);
845b51d6
PB
6867 BFD_ASSERT (globals != NULL);
6868 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6869
6870 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6871 ARM_BX_GLUE_SECTION_NAME);
6872 BFD_ASSERT (s != NULL);
6873 BFD_ASSERT (s->contents != NULL);
6874 BFD_ASSERT (s->output_section != NULL);
6875
6876 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6877
6878 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6879
6880 if ((globals->bx_glue_offset[reg] & 1) == 0)
6881 {
6882 p = s->contents + glue_addr;
6883 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6884 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6885 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6886 globals->bx_glue_offset[reg] |= 1;
6887 }
6888
6889 return glue_addr + s->output_section->vma + s->output_offset;
6890}
6891
a4fd1a8e
PB
6892/* Generate Arm stubs for exported Thumb symbols. */
6893static void
906e58ca 6894elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
6895 struct bfd_link_info *link_info)
6896{
6897 struct elf32_arm_link_hash_table * globals;
6898
8029a119
NC
6899 if (link_info == NULL)
6900 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
6901 return;
6902
6903 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6904 if (globals == NULL)
6905 return;
6906
84c08195
PB
6907 /* If blx is available then exported Thumb symbols are OK and there is
6908 nothing to do. */
a4fd1a8e
PB
6909 if (globals->use_blx)
6910 return;
6911
6912 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6913 link_info);
6914}
6915
eb043451
PB
6916/* Some relocations map to different relocations depending on the
6917 target. Return the real relocation. */
8029a119 6918
eb043451
PB
6919static int
6920arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6921 int r_type)
6922{
6923 switch (r_type)
6924 {
6925 case R_ARM_TARGET1:
6926 if (globals->target1_is_rel)
6927 return R_ARM_REL32;
6928 else
6929 return R_ARM_ABS32;
6930
6931 case R_ARM_TARGET2:
6932 return globals->target2_reloc;
6933
6934 default:
6935 return r_type;
6936 }
6937}
eb043451 6938
ba93b8ac
DJ
6939/* Return the base VMA address which should be subtracted from real addresses
6940 when resolving @dtpoff relocation.
6941 This is PT_TLS segment p_vaddr. */
6942
6943static bfd_vma
6944dtpoff_base (struct bfd_link_info *info)
6945{
6946 /* If tls_sec is NULL, we should have signalled an error already. */
6947 if (elf_hash_table (info)->tls_sec == NULL)
6948 return 0;
6949 return elf_hash_table (info)->tls_sec->vma;
6950}
6951
6952/* Return the relocation value for @tpoff relocation
6953 if STT_TLS virtual address is ADDRESS. */
6954
6955static bfd_vma
6956tpoff (struct bfd_link_info *info, bfd_vma address)
6957{
6958 struct elf_link_hash_table *htab = elf_hash_table (info);
6959 bfd_vma base;
6960
6961 /* If tls_sec is NULL, we should have signalled an error already. */
6962 if (htab->tls_sec == NULL)
6963 return 0;
6964 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6965 return address - htab->tls_sec->vma + base;
6966}
6967
00a97672
RS
6968/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6969 VALUE is the relocation value. */
6970
6971static bfd_reloc_status_type
6972elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6973{
6974 if (value > 0xfff)
6975 return bfd_reloc_overflow;
6976
6977 value |= bfd_get_32 (abfd, data) & 0xfffff000;
6978 bfd_put_32 (abfd, value, data);
6979 return bfd_reloc_ok;
6980}
6981
0855e32b
NS
6982/* Handle TLS relaxations. Relaxing is possible for symbols that use
6983 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
6984 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
6985
6986 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6987 is to then call final_link_relocate. Return other values in the
6988 case of error. */
6989
6990
6991static bfd_reloc_status_type
6992elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
6993 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
6994 Elf_Internal_Rela *rel, unsigned long is_local)
6995{
6996 unsigned long insn;
6997
6998 switch (ELF32_R_TYPE (rel->r_info))
6999 {
7000 default:
7001 return bfd_reloc_notsupported;
7002
7003 case R_ARM_TLS_GOTDESC:
7004 if (is_local)
7005 insn = 0;
7006 else
7007 {
7008 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7009 if (insn & 1)
7010 insn -= 5; /* THUMB */
7011 else
7012 insn -= 8; /* ARM */
7013 }
7014 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7015 return bfd_reloc_continue;
7016
7017 case R_ARM_THM_TLS_DESCSEQ:
7018 /* Thumb insn. */
7019 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7020 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7021 {
7022 if (is_local)
7023 /* nop */
7024 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7025 }
7026 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7027 {
7028 if (is_local)
7029 /* nop */
7030 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7031 else
7032 /* ldr rx,[ry] */
7033 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7034 }
7035 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7036 {
7037 if (is_local)
7038 /* nop */
7039 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7040 else
7041 /* mov r0, rx */
7042 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7043 contents + rel->r_offset);
7044 }
7045 else
7046 {
7047 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7048 /* It's a 32 bit instruction, fetch the rest of it for
7049 error generation. */
7050 insn = (insn << 16)
7051 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7052 (*_bfd_error_handler)
7053 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7054 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7055 return bfd_reloc_notsupported;
7056 }
7057 break;
7058
7059 case R_ARM_TLS_DESCSEQ:
7060 /* arm insn. */
7061 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7062 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7063 {
7064 if (is_local)
7065 /* mov rx, ry */
7066 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7067 contents + rel->r_offset);
7068 }
7069 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7070 {
7071 if (is_local)
7072 /* nop */
7073 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7074 else
7075 /* ldr rx,[ry] */
7076 bfd_put_32 (input_bfd, insn & 0xfffff000,
7077 contents + rel->r_offset);
7078 }
7079 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7080 {
7081 if (is_local)
7082 /* nop */
7083 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7084 else
7085 /* mov r0, rx */
7086 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7087 contents + rel->r_offset);
7088 }
7089 else
7090 {
7091 (*_bfd_error_handler)
7092 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7093 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7094 return bfd_reloc_notsupported;
7095 }
7096 break;
7097
7098 case R_ARM_TLS_CALL:
7099 /* GD->IE relaxation, turn the instruction into 'nop' or
7100 'ldr r0, [pc,r0]' */
7101 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7102 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7103 break;
7104
7105 case R_ARM_THM_TLS_CALL:
7106 /* GD->IE relaxation */
7107 if (!is_local)
7108 /* add r0,pc; ldr r0, [r0] */
7109 insn = 0x44786800;
7110 else if (arch_has_thumb2_nop (globals))
7111 /* nop.w */
7112 insn = 0xf3af8000;
7113 else
7114 /* nop; nop */
7115 insn = 0xbf00bf00;
7116
7117 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7118 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7119 break;
7120 }
7121 return bfd_reloc_ok;
7122}
7123
4962c51a
MS
7124/* For a given value of n, calculate the value of G_n as required to
7125 deal with group relocations. We return it in the form of an
7126 encoded constant-and-rotation, together with the final residual. If n is
7127 specified as less than zero, then final_residual is filled with the
7128 input value and no further action is performed. */
7129
7130static bfd_vma
7131calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7132{
7133 int current_n;
7134 bfd_vma g_n;
7135 bfd_vma encoded_g_n = 0;
7136 bfd_vma residual = value; /* Also known as Y_n. */
7137
7138 for (current_n = 0; current_n <= n; current_n++)
7139 {
7140 int shift;
7141
7142 /* Calculate which part of the value to mask. */
7143 if (residual == 0)
7144 shift = 0;
7145 else
7146 {
7147 int msb;
7148
7149 /* Determine the most significant bit in the residual and
7150 align the resulting value to a 2-bit boundary. */
7151 for (msb = 30; msb >= 0; msb -= 2)
7152 if (residual & (3 << msb))
7153 break;
7154
7155 /* The desired shift is now (msb - 6), or zero, whichever
7156 is the greater. */
7157 shift = msb - 6;
7158 if (shift < 0)
7159 shift = 0;
7160 }
7161
7162 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7163 g_n = residual & (0xff << shift);
7164 encoded_g_n = (g_n >> shift)
7165 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7166
7167 /* Calculate the residual for the next time around. */
7168 residual &= ~g_n;
7169 }
7170
7171 *final_residual = residual;
7172
7173 return encoded_g_n;
7174}
7175
7176/* Given an ARM instruction, determine whether it is an ADD or a SUB.
7177 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 7178
4962c51a 7179static int
906e58ca 7180identify_add_or_sub (bfd_vma insn)
4962c51a
MS
7181{
7182 int opcode = insn & 0x1e00000;
7183
7184 if (opcode == 1 << 23) /* ADD */
7185 return 1;
7186
7187 if (opcode == 1 << 22) /* SUB */
7188 return -1;
7189
7190 return 0;
7191}
7192
252b5132 7193/* Perform a relocation as part of a final link. */
9b485d32 7194
252b5132 7195static bfd_reloc_status_type
57e8b36a
NC
7196elf32_arm_final_link_relocate (reloc_howto_type * howto,
7197 bfd * input_bfd,
7198 bfd * output_bfd,
7199 asection * input_section,
7200 bfd_byte * contents,
7201 Elf_Internal_Rela * rel,
7202 bfd_vma value,
7203 struct bfd_link_info * info,
7204 asection * sym_sec,
7205 const char * sym_name,
7206 int sym_flags,
0945cdfd 7207 struct elf_link_hash_entry * h,
f2a9dd69 7208 bfd_boolean * unresolved_reloc_p,
8029a119 7209 char ** error_message)
252b5132
RH
7210{
7211 unsigned long r_type = howto->type;
7212 unsigned long r_symndx;
7213 bfd_byte * hit_data = contents + rel->r_offset;
252b5132 7214 bfd_vma * local_got_offsets;
0855e32b 7215 bfd_vma * local_tlsdesc_gotents;
252b5132
RH
7216 asection * sgot = NULL;
7217 asection * splt = NULL;
7218 asection * sreloc = NULL;
362d30a1 7219 asection * srelgot;
252b5132 7220 bfd_vma addend;
ba96a88f
NC
7221 bfd_signed_vma signed_addend;
7222 struct elf32_arm_link_hash_table * globals;
f21f3fe0 7223
9c504268 7224 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
7225 if (globals == NULL)
7226 return bfd_reloc_notsupported;
9c504268 7227
0ffa91dd
NC
7228 BFD_ASSERT (is_arm_elf (input_bfd));
7229
7230 /* Some relocation types map to different relocations depending on the
9c504268 7231 target. We pick the right one here. */
eb043451 7232 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
7233
7234 /* It is possible to have linker relaxations on some TLS access
7235 models. Update our information here. */
7236 r_type = elf32_arm_tls_transition (info, r_type, h);
7237
eb043451
PB
7238 if (r_type != howto->type)
7239 howto = elf32_arm_howto_from_type (r_type);
9c504268 7240
cac15327
NC
7241 /* If the start address has been set, then set the EF_ARM_HASENTRY
7242 flag. Setting this more than once is redundant, but the cost is
7243 not too high, and it keeps the code simple.
99e4ae17 7244
cac15327
NC
7245 The test is done here, rather than somewhere else, because the
7246 start address is only set just before the final link commences.
7247
7248 Note - if the user deliberately sets a start address of 0, the
7249 flag will not be set. */
7250 if (bfd_get_start_address (output_bfd) != 0)
7251 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 7252
362d30a1
RS
7253 sgot = globals->root.sgot;
7254 splt = globals->root.splt;
7255 srelgot = globals->root.srelgot;
252b5132 7256 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
7257 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
7258
252b5132
RH
7259 r_symndx = ELF32_R_SYM (rel->r_info);
7260
4e7fd91e 7261 if (globals->use_rel)
ba96a88f 7262 {
4e7fd91e
PB
7263 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
7264
7265 if (addend & ((howto->src_mask + 1) >> 1))
7266 {
7267 signed_addend = -1;
7268 signed_addend &= ~ howto->src_mask;
7269 signed_addend |= addend;
7270 }
7271 else
7272 signed_addend = addend;
ba96a88f
NC
7273 }
7274 else
4e7fd91e 7275 addend = signed_addend = rel->r_addend;
f21f3fe0 7276
252b5132
RH
7277 switch (r_type)
7278 {
7279 case R_ARM_NONE:
28a094c2
DJ
7280 /* We don't need to find a value for this symbol. It's just a
7281 marker. */
7282 *unresolved_reloc_p = FALSE;
252b5132
RH
7283 return bfd_reloc_ok;
7284
00a97672
RS
7285 case R_ARM_ABS12:
7286 if (!globals->vxworks_p)
7287 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7288
252b5132
RH
7289 case R_ARM_PC24:
7290 case R_ARM_ABS32:
bb224fc3 7291 case R_ARM_ABS32_NOI:
252b5132 7292 case R_ARM_REL32:
bb224fc3 7293 case R_ARM_REL32_NOI:
5b5bb741
PB
7294 case R_ARM_CALL:
7295 case R_ARM_JUMP24:
dfc5f959 7296 case R_ARM_XPC25:
eb043451 7297 case R_ARM_PREL31:
7359ea65 7298 case R_ARM_PLT32:
7359ea65
DJ
7299 /* Handle relocations which should use the PLT entry. ABS32/REL32
7300 will use the symbol's value, which may point to a PLT entry, but we
7301 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
7302 branches in this object should go to it, except if the PLT is too
7303 far away, in which case a long branch stub should be inserted. */
bb224fc3 7304 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5fa9e92f 7305 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
7306 && r_type != R_ARM_CALL
7307 && r_type != R_ARM_JUMP24
7308 && r_type != R_ARM_PLT32)
7359ea65 7309 && h != NULL
c84cd8ee 7310 && splt != NULL
7359ea65
DJ
7311 && h->plt.offset != (bfd_vma) -1)
7312 {
c84cd8ee
DJ
7313 /* If we've created a .plt section, and assigned a PLT entry to
7314 this function, it should not be known to bind locally. If
7315 it were, we would have cleared the PLT entry. */
7359ea65
DJ
7316 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
7317
7318 value = (splt->output_section->vma
7319 + splt->output_offset
7320 + h->plt.offset);
0945cdfd 7321 *unresolved_reloc_p = FALSE;
7359ea65
DJ
7322 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7323 contents, rel->r_offset, value,
00a97672 7324 rel->r_addend);
7359ea65
DJ
7325 }
7326
67687978
PB
7327 /* When generating a shared object or relocatable executable, these
7328 relocations are copied into the output file to be resolved at
7329 run time. */
7330 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 7331 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 7332 && !(globals->vxworks_p
3348747a
NS
7333 && strcmp (input_section->output_section->name,
7334 ".tls_vars") == 0)
bb224fc3 7335 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 7336 || !SYMBOL_CALLS_LOCAL (info, h))
fe33d2fa 7337 && (!strstr (input_section->name, STUB_SUFFIX))
7359ea65
DJ
7338 && (h == NULL
7339 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7340 || h->root.type != bfd_link_hash_undefweak)
7341 && r_type != R_ARM_PC24
5b5bb741
PB
7342 && r_type != R_ARM_CALL
7343 && r_type != R_ARM_JUMP24
ee06dc07 7344 && r_type != R_ARM_PREL31
7359ea65 7345 && r_type != R_ARM_PLT32)
252b5132 7346 {
947216bf
AM
7347 Elf_Internal_Rela outrel;
7348 bfd_byte *loc;
b34976b6 7349 bfd_boolean skip, relocate;
f21f3fe0 7350
0945cdfd
DJ
7351 *unresolved_reloc_p = FALSE;
7352
252b5132
RH
7353 if (sreloc == NULL)
7354 {
83bac4b0
NC
7355 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
7356 ! globals->use_rel);
f21f3fe0 7357
83bac4b0 7358 if (sreloc == NULL)
252b5132 7359 return bfd_reloc_notsupported;
252b5132 7360 }
f21f3fe0 7361
b34976b6
AM
7362 skip = FALSE;
7363 relocate = FALSE;
f21f3fe0 7364
00a97672 7365 outrel.r_addend = addend;
c629eae0
JJ
7366 outrel.r_offset =
7367 _bfd_elf_section_offset (output_bfd, info, input_section,
7368 rel->r_offset);
7369 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 7370 skip = TRUE;
0bb2d96a 7371 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 7372 skip = TRUE, relocate = TRUE;
252b5132
RH
7373 outrel.r_offset += (input_section->output_section->vma
7374 + input_section->output_offset);
f21f3fe0 7375
252b5132 7376 if (skip)
0bb2d96a 7377 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
7378 else if (h != NULL
7379 && h->dynindx != -1
7359ea65 7380 && (!info->shared
5e681ec4 7381 || !info->symbolic
f5385ebf 7382 || !h->def_regular))
5e681ec4 7383 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
7384 else
7385 {
a16385dc
MM
7386 int symbol;
7387
5e681ec4 7388 /* This symbol is local, or marked to become local. */
b7693d02
DJ
7389 if (sym_flags == STT_ARM_TFUNC)
7390 value |= 1;
a16385dc 7391 if (globals->symbian_p)
6366ff1e 7392 {
74541ad4
AM
7393 asection *osec;
7394
6366ff1e
MM
7395 /* On Symbian OS, the data segment and text segement
7396 can be relocated independently. Therefore, we
7397 must indicate the segment to which this
7398 relocation is relative. The BPABI allows us to
7399 use any symbol in the right segment; we just use
7400 the section symbol as it is convenient. (We
7401 cannot use the symbol given by "h" directly as it
74541ad4
AM
7402 will not appear in the dynamic symbol table.)
7403
7404 Note that the dynamic linker ignores the section
7405 symbol value, so we don't subtract osec->vma
7406 from the emitted reloc addend. */
10dbd1f3 7407 if (sym_sec)
74541ad4 7408 osec = sym_sec->output_section;
10dbd1f3 7409 else
74541ad4
AM
7410 osec = input_section->output_section;
7411 symbol = elf_section_data (osec)->dynindx;
7412 if (symbol == 0)
7413 {
7414 struct elf_link_hash_table *htab = elf_hash_table (info);
7415
7416 if ((osec->flags & SEC_READONLY) == 0
7417 && htab->data_index_section != NULL)
7418 osec = htab->data_index_section;
7419 else
7420 osec = htab->text_index_section;
7421 symbol = elf_section_data (osec)->dynindx;
7422 }
6366ff1e
MM
7423 BFD_ASSERT (symbol != 0);
7424 }
a16385dc
MM
7425 else
7426 /* On SVR4-ish systems, the dynamic loader cannot
7427 relocate the text and data segments independently,
7428 so the symbol does not matter. */
7429 symbol = 0;
7430 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
7431 if (globals->use_rel)
7432 relocate = TRUE;
7433 else
7434 outrel.r_addend += value;
252b5132 7435 }
f21f3fe0 7436
947216bf 7437 loc = sreloc->contents;
00a97672
RS
7438 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
7439 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9a5aca8c 7440
f21f3fe0 7441 /* If this reloc is against an external symbol, we do not want to
252b5132 7442 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 7443 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
7444 if (! relocate)
7445 return bfd_reloc_ok;
9a5aca8c 7446
f21f3fe0 7447 return _bfd_final_link_relocate (howto, input_bfd, input_section,
252b5132
RH
7448 contents, rel->r_offset, value,
7449 (bfd_vma) 0);
7450 }
7451 else switch (r_type)
7452 {
00a97672
RS
7453 case R_ARM_ABS12:
7454 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7455
dfc5f959 7456 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
7457 case R_ARM_CALL:
7458 case R_ARM_JUMP24:
8029a119 7459 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 7460 case R_ARM_PLT32:
906e58ca 7461 {
906e58ca
NC
7462 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7463
dfc5f959 7464 if (r_type == R_ARM_XPC25)
252b5132 7465 {
dfc5f959
NC
7466 /* Check for Arm calling Arm function. */
7467 /* FIXME: Should we translate the instruction into a BL
7468 instruction instead ? */
7469 if (sym_flags != STT_ARM_TFUNC)
d003868e
AM
7470 (*_bfd_error_handler)
7471 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7472 input_bfd,
7473 h ? h->root.root.string : "(local)");
dfc5f959 7474 }
155d87d7 7475 else if (r_type == R_ARM_PC24)
dfc5f959
NC
7476 {
7477 /* Check for Arm calling Thumb function. */
7478 if (sym_flags == STT_ARM_TFUNC)
7479 {
f2a9dd69
DJ
7480 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7481 output_bfd, input_section,
7482 hit_data, sym_sec, rel->r_offset,
7483 signed_addend, value,
7484 error_message))
7485 return bfd_reloc_ok;
7486 else
7487 return bfd_reloc_dangerous;
dfc5f959 7488 }
252b5132 7489 }
ba96a88f 7490
906e58ca 7491 /* Check if a stub has to be inserted because the
8029a119 7492 destination is too far or we are changing mode. */
155d87d7
CL
7493 if ( r_type == R_ARM_CALL
7494 || r_type == R_ARM_JUMP24
7495 || r_type == R_ARM_PLT32)
906e58ca 7496 {
fe33d2fa
CL
7497 enum elf32_arm_stub_type stub_type = arm_stub_none;
7498 struct elf32_arm_link_hash_entry *hash;
7499
7500 hash = (struct elf32_arm_link_hash_entry *) h;
7501 stub_type = arm_type_of_stub (info, input_section, rel,
7502 &sym_flags, hash,
7503 value, sym_sec,
7504 input_bfd, sym_name);
5fa9e92f 7505
fe33d2fa 7506 if (stub_type != arm_stub_none)
906e58ca
NC
7507 {
7508 /* The target is out of reach, so redirect the
7509 branch to the local stub for this function. */
7510
7511 stub_entry = elf32_arm_get_stub_entry (input_section,
7512 sym_sec, h,
fe33d2fa
CL
7513 rel, globals,
7514 stub_type);
906e58ca
NC
7515 if (stub_entry != NULL)
7516 value = (stub_entry->stub_offset
7517 + stub_entry->stub_sec->output_offset
7518 + stub_entry->stub_sec->output_section->vma);
7519 }
fe33d2fa
CL
7520 else
7521 {
7522 /* If the call goes through a PLT entry, make sure to
7523 check distance to the right destination address. */
7524 if (h != NULL
7525 && splt != NULL
7526 && h->plt.offset != (bfd_vma) -1)
7527 {
7528 value = (splt->output_section->vma
7529 + splt->output_offset
7530 + h->plt.offset);
7531 *unresolved_reloc_p = FALSE;
7532 /* The PLT entry is in ARM mode, regardless of the
7533 target function. */
7534 sym_flags = STT_FUNC;
7535 }
7536 }
906e58ca
NC
7537 }
7538
dea514f5
PB
7539 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7540 where:
7541 S is the address of the symbol in the relocation.
7542 P is address of the instruction being relocated.
7543 A is the addend (extracted from the instruction) in bytes.
7544
7545 S is held in 'value'.
7546 P is the base address of the section containing the
7547 instruction plus the offset of the reloc into that
7548 section, ie:
7549 (input_section->output_section->vma +
7550 input_section->output_offset +
7551 rel->r_offset).
7552 A is the addend, converted into bytes, ie:
7553 (signed_addend * 4)
7554
7555 Note: None of these operations have knowledge of the pipeline
7556 size of the processor, thus it is up to the assembler to
7557 encode this information into the addend. */
7558 value -= (input_section->output_section->vma
7559 + input_section->output_offset);
7560 value -= rel->r_offset;
4e7fd91e
PB
7561 if (globals->use_rel)
7562 value += (signed_addend << howto->size);
7563 else
7564 /* RELA addends do not have to be adjusted by howto->size. */
7565 value += signed_addend;
23080146 7566
dcb5e6e6
NC
7567 signed_addend = value;
7568 signed_addend >>= howto->rightshift;
9a5aca8c 7569
5ab79981 7570 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 7571 the next instruction unless a PLT entry will be created.
77b4f08f 7572 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
7573 The jump to the next instruction is optimized as a NOP depending
7574 on the architecture. */
ffcb4889
NS
7575 if (h ? (h->root.type == bfd_link_hash_undefweak
7576 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
77b4f08f 7577 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 7578 {
cd1dac3d
DG
7579 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7580
7581 if (arch_has_arm_nop (globals))
7582 value |= 0x0320f000;
7583 else
7584 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
7585 }
7586 else
59f2c4e7 7587 {
9b485d32 7588 /* Perform a signed range check. */
dcb5e6e6 7589 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
7590 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7591 return bfd_reloc_overflow;
9a5aca8c 7592
5ab79981 7593 addend = (value & 2);
39b41c9c 7594
5ab79981
PB
7595 value = (signed_addend & howto->dst_mask)
7596 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 7597
5ab79981
PB
7598 if (r_type == R_ARM_CALL)
7599 {
155d87d7
CL
7600 /* Set the H bit in the BLX instruction. */
7601 if (sym_flags == STT_ARM_TFUNC)
7602 {
7603 if (addend)
7604 value |= (1 << 24);
7605 else
7606 value &= ~(bfd_vma)(1 << 24);
7607 }
7608
5ab79981 7609 /* Select the correct instruction (BL or BLX). */
906e58ca 7610 /* Only if we are not handling a BL to a stub. In this
8029a119 7611 case, mode switching is performed by the stub. */
906e58ca 7612 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
5ab79981
PB
7613 value |= (1 << 28);
7614 else
7615 {
7616 value &= ~(bfd_vma)(1 << 28);
7617 value |= (1 << 24);
7618 }
39b41c9c
PB
7619 }
7620 }
906e58ca 7621 }
252b5132 7622 break;
f21f3fe0 7623
252b5132
RH
7624 case R_ARM_ABS32:
7625 value += addend;
7626 if (sym_flags == STT_ARM_TFUNC)
7627 value |= 1;
7628 break;
f21f3fe0 7629
bb224fc3
MS
7630 case R_ARM_ABS32_NOI:
7631 value += addend;
7632 break;
7633
252b5132 7634 case R_ARM_REL32:
a8bc6c78
PB
7635 value += addend;
7636 if (sym_flags == STT_ARM_TFUNC)
7637 value |= 1;
252b5132 7638 value -= (input_section->output_section->vma
62efb346 7639 + input_section->output_offset + rel->r_offset);
252b5132 7640 break;
eb043451 7641
bb224fc3
MS
7642 case R_ARM_REL32_NOI:
7643 value += addend;
7644 value -= (input_section->output_section->vma
7645 + input_section->output_offset + rel->r_offset);
7646 break;
7647
eb043451
PB
7648 case R_ARM_PREL31:
7649 value -= (input_section->output_section->vma
7650 + input_section->output_offset + rel->r_offset);
7651 value += signed_addend;
7652 if (! h || h->root.type != bfd_link_hash_undefweak)
7653 {
8029a119 7654 /* Check for overflow. */
eb043451
PB
7655 if ((value ^ (value >> 1)) & (1 << 30))
7656 return bfd_reloc_overflow;
7657 }
7658 value &= 0x7fffffff;
7659 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7660 if (sym_flags == STT_ARM_TFUNC)
7661 value |= 1;
7662 break;
252b5132 7663 }
f21f3fe0 7664
252b5132
RH
7665 bfd_put_32 (input_bfd, value, hit_data);
7666 return bfd_reloc_ok;
7667
7668 case R_ARM_ABS8:
7669 value += addend;
4e67d4ca
DG
7670
7671 /* There is no way to tell whether the user intended to use a signed or
7672 unsigned addend. When checking for overflow we accept either,
7673 as specified by the AAELF. */
7674 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
7675 return bfd_reloc_overflow;
7676
7677 bfd_put_8 (input_bfd, value, hit_data);
7678 return bfd_reloc_ok;
7679
7680 case R_ARM_ABS16:
7681 value += addend;
7682
4e67d4ca
DG
7683 /* See comment for R_ARM_ABS8. */
7684 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
7685 return bfd_reloc_overflow;
7686
7687 bfd_put_16 (input_bfd, value, hit_data);
7688 return bfd_reloc_ok;
7689
252b5132 7690 case R_ARM_THM_ABS5:
9b485d32 7691 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
7692 if (globals->use_rel)
7693 {
7694 /* Need to refetch addend. */
7695 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7696 /* ??? Need to determine shift amount from operand size. */
7697 addend >>= howto->rightshift;
7698 }
252b5132
RH
7699 value += addend;
7700
7701 /* ??? Isn't value unsigned? */
7702 if ((long) value > 0x1f || (long) value < -0x10)
7703 return bfd_reloc_overflow;
7704
7705 /* ??? Value needs to be properly shifted into place first. */
7706 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7707 bfd_put_16 (input_bfd, value, hit_data);
7708 return bfd_reloc_ok;
7709
2cab6cc3
MS
7710 case R_ARM_THM_ALU_PREL_11_0:
7711 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7712 {
7713 bfd_vma insn;
7714 bfd_signed_vma relocation;
7715
7716 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7717 | bfd_get_16 (input_bfd, hit_data + 2);
7718
7719 if (globals->use_rel)
7720 {
7721 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7722 | ((insn & (1 << 26)) >> 15);
7723 if (insn & 0xf00000)
7724 signed_addend = -signed_addend;
7725 }
7726
7727 relocation = value + signed_addend;
7728 relocation -= (input_section->output_section->vma
7729 + input_section->output_offset
7730 + rel->r_offset);
7731
7732 value = abs (relocation);
7733
7734 if (value >= 0x1000)
7735 return bfd_reloc_overflow;
7736
7737 insn = (insn & 0xfb0f8f00) | (value & 0xff)
7738 | ((value & 0x700) << 4)
7739 | ((value & 0x800) << 15);
7740 if (relocation < 0)
7741 insn |= 0xa00000;
7742
7743 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7744 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7745
7746 return bfd_reloc_ok;
7747 }
7748
e1ec24c6
NC
7749 case R_ARM_THM_PC8:
7750 /* PR 10073: This reloc is not generated by the GNU toolchain,
7751 but it is supported for compatibility with third party libraries
7752 generated by other compilers, specifically the ARM/IAR. */
7753 {
7754 bfd_vma insn;
7755 bfd_signed_vma relocation;
7756
7757 insn = bfd_get_16 (input_bfd, hit_data);
7758
7759 if (globals->use_rel)
7760 addend = (insn & 0x00ff) << 2;
7761
7762 relocation = value + addend;
7763 relocation -= (input_section->output_section->vma
7764 + input_section->output_offset
7765 + rel->r_offset);
7766
7767 value = abs (relocation);
7768
7769 /* We do not check for overflow of this reloc. Although strictly
7770 speaking this is incorrect, it appears to be necessary in order
7771 to work with IAR generated relocs. Since GCC and GAS do not
7772 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7773 a problem for them. */
7774 value &= 0x3fc;
7775
7776 insn = (insn & 0xff00) | (value >> 2);
7777
7778 bfd_put_16 (input_bfd, insn, hit_data);
7779
7780 return bfd_reloc_ok;
7781 }
7782
2cab6cc3
MS
7783 case R_ARM_THM_PC12:
7784 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7785 {
7786 bfd_vma insn;
7787 bfd_signed_vma relocation;
7788
7789 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7790 | bfd_get_16 (input_bfd, hit_data + 2);
7791
7792 if (globals->use_rel)
7793 {
7794 signed_addend = insn & 0xfff;
7795 if (!(insn & (1 << 23)))
7796 signed_addend = -signed_addend;
7797 }
7798
7799 relocation = value + signed_addend;
7800 relocation -= (input_section->output_section->vma
7801 + input_section->output_offset
7802 + rel->r_offset);
7803
7804 value = abs (relocation);
7805
7806 if (value >= 0x1000)
7807 return bfd_reloc_overflow;
7808
7809 insn = (insn & 0xff7ff000) | value;
7810 if (relocation >= 0)
7811 insn |= (1 << 23);
7812
7813 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7814 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7815
7816 return bfd_reloc_ok;
7817 }
7818
dfc5f959 7819 case R_ARM_THM_XPC22:
c19d1205 7820 case R_ARM_THM_CALL:
bd97cb95 7821 case R_ARM_THM_JUMP24:
dfc5f959 7822 /* Thumb BL (branch long instruction). */
252b5132 7823 {
b34976b6 7824 bfd_vma relocation;
e95de063 7825 bfd_vma reloc_sign;
b34976b6
AM
7826 bfd_boolean overflow = FALSE;
7827 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7828 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
7829 bfd_signed_vma reloc_signed_max;
7830 bfd_signed_vma reloc_signed_min;
b34976b6 7831 bfd_vma check;
252b5132 7832 bfd_signed_vma signed_check;
e95de063 7833 int bitsize;
cd1dac3d 7834 const int thumb2 = using_thumb2 (globals);
252b5132 7835
5ab79981 7836 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
7837 the next instruction unless a PLT entry will be created.
7838 The jump to the next instruction is optimized as a NOP.W for
7839 Thumb-2 enabled architectures. */
19540007
JM
7840 if (h && h->root.type == bfd_link_hash_undefweak
7841 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
5ab79981 7842 {
cd1dac3d
DG
7843 if (arch_has_thumb2_nop (globals))
7844 {
7845 bfd_put_16 (input_bfd, 0xf3af, hit_data);
7846 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7847 }
7848 else
7849 {
7850 bfd_put_16 (input_bfd, 0xe000, hit_data);
7851 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7852 }
5ab79981
PB
7853 return bfd_reloc_ok;
7854 }
7855
e95de063
MS
7856 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7857 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
7858 if (globals->use_rel)
7859 {
e95de063
MS
7860 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7861 bfd_vma upper = upper_insn & 0x3ff;
7862 bfd_vma lower = lower_insn & 0x7ff;
7863 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7864 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7865 bfd_vma i1 = j1 ^ s ? 0 : 1;
7866 bfd_vma i2 = j2 ^ s ? 0 : 1;
7867
7868 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7869 /* Sign extend. */
7870 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7871
4e7fd91e
PB
7872 signed_addend = addend;
7873 }
cb1afa5c 7874
dfc5f959
NC
7875 if (r_type == R_ARM_THM_XPC22)
7876 {
7877 /* Check for Thumb to Thumb call. */
7878 /* FIXME: Should we translate the instruction into a BL
7879 instruction instead ? */
7880 if (sym_flags == STT_ARM_TFUNC)
d003868e
AM
7881 (*_bfd_error_handler)
7882 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7883 input_bfd,
7884 h ? h->root.root.string : "(local)");
dfc5f959
NC
7885 }
7886 else
252b5132 7887 {
dfc5f959
NC
7888 /* If it is not a call to Thumb, assume call to Arm.
