Remove U suffix from constants for K&R compilers.
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
CommitLineData
252b5132
RH
1/* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
103186c6
MM
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
252b5132
RH
8
9This file is part of BFD, the Binary File Descriptor library.
10
11This program is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2 of the License, or
14(at your option) any later version.
15
16This program is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with this program; if not, write to the Free Software
23Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25/* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
26 different MIPS ELF from other targets. This matters when linking.
27 This file supports both, switching at runtime. */
28
29#include "bfd.h"
30#include "sysdep.h"
31#include "libbfd.h"
32#include "bfdlink.h"
33#include "genlink.h"
34#include "elf-bfd.h"
35#include "elf/mips.h"
36
37/* Get the ECOFF swapping routines. */
38#include "coff/sym.h"
39#include "coff/symconst.h"
40#include "coff/internal.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43#define ECOFF_32
44#include "ecoffswap.h"
45
7403cb63
MM
46/* This structure is used to hold .got information when linking. It
47 is stored in the tdata field of the bfd_elf_section_data structure. */
48
49struct mips_got_info
50{
51 /* The global symbol in the GOT with the lowest index in the dynamic
52 symbol table. */
53 struct elf_link_hash_entry *global_gotsym;
b3be9b46
RH
54 /* The number of global .got entries. */
55 unsigned int global_gotno;
7403cb63
MM
56 /* The number of local .got entries. */
57 unsigned int local_gotno;
58 /* The number of local .got entries we have used. */
59 unsigned int assigned_gotno;
60};
61
62/* The MIPS ELF linker needs additional information for each symbol in
63 the global hash table. */
64
65struct mips_elf_link_hash_entry
66{
67 struct elf_link_hash_entry root;
68
69 /* External symbol information. */
70 EXTR esym;
71
a3c7651d
MM
72 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
73 this symbol. */
74 unsigned int possibly_dynamic_relocs;
7403cb63
MM
75
76 /* The index of the first dynamic relocation (in the .rel.dyn
77 section) against this symbol. */
78 unsigned int min_dyn_reloc_index;
79
80 /* If there is a stub that 32 bit functions should use to call this
81 16 bit function, this points to the section containing the stub. */
82 asection *fn_stub;
83
84 /* Whether we need the fn_stub; this is set if this symbol appears
85 in any relocs other than a 16 bit call. */
86 boolean need_fn_stub;
87
88 /* If there is a stub that 16 bit functions should use to call this
89 32 bit function, this points to the section containing the stub. */
90 asection *call_stub;
91
92 /* This is like the call_stub field, but it is used if the function
93 being called returns a floating point value. */
94 asection *call_fp_stub;
95};
96
252b5132
RH
97static bfd_reloc_status_type mips32_64bit_reloc
98 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
99static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
100 PARAMS ((bfd *, bfd_reloc_code_real_type));
c9b3cbf3
RH
101static reloc_howto_type *mips_rtype_to_howto
102 PARAMS ((unsigned int));
252b5132
RH
103static void mips_info_to_howto_rel
104 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
3f830999
MM
105static void mips_info_to_howto_rela
106 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
252b5132
RH
107static void bfd_mips_elf32_swap_gptab_in
108 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
109static void bfd_mips_elf32_swap_gptab_out
110 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
86033394 111#if 0
c6142e5d
MM
112static void bfd_mips_elf_swap_msym_in
113 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
86033394 114#endif
c6142e5d
MM
115static void bfd_mips_elf_swap_msym_out
116 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
252b5132 117static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
252b5132
RH
118static boolean mips_elf_create_procedure_table
119 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
120 struct ecoff_debug_info *));
252b5132
RH
121static INLINE int elf_mips_isa PARAMS ((flagword));
122static INLINE int elf_mips_mach PARAMS ((flagword));
103186c6 123static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
252b5132
RH
124static boolean mips_elf_is_local_label_name
125 PARAMS ((bfd *, const char *));
126static struct bfd_hash_entry *mips_elf_link_hash_newfunc
127 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
252b5132 128static int gptab_compare PARAMS ((const void *, const void *));
252b5132
RH
129static bfd_reloc_status_type mips16_jump_reloc
130 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
131static bfd_reloc_status_type mips16_gprel_reloc
132 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
252b5132
RH
133static boolean mips_elf_create_compact_rel_section
134 PARAMS ((bfd *, struct bfd_link_info *));
135static boolean mips_elf_create_got_section
136 PARAMS ((bfd *, struct bfd_link_info *));
252b5132
RH
137static bfd_reloc_status_type mips_elf_final_gp
138 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
139static bfd_byte *elf32_mips_get_relocated_section_contents
140 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
141 bfd_byte *, boolean, asymbol **));
c6142e5d
MM
142static asection *mips_elf_create_msym_section
143 PARAMS ((bfd *));
7403cb63
MM
144static void mips_elf_irix6_finish_dynamic_symbol
145 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
146static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
147static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
148static bfd_vma mips_elf_high PARAMS ((bfd_vma));
149static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
150static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
151static bfd_vma mips_elf_global_got_index
152 PARAMS ((bfd *, struct elf_link_hash_entry *));
153static bfd_vma mips_elf_local_got_index
154 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
155static bfd_vma mips_elf_got_offset_from_index
156 PARAMS ((bfd *, bfd *, bfd_vma));
157static boolean mips_elf_record_global_got_symbol
158 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
159 struct mips_got_info *));
160static bfd_vma mips_elf_got_page
161 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
bb2d6cd7
GK
162static const Elf_Internal_Rela *mips_elf_next_relocation
163 PARAMS ((unsigned int, const Elf_Internal_Rela *,
164 const Elf_Internal_Rela *));
7403cb63
MM
165static bfd_reloc_status_type mips_elf_calculate_relocation
166 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
103186c6 167 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
197b9ca0
MM
168 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
169 boolean *));
7403cb63 170static bfd_vma mips_elf_obtain_contents
103186c6 171 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
197b9ca0 172static boolean mips_elf_perform_relocation
e53bd91b
MM
173 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
174 const Elf_Internal_Rela *, bfd_vma,
197b9ca0 175 bfd *, asection *, bfd_byte *, boolean));
7403cb63
MM
176static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
177static boolean mips_elf_sort_hash_table_f
178 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
179static boolean mips_elf_sort_hash_table
b3be9b46 180 PARAMS ((struct bfd_link_info *, unsigned long));
7403cb63
MM
181static asection * mips_elf_got_section PARAMS ((bfd *));
182static struct mips_got_info *mips_elf_got_info
183 PARAMS ((bfd *, asection **));
6387d602
ILT
184static boolean mips_elf_local_relocation_p
185 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **));
7403cb63
MM
186static bfd_vma mips_elf_create_local_got_entry
187 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
188static bfd_vma mips_elf_got16_entry
189 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
7b1f1231 190static boolean mips_elf_create_dynamic_relocation
103186c6 191 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
7b1f1231
MM
192 struct mips_elf_link_hash_entry *, asection *,
193 bfd_vma, bfd_vma *, asection *));
103186c6
MM
194static void mips_elf_allocate_dynamic_relocations
195 PARAMS ((bfd *, unsigned int));
197b9ca0
MM
196static boolean mips_elf_stub_section_p
197 PARAMS ((bfd *, asection *));
252b5132 198
a94a7c1c 199/* The level of IRIX compatibility we're striving for. */
252b5132 200
a94a7c1c
MM
201typedef enum {
202 ict_none,
203 ict_irix5,
204 ict_irix6
205} irix_compat_t;
206
207/* Nonzero if ABFD is using the N32 ABI. */
208
209#define ABI_N32_P(abfd) \
210 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
211
5e38c3b8
MM
212/* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
213 true, yet. */
214#define ABI_64_P(abfd) \
215 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
216
a94a7c1c
MM
217/* What version of Irix we are trying to be compatible with. FIXME:
218 At the moment, we never generate "normal" MIPS ELF ABI executables;
219 we always use some version of Irix. */
220
221#define IRIX_COMPAT(abfd) \
5e38c3b8 222 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5)
a94a7c1c
MM
223
224/* Whether we are trying to be compatible with IRIX at all. */
225
226#define SGI_COMPAT(abfd) \
227 (IRIX_COMPAT (abfd) != ict_none)
252b5132 228
c6142e5d
MM
229/* The name of the msym section. */
230#define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
231
303f629d
MM
232/* The name of the srdata section. */
233#define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
234
235/* The name of the options section. */
236#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
237 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
238
239/* The name of the stub section. */
240#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
241 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
242
103186c6
MM
243/* The name of the dynamic relocation section. */
244#define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
245
246/* The size of an external REL relocation. */
247#define MIPS_ELF_REL_SIZE(abfd) \
248 (get_elf_backend_data (abfd)->s->sizeof_rel)
249
250/* The size of an external dynamic table entry. */
251#define MIPS_ELF_DYN_SIZE(abfd) \
252 (get_elf_backend_data (abfd)->s->sizeof_dyn)
253
254/* The size of a GOT entry. */
255#define MIPS_ELF_GOT_SIZE(abfd) \
256 (get_elf_backend_data (abfd)->s->arch_size / 8)
257
258/* The size of a symbol-table entry. */
259#define MIPS_ELF_SYM_SIZE(abfd) \
260 (get_elf_backend_data (abfd)->s->sizeof_sym)
261
262/* The default alignment for sections, as a power of two. */
263#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
264 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
265
266/* Get word-sized data. */
267#define MIPS_ELF_GET_WORD(abfd, ptr) \
268 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
269
270/* Put out word-sized data. */
271#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
272 (ABI_64_P (abfd) \
273 ? bfd_put_64 (abfd, val, ptr) \
274 : bfd_put_32 (abfd, val, ptr))
275
276/* Add a dynamic symbol table-entry. */
9ebbd33e 277#ifdef BFD64
103186c6
MM
278#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
279 (ABI_64_P (elf_hash_table (info)->dynobj) \
280 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
281 : bfd_elf32_add_dynamic_entry (info, tag, val))
9ebbd33e
MM
282#else
283#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
284 (ABI_64_P (elf_hash_table (info)->dynobj) \
e049a0de
ILT
285 ? (abort (), false) \
286 : bfd_elf32_add_dynamic_entry (info, tag, val))
9ebbd33e 287#endif
103186c6 288
252b5132
RH
289/* The number of local .got entries we reserve. */
290#define MIPS_RESERVED_GOTNO (2)
291
292/* Instructions which appear in a stub. For some reason the stub is
293 slightly different on an SGI system. */
294#define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
103186c6
MM
295#define STUB_LW(abfd) \
296 (SGI_COMPAT (abfd) \
297 ? (ABI_64_P (abfd) \
298 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
299 : 0x8f998010) /* lw t9,0x8010(gp) */ \
252b5132
RH
300 : 0x8f998000) /* lw t9,0x8000(gp) */
301#define STUB_MOVE 0x03e07825 /* move t7,ra */
302#define STUB_JALR 0x0320f809 /* jal t9 */
303#define STUB_LI16 0x34180000 /* ori t8,zero,0 */
304#define MIPS_FUNCTION_STUB_SIZE (16)
305
306#if 0
307/* We no longer try to identify particular sections for the .dynsym
308 section. When we do, we wind up crashing if there are other random
309 sections with relocations. */
310
311/* Names of sections which appear in the .dynsym section in an Irix 5
312 executable. */
313
314static const char * const mips_elf_dynsym_sec_names[] =
315{
316 ".text",
317 ".init",
318 ".fini",
319 ".data",
320 ".rodata",
321 ".sdata",
322 ".sbss",
323 ".bss",
324 NULL
325};
326
327#define SIZEOF_MIPS_DYNSYM_SECNAMES \
328 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
329
330/* The number of entries in mips_elf_dynsym_sec_names which go in the
331 text segment. */
332
333#define MIPS_TEXT_DYNSYM_SECNO (3)
334
335#endif /* 0 */
336
337/* The names of the runtime procedure table symbols used on Irix 5. */
338
339static const char * const mips_elf_dynsym_rtproc_names[] =
340{
341 "_procedure_table",
342 "_procedure_string_table",
343 "_procedure_table_size",
344 NULL
345};
346
347/* These structures are used to generate the .compact_rel section on
348 Irix 5. */
349
350typedef struct
351{
352 unsigned long id1; /* Always one? */
353 unsigned long num; /* Number of compact relocation entries. */
354 unsigned long id2; /* Always two? */
355 unsigned long offset; /* The file offset of the first relocation. */
356 unsigned long reserved0; /* Zero? */
357 unsigned long reserved1; /* Zero? */
358} Elf32_compact_rel;
359
360typedef struct
361{
362 bfd_byte id1[4];
363 bfd_byte num[4];
364 bfd_byte id2[4];
365 bfd_byte offset[4];
366 bfd_byte reserved0[4];
367 bfd_byte reserved1[4];
368} Elf32_External_compact_rel;
369
370typedef struct
371{
372 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
373 unsigned int rtype : 4; /* Relocation types. See below. */
