x86: Correct EVEX vector load/store optimization
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
CommitLineData
252b5132 1/* Motorola 68k series support for 32-bit ELF
82704155 2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
252b5132 3
ae9a127f 4 This file is part of BFD, the Binary File Descriptor library.
252b5132 5
ae9a127f
NC
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
ae9a127f 9 (at your option) any later version.
252b5132 10
ae9a127f
NC
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
252b5132 15
ae9a127f
NC
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
252b5132 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
252b5132
RH
23#include "bfdlink.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/m68k.h"
266abb8f 27#include "opcode/m68k.h"
252b5132 28
2c3fc389
NC
29static bfd_boolean
30elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
31
32static reloc_howto_type howto_table[] =
33{
07d6d2b8
AM
34 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
ae9a127f 57 /* GNU extension to record C++ vtable hierarchy. */
252b5132
RH
58 HOWTO (R_68K_GNU_VTINHERIT, /* type */
59 0, /* rightshift */
60 2, /* size (0 = byte, 1 = short, 2 = long) */
61 0, /* bitsize */
b34976b6 62 FALSE, /* pc_relative */
252b5132
RH
63 0, /* bitpos */
64 complain_overflow_dont, /* complain_on_overflow */
65 NULL, /* special_function */
66 "R_68K_GNU_VTINHERIT", /* name */
b34976b6 67 FALSE, /* partial_inplace */
252b5132
RH
68 0, /* src_mask */
69 0, /* dst_mask */
b34976b6 70 FALSE),
ae9a127f 71 /* GNU extension to record C++ vtable member usage. */
252b5132
RH
72 HOWTO (R_68K_GNU_VTENTRY, /* type */
73 0, /* rightshift */
74 2, /* size (0 = byte, 1 = short, 2 = long) */
75 0, /* bitsize */
b34976b6 76 FALSE, /* pc_relative */
252b5132
RH
77 0, /* bitpos */
78 complain_overflow_dont, /* complain_on_overflow */
79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80 "R_68K_GNU_VTENTRY", /* name */
b34976b6 81 FALSE, /* partial_inplace */
252b5132
RH
82 0, /* src_mask */
83 0, /* dst_mask */
b34976b6 84 FALSE),
cf869cce
NC
85
86 /* TLS general dynamic variable reference. */
87 HOWTO (R_68K_TLS_GD32, /* type */
88 0, /* rightshift */
89 2, /* size (0 = byte, 1 = short, 2 = long) */
90 32, /* bitsize */
91 FALSE, /* pc_relative */
92 0, /* bitpos */
93 complain_overflow_bitfield, /* complain_on_overflow */
94 bfd_elf_generic_reloc, /* special_function */
95 "R_68K_TLS_GD32", /* name */
96 FALSE, /* partial_inplace */
97 0, /* src_mask */
98 0xffffffff, /* dst_mask */
99 FALSE), /* pcrel_offset */
100
101 HOWTO (R_68K_TLS_GD16, /* type */
102 0, /* rightshift */
103 1, /* size (0 = byte, 1 = short, 2 = long) */
104 16, /* bitsize */
105 FALSE, /* pc_relative */
106 0, /* bitpos */
107 complain_overflow_signed, /* complain_on_overflow */
108 bfd_elf_generic_reloc, /* special_function */
109 "R_68K_TLS_GD16", /* name */
110 FALSE, /* partial_inplace */
111 0, /* src_mask */
112 0x0000ffff, /* dst_mask */
113 FALSE), /* pcrel_offset */
114
115 HOWTO (R_68K_TLS_GD8, /* type */
116 0, /* rightshift */
117 0, /* size (0 = byte, 1 = short, 2 = long) */
118 8, /* bitsize */
119 FALSE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_signed, /* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_68K_TLS_GD8", /* name */
124 FALSE, /* partial_inplace */
125 0, /* src_mask */
126 0x000000ff, /* dst_mask */
127 FALSE), /* pcrel_offset */
128
129 /* TLS local dynamic variable reference. */
130 HOWTO (R_68K_TLS_LDM32, /* type */
131 0, /* rightshift */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 FALSE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_bitfield, /* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_68K_TLS_LDM32", /* name */
139 FALSE, /* partial_inplace */
140 0, /* src_mask */
141 0xffffffff, /* dst_mask */
142 FALSE), /* pcrel_offset */
143
144 HOWTO (R_68K_TLS_LDM16, /* type */
145 0, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 16, /* bitsize */
148 FALSE, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 bfd_elf_generic_reloc, /* special_function */
152 "R_68K_TLS_LDM16", /* name */
153 FALSE, /* partial_inplace */
154 0, /* src_mask */
155 0x0000ffff, /* dst_mask */
156 FALSE), /* pcrel_offset */
157
158 HOWTO (R_68K_TLS_LDM8, /* type */
159 0, /* rightshift */
160 0, /* size (0 = byte, 1 = short, 2 = long) */
161 8, /* bitsize */
162 FALSE, /* pc_relative */
163 0, /* bitpos */
164 complain_overflow_signed, /* complain_on_overflow */
165 bfd_elf_generic_reloc, /* special_function */
166 "R_68K_TLS_LDM8", /* name */
167 FALSE, /* partial_inplace */
168 0, /* src_mask */
169 0x000000ff, /* dst_mask */
170 FALSE), /* pcrel_offset */
171
172 HOWTO (R_68K_TLS_LDO32, /* type */
173 0, /* rightshift */
174 2, /* size (0 = byte, 1 = short, 2 = long) */
175 32, /* bitsize */
176 FALSE, /* pc_relative */
177 0, /* bitpos */
178 complain_overflow_bitfield, /* complain_on_overflow */
179 bfd_elf_generic_reloc, /* special_function */
180 "R_68K_TLS_LDO32", /* name */
181 FALSE, /* partial_inplace */
182 0, /* src_mask */
183 0xffffffff, /* dst_mask */
184 FALSE), /* pcrel_offset */
185
186 HOWTO (R_68K_TLS_LDO16, /* type */
187 0, /* rightshift */
188 1, /* size (0 = byte, 1 = short, 2 = long) */
189 16, /* bitsize */
190 FALSE, /* pc_relative */
191 0, /* bitpos */
192 complain_overflow_signed, /* complain_on_overflow */
193 bfd_elf_generic_reloc, /* special_function */
194 "R_68K_TLS_LDO16", /* name */
195 FALSE, /* partial_inplace */
196 0, /* src_mask */
197 0x0000ffff, /* dst_mask */
198 FALSE), /* pcrel_offset */
199
200 HOWTO (R_68K_TLS_LDO8, /* type */
201 0, /* rightshift */
202 0, /* size (0 = byte, 1 = short, 2 = long) */
203 8, /* bitsize */
204 FALSE, /* pc_relative */
205 0, /* bitpos */
206 complain_overflow_signed, /* complain_on_overflow */
207 bfd_elf_generic_reloc, /* special_function */
208 "R_68K_TLS_LDO8", /* name */
209 FALSE, /* partial_inplace */
210 0, /* src_mask */
211 0x000000ff, /* dst_mask */
212 FALSE), /* pcrel_offset */
213
214 /* TLS initial execution variable reference. */
215 HOWTO (R_68K_TLS_IE32, /* type */
216 0, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 32, /* bitsize */
219 FALSE, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 bfd_elf_generic_reloc, /* special_function */
223 "R_68K_TLS_IE32", /* name */
224 FALSE, /* partial_inplace */
225 0, /* src_mask */
226 0xffffffff, /* dst_mask */
227 FALSE), /* pcrel_offset */
228
229 HOWTO (R_68K_TLS_IE16, /* type */
230 0, /* rightshift */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 FALSE, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_signed, /* complain_on_overflow */
236 bfd_elf_generic_reloc, /* special_function */
237 "R_68K_TLS_IE16", /* name */
238 FALSE, /* partial_inplace */
239 0, /* src_mask */
240 0x0000ffff, /* dst_mask */
241 FALSE), /* pcrel_offset */
242
243 HOWTO (R_68K_TLS_IE8, /* type */
244 0, /* rightshift */
245 0, /* size (0 = byte, 1 = short, 2 = long) */
246 8, /* bitsize */
247 FALSE, /* pc_relative */
248 0, /* bitpos */
249 complain_overflow_signed, /* complain_on_overflow */
250 bfd_elf_generic_reloc, /* special_function */
251 "R_68K_TLS_IE8", /* name */
252 FALSE, /* partial_inplace */
253 0, /* src_mask */
254 0x000000ff, /* dst_mask */
255 FALSE), /* pcrel_offset */
256
257 /* TLS local execution variable reference. */
258 HOWTO (R_68K_TLS_LE32, /* type */
259 0, /* rightshift */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
261 32, /* bitsize */
262 FALSE, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_bitfield, /* complain_on_overflow */
265 bfd_elf_generic_reloc, /* special_function */
266 "R_68K_TLS_LE32", /* name */
267 FALSE, /* partial_inplace */
268 0, /* src_mask */
269 0xffffffff, /* dst_mask */
270 FALSE), /* pcrel_offset */
271
272 HOWTO (R_68K_TLS_LE16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
276 FALSE, /* pc_relative */
277 0, /* bitpos */
278 complain_overflow_signed, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_68K_TLS_LE16", /* name */
281 FALSE, /* partial_inplace */
282 0, /* src_mask */
283 0x0000ffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
285
286 HOWTO (R_68K_TLS_LE8, /* type */
287 0, /* rightshift */
288 0, /* size (0 = byte, 1 = short, 2 = long) */
289 8, /* bitsize */
290 FALSE, /* pc_relative */
291 0, /* bitpos */
292 complain_overflow_signed, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* special_function */
294 "R_68K_TLS_LE8", /* name */
295 FALSE, /* partial_inplace */
296 0, /* src_mask */
297 0x000000ff, /* dst_mask */
298 FALSE), /* pcrel_offset */
299
300 /* TLS GD/LD dynamic relocations. */
301 HOWTO (R_68K_TLS_DTPMOD32, /* type */
302 0, /* rightshift */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
304 32, /* bitsize */
305 FALSE, /* pc_relative */
306 0, /* bitpos */
307 complain_overflow_dont, /* complain_on_overflow */
308 bfd_elf_generic_reloc, /* special_function */
309 "R_68K_TLS_DTPMOD32", /* name */
310 FALSE, /* partial_inplace */
311 0, /* src_mask */
312 0xffffffff, /* dst_mask */
313 FALSE), /* pcrel_offset */
314
315 HOWTO (R_68K_TLS_DTPREL32, /* type */
316 0, /* rightshift */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
318 32, /* bitsize */
319 FALSE, /* pc_relative */
320 0, /* bitpos */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_68K_TLS_DTPREL32", /* name */
324 FALSE, /* partial_inplace */
325 0, /* src_mask */
326 0xffffffff, /* dst_mask */
327 FALSE), /* pcrel_offset */
328
329 HOWTO (R_68K_TLS_TPREL32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_dont, /* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_68K_TLS_TPREL32", /* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
252b5132
RH
342};
343
f3185997 344static bfd_boolean
c86ad514 345rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
252b5132 346{
c86ad514
AS
347 unsigned int indx = ELF32_R_TYPE (dst->r_info);
348
349 if (indx >= (unsigned int) R_68K_max)
350 {
695344c0 351 /* xgettext:c-format */
0aa13fee
AM
352 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
353 abfd, indx);
f3185997
NC
354 bfd_set_error (bfd_error_bad_value);
355 return FALSE;
c86ad514
AS
356 }
357 cache_ptr->howto = &howto_table[indx];
f3185997 358 return TRUE;
252b5132
RH
359}
360
361#define elf_info_to_howto rtype_to_howto
362
363static const struct
364{
365 bfd_reloc_code_real_type bfd_val;
366 int elf_val;
cf869cce
NC
367}
368 reloc_map[] =
369{
252b5132
RH
370 { BFD_RELOC_NONE, R_68K_NONE },
371 { BFD_RELOC_32, R_68K_32 },
372 { BFD_RELOC_16, R_68K_16 },
373 { BFD_RELOC_8, R_68K_8 },
374 { BFD_RELOC_32_PCREL, R_68K_PC32 },
375 { BFD_RELOC_16_PCREL, R_68K_PC16 },
376 { BFD_RELOC_8_PCREL, R_68K_PC8 },
377 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
378 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
379 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
380 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
381 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
382 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
383 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
384 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
385 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
386 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
387 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
388 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
389 { BFD_RELOC_NONE, R_68K_COPY },
390 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
391 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
392 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
393 { BFD_RELOC_CTOR, R_68K_32 },
394 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
395 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
cf869cce
NC
396 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
397 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
398 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
399 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
400 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
401 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
402 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
403 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
404 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
405 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
406 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
407 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
408 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
409 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
410 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
252b5132
RH
411};
412
413static reloc_howto_type *
2c3fc389
NC
414reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
415 bfd_reloc_code_real_type code)
252b5132
RH
416{
417 unsigned int i;
418 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
419 {
420 if (reloc_map[i].bfd_val == code)
421 return &howto_table[reloc_map[i].elf_val];
422 }
423 return 0;
424}
425
157090f7
AM
426static reloc_howto_type *
427reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
428{
429 unsigned int i;
430
431 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
432 if (howto_table[i].name != NULL
433 && strcasecmp (howto_table[i].name, r_name) == 0)
434 return &howto_table[i];
435
436 return NULL;
437}
438
252b5132 439#define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
157090f7 440#define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
252b5132 441#define ELF_ARCH bfd_arch_m68k
ae95ffa6 442#define ELF_TARGET_ID M68K_ELF_DATA
252b5132
RH
443\f
444/* Functions for the m68k ELF linker. */
445
446/* The name of the dynamic interpreter. This is put in the .interp
447 section. */
448
449#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
450
cc3e26be
RS
451/* Describes one of the various PLT styles. */
452
453struct elf_m68k_plt_info
454{
455 /* The size of each PLT entry. */
456 bfd_vma size;
457
458 /* The template for the first PLT entry. */
459 const bfd_byte *plt0_entry;
460
461 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
462 The comments by each member indicate the value that the relocation
463 is against. */
464 struct {
465 unsigned int got4; /* .got + 4 */
466 unsigned int got8; /* .got + 8 */
467 } plt0_relocs;
468
469 /* The template for a symbol's PLT entry. */
470 const bfd_byte *symbol_entry;
471
472 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
473 The comments by each member indicate the value that the relocation
474 is against. */
475 struct {
476 unsigned int got; /* the symbol's .got.plt entry */
477 unsigned int plt; /* .plt */
478 } symbol_relocs;
479
480 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
481 The stub starts with "move.l #relocoffset,%d0". */
482 bfd_vma symbol_resolve_entry;
483};
484
252b5132
RH
485/* The size in bytes of an entry in the procedure linkage table. */
486
487#define PLT_ENTRY_SIZE 20
488
489/* The first entry in a procedure linkage table looks like this. See
490 the SVR4 ABI m68k supplement to see how this works. */
491
492static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
493{
494 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
cc3e26be 495 0, 0, 0, 2, /* + (.got + 4) - . */
252b5132 496 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
cc3e26be 497 0, 0, 0, 2, /* + (.got + 8) - . */
252b5132
RH
498 0, 0, 0, 0 /* pad out to 20 bytes. */
499};
500
501/* Subsequent entries in a procedure linkage table look like this. */
502
503static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
504{
505 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
cc3e26be 506 0, 0, 0, 2, /* + (.got.plt entry) - . */
252b5132 507 0x2f, 0x3c, /* move.l #offset,-(%sp) */
cc3e26be 508 0, 0, 0, 0, /* + reloc index */
252b5132 509 0x60, 0xff, /* bra.l .plt */
cc3e26be 510 0, 0, 0, 0 /* + .plt - . */
252b5132
RH
511};
512
695344c0
NC
513static const struct elf_m68k_plt_info elf_m68k_plt_info =
514{
cc3e26be
RS
515 PLT_ENTRY_SIZE,
516 elf_m68k_plt0_entry, { 4, 12 },
517 elf_m68k_plt_entry, { 4, 16 }, 8
518};
238d258f 519
7fb9f789 520#define ISAB_PLT_ENTRY_SIZE 24
238d258f 521
cc3e26be 522static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
238d258f 523{
07d6d2b8
AM
524 0x20, 0x3c, /* move.l #offset,%d0 */
525 0, 0, 0, 0, /* + (.got + 4) - . */
cc3e26be 526 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
07d6d2b8
AM
527 0x20, 0x3c, /* move.l #offset,%d0 */
528 0, 0, 0, 0, /* + (.got + 8) - . */
cc3e26be 529 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
07d6d2b8 530 0x4e, 0xd0, /* jmp (%a0) */
238d258f
NC
531 0x4e, 0x71 /* nop */
532};
533
534/* Subsequent entries in a procedure linkage table look like this. */
535
cc3e26be 536static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
238d258f 537{
07d6d2b8
AM
538 0x20, 0x3c, /* move.l #offset,%d0 */
539 0, 0, 0, 0, /* + (.got.plt entry) - . */
cc3e26be 540 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
07d6d2b8
AM
541 0x4e, 0xd0, /* jmp (%a0) */
542 0x2f, 0x3c, /* move.l #offset,-(%sp) */
543 0, 0, 0, 0, /* + reloc index */
544 0x60, 0xff, /* bra.l .plt */
545 0, 0, 0, 0 /* + .plt - . */
238d258f
NC
546};
547
695344c0
NC
548static const struct elf_m68k_plt_info elf_isab_plt_info =
549{
cc3e26be
RS
550 ISAB_PLT_ENTRY_SIZE,
551 elf_isab_plt0_entry, { 2, 12 },
552 elf_isab_plt_entry, { 2, 20 }, 12
553};
9e1281c7 554
7fb9f789 555#define ISAC_PLT_ENTRY_SIZE 24
9a2e615a
NS
556
557static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
558{
559 0x20, 0x3c, /* move.l #offset,%d0 */
560 0, 0, 0, 0, /* replaced with .got + 4 - . */
561 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
562 0x20, 0x3c, /* move.l #offset,%d0 */
563 0, 0, 0, 0, /* replaced with .got + 8 - . */
564 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
565 0x4e, 0xd0, /* jmp (%a0) */
566 0x4e, 0x71 /* nop */
567};
568
569/* Subsequent entries in a procedure linkage table look like this. */
570
571static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
572{
573 0x20, 0x3c, /* move.l #offset,%d0 */
574 0, 0, 0, 0, /* replaced with (.got entry) - . */
575 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
576 0x4e, 0xd0, /* jmp (%a0) */
577 0x2f, 0x3c, /* move.l #offset,-(%sp) */
578 0, 0, 0, 0, /* replaced with offset into relocation table */
579 0x61, 0xff, /* bsr.l .plt */
07d6d2b8 580 0, 0, 0, 0 /* replaced with .plt - . */
9a2e615a
NS
581};
582
695344c0
NC
583static const struct elf_m68k_plt_info elf_isac_plt_info =
584{
9a2e615a
NS
585 ISAC_PLT_ENTRY_SIZE,
586 elf_isac_plt0_entry, { 2, 12},
587 elf_isac_plt_entry, { 2, 20 }, 12
588};
589
cc3e26be 590#define CPU32_PLT_ENTRY_SIZE 24
9e1281c7 591/* Procedure linkage table entries for the cpu32 */
cc3e26be 592static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
9e1281c7 593{
6091b433 594 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
07d6d2b8 595 0, 0, 0, 2, /* + (.got + 4) - . */
6091b433 596 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
07d6d2b8
AM
597 0, 0, 0, 2, /* + (.got + 8) - . */
598 0x4e, 0xd1, /* jmp %a1@ */
599 0, 0, 0, 0, /* pad out to 24 bytes. */
9e1281c7
CM
600 0, 0
601};
602
cc3e26be 603static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
9e1281c7 604{
1ca42bad 605 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
07d6d2b8
AM
606 0, 0, 0, 2, /* + (.got.plt entry) - . */
607 0x4e, 0xd1, /* jmp %a1@ */
608 0x2f, 0x3c, /* move.l #offset,-(%sp) */
609 0, 0, 0, 0, /* + reloc index */
610 0x60, 0xff, /* bra.l .plt */
611 0, 0, 0, 0, /* + .plt - . */
9e1281c7
CM
612 0, 0
613};
614
695344c0
NC
615static const struct elf_m68k_plt_info elf_cpu32_plt_info =
616{
cc3e26be
RS
617 CPU32_PLT_ENTRY_SIZE,
618 elf_cpu32_plt0_entry, { 4, 12 },
619 elf_cpu32_plt_entry, { 4, 18 }, 10
620};
621
252b5132
RH
622/* The m68k linker needs to keep track of the number of relocs that it
623 decides to copy in check_relocs for each symbol. This is so that it
624 can discard PC relative relocs if it doesn't need them when linking
625 with -Bsymbolic. We store the information in a field extending the
626 regular ELF linker hash table. */
627
628/* This structure keeps track of the number of PC relative relocs we have
629 copied for a given symbol. */
630
631struct elf_m68k_pcrel_relocs_copied
632{
633 /* Next section. */
634 struct elf_m68k_pcrel_relocs_copied *next;
635 /* A section in dynobj. */
636 asection *section;
637 /* Number of relocs copied in this section. */
638 bfd_size_type count;
639};
640
7fb9f789
NC
641/* Forward declaration. */
642struct elf_m68k_got_entry;
643
252b5132
RH
644/* m68k ELF linker hash entry. */
645
646struct elf_m68k_link_hash_entry
647{
648 struct elf_link_hash_entry root;
649
650 /* Number of PC relative relocs copied for this symbol. */
651 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
7fb9f789
NC
652
653 /* Key to got_entries. */
654 unsigned long got_entry_key;
655
656 /* List of GOT entries for this symbol. This list is build during
657 offset finalization and is used within elf_m68k_finish_dynamic_symbol
658 to traverse all GOT entries for a particular symbol.
