* gdb.mi/mi-cli.exp: Adjust for output difference in
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
e44a2c9c
AM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
7f266840 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
00a97672 24#include "libiberty.h"
7f266840
DJ
25#include "libbfd.h"
26#include "elf-bfd.h"
00a97672 27#include "elf-vxworks.h"
ee065d83 28#include "elf/arm.h"
7f266840 29
00a97672
RS
30/* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32#define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35/* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37#define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42/* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44#define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49/* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51#define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
7f266840
DJ
56#define elf_info_to_howto 0
57#define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59#define ARM_ELF_ABI_VERSION 0
60#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
24718e3b 62static struct elf_backend_data elf32_arm_vxworks_bed;
00a97672 63
7f266840
DJ
64/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
c19d1205 68static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 69{
8029a119 70 /* No relocation. */
7f266840
DJ
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
c19d1205 129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 130 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
133 32, /* bitsize */
134 TRUE, /* pc_relative */
7f266840 135 0, /* bitpos */
4962c51a 136 complain_overflow_dont,/* complain_on_overflow */
7f266840 137 bfd_elf_generic_reloc, /* special_function */
4962c51a 138 "R_ARM_LDR_PC_G0", /* name */
7f266840 139 FALSE, /* partial_inplace */
4962c51a
MS
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
7f266840
DJ
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
00a97672
RS
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
7f266840
DJ
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
c19d1205 217 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
e95de063 220 25, /* bitsize */
7f266840
DJ
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
c19d1205 225 "R_ARM_THM_CALL", /* name */
7f266840
DJ
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
c19d1205 245 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
248 32, /* bitsize */
249 FALSE, /* pc_relative */
7f266840
DJ
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
c19d1205 253 "R_ARM_BREL_ADJ", /* name */
7f266840 254 FALSE, /* partial_inplace */
c19d1205
ZW
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
7f266840
DJ
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
ba93b8ac 317 /* Dynamic TLS relocations. */
7f266840 318
ba93b8ac
DJ
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
7f266840 332
ba93b8ac
DJ
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
7f266840 346
ba93b8ac
DJ
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
7f266840
DJ
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
c19d1205 419 HOWTO (R_ARM_GOTOFF32, /* type */
7f266840
DJ
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
c19d1205 427 "R_ARM_GOTOFF32", /* name */
7f266840
DJ
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
ce490eda 464 24, /* bitsize */
7f266840
DJ
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
ce490eda 470 FALSE, /* partial_inplace */
7f266840
DJ
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
c19d1205
ZW
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
7f266840 508 0, /* bitpos */
c19d1205 509 complain_overflow_signed,/* complain_on_overflow */
7f266840 510 bfd_elf_generic_reloc, /* special_function */
c19d1205 511 "R_ARM_THM_JUMP24", /* name */
7f266840 512 FALSE, /* partial_inplace */
c19d1205
ZW
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
7f266840 516
c19d1205 517 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 518 0, /* rightshift */
c19d1205
ZW
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
7f266840
DJ
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
c19d1205 525 "R_ARM_BASE_ABS", /* name */
7f266840 526 FALSE, /* partial_inplace */
c19d1205
ZW
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
7f266840
DJ
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
c19d1205
ZW
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
39623e12
PB
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
c19d1205
ZW
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
39623e12
PB
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
c19d1205
ZW
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
39623e12
PB
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
c19d1205
ZW
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
39623e12
PB
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
c19d1205
ZW
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
2cab6cc3 834 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
2cab6cc3
MS
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
c19d1205
ZW
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
2cab6cc3 848 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
2cab6cc3
MS
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
c19d1205
ZW
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
7f266840 883
4962c51a
MS
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
c19d1205 1265
c19d1205
ZW
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
8029a119 1350 EMPTY_HOWTO (90), /* Unallocated. */
c19d1205
ZW
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
ba93b8ac
DJ
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1431 0, /* bitsize */
ba93b8ac
DJ
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
c19d1205
ZW
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
ba93b8ac 1484
c19d1205
ZW
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
ba93b8ac
DJ
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
c19d1205
ZW
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
ba93b8ac
DJ
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
c19d1205 1498 FALSE), /* pcrel_offset */
ba93b8ac 1499
ba93b8ac
DJ
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
c19d1205 1512 FALSE), /* pcrel_offset */
ba93b8ac 1513
c19d1205 1514 HOWTO (R_ARM_TLS_LDO32, /* type */
ba93b8ac
DJ
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
c19d1205 1522 "R_ARM_TLS_LDO32", /* name */
ba93b8ac
DJ
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
c19d1205 1526 FALSE), /* pcrel_offset */
ba93b8ac 1527
ba93b8ac
DJ
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
c19d1205 1540 FALSE), /* pcrel_offset */
7f266840 1541
c19d1205 1542 HOWTO (R_ARM_TLS_LE32, /* type */
7f266840
DJ
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1545 32, /* bitsize */
7f266840
DJ
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
c19d1205
ZW
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
7f266840 1555
c19d1205
ZW
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
7f266840 1561 0, /* bitpos */
c19d1205 1562 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1563 bfd_elf_generic_reloc, /* special_function */
c19d1205 1564 "R_ARM_TLS_LDO12", /* name */
7f266840 1565 FALSE, /* partial_inplace */
c19d1205
ZW
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
7f266840 1569
c19d1205
ZW
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
7f266840 1575 0, /* bitpos */
c19d1205 1576 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1577 bfd_elf_generic_reloc, /* special_function */
c19d1205 1578 "R_ARM_TLS_LE12", /* name */
7f266840 1579 FALSE, /* partial_inplace */
c19d1205
ZW
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
7f266840 1583
c19d1205 1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
7f266840 1589 0, /* bitpos */
c19d1205 1590 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1591 bfd_elf_generic_reloc, /* special_function */
c19d1205 1592 "R_ARM_TLS_IE12GP", /* name */
7f266840 1593 FALSE, /* partial_inplace */
c19d1205
ZW
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597};
1598
1599/* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
7f266840 1602
c19d1205
ZW
1603 249-255 extended, currently unused, relocations: */
1604
4962c51a 1605static reloc_howto_type elf32_arm_howto_table_2[4] =
7f266840
DJ
1606{
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662};
1663
1664static reloc_howto_type *
1665elf32_arm_howto_from_type (unsigned int r_type)
1666{
906e58ca 1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1668 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1669
c19d1205 1670 if (r_type >= R_ARM_RREL32
906e58ca 1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
4962c51a 1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
7f266840 1673
c19d1205 1674 return NULL;
7f266840
DJ
1675}
1676
1677static void
1678elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680{
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685}
1686
1687struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693/* All entries in this list must also be present in elf32_arm_howto_table. */
1694static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840
DJ
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
c19d1205
ZW
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1774 };
1775
1776static reloc_howto_type *
f1c71a59
ZW
1777elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
7f266840
DJ
1779{
1780 unsigned int i;
8029a119 1781
906e58ca 1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1785
c19d1205 1786 return NULL;
7f266840
DJ
1787}
1788
157090f7
AM
1789static reloc_howto_type *
1790elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792{
1793 unsigned int i;
1794
906e58ca 1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
906e58ca 1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806}
1807
906e58ca
NC
1808/* Support for core dump NOTE sections. */
1809
7f266840 1810static bfd_boolean
f1c71a59 1811elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1812{
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
8029a119 1821 case 148: /* Linux/ARM 32-bit. */
7f266840
DJ
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838}
1839
1840static bfd_boolean
f1c71a59 1841elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1842{
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
8029a119 1848 case 124: /* Linux/ARM elf_prpsinfo. */
7f266840
DJ
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
7f266840
DJ
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867}
1868
1869#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870#define TARGET_LITTLE_NAME "elf32-littlearm"
1871#define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872#define TARGET_BIG_NAME "elf32-bigarm"
1873
1874#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
252b5132
RH
1877typedef unsigned long int insn32;
1878typedef unsigned short int insn16;
1879
3a4a14e9
PB
1880/* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
57e8b36a 1882#define INTERWORK_FLAG(abfd) \
3a4a14e9 1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
85a84e7a 1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
9b485d32 1885
252b5132
RH
1886/* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
9b485d32 1889 name can be changed. The only requirement is the %s be present. */
252b5132
RH
1890#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
c7b8f16e
JB
1896#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
845b51d6
PB
1899#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
7413f23f
DJ
1902#define STUB_ENTRY_NAME "__%s_veneer"
1903
252b5132
RH
1904/* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
5e681ec4
PB
1908#ifdef FOUR_WORD_PLT
1909
252b5132
RH
1910/* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
59f2c4e7 1912 called before the relocation has been set up calls the dynamic
9b485d32 1913 linker first. */
e5a52504 1914static const bfd_vma elf32_arm_plt0_entry [] =
5e681ec4
PB
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922/* Subsequent entries in a procedure linkage table look like
1923 this. */
e5a52504 1924static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932#else
1933
5e681ec4
PB
1934/* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
e5a52504 1938static const bfd_vma elf32_arm_plt0_entry [] =
917583ad 1939 {
5e681ec4
PB
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
917583ad 1945 };
252b5132
RH
1946
1947/* Subsequent entries in a procedure linkage table look like
1948 this. */
e5a52504 1949static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956#endif
252b5132 1957
00a97672
RS
1958/* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968/* The format of subsequent entries in a VxWorks executable. */
1969static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979/* The format of entries in a VxWorks shared library. */
1980static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
b7693d02
DJ
1990/* An initial stub used if the PLT entry is referenced from Thumb code. */
1991#define PLT_THUMB_STUB_SIZE 4
1992static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
e5a52504
MM
1998/* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
906e58ca 2000static const bfd_vma elf32_arm_symbian_plt_entry [] =
e5a52504 2001 {
83a358aa 2002 0xe51ff004, /* ldr pc, [pc, #-4] */
e5a52504
MM
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
906e58ca
NC
2006#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
461a49ca
DJ
2013enum stub_insn_type
2014 {
2015 THUMB16_TYPE = 1,
2016 THUMB32_TYPE,
2017 ARM_TYPE,
2018 DATA_TYPE
2019 };
2020
461a49ca
DJ
2021#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2022#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2023#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2024#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2025#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2026
2027typedef struct
2028{
2029 bfd_vma data;
2030 enum stub_insn_type type;
ebe24dd4 2031 unsigned int r_type;
461a49ca
DJ
2032 int reloc_addend;
2033} insn_sequence;
2034
fea2b4d6
CL
2035/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2036 to reach the stub if necessary. */
461a49ca 2037static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
906e58ca 2038 {
461a49ca
DJ
2039 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2040 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2041 };
2042
fea2b4d6
CL
2043/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2044 available. */
461a49ca 2045static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
906e58ca 2046 {
461a49ca
DJ
2047 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2048 ARM_INSN(0xe12fff1c), /* bx ip */
2049 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2050 };
2051
fea2b4d6
CL
2052/* Thumb -> Thumb long branch stub. Used on architectures which
2053 support only this mode, or on V4T where it is expensive to switch
2054 to ARM. */
461a49ca 2055static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
906e58ca 2056 {
461a49ca
DJ
2057 THUMB16_INSN(0xb401), /* push {r0} */
2058 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2059 THUMB16_INSN(0x4684), /* mov ip, r0 */
2060 THUMB16_INSN(0xbc01), /* pop {r0} */
2061 THUMB16_INSN(0x4760), /* bx ip */
2062 THUMB16_INSN(0xbf00), /* nop */
2063 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2064 };
2065
fea2b4d6
CL
2066/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2067 available. */
461a49ca 2068static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
906e58ca 2069 {
461a49ca
DJ
2070 THUMB16_INSN(0x4778), /* bx pc */
2071 THUMB16_INSN(0x46c0), /* nop */
2072 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2073 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2074 };
2075
fea2b4d6
CL
2076/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2077 one, when the destination is close enough. */
461a49ca 2078static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
c820be07 2079 {
461a49ca
DJ
2080 THUMB16_INSN(0x4778), /* bx pc */
2081 THUMB16_INSN(0x46c0), /* nop */
2082 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
c820be07
NC
2083 };
2084
cf3eccff 2085/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2086 blx to reach the stub if necessary. */
cf3eccff 2087static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
906e58ca 2088 {
461a49ca
DJ
2089 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2090 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2091 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
906e58ca
NC
2092 };
2093
cf3eccff
DJ
2094/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2095 blx to reach the stub if necessary. We can not add into pc;
2096 it is not guaranteed to mode switch (different in ARMv6 and
2097 ARMv7). */
2098static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2099 {
2100 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2101 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2102 ARM_INSN(0xe12fff1c), /* bx ip */
2103 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2104 };
2105
ebe24dd4
CL
2106/* V4T ARM -> ARM long branch stub, PIC. */
2107static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2108 {
2109 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2110 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2111 ARM_INSN(0xe12fff1c), /* bx ip */
2112 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2113 };
2114
2115/* V4T Thumb -> ARM long branch stub, PIC. */
2116static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2117 {
2118 THUMB16_INSN(0x4778), /* bx pc */
2119 THUMB16_INSN(0x46c0), /* nop */
2120 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2121 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2122 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2123 };
2124
2125/* Thumb -> Thumb long branch stub, PIC. Used on architectures which
2126 support only this mode, or on V4T where it is expensive to switch
2127 to ARM. */
2128static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2129 {
2130 THUMB16_INSN(0xb401), /* push {r0} */
2131 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2132 THUMB16_INSN(0x46fc), /* mov ip, pc */
2133 THUMB16_INSN(0x4484), /* add ip, r0 */
2134 THUMB16_INSN(0xbc01), /* pop {r0} */
2135 THUMB16_INSN(0x4760), /* bx ip */
2136 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2137 };
2138
906e58ca
NC
2139/* Section name for stubs is the associated section name plus this
2140 string. */
2141#define STUB_SUFFIX ".stub"
2142
2143enum elf32_arm_stub_type
2144{
2145 arm_stub_none,
fea2b4d6
CL
2146 arm_stub_long_branch_any_any,
2147 arm_stub_long_branch_v4t_arm_thumb,
2148 arm_stub_long_branch_thumb_only,
2149 arm_stub_long_branch_v4t_thumb_arm,
2150 arm_stub_short_branch_v4t_thumb_arm,
cf3eccff
DJ
2151 arm_stub_long_branch_any_arm_pic,
2152 arm_stub_long_branch_any_thumb_pic,
ebe24dd4
CL
2153 arm_stub_long_branch_v4t_arm_thumb_pic,
2154 arm_stub_long_branch_v4t_thumb_arm_pic,
2155 arm_stub_long_branch_thumb_only_pic,
906e58ca
NC
2156};
2157
2158struct elf32_arm_stub_hash_entry
2159{
2160 /* Base hash table entry structure. */
2161 struct bfd_hash_entry root;
2162
2163 /* The stub section. */
2164 asection *stub_sec;
2165
2166 /* Offset within stub_sec of the beginning of this stub. */
2167 bfd_vma stub_offset;
2168
2169 /* Given the symbol's value and its section we can determine its final
2170 value when building the stubs (so the stub knows where to jump). */
2171 bfd_vma target_value;
2172 asection *target_section;
2173
461a49ca 2174 /* The stub type. */
906e58ca 2175 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2176 /* Its encoding size in bytes. */
2177 int stub_size;
2178 /* Its template. */
2179 const insn_sequence *stub_template;
2180 /* The size of the template (number of entries). */
2181 int stub_template_size;
906e58ca
NC
2182
2183 /* The symbol table entry, if any, that this was derived from. */
2184 struct elf32_arm_link_hash_entry *h;
2185
2186 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2187 unsigned char st_type;
2188
2189 /* Where this stub is being called from, or, in the case of combined
2190 stub sections, the first input section in the group. */
2191 asection *id_sec;
7413f23f
DJ
2192
2193 /* The name for the local symbol at the start of this stub. The
2194 stub name in the hash table has to be unique; this does not, so
2195 it can be friendlier. */
2196 char *output_name;
906e58ca
NC
2197};
2198
e489d0ae
PB
2199/* Used to build a map of a section. This is required for mixed-endian
2200 code/data. */
2201
2202typedef struct elf32_elf_section_map
2203{
2204 bfd_vma vma;
2205 char type;
2206}
2207elf32_arm_section_map;
2208
c7b8f16e
JB
2209/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2210
2211typedef enum
2212{
2213 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2214 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2215 VFP11_ERRATUM_ARM_VENEER,
2216 VFP11_ERRATUM_THUMB_VENEER
2217}
2218elf32_vfp11_erratum_type;
2219
2220typedef struct elf32_vfp11_erratum_list
2221{
2222 struct elf32_vfp11_erratum_list *next;
2223 bfd_vma vma;
2224 union
2225 {
2226 struct
2227 {
2228 struct elf32_vfp11_erratum_list *veneer;
2229 unsigned int vfp_insn;
2230 } b;
2231 struct
2232 {
2233 struct elf32_vfp11_erratum_list *branch;
2234 unsigned int id;
2235 } v;
2236 } u;
2237 elf32_vfp11_erratum_type type;
2238}
2239elf32_vfp11_erratum_list;
2240
8e3de13a 2241typedef struct _arm_elf_section_data
e489d0ae
PB
2242{
2243 struct bfd_elf_section_data elf;
8e3de13a 2244 unsigned int mapcount;
c7b8f16e 2245 unsigned int mapsize;
e489d0ae 2246 elf32_arm_section_map *map;
c7b8f16e
JB
2247 unsigned int erratumcount;
2248 elf32_vfp11_erratum_list *erratumlist;
8e3de13a
NC
2249}
2250_arm_elf_section_data;
e489d0ae
PB
2251
2252#define elf32_arm_section_data(sec) \
8e3de13a 2253 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2254
ba93b8ac
DJ
2255/* The size of the thread control block. */
2256#define TCB_SIZE 8
2257
0ffa91dd 2258struct elf_arm_obj_tdata
ba93b8ac
DJ
2259{
2260 struct elf_obj_tdata root;
2261
2262 /* tls_type for each local got entry. */
2263 char *local_got_tls_type;
ee065d83 2264
bf21ed78
MS
2265 /* Zero to warn when linking objects with incompatible enum sizes. */
2266 int no_enum_size_warning;
a9dc9481
JM
2267
2268 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2269 int no_wchar_size_warning;
ba93b8ac
DJ
2270};
2271
0ffa91dd
NC
2272#define elf_arm_tdata(bfd) \
2273 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2274
0ffa91dd
NC
2275#define elf32_arm_local_got_tls_type(bfd) \
2276 (elf_arm_tdata (bfd)->local_got_tls_type)
2277
2278#define is_arm_elf(bfd) \
2279 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2280 && elf_tdata (bfd) != NULL \
2281 && elf_object_id (bfd) == ARM_ELF_TDATA)
ba93b8ac
DJ
2282
2283static bfd_boolean
2284elf32_arm_mkobject (bfd *abfd)
2285{
0ffa91dd
NC
2286 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2287 ARM_ELF_TDATA);
ba93b8ac
DJ
2288}
2289
252b5132
RH
2290/* The ARM linker needs to keep track of the number of relocs that it
2291 decides to copy in check_relocs for each symbol. This is so that
2292 it can discard PC relative relocs if it doesn't need them when
2293 linking with -Bsymbolic. We store the information in a field
2294 extending the regular ELF linker hash table. */
2295
ba93b8ac
DJ
2296/* This structure keeps track of the number of relocs we have copied
2297 for a given symbol. */
5e681ec4 2298struct elf32_arm_relocs_copied
917583ad
NC
2299 {
2300 /* Next section. */
5e681ec4 2301 struct elf32_arm_relocs_copied * next;
917583ad
NC
2302 /* A section in dynobj. */
2303 asection * section;
2304 /* Number of relocs copied in this section. */
2305 bfd_size_type count;
ba93b8ac
DJ
2306 /* Number of PC-relative relocs copied in this section. */
2307 bfd_size_type pc_count;
917583ad 2308 };
252b5132 2309
ba93b8ac
DJ
2310#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2311
ba96a88f 2312/* Arm ELF linker hash entry. */
252b5132 2313struct elf32_arm_link_hash_entry
917583ad
NC
2314 {
2315 struct elf_link_hash_entry root;
252b5132 2316
917583ad 2317 /* Number of PC relative relocs copied for this symbol. */
5e681ec4 2318 struct elf32_arm_relocs_copied * relocs_copied;
b7693d02
DJ
2319
2320 /* We reference count Thumb references to a PLT entry separately,
2321 so that we can emit the Thumb trampoline only if needed. */
2322 bfd_signed_vma plt_thumb_refcount;
2323
bd97cb95
DJ
2324 /* Some references from Thumb code may be eliminated by BL->BLX
2325 conversion, so record them separately. */
2326 bfd_signed_vma plt_maybe_thumb_refcount;
2327
b7693d02
DJ
2328 /* Since PLT entries have variable size if the Thumb prologue is
2329 used, we need to record the index into .got.plt instead of
2330 recomputing it from the PLT offset. */
2331 bfd_signed_vma plt_got_offset;
ba93b8ac
DJ
2332
2333#define GOT_UNKNOWN 0
2334#define GOT_NORMAL 1
2335#define GOT_TLS_GD 2
2336#define GOT_TLS_IE 4
2337 unsigned char tls_type;
a4fd1a8e
PB
2338
2339 /* The symbol marking the real symbol location for exported thumb
2340 symbols with Arm stubs. */
2341 struct elf_link_hash_entry *export_glue;
906e58ca 2342
da5938a2 2343 /* A pointer to the most recently used stub hash entry against this
8029a119 2344 symbol. */
da5938a2 2345 struct elf32_arm_stub_hash_entry *stub_cache;
917583ad 2346 };
252b5132 2347
252b5132 2348/* Traverse an arm ELF linker hash table. */
252b5132
RH
2349#define elf32_arm_link_hash_traverse(table, func, info) \
2350 (elf_link_hash_traverse \
2351 (&(table)->root, \
b7693d02 2352 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2353 (info)))
2354
2355/* Get the ARM elf linker hash table from a link_info structure. */
2356#define elf32_arm_hash_table(info) \
2357 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2358
906e58ca
NC
2359#define arm_stub_hash_lookup(table, string, create, copy) \
2360 ((struct elf32_arm_stub_hash_entry *) \
2361 bfd_hash_lookup ((table), (string), (create), (copy)))
2362
9b485d32 2363/* ARM ELF linker hash table. */
252b5132 2364struct elf32_arm_link_hash_table
906e58ca
NC
2365{
2366 /* The main hash table. */
2367 struct elf_link_hash_table root;
252b5132 2368
906e58ca
NC
2369 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2370 bfd_size_type thumb_glue_size;
252b5132 2371
906e58ca
NC
2372 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2373 bfd_size_type arm_glue_size;
252b5132 2374
906e58ca
NC
2375 /* The size in bytes of section containing the ARMv4 BX veneers. */
2376 bfd_size_type bx_glue_size;
845b51d6 2377
906e58ca
NC
2378 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2379 veneer has been populated. */
2380 bfd_vma bx_glue_offset[15];
845b51d6 2381
906e58ca
NC
2382 /* The size in bytes of the section containing glue for VFP11 erratum
2383 veneers. */
2384 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2385
906e58ca
NC
2386 /* An arbitrary input BFD chosen to hold the glue sections. */
2387 bfd * bfd_of_glue_owner;
ba96a88f 2388
906e58ca
NC
2389 /* Nonzero to output a BE8 image. */
2390 int byteswap_code;
e489d0ae 2391
906e58ca
NC
2392 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2393 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2394 int target1_is_rel;
9c504268 2395
906e58ca
NC
2396 /* The relocation to use for R_ARM_TARGET2 relocations. */
2397 int target2_reloc;
eb043451 2398
906e58ca
NC
2399 /* 0 = Ignore R_ARM_V4BX.
2400 1 = Convert BX to MOV PC.
2401 2 = Generate v4 interworing stubs. */
2402 int fix_v4bx;
319850b4 2403
906e58ca
NC
2404 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2405 int use_blx;
33bfe774 2406
906e58ca
NC
2407 /* What sort of code sequences we should look for which may trigger the
2408 VFP11 denorm erratum. */
2409 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2410
906e58ca
NC
2411 /* Global counter for the number of fixes we have emitted. */
2412 int num_vfp11_fixes;
c7b8f16e 2413
906e58ca
NC
2414 /* Nonzero to force PIC branch veneers. */
2415 int pic_veneer;
27e55c4d 2416
906e58ca
NC
2417 /* The number of bytes in the initial entry in the PLT. */
2418 bfd_size_type plt_header_size;
e5a52504 2419
906e58ca
NC
2420 /* The number of bytes in the subsequent PLT etries. */
2421 bfd_size_type plt_entry_size;
e5a52504 2422
906e58ca
NC
2423 /* True if the target system is VxWorks. */
2424 int vxworks_p;
00a97672 2425
906e58ca
NC
2426 /* True if the target system is Symbian OS. */
2427 int symbian_p;
e5a52504 2428
906e58ca
NC
2429 /* True if the target uses REL relocations. */
2430 int use_rel;
4e7fd91e 2431
906e58ca
NC
2432 /* Short-cuts to get to dynamic linker sections. */
2433 asection *sgot;
2434 asection *sgotplt;
2435 asection *srelgot;
2436 asection *splt;
2437 asection *srelplt;
2438 asection *sdynbss;
2439 asection *srelbss;
5e681ec4 2440
906e58ca
NC
2441 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2442 asection *srelplt2;
00a97672 2443
906e58ca
NC
2444 /* Data for R_ARM_TLS_LDM32 relocations. */
2445 union
2446 {
2447 bfd_signed_vma refcount;
2448 bfd_vma offset;
2449 } tls_ldm_got;
b7693d02 2450
906e58ca
NC
2451 /* Small local sym to section mapping cache. */
2452 struct sym_sec_cache sym_sec;
2453
2454 /* For convenience in allocate_dynrelocs. */
2455 bfd * obfd;
2456
2457 /* The stub hash table. */
2458 struct bfd_hash_table stub_hash_table;
2459
2460 /* Linker stub bfd. */
2461 bfd *stub_bfd;
2462
2463 /* Linker call-backs. */
2464 asection * (*add_stub_section) (const char *, asection *);
2465 void (*layout_sections_again) (void);
2466
2467 /* Array to keep track of which stub sections have been created, and
2468 information on stub grouping. */
2469 struct map_stub
2470 {
2471 /* This is the section to which stubs in the group will be
2472 attached. */
2473 asection *link_sec;
2474 /* The stub section. */
2475 asection *stub_sec;
2476 } *stub_group;
2477
2478 /* Assorted information used by elf32_arm_size_stubs. */
2479 unsigned int bfd_count;
2480 int top_index;
2481 asection **input_list;
2482};
252b5132 2483
780a67af
NC
2484/* Create an entry in an ARM ELF linker hash table. */
2485
2486static struct bfd_hash_entry *
57e8b36a
NC
2487elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2488 struct bfd_hash_table * table,
2489 const char * string)
780a67af
NC
2490{
2491 struct elf32_arm_link_hash_entry * ret =
2492 (struct elf32_arm_link_hash_entry *) entry;
2493
2494 /* Allocate the structure if it has not already been allocated by a
2495 subclass. */
906e58ca 2496 if (ret == NULL)
57e8b36a
NC
2497 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2498 if (ret == NULL)
780a67af
NC
2499 return (struct bfd_hash_entry *) ret;
2500
2501 /* Call the allocation method of the superclass. */
2502 ret = ((struct elf32_arm_link_hash_entry *)
2503 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2504 table, string));
57e8b36a 2505 if (ret != NULL)
b7693d02
DJ
2506 {
2507 ret->relocs_copied = NULL;
ba93b8ac 2508 ret->tls_type = GOT_UNKNOWN;
b7693d02 2509 ret->plt_thumb_refcount = 0;
bd97cb95 2510 ret->plt_maybe_thumb_refcount = 0;
b7693d02 2511 ret->plt_got_offset = -1;
a4fd1a8e 2512 ret->export_glue = NULL;
906e58ca
NC
2513
2514 ret->stub_cache = NULL;
b7693d02 2515 }
780a67af
NC
2516
2517 return (struct bfd_hash_entry *) ret;
2518}
2519
906e58ca
NC
2520/* Initialize an entry in the stub hash table. */
2521
2522static struct bfd_hash_entry *
2523stub_hash_newfunc (struct bfd_hash_entry *entry,
2524 struct bfd_hash_table *table,
2525 const char *string)
2526{
2527 /* Allocate the structure if it has not already been allocated by a
2528 subclass. */
2529 if (entry == NULL)
2530 {
2531 entry = bfd_hash_allocate (table,
2532 sizeof (struct elf32_arm_stub_hash_entry));
2533 if (entry == NULL)
2534 return entry;
2535 }
2536
2537 /* Call the allocation method of the superclass. */
2538 entry = bfd_hash_newfunc (entry, table, string);
2539 if (entry != NULL)
2540 {
2541 struct elf32_arm_stub_hash_entry *eh;
2542
2543 /* Initialize the local fields. */
2544 eh = (struct elf32_arm_stub_hash_entry *) entry;
2545 eh->stub_sec = NULL;
2546 eh->stub_offset = 0;
2547 eh->target_value = 0;
2548 eh->target_section = NULL;
2549 eh->stub_type = arm_stub_none;
461a49ca
DJ
2550 eh->stub_size = 0;
2551 eh->stub_template = NULL;
2552 eh->stub_template_size = 0;
906e58ca
NC
2553 eh->h = NULL;
2554 eh->id_sec = NULL;
2555 }
2556
2557 return entry;
2558}
2559
00a97672 2560/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
2561 shortcuts to them in our hash table. */
2562
2563static bfd_boolean
57e8b36a 2564create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2565{
2566 struct elf32_arm_link_hash_table *htab;
2567
e5a52504
MM
2568 htab = elf32_arm_hash_table (info);
2569 /* BPABI objects never have a GOT, or associated sections. */
2570 if (htab->symbian_p)
2571 return TRUE;
2572
5e681ec4
PB
2573 if (! _bfd_elf_create_got_section (dynobj, info))
2574 return FALSE;
2575
5e681ec4
PB
2576 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2577 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2578 if (!htab->sgot || !htab->sgotplt)
2579 abort ();
2580
00a97672
RS
2581 htab->srelgot = bfd_make_section_with_flags (dynobj,
2582 RELOC_SECTION (htab, ".got"),
3496cb2a
L
2583 (SEC_ALLOC | SEC_LOAD
2584 | SEC_HAS_CONTENTS
2585 | SEC_IN_MEMORY
2586 | SEC_LINKER_CREATED
2587 | SEC_READONLY));
5e681ec4 2588 if (htab->srelgot == NULL
5e681ec4
PB
2589 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2590 return FALSE;
2591 return TRUE;
2592}
2593
00a97672
RS
2594/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2595 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
2596 hash table. */
2597
2598static bfd_boolean
57e8b36a 2599elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2600{
2601 struct elf32_arm_link_hash_table *htab;
2602
2603 htab = elf32_arm_hash_table (info);
2604 if (!htab->sgot && !create_got_section (dynobj, info))
2605 return FALSE;
2606
2607 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2608 return FALSE;
2609
2610 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672
RS
2611 htab->srelplt = bfd_get_section_by_name (dynobj,
2612 RELOC_SECTION (htab, ".plt"));
5e681ec4
PB
2613 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2614 if (!info->shared)
00a97672
RS
2615 htab->srelbss = bfd_get_section_by_name (dynobj,
2616 RELOC_SECTION (htab, ".bss"));
2617
2618 if (htab->vxworks_p)
2619 {
2620 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2621 return FALSE;
2622
2623 if (info->shared)
2624 {
2625 htab->plt_header_size = 0;
2626 htab->plt_entry_size
2627 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2628 }
2629 else
2630 {
2631 htab->plt_header_size
2632 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2633 htab->plt_entry_size
2634 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2635 }
2636 }
5e681ec4 2637
906e58ca 2638 if (!htab->splt
e5a52504
MM
2639 || !htab->srelplt
2640 || !htab->sdynbss
5e681ec4
PB
2641 || (!info->shared && !htab->srelbss))
2642 abort ();
2643
2644 return TRUE;
2645}
2646
906e58ca
NC
2647/* Copy the extra info we tack onto an elf_link_hash_entry. */
2648
2649static void
2650elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2651 struct elf_link_hash_entry *dir,
2652 struct elf_link_hash_entry *ind)
2653{
2654 struct elf32_arm_link_hash_entry *edir, *eind;
2655
2656 edir = (struct elf32_arm_link_hash_entry *) dir;
2657 eind = (struct elf32_arm_link_hash_entry *) ind;
2658
2659 if (eind->relocs_copied != NULL)
2660 {
2661 if (edir->relocs_copied != NULL)
2662 {
2663 struct elf32_arm_relocs_copied **pp;
2664 struct elf32_arm_relocs_copied *p;
2665
2666 /* Add reloc counts against the indirect sym to the direct sym
2667 list. Merge any entries against the same section. */
2668 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2669 {
2670 struct elf32_arm_relocs_copied *q;
2671
2672 for (q = edir->relocs_copied; q != NULL; q = q->next)
2673 if (q->section == p->section)
2674 {
2675 q->pc_count += p->pc_count;
2676 q->count += p->count;
2677 *pp = p->next;
2678 break;
2679 }
2680 if (q == NULL)
2681 pp = &p->next;
2682 }
2683 *pp = edir->relocs_copied;
2684 }
2685
2686 edir->relocs_copied = eind->relocs_copied;
2687 eind->relocs_copied = NULL;
2688 }
2689
2690 if (ind->root.type == bfd_link_hash_indirect)
2691 {
2692 /* Copy over PLT info. */
2693 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2694 eind->plt_thumb_refcount = 0;
2695 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2696 eind->plt_maybe_thumb_refcount = 0;
2697
2698 if (dir->got.refcount <= 0)
2699 {
2700 edir->tls_type = eind->tls_type;
2701 eind->tls_type = GOT_UNKNOWN;
2702 }
2703 }
2704
2705 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2706}
2707
2708/* Create an ARM elf linker hash table. */
2709
2710static struct bfd_link_hash_table *
2711elf32_arm_link_hash_table_create (bfd *abfd)
2712{
2713 struct elf32_arm_link_hash_table *ret;
2714 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2715
2716 ret = bfd_malloc (amt);
2717 if (ret == NULL)
2718 return NULL;
2719
2720 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2721 elf32_arm_link_hash_newfunc,
2722 sizeof (struct elf32_arm_link_hash_entry)))
2723 {
2724 free (ret);
2725 return NULL;
2726 }
2727
2728 ret->sgot = NULL;
2729 ret->sgotplt = NULL;
2730 ret->srelgot = NULL;
2731 ret->splt = NULL;
2732 ret->srelplt = NULL;
2733 ret->sdynbss = NULL;
2734 ret->srelbss = NULL;
2735 ret->srelplt2 = NULL;
2736 ret->thumb_glue_size = 0;
2737 ret->arm_glue_size = 0;
2738 ret->bx_glue_size = 0;
2739 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2740 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2741 ret->vfp11_erratum_glue_size = 0;
2742 ret->num_vfp11_fixes = 0;
2743 ret->bfd_of_glue_owner = NULL;
2744 ret->byteswap_code = 0;
2745 ret->target1_is_rel = 0;
2746 ret->target2_reloc = R_ARM_NONE;
2747#ifdef FOUR_WORD_PLT
2748 ret->plt_header_size = 16;
2749 ret->plt_entry_size = 16;
2750#else
2751 ret->plt_header_size = 20;
2752 ret->plt_entry_size = 12;
2753#endif
2754 ret->fix_v4bx = 0;
2755 ret->use_blx = 0;
2756 ret->vxworks_p = 0;
2757 ret->symbian_p = 0;
2758 ret->use_rel = 1;
2759 ret->sym_sec.abfd = NULL;
2760 ret->obfd = abfd;
2761 ret->tls_ldm_got.refcount = 0;
6cee0a6f
L
2762 ret->stub_bfd = NULL;
2763 ret->add_stub_section = NULL;
2764 ret->layout_sections_again = NULL;
2765 ret->stub_group = NULL;
2766 ret->bfd_count = 0;
2767 ret->top_index = 0;
2768 ret->input_list = NULL;
906e58ca
NC
2769
2770 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2771 sizeof (struct elf32_arm_stub_hash_entry)))
2772 {
2773 free (ret);
2774 return NULL;
2775 }
2776
2777 return &ret->root.root;
2778}
2779
2780/* Free the derived linker hash table. */
2781
2782static void
2783elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2784{
2785 struct elf32_arm_link_hash_table *ret
2786 = (struct elf32_arm_link_hash_table *) hash;
2787
2788 bfd_hash_table_free (&ret->stub_hash_table);
2789 _bfd_generic_link_hash_table_free (hash);
2790}
2791
2792/* Determine if we're dealing with a Thumb only architecture. */
2793
2794static bfd_boolean
2795using_thumb_only (struct elf32_arm_link_hash_table *globals)
2796{
2797 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2798 Tag_CPU_arch);
2799 int profile;
2800
2801 if (arch != TAG_CPU_ARCH_V7)
2802 return FALSE;
2803
2804 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2805 Tag_CPU_arch_profile);
2806
2807 return profile == 'M';
2808}
2809
2810/* Determine if we're dealing with a Thumb-2 object. */
2811
2812static bfd_boolean
2813using_thumb2 (struct elf32_arm_link_hash_table *globals)
2814{
2815 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2816 Tag_CPU_arch);
2817 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2818}
2819
f4ac8484
DJ
2820static bfd_boolean
2821arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2822{
2823 switch (stub_type)
2824 {
fea2b4d6
CL
2825 case arm_stub_long_branch_thumb_only:
2826 case arm_stub_long_branch_v4t_thumb_arm:
2827 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4
CL
2828 case arm_stub_long_branch_v4t_thumb_arm_pic:
2829 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
2830 return TRUE;
2831 case arm_stub_none:
2832 BFD_FAIL ();
2833 return FALSE;
2834 break;
2835 default:
2836 return FALSE;
2837 }
2838}
2839
906e58ca
NC
2840/* Determine the type of stub needed, if any, for a call. */
2841
2842static enum elf32_arm_stub_type
2843arm_type_of_stub (struct bfd_link_info *info,
2844 asection *input_sec,
2845 const Elf_Internal_Rela *rel,
2846 unsigned char st_type,
2847 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
2848 bfd_vma destination,
2849 asection *sym_sec,
2850 bfd *input_bfd,
2851 const char *name)
906e58ca
NC
2852{
2853 bfd_vma location;
2854 bfd_signed_vma branch_offset;
2855 unsigned int r_type;
2856 struct elf32_arm_link_hash_table * globals;
2857 int thumb2;
2858 int thumb_only;
2859 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 2860 int use_plt = 0;
906e58ca 2861
da5938a2 2862 /* We don't know the actual type of destination in case it is of
8029a119 2863 type STT_SECTION: give up. */
da5938a2
NC
2864 if (st_type == STT_SECTION)
2865 return stub_type;
2866
906e58ca
NC
2867 globals = elf32_arm_hash_table (info);
2868
2869 thumb_only = using_thumb_only (globals);
2870
2871 thumb2 = using_thumb2 (globals);
2872
2873 /* Determine where the call point is. */
2874 location = (input_sec->output_offset
2875 + input_sec->output_section->vma
2876 + rel->r_offset);
2877
2878 branch_offset = (bfd_signed_vma)(destination - location);
2879
2880 r_type = ELF32_R_TYPE (rel->r_info);
2881
5fa9e92f 2882 /* Keep a simpler condition, for the sake of clarity. */
329dcd78 2883 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
5fa9e92f
CL
2884 {
2885 use_plt = 1;
2886 /* Note when dealing with PLT entries: the main PLT stub is in
2887 ARM mode, so if the branch is in Thumb mode, another
2888 Thumb->ARM stub will be inserted later just before the ARM
2889 PLT stub. We don't take this extra distance into account
2890 here, because if a long branch stub is needed, we'll add a
2891 Thumb->Arm one and branch directly to the ARM PLT entry
2892 because it avoids spreading offset corrections in several
2893 places. */
2894 }
906e58ca
NC
2895
2896 if (r_type == R_ARM_THM_CALL)
2897 {
5fa9e92f
CL
2898 /* Handle cases where:
2899 - this call goes too far (different Thumb/Thumb2 max
2900 distance)
2901 - it's a Thumb->Arm call and blx is not available. A stub is
2902 needed in this case, but only if this call is not through a
2903 PLT entry. Indeed, PLT stubs handle mode switching already.
2904 */
906e58ca
NC
2905 if ((!thumb2
2906 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2907 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2908 || (thumb2
2909 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2910 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
5fa9e92f
CL
2911 || ((st_type != STT_ARM_TFUNC)
2912 && ((r_type == R_ARM_THM_CALL) && !globals->use_blx)
2913 && !use_plt))
906e58ca
NC
2914 {
2915 if (st_type == STT_ARM_TFUNC)
2916 {
2917 /* Thumb to thumb. */
2918 if (!thumb_only)
2919 {
2920 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 2921 /* PIC stubs. */
906e58ca 2922 ? ((globals->use_blx)
c2b4a39d 2923 /* V5T and above. */
cf3eccff 2924 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4
CL
2925 /* On V4T, use Thumb code only. */
2926 : arm_stub_long_branch_thumb_only_pic)
c2b4a39d
CL
2927
2928 /* non-PIC stubs. */
2929 : ((globals->use_blx)
2930 /* V5T and above. */
2931 ? arm_stub_long_branch_any_any
2932 /* V4T. */
2933 : arm_stub_long_branch_thumb_only);
906e58ca
NC
2934 }
2935 else
2936 {
2937 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
2938 /* PIC stub. */
2939 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
2940 /* non-PIC stub. */
2941 : arm_stub_long_branch_thumb_only;
906e58ca
NC
2942 }
2943 }
2944 else
2945 {
2946 /* Thumb to arm. */
c820be07
NC
2947 if (sym_sec != NULL
2948 && sym_sec->owner != NULL
2949 && !INTERWORK_FLAG (sym_sec->owner))
2950 {
2951 (*_bfd_error_handler)
2952 (_("%B(%s): warning: interworking not enabled.\n"
2953 " first occurrence: %B: Thumb call to ARM"),
2954 sym_sec->owner, input_bfd, name);
2955 }
2956
906e58ca 2957 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 2958 /* PIC stubs. */
906e58ca 2959 ? ((globals->use_blx)
c2b4a39d 2960 /* V5T and above. */
cf3eccff 2961 ? arm_stub_long_branch_any_arm_pic
ebe24dd4
CL
2962 /* V4T PIC stub. */
2963 : arm_stub_long_branch_v4t_thumb_arm_pic)
c2b4a39d
CL
2964
2965 /* non-PIC stubs. */
2966 : ((globals->use_blx)
2967 /* V5T and above. */
2968 ? arm_stub_long_branch_any_any
2969 /* V4T. */
2970 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
2971
2972 /* Handle v4t short branches. */
fea2b4d6 2973 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
2974 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2975 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 2976 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
2977 }
2978 }
2979 }
2980 else if (r_type == R_ARM_CALL)
2981 {
2982 if (st_type == STT_ARM_TFUNC)
2983 {
2984 /* Arm to thumb. */
c820be07
NC
2985
2986 if (sym_sec != NULL
2987 && sym_sec->owner != NULL
2988 && !INTERWORK_FLAG (sym_sec->owner))
2989 {
2990 (*_bfd_error_handler)
2991 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 2992 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
2993 sym_sec->owner, input_bfd, name);
2994 }
2995
2996 /* We have an extra 2-bytes reach because of
2997 the mode change (bit 24 (H) of BLX encoding). */
906e58ca
NC
2998 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2999 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3000 || !globals->use_blx)
3001 {
3002 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3003 /* PIC stubs. */
ebe24dd4
CL
3004 ? ((globals->use_blx)
3005 /* V5T and above. */
3006 ? arm_stub_long_branch_any_thumb_pic
3007 /* V4T stub. */
3008 : arm_stub_long_branch_v4t_arm_thumb_pic)
3009
c2b4a39d
CL
3010 /* non-PIC stubs. */
3011 : ((globals->use_blx)
3012 /* V5T and above. */
3013 ? arm_stub_long_branch_any_any
3014 /* V4T. */
3015 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3016 }
3017 }
3018 else
3019 {
3020 /* Arm to arm. */
3021 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3022 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3023 {
3024 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3025 /* PIC stubs. */
cf3eccff 3026 ? arm_stub_long_branch_any_arm_pic
c2b4a39d 3027 /* non-PIC stubs. */
fea2b4d6 3028 : arm_stub_long_branch_any_any;
906e58ca
NC
3029 }
3030 }
3031 }
3032
3033 return stub_type;
3034}
3035
3036/* Build a name for an entry in the stub hash table. */
3037
3038static char *
3039elf32_arm_stub_name (const asection *input_section,
3040 const asection *sym_sec,
3041 const struct elf32_arm_link_hash_entry *hash,
3042 const Elf_Internal_Rela *rel)
3043{
3044 char *stub_name;
3045 bfd_size_type len;
3046
3047 if (hash)
3048 {
3049 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3050 stub_name = bfd_malloc (len);
3051 if (stub_name != NULL)
3052 sprintf (stub_name, "%08x_%s+%x",
3053 input_section->id & 0xffffffff,
3054 hash->root.root.root.string,
3055 (int) rel->r_addend & 0xffffffff);
3056 }
3057 else
3058 {
3059 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3060 stub_name = bfd_malloc (len);
3061 if (stub_name != NULL)
3062 sprintf (stub_name, "%08x_%x:%x+%x",
3063 input_section->id & 0xffffffff,
3064 sym_sec->id & 0xffffffff,
3065 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3066 (int) rel->r_addend & 0xffffffff);
3067 }
3068
3069 return stub_name;
3070}
3071
3072/* Look up an entry in the stub hash. Stub entries are cached because
3073 creating the stub name takes a bit of time. */
3074
3075static struct elf32_arm_stub_hash_entry *
3076elf32_arm_get_stub_entry (const asection *input_section,
3077 const asection *sym_sec,
3078 struct elf_link_hash_entry *hash,
3079 const Elf_Internal_Rela *rel,
3080 struct elf32_arm_link_hash_table *htab)
3081{
3082 struct elf32_arm_stub_hash_entry *stub_entry;
3083 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3084 const asection *id_sec;
3085
3086 if ((input_section->flags & SEC_CODE) == 0)
3087 return NULL;
3088
3089 /* If this input section is part of a group of sections sharing one
3090 stub section, then use the id of the first section in the group.