374 unsigned int dist2to : 8;
375 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
376 unsigned long konst; /* KONST field. See below. */
377 unsigned long vaddr; /* VADDR to be relocated. */
378} Elf32_crinfo;
379
380typedef struct
381{
382 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
383 unsigned int rtype : 4; /* Relocation types. See below. */
384 unsigned int dist2to : 8;
385 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
386 unsigned long konst; /* KONST field. See below. */
387} Elf32_crinfo2;
388
389typedef struct
390{
391 bfd_byte info[4];
392 bfd_byte konst[4];
393 bfd_byte vaddr[4];
394} Elf32_External_crinfo;
395
396typedef struct
397{
398 bfd_byte info[4];
399 bfd_byte konst[4];
400} Elf32_External_crinfo2;
401
402/* These are the constants used to swap the bitfields in a crinfo. */
403
404#define CRINFO_CTYPE (0x1)
405#define CRINFO_CTYPE_SH (31)
406#define CRINFO_RTYPE (0xf)
407#define CRINFO_RTYPE_SH (27)
408#define CRINFO_DIST2TO (0xff)
409#define CRINFO_DIST2TO_SH (19)
410#define CRINFO_RELVADDR (0x7ffff)
411#define CRINFO_RELVADDR_SH (0)
412
413/* A compact relocation info has long (3 words) or short (2 words)
414 formats. A short format doesn't have VADDR field and relvaddr
415 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
416#define CRF_MIPS_LONG 1
417#define CRF_MIPS_SHORT 0
418
419/* There are 4 types of compact relocation at least. The value KONST
420 has different meaning for each type:
421
422 (type) (konst)
423 CT_MIPS_REL32 Address in data
424 CT_MIPS_WORD Address in word (XXX)
425 CT_MIPS_GPHI_LO GP - vaddr
426 CT_MIPS_JMPAD Address to jump
427 */
428
429#define CRT_MIPS_REL32 0xa
430#define CRT_MIPS_WORD 0xb
431#define CRT_MIPS_GPHI_LO 0xc
432#define CRT_MIPS_JMPAD 0xd
433
434#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
435#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
436#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
437#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
438
439static void bfd_elf32_swap_compact_rel_out
440 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
441static void bfd_elf32_swap_crinfo_out
442 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
443
444#define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
445
3f830999
MM
446/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
447 from smaller values. Start with zero, widen, *then* decrement. */
448#define MINUS_ONE (((bfd_vma)0) - 1)
449
252b5132
RH
450static reloc_howto_type elf_mips_howto_table[] =
451{
452 /* No relocation. */
453 HOWTO (R_MIPS_NONE, /* type */
454 0, /* rightshift */
455 0, /* size (0 = byte, 1 = short, 2 = long) */
456 0, /* bitsize */
457 false, /* pc_relative */
458 0, /* bitpos */
459 complain_overflow_dont, /* complain_on_overflow */
460 bfd_elf_generic_reloc, /* special_function */
461 "R_MIPS_NONE", /* name */
462 false, /* partial_inplace */
463 0, /* src_mask */
464 0, /* dst_mask */
465 false), /* pcrel_offset */
466
467 /* 16 bit relocation. */
468 HOWTO (R_MIPS_16, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 false, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_bitfield, /* complain_on_overflow */
475 bfd_elf_generic_reloc, /* special_function */
476 "R_MIPS_16", /* name */
477 true, /* partial_inplace */
478 0xffff, /* src_mask */
479 0xffff, /* dst_mask */
480 false), /* pcrel_offset */
481
482 /* 32 bit relocation. */
483 HOWTO (R_MIPS_32, /* type */
484 0, /* rightshift */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
486 32, /* bitsize */
487 false, /* pc_relative */
488 0, /* bitpos */
489 complain_overflow_bitfield, /* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_MIPS_32", /* name */
492 true, /* partial_inplace */
493 0xffffffff, /* src_mask */
494 0xffffffff, /* dst_mask */
495 false), /* pcrel_offset */
496
497 /* 32 bit symbol relative relocation. */
498 HOWTO (R_MIPS_REL32, /* type */
499 0, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 32, /* bitsize */
502 false, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_bitfield, /* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_MIPS_REL32", /* name */
507 true, /* partial_inplace */
508 0xffffffff, /* src_mask */
509 0xffffffff, /* dst_mask */
510 false), /* pcrel_offset */
511
512 /* 26 bit branch address. */
513 HOWTO (R_MIPS_26, /* type */
514 2, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 26, /* bitsize */
517 false, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_dont, /* complain_on_overflow */
520 /* This needs complex overflow
521 detection, because the upper four
522 bits must match the PC. */
523 bfd_elf_generic_reloc, /* special_function */
524 "R_MIPS_26", /* name */
525 true, /* partial_inplace */
526 0x3ffffff, /* src_mask */
527 0x3ffffff, /* dst_mask */
528 false), /* pcrel_offset */
529
530 /* High 16 bits of symbol value. */
531 HOWTO (R_MIPS_HI16, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 16, /* bitsize */
535 false, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont, /* complain_on_overflow */
538 _bfd_mips_elf_hi16_reloc, /* special_function */
539 "R_MIPS_HI16", /* name */
540 true, /* partial_inplace */
541 0xffff, /* src_mask */
542 0xffff, /* dst_mask */
543 false), /* pcrel_offset */
544
545 /* Low 16 bits of symbol value. */
546 HOWTO (R_MIPS_LO16, /* type */
547 0, /* rightshift */
548 2, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 false, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_dont, /* complain_on_overflow */
553 _bfd_mips_elf_lo16_reloc, /* special_function */
554 "R_MIPS_LO16", /* name */
555 true, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 false), /* pcrel_offset */
559
560 /* GP relative reference. */
561 HOWTO (R_MIPS_GPREL16, /* type */
562 0, /* rightshift */
563 2, /* size (0 = byte, 1 = short, 2 = long) */
564 16, /* bitsize */
565 false, /* pc_relative */
566 0, /* bitpos */
567 complain_overflow_signed, /* complain_on_overflow */
568 _bfd_mips_elf_gprel16_reloc, /* special_function */
569 "R_MIPS_GPREL16", /* name */
570 true, /* partial_inplace */
571 0xffff, /* src_mask */
572 0xffff, /* dst_mask */
573 false), /* pcrel_offset */
574
575 /* Reference to literal section. */
576 HOWTO (R_MIPS_LITERAL, /* type */
577 0, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 16, /* bitsize */
580 false, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_signed, /* complain_on_overflow */
583 _bfd_mips_elf_gprel16_reloc, /* special_function */
584 "R_MIPS_LITERAL", /* name */
585 true, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 false), /* pcrel_offset */
589
590 /* Reference to global offset table. */
591 HOWTO (R_MIPS_GOT16, /* type */
592 0, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 16, /* bitsize */
595 false, /* pc_relative */
596 0, /* bitpos */
597 complain_overflow_signed, /* complain_on_overflow */
598 _bfd_mips_elf_got16_reloc, /* special_function */
599 "R_MIPS_GOT16", /* name */
600 false, /* partial_inplace */
b944b044 601 0xffff, /* src_mask */
252b5132
RH
602 0xffff, /* dst_mask */
603 false), /* pcrel_offset */
604
605 /* 16 bit PC relative reference. */
606 HOWTO (R_MIPS_PC16, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 16, /* bitsize */
610 true, /* pc_relative */
611 0, /* bitpos */
612 complain_overflow_signed, /* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_MIPS_PC16", /* name */
615 true, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
bb2d6cd7 618 true), /* pcrel_offset */
252b5132
RH
619
620 /* 16 bit call through global offset table. */
252b5132
RH
621 HOWTO (R_MIPS_CALL16, /* type */
622 0, /* rightshift */
623 2, /* size (0 = byte, 1 = short, 2 = long) */
624 16, /* bitsize */
625 false, /* pc_relative */
626 0, /* bitpos */
627 complain_overflow_signed, /* complain_on_overflow */
628 bfd_elf_generic_reloc, /* special_function */
629 "R_MIPS_CALL16", /* name */
630 false, /* partial_inplace */
b944b044 631 0xffff, /* src_mask */
252b5132
RH
632 0xffff, /* dst_mask */
633 false), /* pcrel_offset */
634
635 /* 32 bit GP relative reference. */
636 HOWTO (R_MIPS_GPREL32, /* type */
637 0, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 32, /* bitsize */
640 false, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_bitfield, /* complain_on_overflow */
643 _bfd_mips_elf_gprel32_reloc, /* special_function */
644 "R_MIPS_GPREL32", /* name */
645 true, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 false), /* pcrel_offset */
649
650 /* The remaining relocs are defined on Irix 5, although they are
651 not defined by the ABI. */
5f771d47
ILT
652 EMPTY_HOWTO (13),
653 EMPTY_HOWTO (14),
654 EMPTY_HOWTO (15),
252b5132
RH
655
656 /* A 5 bit shift field. */
657 HOWTO (R_MIPS_SHIFT5, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 5, /* bitsize */
661 false, /* pc_relative */
662 6, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_MIPS_SHIFT5", /* name */
666 true, /* partial_inplace */
667 0x000007c0, /* src_mask */
668 0x000007c0, /* dst_mask */
669 false), /* pcrel_offset */
670
671 /* A 6 bit shift field. */
672 /* FIXME: This is not handled correctly; a special function is
673 needed to put the most significant bit in the right place. */
674 HOWTO (R_MIPS_SHIFT6, /* type */
675 0, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 6, /* bitsize */
678 false, /* pc_relative */
679 6, /* bitpos */
680 complain_overflow_bitfield, /* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
682 "R_MIPS_SHIFT6", /* name */
683 true, /* partial_inplace */
684 0x000007c4, /* src_mask */
685 0x000007c4, /* dst_mask */
686 false), /* pcrel_offset */
687
a3c7651d 688 /* A 64 bit relocation. */
252b5132
RH
689 HOWTO (R_MIPS_64, /* type */
690 0, /* rightshift */
a3c7651d
MM
691 4, /* size (0 = byte, 1 = short, 2 = long) */
692 64, /* bitsize */
252b5132
RH
693 false, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_bitfield, /* complain_on_overflow */
696 mips32_64bit_reloc, /* special_function */
697 "R_MIPS_64", /* name */
698 true, /* partial_inplace */
a3c7651d
MM
699 MINUS_ONE, /* src_mask */
700 MINUS_ONE, /* dst_mask */
252b5132
RH
701 false), /* pcrel_offset */
702
703 /* Displacement in the global offset table. */
252b5132
RH
704 HOWTO (R_MIPS_GOT_DISP, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 false, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield, /* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_MIPS_GOT_DISP", /* name */
713 true, /* partial_inplace */
714 0x0000ffff, /* src_mask */
715 0x0000ffff, /* dst_mask */
716 false), /* pcrel_offset */
717
718 /* Displacement to page pointer in the global offset table. */
252b5132
RH
719 HOWTO (R_MIPS_GOT_PAGE, /* type */
720 0, /* rightshift */
721 2, /* size (0 = byte, 1 = short, 2 = long) */
722 16, /* bitsize */
723 false, /* pc_relative */
724 0, /* bitpos */
725 complain_overflow_bitfield, /* complain_on_overflow */
726 bfd_elf_generic_reloc, /* special_function */
727 "R_MIPS_GOT_PAGE", /* name */
728 true, /* partial_inplace */
729 0x0000ffff, /* src_mask */
730 0x0000ffff, /* dst_mask */
731 false), /* pcrel_offset */
732
733 /* Offset from page pointer in the global offset table. */
252b5132
RH
734 HOWTO (R_MIPS_GOT_OFST, /* type */
735 0, /* rightshift */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
737 16, /* bitsize */
738 false, /* pc_relative */
739 0, /* bitpos */
740 complain_overflow_bitfield, /* complain_on_overflow */
741 bfd_elf_generic_reloc, /* special_function */
742 "R_MIPS_GOT_OFST", /* name */
743 true, /* partial_inplace */
744 0x0000ffff, /* src_mask */
745 0x0000ffff, /* dst_mask */
746 false), /* pcrel_offset */
747
748 /* High 16 bits of displacement in global offset table. */
252b5132
RH
749 HOWTO (R_MIPS_GOT_HI16, /* type */
750 0, /* rightshift */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
752 16, /* bitsize */
753 false, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_dont, /* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_MIPS_GOT_HI16", /* name */
758 true, /* partial_inplace */
759 0x0000ffff, /* src_mask */
760 0x0000ffff, /* dst_mask */
761 false), /* pcrel_offset */
762
763 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
764 HOWTO (R_MIPS_GOT_LO16, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 false, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_dont, /* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_MIPS_GOT_LO16", /* name */
773 true, /* partial_inplace */
774 0x0000ffff, /* src_mask */
775 0x0000ffff, /* dst_mask */
776 false), /* pcrel_offset */
777
3f830999 778 /* 64 bit subtraction. Used in the N32 ABI. */
3f830999
MM
779 HOWTO (R_MIPS_SUB, /* type */
780 0, /* rightshift */
781 4, /* size (0 = byte, 1 = short, 2 = long) */
782 64, /* bitsize */
783 false, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_bitfield, /* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_MIPS_SUB", /* name */
788 true, /* partial_inplace */
789 MINUS_ONE, /* src_mask */
790 MINUS_ONE, /* dst_mask */
791 false), /* pcrel_offset */
252b5132
RH
792
793 /* Used to cause the linker to insert and delete instructions? */
5f771d47
ILT
794 EMPTY_HOWTO (R_MIPS_INSERT_A),
795 EMPTY_HOWTO (R_MIPS_INSERT_B),
796 EMPTY_HOWTO (R_MIPS_DELETE),
252b5132 797
103186c6
MM
798 /* Get the higher value of a 64 bit addend. */
799 HOWTO (R_MIPS_HIGHER, /* type */
800 0, /* rightshift */
801 2, /* size (0 = byte, 1 = short, 2 = long) */
802 16, /* bitsize */
803 false, /* pc_relative */
804 0, /* bitpos */
805 complain_overflow_dont, /* complain_on_overflow */
806 bfd_elf_generic_reloc, /* special_function */
807 "R_MIPS_HIGHER", /* name */
808 true, /* partial_inplace */
809 0, /* src_mask */
810 0xffff, /* dst_mask */
811 false), /* pcrel_offset */
812
813 /* Get the highest value of a 64 bit addend. */
814 HOWTO (R_MIPS_HIGHEST, /* type */
815 0, /* rightshift */
816 2, /* size (0 = byte, 1 = short, 2 = long) */
817 16, /* bitsize */
818 false, /* pc_relative */
819 0, /* bitpos */
820 complain_overflow_dont, /* complain_on_overflow */
821 bfd_elf_generic_reloc, /* special_function */
822 "R_MIPS_HIGHEST", /* name */