659
660 ??? We could've used root.got.glist field instead, but having
661 a separate field is cleaner. */
662 struct elf_m68k_got_entry *glist;
252b5132
RH
663};
664
0cca5f05
AS
665#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
666
7fb9f789
NC
667/* Key part of GOT entry in hashtable. */
668struct elf_m68k_got_entry_key
669{
670 /* BFD in which this symbol was defined. NULL for global symbols. */
671 const bfd *bfd;
672
673 /* Symbol index. Either local symbol index or h->got_entry_key. */
674 unsigned long symndx;
cf869cce
NC
675
676 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
677 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
678
679 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
680 matters. That is, we distinguish between, say, R_68K_GOT16O
681 and R_68K_GOT32O when allocating offsets, but they are considered to be
682 the same when searching got->entries. */
683 enum elf_m68k_reloc_type type;
7fb9f789
NC
684};
685
cf869cce
NC
686/* Size of the GOT offset suitable for relocation. */
687enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
688
7fb9f789
NC
689/* Entry of the GOT. */
690struct elf_m68k_got_entry
691{
692 /* GOT entries are put into a got->entries hashtable. This is the key. */
693 struct elf_m68k_got_entry_key key_;
694
695 /* GOT entry data. We need s1 before offset finalization and s2 after. */
696 union
697 {
698 struct
699 {
5c3261b0 700 /* Number of times this entry is referenced. */
7fb9f789 701 bfd_vma refcount;
7fb9f789
NC
702 } s1;
703
704 struct
705 {
706 /* Offset from the start of .got section. To calculate offset relative
de194d85 707 to GOT pointer one should subtract got->offset from this value. */
7fb9f789
NC
708 bfd_vma offset;
709
710 /* Pointer to the next GOT entry for this global symbol.
711 Symbols have at most one entry in one GOT, but might
712 have entries in more than one GOT.
713 Root of this list is h->glist.
714 NULL for local symbols. */
715 struct elf_m68k_got_entry *next;
716 } s2;
717 } u;
718};
719
cf869cce
NC
720/* Return representative type for relocation R_TYPE.
721 This is used to avoid enumerating many relocations in comparisons,
722 switches etc. */
723
724static enum elf_m68k_reloc_type
725elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
726{
727 switch (r_type)
728 {
729 /* In most cases R_68K_GOTx relocations require the very same
730 handling as R_68K_GOT32O relocation. In cases when we need
731 to distinguish between the two, we use explicitly compare against
732 r_type. */
733 case R_68K_GOT32:
734 case R_68K_GOT16:
735 case R_68K_GOT8:
736 case R_68K_GOT32O:
737 case R_68K_GOT16O:
738 case R_68K_GOT8O:
739 return R_68K_GOT32O;
740
741 case R_68K_TLS_GD32:
742 case R_68K_TLS_GD16:
743 case R_68K_TLS_GD8:
744 return R_68K_TLS_GD32;
745
746 case R_68K_TLS_LDM32:
747 case R_68K_TLS_LDM16:
748 case R_68K_TLS_LDM8:
749 return R_68K_TLS_LDM32;
750
751 case R_68K_TLS_IE32:
752 case R_68K_TLS_IE16:
753 case R_68K_TLS_IE8:
754 return R_68K_TLS_IE32;
755
756 default:
757 BFD_ASSERT (FALSE);
758 return 0;
759 }
760}
761
762/* Return size of the GOT entry offset for relocation R_TYPE. */
763
764static enum elf_m68k_got_offset_size
765elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
766{
767 switch (r_type)
768 {
769 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
770 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
771 case R_68K_TLS_IE32:
772 return R_32;
773
774 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
775 case R_68K_TLS_IE16:
776 return R_16;
777
778 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
779 case R_68K_TLS_IE8:
780 return R_8;
781
782 default:
783 BFD_ASSERT (FALSE);
784 return 0;
785 }
786}
787
788/* Return number of GOT entries we need to allocate in GOT for
789 relocation R_TYPE. */
790
791static bfd_vma
792elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
793{
794 switch (elf_m68k_reloc_got_type (r_type))
795 {
796 case R_68K_GOT32O:
797 case R_68K_TLS_IE32:
798 return 1;
799
800 case R_68K_TLS_GD32:
801 case R_68K_TLS_LDM32:
802 return 2;
803
804 default:
805 BFD_ASSERT (FALSE);
806 return 0;
807 }
808}
809
810/* Return TRUE if relocation R_TYPE is a TLS one. */
811
812static bfd_boolean
813elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
814{
815 switch (r_type)
816 {
817 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
818 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
819 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
820 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
821 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
822 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
823 return TRUE;
824
825 default:
826 return FALSE;
827 }
828}
829
7fb9f789
NC
830/* Data structure representing a single GOT. */
831struct elf_m68k_got
832{
833 /* Hashtable of 'struct elf_m68k_got_entry's.
834 Starting size of this table is the maximum number of
835 R_68K_GOT8O entries. */
836 htab_t entries;
837
cf869cce
NC
838 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
839 several GOT slots.
7fb9f789 840
cf869cce
NC
841 n_slots[R_8] is the count of R_8 slots in this GOT.
842 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
843 in this GOT.
844 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
845 in this GOT. This is the total number of slots. */
846 bfd_vma n_slots[R_LAST];
7fb9f789 847
cf869cce 848 /* Number of local (entry->key_.h == NULL) slots in this GOT.
7fb9f789
NC
849 This is only used to properly calculate size of .rela.got section;
850 see elf_m68k_partition_multi_got. */
cf869cce 851 bfd_vma local_n_slots;
7fb9f789
NC
852
853 /* Offset of this GOT relative to beginning of .got section. */
854 bfd_vma offset;
855};
856
857/* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
858struct elf_m68k_bfd2got_entry
859{
860 /* BFD. */
861 const bfd *bfd;
862
863 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
864 GOT structure. After partitioning several BFD's might [and often do]
865 share a single GOT. */
866 struct elf_m68k_got *got;
867};
868
869/* The main data structure holding all the pieces. */
870struct elf_m68k_multi_got
871{
872 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
873 here, then it doesn't need a GOT (this includes the case of a BFD
874 having an empty GOT).
875
876 ??? This hashtable can be replaced by an array indexed by bfd->id. */
877 htab_t bfd2got;
878
879 /* Next symndx to assign a global symbol.
880 h->got_entry_key is initialized from this counter. */
881 unsigned long global_symndx;
882};
883
252b5132
RH
884/* m68k ELF linker hash table. */
885
886struct elf_m68k_link_hash_table
887{
888 struct elf_link_hash_table root;
b6152c34 889
87d72d41
AM
890 /* Small local sym cache. */
891 struct sym_cache sym_cache;
cc3e26be
RS
892
893 /* The PLT format used by this link, or NULL if the format has not
894 yet been chosen. */
895 const struct elf_m68k_plt_info *plt_info;
7fb9f789
NC
896
897 /* True, if GP is loaded within each function which uses it.
898 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
899 bfd_boolean local_gp_p;
900
901 /* Switch controlling use of negative offsets to double the size of GOTs. */
902 bfd_boolean use_neg_got_offsets_p;
903
904 /* Switch controlling generation of multiple GOTs. */
905 bfd_boolean allow_multigot_p;
906
907 /* Multi-GOT data structure. */
908 struct elf_m68k_multi_got multi_got_;
252b5132
RH
909};
910
252b5132
RH
911/* Get the m68k ELF linker hash table from a link_info structure. */
912
913#define elf_m68k_hash_table(p) \
4dfe6ac6
NC
914 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
915 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
252b5132 916
7fb9f789
NC
917/* Shortcut to multi-GOT data. */
918#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
919
252b5132
RH
920/* Create an entry in an m68k ELF linker hash table. */
921
922static struct bfd_hash_entry *
4dfe6ac6
NC
923elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
924 struct bfd_hash_table *table,
925 const char *string)
252b5132 926{
0cca5f05 927 struct bfd_hash_entry *ret = entry;
252b5132
RH
928
929 /* Allocate the structure if it has not already been allocated by a
930 subclass. */
0cca5f05
AS
931 if (ret == NULL)
932 ret = bfd_hash_allocate (table,
933 sizeof (struct elf_m68k_link_hash_entry));
934 if (ret == NULL)
935 return ret;
252b5132
RH
936
937 /* Call the allocation method of the superclass. */
0cca5f05
AS
938 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
939 if (ret != NULL)
7fb9f789
NC
940 {
941 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
942 elf_m68k_hash_entry (ret)->got_entry_key = 0;
943 elf_m68k_hash_entry (ret)->glist = NULL;
944 }
252b5132 945
0cca5f05 946 return ret;
252b5132
RH
947}
948
68faa637
AM
949/* Destroy an m68k ELF linker hash table. */
950
951static void
d495ab0d 952elf_m68k_link_hash_table_free (bfd *obfd)
68faa637
AM
953{
954 struct elf_m68k_link_hash_table *htab;
955
d495ab0d 956 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
68faa637
AM
957
958 if (htab->multi_got_.bfd2got != NULL)
959 {
960 htab_delete (htab->multi_got_.bfd2got);
961 htab->multi_got_.bfd2got = NULL;
962 }
d495ab0d 963 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
964}
965
252b5132
RH
966/* Create an m68k ELF linker hash table. */
967
968static struct bfd_link_hash_table *
4dfe6ac6 969elf_m68k_link_hash_table_create (bfd *abfd)
252b5132
RH
970{
971 struct elf_m68k_link_hash_table *ret;
dc810e39 972 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
252b5132 973
7bf52ea2 974 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
252b5132
RH
975 if (ret == (struct elf_m68k_link_hash_table *) NULL)
976 return NULL;
977
66eb6687
AM
978 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
979 elf_m68k_link_hash_newfunc,
4dfe6ac6
NC
980 sizeof (struct elf_m68k_link_hash_entry),
981 M68K_ELF_DATA))
252b5132 982 {
e2d34d7d 983 free (ret);
252b5132
RH
984 return NULL;
985 }
d495ab0d 986 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
252b5132 987
7fb9f789 988 ret->multi_got_.global_symndx = 1;
b6152c34 989
252b5132
RH
990 return &ret->root.root;
991}
992
266abb8f
NS
993/* Set the right machine number. */
994
995static bfd_boolean
996elf32_m68k_object_p (bfd *abfd)
997{
998 unsigned int mach = 0;
999 unsigned features = 0;
1000 flagword eflags = elf_elfheader (abfd)->e_flags;
1001
425c6cb0 1002 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
266abb8f 1003 features |= m68000;
425c6cb0 1004 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3bdcfdf4
KH
1005 features |= cpu32;
1006 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1007 features |= fido_a;
425c6cb0 1008 else
266abb8f 1009 {
c694fd50 1010 switch (eflags & EF_M68K_CF_ISA_MASK)
266abb8f 1011 {
c694fd50 1012 case EF_M68K_CF_ISA_A_NODIV:
266abb8f
NS
1013 features |= mcfisa_a;
1014 break;
c694fd50 1015 case EF_M68K_CF_ISA_A:
0b2e31dc
NS
1016 features |= mcfisa_a|mcfhwdiv;
1017 break;
c694fd50 1018 case EF_M68K_CF_ISA_A_PLUS:
0b2e31dc
NS
1019 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1020 break;
c694fd50 1021 case EF_M68K_CF_ISA_B_NOUSP:
0b2e31dc
NS
1022 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1023 break;
c694fd50 1024 case EF_M68K_CF_ISA_B:
0b2e31dc
NS
1025 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1026 break;
9a2e615a
NS
1027 case EF_M68K_CF_ISA_C:
1028 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1029 break;
8d100c32
KH
1030 case EF_M68K_CF_ISA_C_NODIV:
1031 features |= mcfisa_a|mcfisa_c|mcfusp;
1032 break;
266abb8f 1033 }
c694fd50 1034 switch (eflags & EF_M68K_CF_MAC_MASK)
266abb8f 1035 {
c694fd50 1036 case EF_M68K_CF_MAC:
266abb8f
NS
1037 features |= mcfmac;
1038 break;
c694fd50 1039 case EF_M68K_CF_EMAC:
266abb8f
NS
1040 features |= mcfemac;
1041 break;
1042 }
c694fd50 1043 if (eflags & EF_M68K_CF_FLOAT)
266abb8f
NS
1044 features |= cfloat;
1045 }
1046
1047 mach = bfd_m68k_features_to_mach (features);
1048 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1049
1050 return TRUE;
1051}
1052
fc9f1df9
NC
1053/* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1054 field based on the machine number. */
1055
1056static void
1057elf_m68k_final_write_processing (bfd *abfd,
1058 bfd_boolean linker ATTRIBUTE_UNUSED)
1059{
1060 int mach = bfd_get_mach (abfd);
1061 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1062
1063 if (!e_flags)
1064 {
1065 unsigned int arch_mask;
1066
1067 arch_mask = bfd_m68k_mach_to_features (mach);
1068
1069 if (arch_mask & m68000)
1070 e_flags = EF_M68K_M68000;
1071 else if (arch_mask & cpu32)
1072 e_flags = EF_M68K_CPU32;
1073 else if (arch_mask & fido_a)
1074 e_flags = EF_M68K_FIDO;
1075 else
1076 {
1077 switch (arch_mask
1078 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1079 {
1080 case mcfisa_a:
1081 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1082 break;
1083 case mcfisa_a | mcfhwdiv:
1084 e_flags |= EF_M68K_CF_ISA_A;
1085 break;
1086 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1087 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1088 break;
1089 case mcfisa_a | mcfisa_b | mcfhwdiv:
1090 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1091 break;
1092 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1093 e_flags |= EF_M68K_CF_ISA_B;
1094 break;
1095 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1096 e_flags |= EF_M68K_CF_ISA_C;
1097 break;
1098 case mcfisa_a | mcfisa_c | mcfusp:
1099 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1100 break;
1101 }
1102 if (arch_mask & mcfmac)
1103 e_flags |= EF_M68K_CF_MAC;
1104 else if (arch_mask & mcfemac)
1105 e_flags |= EF_M68K_CF_EMAC;
1106 if (arch_mask & cfloat)
1107 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1108 }
1109 elf_elfheader (abfd)->e_flags = e_flags;
1110 }
1111}
1112
ae9a127f 1113/* Keep m68k-specific flags in the ELF header. */
fc9f1df9 1114
b34976b6 1115static bfd_boolean
2c3fc389 1116elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
9e1281c7
CM
1117{
1118 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
1119 elf_flags_init (abfd) = TRUE;
1120 return TRUE;
9e1281c7
CM
1121}
1122
9e1281c7
CM
1123/* Merge backend specific data from an object file to the output
1124 object file when linking. */
b34976b6 1125static bfd_boolean
50e03d47 1126elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
9e1281c7 1127{
50e03d47 1128 bfd *obfd = info->output_bfd;
9e1281c7
CM
1129 flagword out_flags;
1130 flagword in_flags;
a9d34880
RS
1131 flagword out_isa;
1132 flagword in_isa;
1133 const bfd_arch_info_type *arch_info;
7fb9f789 1134
9e1281c7
CM
1135 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1136 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
266abb8f
NS
1137 return FALSE;
1138
a9d34880
RS
1139 /* Get the merged machine. This checks for incompatibility between
1140 Coldfire & non-Coldfire flags, incompability between different
1141 Coldfire ISAs, and incompability between different MAC types. */
1142 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1143 if (!arch_info)
1144 return FALSE;
9e1281c7 1145
7fb9f789
NC
1146 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1147
1148 in_flags = elf_elfheader (ibfd)->e_flags;
1149 if (!elf_flags_init (obfd))
1150 {
1151 elf_flags_init (obfd) = TRUE;
1152 out_flags = in_flags;
1153 }
1154 else
1155 {
1156 out_flags = elf_elfheader (obfd)->e_flags;
1157 unsigned int variant_mask;
1158
1159 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1160 variant_mask = 0;
1161 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1162 variant_mask = 0;
1163 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1164 variant_mask = 0;
1165 else
1166 variant_mask = EF_M68K_CF_ISA_MASK;
1167
1168 in_isa = (in_flags & variant_mask);
1169 out_isa = (out_flags & variant_mask);
1170 if (in_isa > out_isa)
1171 out_flags ^= in_isa ^ out_isa;
1172 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1173 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1174 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1175 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1176 out_flags = EF_M68K_FIDO;
1177 else
1178 out_flags |= in_flags ^ in_isa;
1179 }
1180 elf_elfheader (obfd)->e_flags = out_flags;
1181
1182 return TRUE;
1183}
1184
1185/* Display the flags field. */
1186
1187static bfd_boolean
1188elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1189{
1190 FILE *file = (FILE *) ptr;
1191 flagword eflags = elf_elfheader (abfd)->e_flags;
1192
1193 BFD_ASSERT (abfd != NULL && ptr != NULL);
1194
1195 /* Print normal ELF private data. */
1196 _bfd_elf_print_private_bfd_data (abfd, ptr);
1197
1198 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1199
1200 /* xgettext:c-format */
1201 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1202
1203 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1204 fprintf (file, " [m68000]");
1205 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1206 fprintf (file, " [cpu32]");
1207 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1208 fprintf (file, " [fido]");
1209 else
1210 {
1211 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1212 fprintf (file, " [cfv4e]");
1213
1214 if (eflags & EF_M68K_CF_ISA_MASK)
1215 {
1216 char const *isa = _("unknown");
1217 char const *mac = _("unknown");
1218 char const *additional = "";
1219
1220 switch (eflags & EF_M68K_CF_ISA_MASK)
1221 {
1222 case EF_M68K_CF_ISA_A_NODIV:
1223 isa = "A";
1224 additional = " [nodiv]";
1225 break;
1226 case EF_M68K_CF_ISA_A:
1227 isa = "A";
1228 break;
1229 case EF_M68K_CF_ISA_A_PLUS:
1230 isa = "A+";
1231 break;
1232 case EF_M68K_CF_ISA_B_NOUSP:
1233 isa = "B";
1234 additional = " [nousp]";
1235 break;
1236 case EF_M68K_CF_ISA_B:
1237 isa = "B";
1238 break;
1239 case EF_M68K_CF_ISA_C:
1240 isa = "C";
1241 break;
1242 case EF_M68K_CF_ISA_C_NODIV:
1243 isa = "C";
1244 additional = " [nodiv]";
1245 break;
1246 }
1247 fprintf (file, " [isa %s]%s", isa, additional);
1248
1249 if (eflags & EF_M68K_CF_FLOAT)
1250 fprintf (file, " [float]");
1251
1252 switch (eflags & EF_M68K_CF_MAC_MASK)
1253 {
1254 case 0:
1255 mac = NULL;
1256 break;
1257 case EF_M68K_CF_MAC:
1258 mac = "mac";
1259 break;
1260 case EF_M68K_CF_EMAC:
1261 mac = "emac";
1262 break;
f608cd77
NS
1263 case EF_M68K_CF_EMAC_B:
1264 mac = "emac_b";
1265 break;
7fb9f789
NC
1266 }
1267 if (mac)
1268 fprintf (file, " [%s]", mac);
1269 }
1270 }
1271
1272 fputc ('\n', file);
1273
1274 return TRUE;
1275}
1276
1277/* Multi-GOT support implementation design:
1278
1279 Multi-GOT starts in check_relocs hook. There we scan all
1280 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1281 for it. If a single BFD appears to require too many GOT slots with
1282 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1283 to user.