7889 If it is a call relative to a section name, then it is not a
b7693d02
DJ
7890 function call at all, but rather a long jump. Calls through
7891 the PLT do not require stubs. */
7892 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7893 && (h == NULL || splt == NULL
7894 || h->plt.offset == (bfd_vma) -1))
dfc5f959 7895 {
bd97cb95 7896 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
7897 {
7898 /* Convert BL to BLX. */
7899 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7900 }
155d87d7
CL
7901 else if (( r_type != R_ARM_THM_CALL)
7902 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
7903 {
7904 if (elf32_thumb_to_arm_stub
7905 (info, sym_name, input_bfd, output_bfd, input_section,
7906 hit_data, sym_sec, rel->r_offset, signed_addend, value,
7907 error_message))
7908 return bfd_reloc_ok;
7909 else
7910 return bfd_reloc_dangerous;
7911 }
da5938a2 7912 }
bd97cb95
DJ
7913 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7914 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
7915 {
7916 /* Make sure this is a BL. */
7917 lower_insn |= 0x1800;
7918 }
252b5132 7919 }
f21f3fe0 7920
fe33d2fa 7921 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 7922 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
7923 {
7924 /* Check if a stub has to be inserted because the destination
8029a119 7925 is too far. */
fe33d2fa
CL
7926 struct elf32_arm_stub_hash_entry *stub_entry;
7927 struct elf32_arm_link_hash_entry *hash;
7928
7929 hash = (struct elf32_arm_link_hash_entry *) h;
7930
7931 stub_type = arm_type_of_stub (info, input_section, rel,
7932 &sym_flags, hash, value, sym_sec,
7933 input_bfd, sym_name);
7934
7935 if (stub_type != arm_stub_none)
906e58ca
NC
7936 {
7937 /* The target is out of reach or we are changing modes, so
7938 redirect the branch to the local stub for this
7939 function. */
7940 stub_entry = elf32_arm_get_stub_entry (input_section,
7941 sym_sec, h,
fe33d2fa
CL
7942 rel, globals,
7943 stub_type);
906e58ca
NC
7944 if (stub_entry != NULL)
7945 value = (stub_entry->stub_offset
7946 + stub_entry->stub_sec->output_offset
7947 + stub_entry->stub_sec->output_section->vma);
7948
f4ac8484 7949 /* If this call becomes a call to Arm, force BLX. */
155d87d7 7950 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
7951 {
7952 if ((stub_entry
7953 && !arm_stub_is_thumb (stub_entry->stub_type))
7954 || (sym_flags != STT_ARM_TFUNC))
7955 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7956 }
906e58ca
NC
7957 }
7958 }
7959
fe33d2fa
CL
7960 /* Handle calls via the PLT. */
7961 if (stub_type == arm_stub_none
7962 && h != NULL
7963 && splt != NULL
7964 && h->plt.offset != (bfd_vma) -1)
7965 {
7966 value = (splt->output_section->vma
7967 + splt->output_offset
7968 + h->plt.offset);
7969
7970 if (globals->use_blx && r_type == R_ARM_THM_CALL)
7971 {
7972 /* If the Thumb BLX instruction is available, convert
7973 the BL to a BLX instruction to call the ARM-mode
7974 PLT entry. */
7975 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7976 sym_flags = STT_FUNC;
7977 }
7978 else
7979 {
7980 /* Target the Thumb stub before the ARM PLT entry. */
7981 value -= PLT_THUMB_STUB_SIZE;
7982 sym_flags = STT_ARM_TFUNC;
7983 }
7984 *unresolved_reloc_p = FALSE;
7985 }
7986
ba96a88f 7987 relocation = value + signed_addend;
f21f3fe0 7988
252b5132 7989 relocation -= (input_section->output_section->vma
ba96a88f
NC
7990 + input_section->output_offset
7991 + rel->r_offset);
9a5aca8c 7992
252b5132
RH
7993 check = relocation >> howto->rightshift;
7994
7995 /* If this is a signed value, the rightshift just dropped
7996 leading 1 bits (assuming twos complement). */
7997 if ((bfd_signed_vma) relocation >= 0)
7998 signed_check = check;
7999 else
8000 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8001
e95de063
MS
8002 /* Calculate the permissable maximum and minimum values for
8003 this relocation according to whether we're relocating for
8004 Thumb-2 or not. */
8005 bitsize = howto->bitsize;
8006 if (!thumb2)
8007 bitsize -= 2;
f6ebfac0 8008 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
8009 reloc_signed_min = ~reloc_signed_max;
8010
252b5132 8011 /* Assumes two's complement. */
ba96a88f 8012 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 8013 overflow = TRUE;
252b5132 8014
bd97cb95 8015 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
8016 /* For a BLX instruction, make sure that the relocation is rounded up
8017 to a word boundary. This follows the semantics of the instruction
8018 which specifies that bit 1 of the target address will come from bit
8019 1 of the base address. */
8020 relocation = (relocation + 2) & ~ 3;
cb1afa5c 8021
e95de063
MS
8022 /* Put RELOCATION back into the insn. Assumes two's complement.
8023 We use the Thumb-2 encoding, which is safe even if dealing with
8024 a Thumb-1 instruction by virtue of our overflow check above. */
8025 reloc_sign = (signed_check < 0) ? 1 : 0;
8026 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8027 | ((relocation >> 12) & 0x3ff)
8028 | (reloc_sign << 10);
906e58ca 8029 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
e95de063
MS
8030 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8031 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8032 | ((relocation >> 1) & 0x7ff);
c62e1cc3 8033
252b5132
RH
8034 /* Put the relocated value back in the object file: */
8035 bfd_put_16 (input_bfd, upper_insn, hit_data);
8036 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8037
8038 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8039 }
8040 break;
8041
c19d1205
ZW
8042 case R_ARM_THM_JUMP19:
8043 /* Thumb32 conditional branch instruction. */
8044 {
8045 bfd_vma relocation;
8046 bfd_boolean overflow = FALSE;
8047 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8048 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
8049 bfd_signed_vma reloc_signed_max = 0xffffe;
8050 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205
ZW
8051 bfd_signed_vma signed_check;
8052
8053 /* Need to refetch the addend, reconstruct the top three bits,
8054 and squish the two 11 bit pieces together. */
8055 if (globals->use_rel)
8056 {
8057 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 8058 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
8059 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8060 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8061 bfd_vma lower = (lower_insn & 0x07ff);
8062
a00a1f35
MS
8063 upper |= J1 << 6;
8064 upper |= J2 << 7;
8065 upper |= (!S) << 8;
c19d1205
ZW
8066 upper -= 0x0100; /* Sign extend. */
8067
8068 addend = (upper << 12) | (lower << 1);
8069 signed_addend = addend;
8070 }
8071
bd97cb95
DJ
8072 /* Handle calls via the PLT. */
8073 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
8074 {
8075 value = (splt->output_section->vma
8076 + splt->output_offset
8077 + h->plt.offset);
8078 /* Target the Thumb stub before the ARM PLT entry. */
8079 value -= PLT_THUMB_STUB_SIZE;
8080 *unresolved_reloc_p = FALSE;
8081 }
8082
c19d1205
ZW
8083 /* ??? Should handle interworking? GCC might someday try to
8084 use this for tail calls. */
8085
8086 relocation = value + signed_addend;
8087 relocation -= (input_section->output_section->vma
8088 + input_section->output_offset
8089 + rel->r_offset);
a00a1f35 8090 signed_check = (bfd_signed_vma) relocation;
c19d1205 8091
c19d1205
ZW
8092 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8093 overflow = TRUE;
8094
8095 /* Put RELOCATION back into the insn. */
8096 {
8097 bfd_vma S = (relocation & 0x00100000) >> 20;
8098 bfd_vma J2 = (relocation & 0x00080000) >> 19;
8099 bfd_vma J1 = (relocation & 0x00040000) >> 18;
8100 bfd_vma hi = (relocation & 0x0003f000) >> 12;
8101 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
8102
a00a1f35 8103 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
8104 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8105 }
8106
8107 /* Put the relocated value back in the object file: */
8108 bfd_put_16 (input_bfd, upper_insn, hit_data);
8109 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8110
8111 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8112 }
8113
8114 case R_ARM_THM_JUMP11:
8115 case R_ARM_THM_JUMP8:
8116 case R_ARM_THM_JUMP6:
51c5503b
NC
8117 /* Thumb B (branch) instruction). */
8118 {
6cf9e9fe 8119 bfd_signed_vma relocation;
51c5503b
NC
8120 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8121 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
8122 bfd_signed_vma signed_check;
8123
c19d1205
ZW
8124 /* CZB cannot jump backward. */
8125 if (r_type == R_ARM_THM_JUMP6)
8126 reloc_signed_min = 0;
8127
4e7fd91e 8128 if (globals->use_rel)
6cf9e9fe 8129 {
4e7fd91e
PB
8130 /* Need to refetch addend. */
8131 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8132 if (addend & ((howto->src_mask + 1) >> 1))
8133 {
8134 signed_addend = -1;
8135 signed_addend &= ~ howto->src_mask;
8136 signed_addend |= addend;
8137 }
8138 else
8139 signed_addend = addend;
8140 /* The value in the insn has been right shifted. We need to
8141 undo this, so that we can perform the address calculation
8142 in terms of bytes. */
8143 signed_addend <<= howto->rightshift;
6cf9e9fe 8144 }
6cf9e9fe 8145 relocation = value + signed_addend;
51c5503b
NC
8146
8147 relocation -= (input_section->output_section->vma
8148 + input_section->output_offset
8149 + rel->r_offset);
8150
6cf9e9fe
NC
8151 relocation >>= howto->rightshift;
8152 signed_check = relocation;
c19d1205
ZW
8153
8154 if (r_type == R_ARM_THM_JUMP6)
8155 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
8156 else
8157 relocation &= howto->dst_mask;
51c5503b 8158 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 8159
51c5503b
NC
8160 bfd_put_16 (input_bfd, relocation, hit_data);
8161
8162 /* Assumes two's complement. */
8163 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8164 return bfd_reloc_overflow;
8165
8166 return bfd_reloc_ok;
8167 }
cedb70c5 8168
8375c36b
PB
8169 case R_ARM_ALU_PCREL7_0:
8170 case R_ARM_ALU_PCREL15_8:
8171 case R_ARM_ALU_PCREL23_15:
8172 {
8173 bfd_vma insn;
8174 bfd_vma relocation;
8175
8176 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
8177 if (globals->use_rel)
8178 {
8179 /* Extract the addend. */
8180 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
8181 signed_addend = addend;
8182 }
8375c36b
PB
8183 relocation = value + signed_addend;
8184
8185 relocation -= (input_section->output_section->vma
8186 + input_section->output_offset
8187 + rel->r_offset);
8188 insn = (insn & ~0xfff)
8189 | ((howto->bitpos << 7) & 0xf00)
8190 | ((relocation >> howto->bitpos) & 0xff);
8191 bfd_put_32 (input_bfd, value, hit_data);
8192 }
8193 return bfd_reloc_ok;
8194
252b5132
RH
8195 case R_ARM_GNU_VTINHERIT:
8196 case R_ARM_GNU_VTENTRY:
8197 return bfd_reloc_ok;
8198
c19d1205 8199 case R_ARM_GOTOFF32:
252b5132
RH
8200 /* Relocation is relative to the start of the
8201 global offset table. */
8202
8203 BFD_ASSERT (sgot != NULL);
8204 if (sgot == NULL)
8205 return bfd_reloc_notsupported;
9a5aca8c 8206
cedb70c5 8207 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
8208 address by one, so that attempts to call the function pointer will
8209 correctly interpret it as Thumb code. */
8210 if (sym_flags == STT_ARM_TFUNC)
8211 value += 1;
8212
252b5132
RH
8213 /* Note that sgot->output_offset is not involved in this
8214 calculation. We always want the start of .got. If we
8215 define _GLOBAL_OFFSET_TABLE in a different way, as is
8216 permitted by the ABI, we might have to change this
9b485d32 8217 calculation. */
252b5132 8218 value -= sgot->output_section->vma;
f21f3fe0 8219 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 8220 contents, rel->r_offset, value,
00a97672 8221 rel->r_addend);
252b5132
RH
8222
8223 case R_ARM_GOTPC:
a7c10850 8224 /* Use global offset table as symbol value. */
252b5132 8225 BFD_ASSERT (sgot != NULL);
f21f3fe0 8226
252b5132
RH
8227 if (sgot == NULL)
8228 return bfd_reloc_notsupported;
8229
0945cdfd 8230 *unresolved_reloc_p = FALSE;
252b5132 8231 value = sgot->output_section->vma;
f21f3fe0 8232 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 8233 contents, rel->r_offset, value,
00a97672 8234 rel->r_addend);
f21f3fe0 8235
252b5132 8236 case R_ARM_GOT32:
eb043451 8237 case R_ARM_GOT_PREL:
252b5132 8238 /* Relocation is to the entry for this symbol in the
9b485d32 8239 global offset table. */
252b5132
RH
8240 if (sgot == NULL)
8241 return bfd_reloc_notsupported;
f21f3fe0 8242
252b5132
RH
8243 if (h != NULL)
8244 {
8245 bfd_vma off;
5e681ec4 8246 bfd_boolean dyn;
f21f3fe0 8247
252b5132
RH
8248 off = h->got.offset;
8249 BFD_ASSERT (off != (bfd_vma) -1);
5e681ec4 8250 dyn = globals->root.dynamic_sections_created;
f21f3fe0 8251
5e681ec4 8252 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
50d6c878 8253 || (info->shared
5e681ec4
PB
8254 && SYMBOL_REFERENCES_LOCAL (info, h))
8255 || (ELF_ST_VISIBILITY (h->other)
8256 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
8257 {
8258 /* This is actually a static link, or it is a -Bsymbolic link
8259 and the symbol is defined locally. We must initialize this
8260 entry in the global offset table. Since the offset must
8261 always be a multiple of 4, we use the least significant bit
8262 to record whether we have initialized it already.
f21f3fe0 8263
00a97672 8264 When doing a dynamic link, we create a .rel(a).got relocation
f21f3fe0 8265 entry to initialize the value. This is done in the
9b485d32 8266 finish_dynamic_symbol routine. */
252b5132
RH
8267 if ((off & 1) != 0)
8268 off &= ~1;
8269 else
8270 {
ee29b9fb
RE
8271 /* If we are addressing a Thumb function, we need to
8272 adjust the address by one, so that attempts to
8273 call the function pointer will correctly
8274 interpret it as Thumb code. */
8275 if (sym_flags == STT_ARM_TFUNC)
8276 value |= 1;
8277
252b5132
RH
8278 bfd_put_32 (output_bfd, value, sgot->contents + off);
8279 h->got.offset |= 1;
8280 }
8281 }
0945cdfd
DJ
8282 else
8283 *unresolved_reloc_p = FALSE;
f21f3fe0 8284
252b5132
RH
8285 value = sgot->output_offset + off;
8286 }
8287 else
8288 {
8289 bfd_vma off;
f21f3fe0 8290
252b5132
RH
8291 BFD_ASSERT (local_got_offsets != NULL &&
8292 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 8293
252b5132 8294 off = local_got_offsets[r_symndx];
f21f3fe0 8295
252b5132
RH
8296 /* The offset must always be a multiple of 4. We use the
8297 least significant bit to record whether we have already
9b485d32 8298 generated the necessary reloc. */
252b5132
RH
8299 if ((off & 1) != 0)
8300 off &= ~1;
8301 else
8302 {
b7693d02
DJ
8303 /* If we are addressing a Thumb function, we need to
8304 adjust the address by one, so that attempts to
8305 call the function pointer will correctly
8306 interpret it as Thumb code. */
8307 if (sym_flags == STT_ARM_TFUNC)
8308 value |= 1;
8309
00a97672
RS
8310 if (globals->use_rel)
8311 bfd_put_32 (output_bfd, value, sgot->contents + off);
f21f3fe0 8312
252b5132
RH
8313 if (info->shared)
8314 {
947216bf
AM
8315 Elf_Internal_Rela outrel;
8316 bfd_byte *loc;
f21f3fe0 8317
252b5132 8318 BFD_ASSERT (srelgot != NULL);
f21f3fe0 8319
00a97672 8320 outrel.r_addend = addend + value;
252b5132 8321 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 8322 + sgot->output_offset
252b5132
RH
8323 + off);
8324 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
947216bf 8325 loc = srelgot->contents;
00a97672
RS
8326 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
8327 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
252b5132 8328 }
f21f3fe0 8329
252b5132
RH
8330 local_got_offsets[r_symndx] |= 1;
8331 }
f21f3fe0 8332
252b5132
RH
8333 value = sgot->output_offset + off;
8334 }
eb043451
PB
8335 if (r_type != R_ARM_GOT32)
8336 value += sgot->output_section->vma;
9a5aca8c 8337
f21f3fe0 8338 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 8339 contents, rel->r_offset, value,
00a97672 8340 rel->r_addend);
f21f3fe0 8341
ba93b8ac
DJ
8342 case R_ARM_TLS_LDO32:
8343 value = value - dtpoff_base (info);
8344
8345 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
8346 contents, rel->r_offset, value,
8347 rel->r_addend);
ba93b8ac
DJ
8348
8349 case R_ARM_TLS_LDM32:
8350 {
8351 bfd_vma off;
8352
362d30a1 8353 if (sgot == NULL)
ba93b8ac
DJ
8354 abort ();
8355
8356 off = globals->tls_ldm_got.offset;
8357
8358 if ((off & 1) != 0)
8359 off &= ~1;
8360 else
8361 {
8362 /* If we don't know the module number, create a relocation
8363 for it. */
8364 if (info->shared)
8365 {
8366 Elf_Internal_Rela outrel;
8367 bfd_byte *loc;
8368
362d30a1 8369 if (srelgot == NULL)
ba93b8ac
DJ
8370 abort ();
8371
00a97672 8372 outrel.r_addend = 0;
362d30a1
RS
8373 outrel.r_offset = (sgot->output_section->vma
8374 + sgot->output_offset + off);
ba93b8ac
DJ
8375 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
8376
00a97672
RS
8377 if (globals->use_rel)
8378 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 8379 sgot->contents + off);
ba93b8ac 8380
362d30a1
RS
8381 loc = srelgot->contents;
8382 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
00a97672 8383 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac
DJ
8384 }
8385 else
362d30a1 8386 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
8387
8388 globals->tls_ldm_got.offset |= 1;
8389 }
8390
362d30a1 8391 value = sgot->output_section->vma + sgot->output_offset + off
ba93b8ac
DJ
8392 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8393
8394 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8395 contents, rel->r_offset, value,
00a97672 8396 rel->r_addend);
ba93b8ac
DJ
8397 }
8398
0855e32b
NS
8399 case R_ARM_TLS_CALL:
8400 case R_ARM_THM_TLS_CALL:
ba93b8ac
DJ
8401 case R_ARM_TLS_GD32:
8402 case R_ARM_TLS_IE32:
0855e32b
NS
8403 case R_ARM_TLS_GOTDESC:
8404 case R_ARM_TLS_DESCSEQ:
8405 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 8406 {
0855e32b
NS
8407 bfd_vma off, offplt;
8408 int indx = 0;
ba93b8ac
DJ
8409 char tls_type;
8410
0855e32b 8411 BFD_ASSERT (sgot != NULL);
ba93b8ac 8412
ba93b8ac
DJ
8413 if (h != NULL)
8414 {
8415 bfd_boolean dyn;
8416 dyn = globals->root.dynamic_sections_created;
8417 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8418 && (!info->shared
8419 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8420 {
8421 *unresolved_reloc_p = FALSE;
8422 indx = h->dynindx;
8423 }
8424 off = h->got.offset;
0855e32b 8425 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
8426 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
8427 }
8428 else
8429 {
0855e32b 8430 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 8431 off = local_got_offsets[r_symndx];
0855e32b 8432 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
8433 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
8434 }
8435
0855e32b
NS
8436 /* Linker relaxations happens from one of the
8437 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
8438 if (ELF32_R_TYPE(rel->r_info) != r_type)
8439 tls_type = GOT_TLS_IE;
8440
8441 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
8442
8443 if ((off & 1) != 0)
8444 off &= ~1;
8445 else
8446 {
8447 bfd_boolean need_relocs = FALSE;
8448 Elf_Internal_Rela outrel;
8449 bfd_byte *loc = NULL;
8450 int cur_off = off;
8451
8452 /* The GOT entries have not been initialized yet. Do it
8453 now, and emit any relocations. If both an IE GOT and a
8454 GD GOT are necessary, we emit the GD first. */
8455
8456 if ((info->shared || indx != 0)
8457 && (h == NULL
8458 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8459 || h->root.type != bfd_link_hash_undefweak))
8460 {
8461 need_relocs = TRUE;
0855e32b 8462 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
8463 }
8464
0855e32b
NS
8465 if (tls_type & GOT_TLS_GDESC)
8466 {
8467 /* We should have relaxed, unless this is an undefined
8468 weak symbol. */
8469 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
8470 || info->shared);
8471 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
8472 <= globals->root.sgotplt->size);
8473
8474 outrel.r_addend = 0;
8475 outrel.r_offset = (globals->root.sgotplt->output_section->vma
8476 + globals->root.sgotplt->output_offset
8477 + offplt
8478 + globals->sgotplt_jump_table_size);
8479
8480 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
8481 sreloc = globals->root.srelplt;
8482 loc = sreloc->contents;
8483 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
8484 BFD_ASSERT (loc + RELOC_SIZE (globals)
8485 <= sreloc->contents + sreloc->size);
8486
8487 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8488
8489 /* For globals, the first word in the relocation gets
8490 the relocation index and the top bit set, or zero,
8491 if we're binding now. For locals, it gets the
8492 symbol's offset in the tls section. */
8493 bfd_put_32 (output_bfd,
8494 !h ? value - elf_hash_table (info)->tls_sec->vma
8495 : info->flags & DF_BIND_NOW ? 0
8496 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
8497 globals->root.sgotplt->contents + offplt +
8498 globals->sgotplt_jump_table_size);
8499
8500 /* Second word in the relocation is always zero. */
8501 bfd_put_32 (output_bfd, 0,
8502 globals->root.sgotplt->contents + offplt +
8503 globals->sgotplt_jump_table_size + 4);
8504 }
ba93b8ac
DJ
8505 if (tls_type & GOT_TLS_GD)
8506 {
8507 if (need_relocs)
8508 {
00a97672 8509 outrel.r_addend = 0;
362d30a1
RS
8510 outrel.r_offset = (sgot->output_section->vma
8511 + sgot->output_offset
00a97672 8512 + cur_off);
ba93b8ac 8513 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 8514
00a97672
RS
8515 if (globals->use_rel)
8516 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 8517 sgot->contents + cur_off);
0855e32b
NS
8518 loc = srelgot->contents;
8519 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
00a97672
RS
8520
8521 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac
DJ
8522
8523 if (indx == 0)
8524 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 8525 sgot->contents + cur_off + 4);
ba93b8ac
DJ
8526 else
8527 {
00a97672 8528 outrel.r_addend = 0;
ba93b8ac
DJ
8529 outrel.r_info = ELF32_R_INFO (indx,
8530 R_ARM_TLS_DTPOFF32);
8531 outrel.r_offset += 4;
00a97672
RS
8532
8533 if (globals->use_rel)
8534 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 8535 sgot->contents + cur_off + 4);
00a97672 8536
0855e32b
NS
8537 loc = srelgot->contents;
8538 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
00a97672
RS
8539
8540 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac
DJ
8541 }
8542 }
8543 else
8544 {
8545 /* If we are not emitting relocations for a
8546 general dynamic reference, then we must be in a
8547 static link or an executable link with the
8548 symbol binding locally. Mark it as belonging
8549 to module 1, the executable. */
8550 bfd_put_32 (output_bfd, 1,
362d30a1 8551 sgot->contents + cur_off);
ba93b8ac 8552 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 8553 sgot->contents + cur_off + 4);
ba93b8ac
DJ
8554 }
8555
8556 cur_off += 8;
8557 }
8558
8559 if (tls_type & GOT_TLS_IE)
8560 {
8561 if (need_relocs)
8562 {
00a97672
RS
8563 if (indx == 0)
8564 outrel.r_addend = value - dtpoff_base (info);
8565 else
8566 outrel.r_addend = 0;
362d30a1
RS
8567 outrel.r_offset = (sgot->output_section->vma
8568 + sgot->output_offset
ba93b8ac
DJ
8569 + cur_off);
8570 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8571
00a97672
RS
8572 if (globals->use_rel)
8573 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 8574 sgot->contents + cur_off);
ba93b8ac 8575
0855e32b
NS
8576 loc = srelgot->contents;
8577 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
8578
00a97672 8579 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac
DJ
8580 }
8581 else
8582 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 8583 sgot->contents + cur_off);
ba93b8ac
DJ
8584 cur_off += 4;
8585 }
8586
8587 if (h != NULL)
8588 h->got.offset |= 1;
8589 else
8590 local_got_offsets[r_symndx] |= 1;
8591 }
8592
8593 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8594 off += 8;
0855e32b
NS
8595 else if (tls_type & GOT_TLS_GDESC)
8596 off = offplt;
8597
8598 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
8599 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
8600 {
8601 bfd_signed_vma offset;
8602 enum elf32_arm_stub_type stub_type
8603 = arm_type_of_stub (info, input_section, rel, &sym_flags,
8604 (struct elf32_arm_link_hash_entry *)h,
8605 globals->tls_trampoline, globals->root.splt,
8606 input_bfd, sym_name);
8607
8608 if (stub_type != arm_stub_none)
8609 {
8610 struct elf32_arm_stub_hash_entry *stub_entry
8611 = elf32_arm_get_stub_entry
8612 (input_section, globals->root.splt, 0, rel,
8613 globals, stub_type);
8614 offset = (stub_entry->stub_offset
8615 + stub_entry->stub_sec->output_offset
8616 + stub_entry->stub_sec->output_section->vma);
8617 }
8618 else
8619 offset = (globals->root.splt->output_section->vma
8620 + globals->root.splt->output_offset
8621 + globals->tls_trampoline);
8622
8623 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
8624 {
8625 unsigned long inst;
8626
8627 offset -= (input_section->output_section->vma +
8628 input_section->output_offset + rel->r_offset + 8);
8629
8630 inst = offset >> 2;
8631 inst &= 0x00ffffff;
8632 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
8633 }
8634 else
8635 {
8636 /* Thumb blx encodes the offset in a complicated
8637 fashion. */
8638 unsigned upper_insn, lower_insn;
8639 unsigned neg;
8640
8641 offset -= (input_section->output_section->vma +
8642 input_section->output_offset
8643 + rel->r_offset + 4);
8644
8645 /* Round up the offset to a word boundary */
8646 offset = (offset + 2) & ~2;
8647 neg = offset < 0;
8648 upper_insn = (0xf000
8649 | ((offset >> 12) & 0x3ff)
8650 | (neg << 10));
8651 lower_insn = (0xc000
8652 | (((!((offset >> 23) & 1)) ^ neg) << 13)
8653 | (((!((offset >> 22) & 1)) ^ neg) << 11)
8654 | ((offset >> 1) & 0x7ff));
8655 bfd_put_16 (input_bfd, upper_insn, hit_data);
8656 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8657 return bfd_reloc_ok;
8658 }
8659 }
8660 /* These relocations needs special care, as besides the fact
8661 they point somewhere in .gotplt, the addend must be
8662 adjusted accordingly depending on the type of instruction
8663 we refer to */
8664 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
8665 {
8666 unsigned long data, insn;
8667 unsigned thumb;
8668
8669 data = bfd_get_32 (input_bfd, hit_data);
8670 thumb = data & 1;
8671 data &= ~1u;
8672
8673 if (thumb)
8674 {
8675 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
8676 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
8677 insn = (insn << 16)
8678 | bfd_get_16 (input_bfd,
8679 contents + rel->r_offset - data + 2);
8680 if ((insn & 0xf800c000) == 0xf000c000)
8681 /* bl/blx */
8682 value = -6;
8683 else if ((insn & 0xffffff00) == 0x4400)
8684 /* add */
8685 value = -5;
8686 else
8687 {
8688 (*_bfd_error_handler)
8689 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
8690 input_bfd, input_section,
8691 (unsigned long)rel->r_offset, insn);
8692 return bfd_reloc_notsupported;
8693 }
8694 }
8695 else
8696 {
8697 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
8698
8699 switch (insn >> 24)
8700 {
8701 case 0xeb: /* bl */
8702 case 0xfa: /* blx */
8703 value = -4;
8704 break;
8705
8706 case 0xe0: /* add */
8707 value = -8;
8708 break;
8709
8710 default:
8711 (*_bfd_error_handler)
8712 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
8713 input_bfd, input_section,
8714 (unsigned long)rel->r_offset, insn);
8715 return bfd_reloc_notsupported;
8716 }
8717 }
8718
8719 value += ((globals->root.sgotplt->output_section->vma
8720 + globals->root.sgotplt->output_offset + off)
8721 - (input_section->output_section->vma
8722 + input_section->output_offset
8723 + rel->r_offset)
8724 + globals->sgotplt_jump_table_size);
8725 }
8726 else
8727 value = ((globals->root.sgot->output_section->vma
8728 + globals->root.sgot->output_offset + off)
8729 - (input_section->output_section->vma
8730 + input_section->output_offset + rel->r_offset));
ba93b8ac
DJ
8731
8732 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8733 contents, rel->r_offset, value,
00a97672 8734 rel->r_addend);
ba93b8ac
DJ
8735 }
8736
8737 case R_ARM_TLS_LE32:
8738 if (info->shared)
8739 {
8740 (*_bfd_error_handler)
8741 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8742 input_bfd, input_section,
8743 (long) rel->r_offset, howto->name);
21d799b5 8744 return (bfd_reloc_status_type) FALSE;
ba93b8ac
DJ
8745 }
8746 else
8747 value = tpoff (info, value);
906e58ca 8748
ba93b8ac 8749 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
8750 contents, rel->r_offset, value,
8751 rel->r_addend);
ba93b8ac 8752
319850b4
JB
8753 case R_ARM_V4BX:
8754 if (globals->fix_v4bx)
845b51d6
PB
8755 {
8756 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 8757
845b51d6
PB
8758 /* Ensure that we have a BX instruction. */
8759 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 8760
845b51d6
PB
8761 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8762 {
8763 /* Branch to veneer. */
8764 bfd_vma glue_addr;
8765 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8766 glue_addr -= input_section->output_section->vma
8767 + input_section->output_offset
8768 + rel->r_offset + 8;
8769 insn = (insn & 0xf0000000) | 0x0a000000
8770 | ((glue_addr >> 2) & 0x00ffffff);
8771 }
8772 else
8773 {
8774 /* Preserve Rm (lowest four bits) and the condition code
8775 (highest four bits). Other bits encode MOV PC,Rm. */
8776 insn = (insn & 0xf000000f) | 0x01a0f000;
8777 }
319850b4 8778
845b51d6
PB
8779 bfd_put_32 (input_bfd, insn, hit_data);
8780 }
319850b4
JB
8781 return bfd_reloc_ok;
8782
b6895b4f
PB
8783 case R_ARM_MOVW_ABS_NC:
8784 case R_ARM_MOVT_ABS:
8785 case R_ARM_MOVW_PREL_NC:
8786 case R_ARM_MOVT_PREL:
92f5d02b
MS
8787 /* Until we properly support segment-base-relative addressing then
8788 we assume the segment base to be zero, as for the group relocations.
8789 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8790 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8791 case R_ARM_MOVW_BREL_NC:
8792 case R_ARM_MOVW_BREL:
8793 case R_ARM_MOVT_BREL:
b6895b4f
PB
8794 {
8795 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8796
8797 if (globals->use_rel)
8798 {
8799 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 8800 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 8801 }
92f5d02b 8802
b6895b4f 8803 value += signed_addend;
b6895b4f
PB
8804
8805 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8806 value -= (input_section->output_section->vma
8807 + input_section->output_offset + rel->r_offset);
8808
92f5d02b
MS
8809 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8810 return bfd_reloc_overflow;
8811
8812 if (sym_flags == STT_ARM_TFUNC)
8813 value |= 1;
8814
8815 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8816 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
8817 value >>= 16;
8818
8819 insn &= 0xfff0f000;
8820 insn |= value & 0xfff;
8821 insn |= (value & 0xf000) << 4;
8822 bfd_put_32 (input_bfd, insn, hit_data);
8823 }
8824 return bfd_reloc_ok;
8825
8826 case R_ARM_THM_MOVW_ABS_NC:
8827 case R_ARM_THM_MOVT_ABS:
8828 case R_ARM_THM_MOVW_PREL_NC:
8829 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
8830 /* Until we properly support segment-base-relative addressing then
8831 we assume the segment base to be zero, as for the above relocations.
8832 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8833 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8834 as R_ARM_THM_MOVT_ABS. */
8835 case R_ARM_THM_MOVW_BREL_NC:
8836 case R_ARM_THM_MOVW_BREL:
8837 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
8838 {
8839 bfd_vma insn;
906e58ca 8840
b6895b4f
PB
8841 insn = bfd_get_16 (input_bfd, hit_data) << 16;
8842 insn |= bfd_get_16 (input_bfd, hit_data + 2);
8843
8844 if (globals->use_rel)
8845 {
8846 addend = ((insn >> 4) & 0xf000)
8847 | ((insn >> 15) & 0x0800)
8848 | ((insn >> 4) & 0x0700)
8849 | (insn & 0x00ff);
39623e12 8850 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 8851 }
92f5d02b 8852
b6895b4f 8853 value += signed_addend;
b6895b4f
PB
8854
8855 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8856 value -= (input_section->output_section->vma
8857 + input_section->output_offset + rel->r_offset);
8858
92f5d02b
MS
8859 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8860 return bfd_reloc_overflow;
8861
8862 if (sym_flags == STT_ARM_TFUNC)
8863 value |= 1;
8864
8865 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8866 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
8867 value >>= 16;
8868
8869 insn &= 0xfbf08f00;
8870 insn |= (value & 0xf000) << 4;
8871 insn |= (value & 0x0800) << 15;
8872 insn |= (value & 0x0700) << 4;
8873 insn |= (value & 0x00ff);
8874
8875 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8876 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8877 }
8878 return bfd_reloc_ok;
8879
4962c51a
MS
8880 case R_ARM_ALU_PC_G0_NC:
8881 case R_ARM_ALU_PC_G1_NC:
8882 case R_ARM_ALU_PC_G0:
8883 case R_ARM_ALU_PC_G1:
8884 case R_ARM_ALU_PC_G2:
8885 case R_ARM_ALU_SB_G0_NC:
8886 case R_ARM_ALU_SB_G1_NC:
8887 case R_ARM_ALU_SB_G0:
8888 case R_ARM_ALU_SB_G1:
8889 case R_ARM_ALU_SB_G2:
8890 {
8891 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8892 bfd_vma pc = input_section->output_section->vma
8893 + input_section->output_offset + rel->r_offset;
8894 /* sb should be the origin of the *segment* containing the symbol.
8895 It is not clear how to obtain this OS-dependent value, so we
8896 make an arbitrary choice of zero. */
8897 bfd_vma sb = 0;
8898 bfd_vma residual;
8899 bfd_vma g_n;
8900 bfd_signed_vma signed_value;
8901 int group = 0;
8902
8903 /* Determine which group of bits to select. */
8904 switch (r_type)
8905 {
8906 case R_ARM_ALU_PC_G0_NC:
8907 case R_ARM_ALU_PC_G0:
8908 case R_ARM_ALU_SB_G0_NC:
8909 case R_ARM_ALU_SB_G0:
8910 group = 0;
8911 break;
8912
8913 case R_ARM_ALU_PC_G1_NC:
8914 case R_ARM_ALU_PC_G1:
8915 case R_ARM_ALU_SB_G1_NC:
8916 case R_ARM_ALU_SB_G1:
8917 group = 1;
8918 break;
8919
8920 case R_ARM_ALU_PC_G2:
8921 case R_ARM_ALU_SB_G2:
8922 group = 2;
8923 break;
8924
8925 default:
906e58ca 8926 abort ();
4962c51a
MS
8927 }
8928
8929 /* If REL, extract the addend from the insn. If RELA, it will
8930 have already been fetched for us. */
8931 if (globals->use_rel)
8932 {
8933 int negative;
8934 bfd_vma constant = insn & 0xff;
8935 bfd_vma rotation = (insn & 0xf00) >> 8;
8936
8937 if (rotation == 0)
8938 signed_addend = constant;
8939 else
8940 {
8941 /* Compensate for the fact that in the instruction, the
8942 rotation is stored in multiples of 2 bits. */
8943 rotation *= 2;
8944
8945 /* Rotate "constant" right by "rotation" bits. */
8946 signed_addend = (constant >> rotation) |
8947 (constant << (8 * sizeof (bfd_vma) - rotation));
8948 }
8949
8950 /* Determine if the instruction is an ADD or a SUB.