823 true, /* partial_inplace */
824 0, /* src_mask */
825 0xffff, /* dst_mask */
826 false), /* pcrel_offset */
252b5132
RH
827
828 /* High 16 bits of displacement in global offset table. */
252b5132
RH
829 HOWTO (R_MIPS_CALL_HI16, /* type */
830 0, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 16, /* bitsize */
833 false, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_dont, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 "R_MIPS_CALL_HI16", /* name */
838 true, /* partial_inplace */
839 0x0000ffff, /* src_mask */
840 0x0000ffff, /* dst_mask */
841 false), /* pcrel_offset */
842
843 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
844 HOWTO (R_MIPS_CALL_LO16, /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 false, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 "R_MIPS_CALL_LO16", /* name */
853 true, /* partial_inplace */
854 0x0000ffff, /* src_mask */
855 0x0000ffff, /* dst_mask */
856 false), /* pcrel_offset */
857
7403cb63
MM
858 /* Section displacement. */
859 HOWTO (R_MIPS_SCN_DISP, /* type */
860 0, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 32, /* bitsize */
863 false, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_MIPS_SCN_DISP", /* name */
868 false, /* partial_inplace */
869 0xffffffff, /* src_mask */
870 0xffffffff, /* dst_mask */
871 false), /* pcrel_offset */
872
5f771d47
ILT
873 EMPTY_HOWTO (R_MIPS_REL16),
874 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
875 EMPTY_HOWTO (R_MIPS_PJUMP),
876 EMPTY_HOWTO (R_MIPS_RELGOT),
d2905643
MM
877
878 /* Protected jump conversion. This is an optimization hint. No
879 relocation is required for correctness. */
880 HOWTO (R_MIPS_JALR, /* type */
881 0, /* rightshift */
882 0, /* size (0 = byte, 1 = short, 2 = long) */
883 0, /* bitsize */
884 false, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_MIPS_JALR", /* name */
889 false, /* partial_inplace */
890 0x00000000, /* src_mask */
891 0x00000000, /* dst_mask */
892 false), /* pcrel_offset */
252b5132
RH
893};
894
895/* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
896 is a hack to make the linker think that we need 64 bit values. */
897static reloc_howto_type elf_mips_ctor64_howto =
898 HOWTO (R_MIPS_64, /* type */
899 0, /* rightshift */
900 4, /* size (0 = byte, 1 = short, 2 = long) */
901 32, /* bitsize */
902 false, /* pc_relative */
903 0, /* bitpos */
904 complain_overflow_signed, /* complain_on_overflow */
905 mips32_64bit_reloc, /* special_function */
906 "R_MIPS_64", /* name */
907 true, /* partial_inplace */
908 0xffffffff, /* src_mask */
909 0xffffffff, /* dst_mask */
910 false); /* pcrel_offset */
911
912/* The reloc used for the mips16 jump instruction. */
913static reloc_howto_type elf_mips16_jump_howto =
914 HOWTO (R_MIPS16_26, /* type */
915 2, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 26, /* bitsize */
918 false, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont, /* complain_on_overflow */
921 /* This needs complex overflow
922 detection, because the upper four
923 bits must match the PC. */
924 mips16_jump_reloc, /* special_function */
925 "R_MIPS16_26", /* name */
926 true, /* partial_inplace */
927 0x3ffffff, /* src_mask */
928 0x3ffffff, /* dst_mask */
929 false); /* pcrel_offset */
930
b7233c24 931/* The reloc used for the mips16 gprel instruction. */
252b5132
RH
932static reloc_howto_type elf_mips16_gprel_howto =
933 HOWTO (R_MIPS16_GPREL, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 16, /* bitsize */
937 false, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_signed, /* complain_on_overflow */
940 mips16_gprel_reloc, /* special_function */
941 "R_MIPS16_GPREL", /* name */
942 true, /* partial_inplace */
b7233c24
MM
943 0x07ff001f, /* src_mask */
944 0x07ff001f, /* dst_mask */
252b5132
RH
945 false); /* pcrel_offset */
946
947
bb2d6cd7
GK
948/* GNU extensions for embedded-pic. */
949/* High 16 bits of symbol value, pc-relative. */
950static reloc_howto_type elf_mips_gnu_rel_hi16 =
951 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 16, /* bitsize */
955 true, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 _bfd_mips_elf_hi16_reloc, /* special_function */
959 "R_MIPS_GNU_REL_HI16", /* name */
960 true, /* partial_inplace */
961 0xffff, /* src_mask */
962 0xffff, /* dst_mask */
963 true); /* pcrel_offset */
964
965/* Low 16 bits of symbol value, pc-relative. */
966static reloc_howto_type elf_mips_gnu_rel_lo16 =
967 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
968 0, /* rightshift */
969 2, /* size (0 = byte, 1 = short, 2 = long) */
970 16, /* bitsize */
971 true, /* pc_relative */
972 0, /* bitpos */
973 complain_overflow_dont, /* complain_on_overflow */
974 _bfd_mips_elf_lo16_reloc, /* special_function */
975 "R_MIPS_GNU_REL_LO16", /* name */
976 true, /* partial_inplace */
977 0xffff, /* src_mask */
978 0xffff, /* dst_mask */
979 true); /* pcrel_offset */
980
981/* 16 bit offset for pc-relative branches. */
982static reloc_howto_type elf_mips_gnu_rel16_s2 =
983 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
984 2, /* rightshift */
985 2, /* size (0 = byte, 1 = short, 2 = long) */
986 16, /* bitsize */
987 true, /* pc_relative */
988 0, /* bitpos */
989 complain_overflow_signed, /* complain_on_overflow */
990 bfd_elf_generic_reloc, /* special_function */
991 "R_MIPS_GNU_REL16_S2", /* name */
992 true, /* partial_inplace */
993 0xffff, /* src_mask */
994 0xffff, /* dst_mask */
995 true); /* pcrel_offset */
996
997/* 64 bit pc-relative. */
998static reloc_howto_type elf_mips_gnu_pcrel64 =
999 HOWTO (R_MIPS_PC64, /* type */
1000 0, /* rightshift */
1001 4, /* size (0 = byte, 1 = short, 2 = long) */
1002 64, /* bitsize */
1003 true, /* pc_relative */
1004 0, /* bitpos */
1005 complain_overflow_signed, /* complain_on_overflow */
1006 bfd_elf_generic_reloc, /* special_function */
1007 "R_MIPS_PC64", /* name */
1008 true, /* partial_inplace */
1009 MINUS_ONE, /* src_mask */
1010 MINUS_ONE, /* dst_mask */
1011 true); /* pcrel_offset */
1012
1013/* 32 bit pc-relative. */
1014static reloc_howto_type elf_mips_gnu_pcrel32 =
1015 HOWTO (R_MIPS_PC32, /* type */
1016 0, /* rightshift */
1017 2, /* size (0 = byte, 1 = short, 2 = long) */
1018 32, /* bitsize */
1019 true, /* pc_relative */
1020 0, /* bitpos */
1021 complain_overflow_signed, /* complain_on_overflow */
1022 bfd_elf_generic_reloc, /* special_function */
1023 "R_MIPS_PC32", /* name */
1024 true, /* partial_inplace */
1025 0xffffffff, /* src_mask */
1026 0xffffffff, /* dst_mask */
1027 true); /* pcrel_offset */
1028
252b5132
RH
1029/* GNU extension to record C++ vtable hierarchy */
1030static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1031 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 0, /* bitsize */
1035 false, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont, /* complain_on_overflow */
1038 NULL, /* special_function */
1039 "R_MIPS_GNU_VTINHERIT", /* name */
1040 false, /* partial_inplace */
1041 0, /* src_mask */
1042 0, /* dst_mask */
1043 false); /* pcrel_offset */
1044
1045/* GNU extension to record C++ vtable member usage */
1046static reloc_howto_type elf_mips_gnu_vtentry_howto =
1047 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1048 0, /* rightshift */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1050 0, /* bitsize */
1051 false, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_dont, /* complain_on_overflow */
1054 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1055 "R_MIPS_GNU_VTENTRY", /* name */
1056 false, /* partial_inplace */
1057 0, /* src_mask */
1058 0, /* dst_mask */
1059 false); /* pcrel_offset */
1060
1061/* Do a R_MIPS_HI16 relocation. This has to be done in combination
1062 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1063 the HI16. Here we just save the information we need; we do the
1064 actual relocation when we see the LO16. MIPS ELF requires that the
1065 LO16 immediately follow the HI16. As a GNU extension, we permit an
1066 arbitrary number of HI16 relocs to be associated with a single LO16
1067 reloc. This extension permits gcc to output the HI and LO relocs
1068 itself. */
1069
1070struct mips_hi16
1071{
1072 struct mips_hi16 *next;
1073 bfd_byte *addr;
1074 bfd_vma addend;
1075};
1076
1077/* FIXME: This should not be a static variable. */
1078
1079static struct mips_hi16 *mips_hi16_list;
1080
1081bfd_reloc_status_type
1082_bfd_mips_elf_hi16_reloc (abfd,
1083 reloc_entry,
1084 symbol,
1085 data,
1086 input_section,
1087 output_bfd,
1088 error_message)
5f771d47 1089 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1090 arelent *reloc_entry;
1091 asymbol *symbol;
1092 PTR data;
1093 asection *input_section;
1094 bfd *output_bfd;
1095 char **error_message;
1096{
1097 bfd_reloc_status_type ret;
1098 bfd_vma relocation;
1099 struct mips_hi16 *n;
1100
1101 /* If we're relocating, and this an external symbol, we don't want
1102 to change anything. */
1103 if (output_bfd != (bfd *) NULL
1104 && (symbol->flags & BSF_SECTION_SYM) == 0
1105 && reloc_entry->addend == 0)
1106 {
1107 reloc_entry->address += input_section->output_offset;
1108 return bfd_reloc_ok;
1109 }
1110
1111 ret = bfd_reloc_ok;
1112
1113 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1114 {
1115 boolean relocateable;
1116 bfd_vma gp;
1117
1118 if (ret == bfd_reloc_undefined)
1119 abort ();
1120
1121 if (output_bfd != NULL)
1122 relocateable = true;
1123 else
1124 {
1125 relocateable = false;
1126 output_bfd = symbol->section->output_section->owner;
1127 }
1128
1129 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1130 error_message, &gp);
1131 if (ret != bfd_reloc_ok)
1132 return ret;
1133
1134 relocation = gp - reloc_entry->address;
1135 }
1136 else
1137 {
1138 if (bfd_is_und_section (symbol->section)
1139 && output_bfd == (bfd *) NULL)
1140 ret = bfd_reloc_undefined;
1141
1142 if (bfd_is_com_section (symbol->section))
1143 relocation = 0;
1144 else
1145 relocation = symbol->value;
1146 }
1147
1148 relocation += symbol->section->output_section->vma;
1149 relocation += symbol->section->output_offset;
1150 relocation += reloc_entry->addend;
1151
1152 if (reloc_entry->address > input_section->_cooked_size)
1153 return bfd_reloc_outofrange;
1154
1155 /* Save the information, and let LO16 do the actual relocation. */
1156 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1157 if (n == NULL)
1158 return bfd_reloc_outofrange;
1159 n->addr = (bfd_byte *) data + reloc_entry->address;
1160 n->addend = relocation;
1161 n->next = mips_hi16_list;
1162 mips_hi16_list = n;
1163
1164 if (output_bfd != (bfd *) NULL)
1165 reloc_entry->address += input_section->output_offset;
1166
1167 return ret;
1168}
1169
1170/* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1171 inplace relocation; this function exists in order to do the
1172 R_MIPS_HI16 relocation described above. */
1173
1174bfd_reloc_status_type
1175_bfd_mips_elf_lo16_reloc (abfd,
1176 reloc_entry,
1177 symbol,
1178 data,
1179 input_section,
1180 output_bfd,
1181 error_message)
1182 bfd *abfd;
1183 arelent *reloc_entry;
1184 asymbol *symbol;
1185 PTR data;
1186 asection *input_section;
1187 bfd *output_bfd;
1188 char **error_message;
1189{
1190 arelent gp_disp_relent;
1191
1192 if (mips_hi16_list != NULL)
1193 {
1194 struct mips_hi16 *l;
1195
1196 l = mips_hi16_list;
1197 while (l != NULL)
1198 {
1199 unsigned long insn;
1200 unsigned long val;
1201 unsigned long vallo;
1202 struct mips_hi16 *next;
1203
1204 /* Do the HI16 relocation. Note that we actually don't need
1205 to know anything about the LO16 itself, except where to
1206 find the low 16 bits of the addend needed by the LO16. */
1207 insn = bfd_get_32 (abfd, l->addr);
1208 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1209 & 0xffff);
1210 val = ((insn & 0xffff) << 16) + vallo;
1211 val += l->addend;
1212
1213 /* The low order 16 bits are always treated as a signed
1214 value. Therefore, a negative value in the low order bits
1215 requires an adjustment in the high order bits. We need
1216 to make this adjustment in two ways: once for the bits we
1217 took from the data, and once for the bits we are putting
1218 back in to the data. */
1219 if ((vallo & 0x8000) != 0)
1220 val -= 0x10000;
1221 if ((val & 0x8000) != 0)
1222 val += 0x10000;
1223
1224 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1225 bfd_put_32 (abfd, insn, l->addr);
1226
1227 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1228 {
1229 gp_disp_relent = *reloc_entry;
1230 reloc_entry = &gp_disp_relent;
1231 reloc_entry->addend = l->addend;
1232 }
1233
1234 next = l->next;
1235 free (l);
1236 l = next;
1237 }
1238
1239 mips_hi16_list = NULL;
1240 }
1241 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1242 {
1243 bfd_reloc_status_type ret;
1244 bfd_vma gp, relocation;
1245
1246 /* FIXME: Does this case ever occur? */
1247
1248 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1249 if (ret != bfd_reloc_ok)
1250 return ret;
1251
1252 relocation = gp - reloc_entry->address;
1253 relocation += symbol->section->output_section->vma;
1254 relocation += symbol->section->output_offset;
1255 relocation += reloc_entry->addend;
1256
1257 if (reloc_entry->address > input_section->_cooked_size)
1258 return bfd_reloc_outofrange;
1259
1260 gp_disp_relent = *reloc_entry;
1261 reloc_entry = &gp_disp_relent;
1262 reloc_entry->addend = relocation - 4;
1263 }
1264
1265 /* Now do the LO16 reloc in the usual way. */
1266 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1267 input_section, output_bfd, error_message);
1268}
1269
1270/* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1271 table used for PIC code. If the symbol is an external symbol, the
1272 instruction is modified to contain the offset of the appropriate
1273 entry in the global offset table. If the symbol is a section
1274 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1275 addends are combined to form the real addend against the section
1276 symbol; the GOT16 is modified to contain the offset of an entry in
1277 the global offset table, and the LO16 is modified to offset it
1278 appropriately. Thus an offset larger than 16 bits requires a
1279 modified value in the global offset table.