1284 After check_relocs has been invoked for each input BFD, we have
1285 constructed a GOT for each input BFD.
1286
1287 To minimize total number of GOTs required for a particular output BFD
1288 (as some environments support only 1 GOT per output object) we try
1289 to merge some of the GOTs to share an offset space. Ideally [and in most
1290 cases] we end up with a single GOT. In cases when there are too many
1291 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1292 several GOTs, assuming the environment can handle them.
1293
1294 Partitioning is done in elf_m68k_partition_multi_got. We start with
1295 an empty GOT and traverse bfd2got hashtable putting got_entries from
1296 local GOTs to the new 'big' one. We do that by constructing an
1297 intermediate GOT holding all the entries the local GOT has and the big
1298 GOT lacks. Then we check if there is room in the big GOT to accomodate
1299 all the entries from diff. On success we add those entries to the big
1300 GOT; on failure we start the new 'big' GOT and retry the adding of
1301 entries from the local GOT. Note that this retry will always succeed as
1302 each local GOT doesn't overflow the limits. After partitioning we
1303 end up with each bfd assigned one of the big GOTs. GOT entries in the
1304 big GOTs are initialized with GOT offsets. Note that big GOTs are
1305 positioned consequently in program space and represent a single huge GOT
1306 to the outside world.
1307
1308 After that we get to elf_m68k_relocate_section. There we
1309 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1310 relocations to refer to appropriate [assigned to current input_bfd]
1311 big GOT.
1312
1313 Notes:
1314
cf869cce
NC
1315 GOT entry type: We have several types of GOT entries.
1316 * R_8 type is used in entries for symbols that have at least one
1317 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
7fb9f789 1318 such entries in one GOT.
cf869cce
NC
1319 * R_16 type is used in entries for symbols that have at least one
1320 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
7fb9f789 1321 We can have at most 0x4000 such entries in one GOT.
cf869cce
NC
1322 * R_32 type is used in all other cases. We can have as many
1323 such entries in one GOT as we'd like.
7fb9f789
NC
1324 When counting relocations we have to include the count of the smaller
1325 ranged relocations in the counts of the larger ranged ones in order
1326 to correctly detect overflow.
1327
1328 Sorting the GOT: In each GOT starting offsets are assigned to
cf869cce
NC
1329 R_8 entries, which are followed by R_16 entries, and
1330 R_32 entries go at the end. See finalize_got_offsets for details.
7fb9f789
NC
1331
1332 Negative GOT offsets: To double usable offset range of GOTs we use
1333 negative offsets. As we assign entries with GOT offsets relative to
1334 start of .got section, the offset values are positive. They become
1335 negative only in relocate_section where got->offset value is
1336 subtracted from them.
1337
1338 3 special GOT entries: There are 3 special GOT entries used internally
1339 by loader. These entries happen to be placed to .got.plt section,
1340 so we don't do anything about them in multi-GOT support.
1341
1342 Memory management: All data except for hashtables
1343 multi_got->bfd2got and got->entries are allocated on
1344 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1345 to most functions), so we don't need to care to free them. At the
1346 moment of allocation hashtables are being linked into main data
1347 structure (multi_got), all pieces of which are reachable from
1348 elf_m68k_multi_got (info). We deallocate them in
1349 elf_m68k_link_hash_table_free. */
1350
1351/* Initialize GOT. */
1352
1353static void
cf869cce
NC
1354elf_m68k_init_got (struct elf_m68k_got *got)
1355{
1356 got->entries = NULL;
1357 got->n_slots[R_8] = 0;
1358 got->n_slots[R_16] = 0;
1359 got->n_slots[R_32] = 0;
1360 got->local_n_slots = 0;
1361 got->offset = (bfd_vma) -1;
7fb9f789
NC
1362}
1363
1364/* Destruct GOT. */
1365
1366static void
1367elf_m68k_clear_got (struct elf_m68k_got *got)
1368{
1369 if (got->entries != NULL)
1370 {
1371 htab_delete (got->entries);
1372 got->entries = NULL;
1373 }
1374}
1375
1376/* Create and empty GOT structure. INFO is the context where memory
1377 should be allocated. */
1378
1379static struct elf_m68k_got *
1380elf_m68k_create_empty_got (struct bfd_link_info *info)
1381{
1382 struct elf_m68k_got *got;
1383
1384 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1385 if (got == NULL)
1386 return NULL;
1387
cf869cce 1388 elf_m68k_init_got (got);
7fb9f789
NC
1389
1390 return got;
1391}
1392
1393/* Initialize KEY. */
1394
1395static void
1396elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1397 struct elf_link_hash_entry *h,
cf869cce
NC
1398 const bfd *abfd, unsigned long symndx,
1399 enum elf_m68k_reloc_type reloc_type)
7fb9f789 1400{
cf869cce
NC
1401 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1402 /* All TLS_LDM relocations share a single GOT entry. */
1403 {
1404 key->bfd = NULL;
1405 key->symndx = 0;
1406 }
1407 else if (h != NULL)
1408 /* Global symbols are identified with their got_entry_key. */
7fb9f789
NC
1409 {
1410 key->bfd = NULL;
1411 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1412 BFD_ASSERT (key->symndx != 0);
1413 }
1414 else
cf869cce 1415 /* Local symbols are identified by BFD they appear in and symndx. */
7fb9f789
NC
1416 {
1417 key->bfd = abfd;
1418 key->symndx = symndx;
1419 }
cf869cce
NC
1420
1421 key->type = reloc_type;
7fb9f789
NC
1422}
1423
1424/* Calculate hash of got_entry.
1425 ??? Is it good? */
1426
1427static hashval_t
1428elf_m68k_got_entry_hash (const void *_entry)
1429{
1430 const struct elf_m68k_got_entry_key *key;
1431
1432 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1433
cf869cce
NC
1434 return (key->symndx
1435 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1436 + elf_m68k_reloc_got_type (key->type));
7fb9f789
NC
1437}
1438
1439/* Check if two got entries are equal. */
1440
1441static int
1442elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1443{
1444 const struct elf_m68k_got_entry_key *key1;
1445 const struct elf_m68k_got_entry_key *key2;
1446
1447 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1448 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1449
1450 return (key1->bfd == key2->bfd
cf869cce
NC
1451 && key1->symndx == key2->symndx
1452 && (elf_m68k_reloc_got_type (key1->type)
1453 == elf_m68k_reloc_got_type (key2->type)));
7fb9f789
NC
1454}
1455
cf869cce
NC
1456/* When using negative offsets, we allocate one extra R_8, one extra R_16
1457 and one extra R_32 slots to simplify handling of 2-slot entries during
1458 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1459
1460/* Maximal number of R_8 slots in a single GOT. */
1461#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
7fb9f789 1462 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
cf869cce 1463 ? (0x40 - 1) \
7fb9f789
NC
1464 : 0x20)
1465
cf869cce
NC
1466/* Maximal number of R_8 and R_16 slots in a single GOT. */
1467#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
7fb9f789 1468 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
cf869cce 1469 ? (0x4000 - 2) \
7fb9f789
NC
1470 : 0x2000)
1471
1472/* SEARCH - simply search the hashtable, don't insert new entries or fail when
1473 the entry cannot be found.
1474 FIND_OR_CREATE - search for an existing entry, but create new if there's
1475 no such.
1476 MUST_FIND - search for an existing entry and assert that it exist.
1477 MUST_CREATE - assert that there's no such entry and create new one. */
1478enum elf_m68k_get_entry_howto
1479 {
1480 SEARCH,
1481 FIND_OR_CREATE,
1482 MUST_FIND,
1483 MUST_CREATE
1484 };
1485
1486/* Get or create (depending on HOWTO) entry with KEY in GOT.
1487 INFO is context in which memory should be allocated (can be NULL if
1488 HOWTO is SEARCH or MUST_FIND). */
1489
1490static struct elf_m68k_got_entry *
1491elf_m68k_get_got_entry (struct elf_m68k_got *got,
1492 const struct elf_m68k_got_entry_key *key,
1493 enum elf_m68k_get_entry_howto howto,
1494 struct bfd_link_info *info)
1495{
1496 struct elf_m68k_got_entry entry_;
1497 struct elf_m68k_got_entry *entry;
1498 void **ptr;
1499
1500 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1501
1502 if (got->entries == NULL)
1503 /* This is the first entry in ABFD. Initialize hashtable. */
1504 {
1505 if (howto == SEARCH)
1506 return NULL;
1507
cf869cce 1508 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
7fb9f789
NC
1509 (info),
1510 elf_m68k_got_entry_hash,
1511 elf_m68k_got_entry_eq, NULL);
1512 if (got->entries == NULL)
1513 {
1514 bfd_set_error (bfd_error_no_memory);
1515 return NULL;
1516 }
1517 }
1518
1519 entry_.key_ = *key;
1520 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1521 ? INSERT : NO_INSERT));
1522 if (ptr == NULL)
1523 {
1524 if (howto == SEARCH)
1525 /* Entry not found. */
1526 return NULL;
1527
1528 /* We're out of memory. */
1529 bfd_set_error (bfd_error_no_memory);
1530 return NULL;
1531 }
1532
1533 if (*ptr == NULL)
1534 /* We didn't find the entry and we're asked to create a new one. */
1535 {
1536 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1537
1538 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1539 if (entry == NULL)
1540 return NULL;
1541
1542 /* Initialize new entry. */
1543 entry->key_ = *key;
1544
1545 entry->u.s1.refcount = 0;
cf869cce
NC
1546
1547 /* Mark the entry as not initialized. */
1548 entry->key_.type = R_68K_max;
7fb9f789
NC
1549
1550 *ptr = entry;
1551 }
1552 else
1553 /* We found the entry. */
1554 {
1555 BFD_ASSERT (howto != MUST_CREATE);
1556
1557 entry = *ptr;
1558 }
1559
1560 return entry;
1561}
1562
1563/* Update GOT counters when merging entry of WAS type with entry of NEW type.
1564 Return the value to which ENTRY's type should be set. */
1565
cf869cce
NC
1566static enum elf_m68k_reloc_type
1567elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1568 enum elf_m68k_reloc_type was,
d3ce72d0 1569 enum elf_m68k_reloc_type new_reloc)
7fb9f789 1570{
cf869cce
NC
1571 enum elf_m68k_got_offset_size was_size;
1572 enum elf_m68k_got_offset_size new_size;
1573 bfd_vma n_slots;
1574
1575 if (was == R_68K_max)
1576 /* The type of the entry is not initialized yet. */
7fb9f789 1577 {
cf869cce
NC
1578 /* Update all got->n_slots counters, including n_slots[R_32]. */
1579 was_size = R_LAST;
7fb9f789 1580
d3ce72d0 1581 was = new_reloc;
7fb9f789 1582 }
7fb9f789 1583 else
cf869cce
NC
1584 {
1585 /* !!! We, probably, should emit an error rather then fail on assert
1586 in such a case. */
1587 BFD_ASSERT (elf_m68k_reloc_got_type (was)
d3ce72d0 1588 == elf_m68k_reloc_got_type (new_reloc));
cf869cce
NC
1589
1590 was_size = elf_m68k_reloc_got_offset_size (was);
1591 }
1592
d3ce72d0
NC
1593 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1594 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
cf869cce
NC
1595
1596 while (was_size > new_size)
1597 {
1598 --was_size;
1599 got->n_slots[was_size] += n_slots;
1600 }
7fb9f789 1601
d3ce72d0 1602 if (new_reloc > was)
cf869cce
NC
1603 /* Relocations are ordered from bigger got offset size to lesser,
1604 so choose the relocation type with lesser offset size. */
d3ce72d0 1605 was = new_reloc;
cf869cce
NC
1606
1607 return was;
7fb9f789
NC
1608}
1609
7fb9f789
NC
1610/* Add new or update existing entry to GOT.
1611 H, ABFD, TYPE and SYMNDX is data for the entry.
1612 INFO is a context where memory should be allocated. */
1613
1614static struct elf_m68k_got_entry *
1615elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1616 struct elf_link_hash_entry *h,
1617 const bfd *abfd,
cf869cce
NC
1618 enum elf_m68k_reloc_type reloc_type,
1619 unsigned long symndx,
7fb9f789
NC
1620 struct bfd_link_info *info)
1621{
1622 struct elf_m68k_got_entry_key key_;
1623 struct elf_m68k_got_entry *entry;
1624
1625 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1626 elf_m68k_hash_entry (h)->got_entry_key
1627 = elf_m68k_multi_got (info)->global_symndx++;
1628
cf869cce 1629 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
7fb9f789
NC
1630
1631 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1632 if (entry == NULL)
1633 return NULL;
1634
cf869cce
NC
1635 /* Determine entry's type and update got->n_slots counters. */
1636 entry->key_.type = elf_m68k_update_got_entry_type (got,
1637 entry->key_.type,
1638 reloc_type);
1639
7fb9f789
NC
1640 /* Update refcount. */
1641 ++entry->u.s1.refcount;
1642
1643 if (entry->u.s1.refcount == 1)
1644 /* We see this entry for the first time. */
1645 {
1646 if (entry->key_.bfd != NULL)
cf869cce 1647 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
7fb9f789
NC
1648 }
1649
cf869cce 1650 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
7fb9f789 1651
cf869cce
NC
1652 if ((got->n_slots[R_8]
1653 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1654 || (got->n_slots[R_16]
1655 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
7fb9f789
NC
1656 /* This BFD has too many relocation. */
1657 {
cf869cce 1658 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
695344c0 1659 /* xgettext:c-format */
871b3ab2 1660 _bfd_error_handler (_("%pB: GOT overflow: "
38f14ab8 1661 "number of relocations with 8-bit "
4eca0228
AM
1662 "offset > %d"),
1663 abfd,
1664 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
7fb9f789 1665 else
695344c0 1666 /* xgettext:c-format */
871b3ab2 1667 _bfd_error_handler (_("%pB: GOT overflow: "
38f14ab8 1668 "number of relocations with 8- or 16-bit "
4eca0228
AM
1669 "offset > %d"),
1670 abfd,
1671 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
7fb9f789
NC
1672
1673 return NULL;
1674 }
1675
1676 return entry;
1677}
1678
1679/* Compute the hash value of the bfd in a bfd2got hash entry. */
1680
1681static hashval_t
1682elf_m68k_bfd2got_entry_hash (const void *entry)
1683{
1684 const struct elf_m68k_bfd2got_entry *e;
1685
1686 e = (const struct elf_m68k_bfd2got_entry *) entry;
1687
1688 return e->bfd->id;
1689}
1690
1691/* Check whether two hash entries have the same bfd. */
1692
1693static int
1694elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1695{
1696 const struct elf_m68k_bfd2got_entry *e1;
1697 const struct elf_m68k_bfd2got_entry *e2;
1698
1699 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1700 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1701
1702 return e1->bfd == e2->bfd;
1703}
1704
1705/* Destruct a bfd2got entry. */
1706
1707static void
1708elf_m68k_bfd2got_entry_del (void *_entry)
1709{
1710 struct elf_m68k_bfd2got_entry *entry;
1711
1712 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1713
1714 BFD_ASSERT (entry->got != NULL);
1715 elf_m68k_clear_got (entry->got);
1716}
1717
1718/* Find existing or create new (depending on HOWTO) bfd2got entry in
1719 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1720 memory should be allocated. */
1721
1722static struct elf_m68k_bfd2got_entry *
1723elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1724 const bfd *abfd,
1725 enum elf_m68k_get_entry_howto howto,
1726 struct bfd_link_info *info)
1727{
1728 struct elf_m68k_bfd2got_entry entry_;
1729 void **ptr;
1730 struct elf_m68k_bfd2got_entry *entry;
1731
1732 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1733
1734 if (multi_got->bfd2got == NULL)
1735 /* This is the first GOT. Initialize bfd2got. */
1736 {
1737 if (howto == SEARCH)
1738 return NULL;
1739
1740 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1741 elf_m68k_bfd2got_entry_eq,
1742 elf_m68k_bfd2got_entry_del);
1743 if (multi_got->bfd2got == NULL)
1744 {
1745 bfd_set_error (bfd_error_no_memory);
1746 return NULL;
1747 }
1748 }
1749
1750 entry_.bfd = abfd;
1751 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1752 ? INSERT : NO_INSERT));
1753 if (ptr == NULL)
1754 {
1755 if (howto == SEARCH)
1756 /* Entry not found. */
1757 return NULL;
1758
1759 /* We're out of memory. */
1760 bfd_set_error (bfd_error_no_memory);
1761 return NULL;
1762 }
1763
1764 if (*ptr == NULL)
1765 /* Entry was not found. Create new one. */
1766 {
1767 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1768
1769 entry = ((struct elf_m68k_bfd2got_entry *)
1770 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1771 if (entry == NULL)
1772 return NULL;
1773
1774 entry->bfd = abfd;
1775
1776 entry->got = elf_m68k_create_empty_got (info);
1777 if (entry->got == NULL)
1778 return NULL;
1779
1780 *ptr = entry;
1781 }
1782 else
1783 {
1784 BFD_ASSERT (howto != MUST_CREATE);
1785
1786 /* Return existing entry. */
1787 entry = *ptr;
1788 }
1789
1790 return entry;
1791}
1792
1793struct elf_m68k_can_merge_gots_arg
1794{
1795 /* A current_got that we constructing a DIFF against. */
1796 struct elf_m68k_got *big;
1797
1798 /* GOT holding entries not present or that should be changed in
1799 BIG. */
1800 struct elf_m68k_got *diff;
1801
1802 /* Context where to allocate memory. */
1803 struct bfd_link_info *info;
1804
1805 /* Error flag. */
1806 bfd_boolean error_p;
1807};
1808
1809/* Process a single entry from the small GOT to see if it should be added
1810 or updated in the big GOT. */
1811
1812static int
1813elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1814{
1815 const struct elf_m68k_got_entry *entry1;
1816 struct elf_m68k_can_merge_gots_arg *arg;
1817 const struct elf_m68k_got_entry *entry2;
cf869cce 1818 enum elf_m68k_reloc_type type;
7fb9f789
NC
1819
1820 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1821 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1822
1823 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1824
1825 if (entry2 != NULL)
cf869cce 1826 /* We found an existing entry. Check if we should update it. */
7fb9f789 1827 {
cf869cce
NC
1828 type = elf_m68k_update_got_entry_type (arg->diff,
1829 entry2->key_.type,
1830 entry1->key_.type);
7fb9f789 1831
cf869cce 1832 if (type == entry2->key_.type)
7fb9f789
NC
1833 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1834 To skip creation of difference entry we use the type,
1835 which we won't see in GOT entries for sure. */
cf869cce 1836 type = R_68K_max;
7fb9f789
NC
1837 }
1838 else
cf869cce 1839 /* We didn't find the entry. Add entry1 to DIFF. */
7fb9f789 1840 {
cf869cce 1841 BFD_ASSERT (entry1->key_.type != R_68K_max);
7fb9f789 1842
cf869cce
NC
1843 type = elf_m68k_update_got_entry_type (arg->diff,
1844 R_68K_max, entry1->key_.type);
7fb9f789 1845
7fb9f789 1846 if (entry1->key_.bfd != NULL)
cf869cce 1847 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
7fb9f789
NC
1848 }
1849
cf869cce 1850 if (type != R_68K_max)
7fb9f789
NC
1851 /* Create an entry in DIFF. */
1852 {
1853 struct elf_m68k_got_entry *entry;
1854
1855 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1856 arg->info);
1857 if (entry == NULL)
1858 {
1859 arg->error_p = TRUE;
1860 return 0;
1861 }
1862
cf869cce 1863 entry->key_.type = type;
7fb9f789
NC
1864 }
1865
1866 return 1;
1867}
1868
1869/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1870 Construct DIFF GOT holding the entries which should be added or updated
1871 in BIG GOT to accumulate information from SMALL.