3091 Stub names need to include a section id, as there may well be
3092 more than one stub used to reach say, printf, and we need to
3093 distinguish between them. */
3094 id_sec = htab->stub_group[input_section->id].link_sec;
3095
3096 if (h != NULL && h->stub_cache != NULL
3097 && h->stub_cache->h == h
3098 && h->stub_cache->id_sec == id_sec)
3099 {
3100 stub_entry = h->stub_cache;
3101 }
3102 else
3103 {
3104 char *stub_name;
3105
3106 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3107 if (stub_name == NULL)
3108 return NULL;
3109
3110 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3111 stub_name, FALSE, FALSE);
3112 if (h != NULL)
3113 h->stub_cache = stub_entry;
3114
3115 free (stub_name);
3116 }
3117
3118 return stub_entry;
3119}
3120
906e58ca
NC
3121/* Add a new stub entry to the stub hash. Not all fields of the new
3122 stub entry are initialised. */
3123
3124static struct elf32_arm_stub_hash_entry *
3125elf32_arm_add_stub (const char *stub_name,
3126 asection *section,
da5938a2 3127 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3128{
3129 asection *link_sec;
3130 asection *stub_sec;
3131 struct elf32_arm_stub_hash_entry *stub_entry;
3132
3133 link_sec = htab->stub_group[section->id].link_sec;
3134 stub_sec = htab->stub_group[section->id].stub_sec;
3135 if (stub_sec == NULL)
3136 {
3137 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3138 if (stub_sec == NULL)
3139 {
3140 size_t namelen;
3141 bfd_size_type len;
3142 char *s_name;
3143
3144 namelen = strlen (link_sec->name);
3145 len = namelen + sizeof (STUB_SUFFIX);
3146 s_name = bfd_alloc (htab->stub_bfd, len);
3147 if (s_name == NULL)
3148 return NULL;
3149
3150 memcpy (s_name, link_sec->name, namelen);
3151 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3152 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3153 if (stub_sec == NULL)
3154 return NULL;
3155 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3156 }
3157 htab->stub_group[section->id].stub_sec = stub_sec;
3158 }
3159
3160 /* Enter this entry into the linker stub hash table. */
3161 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3162 TRUE, FALSE);
3163 if (stub_entry == NULL)
3164 {
3165 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3166 section->owner,
3167 stub_name);
3168 return NULL;
3169 }
3170
3171 stub_entry->stub_sec = stub_sec;
3172 stub_entry->stub_offset = 0;
3173 stub_entry->id_sec = link_sec;
3174
906e58ca
NC
3175 return stub_entry;
3176}
3177
3178/* Store an Arm insn into an output section not processed by
3179 elf32_arm_write_section. */
3180
3181static void
8029a119
NC
3182put_arm_insn (struct elf32_arm_link_hash_table * htab,
3183 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3184{
3185 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3186 bfd_putl32 (val, ptr);
3187 else
3188 bfd_putb32 (val, ptr);
3189}
3190
3191/* Store a 16-bit Thumb insn into an output section not processed by
3192 elf32_arm_write_section. */
3193
3194static void
8029a119
NC
3195put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3196 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3197{
3198 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3199 bfd_putl16 (val, ptr);
3200 else
3201 bfd_putb16 (val, ptr);
3202}
3203
3204static bfd_boolean
3205arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3206 void * in_arg)
3207{
3208 struct elf32_arm_stub_hash_entry *stub_entry;
3209 struct bfd_link_info *info;
3210 struct elf32_arm_link_hash_table *htab;
3211 asection *stub_sec;
3212 bfd *stub_bfd;
3213 bfd_vma stub_addr;
3214 bfd_byte *loc;
3215 bfd_vma sym_value;
3216 int template_size;
3217 int size;
461a49ca 3218 const insn_sequence *template;
906e58ca
NC
3219 int i;
3220 struct elf32_arm_link_hash_table * globals;
461a49ca 3221 int stub_reloc_idx = -1;
4e31c731 3222 int stub_reloc_offset = 0;
906e58ca
NC
3223
3224 /* Massage our args to the form they really have. */
3225 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3226 info = (struct bfd_link_info *) in_arg;
3227
3228 globals = elf32_arm_hash_table (info);
3229
3230 htab = elf32_arm_hash_table (info);
3231 stub_sec = stub_entry->stub_sec;
3232
3233 /* Make a note of the offset within the stubs for this entry. */
3234 stub_entry->stub_offset = stub_sec->size;
3235 loc = stub_sec->contents + stub_entry->stub_offset;
3236
3237 stub_bfd = stub_sec->owner;
3238
3239 /* This is the address of the start of the stub. */
3240 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3241 + stub_entry->stub_offset;
3242
3243 /* This is the address of the stub destination. */
3244 sym_value = (stub_entry->target_value
3245 + stub_entry->target_section->output_offset
3246 + stub_entry->target_section->output_section->vma);
3247
461a49ca
DJ
3248 template = stub_entry->stub_template;
3249 template_size = stub_entry->stub_template_size;
906e58ca
NC
3250
3251 size = 0;
461a49ca 3252 for (i = 0; i < template_size; i++)
906e58ca 3253 {
4e31c731 3254 switch (template[i].type)
461a49ca
DJ
3255 {
3256 case THUMB16_TYPE:
3257 put_thumb_insn (globals, stub_bfd, template[i].data, loc + size);
3258 size += 2;
3259 break;
906e58ca 3260
461a49ca
DJ
3261 case ARM_TYPE:
3262 put_arm_insn (globals, stub_bfd, template[i].data, loc + size);
3263 /* Handle cases where the target is encoded within the
3264 instruction. */
ebe24dd4 3265 if (template[i].r_type == R_ARM_JUMP24)
461a49ca
DJ
3266 {
3267 stub_reloc_idx = i;
3268 stub_reloc_offset = size;
3269 }
3270 size += 4;
3271 break;
3272
3273 case DATA_TYPE:
3274 bfd_put_32 (stub_bfd, template[i].data, loc + size);
3275 stub_reloc_idx = i;
3276 stub_reloc_offset = size;
3277 size += 4;
3278 break;
3279
3280 default:
3281 BFD_FAIL ();
3282 return FALSE;
3283 }
906e58ca 3284 }
461a49ca 3285
906e58ca
NC
3286 stub_sec->size += size;
3287
461a49ca
DJ
3288 /* Stub size has already been computed in arm_size_one_stub. Check
3289 consistency. */
3290 BFD_ASSERT (size == stub_entry->stub_size);
3291
906e58ca
NC
3292 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3293 if (stub_entry->st_type == STT_ARM_TFUNC)
3294 sym_value |= 1;
3295
461a49ca
DJ
3296 /* Assume there is one and only one entry to relocate in each stub. */
3297 BFD_ASSERT (stub_reloc_idx != -1);
c820be07 3298
ebe24dd4 3299 _bfd_final_link_relocate (elf32_arm_howto_from_type (template[stub_reloc_idx].r_type),
461a49ca
DJ
3300 stub_bfd, stub_sec, stub_sec->contents,
3301 stub_entry->stub_offset + stub_reloc_offset,
3302 sym_value, template[stub_reloc_idx].reloc_addend);
906e58ca
NC
3303
3304 return TRUE;
3305}
3306
3307/* As above, but don't actually build the stub. Just bump offset so
3308 we know stub section sizes. */
3309
3310static bfd_boolean
3311arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3312 void * in_arg)
3313{
3314 struct elf32_arm_stub_hash_entry *stub_entry;
3315 struct elf32_arm_link_hash_table *htab;
461a49ca 3316 const insn_sequence *template;
906e58ca
NC
3317 int template_size;
3318 int size;
3319 int i;
3320
3321 /* Massage our args to the form they really have. */
3322 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3323 htab = (struct elf32_arm_link_hash_table *) in_arg;
3324
3325 switch (stub_entry->stub_type)
3326 {
fea2b4d6
CL
3327 case arm_stub_long_branch_any_any:
3328 template = elf32_arm_stub_long_branch_any_any;
ebe24dd4 3329 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_any);
906e58ca 3330 break;
fea2b4d6
CL
3331 case arm_stub_long_branch_v4t_arm_thumb:
3332 template = elf32_arm_stub_long_branch_v4t_arm_thumb;
ebe24dd4 3333 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb);
906e58ca 3334 break;
fea2b4d6
CL
3335 case arm_stub_long_branch_thumb_only:
3336 template = elf32_arm_stub_long_branch_thumb_only;
ebe24dd4 3337 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only);
906e58ca 3338 break;
fea2b4d6
CL
3339 case arm_stub_long_branch_v4t_thumb_arm:
3340 template = elf32_arm_stub_long_branch_v4t_thumb_arm;
ebe24dd4 3341 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm);
906e58ca 3342 break;
fea2b4d6
CL
3343 case arm_stub_short_branch_v4t_thumb_arm:
3344 template = elf32_arm_stub_short_branch_v4t_thumb_arm;
ebe24dd4 3345 template_size = ARRAY_SIZE (elf32_arm_stub_short_branch_v4t_thumb_arm);
c820be07 3346 break;
cf3eccff
DJ
3347 case arm_stub_long_branch_any_arm_pic:
3348 template = elf32_arm_stub_long_branch_any_arm_pic;
ebe24dd4 3349 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_arm_pic);
cf3eccff
DJ
3350 break;
3351 case arm_stub_long_branch_any_thumb_pic:
3352 template = elf32_arm_stub_long_branch_any_thumb_pic;
ebe24dd4
CL
3353 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_thumb_pic);
3354 break;
3355 case arm_stub_long_branch_v4t_arm_thumb_pic:
3356 template = elf32_arm_stub_long_branch_v4t_arm_thumb_pic;
3357 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb_pic);
3358 break;
3359 case arm_stub_long_branch_v4t_thumb_arm_pic:
3360 template = elf32_arm_stub_long_branch_v4t_thumb_arm_pic;
3361 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm_pic);
3362 break;
3363 case arm_stub_long_branch_thumb_only_pic:
3364 template = elf32_arm_stub_long_branch_thumb_only_pic;
3365 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only_pic);
906e58ca
NC
3366 break;
3367 default:
3368 BFD_FAIL ();
3369 return FALSE;
906e58ca
NC
3370 }
3371
3372 size = 0;
461a49ca
DJ
3373 for (i = 0; i < template_size; i++)
3374 {
4e31c731 3375 switch (template[i].type)
461a49ca
DJ
3376 {
3377 case THUMB16_TYPE:
3378 size += 2;
3379 break;
3380
3381 case ARM_TYPE:
3382 size += 4;
3383 break;
3384
3385 case DATA_TYPE:
3386 size += 4;
3387 break;
3388
3389 default:
3390 BFD_FAIL ();
3391 return FALSE;
3392 }
3393 }
3394
3395 stub_entry->stub_size = size;
3396 stub_entry->stub_template = template;
3397 stub_entry->stub_template_size = template_size;
3398
906e58ca
NC
3399 size = (size + 7) & ~7;
3400 stub_entry->stub_sec->size += size;
461a49ca 3401
906e58ca
NC
3402 return TRUE;
3403}
3404
3405/* External entry points for sizing and building linker stubs. */
3406
3407/* Set up various things so that we can make a list of input sections
3408 for each output section included in the link. Returns -1 on error,
3409 0 when no stubs will be needed, and 1 on success. */
3410
3411int
3412elf32_arm_setup_section_lists (bfd *output_bfd,
3413 struct bfd_link_info *info)
3414{
3415 bfd *input_bfd;
3416 unsigned int bfd_count;
3417 int top_id, top_index;
3418 asection *section;
3419 asection **input_list, **list;
3420 bfd_size_type amt;
3421 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3422
3423 if (! is_elf_hash_table (htab))
3424 return 0;
3425
3426 /* Count the number of input BFDs and find the top input section id. */
3427 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3428 input_bfd != NULL;
3429 input_bfd = input_bfd->link_next)
3430 {
3431 bfd_count += 1;
3432 for (section = input_bfd->sections;
3433 section != NULL;
3434 section = section->next)
3435 {
3436 if (top_id < section->id)
3437 top_id = section->id;
3438 }
3439 }
3440 htab->bfd_count = bfd_count;
3441
3442 amt = sizeof (struct map_stub) * (top_id + 1);
3443 htab->stub_group = bfd_zmalloc (amt);
3444 if (htab->stub_group == NULL)
3445 return -1;
3446
3447 /* We can't use output_bfd->section_count here to find the top output
3448 section index as some sections may have been removed, and
3449 _bfd_strip_section_from_output doesn't renumber the indices. */
3450 for (section = output_bfd->sections, top_index = 0;
3451 section != NULL;
3452 section = section->next)
3453 {
3454 if (top_index < section->index)
3455 top_index = section->index;
3456 }
3457
3458 htab->top_index = top_index;
3459 amt = sizeof (asection *) * (top_index + 1);
3460 input_list = bfd_malloc (amt);
3461 htab->input_list = input_list;
3462 if (input_list == NULL)
3463 return -1;
3464
3465 /* For sections we aren't interested in, mark their entries with a
3466 value we can check later. */
3467 list = input_list + top_index;
3468 do
3469 *list = bfd_abs_section_ptr;
3470 while (list-- != input_list);
3471
3472 for (section = output_bfd->sections;
3473 section != NULL;
3474 section = section->next)
3475 {
3476 if ((section->flags & SEC_CODE) != 0)
3477 input_list[section->index] = NULL;
3478 }
3479
3480 return 1;
3481}
3482
3483/* The linker repeatedly calls this function for each input section,
3484 in the order that input sections are linked into output sections.
3485 Build lists of input sections to determine groupings between which
3486 we may insert linker stubs. */
3487
3488void
3489elf32_arm_next_input_section (struct bfd_link_info *info,
3490 asection *isec)
3491{
3492 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3493
3494 if (isec->output_section->index <= htab->top_index)
3495 {
3496 asection **list = htab->input_list + isec->output_section->index;
3497
3498 if (*list != bfd_abs_section_ptr)
3499 {
3500 /* Steal the link_sec pointer for our list. */
3501#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3502 /* This happens to make the list in reverse order,
07d72278 3503 which we reverse later. */
906e58ca
NC
3504 PREV_SEC (isec) = *list;
3505 *list = isec;
3506 }
3507 }
3508}
3509
3510/* See whether we can group stub sections together. Grouping stub
3511 sections may result in fewer stubs. More importantly, we need to
07d72278 3512 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
3513 .fini output sections respectively, because glibc splits the
3514 _init and _fini functions into multiple parts. Putting a stub in
3515 the middle of a function is not a good idea. */
3516
3517static void
3518group_sections (struct elf32_arm_link_hash_table *htab,
3519 bfd_size_type stub_group_size,
07d72278 3520 bfd_boolean stubs_always_after_branch)
906e58ca 3521{
07d72278 3522 asection **list = htab->input_list;
906e58ca
NC
3523
3524 do
3525 {
3526 asection *tail = *list;
07d72278
DJ
3527 asection *head;
3528 asection *tp;
906e58ca
NC
3529
3530 if (tail == bfd_abs_section_ptr)
3531 continue;
3532
07d72278
DJ
3533 /* Reverse the list: we must avoid placing stubs at the
3534 beginning of the section because the beginning of the text
3535 section may be required for an interrupt vector in bare metal
3536 code. */
3537#define NEXT_SEC PREV_SEC
3538 head = tail;
3539 tp = NULL;
3540 for (;;)
3541 {
3542 asection *h = PREV_SEC (head);
3543 NEXT_SEC (head) = tp;
3544 if (h == NULL)
3545 break;
3546 tp = head;
3547 head = h;
3548 }
3549
3550 while (head != NULL)
906e58ca
NC
3551 {
3552 asection *curr;
07d72278 3553 asection *next;
906e58ca
NC
3554 bfd_size_type total;
3555
07d72278 3556 curr = head;
8cd931b7
CL
3557 total = 0;
3558 while ((next = NEXT_SEC (curr)) != NULL)
3559 {
3560 if ( (total + next->output_offset - curr->output_offset
3561 + next->size)
3562 < stub_group_size )
3563 {
3564 total += next->output_offset - curr->output_offset;
3565 }
3566 else
3567 break;
3568
07d72278 3569 curr = next;
8cd931b7 3570 }
906e58ca 3571
07d72278 3572 /* OK, the size from the start to the start of CURR is less
906e58ca 3573 than stub_group_size and thus can be handled by one stub
07d72278 3574 section. (Or the head section is itself larger than
906e58ca
NC
3575 stub_group_size, in which case we may be toast.)
3576 We should really be keeping track of the total size of
3577 stubs added here, as stubs contribute to the final output
7fb9f789 3578 section size. */
906e58ca
NC
3579 do
3580 {
07d72278 3581 next = NEXT_SEC (head);
906e58ca 3582 /* Set up this stub group. */
07d72278 3583 htab->stub_group[head->id].link_sec = curr;
906e58ca 3584 }
07d72278 3585 while (head != curr && (head = next) != NULL);
906e58ca
NC
3586
3587 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
3588 bytes after the stub section can be handled by it too. */
3589 if (!stubs_always_after_branch)
906e58ca 3590 {
8cd931b7
CL
3591 total = head->size;
3592 while (next != NULL)
906e58ca 3593 {
8cd931b7
CL
3594 if ( (total + next->output_offset - head->output_offset
3595 + next->size)
3596 < stub_group_size )
3597 {
3598 total += next->output_offset - head->output_offset;
3599 }
3600 else
3601 break;
3602
07d72278
DJ
3603 head = next;
3604 next = NEXT_SEC (head);
3605 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
3606 }
3607 }
07d72278 3608 head = next;
906e58ca
NC
3609 }
3610 }
07d72278 3611 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
3612
3613 free (htab->input_list);
3614#undef PREV_SEC
07d72278 3615#undef NEXT_SEC
906e58ca
NC
3616}
3617
3618/* Determine and set the size of the stub section for a final link.
3619
3620 The basic idea here is to examine all the relocations looking for
3621 PC-relative calls to a target that is unreachable with a "bl"
3622 instruction. */
3623
3624bfd_boolean
3625elf32_arm_size_stubs (bfd *output_bfd,
3626 bfd *stub_bfd,
3627 struct bfd_link_info *info,
3628 bfd_signed_vma group_size,
3629 asection * (*add_stub_section) (const char *, asection *),
3630 void (*layout_sections_again) (void))
3631{
3632 bfd_size_type stub_group_size;
07d72278 3633 bfd_boolean stubs_always_after_branch;
906e58ca
NC
3634 bfd_boolean stub_changed = 0;
3635 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3636
3637 /* Propagate mach to stub bfd, because it may not have been
3638 finalized when we created stub_bfd. */
3639 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3640 bfd_get_mach (output_bfd));
3641
3642 /* Stash our params away. */
3643 htab->stub_bfd = stub_bfd;
3644 htab->add_stub_section = add_stub_section;
3645 htab->layout_sections_again = layout_sections_again;
07d72278 3646 stubs_always_after_branch = group_size < 0;
906e58ca
NC
3647 if (group_size < 0)
3648 stub_group_size = -group_size;
3649 else
3650 stub_group_size = group_size;
3651
3652 if (stub_group_size == 1)
3653 {
3654 /* Default values. */
3655 /* Thumb branch range is +-4MB has to be used as the default
3656 maximum size (a given section can contain both ARM and Thumb
3657 code, so the worst case has to be taken into account).
3658
3659 This value is 24K less than that, which allows for 2025
3660 12-byte stubs. If we exceed that, then we will fail to link.
3661 The user will have to relink with an explicit group size
3662 option. */
3663 stub_group_size = 4170000;
3664 }
3665
07d72278 3666 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca
NC
3667
3668 while (1)
3669 {
3670 bfd *input_bfd;
3671 unsigned int bfd_indx;
3672 asection *stub_sec;
3673
3674 for (input_bfd = info->input_bfds, bfd_indx = 0;
3675 input_bfd != NULL;
3676 input_bfd = input_bfd->link_next, bfd_indx++)
3677 {
3678 Elf_Internal_Shdr *symtab_hdr;
3679 asection *section;
3680 Elf_Internal_Sym *local_syms = NULL;
3681
3682 /* We'll need the symbol table in a second. */
3683 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3684 if (symtab_hdr->sh_info == 0)
3685 continue;
3686
3687 /* Walk over each section attached to the input bfd. */
3688 for (section = input_bfd->sections;
3689 section != NULL;
3690 section = section->next)
3691 {
3692 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3693
3694 /* If there aren't any relocs, then there's nothing more
3695 to do. */
3696 if ((section->flags & SEC_RELOC) == 0
3697 || section->reloc_count == 0
3698 || (section->flags & SEC_CODE) == 0)
3699 continue;
3700
3701 /* If this section is a link-once section that will be
3702 discarded, then don't create any stubs. */
3703 if (section->output_section == NULL
3704 || section->output_section->owner != output_bfd)
3705 continue;
3706
3707 /* Get the relocs. */
3708 internal_relocs
3709 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3710 NULL, info->keep_memory);
3711 if (internal_relocs == NULL)
3712 goto error_ret_free_local;
3713
3714 /* Now examine each relocation. */
3715 irela = internal_relocs;
3716 irelaend = irela + section->reloc_count;
3717 for (; irela < irelaend; irela++)
3718 {
3719 unsigned int r_type, r_indx;
3720 enum elf32_arm_stub_type stub_type;
3721 struct elf32_arm_stub_hash_entry *stub_entry;
3722 asection *sym_sec;
3723 bfd_vma sym_value;
3724 bfd_vma destination;
3725 struct elf32_arm_link_hash_entry *hash;
7413f23f 3726 const char *sym_name;
906e58ca
NC
3727 char *stub_name;
3728 const asection *id_sec;
3729 unsigned char st_type;
3730
3731 r_type = ELF32_R_TYPE (irela->r_info);
3732 r_indx = ELF32_R_SYM (irela->r_info);
3733
3734 if (r_type >= (unsigned int) R_ARM_max)
3735 {
3736 bfd_set_error (bfd_error_bad_value);
3737 error_ret_free_internal:
3738 if (elf_section_data (section)->relocs == NULL)
3739 free (internal_relocs);
3740 goto error_ret_free_local;
3741 }
3742
3743 /* Only look for stubs on call instructions. */
3744 if ((r_type != (unsigned int) R_ARM_CALL)
3745 && (r_type != (unsigned int) R_ARM_THM_CALL))
3746 continue;
3747
3748 /* Now determine the call target, its name, value,
3749 section. */
3750 sym_sec = NULL;
3751 sym_value = 0;
3752 destination = 0;
3753 hash = NULL;
7413f23f 3754 sym_name = NULL;
906e58ca
NC
3755 if (r_indx < symtab_hdr->sh_info)
3756 {
3757 /* It's a local symbol. */
3758 Elf_Internal_Sym *sym;
3759 Elf_Internal_Shdr *hdr;
3760
3761 if (local_syms == NULL)
3762 {
3763 local_syms
3764 = (Elf_Internal_Sym *) symtab_hdr->contents;
3765 if (local_syms == NULL)
3766 local_syms
3767 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3768 symtab_hdr->sh_info, 0,
3769 NULL, NULL, NULL);
3770 if (local_syms == NULL)
3771 goto error_ret_free_internal;
3772 }
3773
3774 sym = local_syms + r_indx;
3775 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3776 sym_sec = hdr->bfd_section;
3777 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3778 sym_value = sym->st_value;
3779 destination = (sym_value + irela->r_addend
3780 + sym_sec->output_offset
3781 + sym_sec->output_section->vma);
3782 st_type = ELF_ST_TYPE (sym->st_info);
7413f23f
DJ
3783 sym_name
3784 = bfd_elf_string_from_elf_section (input_bfd,
3785 symtab_hdr->sh_link,
3786 sym->st_name);
906e58ca
NC
3787 }
3788 else
3789 {
3790 /* It's an external symbol. */
3791 int e_indx;
3792
3793 e_indx = r_indx - symtab_hdr->sh_info;
3794 hash = ((struct elf32_arm_link_hash_entry *)
3795 elf_sym_hashes (input_bfd)[e_indx]);
3796
3797 while (hash->root.root.type == bfd_link_hash_indirect
3798 || hash->root.root.type == bfd_link_hash_warning)
3799 hash = ((struct elf32_arm_link_hash_entry *)
3800 hash->root.root.u.i.link);
3801
3802 if (hash->root.root.type == bfd_link_hash_defined
3803 || hash->root.root.type == bfd_link_hash_defweak)
3804 {
3805 sym_sec = hash->root.root.u.def.section;
3806 sym_value = hash->root.root.u.def.value;
3807 if (sym_sec->output_section != NULL)
3808 destination = (sym_value + irela->r_addend
3809 + sym_sec->output_offset
3810 + sym_sec->output_section->vma);
3811 }
3812 else if (hash->root.root.type == bfd_link_hash_undefweak
3813 || hash->root.root.type == bfd_link_hash_undefined)
3814 /* For a shared library, these will need a PLT stub,
3815 which is treated separately.
3816 For absolute code, they cannot be handled. */
3817 continue;
3818 else
3819 {
3820 bfd_set_error (bfd_error_bad_value);
3821 goto error_ret_free_internal;
3822 }
3823 st_type = ELF_ST_TYPE (hash->root.type);
7413f23f 3824 sym_name = hash->root.root.root.string;
906e58ca
NC
3825 }
3826
3827 /* Determine what (if any) linker stub is needed. */
3828 stub_type = arm_type_of_stub (info, section, irela, st_type,
c820be07
NC
3829 hash, destination, sym_sec,
3830 input_bfd, sym_name);
906e58ca
NC
3831 if (stub_type == arm_stub_none)
3832 continue;
5e681ec4 3833
906e58ca
NC
3834 /* Support for grouping stub sections. */
3835 id_sec = htab->stub_group[section->id].link_sec;
5e681ec4 3836
906e58ca
NC
3837 /* Get the name of this stub. */
3838 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3839 if (!stub_name)
3840 goto error_ret_free_internal;
5e681ec4 3841
906e58ca
NC
3842 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3843 stub_name,
3844 FALSE, FALSE);
3845 if (stub_entry != NULL)
3846 {
3847 /* The proper stub has already been created. */
3848 free (stub_name);
3849 continue;
3850 }
5e681ec4 3851
da5938a2 3852 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
906e58ca
NC
3853 if (stub_entry == NULL)
3854 {
3855 free (stub_name);
3856 goto error_ret_free_internal;
3857 }
5e681ec4 3858
906e58ca
NC
3859 stub_entry->target_value = sym_value;
3860 stub_entry->target_section = sym_sec;
3861 stub_entry->stub_type = stub_type;
3862 stub_entry->h = hash;
3863 stub_entry->st_type = st_type;
7413f23f
DJ
3864
3865 if (sym_name == NULL)
3866 sym_name = "unnamed";
3867 stub_entry->output_name
3868 = bfd_alloc (htab->stub_bfd,
3869 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3870 + strlen (sym_name));
3871 if (stub_entry->output_name == NULL)
3872 {
3873 free (stub_name);
3874 goto error_ret_free_internal;
3875 }
3876
3877 /* For historical reasons, use the existing names for
3878 ARM-to-Thumb and Thumb-to-ARM stubs. */
3879 if (r_type == (unsigned int) R_ARM_THM_CALL
3880 && st_type != STT_ARM_TFUNC)
3881 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3882 sym_name);
3883 else if (r_type == (unsigned int) R_ARM_CALL
3884 && st_type == STT_ARM_TFUNC)
3885 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3886 sym_name);
3887 else
3888 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3889 sym_name);
3890
906e58ca
NC
3891 stub_changed = TRUE;
3892 }
3893
3894 /* We're done with the internal relocs, free them. */
3895 if (elf_section_data (section)->relocs == NULL)
3896 free (internal_relocs);
5e681ec4 3897 }
5e681ec4
PB
3898 }
3899
906e58ca
NC
3900 if (!stub_changed)
3901 break;
5e681ec4 3902
906e58ca
NC
3903 /* OK, we've added some stubs. Find out the new size of the
3904 stub sections. */
3905 for (stub_sec = htab->stub_bfd->sections;
3906 stub_sec != NULL;
3907 stub_sec = stub_sec->next)
3908 stub_sec->size = 0;
b34b2d70 3909
906e58ca
NC
3910 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3911
3912 /* Ask the linker to do its stuff. */
3913 (*htab->layout_sections_again) ();
3914 stub_changed = FALSE;
ba93b8ac
DJ
3915 }
3916
906e58ca
NC
3917 return TRUE;
3918
3919 error_ret_free_local:
3920 return FALSE;
5e681ec4
PB
3921}
3922
906e58ca
NC
3923/* Build all the stubs associated with the current output file. The
3924 stubs are kept in a hash table attached to the main linker hash
3925 table. We also set up the .plt entries for statically linked PIC
3926 functions here. This function is called via arm_elf_finish in the
3927 linker. */
252b5132 3928
906e58ca
NC
3929bfd_boolean
3930elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 3931{
906e58ca
NC
3932 asection *stub_sec;
3933 struct bfd_hash_table *table;
3934 struct elf32_arm_link_hash_table *htab;
252b5132 3935
906e58ca 3936 htab = elf32_arm_hash_table (info);
252b5132 3937
906e58ca
NC
3938 for (stub_sec = htab->stub_bfd->sections;
3939 stub_sec != NULL;
3940 stub_sec = stub_sec->next)
252b5132 3941 {
906e58ca
NC
3942 bfd_size_type size;
3943
8029a119 3944 /* Ignore non-stub sections. */
906e58ca
NC
3945 if (!strstr (stub_sec->name, STUB_SUFFIX))
3946 continue;
3947
3948 /* Allocate memory to hold the linker stubs. */
3949 size = stub_sec->size;
3950 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3951 if (stub_sec->contents == NULL && size != 0)
3952 return FALSE;
3953 stub_sec->size = 0;
252b5132
RH
3954 }
3955
906e58ca
NC
3956 /* Build the stubs as directed by the stub hash table. */
3957 table = &htab->stub_hash_table;
3958 bfd_hash_traverse (table, arm_build_one_stub, info);
252b5132 3959
906e58ca 3960 return TRUE;
252b5132
RH
3961}
3962
9b485d32
NC
3963/* Locate the Thumb encoded calling stub for NAME. */
3964
252b5132 3965static struct elf_link_hash_entry *
57e8b36a
NC
3966find_thumb_glue (struct bfd_link_info *link_info,
3967 const char *name,
f2a9dd69 3968 char **error_message)
252b5132
RH
3969{
3970 char *tmp_name;
3971 struct elf_link_hash_entry *hash;
3972 struct elf32_arm_link_hash_table *hash_table;
3973
3974 /* We need a pointer to the armelf specific hash table. */
3975 hash_table = elf32_arm_hash_table (link_info);
3976
57e8b36a
NC
3977 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3978 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
3979
3980 BFD_ASSERT (tmp_name);
3981
3982 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3983
3984 hash = elf_link_hash_lookup
b34976b6 3985 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 3986
b1657152
AM
3987 if (hash == NULL
3988 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3989 tmp_name, name) == -1)
3990 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
3991
3992 free (tmp_name);
3993
3994 return hash;
3995}
3996
9b485d32
NC
3997/* Locate the ARM encoded calling stub for NAME. */
3998
252b5132 3999static struct elf_link_hash_entry *
57e8b36a
NC
4000find_arm_glue (struct bfd_link_info *link_info,
4001 const char *name,
f2a9dd69 4002 char **error_message)
252b5132
RH
4003{
4004 char *tmp_name;
4005 struct elf_link_hash_entry *myh;
4006 struct elf32_arm_link_hash_table *hash_table;
4007
4008 /* We need a pointer to the elfarm specific hash table. */
4009 hash_table = elf32_arm_hash_table (link_info);
4010
57e8b36a
NC
4011 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4012 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4013
4014 BFD_ASSERT (tmp_name);
4015
4016 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4017
4018 myh = elf_link_hash_lookup
b34976b6 4019 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 4020
b1657152
AM
4021 if (myh == NULL
4022 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4023 tmp_name, name) == -1)
4024 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
4025
4026 free (tmp_name);
4027
4028 return myh;
4029}
4030
8f6277f5 4031/* ARM->Thumb glue (static images):
252b5132
RH
4032
4033 .arm
4034 __func_from_arm:
4035 ldr r12, __func_addr
4036 bx r12
4037 __func_addr:
906e58ca 4038 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 4039
26079076
PB
4040 (v5t static images)
4041 .arm
4042 __func_from_arm:
4043 ldr pc, __func_addr
4044 __func_addr:
906e58ca 4045 .word func @ behave as if you saw a ARM_32 reloc.
26079076 4046
8f6277f5
PB
4047 (relocatable images)
4048 .arm
4049 __func_from_arm:
4050 ldr r12, __func_offset
4051 add r12, r12, pc
4052 bx r12
4053 __func_offset:
8029a119 4054 .word func - . */
8f6277f5
PB
4055
4056#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
4057static const insn32 a2t1_ldr_insn = 0xe59fc000;
4058static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4059static const insn32 a2t3_func_addr_insn = 0x00000001;
4060
26079076
PB
4061#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4062static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4063static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4064
8f6277f5
PB
4065#define ARM2THUMB_PIC_GLUE_SIZE 16
4066static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4067static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4068static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4069
9b485d32 4070/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 4071
8029a119
NC
4072 .thumb .thumb
4073 .align 2 .align 2
4074 __func_from_thumb: __func_from_thumb:
4075 bx pc push {r6, lr}
4076 nop ldr r6, __func_addr
4077 .arm mov lr, pc
4078 b func bx r6
fcef9eb7
NC
4079 .arm
4080 ;; back_to_thumb
4081 ldmia r13! {r6, lr}
4082 bx lr
8029a119
NC
4083 __func_addr:
4084 .word func */
252b5132
RH
4085
4086#define THUMB2ARM_GLUE_SIZE 8
4087static const insn16 t2a1_bx_pc_insn = 0x4778;
4088static const insn16 t2a2_noop_insn = 0x46c0;
4089static const insn32 t2a3_b_insn = 0xea000000;
4090
c7b8f16e
JB
4091#define VFP11_ERRATUM_VENEER_SIZE 8
4092
845b51d6
PB
4093#define ARM_BX_VENEER_SIZE 12
4094static const insn32 armbx1_tst_insn = 0xe3100001;
4095static const insn32 armbx2_moveq_insn = 0x01a0f000;
4096static const insn32 armbx3_bx_insn = 0xe12fff10;
4097
7e392df6 4098#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
4099static void
4100arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
4101{
4102 asection * s;
8029a119 4103 bfd_byte * contents;
252b5132 4104
8029a119
NC
4105 if (size == 0)
4106 return;
252b5132 4107
8029a119 4108 BFD_ASSERT (abfd != NULL);
252b5132 4109
8029a119
NC
4110 s = bfd_get_section_by_name (abfd, name);
4111 BFD_ASSERT (s != NULL);
252b5132 4112
8029a119 4113 contents = bfd_alloc (abfd, size);
252b5132 4114
8029a119
NC
4115 BFD_ASSERT (s->size == size);
4116 s->contents = contents;
4117}
906e58ca 4118
8029a119
NC
4119bfd_boolean
4120bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4121{
4122 struct elf32_arm_link_hash_table * globals;
906e58ca 4123
8029a119
NC
4124 globals = elf32_arm_hash_table (info);
4125 BFD_ASSERT (globals != NULL);
906e58ca 4126
8029a119
NC
4127 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4128 globals->arm_glue_size,
4129 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 4130
8029a119
NC
4131 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4132 globals->thumb_glue_size,
4133 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 4134
8029a119
NC
4135 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4136 globals->vfp11_erratum_glue_size,
4137 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 4138
8029a119
NC
4139 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4140 globals->bx_glue_size,
845b51d6
PB
4141 ARM_BX_GLUE_SECTION_NAME);
4142
b34976b6 4143 return TRUE;
252b5132
RH
4144}
4145
a4fd1a8e 4146/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
4147 returns the symbol identifying the stub. */
4148
a4fd1a8e 4149static struct elf_link_hash_entry *
57e8b36a
NC
4150record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4151 struct elf_link_hash_entry * h)
252b5132
RH
4152{
4153 const char * name = h->root.root.string;
63b0f745 4154 asection * s;
252b5132
RH
4155 char * tmp_name;
4156 struct elf_link_hash_entry * myh;
14a793b2 4157 struct bfd_link_hash_entry * bh;
252b5132 4158 struct elf32_arm_link_hash_table * globals;
dc810e39 4159 bfd_vma val;
2f475487 4160 bfd_size_type size;
252b5132
RH
4161
4162 globals = elf32_arm_hash_table (link_info);
4163
4164 BFD_ASSERT (globals != NULL);
4165 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4166
4167 s = bfd_get_section_by_name
4168 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4169
252b5132
RH
4170 BFD_ASSERT (s != NULL);
4171
57e8b36a 4172 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4173
4174 BFD_ASSERT (tmp_name);
4175
4176 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4177
4178 myh = elf_link_hash_lookup
b34976b6 4179 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
4180
4181 if (myh != NULL)
4182 {
9b485d32 4183 /* We've already seen this guy. */
252b5132 4184 free (tmp_name);
a4fd1a8e 4185 return myh;
252b5132
RH
4186 }
4187
57e8b36a
NC
4188 /* The only trick here is using hash_table->arm_glue_size as the value.
4189 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
4190 putting it. The +1 on the value marks that the stub has not been
4191 output yet - not that it is a Thumb function. */
14a793b2 4192 bh = NULL;
dc810e39
AM
4193 val = globals->arm_glue_size + 1;
4194 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4195 tmp_name, BSF_GLOBAL, s, val,
b34976b6 4196 NULL, TRUE, FALSE, &bh);
252b5132 4197
b7693d02
DJ
4198 myh = (struct elf_link_hash_entry *) bh;
4199 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4200 myh->forced_local = 1;
4201
252b5132
RH
4202 free (tmp_name);
4203
27e55c4d
PB
4204 if (link_info->shared || globals->root.is_relocatable_executable
4205 || globals->pic_veneer)
2f475487 4206 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
4207 else if (globals->use_blx)
4208 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 4209 else
2f475487
AM
4210 size = ARM2THUMB_STATIC_GLUE_SIZE;
4211
4212 s->size += size;
4213 globals->arm_glue_size += size;
252b5132 4214
a4fd1a8e 4215 return myh;
252b5132
RH
4216}
4217
4218static void
57e8b36a
NC
4219record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4220 struct elf_link_hash_entry *h)
252b5132
RH
4221{
4222 const char *name = h->root.root.string;
63b0f745 4223 asection *s;
252b5132
RH
4224 char *tmp_name;
4225 struct elf_link_hash_entry *myh;
14a793b2 4226 struct bfd_link_hash_entry *bh;
252b5132 4227 struct elf32_arm_link_hash_table *hash_table;
dc810e39 4228 bfd_vma val;
252b5132
RH
4229
4230 hash_table = elf32_arm_hash_table (link_info);
4231
4232 BFD_ASSERT (hash_table != NULL);
4233 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4234
4235 s = bfd_get_section_by_name
4236 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4237
4238 BFD_ASSERT (s != NULL);
4239
57e8b36a
NC
4240 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4241 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4242
4243 BFD_ASSERT (tmp_name);
4244
4245 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4246
4247 myh = elf_link_hash_lookup
b34976b6 4248 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
4249
4250 if (myh != NULL)
4251 {
9b485d32 4252 /* We've already seen this guy. */
252b5132 4253 free (tmp_name);
9b485d32 4254 return;
252b5132
RH
4255 }
4256
3dccd7b7
DJ
4257 /* The only trick here is using hash_table->thumb_glue_size as the value.
4258 Even though the section isn't allocated yet, this is where we will be
4259 putting it. The +1 on the value marks that the stub has not been
4260 output yet - not that it is a Thumb function. */
14a793b2 4261 bh = NULL;
dc810e39
AM
4262 val = hash_table->thumb_glue_size + 1;
4263 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4264 tmp_name, BSF_GLOBAL, s, val,
b34976b6 4265 NULL, TRUE, FALSE, &bh);
252b5132 4266
9b485d32 4267 /* If we mark it 'Thumb', the disassembler will do a better job. */
14a793b2 4268 myh = (struct elf_link_hash_entry *) bh;
b7693d02
DJ
4269 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4270 myh->forced_local = 1;
252b5132
RH
4271
4272 free (tmp_name);
4273
252b5132
RH
4274#define CHANGE_TO_ARM "__%s_change_to_arm"
4275#define BACK_FROM_ARM "__%s_back_from_arm"
4276
9b485d32 4277 /* Allocate another symbol to mark where we switch to Arm mode. */
57e8b36a
NC
4278 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4279 + strlen (CHANGE_TO_ARM) + 1);
252b5132
RH
4280
4281 BFD_ASSERT (tmp_name);
4282
4283 sprintf (tmp_name, CHANGE_TO_ARM, name);
4284
14a793b2 4285 bh = NULL;
dc810e39
AM
4286 val = hash_table->thumb_glue_size + 4,
4287 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4288 tmp_name, BSF_LOCAL, s, val,
b34976b6 4289 NULL, TRUE, FALSE, &bh);
252b5132
RH
4290
4291 free (tmp_name);
4292
2f475487 4293 s->size += THUMB2ARM_GLUE_SIZE;
252b5132 4294 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
252b5132
RH
4295}
4296
c7b8f16e 4297
845b51d6
PB
4298/* Allocate space for ARMv4 BX veneers. */
4299
4300static void
4301record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4302{
4303 asection * s;
4304 struct elf32_arm_link_hash_table *globals;
4305 char *tmp_name;
4306 struct elf_link_hash_entry *myh;
4307 struct bfd_link_hash_entry *bh;
4308 bfd_vma val;
4309
4310 /* BX PC does not need a veneer. */
4311 if (reg == 15)
4312 return;
4313
4314 globals = elf32_arm_hash_table (link_info);
4315
4316 BFD_ASSERT (globals != NULL);
4317 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4318
4319 /* Check if this veneer has already been allocated. */
4320 if (globals->bx_glue_offset[reg])
4321 return;
4322
4323 s = bfd_get_section_by_name
4324 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4325
4326 BFD_ASSERT (s != NULL);
4327
4328 /* Add symbol for veneer. */
4329 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 4330
845b51d6 4331 BFD_ASSERT (tmp_name);
906e58ca 4332
845b51d6 4333 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 4334
845b51d6
PB
4335 myh = elf_link_hash_lookup
4336 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 4337
845b51d6 4338 BFD_ASSERT (myh == NULL);
906e58ca 4339
845b51d6
PB
4340 bh = NULL;
4341 val = globals->bx_glue_size;
4342 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4343 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4344 NULL, TRUE, FALSE, &bh);
4345
4346 myh = (struct elf_link_hash_entry *) bh;
4347 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4348 myh->forced_local = 1;
4349
4350 s->size += ARM_BX_VENEER_SIZE;
4351 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4352 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4353}
4354
4355
c7b8f16e
JB
4356/* Add an entry to the code/data map for section SEC. */
4357
4358static void
4359elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4360{
4361 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4362 unsigned int newidx;
906e58ca 4363
c7b8f16e
JB
4364 if (sec_data->map == NULL)
4365 {
4366 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4367 sec_data->mapcount = 0;
4368 sec_data->mapsize = 1;
4369 }
906e58ca 4370
c7b8f16e 4371 newidx = sec_data->mapcount++;
906e58ca 4372
c7b8f16e
JB
4373 if (sec_data->mapcount > sec_data->mapsize)
4374 {
4375 sec_data->mapsize *= 2;
515ef31d
NC
4376 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4377 * sizeof (elf32_arm_section_map));
4378 }
4379
4380 if (sec_data->map)
4381 {
4382 sec_data->map[newidx].vma = vma;
4383 sec_data->map[newidx].type = type;
c7b8f16e 4384 }
c7b8f16e
JB
4385}
4386
4387
4388/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4389 veneers are handled for now. */
4390
4391static bfd_vma
4392record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4393 elf32_vfp11_erratum_list *branch,
4394 bfd *branch_bfd,
4395 asection *branch_sec,
4396 unsigned int offset)
4397{
4398 asection *s;
4399 struct elf32_arm_link_hash_table *hash_table;
4400 char *tmp_name;
4401 struct elf_link_hash_entry *myh;
4402 struct bfd_link_hash_entry *bh;
4403 bfd_vma val;
4404 struct _arm_elf_section_data *sec_data;
4405 int errcount;
4406 elf32_vfp11_erratum_list *newerr;
906e58ca 4407
c7b8f16e 4408 hash_table = elf32_arm_hash_table (link_info);
906e58ca 4409
c7b8f16e
JB
4410 BFD_ASSERT (hash_table != NULL);
4411 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 4412
c7b8f16e
JB
4413 s = bfd_get_section_by_name
4414 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 4415
c7b8f16e 4416 sec_data = elf32_arm_section_data (s);
906e58ca 4417
c7b8f16e 4418 BFD_ASSERT (s != NULL);
906e58ca 4419
c7b8f16e
JB
4420 tmp_name = bfd_malloc ((bfd_size_type) strlen
4421 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 4422
c7b8f16e 4423 BFD_ASSERT (tmp_name);
906e58ca 4424
c7b8f16e
JB
4425 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4426 hash_table->num_vfp11_fixes);
906e58ca 4427
c7b8f16e
JB
4428 myh = elf_link_hash_lookup
4429 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 4430
c7b8f16e 4431 BFD_ASSERT (myh == NULL);
906e58ca 4432
c7b8f16e
JB
4433 bh = NULL;
4434 val = hash_table->vfp11_erratum_glue_size;
4435 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4436 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4437 NULL, TRUE, FALSE, &bh);
4438
4439 myh = (struct elf_link_hash_entry *) bh;
4440 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4441 myh->forced_local = 1;
4442
4443 /* Link veneer back to calling location. */
4444 errcount = ++(sec_data->erratumcount);
4445 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 4446
c7b8f16e
JB
4447 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4448 newerr->vma = -1;
4449 newerr->u.v.branch = branch;
4450 newerr->u.v.id = hash_table->num_vfp11_fixes;
4451 branch->u.b.veneer = newerr;
4452
4453 newerr->next = sec_data->erratumlist;
4454 sec_data->erratumlist = newerr;
4455
4456 /* A symbol for the return from the veneer. */
4457 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4458 hash_table->num_vfp11_fixes);
4459
4460 myh = elf_link_hash_lookup
4461 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 4462
c7b8f16e
JB
4463 if (myh != NULL)
4464 abort ();
4465
4466 bh = NULL;
4467 val = offset + 4;
4468 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4469 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 4470
c7b8f16e
JB
4471 myh = (struct elf_link_hash_entry *) bh;
4472 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4473 myh->forced_local = 1;
4474
4475 free (tmp_name);
906e58ca 4476
c7b8f16e
JB
4477 /* Generate a mapping symbol for the veneer section, and explicitly add an
4478 entry for that symbol to the code/data map for the section. */
4479 if (hash_table->vfp11_erratum_glue_size == 0)
4480 {
4481 bh = NULL;
4482 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4483 ever requires this erratum fix. */
4484 _bfd_generic_link_add_one_symbol (link_info,
4485 hash_table->bfd_of_glue_owner, "$a",
4486 BSF_LOCAL, s, 0, NULL,
4487 TRUE, FALSE, &bh);
4488
4489 myh = (struct elf_link_hash_entry *) bh;
4490 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4491 myh->forced_local = 1;
906e58ca 4492
c7b8f16e
JB
4493 /* The elf32_arm_init_maps function only cares about symbols from input
4494 BFDs. We must make a note of this generated mapping symbol
4495 ourselves so that code byteswapping works properly in
4496 elf32_arm_write_section. */
4497 elf32_arm_section_map_add (s, 'a', 0);
4498 }
906e58ca 4499
c7b8f16e
JB
4500 s->size += VFP11_ERRATUM_VENEER_SIZE;
4501 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4502 hash_table->num_vfp11_fixes++;
906e58ca 4503
c7b8f16e
JB
4504 /* The offset of the veneer. */
4505 return val;
4506}
4507
8029a119
NC
4508/* Note: we do not include the flag SEC_LINKER_CREATED, as that
4509 would prevent elf_link_input_bfd() from processing the contents
4510 of the section. */
4511#define ARM_GLUE_SECTION_FLAGS \
4512 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4513
4514/* Create a fake section for use by the ARM backend of the linker. */
4515
4516static bfd_boolean
4517arm_make_glue_section (bfd * abfd, const char * name)
4518{
4519 asection * sec;
4520
4521 sec = bfd_get_section_by_name (abfd, name);
4522 if (sec != NULL)
4523 /* Already made. */
4524 return TRUE;
4525
4526 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4527
4528 if (sec == NULL
4529 || !bfd_set_section_alignment (abfd, sec, 2))
4530 return FALSE;
4531
4532 /* Set the gc mark to prevent the section from being removed by garbage
4533 collection, despite the fact that no relocs refer to this section. */
4534 sec->gc_mark = 1;
4535
4536 return TRUE;
4537}
4538
8afb0e02
NC
4539/* Add the glue sections to ABFD. This function is called from the
4540 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 4541
b34976b6 4542bfd_boolean
57e8b36a
NC
4543bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4544 struct bfd_link_info *info)
252b5132 4545{
8afb0e02
NC
4546 /* If we are only performing a partial
4547 link do not bother adding the glue. */
1049f94e 4548 if (info->relocatable)
b34976b6 4549 return TRUE;
252b5132 4550
8029a119 4551 /* Linker stubs don't need glue. */
906e58ca
NC
4552 if (!strcmp (abfd->filename, "linker stubs"))
4553 return TRUE;
4554
8029a119
NC
4555 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4556 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4557 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4558 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
4559}
4560
4561/* Select a BFD to be used to hold the sections used by the glue code.