1280
1281 This implementation suffices for the assembler, but the linker does
1282 not yet know how to create global offset tables. */
1283
1284bfd_reloc_status_type
1285_bfd_mips_elf_got16_reloc (abfd,
1286 reloc_entry,
1287 symbol,
1288 data,
1289 input_section,
1290 output_bfd,
1291 error_message)
1292 bfd *abfd;
1293 arelent *reloc_entry;
1294 asymbol *symbol;
1295 PTR data;
1296 asection *input_section;
1297 bfd *output_bfd;
1298 char **error_message;
1299{
1300 /* If we're relocating, and this an external symbol, we don't want
1301 to change anything. */
1302 if (output_bfd != (bfd *) NULL
1303 && (symbol->flags & BSF_SECTION_SYM) == 0
1304 && reloc_entry->addend == 0)
1305 {
1306 reloc_entry->address += input_section->output_offset;
1307 return bfd_reloc_ok;
1308 }
1309
1310 /* If we're relocating, and this is a local symbol, we can handle it
1311 just like HI16. */
1312 if (output_bfd != (bfd *) NULL
1313 && (symbol->flags & BSF_SECTION_SYM) != 0)
1314 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1315 input_section, output_bfd, error_message);
1316
1317 abort ();
1318}
1319
7403cb63
MM
1320/* Set the GP value for OUTPUT_BFD. Returns false if this is a
1321 dangerous relocation. */
1322
1323static boolean
1324mips_elf_assign_gp (output_bfd, pgp)
1325 bfd *output_bfd;
1326 bfd_vma *pgp;
1327{
1328 unsigned int count;
1329 asymbol **sym;
1330 unsigned int i;
1331
1332 /* If we've already figured out what GP will be, just return it. */
1333 *pgp = _bfd_get_gp_value (output_bfd);
1334 if (*pgp)
1335 return true;
1336
1337 count = bfd_get_symcount (output_bfd);
1338 sym = bfd_get_outsymbols (output_bfd);
1339
1340 /* The linker script will have created a symbol named `_gp' with the
1341 appropriate value. */
1342 if (sym == (asymbol **) NULL)
1343 i = count;
1344 else
1345 {
1346 for (i = 0; i < count; i++, sym++)
1347 {
1348 register CONST char *name;
1349
1350 name = bfd_asymbol_name (*sym);
1351 if (*name == '_' && strcmp (name, "_gp") == 0)
1352 {
1353 *pgp = bfd_asymbol_value (*sym);
1354 _bfd_set_gp_value (output_bfd, *pgp);
1355 break;
1356 }
1357 }
1358 }
1359
1360 if (i >= count)
1361 {
1362 /* Only get the error once. */
1363 *pgp = 4;
1364 _bfd_set_gp_value (output_bfd, *pgp);
1365 return false;
1366 }
1367
1368 return true;
1369}
1370
252b5132
RH
1371/* We have to figure out the gp value, so that we can adjust the
1372 symbol value correctly. We look up the symbol _gp in the output
1373 BFD. If we can't find it, we're stuck. We cache it in the ELF
1374 target data. We don't need to adjust the symbol value for an
1375 external symbol if we are producing relocateable output. */
1376
1377static bfd_reloc_status_type
1378mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1379 bfd *output_bfd;
1380 asymbol *symbol;
1381 boolean relocateable;
1382 char **error_message;
1383 bfd_vma *pgp;
1384{
1385 if (bfd_is_und_section (symbol->section)
1386 && ! relocateable)
1387 {
1388 *pgp = 0;
1389 return bfd_reloc_undefined;
1390 }
1391
1392 *pgp = _bfd_get_gp_value (output_bfd);
1393 if (*pgp == 0
1394 && (! relocateable
1395 || (symbol->flags & BSF_SECTION_SYM) != 0))
1396 {
1397 if (relocateable)
1398 {
1399 /* Make up a value. */
1400 *pgp = symbol->section->output_section->vma + 0x4000;
1401 _bfd_set_gp_value (output_bfd, *pgp);
1402 }
7403cb63 1403 else if (!mips_elf_assign_gp (output_bfd, pgp))
252b5132 1404 {
7403cb63
MM
1405 *error_message =
1406 (char *) _("GP relative relocation when _gp not defined");
1407 return bfd_reloc_dangerous;
252b5132
RH
1408 }
1409 }
1410
1411 return bfd_reloc_ok;
1412}
1413
1414/* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1415 become the offset from the gp register. This function also handles
1416 R_MIPS_LITERAL relocations, although those can be handled more
1417 cleverly because the entries in the .lit8 and .lit4 sections can be
1418 merged. */
1419
1420static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1421 arelent *, asection *,
1422 boolean, PTR, bfd_vma));
1423
1424bfd_reloc_status_type
1425_bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1426 output_bfd, error_message)
1427 bfd *abfd;
1428 arelent *reloc_entry;
1429 asymbol *symbol;
1430 PTR data;
1431 asection *input_section;
1432 bfd *output_bfd;
1433 char **error_message;
1434{
1435 boolean relocateable;
1436 bfd_reloc_status_type ret;
1437 bfd_vma gp;
1438
1439 /* If we're relocating, and this is an external symbol with no
1440 addend, we don't want to change anything. We will only have an
1441 addend if this is a newly created reloc, not read from an ELF
1442 file. */
1443 if (output_bfd != (bfd *) NULL
1444 && (symbol->flags & BSF_SECTION_SYM) == 0
1445 && reloc_entry->addend == 0)
1446 {
1447 reloc_entry->address += input_section->output_offset;
1448 return bfd_reloc_ok;
1449 }
1450
1451 if (output_bfd != (bfd *) NULL)
1452 relocateable = true;
1453 else
1454 {
1455 relocateable = false;
1456 output_bfd = symbol->section->output_section->owner;
1457 }
1458
1459 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1460 &gp);
1461 if (ret != bfd_reloc_ok)
1462 return ret;
1463
1464 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1465 relocateable, data, gp);
1466}
1467
1468static bfd_reloc_status_type
1469gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1470 gp)
1471 bfd *abfd;
1472 asymbol *symbol;
1473 arelent *reloc_entry;
1474 asection *input_section;
1475 boolean relocateable;
1476 PTR data;
1477 bfd_vma gp;
1478{
1479 bfd_vma relocation;
1480 unsigned long insn;
1481 unsigned long val;
1482
1483 if (bfd_is_com_section (symbol->section))
1484 relocation = 0;
1485 else
1486 relocation = symbol->value;
1487
1488 relocation += symbol->section->output_section->vma;
1489 relocation += symbol->section->output_offset;
1490
1491 if (reloc_entry->address > input_section->_cooked_size)
1492 return bfd_reloc_outofrange;
1493
1494 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1495
1496 /* Set val to the offset into the section or symbol. */
1497 if (reloc_entry->howto->src_mask == 0)
1498 {
1499 /* This case occurs with the 64-bit MIPS ELF ABI. */
1500 val = reloc_entry->addend;
1501 }
1502 else
1503 {
1504 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1505 if (val & 0x8000)
1506 val -= 0x10000;
1507 }
1508
1509 /* Adjust val for the final section location and GP value. If we
1510 are producing relocateable output, we don't want to do this for
1511 an external symbol. */
1512 if (! relocateable
1513 || (symbol->flags & BSF_SECTION_SYM) != 0)
1514 val += relocation - gp;
1515
1516 insn = (insn &~ 0xffff) | (val & 0xffff);
1517 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1518
1519 if (relocateable)
1520 reloc_entry->address += input_section->output_offset;
1521
1522 /* Make sure it fit in 16 bits. */
43cbcf28 1523 if ((long) val >= 0x8000 || (long) val < -0x8000)
252b5132
RH
1524 return bfd_reloc_overflow;
1525
1526 return bfd_reloc_ok;
1527}
1528
1529/* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1530 from the gp register? XXX */
1531
1532static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1533 arelent *, asection *,
1534 boolean, PTR, bfd_vma));
1535
1536bfd_reloc_status_type
1537_bfd_mips_elf_gprel32_reloc (abfd,
1538 reloc_entry,
1539 symbol,
1540 data,
1541 input_section,
1542 output_bfd,
1543 error_message)
1544 bfd *abfd;
1545 arelent *reloc_entry;
1546 asymbol *symbol;
1547 PTR data;
1548 asection *input_section;
1549 bfd *output_bfd;
1550 char **error_message;
1551{
1552 boolean relocateable;
1553 bfd_reloc_status_type ret;
1554 bfd_vma gp;
1555
1556 /* If we're relocating, and this is an external symbol with no
1557 addend, we don't want to change anything. We will only have an
1558 addend if this is a newly created reloc, not read from an ELF
1559 file. */
1560 if (output_bfd != (bfd *) NULL
1561 && (symbol->flags & BSF_SECTION_SYM) == 0
1562 && reloc_entry->addend == 0)
1563 {
1564 *error_message = (char *)
1565 _("32bits gp relative relocation occurs for an external symbol");
1566 return bfd_reloc_outofrange;
1567 }
1568
1569 if (output_bfd != (bfd *) NULL)
1570 {
1571 relocateable = true;
1572 gp = _bfd_get_gp_value (output_bfd);
1573 }
1574 else
1575 {
1576 relocateable = false;
1577 output_bfd = symbol->section->output_section->owner;
1578
1579 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1580 error_message, &gp);
1581 if (ret != bfd_reloc_ok)
1582 return ret;
1583 }
1584
1585 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1586 relocateable, data, gp);
1587}
1588
1589static bfd_reloc_status_type
1590gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1591 gp)
1592 bfd *abfd;
1593 asymbol *symbol;
1594 arelent *reloc_entry;
1595 asection *input_section;
1596 boolean relocateable;
1597 PTR data;
1598 bfd_vma gp;
1599{
1600 bfd_vma relocation;
1601 unsigned long val;
1602
1603 if (bfd_is_com_section (symbol->section))
1604 relocation = 0;
1605 else
1606 relocation = symbol->value;
1607
1608 relocation += symbol->section->output_section->vma;
1609 relocation += symbol->section->output_offset;
1610
1611 if (reloc_entry->address > input_section->_cooked_size)
1612 return bfd_reloc_outofrange;
1613
1614 if (reloc_entry->howto->src_mask == 0)
1615 {