1872 INFO is the context where memory should be allocated. */
1873
1874static bfd_boolean
1875elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1876 const struct elf_m68k_got *small,
1877 struct bfd_link_info *info,
1878 struct elf_m68k_got *diff)
1879{
1880 struct elf_m68k_can_merge_gots_arg arg_;
1881
1882 BFD_ASSERT (small->offset == (bfd_vma) -1);
1883
1884 arg_.big = big;
1885 arg_.diff = diff;
1886 arg_.info = info;
1887 arg_.error_p = FALSE;
1888 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1889 if (arg_.error_p)
1890 {
1891 diff->offset = 0;
1892 return FALSE;
1893 }
1894
1895 /* Check for overflow. */
cf869cce
NC
1896 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1897 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1898 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1899 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
7fb9f789
NC
1900 return FALSE;
1901
1902 return TRUE;
1903}
1904
1905struct elf_m68k_merge_gots_arg
1906{
1907 /* The BIG got. */
1908 struct elf_m68k_got *big;
1909
1910 /* Context where memory should be allocated. */
1911 struct bfd_link_info *info;
1912
1913 /* Error flag. */
1914 bfd_boolean error_p;
1915};
1916
1917/* Process a single entry from DIFF got. Add or update corresponding
1918 entry in the BIG got. */
1919
1920static int
1921elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1922{
1923 const struct elf_m68k_got_entry *from;
1924 struct elf_m68k_merge_gots_arg *arg;
1925 struct elf_m68k_got_entry *to;
1926
1927 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1928 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1929
1930 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1931 arg->info);
1932 if (to == NULL)
1933 {
1934 arg->error_p = TRUE;
1935 return 0;
1936 }
1937
1938 BFD_ASSERT (to->u.s1.refcount == 0);
1939 /* All we need to merge is TYPE. */
cf869cce 1940 to->key_.type = from->key_.type;
7fb9f789
NC
1941
1942 return 1;
1943}
1944
1945/* Merge data from DIFF to BIG. INFO is context where memory should be
1946 allocated. */
1947
1948static bfd_boolean
1949elf_m68k_merge_gots (struct elf_m68k_got *big,
1950 struct elf_m68k_got *diff,
1951 struct bfd_link_info *info)
1952{
1953 if (diff->entries != NULL)
1954 /* DIFF is not empty. Merge it into BIG GOT. */
1955 {
1956 struct elf_m68k_merge_gots_arg arg_;
1957
1958 /* Merge entries. */
1959 arg_.big = big;
1960 arg_.info = info;
1961 arg_.error_p = FALSE;
1962 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1963 if (arg_.error_p)
1964 return FALSE;
1965
1966 /* Merge counters. */
cf869cce
NC
1967 big->n_slots[R_8] += diff->n_slots[R_8];
1968 big->n_slots[R_16] += diff->n_slots[R_16];
1969 big->n_slots[R_32] += diff->n_slots[R_32];
1970 big->local_n_slots += diff->local_n_slots;
7fb9f789
NC
1971 }
1972 else
1973 /* DIFF is empty. */
1974 {
cf869cce
NC
1975 BFD_ASSERT (diff->n_slots[R_8] == 0);
1976 BFD_ASSERT (diff->n_slots[R_16] == 0);
1977 BFD_ASSERT (diff->n_slots[R_32] == 0);
1978 BFD_ASSERT (diff->local_n_slots == 0);
7fb9f789
NC
1979 }
1980
1981 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
cf869cce
NC
1982 || ((big->n_slots[R_8]
1983 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1984 && (big->n_slots[R_16]
1985 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
7fb9f789
NC
1986
1987 return TRUE;
1988}
1989
1990struct elf_m68k_finalize_got_offsets_arg
1991{
cf869cce
NC
1992 /* Ranges of the offsets for GOT entries.
1993 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
1994 R_x is R_8, R_16 and R_32. */
1995 bfd_vma *offset1;
1996 bfd_vma *offset2;
7fb9f789
NC
1997
1998 /* Mapping from global symndx to global symbols.
1999 This is used to build lists of got entries for global symbols. */
2000 struct elf_m68k_link_hash_entry **symndx2h;
cf869cce
NC
2001
2002 bfd_vma n_ldm_entries;
7fb9f789
NC
2003};
2004
2005/* Assign ENTRY an offset. Build list of GOT entries for global symbols
2006 along the way. */
2007
2008static int
2009elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2010{
2011 struct elf_m68k_got_entry *entry;
2012 struct elf_m68k_finalize_got_offsets_arg *arg;
2013
cf869cce
NC
2014 enum elf_m68k_got_offset_size got_offset_size;
2015 bfd_vma entry_size;
2016
7fb9f789
NC
2017 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2018 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2019
2020 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2021 BFD_ASSERT (entry->u.s1.refcount == 0);
2022
cf869cce
NC
2023 /* Get GOT offset size for the entry . */
2024 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
7fb9f789 2025
cf869cce
NC
2026 /* Calculate entry size in bytes. */
2027 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
7fb9f789 2028
cf869cce
NC
2029 /* Check if we should switch to negative range of the offsets. */
2030 if (arg->offset1[got_offset_size] + entry_size
2031 > arg->offset2[got_offset_size])
2032 {
2033 /* Verify that this is the only switch to negative range for
2034 got_offset_size. If this assertion fails, then we've miscalculated
2035 range for got_offset_size entries in
2036 elf_m68k_finalize_got_offsets. */
2037 BFD_ASSERT (arg->offset2[got_offset_size]
2038 != arg->offset2[-(int) got_offset_size - 1]);
2039
2040 /* Switch. */
2041 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2042 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2043
2044 /* Verify that now we have enough room for the entry. */
2045 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2046 <= arg->offset2[got_offset_size]);
7fb9f789
NC
2047 }
2048
cf869cce
NC
2049 /* Assign offset to entry. */
2050 entry->u.s2.offset = arg->offset1[got_offset_size];
2051 arg->offset1[got_offset_size] += entry_size;
2052
7fb9f789
NC
2053 if (entry->key_.bfd == NULL)
2054 /* Hook up this entry into the list of got_entries of H. */
2055 {
2056 struct elf_m68k_link_hash_entry *h;
2057
7fb9f789 2058 h = arg->symndx2h[entry->key_.symndx];
cf869cce
NC
2059 if (h != NULL)
2060 {
2061 entry->u.s2.next = h->glist;
2062 h->glist = entry;
2063 }
2064 else
2065 /* This should be the entry for TLS_LDM relocation then. */
2066 {
2067 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2068 == R_68K_TLS_LDM32)
2069 && entry->key_.symndx == 0);
7fb9f789 2070
cf869cce
NC
2071 ++arg->n_ldm_entries;
2072 }
7fb9f789
NC
2073 }
2074 else
2075 /* This entry is for local symbol. */
2076 entry->u.s2.next = NULL;
2077
2078 return 1;
2079}
2080
2081/* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2082 should use negative offsets.
2083 Build list of GOT entries for global symbols along the way.
2084 SYMNDX2H is mapping from global symbol indices to actual
cf869cce
NC
2085 global symbols.
2086 Return offset at which next GOT should start. */
7fb9f789
NC
2087
2088static void
2089elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2090 bfd_boolean use_neg_got_offsets_p,
cf869cce
NC
2091 struct elf_m68k_link_hash_entry **symndx2h,
2092 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
7fb9f789
NC
2093{
2094 struct elf_m68k_finalize_got_offsets_arg arg_;
cf869cce
NC
2095 bfd_vma offset1_[2 * R_LAST];
2096 bfd_vma offset2_[2 * R_LAST];
2097 int i;
2098 bfd_vma start_offset;
7fb9f789
NC
2099
2100 BFD_ASSERT (got->offset != (bfd_vma) -1);
2101
2102 /* We set entry offsets relative to the .got section (and not the
2103 start of a particular GOT), so that we can use them in
cf869cce 2104 finish_dynamic_symbol without needing to know the GOT which they come
7fb9f789
NC
2105 from. */
2106
cf869cce
NC
2107 /* Put offset1 in the middle of offset1_, same for offset2. */
2108 arg_.offset1 = offset1_ + R_LAST;
2109 arg_.offset2 = offset2_ + R_LAST;
2110
2111 start_offset = got->offset;
2112
7fb9f789 2113 if (use_neg_got_offsets_p)
cf869cce
NC
2114 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2115 i = -(int) R_32 - 1;
2116 else
2117 /* Setup positives ranges for R_8, R_16 and R_32. */
2118 i = (int) R_8;
2119
2120 for (; i <= (int) R_32; ++i)
7fb9f789 2121 {
cf869cce 2122 int j;
7fb9f789
NC
2123 size_t n;
2124
cf869cce
NC
2125 /* Set beginning of the range of offsets I. */
2126 arg_.offset1[i] = start_offset;
7fb9f789 2127
cf869cce
NC
2128 /* Calculate number of slots that require I offsets. */
2129 j = (i >= 0) ? i : -i - 1;
2130 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2131 n = got->n_slots[j] - n;
7fb9f789 2132
cf869cce
NC
2133 if (use_neg_got_offsets_p && n != 0)
2134 {
2135 if (i < 0)
2136 /* We first fill the positive side of the range, so we might
2137 end up with one empty slot at that side when we can't fit
2138 whole 2-slot entry. Account for that at negative side of
2139 the interval with one additional entry. */
2140 n = n / 2 + 1;
2141 else
2142 /* When the number of slots is odd, make positive side of the
2143 range one entry bigger. */
2144 n = (n + 1) / 2;
2145 }
2146
2147 /* N is the number of slots that require I offsets.
2148 Calculate length of the range for I offsets. */
2149 n = 4 * n;
7fb9f789 2150
cf869cce
NC
2151 /* Set end of the range. */
2152 arg_.offset2[i] = start_offset + n;
7fb9f789 2153
cf869cce 2154 start_offset = arg_.offset2[i];
7fb9f789
NC
2155 }
2156
cf869cce
NC
2157 if (!use_neg_got_offsets_p)
2158 /* Make sure that if we try to switch to negative offsets in
2159 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2160 the bug. */
2161 for (i = R_8; i <= R_32; ++i)
2162 arg_.offset2[-i - 1] = arg_.offset2[i];
7fb9f789 2163
cf869cce
NC
2164 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2165 beginning of GOT depending on use_neg_got_offsets_p. */
2166 got->offset = arg_.offset1[R_8];
7fb9f789 2167
cf869cce
NC
2168 arg_.symndx2h = symndx2h;
2169 arg_.n_ldm_entries = 0;
7fb9f789 2170
cf869cce
NC
2171 /* Assign offsets. */
2172 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
7fb9f789 2173
cf869cce
NC
2174 /* Check offset ranges we have actually assigned. */
2175 for (i = (int) R_8; i <= (int) R_32; ++i)
2176 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
7fb9f789 2177
cf869cce
NC
2178 *final_offset = start_offset;
2179 *n_ldm_entries = arg_.n_ldm_entries;
7fb9f789
NC
2180}
2181
2182struct elf_m68k_partition_multi_got_arg
2183{
2184 /* The GOT we are adding entries to. Aka big got. */
2185 struct elf_m68k_got *current_got;
2186
2187 /* Offset to assign the next CURRENT_GOT. */
2188 bfd_vma offset;
2189
2190 /* Context where memory should be allocated. */
2191 struct bfd_link_info *info;
2192
cf869cce 2193 /* Total number of slots in the .got section.
7fb9f789 2194 This is used to calculate size of the .got and .rela.got sections. */
cf869cce 2195 bfd_vma n_slots;
7fb9f789 2196
cf869cce
NC
2197 /* Difference in numbers of allocated slots in the .got section
2198 and necessary relocations in the .rela.got section.
7fb9f789 2199 This is used to calculate size of the .rela.got section. */
cf869cce 2200 bfd_vma slots_relas_diff;
7fb9f789
NC
2201
2202 /* Error flag. */
2203 bfd_boolean error_p;
2204
2205 /* Mapping from global symndx to global symbols.
2206 This is used to build lists of got entries for global symbols. */
2207 struct elf_m68k_link_hash_entry **symndx2h;
2208};
2209
cf869cce
NC
2210static void
2211elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2212{
2213 bfd_vma n_ldm_entries;
2214
2215 elf_m68k_finalize_got_offsets (arg->current_got,
2216 (elf_m68k_hash_table (arg->info)
2217 ->use_neg_got_offsets_p),
2218 arg->symndx2h,
2219 &arg->offset, &n_ldm_entries);
2220
2221 arg->n_slots += arg->current_got->n_slots[R_32];
2222
0e1862bb 2223 if (!bfd_link_pic (arg->info))
cf869cce
NC
2224 /* If we are generating a shared object, we need to
2225 output a R_68K_RELATIVE reloc so that the dynamic
2226 linker can adjust this GOT entry. Overwise we
2227 don't need space in .rela.got for local symbols. */
2228 arg->slots_relas_diff += arg->current_got->local_n_slots;
2229
2230 /* @LDM relocations require a 2-slot GOT entry, but only
2231 one relocation. Account for that. */
2232 arg->slots_relas_diff += n_ldm_entries;
2233
2234 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2235}
2236
2237
7fb9f789
NC
2238/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2239 or start a new CURRENT_GOT. */
2240
2241static int
2242elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2243{
2244 struct elf_m68k_bfd2got_entry *entry;
2245 struct elf_m68k_partition_multi_got_arg *arg;
2246 struct elf_m68k_got *got;
7fb9f789
NC
2247 struct elf_m68k_got diff_;
2248 struct elf_m68k_got *diff;
2249
2250 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2251 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2252
2253 got = entry->got;
2254 BFD_ASSERT (got != NULL);
2255 BFD_ASSERT (got->offset == (bfd_vma) -1);
2256
2257 diff = NULL;
2258
2259 if (arg->current_got != NULL)
2260 /* Construct diff. */
2261 {
2262 diff = &diff_;
cf869cce 2263 elf_m68k_init_got (diff);
7fb9f789
NC
2264
2265 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2266 {
2267 if (diff->offset == 0)
2268 /* Offset set to 0 in the diff_ indicates an error. */
2269 {
2270 arg->error_p = TRUE;
2271 goto final_return;
2272 }
2273
2274 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2275 {
2276 elf_m68k_clear_got (diff);
cf869cce 2277 /* Schedule to finish up current_got and start new one. */
7fb9f789
NC
2278 diff = NULL;
2279 }
2280 /* else
2281 Merge GOTs no matter what. If big GOT overflows,
2282 we'll fail in relocate_section due to truncated relocations.
2283
2284 ??? May be fail earlier? E.g., in can_merge_gots. */
2285 }
2286 }
2287 else
2288 /* Diff of got against empty current_got is got itself. */
2289 {
cf869cce 2290 /* Create empty current_got to put subsequent GOTs to. */
7fb9f789
NC
2291 arg->current_got = elf_m68k_create_empty_got (arg->info);
2292 if (arg->current_got == NULL)
2293 {
2294 arg->error_p = TRUE;
2295 goto final_return;
2296 }
2297
2298 arg->current_got->offset = arg->offset;
2299
2300 diff = got;
2301 }
2302
7fb9f789
NC
2303 if (diff != NULL)
2304 {
cf869cce 2305 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
7fb9f789
NC
2306 {
2307 arg->error_p = TRUE;
2308 goto final_return;
2309 }
2310
2311 /* Now we can free GOT. */
2312 elf_m68k_clear_got (got);
2313
cf869cce 2314 entry->got = arg->current_got;
7fb9f789
NC
2315 }
2316 else
2317 {
7fb9f789 2318 /* Finish up current_got. */
cf869cce 2319 elf_m68k_partition_multi_got_2 (arg);
7fb9f789 2320
cf869cce
NC
2321 /* Schedule to start a new current_got. */
2322 arg->current_got = NULL;
7fb9f789
NC
2323
2324 /* Retry. */
2325 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2326 {
2327 BFD_ASSERT (arg->error_p);
2328 goto final_return;
2329 }
2330 }
2331
2332 final_return:
2333 if (diff != NULL)
2334 elf_m68k_clear_got (diff);
2335
535b785f 2336 return !arg->error_p;
7fb9f789
NC
2337}
2338
2339/* Helper function to build symndx2h mapping. */
2340
2341static bfd_boolean
2342elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2343 void *_arg)
2344{
2345 struct elf_m68k_link_hash_entry *h;
2346
2347 h = elf_m68k_hash_entry (_h);
2348
2349 if (h->got_entry_key != 0)
2350 /* H has at least one entry in the GOT. */
2351 {
2352 struct elf_m68k_partition_multi_got_arg *arg;
2353
2354 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2355
2356 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2357 arg->symndx2h[h->got_entry_key] = h;
2358 }
2359
2360 return TRUE;
2361}
2362
2363/* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2364 lists of GOT entries for global symbols.
2365 Calculate sizes of .got and .rela.got sections. */
2366
2367static bfd_boolean
2368elf_m68k_partition_multi_got (struct bfd_link_info *info)
2369{
2370 struct elf_m68k_multi_got *multi_got;
2371 struct elf_m68k_partition_multi_got_arg arg_;
2372
2373 multi_got = elf_m68k_multi_got (info);
2374
2375 arg_.current_got = NULL;
2376 arg_.offset = 0;
2377 arg_.info = info;
cf869cce
NC
2378 arg_.n_slots = 0;
2379 arg_.slots_relas_diff = 0;
7fb9f789
NC
2380 arg_.error_p = FALSE;
2381
2382 if (multi_got->bfd2got != NULL)
2383 {
2384 /* Initialize symndx2h mapping. */
2385 {
2386 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2387 * sizeof (*arg_.symndx2h));
2388 if (arg_.symndx2h == NULL)
2389 return FALSE;
2390
2391 elf_link_hash_traverse (elf_hash_table (info),
2392 elf_m68k_init_symndx2h_1, &arg_);
2393 }
2394
2395 /* Partition. */
2396 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2397 &arg_);
2398 if (arg_.error_p)
2399 {
2400 free (arg_.symndx2h);
2401 arg_.symndx2h = NULL;
2402
2403 return FALSE;
2404 }
2405
2406 /* Finish up last current_got. */
cf869cce 2407 elf_m68k_partition_multi_got_2 (&arg_);
7fb9f789
NC
2408
2409 free (arg_.symndx2h);
266abb8f 2410 }
7fb9f789
NC
2411
2412 if (elf_hash_table (info)->dynobj != NULL)
2413 /* Set sizes of .got and .rela.got sections. */
266abb8f 2414 {
7fb9f789 2415 asection *s;
425c6cb0 2416
ce558b89 2417 s = elf_hash_table (info)->sgot;
7fb9f789 2418 if (s != NULL)
cf869cce 2419 s->size = arg_.offset;
425c6cb0 2420 else
cf869cce 2421 BFD_ASSERT (arg_.offset == 0);
425c6cb0 2422
cf869cce
NC
2423 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2424 arg_.n_slots -= arg_.slots_relas_diff;
7fb9f789 2425
ce558b89 2426 s = elf_hash_table (info)->srelgot;
7fb9f789 2427 if (s != NULL)
cf869cce 2428 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
3bdcfdf4 2429 else
cf869cce 2430 BFD_ASSERT (arg_.n_slots == 0);
9e1281c7 2431 }
7fb9f789
NC
2432 else
2433 BFD_ASSERT (multi_got->bfd2got == NULL);
9e1281c7 2434
b34976b6 2435 return TRUE;
9e1281c7
CM
2436}
2437
7fb9f789
NC
2438/* Copy any information related to dynamic linking from a pre-existing
2439 symbol to a newly created symbol. Also called to copy flags and
2440 other back-end info to a weakdef, in which case the symbol is not
2441 newly created and plt/got refcounts and dynamic indices should not
2442 be copied. */
2443
2444static void
2445elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2446 struct elf_link_hash_entry *_dir,
2447 struct elf_link_hash_entry *_ind)
2448{
2449 struct elf_m68k_link_hash_entry *dir;
2450 struct elf_m68k_link_hash_entry *ind;
2451
2452 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2453
2454 if (_ind->root.type != bfd_link_hash_indirect)
2455 return;
2456
2457 dir = elf_m68k_hash_entry (_dir);
2458 ind = elf_m68k_hash_entry (_ind);
2459
e5f2b1de
NC
2460 /* Any absolute non-dynamic relocations against an indirect or weak
2461 definition will be against the target symbol. */
2462 _dir->non_got_ref |= _ind->non_got_ref;
2463
7fb9f789
NC
2464 /* We might have a direct symbol already having entries in the GOTs.