8951 (For REL, this determines the sign of the addend.) */
8952 negative = identify_add_or_sub (insn);
8953 if (negative == 0)
8954 {
8955 (*_bfd_error_handler)
8956 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8957 input_bfd, input_section,
8958 (long) rel->r_offset, howto->name);
906e58ca 8959 return bfd_reloc_overflow;
4962c51a
MS
8960 }
8961
8962 signed_addend *= negative;
8963 }
8964
8965 /* Compute the value (X) to go in the place. */
8966 if (r_type == R_ARM_ALU_PC_G0_NC
8967 || r_type == R_ARM_ALU_PC_G1_NC
8968 || r_type == R_ARM_ALU_PC_G0
8969 || r_type == R_ARM_ALU_PC_G1
8970 || r_type == R_ARM_ALU_PC_G2)
8971 /* PC relative. */
8972 signed_value = value - pc + signed_addend;
8973 else
8974 /* Section base relative. */
8975 signed_value = value - sb + signed_addend;
8976
8977 /* If the target symbol is a Thumb function, then set the
8978 Thumb bit in the address. */
8979 if (sym_flags == STT_ARM_TFUNC)
8980 signed_value |= 1;
8981
8982 /* Calculate the value of the relevant G_n, in encoded
8983 constant-with-rotation format. */
8984 g_n = calculate_group_reloc_mask (abs (signed_value), group,
8985 &residual);
8986
8987 /* Check for overflow if required. */
8988 if ((r_type == R_ARM_ALU_PC_G0
8989 || r_type == R_ARM_ALU_PC_G1
8990 || r_type == R_ARM_ALU_PC_G2
8991 || r_type == R_ARM_ALU_SB_G0
8992 || r_type == R_ARM_ALU_SB_G1
8993 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8994 {
8995 (*_bfd_error_handler)
8996 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8997 input_bfd, input_section,
8998 (long) rel->r_offset, abs (signed_value), howto->name);
8999 return bfd_reloc_overflow;
9000 }
9001
9002 /* Mask out the value and the ADD/SUB part of the opcode; take care
9003 not to destroy the S bit. */
9004 insn &= 0xff1ff000;
9005
9006 /* Set the opcode according to whether the value to go in the
9007 place is negative. */
9008 if (signed_value < 0)
9009 insn |= 1 << 22;
9010 else
9011 insn |= 1 << 23;
9012
9013 /* Encode the offset. */
9014 insn |= g_n;
9015
9016 bfd_put_32 (input_bfd, insn, hit_data);
9017 }
9018 return bfd_reloc_ok;
9019
9020 case R_ARM_LDR_PC_G0:
9021 case R_ARM_LDR_PC_G1:
9022 case R_ARM_LDR_PC_G2:
9023 case R_ARM_LDR_SB_G0:
9024 case R_ARM_LDR_SB_G1:
9025 case R_ARM_LDR_SB_G2:
9026 {
9027 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9028 bfd_vma pc = input_section->output_section->vma
9029 + input_section->output_offset + rel->r_offset;
9030 bfd_vma sb = 0; /* See note above. */
9031 bfd_vma residual;
9032 bfd_signed_vma signed_value;
9033 int group = 0;
9034
9035 /* Determine which groups of bits to calculate. */
9036 switch (r_type)
9037 {
9038 case R_ARM_LDR_PC_G0:
9039 case R_ARM_LDR_SB_G0:
9040 group = 0;
9041 break;
9042
9043 case R_ARM_LDR_PC_G1:
9044 case R_ARM_LDR_SB_G1:
9045 group = 1;
9046 break;
9047
9048 case R_ARM_LDR_PC_G2:
9049 case R_ARM_LDR_SB_G2:
9050 group = 2;
9051 break;
9052
9053 default:
906e58ca 9054 abort ();
4962c51a
MS
9055 }
9056
9057 /* If REL, extract the addend from the insn. If RELA, it will
9058 have already been fetched for us. */
9059 if (globals->use_rel)
9060 {
9061 int negative = (insn & (1 << 23)) ? 1 : -1;
9062 signed_addend = negative * (insn & 0xfff);
9063 }
9064
9065 /* Compute the value (X) to go in the place. */
9066 if (r_type == R_ARM_LDR_PC_G0
9067 || r_type == R_ARM_LDR_PC_G1
9068 || r_type == R_ARM_LDR_PC_G2)
9069 /* PC relative. */
9070 signed_value = value - pc + signed_addend;
9071 else
9072 /* Section base relative. */
9073 signed_value = value - sb + signed_addend;
9074
9075 /* Calculate the value of the relevant G_{n-1} to obtain
9076 the residual at that stage. */
9077 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9078
9079 /* Check for overflow. */
9080 if (residual >= 0x1000)
9081 {
9082 (*_bfd_error_handler)
9083 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9084 input_bfd, input_section,
9085 (long) rel->r_offset, abs (signed_value), howto->name);
9086 return bfd_reloc_overflow;
9087 }
9088
9089 /* Mask out the value and U bit. */
9090 insn &= 0xff7ff000;
9091
9092 /* Set the U bit if the value to go in the place is non-negative. */
9093 if (signed_value >= 0)
9094 insn |= 1 << 23;
9095
9096 /* Encode the offset. */
9097 insn |= residual;
9098
9099 bfd_put_32 (input_bfd, insn, hit_data);
9100 }
9101 return bfd_reloc_ok;
9102
9103 case R_ARM_LDRS_PC_G0:
9104 case R_ARM_LDRS_PC_G1:
9105 case R_ARM_LDRS_PC_G2:
9106 case R_ARM_LDRS_SB_G0:
9107 case R_ARM_LDRS_SB_G1:
9108 case R_ARM_LDRS_SB_G2:
9109 {
9110 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9111 bfd_vma pc = input_section->output_section->vma
9112 + input_section->output_offset + rel->r_offset;
9113 bfd_vma sb = 0; /* See note above. */
9114 bfd_vma residual;
9115 bfd_signed_vma signed_value;
9116 int group = 0;
9117
9118 /* Determine which groups of bits to calculate. */
9119 switch (r_type)
9120 {
9121 case R_ARM_LDRS_PC_G0:
9122 case R_ARM_LDRS_SB_G0:
9123 group = 0;
9124 break;
9125
9126 case R_ARM_LDRS_PC_G1:
9127 case R_ARM_LDRS_SB_G1:
9128 group = 1;
9129 break;
9130
9131 case R_ARM_LDRS_PC_G2:
9132 case R_ARM_LDRS_SB_G2:
9133 group = 2;
9134 break;
9135
9136 default:
906e58ca 9137 abort ();
4962c51a
MS
9138 }
9139
9140 /* If REL, extract the addend from the insn. If RELA, it will
9141 have already been fetched for us. */
9142 if (globals->use_rel)
9143 {
9144 int negative = (insn & (1 << 23)) ? 1 : -1;
9145 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
9146 }
9147
9148 /* Compute the value (X) to go in the place. */
9149 if (r_type == R_ARM_LDRS_PC_G0
9150 || r_type == R_ARM_LDRS_PC_G1
9151 || r_type == R_ARM_LDRS_PC_G2)
9152 /* PC relative. */
9153 signed_value = value - pc + signed_addend;
9154 else
9155 /* Section base relative. */
9156 signed_value = value - sb + signed_addend;
9157
9158 /* Calculate the value of the relevant G_{n-1} to obtain
9159 the residual at that stage. */
9160 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9161
9162 /* Check for overflow. */
9163 if (residual >= 0x100)
9164 {
9165 (*_bfd_error_handler)
9166 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9167 input_bfd, input_section,
9168 (long) rel->r_offset, abs (signed_value), howto->name);
9169 return bfd_reloc_overflow;
9170 }
9171
9172 /* Mask out the value and U bit. */
9173 insn &= 0xff7ff0f0;
9174
9175 /* Set the U bit if the value to go in the place is non-negative. */
9176 if (signed_value >= 0)
9177 insn |= 1 << 23;
9178
9179 /* Encode the offset. */
9180 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
9181
9182 bfd_put_32 (input_bfd, insn, hit_data);
9183 }
9184 return bfd_reloc_ok;
9185
9186 case R_ARM_LDC_PC_G0:
9187 case R_ARM_LDC_PC_G1:
9188 case R_ARM_LDC_PC_G2:
9189 case R_ARM_LDC_SB_G0:
9190 case R_ARM_LDC_SB_G1:
9191 case R_ARM_LDC_SB_G2:
9192 {
9193 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9194 bfd_vma pc = input_section->output_section->vma
9195 + input_section->output_offset + rel->r_offset;
9196 bfd_vma sb = 0; /* See note above. */
9197 bfd_vma residual;
9198 bfd_signed_vma signed_value;
9199 int group = 0;
9200
9201 /* Determine which groups of bits to calculate. */
9202 switch (r_type)
9203 {
9204 case R_ARM_LDC_PC_G0:
9205 case R_ARM_LDC_SB_G0:
9206 group = 0;
9207 break;
9208
9209 case R_ARM_LDC_PC_G1:
9210 case R_ARM_LDC_SB_G1:
9211 group = 1;
9212 break;
9213
9214 case R_ARM_LDC_PC_G2:
9215 case R_ARM_LDC_SB_G2:
9216 group = 2;
9217 break;
9218
9219 default:
906e58ca 9220 abort ();
4962c51a
MS
9221 }
9222
9223 /* If REL, extract the addend from the insn. If RELA, it will
9224 have already been fetched for us. */
9225 if (globals->use_rel)
9226 {
9227 int negative = (insn & (1 << 23)) ? 1 : -1;
9228 signed_addend = negative * ((insn & 0xff) << 2);
9229 }
9230
9231 /* Compute the value (X) to go in the place. */
9232 if (r_type == R_ARM_LDC_PC_G0
9233 || r_type == R_ARM_LDC_PC_G1
9234 || r_type == R_ARM_LDC_PC_G2)
9235 /* PC relative. */
9236 signed_value = value - pc + signed_addend;
9237 else
9238 /* Section base relative. */
9239 signed_value = value - sb + signed_addend;
9240
9241 /* Calculate the value of the relevant G_{n-1} to obtain
9242 the residual at that stage. */
9243 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9244
9245 /* Check for overflow. (The absolute value to go in the place must be
9246 divisible by four and, after having been divided by four, must
9247 fit in eight bits.) */
9248 if ((residual & 0x3) != 0 || residual >= 0x400)
9249 {
9250 (*_bfd_error_handler)
9251 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9252 input_bfd, input_section,
9253 (long) rel->r_offset, abs (signed_value), howto->name);
9254 return bfd_reloc_overflow;
9255 }
9256
9257 /* Mask out the value and U bit. */
9258 insn &= 0xff7fff00;
9259
9260 /* Set the U bit if the value to go in the place is non-negative. */
9261 if (signed_value >= 0)
9262 insn |= 1 << 23;
9263
9264 /* Encode the offset. */
9265 insn |= residual >> 2;
9266
9267 bfd_put_32 (input_bfd, insn, hit_data);
9268 }
9269 return bfd_reloc_ok;
9270
252b5132
RH
9271 default:
9272 return bfd_reloc_notsupported;
9273 }
9274}
9275
98c1d4aa
NC
9276/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
9277static void
57e8b36a
NC
9278arm_add_to_rel (bfd * abfd,
9279 bfd_byte * address,
9280 reloc_howto_type * howto,
9281 bfd_signed_vma increment)
98c1d4aa 9282{
98c1d4aa
NC
9283 bfd_signed_vma addend;
9284
bd97cb95
DJ
9285 if (howto->type == R_ARM_THM_CALL
9286 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 9287 {
9a5aca8c
AM
9288 int upper_insn, lower_insn;
9289 int upper, lower;
98c1d4aa 9290
9a5aca8c
AM
9291 upper_insn = bfd_get_16 (abfd, address);
9292 lower_insn = bfd_get_16 (abfd, address + 2);
9293 upper = upper_insn & 0x7ff;
9294 lower = lower_insn & 0x7ff;
9295
9296 addend = (upper << 12) | (lower << 1);
ddda4409 9297 addend += increment;
9a5aca8c 9298 addend >>= 1;
98c1d4aa 9299
9a5aca8c
AM
9300 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
9301 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
9302
dc810e39
AM
9303 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
9304 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
9305 }
9306 else
9307 {
9308 bfd_vma contents;
9309
9310 contents = bfd_get_32 (abfd, address);
9311
9312 /* Get the (signed) value from the instruction. */
9313 addend = contents & howto->src_mask;
9314 if (addend & ((howto->src_mask + 1) >> 1))
9315 {
9316 bfd_signed_vma mask;
9317
9318 mask = -1;
9319 mask &= ~ howto->src_mask;
9320 addend |= mask;
9321 }
9322
9323 /* Add in the increment, (which is a byte value). */
9324 switch (howto->type)
9325 {
9326 default:
9327 addend += increment;
9328 break;
9329
9330 case R_ARM_PC24:
c6596c5e 9331 case R_ARM_PLT32:
5b5bb741
PB
9332 case R_ARM_CALL:
9333 case R_ARM_JUMP24:
9a5aca8c 9334 addend <<= howto->size;
dc810e39 9335 addend += increment;
9a5aca8c
AM
9336
9337 /* Should we check for overflow here ? */
9338
9339 /* Drop any undesired bits. */
9340 addend >>= howto->rightshift;
9341 break;
9342 }
9343
9344 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
9345
9346 bfd_put_32 (abfd, contents, address);
ddda4409 9347 }
98c1d4aa 9348}
252b5132 9349
ba93b8ac
DJ
9350#define IS_ARM_TLS_RELOC(R_TYPE) \
9351 ((R_TYPE) == R_ARM_TLS_GD32 \
9352 || (R_TYPE) == R_ARM_TLS_LDO32 \
9353 || (R_TYPE) == R_ARM_TLS_LDM32 \
9354 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
9355 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
9356 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
9357 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b
NS
9358 || (R_TYPE) == R_ARM_TLS_IE32 \
9359 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
9360
9361/* Specific set of relocations for the gnu tls dialect. */
9362#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
9363 ((R_TYPE) == R_ARM_TLS_GOTDESC \
9364 || (R_TYPE) == R_ARM_TLS_CALL \
9365 || (R_TYPE) == R_ARM_THM_TLS_CALL \
9366 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
9367 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 9368
252b5132 9369/* Relocate an ARM ELF section. */
906e58ca 9370
b34976b6 9371static bfd_boolean
57e8b36a
NC
9372elf32_arm_relocate_section (bfd * output_bfd,
9373 struct bfd_link_info * info,
9374 bfd * input_bfd,
9375 asection * input_section,
9376 bfd_byte * contents,
9377 Elf_Internal_Rela * relocs,
9378 Elf_Internal_Sym * local_syms,
9379 asection ** local_sections)
252b5132 9380{
b34976b6
AM
9381 Elf_Internal_Shdr *symtab_hdr;
9382 struct elf_link_hash_entry **sym_hashes;
9383 Elf_Internal_Rela *rel;
9384 Elf_Internal_Rela *relend;
9385 const char *name;
b32d3aa2 9386 struct elf32_arm_link_hash_table * globals;
252b5132 9387
4e7fd91e 9388 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
9389 if (globals == NULL)
9390 return FALSE;
b491616a 9391
0ffa91dd 9392 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
9393 sym_hashes = elf_sym_hashes (input_bfd);
9394
9395 rel = relocs;
9396 relend = relocs + input_section->reloc_count;
9397 for (; rel < relend; rel++)
9398 {
ba96a88f
NC
9399 int r_type;
9400 reloc_howto_type * howto;
9401 unsigned long r_symndx;
9402 Elf_Internal_Sym * sym;
9403 asection * sec;
252b5132 9404 struct elf_link_hash_entry * h;
ba96a88f
NC
9405 bfd_vma relocation;
9406 bfd_reloc_status_type r;
9407 arelent bfd_reloc;
ba93b8ac 9408 char sym_type;
0945cdfd 9409 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 9410 char *error_message = NULL;
f21f3fe0 9411
252b5132 9412 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 9413 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 9414 r_type = arm_real_reloc_type (globals, r_type);
252b5132 9415
ba96a88f
NC
9416 if ( r_type == R_ARM_GNU_VTENTRY
9417 || r_type == R_ARM_GNU_VTINHERIT)
252b5132
RH
9418 continue;
9419
b32d3aa2 9420 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 9421 howto = bfd_reloc.howto;
252b5132 9422
252b5132
RH
9423 h = NULL;
9424 sym = NULL;
9425 sec = NULL;
9b485d32 9426
252b5132
RH
9427 if (r_symndx < symtab_hdr->sh_info)
9428 {
9429 sym = local_syms + r_symndx;
ba93b8ac 9430 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 9431 sec = local_sections[r_symndx];
ffcb4889
NS
9432
9433 /* An object file might have a reference to a local
9434 undefined symbol. This is a daft object file, but we
9435 should at least do something about it. V4BX & NONE
9436 relocations do not use the symbol and are explicitly
77b4f08f
TS
9437 allowed to use the undefined symbol, so allow those.
9438 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
9439 if (r_type != R_ARM_V4BX
9440 && r_type != R_ARM_NONE
77b4f08f 9441 && r_symndx != STN_UNDEF
ffcb4889
NS
9442 && bfd_is_und_section (sec)
9443 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
9444 {
9445 if (!info->callbacks->undefined_symbol
9446 (info, bfd_elf_string_from_elf_section
9447 (input_bfd, symtab_hdr->sh_link, sym->st_name),
9448 input_bfd, input_section,
9449 rel->r_offset, TRUE))
9450 return FALSE;
9451 }
9452
4e7fd91e 9453 if (globals->use_rel)
f8df10f4 9454 {
4e7fd91e
PB
9455 relocation = (sec->output_section->vma
9456 + sec->output_offset
9457 + sym->st_value);
ab96bf03
AM
9458 if (!info->relocatable
9459 && (sec->flags & SEC_MERGE)
9460 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 9461 {
4e7fd91e
PB
9462 asection *msec;
9463 bfd_vma addend, value;
9464
39623e12 9465 switch (r_type)
4e7fd91e 9466 {
39623e12
PB
9467 case R_ARM_MOVW_ABS_NC:
9468 case R_ARM_MOVT_ABS:
9469 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
9470 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
9471 addend = (addend ^ 0x8000) - 0x8000;
9472 break;
f8df10f4 9473
39623e12
PB
9474 case R_ARM_THM_MOVW_ABS_NC:
9475 case R_ARM_THM_MOVT_ABS:
9476 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
9477 << 16;
9478 value |= bfd_get_16 (input_bfd,
9479 contents + rel->r_offset + 2);
9480 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
9481 | ((value & 0x04000000) >> 15);
9482 addend = (addend ^ 0x8000) - 0x8000;
9483 break;
f8df10f4 9484
39623e12
PB
9485 default:
9486 if (howto->rightshift
9487 || (howto->src_mask & (howto->src_mask + 1)))
9488 {
9489 (*_bfd_error_handler)
9490 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
9491 input_bfd, input_section,
9492 (long) rel->r_offset, howto->name);
9493 return FALSE;
9494 }
9495
9496 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
9497
9498 /* Get the (signed) value from the instruction. */
9499 addend = value & howto->src_mask;
9500 if (addend & ((howto->src_mask + 1) >> 1))
9501 {
9502 bfd_signed_vma mask;
9503
9504 mask = -1;
9505 mask &= ~ howto->src_mask;
9506 addend |= mask;
9507 }
9508 break;
4e7fd91e 9509 }
39623e12 9510
4e7fd91e
PB
9511 msec = sec;
9512 addend =
9513 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
9514 - relocation;
9515 addend += msec->output_section->vma + msec->output_offset;
39623e12
PB
9516
9517 /* Cases here must match those in the preceeding
9518 switch statement. */
9519 switch (r_type)
9520 {
9521 case R_ARM_MOVW_ABS_NC:
9522 case R_ARM_MOVT_ABS:
9523 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
9524 | (addend & 0xfff);
9525 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
9526 break;
9527
9528 case R_ARM_THM_MOVW_ABS_NC:
9529 case R_ARM_THM_MOVT_ABS:
9530 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
9531 | (addend & 0xff) | ((addend & 0x0800) << 15);
9532 bfd_put_16 (input_bfd, value >> 16,
9533 contents + rel->r_offset);
9534 bfd_put_16 (input_bfd, value,
9535 contents + rel->r_offset + 2);
9536 break;
9537
9538 default:
9539 value = (value & ~ howto->dst_mask)
9540 | (addend & howto->dst_mask);
9541 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
9542 break;
9543 }
f8df10f4 9544 }
f8df10f4 9545 }
4e7fd91e
PB
9546 else
9547 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
9548 }
9549 else
9550 {
560e09e9 9551 bfd_boolean warned;
560e09e9 9552
b2a8e766
AM
9553 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9554 r_symndx, symtab_hdr, sym_hashes,
9555 h, sec, relocation,
9556 unresolved_reloc, warned);
ba93b8ac
DJ
9557
9558 sym_type = h->type;
252b5132
RH
9559 }
9560
ab96bf03 9561 if (sec != NULL && elf_discarded_section (sec))
e4067dbb
DJ
9562 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9563 rel, relend, howto, contents);
ab96bf03
AM
9564
9565 if (info->relocatable)
9566 {
9567 /* This is a relocatable link. We don't have to change
9568 anything, unless the reloc is against a section symbol,
9569 in which case we have to adjust according to where the
9570 section symbol winds up in the output section. */
9571 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9572 {
9573 if (globals->use_rel)
9574 arm_add_to_rel (input_bfd, contents + rel->r_offset,
9575 howto, (bfd_signed_vma) sec->output_offset);
9576 else
9577 rel->r_addend += sec->output_offset;
9578 }
9579 continue;
9580 }
9581
252b5132
RH
9582 if (h != NULL)
9583 name = h->root.root.string;
9584 else
9585 {
9586 name = (bfd_elf_string_from_elf_section
9587 (input_bfd, symtab_hdr->sh_link, sym->st_name));
9588 if (name == NULL || *name == '\0')
9589 name = bfd_section_name (input_bfd, sec);
9590 }
f21f3fe0 9591
cf35638d 9592 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
9593 && r_type != R_ARM_NONE
9594 && (h == NULL
9595 || h->root.type == bfd_link_hash_defined
9596 || h->root.type == bfd_link_hash_defweak)
9597 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9598 {
9599 (*_bfd_error_handler)
9600 ((sym_type == STT_TLS
9601 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9602 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
9603 input_bfd,
9604 input_section,
9605 (long) rel->r_offset,
9606 howto->name,
9607 name);
9608 }
9609
0855e32b
NS
9610 /* We call elf32_arm_final_link_relocate unless we're completely
9611 done, i.e., the relaxation produced the final output we want,
9612 and we won't let anybody mess with it. Also, we have to do
9613 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
9614 both in relaxed and non-relaxed cases */
9615 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
9616 || (IS_ARM_TLS_GNU_RELOC (r_type)
9617 && !((h ? elf32_arm_hash_entry (h)->tls_type :
9618 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
9619 & GOT_TLS_GDESC)))
9620 {
9621 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
9622 contents, rel, h == NULL);
9623 /* This may have been marked unresolved because it came from
9624 a shared library. But we've just dealt with that. */
9625 unresolved_reloc = 0;
9626 }
9627 else
9628 r = bfd_reloc_continue;
9629
9630 if (r == bfd_reloc_continue)
9631 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
9632 input_section, contents, rel,
9633 relocation, info, sec, name,
9634 (h ? ELF_ST_TYPE (h->type) :
9635 ELF_ST_TYPE (sym->st_info)), h,
9636 &unresolved_reloc, &error_message);
0945cdfd
DJ
9637
9638 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9639 because such sections are not SEC_ALLOC and thus ld.so will
9640 not process them. */
9641 if (unresolved_reloc
9642 && !((input_section->flags & SEC_DEBUGGING) != 0
9643 && h->def_dynamic))
9644 {
9645 (*_bfd_error_handler)
843fe662
L
9646 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9647 input_bfd,
9648 input_section,
9649 (long) rel->r_offset,
9650 howto->name,
9651 h->root.root.string);
0945cdfd
DJ
9652 return FALSE;
9653 }
252b5132
RH
9654
9655 if (r != bfd_reloc_ok)
9656 {
252b5132
RH
9657 switch (r)
9658 {
9659 case bfd_reloc_overflow:
cf919dfd
PB
9660 /* If the overflowing reloc was to an undefined symbol,
9661 we have already printed one error message and there
9662 is no point complaining again. */
9663 if ((! h ||
9664 h->root.type != bfd_link_hash_undefined)
9665 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
9666 (info, (h ? &h->root : NULL), name, howto->name,
9667 (bfd_vma) 0, input_bfd, input_section,
9668 rel->r_offset))))
b34976b6 9669 return FALSE;
252b5132
RH
9670 break;
9671
9672 case bfd_reloc_undefined:
9673 if (!((*info->callbacks->undefined_symbol)
9674 (info, name, input_bfd, input_section,
b34976b6
AM
9675 rel->r_offset, TRUE)))
9676 return FALSE;
252b5132
RH
9677 break;
9678
9679 case bfd_reloc_outofrange:
f2a9dd69 9680 error_message = _("out of range");
252b5132
RH
9681 goto common_error;
9682
9683 case bfd_reloc_notsupported:
f2a9dd69 9684 error_message = _("unsupported relocation");
252b5132
RH
9685 goto common_error;
9686
9687 case bfd_reloc_dangerous:
f2a9dd69 9688 /* error_message should already be set. */
252b5132
RH
9689 goto common_error;
9690
9691 default:
f2a9dd69 9692 error_message = _("unknown error");
8029a119 9693 /* Fall through. */
252b5132
RH
9694
9695 common_error:
f2a9dd69
DJ
9696 BFD_ASSERT (error_message != NULL);
9697 if (!((*info->callbacks->reloc_dangerous)
9698 (info, error_message, input_bfd, input_section,
252b5132 9699 rel->r_offset)))
b34976b6 9700 return FALSE;
252b5132
RH
9701 break;
9702 }
9703 }
9704 }
9705
b34976b6 9706 return TRUE;
252b5132
RH
9707}
9708
91d6fa6a 9709/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 9710 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 9711 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
9712 maintaining that condition). */
9713
9714static void
9715add_unwind_table_edit (arm_unwind_table_edit **head,
9716 arm_unwind_table_edit **tail,
9717 arm_unwind_edit_type type,
9718 asection *linked_section,
91d6fa6a 9719 unsigned int tindex)
2468f9c9 9720{
21d799b5
NC
9721 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
9722 xmalloc (sizeof (arm_unwind_table_edit));
2468f9c9
PB
9723
9724 new_edit->type = type;
9725 new_edit->linked_section = linked_section;
91d6fa6a 9726 new_edit->index = tindex;
2468f9c9 9727
91d6fa6a 9728 if (tindex > 0)
2468f9c9
PB
9729 {
9730 new_edit->next = NULL;
9731
9732 if (*tail)
9733 (*tail)->next = new_edit;
9734
9735 (*tail) = new_edit;
9736
9737 if (!*head)
9738 (*head) = new_edit;
9739 }
9740 else
9741 {
9742 new_edit->next = *head;
9743
9744 if (!*tail)
9745 *tail = new_edit;
9746
9747 *head = new_edit;
9748 }
9749}
9750
9751static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9752
9753/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9754static void
9755adjust_exidx_size(asection *exidx_sec, int adjust)
9756{
9757 asection *out_sec;
9758
9759 if (!exidx_sec->rawsize)
9760 exidx_sec->rawsize = exidx_sec->size;
9761
9762 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9763 out_sec = exidx_sec->output_section;
9764 /* Adjust size of output section. */
9765 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9766}
9767
9768/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9769static void
9770insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9771{
9772 struct _arm_elf_section_data *exidx_arm_data;
9773
9774 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9775 add_unwind_table_edit (
9776 &exidx_arm_data->u.exidx.unwind_edit_list,
9777 &exidx_arm_data->u.exidx.unwind_edit_tail,
9778 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9779
9780 adjust_exidx_size(exidx_sec, 8);
9781}
9782
9783/* Scan .ARM.exidx tables, and create a list describing edits which should be
9784 made to those tables, such that:
9785
9786 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9787 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9788 codes which have been inlined into the index).
9789
85fdf906
AH
9790 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
9791
2468f9c9
PB
9792 The edits are applied when the tables are written
9793 (in elf32_arm_write_section).
9794*/
9795
9796bfd_boolean
9797elf32_arm_fix_exidx_coverage (asection **text_section_order,
9798 unsigned int num_text_sections,
85fdf906
AH
9799 struct bfd_link_info *info,
9800 bfd_boolean merge_exidx_entries)
2468f9c9
PB
9801{
9802 bfd *inp;
9803 unsigned int last_second_word = 0, i;
9804 asection *last_exidx_sec = NULL;
9805 asection *last_text_sec = NULL;
9806 int last_unwind_type = -1;
9807
9808 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9809 text sections. */
9810 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9811 {
9812 asection *sec;
9813
9814 for (sec = inp->sections; sec != NULL; sec = sec->next)
9815 {
9816 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9817 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9818
dec9d5df 9819 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9
PB
9820 continue;
9821
9822 if (elf_sec->linked_to)
9823 {
9824 Elf_Internal_Shdr *linked_hdr
9825 = &elf_section_data (elf_sec->linked_to)->this_hdr;
9826 struct _arm_elf_section_data *linked_sec_arm_data
9827 = get_arm_elf_section_data (linked_hdr->bfd_section);
9828
9829 if (linked_sec_arm_data == NULL)
9830 continue;
9831
9832 /* Link this .ARM.exidx section back from the text section it
9833 describes. */
9834 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9835 }
9836 }
9837 }
9838
9839 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9840 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 9841 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
9842
9843 for (i = 0; i < num_text_sections; i++)
9844 {
9845 asection *sec = text_section_order[i];
9846 asection *exidx_sec;
9847 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9848 struct _arm_elf_section_data *exidx_arm_data;
9849 bfd_byte *contents = NULL;
9850 int deleted_exidx_bytes = 0;
9851 bfd_vma j;
9852 arm_unwind_table_edit *unwind_edit_head = NULL;
9853 arm_unwind_table_edit *unwind_edit_tail = NULL;
9854 Elf_Internal_Shdr *hdr;
9855 bfd *ibfd;
9856
9857 if (arm_data == NULL)
9858 continue;
9859
9860 exidx_sec = arm_data->u.text.arm_exidx_sec;
9861 if (exidx_sec == NULL)
9862 {
9863 /* Section has no unwind data. */
9864 if (last_unwind_type == 0 || !last_exidx_sec)
9865 continue;
9866
9867 /* Ignore zero sized sections. */
9868 if (sec->size == 0)
9869 continue;
9870
9871 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9872 last_unwind_type = 0;
9873 continue;
9874 }
9875
22a8f80e
PB
9876 /* Skip /DISCARD/ sections. */
9877 if (bfd_is_abs_section (exidx_sec->output_section))
9878 continue;
9879
2468f9c9
PB
9880 hdr = &elf_section_data (exidx_sec)->this_hdr;
9881 if (hdr->sh_type != SHT_ARM_EXIDX)
9882 continue;
9883
9884 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9885 if (exidx_arm_data == NULL)
9886 continue;
9887
9888 ibfd = exidx_sec->owner;
9889
9890 if (hdr->contents != NULL)
9891 contents = hdr->contents;
9892 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9893 /* An error? */
9894 continue;
9895
9896 for (j = 0; j < hdr->sh_size; j += 8)
9897 {
9898 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9899 int unwind_type;
9900 int elide = 0;
9901
9902 /* An EXIDX_CANTUNWIND entry. */
9903 if (second_word == 1)
9904 {
9905 if (last_unwind_type == 0)
9906 elide = 1;
9907 unwind_type = 0;
9908 }
9909 /* Inlined unwinding data. Merge if equal to previous. */
9910 else if ((second_word & 0x80000000) != 0)
9911 {
85fdf906
AH
9912 if (merge_exidx_entries
9913 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
9914 elide = 1;
9915 unwind_type = 1;
9916 last_second_word = second_word;
9917 }
9918 /* Normal table entry. In theory we could merge these too,
9919 but duplicate entries are likely to be much less common. */
9920 else
9921 unwind_type = 2;
9922
9923 if (elide)
9924 {
9925 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9926 DELETE_EXIDX_ENTRY, NULL, j / 8);
9927
9928 deleted_exidx_bytes += 8;
9929 }
9930
9931 last_unwind_type = unwind_type;
9932 }
9933
9934 /* Free contents if we allocated it ourselves. */
9935 if (contents != hdr->contents)
9936 free (contents);
9937
9938 /* Record edits to be applied later (in elf32_arm_write_section). */
9939 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9940 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9941
9942 if (deleted_exidx_bytes > 0)
9943 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9944
9945 last_exidx_sec = exidx_sec;
9946 last_text_sec = sec;
9947 }
9948
9949 /* Add terminating CANTUNWIND entry. */
9950 if (last_exidx_sec && last_unwind_type != 0)
9951 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9952
9953 return TRUE;
9954}
9955
3e6b1042
DJ
9956static bfd_boolean
9957elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9958 bfd *ibfd, const char *name)
9959{
9960 asection *sec, *osec;
9961
9962 sec = bfd_get_section_by_name (ibfd, name);
9963 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9964 return TRUE;
9965
9966 osec = sec->output_section;
9967 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9968 return TRUE;
9969
9970 if (! bfd_set_section_contents (obfd, osec, sec->contents,
9971 sec->output_offset, sec->size))
9972 return FALSE;
9973
9974 return TRUE;
9975}
9976
9977static bfd_boolean
9978elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9979{
9980 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 9981 asection *sec, *osec;
3e6b1042 9982
4dfe6ac6
NC
9983 if (globals == NULL)
9984 return FALSE;
9985
3e6b1042
DJ
9986 /* Invoke the regular ELF backend linker to do all the work. */
9987 if (!bfd_elf_final_link (abfd, info))
9988 return FALSE;
9989
fe33d2fa
CL
9990 /* Process stub sections (eg BE8 encoding, ...). */
9991 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
9992 int i;
cdb21a0a
NS
9993 for (i=0; i<htab->top_id; i++)
9994 {
9995 sec = htab->stub_group[i].stub_sec;
9996 /* Only process it once, in its link_sec slot. */
9997 if (sec && i == htab->stub_group[i].link_sec->id)
9998 {
9999 osec = sec->output_section;
10000 elf32_arm_write_section (abfd, info, sec, sec->contents);
10001 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10002 sec->output_offset, sec->size))
10003 return FALSE;
10004 }
fe33d2fa 10005 }
fe33d2fa 10006
3e6b1042
DJ
10007 /* Write out any glue sections now that we have created all the
10008 stubs. */
10009 if (globals->bfd_of_glue_owner != NULL)
10010 {
10011 if (! elf32_arm_output_glue_section (info, abfd,
10012 globals->bfd_of_glue_owner,
10013 ARM2THUMB_GLUE_SECTION_NAME))
10014 return FALSE;
10015
10016 if (! elf32_arm_output_glue_section (info, abfd,
10017 globals->bfd_of_glue_owner,
10018 THUMB2ARM_GLUE_SECTION_NAME))
10019 return FALSE;
10020
10021 if (! elf32_arm_output_glue_section (info, abfd,
10022 globals->bfd_of_glue_owner,
10023 VFP11_ERRATUM_VENEER_SECTION_NAME))
10024 return FALSE;
10025
10026 if (! elf32_arm_output_glue_section (info, abfd,
10027 globals->bfd_of_glue_owner,
10028 ARM_BX_GLUE_SECTION_NAME))
10029 return FALSE;
10030 }
10031
10032 return TRUE;
10033}
10034
c178919b
NC
10035/* Set the right machine number. */
10036
10037static bfd_boolean
57e8b36a 10038elf32_arm_object_p (bfd *abfd)
c178919b 10039{
5a6c6817 10040 unsigned int mach;
57e8b36a 10041
5a6c6817 10042 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 10043
5a6c6817
NC
10044 if (mach != bfd_mach_arm_unknown)
10045 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10046
10047 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10048 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
e16bb312 10049
e16bb312 10050 else
5a6c6817 10051 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
10052
10053 return TRUE;
10054}
10055
fc830a83 10056/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 10057
b34976b6 10058static bfd_boolean
57e8b36a 10059elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
10060{
10061 if (elf_flags_init (abfd)
10062 && elf_elfheader (abfd)->e_flags != flags)
10063 {
fc830a83
NC
10064 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
10065 {
fd2ec330 10066 if (flags & EF_ARM_INTERWORK)
d003868e
AM
10067 (*_bfd_error_handler)
10068 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10069 abfd);
fc830a83 10070 else
d003868e
AM
10071 _bfd_error_handler
10072 (_("Warning: Clearing the interworking flag of %B due to outside request"),
10073 abfd);
fc830a83 10074 }
252b5132
RH
10075 }
10076 else
10077 {
10078 elf_elfheader (abfd)->e_flags = flags;
b34976b6 10079 elf_flags_init (abfd) = TRUE;
252b5132
RH
10080 }
10081
b34976b6 10082 return TRUE;
252b5132
RH
10083}
10084
fc830a83 10085/* Copy backend specific data from one object module to another. */
9b485d32 10086
b34976b6 10087static bfd_boolean
57e8b36a 10088elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
10089{
10090 flagword in_flags;
10091 flagword out_flags;
10092
0ffa91dd 10093 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 10094 return TRUE;
252b5132 10095
fc830a83 10096 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
10097 out_flags = elf_elfheader (obfd)->e_flags;
10098
fc830a83
NC
10099 if (elf_flags_init (obfd)
10100 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
10101 && in_flags != out_flags)
252b5132 10102 {
252b5132 10103 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 10104 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 10105 return FALSE;
252b5132
RH
10106
10107 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 10108 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 10109 return FALSE;
252b5132
RH
10110
10111 /* If the src and dest have different interworking flags
10112 then turn off the interworking bit. */
fd2ec330 10113 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 10114 {
fd2ec330 10115 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
10116 _bfd_error_handler
10117 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10118 obfd, ibfd);
252b5132 10119
fd2ec330 10120 in_flags &= ~EF_ARM_INTERWORK;
252b5132 10121 }
1006ba19
PB
10122
10123 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
10124 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
10125 in_flags &= ~EF_ARM_PIC;
252b5132
RH
10126 }
10127
10128 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 10129 elf_flags_init (obfd) = TRUE;
252b5132 10130
94a3258f
PB
10131 /* Also copy the EI_OSABI field. */
10132 elf_elfheader (obfd)->e_ident[EI_OSABI] =
10133 elf_elfheader (ibfd)->e_ident[EI_OSABI];
10134
104d59d1
JM
10135 /* Copy object attributes. */
10136 _bfd_elf_copy_obj_attributes (ibfd, obfd);
ee065d83
PB
10137
10138 return TRUE;
10139}
10140
10141/* Values for Tag_ABI_PCS_R9_use. */
10142enum
10143{
10144 AEABI_R9_V6,
10145 AEABI_R9_SB,
10146 AEABI_R9_TLS,
10147 AEABI_R9_unused
10148};
10149
10150/* Values for Tag_ABI_PCS_RW_data. */
10151enum
10152{
10153 AEABI_PCS_RW_data_absolute,
10154 AEABI_PCS_RW_data_PCrel,
10155 AEABI_PCS_RW_data_SBrel,
10156 AEABI_PCS_RW_data_unused
10157};
10158
10159/* Values for Tag_ABI_enum_size. */
10160enum
10161{
10162 AEABI_enum_unused,
10163 AEABI_enum_short,
10164 AEABI_enum_wide,
10165 AEABI_enum_forced_wide
10166};
10167
104d59d1
JM
10168/* Determine whether an object attribute tag takes an integer, a
10169 string or both. */
906e58ca 10170
104d59d1
JM
10171static int
10172elf32_arm_obj_attrs_arg_type (int tag)
10173{
10174 if (tag == Tag_compatibility)
3483fe2e 10175 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 10176 else if (tag == Tag_nodefaults)
3483fe2e
AS
10177 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
10178 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
10179 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 10180 else if (tag < 32)
3483fe2e 10181 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 10182 else
3483fe2e 10183 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
10184}
10185
5aa6ff7c
AS
10186/* The ABI defines that Tag_conformance should be emitted first, and that
10187 Tag_nodefaults should be second (if either is defined). This sets those
10188 two positions, and bumps up the position of all the remaining tags to
10189 compensate. */
10190static int
10191elf32_arm_obj_attrs_order (int num)
10192{
3de4a297 10193 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 10194 return Tag_conformance;
3de4a297 10195 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
10196 return Tag_nodefaults;
10197 if ((num - 2) < Tag_nodefaults)
10198 return num - 2;
10199 if ((num - 1) < Tag_conformance)
10200 return num - 1;
10201 return num;
10202}
10203
e8b36cd1
JM
10204/* Attribute numbers >=64 (mod 128) can be safely ignored. */
10205static bfd_boolean
10206elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
10207{
10208 if ((tag & 127) < 64)
10209 {
10210 _bfd_error_handler
10211 (_("%B: Unknown mandatory EABI object attribute %d"),
10212 abfd, tag);
10213 bfd_set_error (bfd_error_bad_value);
10214 return FALSE;
10215 }
10216 else
10217 {
10218 _bfd_error_handler
10219 (_("Warning: %B: Unknown EABI object attribute %d"),
10220 abfd, tag);
10221 return TRUE;
10222 }
10223}
10224
91e22acd
AS
10225/* Read the architecture from the Tag_also_compatible_with attribute, if any.