1616 /* This case arises with the 64-bit MIPS ELF ABI. */
1617 val = 0;
1618 }
1619 else
1620 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1621
1622 /* Set val to the offset into the section or symbol. */
1623 val += reloc_entry->addend;
1624
1625 /* Adjust val for the final section location and GP value. If we
1626 are producing relocateable output, we don't want to do this for
1627 an external symbol. */
1628 if (! relocateable
1629 || (symbol->flags & BSF_SECTION_SYM) != 0)
1630 val += relocation - gp;
1631
1632 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1633
1634 if (relocateable)
1635 reloc_entry->address += input_section->output_offset;
1636
1637 return bfd_reloc_ok;
1638}
1639
1640/* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1641 generated when addreses are 64 bits. The upper 32 bits are a simle
1642 sign extension. */
1643
1644static bfd_reloc_status_type
1645mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1646 output_bfd, error_message)
1647 bfd *abfd;
1648 arelent *reloc_entry;
1649 asymbol *symbol;
1650 PTR data;
1651 asection *input_section;
1652 bfd *output_bfd;
1653 char **error_message;
1654{
1655 bfd_reloc_status_type r;
1656 arelent reloc32;
1657 unsigned long val;
1658 bfd_size_type addr;
1659
1660 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1661 input_section, output_bfd, error_message);
1662 if (r != bfd_reloc_continue)
1663 return r;
1664
1665 /* Do a normal 32 bit relocation on the lower 32 bits. */
1666 reloc32 = *reloc_entry;
1667 if (bfd_big_endian (abfd))
1668 reloc32.address += 4;
1669 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1670 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1671 output_bfd, error_message);
1672
1673 /* Sign extend into the upper 32 bits. */
1674 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1675 if ((val & 0x80000000) != 0)
1676 val = 0xffffffff;
1677 else
1678 val = 0;
1679 addr = reloc_entry->address;
1680 if (bfd_little_endian (abfd))
1681 addr += 4;
1682 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1683
1684 return r;
1685}
1686
1687/* Handle a mips16 jump. */
1688
1689static bfd_reloc_status_type
1690mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1691 output_bfd, error_message)
5f771d47 1692 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1693 arelent *reloc_entry;
1694 asymbol *symbol;
5f771d47 1695 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
1696 asection *input_section;
1697 bfd *output_bfd;
5f771d47 1698 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
1699{
1700 if (output_bfd != (bfd *) NULL
1701 && (symbol->flags & BSF_SECTION_SYM) == 0
1702 && reloc_entry->addend == 0)
1703 {
1704 reloc_entry->address += input_section->output_offset;
1705 return bfd_reloc_ok;
1706 }
1707
1708 /* FIXME. */
1709 {
1710 static boolean warned;
1711
1712 if (! warned)
1713 (*_bfd_error_handler)
1714 (_("Linking mips16 objects into %s format is not supported"),
1715 bfd_get_target (input_section->output_section->owner));
1716 warned = true;
1717 }
1718
1719 return bfd_reloc_undefined;
1720}
1721
1722/* Handle a mips16 GP relative reloc. */
1723
1724static bfd_reloc_status_type
1725mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1726 output_bfd, error_message)
1727 bfd *abfd;
1728 arelent *reloc_entry;
1729 asymbol *symbol;
1730 PTR data;
1731 asection *input_section;
1732 bfd *output_bfd;
1733 char **error_message;
1734{
1735 boolean relocateable;
1736 bfd_reloc_status_type ret;
1737 bfd_vma gp;
1738 unsigned short extend, insn;
1739 unsigned long final;
1740
1741 /* If we're relocating, and this is an external symbol with no
1742 addend, we don't want to change anything. We will only have an
1743 addend if this is a newly created reloc, not read from an ELF
1744 file. */
1745 if (output_bfd != NULL
1746 && (symbol->flags & BSF_SECTION_SYM) == 0
1747 && reloc_entry->addend == 0)
1748 {
1749 reloc_entry->address += input_section->output_offset;
1750 return bfd_reloc_ok;
1751 }
1752
1753 if (output_bfd != NULL)
1754 relocateable = true;
1755 else
1756 {
1757 relocateable = false;
1758 output_bfd = symbol->section->output_section->owner;
1759 }
1760
1761 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1762 &gp);
1763 if (ret != bfd_reloc_ok)
1764 return ret;
1765
1766 if (reloc_entry->address > input_section->_cooked_size)
1767 return bfd_reloc_outofrange;
1768
1769 /* Pick up the mips16 extend instruction and the real instruction. */
1770 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1771 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1772
1773 /* Stuff the current addend back as a 32 bit value, do the usual
1774 relocation, and then clean up. */
1775 bfd_put_32 (abfd,
1776 (((extend & 0x1f) << 11)
1777 | (extend & 0x7e0)
1778 | (insn & 0x1f)),
1779 (bfd_byte *) data + reloc_entry->address);
1780
1781 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1782 relocateable, data, gp);
1783
1784 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1785 bfd_put_16 (abfd,
1786 ((extend & 0xf800)
1787 | ((final >> 11) & 0x1f)
1788 | (final & 0x7e0)),
1789 (bfd_byte *) data + reloc_entry->address);
1790 bfd_put_16 (abfd,
1791 ((insn & 0xffe0)
1792 | (final & 0x1f)),
1793 (bfd_byte *) data + reloc_entry->address + 2);
1794
1795 return ret;
1796}
1797
1798/* Return the ISA for a MIPS e_flags value. */
1799
1800static INLINE int
1801elf_mips_isa (flags)
1802 flagword flags;
1803{
1804 switch (flags & EF_MIPS_ARCH)
1805 {
1806 case E_MIPS_ARCH_1:
1807 return 1;
1808 case E_MIPS_ARCH_2:
1809 return 2;
1810 case E_MIPS_ARCH_3:
1811 return 3;
1812 case E_MIPS_ARCH_4:
1813 return 4;
1814 }
1815 return 4;
1816}
1817
1818/* Return the MACH for a MIPS e_flags value. */
1819
1820static INLINE int
1821elf_mips_mach (flags)
1822 flagword flags;
1823{
1824 switch (flags & EF_MIPS_MACH)
1825 {
1826 case E_MIPS_MACH_3900:
1827 return bfd_mach_mips3900;
1828
1829 case E_MIPS_MACH_4010:
1830 return bfd_mach_mips4010;
1831
1832 case E_MIPS_MACH_4100:
1833 return bfd_mach_mips4100;
1834
1835 case E_MIPS_MACH_4111:
1836 return bfd_mach_mips4111;
1837
1838 case E_MIPS_MACH_4650:
1839 return bfd_mach_mips4650;
1840
1841 default:
1842 switch (flags & EF_MIPS_ARCH)
1843 {
1844 default:
1845 case E_MIPS_ARCH_1:
1846 return bfd_mach_mips3000;
1847 break;
1848
1849 case E_MIPS_ARCH_2:
1850 return bfd_mach_mips6000;
1851 break;
1852
1853 case E_MIPS_ARCH_3:
1854 return bfd_mach_mips4000;
1855 break;
1856
1857 case E_MIPS_ARCH_4:
1858 return bfd_mach_mips8000;
1859 break;
1860 }
1861 }
1862
1863 return 0;
1864}
1865
103186c6 1866/* Return printable name for ABI. */
252b5132
RH
1867
1868static INLINE char*
103186c6
MM
1869elf_mips_abi_name (abfd)
1870 bfd *abfd;
252b5132 1871{
103186c6
MM
1872 flagword flags;
1873
1874 if (ABI_N32_P (abfd))
1875 return "N32";
1876 else if (ABI_64_P (abfd))
1877 return "64";
1878
1879 flags = elf_elfheader (abfd)->e_flags;
252b5132
RH
1880 switch (flags & EF_MIPS_ABI)
1881 {
1882 case 0:
1883 return "none";
1884 case E_MIPS_ABI_O32:
1885 return "O32";
1886 case E_MIPS_ABI_O64:
1887 return "O64";
1888 case E_MIPS_ABI_EABI32:
1889 return "EABI32";
1890 case E_MIPS_ABI_EABI64:
1891 return "EABI64";
1892 default:
1893 return "unknown abi";
1894 }
1895}
1896
1897/* A mapping from BFD reloc types to MIPS ELF reloc types. */
1898
1899struct elf_reloc_map {
1900 bfd_reloc_code_real_type bfd_reloc_val;
1901 enum elf_mips_reloc_type elf_reloc_val;
1902};
1903
1904static CONST struct elf_reloc_map mips_reloc_map[] =
1905{
1906 { BFD_RELOC_NONE, R_MIPS_NONE, },
1907 { BFD_RELOC_16, R_MIPS_16 },
1908 { BFD_RELOC_32, R_MIPS_32 },
1909 { BFD_RELOC_64, R_MIPS_64 },
1910 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1911 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1912 { BFD_RELOC_LO16, R_MIPS_LO16 },
1913 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1914 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1915 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1916 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1917 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1918 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1919 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1920 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1921 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
3f830999
MM
1922 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1923 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1924 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1925 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1926 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
252b5132
RH
1927};
1928
1929/* Given a BFD reloc type, return a howto structure. */
1930
1931static reloc_howto_type *
1932bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1933 bfd *abfd;
1934 bfd_reloc_code_real_type code;
1935{
1936 unsigned int i;
1937
1938 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1939 {
1940 if (mips_reloc_map[i].bfd_reloc_val == code)
1941 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1942 }
1943
1944 switch (code)
1945 {
1946 default:
1947 bfd_set_error (bfd_error_bad_value);
1948 return NULL;
1949
1950 case BFD_RELOC_CTOR:
1951 /* We need to handle BFD_RELOC_CTOR specially.