2465 Update its key only in case indirect symbol has GOT entries and
2466 assert that both indirect and direct symbols don't have GOT entries
2467 at the same time. */
2468 if (ind->got_entry_key != 0)
266abb8f 2469 {
7fb9f789
NC
2470 BFD_ASSERT (dir->got_entry_key == 0);
2471 /* Assert that GOTs aren't partioned yet. */
2472 BFD_ASSERT (ind->glist == NULL);
425c6cb0 2473
7fb9f789
NC
2474 dir->got_entry_key = ind->got_entry_key;
2475 ind->got_entry_key = 0;
266abb8f 2476 }
9e1281c7 2477}
7fb9f789 2478
252b5132
RH
2479/* Look through the relocs for a section during the first phase, and
2480 allocate space in the global offset table or procedure linkage
2481 table. */
2482
b34976b6 2483static bfd_boolean
2c3fc389
NC
2484elf_m68k_check_relocs (bfd *abfd,
2485 struct bfd_link_info *info,
2486 asection *sec,
2487 const Elf_Internal_Rela *relocs)
252b5132
RH
2488{
2489 bfd *dynobj;
2490 Elf_Internal_Shdr *symtab_hdr;
2491 struct elf_link_hash_entry **sym_hashes;
252b5132
RH
2492 const Elf_Internal_Rela *rel;
2493 const Elf_Internal_Rela *rel_end;
252b5132 2494 asection *sreloc;
7fb9f789 2495 struct elf_m68k_got *got;
252b5132 2496
0e1862bb 2497 if (bfd_link_relocatable (info))
b34976b6 2498 return TRUE;
252b5132
RH
2499
2500 dynobj = elf_hash_table (info)->dynobj;
2501 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2502 sym_hashes = elf_sym_hashes (abfd);
252b5132 2503
252b5132
RH
2504 sreloc = NULL;
2505
7fb9f789
NC
2506 got = NULL;
2507
252b5132
RH
2508 rel_end = relocs + sec->reloc_count;
2509 for (rel = relocs; rel < rel_end; rel++)
2510 {
2511 unsigned long r_symndx;
2512 struct elf_link_hash_entry *h;
2513
2514 r_symndx = ELF32_R_SYM (rel->r_info);
2515
2516 if (r_symndx < symtab_hdr->sh_info)
2517 h = NULL;
2518 else
973a3492
L
2519 {
2520 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2521 while (h->root.type == bfd_link_hash_indirect
2522 || h->root.type == bfd_link_hash_warning)
2523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2524 }
252b5132
RH
2525
2526 switch (ELF32_R_TYPE (rel->r_info))
2527 {
2528 case R_68K_GOT8:
2529 case R_68K_GOT16:
2530 case R_68K_GOT32:
2531 if (h != NULL
2532 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2533 break;
2534 /* Fall through. */
cf869cce
NC
2535
2536 /* Relative GOT relocations. */
252b5132
RH
2537 case R_68K_GOT8O:
2538 case R_68K_GOT16O:
2539 case R_68K_GOT32O:
cf869cce
NC
2540 /* Fall through. */
2541
2542 /* TLS relocations. */
2543 case R_68K_TLS_GD8:
2544 case R_68K_TLS_GD16:
2545 case R_68K_TLS_GD32:
2546 case R_68K_TLS_LDM8:
2547 case R_68K_TLS_LDM16:
2548 case R_68K_TLS_LDM32:
2549 case R_68K_TLS_IE8:
2550 case R_68K_TLS_IE16:
2551 case R_68K_TLS_IE32:
2552
e5f2b1de
NC
2553 case R_68K_TLS_TPREL32:
2554 case R_68K_TLS_DTPREL32:
2555
2556 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
0e1862bb 2557 && bfd_link_pic (info))
e5f2b1de
NC
2558 /* Do the special chorus for libraries with static TLS. */
2559 info->flags |= DF_STATIC_TLS;
2560
252b5132
RH
2561 /* This symbol requires a global offset table entry. */
2562
2563 if (dynobj == NULL)
2564 {
2565 /* Create the .got section. */
2566 elf_hash_table (info)->dynobj = dynobj = abfd;
2567 if (!_bfd_elf_create_got_section (dynobj, info))
b34976b6 2568 return FALSE;
252b5132
RH
2569 }
2570
7fb9f789 2571 if (got == NULL)
252b5132 2572 {
7fb9f789 2573 struct elf_m68k_bfd2got_entry *bfd2got_entry;
252b5132 2574
7fb9f789
NC
2575 bfd2got_entry
2576 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2577 abfd, FIND_OR_CREATE, info);
2578 if (bfd2got_entry == NULL)
2579 return FALSE;
252b5132 2580
7fb9f789
NC
2581 got = bfd2got_entry->got;
2582 BFD_ASSERT (got != NULL);
252b5132 2583 }
7fb9f789
NC
2584
2585 {
2586 struct elf_m68k_got_entry *got_entry;
2587
2588 /* Add entry to got. */
2589 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2590 ELF32_R_TYPE (rel->r_info),
2591 r_symndx, info);
2592 if (got_entry == NULL)
2593 return FALSE;
2594
2595 if (got_entry->u.s1.refcount == 1)
2596 {
2597 /* Make sure this symbol is output as a dynamic symbol. */
2598 if (h != NULL
2599 && h->dynindx == -1
2600 && !h->forced_local)
2601 {
2602 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2603 return FALSE;
2604 }
7fb9f789
NC
2605 }
2606 }
2607
252b5132
RH
2608 break;
2609
2610 case R_68K_PLT8:
2611 case R_68K_PLT16:
2612 case R_68K_PLT32:
2613 /* This symbol requires a procedure linkage table entry. We
2614 actually build the entry in adjust_dynamic_symbol,
07d6d2b8
AM
2615 because this might be a case of linking PIC code which is
2616 never referenced by a dynamic object, in which case we
2617 don't need to generate a procedure linkage table entry
2618 after all. */
252b5132
RH
2619
2620 /* If this is a local symbol, we resolve it directly without
2621 creating a procedure linkage table entry. */
2622 if (h == NULL)
2623 continue;
2624
f5385ebf 2625 h->needs_plt = 1;
51b64d56 2626 h->plt.refcount++;
252b5132
RH
2627 break;
2628
2629 case R_68K_PLT8O:
2630 case R_68K_PLT16O:
2631 case R_68K_PLT32O:
2632 /* This symbol requires a procedure linkage table entry. */
2633
2634 if (h == NULL)
2635 {
2636 /* It does not make sense to have this relocation for a
2637 local symbol. FIXME: does it? How to handle it if
2638 it does make sense? */
2639 bfd_set_error (bfd_error_bad_value);
b34976b6 2640 return FALSE;
252b5132
RH
2641 }
2642
2643 /* Make sure this symbol is output as a dynamic symbol. */
b6152c34 2644 if (h->dynindx == -1
f5385ebf 2645 && !h->forced_local)
252b5132 2646 {
c152c796 2647 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2648 return FALSE;
252b5132
RH
2649 }
2650
f5385ebf 2651 h->needs_plt = 1;
51b64d56 2652 h->plt.refcount++;
252b5132
RH
2653 break;
2654
2655 case R_68K_PC8:
2656 case R_68K_PC16:
2657 case R_68K_PC32:
2658 /* If we are creating a shared library and this is not a local
2659 symbol, we need to copy the reloc into the shared library.
2660 However when linking with -Bsymbolic and this is a global
2661 symbol which is defined in an object we are including in the
2662 link (i.e., DEF_REGULAR is set), then we can resolve the
2663 reloc directly. At this point we have not seen all the input
2664 files, so it is possible that DEF_REGULAR is not set now but
2665 will be set later (it is never cleared). We account for that
2666 possibility below by storing information in the
2667 pcrel_relocs_copied field of the hash table entry. */
0e1862bb 2668 if (!(bfd_link_pic (info)
252b5132
RH
2669 && (sec->flags & SEC_ALLOC) != 0
2670 && h != NULL
a496fbc8 2671 && (!SYMBOLIC_BIND (info, h)
b6152c34 2672 || h->root.type == bfd_link_hash_defweak
f5385ebf 2673 || !h->def_regular)))
252b5132
RH
2674 {
2675 if (h != NULL)
2676 {
2677 /* Make sure a plt entry is created for this symbol if
2678 it turns out to be a function defined by a dynamic
2679 object. */
51b64d56 2680 h->plt.refcount++;
252b5132
RH
2681 }
2682 break;
2683 }
2684 /* Fall through. */
2685 case R_68K_8:
2686 case R_68K_16:
2687 case R_68K_32:
810e6986
NC
2688 /* We don't need to handle relocs into sections not going into
2689 the "real" output. */
2690 if ((sec->flags & SEC_ALLOC) == 0)
2691 break;
2692
252b5132
RH
2693 if (h != NULL)
2694 {
2695 /* Make sure a plt entry is created for this symbol if it
2696 turns out to be a function defined by a dynamic object. */
51b64d56 2697 h->plt.refcount++;
e5f2b1de 2698
0e1862bb 2699 if (bfd_link_executable (info))
e5f2b1de
NC
2700 /* This symbol needs a non-GOT reference. */
2701 h->non_got_ref = 1;
252b5132
RH
2702 }
2703
2704 /* If we are creating a shared library, we need to copy the
2705 reloc into the shared library. */
5056ba1d
L
2706 if (bfd_link_pic (info)
2707 && (h == NULL
2708 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
252b5132
RH
2709 {
2710 /* When creating a shared object, we must copy these
2711 reloc types into the output file. We create a reloc
2712 section in dynobj and make room for this reloc. */
2713 if (sreloc == NULL)
2714 {
83bac4b0
NC
2715 sreloc = _bfd_elf_make_dynamic_reloc_section
2716 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
252b5132 2717
252b5132 2718 if (sreloc == NULL)
83bac4b0 2719 return FALSE;
252b5132
RH
2720 }
2721
3e829b4a
AS
2722 if (sec->flags & SEC_READONLY
2723 /* Don't set DF_TEXTREL yet for PC relative
2724 relocations, they might be discarded later. */
2725 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2726 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2727 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2728 info->flags |= DF_TEXTREL;
2729
eea6121a 2730 sreloc->size += sizeof (Elf32_External_Rela);
252b5132 2731
b6152c34
AS
2732 /* We count the number of PC relative relocations we have
2733 entered for this symbol, so that we can discard them
2734 again if, in the -Bsymbolic case, the symbol is later
2735 defined by a regular object, or, in the normal shared
2736 case, the symbol is forced to be local. Note that this
2737 function is only called if we are using an m68kelf linker
2738 hash table, which means that h is really a pointer to an
252b5132 2739 elf_m68k_link_hash_entry. */
b6152c34
AS
2740 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2741 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2742 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
252b5132 2743 {
252b5132 2744 struct elf_m68k_pcrel_relocs_copied *p;
b6152c34
AS
2745 struct elf_m68k_pcrel_relocs_copied **head;
2746
2747 if (h != NULL)
2748 {
2749 struct elf_m68k_link_hash_entry *eh
0cca5f05 2750 = elf_m68k_hash_entry (h);
b6152c34
AS
2751 head = &eh->pcrel_relocs_copied;
2752 }
2753 else
2754 {
2755 asection *s;
6edfbbad 2756 void *vpp;
87d72d41 2757 Elf_Internal_Sym *isym;
6edfbbad 2758
87d72d41
AM
2759 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2760 abfd, r_symndx);
2761 if (isym == NULL)
b6152c34 2762 return FALSE;
252b5132 2763
87d72d41
AM
2764 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2765 if (s == NULL)
2766 s = sec;
2767
6edfbbad
DJ
2768 vpp = &elf_section_data (s)->local_dynrel;
2769 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
b6152c34 2770 }
252b5132 2771
b6152c34 2772 for (p = *head; p != NULL; p = p->next)
252b5132
RH
2773 if (p->section == sreloc)
2774 break;
2775
2776 if (p == NULL)
2777 {
2778 p = ((struct elf_m68k_pcrel_relocs_copied *)
dc810e39 2779 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
252b5132 2780 if (p == NULL)
b34976b6 2781 return FALSE;
b6152c34
AS
2782 p->next = *head;
2783 *head = p;
252b5132
RH
2784 p->section = sreloc;
2785 p->count = 0;
2786 }
2787
2788 ++p->count;
2789 }
2790 }
2791
2792 break;
2793
2794 /* This relocation describes the C++ object vtable hierarchy.
2795 Reconstruct it for later use during GC. */
2796 case R_68K_GNU_VTINHERIT:
c152c796 2797 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 2798 return FALSE;
252b5132
RH
2799 break;
2800
2801 /* This relocation describes which C++ vtable entries are actually
2802 used. Record for later use during GC. */
2803 case R_68K_GNU_VTENTRY:
d17e0c6e
JB
2804 BFD_ASSERT (h != NULL);
2805 if (h != NULL
2806 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
b34976b6 2807 return FALSE;
252b5132
RH
2808 break;
2809
2810 default:
2811 break;
2812 }
2813 }
2814
b34976b6 2815 return TRUE;
252b5132
RH
2816}
2817
2818/* Return the section that should be marked against GC for a given
2819 relocation. */
2820
2821static asection *
07adf181
AM
2822elf_m68k_gc_mark_hook (asection *sec,
2823 struct bfd_link_info *info,
2824 Elf_Internal_Rela *rel,
2825 struct elf_link_hash_entry *h,
2826 Elf_Internal_Sym *sym)
252b5132
RH
2827{
2828 if (h != NULL)
07adf181
AM
2829 switch (ELF32_R_TYPE (rel->r_info))
2830 {
2831 case R_68K_GNU_VTINHERIT:
2832 case R_68K_GNU_VTENTRY:
2833 return NULL;
2834 }
2835
2836 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132 2837}
cc3e26be
RS
2838\f
2839/* Return the type of PLT associated with OUTPUT_BFD. */
2840
2841static const struct elf_m68k_plt_info *
2842elf_m68k_get_plt_info (bfd *output_bfd)
2843{
2844 unsigned int features;
2845
2846 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2847 if (features & cpu32)
2848 return &elf_cpu32_plt_info;
2849 if (features & mcfisa_b)
2850 return &elf_isab_plt_info;
9a2e615a
NS
2851 if (features & mcfisa_c)
2852 return &elf_isac_plt_info;
cc3e26be
RS
2853 return &elf_m68k_plt_info;
2854}
2855
2856/* This function is called after all the input files have been read,
2857 and the input sections have been assigned to output sections.
2858 It's a convenient place to determine the PLT style. */
2859
2860static bfd_boolean
2861elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2862{
7fb9f789
NC
2863 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2864 sections. */
2865 if (!elf_m68k_partition_multi_got (info))
2866 return FALSE;
2867
cc3e26be
RS
2868 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2869 return TRUE;
2870}
252b5132 2871
252b5132
RH
2872/* Adjust a symbol defined by a dynamic object and referenced by a
2873 regular object. The current definition is in some section of the
2874 dynamic object, but we're not including those sections. We have to
2875 change the definition to something the rest of the link can
2876 understand. */
2877
b34976b6 2878static bfd_boolean
2c3fc389
NC
2879elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2880 struct elf_link_hash_entry *h)
252b5132 2881{
cc3e26be 2882 struct elf_m68k_link_hash_table *htab;
252b5132
RH
2883 bfd *dynobj;
2884 asection *s;
252b5132 2885
cc3e26be 2886 htab = elf_m68k_hash_table (info);
ce558b89 2887 dynobj = htab->root.dynobj;
252b5132
RH
2888
2889 /* Make sure we know what is going on here. */
2890 BFD_ASSERT (dynobj != NULL
f5385ebf 2891 && (h->needs_plt
60d67dc8 2892 || h->is_weakalias
f5385ebf
AM
2893 || (h->def_dynamic
2894 && h->ref_regular
2895 && !h->def_regular)));
252b5132
RH
2896
2897 /* If this is a function, put it in the procedure linkage table. We
2898 will fill in the contents of the procedure linkage table later,
2899 when we know the address of the .got section. */
2900 if (h->type == STT_FUNC
f5385ebf 2901 || h->needs_plt)
252b5132 2902 {
9dfe8738 2903 if ((h->plt.refcount <= 0
07d6d2b8 2904 || SYMBOL_CALLS_LOCAL (info, h)
5056ba1d
L
2905 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2906 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9dfe8738 2907 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
2908 /* We must always create the plt entry if it was referenced
2909 by a PLTxxO relocation. In this case we already recorded
2910 it as a dynamic symbol. */
2911 && h->dynindx == -1)
2912 {
2913 /* This case can occur if we saw a PLTxx reloc in an input
2914 file, but the symbol was never referred to by a dynamic
9dfe8738
AS
2915 object, or if all references were garbage collected. In
2916 such a case, we don't actually need to build a procedure
2917 linkage table, and we can just do a PCxx reloc instead. */
252b5132 2918 h->plt.offset = (bfd_vma) -1;
f5385ebf 2919 h->needs_plt = 0;
b34976b6 2920 return TRUE;
252b5132
RH
2921 }
2922
2923 /* Make sure this symbol is output as a dynamic symbol. */
b6152c34 2924 if (h->dynindx == -1
f5385ebf 2925 && !h->forced_local)
252b5132 2926 {
c152c796 2927 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2928 return FALSE;
252b5132
RH
2929 }
2930
ce558b89 2931 s = htab->root.splt;
252b5132
RH
2932 BFD_ASSERT (s != NULL);
2933
2934 /* If this is the first .plt entry, make room for the special
2935 first entry. */
eea6121a 2936 if (s->size == 0)
cc3e26be 2937 s->size = htab->plt_info->size;
252b5132
RH
2938
2939 /* If this symbol is not defined in a regular file, and we are
2940 not generating a shared library, then set the symbol to this
2941 location in the .plt. This is required to make function
2942 pointers compare as equal between the normal executable and
2943 the shared library. */
0e1862bb 2944 if (!bfd_link_pic (info)
f5385ebf 2945 && !h->def_regular)
252b5132
RH
2946 {
2947 h->root.u.def.section = s;
eea6121a 2948 h->root.u.def.value = s->size;
252b5132
RH
2949 }
2950
eea6121a 2951 h->plt.offset = s->size;
252b5132
RH
2952
2953 /* Make room for this entry. */
cc3e26be 2954 s->size += htab->plt_info->size;
252b5132
RH
2955
2956 /* We also need to make an entry in the .got.plt section, which
2957 will be placed in the .got section by the linker script. */
ce558b89 2958 s = htab->root.sgotplt;
252b5132 2959 BFD_ASSERT (s != NULL);
eea6121a 2960 s->size += 4;
252b5132
RH
2961
2962 /* We also need to make an entry in the .rela.plt section. */
ce558b89 2963 s = htab->root.srelplt;
252b5132 2964 BFD_ASSERT (s != NULL);
eea6121a 2965 s->size += sizeof (Elf32_External_Rela);
252b5132 2966
b34976b6 2967 return TRUE;
252b5132
RH
2968 }
2969
2970 /* Reinitialize the plt offset now that it is not used as a reference
2971 count any more. */
2972 h->plt.offset = (bfd_vma) -1;
2973
2974 /* If this is a weak symbol, and there is a real definition, the
2975 processor independent code will have arranged for us to see the
2976 real definition first, and we can just use the same value. */
60d67dc8 2977 if (h->is_weakalias)
252b5132 2978 {
60d67dc8
AM
2979 struct elf_link_hash_entry *def = weakdef (h);
2980 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2981 h->root.u.def.section = def->root.u.def.section;
2982 h->root.u.def.value = def->root.u.def.value;
b34976b6 2983 return TRUE;
252b5132
RH
2984 }
2985
2986 /* This is a reference to a symbol defined by a dynamic object which
2987 is not a function. */
2988
2989 /* If we are creating a shared library, we must presume that the
2990 only references to the symbol are via the global offset table.