4562 This function is called from the linker scripts in ld/emultempl/
8029a119 4563 {armelf/pe}.em. */
8afb0e02 4564
b34976b6 4565bfd_boolean
57e8b36a 4566bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
4567{
4568 struct elf32_arm_link_hash_table *globals;
4569
4570 /* If we are only performing a partial link
4571 do not bother getting a bfd to hold the glue. */
1049f94e 4572 if (info->relocatable)
b34976b6 4573 return TRUE;
8afb0e02 4574
b7693d02
DJ
4575 /* Make sure we don't attach the glue sections to a dynamic object. */
4576 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4577
8afb0e02
NC
4578 globals = elf32_arm_hash_table (info);
4579
4580 BFD_ASSERT (globals != NULL);
4581
4582 if (globals->bfd_of_glue_owner != NULL)
b34976b6 4583 return TRUE;
8afb0e02 4584
252b5132
RH
4585 /* Save the bfd for later use. */
4586 globals->bfd_of_glue_owner = abfd;
cedb70c5 4587
b34976b6 4588 return TRUE;
252b5132
RH
4589}
4590
906e58ca
NC
4591static void
4592check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 4593{
104d59d1
JM
4594 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4595 Tag_CPU_arch) > 2)
39b41c9c
PB
4596 globals->use_blx = 1;
4597}
4598
b34976b6 4599bfd_boolean
57e8b36a 4600bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 4601 struct bfd_link_info *link_info)
252b5132
RH
4602{
4603 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 4604 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
4605 Elf_Internal_Rela *irel, *irelend;
4606 bfd_byte *contents = NULL;
252b5132
RH
4607
4608 asection *sec;
4609 struct elf32_arm_link_hash_table *globals;
4610
4611 /* If we are only performing a partial link do not bother
4612 to construct any glue. */
1049f94e 4613 if (link_info->relocatable)
b34976b6 4614 return TRUE;
252b5132 4615
39ce1a6a
NC
4616 /* Here we have a bfd that is to be included on the link. We have a
4617 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132
RH
4618 globals = elf32_arm_hash_table (link_info);
4619
4620 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
4621
4622 check_use_blx (globals);
252b5132 4623
d504ffc8 4624 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 4625 {
d003868e
AM
4626 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4627 abfd);
e489d0ae
PB
4628 return FALSE;
4629 }
f21f3fe0 4630
39ce1a6a
NC
4631 /* PR 5398: If we have not decided to include any loadable sections in
4632 the output then we will not have a glue owner bfd. This is OK, it
4633 just means that there is nothing else for us to do here. */
4634 if (globals->bfd_of_glue_owner == NULL)
4635 return TRUE;
4636
252b5132
RH
4637 /* Rummage around all the relocs and map the glue vectors. */
4638 sec = abfd->sections;
4639
4640 if (sec == NULL)
b34976b6 4641 return TRUE;
252b5132
RH
4642
4643 for (; sec != NULL; sec = sec->next)
4644 {
4645 if (sec->reloc_count == 0)
4646 continue;
4647
2f475487
AM
4648 if ((sec->flags & SEC_EXCLUDE) != 0)
4649 continue;
4650
0ffa91dd 4651 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 4652
9b485d32 4653 /* Load the relocs. */
6cdc0ccc 4654 internal_relocs
906e58ca 4655 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 4656
6cdc0ccc
AM
4657 if (internal_relocs == NULL)
4658 goto error_return;
252b5132 4659
6cdc0ccc
AM
4660 irelend = internal_relocs + sec->reloc_count;
4661 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
4662 {
4663 long r_type;
4664 unsigned long r_index;
252b5132
RH
4665
4666 struct elf_link_hash_entry *h;
4667
4668 r_type = ELF32_R_TYPE (irel->r_info);
4669 r_index = ELF32_R_SYM (irel->r_info);
4670
9b485d32 4671 /* These are the only relocation types we care about. */
ba96a88f 4672 if ( r_type != R_ARM_PC24
b7693d02 4673 && r_type != R_ARM_PLT32
5b5bb741 4674 && r_type != R_ARM_JUMP24
845b51d6
PB
4675 && r_type != R_ARM_THM_JUMP24
4676 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
4677 continue;
4678
4679 /* Get the section contents if we haven't done so already. */
4680 if (contents == NULL)
4681 {
4682 /* Get cached copy if it exists. */
4683 if (elf_section_data (sec)->this_hdr.contents != NULL)
4684 contents = elf_section_data (sec)->this_hdr.contents;
4685 else
4686 {
4687 /* Go get them off disk. */
57e8b36a 4688 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
4689 goto error_return;
4690 }
4691 }
4692
845b51d6
PB
4693 if (r_type == R_ARM_V4BX)
4694 {
4695 int reg;
4696
4697 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4698 record_arm_bx_glue (link_info, reg);
4699 continue;
4700 }
4701
a7c10850 4702 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
4703 h = NULL;
4704
9b485d32 4705 /* We don't care about local symbols. */
252b5132
RH
4706 if (r_index < symtab_hdr->sh_info)
4707 continue;
4708
9b485d32 4709 /* This is an external symbol. */
252b5132
RH
4710 r_index -= symtab_hdr->sh_info;
4711 h = (struct elf_link_hash_entry *)
4712 elf_sym_hashes (abfd)[r_index];
4713
4714 /* If the relocation is against a static symbol it must be within
4715 the current section and so cannot be a cross ARM/Thumb relocation. */
4716 if (h == NULL)
4717 continue;
4718
d504ffc8
DJ
4719 /* If the call will go through a PLT entry then we do not need
4720 glue. */
4721 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
4722 continue;
4723
252b5132
RH
4724 switch (r_type)
4725 {
4726 case R_ARM_PC24:
c6596c5e 4727 case R_ARM_PLT32:
5b5bb741 4728 case R_ARM_JUMP24:
252b5132 4729 /* This one is a call from arm code. We need to look up
2f0ca46a 4730 the target of the call. If it is a thumb target, we
252b5132 4731 insert glue. */
ebe24dd4 4732 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
252b5132
RH
4733 record_arm_to_thumb_glue (link_info, h);
4734 break;
4735
bd97cb95 4736 case R_ARM_THM_JUMP24:
f21f3fe0 4737 /* This one is a call from thumb code. We look
2f0ca46a 4738 up the target of the call. If it is not a thumb
bcbdc74c 4739 target, we insert glue. */
bd97cb95
DJ
4740 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4741 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
5ab79981 4742 && h->root.type != bfd_link_hash_undefweak)
252b5132
RH
4743 record_thumb_to_arm_glue (link_info, h);
4744 break;
4745
4746 default:
c6596c5e 4747 abort ();
252b5132
RH
4748 }
4749 }
6cdc0ccc
AM
4750
4751 if (contents != NULL
4752 && elf_section_data (sec)->this_hdr.contents != contents)
4753 free (contents);
4754 contents = NULL;
4755
4756 if (internal_relocs != NULL
4757 && elf_section_data (sec)->relocs != internal_relocs)
4758 free (internal_relocs);
4759 internal_relocs = NULL;
252b5132
RH
4760 }
4761
b34976b6 4762 return TRUE;
9a5aca8c 4763
252b5132 4764error_return:
6cdc0ccc
AM
4765 if (contents != NULL
4766 && elf_section_data (sec)->this_hdr.contents != contents)
4767 free (contents);
4768 if (internal_relocs != NULL
4769 && elf_section_data (sec)->relocs != internal_relocs)
4770 free (internal_relocs);
9a5aca8c 4771
b34976b6 4772 return FALSE;
252b5132 4773}
7e392df6 4774#endif
252b5132 4775
eb043451 4776
c7b8f16e
JB
4777/* Initialise maps of ARM/Thumb/data for input BFDs. */
4778
4779void
4780bfd_elf32_arm_init_maps (bfd *abfd)
4781{
4782 Elf_Internal_Sym *isymbuf;
4783 Elf_Internal_Shdr *hdr;
4784 unsigned int i, localsyms;
4785
af1f4419
NC
4786 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4787 if (! is_arm_elf (abfd))
4788 return;
4789
c7b8f16e
JB
4790 if ((abfd->flags & DYNAMIC) != 0)
4791 return;
4792
0ffa91dd 4793 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
4794 localsyms = hdr->sh_info;
4795
4796 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4797 should contain the number of local symbols, which should come before any
4798 global symbols. Mapping symbols are always local. */
4799 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4800 NULL);
4801
4802 /* No internal symbols read? Skip this BFD. */
4803 if (isymbuf == NULL)
4804 return;
4805
4806 for (i = 0; i < localsyms; i++)
4807 {
4808 Elf_Internal_Sym *isym = &isymbuf[i];
4809 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4810 const char *name;
906e58ca 4811
c7b8f16e
JB
4812 if (sec != NULL
4813 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4814 {
4815 name = bfd_elf_string_from_elf_section (abfd,
4816 hdr->sh_link, isym->st_name);
906e58ca 4817
c7b8f16e
JB
4818 if (bfd_is_arm_special_symbol_name (name,
4819 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4820 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4821 }
4822 }
4823}
4824
4825
4826void
4827bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4828{
4829 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 4830 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 4831
c7b8f16e
JB
4832 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4833 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4834 {
4835 switch (globals->vfp11_fix)
4836 {
4837 case BFD_ARM_VFP11_FIX_DEFAULT:
4838 case BFD_ARM_VFP11_FIX_NONE:
4839 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4840 break;
906e58ca 4841
c7b8f16e
JB
4842 default:
4843 /* Give a warning, but do as the user requests anyway. */
4844 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4845 "workaround is not necessary for target architecture"), obfd);
4846 }
4847 }
4848 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4849 /* For earlier architectures, we might need the workaround, but do not
4850 enable it by default. If users is running with broken hardware, they
4851 must enable the erratum fix explicitly. */
4852 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4853}
4854
4855
906e58ca
NC
4856enum bfd_arm_vfp11_pipe
4857{
c7b8f16e
JB
4858 VFP11_FMAC,
4859 VFP11_LS,
4860 VFP11_DS,
4861 VFP11_BAD
4862};
4863
4864/* Return a VFP register number. This is encoded as RX:X for single-precision
4865 registers, or X:RX for double-precision registers, where RX is the group of
4866 four bits in the instruction encoding and X is the single extension bit.
4867 RX and X fields are specified using their lowest (starting) bit. The return
4868 value is:
4869
4870 0...31: single-precision registers s0...s31
4871 32...63: double-precision registers d0...d31.
906e58ca 4872
c7b8f16e
JB
4873 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4874 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 4875
c7b8f16e
JB
4876static unsigned int
4877bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4878 unsigned int x)
4879{
4880 if (is_double)
4881 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4882 else
4883 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4884}
4885
4886/* Set bits in *WMASK according to a register number REG as encoded by
4887 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4888
4889static void
4890bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4891{
4892 if (reg < 32)
4893 *wmask |= 1 << reg;
4894 else if (reg < 48)
4895 *wmask |= 3 << ((reg - 32) * 2);
4896}
4897
4898/* Return TRUE if WMASK overwrites anything in REGS. */
4899
4900static bfd_boolean
4901bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4902{
4903 int i;
906e58ca 4904
c7b8f16e
JB
4905 for (i = 0; i < numregs; i++)
4906 {
4907 unsigned int reg = regs[i];
4908
4909 if (reg < 32 && (wmask & (1 << reg)) != 0)
4910 return TRUE;
906e58ca 4911
c7b8f16e
JB
4912 reg -= 32;
4913
4914 if (reg >= 16)
4915 continue;
906e58ca 4916
c7b8f16e
JB
4917 if ((wmask & (3 << (reg * 2))) != 0)
4918 return TRUE;
4919 }
906e58ca 4920
c7b8f16e
JB
4921 return FALSE;
4922}
4923
4924/* In this function, we're interested in two things: finding input registers
4925 for VFP data-processing instructions, and finding the set of registers which
4926 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4927 hold the written set, so FLDM etc. are easy to deal with (we're only
4928 interested in 32 SP registers or 16 dp registers, due to the VFP version
4929 implemented by the chip in question). DP registers are marked by setting
4930 both SP registers in the write mask). */
4931
4932static enum bfd_arm_vfp11_pipe
4933bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4934 int *numregs)
4935{
4936 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4937 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4938
4939 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4940 {
4941 unsigned int pqrs;
4942 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4943 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4944
4945 pqrs = ((insn & 0x00800000) >> 20)
4946 | ((insn & 0x00300000) >> 19)
4947 | ((insn & 0x00000040) >> 6);
4948
4949 switch (pqrs)
4950 {
4951 case 0: /* fmac[sd]. */
4952 case 1: /* fnmac[sd]. */
4953 case 2: /* fmsc[sd]. */
4954 case 3: /* fnmsc[sd]. */
4955 pipe = VFP11_FMAC;
4956 bfd_arm_vfp11_write_mask (destmask, fd);
4957 regs[0] = fd;
4958 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4959 regs[2] = fm;
4960 *numregs = 3;
4961 break;
4962
4963 case 4: /* fmul[sd]. */
4964 case 5: /* fnmul[sd]. */
4965 case 6: /* fadd[sd]. */
4966 case 7: /* fsub[sd]. */
4967 pipe = VFP11_FMAC;
4968 goto vfp_binop;
4969
4970 case 8: /* fdiv[sd]. */
4971 pipe = VFP11_DS;
4972 vfp_binop:
4973 bfd_arm_vfp11_write_mask (destmask, fd);
4974 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4975 regs[1] = fm;
4976 *numregs = 2;
4977 break;
4978
4979 case 15: /* extended opcode. */
4980 {
4981 unsigned int extn = ((insn >> 15) & 0x1e)
4982 | ((insn >> 7) & 1);
4983
4984 switch (extn)
4985 {
4986 case 0: /* fcpy[sd]. */
4987 case 1: /* fabs[sd]. */
4988 case 2: /* fneg[sd]. */
4989 case 8: /* fcmp[sd]. */
4990 case 9: /* fcmpe[sd]. */
4991 case 10: /* fcmpz[sd]. */
4992 case 11: /* fcmpez[sd]. */
4993 case 16: /* fuito[sd]. */
4994 case 17: /* fsito[sd]. */
4995 case 24: /* ftoui[sd]. */
4996 case 25: /* ftouiz[sd]. */
4997 case 26: /* ftosi[sd]. */
4998 case 27: /* ftosiz[sd]. */
4999 /* These instructions will not bounce due to underflow. */
5000 *numregs = 0;
5001 pipe = VFP11_FMAC;
5002 break;
5003
5004 case 3: /* fsqrt[sd]. */
5005 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5006 registers to cause the erratum in previous instructions. */
5007 bfd_arm_vfp11_write_mask (destmask, fd);
5008 pipe = VFP11_DS;
5009 break;
5010
5011 case 15: /* fcvt{ds,sd}. */
5012 {
5013 int rnum = 0;
5014
5015 bfd_arm_vfp11_write_mask (destmask, fd);
5016
5017 /* Only FCVTSD can underflow. */
5018 if ((insn & 0x100) != 0)
5019 regs[rnum++] = fm;
5020
5021 *numregs = rnum;
5022
5023 pipe = VFP11_FMAC;
5024 }
5025 break;
5026
5027 default:
5028 return VFP11_BAD;
5029 }
5030 }
5031 break;
5032
5033 default:
5034 return VFP11_BAD;
5035 }
5036 }
5037 /* Two-register transfer. */
5038 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5039 {
5040 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 5041
c7b8f16e
JB
5042 if ((insn & 0x100000) == 0)
5043 {
5044 if (is_double)
5045 bfd_arm_vfp11_write_mask (destmask, fm);
5046 else
5047 {
5048 bfd_arm_vfp11_write_mask (destmask, fm);
5049 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5050 }
5051 }
5052
5053 pipe = VFP11_LS;
5054 }
5055 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5056 {
5057 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5058 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 5059
c7b8f16e
JB
5060 switch (puw)
5061 {
5062 case 0: /* Two-reg transfer. We should catch these above. */
5063 abort ();
906e58ca 5064
c7b8f16e
JB
5065 case 2: /* fldm[sdx]. */
5066 case 3:
5067 case 5:
5068 {
5069 unsigned int i, offset = insn & 0xff;
5070
5071 if (is_double)
5072 offset >>= 1;
5073
5074 for (i = fd; i < fd + offset; i++)
5075 bfd_arm_vfp11_write_mask (destmask, i);
5076 }
5077 break;
906e58ca 5078
c7b8f16e
JB
5079 case 4: /* fld[sd]. */
5080 case 6:
5081 bfd_arm_vfp11_write_mask (destmask, fd);
5082 break;
906e58ca 5083
c7b8f16e
JB
5084 default:
5085 return VFP11_BAD;
5086 }
5087
5088 pipe = VFP11_LS;
5089 }
5090 /* Single-register transfer. Note L==0. */
5091 else if ((insn & 0x0f100e10) == 0x0e000a10)
5092 {
5093 unsigned int opcode = (insn >> 21) & 7;
5094 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5095
5096 switch (opcode)
5097 {
5098 case 0: /* fmsr/fmdlr. */
5099 case 1: /* fmdhr. */
5100 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5101 destination register. I don't know if this is exactly right,
5102 but it is the conservative choice. */
5103 bfd_arm_vfp11_write_mask (destmask, fn);
5104 break;
5105
5106 case 7: /* fmxr. */
5107 break;
5108 }
5109
5110 pipe = VFP11_LS;
5111 }
5112
5113 return pipe;
5114}
5115
5116
5117static int elf32_arm_compare_mapping (const void * a, const void * b);
5118
5119
5120/* Look for potentially-troublesome code sequences which might trigger the
5121 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5122 (available from ARM) for details of the erratum. A short version is
5123 described in ld.texinfo. */
5124
5125bfd_boolean
5126bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5127{
5128 asection *sec;
5129 bfd_byte *contents = NULL;
5130 int state = 0;
5131 int regs[3], numregs = 0;
5132 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5133 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 5134
c7b8f16e
JB
5135 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5136 The states transition as follows:
906e58ca 5137
c7b8f16e
JB
5138 0 -> 1 (vector) or 0 -> 2 (scalar)
5139 A VFP FMAC-pipeline instruction has been seen. Fill
5140 regs[0]..regs[numregs-1] with its input operands. Remember this
5141 instruction in 'first_fmac'.
5142
5143 1 -> 2
5144 Any instruction, except for a VFP instruction which overwrites
5145 regs[*].
906e58ca 5146
c7b8f16e
JB
5147 1 -> 3 [ -> 0 ] or
5148 2 -> 3 [ -> 0 ]
5149 A VFP instruction has been seen which overwrites any of regs[*].
5150 We must make a veneer! Reset state to 0 before examining next
5151 instruction.
906e58ca 5152
c7b8f16e
JB
5153 2 -> 0
5154 If we fail to match anything in state 2, reset to state 0 and reset
5155 the instruction pointer to the instruction after 'first_fmac'.
5156
5157 If the VFP11 vector mode is in use, there must be at least two unrelated
5158 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 5159 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
5160
5161 /* If we are only performing a partial link do not bother
5162 to construct any glue. */
5163 if (link_info->relocatable)
5164 return TRUE;
5165
0ffa91dd
NC
5166 /* Skip if this bfd does not correspond to an ELF image. */
5167 if (! is_arm_elf (abfd))
5168 return TRUE;
906e58ca 5169
c7b8f16e
JB
5170 /* We should have chosen a fix type by the time we get here. */
5171 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5172
5173 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5174 return TRUE;
2e6030b9 5175
33a7ffc2
JM
5176 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5177 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5178 return TRUE;
5179
c7b8f16e
JB
5180 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5181 {
5182 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5183 struct _arm_elf_section_data *sec_data;
5184
5185 /* If we don't have executable progbits, we're not interested in this
5186 section. Also skip if section is to be excluded. */
5187 if (elf_section_type (sec) != SHT_PROGBITS
5188 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5189 || (sec->flags & SEC_EXCLUDE) != 0
33a7ffc2
JM
5190 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5191 || sec->output_section == bfd_abs_section_ptr
c7b8f16e
JB
5192 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5193 continue;
5194
5195 sec_data = elf32_arm_section_data (sec);
906e58ca 5196
c7b8f16e
JB
5197 if (sec_data->mapcount == 0)
5198 continue;
906e58ca 5199
c7b8f16e
JB
5200 if (elf_section_data (sec)->this_hdr.contents != NULL)
5201 contents = elf_section_data (sec)->this_hdr.contents;
5202 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5203 goto error_return;
5204
5205 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5206 elf32_arm_compare_mapping);
5207
5208 for (span = 0; span < sec_data->mapcount; span++)
5209 {
5210 unsigned int span_start = sec_data->map[span].vma;
5211 unsigned int span_end = (span == sec_data->mapcount - 1)
5212 ? sec->size : sec_data->map[span + 1].vma;
5213 char span_type = sec_data->map[span].type;
906e58ca 5214
c7b8f16e
JB
5215 /* FIXME: Only ARM mode is supported at present. We may need to
5216 support Thumb-2 mode also at some point. */
5217 if (span_type != 'a')
5218 continue;
5219
5220 for (i = span_start; i < span_end;)
5221 {
5222 unsigned int next_i = i + 4;
5223 unsigned int insn = bfd_big_endian (abfd)
5224 ? (contents[i] << 24)
5225 | (contents[i + 1] << 16)
5226 | (contents[i + 2] << 8)
5227 | contents[i + 3]
5228 : (contents[i + 3] << 24)
5229 | (contents[i + 2] << 16)
5230 | (contents[i + 1] << 8)
5231 | contents[i];
5232 unsigned int writemask = 0;
5233 enum bfd_arm_vfp11_pipe pipe;
5234
5235 switch (state)
5236 {
5237 case 0:
5238 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5239 &numregs);
5240 /* I'm assuming the VFP11 erratum can trigger with denorm
5241 operands on either the FMAC or the DS pipeline. This might
5242 lead to slightly overenthusiastic veneer insertion. */
5243 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5244 {
5245 state = use_vector ? 1 : 2;
5246 first_fmac = i;
5247 veneer_of_insn = insn;
5248 }
5249 break;
5250
5251 case 1:
5252 {
5253 int other_regs[3], other_numregs;
5254 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5255 other_regs,
5256 &other_numregs);
5257 if (pipe != VFP11_BAD
5258 && bfd_arm_vfp11_antidependency (writemask, regs,
5259 numregs))
5260 state = 3;
5261 else
5262 state = 2;
5263 }
5264 break;
5265
5266 case 2:
5267 {
5268 int other_regs[3], other_numregs;
5269 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5270 other_regs,
5271 &other_numregs);
5272 if (pipe != VFP11_BAD
5273 && bfd_arm_vfp11_antidependency (writemask, regs,
5274 numregs))
5275 state = 3;
5276 else
5277 {
5278 state = 0;
5279 next_i = first_fmac + 4;
5280 }
5281 }
5282 break;
5283
5284 case 3:
5285 abort (); /* Should be unreachable. */
5286 }
5287
5288 if (state == 3)
5289 {
5290 elf32_vfp11_erratum_list *newerr
5291 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5292 int errcount;
5293
5294 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5295
5296 newerr->u.b.vfp_insn = veneer_of_insn;
5297
5298 switch (span_type)
5299 {
5300 case 'a':
5301 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5302 break;
906e58ca 5303
c7b8f16e
JB
5304 default:
5305 abort ();
5306 }
5307
5308 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5309 first_fmac);
5310
5311 newerr->vma = -1;
5312
5313 newerr->next = sec_data->erratumlist;
5314 sec_data->erratumlist = newerr;
5315
5316 state = 0;
5317 }
5318
5319 i = next_i;
5320 }
5321 }
906e58ca 5322
c7b8f16e
JB
5323 if (contents != NULL
5324 && elf_section_data (sec)->this_hdr.contents != contents)
5325 free (contents);
5326 contents = NULL;
5327 }
5328
5329 return TRUE;
5330
5331error_return:
5332 if (contents != NULL
5333 && elf_section_data (sec)->this_hdr.contents != contents)
5334 free (contents);
906e58ca 5335
c7b8f16e
JB
5336 return FALSE;
5337}
5338
5339/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5340 after sections have been laid out, using specially-named symbols. */
5341
5342void
5343bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5344 struct bfd_link_info *link_info)
5345{
5346 asection *sec;
5347 struct elf32_arm_link_hash_table *globals;
5348 char *tmp_name;
906e58ca 5349
c7b8f16e
JB
5350 if (link_info->relocatable)
5351 return;
2e6030b9
MS
5352
5353 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 5354 if (! is_arm_elf (abfd))
2e6030b9
MS
5355 return;
5356
c7b8f16e 5357 globals = elf32_arm_hash_table (link_info);
906e58ca 5358
c7b8f16e
JB
5359 tmp_name = bfd_malloc ((bfd_size_type) strlen
5360 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5361
5362 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5363 {
5364 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5365 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 5366
c7b8f16e
JB
5367 for (; errnode != NULL; errnode = errnode->next)
5368 {
5369 struct elf_link_hash_entry *myh;
5370 bfd_vma vma;
5371
5372 switch (errnode->type)
5373 {
5374 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5375 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5376 /* Find veneer symbol. */
5377 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5378 errnode->u.b.veneer->u.v.id);
5379
5380 myh = elf_link_hash_lookup
5381 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5382
5383 if (myh == NULL)
5384 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5385 "`%s'"), abfd, tmp_name);
5386
5387 vma = myh->root.u.def.section->output_section->vma
5388 + myh->root.u.def.section->output_offset
5389 + myh->root.u.def.value;
5390
5391 errnode->u.b.veneer->vma = vma;
5392 break;
5393
5394 case VFP11_ERRATUM_ARM_VENEER:
5395 case VFP11_ERRATUM_THUMB_VENEER:
5396 /* Find return location. */
5397 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5398 errnode->u.v.id);
5399
5400 myh = elf_link_hash_lookup
5401 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5402
5403 if (myh == NULL)
5404 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5405 "`%s'"), abfd, tmp_name);
5406
5407 vma = myh->root.u.def.section->output_section->vma
5408 + myh->root.u.def.section->output_offset
5409 + myh->root.u.def.value;
5410
5411 errnode->u.v.branch->vma = vma;
5412 break;
906e58ca 5413
c7b8f16e
JB
5414 default:
5415 abort ();
5416 }
5417 }
5418 }
906e58ca 5419
c7b8f16e
JB
5420 free (tmp_name);
5421}
5422
5423
eb043451
PB
5424/* Set target relocation values needed during linking. */
5425
5426void
bf21ed78
MS
5427bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5428 struct bfd_link_info *link_info,
eb043451 5429 int target1_is_rel,
319850b4 5430 char * target2_type,
33bfe774 5431 int fix_v4bx,
c7b8f16e 5432 int use_blx,
bf21ed78 5433 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481
JM
5434 int no_enum_warn, int no_wchar_warn,
5435 int pic_veneer)
eb043451
PB
5436{
5437 struct elf32_arm_link_hash_table *globals;
5438
5439 globals = elf32_arm_hash_table (link_info);
5440
5441 globals->target1_is_rel = target1_is_rel;
5442 if (strcmp (target2_type, "rel") == 0)
5443 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
5444 else if (strcmp (target2_type, "abs") == 0)
5445 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
5446 else if (strcmp (target2_type, "got-rel") == 0)
5447 globals->target2_reloc = R_ARM_GOT_PREL;
5448 else
5449 {
5450 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5451 target2_type);
5452 }
319850b4 5453 globals->fix_v4bx = fix_v4bx;
33bfe774 5454 globals->use_blx |= use_blx;
c7b8f16e 5455 globals->vfp11_fix = vfp11_fix;
27e55c4d 5456 globals->pic_veneer = pic_veneer;
bf21ed78 5457
0ffa91dd
NC
5458 BFD_ASSERT (is_arm_elf (output_bfd));
5459 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 5460 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 5461}
eb043451 5462
12a0a0fd 5463/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 5464
12a0a0fd
PB
5465static void
5466insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5467{
5468 bfd_vma upper;
5469 bfd_vma lower;
5470 int reloc_sign;
5471
5472 BFD_ASSERT ((offset & 1) == 0);
5473
5474 upper = bfd_get_16 (abfd, insn);
5475 lower = bfd_get_16 (abfd, insn + 2);
5476 reloc_sign = (offset < 0) ? 1 : 0;
5477 upper = (upper & ~(bfd_vma) 0x7ff)
5478 | ((offset >> 12) & 0x3ff)
5479 | (reloc_sign << 10);
906e58ca 5480 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
5481 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5482 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5483 | ((offset >> 1) & 0x7ff);
5484 bfd_put_16 (abfd, upper, insn);
5485 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
5486}
5487
9b485d32
NC
5488/* Thumb code calling an ARM function. */
5489
252b5132 5490static int
57e8b36a
NC
5491elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5492 const char * name,
5493 bfd * input_bfd,
5494 bfd * output_bfd,
5495 asection * input_section,
5496 bfd_byte * hit_data,
5497 asection * sym_sec,
5498 bfd_vma offset,
5499 bfd_signed_vma addend,
f2a9dd69
DJ
5500 bfd_vma val,
5501 char **error_message)
252b5132 5502{
bcbdc74c 5503 asection * s = 0;
dc810e39 5504 bfd_vma my_offset;
252b5132 5505 long int ret_offset;
bcbdc74c
NC
5506 struct elf_link_hash_entry * myh;
5507 struct elf32_arm_link_hash_table * globals;
252b5132 5508
f2a9dd69 5509 myh = find_thumb_glue (info, name, error_message);
252b5132 5510 if (myh == NULL)
b34976b6 5511 return FALSE;
252b5132
RH
5512
5513 globals = elf32_arm_hash_table (info);
5514
5515 BFD_ASSERT (globals != NULL);
5516 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5517
5518 my_offset = myh->root.u.def.value;
5519
5520 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5521 THUMB2ARM_GLUE_SECTION_NAME);
5522
5523 BFD_ASSERT (s != NULL);
5524 BFD_ASSERT (s->contents != NULL);
5525 BFD_ASSERT (s->output_section != NULL);
5526
5527 if ((my_offset & 0x01) == 0x01)
5528 {
5529 if (sym_sec != NULL
5530 && sym_sec->owner != NULL
5531 && !INTERWORK_FLAG (sym_sec->owner))
5532 {
8f615d07 5533 (*_bfd_error_handler)
d003868e
AM
5534 (_("%B(%s): warning: interworking not enabled.\n"
5535 " first occurrence: %B: thumb call to arm"),
5536 sym_sec->owner, input_bfd, name);
252b5132 5537
b34976b6 5538 return FALSE;
252b5132
RH
5539 }
5540
5541 --my_offset;
5542 myh->root.u.def.value = my_offset;
5543
52ab56c2
PB
5544 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5545 s->contents + my_offset);
252b5132 5546
52ab56c2
PB
5547 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5548 s->contents + my_offset + 2);
252b5132
RH
5549
5550 ret_offset =
9b485d32
NC
5551 /* Address of destination of the stub. */
5552 ((bfd_signed_vma) val)
252b5132 5553 - ((bfd_signed_vma)
57e8b36a
NC
5554 /* Offset from the start of the current section
5555 to the start of the stubs. */
9b485d32
NC
5556 (s->output_offset
5557 /* Offset of the start of this stub from the start of the stubs. */
5558 + my_offset
5559 /* Address of the start of the current section. */
5560 + s->output_section->vma)
5561 /* The branch instruction is 4 bytes into the stub. */
5562 + 4
5563 /* ARM branches work from the pc of the instruction + 8. */
5564 + 8);
252b5132 5565
52ab56c2
PB
5566 put_arm_insn (globals, output_bfd,
5567 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5568 s->contents + my_offset + 4);
252b5132
RH
5569 }
5570
5571 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5572
427bfd90
NC
5573 /* Now go back and fix up the original BL insn to point to here. */
5574 ret_offset =
5575 /* Address of where the stub is located. */
5576 (s->output_section->vma + s->output_offset + my_offset)
5577 /* Address of where the BL is located. */
57e8b36a
NC
5578 - (input_section->output_section->vma + input_section->output_offset
5579 + offset)
427bfd90
NC
5580 /* Addend in the relocation. */
5581 - addend
5582 /* Biassing for PC-relative addressing. */
5583 - 8;
252b5132 5584
12a0a0fd 5585 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 5586
b34976b6 5587 return TRUE;
252b5132
RH
5588}
5589
a4fd1a8e 5590/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 5591
a4fd1a8e
PB
5592static struct elf_link_hash_entry *
5593elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5594 const char * name,
5595 bfd * input_bfd,
5596 bfd * output_bfd,
5597 asection * sym_sec,
5598 bfd_vma val,
8029a119
NC
5599 asection * s,
5600 char ** error_message)
252b5132 5601{
dc810e39 5602 bfd_vma my_offset;
252b5132 5603 long int ret_offset;
bcbdc74c
NC
5604 struct elf_link_hash_entry * myh;
5605 struct elf32_arm_link_hash_table * globals;
252b5132 5606
f2a9dd69 5607 myh = find_arm_glue (info, name, error_message);
252b5132 5608 if (myh == NULL)
a4fd1a8e 5609 return NULL;
252b5132
RH
5610
5611 globals = elf32_arm_hash_table (info);
5612
5613 BFD_ASSERT (globals != NULL);
5614 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5615
5616 my_offset = myh->root.u.def.value;
252b5132
RH
5617
5618 if ((my_offset & 0x01) == 0x01)
5619 {
5620 if (sym_sec != NULL
5621 && sym_sec->owner != NULL
5622 && !INTERWORK_FLAG (sym_sec->owner))
5623 {
8f615d07 5624 (*_bfd_error_handler)
d003868e
AM
5625 (_("%B(%s): warning: interworking not enabled.\n"
5626 " first occurrence: %B: arm call to thumb"),
5627 sym_sec->owner, input_bfd, name);
252b5132 5628 }
9b485d32 5629
252b5132
RH
5630 --my_offset;
5631 myh->root.u.def.value = my_offset;
5632
27e55c4d
PB
5633 if (info->shared || globals->root.is_relocatable_executable
5634 || globals->pic_veneer)
8f6277f5
PB
5635 {
5636 /* For relocatable objects we can't use absolute addresses,
5637 so construct the address from a relative offset. */
5638 /* TODO: If the offset is small it's probably worth
5639 constructing the address with adds. */
52ab56c2
PB
5640 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5641 s->contents + my_offset);
5642 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5643 s->contents + my_offset + 4);
5644 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5645 s->contents + my_offset + 8);
8f6277f5
PB
5646 /* Adjust the offset by 4 for the position of the add,
5647 and 8 for the pipeline offset. */
5648 ret_offset = (val - (s->output_offset
5649 + s->output_section->vma
5650 + my_offset + 12))
5651 | 1;
5652 bfd_put_32 (output_bfd, ret_offset,
5653 s->contents + my_offset + 12);
5654 }
26079076
PB
5655 else if (globals->use_blx)
5656 {
5657 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5658 s->contents + my_offset);
5659
5660 /* It's a thumb address. Add the low order bit. */
5661 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5662 s->contents + my_offset + 4);
5663 }
8f6277f5
PB
5664 else
5665 {
52ab56c2
PB
5666 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5667 s->contents + my_offset);
252b5132 5668
52ab56c2
PB
5669 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5670 s->contents + my_offset + 4);
252b5132 5671
8f6277f5
PB
5672 /* It's a thumb address. Add the low order bit. */
5673 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5674 s->contents + my_offset + 8);
8029a119
NC
5675
5676 my_offset += 12;
8f6277f5 5677 }
252b5132
RH
5678 }
5679
5680 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5681
a4fd1a8e
PB
5682 return myh;
5683}
5684
5685/* Arm code calling a Thumb function. */
5686
5687static int
5688elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5689 const char * name,
5690 bfd * input_bfd,
5691 bfd * output_bfd,
5692 asection * input_section,
5693 bfd_byte * hit_data,
5694 asection * sym_sec,
5695 bfd_vma offset,
5696 bfd_signed_vma addend,
f2a9dd69
DJ
5697 bfd_vma val,
5698 char **error_message)
a4fd1a8e
PB
5699{
5700 unsigned long int tmp;
5701 bfd_vma my_offset;
5702 asection * s;
5703 long int ret_offset;
5704 struct elf_link_hash_entry * myh;
5705 struct elf32_arm_link_hash_table * globals;
5706
5707 globals = elf32_arm_hash_table (info);
5708
5709 BFD_ASSERT (globals != NULL);
5710 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5711
5712 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5713 ARM2THUMB_GLUE_SECTION_NAME);
5714 BFD_ASSERT (s != NULL);
5715 BFD_ASSERT (s->contents != NULL);
5716 BFD_ASSERT (s->output_section != NULL);
5717
5718 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 5719 sym_sec, val, s, error_message);
a4fd1a8e
PB
5720 if (!myh)
5721 return FALSE;
5722
5723 my_offset = myh->root.u.def.value;
252b5132
RH
5724 tmp = bfd_get_32 (input_bfd, hit_data);
5725 tmp = tmp & 0xFF000000;
5726
9b485d32 5727 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
5728 ret_offset = (s->output_offset
5729 + my_offset
5730 + s->output_section->vma
5731 - (input_section->output_offset
5732 + input_section->output_section->vma
5733 + offset + addend)
5734 - 8);
9a5aca8c 5735
252b5132
RH
5736 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5737
dc810e39 5738 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 5739
b34976b6 5740 return TRUE;
252b5132
RH
5741}
5742
a4fd1a8e
PB
5743/* Populate Arm stub for an exported Thumb function. */
5744
5745static bfd_boolean
5746elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5747{
5748 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5749 asection * s;
5750 struct elf_link_hash_entry * myh;
5751 struct elf32_arm_link_hash_entry *eh;
5752 struct elf32_arm_link_hash_table * globals;
5753 asection *sec;
5754 bfd_vma val;
f2a9dd69 5755 char *error_message;
a4fd1a8e 5756
906e58ca 5757 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
5758 /* Allocate stubs for exported Thumb functions on v4t. */
5759 if (eh->export_glue == NULL)
5760 return TRUE;
5761
5762 globals = elf32_arm_hash_table (info);
5763
5764 BFD_ASSERT (globals != NULL);
5765 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5766
5767 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5768 ARM2THUMB_GLUE_SECTION_NAME);
5769 BFD_ASSERT (s != NULL);
5770 BFD_ASSERT (s->contents != NULL);
5771 BFD_ASSERT (s->output_section != NULL);
5772
5773 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
5774
5775 BFD_ASSERT (sec->output_section != NULL);
5776
a4fd1a8e
PB
5777 val = eh->export_glue->root.u.def.value + sec->output_offset
5778 + sec->output_section->vma;
8029a119 5779
a4fd1a8e
PB
5780 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5781 h->root.u.def.section->owner,
f2a9dd69
DJ
5782 globals->obfd, sec, val, s,
5783 &error_message);
a4fd1a8e
PB
5784 BFD_ASSERT (myh);
5785 return TRUE;
5786}
5787
845b51d6
PB
5788/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5789
5790static bfd_vma
5791elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5792{
5793 bfd_byte *p;
5794 bfd_vma glue_addr;
5795 asection *s;
5796 struct elf32_arm_link_hash_table *globals;
5797
5798 globals = elf32_arm_hash_table (info);
5799
5800 BFD_ASSERT (globals != NULL);
5801 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5802
5803 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5804 ARM_BX_GLUE_SECTION_NAME);
5805 BFD_ASSERT (s != NULL);
5806 BFD_ASSERT (s->contents != NULL);
5807 BFD_ASSERT (s->output_section != NULL);
5808
5809 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5810
5811 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5812
5813 if ((globals->bx_glue_offset[reg] & 1) == 0)
5814 {
5815 p = s->contents + glue_addr;
5816 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5817 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5818 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5819 globals->bx_glue_offset[reg] |= 1;
5820 }
5821
5822 return glue_addr + s->output_section->vma + s->output_offset;
5823}
5824
a4fd1a8e
PB
5825/* Generate Arm stubs for exported Thumb symbols. */
5826static void
906e58ca 5827elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
5828 struct bfd_link_info *link_info)
5829{
5830 struct elf32_arm_link_hash_table * globals;
5831
8029a119
NC
5832 if (link_info == NULL)
5833 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
5834 return;
5835
5836 globals = elf32_arm_hash_table (link_info);
84c08195
PB
5837 /* If blx is available then exported Thumb symbols are OK and there is
5838 nothing to do. */
a4fd1a8e
PB
5839 if (globals->use_blx)
5840 return;
5841
5842 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5843 link_info);
5844}
5845
eb043451
PB
5846/* Some relocations map to different relocations depending on the
5847 target. Return the real relocation. */
8029a119 5848
eb043451
PB
5849static int
5850arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5851 int r_type)
5852{
5853 switch (r_type)
5854 {
5855 case R_ARM_TARGET1:
5856 if (globals->target1_is_rel)
5857 return R_ARM_REL32;
5858 else
5859 return R_ARM_ABS32;
5860
5861 case R_ARM_TARGET2:
5862 return globals->target2_reloc;
5863
5864 default:
5865 return r_type;
5866 }
5867}
eb043451 5868
ba93b8ac
DJ
5869/* Return the base VMA address which should be subtracted from real addresses
5870 when resolving @dtpoff relocation.
5871 This is PT_TLS segment p_vaddr. */
5872
5873static bfd_vma
5874dtpoff_base (struct bfd_link_info *info)
5875{
5876 /* If tls_sec is NULL, we should have signalled an error already. */
5877 if (elf_hash_table (info)->tls_sec == NULL)
5878 return 0;
5879 return elf_hash_table (info)->tls_sec->vma;
5880}
5881
5882/* Return the relocation value for @tpoff relocation
5883 if STT_TLS virtual address is ADDRESS. */
5884
5885static bfd_vma
5886tpoff (struct bfd_link_info *info, bfd_vma address)
5887{
5888 struct elf_link_hash_table *htab = elf_hash_table (info);
5889 bfd_vma base;
5890
5891 /* If tls_sec is NULL, we should have signalled an error already. */
5892 if (htab->tls_sec == NULL)
5893 return 0;
5894 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5895 return address - htab->tls_sec->vma + base;
5896}
5897
00a97672
RS
5898/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5899 VALUE is the relocation value. */
5900
5901static bfd_reloc_status_type
5902elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5903{
5904 if (value > 0xfff)
5905 return bfd_reloc_overflow;
5906
5907 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5908 bfd_put_32 (abfd, value, data);
5909 return bfd_reloc_ok;
5910}
5911
4962c51a
MS
5912/* For a given value of n, calculate the value of G_n as required to
5913 deal with group relocations. We return it in the form of an
5914 encoded constant-and-rotation, together with the final residual. If n is
5915 specified as less than zero, then final_residual is filled with the
5916 input value and no further action is performed. */
5917
5918static bfd_vma
5919calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5920{
5921 int current_n;
5922 bfd_vma g_n;
5923 bfd_vma encoded_g_n = 0;
5924 bfd_vma residual = value; /* Also known as Y_n. */
5925
5926 for (current_n = 0; current_n <= n; current_n++)
5927 {
5928 int shift;
5929
5930 /* Calculate which part of the value to mask. */
5931 if (residual == 0)
5932 shift = 0;
5933 else
5934 {
5935 int msb;
5936
5937 /* Determine the most significant bit in the residual and
5938 align the resulting value to a 2-bit boundary. */
5939 for (msb = 30; msb >= 0; msb -= 2)
5940 if (residual & (3 << msb))
5941 break;
5942
5943 /* The desired shift is now (msb - 6), or zero, whichever
5944 is the greater. */
5945 shift = msb - 6;
5946 if (shift < 0)
5947 shift = 0;
5948 }
5949
5950 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5951 g_n = residual & (0xff << shift);
5952 encoded_g_n = (g_n >> shift)
5953 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5954
5955 /* Calculate the residual for the next time around. */
5956 residual &= ~g_n;
5957 }
5958
5959 *final_residual = residual;
5960
5961 return encoded_g_n;
5962}
5963
5964/* Given an ARM instruction, determine whether it is an ADD or a SUB.