10226 Returns -1 if no architecture could be read. */
10227
10228static int
10229get_secondary_compatible_arch (bfd *abfd)
10230{
10231 obj_attribute *attr =
10232 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10233
10234 /* Note: the tag and its argument below are uleb128 values, though
10235 currently-defined values fit in one byte for each. */
10236 if (attr->s
10237 && attr->s[0] == Tag_CPU_arch
10238 && (attr->s[1] & 128) != 128
10239 && attr->s[2] == 0)
10240 return attr->s[1];
10241
10242 /* This tag is "safely ignorable", so don't complain if it looks funny. */
10243 return -1;
10244}
10245
10246/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10247 The tag is removed if ARCH is -1. */
10248
8e79c3df 10249static void
91e22acd 10250set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 10251{
91e22acd
AS
10252 obj_attribute *attr =
10253 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 10254
91e22acd
AS
10255 if (arch == -1)
10256 {
10257 attr->s = NULL;
10258 return;
8e79c3df 10259 }
91e22acd
AS
10260
10261 /* Note: the tag and its argument below are uleb128 values, though
10262 currently-defined values fit in one byte for each. */
10263 if (!attr->s)
21d799b5 10264 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
10265 attr->s[0] = Tag_CPU_arch;
10266 attr->s[1] = arch;
10267 attr->s[2] = '\0';
8e79c3df
CM
10268}
10269
91e22acd
AS
10270/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10271 into account. */
10272
10273static int
10274tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
10275 int newtag, int secondary_compat)
8e79c3df 10276{
91e22acd
AS
10277#define T(X) TAG_CPU_ARCH_##X
10278 int tagl, tagh, result;
10279 const int v6t2[] =
10280 {
10281 T(V6T2), /* PRE_V4. */
10282 T(V6T2), /* V4. */
10283 T(V6T2), /* V4T. */
10284 T(V6T2), /* V5T. */
10285 T(V6T2), /* V5TE. */
10286 T(V6T2), /* V5TEJ. */
10287 T(V6T2), /* V6. */
10288 T(V7), /* V6KZ. */
10289 T(V6T2) /* V6T2. */
10290 };
10291 const int v6k[] =
10292 {
10293 T(V6K), /* PRE_V4. */
10294 T(V6K), /* V4. */
10295 T(V6K), /* V4T. */
10296 T(V6K), /* V5T. */
10297 T(V6K), /* V5TE. */
10298 T(V6K), /* V5TEJ. */
10299 T(V6K), /* V6. */
10300 T(V6KZ), /* V6KZ. */
10301 T(V7), /* V6T2. */
10302 T(V6K) /* V6K. */
10303 };
10304 const int v7[] =
10305 {
10306 T(V7), /* PRE_V4. */
10307 T(V7), /* V4. */
10308 T(V7), /* V4T. */
10309 T(V7), /* V5T. */
10310 T(V7), /* V5TE. */
10311 T(V7), /* V5TEJ. */
10312 T(V7), /* V6. */
10313 T(V7), /* V6KZ. */
10314 T(V7), /* V6T2. */
10315 T(V7), /* V6K. */
10316 T(V7) /* V7. */
10317 };
10318 const int v6_m[] =
10319 {
10320 -1, /* PRE_V4. */
10321 -1, /* V4. */
10322 T(V6K), /* V4T. */
10323 T(V6K), /* V5T. */
10324 T(V6K), /* V5TE. */
10325 T(V6K), /* V5TEJ. */
10326 T(V6K), /* V6. */
10327 T(V6KZ), /* V6KZ. */
10328 T(V7), /* V6T2. */
10329 T(V6K), /* V6K. */
10330 T(V7), /* V7. */
10331 T(V6_M) /* V6_M. */
10332 };
10333 const int v6s_m[] =
10334 {
10335 -1, /* PRE_V4. */
10336 -1, /* V4. */
10337 T(V6K), /* V4T. */
10338 T(V6K), /* V5T. */
10339 T(V6K), /* V5TE. */
10340 T(V6K), /* V5TEJ. */
10341 T(V6K), /* V6. */
10342 T(V6KZ), /* V6KZ. */
10343 T(V7), /* V6T2. */
10344 T(V6K), /* V6K. */
10345 T(V7), /* V7. */
10346 T(V6S_M), /* V6_M. */
10347 T(V6S_M) /* V6S_M. */
10348 };
9e3c6df6
PB
10349 const int v7e_m[] =
10350 {
10351 -1, /* PRE_V4. */
10352 -1, /* V4. */
10353 T(V7E_M), /* V4T. */
10354 T(V7E_M), /* V5T. */
10355 T(V7E_M), /* V5TE. */
10356 T(V7E_M), /* V5TEJ. */
10357 T(V7E_M), /* V6. */
10358 T(V7E_M), /* V6KZ. */
10359 T(V7E_M), /* V6T2. */
10360 T(V7E_M), /* V6K. */
10361 T(V7E_M), /* V7. */
10362 T(V7E_M), /* V6_M. */
10363 T(V7E_M), /* V6S_M. */
10364 T(V7E_M) /* V7E_M. */
10365 };
91e22acd
AS
10366 const int v4t_plus_v6_m[] =
10367 {
10368 -1, /* PRE_V4. */
10369 -1, /* V4. */
10370 T(V4T), /* V4T. */
10371 T(V5T), /* V5T. */
10372 T(V5TE), /* V5TE. */
10373 T(V5TEJ), /* V5TEJ. */
10374 T(V6), /* V6. */
10375 T(V6KZ), /* V6KZ. */
10376 T(V6T2), /* V6T2. */
10377 T(V6K), /* V6K. */
10378 T(V7), /* V7. */
10379 T(V6_M), /* V6_M. */
10380 T(V6S_M), /* V6S_M. */
9e3c6df6 10381 T(V7E_M), /* V7E_M. */
91e22acd
AS
10382 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
10383 };
10384 const int *comb[] =
10385 {
10386 v6t2,
10387 v6k,
10388 v7,
10389 v6_m,
10390 v6s_m,
9e3c6df6 10391 v7e_m,
91e22acd
AS
10392 /* Pseudo-architecture. */
10393 v4t_plus_v6_m
10394 };
10395
10396 /* Check we've not got a higher architecture than we know about. */
10397
9e3c6df6 10398 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 10399 {
3895f852 10400 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
10401 return -1;
10402 }
10403
10404 /* Override old tag if we have a Tag_also_compatible_with on the output. */
10405
10406 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10407 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10408 oldtag = T(V4T_PLUS_V6_M);
10409
10410 /* And override the new tag if we have a Tag_also_compatible_with on the
10411 input. */
10412
10413 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10414 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10415 newtag = T(V4T_PLUS_V6_M);
10416
10417 tagl = (oldtag < newtag) ? oldtag : newtag;
10418 result = tagh = (oldtag > newtag) ? oldtag : newtag;
10419
10420 /* Architectures before V6KZ add features monotonically. */
10421 if (tagh <= TAG_CPU_ARCH_V6KZ)
10422 return result;
10423
10424 result = comb[tagh - T(V6T2)][tagl];
10425
10426 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10427 as the canonical version. */
10428 if (result == T(V4T_PLUS_V6_M))
10429 {
10430 result = T(V4T);
10431 *secondary_compat_out = T(V6_M);
10432 }
10433 else
10434 *secondary_compat_out = -1;
10435
10436 if (result == -1)
10437 {
3895f852 10438 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
10439 ibfd, oldtag, newtag);
10440 return -1;
10441 }
10442
10443 return result;
10444#undef T
8e79c3df
CM
10445}
10446
ee065d83
PB
10447/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
10448 are conflicting attributes. */
906e58ca 10449
ee065d83
PB
10450static bfd_boolean
10451elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
10452{
104d59d1
JM
10453 obj_attribute *in_attr;
10454 obj_attribute *out_attr;
ee065d83
PB
10455 /* Some tags have 0 = don't care, 1 = strong requirement,
10456 2 = weak requirement. */
91e22acd 10457 static const int order_021[3] = {0, 2, 1};
ee065d83 10458 int i;
91e22acd 10459 bfd_boolean result = TRUE;
ee065d83 10460
3e6b1042
DJ
10461 /* Skip the linker stubs file. This preserves previous behavior
10462 of accepting unknown attributes in the first input file - but
10463 is that a bug? */
10464 if (ibfd->flags & BFD_LINKER_CREATED)
10465 return TRUE;
10466
104d59d1 10467 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
10468 {
10469 /* This is the first object. Copy the attributes. */
104d59d1 10470 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 10471
cd21e546
MGD
10472 out_attr = elf_known_obj_attributes_proc (obfd);
10473
004ae526
PB
10474 /* Use the Tag_null value to indicate the attributes have been
10475 initialized. */
cd21e546 10476 out_attr[0].i = 1;
004ae526 10477
cd21e546
MGD
10478 /* We do not output objects with Tag_MPextension_use_legacy - we move
10479 the attribute's value to Tag_MPextension_use. */
10480 if (out_attr[Tag_MPextension_use_legacy].i != 0)
10481 {
10482 if (out_attr[Tag_MPextension_use].i != 0
10483 && out_attr[Tag_MPextension_use_legacy].i
10484 != out_attr[Tag_MPextension_use].i)
10485 {
10486 _bfd_error_handler
10487 (_("Error: %B has both the current and legacy "
10488 "Tag_MPextension_use attributes"), ibfd);
10489 result = FALSE;
10490 }
10491
10492 out_attr[Tag_MPextension_use] =
10493 out_attr[Tag_MPextension_use_legacy];
10494 out_attr[Tag_MPextension_use_legacy].type = 0;
10495 out_attr[Tag_MPextension_use_legacy].i = 0;
10496 }
10497
10498 return result;
ee065d83
PB
10499 }
10500
104d59d1
JM
10501 in_attr = elf_known_obj_attributes_proc (ibfd);
10502 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
10503 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
10504 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
10505 {
8e79c3df 10506 /* Ignore mismatches if the object doesn't use floating point. */
ee065d83
PB
10507 if (out_attr[Tag_ABI_FP_number_model].i == 0)
10508 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
10509 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
10510 {
10511 _bfd_error_handler
3895f852 10512 (_("error: %B uses VFP register arguments, %B does not"),
deddc40b
NS
10513 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
10514 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 10515 result = FALSE;
ee065d83
PB
10516 }
10517 }
10518
3de4a297 10519 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
10520 {
10521 /* Merge this attribute with existing attributes. */
10522 switch (i)
10523 {
10524 case Tag_CPU_raw_name:
10525 case Tag_CPU_name:
91e22acd 10526 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
10527 break;
10528
10529 case Tag_ABI_optimization_goals:
10530 case Tag_ABI_FP_optimization_goals:
10531 /* Use the first value seen. */
10532 break;
10533
10534 case Tag_CPU_arch:
91e22acd
AS
10535 {
10536 int secondary_compat = -1, secondary_compat_out = -1;
10537 unsigned int saved_out_attr = out_attr[i].i;
10538 static const char *name_table[] = {
10539 /* These aren't real CPU names, but we can't guess
10540 that from the architecture version alone. */
10541 "Pre v4",
10542 "ARM v4",
10543 "ARM v4T",
10544 "ARM v5T",
10545 "ARM v5TE",
10546 "ARM v5TEJ",
10547 "ARM v6",
10548 "ARM v6KZ",
10549 "ARM v6T2",
10550 "ARM v6K",
10551 "ARM v7",
10552 "ARM v6-M",
10553 "ARM v6S-M"
10554 };
10555
10556 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
10557 secondary_compat = get_secondary_compatible_arch (ibfd);
10558 secondary_compat_out = get_secondary_compatible_arch (obfd);
10559 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
10560 &secondary_compat_out,
10561 in_attr[i].i,
10562 secondary_compat);
10563 set_secondary_compatible_arch (obfd, secondary_compat_out);
10564
10565 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
10566 if (out_attr[i].i == saved_out_attr)
10567 ; /* Leave the names alone. */
10568 else if (out_attr[i].i == in_attr[i].i)
10569 {
10570 /* The output architecture has been changed to match the
10571 input architecture. Use the input names. */
10572 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
10573 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
10574 : NULL;
10575 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
10576 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
10577 : NULL;
10578 }
10579 else
10580 {
10581 out_attr[Tag_CPU_name].s = NULL;
10582 out_attr[Tag_CPU_raw_name].s = NULL;
10583 }
10584
10585 /* If we still don't have a value for Tag_CPU_name,
10586 make one up now. Tag_CPU_raw_name remains blank. */
10587 if (out_attr[Tag_CPU_name].s == NULL
10588 && out_attr[i].i < ARRAY_SIZE (name_table))
10589 out_attr[Tag_CPU_name].s =
10590 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
10591 }
10592 break;
10593
ee065d83
PB
10594 case Tag_ARM_ISA_use:
10595 case Tag_THUMB_ISA_use:
ee065d83 10596 case Tag_WMMX_arch:
91e22acd
AS
10597 case Tag_Advanced_SIMD_arch:
10598 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 10599 case Tag_ABI_FP_rounding:
ee065d83
PB
10600 case Tag_ABI_FP_exceptions:
10601 case Tag_ABI_FP_user_exceptions:
10602 case Tag_ABI_FP_number_model:
75375b3e 10603 case Tag_FP_HP_extension:
91e22acd
AS
10604 case Tag_CPU_unaligned_access:
10605 case Tag_T2EE_use:
91e22acd 10606 case Tag_MPextension_use:
ee065d83
PB
10607 /* Use the largest value specified. */
10608 if (in_attr[i].i > out_attr[i].i)
10609 out_attr[i].i = in_attr[i].i;
10610 break;
10611
75375b3e 10612 case Tag_ABI_align_preserved:
91e22acd
AS
10613 case Tag_ABI_PCS_RO_data:
10614 /* Use the smallest value specified. */
10615 if (in_attr[i].i < out_attr[i].i)
10616 out_attr[i].i = in_attr[i].i;
10617 break;
10618
75375b3e 10619 case Tag_ABI_align_needed:
91e22acd 10620 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
10621 && (in_attr[Tag_ABI_align_preserved].i == 0
10622 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 10623 {
91e22acd
AS
10624 /* This error message should be enabled once all non-conformant
10625 binaries in the toolchain have had the attributes set
10626 properly.
ee065d83 10627 _bfd_error_handler
3895f852 10628 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
10629 obfd, ibfd);
10630 result = FALSE; */
ee065d83 10631 }
91e22acd
AS
10632 /* Fall through. */
10633 case Tag_ABI_FP_denormal:
10634 case Tag_ABI_PCS_GOT_use:
10635 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
10636 value if greater than 2 (for future-proofing). */
10637 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
10638 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
10639 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
10640 out_attr[i].i = in_attr[i].i;
10641 break;
91e22acd 10642
75375b3e
MGD
10643 case Tag_Virtualization_use:
10644 /* The virtualization tag effectively stores two bits of
10645 information: the intended use of TrustZone (in bit 0), and the
10646 intended use of Virtualization (in bit 1). */
10647 if (out_attr[i].i == 0)
10648 out_attr[i].i = in_attr[i].i;
10649 else if (in_attr[i].i != 0
10650 && in_attr[i].i != out_attr[i].i)
10651 {
10652 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
10653 out_attr[i].i = 3;
10654 else
10655 {
10656 _bfd_error_handler
10657 (_("error: %B: unable to merge virtualization attributes "
10658 "with %B"),
10659 obfd, ibfd);
10660 result = FALSE;
10661 }
10662 }
10663 break;
91e22acd
AS
10664
10665 case Tag_CPU_arch_profile:
10666 if (out_attr[i].i != in_attr[i].i)
10667 {
10668 /* 0 will merge with anything.
10669 'A' and 'S' merge to 'A'.
10670 'R' and 'S' merge to 'R'.
10671 'M' and 'A|R|S' is an error. */
10672 if (out_attr[i].i == 0
10673 || (out_attr[i].i == 'S'
10674 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
10675 out_attr[i].i = in_attr[i].i;
10676 else if (in_attr[i].i == 0
10677 || (in_attr[i].i == 'S'
10678 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
10679 ; /* Do nothing. */
10680 else
10681 {
10682 _bfd_error_handler
3895f852 10683 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
10684 ibfd,
10685 in_attr[i].i ? in_attr[i].i : '0',
10686 out_attr[i].i ? out_attr[i].i : '0');
10687 result = FALSE;
10688 }
10689 }
10690 break;
75375b3e 10691 case Tag_FP_arch:
62f3b8c8 10692 {
4547cb56
NC
10693 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
10694 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
10695 when it's 0. It might mean absence of FP hardware if
10696 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
10697
62f3b8c8
PB
10698 static const struct
10699 {
10700 int ver;
10701 int regs;
10702 } vfp_versions[7] =
10703 {
10704 {0, 0},
10705 {1, 16},
10706 {2, 16},
10707 {3, 32},
10708 {3, 16},
10709 {4, 32},
10710 {4, 16}
10711 };
10712 int ver;
10713 int regs;
10714 int newval;
10715
4547cb56
NC
10716 /* If the output has no requirement about FP hardware,
10717 follow the requirement of the input. */
10718 if (out_attr[i].i == 0)
10719 {
10720 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
10721 out_attr[i].i = in_attr[i].i;
10722 out_attr[Tag_ABI_HardFP_use].i
10723 = in_attr[Tag_ABI_HardFP_use].i;
10724 break;
10725 }
10726 /* If the input has no requirement about FP hardware, do
10727 nothing. */
10728 else if (in_attr[i].i == 0)
10729 {
10730 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
10731 break;
10732 }
10733
10734 /* Both the input and the output have nonzero Tag_FP_arch.
10735 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
10736
10737 /* If both the input and the output have zero Tag_ABI_HardFP_use,
10738 do nothing. */
10739 if (in_attr[Tag_ABI_HardFP_use].i == 0
10740 && out_attr[Tag_ABI_HardFP_use].i == 0)
10741 ;
10742 /* If the input and the output have different Tag_ABI_HardFP_use,
10743 the combination of them is 3 (SP & DP). */
10744 else if (in_attr[Tag_ABI_HardFP_use].i
10745 != out_attr[Tag_ABI_HardFP_use].i)
10746 out_attr[Tag_ABI_HardFP_use].i = 3;
10747
10748 /* Now we can handle Tag_FP_arch. */
10749
62f3b8c8
PB
10750 /* Values greater than 6 aren't defined, so just pick the
10751 biggest */
10752 if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
10753 {
10754 out_attr[i] = in_attr[i];
10755 break;
10756 }
10757 /* The output uses the superset of input features
10758 (ISA version) and registers. */
10759 ver = vfp_versions[in_attr[i].i].ver;
10760 if (ver < vfp_versions[out_attr[i].i].ver)
10761 ver = vfp_versions[out_attr[i].i].ver;
10762 regs = vfp_versions[in_attr[i].i].regs;
10763 if (regs < vfp_versions[out_attr[i].i].regs)
10764 regs = vfp_versions[out_attr[i].i].regs;
10765 /* This assumes all possible supersets are also a valid
10766 options. */
10767 for (newval = 6; newval > 0; newval--)
10768 {
10769 if (regs == vfp_versions[newval].regs
10770 && ver == vfp_versions[newval].ver)
10771 break;
10772 }
10773 out_attr[i].i = newval;
10774 }
b1cc4aeb 10775 break;
ee065d83
PB
10776 case Tag_PCS_config:
10777 if (out_attr[i].i == 0)
10778 out_attr[i].i = in_attr[i].i;
10779 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
10780 {
10781 /* It's sometimes ok to mix different configs, so this is only
10782 a warning. */
10783 _bfd_error_handler
10784 (_("Warning: %B: Conflicting platform configuration"), ibfd);
10785 }
10786 break;
10787 case Tag_ABI_PCS_R9_use:
004ae526
PB
10788 if (in_attr[i].i != out_attr[i].i
10789 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
10790 && in_attr[i].i != AEABI_R9_unused)
10791 {
10792 _bfd_error_handler
3895f852 10793 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 10794 result = FALSE;
ee065d83
PB
10795 }
10796 if (out_attr[i].i == AEABI_R9_unused)
10797 out_attr[i].i = in_attr[i].i;
10798 break;
10799 case Tag_ABI_PCS_RW_data:
10800 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
10801 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
10802 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
10803 {
10804 _bfd_error_handler
3895f852 10805 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 10806 ibfd);
91e22acd 10807 result = FALSE;
ee065d83
PB
10808 }
10809 /* Use the smallest value specified. */
10810 if (in_attr[i].i < out_attr[i].i)
10811 out_attr[i].i = in_attr[i].i;
10812 break;
ee065d83 10813 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
10814 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
10815 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
10816 {
10817 _bfd_error_handler
a9dc9481
JM
10818 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10819 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 10820 }
a9dc9481 10821 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
10822 out_attr[i].i = in_attr[i].i;
10823 break;
ee065d83
PB
10824 case Tag_ABI_enum_size:
10825 if (in_attr[i].i != AEABI_enum_unused)
10826 {
10827 if (out_attr[i].i == AEABI_enum_unused
10828 || out_attr[i].i == AEABI_enum_forced_wide)
10829 {
10830 /* The existing object is compatible with anything.
10831 Use whatever requirements the new object has. */
10832 out_attr[i].i = in_attr[i].i;
10833 }
10834 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 10835 && out_attr[i].i != in_attr[i].i
0ffa91dd 10836 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 10837 {
91e22acd 10838 static const char *aeabi_enum_names[] =
bf21ed78 10839 { "", "variable-size", "32-bit", "" };
91e22acd
AS
10840 const char *in_name =
10841 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10842 ? aeabi_enum_names[in_attr[i].i]
10843 : "<unknown>";
10844 const char *out_name =
10845 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10846 ? aeabi_enum_names[out_attr[i].i]
10847 : "<unknown>";
ee065d83 10848 _bfd_error_handler
bf21ed78 10849 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 10850 ibfd, in_name, out_name);
ee065d83
PB
10851 }
10852 }
10853 break;
10854 case Tag_ABI_VFP_args:
10855 /* Aready done. */
10856 break;
10857 case Tag_ABI_WMMX_args:
10858 if (in_attr[i].i != out_attr[i].i)
10859 {
10860 _bfd_error_handler
3895f852 10861 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 10862 ibfd, obfd);
91e22acd 10863 result = FALSE;
ee065d83
PB
10864 }
10865 break;
7b86a9fa
AS
10866 case Tag_compatibility:
10867 /* Merged in target-independent code. */
10868 break;
91e22acd 10869 case Tag_ABI_HardFP_use:
4547cb56 10870 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
10871 break;
10872 case Tag_ABI_FP_16bit_format:
10873 if (in_attr[i].i != 0 && out_attr[i].i != 0)
10874 {
10875 if (in_attr[i].i != out_attr[i].i)
10876 {
10877 _bfd_error_handler
3895f852 10878 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
10879 ibfd, obfd);
10880 result = FALSE;
10881 }
10882 }
10883 if (in_attr[i].i != 0)
10884 out_attr[i].i = in_attr[i].i;
10885 break;
7b86a9fa 10886
cd21e546
MGD
10887 case Tag_DIV_use:
10888 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
10889 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10890 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10891 CPU. We will merge as follows: If the input attribute's value
10892 is one then the output attribute's value remains unchanged. If
10893 the input attribute's value is zero or two then if the output
10894 attribute's value is one the output value is set to the input
10895 value, otherwise the output value must be the same as the
10896 inputs. */
10897 if (in_attr[i].i != 1 && out_attr[i].i != 1)
10898 {
10899 if (in_attr[i].i != out_attr[i].i)
10900 {
10901 _bfd_error_handler
10902 (_("DIV usage mismatch between %B and %B"),
10903 ibfd, obfd);
10904 result = FALSE;
10905 }
10906 }
10907
10908 if (in_attr[i].i != 1)
10909 out_attr[i].i = in_attr[i].i;
10910
10911 break;
10912
10913 case Tag_MPextension_use_legacy:
10914 /* We don't output objects with Tag_MPextension_use_legacy - we
10915 move the value to Tag_MPextension_use. */
10916 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
10917 {
10918 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
10919 {
10920 _bfd_error_handler
10921 (_("%B has has both the current and legacy "
10922 "Tag_MPextension_use attributes"),
10923 ibfd);
10924 result = FALSE;
10925 }
10926 }
10927
10928 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
10929 out_attr[Tag_MPextension_use] = in_attr[i];
10930
10931 break;
10932
91e22acd 10933 case Tag_nodefaults:
2d0bb761
AS
10934 /* This tag is set if it exists, but the value is unused (and is
10935 typically zero). We don't actually need to do anything here -
10936 the merge happens automatically when the type flags are merged
10937 below. */
91e22acd
AS
10938 break;
10939 case Tag_also_compatible_with:
10940 /* Already done in Tag_CPU_arch. */
10941 break;
10942 case Tag_conformance:
10943 /* Keep the attribute if it matches. Throw it away otherwise.