2991 For such cases we need not do anything here; the relocations will
2992 be handled correctly by relocate_section. */
0e1862bb 2993 if (bfd_link_pic (info))
b34976b6 2994 return TRUE;
252b5132 2995
e5f2b1de
NC
2996 /* If there are no references to this symbol that do not use the
2997 GOT, we don't need to generate a copy reloc. */
2998 if (!h->non_got_ref)
2999 return TRUE;
3000
252b5132
RH
3001 /* We must allocate the symbol in our .dynbss section, which will
3002 become part of the .bss section of the executable. There will be
3003 an entry for this symbol in the .dynsym section. The dynamic
3004 object will contain position independent code, so all references
3005 from the dynamic object to this symbol will go through the global
3006 offset table. The dynamic linker will use the .dynsym entry to
3007 determine the address it must put in the global offset table, so
3008 both the dynamic object and the regular object will refer to the
3009 same memory location for the variable. */
3010
3d4d4302 3011 s = bfd_get_linker_section (dynobj, ".dynbss");
252b5132
RH
3012 BFD_ASSERT (s != NULL);
3013
3014 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3015 copy the initial value out of the dynamic object and into the
3016 runtime process image. We need to remember the offset into the
3017 .rela.bss section we are going to use. */
1d7e9d18 3018 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
252b5132
RH
3019 {
3020 asection *srel;
3021
3d4d4302 3022 srel = bfd_get_linker_section (dynobj, ".rela.bss");
252b5132 3023 BFD_ASSERT (srel != NULL);
eea6121a 3024 srel->size += sizeof (Elf32_External_Rela);
f5385ebf 3025 h->needs_copy = 1;
252b5132
RH
3026 }
3027
6cabe1ea 3028 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
3029}
3030
3031/* Set the sizes of the dynamic sections. */
3032
b34976b6 3033static bfd_boolean
2c3fc389
NC
3034elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3035 struct bfd_link_info *info)
252b5132
RH
3036{
3037 bfd *dynobj;
3038 asection *s;
b34976b6
AM
3039 bfd_boolean plt;
3040 bfd_boolean relocs;
252b5132
RH
3041
3042 dynobj = elf_hash_table (info)->dynobj;
3043 BFD_ASSERT (dynobj != NULL);
3044
3045 if (elf_hash_table (info)->dynamic_sections_created)
3046 {
3047 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 3048 if (bfd_link_executable (info) && !info->nointerp)
252b5132 3049 {
3d4d4302 3050 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 3051 BFD_ASSERT (s != NULL);
eea6121a 3052 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
3053 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3054 }
3055 }
3056 else
3057 {
3058 /* We may have created entries in the .rela.got section.
3059 However, if we are not creating the dynamic sections, we will
3060 not actually use these entries. Reset the size of .rela.got,
3061 which will cause it to get stripped from the output file
3062 below. */
ce558b89 3063 s = elf_hash_table (info)->srelgot;
252b5132 3064 if (s != NULL)
eea6121a 3065 s->size = 0;
252b5132
RH
3066 }
3067
b6152c34
AS
3068 /* If this is a -Bsymbolic shared link, then we need to discard all
3069 PC relative relocs against symbols defined in a regular object.
3070 For the normal shared case we discard the PC relative relocs
3071 against symbols that have become local due to visibility changes.
3072 We allocated space for them in the check_relocs routine, but we
3073 will not fill them in in the relocate_section routine. */
0e1862bb 3074 if (bfd_link_pic (info))
0cca5f05
AS
3075 elf_link_hash_traverse (elf_hash_table (info),
3076 elf_m68k_discard_copies,
2c3fc389 3077 info);
252b5132
RH
3078
3079 /* The check_relocs and adjust_dynamic_symbol entry points have
3080 determined the sizes of the various dynamic sections. Allocate
3081 memory for them. */
b34976b6
AM
3082 plt = FALSE;
3083 relocs = FALSE;
252b5132
RH
3084 for (s = dynobj->sections; s != NULL; s = s->next)
3085 {
3086 const char *name;
252b5132
RH
3087
3088 if ((s->flags & SEC_LINKER_CREATED) == 0)
3089 continue;
3090
3091 /* It's OK to base decisions on the section name, because none
3092 of the dynobj section names depend upon the input files. */
3093 name = bfd_get_section_name (dynobj, s);
3094
252b5132
RH
3095 if (strcmp (name, ".plt") == 0)
3096 {
c456f082
AM
3097 /* Remember whether there is a PLT. */
3098 plt = s->size != 0;
252b5132 3099 }
0112cd26 3100 else if (CONST_STRNEQ (name, ".rela"))
252b5132 3101 {
c456f082 3102 if (s->size != 0)
252b5132 3103 {
b34976b6 3104 relocs = TRUE;
252b5132
RH
3105
3106 /* We use the reloc_count field as a counter if we need
3107 to copy relocs into the output file. */
3108 s->reloc_count = 0;
3109 }
3110 }
0112cd26 3111 else if (! CONST_STRNEQ (name, ".got")
c456f082 3112 && strcmp (name, ".dynbss") != 0)
252b5132
RH
3113 {
3114 /* It's not one of our sections, so don't allocate space. */
3115 continue;
3116 }
3117
c456f082 3118 if (s->size == 0)
252b5132 3119 {
c456f082
AM
3120 /* If we don't need this section, strip it from the
3121 output file. This is mostly to handle .rela.bss and
3122 .rela.plt. We must create both sections in
3123 create_dynamic_sections, because they must be created
3124 before the linker maps input sections to output
3125 sections. The linker does that before
3126 adjust_dynamic_symbol is called, and it is that
3127 function which decides whether anything needs to go
3128 into these sections. */
8423293d 3129 s->flags |= SEC_EXCLUDE;
252b5132
RH
3130 continue;
3131 }
3132
c456f082
AM
3133 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3134 continue;
3135
252b5132 3136 /* Allocate memory for the section contents. */
7a9af8c4
NC
3137 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3138 Unused entries should be reclaimed before the section's contents
3139 are written out, but at the moment this does not happen. Thus in
3140 order to prevent writing out garbage, we initialise the section's
3141 contents to zero. */
eea6121a 3142 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 3143 if (s->contents == NULL)
b34976b6 3144 return FALSE;
252b5132
RH
3145 }
3146
3147 if (elf_hash_table (info)->dynamic_sections_created)
3148 {
3149 /* Add some entries to the .dynamic section. We fill in the
3150 values later, in elf_m68k_finish_dynamic_sections, but we
3151 must add the entries now so that we get the correct size for
3152 the .dynamic section. The DT_DEBUG entry is filled in by the
3153 dynamic linker and used by the debugger. */
dc810e39 3154#define add_dynamic_entry(TAG, VAL) \
5a580b3a 3155 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 3156
0e1862bb 3157 if (bfd_link_executable (info))
252b5132 3158 {
dc810e39 3159 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 3160 return FALSE;
252b5132
RH
3161 }
3162
3163 if (plt)
3164 {
dc810e39
AM
3165 if (!add_dynamic_entry (DT_PLTGOT, 0)
3166 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3167 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3168 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 3169 return FALSE;
252b5132
RH
3170 }
3171
3172 if (relocs)
3173 {
dc810e39
AM
3174 if (!add_dynamic_entry (DT_RELA, 0)
3175 || !add_dynamic_entry (DT_RELASZ, 0)
3176 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
b34976b6 3177 return FALSE;
252b5132
RH
3178 }
3179
aa91b392 3180 if ((info->flags & DF_TEXTREL) != 0)
252b5132 3181 {
dc810e39 3182 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 3183 return FALSE;
252b5132
RH
3184 }
3185 }
dc810e39 3186#undef add_dynamic_entry
252b5132 3187
b34976b6 3188 return TRUE;
252b5132
RH
3189}
3190
0cca5f05 3191/* This function is called via elf_link_hash_traverse if we are
b6152c34
AS
3192 creating a shared object. In the -Bsymbolic case it discards the
3193 space allocated to copy PC relative relocs against symbols which
3e829b4a 3194 are defined in regular objects. For the normal shared case, it
b6152c34
AS
3195 discards space for pc-relative relocs that have become local due to
3196 symbol visibility changes. We allocated space for them in the
3197 check_relocs routine, but we won't fill them in in the
3e829b4a
AS
3198 relocate_section routine.
3199
3200 We also check whether any of the remaining relocations apply
3201 against a readonly section, and set the DF_TEXTREL flag in this
3202 case. */
252b5132 3203
b34976b6 3204static bfd_boolean
2c3fc389
NC
3205elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3206 void * inf)
252b5132 3207{
b6152c34 3208 struct bfd_link_info *info = (struct bfd_link_info *) inf;
252b5132
RH
3209 struct elf_m68k_pcrel_relocs_copied *s;
3210
2516a1ee 3211 if (!SYMBOL_CALLS_LOCAL (info, h))
3e829b4a
AS
3212 {
3213 if ((info->flags & DF_TEXTREL) == 0)
3214 {
3215 /* Look for relocations against read-only sections. */
0cca5f05
AS
3216 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3217 s != NULL;
3218 s = s->next)
3e829b4a
AS
3219 if ((s->section->flags & SEC_READONLY) != 0)
3220 {
3221 info->flags |= DF_TEXTREL;
3222 break;
3223 }
3224 }
0cca5f05 3225
cab0ad83
AS
3226 /* Make sure undefined weak symbols are output as a dynamic symbol
3227 in PIEs. */
3228 if (h->non_got_ref
3229 && h->root.type == bfd_link_hash_undefweak
3230 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3231 && h->dynindx == -1
3232 && !h->forced_local)
3233 {
3234 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3235 return FALSE;
3236 }
3237
3e829b4a
AS
3238 return TRUE;
3239 }
252b5132 3240
0cca5f05
AS
3241 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3242 s != NULL;
3243 s = s->next)
eea6121a 3244 s->section->size -= s->count * sizeof (Elf32_External_Rela);
252b5132 3245
b34976b6 3246 return TRUE;
252b5132
RH
3247}
3248
cf869cce
NC
3249
3250/* Install relocation RELA. */
3251
3252static void
3253elf_m68k_install_rela (bfd *output_bfd,
3254 asection *srela,
3255 Elf_Internal_Rela *rela)
3256{
3257 bfd_byte *loc;
3258
3259 loc = srela->contents;
3260 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3261 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3262}
3263
325e58c7
NC
3264/* Find the base offsets for thread-local storage in this object,
3265 for GD/LD and IE/LE respectively. */
3266
3267#define DTP_OFFSET 0x8000
3268#define TP_OFFSET 0x7000
cf869cce
NC
3269
3270static bfd_vma
3271dtpoff_base (struct bfd_link_info *info)
3272{
3273 /* If tls_sec is NULL, we should have signalled an error already. */
3274 if (elf_hash_table (info)->tls_sec == NULL)
3275 return 0;
325e58c7 3276 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
cf869cce
NC
3277}
3278
cf869cce 3279static bfd_vma
325e58c7 3280tpoff_base (struct bfd_link_info *info)
cf869cce 3281{
cf869cce 3282 /* If tls_sec is NULL, we should have signalled an error already. */
325e58c7 3283 if (elf_hash_table (info)->tls_sec == NULL)
cf869cce 3284 return 0;
325e58c7
NC
3285 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3286}
3287
3288/* Output necessary relocation to handle a symbol during static link.
3289 This function is called from elf_m68k_relocate_section. */
3290
3291static void
3292elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3293 bfd *output_bfd,
3294 enum elf_m68k_reloc_type r_type,
3295 asection *sgot,
3296 bfd_vma got_entry_offset,
3297 bfd_vma relocation)
3298{
3299 switch (elf_m68k_reloc_got_type (r_type))
3300 {
3301 case R_68K_GOT32O:
3302 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3303 break;
3304
3305 case R_68K_TLS_GD32:
3306 /* We know the offset within the module,
3307 put it into the second GOT slot. */
3308 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3309 sgot->contents + got_entry_offset + 4);
3310 /* FALLTHRU */
3311
3312 case R_68K_TLS_LDM32:
3313 /* Mark it as belonging to module 1, the executable. */
3314 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3315 break;
3316
3317 case R_68K_TLS_IE32:
3318 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3319 sgot->contents + got_entry_offset);
3320 break;
3321
3322 default:
3323 BFD_ASSERT (FALSE);
3324 }
3325}
3326
3327/* Output necessary relocation to handle a local symbol
3328 during dynamic link.
3329 This function is called either from elf_m68k_relocate_section
3330 or from elf_m68k_finish_dynamic_symbol. */
3331
3332static void
3333elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3334 bfd *output_bfd,
3335 enum elf_m68k_reloc_type r_type,
3336 asection *sgot,
3337 bfd_vma got_entry_offset,
3338 bfd_vma relocation,
3339 asection *srela)
3340{
3341 Elf_Internal_Rela outrel;
3342
3343 switch (elf_m68k_reloc_got_type (r_type))
3344 {
3345 case R_68K_GOT32O:
3346 /* Emit RELATIVE relocation to initialize GOT slot
3347 at run-time. */
3348 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3349 outrel.r_addend = relocation;
3350 break;
3351
3352 case R_68K_TLS_GD32:
3353 /* We know the offset within the module,
3354 put it into the second GOT slot. */
3355 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3356 sgot->contents + got_entry_offset + 4);
3357 /* FALLTHRU */
3358
3359 case R_68K_TLS_LDM32:
3360 /* We don't know the module number,
3361 create a relocation for it. */
3362 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3363 outrel.r_addend = 0;
3364 break;
3365
3366 case R_68K_TLS_IE32:
3367 /* Emit TPREL relocation to initialize GOT slot
3368 at run-time. */
3369 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3370 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3371 break;
3372
3373 default:
3374 BFD_ASSERT (FALSE);
3375 }
3376
3377 /* Offset of the GOT entry. */
3378 outrel.r_offset = (sgot->output_section->vma
3379 + sgot->output_offset
3380 + got_entry_offset);
3381
3382 /* Install one of the above relocations. */
3383 elf_m68k_install_rela (output_bfd, srela, &outrel);
3384
3385 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
cf869cce
NC
3386}
3387
252b5132
RH
3388/* Relocate an M68K ELF section. */
3389
b34976b6 3390static bfd_boolean
2c3fc389
NC
3391elf_m68k_relocate_section (bfd *output_bfd,
3392 struct bfd_link_info *info,
3393 bfd *input_bfd,
3394 asection *input_section,
3395 bfd_byte *contents,
3396 Elf_Internal_Rela *relocs,
3397 Elf_Internal_Sym *local_syms,
3398 asection **local_sections)
252b5132 3399{
252b5132
RH
3400 Elf_Internal_Shdr *symtab_hdr;
3401 struct elf_link_hash_entry **sym_hashes;
252b5132
RH
3402 asection *sgot;
3403 asection *splt;
3404 asection *sreloc;
325e58c7 3405 asection *srela;
7fb9f789 3406 struct elf_m68k_got *got;
252b5132
RH
3407 Elf_Internal_Rela *rel;
3408 Elf_Internal_Rela *relend;
3409
252b5132
RH
3410 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3411 sym_hashes = elf_sym_hashes (input_bfd);
252b5132
RH
3412
3413 sgot = NULL;
3414 splt = NULL;
3415 sreloc = NULL;
325e58c7 3416 srela = NULL;
252b5132 3417
7fb9f789
NC
3418 got = NULL;
3419
252b5132
RH
3420 rel = relocs;
3421 relend = relocs + input_section->reloc_count;
3422 for (; rel < relend; rel++)
3423 {
3424 int r_type;
3425 reloc_howto_type *howto;
3426 unsigned long r_symndx;
3427 struct elf_link_hash_entry *h;
3428 Elf_Internal_Sym *sym;
3429 asection *sec;
3430 bfd_vma relocation;
44f745a6 3431 bfd_boolean unresolved_reloc;
252b5132 3432 bfd_reloc_status_type r;
5056ba1d 3433 bfd_boolean resolved_to_zero;
252b5132
RH
3434
3435 r_type = ELF32_R_TYPE (rel->r_info);
3436 if (r_type < 0 || r_type >= (int) R_68K_max)
3437 {
3438 bfd_set_error (bfd_error_bad_value);
b34976b6 3439 return FALSE;
252b5132
RH
3440 }
3441 howto = howto_table + r_type;
3442
3443 r_symndx = ELF32_R_SYM (rel->r_info);
3444
252b5132
RH
3445 h = NULL;
3446 sym = NULL;
3447 sec = NULL;
44f745a6 3448 unresolved_reloc = FALSE;
560e09e9 3449
252b5132
RH
3450 if (r_symndx < symtab_hdr->sh_info)
3451 {
3452 sym = local_syms + r_symndx;
3453 sec = local_sections[r_symndx];
8517fae7 3454 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
3455 }
3456 else
3457 {
62d887d4 3458 bfd_boolean warned, ignored;
560e09e9 3459
b2a8e766
AM
3460 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3461 r_symndx, symtab_hdr, sym_hashes,
3462 h, sec, relocation,
62d887d4 3463 unresolved_reloc, warned, ignored);
252b5132
RH
3464 }
3465
dbaa2011 3466 if (sec != NULL && discarded_section (sec))
e4067dbb 3467 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 3468 rel, 1, relend, howto, 0, contents);
ab96bf03 3469
0e1862bb 3470 if (bfd_link_relocatable (info))
ab96bf03
AM
3471 continue;
3472
5056ba1d
L
3473 resolved_to_zero = (h != NULL
3474 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3475
252b5132
RH
3476 switch (r_type)
3477 {
3478 case R_68K_GOT8:
3479 case R_68K_GOT16:
3480 case R_68K_GOT32:
3481 /* Relocation is to the address of the entry for this symbol
3482 in the global offset table. */
3483 if (h != NULL
3484 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7fb9f789 3485 {
7fb9f789
NC
3486 if (elf_m68k_hash_table (info)->local_gp_p)
3487 {
3488 bfd_vma sgot_output_offset;
3489 bfd_vma got_offset;
3490
ce558b89 3491 sgot = elf_hash_table (info)->sgot;
7fb9f789 3492
ce558b89 3493 if (sgot != NULL)
7fb9f789 3494 sgot_output_offset = sgot->output_offset;
ce558b89
AM
3495 else
3496 /* In this case we have a reference to
3497 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3498 empty.
3499 ??? Issue a warning? */
3500 sgot_output_offset = 0;
7fb9f789
NC
3501
3502 if (got == NULL)
3503 {
3504 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3505
3506 bfd2got_entry
3507 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3508 input_bfd, SEARCH, NULL);
3509
3510 if (bfd2got_entry != NULL)
3511 {
3512 got = bfd2got_entry->got;
3513 BFD_ASSERT (got != NULL);
3514
3515 got_offset = got->offset;
3516 }
3517 else
3518 /* In this case we have a reference to
3519 _GLOBAL_OFFSET_TABLE_, but no other references
3520 accessing any GOT entries.