1952 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1953 size of addresses on this architecture. */
1954 if (bfd_arch_bits_per_address (abfd) == 32)
1955 return &elf_mips_howto_table[(int) R_MIPS_32];
1956 else
1957 return &elf_mips_ctor64_howto;
1958
1959 case BFD_RELOC_MIPS16_JMP:
1960 return &elf_mips16_jump_howto;
1961 case BFD_RELOC_MIPS16_GPREL:
1962 return &elf_mips16_gprel_howto;
1963 case BFD_RELOC_VTABLE_INHERIT:
1964 return &elf_mips_gnu_vtinherit_howto;
1965 case BFD_RELOC_VTABLE_ENTRY:
1966 return &elf_mips_gnu_vtentry_howto;
bb2d6cd7
GK
1967 case BFD_RELOC_PCREL_HI16_S:
1968 return &elf_mips_gnu_rel_hi16;
1969 case BFD_RELOC_PCREL_LO16:
1970 return &elf_mips_gnu_rel_lo16;
1971 case BFD_RELOC_16_PCREL_S2:
1972 return &elf_mips_gnu_rel16_s2;
1973 case BFD_RELOC_64_PCREL:
1974 return &elf_mips_gnu_pcrel64;
1975 case BFD_RELOC_32_PCREL:
1976 return &elf_mips_gnu_pcrel32;
252b5132
RH
1977 }
1978}
1979
3f830999 1980/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
252b5132 1981
c9b3cbf3
RH
1982static reloc_howto_type *
1983mips_rtype_to_howto (r_type)
1984 unsigned int r_type;
252b5132 1985{
252b5132
RH
1986 switch (r_type)
1987 {
1988 case R_MIPS16_26:
c9b3cbf3 1989 return &elf_mips16_jump_howto;
252b5132
RH
1990 break;
1991 case R_MIPS16_GPREL:
c9b3cbf3 1992 return &elf_mips16_gprel_howto;
252b5132
RH
1993 break;
1994 case R_MIPS_GNU_VTINHERIT:
c9b3cbf3 1995 return &elf_mips_gnu_vtinherit_howto;
252b5132
RH
1996 break;
1997 case R_MIPS_GNU_VTENTRY:
c9b3cbf3 1998 return &elf_mips_gnu_vtentry_howto;
252b5132 1999 break;
bb2d6cd7
GK
2000 case R_MIPS_GNU_REL_HI16:
2001 return &elf_mips_gnu_rel_hi16;
2002 break;
2003 case R_MIPS_GNU_REL_LO16:
2004 return &elf_mips_gnu_rel_lo16;
2005 break;
2006 case R_MIPS_GNU_REL16_S2:
2007 return &elf_mips_gnu_rel16_s2;
2008 break;
2009 case R_MIPS_PC64:
2010 return &elf_mips_gnu_pcrel64;
2011 break;
2012 case R_MIPS_PC32:
2013 return &elf_mips_gnu_pcrel32;
2014 break;
252b5132
RH
2015
2016 default:
2017 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
c9b3cbf3 2018 return &elf_mips_howto_table[r_type];
252b5132
RH
2019 break;
2020 }
c9b3cbf3
RH
2021}
2022
2023/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2024
2025static void
2026mips_info_to_howto_rel (abfd, cache_ptr, dst)
2027 bfd *abfd;
2028 arelent *cache_ptr;
2029 Elf32_Internal_Rel *dst;
2030{
2031 unsigned int r_type;
2032
2033 r_type = ELF32_R_TYPE (dst->r_info);
2034 cache_ptr->howto = mips_rtype_to_howto (r_type);
252b5132
RH
2035
2036 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2037 value for the object file. We get the addend now, rather than
2038 when we do the relocation, because the symbol manipulations done
2039 by the linker may cause us to lose track of the input BFD. */
2040 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2041 && (r_type == (unsigned int) R_MIPS_GPREL16
2042 || r_type == (unsigned int) R_MIPS_LITERAL))
2043 cache_ptr->addend = elf_gp (abfd);
2044}
3f830999
MM
2045
2046/* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2047
2048static void
2049mips_info_to_howto_rela (abfd, cache_ptr, dst)
2050 bfd *abfd;
2051 arelent *cache_ptr;
2052 Elf32_Internal_Rela *dst;
2053{
2054 /* Since an Elf32_Internal_Rel is an initial prefix of an
2055 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2056 above. */
2057 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2058
2059 /* If we ever need to do any extra processing with dst->r_addend
2060 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2061}
252b5132
RH
2062\f
2063/* A .reginfo section holds a single Elf32_RegInfo structure. These
2064 routines swap this structure in and out. They are used outside of
2065 BFD, so they are globally visible. */
2066
2067void
2068bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2069 bfd *abfd;
2070 const Elf32_External_RegInfo *ex;
2071 Elf32_RegInfo *in;
2072{
2073 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2074 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2075 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2076 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2077 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2078 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2079}
2080
2081void
2082bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2083 bfd *abfd;
2084 const Elf32_RegInfo *in;
2085 Elf32_External_RegInfo *ex;
2086{
2087 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2088 (bfd_byte *) ex->ri_gprmask);
2089 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2090 (bfd_byte *) ex->ri_cprmask[0]);
2091 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2092 (bfd_byte *) ex->ri_cprmask[1]);
2093 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2094 (bfd_byte *) ex->ri_cprmask[2]);
2095 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2096 (bfd_byte *) ex->ri_cprmask[3]);
2097 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2098 (bfd_byte *) ex->ri_gp_value);
2099}
2100
2101/* In the 64 bit ABI, the .MIPS.options section holds register
2102 information in an Elf64_Reginfo structure. These routines swap
2103 them in and out. They are globally visible because they are used
2104 outside of BFD. These routines are here so that gas can call them
2105 without worrying about whether the 64 bit ABI has been included. */
2106
2107void
2108bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2109 bfd *abfd;
2110 const Elf64_External_RegInfo *ex;
2111 Elf64_Internal_RegInfo *in;
2112{
2113 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2114 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2115 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2116 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2117 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2118 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2119 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2120}
2121
2122void
2123bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2124 bfd *abfd;
2125 const Elf64_Internal_RegInfo *in;
2126 Elf64_External_RegInfo *ex;
2127{
2128 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2129 (bfd_byte *) ex->ri_gprmask);
2130 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2131 (bfd_byte *) ex->ri_pad);
2132 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2133 (bfd_byte *) ex->ri_cprmask[0]);
2134 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2135 (bfd_byte *) ex->ri_cprmask[1]);
2136 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2137 (bfd_byte *) ex->ri_cprmask[2]);
2138 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2139 (bfd_byte *) ex->ri_cprmask[3]);
2140 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2141 (bfd_byte *) ex->ri_gp_value);
2142}
2143
2144/* Swap an entry in a .gptab section. Note that these routines rely
2145 on the equivalence of the two elements of the union. */
2146
2147static void
2148bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2149 bfd *abfd;
2150 const Elf32_External_gptab *ex;
2151 Elf32_gptab *in;
2152{
2153 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2154 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2155}
2156
2157static void
2158bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2159 bfd *abfd;
2160 const Elf32_gptab *in;
2161 Elf32_External_gptab *ex;
2162{
2163 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2164 ex->gt_entry.gt_g_value);
2165 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2166 ex->gt_entry.gt_bytes);
2167}
2168
2169static void
2170bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2171 bfd *abfd;
2172 const Elf32_compact_rel *in;
2173 Elf32_External_compact_rel *ex;
2174{
2175 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2176 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2177 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2178 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2179 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2180 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2181}
2182
2183static void
2184bfd_elf32_swap_crinfo_out (abfd, in, ex)
2185 bfd *abfd;
2186 const Elf32_crinfo *in;
2187 Elf32_External_crinfo *ex;
2188{
2189 unsigned long l;
2190
2191 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2192 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2193 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2194 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2195 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2196 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2197 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2198}
2199
2200/* Swap in an options header. */
2201
2202void
2203bfd_mips_elf_swap_options_in (abfd, ex, in)
2204 bfd *abfd;
2205 const Elf_External_Options *ex;
2206 Elf_Internal_Options *in;
2207{
2208 in->kind = bfd_h_get_8 (abfd, ex->kind);
2209 in->size = bfd_h_get_8 (abfd, ex->size);
2210 in->section = bfd_h_get_16 (abfd, ex->section);
2211 in->info = bfd_h_get_32 (abfd, ex->info);
2212}
2213
2214/* Swap out an options header. */
2215
2216void
2217bfd_mips_elf_swap_options_out (abfd, in, ex)
2218 bfd *abfd;
2219 const Elf_Internal_Options *in;
2220 Elf_External_Options *ex;
2221{
2222 bfd_h_put_8 (abfd, in->kind, ex->kind);
2223 bfd_h_put_8 (abfd, in->size, ex->size);
2224 bfd_h_put_16 (abfd, in->section, ex->section);
2225 bfd_h_put_32 (abfd, in->info, ex->info);
2226}
86033394 2227#if 0
c6142e5d
MM
2228/* Swap in an MSYM entry. */
2229
2230static void
2231bfd_mips_elf_swap_msym_in (abfd, ex, in)
2232 bfd *abfd;
2233 const Elf32_External_Msym *ex;
2234 Elf32_Internal_Msym *in;
2235{
2236 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2237 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2238}
86033394 2239#endif
c6142e5d
MM
2240/* Swap out an MSYM entry. */
2241
2242static void
2243bfd_mips_elf_swap_msym_out (abfd, in, ex)
2244 bfd *abfd;
2245 const Elf32_Internal_Msym *in;
2246 Elf32_External_Msym *ex;
2247{
2248 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2249 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2250}
2251
252b5132
RH
2252\f
2253/* Determine whether a symbol is global for the purposes of splitting
2254 the symbol table into global symbols and local symbols. At least
2255 on Irix 5, this split must be between section symbols and all other
2256 symbols. On most ELF targets the split is between static symbols
2257 and externally visible symbols. */
2258
2259/*ARGSUSED*/
2260static boolean
2261mips_elf_sym_is_global (abfd, sym)
5f771d47 2262 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
2263 asymbol *sym;
2264{
2265 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2266}
2267\f
2268/* Set the right machine number for a MIPS ELF file. This is used for
2269 both the 32-bit and the 64-bit ABI. */
2270
2271boolean
2272_bfd_mips_elf_object_p (abfd)
2273 bfd *abfd;
2274{
103186c6 2275 /* Irix 5 and 6 is broken. Object file symbol tables are not always
252b5132
RH
2276 sorted correctly such that local symbols precede global symbols,
2277 and the sh_info field in the symbol table is not always right. */
2278 elf_bad_symtab (abfd) = true;
2279
103186c6
MM
2280 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2281 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2282 return true;
252b5132
RH
2283}
2284
2285/* The final processing done just before writing out a MIPS ELF object
2286 file. This gets the MIPS architecture right based on the machine
2287 number. This is used by both the 32-bit and the 64-bit ABI. */
2288
2289/*ARGSUSED*/
2290void
2291_bfd_mips_elf_final_write_processing (abfd, linker)
2292 bfd *abfd;
5f771d47 2293 boolean linker ATTRIBUTE_UNUSED;
252b5132
RH
2294{
2295 unsigned long val;
2296 unsigned int i;
2297 Elf_Internal_Shdr **hdrpp;
2298 const char *name;
2299 asection *sec;
2300
2301 switch (bfd_get_mach (abfd))
2302 {
2303 default:
2304 case bfd_mach_mips3000:
2305 val = E_MIPS_ARCH_1;
2306 break;
2307
2308 case bfd_mach_mips3900:
2309 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2310 break;
2311
2312 case bfd_mach_mips6000:
2313 val = E_MIPS_ARCH_2;
2314 break;
2315
2316 case bfd_mach_mips4000:
2317 case bfd_mach_mips4300:
2318 val = E_MIPS_ARCH_3;
2319 break;
2320
2321 case bfd_mach_mips4010:
2322 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2323 break;
2324
2325 case bfd_mach_mips4100:
2326 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2327 break;
2328
2329 case bfd_mach_mips4111:
2330 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2331 break;
2332
2333 case bfd_mach_mips4650:
2334 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2335 break;
2336
2337 case bfd_mach_mips8000:
2338 val = E_MIPS_ARCH_4;
2339 break;
2340 }
2341
2342 elf_elfheader (abfd)->e_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2343 elf_elfheader (abfd)->e_flags |= val;
2344
2345 /* Set the sh_info field for .gptab sections and other appropriate
2346 info for each special section. */
2347 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2348 i < elf_elfheader (abfd)->e_shnum;
2349 i++, hdrpp++)
2350 {
2351 switch ((*hdrpp)->sh_type)
2352 {
c6142e5d 2353 case SHT_MIPS_MSYM:
252b5132
RH
2354 case SHT_MIPS_LIBLIST:
2355 sec = bfd_get_section_by_name (abfd, ".dynstr");
2356 if (sec != NULL)
2357 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2358 break;
2359
2360 case SHT_MIPS_GPTAB:
2361 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2362 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2363 BFD_ASSERT (name != NULL
2364 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2365 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2366 BFD_ASSERT (sec != NULL);
2367 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2368 break;
2369
2370 case SHT_MIPS_CONTENT:
2371 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2372 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2373 BFD_ASSERT (name != NULL
2374 && strncmp (name, ".MIPS.content",
2375 sizeof ".MIPS.content" - 1) == 0);
2376 sec = bfd_get_section_by_name (abfd,
2377 name + sizeof ".MIPS.content" - 1);
2378 BFD_ASSERT (sec != NULL);
3f830999 2379 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
252b5132
RH
2380 break;
2381
2382 case SHT_MIPS_SYMBOL_LIB:
2383 sec = bfd_get_section_by_name (abfd, ".dynsym");
2384 if (sec != NULL)
2385 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2386 sec = bfd_get_section_by_name (abfd, ".liblist");
2387 if (sec != NULL)
2388 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2389 break;
2390
2391 case SHT_MIPS_EVENTS:
2392 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2393 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2394 BFD_ASSERT (name != NULL);
2395 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2396 sec = bfd_get_section_by_name (abfd,
2397 name + sizeof ".MIPS.events" - 1);
2398 else
2399 {
2400 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2401 sizeof ".MIPS.post_rel" - 1) == 0);
2402 sec = bfd_get_section_by_name (abfd,
2403 (name
2404 + sizeof ".MIPS.post_rel" - 1));
2405 }
2406 BFD_ASSERT (sec != NULL);
2407 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2408 break;
2409
2410 }
2411 }
2412}
2413\f
2414/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2415
2416boolean
2417_bfd_mips_elf_set_private_flags (abfd, flags)
2418 bfd *abfd;
2419 flagword flags;
2420{
2421 BFD_ASSERT (!elf_flags_init (abfd)
2422 || elf_elfheader (abfd)->e_flags == flags);
2423
2424 elf_elfheader (abfd)->e_flags = flags;
2425 elf_flags_init (abfd) = true;
2426 return true;
2427}
2428
2429/* Copy backend specific data from one object module to another */
2430
2431boolean
2432_bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2433 bfd *ibfd;
2434 bfd *obfd;
2435{
2436 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2437 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2438 return true;
2439
2440 BFD_ASSERT (!elf_flags_init (obfd)
2441 || (elf_elfheader (obfd)->e_flags
2442 == elf_elfheader (ibfd)->e_flags));
2443
2444 elf_gp (obfd) = elf_gp (ibfd);
2445 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2446 elf_flags_init (obfd) = true;
2447 return true;
2448}
2449
2450/* Merge backend specific data from an object file to the output
2451 object file when linking. */
2452
2453boolean
2454_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2455 bfd *ibfd;
2456 bfd *obfd;
2457{
2458 flagword old_flags;
2459 flagword new_flags;
2460 boolean ok;
2461
2462 /* Check if we have the same endianess */
2463 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2464 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2465 {
2466 const char *msg;
2467
2468 if (bfd_big_endian (ibfd))
2469 msg = _("%s: compiled for a big endian system and target is little endian");
2470 else
2471 msg = _("%s: compiled for a little endian system and target is big endian");
2472
2473 (*_bfd_error_handler) (msg, bfd_get_filename (ibfd));
2474
2475 bfd_set_error (bfd_error_wrong_format);
2476 return false;
2477 }
2478
2479 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2480 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2481 return true;
2482
2483 new_flags = elf_elfheader (ibfd)->e_flags;
2484 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2485 old_flags = elf_elfheader (obfd)->e_flags;
2486
2487 if (! elf_flags_init (obfd))
2488 {
2489 elf_flags_init (obfd) = true;
2490 elf_elfheader (obfd)->e_flags = new_flags;
103186c6
MM
2491 elf_elfheader (obfd)->e_ident[EI_CLASS]
2492 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
252b5132
RH
2493
2494 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2495 && bfd_get_arch_info (obfd)->the_default)
2496 {
2497 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2498 bfd_get_mach (ibfd)))
2499 return false;
2500 }
2501
2502 return true;
2503 }
2504
2505 /* Check flag compatibility. */
2506
2507 new_flags &= ~EF_MIPS_NOREORDER;
2508 old_flags &= ~EF_MIPS_NOREORDER;
2509
2510 if (new_flags == old_flags)
2511 return true;
2512
2513 ok = true;
2514
2515 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2516 {
2517 new_flags &= ~EF_MIPS_PIC;
2518 old_flags &= ~EF_MIPS_PIC;
2519 (*_bfd_error_handler)
2520 (_("%s: linking PIC files with non-PIC files"),
2521 bfd_get_filename (ibfd));
2522 ok = false;
2523 }
2524
2525 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2526 {
2527 new_flags &= ~EF_MIPS_CPIC;
2528 old_flags &= ~EF_MIPS_CPIC;
2529 (*_bfd_error_handler)
2530 (_("%s: linking abicalls files with non-abicalls files"),
2531 bfd_get_filename (ibfd));
2532 ok = false;
2533 }
2534
2535 /* Compare the ISA's. */
2536 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2537 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2538 {
2539 int new_mach = new_flags & EF_MIPS_MACH;
2540 int old_mach = old_flags & EF_MIPS_MACH;
2541 int new_isa = elf_mips_isa (new_flags);
2542 int old_isa = elf_mips_isa (old_flags);
2543
2544 /* If either has no machine specified, just compare the general isa's.