10944 No attribute means no claim to conform. */
10945 if (!in_attr[i].s || !out_attr[i].s
10946 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10947 out_attr[i].s = NULL;
10948 break;
3cfad14c 10949
91e22acd 10950 default:
e8b36cd1
JM
10951 result
10952 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
10953 }
10954
10955 /* If out_attr was copied from in_attr then it won't have a type yet. */
10956 if (in_attr[i].type && !out_attr[i].type)
10957 out_attr[i].type = in_attr[i].type;
ee065d83
PB
10958 }
10959
104d59d1 10960 /* Merge Tag_compatibility attributes and any common GNU ones. */
5488d830
MGD
10961 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
10962 return FALSE;
ee065d83 10963
104d59d1 10964 /* Check for any attributes not known on ARM. */
e8b36cd1 10965 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 10966
91e22acd 10967 return result;
252b5132
RH
10968}
10969
3a4a14e9
PB
10970
10971/* Return TRUE if the two EABI versions are incompatible. */
10972
10973static bfd_boolean
10974elf32_arm_versions_compatible (unsigned iver, unsigned over)
10975{
10976 /* v4 and v5 are the same spec before and after it was released,
10977 so allow mixing them. */
10978 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10979 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10980 return TRUE;
10981
10982 return (iver == over);
10983}
10984
252b5132
RH
10985/* Merge backend specific data from an object file to the output
10986 object file when linking. */
9b485d32 10987
b34976b6 10988static bfd_boolean
21d799b5 10989elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
252b5132 10990
9b485d32
NC
10991/* Display the flags field. */
10992
b34976b6 10993static bfd_boolean
57e8b36a 10994elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 10995{
fc830a83
NC
10996 FILE * file = (FILE *) ptr;
10997 unsigned long flags;
252b5132
RH
10998
10999 BFD_ASSERT (abfd != NULL && ptr != NULL);
11000
11001 /* Print normal ELF private data. */
11002 _bfd_elf_print_private_bfd_data (abfd, ptr);
11003
fc830a83 11004 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
11005 /* Ignore init flag - it may not be set, despite the flags field
11006 containing valid data. */
252b5132
RH
11007
11008 /* xgettext:c-format */
9b485d32 11009 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 11010
fc830a83
NC
11011 switch (EF_ARM_EABI_VERSION (flags))
11012 {
11013 case EF_ARM_EABI_UNKNOWN:
4cc11e76 11014 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
11015 official ARM ELF extended ABI. Hence they are only decoded if
11016 the EABI version is not set. */
fd2ec330 11017 if (flags & EF_ARM_INTERWORK)
9b485d32 11018 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 11019
fd2ec330 11020 if (flags & EF_ARM_APCS_26)
6c571f00 11021 fprintf (file, " [APCS-26]");
fc830a83 11022 else
6c571f00 11023 fprintf (file, " [APCS-32]");
9a5aca8c 11024
96a846ea
RE
11025 if (flags & EF_ARM_VFP_FLOAT)
11026 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
11027 else if (flags & EF_ARM_MAVERICK_FLOAT)
11028 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
11029 else
11030 fprintf (file, _(" [FPA float format]"));
11031
fd2ec330 11032 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 11033 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 11034
fd2ec330 11035 if (flags & EF_ARM_PIC)
9b485d32 11036 fprintf (file, _(" [position independent]"));
fc830a83 11037
fd2ec330 11038 if (flags & EF_ARM_NEW_ABI)
9b485d32 11039 fprintf (file, _(" [new ABI]"));
9a5aca8c 11040
fd2ec330 11041 if (flags & EF_ARM_OLD_ABI)
9b485d32 11042 fprintf (file, _(" [old ABI]"));
9a5aca8c 11043
fd2ec330 11044 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 11045 fprintf (file, _(" [software FP]"));
9a5aca8c 11046
96a846ea
RE
11047 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
11048 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
11049 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
11050 | EF_ARM_MAVERICK_FLOAT);
fc830a83 11051 break;
9a5aca8c 11052
fc830a83 11053 case EF_ARM_EABI_VER1:
9b485d32 11054 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 11055
fc830a83 11056 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 11057 fprintf (file, _(" [sorted symbol table]"));
fc830a83 11058 else
9b485d32 11059 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 11060
fc830a83
NC
11061 flags &= ~ EF_ARM_SYMSARESORTED;
11062 break;
9a5aca8c 11063
fd2ec330
PB
11064 case EF_ARM_EABI_VER2:
11065 fprintf (file, _(" [Version2 EABI]"));
11066
11067 if (flags & EF_ARM_SYMSARESORTED)
11068 fprintf (file, _(" [sorted symbol table]"));
11069 else
11070 fprintf (file, _(" [unsorted symbol table]"));
11071
11072 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
11073 fprintf (file, _(" [dynamic symbols use segment index]"));
11074
11075 if (flags & EF_ARM_MAPSYMSFIRST)
11076 fprintf (file, _(" [mapping symbols precede others]"));
11077
99e4ae17 11078 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
11079 | EF_ARM_MAPSYMSFIRST);
11080 break;
11081
d507cf36
PB
11082 case EF_ARM_EABI_VER3:
11083 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
11084 break;
11085
11086 case EF_ARM_EABI_VER4:
11087 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 11088 goto eabi;
d507cf36 11089
3a4a14e9
PB
11090 case EF_ARM_EABI_VER5:
11091 fprintf (file, _(" [Version5 EABI]"));
11092 eabi:
d507cf36
PB
11093 if (flags & EF_ARM_BE8)
11094 fprintf (file, _(" [BE8]"));
11095
11096 if (flags & EF_ARM_LE8)
11097 fprintf (file, _(" [LE8]"));
11098
11099 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
11100 break;
11101
fc830a83 11102 default:
9b485d32 11103 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
11104 break;
11105 }
252b5132 11106
fc830a83 11107 flags &= ~ EF_ARM_EABIMASK;
252b5132 11108
fc830a83 11109 if (flags & EF_ARM_RELEXEC)
9b485d32 11110 fprintf (file, _(" [relocatable executable]"));
252b5132 11111
fc830a83 11112 if (flags & EF_ARM_HASENTRY)
9b485d32 11113 fprintf (file, _(" [has entry point]"));
252b5132 11114
fc830a83
NC
11115 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
11116
11117 if (flags)
9b485d32 11118 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 11119
252b5132
RH
11120 fputc ('\n', file);
11121
b34976b6 11122 return TRUE;
252b5132
RH
11123}
11124
11125static int
57e8b36a 11126elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 11127{
2f0ca46a
NC
11128 switch (ELF_ST_TYPE (elf_sym->st_info))
11129 {
11130 case STT_ARM_TFUNC:
11131 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 11132
2f0ca46a
NC
11133 case STT_ARM_16BIT:
11134 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11135 This allows us to distinguish between data used by Thumb instructions
11136 and non-data (which is probably code) inside Thumb regions of an
11137 executable. */
1a0eb693 11138 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
11139 return ELF_ST_TYPE (elf_sym->st_info);
11140 break;
9a5aca8c 11141
ce855c42
NC
11142 default:
11143 break;
2f0ca46a
NC
11144 }
11145
11146 return type;
252b5132 11147}
f21f3fe0 11148
252b5132 11149static asection *
07adf181
AM
11150elf32_arm_gc_mark_hook (asection *sec,
11151 struct bfd_link_info *info,
11152 Elf_Internal_Rela *rel,
11153 struct elf_link_hash_entry *h,
11154 Elf_Internal_Sym *sym)
252b5132
RH
11155{
11156 if (h != NULL)
07adf181 11157 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
11158 {
11159 case R_ARM_GNU_VTINHERIT:
11160 case R_ARM_GNU_VTENTRY:
07adf181
AM
11161 return NULL;
11162 }
9ad5cbcf 11163
07adf181 11164 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
11165}
11166
780a67af
NC
11167/* Update the got entry reference counts for the section being removed. */
11168
b34976b6 11169static bfd_boolean
ba93b8ac
DJ
11170elf32_arm_gc_sweep_hook (bfd * abfd,
11171 struct bfd_link_info * info,
11172 asection * sec,
11173 const Elf_Internal_Rela * relocs)
252b5132 11174{
5e681ec4
PB
11175 Elf_Internal_Shdr *symtab_hdr;
11176 struct elf_link_hash_entry **sym_hashes;
11177 bfd_signed_vma *local_got_refcounts;
11178 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
11179 struct elf32_arm_link_hash_table * globals;
11180
7dda2462
TG
11181 if (info->relocatable)
11182 return TRUE;
11183
eb043451 11184 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
11185 if (globals == NULL)
11186 return FALSE;
5e681ec4
PB
11187
11188 elf_section_data (sec)->local_dynrel = NULL;
11189
0ffa91dd 11190 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
11191 sym_hashes = elf_sym_hashes (abfd);
11192 local_got_refcounts = elf_local_got_refcounts (abfd);
11193
906e58ca 11194 check_use_blx (globals);
bd97cb95 11195
5e681ec4
PB
11196 relend = relocs + sec->reloc_count;
11197 for (rel = relocs; rel < relend; rel++)
eb043451 11198 {
3eb128b2
AM
11199 unsigned long r_symndx;
11200 struct elf_link_hash_entry *h = NULL;
eb043451 11201 int r_type;
5e681ec4 11202
3eb128b2
AM
11203 r_symndx = ELF32_R_SYM (rel->r_info);
11204 if (r_symndx >= symtab_hdr->sh_info)
11205 {
11206 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
11207 while (h->root.type == bfd_link_hash_indirect
11208 || h->root.type == bfd_link_hash_warning)
11209 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11210 }
11211
eb043451 11212 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 11213 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
11214 switch (r_type)
11215 {
11216 case R_ARM_GOT32:
eb043451 11217 case R_ARM_GOT_PREL:
ba93b8ac
DJ
11218 case R_ARM_TLS_GD32:
11219 case R_ARM_TLS_IE32:
3eb128b2 11220 if (h != NULL)
eb043451 11221 {
eb043451
PB
11222 if (h->got.refcount > 0)
11223 h->got.refcount -= 1;
11224 }
11225 else if (local_got_refcounts != NULL)
11226 {
11227 if (local_got_refcounts[r_symndx] > 0)
11228 local_got_refcounts[r_symndx] -= 1;
11229 }
11230 break;
11231
ba93b8ac 11232 case R_ARM_TLS_LDM32:
4dfe6ac6 11233 globals->tls_ldm_got.refcount -= 1;
ba93b8ac
DJ
11234 break;
11235
eb043451 11236 case R_ARM_ABS32:
bb224fc3 11237 case R_ARM_ABS32_NOI:
eb043451 11238 case R_ARM_REL32:
bb224fc3 11239 case R_ARM_REL32_NOI:
eb043451
PB
11240 case R_ARM_PC24:
11241 case R_ARM_PLT32:
5b5bb741
PB
11242 case R_ARM_CALL:
11243 case R_ARM_JUMP24:
eb043451 11244 case R_ARM_PREL31:
c19d1205 11245 case R_ARM_THM_CALL:
bd97cb95
DJ
11246 case R_ARM_THM_JUMP24:
11247 case R_ARM_THM_JUMP19:
b6895b4f
PB
11248 case R_ARM_MOVW_ABS_NC:
11249 case R_ARM_MOVT_ABS:
11250 case R_ARM_MOVW_PREL_NC:
11251 case R_ARM_MOVT_PREL:
11252 case R_ARM_THM_MOVW_ABS_NC:
11253 case R_ARM_THM_MOVT_ABS:
11254 case R_ARM_THM_MOVW_PREL_NC:
11255 case R_ARM_THM_MOVT_PREL:
b7693d02
DJ
11256 /* Should the interworking branches be here also? */
11257
3eb128b2 11258 if (h != NULL)
eb043451
PB
11259 {
11260 struct elf32_arm_link_hash_entry *eh;
0bdcacaf
RS
11261 struct elf_dyn_relocs **pp;
11262 struct elf_dyn_relocs *p;
5e681ec4 11263
b7693d02 11264 eh = (struct elf32_arm_link_hash_entry *) h;
5e681ec4 11265
eb043451 11266 if (h->plt.refcount > 0)
b7693d02
DJ
11267 {
11268 h->plt.refcount -= 1;
bd97cb95
DJ
11269 if (r_type == R_ARM_THM_CALL)
11270 eh->plt_maybe_thumb_refcount--;
11271
11272 if (r_type == R_ARM_THM_JUMP24
11273 || r_type == R_ARM_THM_JUMP19)
b7693d02
DJ
11274 eh->plt_thumb_refcount--;
11275 }
5e681ec4 11276
eb043451 11277 if (r_type == R_ARM_ABS32
bb224fc3
MS
11278 || r_type == R_ARM_REL32
11279 || r_type == R_ARM_ABS32_NOI
11280 || r_type == R_ARM_REL32_NOI)
0bdcacaf
RS
11281 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
11282 if (p->sec == sec)
eb043451
PB
11283 {
11284 p->count -= 1;
bb224fc3 11285 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
0bdcacaf 11286 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
ba93b8ac 11287 p->pc_count -= 1;
eb043451
PB
11288 if (p->count == 0)
11289 *pp = p->next;
11290 break;
11291 }
eb043451
PB
11292 }
11293 break;
5e681ec4 11294
eb043451
PB
11295 default:
11296 break;
11297 }
11298 }
5e681ec4 11299
b34976b6 11300 return TRUE;
252b5132
RH
11301}
11302
780a67af
NC
11303/* Look through the relocs for a section during the first phase. */
11304
b34976b6 11305static bfd_boolean
57e8b36a
NC
11306elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
11307 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 11308{
b34976b6
AM
11309 Elf_Internal_Shdr *symtab_hdr;
11310 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
11311 const Elf_Internal_Rela *rel;
11312 const Elf_Internal_Rela *rel_end;
11313 bfd *dynobj;
5e681ec4 11314 asection *sreloc;
5e681ec4 11315 struct elf32_arm_link_hash_table *htab;
39623e12 11316 bfd_boolean needs_plt;
ce98a316 11317 unsigned long nsyms;
9a5aca8c 11318
1049f94e 11319 if (info->relocatable)
b34976b6 11320 return TRUE;
9a5aca8c 11321
0ffa91dd
NC
11322 BFD_ASSERT (is_arm_elf (abfd));
11323
5e681ec4 11324 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
11325 if (htab == NULL)
11326 return FALSE;
11327
5e681ec4 11328 sreloc = NULL;
9a5aca8c 11329
67687978
PB
11330 /* Create dynamic sections for relocatable executables so that we can
11331 copy relocations. */
11332 if (htab->root.is_relocatable_executable
11333 && ! htab->root.dynamic_sections_created)
11334 {
11335 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
11336 return FALSE;
11337 }
11338
252b5132 11339 dynobj = elf_hash_table (info)->dynobj;
0ffa91dd 11340 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 11341 sym_hashes = elf_sym_hashes (abfd);
ce98a316
NC
11342 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
11343
252b5132
RH
11344 rel_end = relocs + sec->reloc_count;
11345 for (rel = relocs; rel < rel_end; rel++)
11346 {
11347 struct elf_link_hash_entry *h;
b7693d02 11348 struct elf32_arm_link_hash_entry *eh;
252b5132 11349 unsigned long r_symndx;
eb043451 11350 int r_type;
9a5aca8c 11351
252b5132 11352 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 11353 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 11354 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 11355
ce98a316
NC
11356 if (r_symndx >= nsyms
11357 /* PR 9934: It is possible to have relocations that do not
11358 refer to symbols, thus it is also possible to have an
11359 object file containing relocations but no symbol table. */
cf35638d 11360 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac
DJ
11361 {
11362 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
ce98a316 11363 r_symndx);
ba93b8ac
DJ
11364 return FALSE;
11365 }
11366
ce98a316 11367 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
252b5132
RH
11368 h = NULL;
11369 else
973a3492
L
11370 {
11371 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
11372 while (h->root.type == bfd_link_hash_indirect
11373 || h->root.type == bfd_link_hash_warning)
11374 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11375 }
9a5aca8c 11376
b7693d02
DJ
11377 eh = (struct elf32_arm_link_hash_entry *) h;
11378
0855e32b
NS
11379 /* Could be done earlier, if h were already available. */
11380 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 11381 switch (r_type)
252b5132 11382 {
5e681ec4 11383 case R_ARM_GOT32:
eb043451 11384 case R_ARM_GOT_PREL:
ba93b8ac
DJ
11385 case R_ARM_TLS_GD32:
11386 case R_ARM_TLS_IE32:
0855e32b
NS
11387 case R_ARM_TLS_GOTDESC:
11388 case R_ARM_TLS_DESCSEQ:
11389 case R_ARM_THM_TLS_DESCSEQ:
11390 case R_ARM_TLS_CALL:
11391 case R_ARM_THM_TLS_CALL:
5e681ec4 11392 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
11393 {
11394 int tls_type, old_tls_type;
5e681ec4 11395
ba93b8ac
DJ
11396 switch (r_type)
11397 {
11398 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
0855e32b 11399
ba93b8ac 11400 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
0855e32b
NS
11401
11402 case R_ARM_TLS_GOTDESC:
11403 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
11404 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
11405 tls_type = GOT_TLS_GDESC; break;
11406
ba93b8ac
DJ
11407 default: tls_type = GOT_NORMAL; break;
11408 }
252b5132 11409
ba93b8ac
DJ
11410 if (h != NULL)
11411 {
11412 h->got.refcount++;
11413 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
11414 }
11415 else
11416 {
11417 bfd_signed_vma *local_got_refcounts;
11418
11419 /* This is a global offset table entry for a local symbol. */
11420 local_got_refcounts = elf_local_got_refcounts (abfd);
11421 if (local_got_refcounts == NULL)
11422 {
11423 bfd_size_type size;
906e58ca 11424
ba93b8ac 11425 size = symtab_hdr->sh_info;
0855e32b
NS
11426 size *= (sizeof (bfd_signed_vma)
11427 + sizeof (bfd_vma) + sizeof (char));
21d799b5
NC
11428 local_got_refcounts = (bfd_signed_vma *)
11429 bfd_zalloc (abfd, size);
ba93b8ac
DJ
11430 if (local_got_refcounts == NULL)
11431 return FALSE;
11432 elf_local_got_refcounts (abfd) = local_got_refcounts;
0855e32b
NS
11433 elf32_arm_local_tlsdesc_gotent (abfd)
11434 = (bfd_vma *) (local_got_refcounts
11435 + symtab_hdr->sh_info);
ba93b8ac 11436 elf32_arm_local_got_tls_type (abfd)
0855e32b
NS
11437 = (char *) (elf32_arm_local_tlsdesc_gotent (abfd)
11438 + symtab_hdr->sh_info);
ba93b8ac
DJ
11439 }
11440 local_got_refcounts[r_symndx] += 1;
11441 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
11442 }
11443
0855e32b
NS
11444 /* If a variable is accessed with both tls methods, two
11445 slots may be created. */
11446 if (GOT_TLS_GD_ANY_P (old_tls_type)
11447 && GOT_TLS_GD_ANY_P (tls_type))
11448 tls_type |= old_tls_type;
11449
11450 /* We will already have issued an error message if there
11451 is a TLS/non-TLS mismatch, based on the symbol
11452 type. So just combine any TLS types needed. */
ba93b8ac
DJ
11453 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
11454 && tls_type != GOT_NORMAL)
11455 tls_type |= old_tls_type;
11456
0855e32b
NS
11457 /* If the symbol is accessed in both IE and GDESC
11458 method, we're able to relax. Turn off the GDESC flag,
11459 without messing up with any other kind of tls types
11460 that may be involved */
11461 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
11462 tls_type &= ~GOT_TLS_GDESC;
11463
ba93b8ac
DJ
11464 if (old_tls_type != tls_type)
11465 {
11466 if (h != NULL)
11467 elf32_arm_hash_entry (h)->tls_type = tls_type;
11468 else
11469 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
11470 }
11471 }
8029a119 11472 /* Fall through. */
ba93b8ac
DJ
11473
11474 case R_ARM_TLS_LDM32:
11475 if (r_type == R_ARM_TLS_LDM32)
11476 htab->tls_ldm_got.refcount++;
8029a119 11477 /* Fall through. */
252b5132 11478
c19d1205 11479 case R_ARM_GOTOFF32:
5e681ec4 11480 case R_ARM_GOTPC:
362d30a1 11481 if (htab->root.sgot == NULL)
5e681ec4
PB
11482 {
11483 if (htab->root.dynobj == NULL)
11484 htab->root.dynobj = abfd;
11485 if (!create_got_section (htab->root.dynobj, info))
11486 return FALSE;
11487 }
252b5132
RH
11488 break;
11489
00a97672
RS
11490 case R_ARM_ABS12:
11491 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
11492 ldr __GOTT_INDEX__ offsets. */
11493 if (!htab->vxworks_p)
11494 break;
8029a119 11495 /* Fall through. */
00a97672 11496
252b5132 11497 case R_ARM_PC24:
7359ea65 11498 case R_ARM_PLT32:
5b5bb741
PB
11499 case R_ARM_CALL:
11500 case R_ARM_JUMP24:
eb043451 11501 case R_ARM_PREL31:
c19d1205 11502 case R_ARM_THM_CALL:
bd97cb95
DJ
11503 case R_ARM_THM_JUMP24:
11504 case R_ARM_THM_JUMP19:
39623e12
PB
11505 needs_plt = 1;
11506 goto normal_reloc;
11507
96c23d59
JM
11508 case R_ARM_MOVW_ABS_NC:
11509 case R_ARM_MOVT_ABS:
11510 case R_ARM_THM_MOVW_ABS_NC:
11511 case R_ARM_THM_MOVT_ABS:
11512 if (info->shared)
11513 {
11514 (*_bfd_error_handler)
11515 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
11516 abfd, elf32_arm_howto_table_1[r_type].name,
11517 (h) ? h->root.root.string : "a local symbol");
11518 bfd_set_error (bfd_error_bad_value);
11519 return FALSE;
11520 }
11521
11522 /* Fall through. */
39623e12
PB
11523 case R_ARM_ABS32:
11524 case R_ARM_ABS32_NOI:
11525 case R_ARM_REL32:
11526 case R_ARM_REL32_NOI:
b6895b4f
PB
11527 case R_ARM_MOVW_PREL_NC:
11528 case R_ARM_MOVT_PREL:
b6895b4f
PB
11529 case R_ARM_THM_MOVW_PREL_NC:
11530 case R_ARM_THM_MOVT_PREL:
39623e12
PB
11531 needs_plt = 0;
11532 normal_reloc:
11533
b7693d02 11534 /* Should the interworking branches be listed here? */
7359ea65 11535 if (h != NULL)
5e681ec4
PB
11536 {
11537 /* If this reloc is in a read-only section, we might
11538 need a copy reloc. We can't check reliably at this
11539 stage whether the section is read-only, as input
11540 sections have not yet been mapped to output sections.
11541 Tentatively set the flag for now, and correct in
11542 adjust_dynamic_symbol. */
7359ea65 11543 if (!info->shared)
f5385ebf 11544 h->non_got_ref = 1;
7359ea65 11545
5e681ec4 11546 /* We may need a .plt entry if the function this reloc
c84cd8ee
DJ
11547 refers to is in a different object. We can't tell for
11548 sure yet, because something later might force the
11549 symbol local. */
39623e12 11550 if (needs_plt)
f5385ebf 11551 h->needs_plt = 1;
4f199be3
DJ
11552
11553 /* If we create a PLT entry, this relocation will reference
11554 it, even if it's an ABS32 relocation. */
11555 h->plt.refcount += 1;
b7693d02 11556
bd97cb95
DJ
11557 /* It's too early to use htab->use_blx here, so we have to
11558 record possible blx references separately from
11559 relocs that definitely need a thumb stub. */
11560
c19d1205 11561 if (r_type == R_ARM_THM_CALL)
bd97cb95
DJ
11562 eh->plt_maybe_thumb_refcount += 1;
11563
11564 if (r_type == R_ARM_THM_JUMP24
11565 || r_type == R_ARM_THM_JUMP19)
b7693d02 11566 eh->plt_thumb_refcount += 1;
5e681ec4
PB
11567 }
11568
67687978
PB
11569 /* If we are creating a shared library or relocatable executable,
11570 and this is a reloc against a global symbol, or a non PC
11571 relative reloc against a local symbol, then we need to copy
11572 the reloc into the shared library. However, if we are linking
11573 with -Bsymbolic, we do not need to copy a reloc against a
252b5132
RH
11574 global symbol which is defined in an object we are
11575 including in the link (i.e., DEF_REGULAR is set). At
11576 this point we have not seen all the input files, so it is
11577 possible that DEF_REGULAR is not set now but will be set
11578 later (it is never cleared). We account for that
11579 possibility below by storing information in the
0bdcacaf 11580 dyn_relocs field of the hash table entry. */
67687978 11581 if ((info->shared || htab->root.is_relocatable_executable)
5e681ec4 11582 && (sec->flags & SEC_ALLOC) != 0
bb224fc3 11583 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
71a976dd
DJ
11584 || (h != NULL && ! h->needs_plt
11585 && (! info->symbolic || ! h->def_regular))))
252b5132 11586 {
0bdcacaf 11587 struct elf_dyn_relocs *p, **head;
5e681ec4 11588
252b5132
RH
11589 /* When creating a shared object, we must copy these
11590 reloc types into the output file. We create a reloc
11591 section in dynobj and make room for this reloc. */
83bac4b0 11592 if (sreloc == NULL)
252b5132 11593 {
83bac4b0
NC
11594 sreloc = _bfd_elf_make_dynamic_reloc_section
11595 (sec, dynobj, 2, abfd, ! htab->use_rel);
252b5132 11596
83bac4b0 11597 if (sreloc == NULL)
b34976b6 11598 return FALSE;
252b5132 11599
83bac4b0 11600 /* BPABI objects never have dynamic relocations mapped. */
a89e6478 11601 if (htab->symbian_p)
252b5132 11602 {
83bac4b0 11603 flagword flags;
5e681ec4 11604
83bac4b0 11605 flags = bfd_get_section_flags (dynobj, sreloc);
a89e6478 11606 flags &= ~(SEC_LOAD | SEC_ALLOC);
83bac4b0
NC
11607 bfd_set_section_flags (dynobj, sreloc, flags);
11608 }
252b5132
RH
11609 }
11610
5e681ec4
PB
11611 /* If this is a global symbol, we count the number of
11612 relocations we need for this symbol. */
11613 if (h != NULL)
252b5132 11614 {
0bdcacaf 11615 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
5e681ec4
PB
11616 }
11617 else
11618 {
11619 /* Track dynamic relocs needed for local syms too.
11620 We really need local syms available to do this
11621 easily. Oh well. */
5e681ec4 11622 asection *s;
6edfbbad 11623 void *vpp;
87d72d41 11624 Elf_Internal_Sym *isym;
6edfbbad 11625
87d72d41
AM
11626 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
11627 abfd, r_symndx);
11628 if (isym == NULL)
5e681ec4 11629 return FALSE;
57e8b36a 11630
87d72d41
AM
11631 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
11632 if (s == NULL)
11633 s = sec;
11634
6edfbbad 11635 vpp = &elf_section_data (s)->local_dynrel;
0bdcacaf 11636 head = (struct elf_dyn_relocs **) vpp;
5e681ec4 11637 }
57e8b36a 11638
5e681ec4 11639 p = *head;
0bdcacaf 11640 if (p == NULL || p->sec != sec)
5e681ec4
PB
11641 {
11642 bfd_size_type amt = sizeof *p;
57e8b36a 11643
0bdcacaf 11644 p = (struct elf_dyn_relocs *)
21d799b5 11645 bfd_alloc (htab->root.dynobj, amt);
252b5132 11646 if (p == NULL)
5e681ec4
PB
11647 return FALSE;
11648 p->next = *head;
11649 *head = p;
0bdcacaf 11650 p->sec = sec;
5e681ec4 11651 p->count = 0;
ba93b8ac 11652 p->pc_count = 0;
252b5132 11653 }
57e8b36a 11654
bb224fc3 11655 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
ba93b8ac 11656 p->pc_count += 1;
71a976dd 11657 p->count += 1;
252b5132
RH
11658 }
11659 break;
11660
11661 /* This relocation describes the C++ object vtable hierarchy.
11662 Reconstruct it for later use during GC. */
11663 case R_ARM_GNU_VTINHERIT:
c152c796 11664 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 11665 return FALSE;
252b5132 11666 break;
9a5aca8c 11667
252b5132
RH
11668 /* This relocation describes which C++ vtable entries are actually
11669 used. Record for later use during GC. */
11670 case R_ARM_GNU_VTENTRY:
d17e0c6e
JB
11671 BFD_ASSERT (h != NULL);
11672 if (h != NULL
11673 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 11674 return FALSE;
252b5132
RH
11675 break;
11676 }
11677 }
f21f3fe0 11678
b34976b6 11679 return TRUE;
252b5132
RH
11680}
11681
6a5bb875
PB
11682/* Unwinding tables are not referenced directly. This pass marks them as
11683 required if the corresponding code section is marked. */
11684
11685static bfd_boolean
906e58ca
NC
11686elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
11687 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
11688{
11689 bfd *sub;
11690 Elf_Internal_Shdr **elf_shdrp;
11691 bfd_boolean again;
11692
11693 /* Marking EH data may cause additional code sections to be marked,
11694 requiring multiple passes. */
11695 again = TRUE;
11696 while (again)
11697 {
11698 again = FALSE;
11699 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11700 {
11701 asection *o;
11702
0ffa91dd 11703 if (! is_arm_elf (sub))
6a5bb875
PB
11704 continue;
11705
11706 elf_shdrp = elf_elfsections (sub);
11707 for (o = sub->sections; o != NULL; o = o->next)
11708 {
11709 Elf_Internal_Shdr *hdr;
0ffa91dd 11710
6a5bb875 11711 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
11712 if (hdr->sh_type == SHT_ARM_EXIDX
11713 && hdr->sh_link
11714 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
11715 && !o->gc_mark
11716 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
11717 {
11718 again = TRUE;
11719 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11720 return FALSE;
11721 }
11722 }
11723 }
11724 }
11725
11726 return TRUE;
11727}
11728
3c9458e9
NC
11729/* Treat mapping symbols as special target symbols. */
11730
11731static bfd_boolean
11732elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
11733{
b0796911
PB
11734 return bfd_is_arm_special_symbol_name (sym->name,
11735 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
11736}
11737
0367ecfb
NC
11738/* This is a copy of elf_find_function() from elf.c except that
11739 ARM mapping symbols are ignored when looking for function names
11740 and STT_ARM_TFUNC is considered to a function type. */
252b5132 11741
0367ecfb
NC
11742static bfd_boolean
11743arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
11744 asection * section,
11745 asymbol ** symbols,
11746 bfd_vma offset,
11747 const char ** filename_ptr,
11748 const char ** functionname_ptr)
11749{
11750 const char * filename = NULL;
11751 asymbol * func = NULL;
11752 bfd_vma low_func = 0;
11753 asymbol ** p;
252b5132
RH
11754
11755 for (p = symbols; *p != NULL; p++)
11756 {
11757 elf_symbol_type *q;
11758
11759 q = (elf_symbol_type *) *p;
11760
252b5132
RH
11761 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
11762 {
11763 default:
11764 break;
11765 case STT_FILE:
11766 filename = bfd_asymbol_name (&q->symbol);
11767 break;
252b5132
RH
11768 case STT_FUNC:
11769 case STT_ARM_TFUNC:
9d2da7ca 11770 case STT_NOTYPE:
b0796911 11771 /* Skip mapping symbols. */
0367ecfb 11772 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
11773 && bfd_is_arm_special_symbol_name (q->symbol.name,
11774 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
11775 continue;
11776 /* Fall through. */
6b40fcba 11777 if (bfd_get_section (&q->symbol) == section
252b5132
RH
11778 && q->symbol.value >= low_func
11779 && q->symbol.value <= offset)
11780 {
11781 func = (asymbol *) q;
11782 low_func = q->symbol.value;
11783 }
11784 break;
11785 }
11786 }
11787
11788 if (func == NULL)
b34976b6 11789 return FALSE;
252b5132 11790
0367ecfb
NC
11791 if (filename_ptr)
11792 *filename_ptr = filename;
11793 if (functionname_ptr)
11794 *functionname_ptr = bfd_asymbol_name (func);
11795
11796 return TRUE;
906e58ca 11797}
0367ecfb
NC
11798
11799
11800/* Find the nearest line to a particular section and offset, for error
11801 reporting. This code is a duplicate of the code in elf.c, except
11802 that it uses arm_elf_find_function. */
11803
11804static bfd_boolean
11805elf32_arm_find_nearest_line (bfd * abfd,
11806 asection * section,
11807 asymbol ** symbols,
11808 bfd_vma offset,
11809 const char ** filename_ptr,
11810 const char ** functionname_ptr,
11811 unsigned int * line_ptr)
11812{
11813 bfd_boolean found = FALSE;
11814
11815 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11816
11817 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11818 filename_ptr, functionname_ptr,
11819 line_ptr, 0,
11820 & elf_tdata (abfd)->dwarf2_find_line_info))
11821 {
11822 if (!*functionname_ptr)
11823 arm_elf_find_function (abfd, section, symbols, offset,
11824 *filename_ptr ? NULL : filename_ptr,
11825 functionname_ptr);
f21f3fe0 11826
0367ecfb
NC
11827 return TRUE;
11828 }
11829
11830 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11831 & found, filename_ptr,
11832 functionname_ptr, line_ptr,
11833 & elf_tdata (abfd)->line_info))
11834 return FALSE;
11835
11836 if (found && (*functionname_ptr || *line_ptr))
11837 return TRUE;
11838
11839 if (symbols == NULL)
11840 return FALSE;
11841
11842 if (! arm_elf_find_function (abfd, section, symbols, offset,
11843 filename_ptr, functionname_ptr))
11844 return FALSE;
11845
11846 *line_ptr = 0;
b34976b6 11847 return TRUE;
252b5132
RH
11848}
11849
4ab527b0
FF
11850static bfd_boolean
11851elf32_arm_find_inliner_info (bfd * abfd,
11852 const char ** filename_ptr,
11853 const char ** functionname_ptr,
11854 unsigned int * line_ptr)
11855{
11856 bfd_boolean found;
11857 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11858 functionname_ptr, line_ptr,
11859 & elf_tdata (abfd)->dwarf2_find_line_info);
11860 return found;
11861}
11862
252b5132
RH
11863/* Adjust a symbol defined by a dynamic object and referenced by a
11864 regular object. The current definition is in some section of the
11865 dynamic object, but we're not including those sections. We have to
11866 change the definition to something the rest of the link can
11867 understand. */
11868
b34976b6 11869static bfd_boolean
57e8b36a
NC
11870elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11871 struct elf_link_hash_entry * h)
252b5132
RH
11872{
11873 bfd * dynobj;
11874 asection * s;
b7693d02 11875 struct elf32_arm_link_hash_entry * eh;
67687978 11876 struct elf32_arm_link_hash_table *globals;
252b5132 11877
67687978 11878 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
11879 if (globals == NULL)
11880 return FALSE;
11881
252b5132
RH
11882 dynobj = elf_hash_table (info)->dynobj;
11883
11884 /* Make sure we know what is going on here. */
11885 BFD_ASSERT (dynobj != NULL
f5385ebf 11886 && (h->needs_plt
f6e332e6 11887 || h->u.weakdef != NULL
f5385ebf
AM
11888 || (h->def_dynamic
11889 && h->ref_regular
11890 && !h->def_regular)));
252b5132 11891
b7693d02
DJ
11892 eh = (struct elf32_arm_link_hash_entry *) h;
11893
252b5132
RH
11894 /* If this is a function, put it in the procedure linkage table. We
11895 will fill in the contents of the procedure linkage table later,
11896 when we know the address of the .got section. */
0f88be7a 11897 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
f5385ebf 11898 || h->needs_plt)
252b5132 11899 {
5e681ec4
PB
11900 if (h->plt.refcount <= 0
11901 || SYMBOL_CALLS_LOCAL (info, h)
11902 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11903 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
11904 {
11905 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
11906 file, but the symbol was never referred to by a dynamic
11907 object, or if all references were garbage collected. In
11908 such a case, we don't actually need to build a procedure
11909 linkage table, and we can just do a PC24 reloc instead. */
11910 h->plt.offset = (bfd_vma) -1;
b7693d02 11911 eh->plt_thumb_refcount = 0;
bd97cb95 11912 eh->plt_maybe_thumb_refcount = 0;
f5385ebf 11913 h->needs_plt = 0;
252b5132
RH
11914 }
11915
b34976b6 11916 return TRUE;
252b5132 11917 }
5e681ec4 11918 else
b7693d02
DJ
11919 {
11920 /* It's possible that we incorrectly decided a .plt reloc was
11921 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11922 in check_relocs. We can't decide accurately between function
11923 and non-function syms in check-relocs; Objects loaded later in
11924 the link may change h->type. So fix it now. */
11925 h->plt.offset = (bfd_vma) -1;
11926 eh->plt_thumb_refcount = 0;
bd97cb95 11927 eh->plt_maybe_thumb_refcount = 0;
b7693d02 11928 }
252b5132
RH
11929
11930 /* If this is a weak symbol, and there is a real definition, the
11931 processor independent code will have arranged for us to see the
11932 real definition first, and we can just use the same value. */
f6e332e6 11933 if (h->u.weakdef != NULL)
252b5132 11934 {
f6e332e6
AM
11935 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11936 || h->u.weakdef->root.type == bfd_link_hash_defweak);
11937 h->root.u.def.section = h->u.weakdef->root.u.def.section;
11938 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 11939 return TRUE;
252b5132
RH
11940 }
11941
ba93b8ac
DJ
11942 /* If there are no non-GOT references, we do not need a copy
11943 relocation. */
11944 if (!h->non_got_ref)
11945 return TRUE;
11946
252b5132
RH
11947 /* This is a reference to a symbol defined by a dynamic object which
11948 is not a function. */
11949
11950 /* If we are creating a shared library, we must presume that the
11951 only references to the symbol are via the global offset table.
11952 For such cases we need not do anything here; the relocations will
67687978
PB
11953 be handled correctly by relocate_section. Relocatable executables
11954 can reference data in shared objects directly, so we don't need to
11955 do anything here. */
11956 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 11957 return TRUE;
252b5132 11958
909272ee
AM
11959 if (h->size == 0)
11960 {
11961 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11962 h->root.root.string);
11963 return TRUE;
11964 }
11965
252b5132
RH
11966 /* We must allocate the symbol in our .dynbss section, which will
11967 become part of the .bss section of the executable. There will be
11968 an entry for this symbol in the .dynsym section. The dynamic
11969 object will contain position independent code, so all references
11970 from the dynamic object to this symbol will go through the global
11971 offset table. The dynamic linker will use the .dynsym entry to
11972 determine the address it must put in the global offset table, so
11973 both the dynamic object and the regular object will refer to the
11974 same memory location for the variable. */
252b5132
RH
11975 s = bfd_get_section_by_name (dynobj, ".dynbss");
11976 BFD_ASSERT (s != NULL);
11977
11978 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11979 copy the initial value out of the dynamic object and into the
11980 runtime process image. We need to remember the offset into the
00a97672 11981 .rel(a).bss section we are going to use. */
252b5132
RH
11982 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11983 {
11984 asection *srel;
11985
00a97672 11986 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
252b5132 11987 BFD_ASSERT (srel != NULL);
00a97672 11988 srel->size += RELOC_SIZE (globals);
f5385ebf 11989 h->needs_copy = 1;
252b5132
RH
11990 }
11991
027297b7 11992 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
11993}
11994
5e681ec4
PB
11995/* Allocate space in .plt, .got and associated reloc sections for
11996 dynamic relocs. */
11997
11998static bfd_boolean
57e8b36a 11999allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
12000{
12001 struct bfd_link_info *info;
12002 struct elf32_arm_link_hash_table *htab;
12003 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 12004 struct elf_dyn_relocs *p;
bd97cb95 12005 bfd_signed_vma thumb_refs;
5e681ec4 12006
b7693d02
DJ
12007 eh = (struct elf32_arm_link_hash_entry *) h;
12008
5e681ec4
PB
12009 if (h->root.type == bfd_link_hash_indirect)
12010 return TRUE;
12011
12012 if (h->root.type == bfd_link_hash_warning)
12013 /* When warning symbols are created, they **replace** the "real"
12014 entry in the hash table, thus we never get to see the real
12015 symbol in a hash traversal. So look at it now. */
12016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12017
12018 info = (struct bfd_link_info *) inf;
12019 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
12020 if (htab == NULL)
12021 return FALSE;
5e681ec4
PB
12022
12023 if (htab->root.dynamic_sections_created
12024 && h->plt.refcount > 0)
12025 {
12026 /* Make sure this symbol is output as a dynamic symbol.