3521 ??? Issue a warning? */
3522 got_offset = 0;
3523 }
3524 else
3525 got_offset = got->offset;
3526
3527 /* Adjust GOT pointer to point to the GOT
3528 assigned to input_bfd. */
f57718b4 3529 rel->r_addend += sgot_output_offset + got_offset;
7fb9f789
NC
3530 }
3531 else
3532 BFD_ASSERT (got == NULL || got->offset == 0);
3533
3534 break;
3535 }
252b5132
RH
3536 /* Fall through. */
3537 case R_68K_GOT8O:
3538 case R_68K_GOT16O:
3539 case R_68K_GOT32O:
cf869cce
NC
3540
3541 case R_68K_TLS_LDM32:
3542 case R_68K_TLS_LDM16:
3543 case R_68K_TLS_LDM8:
3544
3545 case R_68K_TLS_GD8:
3546 case R_68K_TLS_GD16:
3547 case R_68K_TLS_GD32:
3548
3549 case R_68K_TLS_IE8:
3550 case R_68K_TLS_IE16:
3551 case R_68K_TLS_IE32:
3552
252b5132
RH
3553 /* Relocation is the offset of the entry for this symbol in
3554 the global offset table. */
3555
3556 {
7fb9f789
NC
3557 struct elf_m68k_got_entry_key key_;
3558 bfd_vma *off_ptr;
252b5132
RH
3559 bfd_vma off;
3560
ce558b89
AM
3561 sgot = elf_hash_table (info)->sgot;
3562 BFD_ASSERT (sgot != NULL);
252b5132 3563
7fb9f789
NC
3564 if (got == NULL)
3565 {
3566 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3567 input_bfd, MUST_FIND,
3568 NULL)->got;
3569 BFD_ASSERT (got != NULL);
3570 }
3571
3572 /* Get GOT offset for this symbol. */
cf869cce
NC
3573 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3574 r_type);
7fb9f789
NC
3575 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3576 NULL)->u.s2.offset;
3577 off = *off_ptr;
3578
cf869cce
NC
3579 /* The offset must always be a multiple of 4. We use
3580 the least significant bit to record whether we have
3581 already generated the necessary reloc. */
3582 if ((off & 1) != 0)
3583 off &= ~1;
3584 else
252b5132 3585 {
cf869cce
NC
3586 if (h != NULL
3587 /* @TLSLDM relocations are bounded to the module, in
3588 which the symbol is defined -- not to the symbol
3589 itself. */
3590 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
252b5132 3591 {
cf869cce
NC
3592 bfd_boolean dyn;
3593
3594 dyn = elf_hash_table (info)->dynamic_sections_created;
0e1862bb
L
3595 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3596 bfd_link_pic (info),
3597 h)
3598 || (bfd_link_pic (info)
cf869cce 3599 && SYMBOL_REFERENCES_LOCAL (info, h))
5056ba1d
L
3600 || ((ELF_ST_VISIBILITY (h->other)
3601 || resolved_to_zero)
cf869cce 3602 && h->root.type == bfd_link_hash_undefweak))
252b5132 3603 {
cf869cce
NC
3604 /* This is actually a static link, or it is a
3605 -Bsymbolic link and the symbol is defined
3606 locally, or the symbol was forced to be local
325e58c7 3607 because of a version file. We must initialize
cf869cce
NC
3608 this entry in the global offset table. Since
3609 the offset must always be a multiple of 4, we
3610 use the least significant bit to record whether
3611 we have initialized it already.
3612
3613 When doing a dynamic link, we create a .rela.got
3614 relocation entry to initialize the value. This
3615 is done in the finish_dynamic_symbol routine. */
3616
325e58c7
NC
3617 elf_m68k_init_got_entry_static (info,
3618 output_bfd,
3619 r_type,
3620 sgot,
3621 off,
3622 relocation);
cf869cce 3623
7fb9f789 3624 *off_ptr |= 1;
252b5132 3625 }
cf869cce
NC
3626 else
3627 unresolved_reloc = FALSE;
252b5132 3628 }
0e1862bb 3629 else if (bfd_link_pic (info)) /* && h == NULL */
325e58c7 3630 /* Process local symbol during dynamic link. */
252b5132 3631 {
ce558b89
AM
3632 srela = elf_hash_table (info)->srelgot;
3633 BFD_ASSERT (srela != NULL);
cf869cce 3634
325e58c7
NC
3635 elf_m68k_init_got_entry_local_shared (info,
3636 output_bfd,
3637 r_type,
3638 sgot,
3639 off,
3640 relocation,
3641 srela);
cf869cce
NC
3642
3643 *off_ptr |= 1;
3644 }
0e1862bb 3645 else /* h == NULL && !bfd_link_pic (info) */
cf869cce 3646 {
325e58c7
NC
3647 elf_m68k_init_got_entry_static (info,
3648 output_bfd,
3649 r_type,
3650 sgot,
3651 off,
3652 relocation);
252b5132 3653
7fb9f789 3654 *off_ptr |= 1;
252b5132
RH
3655 }
3656 }
3657
cf869cce
NC
3658 /* We don't use elf_m68k_reloc_got_type in the condition below
3659 because this is the only place where difference between
3660 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3661 if (r_type == R_68K_GOT32O
252b5132 3662 || r_type == R_68K_GOT16O
cf869cce
NC
3663 || r_type == R_68K_GOT8O
3664 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3665 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3666 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
252b5132 3667 {
7fb9f789
NC
3668 /* GOT pointer is adjusted to point to the start/middle
3669 of local GOT. Adjust the offset accordingly. */
3670 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3671 || off >= got->offset);
3672
3673 if (elf_m68k_hash_table (info)->local_gp_p)
3674 relocation = off - got->offset;
3675 else
3676 {
3677 BFD_ASSERT (got->offset == 0);
3678 relocation = sgot->output_offset + off;
3679 }
3680
252b5132
RH
3681 /* This relocation does not use the addend. */
3682 rel->r_addend = 0;
3683 }
3684 else
7fb9f789
NC
3685 relocation = (sgot->output_section->vma + sgot->output_offset
3686 + off);
252b5132
RH
3687 }
3688 break;
3689
cf869cce
NC
3690 case R_68K_TLS_LDO32:
3691 case R_68K_TLS_LDO16:
3692 case R_68K_TLS_LDO8:
3693 relocation -= dtpoff_base (info);
3694 break;
3695
3696 case R_68K_TLS_LE32:
3697 case R_68K_TLS_LE16:
3698 case R_68K_TLS_LE8:
3cbc1e5e 3699 if (bfd_link_dll (info))
cf869cce 3700 {
4eca0228 3701 _bfd_error_handler
695344c0 3702 /* xgettext:c-format */
2dcf00ce
AM
3703 (_("%pB(%pA+%#" PRIx64 "): "
3704 "%s relocation not permitted in shared object"),
3705 input_bfd, input_section, (uint64_t) rel->r_offset,
3706 howto->name);
cf869cce
NC
3707
3708 return FALSE;
3709 }
3710 else
325e58c7 3711 relocation -= tpoff_base (info);
cf869cce
NC
3712
3713 break;
3714
252b5132
RH
3715 case R_68K_PLT8:
3716 case R_68K_PLT16:
3717 case R_68K_PLT32:
3718 /* Relocation is to the entry for this symbol in the
3719 procedure linkage table. */
3720
3721 /* Resolve a PLTxx reloc against a local symbol directly,
3722 without using the procedure linkage table. */
3723 if (h == NULL)
3724 break;
3725
3726 if (h->plt.offset == (bfd_vma) -1
3727 || !elf_hash_table (info)->dynamic_sections_created)
3728 {
3729 /* We didn't make a PLT entry for this symbol. This
3730 happens when statically linking PIC code, or when
3731 using -Bsymbolic. */
3732 break;
3733 }
3734
ce558b89
AM
3735 splt = elf_hash_table (info)->splt;
3736 BFD_ASSERT (splt != NULL);
252b5132
RH
3737
3738 relocation = (splt->output_section->vma
3739 + splt->output_offset
3740 + h->plt.offset);
44f745a6 3741 unresolved_reloc = FALSE;
252b5132
RH
3742 break;
3743
3744 case R_68K_PLT8O:
3745 case R_68K_PLT16O:
3746 case R_68K_PLT32O:
3747 /* Relocation is the offset of the entry for this symbol in
3748 the procedure linkage table. */
3749 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3750
ce558b89
AM
3751 splt = elf_hash_table (info)->splt;
3752 BFD_ASSERT (splt != NULL);
252b5132
RH
3753
3754 relocation = h->plt.offset;
44f745a6 3755 unresolved_reloc = FALSE;
252b5132
RH
3756
3757 /* This relocation does not use the addend. */
3758 rel->r_addend = 0;
3759
3760 break;
3761
252b5132
RH
3762 case R_68K_8:
3763 case R_68K_16:
3764 case R_68K_32:
2516a1ee
AS
3765 case R_68K_PC8:
3766 case R_68K_PC16:
3767 case R_68K_PC32:
0e1862bb 3768 if (bfd_link_pic (info)
cf35638d 3769 && r_symndx != STN_UNDEF
252b5132 3770 && (input_section->flags & SEC_ALLOC) != 0
d2ff124f 3771 && (h == NULL
5056ba1d
L
3772 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3773 && !resolved_to_zero)
d2ff124f 3774 || h->root.type != bfd_link_hash_undefweak)
252b5132
RH
3775 && ((r_type != R_68K_PC8
3776 && r_type != R_68K_PC16
3777 && r_type != R_68K_PC32)
2516a1ee 3778 || !SYMBOL_CALLS_LOCAL (info, h)))
252b5132
RH
3779 {
3780 Elf_Internal_Rela outrel;
947216bf 3781 bfd_byte *loc;
b34976b6 3782 bfd_boolean skip, relocate;
252b5132
RH
3783
3784 /* When generating a shared object, these relocations
3785 are copied into the output file to be resolved at run
3786 time. */
3787
b34976b6
AM
3788 skip = FALSE;
3789 relocate = FALSE;
252b5132 3790
c629eae0
JJ
3791 outrel.r_offset =
3792 _bfd_elf_section_offset (output_bfd, info, input_section,
3793 rel->r_offset);
3794 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 3795 skip = TRUE;
0bb2d96a 3796 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 3797 skip = TRUE, relocate = TRUE;
252b5132
RH
3798 outrel.r_offset += (input_section->output_section->vma
3799 + input_section->output_offset);
3800
3801 if (skip)
0bb2d96a 3802 memset (&outrel, 0, sizeof outrel);
252b5132 3803 else if (h != NULL
d2ff124f
AS
3804 && h->dynindx != -1
3805 && (r_type == R_68K_PC8
3806 || r_type == R_68K_PC16
3807 || r_type == R_68K_PC32
0e1862bb 3808 || !bfd_link_pic (info)
a496fbc8 3809 || !SYMBOLIC_BIND (info, h)
f5385ebf 3810 || !h->def_regular))
252b5132 3811 {
252b5132 3812 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
d2ff124f 3813 outrel.r_addend = rel->r_addend;
252b5132
RH
3814 }
3815 else
3816 {
d2ff124f 3817 /* This symbol is local, or marked to become local. */
74541ad4
AM
3818 outrel.r_addend = relocation + rel->r_addend;
3819
252b5132
RH
3820 if (r_type == R_68K_32)
3821 {
b34976b6 3822 relocate = TRUE;
252b5132 3823 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
252b5132
RH
3824 }
3825 else
3826 {
3827 long indx;
3828
8517fae7 3829 if (bfd_is_abs_section (sec))
252b5132
RH
3830 indx = 0;
3831 else if (sec == NULL || sec->owner == NULL)
3832 {
3833 bfd_set_error (bfd_error_bad_value);
b34976b6 3834 return FALSE;
252b5132
RH
3835 }
3836 else
3837 {
3838 asection *osec;
3839
74541ad4
AM
3840 /* We are turning this relocation into one
3841 against a section symbol. It would be
3842 proper to subtract the symbol's value,
3843 osec->vma, from the emitted reloc addend,
3844 but ld.so expects buggy relocs. */
252b5132
RH
3845 osec = sec->output_section;
3846 indx = elf_section_data (osec)->dynindx;
74541ad4
AM
3847 if (indx == 0)
3848 {
3849 struct elf_link_hash_table *htab;
3850 htab = elf_hash_table (info);
3851 osec = htab->text_index_section;
3852 indx = elf_section_data (osec)->dynindx;
3853 }
3854 BFD_ASSERT (indx != 0);
252b5132
RH
3855 }
3856
252b5132 3857 outrel.r_info = ELF32_R_INFO (indx, r_type);
252b5132
RH
3858 }
3859 }
3860
d2ff124f
AS
3861 sreloc = elf_section_data (input_section)->sreloc;
3862 if (sreloc == NULL)
3863 abort ();
3864
947216bf
AM
3865 loc = sreloc->contents;
3866 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3867 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
252b5132
RH
3868
3869 /* This reloc will be computed at runtime, so there's no
07d6d2b8
AM
3870 need to do anything now, except for R_68K_32
3871 relocations that have been turned into
3872 R_68K_RELATIVE. */
252b5132
RH
3873 if (!relocate)
3874 continue;
3875 }
3876
3877 break;
3878
3879 case R_68K_GNU_VTINHERIT:
3880 case R_68K_GNU_VTENTRY:
3881 /* These are no-ops in the end. */
3882 continue;
3883
3884 default:
3885 break;
3886 }
3887
44f745a6
AS
3888 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3889 because such sections are not SEC_ALLOC and thus ld.so will
3890 not process them. */
3891 if (unresolved_reloc
3892 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
3893 && h->def_dynamic)
3894 && _bfd_elf_section_offset (output_bfd, info, input_section,
3895 rel->r_offset) != (bfd_vma) -1)
44f745a6 3896 {
4eca0228 3897 _bfd_error_handler
695344c0 3898 /* xgettext:c-format */
2dcf00ce
AM
3899 (_("%pB(%pA+%#" PRIx64 "): "
3900 "unresolvable %s relocation against symbol `%s'"),
d003868e
AM
3901 input_bfd,
3902 input_section,
2dcf00ce 3903 (uint64_t) rel->r_offset,
843fe662 3904 howto->name,
44f745a6
AS
3905 h->root.root.string);
3906 return FALSE;
3907 }
3908
cf35638d 3909 if (r_symndx != STN_UNDEF
cf869cce
NC
3910 && r_type != R_68K_NONE
3911 && (h == NULL
3912 || h->root.type == bfd_link_hash_defined
3913 || h->root.type == bfd_link_hash_defweak))
3914 {
3915 char sym_type;
3916
3917 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3918
3919 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3920 {
3921 const char *name;
3922
3923 if (h != NULL)
3924 name = h->root.root.string;
3925 else
3926 {
3927 name = (bfd_elf_string_from_elf_section
3928 (input_bfd, symtab_hdr->sh_link, sym->st_name));
3929 if (name == NULL || *name == '\0')
3930 name = bfd_section_name (input_bfd, sec);
3931 }
3932
4eca0228 3933 _bfd_error_handler
cf869cce 3934 ((sym_type == STT_TLS
695344c0 3935 /* xgettext:c-format */
2dcf00ce 3936 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 3937 /* xgettext:c-format */
2dcf00ce 3938 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
cf869cce
NC
3939 input_bfd,
3940 input_section,
2dcf00ce 3941 (uint64_t) rel->r_offset,
cf869cce
NC
3942 howto->name,
3943 name);
3944 }
3945 }
3946
252b5132
RH
3947 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3948 contents, rel->r_offset,
3949 relocation, rel->r_addend);
3950
3951 if (r != bfd_reloc_ok)
3952 {
44f745a6
AS
3953 const char *name;
3954
3955 if (h != NULL)
3956 name = h->root.root.string;
3957 else
252b5132 3958 {
44f745a6
AS
3959 name = bfd_elf_string_from_elf_section (input_bfd,
3960 symtab_hdr->sh_link,
3961 sym->st_name);
3962 if (name == NULL)
3963 return FALSE;
3964 if (*name == '\0')
3965 name = bfd_section_name (input_bfd, sec);
3966 }
252b5132 3967
44f745a6 3968 if (r == bfd_reloc_overflow)
1a72702b
AM
3969 (*info->callbacks->reloc_overflow)
3970 (info, (h ? &h->root : NULL), name, howto->name,
3971 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
44f745a6
AS
3972 else
3973 {
4eca0228 3974 _bfd_error_handler
695344c0 3975 /* xgettext:c-format */
2dcf00ce 3976 (_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
d003868e 3977 input_bfd, input_section,
2dcf00ce 3978 (uint64_t) rel->r_offset, name, (int) r);
44f745a6 3979 return FALSE;
252b5132
RH
3980 }
3981 }
3982 }
3983
b34976b6 3984 return TRUE;
252b5132
RH
3985}
3986
cc3e26be
RS
3987/* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
3988 into section SEC. */
3989
3990static void
3991elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
3992{
3993 /* Make VALUE PC-relative. */
3994 value -= sec->output_section->vma + offset;
3995
3996 /* Apply any in-place addend. */
3997 value += bfd_get_32 (sec->owner, sec->contents + offset);
3998
3999 bfd_put_32 (sec->owner, value, sec->contents + offset);
4000}
4001
252b5132
RH
4002/* Finish up dynamic symbol handling. We set the contents of various
4003 dynamic sections here. */
4004
b34976b6 4005static bfd_boolean
2c3fc389
NC
4006elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4007 struct bfd_link_info *info,
4008 struct elf_link_hash_entry *h,
4009 Elf_Internal_Sym *sym)
252b5132
RH
4010{
4011 bfd *dynobj;
4012
4013 dynobj = elf_hash_table (info)->dynobj;
4014
4015 if (h->plt.offset != (bfd_vma) -1)
4016 {
cc3e26be 4017 const struct elf_m68k_plt_info *plt_info;
252b5132
RH
4018 asection *splt;
4019 asection *sgot;
4020 asection *srela;
4021 bfd_vma plt_index;
4022 bfd_vma got_offset;
4023 Elf_Internal_Rela rela;
947216bf 4024 bfd_byte *loc;
252b5132
RH
4025
4026 /* This symbol has an entry in the procedure linkage table. Set
4027 it up. */
4028
4029 BFD_ASSERT (h->dynindx != -1);
4030
cc3e26be 4031 plt_info = elf_m68k_hash_table (info)->plt_info;
ce558b89
AM
4032 splt = elf_hash_table (info)->splt;
4033 sgot = elf_hash_table (info)->sgotplt;
4034 srela = elf_hash_table (info)->srelplt;
252b5132
RH
4035 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4036
4037 /* Get the index in the procedure linkage table which
4038 corresponds to this symbol. This is the index of this symbol
4039 in all the symbols for which we are making plt entries. The
4040 first entry in the procedure linkage table is reserved. */
cc3e26be 4041 plt_index = (h->plt.offset / plt_info->size) - 1;
252b5132
RH
4042
4043 /* Get the offset into the .got table of the entry that
4044 corresponds to this function. Each .got entry is 4 bytes.