5965 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 5966
4962c51a 5967static int
906e58ca 5968identify_add_or_sub (bfd_vma insn)
4962c51a
MS
5969{
5970 int opcode = insn & 0x1e00000;
5971
5972 if (opcode == 1 << 23) /* ADD */
5973 return 1;
5974
5975 if (opcode == 1 << 22) /* SUB */
5976 return -1;
5977
5978 return 0;
5979}
5980
252b5132 5981/* Perform a relocation as part of a final link. */
9b485d32 5982
252b5132 5983static bfd_reloc_status_type
57e8b36a
NC
5984elf32_arm_final_link_relocate (reloc_howto_type * howto,
5985 bfd * input_bfd,
5986 bfd * output_bfd,
5987 asection * input_section,
5988 bfd_byte * contents,
5989 Elf_Internal_Rela * rel,
5990 bfd_vma value,
5991 struct bfd_link_info * info,
5992 asection * sym_sec,
5993 const char * sym_name,
5994 int sym_flags,
0945cdfd 5995 struct elf_link_hash_entry * h,
f2a9dd69 5996 bfd_boolean * unresolved_reloc_p,
8029a119 5997 char ** error_message)
252b5132
RH
5998{
5999 unsigned long r_type = howto->type;
6000 unsigned long r_symndx;
6001 bfd_byte * hit_data = contents + rel->r_offset;
6002 bfd * dynobj = NULL;
6003 Elf_Internal_Shdr * symtab_hdr;
6004 struct elf_link_hash_entry ** sym_hashes;
6005 bfd_vma * local_got_offsets;
6006 asection * sgot = NULL;
6007 asection * splt = NULL;
6008 asection * sreloc = NULL;
252b5132 6009 bfd_vma addend;
ba96a88f
NC
6010 bfd_signed_vma signed_addend;
6011 struct elf32_arm_link_hash_table * globals;
f21f3fe0 6012
9c504268
PB
6013 globals = elf32_arm_hash_table (info);
6014
0ffa91dd
NC
6015 BFD_ASSERT (is_arm_elf (input_bfd));
6016
6017 /* Some relocation types map to different relocations depending on the
9c504268 6018 target. We pick the right one here. */
eb043451
PB
6019 r_type = arm_real_reloc_type (globals, r_type);
6020 if (r_type != howto->type)
6021 howto = elf32_arm_howto_from_type (r_type);
9c504268 6022
cac15327
NC
6023 /* If the start address has been set, then set the EF_ARM_HASENTRY
6024 flag. Setting this more than once is redundant, but the cost is
6025 not too high, and it keeps the code simple.
99e4ae17 6026
cac15327
NC
6027 The test is done here, rather than somewhere else, because the
6028 start address is only set just before the final link commences.
6029
6030 Note - if the user deliberately sets a start address of 0, the
6031 flag will not be set. */
6032 if (bfd_get_start_address (output_bfd) != 0)
6033 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 6034
252b5132
RH
6035 dynobj = elf_hash_table (info)->dynobj;
6036 if (dynobj)
6037 {
6038 sgot = bfd_get_section_by_name (dynobj, ".got");
6039 splt = bfd_get_section_by_name (dynobj, ".plt");
6040 }
0ffa91dd 6041 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
6042 sym_hashes = elf_sym_hashes (input_bfd);
6043 local_got_offsets = elf_local_got_offsets (input_bfd);
6044 r_symndx = ELF32_R_SYM (rel->r_info);
6045
4e7fd91e 6046 if (globals->use_rel)
ba96a88f 6047 {
4e7fd91e
PB
6048 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6049
6050 if (addend & ((howto->src_mask + 1) >> 1))
6051 {
6052 signed_addend = -1;
6053 signed_addend &= ~ howto->src_mask;
6054 signed_addend |= addend;
6055 }
6056 else
6057 signed_addend = addend;
ba96a88f
NC
6058 }
6059 else
4e7fd91e 6060 addend = signed_addend = rel->r_addend;
f21f3fe0 6061
252b5132
RH
6062 switch (r_type)
6063 {
6064 case R_ARM_NONE:
28a094c2
DJ
6065 /* We don't need to find a value for this symbol. It's just a
6066 marker. */
6067 *unresolved_reloc_p = FALSE;
252b5132
RH
6068 return bfd_reloc_ok;
6069
00a97672
RS
6070 case R_ARM_ABS12:
6071 if (!globals->vxworks_p)
6072 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6073
252b5132
RH
6074 case R_ARM_PC24:
6075 case R_ARM_ABS32:
bb224fc3 6076 case R_ARM_ABS32_NOI:
252b5132 6077 case R_ARM_REL32:
bb224fc3 6078 case R_ARM_REL32_NOI:
5b5bb741
PB
6079 case R_ARM_CALL:
6080 case R_ARM_JUMP24:
dfc5f959 6081 case R_ARM_XPC25:
eb043451 6082 case R_ARM_PREL31:
7359ea65 6083 case R_ARM_PLT32:
7359ea65
DJ
6084 /* Handle relocations which should use the PLT entry. ABS32/REL32
6085 will use the symbol's value, which may point to a PLT entry, but we
6086 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
6087 branches in this object should go to it, except if the PLT is too
6088 far away, in which case a long branch stub should be inserted. */
bb224fc3 6089 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5fa9e92f
CL
6090 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6091 && r_type != R_ARM_CALL)
7359ea65 6092 && h != NULL
c84cd8ee 6093 && splt != NULL
7359ea65
DJ
6094 && h->plt.offset != (bfd_vma) -1)
6095 {
c84cd8ee
DJ
6096 /* If we've created a .plt section, and assigned a PLT entry to
6097 this function, it should not be known to bind locally. If
6098 it were, we would have cleared the PLT entry. */
7359ea65
DJ
6099 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6100
6101 value = (splt->output_section->vma
6102 + splt->output_offset
6103 + h->plt.offset);
0945cdfd 6104 *unresolved_reloc_p = FALSE;
7359ea65
DJ
6105 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6106 contents, rel->r_offset, value,
00a97672 6107 rel->r_addend);
7359ea65
DJ
6108 }
6109
67687978
PB
6110 /* When generating a shared object or relocatable executable, these
6111 relocations are copied into the output file to be resolved at
6112 run time. */
6113 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 6114 && (input_section->flags & SEC_ALLOC)
3348747a
NS
6115 && !(elf32_arm_hash_table (info)->vxworks_p
6116 && strcmp (input_section->output_section->name,
6117 ".tls_vars") == 0)
bb224fc3 6118 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 6119 || !SYMBOL_CALLS_LOCAL (info, h))
7359ea65
DJ
6120 && (h == NULL
6121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6122 || h->root.type != bfd_link_hash_undefweak)
6123 && r_type != R_ARM_PC24
5b5bb741
PB
6124 && r_type != R_ARM_CALL
6125 && r_type != R_ARM_JUMP24
ee06dc07 6126 && r_type != R_ARM_PREL31
7359ea65 6127 && r_type != R_ARM_PLT32)
252b5132 6128 {
947216bf
AM
6129 Elf_Internal_Rela outrel;
6130 bfd_byte *loc;
b34976b6 6131 bfd_boolean skip, relocate;
f21f3fe0 6132
0945cdfd
DJ
6133 *unresolved_reloc_p = FALSE;
6134
252b5132
RH
6135 if (sreloc == NULL)
6136 {
83bac4b0
NC
6137 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6138 ! globals->use_rel);
f21f3fe0 6139
83bac4b0 6140 if (sreloc == NULL)
252b5132 6141 return bfd_reloc_notsupported;
252b5132 6142 }
f21f3fe0 6143
b34976b6
AM
6144 skip = FALSE;
6145 relocate = FALSE;
f21f3fe0 6146
00a97672 6147 outrel.r_addend = addend;
c629eae0
JJ
6148 outrel.r_offset =
6149 _bfd_elf_section_offset (output_bfd, info, input_section,
6150 rel->r_offset);
6151 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 6152 skip = TRUE;
0bb2d96a 6153 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 6154 skip = TRUE, relocate = TRUE;
252b5132
RH
6155 outrel.r_offset += (input_section->output_section->vma
6156 + input_section->output_offset);
f21f3fe0 6157
252b5132 6158 if (skip)
0bb2d96a 6159 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
6160 else if (h != NULL
6161 && h->dynindx != -1
7359ea65 6162 && (!info->shared
5e681ec4 6163 || !info->symbolic
f5385ebf 6164 || !h->def_regular))
5e681ec4 6165 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
6166 else
6167 {
a16385dc
MM
6168 int symbol;
6169
5e681ec4 6170 /* This symbol is local, or marked to become local. */
b7693d02
DJ
6171 if (sym_flags == STT_ARM_TFUNC)
6172 value |= 1;
a16385dc 6173 if (globals->symbian_p)
6366ff1e 6174 {
74541ad4
AM
6175 asection *osec;
6176
6366ff1e
MM
6177 /* On Symbian OS, the data segment and text segement
6178 can be relocated independently. Therefore, we
6179 must indicate the segment to which this
6180 relocation is relative. The BPABI allows us to
6181 use any symbol in the right segment; we just use
6182 the section symbol as it is convenient. (We
6183 cannot use the symbol given by "h" directly as it
74541ad4
AM
6184 will not appear in the dynamic symbol table.)
6185
6186 Note that the dynamic linker ignores the section
6187 symbol value, so we don't subtract osec->vma
6188 from the emitted reloc addend. */
10dbd1f3 6189 if (sym_sec)
74541ad4 6190 osec = sym_sec->output_section;
10dbd1f3 6191 else
74541ad4
AM
6192 osec = input_section->output_section;
6193 symbol = elf_section_data (osec)->dynindx;
6194 if (symbol == 0)
6195 {
6196 struct elf_link_hash_table *htab = elf_hash_table (info);
6197
6198 if ((osec->flags & SEC_READONLY) == 0
6199 && htab->data_index_section != NULL)
6200 osec = htab->data_index_section;
6201 else
6202 osec = htab->text_index_section;
6203 symbol = elf_section_data (osec)->dynindx;
6204 }
6366ff1e
MM
6205 BFD_ASSERT (symbol != 0);
6206 }
a16385dc
MM
6207 else
6208 /* On SVR4-ish systems, the dynamic loader cannot
6209 relocate the text and data segments independently,
6210 so the symbol does not matter. */
6211 symbol = 0;
6212 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
6213 if (globals->use_rel)
6214 relocate = TRUE;
6215 else
6216 outrel.r_addend += value;
252b5132 6217 }
f21f3fe0 6218
947216bf 6219 loc = sreloc->contents;
00a97672
RS
6220 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6221 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9a5aca8c 6222
f21f3fe0 6223 /* If this reloc is against an external symbol, we do not want to
252b5132 6224 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 6225 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
6226 if (! relocate)
6227 return bfd_reloc_ok;
9a5aca8c 6228
f21f3fe0 6229 return _bfd_final_link_relocate (howto, input_bfd, input_section,
252b5132
RH
6230 contents, rel->r_offset, value,
6231 (bfd_vma) 0);
6232 }
6233 else switch (r_type)
6234 {
00a97672
RS
6235 case R_ARM_ABS12:
6236 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6237
dfc5f959 6238 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
6239 case R_ARM_CALL:
6240 case R_ARM_JUMP24:
8029a119 6241 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 6242 case R_ARM_PLT32:
906e58ca
NC
6243 {
6244 bfd_vma from;
6245 bfd_signed_vma branch_offset;
6246 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6247
dfc5f959 6248 if (r_type == R_ARM_XPC25)
252b5132 6249 {
dfc5f959
NC
6250 /* Check for Arm calling Arm function. */
6251 /* FIXME: Should we translate the instruction into a BL
6252 instruction instead ? */
6253 if (sym_flags != STT_ARM_TFUNC)
d003868e
AM
6254 (*_bfd_error_handler)
6255 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6256 input_bfd,
6257 h ? h->root.root.string : "(local)");
dfc5f959 6258 }
906e58ca 6259 else if (r_type != R_ARM_CALL)
dfc5f959
NC
6260 {
6261 /* Check for Arm calling Thumb function. */
6262 if (sym_flags == STT_ARM_TFUNC)
6263 {
f2a9dd69
DJ
6264 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6265 output_bfd, input_section,
6266 hit_data, sym_sec, rel->r_offset,
6267 signed_addend, value,
6268 error_message))
6269 return bfd_reloc_ok;
6270 else
6271 return bfd_reloc_dangerous;
dfc5f959 6272 }
252b5132 6273 }
ba96a88f 6274
906e58ca 6275 /* Check if a stub has to be inserted because the
8029a119 6276 destination is too far or we are changing mode. */
906e58ca
NC
6277 if (r_type == R_ARM_CALL)
6278 {
5fa9e92f
CL
6279 /* If the call goes through a PLT entry, make sure to
6280 check distance to the right destination address. */
6281 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6282 {
6283 value = (splt->output_section->vma
6284 + splt->output_offset
6285 + h->plt.offset);
6286 *unresolved_reloc_p = FALSE;
6287 }
6288
6289 from = (input_section->output_section->vma
6290 + input_section->output_offset
6291 + rel->r_offset);
6292 branch_offset = (bfd_signed_vma)(value - from);
6293
906e58ca
NC
6294 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6295 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6296 || sym_flags == STT_ARM_TFUNC)
6297 {
6298 /* The target is out of reach, so redirect the
6299 branch to the local stub for this function. */
6300
6301 stub_entry = elf32_arm_get_stub_entry (input_section,
6302 sym_sec, h,
6303 rel, globals);
6304 if (stub_entry != NULL)
6305 value = (stub_entry->stub_offset
6306 + stub_entry->stub_sec->output_offset
6307 + stub_entry->stub_sec->output_section->vma);
6308 }
6309 }
6310
dea514f5
PB
6311 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6312 where:
6313 S is the address of the symbol in the relocation.
6314 P is address of the instruction being relocated.
6315 A is the addend (extracted from the instruction) in bytes.
6316
6317 S is held in 'value'.
6318 P is the base address of the section containing the
6319 instruction plus the offset of the reloc into that
6320 section, ie:
6321 (input_section->output_section->vma +
6322 input_section->output_offset +
6323 rel->r_offset).
6324 A is the addend, converted into bytes, ie:
6325 (signed_addend * 4)
6326
6327 Note: None of these operations have knowledge of the pipeline
6328 size of the processor, thus it is up to the assembler to
6329 encode this information into the addend. */
6330 value -= (input_section->output_section->vma
6331 + input_section->output_offset);
6332 value -= rel->r_offset;
4e7fd91e
PB
6333 if (globals->use_rel)
6334 value += (signed_addend << howto->size);
6335 else
6336 /* RELA addends do not have to be adjusted by howto->size. */
6337 value += signed_addend;
23080146 6338
dcb5e6e6
NC
6339 signed_addend = value;
6340 signed_addend >>= howto->rightshift;
9a5aca8c 6341
5ab79981
PB
6342 /* A branch to an undefined weak symbol is turned into a jump to
6343 the next instruction. */
6344 if (h && h->root.type == bfd_link_hash_undefweak)
6345 {
6346 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6347 | 0x0affffff;
6348 }
6349 else
59f2c4e7 6350 {
9b485d32 6351 /* Perform a signed range check. */
dcb5e6e6 6352 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
6353 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6354 return bfd_reloc_overflow;
9a5aca8c 6355
5ab79981 6356 addend = (value & 2);
39b41c9c 6357
5ab79981
PB
6358 value = (signed_addend & howto->dst_mask)
6359 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 6360
5ab79981 6361 /* Set the H bit in the BLX instruction. */
39b41c9c 6362 if (sym_flags == STT_ARM_TFUNC)
39b41c9c 6363 {
5ab79981
PB
6364 if (addend)
6365 value |= (1 << 24);
6366 else
6367 value &= ~(bfd_vma)(1 << 24);
6368 }
6369 if (r_type == R_ARM_CALL)
6370 {
6371 /* Select the correct instruction (BL or BLX). */
906e58ca 6372 /* Only if we are not handling a BL to a stub. In this
8029a119 6373 case, mode switching is performed by the stub. */
906e58ca 6374 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
5ab79981
PB
6375 value |= (1 << 28);
6376 else
6377 {
6378 value &= ~(bfd_vma)(1 << 28);
6379 value |= (1 << 24);
6380 }
39b41c9c
PB
6381 }
6382 }
906e58ca 6383 }
252b5132 6384 break;
f21f3fe0 6385
252b5132
RH
6386 case R_ARM_ABS32:
6387 value += addend;
6388 if (sym_flags == STT_ARM_TFUNC)
6389 value |= 1;
6390 break;
f21f3fe0 6391
bb224fc3
MS
6392 case R_ARM_ABS32_NOI:
6393 value += addend;
6394 break;
6395
252b5132 6396 case R_ARM_REL32:
a8bc6c78
PB
6397 value += addend;
6398 if (sym_flags == STT_ARM_TFUNC)
6399 value |= 1;
252b5132 6400 value -= (input_section->output_section->vma
62efb346 6401 + input_section->output_offset + rel->r_offset);
252b5132 6402 break;
eb043451 6403
bb224fc3
MS
6404 case R_ARM_REL32_NOI:
6405 value += addend;
6406 value -= (input_section->output_section->vma
6407 + input_section->output_offset + rel->r_offset);
6408 break;
6409
eb043451
PB
6410 case R_ARM_PREL31:
6411 value -= (input_section->output_section->vma
6412 + input_section->output_offset + rel->r_offset);
6413 value += signed_addend;
6414 if (! h || h->root.type != bfd_link_hash_undefweak)
6415 {
8029a119 6416 /* Check for overflow. */
eb043451
PB
6417 if ((value ^ (value >> 1)) & (1 << 30))
6418 return bfd_reloc_overflow;
6419 }
6420 value &= 0x7fffffff;
6421 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6422 if (sym_flags == STT_ARM_TFUNC)
6423 value |= 1;
6424 break;
252b5132 6425 }
f21f3fe0 6426
252b5132
RH
6427 bfd_put_32 (input_bfd, value, hit_data);
6428 return bfd_reloc_ok;
6429
6430 case R_ARM_ABS8:
6431 value += addend;
6432 if ((long) value > 0x7f || (long) value < -0x80)
6433 return bfd_reloc_overflow;
6434
6435 bfd_put_8 (input_bfd, value, hit_data);
6436 return bfd_reloc_ok;
6437
6438 case R_ARM_ABS16:
6439 value += addend;
6440
6441 if ((long) value > 0x7fff || (long) value < -0x8000)
6442 return bfd_reloc_overflow;
6443
6444 bfd_put_16 (input_bfd, value, hit_data);
6445 return bfd_reloc_ok;
6446
252b5132 6447 case R_ARM_THM_ABS5:
9b485d32 6448 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
6449 if (globals->use_rel)
6450 {
6451 /* Need to refetch addend. */
6452 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6453 /* ??? Need to determine shift amount from operand size. */
6454 addend >>= howto->rightshift;
6455 }
252b5132
RH
6456 value += addend;
6457
6458 /* ??? Isn't value unsigned? */
6459 if ((long) value > 0x1f || (long) value < -0x10)
6460 return bfd_reloc_overflow;
6461
6462 /* ??? Value needs to be properly shifted into place first. */
6463 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6464 bfd_put_16 (input_bfd, value, hit_data);
6465 return bfd_reloc_ok;
6466
2cab6cc3
MS
6467 case R_ARM_THM_ALU_PREL_11_0:
6468 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6469 {
6470 bfd_vma insn;
6471 bfd_signed_vma relocation;
6472
6473 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6474 | bfd_get_16 (input_bfd, hit_data + 2);
6475
6476 if (globals->use_rel)
6477 {
6478 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6479 | ((insn & (1 << 26)) >> 15);
6480 if (insn & 0xf00000)
6481 signed_addend = -signed_addend;
6482 }
6483
6484 relocation = value + signed_addend;
6485 relocation -= (input_section->output_section->vma
6486 + input_section->output_offset
6487 + rel->r_offset);
6488
6489 value = abs (relocation);
6490
6491 if (value >= 0x1000)
6492 return bfd_reloc_overflow;
6493
6494 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6495 | ((value & 0x700) << 4)
6496 | ((value & 0x800) << 15);
6497 if (relocation < 0)
6498 insn |= 0xa00000;
6499
6500 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6501 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6502
6503 return bfd_reloc_ok;
6504 }
6505
6506 case R_ARM_THM_PC12:
6507 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6508 {
6509 bfd_vma insn;
6510 bfd_signed_vma relocation;
6511
6512 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6513 | bfd_get_16 (input_bfd, hit_data + 2);
6514
6515 if (globals->use_rel)
6516 {
6517 signed_addend = insn & 0xfff;
6518 if (!(insn & (1 << 23)))
6519 signed_addend = -signed_addend;
6520 }
6521
6522 relocation = value + signed_addend;
6523 relocation -= (input_section->output_section->vma
6524 + input_section->output_offset
6525 + rel->r_offset);
6526
6527 value = abs (relocation);
6528
6529 if (value >= 0x1000)
6530 return bfd_reloc_overflow;
6531
6532 insn = (insn & 0xff7ff000) | value;
6533 if (relocation >= 0)
6534 insn |= (1 << 23);
6535
6536 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6537 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6538
6539 return bfd_reloc_ok;
6540 }
6541
dfc5f959 6542 case R_ARM_THM_XPC22:
c19d1205 6543 case R_ARM_THM_CALL:
bd97cb95 6544 case R_ARM_THM_JUMP24:
dfc5f959 6545 /* Thumb BL (branch long instruction). */
252b5132 6546 {
b34976b6 6547 bfd_vma relocation;
e95de063 6548 bfd_vma reloc_sign;
b34976b6
AM
6549 bfd_boolean overflow = FALSE;
6550 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6551 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
6552 bfd_signed_vma reloc_signed_max;
6553 bfd_signed_vma reloc_signed_min;
b34976b6 6554 bfd_vma check;
252b5132 6555 bfd_signed_vma signed_check;
e95de063
MS
6556 int bitsize;
6557 int thumb2 = using_thumb2 (globals);
252b5132 6558
5ab79981 6559 /* A branch to an undefined weak symbol is turned into a jump to
19540007
JM
6560 the next instruction unless a PLT entry will be created. */
6561 if (h && h->root.type == bfd_link_hash_undefweak
6562 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
5ab79981
PB
6563 {
6564 bfd_put_16 (input_bfd, 0xe000, hit_data);
6565 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6566 return bfd_reloc_ok;
6567 }
6568
e95de063
MS
6569 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6570 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
6571 if (globals->use_rel)
6572 {
e95de063
MS
6573 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6574 bfd_vma upper = upper_insn & 0x3ff;
6575 bfd_vma lower = lower_insn & 0x7ff;
6576 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6577 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6578 bfd_vma i1 = j1 ^ s ? 0 : 1;
6579 bfd_vma i2 = j2 ^ s ? 0 : 1;
6580
6581 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6582 /* Sign extend. */
6583 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6584
4e7fd91e
PB
6585 signed_addend = addend;
6586 }
cb1afa5c 6587
dfc5f959
NC
6588 if (r_type == R_ARM_THM_XPC22)
6589 {
6590 /* Check for Thumb to Thumb call. */
6591 /* FIXME: Should we translate the instruction into a BL
6592 instruction instead ? */
6593 if (sym_flags == STT_ARM_TFUNC)
d003868e
AM
6594 (*_bfd_error_handler)
6595 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6596 input_bfd,
6597 h ? h->root.root.string : "(local)");
dfc5f959
NC
6598 }
6599 else
252b5132 6600 {
dfc5f959
NC
6601 /* If it is not a call to Thumb, assume call to Arm.
6602 If it is a call relative to a section name, then it is not a
b7693d02
DJ
6603 function call at all, but rather a long jump. Calls through
6604 the PLT do not require stubs. */
6605 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6606 && (h == NULL || splt == NULL
6607 || h->plt.offset == (bfd_vma) -1))
dfc5f959 6608 {
bd97cb95 6609 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
6610 {
6611 /* Convert BL to BLX. */
6612 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6613 }
8029a119
NC
6614 else if (r_type != R_ARM_THM_CALL)
6615 {
6616 if (elf32_thumb_to_arm_stub
6617 (info, sym_name, input_bfd, output_bfd, input_section,
6618 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6619 error_message))
6620 return bfd_reloc_ok;
6621 else
6622 return bfd_reloc_dangerous;
6623 }
da5938a2 6624 }
bd97cb95
DJ
6625 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6626 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
6627 {
6628 /* Make sure this is a BL. */
6629 lower_insn |= 0x1800;
6630 }
252b5132 6631 }
f21f3fe0 6632
b7693d02
DJ
6633 /* Handle calls via the PLT. */
6634 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6635 {
6636 value = (splt->output_section->vma
6637 + splt->output_offset
6638 + h->plt.offset);
bd97cb95 6639 if (globals->use_blx && r_type == R_ARM_THM_CALL)
33bfe774
JB
6640 {
6641 /* If the Thumb BLX instruction is available, convert the
6642 BL to a BLX instruction to call the ARM-mode PLT entry. */
39b41c9c 6643 lower_insn = (lower_insn & ~0x1000) | 0x0800;
33bfe774
JB
6644 }
6645 else
6646 /* Target the Thumb stub before the ARM PLT entry. */
6647 value -= PLT_THUMB_STUB_SIZE;
0945cdfd 6648 *unresolved_reloc_p = FALSE;
b7693d02
DJ
6649 }
6650
906e58ca
NC
6651 if (r_type == R_ARM_THM_CALL)
6652 {
6653 /* Check if a stub has to be inserted because the destination
8029a119 6654 is too far. */
906e58ca
NC
6655 bfd_vma from;
6656 bfd_signed_vma branch_offset;
6657 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6658
6659 from = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + rel->r_offset);
6662 branch_offset = (bfd_signed_vma)(value - from);
6663
6664 if ((!thumb2
6665 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6666 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6667 ||
6668 (thumb2
6669 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
f4ac8484
DJ
6670 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6671 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
906e58ca
NC
6672 {
6673 /* The target is out of reach or we are changing modes, so
6674 redirect the branch to the local stub for this
6675 function. */
6676 stub_entry = elf32_arm_get_stub_entry (input_section,
6677 sym_sec, h,
6678 rel, globals);
6679 if (stub_entry != NULL)
6680 value = (stub_entry->stub_offset
6681 + stub_entry->stub_sec->output_offset
6682 + stub_entry->stub_sec->output_section->vma);
6683
f4ac8484
DJ
6684 /* If this call becomes a call to Arm, force BLX. */
6685 if (globals->use_blx)
6686 {
6687 if ((stub_entry
6688 && !arm_stub_is_thumb (stub_entry->stub_type))
6689 || (sym_flags != STT_ARM_TFUNC))
6690 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6691 }
906e58ca
NC
6692 }
6693 }
6694
ba96a88f 6695 relocation = value + signed_addend;
f21f3fe0 6696
252b5132 6697 relocation -= (input_section->output_section->vma
ba96a88f
NC
6698 + input_section->output_offset
6699 + rel->r_offset);
9a5aca8c 6700
252b5132
RH
6701 check = relocation >> howto->rightshift;
6702
6703 /* If this is a signed value, the rightshift just dropped
6704 leading 1 bits (assuming twos complement). */
6705 if ((bfd_signed_vma) relocation >= 0)
6706 signed_check = check;
6707 else
6708 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6709
e95de063
MS
6710 /* Calculate the permissable maximum and minimum values for
6711 this relocation according to whether we're relocating for
6712 Thumb-2 or not. */
6713 bitsize = howto->bitsize;
6714 if (!thumb2)
6715 bitsize -= 2;
6716 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6717 reloc_signed_min = ~reloc_signed_max;
6718
252b5132 6719 /* Assumes two's complement. */
ba96a88f 6720 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 6721 overflow = TRUE;
252b5132 6722
bd97cb95 6723 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
6724 /* For a BLX instruction, make sure that the relocation is rounded up
6725 to a word boundary. This follows the semantics of the instruction
6726 which specifies that bit 1 of the target address will come from bit
6727 1 of the base address. */
6728 relocation = (relocation + 2) & ~ 3;
cb1afa5c 6729
e95de063
MS
6730 /* Put RELOCATION back into the insn. Assumes two's complement.
6731 We use the Thumb-2 encoding, which is safe even if dealing with
6732 a Thumb-1 instruction by virtue of our overflow check above. */
6733 reloc_sign = (signed_check < 0) ? 1 : 0;
6734 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6735 | ((relocation >> 12) & 0x3ff)
6736 | (reloc_sign << 10);
906e58ca 6737 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
e95de063
MS
6738 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6739 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6740 | ((relocation >> 1) & 0x7ff);
c62e1cc3 6741
252b5132
RH
6742 /* Put the relocated value back in the object file: */
6743 bfd_put_16 (input_bfd, upper_insn, hit_data);
6744 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6745
6746 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6747 }
6748 break;
6749
c19d1205
ZW
6750 case R_ARM_THM_JUMP19:
6751 /* Thumb32 conditional branch instruction. */
6752 {
6753 bfd_vma relocation;
6754 bfd_boolean overflow = FALSE;
6755 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6756 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
6757 bfd_signed_vma reloc_signed_max = 0xffffe;
6758 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205
ZW
6759 bfd_signed_vma signed_check;
6760
6761 /* Need to refetch the addend, reconstruct the top three bits,
6762 and squish the two 11 bit pieces together. */
6763 if (globals->use_rel)
6764 {
6765 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 6766 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
6767 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6768 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6769 bfd_vma lower = (lower_insn & 0x07ff);
6770
a00a1f35
MS
6771 upper |= J1 << 6;
6772 upper |= J2 << 7;
6773 upper |= (!S) << 8;
c19d1205
ZW
6774 upper -= 0x0100; /* Sign extend. */
6775
6776 addend = (upper << 12) | (lower << 1);
6777 signed_addend = addend;
6778 }
6779
bd97cb95
DJ
6780 /* Handle calls via the PLT. */
6781 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6782 {
6783 value = (splt->output_section->vma
6784 + splt->output_offset
6785 + h->plt.offset);
6786 /* Target the Thumb stub before the ARM PLT entry. */
6787 value -= PLT_THUMB_STUB_SIZE;
6788 *unresolved_reloc_p = FALSE;
6789 }
6790
c19d1205
ZW
6791 /* ??? Should handle interworking? GCC might someday try to
6792 use this for tail calls. */
6793
6794 relocation = value + signed_addend;
6795 relocation -= (input_section->output_section->vma
6796 + input_section->output_offset
6797 + rel->r_offset);
a00a1f35 6798 signed_check = (bfd_signed_vma) relocation;
c19d1205 6799
c19d1205
ZW
6800 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6801 overflow = TRUE;
6802
6803 /* Put RELOCATION back into the insn. */
6804 {
6805 bfd_vma S = (relocation & 0x00100000) >> 20;
6806 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6807 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6808 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6809 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6810
a00a1f35 6811 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
6812 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6813 }
6814
6815 /* Put the relocated value back in the object file: */
6816 bfd_put_16 (input_bfd, upper_insn, hit_data);
6817 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6818
6819 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6820 }
6821
6822 case R_ARM_THM_JUMP11:
6823 case R_ARM_THM_JUMP8:
6824 case R_ARM_THM_JUMP6:
51c5503b
NC
6825 /* Thumb B (branch) instruction). */
6826 {
6cf9e9fe 6827 bfd_signed_vma relocation;
51c5503b
NC
6828 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6829 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
6830 bfd_signed_vma signed_check;
6831
c19d1205
ZW
6832 /* CZB cannot jump backward. */
6833 if (r_type == R_ARM_THM_JUMP6)
6834 reloc_signed_min = 0;
6835
4e7fd91e 6836 if (globals->use_rel)
6cf9e9fe 6837 {
4e7fd91e
PB
6838 /* Need to refetch addend. */
6839 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6840 if (addend & ((howto->src_mask + 1) >> 1))
6841 {
6842 signed_addend = -1;
6843 signed_addend &= ~ howto->src_mask;
6844 signed_addend |= addend;
6845 }
6846 else
6847 signed_addend = addend;
6848 /* The value in the insn has been right shifted. We need to
6849 undo this, so that we can perform the address calculation
6850 in terms of bytes. */
6851 signed_addend <<= howto->rightshift;
6cf9e9fe 6852 }
6cf9e9fe 6853 relocation = value + signed_addend;
51c5503b
NC
6854
6855 relocation -= (input_section->output_section->vma
6856 + input_section->output_offset
6857 + rel->r_offset);
6858
6cf9e9fe
NC
6859 relocation >>= howto->rightshift;
6860 signed_check = relocation;
c19d1205
ZW
6861
6862 if (r_type == R_ARM_THM_JUMP6)
6863 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6864 else
6865 relocation &= howto->dst_mask;
51c5503b 6866 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 6867
51c5503b
NC
6868 bfd_put_16 (input_bfd, relocation, hit_data);
6869
6870 /* Assumes two's complement. */
6871 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6872 return bfd_reloc_overflow;
6873
6874 return bfd_reloc_ok;
6875 }
cedb70c5 6876
8375c36b
PB
6877 case R_ARM_ALU_PCREL7_0:
6878 case R_ARM_ALU_PCREL15_8:
6879 case R_ARM_ALU_PCREL23_15:
6880 {
6881 bfd_vma insn;
6882 bfd_vma relocation;
6883
6884 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
6885 if (globals->use_rel)
6886 {
6887 /* Extract the addend. */
6888 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6889 signed_addend = addend;
6890 }
8375c36b
PB
6891 relocation = value + signed_addend;
6892
6893 relocation -= (input_section->output_section->vma
6894 + input_section->output_offset
6895 + rel->r_offset);
6896 insn = (insn & ~0xfff)
6897 | ((howto->bitpos << 7) & 0xf00)
6898 | ((relocation >> howto->bitpos) & 0xff);
6899 bfd_put_32 (input_bfd, value, hit_data);
6900 }
6901 return bfd_reloc_ok;
6902
252b5132
RH
6903 case R_ARM_GNU_VTINHERIT:
6904 case R_ARM_GNU_VTENTRY:
6905 return bfd_reloc_ok;
6906
c19d1205 6907 case R_ARM_GOTOFF32:
252b5132
RH
6908 /* Relocation is relative to the start of the
6909 global offset table. */
6910
6911 BFD_ASSERT (sgot != NULL);
6912 if (sgot == NULL)
6913 return bfd_reloc_notsupported;
9a5aca8c 6914
cedb70c5 6915 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
6916 address by one, so that attempts to call the function pointer will
6917 correctly interpret it as Thumb code. */
6918 if (sym_flags == STT_ARM_TFUNC)
6919 value += 1;
6920
252b5132
RH
6921 /* Note that sgot->output_offset is not involved in this
6922 calculation. We always want the start of .got. If we
6923 define _GLOBAL_OFFSET_TABLE in a different way, as is
6924 permitted by the ABI, we might have to change this
9b485d32 6925 calculation. */
252b5132 6926 value -= sgot->output_section->vma;
f21f3fe0 6927 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 6928 contents, rel->r_offset, value,
00a97672 6929 rel->r_addend);
252b5132
RH
6930
6931 case R_ARM_GOTPC:
a7c10850 6932 /* Use global offset table as symbol value. */
252b5132 6933 BFD_ASSERT (sgot != NULL);
f21f3fe0 6934
252b5132
RH
6935 if (sgot == NULL)
6936 return bfd_reloc_notsupported;
6937
0945cdfd 6938 *unresolved_reloc_p = FALSE;
252b5132 6939 value = sgot->output_section->vma;
f21f3fe0 6940 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 6941 contents, rel->r_offset, value,
00a97672 6942 rel->r_addend);
f21f3fe0 6943
252b5132 6944 case R_ARM_GOT32:
eb043451 6945 case R_ARM_GOT_PREL:
252b5132 6946 /* Relocation is to the entry for this symbol in the
9b485d32 6947 global offset table. */
252b5132
RH
6948 if (sgot == NULL)
6949 return bfd_reloc_notsupported;
f21f3fe0 6950
252b5132
RH
6951 if (h != NULL)
6952 {
6953 bfd_vma off;
5e681ec4 6954 bfd_boolean dyn;
f21f3fe0 6955
252b5132
RH
6956 off = h->got.offset;
6957 BFD_ASSERT (off != (bfd_vma) -1);
5e681ec4 6958 dyn = globals->root.dynamic_sections_created;
f21f3fe0 6959
5e681ec4 6960 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
50d6c878 6961 || (info->shared
5e681ec4
PB
6962 && SYMBOL_REFERENCES_LOCAL (info, h))
6963 || (ELF_ST_VISIBILITY (h->other)
6964 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
6965 {
6966 /* This is actually a static link, or it is a -Bsymbolic link
6967 and the symbol is defined locally. We must initialize this
6968 entry in the global offset table. Since the offset must
6969 always be a multiple of 4, we use the least significant bit
6970 to record whether we have initialized it already.
f21f3fe0 6971
00a97672 6972 When doing a dynamic link, we create a .rel(a).got relocation
f21f3fe0 6973 entry to initialize the value. This is done in the
9b485d32 6974 finish_dynamic_symbol routine. */
252b5132
RH
6975 if ((off & 1) != 0)
6976 off &= ~1;
6977 else
6978 {
ee29b9fb
RE
6979 /* If we are addressing a Thumb function, we need to
6980 adjust the address by one, so that attempts to
6981 call the function pointer will correctly
6982 interpret it as Thumb code. */
6983 if (sym_flags == STT_ARM_TFUNC)
6984 value |= 1;
6985
252b5132
RH
6986 bfd_put_32 (output_bfd, value, sgot->contents + off);
6987 h->got.offset |= 1;
6988 }
6989 }
0945cdfd
DJ
6990 else
6991 *unresolved_reloc_p = FALSE;
f21f3fe0 6992
252b5132
RH
6993 value = sgot->output_offset + off;
6994 }
6995 else
6996 {
6997 bfd_vma off;
f21f3fe0 6998
252b5132
RH
6999 BFD_ASSERT (local_got_offsets != NULL &&
7000 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 7001
252b5132 7002 off = local_got_offsets[r_symndx];
f21f3fe0 7003
252b5132
RH
7004 /* The offset must always be a multiple of 4. We use the
7005 least significant bit to record whether we have already
9b485d32 7006 generated the necessary reloc. */
252b5132
RH
7007 if ((off & 1) != 0)
7008 off &= ~1;
7009 else
7010 {
b7693d02
DJ
7011 /* If we are addressing a Thumb function, we need to
7012 adjust the address by one, so that attempts to
7013 call the function pointer will correctly
7014 interpret it as Thumb code. */
7015 if (sym_flags == STT_ARM_TFUNC)
7016 value |= 1;
7017
00a97672
RS
7018 if (globals->use_rel)
7019 bfd_put_32 (output_bfd, value, sgot->contents + off);
f21f3fe0 7020
252b5132
RH
7021 if (info->shared)
7022 {
7023 asection * srelgot;
947216bf
AM
7024 Elf_Internal_Rela outrel;
7025 bfd_byte *loc;
f21f3fe0 7026
00a97672
RS
7027 srelgot = (bfd_get_section_by_name
7028 (dynobj, RELOC_SECTION (globals, ".got")));
252b5132 7029 BFD_ASSERT (srelgot != NULL);
f21f3fe0 7030
00a97672 7031 outrel.r_addend = addend + value;
252b5132 7032 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 7033 + sgot->output_offset
252b5132
RH
7034 + off);
7035 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
947216bf 7036 loc = srelgot->contents;
00a97672
RS
7037 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7038 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
252b5132 7039 }
f21f3fe0 7040
252b5132
RH
7041 local_got_offsets[r_symndx] |= 1;
7042 }
f21f3fe0 7043
252b5132
RH
7044 value = sgot->output_offset + off;
7045 }
eb043451
PB
7046 if (r_type != R_ARM_GOT32)
7047 value += sgot->output_section->vma;
9a5aca8c 7048
f21f3fe0 7049 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7050 contents, rel->r_offset, value,
00a97672 7051 rel->r_addend);
f21f3fe0 7052
ba93b8ac
DJ
7053 case R_ARM_TLS_LDO32:
7054 value = value - dtpoff_base (info);
7055
7056 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
7057 contents, rel->r_offset, value,
7058 rel->r_addend);
ba93b8ac
DJ
7059
7060 case R_ARM_TLS_LDM32:
7061 {
7062 bfd_vma off;
7063
7064 if (globals->sgot == NULL)
7065 abort ();
7066
7067 off = globals->tls_ldm_got.offset;
7068
7069 if ((off & 1) != 0)
7070 off &= ~1;
7071 else
7072 {
7073 /* If we don't know the module number, create a relocation
7074 for it. */
7075 if (info->shared)
7076 {
7077 Elf_Internal_Rela outrel;
7078 bfd_byte *loc;
7079
7080 if (globals->srelgot == NULL)
7081 abort ();
7082
00a97672 7083 outrel.r_addend = 0;
ba93b8ac
DJ
7084 outrel.r_offset = (globals->sgot->output_section->vma
7085 + globals->sgot->output_offset + off);
7086 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7087
00a97672
RS
7088 if (globals->use_rel)
7089 bfd_put_32 (output_bfd, outrel.r_addend,
7090 globals->sgot->contents + off);
ba93b8ac
DJ
7091
7092 loc = globals->srelgot->contents;
00a97672
RS
7093 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7094 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac
DJ
7095 }
7096 else
7097 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7098
7099 globals->tls_ldm_got.offset |= 1;
7100 }
7101
906e58ca 7102 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
7103 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7104
7105 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7106 contents, rel->r_offset, value,
00a97672 7107 rel->r_addend);
ba93b8ac
DJ
7108 }
7109
7110 case R_ARM_TLS_GD32:
7111 case R_ARM_TLS_IE32:
7112 {
7113 bfd_vma off;
7114 int indx;
7115 char tls_type;
7116
7117 if (globals->sgot == NULL)
7118 abort ();
7119
7120 indx = 0;
7121 if (h != NULL)
7122 {
7123 bfd_boolean dyn;
7124 dyn = globals->root.dynamic_sections_created;
7125 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7126 && (!info->shared
7127 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7128 {
7129 *unresolved_reloc_p = FALSE;
7130 indx = h->dynindx;
7131 }
7132 off = h->got.offset;
7133 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7134 }
7135 else
7136 {
7137 if (local_got_offsets == NULL)
7138 abort ();
7139 off = local_got_offsets[r_symndx];
7140 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7141 }
7142
7143 if (tls_type == GOT_UNKNOWN)
7144 abort ();
7145
7146 if ((off & 1) != 0)
7147 off &= ~1;
7148 else
7149 {
7150 bfd_boolean need_relocs = FALSE;
7151 Elf_Internal_Rela outrel;
7152 bfd_byte *loc = NULL;
7153 int cur_off = off;
7154
7155 /* The GOT entries have not been initialized yet. Do it
7156 now, and emit any relocations. If both an IE GOT and a
7157 GD GOT are necessary, we emit the GD first. */
7158
7159 if ((info->shared || indx != 0)
7160 && (h == NULL
7161 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7162 || h->root.type != bfd_link_hash_undefweak))
7163 {
7164 need_relocs = TRUE;
7165 if (globals->srelgot == NULL)
7166 abort ();
7167 loc = globals->srelgot->contents;
00a97672 7168 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
ba93b8ac
DJ
7169 }
7170
7171 if (tls_type & GOT_TLS_GD)
7172 {
7173 if (need_relocs)
7174 {
00a97672 7175 outrel.r_addend = 0;
ba93b8ac 7176 outrel.r_offset = (globals->sgot->output_section->vma
00a97672
RS
7177 + globals->sgot->output_offset
7178 + cur_off);
ba93b8ac 7179 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 7180
00a97672
RS
7181 if (globals->use_rel)
7182 bfd_put_32 (output_bfd, outrel.r_addend,
7183 globals->sgot->contents + cur_off);
7184
7185 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 7186 globals->srelgot->reloc_count++;
00a97672 7187 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
7188
7189 if (indx == 0)
7190 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7191 globals->sgot->contents + cur_off + 4);
7192 else
7193 {
00a97672 7194 outrel.r_addend = 0;
ba93b8ac
DJ
7195 outrel.r_info = ELF32_R_INFO (indx,
7196 R_ARM_TLS_DTPOFF32);
7197 outrel.r_offset += 4;
00a97672
RS
7198
7199 if (globals->use_rel)
7200 bfd_put_32 (output_bfd, outrel.r_addend,
7201 globals->sgot->contents + cur_off + 4);
7202
7203
7204 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 7205 globals->srelgot->reloc_count++;
00a97672 7206 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
7207 }
7208 }
7209 else
7210 {
7211 /* If we are not emitting relocations for a
7212 general dynamic reference, then we must be in a
7213 static link or an executable link with the
7214 symbol binding locally. Mark it as belonging
7215 to module 1, the executable. */
7216 bfd_put_32 (output_bfd, 1,
7217 globals->sgot->contents + cur_off);
7218 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7219 globals->sgot->contents + cur_off + 4);
7220 }
7221
7222 cur_off += 8;
7223 }
7224
7225 if (tls_type & GOT_TLS_IE)
7226 {
7227 if (need_relocs)
7228 {
00a97672
RS
7229 if (indx == 0)
7230 outrel.r_addend = value - dtpoff_base (info);
7231 else
7232 outrel.r_addend = 0;
ba93b8ac
DJ
7233 outrel.r_offset = (globals->sgot->output_section->vma
7234 + globals->sgot->output_offset
7235 + cur_off);
7236 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7237
00a97672
RS
7238 if (globals->use_rel)
7239 bfd_put_32 (output_bfd, outrel.r_addend,
ba93b8ac
DJ
7240 globals->sgot->contents + cur_off);
7241
00a97672 7242 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 7243 globals->srelgot->reloc_count++;
00a97672 7244 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
7245 }
7246 else
7247 bfd_put_32 (output_bfd, tpoff (info, value),
7248 globals->sgot->contents + cur_off);
7249 cur_off += 4;
7250 }
7251
7252 if (h != NULL)
7253 h->got.offset |= 1;
7254 else
7255 local_got_offsets[r_symndx] |= 1;
7256 }
7257
7258 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7259 off += 8;
906e58ca 7260 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
7261 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7262
7263 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7264 contents, rel->r_offset, value,
00a97672 7265 rel->r_addend);
ba93b8ac
DJ
7266 }
7267
7268 case R_ARM_TLS_LE32:
7269 if (info->shared)
7270 {
7271 (*_bfd_error_handler)
7272 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7273 input_bfd, input_section,
7274 (long) rel->r_offset, howto->name);
906e58ca 7275 return FALSE;
ba93b8ac
DJ
7276 }
7277 else
7278 value = tpoff (info, value);
906e58ca 7279
ba93b8ac 7280 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
7281 contents, rel->r_offset, value,
7282 rel->r_addend);
ba93b8ac 7283
319850b4
JB
7284 case R_ARM_V4BX:
7285 if (globals->fix_v4bx)
845b51d6
PB
7286 {
7287 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 7288
845b51d6
PB
7289 /* Ensure that we have a BX instruction. */
7290 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 7291
845b51d6
PB
7292 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7293 {
7294 /* Branch to veneer. */
7295 bfd_vma glue_addr;
7296 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7297 glue_addr -= input_section->output_section->vma
7298 + input_section->output_offset
7299 + rel->r_offset + 8;
7300 insn = (insn & 0xf0000000) | 0x0a000000
7301 | ((glue_addr >> 2) & 0x00ffffff);
7302 }
7303 else
7304 {
7305 /* Preserve Rm (lowest four bits) and the condition code
7306 (highest four bits). Other bits encode MOV PC,Rm. */
7307 insn = (insn & 0xf000000f) | 0x01a0f000;
7308 }
319850b4 7309
845b51d6
PB
7310 bfd_put_32 (input_bfd, insn, hit_data);
7311 }
319850b4
JB
7312 return bfd_reloc_ok;
7313
b6895b4f
PB
7314 case R_ARM_MOVW_ABS_NC:
7315 case R_ARM_MOVT_ABS:
7316 case R_ARM_MOVW_PREL_NC:
7317 case R_ARM_MOVT_PREL:
92f5d02b
MS
7318 /* Until we properly support segment-base-relative addressing then
7319 we assume the segment base to be zero, as for the group relocations.