12027 Undefined weak syms won't yet be marked as dynamic. */
12028 if (h->dynindx == -1
f5385ebf 12029 && !h->forced_local)
5e681ec4 12030 {
c152c796 12031 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
12032 return FALSE;
12033 }
12034
12035 if (info->shared
7359ea65 12036 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 12037 {
362d30a1 12038 asection *s = htab->root.splt;
5e681ec4
PB
12039
12040 /* If this is the first .plt entry, make room for the special
12041 first entry. */
eea6121a 12042 if (s->size == 0)
e5a52504 12043 s->size += htab->plt_header_size;
5e681ec4 12044
eea6121a 12045 h->plt.offset = s->size;
5e681ec4 12046
b7693d02
DJ
12047 /* If we will insert a Thumb trampoline before this PLT, leave room
12048 for it. */
bd97cb95
DJ
12049 thumb_refs = eh->plt_thumb_refcount;
12050 if (!htab->use_blx)
12051 thumb_refs += eh->plt_maybe_thumb_refcount;
12052
12053 if (thumb_refs > 0)
b7693d02
DJ
12054 {
12055 h->plt.offset += PLT_THUMB_STUB_SIZE;
12056 s->size += PLT_THUMB_STUB_SIZE;
12057 }
12058
5e681ec4
PB
12059 /* If this symbol is not defined in a regular file, and we are
12060 not generating a shared library, then set the symbol to this
12061 location in the .plt. This is required to make function
12062 pointers compare as equal between the normal executable and
12063 the shared library. */
12064 if (! info->shared
f5385ebf 12065 && !h->def_regular)
5e681ec4
PB
12066 {
12067 h->root.u.def.section = s;
12068 h->root.u.def.value = h->plt.offset;
5e681ec4 12069
67d74e43
DJ
12070 /* Make sure the function is not marked as Thumb, in case
12071 it is the target of an ABS32 relocation, which will
12072 point to the PLT entry. */
12073 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
12074 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
12075 }
022f8312 12076
5e681ec4 12077 /* Make room for this entry. */
e5a52504 12078 s->size += htab->plt_entry_size;
5e681ec4 12079
e5a52504 12080 if (!htab->symbian_p)
b7693d02
DJ
12081 {
12082 /* We also need to make an entry in the .got.plt section, which
12083 will be placed in the .got section by the linker script. */
0855e32b
NS
12084 eh->plt_got_offset = (htab->root.sgotplt->size
12085 - 8 * htab->num_tls_desc);
362d30a1 12086 htab->root.sgotplt->size += 4;
b7693d02 12087 }
5e681ec4 12088
00a97672 12089 /* We also need to make an entry in the .rel(a).plt section. */
362d30a1 12090 htab->root.srelplt->size += RELOC_SIZE (htab);
0855e32b 12091 htab->next_tls_desc_index++;
00a97672
RS
12092
12093 /* VxWorks executables have a second set of relocations for
12094 each PLT entry. They go in a separate relocation section,
12095 which is processed by the kernel loader. */
12096 if (htab->vxworks_p && !info->shared)
12097 {
12098 /* There is a relocation for the initial PLT entry:
12099 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
12100 if (h->plt.offset == htab->plt_header_size)
12101 htab->srelplt2->size += RELOC_SIZE (htab);
12102
12103 /* There are two extra relocations for each subsequent
12104 PLT entry: an R_ARM_32 relocation for the GOT entry,
12105 and an R_ARM_32 relocation for the PLT entry. */
12106 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
12107 }
5e681ec4
PB
12108 }
12109 else
12110 {
12111 h->plt.offset = (bfd_vma) -1;
f5385ebf 12112 h->needs_plt = 0;
5e681ec4
PB
12113 }
12114 }
12115 else
12116 {
12117 h->plt.offset = (bfd_vma) -1;
f5385ebf 12118 h->needs_plt = 0;
5e681ec4
PB
12119 }
12120
0855e32b
NS
12121 eh = (struct elf32_arm_link_hash_entry *) h;
12122 eh->tlsdesc_got = (bfd_vma) -1;
12123
5e681ec4
PB
12124 if (h->got.refcount > 0)
12125 {
12126 asection *s;
12127 bfd_boolean dyn;
ba93b8ac
DJ
12128 int tls_type = elf32_arm_hash_entry (h)->tls_type;
12129 int indx;
5e681ec4
PB
12130
12131 /* Make sure this symbol is output as a dynamic symbol.
12132 Undefined weak syms won't yet be marked as dynamic. */
12133 if (h->dynindx == -1
f5385ebf 12134 && !h->forced_local)
5e681ec4 12135 {
c152c796 12136 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
12137 return FALSE;
12138 }
12139
e5a52504
MM
12140 if (!htab->symbian_p)
12141 {
362d30a1 12142 s = htab->root.sgot;
e5a52504 12143 h->got.offset = s->size;
ba93b8ac
DJ
12144
12145 if (tls_type == GOT_UNKNOWN)
12146 abort ();
12147
12148 if (tls_type == GOT_NORMAL)
12149 /* Non-TLS symbols need one GOT slot. */
12150 s->size += 4;
12151 else
12152 {
0855e32b
NS
12153 if (tls_type & GOT_TLS_GDESC)
12154 {
12155 /* R_ARM_TLS_DESC needs 2 GOT slots. */
12156 eh->tlsdesc_got
12157 = (htab->root.sgotplt->size
12158 - elf32_arm_compute_jump_table_size (htab));
12159 htab->root.sgotplt->size += 8;
12160 h->got.offset = (bfd_vma) -2;
12161 /* plt_got_offset needs to know there's a TLS_DESC
12162 reloc in the middle of .got.plt. */
12163 htab->num_tls_desc++;
12164 }
12165
ba93b8ac 12166 if (tls_type & GOT_TLS_GD)
0855e32b
NS
12167 {
12168 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
12169 the symbol is both GD and GDESC, got.offset may
12170 have been overwritten. */
12171 h->got.offset = s->size;
12172 s->size += 8;
12173 }
12174
ba93b8ac
DJ
12175 if (tls_type & GOT_TLS_IE)
12176 /* R_ARM_TLS_IE32 needs one GOT slot. */
12177 s->size += 4;
12178 }
12179
e5a52504 12180 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
12181
12182 indx = 0;
12183 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
12184 && (!info->shared
12185 || !SYMBOL_REFERENCES_LOCAL (info, h)))
12186 indx = h->dynindx;
12187
12188 if (tls_type != GOT_NORMAL
12189 && (info->shared || indx != 0)
12190 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
12191 || h->root.type != bfd_link_hash_undefweak))
12192 {
12193 if (tls_type & GOT_TLS_IE)
362d30a1 12194 htab->root.srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
12195
12196 if (tls_type & GOT_TLS_GD)
362d30a1 12197 htab->root.srelgot->size += RELOC_SIZE (htab);
ba93b8ac 12198
0855e32b
NS
12199 if (tls_type & GOT_TLS_GDESC)
12200 {
12201 htab->root.srelplt->size += RELOC_SIZE (htab);
12202 /* GDESC needs a trampoline to jump to. */
12203 htab->tls_trampoline = -1;
12204 }
12205
12206 /* Only GD needs it. GDESC just emits one relocation per
12207 2 entries. */
12208 if ((tls_type & GOT_TLS_GD) && indx != 0)
12209 htab->root.srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
12210 }
12211 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
12212 || h->root.type != bfd_link_hash_undefweak)
12213 && (info->shared
12214 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
362d30a1 12215 htab->root.srelgot->size += RELOC_SIZE (htab);
e5a52504 12216 }
5e681ec4
PB
12217 }
12218 else
12219 h->got.offset = (bfd_vma) -1;
12220
a4fd1a8e
PB
12221 /* Allocate stubs for exported Thumb functions on v4t. */
12222 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 12223 && h->def_regular
a4fd1a8e
PB
12224 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
12225 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
12226 {
12227 struct elf_link_hash_entry * th;
12228 struct bfd_link_hash_entry * bh;
12229 struct elf_link_hash_entry * myh;
12230 char name[1024];
12231 asection *s;
12232 bh = NULL;
12233 /* Create a new symbol to regist the real location of the function. */
12234 s = h->root.u.def.section;
906e58ca 12235 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
12236 _bfd_generic_link_add_one_symbol (info, s->owner,
12237 name, BSF_GLOBAL, s,
12238 h->root.u.def.value,
12239 NULL, TRUE, FALSE, &bh);
12240
12241 myh = (struct elf_link_hash_entry *) bh;
12242 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
12243 myh->forced_local = 1;
12244 eh->export_glue = myh;
12245 th = record_arm_to_thumb_glue (info, h);
12246 /* Point the symbol at the stub. */
12247 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
12248 h->root.u.def.section = th->root.u.def.section;
12249 h->root.u.def.value = th->root.u.def.value & ~1;
12250 }
12251
0bdcacaf 12252 if (eh->dyn_relocs == NULL)
5e681ec4
PB
12253 return TRUE;
12254
12255 /* In the shared -Bsymbolic case, discard space allocated for
12256 dynamic pc-relative relocs against symbols which turn out to be
12257 defined in regular objects. For the normal shared case, discard
12258 space for pc-relative relocs that have become local due to symbol
12259 visibility changes. */
12260
67687978 12261 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 12262 {
7bdca076 12263 /* The only relocs that use pc_count are R_ARM_REL32 and
bb224fc3
MS
12264 R_ARM_REL32_NOI, which will appear on something like
12265 ".long foo - .". We want calls to protected symbols to resolve
12266 directly to the function rather than going via the plt. If people
12267 want function pointer comparisons to work as expected then they
12268 should avoid writing assembly like ".long foo - .". */
ba93b8ac
DJ
12269 if (SYMBOL_CALLS_LOCAL (info, h))
12270 {
0bdcacaf 12271 struct elf_dyn_relocs **pp;
ba93b8ac 12272
0bdcacaf 12273 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
12274 {
12275 p->count -= p->pc_count;
12276 p->pc_count = 0;
12277 if (p->count == 0)
12278 *pp = p->next;
12279 else
12280 pp = &p->next;
12281 }
12282 }
12283
4dfe6ac6 12284 if (htab->vxworks_p)
3348747a 12285 {
0bdcacaf 12286 struct elf_dyn_relocs **pp;
3348747a 12287
0bdcacaf 12288 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
3348747a 12289 {
0bdcacaf 12290 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
12291 *pp = p->next;
12292 else
12293 pp = &p->next;
12294 }
12295 }
12296
ba93b8ac 12297 /* Also discard relocs on undefined weak syms with non-default
7359ea65 12298 visibility. */
0bdcacaf 12299 if (eh->dyn_relocs != NULL
5e681ec4 12300 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
12301 {
12302 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
0bdcacaf 12303 eh->dyn_relocs = NULL;
22d606e9
AM
12304
12305 /* Make sure undefined weak symbols are output as a dynamic
12306 symbol in PIEs. */
12307 else if (h->dynindx == -1
12308 && !h->forced_local)
12309 {
12310 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12311 return FALSE;
12312 }
12313 }
12314
67687978
PB
12315 else if (htab->root.is_relocatable_executable && h->dynindx == -1
12316 && h->root.type == bfd_link_hash_new)
12317 {
12318 /* Output absolute symbols so that we can create relocations
12319 against them. For normal symbols we output a relocation
12320 against the section that contains them. */
12321 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12322 return FALSE;
12323 }
12324
5e681ec4
PB
12325 }
12326 else
12327 {
12328 /* For the non-shared case, discard space for relocs against
12329 symbols which turn out to need copy relocs or are not
12330 dynamic. */
12331
f5385ebf
AM
12332 if (!h->non_got_ref
12333 && ((h->def_dynamic
12334 && !h->def_regular)
5e681ec4
PB
12335 || (htab->root.dynamic_sections_created
12336 && (h->root.type == bfd_link_hash_undefweak
12337 || h->root.type == bfd_link_hash_undefined))))
12338 {
12339 /* Make sure this symbol is output as a dynamic symbol.
12340 Undefined weak syms won't yet be marked as dynamic. */
12341 if (h->dynindx == -1
f5385ebf 12342 && !h->forced_local)
5e681ec4 12343 {
c152c796 12344 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
12345 return FALSE;
12346 }
12347
12348 /* If that succeeded, we know we'll be keeping all the
12349 relocs. */
12350 if (h->dynindx != -1)
12351 goto keep;
12352 }
12353
0bdcacaf 12354 eh->dyn_relocs = NULL;
5e681ec4
PB
12355
12356 keep: ;
12357 }
12358
12359 /* Finally, allocate space. */
0bdcacaf 12360 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5e681ec4 12361 {
0bdcacaf 12362 asection *sreloc = elf_section_data (p->sec)->sreloc;
00a97672 12363 sreloc->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
12364 }
12365
12366 return TRUE;
12367}
12368
08d1f311
DJ
12369/* Find any dynamic relocs that apply to read-only sections. */
12370
12371static bfd_boolean
8029a119 12372elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 12373{
8029a119 12374 struct elf32_arm_link_hash_entry * eh;
0bdcacaf 12375 struct elf_dyn_relocs * p;
08d1f311
DJ
12376
12377 if (h->root.type == bfd_link_hash_warning)
12378 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12379
12380 eh = (struct elf32_arm_link_hash_entry *) h;
0bdcacaf 12381 for (p = eh->dyn_relocs; p != NULL; p = p->next)
08d1f311 12382 {
0bdcacaf 12383 asection *s = p->sec;
08d1f311
DJ
12384
12385 if (s != NULL && (s->flags & SEC_READONLY) != 0)
12386 {
12387 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12388
12389 info->flags |= DF_TEXTREL;
12390
12391 /* Not an error, just cut short the traversal. */
12392 return FALSE;
12393 }
12394 }
12395 return TRUE;
12396}
12397
d504ffc8
DJ
12398void
12399bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
12400 int byteswap_code)
12401{
12402 struct elf32_arm_link_hash_table *globals;
12403
12404 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
12405 if (globals == NULL)
12406 return;
12407
d504ffc8
DJ
12408 globals->byteswap_code = byteswap_code;
12409}
12410
252b5132
RH
12411/* Set the sizes of the dynamic sections. */
12412
b34976b6 12413static bfd_boolean
57e8b36a
NC
12414elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
12415 struct bfd_link_info * info)
252b5132
RH
12416{
12417 bfd * dynobj;
12418 asection * s;
b34976b6
AM
12419 bfd_boolean plt;
12420 bfd_boolean relocs;
5e681ec4
PB
12421 bfd *ibfd;
12422 struct elf32_arm_link_hash_table *htab;
252b5132 12423
5e681ec4 12424 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
12425 if (htab == NULL)
12426 return FALSE;
12427
252b5132
RH
12428 dynobj = elf_hash_table (info)->dynobj;
12429 BFD_ASSERT (dynobj != NULL);
39b41c9c 12430 check_use_blx (htab);
252b5132
RH
12431
12432 if (elf_hash_table (info)->dynamic_sections_created)
12433 {
12434 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 12435 if (info->executable)
252b5132
RH
12436 {
12437 s = bfd_get_section_by_name (dynobj, ".interp");
12438 BFD_ASSERT (s != NULL);
eea6121a 12439 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
12440 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
12441 }
12442 }
5e681ec4
PB
12443
12444 /* Set up .got offsets for local syms, and space for local dynamic
12445 relocs. */
12446 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
252b5132 12447 {
5e681ec4
PB
12448 bfd_signed_vma *local_got;
12449 bfd_signed_vma *end_local_got;
12450 char *local_tls_type;
0855e32b 12451 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
12452 bfd_size_type locsymcount;
12453 Elf_Internal_Shdr *symtab_hdr;
12454 asection *srel;
4dfe6ac6 12455 bfd_boolean is_vxworks = htab->vxworks_p;
5e681ec4 12456
0ffa91dd 12457 if (! is_arm_elf (ibfd))
5e681ec4
PB
12458 continue;
12459
12460 for (s = ibfd->sections; s != NULL; s = s->next)
12461 {
0bdcacaf 12462 struct elf_dyn_relocs *p;
5e681ec4 12463
0bdcacaf 12464 for (p = (struct elf_dyn_relocs *)
21d799b5 12465 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 12466 {
0bdcacaf
RS
12467 if (!bfd_is_abs_section (p->sec)
12468 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
12469 {
12470 /* Input section has been discarded, either because
12471 it is a copy of a linkonce section or due to
12472 linker script /DISCARD/, so we'll be discarding
12473 the relocs too. */
12474 }
3348747a 12475 else if (is_vxworks
0bdcacaf 12476 && strcmp (p->sec->output_section->name,
3348747a
NS
12477 ".tls_vars") == 0)
12478 {
12479 /* Relocations in vxworks .tls_vars sections are
12480 handled specially by the loader. */
12481 }
5e681ec4
PB
12482 else if (p->count != 0)
12483 {
0bdcacaf 12484 srel = elf_section_data (p->sec)->sreloc;
00a97672 12485 srel->size += p->count * RELOC_SIZE (htab);
0bdcacaf 12486 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
12487 info->flags |= DF_TEXTREL;
12488 }
12489 }
12490 }
12491
12492 local_got = elf_local_got_refcounts (ibfd);
12493 if (!local_got)
12494 continue;
12495
0ffa91dd 12496 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
12497 locsymcount = symtab_hdr->sh_info;
12498 end_local_got = local_got + locsymcount;
ba93b8ac 12499 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 12500 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
362d30a1
RS
12501 s = htab->root.sgot;
12502 srel = htab->root.srelgot;
0855e32b
NS
12503 for (; local_got < end_local_got;
12504 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
5e681ec4 12505 {
0855e32b 12506 *local_tlsdesc_gotent = (bfd_vma) -1;
5e681ec4
PB
12507 if (*local_got > 0)
12508 {
eea6121a 12509 *local_got = s->size;
ba93b8ac
DJ
12510 if (*local_tls_type & GOT_TLS_GD)
12511 /* TLS_GD relocs need an 8-byte structure in the GOT. */
12512 s->size += 8;
0855e32b
NS
12513 if (*local_tls_type & GOT_TLS_GDESC)
12514 {
12515 *local_tlsdesc_gotent = htab->root.sgotplt->size
12516 - elf32_arm_compute_jump_table_size (htab);
12517 htab->root.sgotplt->size += 8;
12518 *local_got = (bfd_vma) -2;
12519 /* plt_got_offset needs to know there's a TLS_DESC
12520 reloc in the middle of .got.plt. */
12521 htab->num_tls_desc++;
12522 }
ba93b8ac
DJ
12523 if (*local_tls_type & GOT_TLS_IE)
12524 s->size += 4;
ba93b8ac 12525
0855e32b
NS
12526 if (*local_tls_type & GOT_NORMAL)
12527 {
12528 /* If the symbol is both GD and GDESC, *local_got
12529 may have been overwritten. */
12530 *local_got = s->size;
12531 s->size += 4;
12532 }
12533
12534 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
12535 || *local_tls_type & GOT_TLS_GD)
00a97672 12536 srel->size += RELOC_SIZE (htab);
0855e32b
NS
12537
12538 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
12539 {
12540 htab->root.srelplt->size += RELOC_SIZE (htab);
12541 htab->tls_trampoline = -1;
12542 }
5e681ec4
PB
12543 }
12544 else
12545 *local_got = (bfd_vma) -1;
12546 }
252b5132
RH
12547 }
12548
ba93b8ac
DJ
12549 if (htab->tls_ldm_got.refcount > 0)
12550 {
12551 /* Allocate two GOT entries and one dynamic relocation (if necessary)
12552 for R_ARM_TLS_LDM32 relocations. */
362d30a1
RS
12553 htab->tls_ldm_got.offset = htab->root.sgot->size;
12554 htab->root.sgot->size += 8;
ba93b8ac 12555 if (info->shared)
362d30a1 12556 htab->root.srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
12557 }
12558 else
12559 htab->tls_ldm_got.offset = -1;
12560
5e681ec4
PB
12561 /* Allocate global sym .plt and .got entries, and space for global
12562 sym dynamic relocs. */
57e8b36a 12563 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
252b5132 12564
d504ffc8
DJ
12565 /* Here we rummage through the found bfds to collect glue information. */
12566 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
c7b8f16e 12567 {
0ffa91dd 12568 if (! is_arm_elf (ibfd))
e44a2c9c
AM
12569 continue;
12570
c7b8f16e
JB
12571 /* Initialise mapping tables for code/data. */
12572 bfd_elf32_arm_init_maps (ibfd);
906e58ca 12573
c7b8f16e
JB
12574 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
12575 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
12576 /* xgettext:c-format */
12577 _bfd_error_handler (_("Errors encountered processing file %s"),
12578 ibfd->filename);
12579 }
d504ffc8 12580
3e6b1042
DJ
12581 /* Allocate space for the glue sections now that we've sized them. */
12582 bfd_elf32_arm_allocate_interworking_sections (info);
12583
0855e32b
NS
12584 /* For every jump slot reserved in the sgotplt, reloc_count is
12585 incremented. However, when we reserve space for TLS descriptors,
12586 it's not incremented, so in order to compute the space reserved
12587 for them, it suffices to multiply the reloc count by the jump
12588 slot size. */
12589 if (htab->root.srelplt)
12590 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
12591
12592 if (htab->tls_trampoline)
12593 {
12594 if (htab->root.splt->size == 0)
12595 htab->root.splt->size += htab->plt_header_size;
12596
12597 htab->tls_trampoline = htab->root.splt->size;
12598 htab->root.splt->size += htab->plt_entry_size;
12599
12600 /* If we're not using lazy TLS relocations, don't generate the
12601 PLT and GOT entries they require. */
12602 if (!(info->flags & DF_BIND_NOW))
12603 {
12604 htab->dt_tlsdesc_got = htab->root.sgot->size;
12605 htab->root.sgot->size += 4;
12606
12607 htab->dt_tlsdesc_plt = htab->root.splt->size;
12608 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
12609 }
12610 }
12611
252b5132
RH
12612 /* The check_relocs and adjust_dynamic_symbol entry points have
12613 determined the sizes of the various dynamic sections. Allocate
12614 memory for them. */
b34976b6
AM
12615 plt = FALSE;
12616 relocs = FALSE;
252b5132
RH
12617 for (s = dynobj->sections; s != NULL; s = s->next)
12618 {
12619 const char * name;
252b5132
RH
12620
12621 if ((s->flags & SEC_LINKER_CREATED) == 0)
12622 continue;
12623
12624 /* It's OK to base decisions on the section name, because none
12625 of the dynobj section names depend upon the input files. */
12626 name = bfd_get_section_name (dynobj, s);
12627
24a1ba0f 12628 if (strcmp (name, ".plt") == 0)
252b5132 12629 {
c456f082
AM
12630 /* Remember whether there is a PLT. */
12631 plt = s->size != 0;
252b5132 12632 }
0112cd26 12633 else if (CONST_STRNEQ (name, ".rel"))
252b5132 12634 {
c456f082 12635 if (s->size != 0)
252b5132 12636 {
252b5132 12637 /* Remember whether there are any reloc sections other
00a97672 12638 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 12639 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 12640 relocs = TRUE;
252b5132
RH
12641
12642 /* We use the reloc_count field as a counter if we need
12643 to copy relocs into the output file. */
12644 s->reloc_count = 0;
12645 }
12646 }
0112cd26 12647 else if (! CONST_STRNEQ (name, ".got")
c456f082 12648 && strcmp (name, ".dynbss") != 0)
252b5132
RH
12649 {
12650 /* It's not one of our sections, so don't allocate space. */
12651 continue;
12652 }
12653
c456f082 12654 if (s->size == 0)
252b5132 12655 {
c456f082 12656 /* If we don't need this section, strip it from the
00a97672
RS
12657 output file. This is mostly to handle .rel(a).bss and
12658 .rel(a).plt. We must create both sections in
c456f082
AM
12659 create_dynamic_sections, because they must be created
12660 before the linker maps input sections to output
12661 sections. The linker does that before
12662 adjust_dynamic_symbol is called, and it is that
12663 function which decides whether anything needs to go
12664 into these sections. */
8423293d 12665 s->flags |= SEC_EXCLUDE;
252b5132
RH
12666 continue;
12667 }
12668
c456f082
AM
12669 if ((s->flags & SEC_HAS_CONTENTS) == 0)
12670 continue;
12671
252b5132 12672 /* Allocate memory for the section contents. */
21d799b5 12673 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 12674 if (s->contents == NULL)
b34976b6 12675 return FALSE;
252b5132
RH
12676 }
12677
12678 if (elf_hash_table (info)->dynamic_sections_created)
12679 {
12680 /* Add some entries to the .dynamic section. We fill in the
12681 values later, in elf32_arm_finish_dynamic_sections, but we
12682 must add the entries now so that we get the correct size for
12683 the .dynamic section. The DT_DEBUG entry is filled in by the
12684 dynamic linker and used by the debugger. */
dc810e39 12685#define add_dynamic_entry(TAG, VAL) \
5a580b3a 12686 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 12687
8532796c 12688 if (info->executable)
252b5132 12689 {
dc810e39 12690 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 12691 return FALSE;
252b5132
RH
12692 }
12693
12694 if (plt)
12695 {
dc810e39
AM
12696 if ( !add_dynamic_entry (DT_PLTGOT, 0)
12697 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
12698 || !add_dynamic_entry (DT_PLTREL,
12699 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 12700 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 12701 return FALSE;
0855e32b
NS
12702
12703 if (htab->dt_tlsdesc_plt &&
12704 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
12705 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
12706 return FALSE;
252b5132
RH
12707 }
12708
12709 if (relocs)
12710 {
00a97672
RS
12711 if (htab->use_rel)
12712 {
12713 if (!add_dynamic_entry (DT_REL, 0)
12714 || !add_dynamic_entry (DT_RELSZ, 0)
12715 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
12716 return FALSE;
12717 }
12718 else
12719 {
12720 if (!add_dynamic_entry (DT_RELA, 0)
12721 || !add_dynamic_entry (DT_RELASZ, 0)
12722 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
12723 return FALSE;
12724 }
252b5132
RH
12725 }
12726
08d1f311
DJ
12727 /* If any dynamic relocs apply to a read-only section,
12728 then we need a DT_TEXTREL entry. */
12729 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
12730 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
12731 info);
08d1f311 12732
99e4ae17 12733 if ((info->flags & DF_TEXTREL) != 0)
252b5132 12734 {
dc810e39 12735 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 12736 return FALSE;
252b5132 12737 }
7a2b07ff
NS
12738 if (htab->vxworks_p
12739 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
12740 return FALSE;
252b5132 12741 }
8532796c 12742#undef add_dynamic_entry
252b5132 12743
b34976b6 12744 return TRUE;
252b5132
RH
12745}
12746
0855e32b
NS
12747/* Size sections even though they're not dynamic. We use it to setup
12748 _TLS_MODULE_BASE_, if needed. */
12749
12750static bfd_boolean
12751elf32_arm_always_size_sections (bfd *output_bfd,
12752 struct bfd_link_info *info)
12753{
12754 asection *tls_sec;
12755
12756 if (info->relocatable)
12757 return TRUE;
12758
12759 tls_sec = elf_hash_table (info)->tls_sec;
12760
12761 if (tls_sec)
12762 {
12763 struct elf_link_hash_entry *tlsbase;
12764
12765 tlsbase = elf_link_hash_lookup
12766 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
12767
12768 if (tlsbase)
12769 {
12770 struct bfd_link_hash_entry *bh = NULL;
12771 const struct elf_backend_data *bed
12772 = get_elf_backend_data (output_bfd);
12773
12774 if (!(_bfd_generic_link_add_one_symbol
12775 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
12776 tls_sec, 0, NULL, FALSE,
12777 bed->collect, &bh)))
12778 return FALSE;
12779
12780 tlsbase->type = STT_TLS;
12781 tlsbase = (struct elf_link_hash_entry *)bh;
12782 tlsbase->def_regular = 1;
12783 tlsbase->other = STV_HIDDEN;
12784 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
12785 }
12786 }
12787 return TRUE;
12788}
12789
252b5132
RH
12790/* Finish up dynamic symbol handling. We set the contents of various
12791 dynamic sections here. */
12792
b34976b6 12793static bfd_boolean
906e58ca
NC
12794elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
12795 struct bfd_link_info * info,
12796 struct elf_link_hash_entry * h,
12797 Elf_Internal_Sym * sym)
252b5132 12798{
e5a52504 12799 struct elf32_arm_link_hash_table *htab;
b7693d02 12800 struct elf32_arm_link_hash_entry *eh;
252b5132 12801
e5a52504 12802 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
12803 if (htab == NULL)
12804 return FALSE;
12805
b7693d02 12806 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
12807
12808 if (h->plt.offset != (bfd_vma) -1)
12809 {
12810 asection * splt;
252b5132 12811 asection * srel;
e5a52504 12812 bfd_byte *loc;
24a1ba0f 12813 bfd_vma plt_index;
947216bf 12814 Elf_Internal_Rela rel;
252b5132
RH
12815
12816 /* This symbol has an entry in the procedure linkage table. Set
12817 it up. */
12818
12819 BFD_ASSERT (h->dynindx != -1);
12820
362d30a1
RS
12821 splt = htab->root.splt;
12822 srel = htab->root.srelplt;
e5a52504 12823 BFD_ASSERT (splt != NULL && srel != NULL);
252b5132 12824
e5a52504
MM
12825 /* Fill in the entry in the procedure linkage table. */
12826 if (htab->symbian_p)
12827 {
906e58ca 12828 put_arm_insn (htab, output_bfd,
52ab56c2
PB
12829 elf32_arm_symbian_plt_entry[0],
12830 splt->contents + h->plt.offset);
906e58ca 12831 bfd_put_32 (output_bfd,
52ab56c2
PB
12832 elf32_arm_symbian_plt_entry[1],
12833 splt->contents + h->plt.offset + 4);
906e58ca 12834
e5a52504 12835 /* Fill in the entry in the .rel.plt section. */
2a1b9a48
MM
12836 rel.r_offset = (splt->output_section->vma
12837 + splt->output_offset
52ab56c2 12838 + h->plt.offset + 4);
e5a52504 12839 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
b7693d02
DJ
12840
12841 /* Get the index in the procedure linkage table which
12842 corresponds to this symbol. This is the index of this symbol
12843 in all the symbols for which we are making plt entries. The
12844 first entry in the procedure linkage table is reserved. */
906e58ca 12845 plt_index = ((h->plt.offset - htab->plt_header_size)
b7693d02 12846 / htab->plt_entry_size);
e5a52504
MM
12847 }
12848 else
12849 {
00a97672 12850 bfd_vma got_offset, got_address, plt_address;
e5a52504
MM
12851 bfd_vma got_displacement;
12852 asection * sgot;
52ab56c2 12853 bfd_byte * ptr;
906e58ca 12854
362d30a1 12855 sgot = htab->root.sgotplt;
e5a52504
MM
12856 BFD_ASSERT (sgot != NULL);
12857
b7693d02
DJ
12858 /* Get the offset into the .got.plt table of the entry that
12859 corresponds to this function. */
12860 got_offset = eh->plt_got_offset;
12861
12862 /* Get the index in the procedure linkage table which
12863 corresponds to this symbol. This is the index of this symbol
12864 in all the symbols for which we are making plt entries. The
12865 first three entries in .got.plt are reserved; after that
12866 symbols appear in the same order as in .plt. */
12867 plt_index = (got_offset - 12) / 4;
e5a52504 12868
00a97672
RS
12869 /* Calculate the address of the GOT entry. */
12870 got_address = (sgot->output_section->vma
12871 + sgot->output_offset
12872 + got_offset);
5e681ec4 12873
00a97672
RS
12874 /* ...and the address of the PLT entry. */
12875 plt_address = (splt->output_section->vma
12876 + splt->output_offset
12877 + h->plt.offset);
5e681ec4 12878
362d30a1 12879 ptr = splt->contents + h->plt.offset;
00a97672
RS
12880 if (htab->vxworks_p && info->shared)
12881 {
12882 unsigned int i;
12883 bfd_vma val;
12884
52ab56c2 12885 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
12886 {
12887 val = elf32_arm_vxworks_shared_plt_entry[i];
12888 if (i == 2)
12889 val |= got_address - sgot->output_section->vma;
12890 if (i == 5)
12891 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
12892 if (i == 2 || i == 5)
12893 bfd_put_32 (output_bfd, val, ptr);
12894 else
12895 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
12896 }
12897 }
12898 else if (htab->vxworks_p)
b7693d02 12899 {
00a97672
RS
12900 unsigned int i;
12901 bfd_vma val;
12902
d3753b85 12903 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
12904 {
12905 val = elf32_arm_vxworks_exec_plt_entry[i];
12906 if (i == 2)
12907 val |= got_address;
12908 if (i == 4)
12909 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
12910 if (i == 5)
12911 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
12912 if (i == 2 || i == 5)
12913 bfd_put_32 (output_bfd, val, ptr);
12914 else
12915 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
12916 }
12917
12918 loc = (htab->srelplt2->contents
12919 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12920
12921 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12922 referencing the GOT for this PLT entry. */
12923 rel.r_offset = plt_address + 8;
12924 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12925 rel.r_addend = got_offset;
12926 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12927 loc += RELOC_SIZE (htab);
12928
12929 /* Create the R_ARM_ABS32 relocation referencing the
12930 beginning of the PLT for this GOT entry. */
12931 rel.r_offset = got_address;
12932 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12933 rel.r_addend = 0;
12934 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
b7693d02 12935 }
00a97672
RS
12936 else
12937 {
bd97cb95 12938 bfd_signed_vma thumb_refs;
00a97672
RS
12939 /* Calculate the displacement between the PLT slot and the
12940 entry in the GOT. The eight-byte offset accounts for the
12941 value produced by adding to pc in the first instruction
12942 of the PLT stub. */
12943 got_displacement = got_address - (plt_address + 8);
b7693d02 12944
00a97672
RS
12945 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12946
bd97cb95
DJ
12947 thumb_refs = eh->plt_thumb_refcount;
12948 if (!htab->use_blx)
12949 thumb_refs += eh->plt_maybe_thumb_refcount;
12950
12951 if (thumb_refs > 0)
00a97672 12952 {
52ab56c2
PB
12953 put_thumb_insn (htab, output_bfd,
12954 elf32_arm_plt_thumb_stub[0], ptr - 4);
12955 put_thumb_insn (htab, output_bfd,
12956 elf32_arm_plt_thumb_stub[1], ptr - 2);
00a97672
RS
12957 }
12958
52ab56c2
PB
12959 put_arm_insn (htab, output_bfd,
12960 elf32_arm_plt_entry[0]
12961 | ((got_displacement & 0x0ff00000) >> 20),
12962 ptr + 0);
12963 put_arm_insn (htab, output_bfd,
12964 elf32_arm_plt_entry[1]
12965 | ((got_displacement & 0x000ff000) >> 12),
12966 ptr+ 4);
12967 put_arm_insn (htab, output_bfd,
12968 elf32_arm_plt_entry[2]
12969 | (got_displacement & 0x00000fff),
12970 ptr + 8);
5e681ec4 12971#ifdef FOUR_WORD_PLT
52ab56c2 12972 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
5e681ec4 12973#endif
00a97672 12974 }
252b5132 12975
e5a52504
MM
12976 /* Fill in the entry in the global offset table. */
12977 bfd_put_32 (output_bfd,
12978 (splt->output_section->vma
12979 + splt->output_offset),
12980 sgot->contents + got_offset);
906e58ca 12981
00a97672
RS
12982 /* Fill in the entry in the .rel(a).plt section. */
12983 rel.r_addend = 0;
12984 rel.r_offset = got_address;
e5a52504
MM
12985 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12986 }
57e8b36a 12987
00a97672
RS
12988 loc = srel->contents + plt_index * RELOC_SIZE (htab);
12989 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132 12990
f5385ebf 12991 if (!h->def_regular)
252b5132
RH
12992 {
12993 /* Mark the symbol as undefined, rather than as defined in
12994 the .plt section. Leave the value alone. */
12995 sym->st_shndx = SHN_UNDEF;
d982ba73
PB
12996 /* If the symbol is weak, we do need to clear the value.