4045 The first three are reserved. */
4046 got_offset = (plt_index + 3) * 4;
4047
cc3e26be
RS
4048 memcpy (splt->contents + h->plt.offset,
4049 plt_info->symbol_entry,
4050 plt_info->size);
4051
4052 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4053 (sgot->output_section->vma
4054 + sgot->output_offset
4055 + got_offset));
252b5132
RH
4056
4057 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
cc3e26be
RS
4058 splt->contents
4059 + h->plt.offset
4060 + plt_info->symbol_resolve_entry + 2);
4061
4062 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4063 splt->output_section->vma);
252b5132
RH
4064
4065 /* Fill in the entry in the global offset table. */
4066 bfd_put_32 (output_bfd,
4067 (splt->output_section->vma
4068 + splt->output_offset
4069 + h->plt.offset
cc3e26be 4070 + plt_info->symbol_resolve_entry),
252b5132
RH
4071 sgot->contents + got_offset);
4072
4073 /* Fill in the entry in the .rela.plt section. */
4074 rela.r_offset = (sgot->output_section->vma
4075 + sgot->output_offset
4076 + got_offset);
4077 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4078 rela.r_addend = 0;
947216bf
AM
4079 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4080 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
252b5132 4081
f5385ebf 4082 if (!h->def_regular)
252b5132
RH
4083 {
4084 /* Mark the symbol as undefined, rather than as defined in
4085 the .plt section. Leave the value alone. */
4086 sym->st_shndx = SHN_UNDEF;
4087 }
4088 }
4089
7fb9f789 4090 if (elf_m68k_hash_entry (h)->glist != NULL)
252b5132
RH
4091 {
4092 asection *sgot;
4093 asection *srela;
7fb9f789 4094 struct elf_m68k_got_entry *got_entry;
252b5132
RH
4095
4096 /* This symbol has an entry in the global offset table. Set it
4097 up. */
4098
ce558b89
AM
4099 sgot = elf_hash_table (info)->sgot;
4100 srela = elf_hash_table (info)->srelgot;
252b5132
RH
4101 BFD_ASSERT (sgot != NULL && srela != NULL);
4102
7fb9f789
NC
4103 got_entry = elf_m68k_hash_entry (h)->glist;
4104
4105 while (got_entry != NULL)
252b5132 4106 {
325e58c7 4107 enum elf_m68k_reloc_type r_type;
cf869cce
NC
4108 bfd_vma got_entry_offset;
4109
325e58c7 4110 r_type = got_entry->key_.type;
cf869cce 4111 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
7fb9f789 4112
7fb9f789
NC
4113 /* If this is a -Bsymbolic link, and the symbol is defined
4114 locally, we just want to emit a RELATIVE reloc. Likewise if
4115 the symbol was forced to be local because of a version file.
cf869cce 4116 The entry in the global offset table already have been
7fb9f789 4117 initialized in the relocate_section function. */
0e1862bb 4118 if (bfd_link_pic (info)
2516a1ee 4119 && SYMBOL_REFERENCES_LOCAL (info, h))
7fb9f789 4120 {
325e58c7 4121 bfd_vma relocation;
cf869cce 4122
325e58c7
NC
4123 relocation = bfd_get_signed_32 (output_bfd,
4124 (sgot->contents
4125 + got_entry_offset));
4126
4127 /* Undo TP bias. */
4128 switch (elf_m68k_reloc_got_type (r_type))
cf869cce
NC
4129 {
4130 case R_68K_GOT32O:
325e58c7 4131 case R_68K_TLS_LDM32:
cf869cce
NC
4132 break;
4133
4134 case R_68K_TLS_GD32:
93b3ac75
AS
4135 /* The value for this relocation is actually put in
4136 the second GOT slot. */
4137 relocation = bfd_get_signed_32 (output_bfd,
4138 (sgot->contents
4139 + got_entry_offset + 4));
325e58c7 4140 relocation += dtpoff_base (info);
cf869cce
NC
4141 break;
4142
4143 case R_68K_TLS_IE32:
325e58c7 4144 relocation += tpoff_base (info);
cf869cce
NC
4145 break;
4146
4147 default:
4148 BFD_ASSERT (FALSE);
cf869cce
NC
4149 }
4150
325e58c7
NC
4151 elf_m68k_init_got_entry_local_shared (info,
4152 output_bfd,
4153 r_type,
4154 sgot,
4155 got_entry_offset,
4156 relocation,
4157 srela);
7fb9f789
NC
4158 }
4159 else
4160 {
325e58c7
NC
4161 Elf_Internal_Rela rela;
4162
cf869cce
NC
4163 /* Put zeros to GOT slots that will be initialized
4164 at run-time. */
4165 {
4166 bfd_vma n_slots;
4167
4168 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4169 while (n_slots--)
4170 bfd_put_32 (output_bfd, (bfd_vma) 0,
4171 (sgot->contents + got_entry_offset
4172 + 4 * n_slots));
4173 }
4174
7fb9f789 4175 rela.r_addend = 0;
325e58c7
NC
4176 rela.r_offset = (sgot->output_section->vma
4177 + sgot->output_offset
4178 + got_entry_offset);
252b5132 4179
325e58c7 4180 switch (elf_m68k_reloc_got_type (r_type))
cf869cce
NC
4181 {
4182 case R_68K_GOT32O:
4183 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4184 elf_m68k_install_rela (output_bfd, srela, &rela);
4185 break;
4186
4187 case R_68K_TLS_GD32:
4188 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4189 elf_m68k_install_rela (output_bfd, srela, &rela);
4190
4191 rela.r_offset += 4;
4192 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4193 elf_m68k_install_rela (output_bfd, srela, &rela);
4194 break;
4195
4196 case R_68K_TLS_IE32:
4197 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4198 elf_m68k_install_rela (output_bfd, srela, &rela);
4199 break;
4200
4201 default:
4202 BFD_ASSERT (FALSE);
4203 break;
4204 }
4205 }
7fb9f789
NC
4206
4207 got_entry = got_entry->u.s2.next;
4208 }
252b5132
RH
4209 }
4210
f5385ebf 4211 if (h->needs_copy)
252b5132
RH
4212 {
4213 asection *s;
4214 Elf_Internal_Rela rela;
947216bf 4215 bfd_byte *loc;
252b5132
RH
4216
4217 /* This symbol needs a copy reloc. Set it up. */
4218
4219 BFD_ASSERT (h->dynindx != -1
4220 && (h->root.type == bfd_link_hash_defined
4221 || h->root.type == bfd_link_hash_defweak));
4222
3d4d4302 4223 s = bfd_get_linker_section (dynobj, ".rela.bss");
252b5132
RH
4224 BFD_ASSERT (s != NULL);
4225
4226 rela.r_offset = (h->root.u.def.value
4227 + h->root.u.def.section->output_section->vma
4228 + h->root.u.def.section->output_offset);
4229 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4230 rela.r_addend = 0;
947216bf
AM
4231 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4232 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
252b5132
RH
4233 }
4234
b34976b6 4235 return TRUE;
252b5132
RH
4236}
4237
4238/* Finish up the dynamic sections. */
4239
b34976b6 4240static bfd_boolean
2c3fc389 4241elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
252b5132
RH
4242{
4243 bfd *dynobj;
4244 asection *sgot;
4245 asection *sdyn;
4246
4247 dynobj = elf_hash_table (info)->dynobj;
4248
ce558b89 4249 sgot = elf_hash_table (info)->sgotplt;
252b5132 4250 BFD_ASSERT (sgot != NULL);
3d4d4302 4251 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
4252
4253 if (elf_hash_table (info)->dynamic_sections_created)
4254 {
4255 asection *splt;
4256 Elf32_External_Dyn *dyncon, *dynconend;
4257
ce558b89 4258 splt = elf_hash_table (info)->splt;
252b5132
RH
4259 BFD_ASSERT (splt != NULL && sdyn != NULL);
4260
4261 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 4262 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
252b5132
RH
4263 for (; dyncon < dynconend; dyncon++)
4264 {
4265 Elf_Internal_Dyn dyn;
252b5132
RH
4266 asection *s;
4267
4268 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4269
4270 switch (dyn.d_tag)
4271 {
4272 default:
4273 break;
4274
4275 case DT_PLTGOT:
ce558b89 4276 s = elf_hash_table (info)->sgotplt;
252b5132
RH
4277 goto get_vma;
4278 case DT_JMPREL:
ce558b89 4279 s = elf_hash_table (info)->srelplt;
252b5132 4280 get_vma:
4ade44b7 4281 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
252b5132
RH
4282 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4283 break;
4284
4285 case DT_PLTRELSZ:
ce558b89 4286 s = elf_hash_table (info)->srelplt;
eea6121a 4287 dyn.d_un.d_val = s->size;
252b5132
RH
4288 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4289 break;
252b5132
RH
4290 }
4291 }
4292
4293 /* Fill in the first entry in the procedure linkage table. */
eea6121a 4294 if (splt->size > 0)
252b5132 4295 {
cc3e26be
RS
4296 const struct elf_m68k_plt_info *plt_info;
4297
4298 plt_info = elf_m68k_hash_table (info)->plt_info;
4299 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4300
4301 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4302 (sgot->output_section->vma
4303 + sgot->output_offset
4304 + 4));
4305
4306 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4307 (sgot->output_section->vma
4308 + sgot->output_offset
4309 + 8));
4310
4311 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4312 = plt_info->size;
252b5132 4313 }
252b5132
RH
4314 }
4315
4316 /* Fill in the first three entries in the global offset table. */
eea6121a 4317 if (sgot->size > 0)
252b5132
RH
4318 {
4319 if (sdyn == NULL)
4320 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4321 else
4322 bfd_put_32 (output_bfd,
4323 sdyn->output_section->vma + sdyn->output_offset,
4324 sgot->contents);
4325 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4326 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4327 }
4328
4329 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4330
b34976b6 4331 return TRUE;
252b5132
RH
4332}
4333
0752970e
NC
4334/* Given a .data section and a .emreloc in-memory section, store
4335 relocation information into the .emreloc section which can be
4336 used at runtime to relocate the section. This is called by the
4337 linker when the --embedded-relocs switch is used. This is called
4338 after the add_symbols entry point has been called for all the
4339 objects, and before the final_link entry point is called. */
4340
b34976b6 4341bfd_boolean
e6c7cdec
TS
4342bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4343 asection *datasec, asection *relsec,
4344 char **errmsg)
0752970e
NC
4345{
4346 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc
AM
4347 Elf_Internal_Sym *isymbuf = NULL;
4348 Elf_Internal_Rela *internal_relocs = NULL;
0752970e
NC
4349 Elf_Internal_Rela *irel, *irelend;
4350 bfd_byte *p;
dc810e39 4351 bfd_size_type amt;
0752970e 4352
0e1862bb 4353 BFD_ASSERT (! bfd_link_relocatable (info));
0752970e
NC
4354
4355 *errmsg = NULL;
4356
4357 if (datasec->reloc_count == 0)
b34976b6 4358 return TRUE;
0752970e
NC
4359
4360 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9ad5cbcf 4361
0752970e 4362 /* Get a copy of the native relocations. */
45d6a902 4363 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 4364 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
0752970e
NC
4365 info->keep_memory));
4366 if (internal_relocs == NULL)
4367 goto error_return;
0752970e 4368
dc810e39
AM
4369 amt = (bfd_size_type) datasec->reloc_count * 12;
4370 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
0752970e
NC
4371 if (relsec->contents == NULL)
4372 goto error_return;
4373
4374 p = relsec->contents;
4375
4376 irelend = internal_relocs + datasec->reloc_count;
4377 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4378 {
4379 asection *targetsec;
4380
4381 /* We are going to write a four byte longword into the runtime
4382 reloc section. The longword will be the address in the data
4383 section which must be relocated. It is followed by the name
4384 of the target section NUL-padded or truncated to 8
4385 characters. */
4386
4387 /* We can only relocate absolute longword relocs at run time. */
4388 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4389 {
0aa13fee 4390 *errmsg = _("unsupported relocation type");
0752970e
NC
4391 bfd_set_error (bfd_error_bad_value);
4392 goto error_return;
4393 }
4394
4395 /* Get the target section referred to by the reloc. */
4396 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4397 {
0752970e 4398 /* A local symbol. */
6cdc0ccc
AM
4399 Elf_Internal_Sym *isym;
4400
4401 /* Read this BFD's local symbols if we haven't done so already. */
4402 if (isymbuf == NULL)
4403 {
4404 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4405 if (isymbuf == NULL)
4406 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4407 symtab_hdr->sh_info, 0,
4408 NULL, NULL, NULL);
4409 if (isymbuf == NULL)
4410 goto error_return;
4411 }
0752970e 4412
6cdc0ccc
AM
4413 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4414 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
0752970e
NC
4415 }
4416 else
4417 {
4418 unsigned long indx;
4419 struct elf_link_hash_entry *h;
4420
4421 /* An external symbol. */
4422 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4423 h = elf_sym_hashes (abfd)[indx];
4424 BFD_ASSERT (h != NULL);
4425 if (h->root.type == bfd_link_hash_defined
4426 || h->root.type == bfd_link_hash_defweak)
4427 targetsec = h->root.u.def.section;
4428 else
4429 targetsec = NULL;
4430 }
4431
4432 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4433 memset (p + 4, 0, 8);
4434 if (targetsec != NULL)
f075ee0c 4435 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
0752970e 4436 }
c3668558 4437
6cdc0ccc
AM
4438 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4439 free (isymbuf);
4440 if (internal_relocs != NULL
4441 && elf_section_data (datasec)->relocs != internal_relocs)
4442 free (internal_relocs);
b34976b6 4443 return TRUE;
0752970e
NC
4444
4445error_return:
6cdc0ccc
AM
4446 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4447 free (isymbuf);
4448 if (internal_relocs != NULL
4449 && elf_section_data (datasec)->relocs != internal_relocs)
4450 free (internal_relocs);
b34976b6 4451 return FALSE;
0752970e
NC
4452}
4453
7fb9f789
NC
4454/* Set target options. */
4455
4456void
4457bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4458{
4459 struct elf_m68k_link_hash_table *htab;
b1345da3
MR
4460 bfd_boolean use_neg_got_offsets_p;
4461 bfd_boolean allow_multigot_p;
4462 bfd_boolean local_gp_p;
7fb9f789
NC
4463
4464 switch (got_handling)
4465 {
4466 case 0:
4467 /* --got=single. */
b1345da3
MR
4468 local_gp_p = FALSE;
4469 use_neg_got_offsets_p = FALSE;
4470 allow_multigot_p = FALSE;
7fb9f789
NC
4471 break;
4472
4473 case 1:
4474 /* --got=negative. */
b1345da3
MR
4475 local_gp_p = TRUE;
4476 use_neg_got_offsets_p = TRUE;
4477 allow_multigot_p = FALSE;
7fb9f789
NC
4478 break;
4479
4480 case 2:
4481 /* --got=multigot. */
b1345da3
MR
4482 local_gp_p = TRUE;
4483 use_neg_got_offsets_p = TRUE;
4484 allow_multigot_p = TRUE;
7fb9f789
NC
4485 break;
4486
4487 default:
4488 BFD_ASSERT (FALSE);
b1345da3
MR
4489 return;
4490 }
4491
4492 htab = elf_m68k_hash_table (info);
4493 if (htab != NULL)
4494 {
4495 htab->local_gp_p = local_gp_p;
4496 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4497 htab->allow_multigot_p = allow_multigot_p;
7fb9f789
NC
4498 }
4499}
4500
aa91b392 4501static enum elf_reloc_type_class
7e612e98
AM
4502elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4503 const asection *rel_sec ATTRIBUTE_UNUSED,
4504 const Elf_Internal_Rela *rela)
aa91b392 4505{
f51e552e 4506 switch ((int) ELF32_R_TYPE (rela->r_info))
aa91b392
AS
4507 {
4508 case R_68K_RELATIVE:
4509 return reloc_class_relative;
4510 case R_68K_JMP_SLOT:
4511 return reloc_class_plt;
4512 case R_68K_COPY:
4513 return reloc_class_copy;
4514 default:
4515 return reloc_class_normal;
4516 }
4517}
4518
1715e0e3
AS
4519/* Return address for Ith PLT stub in section PLT, for relocation REL
4520 or (bfd_vma) -1 if it should not be included. */
4521
4522static bfd_vma
4523elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4524 const arelent *rel ATTRIBUTE_UNUSED)
4525{
cc3e26be 4526 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
1715e0e3
AS
4527}
4528
8bbeae90
AS
4529/* Support for core dump NOTE sections. */
4530
4531static bfd_boolean
4532elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4533{
4534 int offset;
4535 size_t size;
4536
4537 switch (note->descsz)
4538 {
4539 default:
4540 return FALSE;
4541
4542 case 154: /* Linux/m68k */
4543 /* pr_cursig */
228e534f 4544 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
8bbeae90
AS
4545
4546 /* pr_pid */
228e534f 4547 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
8bbeae90
AS
4548
4549 /* pr_reg */
4550 offset = 70;
4551 size = 80;
4552
4553 break;
4554 }
4555
4556 /* Make a ".reg/999" section. */
4557 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4558 size, note->descpos + offset);
4559}
4560
4561static bfd_boolean
4562elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4563{
4564 switch (note->descsz)
4565 {
4566 default:
4567 return FALSE;
4568
4569 case 124: /* Linux/m68k elf_prpsinfo. */
228e534f 4570 elf_tdata (abfd)->core->pid
8bbeae90 4571 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 4572 elf_tdata (abfd)->core->program
8bbeae90 4573 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 4574 elf_tdata (abfd)->core->command
8bbeae90
AS
4575 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4576 }
4577
4578 /* Note that for some reason, a spurious space is tacked
4579 onto the end of the args in some (at least one anyway)
4580 implementations, so strip it off if it exists. */
4581 {
228e534f 4582 char *command = elf_tdata (abfd)->core->command;
8bbeae90
AS
4583 int n = strlen (command);
4584
4585 if (n > 0 && command[n - 1] == ' ')
4586 command[n - 1] = '\0';
4587 }
4588
4589 return TRUE;
4590}
4591
6d00b590 4592#define TARGET_BIG_SYM m68k_elf32_vec
252b5132
RH
4593#define TARGET_BIG_NAME "elf32-m68k"
4594#define ELF_MACHINE_CODE EM_68K
4595#define ELF_MAXPAGESIZE 0x2000
4596#define elf_backend_create_dynamic_sections \
4597 _bfd_elf_create_dynamic_sections
4598#define bfd_elf32_bfd_link_hash_table_create \
4599 elf_m68k_link_hash_table_create
7fb9f789 4600#define bfd_elf32_bfd_final_link bfd_elf_final_link
252b5132
RH
4601
4602#define elf_backend_check_relocs elf_m68k_check_relocs
cc3e26be
RS
4603#define elf_backend_always_size_sections \
4604 elf_m68k_always_size_sections
252b5132
RH
4605#define elf_backend_adjust_dynamic_symbol \
4606 elf_m68k_adjust_dynamic_symbol
4607#define elf_backend_size_dynamic_sections \
4608 elf_m68k_size_dynamic_sections
fc9f1df9 4609#define elf_backend_final_write_processing elf_m68k_final_write_processing
74541ad4 4610#define elf_backend_init_index_section _bfd_elf_init_1_index_section
252b5132
RH
4611#define elf_backend_relocate_section elf_m68k_relocate_section
4612#define elf_backend_finish_dynamic_symbol \
4613 elf_m68k_finish_dynamic_symbol
4614#define elf_backend_finish_dynamic_sections \
4615 elf_m68k_finish_dynamic_sections
4616#define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
7fb9f789 4617#define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
9e1281c7 4618#define bfd_elf32_bfd_merge_private_bfd_data \
07d6d2b8 4619 elf32_m68k_merge_private_bfd_data
9e1281c7 4620#define bfd_elf32_bfd_set_private_flags \
07d6d2b8 4621 elf32_m68k_set_private_flags
9e1281c7 4622#define bfd_elf32_bfd_print_private_bfd_data \
07d6d2b8 4623 elf32_m68k_print_private_bfd_data
aa91b392 4624#define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
1715e0e3 4625#define elf_backend_plt_sym_val elf_m68k_plt_sym_val
266abb8f 4626#define elf_backend_object_p elf32_m68k_object_p
8bbeae90
AS
4627#define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4628#define elf_backend_grok_psinfo elf_m68k_grok_psinfo
9e1281c7 4629
252b5132 4630#define elf_backend_can_gc_sections 1
51b64d56 4631#define elf_backend_can_refcount 1
252b5132
RH
4632#define elf_backend_want_got_plt 1
4633#define elf_backend_plt_readonly 1
4634#define elf_backend_want_plt_sym 0
4635#define elf_backend_got_header_size 12
b491616a 4636#define elf_backend_rela_normal 1
64f52338 4637#define elf_backend_dtrel_excludes_plt 1
252b5132 4638
a2f63b2e
MR
4639#define elf_backend_linux_prpsinfo32_ugid16 TRUE
4640
252b5132 4641#include "elf32-target.h"
This page took 1.585443 seconds and 4 git commands to generate.