2545 Some combinations of machines are ok, if the isa's match. */
2546 if (! new_mach
2547 || ! old_mach
2548 || new_mach == old_mach
2549 )
2550 {
2551 /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3
2552 and -mips4 code. They will normally use the same data sizes and
2553 calling conventions. */
2554
2555 if ((new_isa == 1 || new_isa == 2)
2556 ? (old_isa != 1 && old_isa != 2)
2557 : (old_isa == 1 || old_isa == 2))
2558 {
2559 (*_bfd_error_handler)
2560 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2561 bfd_get_filename (ibfd), new_isa, old_isa);
2562 ok = false;
2563 }
2564 }
2565
2566 else
2567 {
2568 (*_bfd_error_handler)
2569 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2570 bfd_get_filename (ibfd),
2571 elf_mips_mach (new_flags),
2572 elf_mips_mach (old_flags));
2573 ok = false;
2574 }
2575
2576 new_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2577 old_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2578 }
2579
103186c6
MM
2580 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2581 does set EI_CLASS differently from any 32-bit ABI. */
2582 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2583 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2584 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132
RH
2585 {
2586 /* Only error if both are set (to different values). */
103186c6
MM
2587 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2588 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2589 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132
RH
2590 {
2591 (*_bfd_error_handler)
2592 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2593 bfd_get_filename (ibfd),
103186c6
MM
2594 elf_mips_abi_name (ibfd),
2595 elf_mips_abi_name (obfd));
252b5132
RH
2596 ok = false;
2597 }
2598 new_flags &= ~EF_MIPS_ABI;
2599 old_flags &= ~EF_MIPS_ABI;
2600 }
2601
2602 /* Warn about any other mismatches */
2603 if (new_flags != old_flags)
2604 {
2605 (*_bfd_error_handler)
2606 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2607 bfd_get_filename (ibfd), (unsigned long) new_flags,
2608 (unsigned long) old_flags);
2609 ok = false;
2610 }
2611
2612 if (! ok)
2613 {
2614 bfd_set_error (bfd_error_bad_value);
2615 return false;
2616 }
2617
2618 return true;
2619}
2620\f
103186c6 2621boolean
252b5132
RH
2622_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2623 bfd *abfd;
2624 PTR ptr;
2625{
2626 FILE *file = (FILE *) ptr;
2627
2628 BFD_ASSERT (abfd != NULL && ptr != NULL);
2629
2630 /* Print normal ELF private data. */
2631 _bfd_elf_print_private_bfd_data (abfd, ptr);
2632
2633 /* xgettext:c-format */
2634 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2635
2636 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2637 fprintf (file, _ (" [abi=O32]"));
2638 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2639 fprintf (file, _ (" [abi=O64]"));
2640 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2641 fprintf (file, _ (" [abi=EABI32]"));
2642 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2643 fprintf (file, _ (" [abi=EABI64]"));
2644 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2645 fprintf (file, _ (" [abi unknown]"));
103186c6 2646 else if (ABI_N32_P (abfd))
7f7e7b68 2647 fprintf (file, _ (" [abi=N32]"));
103186c6
MM
2648 else if (ABI_64_P (abfd))
2649 fprintf (file, _ (" [abi=64]"));
252b5132
RH
2650 else
2651 fprintf (file, _ (" [no abi set]"));
2652
2653 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2654 fprintf (file, _ (" [mips1]"));
2655 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2656 fprintf (file, _ (" [mips2]"));
2657 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2658 fprintf (file, _ (" [mips3]"));
2659 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2660 fprintf (file, _ (" [mips4]"));
2661 else
2662 fprintf (file, _ (" [unknown ISA]"));
2663
2664 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2665 fprintf (file, _ (" [32bitmode]"));
2666 else
2667 fprintf (file, _ (" [not 32bitmode]"));
2668
2669 fputc ('\n', file);
2670
2671 return true;
2672}
2673\f
2674/* Handle a MIPS specific section when reading an object file. This
2675 is called when elfcode.h finds a section with an unknown type.
2676 This routine supports both the 32-bit and 64-bit ELF ABI.
2677
2678 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2679 how to. */
2680
2681boolean
2682_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2683 bfd *abfd;
2684 Elf_Internal_Shdr *hdr;
103186c6 2685 char *name;
252b5132
RH
2686{
2687 flagword flags = 0;
2688
2689 /* There ought to be a place to keep ELF backend specific flags, but
2690 at the moment there isn't one. We just keep track of the
2691 sections by their name, instead. Fortunately, the ABI gives
2692 suggested names for all the MIPS specific sections, so we will
2693 probably get away with this. */
2694 switch (hdr->sh_type)
2695 {
2696 case SHT_MIPS_LIBLIST:
2697 if (strcmp (name, ".liblist") != 0)
2698 return false;
2699 break;
2700 case SHT_MIPS_MSYM:
c6142e5d 2701 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
252b5132
RH
2702 return false;
2703 break;
2704 case SHT_MIPS_CONFLICT:
2705 if (strcmp (name, ".conflict") != 0)
2706 return false;
2707 break;
2708 case SHT_MIPS_GPTAB:
2709 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2710 return false;
2711 break;
2712 case SHT_MIPS_UCODE:
2713 if (strcmp (name, ".ucode") != 0)
2714 return false;
2715 break;
2716 case SHT_MIPS_DEBUG:
2717 if (strcmp (name, ".mdebug") != 0)
2718 return false;
2719 flags = SEC_DEBUGGING;
2720 break;
2721 case SHT_MIPS_REGINFO:
2722 if (strcmp (name, ".reginfo") != 0
2723 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2724 return false;
2725 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2726 break;
2727 case SHT_MIPS_IFACE:
2728 if (strcmp (name, ".MIPS.interfaces") != 0)
2729 return false;
2730 break;
2731 case SHT_MIPS_CONTENT:
2732 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2733 return false;
2734 break;
2735 case SHT_MIPS_OPTIONS:
303f629d 2736 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
252b5132
RH
2737 return false;
2738 break;
2739 case SHT_MIPS_DWARF:
2740 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2741 return false;
2742 break;
2743 case SHT_MIPS_SYMBOL_LIB:
2744 if (strcmp (name, ".MIPS.symlib") != 0)
2745 return false;
2746 break;
2747 case SHT_MIPS_EVENTS:
2748 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2749 && strncmp (name, ".MIPS.post_rel",
2750 sizeof ".MIPS.post_rel" - 1) != 0)
2751 return false;
2752 break;
2753 default:
2754 return false;
2755 }
2756
2757 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2758 return false;
2759
2760 if (flags)
2761 {
2762 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2763 (bfd_get_section_flags (abfd,
2764 hdr->bfd_section)
2765 | flags)))
2766 return false;
2767 }
2768
252b5132
RH
2769 /* FIXME: We should record sh_info for a .gptab section. */
2770
2771 /* For a .reginfo section, set the gp value in the tdata information
2772 from the contents of this section. We need the gp value while
2773 processing relocs, so we just get it now. The .reginfo section
2774 is not used in the 64-bit MIPS ELF ABI. */
2775 if (hdr->sh_type == SHT_MIPS_REGINFO)
2776 {
2777 Elf32_External_RegInfo ext;
2778 Elf32_RegInfo s;
2779
2780 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2781 (file_ptr) 0, sizeof ext))
2782 return false;
2783 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2784 elf_gp (abfd) = s.ri_gp_value;
2785 }
2786
2787 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2788 set the gp value based on what we find. We may see both
2789 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2790 they should agree. */
2791 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2792 {
2793 bfd_byte *contents, *l, *lend;
2794
2795 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2796 if (contents == NULL)
2797 return false;
2798 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2799 (file_ptr) 0, hdr->sh_size))
2800 {
2801 free (contents);
2802 return false;
2803 }
2804 l = contents;
2805 lend = contents + hdr->sh_size;
2806 while (l + sizeof (Elf_External_Options) <= lend)
2807 {
2808 Elf_Internal_Options intopt;
2809
2810 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2811 &intopt);
103186c6
MM
2812 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2813 {
2814 Elf64_Internal_RegInfo intreg;
2815
2816 bfd_mips_elf64_swap_reginfo_in
2817 (abfd,
2818 ((Elf64_External_RegInfo *)
2819 (l + sizeof (Elf_External_Options))),
2820 &intreg);
2821 elf_gp (abfd) = intreg.ri_gp_value;
2822 }
2823 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
2824 {
2825 Elf32_RegInfo intreg;
2826
2827 bfd_mips_elf32_swap_reginfo_in
2828 (abfd,
2829 ((Elf32_External_RegInfo *)
2830 (l + sizeof (Elf_External_Options))),
2831 &intreg);
2832 elf_gp (abfd) = intreg.ri_gp_value;
2833 }
2834 l += intopt.size;
2835 }
2836 free (contents);
2837 }
2838
2839 return true;
2840}
2841
2842/* Set the correct type for a MIPS ELF section. We do this by the
2843 section name, which is a hack, but ought to work. This routine is
2844 used by both the 32-bit and the 64-bit ABI. */
2845
2846boolean
2847_bfd_mips_elf_fake_sections (abfd, hdr, sec)
2848 bfd *abfd;
2849 Elf32_Internal_Shdr *hdr;
2850 asection *sec;
2851{
2852 register const char *name;
2853
2854 name = bfd_get_section_name (abfd, sec);
2855
2856 if (strcmp (name, ".liblist") == 0)
2857 {
2858 hdr->sh_type = SHT_MIPS_LIBLIST;
2859 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2860 /* The sh_link field is set in final_write_processing. */
2861 }
252b5132
RH
2862 else if (strcmp (name, ".conflict") == 0)
2863 hdr->sh_type = SHT_MIPS_CONFLICT;
2864 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2865 {
2866 hdr->sh_type = SHT_MIPS_GPTAB;
2867 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2868 /* The sh_info field is set in final_write_processing. */
2869 }
2870 else if (strcmp (name, ".ucode") == 0)
2871 hdr->sh_type = SHT_MIPS_UCODE;
2872 else if (strcmp (name, ".mdebug") == 0)
2873 {
2874 hdr->sh_type = SHT_MIPS_DEBUG;
2875 /* In a shared object on Irix 5.3, the .mdebug section has an
2876 entsize of 0. FIXME: Does this matter? */
2877 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2878 hdr->sh_entsize = 0;
2879 else
2880 hdr->sh_entsize = 1;
2881 }
2882 else if (strcmp (name, ".reginfo") == 0)
2883 {
2884 hdr->sh_type = SHT_MIPS_REGINFO;
2885 /* In a shared object on Irix 5.3, the .reginfo section has an
2886 entsize of 0x18. FIXME: Does this matter? */
2887 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2888 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2889 else
2890 hdr->sh_entsize = 1;
2891 }
2892 else if (SGI_COMPAT (abfd)
2893 && (strcmp (name, ".hash") == 0
2894 || strcmp (name, ".dynamic") == 0
2895 || strcmp (name, ".dynstr") == 0))
2896 {
2897 hdr->sh_entsize = 0;
2898#if 0
2899 /* This isn't how the Irix 6 linker behaves. */
2900 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2901#endif
2902 }
2903 else if (strcmp (name, ".got") == 0
303f629d 2904 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
252b5132
RH
2905 || strcmp (name, ".sdata") == 0
2906 || strcmp (name, ".sbss") == 0
2907 || strcmp (name, ".lit4") == 0
2908 || strcmp (name, ".lit8") == 0)
2909 hdr->sh_flags |= SHF_MIPS_GPREL;
2910 else if (strcmp (name, ".MIPS.interfaces") == 0)
2911 {
2912 hdr->sh_type = SHT_MIPS_IFACE;