12997 Otherwise, the PLT entry would provide a definition for
12998 the symbol even if the symbol wasn't defined anywhere,
12999 and so the symbol would never be NULL. */
f5385ebf 13000 if (!h->ref_regular_nonweak)
d982ba73 13001 sym->st_value = 0;
252b5132
RH
13002 }
13003 }
13004
ba93b8ac 13005 if (h->got.offset != (bfd_vma) -1
0855e32b 13006 && (! GOT_TLS_GD_ANY_P (elf32_arm_hash_entry (h)->tls_type))
ba93b8ac 13007 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
252b5132
RH
13008 {
13009 asection * sgot;
13010 asection * srel;
947216bf
AM
13011 Elf_Internal_Rela rel;
13012 bfd_byte *loc;
00a97672 13013 bfd_vma offset;
252b5132
RH
13014
13015 /* This symbol has an entry in the global offset table. Set it
13016 up. */
362d30a1
RS
13017 sgot = htab->root.sgot;
13018 srel = htab->root.srelgot;
252b5132
RH
13019 BFD_ASSERT (sgot != NULL && srel != NULL);
13020
00a97672
RS
13021 offset = (h->got.offset & ~(bfd_vma) 1);
13022 rel.r_addend = 0;
252b5132
RH
13023 rel.r_offset = (sgot->output_section->vma
13024 + sgot->output_offset
00a97672 13025 + offset);
252b5132 13026
5e681ec4
PB
13027 /* If this is a static link, or it is a -Bsymbolic link and the
13028 symbol is defined locally or was forced to be local because
13029 of a version file, we just want to emit a RELATIVE reloc.
13030 The entry in the global offset table will already have been
13031 initialized in the relocate_section function. */
252b5132 13032 if (info->shared
5e681ec4
PB
13033 && SYMBOL_REFERENCES_LOCAL (info, h))
13034 {
906e58ca 13035 BFD_ASSERT ((h->got.offset & 1) != 0);
5e681ec4 13036 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
00a97672
RS
13037 if (!htab->use_rel)
13038 {
13039 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
13040 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
13041 }
5e681ec4 13042 }
252b5132
RH
13043 else
13044 {
906e58ca 13045 BFD_ASSERT ((h->got.offset & 1) == 0);
00a97672 13046 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
252b5132
RH
13047 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
13048 }
13049
00a97672
RS
13050 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
13051 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
13052 }
13053
f5385ebf 13054 if (h->needs_copy)
252b5132
RH
13055 {
13056 asection * s;
947216bf
AM
13057 Elf_Internal_Rela rel;
13058 bfd_byte *loc;
252b5132
RH
13059
13060 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
13061 BFD_ASSERT (h->dynindx != -1
13062 && (h->root.type == bfd_link_hash_defined
13063 || h->root.type == bfd_link_hash_defweak));
13064
362d30a1 13065 s = htab->srelbss;
252b5132
RH
13066 BFD_ASSERT (s != NULL);
13067
00a97672 13068 rel.r_addend = 0;
252b5132
RH
13069 rel.r_offset = (h->root.u.def.value
13070 + h->root.u.def.section->output_section->vma
13071 + h->root.u.def.section->output_offset);
13072 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
00a97672
RS
13073 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
13074 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
13075 }
13076
00a97672
RS
13077 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13078 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13079 to the ".got" section. */
252b5132 13080 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
00a97672 13081 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
13082 sym->st_shndx = SHN_ABS;
13083
b34976b6 13084 return TRUE;
252b5132
RH
13085}
13086
0855e32b
NS
13087static void
13088arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
13089 void *contents,
13090 const unsigned long *template, unsigned count)
13091{
13092 unsigned ix;
13093
13094 for (ix = 0; ix != count; ix++)
13095 {
13096 unsigned long insn = template[ix];
13097
13098 /* Emit mov pc,rx if bx is not permitted. */
13099 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
13100 insn = (insn & 0xf000000f) | 0x01a0f000;
13101 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
13102 }
13103}
13104
252b5132
RH
13105/* Finish up the dynamic sections. */
13106
b34976b6 13107static bfd_boolean
57e8b36a 13108elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
13109{
13110 bfd * dynobj;
13111 asection * sgot;
13112 asection * sdyn;
4dfe6ac6
NC
13113 struct elf32_arm_link_hash_table *htab;
13114
13115 htab = elf32_arm_hash_table (info);
13116 if (htab == NULL)
13117 return FALSE;
252b5132
RH
13118
13119 dynobj = elf_hash_table (info)->dynobj;
13120
362d30a1 13121 sgot = htab->root.sgotplt;
4dfe6ac6 13122 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
13123 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13124
13125 if (elf_hash_table (info)->dynamic_sections_created)
13126 {
13127 asection *splt;
13128 Elf32_External_Dyn *dyncon, *dynconend;
13129
362d30a1 13130 splt = htab->root.splt;
24a1ba0f 13131 BFD_ASSERT (splt != NULL && sdyn != NULL);
252b5132
RH
13132
13133 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 13134 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 13135
252b5132
RH
13136 for (; dyncon < dynconend; dyncon++)
13137 {
13138 Elf_Internal_Dyn dyn;
13139 const char * name;
13140 asection * s;
13141
13142 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
13143
13144 switch (dyn.d_tag)
13145 {
229fcec5
MM
13146 unsigned int type;
13147
252b5132 13148 default:
7a2b07ff
NS
13149 if (htab->vxworks_p
13150 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
13151 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
13152 break;
13153
229fcec5
MM
13154 case DT_HASH:
13155 name = ".hash";
13156 goto get_vma_if_bpabi;
13157 case DT_STRTAB:
13158 name = ".dynstr";
13159 goto get_vma_if_bpabi;
13160 case DT_SYMTAB:
13161 name = ".dynsym";
13162 goto get_vma_if_bpabi;
c0042f5d
MM
13163 case DT_VERSYM:
13164 name = ".gnu.version";
13165 goto get_vma_if_bpabi;
13166 case DT_VERDEF:
13167 name = ".gnu.version_d";
13168 goto get_vma_if_bpabi;
13169 case DT_VERNEED:
13170 name = ".gnu.version_r";
13171 goto get_vma_if_bpabi;
13172
252b5132
RH
13173 case DT_PLTGOT:
13174 name = ".got";
13175 goto get_vma;
13176 case DT_JMPREL:
00a97672 13177 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
13178 get_vma:
13179 s = bfd_get_section_by_name (output_bfd, name);
13180 BFD_ASSERT (s != NULL);
229fcec5
MM
13181 if (!htab->symbian_p)
13182 dyn.d_un.d_ptr = s->vma;
13183 else
13184 /* In the BPABI, tags in the PT_DYNAMIC section point
13185 at the file offset, not the memory address, for the
13186 convenience of the post linker. */
13187 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
13188 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13189 break;
13190
229fcec5
MM
13191 get_vma_if_bpabi:
13192 if (htab->symbian_p)
13193 goto get_vma;
13194 break;
13195
252b5132 13196 case DT_PLTRELSZ:
362d30a1 13197 s = htab->root.srelplt;
252b5132 13198 BFD_ASSERT (s != NULL);
eea6121a 13199 dyn.d_un.d_val = s->size;
252b5132
RH
13200 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13201 break;
906e58ca 13202
252b5132 13203 case DT_RELSZ:
00a97672 13204 case DT_RELASZ:
229fcec5
MM
13205 if (!htab->symbian_p)
13206 {
13207 /* My reading of the SVR4 ABI indicates that the
13208 procedure linkage table relocs (DT_JMPREL) should be
13209 included in the overall relocs (DT_REL). This is
13210 what Solaris does. However, UnixWare can not handle
13211 that case. Therefore, we override the DT_RELSZ entry
13212 here to make it not include the JMPREL relocs. Since
00a97672 13213 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
13214 other relocation sections, we don't have to worry
13215 about changing the DT_REL entry. */
362d30a1 13216 s = htab->root.srelplt;
229fcec5
MM
13217 if (s != NULL)
13218 dyn.d_un.d_val -= s->size;
13219 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13220 break;
13221 }
8029a119 13222 /* Fall through. */
229fcec5
MM
13223
13224 case DT_REL:
13225 case DT_RELA:
229fcec5
MM
13226 /* In the BPABI, the DT_REL tag must point at the file
13227 offset, not the VMA, of the first relocation
13228 section. So, we use code similar to that in
13229 elflink.c, but do not check for SHF_ALLOC on the
13230 relcoation section, since relocations sections are
13231 never allocated under the BPABI. The comments above
13232 about Unixware notwithstanding, we include all of the
13233 relocations here. */
13234 if (htab->symbian_p)
13235 {
13236 unsigned int i;
13237 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13238 ? SHT_REL : SHT_RELA);
13239 dyn.d_un.d_val = 0;
13240 for (i = 1; i < elf_numsections (output_bfd); i++)
13241 {
906e58ca 13242 Elf_Internal_Shdr *hdr
229fcec5
MM
13243 = elf_elfsections (output_bfd)[i];
13244 if (hdr->sh_type == type)
13245 {
906e58ca 13246 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
13247 || dyn.d_tag == DT_RELASZ)
13248 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
13249 else if ((ufile_ptr) hdr->sh_offset
13250 <= dyn.d_un.d_val - 1)
229fcec5
MM
13251 dyn.d_un.d_val = hdr->sh_offset;
13252 }
13253 }
13254 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13255 }
252b5132 13256 break;
88f7bcd5 13257
0855e32b
NS
13258 case DT_TLSDESC_PLT:
13259 s = htab->root.splt;
13260 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13261 + htab->dt_tlsdesc_plt);
13262 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13263 break;
13264
13265 case DT_TLSDESC_GOT:
13266 s = htab->root.sgot;
13267 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13268 + htab->dt_tlsdesc_got);
13269 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13270 break;
13271
88f7bcd5
NC
13272 /* Set the bottom bit of DT_INIT/FINI if the
13273 corresponding function is Thumb. */
13274 case DT_INIT:
13275 name = info->init_function;
13276 goto get_sym;
13277 case DT_FINI:
13278 name = info->fini_function;
13279 get_sym:
13280 /* If it wasn't set by elf_bfd_final_link
4cc11e76 13281 then there is nothing to adjust. */
88f7bcd5
NC
13282 if (dyn.d_un.d_val != 0)
13283 {
13284 struct elf_link_hash_entry * eh;
13285
13286 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 13287 FALSE, FALSE, TRUE);
906e58ca 13288 if (eh != NULL
88f7bcd5
NC
13289 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
13290 {
13291 dyn.d_un.d_val |= 1;
b34976b6 13292 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
13293 }
13294 }
13295 break;
252b5132
RH
13296 }
13297 }
13298
24a1ba0f 13299 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 13300 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 13301 {
00a97672
RS
13302 const bfd_vma *plt0_entry;
13303 bfd_vma got_address, plt_address, got_displacement;
13304
13305 /* Calculate the addresses of the GOT and PLT. */
13306 got_address = sgot->output_section->vma + sgot->output_offset;
13307 plt_address = splt->output_section->vma + splt->output_offset;
13308
13309 if (htab->vxworks_p)
13310 {
13311 /* The VxWorks GOT is relocated by the dynamic linker.
13312 Therefore, we must emit relocations rather than simply
13313 computing the values now. */
13314 Elf_Internal_Rela rel;
13315
13316 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
13317 put_arm_insn (htab, output_bfd, plt0_entry[0],
13318 splt->contents + 0);
13319 put_arm_insn (htab, output_bfd, plt0_entry[1],
13320 splt->contents + 4);
13321 put_arm_insn (htab, output_bfd, plt0_entry[2],
13322 splt->contents + 8);
00a97672
RS
13323 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
13324
8029a119 13325 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
13326 rel.r_offset = plt_address + 12;
13327 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
13328 rel.r_addend = 0;
13329 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
13330 htab->srelplt2->contents);
13331 }
13332 else
13333 {
13334 got_displacement = got_address - (plt_address + 16);
13335
13336 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
13337 put_arm_insn (htab, output_bfd, plt0_entry[0],
13338 splt->contents + 0);
13339 put_arm_insn (htab, output_bfd, plt0_entry[1],
13340 splt->contents + 4);
13341 put_arm_insn (htab, output_bfd, plt0_entry[2],
13342 splt->contents + 8);
13343 put_arm_insn (htab, output_bfd, plt0_entry[3],
13344 splt->contents + 12);
5e681ec4 13345
5e681ec4 13346#ifdef FOUR_WORD_PLT
00a97672
RS
13347 /* The displacement value goes in the otherwise-unused
13348 last word of the second entry. */
13349 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 13350#else
00a97672 13351 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 13352#endif
00a97672 13353 }
f7a74f8c 13354 }
252b5132
RH
13355
13356 /* UnixWare sets the entsize of .plt to 4, although that doesn't
13357 really seem like the right value. */
74541ad4
AM
13358 if (splt->output_section->owner == output_bfd)
13359 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 13360
0855e32b
NS
13361 if (htab->dt_tlsdesc_plt)
13362 {
13363 bfd_vma got_address
13364 = sgot->output_section->vma + sgot->output_offset;
13365 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
13366 + htab->root.sgot->output_offset);
13367 bfd_vma plt_address
13368 = splt->output_section->vma + splt->output_offset;
13369
13370 arm_put_trampoline (htab, output_bfd,
13371 splt->contents + htab->dt_tlsdesc_plt,
13372 dl_tlsdesc_lazy_trampoline, 6);
13373
13374 bfd_put_32 (output_bfd,
13375 gotplt_address + htab->dt_tlsdesc_got
13376 - (plt_address + htab->dt_tlsdesc_plt)
13377 - dl_tlsdesc_lazy_trampoline[6],
13378 splt->contents + htab->dt_tlsdesc_plt + 24);
13379 bfd_put_32 (output_bfd,
13380 got_address - (plt_address + htab->dt_tlsdesc_plt)
13381 - dl_tlsdesc_lazy_trampoline[7],
13382 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
13383 }
13384
13385 if (htab->tls_trampoline)
13386 {
13387 arm_put_trampoline (htab, output_bfd,
13388 splt->contents + htab->tls_trampoline,
13389 tls_trampoline, 3);
13390#ifdef FOUR_WORD_PLT
13391 bfd_put_32 (output_bfd, 0x00000000,
13392 splt->contents + htab->tls_trampoline + 12);
13393#endif
13394 }
13395
362d30a1 13396 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
00a97672
RS
13397 {
13398 /* Correct the .rel(a).plt.unloaded relocations. They will have
13399 incorrect symbol indexes. */
13400 int num_plts;
eed62c48 13401 unsigned char *p;
00a97672 13402
362d30a1 13403 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
13404 / htab->plt_entry_size);
13405 p = htab->srelplt2->contents + RELOC_SIZE (htab);
13406
13407 for (; num_plts; num_plts--)
13408 {
13409 Elf_Internal_Rela rel;
13410
13411 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
13412 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
13413 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
13414 p += RELOC_SIZE (htab);
13415
13416 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
13417 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
13418 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
13419 p += RELOC_SIZE (htab);
13420 }
13421 }
252b5132
RH
13422 }
13423
13424 /* Fill in the first three entries in the global offset table. */
229fcec5 13425 if (sgot)
252b5132 13426 {
229fcec5
MM
13427 if (sgot->size > 0)
13428 {
13429 if (sdyn == NULL)
13430 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
13431 else
13432 bfd_put_32 (output_bfd,
13433 sdyn->output_section->vma + sdyn->output_offset,
13434 sgot->contents);
13435 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
13436 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
13437 }
252b5132 13438
229fcec5
MM
13439 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
13440 }
252b5132 13441
b34976b6 13442 return TRUE;
252b5132
RH
13443}
13444
ba96a88f 13445static void
57e8b36a 13446elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 13447{
9b485d32 13448 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 13449 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
13450
13451 i_ehdrp = elf_elfheader (abfd);
13452
94a3258f
PB
13453 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
13454 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
13455 else
13456 i_ehdrp->e_ident[EI_OSABI] = 0;
ba96a88f 13457 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 13458
93204d3a
PB
13459 if (link_info)
13460 {
13461 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 13462 if (globals != NULL && globals->byteswap_code)
93204d3a
PB
13463 i_ehdrp->e_flags |= EF_ARM_BE8;
13464 }
ba96a88f
NC
13465}
13466
99e4ae17 13467static enum elf_reloc_type_class
57e8b36a 13468elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
99e4ae17 13469{
f51e552e 13470 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
13471 {
13472 case R_ARM_RELATIVE:
13473 return reloc_class_relative;
13474 case R_ARM_JUMP_SLOT:
13475 return reloc_class_plt;
13476 case R_ARM_COPY:
13477 return reloc_class_copy;
13478 default:
13479 return reloc_class_normal;
13480 }
13481}
13482
e16bb312
NC
13483/* Set the right machine number for an Arm ELF file. */
13484
13485static bfd_boolean
57e8b36a 13486elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
e16bb312
NC
13487{
13488 if (hdr->sh_type == SHT_NOTE)
13489 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
13490
13491 return TRUE;
13492}
13493
e489d0ae 13494static void
57e8b36a 13495elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 13496{
5a6c6817 13497 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
13498}
13499
40a18ebd
NC
13500/* Return TRUE if this is an unwinding table entry. */
13501
13502static bfd_boolean
13503is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
13504{
0112cd26
NC
13505 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
13506 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
13507}
13508
13509
13510/* Set the type and flags for an ARM section. We do this by
13511 the section name, which is a hack, but ought to work. */
13512
13513static bfd_boolean
13514elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
13515{
13516 const char * name;
13517
13518 name = bfd_get_section_name (abfd, sec);
13519
13520 if (is_arm_elf_unwind_section_name (abfd, name))
13521 {
13522 hdr->sh_type = SHT_ARM_EXIDX;
13523 hdr->sh_flags |= SHF_LINK_ORDER;
13524 }
13525 return TRUE;
13526}
13527
6dc132d9
L
13528/* Handle an ARM specific section when reading an object file. This is
13529 called when bfd_section_from_shdr finds a section with an unknown
13530 type. */
40a18ebd
NC
13531
13532static bfd_boolean
13533elf32_arm_section_from_shdr (bfd *abfd,
13534 Elf_Internal_Shdr * hdr,
6dc132d9
L
13535 const char *name,
13536 int shindex)
40a18ebd
NC
13537{
13538 /* There ought to be a place to keep ELF backend specific flags, but
13539 at the moment there isn't one. We just keep track of the
13540 sections by their name, instead. Fortunately, the ABI gives
13541 names for all the ARM specific sections, so we will probably get
13542 away with this. */
13543 switch (hdr->sh_type)
13544 {
13545 case SHT_ARM_EXIDX:
0951f019
RE
13546 case SHT_ARM_PREEMPTMAP:
13547 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
13548 break;
13549
13550 default:
13551 return FALSE;
13552 }
13553
6dc132d9 13554 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
13555 return FALSE;
13556
13557 return TRUE;
13558}
e489d0ae 13559
44444f50
NC
13560static _arm_elf_section_data *
13561get_arm_elf_section_data (asection * sec)
13562{
47b2e99c
JZ
13563 if (sec && sec->owner && is_arm_elf (sec->owner))
13564 return elf32_arm_section_data (sec);
44444f50
NC
13565 else
13566 return NULL;
8e3de13a
NC
13567}
13568
4e617b1e
PB
13569typedef struct
13570{
13571 void *finfo;
13572 struct bfd_link_info *info;
91a5743d
PB
13573 asection *sec;
13574 int sec_shndx;
6e0b88f1
AM
13575 int (*func) (void *, const char *, Elf_Internal_Sym *,
13576 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
13577} output_arch_syminfo;
13578
13579enum map_symbol_type
13580{
13581 ARM_MAP_ARM,
13582 ARM_MAP_THUMB,
13583 ARM_MAP_DATA
13584};
13585
13586
7413f23f 13587/* Output a single mapping symbol. */
4e617b1e
PB
13588
13589static bfd_boolean
7413f23f
DJ
13590elf32_arm_output_map_sym (output_arch_syminfo *osi,
13591 enum map_symbol_type type,
13592 bfd_vma offset)
4e617b1e
PB
13593{
13594 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
13595 Elf_Internal_Sym sym;
13596
91a5743d
PB
13597 sym.st_value = osi->sec->output_section->vma
13598 + osi->sec->output_offset
13599 + offset;
4e617b1e
PB
13600 sym.st_size = 0;
13601 sym.st_other = 0;
13602 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 13603 sym.st_shndx = osi->sec_shndx;
fe33d2fa 13604 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
6e0b88f1 13605 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
13606}
13607
13608
13609/* Output mapping symbols for PLT entries associated with H. */
13610
13611static bfd_boolean
13612elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
13613{
13614 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
13615 struct elf32_arm_link_hash_table *htab;
13616 struct elf32_arm_link_hash_entry *eh;
13617 bfd_vma addr;
13618
4e617b1e
PB
13619 if (h->root.type == bfd_link_hash_indirect)
13620 return TRUE;
13621
13622 if (h->root.type == bfd_link_hash_warning)
13623 /* When warning symbols are created, they **replace** the "real"
13624 entry in the hash table, thus we never get to see the real
13625 symbol in a hash traversal. So look at it now. */
13626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13627
13628 if (h->plt.offset == (bfd_vma) -1)
13629 return TRUE;
13630
4dfe6ac6
NC
13631 htab = elf32_arm_hash_table (osi->info);
13632 if (htab == NULL)
13633 return FALSE;
13634
4e617b1e
PB
13635 eh = (struct elf32_arm_link_hash_entry *) h;
13636 addr = h->plt.offset;
13637 if (htab->symbian_p)
13638 {
7413f23f 13639 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 13640 return FALSE;
7413f23f 13641 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
13642 return FALSE;
13643 }
13644 else if (htab->vxworks_p)
13645 {
7413f23f 13646 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 13647 return FALSE;
7413f23f 13648 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 13649 return FALSE;
7413f23f 13650 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 13651 return FALSE;
7413f23f 13652 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
13653 return FALSE;
13654 }
13655 else
13656 {
bd97cb95
DJ
13657 bfd_signed_vma thumb_refs;
13658
13659 thumb_refs = eh->plt_thumb_refcount;
13660 if (!htab->use_blx)
13661 thumb_refs += eh->plt_maybe_thumb_refcount;
4e617b1e 13662
bd97cb95 13663 if (thumb_refs > 0)
4e617b1e 13664 {
7413f23f 13665 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
13666 return FALSE;
13667 }
13668#ifdef FOUR_WORD_PLT
7413f23f 13669 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 13670 return FALSE;
7413f23f 13671 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
13672 return FALSE;
13673#else
906e58ca 13674 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
13675 so only need to output a mapping symbol for the first PLT entry and
13676 entries with thumb thunks. */
bd97cb95 13677 if (thumb_refs > 0 || addr == 20)
4e617b1e 13678 {
7413f23f 13679 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
13680 return FALSE;
13681 }
13682#endif
13683 }
13684
13685 return TRUE;
13686}
13687
7413f23f
DJ
13688/* Output a single local symbol for a generated stub. */
13689
13690static bfd_boolean
13691elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
13692 bfd_vma offset, bfd_vma size)
13693{
7413f23f
DJ
13694 Elf_Internal_Sym sym;
13695
7413f23f
DJ
13696 sym.st_value = osi->sec->output_section->vma
13697 + osi->sec->output_offset
13698 + offset;
13699 sym.st_size = size;
13700 sym.st_other = 0;
13701 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13702 sym.st_shndx = osi->sec_shndx;
6e0b88f1 13703 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 13704}
4e617b1e 13705
da5938a2 13706static bfd_boolean
8029a119
NC
13707arm_map_one_stub (struct bfd_hash_entry * gen_entry,
13708 void * in_arg)
da5938a2
NC
13709{
13710 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
13711 asection *stub_sec;
13712 bfd_vma addr;
7413f23f 13713 char *stub_name;
9a008db3 13714 output_arch_syminfo *osi;
d3ce72d0 13715 const insn_sequence *template_sequence;
461a49ca
DJ
13716 enum stub_insn_type prev_type;
13717 int size;
13718 int i;
13719 enum map_symbol_type sym_type;
da5938a2
NC
13720
13721 /* Massage our args to the form they really have. */
13722 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 13723 osi = (output_arch_syminfo *) in_arg;
da5938a2 13724
da5938a2
NC
13725 stub_sec = stub_entry->stub_sec;
13726
13727 /* Ensure this stub is attached to the current section being
7413f23f 13728 processed. */
da5938a2
NC
13729 if (stub_sec != osi->sec)
13730 return TRUE;
13731
7413f23f
DJ
13732 addr = (bfd_vma) stub_entry->stub_offset;
13733 stub_name = stub_entry->output_name;
da5938a2 13734
d3ce72d0
NC
13735 template_sequence = stub_entry->stub_template;
13736 switch (template_sequence[0].type)
7413f23f 13737 {
461a49ca
DJ
13738 case ARM_TYPE:
13739 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
13740 return FALSE;
13741 break;
461a49ca 13742 case THUMB16_TYPE:
48229727 13743 case THUMB32_TYPE:
461a49ca
DJ
13744 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
13745 stub_entry->stub_size))
da5938a2
NC
13746 return FALSE;
13747 break;
13748 default:
13749 BFD_FAIL ();
48229727 13750 return 0;
7413f23f 13751 }
da5938a2 13752
461a49ca
DJ
13753 prev_type = DATA_TYPE;
13754 size = 0;
13755 for (i = 0; i < stub_entry->stub_template_size; i++)
13756 {
d3ce72d0 13757 switch (template_sequence[i].type)
461a49ca
DJ
13758 {
13759 case ARM_TYPE:
13760 sym_type = ARM_MAP_ARM;
13761 break;
13762
13763 case THUMB16_TYPE:
48229727 13764 case THUMB32_TYPE:
461a49ca
DJ
13765 sym_type = ARM_MAP_THUMB;
13766 break;
13767
13768 case DATA_TYPE:
13769 sym_type = ARM_MAP_DATA;
13770 break;
13771
13772 default:
13773 BFD_FAIL ();
4e31c731 13774 return FALSE;
461a49ca
DJ
13775 }
13776
d3ce72d0 13777 if (template_sequence[i].type != prev_type)
461a49ca 13778 {
d3ce72d0 13779 prev_type = template_sequence[i].type;
461a49ca
DJ
13780 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
13781 return FALSE;
13782 }
13783
d3ce72d0 13784 switch (template_sequence[i].type)
461a49ca
DJ
13785 {
13786 case ARM_TYPE:
48229727 13787 case THUMB32_TYPE:
461a49ca
DJ
13788 size += 4;
13789 break;
13790
13791 case THUMB16_TYPE:
13792 size += 2;
13793 break;
13794
13795 case DATA_TYPE:
13796 size += 4;
13797 break;
13798
13799 default:
13800 BFD_FAIL ();
4e31c731 13801 return FALSE;
461a49ca
DJ
13802 }
13803 }
13804
da5938a2
NC
13805 return TRUE;
13806}
13807
33811162
DG
13808/* Output mapping symbols for linker generated sections,
13809 and for those data-only sections that do not have a
13810 $d. */
4e617b1e
PB
13811
13812static bfd_boolean
13813elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca
NC
13814 struct bfd_link_info *info,
13815 void *finfo,
6e0b88f1
AM
13816 int (*func) (void *, const char *,
13817 Elf_Internal_Sym *,
13818 asection *,
13819 struct elf_link_hash_entry *))
4e617b1e
PB
13820{
13821 output_arch_syminfo osi;
13822 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
13823 bfd_vma offset;
13824 bfd_size_type size;
33811162 13825 bfd *input_bfd;
4e617b1e
PB
13826
13827 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13828 if (htab == NULL)
13829 return FALSE;
13830
906e58ca 13831 check_use_blx (htab);
91a5743d 13832
4e617b1e
PB
13833 osi.finfo = finfo;
13834 osi.info = info;
13835 osi.func = func;
906e58ca 13836
33811162
DG
13837 /* Add a $d mapping symbol to data-only sections that
13838 don't have any mapping symbol. This may result in (harmless) redundant
13839 mapping symbols. */
13840 for (input_bfd = info->input_bfds;
13841 input_bfd != NULL;
13842 input_bfd = input_bfd->link_next)
13843 {
13844 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
13845 for (osi.sec = input_bfd->sections;
13846 osi.sec != NULL;
13847 osi.sec = osi.sec->next)
13848 {
13849 if (osi.sec->output_section != NULL
f7dd8c79
DJ
13850 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
13851 != 0)
33811162
DG
13852 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
13853 == SEC_HAS_CONTENTS
13854 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0
DJ
13855 && get_arm_elf_section_data (osi.sec)->mapcount == 0
13856 && osi.sec->size > 0)
33811162
DG
13857 {
13858 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13859 (output_bfd, osi.sec->output_section);
13860 if (osi.sec_shndx != (int)SHN_BAD)
13861 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
13862 }
13863 }
13864 }
13865
91a5743d
PB
13866 /* ARM->Thumb glue. */
13867 if (htab->arm_glue_size > 0)
13868 {
13869 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13870 ARM2THUMB_GLUE_SECTION_NAME);
13871
13872 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13873 (output_bfd, osi.sec->output_section);
13874 if (info->shared || htab->root.is_relocatable_executable
13875 || htab->pic_veneer)
13876 size = ARM2THUMB_PIC_GLUE_SIZE;
13877 else if (htab->use_blx)
13878 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
13879 else
13880 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 13881
91a5743d
PB
13882 for (offset = 0; offset < htab->arm_glue_size; offset += size)
13883 {
7413f23f
DJ
13884 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
13885 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
13886 }
13887 }
13888
13889 /* Thumb->ARM glue. */
13890 if (htab->thumb_glue_size > 0)
13891 {
13892 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13893 THUMB2ARM_GLUE_SECTION_NAME);
13894
13895 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13896 (output_bfd, osi.sec->output_section);
13897 size = THUMB2ARM_GLUE_SIZE;
13898
13899 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
13900 {
7413f23f
DJ
13901 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
13902 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
13903 }
13904 }
13905
845b51d6
PB
13906 /* ARMv4 BX veneers. */
13907 if (htab->bx_glue_size > 0)
13908 {
13909 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13910 ARM_BX_GLUE_SECTION_NAME);
13911
13912 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13913 (output_bfd, osi.sec->output_section);
13914
7413f23f 13915 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
13916 }
13917
8029a119
NC
13918 /* Long calls stubs. */
13919 if (htab->stub_bfd && htab->stub_bfd->sections)
13920 {
da5938a2 13921 asection* stub_sec;
8029a119 13922
da5938a2
NC
13923 for (stub_sec = htab->stub_bfd->sections;
13924 stub_sec != NULL;
8029a119
NC
13925 stub_sec = stub_sec->next)
13926 {
13927 /* Ignore non-stub sections. */
13928 if (!strstr (stub_sec->name, STUB_SUFFIX))
13929 continue;
da5938a2 13930
8029a119 13931 osi.sec = stub_sec;
da5938a2 13932
8029a119
NC
13933 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13934 (output_bfd, osi.sec->output_section);
da5938a2 13935
8029a119
NC
13936 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13937 }
13938 }
da5938a2 13939
91a5743d 13940 /* Finally, output mapping symbols for the PLT. */
362d30a1 13941 if (!htab->root.splt || htab->root.splt->size == 0)
91a5743d
PB
13942 return TRUE;
13943
362d30a1 13944 osi.sec = htab->root.splt;
91a5743d 13945 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
362d30a1 13946 osi.sec->output_section);
4e617b1e
PB
13947 /* Output mapping symbols for the plt header. SymbianOS does not have a
13948 plt header. */
13949 if (htab->vxworks_p)
13950 {
13951 /* VxWorks shared libraries have no PLT header. */
13952 if (!info->shared)
13953 {
7413f23f 13954 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 13955 return FALSE;
7413f23f 13956 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
4e617b1e
PB
13957 return FALSE;
13958 }
13959 }
13960 else if (!htab->symbian_p)
13961 {
7413f23f 13962 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e
PB
13963 return FALSE;
13964#ifndef FOUR_WORD_PLT
7413f23f 13965 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e
PB
13966 return FALSE;
13967#endif
13968 }
13969
0855e32b
NS
13970 if (htab->dt_tlsdesc_plt != 0)
13971 {
13972 /* Mapping symbols for the lazy tls trampoline. */
13973 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
13974 return FALSE;
13975
13976 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
13977 htab->dt_tlsdesc_plt + 24))
13978 return FALSE;
13979 }
13980 if (htab->tls_trampoline != 0)
13981 {
13982 /* Mapping symbols for the tls trampoline. */
13983 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
13984 return FALSE;
13985#ifdef FOUR_WORD_PLT
13986 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
13987 htab->tls_trampoline + 12))
13988 return FALSE;
13989#endif
13990 }
13991
4e617b1e
PB
13992 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13993 return TRUE;
13994}
13995
e489d0ae
PB
13996/* Allocate target specific section data. */
13997
13998static bfd_boolean
13999elf32_arm_new_section_hook (bfd *abfd, asection *sec)
14000{
f592407e
AM
14001 if (!sec->used_by_bfd)
14002 {
14003 _arm_elf_section_data *sdata;
14004 bfd_size_type amt = sizeof (*sdata);
e489d0ae 14005
21d799b5 14006 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
14007 if (sdata == NULL)
14008 return FALSE;
14009 sec->used_by_bfd = sdata;
14010 }
e489d0ae
PB
14011
14012 return _bfd_elf_new_section_hook (abfd, sec);
14013}
14014
14015
14016/* Used to order a list of mapping symbols by address. */
14017
14018static int
14019elf32_arm_compare_mapping (const void * a, const void * b)
14020{
7f6a71ff
JM
14021 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
14022 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
14023
14024 if (amap->vma > bmap->vma)
14025 return 1;
14026 else if (amap->vma < bmap->vma)
14027 return -1;
14028 else if (amap->type > bmap->type)
14029 /* Ensure results do not depend on the host qsort for objects with
14030 multiple mapping symbols at the same address by sorting on type
14031 after vma. */
14032 return 1;
14033 else if (amap->type < bmap->type)
14034 return -1;
14035 else
14036 return 0;
e489d0ae
PB
14037}
14038
2468f9c9
PB
14039/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
14040
14041static unsigned long
14042offset_prel31 (unsigned long addr, bfd_vma offset)
14043{
14044 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
14045}
14046
14047/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14048 relocations. */
14049
14050static void
14051copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
14052{
14053 unsigned long first_word = bfd_get_32 (output_bfd, from);
14054 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
14055
14056 /* High bit of first word is supposed to be zero. */
14057 if ((first_word & 0x80000000ul) == 0)
14058 first_word = offset_prel31 (first_word, offset);
14059
14060 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14061 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
14062 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
14063 second_word = offset_prel31 (second_word, offset);
14064
14065 bfd_put_32 (output_bfd, first_word, to);
14066 bfd_put_32 (output_bfd, second_word, to + 4);
14067}
e489d0ae 14068
48229727
JB
14069/* Data for make_branch_to_a8_stub(). */
14070
14071struct a8_branch_to_stub_data {
14072 asection *writing_section;
14073 bfd_byte *contents;
14074};
14075
14076
14077/* Helper to insert branches to Cortex-A8 erratum stubs in the right
14078 places for a particular section. */
14079
14080static bfd_boolean
14081make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
14082 void *in_arg)
14083{
14084 struct elf32_arm_stub_hash_entry *stub_entry;
14085 struct a8_branch_to_stub_data *data;
14086 bfd_byte *contents;
14087 unsigned long branch_insn;
14088 bfd_vma veneered_insn_loc, veneer_entry_loc;
14089 bfd_signed_vma branch_offset;
14090 bfd *abfd;
91d6fa6a 14091 unsigned int target;
48229727
JB
14092
14093 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14094 data = (struct a8_branch_to_stub_data *) in_arg;
14095
14096 if (stub_entry->target_section != data->writing_section
4563a860 14097 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
14098 return TRUE;
14099
14100 contents = data->contents;
14101
14102 veneered_insn_loc = stub_entry->target_section->output_section->vma
14103 + stub_entry->target_section->output_offset
14104 + stub_entry->target_value;
14105
14106 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