7320 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7321 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7322 case R_ARM_MOVW_BREL_NC:
7323 case R_ARM_MOVW_BREL:
7324 case R_ARM_MOVT_BREL:
b6895b4f
PB
7325 {
7326 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7327
7328 if (globals->use_rel)
7329 {
7330 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 7331 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 7332 }
92f5d02b 7333
b6895b4f 7334 value += signed_addend;
b6895b4f
PB
7335
7336 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7337 value -= (input_section->output_section->vma
7338 + input_section->output_offset + rel->r_offset);
7339
92f5d02b
MS
7340 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7341 return bfd_reloc_overflow;
7342
7343 if (sym_flags == STT_ARM_TFUNC)
7344 value |= 1;
7345
7346 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7347 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
7348 value >>= 16;
7349
7350 insn &= 0xfff0f000;
7351 insn |= value & 0xfff;
7352 insn |= (value & 0xf000) << 4;
7353 bfd_put_32 (input_bfd, insn, hit_data);
7354 }
7355 return bfd_reloc_ok;
7356
7357 case R_ARM_THM_MOVW_ABS_NC:
7358 case R_ARM_THM_MOVT_ABS:
7359 case R_ARM_THM_MOVW_PREL_NC:
7360 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
7361 /* Until we properly support segment-base-relative addressing then
7362 we assume the segment base to be zero, as for the above relocations.
7363 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7364 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7365 as R_ARM_THM_MOVT_ABS. */
7366 case R_ARM_THM_MOVW_BREL_NC:
7367 case R_ARM_THM_MOVW_BREL:
7368 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
7369 {
7370 bfd_vma insn;
906e58ca 7371
b6895b4f
PB
7372 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7373 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7374
7375 if (globals->use_rel)
7376 {
7377 addend = ((insn >> 4) & 0xf000)
7378 | ((insn >> 15) & 0x0800)
7379 | ((insn >> 4) & 0x0700)
7380 | (insn & 0x00ff);
39623e12 7381 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 7382 }
92f5d02b 7383
b6895b4f 7384 value += signed_addend;
b6895b4f
PB
7385
7386 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7387 value -= (input_section->output_section->vma
7388 + input_section->output_offset + rel->r_offset);
7389
92f5d02b
MS
7390 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7391 return bfd_reloc_overflow;
7392
7393 if (sym_flags == STT_ARM_TFUNC)
7394 value |= 1;
7395
7396 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7397 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
7398 value >>= 16;
7399
7400 insn &= 0xfbf08f00;
7401 insn |= (value & 0xf000) << 4;
7402 insn |= (value & 0x0800) << 15;
7403 insn |= (value & 0x0700) << 4;
7404 insn |= (value & 0x00ff);
7405
7406 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7407 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7408 }
7409 return bfd_reloc_ok;
7410
4962c51a
MS
7411 case R_ARM_ALU_PC_G0_NC:
7412 case R_ARM_ALU_PC_G1_NC:
7413 case R_ARM_ALU_PC_G0:
7414 case R_ARM_ALU_PC_G1:
7415 case R_ARM_ALU_PC_G2:
7416 case R_ARM_ALU_SB_G0_NC:
7417 case R_ARM_ALU_SB_G1_NC:
7418 case R_ARM_ALU_SB_G0:
7419 case R_ARM_ALU_SB_G1:
7420 case R_ARM_ALU_SB_G2:
7421 {
7422 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7423 bfd_vma pc = input_section->output_section->vma
7424 + input_section->output_offset + rel->r_offset;
7425 /* sb should be the origin of the *segment* containing the symbol.
7426 It is not clear how to obtain this OS-dependent value, so we
7427 make an arbitrary choice of zero. */
7428 bfd_vma sb = 0;
7429 bfd_vma residual;
7430 bfd_vma g_n;
7431 bfd_signed_vma signed_value;
7432 int group = 0;
7433
7434 /* Determine which group of bits to select. */
7435 switch (r_type)
7436 {
7437 case R_ARM_ALU_PC_G0_NC:
7438 case R_ARM_ALU_PC_G0:
7439 case R_ARM_ALU_SB_G0_NC:
7440 case R_ARM_ALU_SB_G0:
7441 group = 0;
7442 break;
7443
7444 case R_ARM_ALU_PC_G1_NC:
7445 case R_ARM_ALU_PC_G1:
7446 case R_ARM_ALU_SB_G1_NC:
7447 case R_ARM_ALU_SB_G1:
7448 group = 1;
7449 break;
7450
7451 case R_ARM_ALU_PC_G2:
7452 case R_ARM_ALU_SB_G2:
7453 group = 2;
7454 break;
7455
7456 default:
906e58ca 7457 abort ();
4962c51a
MS
7458 }
7459
7460 /* If REL, extract the addend from the insn. If RELA, it will
7461 have already been fetched for us. */
7462 if (globals->use_rel)
7463 {
7464 int negative;
7465 bfd_vma constant = insn & 0xff;
7466 bfd_vma rotation = (insn & 0xf00) >> 8;
7467
7468 if (rotation == 0)
7469 signed_addend = constant;
7470 else
7471 {
7472 /* Compensate for the fact that in the instruction, the
7473 rotation is stored in multiples of 2 bits. */
7474 rotation *= 2;
7475
7476 /* Rotate "constant" right by "rotation" bits. */
7477 signed_addend = (constant >> rotation) |
7478 (constant << (8 * sizeof (bfd_vma) - rotation));
7479 }
7480
7481 /* Determine if the instruction is an ADD or a SUB.
7482 (For REL, this determines the sign of the addend.) */
7483 negative = identify_add_or_sub (insn);
7484 if (negative == 0)
7485 {
7486 (*_bfd_error_handler)
7487 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7488 input_bfd, input_section,
7489 (long) rel->r_offset, howto->name);
906e58ca 7490 return bfd_reloc_overflow;
4962c51a
MS
7491 }
7492
7493 signed_addend *= negative;
7494 }
7495
7496 /* Compute the value (X) to go in the place. */
7497 if (r_type == R_ARM_ALU_PC_G0_NC
7498 || r_type == R_ARM_ALU_PC_G1_NC
7499 || r_type == R_ARM_ALU_PC_G0
7500 || r_type == R_ARM_ALU_PC_G1
7501 || r_type == R_ARM_ALU_PC_G2)
7502 /* PC relative. */
7503 signed_value = value - pc + signed_addend;
7504 else
7505 /* Section base relative. */
7506 signed_value = value - sb + signed_addend;
7507
7508 /* If the target symbol is a Thumb function, then set the
7509 Thumb bit in the address. */
7510 if (sym_flags == STT_ARM_TFUNC)
7511 signed_value |= 1;
7512
7513 /* Calculate the value of the relevant G_n, in encoded
7514 constant-with-rotation format. */
7515 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7516 &residual);
7517
7518 /* Check for overflow if required. */
7519 if ((r_type == R_ARM_ALU_PC_G0
7520 || r_type == R_ARM_ALU_PC_G1
7521 || r_type == R_ARM_ALU_PC_G2
7522 || r_type == R_ARM_ALU_SB_G0
7523 || r_type == R_ARM_ALU_SB_G1
7524 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7525 {
7526 (*_bfd_error_handler)
7527 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7528 input_bfd, input_section,
7529 (long) rel->r_offset, abs (signed_value), howto->name);
7530 return bfd_reloc_overflow;
7531 }
7532
7533 /* Mask out the value and the ADD/SUB part of the opcode; take care
7534 not to destroy the S bit. */
7535 insn &= 0xff1ff000;
7536
7537 /* Set the opcode according to whether the value to go in the
7538 place is negative. */
7539 if (signed_value < 0)
7540 insn |= 1 << 22;
7541 else
7542 insn |= 1 << 23;
7543
7544 /* Encode the offset. */
7545 insn |= g_n;
7546
7547 bfd_put_32 (input_bfd, insn, hit_data);
7548 }
7549 return bfd_reloc_ok;
7550
7551 case R_ARM_LDR_PC_G0:
7552 case R_ARM_LDR_PC_G1:
7553 case R_ARM_LDR_PC_G2:
7554 case R_ARM_LDR_SB_G0:
7555 case R_ARM_LDR_SB_G1:
7556 case R_ARM_LDR_SB_G2:
7557 {
7558 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7559 bfd_vma pc = input_section->output_section->vma
7560 + input_section->output_offset + rel->r_offset;
7561 bfd_vma sb = 0; /* See note above. */
7562 bfd_vma residual;
7563 bfd_signed_vma signed_value;
7564 int group = 0;
7565
7566 /* Determine which groups of bits to calculate. */
7567 switch (r_type)
7568 {
7569 case R_ARM_LDR_PC_G0:
7570 case R_ARM_LDR_SB_G0:
7571 group = 0;
7572 break;
7573
7574 case R_ARM_LDR_PC_G1:
7575 case R_ARM_LDR_SB_G1:
7576 group = 1;
7577 break;
7578
7579 case R_ARM_LDR_PC_G2:
7580 case R_ARM_LDR_SB_G2:
7581 group = 2;
7582 break;
7583
7584 default:
906e58ca 7585 abort ();
4962c51a
MS
7586 }
7587
7588 /* If REL, extract the addend from the insn. If RELA, it will
7589 have already been fetched for us. */
7590 if (globals->use_rel)
7591 {
7592 int negative = (insn & (1 << 23)) ? 1 : -1;
7593 signed_addend = negative * (insn & 0xfff);
7594 }
7595
7596 /* Compute the value (X) to go in the place. */
7597 if (r_type == R_ARM_LDR_PC_G0
7598 || r_type == R_ARM_LDR_PC_G1
7599 || r_type == R_ARM_LDR_PC_G2)
7600 /* PC relative. */
7601 signed_value = value - pc + signed_addend;
7602 else
7603 /* Section base relative. */
7604 signed_value = value - sb + signed_addend;
7605
7606 /* Calculate the value of the relevant G_{n-1} to obtain
7607 the residual at that stage. */
7608 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7609
7610 /* Check for overflow. */
7611 if (residual >= 0x1000)
7612 {
7613 (*_bfd_error_handler)
7614 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7615 input_bfd, input_section,
7616 (long) rel->r_offset, abs (signed_value), howto->name);
7617 return bfd_reloc_overflow;
7618 }
7619
7620 /* Mask out the value and U bit. */
7621 insn &= 0xff7ff000;
7622
7623 /* Set the U bit if the value to go in the place is non-negative. */
7624 if (signed_value >= 0)
7625 insn |= 1 << 23;
7626
7627 /* Encode the offset. */
7628 insn |= residual;
7629
7630 bfd_put_32 (input_bfd, insn, hit_data);
7631 }
7632 return bfd_reloc_ok;
7633
7634 case R_ARM_LDRS_PC_G0:
7635 case R_ARM_LDRS_PC_G1:
7636 case R_ARM_LDRS_PC_G2:
7637 case R_ARM_LDRS_SB_G0:
7638 case R_ARM_LDRS_SB_G1:
7639 case R_ARM_LDRS_SB_G2:
7640 {
7641 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7642 bfd_vma pc = input_section->output_section->vma
7643 + input_section->output_offset + rel->r_offset;
7644 bfd_vma sb = 0; /* See note above. */
7645 bfd_vma residual;
7646 bfd_signed_vma signed_value;
7647 int group = 0;
7648
7649 /* Determine which groups of bits to calculate. */
7650 switch (r_type)
7651 {
7652 case R_ARM_LDRS_PC_G0:
7653 case R_ARM_LDRS_SB_G0:
7654 group = 0;
7655 break;
7656
7657 case R_ARM_LDRS_PC_G1:
7658 case R_ARM_LDRS_SB_G1:
7659 group = 1;
7660 break;
7661
7662 case R_ARM_LDRS_PC_G2:
7663 case R_ARM_LDRS_SB_G2:
7664 group = 2;
7665 break;
7666
7667 default:
906e58ca 7668 abort ();
4962c51a
MS
7669 }
7670
7671 /* If REL, extract the addend from the insn. If RELA, it will
7672 have already been fetched for us. */
7673 if (globals->use_rel)
7674 {
7675 int negative = (insn & (1 << 23)) ? 1 : -1;
7676 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7677 }
7678
7679 /* Compute the value (X) to go in the place. */
7680 if (r_type == R_ARM_LDRS_PC_G0
7681 || r_type == R_ARM_LDRS_PC_G1
7682 || r_type == R_ARM_LDRS_PC_G2)
7683 /* PC relative. */
7684 signed_value = value - pc + signed_addend;
7685 else
7686 /* Section base relative. */
7687 signed_value = value - sb + signed_addend;
7688
7689 /* Calculate the value of the relevant G_{n-1} to obtain
7690 the residual at that stage. */
7691 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7692
7693 /* Check for overflow. */
7694 if (residual >= 0x100)
7695 {
7696 (*_bfd_error_handler)
7697 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7698 input_bfd, input_section,
7699 (long) rel->r_offset, abs (signed_value), howto->name);
7700 return bfd_reloc_overflow;
7701 }
7702
7703 /* Mask out the value and U bit. */
7704 insn &= 0xff7ff0f0;
7705
7706 /* Set the U bit if the value to go in the place is non-negative. */
7707 if (signed_value >= 0)
7708 insn |= 1 << 23;
7709
7710 /* Encode the offset. */
7711 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7712
7713 bfd_put_32 (input_bfd, insn, hit_data);
7714 }
7715 return bfd_reloc_ok;
7716
7717 case R_ARM_LDC_PC_G0:
7718 case R_ARM_LDC_PC_G1:
7719 case R_ARM_LDC_PC_G2:
7720 case R_ARM_LDC_SB_G0:
7721 case R_ARM_LDC_SB_G1:
7722 case R_ARM_LDC_SB_G2:
7723 {
7724 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7725 bfd_vma pc = input_section->output_section->vma
7726 + input_section->output_offset + rel->r_offset;
7727 bfd_vma sb = 0; /* See note above. */
7728 bfd_vma residual;
7729 bfd_signed_vma signed_value;
7730 int group = 0;
7731
7732 /* Determine which groups of bits to calculate. */
7733 switch (r_type)
7734 {
7735 case R_ARM_LDC_PC_G0:
7736 case R_ARM_LDC_SB_G0:
7737 group = 0;
7738 break;
7739
7740 case R_ARM_LDC_PC_G1:
7741 case R_ARM_LDC_SB_G1:
7742 group = 1;
7743 break;
7744
7745 case R_ARM_LDC_PC_G2:
7746 case R_ARM_LDC_SB_G2:
7747 group = 2;
7748 break;
7749
7750 default:
906e58ca 7751 abort ();
4962c51a
MS
7752 }
7753
7754 /* If REL, extract the addend from the insn. If RELA, it will
7755 have already been fetched for us. */
7756 if (globals->use_rel)
7757 {
7758 int negative = (insn & (1 << 23)) ? 1 : -1;
7759 signed_addend = negative * ((insn & 0xff) << 2);
7760 }
7761
7762 /* Compute the value (X) to go in the place. */
7763 if (r_type == R_ARM_LDC_PC_G0
7764 || r_type == R_ARM_LDC_PC_G1
7765 || r_type == R_ARM_LDC_PC_G2)
7766 /* PC relative. */
7767 signed_value = value - pc + signed_addend;
7768 else
7769 /* Section base relative. */
7770 signed_value = value - sb + signed_addend;
7771
7772 /* Calculate the value of the relevant G_{n-1} to obtain
7773 the residual at that stage. */
7774 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7775
7776 /* Check for overflow. (The absolute value to go in the place must be
7777 divisible by four and, after having been divided by four, must
7778 fit in eight bits.) */
7779 if ((residual & 0x3) != 0 || residual >= 0x400)
7780 {
7781 (*_bfd_error_handler)
7782 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7783 input_bfd, input_section,
7784 (long) rel->r_offset, abs (signed_value), howto->name);
7785 return bfd_reloc_overflow;
7786 }
7787
7788 /* Mask out the value and U bit. */
7789 insn &= 0xff7fff00;
7790
7791 /* Set the U bit if the value to go in the place is non-negative. */
7792 if (signed_value >= 0)
7793 insn |= 1 << 23;
7794
7795 /* Encode the offset. */
7796 insn |= residual >> 2;
7797
7798 bfd_put_32 (input_bfd, insn, hit_data);
7799 }
7800 return bfd_reloc_ok;
7801
252b5132
RH
7802 default:
7803 return bfd_reloc_notsupported;
7804 }
7805}
7806
98c1d4aa
NC
7807/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7808static void
57e8b36a
NC
7809arm_add_to_rel (bfd * abfd,
7810 bfd_byte * address,
7811 reloc_howto_type * howto,
7812 bfd_signed_vma increment)
98c1d4aa 7813{
98c1d4aa
NC
7814 bfd_signed_vma addend;
7815
bd97cb95
DJ
7816 if (howto->type == R_ARM_THM_CALL
7817 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 7818 {
9a5aca8c
AM
7819 int upper_insn, lower_insn;
7820 int upper, lower;
98c1d4aa 7821
9a5aca8c
AM
7822 upper_insn = bfd_get_16 (abfd, address);
7823 lower_insn = bfd_get_16 (abfd, address + 2);
7824 upper = upper_insn & 0x7ff;
7825 lower = lower_insn & 0x7ff;
7826
7827 addend = (upper << 12) | (lower << 1);
ddda4409 7828 addend += increment;
9a5aca8c 7829 addend >>= 1;
98c1d4aa 7830
9a5aca8c
AM
7831 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7832 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7833
dc810e39
AM
7834 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7835 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
7836 }
7837 else
7838 {
7839 bfd_vma contents;
7840
7841 contents = bfd_get_32 (abfd, address);
7842
7843 /* Get the (signed) value from the instruction. */
7844 addend = contents & howto->src_mask;
7845 if (addend & ((howto->src_mask + 1) >> 1))
7846 {
7847 bfd_signed_vma mask;
7848
7849 mask = -1;
7850 mask &= ~ howto->src_mask;
7851 addend |= mask;
7852 }
7853
7854 /* Add in the increment, (which is a byte value). */
7855 switch (howto->type)
7856 {
7857 default:
7858 addend += increment;
7859 break;
7860
7861 case R_ARM_PC24:
c6596c5e 7862 case R_ARM_PLT32:
5b5bb741
PB
7863 case R_ARM_CALL:
7864 case R_ARM_JUMP24:
9a5aca8c 7865 addend <<= howto->size;
dc810e39 7866 addend += increment;
9a5aca8c
AM
7867
7868 /* Should we check for overflow here ? */
7869
7870 /* Drop any undesired bits. */
7871 addend >>= howto->rightshift;
7872 break;
7873 }
7874
7875 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7876
7877 bfd_put_32 (abfd, contents, address);
ddda4409 7878 }
98c1d4aa 7879}
252b5132 7880
ba93b8ac
DJ
7881#define IS_ARM_TLS_RELOC(R_TYPE) \
7882 ((R_TYPE) == R_ARM_TLS_GD32 \
7883 || (R_TYPE) == R_ARM_TLS_LDO32 \
7884 || (R_TYPE) == R_ARM_TLS_LDM32 \
7885 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7886 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7887 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7888 || (R_TYPE) == R_ARM_TLS_LE32 \
7889 || (R_TYPE) == R_ARM_TLS_IE32)
7890
252b5132 7891/* Relocate an ARM ELF section. */
906e58ca 7892
b34976b6 7893static bfd_boolean
57e8b36a
NC
7894elf32_arm_relocate_section (bfd * output_bfd,
7895 struct bfd_link_info * info,
7896 bfd * input_bfd,
7897 asection * input_section,
7898 bfd_byte * contents,
7899 Elf_Internal_Rela * relocs,
7900 Elf_Internal_Sym * local_syms,
7901 asection ** local_sections)
252b5132 7902{
b34976b6
AM
7903 Elf_Internal_Shdr *symtab_hdr;
7904 struct elf_link_hash_entry **sym_hashes;
7905 Elf_Internal_Rela *rel;
7906 Elf_Internal_Rela *relend;
7907 const char *name;
b32d3aa2 7908 struct elf32_arm_link_hash_table * globals;
252b5132 7909
4e7fd91e 7910 globals = elf32_arm_hash_table (info);
b491616a 7911
0ffa91dd 7912 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
7913 sym_hashes = elf_sym_hashes (input_bfd);
7914
7915 rel = relocs;
7916 relend = relocs + input_section->reloc_count;
7917 for (; rel < relend; rel++)
7918 {
ba96a88f
NC
7919 int r_type;
7920 reloc_howto_type * howto;
7921 unsigned long r_symndx;
7922 Elf_Internal_Sym * sym;
7923 asection * sec;
252b5132 7924 struct elf_link_hash_entry * h;
ba96a88f
NC
7925 bfd_vma relocation;
7926 bfd_reloc_status_type r;
7927 arelent bfd_reloc;
ba93b8ac 7928 char sym_type;
0945cdfd 7929 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 7930 char *error_message = NULL;
f21f3fe0 7931
252b5132 7932 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 7933 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 7934 r_type = arm_real_reloc_type (globals, r_type);
252b5132 7935
ba96a88f
NC
7936 if ( r_type == R_ARM_GNU_VTENTRY
7937 || r_type == R_ARM_GNU_VTINHERIT)
252b5132
RH
7938 continue;
7939
b32d3aa2 7940 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 7941 howto = bfd_reloc.howto;
252b5132 7942
252b5132
RH
7943 h = NULL;
7944 sym = NULL;
7945 sec = NULL;
9b485d32 7946
252b5132
RH
7947 if (r_symndx < symtab_hdr->sh_info)
7948 {
7949 sym = local_syms + r_symndx;
ba93b8ac 7950 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 7951 sec = local_sections[r_symndx];
4e7fd91e 7952 if (globals->use_rel)
f8df10f4 7953 {
4e7fd91e
PB
7954 relocation = (sec->output_section->vma
7955 + sec->output_offset
7956 + sym->st_value);
ab96bf03
AM
7957 if (!info->relocatable
7958 && (sec->flags & SEC_MERGE)
7959 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 7960 {
4e7fd91e
PB
7961 asection *msec;
7962 bfd_vma addend, value;
7963
39623e12 7964 switch (r_type)
4e7fd91e 7965 {
39623e12
PB
7966 case R_ARM_MOVW_ABS_NC:
7967 case R_ARM_MOVT_ABS:
7968 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7969 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7970 addend = (addend ^ 0x8000) - 0x8000;
7971 break;
f8df10f4 7972
39623e12
PB
7973 case R_ARM_THM_MOVW_ABS_NC:
7974 case R_ARM_THM_MOVT_ABS:
7975 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7976 << 16;
7977 value |= bfd_get_16 (input_bfd,
7978 contents + rel->r_offset + 2);
7979 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7980 | ((value & 0x04000000) >> 15);
7981 addend = (addend ^ 0x8000) - 0x8000;
7982 break;
f8df10f4 7983
39623e12
PB
7984 default:
7985 if (howto->rightshift
7986 || (howto->src_mask & (howto->src_mask + 1)))
7987 {
7988 (*_bfd_error_handler)
7989 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7990 input_bfd, input_section,
7991 (long) rel->r_offset, howto->name);
7992 return FALSE;
7993 }
7994
7995 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7996
7997 /* Get the (signed) value from the instruction. */
7998 addend = value & howto->src_mask;
7999 if (addend & ((howto->src_mask + 1) >> 1))
8000 {
8001 bfd_signed_vma mask;
8002
8003 mask = -1;
8004 mask &= ~ howto->src_mask;
8005 addend |= mask;
8006 }
8007 break;
4e7fd91e 8008 }
39623e12 8009
4e7fd91e
PB
8010 msec = sec;
8011 addend =
8012 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8013 - relocation;
8014 addend += msec->output_section->vma + msec->output_offset;
39623e12
PB
8015
8016 /* Cases here must match those in the preceeding
8017 switch statement. */
8018 switch (r_type)
8019 {
8020 case R_ARM_MOVW_ABS_NC:
8021 case R_ARM_MOVT_ABS:
8022 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8023 | (addend & 0xfff);
8024 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8025 break;
8026
8027 case R_ARM_THM_MOVW_ABS_NC:
8028 case R_ARM_THM_MOVT_ABS:
8029 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8030 | (addend & 0xff) | ((addend & 0x0800) << 15);
8031 bfd_put_16 (input_bfd, value >> 16,
8032 contents + rel->r_offset);
8033 bfd_put_16 (input_bfd, value,
8034 contents + rel->r_offset + 2);
8035 break;
8036
8037 default:
8038 value = (value & ~ howto->dst_mask)
8039 | (addend & howto->dst_mask);
8040 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8041 break;
8042 }
f8df10f4 8043 }
f8df10f4 8044 }
4e7fd91e
PB
8045 else
8046 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
8047 }
8048 else
8049 {
560e09e9 8050 bfd_boolean warned;
560e09e9 8051
b2a8e766
AM
8052 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8053 r_symndx, symtab_hdr, sym_hashes,
8054 h, sec, relocation,
8055 unresolved_reloc, warned);
ba93b8ac
DJ
8056
8057 sym_type = h->type;
252b5132
RH
8058 }
8059
ab96bf03
AM
8060 if (sec != NULL && elf_discarded_section (sec))
8061 {
8062 /* For relocs against symbols from removed linkonce sections,
8063 or sections discarded by a linker script, we just want the
8064 section contents zeroed. Avoid any special processing. */
8065 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8066 rel->r_info = 0;
8067 rel->r_addend = 0;
8068 continue;
8069 }
8070
8071 if (info->relocatable)
8072 {
8073 /* This is a relocatable link. We don't have to change
8074 anything, unless the reloc is against a section symbol,
8075 in which case we have to adjust according to where the
8076 section symbol winds up in the output section. */
8077 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8078 {
8079 if (globals->use_rel)
8080 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8081 howto, (bfd_signed_vma) sec->output_offset);
8082 else
8083 rel->r_addend += sec->output_offset;
8084 }
8085 continue;
8086 }
8087
252b5132
RH
8088 if (h != NULL)
8089 name = h->root.root.string;
8090 else
8091 {
8092 name = (bfd_elf_string_from_elf_section
8093 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8094 if (name == NULL || *name == '\0')
8095 name = bfd_section_name (input_bfd, sec);
8096 }
f21f3fe0 8097
ba93b8ac
DJ
8098 if (r_symndx != 0
8099 && r_type != R_ARM_NONE
8100 && (h == NULL
8101 || h->root.type == bfd_link_hash_defined
8102 || h->root.type == bfd_link_hash_defweak)
8103 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8104 {
8105 (*_bfd_error_handler)
8106 ((sym_type == STT_TLS
8107 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8108 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8109 input_bfd,
8110 input_section,
8111 (long) rel->r_offset,
8112 howto->name,
8113 name);
8114 }
8115
252b5132
RH
8116 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8117 input_section, contents, rel,
8118 relocation, info, sec, name,
8119 (h ? ELF_ST_TYPE (h->type) :
0945cdfd 8120 ELF_ST_TYPE (sym->st_info)), h,
f2a9dd69 8121 &unresolved_reloc, &error_message);
0945cdfd
DJ
8122
8123 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8124 because such sections are not SEC_ALLOC and thus ld.so will
8125 not process them. */
8126 if (unresolved_reloc
8127 && !((input_section->flags & SEC_DEBUGGING) != 0
8128 && h->def_dynamic))
8129 {
8130 (*_bfd_error_handler)
843fe662
L
8131 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8132 input_bfd,
8133 input_section,
8134 (long) rel->r_offset,
8135 howto->name,
8136 h->root.root.string);
0945cdfd
DJ
8137 return FALSE;
8138 }
252b5132
RH
8139
8140 if (r != bfd_reloc_ok)
8141 {
252b5132
RH
8142 switch (r)
8143 {
8144 case bfd_reloc_overflow:
cf919dfd
PB
8145 /* If the overflowing reloc was to an undefined symbol,
8146 we have already printed one error message and there
8147 is no point complaining again. */
8148 if ((! h ||
8149 h->root.type != bfd_link_hash_undefined)
8150 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
8151 (info, (h ? &h->root : NULL), name, howto->name,
8152 (bfd_vma) 0, input_bfd, input_section,
8153 rel->r_offset))))
b34976b6 8154 return FALSE;
252b5132
RH
8155 break;
8156
8157 case bfd_reloc_undefined:
8158 if (!((*info->callbacks->undefined_symbol)
8159 (info, name, input_bfd, input_section,
b34976b6
AM
8160 rel->r_offset, TRUE)))
8161 return FALSE;
252b5132
RH
8162 break;
8163
8164 case bfd_reloc_outofrange:
f2a9dd69 8165 error_message = _("out of range");
252b5132
RH
8166 goto common_error;
8167
8168 case bfd_reloc_notsupported:
f2a9dd69 8169 error_message = _("unsupported relocation");
252b5132
RH
8170 goto common_error;
8171
8172 case bfd_reloc_dangerous:
f2a9dd69 8173 /* error_message should already be set. */
252b5132
RH
8174 goto common_error;
8175
8176 default:
f2a9dd69 8177 error_message = _("unknown error");
8029a119 8178 /* Fall through. */
252b5132
RH
8179
8180 common_error:
f2a9dd69
DJ
8181 BFD_ASSERT (error_message != NULL);
8182 if (!((*info->callbacks->reloc_dangerous)
8183 (info, error_message, input_bfd, input_section,
252b5132 8184 rel->r_offset)))
b34976b6 8185 return FALSE;
252b5132
RH
8186 break;
8187 }
8188 }
8189 }
8190
b34976b6 8191 return TRUE;
252b5132
RH
8192}
8193
c178919b
NC
8194/* Set the right machine number. */
8195
8196static bfd_boolean
57e8b36a 8197elf32_arm_object_p (bfd *abfd)
c178919b 8198{
5a6c6817 8199 unsigned int mach;
57e8b36a 8200
5a6c6817 8201 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 8202
5a6c6817
NC
8203 if (mach != bfd_mach_arm_unknown)
8204 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8205
8206 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8207 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
e16bb312 8208
e16bb312 8209 else
5a6c6817 8210 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
8211
8212 return TRUE;
8213}
8214
fc830a83 8215/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 8216
b34976b6 8217static bfd_boolean
57e8b36a 8218elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
8219{
8220 if (elf_flags_init (abfd)
8221 && elf_elfheader (abfd)->e_flags != flags)
8222 {
fc830a83
NC
8223 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8224 {
fd2ec330 8225 if (flags & EF_ARM_INTERWORK)
d003868e
AM
8226 (*_bfd_error_handler)
8227 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8228 abfd);
fc830a83 8229 else
d003868e
AM
8230 _bfd_error_handler
8231 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8232 abfd);
fc830a83 8233 }
252b5132
RH
8234 }
8235 else
8236 {
8237 elf_elfheader (abfd)->e_flags = flags;
b34976b6 8238 elf_flags_init (abfd) = TRUE;
252b5132
RH
8239 }
8240
b34976b6 8241 return TRUE;
252b5132
RH
8242}
8243
fc830a83 8244/* Copy backend specific data from one object module to another. */
9b485d32 8245
b34976b6 8246static bfd_boolean
57e8b36a 8247elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
8248{
8249 flagword in_flags;
8250 flagword out_flags;
8251
0ffa91dd 8252 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 8253 return TRUE;
252b5132 8254
fc830a83 8255 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
8256 out_flags = elf_elfheader (obfd)->e_flags;
8257
fc830a83
NC
8258 if (elf_flags_init (obfd)
8259 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8260 && in_flags != out_flags)
252b5132 8261 {
252b5132 8262 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 8263 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 8264 return FALSE;
252b5132
RH
8265
8266 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 8267 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 8268 return FALSE;
252b5132
RH
8269
8270 /* If the src and dest have different interworking flags
8271 then turn off the interworking bit. */
fd2ec330 8272 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 8273 {
fd2ec330 8274 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
8275 _bfd_error_handler
8276 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8277 obfd, ibfd);
252b5132 8278
fd2ec330 8279 in_flags &= ~EF_ARM_INTERWORK;
252b5132 8280 }
1006ba19
PB
8281
8282 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
8283 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8284 in_flags &= ~EF_ARM_PIC;
252b5132
RH
8285 }
8286
8287 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 8288 elf_flags_init (obfd) = TRUE;
252b5132 8289
94a3258f
PB
8290 /* Also copy the EI_OSABI field. */
8291 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8292 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8293
104d59d1
JM
8294 /* Copy object attributes. */
8295 _bfd_elf_copy_obj_attributes (ibfd, obfd);
ee065d83
PB
8296
8297 return TRUE;
8298}
8299
8300/* Values for Tag_ABI_PCS_R9_use. */
8301enum
8302{
8303 AEABI_R9_V6,
8304 AEABI_R9_SB,
8305 AEABI_R9_TLS,
8306 AEABI_R9_unused
8307};
8308
8309/* Values for Tag_ABI_PCS_RW_data. */
8310enum
8311{
8312 AEABI_PCS_RW_data_absolute,
8313 AEABI_PCS_RW_data_PCrel,
8314 AEABI_PCS_RW_data_SBrel,
8315 AEABI_PCS_RW_data_unused
8316};
8317
8318/* Values for Tag_ABI_enum_size. */
8319enum
8320{
8321 AEABI_enum_unused,
8322 AEABI_enum_short,
8323 AEABI_enum_wide,
8324 AEABI_enum_forced_wide
8325};
8326
104d59d1
JM
8327/* Determine whether an object attribute tag takes an integer, a
8328 string or both. */
906e58ca 8329
104d59d1
JM
8330static int
8331elf32_arm_obj_attrs_arg_type (int tag)
8332{
8333 if (tag == Tag_compatibility)
3483fe2e 8334 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 8335 else if (tag == Tag_nodefaults)
3483fe2e
AS
8336 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
8337 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
8338 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 8339 else if (tag < 32)
3483fe2e 8340 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 8341 else
3483fe2e 8342 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
8343}
8344
5aa6ff7c
AS
8345/* The ABI defines that Tag_conformance should be emitted first, and that
8346 Tag_nodefaults should be second (if either is defined). This sets those
8347 two positions, and bumps up the position of all the remaining tags to
8348 compensate. */
8349static int
8350elf32_arm_obj_attrs_order (int num)
8351{
8352 if (num == 4)
8353 return Tag_conformance;
8354 if (num == 5)
8355 return Tag_nodefaults;
8356 if ((num - 2) < Tag_nodefaults)
8357 return num - 2;
8358 if ((num - 1) < Tag_conformance)
8359 return num - 1;
8360 return num;
8361}
8362
91e22acd
AS
8363/* Read the architecture from the Tag_also_compatible_with attribute, if any.
8364 Returns -1 if no architecture could be read. */
8365
8366static int
8367get_secondary_compatible_arch (bfd *abfd)
8368{
8369 obj_attribute *attr =
8370 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8371
8372 /* Note: the tag and its argument below are uleb128 values, though
8373 currently-defined values fit in one byte for each. */
8374 if (attr->s
8375 && attr->s[0] == Tag_CPU_arch
8376 && (attr->s[1] & 128) != 128
8377 && attr->s[2] == 0)
8378 return attr->s[1];
8379
8380 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8381 return -1;
8382}
8383
8384/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8385 The tag is removed if ARCH is -1. */
8386
8e79c3df 8387static void
91e22acd 8388set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 8389{
91e22acd
AS
8390 obj_attribute *attr =
8391 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 8392
91e22acd
AS
8393 if (arch == -1)
8394 {
8395 attr->s = NULL;
8396 return;
8e79c3df 8397 }
91e22acd
AS
8398
8399 /* Note: the tag and its argument below are uleb128 values, though
8400 currently-defined values fit in one byte for each. */
8401 if (!attr->s)
8402 attr->s = bfd_alloc (abfd, 3);
8403 attr->s[0] = Tag_CPU_arch;
8404 attr->s[1] = arch;
8405 attr->s[2] = '\0';
8e79c3df
CM
8406}
8407
91e22acd
AS
8408/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8409 into account. */
8410
8411static int
8412tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
8413 int newtag, int secondary_compat)
8e79c3df 8414{
91e22acd
AS
8415#define T(X) TAG_CPU_ARCH_##X
8416 int tagl, tagh, result;
8417 const int v6t2[] =
8418 {
8419 T(V6T2), /* PRE_V4. */
8420 T(V6T2), /* V4. */
8421 T(V6T2), /* V4T. */
8422 T(V6T2), /* V5T. */
8423 T(V6T2), /* V5TE. */
8424 T(V6T2), /* V5TEJ. */
8425 T(V6T2), /* V6. */
8426 T(V7), /* V6KZ. */
8427 T(V6T2) /* V6T2. */
8428 };
8429 const int v6k[] =
8430 {
8431 T(V6K), /* PRE_V4. */
8432 T(V6K), /* V4. */
8433 T(V6K), /* V4T. */
8434 T(V6K), /* V5T. */
8435 T(V6K), /* V5TE. */
8436 T(V6K), /* V5TEJ. */
8437 T(V6K), /* V6. */
8438 T(V6KZ), /* V6KZ. */
8439 T(V7), /* V6T2. */
8440 T(V6K) /* V6K. */
8441 };
8442 const int v7[] =
8443 {
8444 T(V7), /* PRE_V4. */
8445 T(V7), /* V4. */
8446 T(V7), /* V4T. */
8447 T(V7), /* V5T. */
8448 T(V7), /* V5TE. */
8449 T(V7), /* V5TEJ. */
8450 T(V7), /* V6. */
8451 T(V7), /* V6KZ. */
8452 T(V7), /* V6T2. */
8453 T(V7), /* V6K. */
8454 T(V7) /* V7. */
8455 };
8456 const int v6_m[] =
8457 {
8458 -1, /* PRE_V4. */
8459 -1, /* V4. */
8460 T(V6K), /* V4T. */
8461 T(V6K), /* V5T. */
8462 T(V6K), /* V5TE. */
8463 T(V6K), /* V5TEJ. */
8464 T(V6K), /* V6. */
8465 T(V6KZ), /* V6KZ. */
8466 T(V7), /* V6T2. */
8467 T(V6K), /* V6K. */
8468 T(V7), /* V7. */
8469 T(V6_M) /* V6_M. */
8470 };
8471 const int v6s_m[] =
8472 {
8473 -1, /* PRE_V4. */
8474 -1, /* V4. */
8475 T(V6K), /* V4T. */
8476 T(V6K), /* V5T. */
8477 T(V6K), /* V5TE. */
8478 T(V6K), /* V5TEJ. */
8479 T(V6K), /* V6. */
8480 T(V6KZ), /* V6KZ. */
8481 T(V7), /* V6T2. */
8482 T(V6K), /* V6K. */
8483 T(V7), /* V7. */
8484 T(V6S_M), /* V6_M. */
8485 T(V6S_M) /* V6S_M. */
8486 };
8487 const int v4t_plus_v6_m[] =
8488 {
8489 -1, /* PRE_V4. */
8490 -1, /* V4. */
8491 T(V4T), /* V4T. */
8492 T(V5T), /* V5T. */
8493 T(V5TE), /* V5TE. */
8494 T(V5TEJ), /* V5TEJ. */
8495 T(V6), /* V6. */
8496 T(V6KZ), /* V6KZ. */
8497 T(V6T2), /* V6T2. */
8498 T(V6K), /* V6K. */
8499 T(V7), /* V7. */
8500 T(V6_M), /* V6_M. */
8501 T(V6S_M), /* V6S_M. */
8502 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
8503 };
8504 const int *comb[] =
8505 {
8506 v6t2,
8507 v6k,
8508 v7,
8509 v6_m,
8510 v6s_m,
8511 /* Pseudo-architecture. */
8512 v4t_plus_v6_m
8513 };
8514
8515 /* Check we've not got a higher architecture than we know about. */
8516
8517 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
8518 {
8519 _bfd_error_handler (_("ERROR: %B: Unknown CPU architecture"), ibfd);
8520 return -1;
8521 }
8522
8523 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8524
8525 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
8526 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
8527 oldtag = T(V4T_PLUS_V6_M);
8528
8529 /* And override the new tag if we have a Tag_also_compatible_with on the
8530 input. */
8531
8532 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
8533 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
8534 newtag = T(V4T_PLUS_V6_M);
8535
8536 tagl = (oldtag < newtag) ? oldtag : newtag;
8537 result = tagh = (oldtag > newtag) ? oldtag : newtag;
8538
8539 /* Architectures before V6KZ add features monotonically. */
8540 if (tagh <= TAG_CPU_ARCH_V6KZ)
8541 return result;
8542
8543 result = comb[tagh - T(V6T2)][tagl];
8544
8545 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8546 as the canonical version. */
8547 if (result == T(V4T_PLUS_V6_M))
8548 {
8549 result = T(V4T);
8550 *secondary_compat_out = T(V6_M);
8551 }
8552 else
8553 *secondary_compat_out = -1;
8554
8555 if (result == -1)
8556 {
8557 _bfd_error_handler (_("ERROR: %B: Conflicting CPU architectures %d/%d"),
8558 ibfd, oldtag, newtag);
8559 return -1;
8560 }
8561
8562 return result;
8563#undef T
8e79c3df
CM
8564}
8565
ee065d83
PB
8566/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8567 are conflicting attributes. */
906e58ca 8568
ee065d83
PB
8569static bfd_boolean
8570elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8571{
104d59d1
JM
8572 obj_attribute *in_attr;
8573 obj_attribute *out_attr;
8574 obj_attribute_list *in_list;
8e79c3df 8575 obj_attribute_list *out_list;
91e22acd 8576 obj_attribute_list **out_listp;
ee065d83
PB
8577 /* Some tags have 0 = don't care, 1 = strong requirement,
8578 2 = weak requirement. */
91e22acd 8579 static const int order_021[3] = {0, 2, 1};
b1cc4aeb
PB
8580 /* For use with Tag_VFP_arch. */
8581 static const int order_01243[5] = {0, 1, 2, 4, 3};
ee065d83 8582 int i;
91e22acd 8583 bfd_boolean result = TRUE;
ee065d83 8584
104d59d1 8585 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
8586 {
8587 /* This is the first object. Copy the attributes. */
104d59d1 8588 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526
PB
8589
8590 /* Use the Tag_null value to indicate the attributes have been
8591 initialized. */
104d59d1 8592 elf_known_obj_attributes_proc (obfd)[0].i = 1;
004ae526 8593
ee065d83
PB
8594 return TRUE;
8595 }
8596
104d59d1
JM
8597 in_attr = elf_known_obj_attributes_proc (ibfd);
8598 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
8599 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8600 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8601 {
8e79c3df 8602 /* Ignore mismatches if the object doesn't use floating point. */
ee065d83
PB
8603 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8604 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8605 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8606 {
8607 _bfd_error_handler
8608 (_("ERROR: %B uses VFP register arguments, %B does not"),
8609 ibfd, obfd);
91e22acd 8610 result = FALSE;
ee065d83
PB
8611 }
8612 }
8613
104d59d1 8614 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
8615 {
8616 /* Merge this attribute with existing attributes. */
8617 switch (i)
8618 {
8619 case Tag_CPU_raw_name:
8620 case Tag_CPU_name:
91e22acd 8621 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
8622 break;
8623
8624 case Tag_ABI_optimization_goals:
8625 case Tag_ABI_FP_optimization_goals:
8626 /* Use the first value seen. */
8627 break;
8628
8629 case Tag_CPU_arch:
91e22acd
AS
8630 {
8631 int secondary_compat = -1, secondary_compat_out = -1;
8632 unsigned int saved_out_attr = out_attr[i].i;
8633 static const char *name_table[] = {
8634 /* These aren't real CPU names, but we can't guess
8635 that from the architecture version alone. */
8636 "Pre v4",
8637 "ARM v4",
8638 "ARM v4T",
8639 "ARM v5T",
8640 "ARM v5TE",
8641 "ARM v5TEJ",
8642 "ARM v6",
8643 "ARM v6KZ",
8644 "ARM v6T2",
8645 "ARM v6K",
8646 "ARM v7",
8647 "ARM v6-M",
8648 "ARM v6S-M"
8649 };
8650
8651 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8652 secondary_compat = get_secondary_compatible_arch (ibfd);
8653 secondary_compat_out = get_secondary_compatible_arch (obfd);
8654 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
8655 &secondary_compat_out,
8656 in_attr[i].i,
8657 secondary_compat);
8658 set_secondary_compatible_arch (obfd, secondary_compat_out);
8659
8660 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8661 if (out_attr[i].i == saved_out_attr)
8662 ; /* Leave the names alone. */
8663 else if (out_attr[i].i == in_attr[i].i)
8664 {
8665 /* The output architecture has been changed to match the
8666 input architecture. Use the input names. */
8667 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
8668 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
8669 : NULL;
8670 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
8671 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
8672 : NULL;
8673 }
8674 else
8675 {
8676 out_attr[Tag_CPU_name].s = NULL;
8677 out_attr[Tag_CPU_raw_name].s = NULL;
8678 }
8679
8680 /* If we still don't have a value for Tag_CPU_name,
8681 make one up now. Tag_CPU_raw_name remains blank. */
8682 if (out_attr[Tag_CPU_name].s == NULL
8683 && out_attr[i].i < ARRAY_SIZE (name_table))
8684 out_attr[Tag_CPU_name].s =
8685 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
8686 }
8687 break;
8688
ee065d83
PB
8689 case Tag_ARM_ISA_use:
8690 case Tag_THUMB_ISA_use:
ee065d83 8691 case Tag_WMMX_arch:
91e22acd
AS
8692 case Tag_Advanced_SIMD_arch:
8693 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 8694 case Tag_ABI_FP_rounding:
ee065d83
PB
8695 case Tag_ABI_FP_exceptions:
8696 case Tag_ABI_FP_user_exceptions:
8697 case Tag_ABI_FP_number_model:
91e22acd
AS
8698 case Tag_VFP_HP_extension:
8699 case Tag_CPU_unaligned_access:
8700 case Tag_T2EE_use:
8701 case Tag_Virtualization_use:
8702 case Tag_MPextension_use:
ee065d83
PB
8703 /* Use the largest value specified. */
8704 if (in_attr[i].i > out_attr[i].i)
8705 out_attr[i].i = in_attr[i].i;
8706 break;
8707
91e22acd
AS
8708 case Tag_ABI_align8_preserved:
8709 case Tag_ABI_PCS_RO_data:
8710 /* Use the smallest value specified. */
8711 if (in_attr[i].i < out_attr[i].i)
8712 out_attr[i].i = in_attr[i].i;
8713 break;
8714
8715 case Tag_ABI_align8_needed:
8716 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
8717 && (in_attr[Tag_ABI_align8_preserved].i == 0
8718 || out_attr[Tag_ABI_align8_preserved].i == 0))
ee065d83 8719 {
91e22acd
AS
8720 /* This error message should be enabled once all non-conformant
8721 binaries in the toolchain have had the attributes set
8722 properly.
ee065d83 8723 _bfd_error_handler
91e22acd
AS
8724 (_("ERROR: %B: 8-byte data alignment conflicts with %B"),
8725 obfd, ibfd);
8726 result = FALSE; */
ee065d83 8727 }
91e22acd
AS
8728 /* Fall through. */
8729 case Tag_ABI_FP_denormal:
8730 case Tag_ABI_PCS_GOT_use:
8731 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
8732 value if greater than 2 (for future-proofing). */
8733 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
8734 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
8735 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
8736 out_attr[i].i = in_attr[i].i;
8737 break;
91e22acd
AS
8738
8739
8740 case Tag_CPU_arch_profile:
8741 if (out_attr[i].i != in_attr[i].i)
8742 {
8743 /* 0 will merge with anything.
8744 'A' and 'S' merge to 'A'.
8745 'R' and 'S' merge to 'R'.
8746 'M' and 'A|R|S' is an error. */
8747 if (out_attr[i].i == 0
8748 || (out_attr[i].i == 'S'
8749 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
8750 out_attr[i].i = in_attr[i].i;
8751 else if (in_attr[i].i == 0
8752 || (in_attr[i].i == 'S'
8753 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
8754 ; /* Do nothing. */
8755 else
8756 {
8757 _bfd_error_handler
8758 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8759 ibfd,
8760 in_attr[i].i ? in_attr[i].i : '0',
8761 out_attr[i].i ? out_attr[i].i : '0');
8762 result = FALSE;
8763 }
8764 }
8765 break;
b1cc4aeb 8766 case Tag_VFP_arch:
91e22acd
AS
8767 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
8768 largest value if greater than 4 (for future-proofing). */
8769 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
8770 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
8771 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
b1cc4aeb
PB
8772 out_attr[i].i = in_attr[i].i;
8773 break;
ee065d83
PB
8774 case Tag_PCS_config:
8775 if (out_attr[i].i == 0)
8776 out_attr[i].i = in_attr[i].i;
8777 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8778 {
8779 /* It's sometimes ok to mix different configs, so this is only
8780 a warning. */
8781 _bfd_error_handler
8782 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8783 }
8784 break;
8785 case Tag_ABI_PCS_R9_use:
004ae526
PB
8786 if (in_attr[i].i != out_attr[i].i
8787 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
8788 && in_attr[i].i != AEABI_R9_unused)
8789 {
8790 _bfd_error_handler
8791 (_("ERROR: %B: Conflicting use of R9"), ibfd);
91e22acd 8792 result = FALSE;
ee065d83
PB
8793 }
8794 if (out_attr[i].i == AEABI_R9_unused)
8795 out_attr[i].i = in_attr[i].i;
8796 break;
8797 case Tag_ABI_PCS_RW_data:
8798 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8799 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8800 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8801 {
8802 _bfd_error_handler
8803 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8804 ibfd);
91e22acd 8805 result = FALSE;
ee065d83
PB
8806 }
8807 /* Use the smallest value specified. */
8808 if (in_attr[i].i < out_attr[i].i)
8809 out_attr[i].i = in_attr[i].i;
8810 break;
ee065d83 8811 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
8812 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8813 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
8814 {
8815 _bfd_error_handler
a9dc9481
JM
8816 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8817 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 8818 }
a9dc9481 8819 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
8820 out_attr[i].i = in_attr[i].i;
8821 break;
ee065d83
PB
8822 case Tag_ABI_enum_size:
8823 if (in_attr[i].i != AEABI_enum_unused)
8824 {
8825 if (out_attr[i].i == AEABI_enum_unused
8826 || out_attr[i].i == AEABI_enum_forced_wide)
8827 {
8828 /* The existing object is compatible with anything.
8829 Use whatever requirements the new object has. */
8830 out_attr[i].i = in_attr[i].i;
8831 }
8832 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 8833 && out_attr[i].i != in_attr[i].i
0ffa91dd 8834 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 8835 {
91e22acd 8836 static const char *aeabi_enum_names[] =
bf21ed78 8837 { "", "variable-size", "32-bit", "" };
91e22acd
AS
8838 const char *in_name =
8839 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8840 ? aeabi_enum_names[in_attr[i].i]
8841 : "<unknown>";
8842 const char *out_name =
8843 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8844 ? aeabi_enum_names[out_attr[i].i]
8845 : "<unknown>";
ee065d83 8846 _bfd_error_handler
bf21ed78 8847 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 8848 ibfd, in_name, out_name);
ee065d83
PB
8849 }
8850 }
8851 break;
8852 case Tag_ABI_VFP_args:
8853 /* Aready done. */
8854 break;
8855 case Tag_ABI_WMMX_args:
8856 if (in_attr[i].i != out_attr[i].i)
8857 {
8858 _bfd_error_handler
8859 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8860 ibfd, obfd);
91e22acd 8861 result = FALSE;
ee065d83
PB
8862 }
8863 break;
7b86a9fa
AS
8864 case Tag_compatibility:
8865 /* Merged in target-independent code. */
8866 break;
91e22acd
AS
8867 case Tag_ABI_HardFP_use:
8868 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
8869 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
8870 || (in_attr[i].i == 2 && out_attr[i].i == 1))
8871 out_attr[i].i = 3;
8872 else if (in_attr[i].i > out_attr[i].i)
8873 out_attr[i].i = in_attr[i].i;
8874 break;
8875 case Tag_ABI_FP_16bit_format:
8876 if (in_attr[i].i != 0 && out_attr[i].i != 0)
8877 {
8878 if (in_attr[i].i != out_attr[i].i)
8879 {
8880 _bfd_error_handler
8881 (_("ERROR: fp16 format mismatch between %B and %B"),
8882 ibfd, obfd);
8883 result = FALSE;
8884 }
8885 }
8886 if (in_attr[i].i != 0)
8887 out_attr[i].i = in_attr[i].i;
8888 break;
7b86a9fa 8889
91e22acd 8890 case Tag_nodefaults:
2d0bb761
AS
8891 /* This tag is set if it exists, but the value is unused (and is
8892 typically zero). We don't actually need to do anything here -
8893 the merge happens automatically when the type flags are merged
8894 below. */
91e22acd
AS
8895 break;
8896 case Tag_also_compatible_with:
8897 /* Already done in Tag_CPU_arch. */
8898 break;
8899 case Tag_conformance:
8900 /* Keep the attribute if it matches. Throw it away otherwise.
8901 No attribute means no claim to conform. */
8902 if (!in_attr[i].s || !out_attr[i].s
8903 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
8904 out_attr[i].s = NULL;
8905 break;
3cfad14c 8906
91e22acd 8907 default:
3cfad14c 8908 {
91e22acd
AS
8909 bfd *err_bfd = NULL;
8910
8911 /* The "known_obj_attributes" table does contain some undefined
8912 attributes. Ensure that there are unused. */
8913 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
8914 err_bfd = obfd;
8915 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
8916 err_bfd = ibfd;
8917
8918 if (err_bfd != NULL)
8919 {
8920 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8921 if ((i & 127) < 64)
8922 {
8923 _bfd_error_handler
8924 (_("%B: Unknown mandatory EABI object attribute %d"),
8925 err_bfd, i);
8926 bfd_set_error (bfd_error_bad_value);
8927 result = FALSE;
8928 }
8929 else
8930 {
8931 _bfd_error_handler
8932 (_("Warning: %B: Unknown EABI object attribute %d"),
8933 err_bfd, i);
8934 }
8935 }
8936
8937 /* Only pass on attributes that match in both inputs. */
8938 if (in_attr[i].i != out_attr[i].i
8939 || in_attr[i].s != out_attr[i].s
8940 || (in_attr[i].s != NULL && out_attr[i].s != NULL
8941 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
8942 {
8943 out_attr[i].i = 0;
8944 out_attr[i].s = NULL;
8945 }
3cfad14c 8946 }
91e22acd
AS
8947 }
8948
8949 /* If out_attr was copied from in_attr then it won't have a type yet. */
8950 if (in_attr[i].type && !out_attr[i].type)
8951 out_attr[i].type = in_attr[i].type;
ee065d83
PB
8952 }
8953
104d59d1
JM
8954 /* Merge Tag_compatibility attributes and any common GNU ones. */
8955 _bfd_elf_merge_object_attributes (ibfd, obfd);
ee065d83 8956
104d59d1
JM
8957 /* Check for any attributes not known on ARM. */
8958 in_list = elf_other_obj_attributes_proc (ibfd);
91e22acd
AS
8959 out_listp = &elf_other_obj_attributes_proc (obfd);
8960 out_list = *out_listp;
8e79c3df 8961
91e22acd 8962 for (; in_list || out_list; )
ee065d83 8963 {
91e22acd
AS
8964 bfd *err_bfd = NULL;
8965 int err_tag = 0;
8e79c3df
CM
8966
8967 /* The tags for each list are in numerical order. */
8968 /* If the tags are equal, then merge. */
91e22acd 8969 if (out_list && (!in_list || in_list->tag > out_list->tag))
8e79c3df 8970 {
91e22acd
AS
8971 /* This attribute only exists in obfd. We can't merge, and we don't
8972 know what the tag means, so delete it. */
8973 err_bfd = obfd;
8974 err_tag = out_list->tag;
8975 *out_listp = out_list->next;
8976 out_list = *out_listp;
8e79c3df 8977 }
91e22acd 8978 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8e79c3df 8979 {
91e22acd
AS
8980 /* This attribute only exists in ibfd. We can't merge, and we don't
8981 know what the tag means, so ignore it. */
8982 err_bfd = ibfd;
8983 err_tag = in_list->tag;
8e79c3df 8984 in_list = in_list->next;
eb111b1f 8985 }
91e22acd
AS
8986 else /* The tags are equal. */
8987 {
8988 /* As present, all attributes in the list are unknown, and
8989 therefore can't be merged meaningfully. */
8990 err_bfd = obfd;
8991 err_tag = out_list->tag;
8992
8993 /* Only pass on attributes that match in both inputs. */
8994 if (in_list->attr.i != out_list->attr.i
8995 || in_list->attr.s != out_list->attr.s
8996 || (in_list->attr.s && out_list->attr.s
8997 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
8998 {
8999 /* No match. Delete the attribute. */
9000 *out_listp = out_list->next;
9001 out_list = *out_listp;
9002 }
9003 else
9004 {
9005 /* Matched. Keep the attribute and move to the next. */
9006 out_list = out_list->next;
9007 in_list = in_list->next;
9008 }
9009 }
9010
9011 if (err_bfd)
9012 {
9013 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9014 if ((err_tag & 127) < 64)
9015 {
9016 _bfd_error_handler
9017 (_("%B: Unknown mandatory EABI object attribute %d"),
9018 err_bfd, err_tag);
9019 bfd_set_error (bfd_error_bad_value);
9020 result = FALSE;
9021 }
9022 else
9023 {
9024 _bfd_error_handler
9025 (_("Warning: %B: Unknown EABI object attribute %d"),
9026 err_bfd, err_tag);
9027 }
9028 }
ee065d83 9029 }
91e22acd 9030 return result;
252b5132
RH
9031}
9032
3a4a14e9
PB
9033
9034/* Return TRUE if the two EABI versions are incompatible. */
9035
9036static bfd_boolean
9037elf32_arm_versions_compatible (unsigned iver, unsigned over)
9038{
9039 /* v4 and v5 are the same spec before and after it was released,
9040 so allow mixing them. */
9041 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
9042 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
9043 return TRUE;
9044
9045 return (iver == over);
9046}
9047
252b5132
RH
9048/* Merge backend specific data from an object file to the output
9049 object file when linking. */
9b485d32 9050
b34976b6 9051static bfd_boolean
57e8b36a 9052elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
252b5132
RH
9053{
9054 flagword out_flags;
9055 flagword in_flags;
b34976b6 9056 bfd_boolean flags_compatible = TRUE;
cf919dfd 9057 asection *sec;
252b5132 9058
9b485d32 9059 /* Check if we have the same endianess. */
82e51918 9060 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
b34976b6 9061 return FALSE;
1fe494a5 9062
0ffa91dd 9063 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 9064 return TRUE;
252b5132 9065
ee065d83
PB
9066 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
9067 return FALSE;
9068
252b5132
RH
9069 /* The input BFD must have had its flags initialised. */
9070 /* The following seems bogus to me -- The flags are initialized in
9071 the assembler but I don't think an elf_flags_init field is
9b485d32 9072 written into the object. */
252b5132
RH
9073 /* BFD_ASSERT (elf_flags_init (ibfd)); */
9074
9075 in_flags = elf_elfheader (ibfd)->e_flags;
9076 out_flags = elf_elfheader (obfd)->e_flags;
9077
23684067
PB
9078 /* In theory there is no reason why we couldn't handle this. However
9079 in practice it isn't even close to working and there is no real
9080 reason to want it. */
9081 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
c13bb2ea 9082 && !(ibfd->flags & DYNAMIC)
23684067
PB
9083 && (in_flags & EF_ARM_BE8))
9084 {
8029a119 9085 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
23684067
PB
9086 ibfd);
9087 return FALSE;
9088 }
9089
252b5132
RH
9090 if (!elf_flags_init (obfd))
9091 {
fe077fa6
NC
9092 /* If the input is the default architecture and had the default
9093 flags then do not bother setting the flags for the output
9094 architecture, instead allow future merges to do this. If no
9095 future merges ever set these flags then they will retain their
9096 uninitialised values, which surprise surprise, correspond
252b5132 9097 to the default values. */
fe077fa6
NC
9098 if (bfd_get_arch_info (ibfd)->the_default
9099 && elf_elfheader (ibfd)->e_flags == 0)
b34976b6 9100 return TRUE;
252b5132 9101
b34976b6 9102 elf_flags_init (obfd) = TRUE;
252b5132
RH
9103 elf_elfheader (obfd)->e_flags = in_flags;
9104
9105 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9106 && bfd_get_arch_info (obfd)->the_default)
9107 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
9108
b34976b6 9109 return TRUE;
252b5132
RH
9110 }
9111
5a6c6817
NC
9112 /* Determine what should happen if the input ARM architecture
9113 does not match the output ARM architecture. */
9114 if (! bfd_arm_merge_machines (ibfd, obfd))
9115 return FALSE;
e16bb312 9116
1006ba19 9117 /* Identical flags must be compatible. */
252b5132 9118 if (in_flags == out_flags)
b34976b6 9119 return TRUE;
252b5132 9120
35a0f415
DJ
9121 /* Check to see if the input BFD actually contains any sections. If
9122 not, its flags may not have been initialised either, but it
8e3de13a 9123 cannot actually cause any incompatiblity. Do not short-circuit
35a0f415 9124 dynamic objects; their section list may be emptied by
d1f161ea 9125 elf_link_add_object_symbols.
35a0f415 9126
d1f161ea
NC
9127 Also check to see if there are no code sections in the input.
9128 In this case there is no need to check for code specific flags.
9129 XXX - do we need to worry about floating-point format compatability
9130 in data sections ? */
35a0f415 9131 if (!(ibfd->flags & DYNAMIC))
cf919dfd 9132 {
35a0f415 9133 bfd_boolean null_input_bfd = TRUE;
d1f161ea 9134 bfd_boolean only_data_sections = TRUE;
35a0f415
DJ
9135
9136 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
cf919dfd 9137 {
35a0f415
DJ
9138 /* Ignore synthetic glue sections. */
9139 if (strcmp (sec->name, ".glue_7")
9140 && strcmp (sec->name, ".glue_7t"))
9141 {
d1f161ea
NC
9142 if ((bfd_get_section_flags (ibfd, sec)
9143 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9144 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9145 only_data_sections = FALSE;
9146
35a0f415
DJ
9147 null_input_bfd = FALSE;
9148 break;
9149 }
cf919dfd 9150 }
d1f161ea
NC
9151
9152 if (null_input_bfd || only_data_sections)
35a0f415 9153 return TRUE;
cf919dfd 9154 }
cf919dfd 9155
252b5132 9156 /* Complain about various flag mismatches. */
3a4a14e9
PB
9157 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
9158 EF_ARM_EABI_VERSION (out_flags)))
fc830a83 9159 {
d003868e 9160 _bfd_error_handler
3656d5e3 9161 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
d003868e
AM
9162 ibfd, obfd,
9163 (in_flags & EF_ARM_EABIMASK) >> 24,
9164 (out_flags & EF_ARM_EABIMASK) >> 24);
b34976b6 9165 return FALSE;
fc830a83 9166 }
252b5132 9167
1006ba19 9168 /* Not sure what needs to be checked for EABI versions >= 1. */
00a97672
RS
9169 /* VxWorks libraries do not use these flags. */
9170 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
9171 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
9172 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
1006ba19 9173 {
fd2ec330 9174 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
1006ba19 9175 {
d003868e
AM
9176 _bfd_error_handler
9177 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
9178 ibfd, obfd,
9179 in_flags & EF_ARM_APCS_26 ? 26 : 32,
9180 out_flags & EF_ARM_APCS_26 ? 26 : 32);
b34976b6 9181 flags_compatible = FALSE;
1006ba19 9182 }
252b5132 9183
fd2ec330 9184 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
1006ba19 9185 {
5eefb65f 9186 if (in_flags & EF_ARM_APCS_FLOAT)
d003868e
AM
9187 _bfd_error_handler
9188 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
9189 ibfd, obfd);
5eefb65f 9190 else
d003868e
AM
9191 _bfd_error_handler
9192 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
9193 ibfd, obfd);
63b0f745 9194
b34976b6 9195 flags_compatible = FALSE;
1006ba19 9196 }
252b5132 9197
96a846ea 9198 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
1006ba19 9199 {
96a846ea 9200 if (in_flags & EF_ARM_VFP_FLOAT)
d003868e
AM
9201 _bfd_error_handler
9202 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
9203 ibfd, obfd);
5eefb65f 9204 else
d003868e
AM
9205 _bfd_error_handler
9206 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
9207 ibfd, obfd);
fde78edd
NC
9208
9209 flags_compatible = FALSE;
9210 }
9211
9212 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
9213 {
9214 if (in_flags & EF_ARM_MAVERICK_FLOAT)
d003868e
AM
9215 _bfd_error_handler
9216 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
9217 ibfd, obfd);
fde78edd 9218 else
d003868e
AM
9219 _bfd_error_handler
9220 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
9221 ibfd, obfd);
63b0f745 9222
b34976b6 9223 flags_compatible = FALSE;
1006ba19 9224 }
96a846ea
RE
9225
9226#ifdef EF_ARM_SOFT_FLOAT
9227 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
9228 {
9229 /* We can allow interworking between code that is VFP format
9230 layout, and uses either soft float or integer regs for
9231 passing floating point arguments and results. We already
9232 know that the APCS_FLOAT flags match; similarly for VFP
9233 flags. */
9234 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
9235 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
9236 {
9237 if (in_flags & EF_ARM_SOFT_FLOAT)
d003868e
AM
9238 _bfd_error_handler
9239 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
9240 ibfd, obfd);
96a846ea 9241 else
d003868e
AM
9242 _bfd_error_handler
9243 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
9244 ibfd, obfd);
96a846ea 9245
b34976b6 9246 flags_compatible = FALSE;
96a846ea
RE
9247 }
9248 }
ee43f35e 9249#endif
252b5132 9250
1006ba19 9251 /* Interworking mismatch is only a warning. */
fd2ec330 9252 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8f615d07 9253 {
e3c8793a
NC
9254 if (in_flags & EF_ARM_INTERWORK)
9255 {
d003868e
AM
9256 _bfd_error_handler
9257 (_("Warning: %B supports interworking, whereas %B does not"),
9258 ibfd, obfd);
e3c8793a
NC
9259 }
9260 else
9261 {
d003868e
AM
9262 _bfd_error_handler
9263 (_("Warning: %B does not support interworking, whereas %B does"),
9264 ibfd, obfd);
e3c8793a 9265 }
8f615d07 9266 }
252b5132 9267 }
63b0f745 9268
1006ba19 9269 return flags_compatible;
252b5132
RH
9270}
9271
9b485d32
NC
9272/* Display the flags field. */
9273
b34976b6 9274static bfd_boolean
57e8b36a 9275elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 9276{
fc830a83
NC
9277 FILE * file = (FILE *) ptr;
9278 unsigned long flags;
252b5132
RH
9279
9280 BFD_ASSERT (abfd != NULL && ptr != NULL);
9281
9282 /* Print normal ELF private data. */
9283 _bfd_elf_print_private_bfd_data (abfd, ptr);
9284
fc830a83 9285 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
9286 /* Ignore init flag - it may not be set, despite the flags field
9287 containing valid data. */
252b5132
RH
9288
9289 /* xgettext:c-format */
9b485d32 9290 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 9291
fc830a83
NC
9292 switch (EF_ARM_EABI_VERSION (flags))
9293 {
9294 case EF_ARM_EABI_UNKNOWN:
4cc11e76 9295 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
9296 official ARM ELF extended ABI. Hence they are only decoded if
9297 the EABI version is not set. */
fd2ec330 9298 if (flags & EF_ARM_INTERWORK)
9b485d32 9299 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 9300
fd2ec330 9301 if (flags & EF_ARM_APCS_26)
6c571f00 9302 fprintf (file, " [APCS-26]");
fc830a83 9303 else
6c571f00 9304 fprintf (file, " [APCS-32]");
9a5aca8c 9305
96a846ea
RE
9306 if (flags & EF_ARM_VFP_FLOAT)
9307 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
9308 else if (flags & EF_ARM_MAVERICK_FLOAT)
9309 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
9310 else
9311 fprintf (file, _(" [FPA float format]"));
9312
fd2ec330 9313 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 9314 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 9315
fd2ec330 9316 if (flags & EF_ARM_PIC)
9b485d32 9317 fprintf (file, _(" [position independent]"));
fc830a83 9318
fd2ec330 9319 if (flags & EF_ARM_NEW_ABI)
9b485d32 9320 fprintf (file, _(" [new ABI]"));
9a5aca8c 9321
fd2ec330 9322 if (flags & EF_ARM_OLD_ABI)
9b485d32 9323 fprintf (file, _(" [old ABI]"));
9a5aca8c 9324
fd2ec330 9325 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 9326 fprintf (file, _(" [software FP]"));
9a5aca8c 9327
96a846ea
RE
9328 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
9329 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
9330 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
9331 | EF_ARM_MAVERICK_FLOAT);
fc830a83 9332 break;
9a5aca8c 9333
fc830a83 9334 case EF_ARM_EABI_VER1:
9b485d32 9335 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 9336
fc830a83 9337 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 9338 fprintf (file, _(" [sorted symbol table]"));
fc830a83 9339 else
9b485d32 9340 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 9341
fc830a83
NC
9342 flags &= ~ EF_ARM_SYMSARESORTED;
9343 break;
9a5aca8c 9344
fd2ec330
PB
9345 case EF_ARM_EABI_VER2:
9346 fprintf (file, _(" [Version2 EABI]"));
9347
9348 if (flags & EF_ARM_SYMSARESORTED)
9349 fprintf (file, _(" [sorted symbol table]"));
9350 else
9351 fprintf (file, _(" [unsorted symbol table]"));
9352
9353 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
9354 fprintf (file, _(" [dynamic symbols use segment index]"));
9355
9356 if (flags & EF_ARM_MAPSYMSFIRST)
9357 fprintf (file, _(" [mapping symbols precede others]"));
9358
99e4ae17 9359 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
9360 | EF_ARM_MAPSYMSFIRST);
9361 break;
9362
d507cf36
PB
9363 case EF_ARM_EABI_VER3:
9364 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
9365 break;
9366
9367 case EF_ARM_EABI_VER4:
9368 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 9369 goto eabi;
d507cf36 9370
3a4a14e9
PB
9371 case EF_ARM_EABI_VER5:
9372 fprintf (file, _(" [Version5 EABI]"));
9373 eabi:
d507cf36
PB
9374 if (flags & EF_ARM_BE8)
9375 fprintf (file, _(" [BE8]"));
9376
9377 if (flags & EF_ARM_LE8)
9378 fprintf (file, _(" [LE8]"));
9379
9380 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
9381 break;
9382
fc830a83 9383 default:
9b485d32 9384 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
9385 break;
9386 }
252b5132 9387
fc830a83 9388 flags &= ~ EF_ARM_EABIMASK;
252b5132 9389
fc830a83 9390 if (flags & EF_ARM_RELEXEC)
9b485d32 9391 fprintf (file, _(" [relocatable executable]"));
252b5132 9392
fc830a83 9393 if (flags & EF_ARM_HASENTRY)
9b485d32 9394 fprintf (file, _(" [has entry point]"));
252b5132 9395
fc830a83
NC
9396 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
9397
9398 if (flags)
9b485d32 9399 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 9400
252b5132
RH
9401 fputc ('\n', file);
9402
b34976b6 9403 return TRUE;
252b5132
RH
9404}
9405
9406static int
57e8b36a 9407elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 9408{
2f0ca46a
NC
9409 switch (ELF_ST_TYPE (elf_sym->st_info))
9410 {
9411 case STT_ARM_TFUNC:
9412 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 9413
2f0ca46a
NC
9414 case STT_ARM_16BIT:
9415 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9416 This allows us to distinguish between data used by Thumb instructions
9417 and non-data (which is probably code) inside Thumb regions of an
9418 executable. */
1a0eb693 9419 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
9420 return ELF_ST_TYPE (elf_sym->st_info);
9421 break;
9a5aca8c 9422
ce855c42
NC
9423 default:
9424 break;
2f0ca46a
NC
9425 }
9426
9427 return type;
252b5132 9428}
f21f3fe0 9429
252b5132 9430static asection *
07adf181
AM
9431elf32_arm_gc_mark_hook (asection *sec,
9432 struct bfd_link_info *info,
9433 Elf_Internal_Rela *rel,
9434 struct elf_link_hash_entry *h,
9435 Elf_Internal_Sym *sym)
252b5132
RH
9436{
9437 if (h != NULL)
07adf181 9438 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
9439 {
9440 case R_ARM_GNU_VTINHERIT:
9441 case R_ARM_GNU_VTENTRY:
07adf181
AM
9442 return NULL;
9443 }
9ad5cbcf 9444
07adf181 9445 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
9446}
9447
780a67af
NC
9448/* Update the got entry reference counts for the section being removed. */
9449
b34976b6 9450static bfd_boolean
ba93b8ac
DJ
9451elf32_arm_gc_sweep_hook (bfd * abfd,
9452 struct bfd_link_info * info,
9453 asection * sec,
9454 const Elf_Internal_Rela * relocs)
252b5132 9455{
5e681ec4
PB
9456 Elf_Internal_Shdr *symtab_hdr;
9457 struct elf_link_hash_entry **sym_hashes;
9458 bfd_signed_vma *local_got_refcounts;
9459 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
9460 struct elf32_arm_link_hash_table * globals;
9461
7dda2462
TG
9462 if (info->relocatable)
9463 return TRUE;
9464
eb043451 9465 globals = elf32_arm_hash_table (info);
5e681ec4
PB
9466
9467 elf_section_data (sec)->local_dynrel = NULL;
9468
0ffa91dd 9469 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
9470 sym_hashes = elf_sym_hashes (abfd);
9471 local_got_refcounts = elf_local_got_refcounts (abfd);
9472
906e58ca 9473 check_use_blx (globals);
bd97cb95 9474
5e681ec4
PB
9475 relend = relocs + sec->reloc_count;
9476 for (rel = relocs; rel < relend; rel++)
eb043451 9477 {
3eb128b2
AM
9478 unsigned long r_symndx;
9479 struct elf_link_hash_entry *h = NULL;
eb043451 9480 int r_type;
5e681ec4 9481
3eb128b2
AM
9482 r_symndx = ELF32_R_SYM (rel->r_info);
9483 if (r_symndx >= symtab_hdr->sh_info)
9484 {
9485 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9486 while (h->root.type == bfd_link_hash_indirect
9487 || h->root.type == bfd_link_hash_warning)
9488 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9489 }
9490
eb043451 9491 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 9492 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
9493 switch (r_type)
9494 {
9495 case R_ARM_GOT32:
eb043451 9496 case R_ARM_GOT_PREL:
ba93b8ac
DJ
9497 case R_ARM_TLS_GD32:
9498 case R_ARM_TLS_IE32:
3eb128b2 9499 if (h != NULL)
eb043451 9500 {
eb043451
PB
9501 if (h->got.refcount > 0)
9502 h->got.refcount -= 1;
9503 }
9504 else if (local_got_refcounts != NULL)
9505 {
9506 if (local_got_refcounts[r_symndx] > 0)
9507 local_got_refcounts[r_symndx] -= 1;
9508 }
9509 break;
9510
ba93b8ac
DJ
9511 case R_ARM_TLS_LDM32:
9512 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
9513 break;
9514
eb043451 9515 case R_ARM_ABS32:
bb224fc3 9516 case R_ARM_ABS32_NOI:
eb043451 9517 case R_ARM_REL32:
bb224fc3 9518 case R_ARM_REL32_NOI:
eb043451
PB
9519 case R_ARM_PC24:
9520 case R_ARM_PLT32:
5b5bb741
PB
9521 case R_ARM_CALL:
9522 case R_ARM_JUMP24:
eb043451 9523 case R_ARM_PREL31:
c19d1205 9524 case R_ARM_THM_CALL:
bd97cb95
DJ
9525 case R_ARM_THM_JUMP24:
9526 case R_ARM_THM_JUMP19:
b6895b4f
PB
9527 case R_ARM_MOVW_ABS_NC:
9528 case R_ARM_MOVT_ABS:
9529 case R_ARM_MOVW_PREL_NC:
9530 case R_ARM_MOVT_PREL:
9531 case R_ARM_THM_MOVW_ABS_NC:
9532 case R_ARM_THM_MOVT_ABS:
9533 case R_ARM_THM_MOVW_PREL_NC:
9534 case R_ARM_THM_MOVT_PREL:
b7693d02
DJ
9535 /* Should the interworking branches be here also? */
9536
3eb128b2 9537 if (h != NULL)
eb043451
PB
9538 {
9539 struct elf32_arm_link_hash_entry *eh;
9540 struct elf32_arm_relocs_copied **pp;
9541 struct elf32_arm_relocs_copied *p;
5e681ec4 9542
b7693d02 9543 eh = (struct elf32_arm_link_hash_entry *) h;
5e681ec4 9544
eb043451 9545 if (h->plt.refcount > 0)
b7693d02
DJ
9546 {
9547 h->plt.refcount -= 1;
bd97cb95
DJ
9548 if (r_type == R_ARM_THM_CALL)
9549 eh->plt_maybe_thumb_refcount--;
9550
9551 if (r_type == R_ARM_THM_JUMP24
9552 || r_type == R_ARM_THM_JUMP19)
b7693d02
DJ
9553 eh->plt_thumb_refcount--;
9554 }
5e681ec4 9555
eb043451 9556 if (r_type == R_ARM_ABS32
bb224fc3
MS
9557 || r_type == R_ARM_REL32
9558 || r_type == R_ARM_ABS32_NOI
9559 || r_type == R_ARM_REL32_NOI)
eb043451 9560 {
eb043451
PB
9561 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9562 pp = &p->next)
9563 if (p->section == sec)
9564 {
9565 p->count -= 1;
bb224fc3
MS
9566 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9567 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
ba93b8ac 9568 p->pc_count -= 1;
eb043451
PB
9569 if (p->count == 0)
9570 *pp = p->next;
9571 break;
9572 }
9573 }
9574 }
9575 break;
5e681ec4 9576
eb043451
PB
9577 default:
9578 break;
9579 }
9580 }
5e681ec4 9581
b34976b6 9582 return TRUE;
252b5132
RH
9583}
9584
780a67af
NC
9585/* Look through the relocs for a section during the first phase. */
9586
b34976b6 9587static bfd_boolean
57e8b36a
NC
9588elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9589 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 9590{
b34976b6
AM
9591 Elf_Internal_Shdr *symtab_hdr;
9592 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
9593 const Elf_Internal_Rela *rel;
9594 const Elf_Internal_Rela *rel_end;
9595 bfd *dynobj;
5e681ec4 9596 asection *sreloc;
b34976b6 9597 bfd_vma *local_got_offsets;
5e681ec4 9598 struct elf32_arm_link_hash_table *htab;
39623e12 9599 bfd_boolean needs_plt;
9a5aca8c 9600
1049f94e 9601 if (info->relocatable)
b34976b6 9602 return TRUE;
9a5aca8c 9603
0ffa91dd
NC
9604 BFD_ASSERT (is_arm_elf (abfd));
9605
5e681ec4
PB
9606 htab = elf32_arm_hash_table (info);
9607 sreloc = NULL;
9a5aca8c 9608
67687978
PB
9609 /* Create dynamic sections for relocatable executables so that we can
9610 copy relocations. */
9611 if (htab->root.is_relocatable_executable
9612 && ! htab->root.dynamic_sections_created)
9613 {
9614 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9615 return FALSE;
9616 }
9617
252b5132
RH
9618 dynobj = elf_hash_table (info)->dynobj;
9619 local_got_offsets = elf_local_got_offsets (abfd);
f21f3fe0 9620
0ffa91dd 9621 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 9622 sym_hashes = elf_sym_hashes (abfd);
9b485d32 9623
252b5132
RH
9624 rel_end = relocs + sec->reloc_count;
9625 for (rel = relocs; rel < rel_end; rel++)
9626 {
9627 struct elf_link_hash_entry *h;
b7693d02 9628 struct elf32_arm_link_hash_entry *eh;
252b5132 9629 unsigned long r_symndx;
eb043451 9630 int r_type;
9a5aca8c 9631
252b5132 9632 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 9633 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 9634 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac
DJ
9635
9636 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9637 {
9638 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9639 r_symndx);
9640 return FALSE;
9641 }
9642
252b5132
RH
9643 if (r_symndx < symtab_hdr->sh_info)
9644 h = NULL;
9645 else
973a3492
L
9646 {
9647 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9648 while (h->root.type == bfd_link_hash_indirect
9649 || h->root.type == bfd_link_hash_warning)
9650 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9651 }
9a5aca8c 9652
b7693d02
DJ
9653 eh = (struct elf32_arm_link_hash_entry *) h;
9654
eb043451 9655 switch (r_type)
252b5132 9656 {
5e681ec4 9657 case R_ARM_GOT32:
eb043451 9658 case R_ARM_GOT_PREL:
ba93b8ac
DJ
9659 case R_ARM_TLS_GD32:
9660 case R_ARM_TLS_IE32:
5e681ec4 9661 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
9662 {
9663 int tls_type, old_tls_type;
5e681ec4 9664
ba93b8ac
DJ
9665 switch (r_type)
9666 {
9667 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9668 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9669 default: tls_type = GOT_NORMAL; break;
9670 }
252b5132 9671
ba93b8ac
DJ
9672 if (h != NULL)
9673 {
9674 h->got.refcount++;
9675 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9676 }
9677 else
9678 {
9679 bfd_signed_vma *local_got_refcounts;
9680
9681 /* This is a global offset table entry for a local symbol. */
9682 local_got_refcounts = elf_local_got_refcounts (abfd);
9683 if (local_got_refcounts == NULL)
9684 {
9685 bfd_size_type size;
906e58ca 9686
ba93b8ac 9687 size = symtab_hdr->sh_info;
906e58ca 9688 size *= (sizeof (bfd_signed_vma) + sizeof (char));
ba93b8ac
DJ
9689 local_got_refcounts = bfd_zalloc (abfd, size);
9690 if (local_got_refcounts == NULL)
9691 return FALSE;
9692 elf_local_got_refcounts (abfd) = local_got_refcounts;
9693 elf32_arm_local_got_tls_type (abfd)
9694 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9695 }
9696 local_got_refcounts[r_symndx] += 1;
9697 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9698 }
9699
9700 /* We will already have issued an error message if there is a
9701 TLS / non-TLS mismatch, based on the symbol type. We don't
9702 support any linker relaxations. So just combine any TLS
9703 types needed. */
9704 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9705 && tls_type != GOT_NORMAL)
9706 tls_type |= old_tls_type;
9707
9708 if (old_tls_type != tls_type)
9709 {
9710 if (h != NULL)
9711 elf32_arm_hash_entry (h)->tls_type = tls_type;
9712 else
9713 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9714 }
9715 }
8029a119 9716 /* Fall through. */
ba93b8ac
DJ
9717
9718 case R_ARM_TLS_LDM32:
9719 if (r_type == R_ARM_TLS_LDM32)
9720 htab->tls_ldm_got.refcount++;
8029a119 9721 /* Fall through. */
252b5132 9722
c19d1205 9723 case R_ARM_GOTOFF32:
5e681ec4
PB
9724 case R_ARM_GOTPC:
9725 if (htab->sgot == NULL)
9726 {
9727 if (htab->root.dynobj == NULL)
9728 htab->root.dynobj = abfd;
9729 if (!create_got_section (htab->root.dynobj, info))
9730 return FALSE;
9731 }
252b5132
RH
9732 break;
9733
00a97672
RS
9734 case R_ARM_ABS12:
9735 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9736 ldr __GOTT_INDEX__ offsets. */
9737 if (!htab->vxworks_p)
9738 break;
8029a119 9739 /* Fall through. */
00a97672 9740
252b5132 9741 case R_ARM_PC24:
7359ea65 9742 case R_ARM_PLT32:
5b5bb741
PB
9743 case R_ARM_CALL:
9744 case R_ARM_JUMP24:
eb043451 9745 case R_ARM_PREL31:
c19d1205 9746 case R_ARM_THM_CALL:
bd97cb95
DJ
9747 case R_ARM_THM_JUMP24:
9748 case R_ARM_THM_JUMP19:
39623e12
PB
9749 needs_plt = 1;
9750 goto normal_reloc;
9751
9752 case R_ARM_ABS32:
9753 case R_ARM_ABS32_NOI:
9754 case R_ARM_REL32:
9755 case R_ARM_REL32_NOI:
b6895b4f
PB
9756 case R_ARM_MOVW_ABS_NC:
9757 case R_ARM_MOVT_ABS:
9758 case R_ARM_MOVW_PREL_NC:
9759 case R_ARM_MOVT_PREL:
9760 case R_ARM_THM_MOVW_ABS_NC:
9761 case R_ARM_THM_MOVT_ABS:
9762 case R_ARM_THM_MOVW_PREL_NC:
9763 case R_ARM_THM_MOVT_PREL:
39623e12
PB
9764 needs_plt = 0;
9765 normal_reloc:
9766
b7693d02 9767 /* Should the interworking branches be listed here? */
7359ea65 9768 if (h != NULL)
5e681ec4
PB
9769 {
9770 /* If this reloc is in a read-only section, we might
9771 need a copy reloc. We can't check reliably at this
9772 stage whether the section is read-only, as input
9773 sections have not yet been mapped to output sections.
9774 Tentatively set the flag for now, and correct in
9775 adjust_dynamic_symbol. */
7359ea65 9776 if (!info->shared)
f5385ebf 9777 h->non_got_ref = 1;
7359ea65 9778
5e681ec4 9779 /* We may need a .plt entry if the function this reloc
c84cd8ee
DJ
9780 refers to is in a different object. We can't tell for
9781 sure yet, because something later might force the
9782 symbol local. */
39623e12 9783 if (needs_plt)
f5385ebf 9784 h->needs_plt = 1;
4f199be3
DJ
9785
9786 /* If we create a PLT entry, this relocation will reference
9787 it, even if it's an ABS32 relocation. */
9788 h->plt.refcount += 1;
b7693d02 9789
bd97cb95
DJ
9790 /* It's too early to use htab->use_blx here, so we have to
9791 record possible blx references separately from
9792 relocs that definitely need a thumb stub. */
9793
c19d1205 9794 if (r_type == R_ARM_THM_CALL)
bd97cb95
DJ
9795 eh->plt_maybe_thumb_refcount += 1;
9796
9797 if (r_type == R_ARM_THM_JUMP24
9798 || r_type == R_ARM_THM_JUMP19)
b7693d02 9799 eh->plt_thumb_refcount += 1;
5e681ec4
PB
9800 }
9801
67687978
PB
9802 /* If we are creating a shared library or relocatable executable,
9803 and this is a reloc against a global symbol, or a non PC
9804 relative reloc against a local symbol, then we need to copy
9805 the reloc into the shared library. However, if we are linking
9806 with -Bsymbolic, we do not need to copy a reloc against a
252b5132
RH
9807 global symbol which is defined in an object we are
9808 including in the link (i.e., DEF_REGULAR is set). At
9809 this point we have not seen all the input files, so it is
9810 possible that DEF_REGULAR is not set now but will be set
9811 later (it is never cleared). We account for that
9812 possibility below by storing information in the
5e681ec4 9813 relocs_copied field of the hash table entry. */
67687978 9814 if ((info->shared || htab->root.is_relocatable_executable)
5e681ec4 9815 && (sec->flags & SEC_ALLOC) != 0
bb224fc3 9816 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
71a976dd
DJ
9817 || (h != NULL && ! h->needs_plt
9818 && (! info->symbolic || ! h->def_regular))))
252b5132 9819 {
5e681ec4
PB
9820 struct elf32_arm_relocs_copied *p, **head;
9821
252b5132
RH
9822 /* When creating a shared object, we must copy these
9823 reloc types into the output file. We create a reloc
9824 section in dynobj and make room for this reloc. */
83bac4b0 9825 if (sreloc == NULL)
252b5132 9826 {
83bac4b0
NC
9827 sreloc = _bfd_elf_make_dynamic_reloc_section
9828 (sec, dynobj, 2, abfd, ! htab->use_rel);
252b5132 9829
83bac4b0 9830 if (sreloc == NULL)
b34976b6 9831 return FALSE;
252b5132 9832
83bac4b0
NC
9833 /* BPABI objects never have dynamic relocations mapped. */
9834 if (! htab->symbian_p)
252b5132 9835 {
83bac4b0 9836 flagword flags;
5e681ec4 9837
83bac4b0 9838 flags = bfd_get_section_flags (dynobj, sreloc);
528aeb62 9839 flags |= (SEC_LOAD | SEC_ALLOC);
83bac4b0
NC
9840 bfd_set_section_flags (dynobj, sreloc, flags);
9841 }
252b5132
RH
9842 }
9843
5e681ec4
PB
9844 /* If this is a global symbol, we count the number of
9845 relocations we need for this symbol. */
9846 if (h != NULL)
252b5132 9847 {
5e681ec4
PB
9848 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9849 }
9850 else
9851 {
9852 /* Track dynamic relocs needed for local syms too.
9853 We really need local syms available to do this
9854 easily. Oh well. */
57e8b36a 9855
5e681ec4 9856 asection *s;
6edfbbad
DJ
9857 void *vpp;
9858
5e681ec4
PB
9859 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9860 sec, r_symndx);
9861 if (s == NULL)
9862 return FALSE;
57e8b36a 9863
6edfbbad
DJ
9864 vpp = &elf_section_data (s)->local_dynrel;
9865 head = (struct elf32_arm_relocs_copied **) vpp;
5e681ec4 9866 }
57e8b36a 9867
5e681ec4
PB
9868 p = *head;
9869 if (p == NULL || p->section != sec)
9870 {
9871 bfd_size_type amt = sizeof *p;
57e8b36a 9872
5e681ec4 9873 p = bfd_alloc (htab->root.dynobj, amt);
252b5132 9874 if (p == NULL)
5e681ec4
PB
9875 return FALSE;
9876 p->next = *head;
9877 *head = p;
9878 p->section = sec;
9879 p->count = 0;
ba93b8ac 9880 p->pc_count = 0;
252b5132 9881 }
57e8b36a 9882
bb224fc3 9883 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
ba93b8ac 9884 p->pc_count += 1;
71a976dd 9885 p->count += 1;
252b5132
RH
9886 }
9887 break;
9888
9889 /* This relocation describes the C++ object vtable hierarchy.