14107 + stub_entry->stub_sec->output_offset
14108 + stub_entry->stub_offset;
14109
14110 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
14111 veneered_insn_loc &= ~3u;
14112
14113 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
14114
14115 abfd = stub_entry->target_section->owner;
91d6fa6a 14116 target = stub_entry->target_value;
48229727
JB
14117
14118 /* We attempt to avoid this condition by setting stubs_always_after_branch
14119 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14120 This check is just to be on the safe side... */
14121 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
14122 {
14123 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
14124 "allocated in unsafe location"), abfd);
14125 return FALSE;
14126 }
14127
14128 switch (stub_entry->stub_type)
14129 {
14130 case arm_stub_a8_veneer_b:
14131 case arm_stub_a8_veneer_b_cond:
14132 branch_insn = 0xf0009000;
14133 goto jump24;
14134
14135 case arm_stub_a8_veneer_blx:
14136 branch_insn = 0xf000e800;
14137 goto jump24;
14138
14139 case arm_stub_a8_veneer_bl:
14140 {
14141 unsigned int i1, j1, i2, j2, s;
14142
14143 branch_insn = 0xf000d000;
14144
14145 jump24:
14146 if (branch_offset < -16777216 || branch_offset > 16777214)
14147 {
14148 /* There's not much we can do apart from complain if this
14149 happens. */
14150 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
14151 "of range (input file too large)"), abfd);
14152 return FALSE;
14153 }
14154
14155 /* i1 = not(j1 eor s), so:
14156 not i1 = j1 eor s
14157 j1 = (not i1) eor s. */
14158
14159 branch_insn |= (branch_offset >> 1) & 0x7ff;
14160 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
14161 i2 = (branch_offset >> 22) & 1;
14162 i1 = (branch_offset >> 23) & 1;
14163 s = (branch_offset >> 24) & 1;
14164 j1 = (!i1) ^ s;
14165 j2 = (!i2) ^ s;
14166 branch_insn |= j2 << 11;
14167 branch_insn |= j1 << 13;
14168 branch_insn |= s << 26;
14169 }
14170 break;
14171
14172 default:
14173 BFD_FAIL ();
14174 return FALSE;
14175 }
14176
91d6fa6a
NC
14177 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
14178 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
48229727
JB
14179
14180 return TRUE;
14181}
14182
e489d0ae
PB
14183/* Do code byteswapping. Return FALSE afterwards so that the section is
14184 written out as normal. */
14185
14186static bfd_boolean
c7b8f16e 14187elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
14188 struct bfd_link_info *link_info,
14189 asection *sec,
e489d0ae
PB
14190 bfd_byte *contents)
14191{
48229727 14192 unsigned int mapcount, errcount;
8e3de13a 14193 _arm_elf_section_data *arm_data;
c7b8f16e 14194 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 14195 elf32_arm_section_map *map;
c7b8f16e 14196 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
14197 bfd_vma ptr;
14198 bfd_vma end;
c7b8f16e 14199 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 14200 bfd_byte tmp;
48229727 14201 unsigned int i;
57e8b36a 14202
4dfe6ac6
NC
14203 if (globals == NULL)
14204 return FALSE;
14205
8e3de13a
NC
14206 /* If this section has not been allocated an _arm_elf_section_data
14207 structure then we cannot record anything. */
14208 arm_data = get_arm_elf_section_data (sec);
14209 if (arm_data == NULL)
14210 return FALSE;
14211
14212 mapcount = arm_data->mapcount;
14213 map = arm_data->map;
c7b8f16e
JB
14214 errcount = arm_data->erratumcount;
14215
14216 if (errcount != 0)
14217 {
14218 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
14219
14220 for (errnode = arm_data->erratumlist; errnode != 0;
14221 errnode = errnode->next)
14222 {
91d6fa6a 14223 bfd_vma target = errnode->vma - offset;
c7b8f16e
JB
14224
14225 switch (errnode->type)
14226 {
14227 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
14228 {
14229 bfd_vma branch_to_veneer;
14230 /* Original condition code of instruction, plus bit mask for
14231 ARM B instruction. */
14232 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
14233 | 0x0a000000;
14234
14235 /* The instruction is before the label. */
91d6fa6a 14236 target -= 4;
c7b8f16e
JB
14237
14238 /* Above offset included in -4 below. */
14239 branch_to_veneer = errnode->u.b.veneer->vma
14240 - errnode->vma - 4;
14241
14242 if ((signed) branch_to_veneer < -(1 << 25)
14243 || (signed) branch_to_veneer >= (1 << 25))
14244 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14245 "range"), output_bfd);
14246
14247 insn |= (branch_to_veneer >> 2) & 0xffffff;
91d6fa6a
NC
14248 contents[endianflip ^ target] = insn & 0xff;
14249 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14250 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14251 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
c7b8f16e
JB
14252 }
14253 break;
14254
14255 case VFP11_ERRATUM_ARM_VENEER:
14256 {
14257 bfd_vma branch_from_veneer;
14258 unsigned int insn;
14259
14260 /* Take size of veneer into account. */
14261 branch_from_veneer = errnode->u.v.branch->vma
14262 - errnode->vma - 12;
14263
14264 if ((signed) branch_from_veneer < -(1 << 25)
14265 || (signed) branch_from_veneer >= (1 << 25))
14266 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14267 "range"), output_bfd);
14268
14269 /* Original instruction. */
14270 insn = errnode->u.v.branch->u.b.vfp_insn;
91d6fa6a
NC
14271 contents[endianflip ^ target] = insn & 0xff;
14272 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14273 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14274 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
c7b8f16e
JB
14275
14276 /* Branch back to insn after original insn. */
14277 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
91d6fa6a
NC
14278 contents[endianflip ^ (target + 4)] = insn & 0xff;
14279 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
14280 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
14281 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
c7b8f16e
JB
14282 }
14283 break;
14284
14285 default:
14286 abort ();
14287 }
14288 }
14289 }
e489d0ae 14290
2468f9c9
PB
14291 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
14292 {
14293 arm_unwind_table_edit *edit_node
14294 = arm_data->u.exidx.unwind_edit_list;
14295 /* Now, sec->size is the size of the section we will write. The original
14296 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
14297 markers) was sec->rawsize. (This isn't the case if we perform no
14298 edits, then rawsize will be zero and we should use size). */
21d799b5 14299 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
14300 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
14301 unsigned int in_index, out_index;
14302 bfd_vma add_to_offsets = 0;
14303
14304 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
14305 {
14306 if (edit_node)
14307 {
14308 unsigned int edit_index = edit_node->index;
14309
14310 if (in_index < edit_index && in_index * 8 < input_size)
14311 {
14312 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
14313 contents + in_index * 8, add_to_offsets);
14314 out_index++;
14315 in_index++;
14316 }
14317 else if (in_index == edit_index
14318 || (in_index * 8 >= input_size
14319 && edit_index == UINT_MAX))
14320 {
14321 switch (edit_node->type)
14322 {
14323 case DELETE_EXIDX_ENTRY:
14324 in_index++;
14325 add_to_offsets += 8;
14326 break;
14327
14328 case INSERT_EXIDX_CANTUNWIND_AT_END:
14329 {
14330 asection *text_sec = edit_node->linked_section;
14331 bfd_vma text_offset = text_sec->output_section->vma
14332 + text_sec->output_offset
14333 + text_sec->size;
14334 bfd_vma exidx_offset = offset + out_index * 8;
14335 unsigned long prel31_offset;
14336
14337 /* Note: this is meant to be equivalent to an
14338 R_ARM_PREL31 relocation. These synthetic
14339 EXIDX_CANTUNWIND markers are not relocated by the
14340 usual BFD method. */
14341 prel31_offset = (text_offset - exidx_offset)
14342 & 0x7ffffffful;
14343
14344 /* First address we can't unwind. */
14345 bfd_put_32 (output_bfd, prel31_offset,
14346 &edited_contents[out_index * 8]);
14347
14348 /* Code for EXIDX_CANTUNWIND. */
14349 bfd_put_32 (output_bfd, 0x1,
14350 &edited_contents[out_index * 8 + 4]);
14351
14352 out_index++;
14353 add_to_offsets -= 8;
14354 }
14355 break;
14356 }
14357
14358 edit_node = edit_node->next;
14359 }
14360 }
14361 else
14362 {
14363 /* No more edits, copy remaining entries verbatim. */
14364 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
14365 contents + in_index * 8, add_to_offsets);
14366 out_index++;
14367 in_index++;
14368 }
14369 }
14370
14371 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
14372 bfd_set_section_contents (output_bfd, sec->output_section,
14373 edited_contents,
14374 (file_ptr) sec->output_offset, sec->size);
14375
14376 return TRUE;
14377 }
14378
48229727
JB
14379 /* Fix code to point to Cortex-A8 erratum stubs. */
14380 if (globals->fix_cortex_a8)
14381 {
14382 struct a8_branch_to_stub_data data;
14383
14384 data.writing_section = sec;
14385 data.contents = contents;
14386
14387 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
14388 &data);
14389 }
14390
e489d0ae
PB
14391 if (mapcount == 0)
14392 return FALSE;
14393
c7b8f16e 14394 if (globals->byteswap_code)
e489d0ae 14395 {
c7b8f16e 14396 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 14397
c7b8f16e
JB
14398 ptr = map[0].vma;
14399 for (i = 0; i < mapcount; i++)
14400 {
14401 if (i == mapcount - 1)
14402 end = sec->size;
14403 else
14404 end = map[i + 1].vma;
e489d0ae 14405
c7b8f16e 14406 switch (map[i].type)
e489d0ae 14407 {
c7b8f16e
JB
14408 case 'a':
14409 /* Byte swap code words. */
14410 while (ptr + 3 < end)
14411 {
14412 tmp = contents[ptr];
14413 contents[ptr] = contents[ptr + 3];
14414 contents[ptr + 3] = tmp;
14415 tmp = contents[ptr + 1];
14416 contents[ptr + 1] = contents[ptr + 2];
14417 contents[ptr + 2] = tmp;
14418 ptr += 4;
14419 }
14420 break;
e489d0ae 14421
c7b8f16e
JB
14422 case 't':
14423 /* Byte swap code halfwords. */
14424 while (ptr + 1 < end)
14425 {
14426 tmp = contents[ptr];
14427 contents[ptr] = contents[ptr + 1];
14428 contents[ptr + 1] = tmp;
14429 ptr += 2;
14430 }
14431 break;
14432
14433 case 'd':
14434 /* Leave data alone. */
14435 break;
14436 }
14437 ptr = end;
14438 }
e489d0ae 14439 }
8e3de13a 14440
93204d3a 14441 free (map);
47b2e99c 14442 arm_data->mapcount = -1;
c7b8f16e 14443 arm_data->mapsize = 0;
8e3de13a 14444 arm_data->map = NULL;
8e3de13a 14445
e489d0ae
PB
14446 return FALSE;
14447}
14448
b7693d02
DJ
14449/* Display STT_ARM_TFUNC symbols as functions. */
14450
14451static void
14452elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
14453 asymbol *asym)
14454{
14455 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
14456
14457 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
14458 elfsym->symbol.flags |= BSF_FUNCTION;
14459}
14460
0beaef2b
PB
14461
14462/* Mangle thumb function symbols as we read them in. */
14463
8384fb8f 14464static bfd_boolean
0beaef2b
PB
14465elf32_arm_swap_symbol_in (bfd * abfd,
14466 const void *psrc,
14467 const void *pshn,
14468 Elf_Internal_Sym *dst)
14469{
8384fb8f
AM
14470 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
14471 return FALSE;
0beaef2b
PB
14472
14473 /* New EABI objects mark thumb function symbols by setting the low bit of
14474 the address. Turn these into STT_ARM_TFUNC. */
0f88be7a 14475 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
0beaef2b
PB
14476 && (dst->st_value & 1))
14477 {
14478 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
14479 dst->st_value &= ~(bfd_vma) 1;
14480 }
8384fb8f 14481 return TRUE;
0beaef2b
PB
14482}
14483
14484
14485/* Mangle thumb function symbols as we write them out. */
14486
14487static void
14488elf32_arm_swap_symbol_out (bfd *abfd,
14489 const Elf_Internal_Sym *src,
14490 void *cdst,
14491 void *shndx)
14492{
14493 Elf_Internal_Sym newsym;
14494
14495 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
14496 of the address set, as per the new EABI. We do this unconditionally
14497 because objcopy does not set the elf header flags until after
14498 it writes out the symbol table. */
14499 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
14500 {
14501 newsym = *src;
14502 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad
PB
14503 if (newsym.st_shndx != SHN_UNDEF)
14504 {
14505 /* Do this only for defined symbols. At link type, the static
14506 linker will simulate the work of dynamic linker of resolving
14507 symbols and will carry over the thumbness of found symbols to
14508 the output symbol table. It's not clear how it happens, but
b0fead2b 14509 the thumbness of undefined symbols can well be different at
0fa3dcad
PB
14510 runtime, and writing '1' for them will be confusing for users
14511 and possibly for dynamic linker itself.
14512 */
14513 newsym.st_value |= 1;
14514 }
906e58ca 14515
0beaef2b
PB
14516 src = &newsym;
14517 }
14518 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
14519}
14520
b294bdf8
MM
14521/* Add the PT_ARM_EXIDX program header. */
14522
14523static bfd_boolean
906e58ca 14524elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
14525 struct bfd_link_info *info ATTRIBUTE_UNUSED)
14526{
14527 struct elf_segment_map *m;
14528 asection *sec;
14529
14530 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
14531 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
14532 {
14533 /* If there is already a PT_ARM_EXIDX header, then we do not
14534 want to add another one. This situation arises when running
14535 "strip"; the input binary already has the header. */
14536 m = elf_tdata (abfd)->segment_map;
14537 while (m && m->p_type != PT_ARM_EXIDX)
14538 m = m->next;
14539 if (!m)
14540 {
21d799b5
NC
14541 m = (struct elf_segment_map *)
14542 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
14543 if (m == NULL)
14544 return FALSE;
14545 m->p_type = PT_ARM_EXIDX;
14546 m->count = 1;
14547 m->sections[0] = sec;
14548
14549 m->next = elf_tdata (abfd)->segment_map;
14550 elf_tdata (abfd)->segment_map = m;
14551 }
14552 }
14553
14554 return TRUE;
14555}
14556
14557/* We may add a PT_ARM_EXIDX program header. */
14558
14559static int
a6b96beb
AM
14560elf32_arm_additional_program_headers (bfd *abfd,
14561 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
14562{
14563 asection *sec;
14564
14565 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
14566 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
14567 return 1;
14568 else
14569 return 0;
14570}
14571
fcb93ecf 14572/* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
906e58ca 14573
fcb93ecf
PB
14574static bfd_boolean
14575elf32_arm_is_function_type (unsigned int type)
14576{
0f88be7a 14577 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
fcb93ecf
PB
14578}
14579
0beaef2b 14580/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
14581const struct elf_size_info elf32_arm_size_info =
14582{
0beaef2b
PB
14583 sizeof (Elf32_External_Ehdr),
14584 sizeof (Elf32_External_Phdr),
14585 sizeof (Elf32_External_Shdr),
14586 sizeof (Elf32_External_Rel),
14587 sizeof (Elf32_External_Rela),
14588 sizeof (Elf32_External_Sym),
14589 sizeof (Elf32_External_Dyn),
14590 sizeof (Elf_External_Note),
14591 4,
14592 1,
14593 32, 2,
14594 ELFCLASS32, EV_CURRENT,
14595 bfd_elf32_write_out_phdrs,
14596 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 14597 bfd_elf32_checksum_contents,
0beaef2b
PB
14598 bfd_elf32_write_relocs,
14599 elf32_arm_swap_symbol_in,
14600 elf32_arm_swap_symbol_out,
14601 bfd_elf32_slurp_reloc_table,
14602 bfd_elf32_slurp_symbol_table,
14603 bfd_elf32_swap_dyn_in,
14604 bfd_elf32_swap_dyn_out,
14605 bfd_elf32_swap_reloc_in,
14606 bfd_elf32_swap_reloc_out,
14607 bfd_elf32_swap_reloca_in,
14608 bfd_elf32_swap_reloca_out
14609};
14610
252b5132 14611#define ELF_ARCH bfd_arch_arm
ae95ffa6 14612#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 14613#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
14614#ifdef __QNXTARGET__
14615#define ELF_MAXPAGESIZE 0x1000
14616#else
f21f3fe0 14617#define ELF_MAXPAGESIZE 0x8000
d0facd1b 14618#endif
b1342370 14619#define ELF_MINPAGESIZE 0x1000
24718e3b 14620#define ELF_COMMONPAGESIZE 0x1000
252b5132 14621
ba93b8ac
DJ
14622#define bfd_elf32_mkobject elf32_arm_mkobject
14623
99e4ae17
AJ
14624#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
14625#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
14626#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
14627#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
14628#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
906e58ca 14629#define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
dc810e39 14630#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
157090f7 14631#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 14632#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 14633#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 14634#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 14635#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 14636#define bfd_elf32_bfd_final_link elf32_arm_final_link
252b5132
RH
14637
14638#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
14639#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 14640#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
14641#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
14642#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 14643#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 14644#define elf_backend_write_section elf32_arm_write_section
252b5132 14645#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 14646#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
14647#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
14648#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
14649#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 14650#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 14651#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 14652#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 14653#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 14654#define elf_backend_object_p elf32_arm_object_p
e16bb312 14655#define elf_backend_section_flags elf32_arm_section_flags
40a18ebd
NC
14656#define elf_backend_fake_sections elf32_arm_fake_sections
14657#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 14658#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 14659#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
b7693d02 14660#define elf_backend_symbol_processing elf32_arm_symbol_processing
0beaef2b 14661#define elf_backend_size_info elf32_arm_size_info
b294bdf8 14662#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
14663#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
14664#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
14665#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
14666#define elf_backend_is_function_type elf32_arm_is_function_type
14667
14668#define elf_backend_can_refcount 1
14669#define elf_backend_can_gc_sections 1
14670#define elf_backend_plt_readonly 1
14671#define elf_backend_want_got_plt 1
14672#define elf_backend_want_plt_sym 0
14673#define elf_backend_may_use_rel_p 1
14674#define elf_backend_may_use_rela_p 0
4e7fd91e 14675#define elf_backend_default_use_rela_p 0
252b5132 14676
04f7c78d 14677#define elf_backend_got_header_size 12
04f7c78d 14678
906e58ca
NC
14679#undef elf_backend_obj_attrs_vendor
14680#define elf_backend_obj_attrs_vendor "aeabi"
14681#undef elf_backend_obj_attrs_section
14682#define elf_backend_obj_attrs_section ".ARM.attributes"
14683#undef elf_backend_obj_attrs_arg_type
14684#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
14685#undef elf_backend_obj_attrs_section_type
104d59d1 14686#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
5aa6ff7c 14687#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
e8b36cd1 14688#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 14689
252b5132 14690#include "elf32-target.h"
7f266840 14691
906e58ca 14692/* VxWorks Targets. */
4e7fd91e 14693
906e58ca 14694#undef TARGET_LITTLE_SYM
4e7fd91e 14695#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
906e58ca 14696#undef TARGET_LITTLE_NAME
4e7fd91e 14697#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 14698#undef TARGET_BIG_SYM
4e7fd91e 14699#define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
906e58ca 14700#undef TARGET_BIG_NAME
4e7fd91e
PB
14701#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
14702
14703/* Like elf32_arm_link_hash_table_create -- but overrides
14704 appropriately for VxWorks. */
906e58ca 14705
4e7fd91e
PB
14706static struct bfd_link_hash_table *
14707elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
14708{
14709 struct bfd_link_hash_table *ret;
14710
14711 ret = elf32_arm_link_hash_table_create (abfd);
14712 if (ret)
14713 {
14714 struct elf32_arm_link_hash_table *htab
00a97672 14715 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 14716 htab->use_rel = 0;
00a97672 14717 htab->vxworks_p = 1;
4e7fd91e
PB
14718 }
14719 return ret;
906e58ca 14720}
4e7fd91e 14721
00a97672
RS
14722static void
14723elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
14724{
14725 elf32_arm_final_write_processing (abfd, linker);
14726 elf_vxworks_final_write_processing (abfd, linker);
14727}
14728
906e58ca 14729#undef elf32_bed
4e7fd91e
PB
14730#define elf32_bed elf32_arm_vxworks_bed
14731
906e58ca
NC
14732#undef bfd_elf32_bfd_link_hash_table_create
14733#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
14734#undef elf_backend_add_symbol_hook
14735#define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
14736#undef elf_backend_final_write_processing
14737#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
14738#undef elf_backend_emit_relocs
14739#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 14740
906e58ca 14741#undef elf_backend_may_use_rel_p
00a97672 14742#define elf_backend_may_use_rel_p 0
906e58ca 14743#undef elf_backend_may_use_rela_p
00a97672 14744#define elf_backend_may_use_rela_p 1
906e58ca 14745#undef elf_backend_default_use_rela_p
00a97672 14746#define elf_backend_default_use_rela_p 1
906e58ca 14747#undef elf_backend_want_plt_sym
00a97672 14748#define elf_backend_want_plt_sym 1
906e58ca 14749#undef ELF_MAXPAGESIZE
00a97672 14750#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
14751
14752#include "elf32-target.h"
14753
14754
21d799b5
NC
14755/* Merge backend specific data from an object file to the output
14756 object file when linking. */
14757
14758static bfd_boolean
14759elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
14760{
14761 flagword out_flags;
14762 flagword in_flags;
14763 bfd_boolean flags_compatible = TRUE;
14764 asection *sec;
14765
14766 /* Check if we have the same endianess. */
14767 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14768 return FALSE;
14769
14770 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
14771 return TRUE;
14772
14773 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
14774 return FALSE;
14775
14776 /* The input BFD must have had its flags initialised. */
14777 /* The following seems bogus to me -- The flags are initialized in
14778 the assembler but I don't think an elf_flags_init field is
14779 written into the object. */
14780 /* BFD_ASSERT (elf_flags_init (ibfd)); */
14781
14782 in_flags = elf_elfheader (ibfd)->e_flags;
14783 out_flags = elf_elfheader (obfd)->e_flags;
14784
14785 /* In theory there is no reason why we couldn't handle this. However
14786 in practice it isn't even close to working and there is no real
14787 reason to want it. */
14788 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
14789 && !(ibfd->flags & DYNAMIC)
14790 && (in_flags & EF_ARM_BE8))
14791 {
14792 _bfd_error_handler (_("error: %B is already in final BE8 format"),
14793 ibfd);
14794 return FALSE;
14795 }
14796
14797 if (!elf_flags_init (obfd))
14798 {
14799 /* If the input is the default architecture and had the default
14800 flags then do not bother setting the flags for the output
14801 architecture, instead allow future merges to do this. If no
14802 future merges ever set these flags then they will retain their
14803 uninitialised values, which surprise surprise, correspond
14804 to the default values. */
14805 if (bfd_get_arch_info (ibfd)->the_default
14806 && elf_elfheader (ibfd)->e_flags == 0)
14807 return TRUE;
14808
14809 elf_flags_init (obfd) = TRUE;
14810 elf_elfheader (obfd)->e_flags = in_flags;
14811
14812 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14813 && bfd_get_arch_info (obfd)->the_default)
14814 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
14815
14816 return TRUE;
14817 }
14818
14819 /* Determine what should happen if the input ARM architecture
14820 does not match the output ARM architecture. */
14821 if (! bfd_arm_merge_machines (ibfd, obfd))
14822 return FALSE;
14823
14824 /* Identical flags must be compatible. */
14825 if (in_flags == out_flags)
14826 return TRUE;
14827
14828 /* Check to see if the input BFD actually contains any sections. If
14829 not, its flags may not have been initialised either, but it
14830 cannot actually cause any incompatiblity. Do not short-circuit
14831 dynamic objects; their section list may be emptied by
14832 elf_link_add_object_symbols.
14833
14834 Also check to see if there are no code sections in the input.
14835 In this case there is no need to check for code specific flags.
14836 XXX - do we need to worry about floating-point format compatability
14837 in data sections ? */
14838 if (!(ibfd->flags & DYNAMIC))
14839 {
14840 bfd_boolean null_input_bfd = TRUE;
14841 bfd_boolean only_data_sections = TRUE;
14842
14843 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14844 {
14845 /* Ignore synthetic glue sections. */
14846 if (strcmp (sec->name, ".glue_7")
14847 && strcmp (sec->name, ".glue_7t"))
14848 {
14849 if ((bfd_get_section_flags (ibfd, sec)
14850 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14851 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14852 only_data_sections = FALSE;
14853
14854 null_input_bfd = FALSE;
14855 break;
14856 }
14857 }
14858
14859 if (null_input_bfd || only_data_sections)
14860 return TRUE;
14861 }
14862
14863 /* Complain about various flag mismatches. */
14864 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
14865 EF_ARM_EABI_VERSION (out_flags)))
14866 {
14867 _bfd_error_handler
14868 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
14869 ibfd, obfd,
14870 (in_flags & EF_ARM_EABIMASK) >> 24,
14871 (out_flags & EF_ARM_EABIMASK) >> 24);
14872 return FALSE;
14873 }
14874
14875 /* Not sure what needs to be checked for EABI versions >= 1. */
14876 /* VxWorks libraries do not use these flags. */
14877 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
14878 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
14879 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
14880 {
14881 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14882 {
14883 _bfd_error_handler
14884 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
14885 ibfd, obfd,
14886 in_flags & EF_ARM_APCS_26 ? 26 : 32,
14887 out_flags & EF_ARM_APCS_26 ? 26 : 32);
14888 flags_compatible = FALSE;
14889 }
14890
14891 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14892 {
14893 if (in_flags & EF_ARM_APCS_FLOAT)
14894 _bfd_error_handler
14895 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
14896 ibfd, obfd);
14897 else
14898 _bfd_error_handler
14899 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
14900 ibfd, obfd);
14901
14902 flags_compatible = FALSE;
14903 }
14904
14905 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
14906 {
14907 if (in_flags & EF_ARM_VFP_FLOAT)
14908 _bfd_error_handler
14909 (_("error: %B uses VFP instructions, whereas %B does not"),
14910 ibfd, obfd);
14911 else
14912 _bfd_error_handler
14913 (_("error: %B uses FPA instructions, whereas %B does not"),
14914 ibfd, obfd);
14915
14916 flags_compatible = FALSE;
14917 }
14918
14919 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
14920 {
14921 if (in_flags & EF_ARM_MAVERICK_FLOAT)
14922 _bfd_error_handler
14923 (_("error: %B uses Maverick instructions, whereas %B does not"),
14924 ibfd, obfd);
14925 else
14926 _bfd_error_handler
14927 (_("error: %B does not use Maverick instructions, whereas %B does"),
14928 ibfd, obfd);
14929
14930 flags_compatible = FALSE;
14931 }
14932
14933#ifdef EF_ARM_SOFT_FLOAT
14934 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
14935 {
14936 /* We can allow interworking between code that is VFP format
14937 layout, and uses either soft float or integer regs for
14938 passing floating point arguments and results. We already
14939 know that the APCS_FLOAT flags match; similarly for VFP
14940 flags. */
14941 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
14942 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
14943 {
14944 if (in_flags & EF_ARM_SOFT_FLOAT)
14945 _bfd_error_handler
14946 (_("error: %B uses software FP, whereas %B uses hardware FP"),
14947 ibfd, obfd);
14948 else
14949 _bfd_error_handler
14950 (_("error: %B uses hardware FP, whereas %B uses software FP"),
14951 ibfd, obfd);
14952
14953 flags_compatible = FALSE;
14954 }
14955 }
14956#endif
14957
14958 /* Interworking mismatch is only a warning. */
14959 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14960 {
14961 if (in_flags & EF_ARM_INTERWORK)
14962 {
14963 _bfd_error_handler
14964 (_("Warning: %B supports interworking, whereas %B does not"),
14965 ibfd, obfd);
14966 }
14967 else
14968 {
14969 _bfd_error_handler
14970 (_("Warning: %B does not support interworking, whereas %B does"),
14971 ibfd, obfd);
14972 }
14973 }
14974 }
14975
14976 return flags_compatible;
14977}
14978
14979
906e58ca 14980/* Symbian OS Targets. */
7f266840 14981
906e58ca 14982#undef TARGET_LITTLE_SYM
7f266840 14983#define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
906e58ca 14984#undef TARGET_LITTLE_NAME
7f266840 14985#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 14986#undef TARGET_BIG_SYM
7f266840 14987#define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
906e58ca 14988#undef TARGET_BIG_NAME
7f266840
DJ
14989#define TARGET_BIG_NAME "elf32-bigarm-symbian"
14990
14991/* Like elf32_arm_link_hash_table_create -- but overrides
14992 appropriately for Symbian OS. */
906e58ca 14993
7f266840
DJ
14994static struct bfd_link_hash_table *
14995elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14996{
14997 struct bfd_link_hash_table *ret;
14998
14999 ret = elf32_arm_link_hash_table_create (abfd);
15000 if (ret)
15001 {
15002 struct elf32_arm_link_hash_table *htab
15003 = (struct elf32_arm_link_hash_table *)ret;
15004 /* There is no PLT header for Symbian OS. */
15005 htab->plt_header_size = 0;
95720a86
DJ
15006 /* The PLT entries are each one instruction and one word. */
15007 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 15008 htab->symbian_p = 1;
33bfe774
JB
15009 /* Symbian uses armv5t or above, so use_blx is always true. */
15010 htab->use_blx = 1;
67687978 15011 htab->root.is_relocatable_executable = 1;
7f266840
DJ
15012 }
15013 return ret;
906e58ca 15014}
7f266840 15015
b35d266b 15016static const struct bfd_elf_special_section
551b43fd 15017elf32_arm_symbian_special_sections[] =
7f266840 15018{
5cd3778d
MM
15019 /* In a BPABI executable, the dynamic linking sections do not go in
15020 the loadable read-only segment. The post-linker may wish to
15021 refer to these sections, but they are not part of the final
15022 program image. */
0112cd26
NC
15023 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
15024 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
15025 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
15026 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
15027 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
15028 /* These sections do not need to be writable as the SymbianOS
15029 postlinker will arrange things so that no dynamic relocation is
15030 required. */
0112cd26
NC
15031 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
15032 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
15033 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
15034 { NULL, 0, 0, 0, 0 }
7f266840
DJ
15035};
15036
c3c76620 15037static void
906e58ca 15038elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 15039 struct bfd_link_info *link_info)
c3c76620
MM
15040{
15041 /* BPABI objects are never loaded directly by an OS kernel; they are
15042 processed by a postlinker first, into an OS-specific format. If
15043 the D_PAGED bit is set on the file, BFD will align segments on
15044 page boundaries, so that an OS can directly map the file. With
15045 BPABI objects, that just results in wasted space. In addition,
15046 because we clear the D_PAGED bit, map_sections_to_segments will
15047 recognize that the program headers should not be mapped into any
15048 loadable segment. */
15049 abfd->flags &= ~D_PAGED;
906e58ca 15050 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 15051}
7f266840
DJ
15052
15053static bfd_boolean
906e58ca 15054elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 15055 struct bfd_link_info *info)
7f266840
DJ
15056{
15057 struct elf_segment_map *m;
15058 asection *dynsec;
15059
7f266840
DJ
15060 /* BPABI shared libraries and executables should have a PT_DYNAMIC
15061 segment. However, because the .dynamic section is not marked
15062 with SEC_LOAD, the generic ELF code will not create such a
15063 segment. */
15064 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
15065 if (dynsec)
15066 {
8ded5a0f
AM
15067 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
15068 if (m->p_type == PT_DYNAMIC)
15069 break;
15070
15071 if (m == NULL)
15072 {
15073 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
15074 m->next = elf_tdata (abfd)->segment_map;
15075 elf_tdata (abfd)->segment_map = m;
15076 }
7f266840
DJ
15077 }
15078
b294bdf8
MM
15079 /* Also call the generic arm routine. */
15080 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
15081}
15082
95720a86
DJ
15083/* Return address for Ith PLT stub in section PLT, for relocation REL
15084 or (bfd_vma) -1 if it should not be included. */
15085
15086static bfd_vma
15087elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
15088 const arelent *rel ATTRIBUTE_UNUSED)
15089{
15090 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
15091}
15092
15093
8029a119 15094#undef elf32_bed
7f266840
DJ
15095#define elf32_bed elf32_arm_symbian_bed
15096
15097/* The dynamic sections are not allocated on SymbianOS; the postlinker
15098 will process them and then discard them. */
906e58ca 15099#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
15100#define ELF_DYNAMIC_SEC_FLAGS \
15101 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15102
00a97672 15103#undef elf_backend_add_symbol_hook
00a97672 15104#undef elf_backend_emit_relocs
c3c76620 15105
906e58ca
NC
15106#undef bfd_elf32_bfd_link_hash_table_create
15107#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
15108#undef elf_backend_special_sections
15109#define elf_backend_special_sections elf32_arm_symbian_special_sections
15110#undef elf_backend_begin_write_processing
15111#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
15112#undef elf_backend_final_write_processing
15113#define elf_backend_final_write_processing elf32_arm_final_write_processing
15114
15115#undef elf_backend_modify_segment_map
7f266840
DJ
15116#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15117
15118/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 15119#undef elf_backend_got_header_size
7f266840
DJ
15120#define elf_backend_got_header_size 0
15121
15122/* Similarly, there is no .got.plt section. */
906e58ca 15123#undef elf_backend_want_got_plt
7f266840
DJ
15124#define elf_backend_want_got_plt 0
15125
906e58ca 15126#undef elf_backend_plt_sym_val
95720a86
DJ
15127#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
15128
906e58ca 15129#undef elf_backend_may_use_rel_p
00a97672 15130#define elf_backend_may_use_rel_p 1
906e58ca 15131#undef elf_backend_may_use_rela_p
00a97672 15132#define elf_backend_may_use_rela_p 0
906e58ca 15133#undef elf_backend_default_use_rela_p
00a97672 15134#define elf_backend_default_use_rela_p 0
906e58ca 15135#undef elf_backend_want_plt_sym
00a97672 15136#define elf_backend_want_plt_sym 0
906e58ca 15137#undef ELF_MAXPAGESIZE
00a97672 15138#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 15139
7f266840 15140#include "elf32-target.h"
This page took 2.090328 seconds and 4 git commands to generate.