9890 Reconstruct it for later use during GC. */
9891 case R_ARM_GNU_VTINHERIT:
c152c796 9892 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 9893 return FALSE;
252b5132 9894 break;
9a5aca8c 9895
252b5132
RH
9896 /* This relocation describes which C++ vtable entries are actually
9897 used. Record for later use during GC. */
9898 case R_ARM_GNU_VTENTRY:
d17e0c6e
JB
9899 BFD_ASSERT (h != NULL);
9900 if (h != NULL
9901 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 9902 return FALSE;
252b5132
RH
9903 break;
9904 }
9905 }
f21f3fe0 9906
b34976b6 9907 return TRUE;
252b5132
RH
9908}
9909
6a5bb875
PB
9910/* Unwinding tables are not referenced directly. This pass marks them as
9911 required if the corresponding code section is marked. */
9912
9913static bfd_boolean
906e58ca
NC
9914elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9915 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
9916{
9917 bfd *sub;
9918 Elf_Internal_Shdr **elf_shdrp;
9919 bfd_boolean again;
9920
9921 /* Marking EH data may cause additional code sections to be marked,
9922 requiring multiple passes. */
9923 again = TRUE;
9924 while (again)
9925 {
9926 again = FALSE;
9927 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9928 {
9929 asection *o;
9930
0ffa91dd 9931 if (! is_arm_elf (sub))
6a5bb875
PB
9932 continue;
9933
9934 elf_shdrp = elf_elfsections (sub);
9935 for (o = sub->sections; o != NULL; o = o->next)
9936 {
9937 Elf_Internal_Shdr *hdr;
0ffa91dd 9938
6a5bb875 9939 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
9940 if (hdr->sh_type == SHT_ARM_EXIDX
9941 && hdr->sh_link
9942 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
9943 && !o->gc_mark
9944 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9945 {
9946 again = TRUE;
9947 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9948 return FALSE;
9949 }
9950 }
9951 }
9952 }
9953
9954 return TRUE;
9955}
9956
3c9458e9
NC
9957/* Treat mapping symbols as special target symbols. */
9958
9959static bfd_boolean
9960elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9961{
b0796911
PB
9962 return bfd_is_arm_special_symbol_name (sym->name,
9963 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
9964}
9965
0367ecfb
NC
9966/* This is a copy of elf_find_function() from elf.c except that
9967 ARM mapping symbols are ignored when looking for function names
9968 and STT_ARM_TFUNC is considered to a function type. */
252b5132 9969
0367ecfb
NC
9970static bfd_boolean
9971arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9972 asection * section,
9973 asymbol ** symbols,
9974 bfd_vma offset,
9975 const char ** filename_ptr,
9976 const char ** functionname_ptr)
9977{
9978 const char * filename = NULL;
9979 asymbol * func = NULL;
9980 bfd_vma low_func = 0;
9981 asymbol ** p;
252b5132
RH
9982
9983 for (p = symbols; *p != NULL; p++)
9984 {
9985 elf_symbol_type *q;
9986
9987 q = (elf_symbol_type *) *p;
9988
252b5132
RH
9989 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9990 {
9991 default:
9992 break;
9993 case STT_FILE:
9994 filename = bfd_asymbol_name (&q->symbol);
9995 break;
252b5132
RH
9996 case STT_FUNC:
9997 case STT_ARM_TFUNC:
9d2da7ca 9998 case STT_NOTYPE:
b0796911 9999 /* Skip mapping symbols. */
0367ecfb 10000 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
10001 && bfd_is_arm_special_symbol_name (q->symbol.name,
10002 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
10003 continue;
10004 /* Fall through. */
6b40fcba 10005 if (bfd_get_section (&q->symbol) == section
252b5132
RH
10006 && q->symbol.value >= low_func
10007 && q->symbol.value <= offset)
10008 {
10009 func = (asymbol *) q;
10010 low_func = q->symbol.value;
10011 }
10012 break;
10013 }
10014 }
10015
10016 if (func == NULL)
b34976b6 10017 return FALSE;
252b5132 10018
0367ecfb
NC
10019 if (filename_ptr)
10020 *filename_ptr = filename;
10021 if (functionname_ptr)
10022 *functionname_ptr = bfd_asymbol_name (func);
10023
10024 return TRUE;
906e58ca 10025}
0367ecfb
NC
10026
10027
10028/* Find the nearest line to a particular section and offset, for error
10029 reporting. This code is a duplicate of the code in elf.c, except
10030 that it uses arm_elf_find_function. */
10031
10032static bfd_boolean
10033elf32_arm_find_nearest_line (bfd * abfd,
10034 asection * section,
10035 asymbol ** symbols,
10036 bfd_vma offset,
10037 const char ** filename_ptr,
10038 const char ** functionname_ptr,
10039 unsigned int * line_ptr)
10040{
10041 bfd_boolean found = FALSE;
10042
10043 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
10044
10045 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10046 filename_ptr, functionname_ptr,
10047 line_ptr, 0,
10048 & elf_tdata (abfd)->dwarf2_find_line_info))
10049 {
10050 if (!*functionname_ptr)
10051 arm_elf_find_function (abfd, section, symbols, offset,
10052 *filename_ptr ? NULL : filename_ptr,
10053 functionname_ptr);
f21f3fe0 10054
0367ecfb
NC
10055 return TRUE;
10056 }
10057
10058 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
10059 & found, filename_ptr,
10060 functionname_ptr, line_ptr,
10061 & elf_tdata (abfd)->line_info))
10062 return FALSE;
10063
10064 if (found && (*functionname_ptr || *line_ptr))
10065 return TRUE;
10066
10067 if (symbols == NULL)
10068 return FALSE;
10069
10070 if (! arm_elf_find_function (abfd, section, symbols, offset,
10071 filename_ptr, functionname_ptr))
10072 return FALSE;
10073
10074 *line_ptr = 0;
b34976b6 10075 return TRUE;
252b5132
RH
10076}
10077
4ab527b0
FF
10078static bfd_boolean
10079elf32_arm_find_inliner_info (bfd * abfd,
10080 const char ** filename_ptr,
10081 const char ** functionname_ptr,
10082 unsigned int * line_ptr)
10083{
10084 bfd_boolean found;
10085 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10086 functionname_ptr, line_ptr,
10087 & elf_tdata (abfd)->dwarf2_find_line_info);
10088 return found;
10089}
10090
252b5132
RH
10091/* Adjust a symbol defined by a dynamic object and referenced by a
10092 regular object. The current definition is in some section of the
10093 dynamic object, but we're not including those sections. We have to
10094 change the definition to something the rest of the link can
10095 understand. */
10096
b34976b6 10097static bfd_boolean
57e8b36a
NC
10098elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
10099 struct elf_link_hash_entry * h)
252b5132
RH
10100{
10101 bfd * dynobj;
10102 asection * s;
b7693d02 10103 struct elf32_arm_link_hash_entry * eh;
67687978 10104 struct elf32_arm_link_hash_table *globals;
252b5132 10105
67687978 10106 globals = elf32_arm_hash_table (info);
252b5132
RH
10107 dynobj = elf_hash_table (info)->dynobj;
10108
10109 /* Make sure we know what is going on here. */
10110 BFD_ASSERT (dynobj != NULL
f5385ebf 10111 && (h->needs_plt
f6e332e6 10112 || h->u.weakdef != NULL
f5385ebf
AM
10113 || (h->def_dynamic
10114 && h->ref_regular
10115 && !h->def_regular)));
252b5132 10116
b7693d02
DJ
10117 eh = (struct elf32_arm_link_hash_entry *) h;
10118
252b5132
RH
10119 /* If this is a function, put it in the procedure linkage table. We
10120 will fill in the contents of the procedure linkage table later,
10121 when we know the address of the .got section. */
0f88be7a 10122 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
f5385ebf 10123 || h->needs_plt)
252b5132 10124 {
5e681ec4
PB
10125 if (h->plt.refcount <= 0
10126 || SYMBOL_CALLS_LOCAL (info, h)
10127 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
10128 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
10129 {
10130 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
10131 file, but the symbol was never referred to by a dynamic
10132 object, or if all references were garbage collected. In
10133 such a case, we don't actually need to build a procedure
10134 linkage table, and we can just do a PC24 reloc instead. */
10135 h->plt.offset = (bfd_vma) -1;
b7693d02 10136 eh->plt_thumb_refcount = 0;
bd97cb95 10137 eh->plt_maybe_thumb_refcount = 0;
f5385ebf 10138 h->needs_plt = 0;
252b5132
RH
10139 }
10140
b34976b6 10141 return TRUE;
252b5132 10142 }
5e681ec4 10143 else
b7693d02
DJ
10144 {
10145 /* It's possible that we incorrectly decided a .plt reloc was
10146 needed for an R_ARM_PC24 or similar reloc to a non-function sym
10147 in check_relocs. We can't decide accurately between function
10148 and non-function syms in check-relocs; Objects loaded later in
10149 the link may change h->type. So fix it now. */
10150 h->plt.offset = (bfd_vma) -1;
10151 eh->plt_thumb_refcount = 0;
bd97cb95 10152 eh->plt_maybe_thumb_refcount = 0;
b7693d02 10153 }
252b5132
RH
10154
10155 /* If this is a weak symbol, and there is a real definition, the
10156 processor independent code will have arranged for us to see the
10157 real definition first, and we can just use the same value. */
f6e332e6 10158 if (h->u.weakdef != NULL)
252b5132 10159 {
f6e332e6
AM
10160 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
10161 || h->u.weakdef->root.type == bfd_link_hash_defweak);
10162 h->root.u.def.section = h->u.weakdef->root.u.def.section;
10163 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 10164 return TRUE;
252b5132
RH
10165 }
10166
ba93b8ac
DJ
10167 /* If there are no non-GOT references, we do not need a copy
10168 relocation. */
10169 if (!h->non_got_ref)
10170 return TRUE;
10171
252b5132
RH
10172 /* This is a reference to a symbol defined by a dynamic object which
10173 is not a function. */
10174
10175 /* If we are creating a shared library, we must presume that the
10176 only references to the symbol are via the global offset table.
10177 For such cases we need not do anything here; the relocations will
67687978
PB
10178 be handled correctly by relocate_section. Relocatable executables
10179 can reference data in shared objects directly, so we don't need to
10180 do anything here. */
10181 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 10182 return TRUE;
252b5132 10183
909272ee
AM
10184 if (h->size == 0)
10185 {
10186 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
10187 h->root.root.string);
10188 return TRUE;
10189 }
10190
252b5132
RH
10191 /* We must allocate the symbol in our .dynbss section, which will
10192 become part of the .bss section of the executable. There will be
10193 an entry for this symbol in the .dynsym section. The dynamic
10194 object will contain position independent code, so all references
10195 from the dynamic object to this symbol will go through the global
10196 offset table. The dynamic linker will use the .dynsym entry to
10197 determine the address it must put in the global offset table, so
10198 both the dynamic object and the regular object will refer to the
10199 same memory location for the variable. */
252b5132
RH
10200 s = bfd_get_section_by_name (dynobj, ".dynbss");
10201 BFD_ASSERT (s != NULL);
10202
10203 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
10204 copy the initial value out of the dynamic object and into the
10205 runtime process image. We need to remember the offset into the
00a97672 10206 .rel(a).bss section we are going to use. */
252b5132
RH
10207 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
10208 {
10209 asection *srel;
10210
00a97672 10211 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
252b5132 10212 BFD_ASSERT (srel != NULL);
00a97672 10213 srel->size += RELOC_SIZE (globals);
f5385ebf 10214 h->needs_copy = 1;
252b5132
RH
10215 }
10216
027297b7 10217 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
10218}
10219
5e681ec4
PB
10220/* Allocate space in .plt, .got and associated reloc sections for
10221 dynamic relocs. */
10222
10223static bfd_boolean
57e8b36a 10224allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
10225{
10226 struct bfd_link_info *info;
10227 struct elf32_arm_link_hash_table *htab;
10228 struct elf32_arm_link_hash_entry *eh;
10229 struct elf32_arm_relocs_copied *p;
bd97cb95 10230 bfd_signed_vma thumb_refs;
5e681ec4 10231
b7693d02
DJ
10232 eh = (struct elf32_arm_link_hash_entry *) h;
10233
5e681ec4
PB
10234 if (h->root.type == bfd_link_hash_indirect)
10235 return TRUE;
10236
10237 if (h->root.type == bfd_link_hash_warning)
10238 /* When warning symbols are created, they **replace** the "real"
10239 entry in the hash table, thus we never get to see the real
10240 symbol in a hash traversal. So look at it now. */
10241 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10242
10243 info = (struct bfd_link_info *) inf;
10244 htab = elf32_arm_hash_table (info);
10245
10246 if (htab->root.dynamic_sections_created
10247 && h->plt.refcount > 0)
10248 {
10249 /* Make sure this symbol is output as a dynamic symbol.
10250 Undefined weak syms won't yet be marked as dynamic. */
10251 if (h->dynindx == -1
f5385ebf 10252 && !h->forced_local)
5e681ec4 10253 {
c152c796 10254 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
10255 return FALSE;
10256 }
10257
10258 if (info->shared
7359ea65 10259 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4
PB
10260 {
10261 asection *s = htab->splt;
10262
10263 /* If this is the first .plt entry, make room for the special
10264 first entry. */
eea6121a 10265 if (s->size == 0)
e5a52504 10266 s->size += htab->plt_header_size;
5e681ec4 10267
eea6121a 10268 h->plt.offset = s->size;
5e681ec4 10269
b7693d02
DJ
10270 /* If we will insert a Thumb trampoline before this PLT, leave room
10271 for it. */
bd97cb95
DJ
10272 thumb_refs = eh->plt_thumb_refcount;
10273 if (!htab->use_blx)
10274 thumb_refs += eh->plt_maybe_thumb_refcount;
10275
10276 if (thumb_refs > 0)
b7693d02
DJ
10277 {
10278 h->plt.offset += PLT_THUMB_STUB_SIZE;
10279 s->size += PLT_THUMB_STUB_SIZE;
10280 }
10281
5e681ec4
PB
10282 /* If this symbol is not defined in a regular file, and we are
10283 not generating a shared library, then set the symbol to this
10284 location in the .plt. This is required to make function
10285 pointers compare as equal between the normal executable and
10286 the shared library. */
10287 if (! info->shared
f5385ebf 10288 && !h->def_regular)
5e681ec4
PB
10289 {
10290 h->root.u.def.section = s;
10291 h->root.u.def.value = h->plt.offset;
b7693d02
DJ
10292
10293 /* Make sure the function is not marked as Thumb, in case
10294 it is the target of an ABS32 relocation, which will
10295 point to the PLT entry. */
10296 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
10297 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
5e681ec4
PB
10298 }
10299
10300 /* Make room for this entry. */
e5a52504 10301 s->size += htab->plt_entry_size;
5e681ec4 10302
e5a52504 10303 if (!htab->symbian_p)
b7693d02
DJ
10304 {
10305 /* We also need to make an entry in the .got.plt section, which
10306 will be placed in the .got section by the linker script. */
10307 eh->plt_got_offset = htab->sgotplt->size;
10308 htab->sgotplt->size += 4;
10309 }
5e681ec4 10310
00a97672
RS
10311 /* We also need to make an entry in the .rel(a).plt section. */
10312 htab->srelplt->size += RELOC_SIZE (htab);
10313
10314 /* VxWorks executables have a second set of relocations for
10315 each PLT entry. They go in a separate relocation section,
10316 which is processed by the kernel loader. */
10317 if (htab->vxworks_p && !info->shared)
10318 {
10319 /* There is a relocation for the initial PLT entry:
10320 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10321 if (h->plt.offset == htab->plt_header_size)
10322 htab->srelplt2->size += RELOC_SIZE (htab);
10323
10324 /* There are two extra relocations for each subsequent
10325 PLT entry: an R_ARM_32 relocation for the GOT entry,
10326 and an R_ARM_32 relocation for the PLT entry. */
10327 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
10328 }
5e681ec4
PB
10329 }
10330 else
10331 {
10332 h->plt.offset = (bfd_vma) -1;
f5385ebf 10333 h->needs_plt = 0;
5e681ec4
PB
10334 }
10335 }
10336 else
10337 {
10338 h->plt.offset = (bfd_vma) -1;
f5385ebf 10339 h->needs_plt = 0;
5e681ec4
PB
10340 }
10341
10342 if (h->got.refcount > 0)
10343 {
10344 asection *s;
10345 bfd_boolean dyn;
ba93b8ac
DJ
10346 int tls_type = elf32_arm_hash_entry (h)->tls_type;
10347 int indx;
5e681ec4
PB
10348
10349 /* Make sure this symbol is output as a dynamic symbol.
10350 Undefined weak syms won't yet be marked as dynamic. */
10351 if (h->dynindx == -1
f5385ebf 10352 && !h->forced_local)
5e681ec4 10353 {
c152c796 10354 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
10355 return FALSE;
10356 }
10357
e5a52504
MM
10358 if (!htab->symbian_p)
10359 {
10360 s = htab->sgot;
10361 h->got.offset = s->size;
ba93b8ac
DJ
10362
10363 if (tls_type == GOT_UNKNOWN)
10364 abort ();
10365
10366 if (tls_type == GOT_NORMAL)
10367 /* Non-TLS symbols need one GOT slot. */
10368 s->size += 4;
10369 else
10370 {
10371 if (tls_type & GOT_TLS_GD)
10372 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10373 s->size += 8;
10374 if (tls_type & GOT_TLS_IE)
10375 /* R_ARM_TLS_IE32 needs one GOT slot. */
10376 s->size += 4;
10377 }
10378
e5a52504 10379 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
10380
10381 indx = 0;
10382 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
10383 && (!info->shared
10384 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10385 indx = h->dynindx;
10386
10387 if (tls_type != GOT_NORMAL
10388 && (info->shared || indx != 0)
10389 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10390 || h->root.type != bfd_link_hash_undefweak))
10391 {
10392 if (tls_type & GOT_TLS_IE)
00a97672 10393 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
10394
10395 if (tls_type & GOT_TLS_GD)
00a97672 10396 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
10397
10398 if ((tls_type & GOT_TLS_GD) && indx != 0)
00a97672 10399 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
10400 }
10401 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10402 || h->root.type != bfd_link_hash_undefweak)
10403 && (info->shared
10404 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
00a97672 10405 htab->srelgot->size += RELOC_SIZE (htab);
e5a52504 10406 }
5e681ec4
PB
10407 }
10408 else
10409 h->got.offset = (bfd_vma) -1;
10410
a4fd1a8e
PB
10411 /* Allocate stubs for exported Thumb functions on v4t. */
10412 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 10413 && h->def_regular
a4fd1a8e
PB
10414 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
10415 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
10416 {
10417 struct elf_link_hash_entry * th;
10418 struct bfd_link_hash_entry * bh;
10419 struct elf_link_hash_entry * myh;
10420 char name[1024];
10421 asection *s;
10422 bh = NULL;
10423 /* Create a new symbol to regist the real location of the function. */
10424 s = h->root.u.def.section;
906e58ca 10425 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
10426 _bfd_generic_link_add_one_symbol (info, s->owner,
10427 name, BSF_GLOBAL, s,
10428 h->root.u.def.value,
10429 NULL, TRUE, FALSE, &bh);
10430
10431 myh = (struct elf_link_hash_entry *) bh;
10432 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
10433 myh->forced_local = 1;
10434 eh->export_glue = myh;
10435 th = record_arm_to_thumb_glue (info, h);
10436 /* Point the symbol at the stub. */
10437 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10438 h->root.u.def.section = th->root.u.def.section;
10439 h->root.u.def.value = th->root.u.def.value & ~1;
10440 }
10441
5e681ec4
PB
10442 if (eh->relocs_copied == NULL)
10443 return TRUE;
10444
10445 /* In the shared -Bsymbolic case, discard space allocated for
10446 dynamic pc-relative relocs against symbols which turn out to be
10447 defined in regular objects. For the normal shared case, discard
10448 space for pc-relative relocs that have become local due to symbol
10449 visibility changes. */
10450
67687978 10451 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 10452 {
7bdca076 10453 /* The only relocs that use pc_count are R_ARM_REL32 and
bb224fc3
MS
10454 R_ARM_REL32_NOI, which will appear on something like
10455 ".long foo - .". We want calls to protected symbols to resolve
10456 directly to the function rather than going via the plt. If people
10457 want function pointer comparisons to work as expected then they
10458 should avoid writing assembly like ".long foo - .". */
ba93b8ac
DJ
10459 if (SYMBOL_CALLS_LOCAL (info, h))
10460 {
10461 struct elf32_arm_relocs_copied **pp;
10462
10463 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10464 {
10465 p->count -= p->pc_count;
10466 p->pc_count = 0;
10467 if (p->count == 0)
10468 *pp = p->next;
10469 else
10470 pp = &p->next;
10471 }
10472 }
10473
3348747a
NS
10474 if (elf32_arm_hash_table (info)->vxworks_p)
10475 {
10476 struct elf32_arm_relocs_copied **pp;
10477
10478 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10479 {
10480 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
10481 *pp = p->next;
10482 else
10483 pp = &p->next;
10484 }
10485 }
10486
ba93b8ac 10487 /* Also discard relocs on undefined weak syms with non-default
7359ea65 10488 visibility. */
22d606e9 10489 if (eh->relocs_copied != NULL
5e681ec4 10490 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
10491 {
10492 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
10493 eh->relocs_copied = NULL;
10494
10495 /* Make sure undefined weak symbols are output as a dynamic
10496 symbol in PIEs. */
10497 else if (h->dynindx == -1
10498 && !h->forced_local)
10499 {
10500 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10501 return FALSE;
10502 }
10503 }
10504
67687978
PB
10505 else if (htab->root.is_relocatable_executable && h->dynindx == -1
10506 && h->root.type == bfd_link_hash_new)
10507 {
10508 /* Output absolute symbols so that we can create relocations
10509 against them. For normal symbols we output a relocation
10510 against the section that contains them. */
10511 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10512 return FALSE;
10513 }
10514
5e681ec4
PB
10515 }
10516 else
10517 {
10518 /* For the non-shared case, discard space for relocs against
10519 symbols which turn out to need copy relocs or are not
10520 dynamic. */
10521
f5385ebf
AM
10522 if (!h->non_got_ref
10523 && ((h->def_dynamic
10524 && !h->def_regular)
5e681ec4
PB
10525 || (htab->root.dynamic_sections_created
10526 && (h->root.type == bfd_link_hash_undefweak
10527 || h->root.type == bfd_link_hash_undefined))))
10528 {
10529 /* Make sure this symbol is output as a dynamic symbol.
10530 Undefined weak syms won't yet be marked as dynamic. */
10531 if (h->dynindx == -1
f5385ebf 10532 && !h->forced_local)
5e681ec4 10533 {
c152c796 10534 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
10535 return FALSE;
10536 }
10537
10538 /* If that succeeded, we know we'll be keeping all the
10539 relocs. */
10540 if (h->dynindx != -1)
10541 goto keep;
10542 }
10543
10544 eh->relocs_copied = NULL;
10545
10546 keep: ;
10547 }
10548
10549 /* Finally, allocate space. */
10550 for (p = eh->relocs_copied; p != NULL; p = p->next)
10551 {
10552 asection *sreloc = elf_section_data (p->section)->sreloc;
00a97672 10553 sreloc->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
10554 }
10555
10556 return TRUE;
10557}
10558
08d1f311
DJ
10559/* Find any dynamic relocs that apply to read-only sections. */
10560
10561static bfd_boolean
8029a119 10562elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 10563{
8029a119
NC
10564 struct elf32_arm_link_hash_entry * eh;
10565 struct elf32_arm_relocs_copied * p;
08d1f311
DJ
10566
10567 if (h->root.type == bfd_link_hash_warning)
10568 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10569
10570 eh = (struct elf32_arm_link_hash_entry *) h;
10571 for (p = eh->relocs_copied; p != NULL; p = p->next)
10572 {
10573 asection *s = p->section;
10574
10575 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10576 {
10577 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10578
10579 info->flags |= DF_TEXTREL;
10580
10581 /* Not an error, just cut short the traversal. */
10582 return FALSE;
10583 }
10584 }
10585 return TRUE;
10586}
10587
d504ffc8
DJ
10588void
10589bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10590 int byteswap_code)
10591{
10592 struct elf32_arm_link_hash_table *globals;
10593
10594 globals = elf32_arm_hash_table (info);
10595 globals->byteswap_code = byteswap_code;
10596}
10597
252b5132
RH
10598/* Set the sizes of the dynamic sections. */
10599
b34976b6 10600static bfd_boolean
57e8b36a
NC
10601elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10602 struct bfd_link_info * info)
252b5132
RH
10603{
10604 bfd * dynobj;
10605 asection * s;
b34976b6
AM
10606 bfd_boolean plt;
10607 bfd_boolean relocs;
5e681ec4
PB
10608 bfd *ibfd;
10609 struct elf32_arm_link_hash_table *htab;
252b5132 10610
5e681ec4 10611 htab = elf32_arm_hash_table (info);
252b5132
RH
10612 dynobj = elf_hash_table (info)->dynobj;
10613 BFD_ASSERT (dynobj != NULL);
39b41c9c 10614 check_use_blx (htab);
252b5132
RH
10615
10616 if (elf_hash_table (info)->dynamic_sections_created)
10617 {
10618 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 10619 if (info->executable)
252b5132
RH
10620 {
10621 s = bfd_get_section_by_name (dynobj, ".interp");
10622 BFD_ASSERT (s != NULL);
eea6121a 10623 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
10624 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10625 }
10626 }
5e681ec4
PB
10627
10628 /* Set up .got offsets for local syms, and space for local dynamic
10629 relocs. */
10630 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
252b5132 10631 {
5e681ec4
PB
10632 bfd_signed_vma *local_got;
10633 bfd_signed_vma *end_local_got;
10634 char *local_tls_type;
10635 bfd_size_type locsymcount;
10636 Elf_Internal_Shdr *symtab_hdr;
10637 asection *srel;
3348747a 10638 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
5e681ec4 10639
0ffa91dd 10640 if (! is_arm_elf (ibfd))
5e681ec4
PB
10641 continue;
10642
10643 for (s = ibfd->sections; s != NULL; s = s->next)
10644 {
10645 struct elf32_arm_relocs_copied *p;
10646
6edfbbad 10647 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4
PB
10648 {
10649 if (!bfd_is_abs_section (p->section)
10650 && bfd_is_abs_section (p->section->output_section))
10651 {
10652 /* Input section has been discarded, either because
10653 it is a copy of a linkonce section or due to
10654 linker script /DISCARD/, so we'll be discarding
10655 the relocs too. */
10656 }
3348747a
NS
10657 else if (is_vxworks
10658 && strcmp (p->section->output_section->name,
10659 ".tls_vars") == 0)
10660 {
10661 /* Relocations in vxworks .tls_vars sections are
10662 handled specially by the loader. */
10663 }
5e681ec4
PB
10664 else if (p->count != 0)
10665 {
10666 srel = elf_section_data (p->section)->sreloc;
00a97672 10667 srel->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
10668 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10669 info->flags |= DF_TEXTREL;
10670 }
10671 }
10672 }
10673
10674 local_got = elf_local_got_refcounts (ibfd);
10675 if (!local_got)
10676 continue;
10677
0ffa91dd 10678 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
10679 locsymcount = symtab_hdr->sh_info;
10680 end_local_got = local_got + locsymcount;
ba93b8ac 10681 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
5e681ec4
PB
10682 s = htab->sgot;
10683 srel = htab->srelgot;
10684 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10685 {
10686 if (*local_got > 0)
10687 {
eea6121a 10688 *local_got = s->size;
ba93b8ac
DJ
10689 if (*local_tls_type & GOT_TLS_GD)
10690 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10691 s->size += 8;
10692 if (*local_tls_type & GOT_TLS_IE)
10693 s->size += 4;
10694 if (*local_tls_type == GOT_NORMAL)
10695 s->size += 4;
10696
10697 if (info->shared || *local_tls_type == GOT_TLS_GD)
00a97672 10698 srel->size += RELOC_SIZE (htab);
5e681ec4
PB
10699 }
10700 else
10701 *local_got = (bfd_vma) -1;
10702 }
252b5132
RH
10703 }
10704
ba93b8ac
DJ
10705 if (htab->tls_ldm_got.refcount > 0)
10706 {
10707 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10708 for R_ARM_TLS_LDM32 relocations. */
10709 htab->tls_ldm_got.offset = htab->sgot->size;
10710 htab->sgot->size += 8;
10711 if (info->shared)
00a97672 10712 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
10713 }
10714 else
10715 htab->tls_ldm_got.offset = -1;
10716
5e681ec4
PB
10717 /* Allocate global sym .plt and .got entries, and space for global
10718 sym dynamic relocs. */
57e8b36a 10719 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
252b5132 10720
d504ffc8
DJ
10721 /* Here we rummage through the found bfds to collect glue information. */
10722 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
c7b8f16e 10723 {
0ffa91dd 10724 if (! is_arm_elf (ibfd))
e44a2c9c
AM
10725 continue;
10726
c7b8f16e
JB
10727 /* Initialise mapping tables for code/data. */
10728 bfd_elf32_arm_init_maps (ibfd);
906e58ca 10729
c7b8f16e
JB
10730 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10731 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10732 /* xgettext:c-format */
10733 _bfd_error_handler (_("Errors encountered processing file %s"),
10734 ibfd->filename);
10735 }
d504ffc8 10736
252b5132
RH
10737 /* The check_relocs and adjust_dynamic_symbol entry points have
10738 determined the sizes of the various dynamic sections. Allocate
10739 memory for them. */
b34976b6
AM
10740 plt = FALSE;
10741 relocs = FALSE;
252b5132
RH
10742 for (s = dynobj->sections; s != NULL; s = s->next)
10743 {
10744 const char * name;
252b5132
RH
10745
10746 if ((s->flags & SEC_LINKER_CREATED) == 0)
10747 continue;
10748
10749 /* It's OK to base decisions on the section name, because none
10750 of the dynobj section names depend upon the input files. */
10751 name = bfd_get_section_name (dynobj, s);
10752
24a1ba0f 10753 if (strcmp (name, ".plt") == 0)
252b5132 10754 {
c456f082
AM
10755 /* Remember whether there is a PLT. */
10756 plt = s->size != 0;
252b5132 10757 }
0112cd26 10758 else if (CONST_STRNEQ (name, ".rel"))
252b5132 10759 {
c456f082 10760 if (s->size != 0)
252b5132 10761 {
252b5132 10762 /* Remember whether there are any reloc sections other
00a97672
RS
10763 than .rel(a).plt and .rela.plt.unloaded. */
10764 if (s != htab->srelplt && s != htab->srelplt2)
b34976b6 10765 relocs = TRUE;
252b5132
RH
10766
10767 /* We use the reloc_count field as a counter if we need
10768 to copy relocs into the output file. */
10769 s->reloc_count = 0;
10770 }
10771 }
0112cd26 10772 else if (! CONST_STRNEQ (name, ".got")
c456f082 10773 && strcmp (name, ".dynbss") != 0)
252b5132
RH
10774 {
10775 /* It's not one of our sections, so don't allocate space. */
10776 continue;
10777 }
10778
c456f082 10779 if (s->size == 0)
252b5132 10780 {
c456f082 10781 /* If we don't need this section, strip it from the
00a97672
RS
10782 output file. This is mostly to handle .rel(a).bss and
10783 .rel(a).plt. We must create both sections in
c456f082
AM
10784 create_dynamic_sections, because they must be created
10785 before the linker maps input sections to output
10786 sections. The linker does that before
10787 adjust_dynamic_symbol is called, and it is that
10788 function which decides whether anything needs to go
10789 into these sections. */
8423293d 10790 s->flags |= SEC_EXCLUDE;
252b5132
RH
10791 continue;
10792 }
10793
c456f082
AM
10794 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10795 continue;
10796
252b5132 10797 /* Allocate memory for the section contents. */
906e58ca 10798 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 10799 if (s->contents == NULL)
b34976b6 10800 return FALSE;
252b5132
RH
10801 }
10802
10803 if (elf_hash_table (info)->dynamic_sections_created)
10804 {
10805 /* Add some entries to the .dynamic section. We fill in the
10806 values later, in elf32_arm_finish_dynamic_sections, but we
10807 must add the entries now so that we get the correct size for
10808 the .dynamic section. The DT_DEBUG entry is filled in by the
10809 dynamic linker and used by the debugger. */
dc810e39 10810#define add_dynamic_entry(TAG, VAL) \
5a580b3a 10811 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 10812
8532796c 10813 if (info->executable)
252b5132 10814 {
dc810e39 10815 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 10816 return FALSE;
252b5132
RH
10817 }
10818
10819 if (plt)
10820 {
dc810e39
AM
10821 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10822 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
10823 || !add_dynamic_entry (DT_PLTREL,
10824 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 10825 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 10826 return FALSE;
252b5132
RH
10827 }
10828
10829 if (relocs)
10830 {
00a97672
RS
10831 if (htab->use_rel)
10832 {
10833 if (!add_dynamic_entry (DT_REL, 0)
10834 || !add_dynamic_entry (DT_RELSZ, 0)
10835 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10836 return FALSE;
10837 }
10838 else
10839 {
10840 if (!add_dynamic_entry (DT_RELA, 0)
10841 || !add_dynamic_entry (DT_RELASZ, 0)
10842 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10843 return FALSE;
10844 }
252b5132
RH
10845 }
10846
08d1f311
DJ
10847 /* If any dynamic relocs apply to a read-only section,
10848 then we need a DT_TEXTREL entry. */
10849 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
10850 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10851 info);
08d1f311 10852
99e4ae17 10853 if ((info->flags & DF_TEXTREL) != 0)
252b5132 10854 {
dc810e39 10855 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 10856 return FALSE;
252b5132 10857 }
7a2b07ff
NS
10858 if (htab->vxworks_p
10859 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10860 return FALSE;
252b5132 10861 }
8532796c 10862#undef add_dynamic_entry
252b5132 10863
b34976b6 10864 return TRUE;
252b5132
RH
10865}
10866
252b5132
RH
10867/* Finish up dynamic symbol handling. We set the contents of various
10868 dynamic sections here. */
10869
b34976b6 10870static bfd_boolean
906e58ca
NC
10871elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10872 struct bfd_link_info * info,
10873 struct elf_link_hash_entry * h,
10874 Elf_Internal_Sym * sym)
252b5132
RH
10875{
10876 bfd * dynobj;
e5a52504 10877 struct elf32_arm_link_hash_table *htab;
b7693d02 10878 struct elf32_arm_link_hash_entry *eh;
252b5132
RH
10879
10880 dynobj = elf_hash_table (info)->dynobj;
e5a52504 10881 htab = elf32_arm_hash_table (info);
b7693d02 10882 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
10883
10884 if (h->plt.offset != (bfd_vma) -1)
10885 {
10886 asection * splt;
252b5132 10887 asection * srel;
e5a52504 10888 bfd_byte *loc;
24a1ba0f 10889 bfd_vma plt_index;
947216bf 10890 Elf_Internal_Rela rel;
252b5132
RH
10891
10892 /* This symbol has an entry in the procedure linkage table. Set
10893 it up. */
10894
10895 BFD_ASSERT (h->dynindx != -1);
10896
10897 splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672 10898 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
e5a52504 10899 BFD_ASSERT (splt != NULL && srel != NULL);
252b5132 10900
e5a52504
MM
10901 /* Fill in the entry in the procedure linkage table. */
10902 if (htab->symbian_p)
10903 {
906e58ca 10904 put_arm_insn (htab, output_bfd,
52ab56c2
PB
10905 elf32_arm_symbian_plt_entry[0],
10906 splt->contents + h->plt.offset);
906e58ca 10907 bfd_put_32 (output_bfd,
52ab56c2
PB
10908 elf32_arm_symbian_plt_entry[1],
10909 splt->contents + h->plt.offset + 4);
906e58ca 10910
e5a52504 10911 /* Fill in the entry in the .rel.plt section. */
2a1b9a48
MM
10912 rel.r_offset = (splt->output_section->vma
10913 + splt->output_offset
52ab56c2 10914 + h->plt.offset + 4);
e5a52504 10915 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
b7693d02
DJ
10916
10917 /* Get the index in the procedure linkage table which
10918 corresponds to this symbol. This is the index of this symbol
10919 in all the symbols for which we are making plt entries. The
10920 first entry in the procedure linkage table is reserved. */
906e58ca 10921 plt_index = ((h->plt.offset - htab->plt_header_size)
b7693d02 10922 / htab->plt_entry_size);
e5a52504
MM
10923 }
10924 else
10925 {
00a97672 10926 bfd_vma got_offset, got_address, plt_address;
e5a52504
MM
10927 bfd_vma got_displacement;
10928 asection * sgot;
52ab56c2 10929 bfd_byte * ptr;
906e58ca 10930
e5a52504
MM
10931 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10932 BFD_ASSERT (sgot != NULL);
10933
b7693d02
DJ
10934 /* Get the offset into the .got.plt table of the entry that
10935 corresponds to this function. */
10936 got_offset = eh->plt_got_offset;
10937
10938 /* Get the index in the procedure linkage table which
10939 corresponds to this symbol. This is the index of this symbol
10940 in all the symbols for which we are making plt entries. The
10941 first three entries in .got.plt are reserved; after that
10942 symbols appear in the same order as in .plt. */
10943 plt_index = (got_offset - 12) / 4;
e5a52504 10944
00a97672
RS
10945 /* Calculate the address of the GOT entry. */
10946 got_address = (sgot->output_section->vma
10947 + sgot->output_offset
10948 + got_offset);
5e681ec4 10949
00a97672
RS
10950 /* ...and the address of the PLT entry. */
10951 plt_address = (splt->output_section->vma
10952 + splt->output_offset
10953 + h->plt.offset);
5e681ec4 10954
52ab56c2 10955 ptr = htab->splt->contents + h->plt.offset;
00a97672
RS
10956 if (htab->vxworks_p && info->shared)
10957 {
10958 unsigned int i;
10959 bfd_vma val;
10960
52ab56c2 10961 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
10962 {
10963 val = elf32_arm_vxworks_shared_plt_entry[i];
10964 if (i == 2)
10965 val |= got_address - sgot->output_section->vma;
10966 if (i == 5)
10967 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
10968 if (i == 2 || i == 5)
10969 bfd_put_32 (output_bfd, val, ptr);
10970 else
10971 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
10972 }
10973 }
10974 else if (htab->vxworks_p)
b7693d02 10975 {
00a97672
RS
10976 unsigned int i;
10977 bfd_vma val;
10978
d3753b85 10979 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
10980 {
10981 val = elf32_arm_vxworks_exec_plt_entry[i];
10982 if (i == 2)
10983 val |= got_address;
10984 if (i == 4)
10985 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10986 if (i == 5)
10987 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
10988 if (i == 2 || i == 5)
10989 bfd_put_32 (output_bfd, val, ptr);
10990 else
10991 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
10992 }
10993
10994 loc = (htab->srelplt2->contents
10995 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10996
10997 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10998 referencing the GOT for this PLT entry. */
10999 rel.r_offset = plt_address + 8;
11000 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11001 rel.r_addend = got_offset;
11002 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11003 loc += RELOC_SIZE (htab);
11004
11005 /* Create the R_ARM_ABS32 relocation referencing the
11006 beginning of the PLT for this GOT entry. */
11007 rel.r_offset = got_address;
11008 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11009 rel.r_addend = 0;
11010 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
b7693d02 11011 }
00a97672
RS
11012 else
11013 {
bd97cb95 11014 bfd_signed_vma thumb_refs;
00a97672
RS
11015 /* Calculate the displacement between the PLT slot and the
11016 entry in the GOT. The eight-byte offset accounts for the
11017 value produced by adding to pc in the first instruction
11018 of the PLT stub. */
11019 got_displacement = got_address - (plt_address + 8);
b7693d02 11020
00a97672
RS
11021 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
11022
bd97cb95
DJ
11023 thumb_refs = eh->plt_thumb_refcount;
11024 if (!htab->use_blx)
11025 thumb_refs += eh->plt_maybe_thumb_refcount;
11026
11027 if (thumb_refs > 0)
00a97672 11028 {
52ab56c2
PB
11029 put_thumb_insn (htab, output_bfd,
11030 elf32_arm_plt_thumb_stub[0], ptr - 4);
11031 put_thumb_insn (htab, output_bfd,
11032 elf32_arm_plt_thumb_stub[1], ptr - 2);
00a97672
RS
11033 }
11034
52ab56c2
PB
11035 put_arm_insn (htab, output_bfd,
11036 elf32_arm_plt_entry[0]
11037 | ((got_displacement & 0x0ff00000) >> 20),
11038 ptr + 0);
11039 put_arm_insn (htab, output_bfd,
11040 elf32_arm_plt_entry[1]
11041 | ((got_displacement & 0x000ff000) >> 12),
11042 ptr+ 4);
11043 put_arm_insn (htab, output_bfd,
11044 elf32_arm_plt_entry[2]
11045 | (got_displacement & 0x00000fff),
11046 ptr + 8);
5e681ec4 11047#ifdef FOUR_WORD_PLT
52ab56c2 11048 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
5e681ec4 11049#endif
00a97672 11050 }
252b5132 11051
e5a52504
MM
11052 /* Fill in the entry in the global offset table. */
11053 bfd_put_32 (output_bfd,
11054 (splt->output_section->vma
11055 + splt->output_offset),
11056 sgot->contents + got_offset);
906e58ca 11057
00a97672
RS
11058 /* Fill in the entry in the .rel(a).plt section. */
11059 rel.r_addend = 0;
11060 rel.r_offset = got_address;
e5a52504
MM
11061 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
11062 }
57e8b36a 11063
00a97672
RS
11064 loc = srel->contents + plt_index * RELOC_SIZE (htab);
11065 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132 11066
f5385ebf 11067 if (!h->def_regular)
252b5132
RH
11068 {
11069 /* Mark the symbol as undefined, rather than as defined in
11070 the .plt section. Leave the value alone. */
11071 sym->st_shndx = SHN_UNDEF;
d982ba73
PB
11072 /* If the symbol is weak, we do need to clear the value.
11073 Otherwise, the PLT entry would provide a definition for
11074 the symbol even if the symbol wasn't defined anywhere,
11075 and so the symbol would never be NULL. */
f5385ebf 11076 if (!h->ref_regular_nonweak)
d982ba73 11077 sym->st_value = 0;
252b5132
RH
11078 }
11079 }
11080
ba93b8ac
DJ
11081 if (h->got.offset != (bfd_vma) -1
11082 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
11083 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
252b5132
RH
11084 {
11085 asection * sgot;
11086 asection * srel;
947216bf
AM
11087 Elf_Internal_Rela rel;
11088 bfd_byte *loc;
00a97672 11089 bfd_vma offset;
252b5132
RH
11090
11091 /* This symbol has an entry in the global offset table. Set it
11092 up. */
252b5132 11093 sgot = bfd_get_section_by_name (dynobj, ".got");
00a97672 11094 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
252b5132
RH
11095 BFD_ASSERT (sgot != NULL && srel != NULL);
11096
00a97672
RS
11097 offset = (h->got.offset & ~(bfd_vma) 1);
11098 rel.r_addend = 0;
252b5132
RH
11099 rel.r_offset = (sgot->output_section->vma
11100 + sgot->output_offset
00a97672 11101 + offset);
252b5132 11102
5e681ec4
PB
11103 /* If this is a static link, or it is a -Bsymbolic link and the
11104 symbol is defined locally or was forced to be local because
11105 of a version file, we just want to emit a RELATIVE reloc.
11106 The entry in the global offset table will already have been
11107 initialized in the relocate_section function. */
252b5132 11108 if (info->shared
5e681ec4
PB
11109 && SYMBOL_REFERENCES_LOCAL (info, h))
11110 {
906e58ca 11111 BFD_ASSERT ((h->got.offset & 1) != 0);
5e681ec4 11112 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
00a97672
RS
11113 if (!htab->use_rel)
11114 {
11115 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
11116 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11117 }
5e681ec4 11118 }
252b5132
RH
11119 else
11120 {
906e58ca 11121 BFD_ASSERT ((h->got.offset & 1) == 0);
00a97672 11122 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
252b5132
RH
11123 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11124 }
11125
00a97672
RS
11126 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
11127 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
11128 }
11129
f5385ebf 11130 if (h->needs_copy)
252b5132
RH
11131 {
11132 asection * s;
947216bf
AM
11133 Elf_Internal_Rela rel;
11134 bfd_byte *loc;
252b5132
RH
11135
11136 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
11137 BFD_ASSERT (h->dynindx != -1
11138 && (h->root.type == bfd_link_hash_defined
11139 || h->root.type == bfd_link_hash_defweak));
11140
11141 s = bfd_get_section_by_name (h->root.u.def.section->owner,
00a97672 11142 RELOC_SECTION (htab, ".bss"));
252b5132
RH
11143 BFD_ASSERT (s != NULL);
11144
00a97672 11145 rel.r_addend = 0;
252b5132
RH
11146 rel.r_offset = (h->root.u.def.value
11147 + h->root.u.def.section->output_section->vma
11148 + h->root.u.def.section->output_offset);
11149 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
00a97672
RS
11150 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
11151 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
11152 }
11153
00a97672
RS
11154 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
11155 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
11156 to the ".got" section. */
252b5132 11157 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
00a97672 11158 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
11159 sym->st_shndx = SHN_ABS;
11160
b34976b6 11161 return TRUE;
252b5132
RH
11162}
11163
11164/* Finish up the dynamic sections. */
11165
b34976b6 11166static bfd_boolean
57e8b36a 11167elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
11168{
11169 bfd * dynobj;
11170 asection * sgot;
11171 asection * sdyn;
11172
11173 dynobj = elf_hash_table (info)->dynobj;
11174
11175 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
229fcec5 11176 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
252b5132
RH
11177 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11178
11179 if (elf_hash_table (info)->dynamic_sections_created)
11180 {
11181 asection *splt;
11182 Elf32_External_Dyn *dyncon, *dynconend;
229fcec5 11183 struct elf32_arm_link_hash_table *htab;
252b5132 11184
229fcec5 11185 htab = elf32_arm_hash_table (info);
252b5132 11186 splt = bfd_get_section_by_name (dynobj, ".plt");
24a1ba0f 11187 BFD_ASSERT (splt != NULL && sdyn != NULL);
252b5132
RH
11188
11189 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 11190 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 11191
252b5132
RH
11192 for (; dyncon < dynconend; dyncon++)
11193 {
11194 Elf_Internal_Dyn dyn;
11195 const char * name;
11196 asection * s;
11197
11198 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
11199
11200 switch (dyn.d_tag)
11201 {
229fcec5
MM
11202 unsigned int type;
11203
252b5132 11204 default:
7a2b07ff
NS
11205 if (htab->vxworks_p
11206 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11207 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
11208 break;
11209
229fcec5
MM
11210 case DT_HASH:
11211 name = ".hash";
11212 goto get_vma_if_bpabi;
11213 case DT_STRTAB:
11214 name = ".dynstr";
11215 goto get_vma_if_bpabi;
11216 case DT_SYMTAB:
11217 name = ".dynsym";
11218 goto get_vma_if_bpabi;
c0042f5d
MM
11219 case DT_VERSYM:
11220 name = ".gnu.version";
11221 goto get_vma_if_bpabi;
11222 case DT_VERDEF:
11223 name = ".gnu.version_d";
11224 goto get_vma_if_bpabi;
11225 case DT_VERNEED:
11226 name = ".gnu.version_r";
11227 goto get_vma_if_bpabi;
11228
252b5132
RH
11229 case DT_PLTGOT:
11230 name = ".got";
11231 goto get_vma;
11232 case DT_JMPREL:
00a97672 11233 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
11234 get_vma:
11235 s = bfd_get_section_by_name (output_bfd, name);
11236 BFD_ASSERT (s != NULL);
229fcec5
MM
11237 if (!htab->symbian_p)
11238 dyn.d_un.d_ptr = s->vma;
11239 else
11240 /* In the BPABI, tags in the PT_DYNAMIC section point
11241 at the file offset, not the memory address, for the
11242 convenience of the post linker. */
11243 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
11244 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11245 break;
11246
229fcec5
MM
11247 get_vma_if_bpabi:
11248 if (htab->symbian_p)
11249 goto get_vma;
11250 break;
11251
252b5132 11252 case DT_PLTRELSZ:
00a97672
RS
11253 s = bfd_get_section_by_name (output_bfd,
11254 RELOC_SECTION (htab, ".plt"));
252b5132 11255 BFD_ASSERT (s != NULL);
eea6121a 11256 dyn.d_un.d_val = s->size;
252b5132
RH
11257 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11258 break;
906e58ca 11259
252b5132 11260 case DT_RELSZ:
00a97672 11261 case DT_RELASZ:
229fcec5
MM
11262 if (!htab->symbian_p)
11263 {
11264 /* My reading of the SVR4 ABI indicates that the
11265 procedure linkage table relocs (DT_JMPREL) should be
11266 included in the overall relocs (DT_REL). This is
11267 what Solaris does. However, UnixWare can not handle
11268 that case. Therefore, we override the DT_RELSZ entry
11269 here to make it not include the JMPREL relocs. Since
00a97672 11270 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
11271 other relocation sections, we don't have to worry
11272 about changing the DT_REL entry. */
00a97672
RS
11273 s = bfd_get_section_by_name (output_bfd,
11274 RELOC_SECTION (htab, ".plt"));
229fcec5
MM
11275 if (s != NULL)
11276 dyn.d_un.d_val -= s->size;
11277 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11278 break;
11279 }
8029a119 11280 /* Fall through. */
229fcec5
MM
11281
11282 case DT_REL:
11283 case DT_RELA:
229fcec5
MM
11284 /* In the BPABI, the DT_REL tag must point at the file
11285 offset, not the VMA, of the first relocation
11286 section. So, we use code similar to that in
11287 elflink.c, but do not check for SHF_ALLOC on the
11288 relcoation section, since relocations sections are
11289 never allocated under the BPABI. The comments above
11290 about Unixware notwithstanding, we include all of the
11291 relocations here. */
11292 if (htab->symbian_p)
11293 {
11294 unsigned int i;
11295 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11296 ? SHT_REL : SHT_RELA);
11297 dyn.d_un.d_val = 0;
11298 for (i = 1; i < elf_numsections (output_bfd); i++)
11299 {
906e58ca 11300 Elf_Internal_Shdr *hdr
229fcec5
MM
11301 = elf_elfsections (output_bfd)[i];
11302 if (hdr->sh_type == type)
11303 {
906e58ca 11304 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
11305 || dyn.d_tag == DT_RELASZ)
11306 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
11307 else if ((ufile_ptr) hdr->sh_offset
11308 <= dyn.d_un.d_val - 1)
229fcec5
MM
11309 dyn.d_un.d_val = hdr->sh_offset;
11310 }
11311 }
11312 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11313 }
252b5132 11314 break;
88f7bcd5
NC
11315
11316 /* Set the bottom bit of DT_INIT/FINI if the
11317 corresponding function is Thumb. */
11318 case DT_INIT:
11319 name = info->init_function;
11320 goto get_sym;
11321 case DT_FINI:
11322 name = info->fini_function;
11323 get_sym:
11324 /* If it wasn't set by elf_bfd_final_link
4cc11e76 11325 then there is nothing to adjust. */
88f7bcd5
NC
11326 if (dyn.d_un.d_val != 0)
11327 {
11328 struct elf_link_hash_entry * eh;
11329
11330 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 11331 FALSE, FALSE, TRUE);
906e58ca 11332 if (eh != NULL
88f7bcd5
NC
11333 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
11334 {
11335 dyn.d_un.d_val |= 1;
b34976b6 11336 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
11337 }
11338 }
11339 break;
252b5132
RH
11340 }
11341 }
11342
24a1ba0f 11343 /* Fill in the first entry in the procedure linkage table. */
e5a52504 11344 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
f7a74f8c 11345 {
00a97672
RS
11346 const bfd_vma *plt0_entry;
11347 bfd_vma got_address, plt_address, got_displacement;
11348
11349 /* Calculate the addresses of the GOT and PLT. */
11350 got_address = sgot->output_section->vma + sgot->output_offset;
11351 plt_address = splt->output_section->vma + splt->output_offset;
11352
11353 if (htab->vxworks_p)
11354 {
11355 /* The VxWorks GOT is relocated by the dynamic linker.
11356 Therefore, we must emit relocations rather than simply
11357 computing the values now. */
11358 Elf_Internal_Rela rel;
11359
11360 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
11361 put_arm_insn (htab, output_bfd, plt0_entry[0],
11362 splt->contents + 0);
11363 put_arm_insn (htab, output_bfd, plt0_entry[1],
11364 splt->contents + 4);
11365 put_arm_insn (htab, output_bfd, plt0_entry[2],
11366 splt->contents + 8);
00a97672
RS
11367 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
11368
8029a119 11369 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
11370 rel.r_offset = plt_address + 12;
11371 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11372 rel.r_addend = 0;
11373 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
11374 htab->srelplt2->contents);
11375 }
11376 else
11377 {
11378 got_displacement = got_address - (plt_address + 16);
11379
11380 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
11381 put_arm_insn (htab, output_bfd, plt0_entry[0],
11382 splt->contents + 0);
11383 put_arm_insn (htab, output_bfd, plt0_entry[1],
11384 splt->contents + 4);
11385 put_arm_insn (htab, output_bfd, plt0_entry[2],
11386 splt->contents + 8);
11387 put_arm_insn (htab, output_bfd, plt0_entry[3],
11388 splt->contents + 12);
5e681ec4 11389
5e681ec4 11390#ifdef FOUR_WORD_PLT
00a97672
RS
11391 /* The displacement value goes in the otherwise-unused
11392 last word of the second entry. */
11393 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 11394#else
00a97672 11395 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 11396#endif
00a97672 11397 }
f7a74f8c 11398 }
252b5132
RH
11399
11400 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11401 really seem like the right value. */
74541ad4
AM
11402 if (splt->output_section->owner == output_bfd)
11403 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672
RS
11404
11405 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
11406 {
11407 /* Correct the .rel(a).plt.unloaded relocations. They will have
11408 incorrect symbol indexes. */
11409 int num_plts;
eed62c48 11410 unsigned char *p;
00a97672
RS
11411
11412 num_plts = ((htab->splt->size - htab->plt_header_size)
11413 / htab->plt_entry_size);
11414 p = htab->srelplt2->contents + RELOC_SIZE (htab);
11415
11416 for (; num_plts; num_plts--)
11417 {
11418 Elf_Internal_Rela rel;
11419
11420 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11421 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11422 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11423 p += RELOC_SIZE (htab);
11424
11425 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11426 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11427 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11428 p += RELOC_SIZE (htab);
11429 }
11430 }
252b5132
RH
11431 }
11432
11433 /* Fill in the first three entries in the global offset table. */
229fcec5 11434 if (sgot)
252b5132 11435 {
229fcec5
MM
11436 if (sgot->size > 0)
11437 {
11438 if (sdyn == NULL)
11439 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
11440 else
11441 bfd_put_32 (output_bfd,
11442 sdyn->output_section->vma + sdyn->output_offset,
11443 sgot->contents);
11444 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
11445 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
11446 }
252b5132 11447
229fcec5
MM
11448 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
11449 }
252b5132 11450
b34976b6 11451 return TRUE;
252b5132
RH
11452}
11453
ba96a88f 11454static void
57e8b36a 11455elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 11456{
9b485d32 11457 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 11458 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
11459
11460 i_ehdrp = elf_elfheader (abfd);
11461
94a3258f
PB
11462 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
11463 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
11464 else
11465 i_ehdrp->e_ident[EI_OSABI] = 0;
ba96a88f 11466 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 11467
93204d3a
PB
11468 if (link_info)
11469 {
11470 globals = elf32_arm_hash_table (link_info);
11471 if (globals->byteswap_code)
11472 i_ehdrp->e_flags |= EF_ARM_BE8;
11473 }
ba96a88f
NC
11474}
11475
99e4ae17 11476static enum elf_reloc_type_class
57e8b36a 11477elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
99e4ae17 11478{
f51e552e 11479 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
11480 {
11481 case R_ARM_RELATIVE:
11482 return reloc_class_relative;
11483 case R_ARM_JUMP_SLOT:
11484 return reloc_class_plt;
11485 case R_ARM_COPY:
11486 return reloc_class_copy;
11487 default:
11488 return reloc_class_normal;
11489 }
11490}
11491
e16bb312
NC
11492/* Set the right machine number for an Arm ELF file. */
11493
11494static bfd_boolean
57e8b36a 11495elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
e16bb312
NC
11496{
11497 if (hdr->sh_type == SHT_NOTE)
11498 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
11499
11500 return TRUE;
11501}
11502
e489d0ae 11503static void
57e8b36a 11504elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 11505{
5a6c6817 11506 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
11507}
11508
40a18ebd
NC
11509/* Return TRUE if this is an unwinding table entry. */
11510
11511static bfd_boolean
11512is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
11513{
0112cd26
NC
11514 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
11515 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
11516}
11517
11518
11519/* Set the type and flags for an ARM section. We do this by
11520 the section name, which is a hack, but ought to work. */
11521
11522static bfd_boolean
11523elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
11524{
11525 const char * name;
11526
11527 name = bfd_get_section_name (abfd, sec);
11528
11529 if (is_arm_elf_unwind_section_name (abfd, name))
11530 {
11531 hdr->sh_type = SHT_ARM_EXIDX;
11532 hdr->sh_flags |= SHF_LINK_ORDER;
11533 }
11534 return TRUE;
11535}
11536
6dc132d9
L
11537/* Handle an ARM specific section when reading an object file. This is
11538 called when bfd_section_from_shdr finds a section with an unknown
11539 type. */
40a18ebd
NC
11540
11541static bfd_boolean
11542elf32_arm_section_from_shdr (bfd *abfd,
11543 Elf_Internal_Shdr * hdr,
6dc132d9
L
11544 const char *name,
11545 int shindex)
40a18ebd
NC
11546{
11547 /* There ought to be a place to keep ELF backend specific flags, but
11548 at the moment there isn't one. We just keep track of the
11549 sections by their name, instead. Fortunately, the ABI gives
11550 names for all the ARM specific sections, so we will probably get
11551 away with this. */
11552 switch (hdr->sh_type)
11553 {
11554 case SHT_ARM_EXIDX:
0951f019
RE
11555 case SHT_ARM_PREEMPTMAP:
11556 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
11557 break;
11558
11559 default:
11560 return FALSE;
11561 }
11562
6dc132d9 11563 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
11564 return FALSE;
11565
11566 return TRUE;
11567}
e489d0ae 11568
8e3de13a
NC
11569/* A structure used to record a list of sections, independently
11570 of the next and prev fields in the asection structure. */
11571typedef struct section_list
11572{
11573 asection * sec;
11574 struct section_list * next;
11575 struct section_list * prev;
11576}
11577section_list;
11578
11579/* Unfortunately we need to keep a list of sections for which
11580 an _arm_elf_section_data structure has been allocated. This
11581 is because it is possible for functions like elf32_arm_write_section
11582 to be called on a section which has had an elf_data_structure
11583 allocated for it (and so the used_by_bfd field is valid) but
11584 for which the ARM extended version of this structure - the
11585 _arm_elf_section_data structure - has not been allocated. */
11586static section_list * sections_with_arm_elf_section_data = NULL;
11587
11588static void
957c6e41 11589record_section_with_arm_elf_section_data (asection * sec)
8e3de13a
NC
11590{
11591 struct section_list * entry;
11592
957c6e41 11593 entry = bfd_malloc (sizeof (* entry));
8e3de13a
NC
11594 if (entry == NULL)
11595 return;
11596 entry->sec = sec;
11597 entry->next = sections_with_arm_elf_section_data;
11598 entry->prev = NULL;
11599 if (entry->next != NULL)
11600 entry->next->prev = entry;
11601 sections_with_arm_elf_section_data = entry;
11602}
11603
44444f50
NC
11604static struct section_list *
11605find_arm_elf_section_entry (asection * sec)
8e3de13a
NC
11606{
11607 struct section_list * entry;
bd4aae00 11608 static struct section_list * last_entry = NULL;
8e3de13a 11609
bd4aae00
NC
11610 /* This is a short cut for the typical case where the sections are added
11611 to the sections_with_arm_elf_section_data list in forward order and
11612 then looked up here in backwards order. This makes a real difference
11613 to the ld-srec/sec64k.exp linker test. */
44444f50 11614 entry = sections_with_arm_elf_section_data;
bd4aae00
NC
11615 if (last_entry != NULL)
11616 {
11617 if (last_entry->sec == sec)
44444f50
NC
11618 entry = last_entry;
11619 else if (last_entry->next != NULL
11620 && last_entry->next->sec == sec)
11621 entry = last_entry->next;
bd4aae00 11622 }
44444f50
NC
11623
11624 for (; entry; entry = entry->next)
8e3de13a 11625 if (entry->sec == sec)
44444f50 11626 break;
bd4aae00 11627
44444f50
NC
11628 if (entry)
11629 /* Record the entry prior to this one - it is the entry we are most
11630 likely to want to locate next time. Also this way if we have been
11631 called from unrecord_section_with_arm_elf_section_data() we will not
11632 be caching a pointer that is about to be freed. */
11633 last_entry = entry->prev;
11634
11635 return entry;
11636}
11637
11638static _arm_elf_section_data *
11639get_arm_elf_section_data (asection * sec)
11640{
11641 struct section_list * entry;
11642
11643 entry = find_arm_elf_section_entry (sec);
11644
11645 if (entry)
11646 return elf32_arm_section_data (entry->sec);
11647 else
11648 return NULL;
8e3de13a
NC
11649}
11650
11651static void
11652unrecord_section_with_arm_elf_section_data (asection * sec)
11653{
11654 struct section_list * entry;
11655
44444f50
NC
11656 entry = find_arm_elf_section_entry (sec);
11657
11658 if (entry)
11659 {
11660 if (entry->prev != NULL)
11661 entry->prev->next = entry->next;
11662 if (entry->next != NULL)
11663 entry->next->prev = entry->prev;
11664 if (entry == sections_with_arm_elf_section_data)
11665 sections_with_arm_elf_section_data = entry->next;
11666 free (entry);
11667 }
8e3de13a
NC
11668}
11669
e489d0ae 11670
4e617b1e
PB
11671typedef struct
11672{
11673 void *finfo;
11674 struct bfd_link_info *info;
91a5743d
PB
11675 asection *sec;
11676 int sec_shndx;
4e617b1e
PB
11677 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11678 asection *, struct elf_link_hash_entry *);
11679} output_arch_syminfo;
11680
11681enum map_symbol_type
11682{
11683 ARM_MAP_ARM,
11684 ARM_MAP_THUMB,
11685 ARM_MAP_DATA
11686};
11687
11688
7413f23f 11689/* Output a single mapping symbol. */
4e617b1e
PB
11690
11691static bfd_boolean
7413f23f
DJ
11692elf32_arm_output_map_sym (output_arch_syminfo *osi,
11693 enum map_symbol_type type,
11694 bfd_vma offset)
4e617b1e
PB
11695{
11696 static const char *names[3] = {"$a", "$t", "$d"};
11697 struct elf32_arm_link_hash_table *htab;
11698 Elf_Internal_Sym sym;
11699
11700 htab = elf32_arm_hash_table (osi->info);
91a5743d
PB
11701 sym.st_value = osi->sec->output_section->vma
11702 + osi->sec->output_offset
11703 + offset;
4e617b1e
PB
11704 sym.st_size = 0;
11705 sym.st_other = 0;
11706 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d
PB
11707 sym.st_shndx = osi->sec_shndx;
11708 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
4e617b1e
PB
11709 return FALSE;
11710 return TRUE;
11711}
11712
11713
11714/* Output mapping symbols for PLT entries associated with H. */
11715
11716static bfd_boolean
11717elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11718{
11719 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11720 struct elf32_arm_link_hash_table *htab;
11721 struct elf32_arm_link_hash_entry *eh;
11722 bfd_vma addr;
11723
11724 htab = elf32_arm_hash_table (osi->info);
11725
11726 if (h->root.type == bfd_link_hash_indirect)
11727 return TRUE;
11728
11729 if (h->root.type == bfd_link_hash_warning)
11730 /* When warning symbols are created, they **replace** the "real"
11731 entry in the hash table, thus we never get to see the real
11732 symbol in a hash traversal. So look at it now. */
11733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11734
11735 if (h->plt.offset == (bfd_vma) -1)
11736 return TRUE;
11737
11738 eh = (struct elf32_arm_link_hash_entry *) h;
11739 addr = h->plt.offset;
11740 if (htab->symbian_p)
11741 {
7413f23f 11742 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 11743 return FALSE;
7413f23f 11744 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
11745 return FALSE;
11746 }
11747 else if (htab->vxworks_p)
11748 {
7413f23f 11749 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 11750 return FALSE;
7413f23f 11751 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 11752 return FALSE;
7413f23f 11753 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 11754 return FALSE;
7413f23f 11755 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
11756 return FALSE;
11757 }
11758 else
11759 {
bd97cb95
DJ
11760 bfd_signed_vma thumb_refs;
11761
11762 thumb_refs = eh->plt_thumb_refcount;
11763 if (!htab->use_blx)
11764 thumb_refs += eh->plt_maybe_thumb_refcount;
4e617b1e 11765
bd97cb95 11766 if (thumb_refs > 0)
4e617b1e 11767 {
7413f23f 11768 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
11769 return FALSE;
11770 }
11771#ifdef FOUR_WORD_PLT
7413f23f 11772 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 11773 return FALSE;
7413f23f 11774 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
11775 return FALSE;
11776#else
906e58ca 11777 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
11778 so only need to output a mapping symbol for the first PLT entry and
11779 entries with thumb thunks. */
bd97cb95 11780 if (thumb_refs > 0 || addr == 20)
4e617b1e 11781 {
7413f23f 11782 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
11783 return FALSE;
11784 }
11785#endif
11786 }
11787
11788 return TRUE;
11789}
11790
7413f23f
DJ
11791/* Output a single local symbol for a generated stub. */
11792
11793static bfd_boolean
11794elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11795 bfd_vma offset, bfd_vma size)
11796{
11797 struct elf32_arm_link_hash_table *htab;
11798 Elf_Internal_Sym sym;
11799
11800 htab = elf32_arm_hash_table (osi->info);
11801 sym.st_value = osi->sec->output_section->vma
11802 + osi->sec->output_offset
11803 + offset;
11804 sym.st_size = size;
11805 sym.st_other = 0;
11806 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11807 sym.st_shndx = osi->sec_shndx;
11808 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11809 return FALSE;
11810 return TRUE;
11811}
4e617b1e 11812
da5938a2 11813static bfd_boolean
8029a119
NC
11814arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11815 void * in_arg)
da5938a2
NC
11816{
11817 struct elf32_arm_stub_hash_entry *stub_entry;
11818 struct bfd_link_info *info;
11819 struct elf32_arm_link_hash_table *htab;
11820 asection *stub_sec;
11821 bfd_vma addr;
7413f23f 11822 char *stub_name;
9a008db3 11823 output_arch_syminfo *osi;
461a49ca
DJ
11824 const insn_sequence *template;
11825 enum stub_insn_type prev_type;
11826 int size;
11827 int i;
11828 enum map_symbol_type sym_type;
da5938a2
NC
11829
11830 /* Massage our args to the form they really have. */
11831 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 11832 osi = (output_arch_syminfo *) in_arg;
da5938a2 11833
da5938a2
NC
11834 info = osi->info;
11835
11836 htab = elf32_arm_hash_table (info);
11837 stub_sec = stub_entry->stub_sec;
11838
11839 /* Ensure this stub is attached to the current section being
7413f23f 11840 processed. */
da5938a2
NC
11841 if (stub_sec != osi->sec)
11842 return TRUE;
11843
7413f23f
DJ
11844 addr = (bfd_vma) stub_entry->stub_offset;
11845 stub_name = stub_entry->output_name;
da5938a2 11846
461a49ca 11847 template = stub_entry->stub_template;
4e31c731 11848 switch (template[0].type)
7413f23f 11849 {
461a49ca
DJ
11850 case ARM_TYPE:
11851 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
11852 return FALSE;
11853 break;
461a49ca
DJ
11854 case THUMB16_TYPE:
11855 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
11856 stub_entry->stub_size))
da5938a2
NC
11857 return FALSE;
11858 break;
11859 default:
11860 BFD_FAIL ();
4e31c731 11861 return FALSE;
7413f23f 11862 }
da5938a2 11863
461a49ca
DJ
11864 prev_type = DATA_TYPE;
11865 size = 0;
11866 for (i = 0; i < stub_entry->stub_template_size; i++)
11867 {
4e31c731 11868 switch (template[i].type)
461a49ca
DJ
11869 {
11870 case ARM_TYPE:
11871 sym_type = ARM_MAP_ARM;
11872 break;
11873
11874 case THUMB16_TYPE:
11875 sym_type = ARM_MAP_THUMB;
11876 break;
11877
11878 case DATA_TYPE:
11879 sym_type = ARM_MAP_DATA;
11880 break;
11881
11882 default:
11883 BFD_FAIL ();
4e31c731 11884 return FALSE;
461a49ca
DJ
11885 }
11886
11887 if (template[i].type != prev_type)
11888 {
11889 prev_type = template[i].type;
11890 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
11891 return FALSE;
11892 }
11893
4e31c731 11894 switch (template[i].type)
461a49ca
DJ
11895 {
11896 case ARM_TYPE:
11897 size += 4;
11898 break;
11899
11900 case THUMB16_TYPE:
11901 size += 2;
11902 break;
11903
11904 case DATA_TYPE:
11905 size += 4;
11906 break;
11907
11908 default:
11909 BFD_FAIL ();
4e31c731 11910 return FALSE;
461a49ca
DJ
11911 }
11912 }
11913
da5938a2
NC
11914 return TRUE;
11915}
11916
91a5743d 11917/* Output mapping symbols for linker generated sections. */
4e617b1e
PB
11918
11919static bfd_boolean
11920elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca
NC
11921 struct bfd_link_info *info,
11922 void *finfo,
11923 bfd_boolean (*func) (void *, const char *,
11924 Elf_Internal_Sym *,
11925 asection *,
11926 struct elf_link_hash_entry *))
4e617b1e
PB
11927{
11928 output_arch_syminfo osi;
11929 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
11930 bfd_vma offset;
11931 bfd_size_type size;
4e617b1e
PB
11932
11933 htab = elf32_arm_hash_table (info);
906e58ca 11934 check_use_blx (htab);
91a5743d 11935
4e617b1e
PB
11936 osi.finfo = finfo;
11937 osi.info = info;
11938 osi.func = func;
906e58ca 11939
91a5743d
PB
11940 /* ARM->Thumb glue. */
11941 if (htab->arm_glue_size > 0)
11942 {
11943 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11944 ARM2THUMB_GLUE_SECTION_NAME);
11945
11946 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11947 (output_bfd, osi.sec->output_section);
11948 if (info->shared || htab->root.is_relocatable_executable
11949 || htab->pic_veneer)
11950 size = ARM2THUMB_PIC_GLUE_SIZE;
11951 else if (htab->use_blx)
11952 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11953 else
11954 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 11955
91a5743d
PB
11956 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11957 {
7413f23f
DJ
11958 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11959 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
11960 }
11961 }
11962
11963 /* Thumb->ARM glue. */
11964 if (htab->thumb_glue_size > 0)
11965 {
11966 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11967 THUMB2ARM_GLUE_SECTION_NAME);
11968
11969 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11970 (output_bfd, osi.sec->output_section);
11971 size = THUMB2ARM_GLUE_SIZE;
11972
11973 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11974 {
7413f23f
DJ
11975 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11976 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
11977 }
11978 }
11979
845b51d6
PB
11980 /* ARMv4 BX veneers. */
11981 if (htab->bx_glue_size > 0)
11982 {
11983 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11984 ARM_BX_GLUE_SECTION_NAME);
11985
11986 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11987 (output_bfd, osi.sec->output_section);
11988
7413f23f 11989 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
11990 }
11991
8029a119
NC
11992 /* Long calls stubs. */
11993 if (htab->stub_bfd && htab->stub_bfd->sections)
11994 {
da5938a2 11995 asection* stub_sec;
8029a119 11996
da5938a2
NC
11997 for (stub_sec = htab->stub_bfd->sections;
11998 stub_sec != NULL;
8029a119
NC
11999 stub_sec = stub_sec->next)
12000 {
12001 /* Ignore non-stub sections. */
12002 if (!strstr (stub_sec->name, STUB_SUFFIX))
12003 continue;
da5938a2 12004
8029a119 12005 osi.sec = stub_sec;
da5938a2 12006
8029a119
NC
12007 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12008 (output_bfd, osi.sec->output_section);
da5938a2 12009
8029a119
NC
12010 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
12011 }
12012 }
da5938a2 12013
91a5743d
PB
12014 /* Finally, output mapping symbols for the PLT. */
12015 if (!htab->splt || htab->splt->size == 0)
12016 return TRUE;
12017
12018 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8029a119 12019 htab->splt->output_section);
91a5743d 12020 osi.sec = htab->splt;
4e617b1e
PB
12021 /* Output mapping symbols for the plt header. SymbianOS does not have a
12022 plt header. */
12023 if (htab->vxworks_p)
12024 {
12025 /* VxWorks shared libraries have no PLT header. */
12026 if (!info->shared)
12027 {
7413f23f 12028 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 12029 return FALSE;
7413f23f 12030 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
4e617b1e
PB
12031 return FALSE;
12032 }
12033 }
12034 else if (!htab->symbian_p)
12035 {
7413f23f 12036 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e
PB
12037 return FALSE;
12038#ifndef FOUR_WORD_PLT
7413f23f 12039 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e
PB
12040 return FALSE;
12041#endif
12042 }
12043
12044 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
12045 return TRUE;
12046}
12047
e489d0ae
PB
12048/* Allocate target specific section data. */
12049
12050static bfd_boolean
12051elf32_arm_new_section_hook (bfd *abfd, asection *sec)
12052{
f592407e
AM
12053 if (!sec->used_by_bfd)
12054 {
12055 _arm_elf_section_data *sdata;
12056 bfd_size_type amt = sizeof (*sdata);
e489d0ae 12057
f592407e
AM
12058 sdata = bfd_zalloc (abfd, amt);
12059 if (sdata == NULL)
12060 return FALSE;
12061 sec->used_by_bfd = sdata;
12062 }
e489d0ae 12063
957c6e41 12064 record_section_with_arm_elf_section_data (sec);
8e3de13a 12065
e489d0ae
PB
12066 return _bfd_elf_new_section_hook (abfd, sec);
12067}
12068
12069
12070/* Used to order a list of mapping symbols by address. */
12071
12072static int
12073elf32_arm_compare_mapping (const void * a, const void * b)
12074{
7f6a71ff
JM
12075 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
12076 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
12077
12078 if (amap->vma > bmap->vma)
12079 return 1;
12080 else if (amap->vma < bmap->vma)
12081 return -1;
12082 else if (amap->type > bmap->type)
12083 /* Ensure results do not depend on the host qsort for objects with
12084 multiple mapping symbols at the same address by sorting on type
12085 after vma. */
12086 return 1;
12087 else if (amap->type < bmap->type)
12088 return -1;
12089 else
12090 return 0;
e489d0ae
PB
12091}
12092
12093
12094/* Do code byteswapping. Return FALSE afterwards so that the section is
12095 written out as normal. */
12096
12097static bfd_boolean
c7b8f16e 12098elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
12099 struct bfd_link_info *link_info,
12100 asection *sec,
e489d0ae
PB
12101 bfd_byte *contents)
12102{
c7b8f16e 12103 int mapcount, errcount;
8e3de13a 12104 _arm_elf_section_data *arm_data;
c7b8f16e 12105 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 12106 elf32_arm_section_map *map;
c7b8f16e 12107 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
12108 bfd_vma ptr;
12109 bfd_vma end;
c7b8f16e 12110 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae
PB
12111 bfd_byte tmp;
12112 int i;
57e8b36a 12113
8e3de13a
NC
12114 /* If this section has not been allocated an _arm_elf_section_data
12115 structure then we cannot record anything. */
12116 arm_data = get_arm_elf_section_data (sec);
12117 if (arm_data == NULL)
12118 return FALSE;
12119
12120 mapcount = arm_data->mapcount;
12121 map = arm_data->map;
c7b8f16e
JB
12122 errcount = arm_data->erratumcount;
12123
12124 if (errcount != 0)
12125 {
12126 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
12127
12128 for (errnode = arm_data->erratumlist; errnode != 0;
12129 errnode = errnode->next)
12130 {
12131 bfd_vma index = errnode->vma - offset;
12132
12133 switch (errnode->type)
12134 {
12135 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
12136 {
12137 bfd_vma branch_to_veneer;
12138 /* Original condition code of instruction, plus bit mask for
12139 ARM B instruction. */
12140 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
12141 | 0x0a000000;
12142
12143 /* The instruction is before the label. */
12144 index -= 4;
12145
12146 /* Above offset included in -4 below. */
12147 branch_to_veneer = errnode->u.b.veneer->vma
12148 - errnode->vma - 4;
12149
12150 if ((signed) branch_to_veneer < -(1 << 25)
12151 || (signed) branch_to_veneer >= (1 << 25))
12152 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12153 "range"), output_bfd);
12154
12155 insn |= (branch_to_veneer >> 2) & 0xffffff;
12156 contents[endianflip ^ index] = insn & 0xff;
12157 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12158 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12159 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12160 }
12161 break;
12162
12163 case VFP11_ERRATUM_ARM_VENEER:
12164 {
12165 bfd_vma branch_from_veneer;
12166 unsigned int insn;
12167
12168 /* Take size of veneer into account. */
12169 branch_from_veneer = errnode->u.v.branch->vma
12170 - errnode->vma - 12;
12171
12172 if ((signed) branch_from_veneer < -(1 << 25)
12173 || (signed) branch_from_veneer >= (1 << 25))
12174 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12175 "range"), output_bfd);
12176
12177 /* Original instruction. */
12178 insn = errnode->u.v.branch->u.b.vfp_insn;
12179 contents[endianflip ^ index] = insn & 0xff;
12180 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12181 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12182 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12183
12184 /* Branch back to insn after original insn. */
12185 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
12186 contents[endianflip ^ (index + 4)] = insn & 0xff;
12187 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
12188 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
12189 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
12190 }
12191 break;
12192
12193 default:
12194 abort ();
12195 }
12196 }
12197 }
e489d0ae
PB
12198
12199 if (mapcount == 0)
12200 return FALSE;
12201
c7b8f16e 12202 if (globals->byteswap_code)
e489d0ae 12203 {
c7b8f16e 12204 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 12205
c7b8f16e
JB
12206 ptr = map[0].vma;
12207 for (i = 0; i < mapcount; i++)
12208 {
12209 if (i == mapcount - 1)
12210 end = sec->size;
12211 else
12212 end = map[i + 1].vma;
e489d0ae 12213
c7b8f16e 12214 switch (map[i].type)
e489d0ae 12215 {
c7b8f16e
JB
12216 case 'a':
12217 /* Byte swap code words. */
12218 while (ptr + 3 < end)
12219 {
12220 tmp = contents[ptr];
12221 contents[ptr] = contents[ptr + 3];
12222 contents[ptr + 3] = tmp;
12223 tmp = contents[ptr + 1];
12224 contents[ptr + 1] = contents[ptr + 2];
12225 contents[ptr + 2] = tmp;
12226 ptr += 4;
12227 }
12228 break;
e489d0ae 12229
c7b8f16e
JB
12230 case 't':
12231 /* Byte swap code halfwords. */
12232 while (ptr + 1 < end)
12233 {
12234 tmp = contents[ptr];
12235 contents[ptr] = contents[ptr + 1];
12236 contents[ptr + 1] = tmp;
12237 ptr += 2;
12238 }
12239 break;
12240
12241 case 'd':
12242 /* Leave data alone. */
12243 break;
12244 }
12245 ptr = end;
12246 }
e489d0ae 12247 }
8e3de13a 12248
93204d3a 12249 free (map);
8e3de13a 12250 arm_data->mapcount = 0;
c7b8f16e 12251 arm_data->mapsize = 0;
8e3de13a
NC
12252 arm_data->map = NULL;
12253 unrecord_section_with_arm_elf_section_data (sec);
12254
e489d0ae
PB
12255 return FALSE;
12256}
12257
957c6e41
NC
12258static void
12259unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
12260 asection * sec,
12261 void * ignore ATTRIBUTE_UNUSED)
12262{
12263 unrecord_section_with_arm_elf_section_data (sec);
12264}
12265
12266static bfd_boolean
12267elf32_arm_close_and_cleanup (bfd * abfd)
12268{
b25e3d87
L
12269 if (abfd->sections)
12270 bfd_map_over_sections (abfd,
12271 unrecord_section_via_map_over_sections,
12272 NULL);
957c6e41
NC
12273
12274 return _bfd_elf_close_and_cleanup (abfd);
12275}
12276
b25e3d87
L
12277static bfd_boolean
12278elf32_arm_bfd_free_cached_info (bfd * abfd)
12279{
12280 if (abfd->sections)
12281 bfd_map_over_sections (abfd,
12282 unrecord_section_via_map_over_sections,
12283 NULL);
12284
12285 return _bfd_free_cached_info (abfd);
12286}
12287
b7693d02
DJ
12288/* Display STT_ARM_TFUNC symbols as functions. */
12289
12290static void
12291elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
12292 asymbol *asym)
12293{
12294 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
12295
12296 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
12297 elfsym->symbol.flags |= BSF_FUNCTION;
12298}
12299
0beaef2b
PB
12300
12301/* Mangle thumb function symbols as we read them in. */
12302
8384fb8f 12303static bfd_boolean
0beaef2b
PB
12304elf32_arm_swap_symbol_in (bfd * abfd,
12305 const void *psrc,
12306 const void *pshn,
12307 Elf_Internal_Sym *dst)
12308{
8384fb8f
AM
12309 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
12310 return FALSE;
0beaef2b
PB
12311
12312 /* New EABI objects mark thumb function symbols by setting the low bit of
12313 the address. Turn these into STT_ARM_TFUNC. */
0f88be7a 12314 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
0beaef2b
PB
12315 && (dst->st_value & 1))
12316 {
12317 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
12318 dst->st_value &= ~(bfd_vma) 1;
12319 }
8384fb8f 12320 return TRUE;
0beaef2b
PB
12321}
12322
12323
12324/* Mangle thumb function symbols as we write them out. */
12325
12326static void
12327elf32_arm_swap_symbol_out (bfd *abfd,
12328 const Elf_Internal_Sym *src,
12329 void *cdst,
12330 void *shndx)
12331{
12332 Elf_Internal_Sym newsym;
12333
12334 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12335 of the address set, as per the new EABI. We do this unconditionally
12336 because objcopy does not set the elf header flags until after
12337 it writes out the symbol table. */
12338 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
12339 {
12340 newsym = *src;
12341 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad
PB
12342 if (newsym.st_shndx != SHN_UNDEF)
12343 {
12344 /* Do this only for defined symbols. At link type, the static
12345 linker will simulate the work of dynamic linker of resolving
12346 symbols and will carry over the thumbness of found symbols to
12347 the output symbol table. It's not clear how it happens, but
b0fead2b 12348 the thumbness of undefined symbols can well be different at
0fa3dcad
PB
12349 runtime, and writing '1' for them will be confusing for users
12350 and possibly for dynamic linker itself.
12351 */
12352 newsym.st_value |= 1;
12353 }
906e58ca 12354
0beaef2b
PB
12355 src = &newsym;
12356 }
12357 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
12358}
12359
b294bdf8
MM
12360/* Add the PT_ARM_EXIDX program header. */
12361
12362static bfd_boolean
906e58ca 12363elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
12364 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12365{
12366 struct elf_segment_map *m;
12367 asection *sec;
12368
12369 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12370 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12371 {
12372 /* If there is already a PT_ARM_EXIDX header, then we do not
12373 want to add another one. This situation arises when running
12374 "strip"; the input binary already has the header. */
12375 m = elf_tdata (abfd)->segment_map;
12376 while (m && m->p_type != PT_ARM_EXIDX)
12377 m = m->next;
12378 if (!m)
12379 {
12380 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
12381 if (m == NULL)
12382 return FALSE;
12383 m->p_type = PT_ARM_EXIDX;
12384 m->count = 1;
12385 m->sections[0] = sec;
12386
12387 m->next = elf_tdata (abfd)->segment_map;
12388 elf_tdata (abfd)->segment_map = m;
12389 }
12390 }
12391
12392 return TRUE;
12393}
12394
12395/* We may add a PT_ARM_EXIDX program header. */
12396
12397static int
a6b96beb
AM
12398elf32_arm_additional_program_headers (bfd *abfd,
12399 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
12400{
12401 asection *sec;
12402
12403 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12404 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12405 return 1;
12406 else
12407 return 0;
12408}
12409
fcb93ecf 12410/* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
906e58ca 12411
fcb93ecf
PB
12412static bfd_boolean
12413elf32_arm_is_function_type (unsigned int type)
12414{
0f88be7a 12415 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
fcb93ecf
PB
12416}
12417
0beaef2b 12418/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
12419const struct elf_size_info elf32_arm_size_info =
12420{
0beaef2b
PB
12421 sizeof (Elf32_External_Ehdr),
12422 sizeof (Elf32_External_Phdr),
12423 sizeof (Elf32_External_Shdr),
12424 sizeof (Elf32_External_Rel),
12425 sizeof (Elf32_External_Rela),
12426 sizeof (Elf32_External_Sym),
12427 sizeof (Elf32_External_Dyn),
12428 sizeof (Elf_External_Note),
12429 4,
12430 1,
12431 32, 2,
12432 ELFCLASS32, EV_CURRENT,
12433 bfd_elf32_write_out_phdrs,
12434 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 12435 bfd_elf32_checksum_contents,
0beaef2b
PB
12436 bfd_elf32_write_relocs,
12437 elf32_arm_swap_symbol_in,
12438 elf32_arm_swap_symbol_out,
12439 bfd_elf32_slurp_reloc_table,
12440 bfd_elf32_slurp_symbol_table,
12441 bfd_elf32_swap_dyn_in,
12442 bfd_elf32_swap_dyn_out,
12443 bfd_elf32_swap_reloc_in,
12444 bfd_elf32_swap_reloc_out,
12445 bfd_elf32_swap_reloca_in,
12446 bfd_elf32_swap_reloca_out
12447};
12448
252b5132
RH
12449#define ELF_ARCH bfd_arch_arm
12450#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
12451#ifdef __QNXTARGET__
12452#define ELF_MAXPAGESIZE 0x1000
12453#else
f21f3fe0 12454#define ELF_MAXPAGESIZE 0x8000
d0facd1b 12455#endif
b1342370 12456#define ELF_MINPAGESIZE 0x1000
24718e3b 12457#define ELF_COMMONPAGESIZE 0x1000
252b5132 12458
ba93b8ac
DJ
12459#define bfd_elf32_mkobject elf32_arm_mkobject
12460
99e4ae17
AJ
12461#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12462#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
12463#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12464#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12465#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
906e58ca 12466#define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
dc810e39 12467#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
157090f7 12468#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 12469#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 12470#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 12471#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 12472#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
957c6e41 12473#define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
b25e3d87 12474#define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
252b5132
RH
12475
12476#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12477#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 12478#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
12479#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12480#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 12481#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 12482#define elf_backend_write_section elf32_arm_write_section
252b5132 12483#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 12484#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
12485#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12486#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12487#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
74541ad4 12488#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 12489#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 12490#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 12491#define elf_backend_object_p elf32_arm_object_p
e16bb312 12492#define elf_backend_section_flags elf32_arm_section_flags
40a18ebd
NC
12493#define elf_backend_fake_sections elf32_arm_fake_sections
12494#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 12495#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 12496#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
b7693d02 12497#define elf_backend_symbol_processing elf32_arm_symbol_processing
0beaef2b 12498#define elf_backend_size_info elf32_arm_size_info
b294bdf8 12499#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
12500#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12501#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12502#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12503#define elf_backend_is_function_type elf32_arm_is_function_type
12504
12505#define elf_backend_can_refcount 1
12506#define elf_backend_can_gc_sections 1
12507#define elf_backend_plt_readonly 1
12508#define elf_backend_want_got_plt 1
12509#define elf_backend_want_plt_sym 0
12510#define elf_backend_may_use_rel_p 1
12511#define elf_backend_may_use_rela_p 0
4e7fd91e 12512#define elf_backend_default_use_rela_p 0
252b5132 12513
04f7c78d 12514#define elf_backend_got_header_size 12
04f7c78d 12515
906e58ca
NC
12516#undef elf_backend_obj_attrs_vendor
12517#define elf_backend_obj_attrs_vendor "aeabi"
12518#undef elf_backend_obj_attrs_section
12519#define elf_backend_obj_attrs_section ".ARM.attributes"
12520#undef elf_backend_obj_attrs_arg_type
12521#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12522#undef elf_backend_obj_attrs_section_type
104d59d1 12523#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
5aa6ff7c 12524#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
104d59d1 12525
252b5132 12526#include "elf32-target.h"
7f266840 12527
906e58ca 12528/* VxWorks Targets. */
4e7fd91e 12529
906e58ca 12530#undef TARGET_LITTLE_SYM
4e7fd91e 12531#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
906e58ca 12532#undef TARGET_LITTLE_NAME
4e7fd91e 12533#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 12534#undef TARGET_BIG_SYM
4e7fd91e 12535#define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
906e58ca 12536#undef TARGET_BIG_NAME
4e7fd91e
PB
12537#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12538
12539/* Like elf32_arm_link_hash_table_create -- but overrides
12540 appropriately for VxWorks. */
906e58ca 12541
4e7fd91e
PB
12542static struct bfd_link_hash_table *
12543elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
12544{
12545 struct bfd_link_hash_table *ret;
12546
12547 ret = elf32_arm_link_hash_table_create (abfd);
12548 if (ret)
12549 {
12550 struct elf32_arm_link_hash_table *htab
00a97672 12551 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 12552 htab->use_rel = 0;
00a97672 12553 htab->vxworks_p = 1;
4e7fd91e
PB
12554 }
12555 return ret;
906e58ca 12556}
4e7fd91e 12557
00a97672
RS
12558static void
12559elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12560{
12561 elf32_arm_final_write_processing (abfd, linker);
12562 elf_vxworks_final_write_processing (abfd, linker);
12563}
12564
906e58ca 12565#undef elf32_bed
4e7fd91e
PB
12566#define elf32_bed elf32_arm_vxworks_bed
12567
906e58ca
NC
12568#undef bfd_elf32_bfd_link_hash_table_create
12569#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12570#undef elf_backend_add_symbol_hook
12571#define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12572#undef elf_backend_final_write_processing
12573#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12574#undef elf_backend_emit_relocs
12575#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 12576
906e58ca 12577#undef elf_backend_may_use_rel_p
00a97672 12578#define elf_backend_may_use_rel_p 0
906e58ca 12579#undef elf_backend_may_use_rela_p
00a97672 12580#define elf_backend_may_use_rela_p 1
906e58ca 12581#undef elf_backend_default_use_rela_p
00a97672 12582#define elf_backend_default_use_rela_p 1
906e58ca 12583#undef elf_backend_want_plt_sym
00a97672 12584#define elf_backend_want_plt_sym 1
906e58ca 12585#undef ELF_MAXPAGESIZE
00a97672 12586#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
12587
12588#include "elf32-target.h"
12589
12590
906e58ca 12591/* Symbian OS Targets. */
7f266840 12592
906e58ca 12593#undef TARGET_LITTLE_SYM
7f266840 12594#define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
906e58ca 12595#undef TARGET_LITTLE_NAME
7f266840 12596#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 12597#undef TARGET_BIG_SYM
7f266840 12598#define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
906e58ca 12599#undef TARGET_BIG_NAME
7f266840
DJ
12600#define TARGET_BIG_NAME "elf32-bigarm-symbian"
12601
12602/* Like elf32_arm_link_hash_table_create -- but overrides
12603 appropriately for Symbian OS. */
906e58ca 12604
7f266840
DJ
12605static struct bfd_link_hash_table *
12606elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12607{
12608 struct bfd_link_hash_table *ret;
12609
12610 ret = elf32_arm_link_hash_table_create (abfd);
12611 if (ret)
12612 {
12613 struct elf32_arm_link_hash_table *htab
12614 = (struct elf32_arm_link_hash_table *)ret;
12615 /* There is no PLT header for Symbian OS. */
12616 htab->plt_header_size = 0;
95720a86
DJ
12617 /* The PLT entries are each one instruction and one word. */
12618 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 12619 htab->symbian_p = 1;
33bfe774
JB
12620 /* Symbian uses armv5t or above, so use_blx is always true. */
12621 htab->use_blx = 1;
67687978 12622 htab->root.is_relocatable_executable = 1;
7f266840
DJ
12623 }
12624 return ret;
906e58ca 12625}
7f266840 12626
b35d266b 12627static const struct bfd_elf_special_section
551b43fd 12628elf32_arm_symbian_special_sections[] =
7f266840 12629{
5cd3778d
MM
12630 /* In a BPABI executable, the dynamic linking sections do not go in
12631 the loadable read-only segment. The post-linker may wish to
12632 refer to these sections, but they are not part of the final
12633 program image. */
0112cd26
NC
12634 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12635 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12636 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12637 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12638 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
12639 /* These sections do not need to be writable as the SymbianOS
12640 postlinker will arrange things so that no dynamic relocation is
12641 required. */
0112cd26
NC
12642 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12643 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12644 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12645 { NULL, 0, 0, 0, 0 }
7f266840
DJ
12646};
12647
c3c76620 12648static void
906e58ca 12649elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 12650 struct bfd_link_info *link_info)
c3c76620
MM
12651{
12652 /* BPABI objects are never loaded directly by an OS kernel; they are
12653 processed by a postlinker first, into an OS-specific format. If
12654 the D_PAGED bit is set on the file, BFD will align segments on
12655 page boundaries, so that an OS can directly map the file. With
12656 BPABI objects, that just results in wasted space. In addition,
12657 because we clear the D_PAGED bit, map_sections_to_segments will
12658 recognize that the program headers should not be mapped into any
12659 loadable segment. */
12660 abfd->flags &= ~D_PAGED;
906e58ca 12661 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 12662}
7f266840
DJ
12663
12664static bfd_boolean
906e58ca 12665elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 12666 struct bfd_link_info *info)
7f266840
DJ
12667{
12668 struct elf_segment_map *m;
12669 asection *dynsec;
12670
7f266840
DJ
12671 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12672 segment. However, because the .dynamic section is not marked
12673 with SEC_LOAD, the generic ELF code will not create such a
12674 segment. */
12675 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12676 if (dynsec)
12677 {
8ded5a0f
AM
12678 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12679 if (m->p_type == PT_DYNAMIC)
12680 break;
12681
12682 if (m == NULL)
12683 {
12684 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12685 m->next = elf_tdata (abfd)->segment_map;
12686 elf_tdata (abfd)->segment_map = m;
12687 }
7f266840
DJ
12688 }
12689
b294bdf8
MM
12690 /* Also call the generic arm routine. */
12691 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
12692}
12693
95720a86
DJ
12694/* Return address for Ith PLT stub in section PLT, for relocation REL
12695 or (bfd_vma) -1 if it should not be included. */
12696
12697static bfd_vma
12698elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12699 const arelent *rel ATTRIBUTE_UNUSED)
12700{
12701 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12702}
12703
12704
8029a119 12705#undef elf32_bed
7f266840
DJ
12706#define elf32_bed elf32_arm_symbian_bed
12707
12708/* The dynamic sections are not allocated on SymbianOS; the postlinker
12709 will process them and then discard them. */
906e58ca 12710#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
12711#define ELF_DYNAMIC_SEC_FLAGS \
12712 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12713
00a97672 12714#undef elf_backend_add_symbol_hook
00a97672 12715#undef elf_backend_emit_relocs
c3c76620 12716
906e58ca
NC
12717#undef bfd_elf32_bfd_link_hash_table_create
12718#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12719#undef elf_backend_special_sections
12720#define elf_backend_special_sections elf32_arm_symbian_special_sections
12721#undef elf_backend_begin_write_processing
12722#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12723#undef elf_backend_final_write_processing
12724#define elf_backend_final_write_processing elf32_arm_final_write_processing
12725
12726#undef elf_backend_modify_segment_map
7f266840
DJ
12727#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12728
12729/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 12730#undef elf_backend_got_header_size
7f266840
DJ
12731#define elf_backend_got_header_size 0
12732
12733/* Similarly, there is no .got.plt section. */
906e58ca 12734#undef elf_backend_want_got_plt
7f266840
DJ
12735#define elf_backend_want_got_plt 0
12736
906e58ca 12737#undef elf_backend_plt_sym_val
95720a86
DJ
12738#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12739
906e58ca 12740#undef elf_backend_may_use_rel_p
00a97672 12741#define elf_backend_may_use_rel_p 1
906e58ca 12742#undef elf_backend_may_use_rela_p
00a97672 12743#define elf_backend_may_use_rela_p 0
906e58ca 12744#undef elf_backend_default_use_rela_p
00a97672 12745#define elf_backend_default_use_rela_p 0
906e58ca 12746#undef elf_backend_want_plt_sym
00a97672 12747#define elf_backend_want_plt_sym 0
906e58ca 12748#undef ELF_MAXPAGESIZE
00a97672 12749#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 12750
7f266840 12751#include "elf32-target.h"
This page took 1.720966 seconds and 4 git commands to generate.