2913 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2914 }
3f830999 2915 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
252b5132
RH
2916 {
2917 hdr->sh_type = SHT_MIPS_CONTENT;
3f830999 2918 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
252b5132
RH
2919 /* The sh_info field is set in final_write_processing. */
2920 }
303f629d 2921 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
2922 {
2923 hdr->sh_type = SHT_MIPS_OPTIONS;
2924 hdr->sh_entsize = 1;
2925 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2926 }
2927 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
2928 hdr->sh_type = SHT_MIPS_DWARF;
2929 else if (strcmp (name, ".MIPS.symlib") == 0)
2930 {
2931 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
2932 /* The sh_link and sh_info fields are set in
2933 final_write_processing. */
2934 }
2935 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2936 || strncmp (name, ".MIPS.post_rel",
2937 sizeof ".MIPS.post_rel" - 1) == 0)
2938 {
2939 hdr->sh_type = SHT_MIPS_EVENTS;
2940 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2941 /* The sh_link field is set in final_write_processing. */
2942 }
c6142e5d
MM
2943 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
2944 {
2945 hdr->sh_type = SHT_MIPS_MSYM;
2946 hdr->sh_flags |= SHF_ALLOC;
2947 hdr->sh_entsize = 8;
2948 }
252b5132 2949
23bc299b
MM
2950 /* The generic elf_fake_sections will set up REL_HDR using the
2951 default kind of relocations. But, we may actually need both
2952 kinds of relocations, so we set up the second header here. */
2953 if ((sec->flags & SEC_RELOC) != 0)
2954 {
2955 struct bfd_elf_section_data *esd;
2956
2957 esd = elf_section_data (sec);
2958 BFD_ASSERT (esd->rel_hdr2 == NULL);
2959 esd->rel_hdr2
2960 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2961 if (!esd->rel_hdr2)
2962 return false;
2963 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
2964 !elf_section_data (sec)->use_rela_p);
2965 }
2966
252b5132
RH
2967 return true;
2968}
2969
2970/* Given a BFD section, try to locate the corresponding ELF section
2971 index. This is used by both the 32-bit and the 64-bit ABI.
2972 Actually, it's not clear to me that the 64-bit ABI supports these,
2973 but for non-PIC objects we will certainly want support for at least
2974 the .scommon section. */
2975
2976boolean
2977_bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
5f771d47
ILT
2978 bfd *abfd ATTRIBUTE_UNUSED;
2979 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
252b5132
RH
2980 asection *sec;
2981 int *retval;
2982{
2983 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
2984 {
2985 *retval = SHN_MIPS_SCOMMON;
2986 return true;
2987 }
2988 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
2989 {
2990 *retval = SHN_MIPS_ACOMMON;
2991 return true;
2992 }
2993 return false;
2994}
2995
2996/* When are writing out the .options or .MIPS.options section,
2997 remember the bytes we are writing out, so that we can install the
2998 GP value in the section_processing routine. */
2999
3000boolean
3001_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3002 bfd *abfd;
3003 sec_ptr section;
3004 PTR location;
3005 file_ptr offset;
3006 bfd_size_type count;
3007{
303f629d 3008 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
3009 {
3010 bfd_byte *c;
3011
3012 if (elf_section_data (section) == NULL)
3013 {
3014 section->used_by_bfd =
3015 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3016 if (elf_section_data (section) == NULL)
3017 return false;
3018 }
3019 c = (bfd_byte *) elf_section_data (section)->tdata;
3020 if (c == NULL)
3021 {
3022 bfd_size_type size;
3023
3024 if (section->_cooked_size != 0)
3025 size = section->_cooked_size;
3026 else
3027 size = section->_raw_size;
3028 c = (bfd_byte *) bfd_zalloc (abfd, size);
3029 if (c == NULL)
3030 return false;
3031 elf_section_data (section)->tdata = (PTR) c;
3032 }
3033
3034 memcpy (c + offset, location, count);
3035 }
3036
3037 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3038 count);
3039}
3040
3041/* Work over a section just before writing it out. This routine is
3042 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3043 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3044 a better way. */
3045
3046boolean
3047_bfd_mips_elf_section_processing (abfd, hdr)
3048 bfd *abfd;
3049 Elf_Internal_Shdr *hdr;
252b5132 3050{
cc3bfcee
ILT
3051 if (hdr->sh_type == SHT_MIPS_REGINFO
3052 && hdr->sh_size > 0)
252b5132
RH
3053 {
3054 bfd_byte buf[4];
3055
3056 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3057 BFD_ASSERT (hdr->contents == NULL);
3058
3059 if (bfd_seek (abfd,
3060 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3061 SEEK_SET) == -1)
3062 return false;
3063 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3064 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3065 return false;
3066 }
3067
3068 if (hdr->sh_type == SHT_MIPS_OPTIONS
3069 && hdr->bfd_section != NULL
3070 && elf_section_data (hdr->bfd_section) != NULL
3071 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3072 {
3073 bfd_byte *contents, *l, *lend;
3074
3075 /* We stored the section contents in the elf_section_data tdata
3076 field in the set_section_contents routine. We save the
3077 section contents so that we don't have to read them again.
3078 At this point we know that elf_gp is set, so we can look
3079 through the section contents to see if there is an
3080 ODK_REGINFO structure. */
3081
3082 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3083 l = contents;
3084 lend = contents + hdr->sh_size;
3085 while (l + sizeof (Elf_External_Options) <= lend)
3086 {
3087 Elf_Internal_Options intopt;
3088
3089 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3090 &intopt);
103186c6
MM
3091 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3092 {
3093 bfd_byte buf[8];
3094
3095 if (bfd_seek (abfd,
3096 (hdr->sh_offset
3097 + (l - contents)
3098 + sizeof (Elf_External_Options)
3099 + (sizeof (Elf64_External_RegInfo) - 8)),
3100 SEEK_SET) == -1)
3101 return false;
3102 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3103 if (bfd_write (buf, 1, 8, abfd) != 8)
3104 return false;
3105 }
3106 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
3107 {
3108 bfd_byte buf[4];
3109
3110 if (bfd_seek (abfd,
3111 (hdr->sh_offset
3112 + (l - contents)
3113 + sizeof (Elf_External_Options)
3114 + (sizeof (Elf32_External_RegInfo) - 4)),
3115 SEEK_SET) == -1)
3116 return false;
3117 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3118 if (bfd_write (buf, 1, 4, abfd) != 4)
3119 return false;
3120 }
3121 l += intopt.size;
3122 }
3123 }
3124
103186c6
MM
3125 if (hdr->bfd_section != NULL)
3126 {
3127 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3128
3129 if (strcmp (name, ".sdata") == 0
3130 || strcmp (name, ".lit8") == 0
3131 || strcmp (name, ".lit4") == 0)
3132 {
3133 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3134 hdr->sh_type = SHT_PROGBITS;
3135 }
3136 else if (strcmp (name, ".sbss") == 0)
3137 {
3138 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3139 hdr->sh_type = SHT_NOBITS;
3140 }
3141 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3142 {
3143 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3144 hdr->sh_type = SHT_PROGBITS;
3145 }
3146 else if (strcmp (name, ".compact_rel") == 0)
3147 {
3148 hdr->sh_flags = 0;
3149 hdr->sh_type = SHT_PROGBITS;
3150 }
3151 else if (strcmp (name, ".rtproc") == 0)
3152 {
3153 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3154 {
3155 unsigned int adjust;
3156
3157 adjust = hdr->sh_size % hdr->sh_addralign;
3158 if (adjust != 0)
3159 hdr->sh_size += hdr->sh_addralign - adjust;
3160 }
3161 }
3162 }
3163
3164 return true;
252b5132 3165}
103186c6 3166
252b5132
RH
3167\f
3168/* MIPS ELF uses two common sections. One is the usual one, and the
3169 other is for small objects. All the small objects are kept
3170 together, and then referenced via the gp pointer, which yields
3171 faster assembler code. This is what we use for the small common
3172 section. This approach is copied from ecoff.c. */
3173static asection mips_elf_scom_section;
3174static asymbol mips_elf_scom_symbol;
3175static asymbol *mips_elf_scom_symbol_ptr;
3176
3177/* MIPS ELF also uses an acommon section, which represents an
3178 allocated common symbol which may be overridden by a
3179 definition in a shared library. */
3180static asection mips_elf_acom_section;
3181static asymbol mips_elf_acom_symbol;
3182static asymbol *mips_elf_acom_symbol_ptr;
3183
3184/* The Irix 5 support uses two virtual sections, which represent
3185 text/data symbols defined in dynamic objects. */
3186static asection mips_elf_text_section;
3187static asection *mips_elf_text_section_ptr;
3188static asymbol mips_elf_text_symbol;
3189static asymbol *mips_elf_text_symbol_ptr;
3190
3191static asection mips_elf_data_section;
3192static asection *mips_elf_data_section_ptr;
3193static asymbol mips_elf_data_symbol;
3194static asymbol *mips_elf_data_symbol_ptr;
3195
3196/* Handle the special MIPS section numbers that a symbol may use.
3197 This is used for both the 32-bit and the 64-bit ABI. */
3198
3199void
3200_bfd_mips_elf_symbol_processing (abfd, asym)
3201 bfd *abfd;
3202 asymbol *asym;
3203{
3204 elf_symbol_type *elfsym;
3205
3206 elfsym = (elf_symbol_type *) asym;
3207 switch (elfsym->internal_elf_sym.st_shndx)
3208 {
3209 case SHN_MIPS_ACOMMON:
3210 /* This section is used in a dynamically linked executable file.
3211 It is an allocated common section. The dynamic linker can
3212 either resolve these symbols to something in a shared
3213 library, or it can just leave them here. For our purposes,
3214 we can consider these symbols to be in a new section. */
3215 if (mips_elf_acom_section.name == NULL)
3216 {
3217 /* Initialize the acommon section. */
3218 mips_elf_acom_section.name = ".acommon";
3219 mips_elf_acom_section.flags = SEC_ALLOC;
3220 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3221 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3222 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3223 mips_elf_acom_symbol.name = ".acommon";
3224 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3225 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3226 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3227 }
3228 asym->section = &mips_elf_acom_section;
3229 break;
3230
3231 case SHN_COMMON:
3232 /* Common symbols less than the GP size are automatically
7403cb63
MM
3233 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3234 if (asym->value > elf_gp_size (abfd)
3235 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
3236 break;
3237 /* Fall through. */
3238 case SHN_MIPS_SCOMMON:
3239 if (mips_elf_scom_section.name == NULL)
3240 {
3241 /* Initialize the small common section. */
3242 mips_elf_scom_section.name = ".scommon";
3243 mips_elf_scom_section.flags = SEC_IS_COMMON;
3244 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3245 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3246 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3247 mips_elf_scom_symbol.name = ".scommon";
3248 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3249 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3250 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3251 }
3252 asym->section = &mips_elf_scom_section;
3253 asym->value = elfsym->internal_elf_sym.st_size;
3254 break;
3255
3256 case SHN_MIPS_SUNDEFINED:
3257 asym->section = bfd_und_section_ptr;
3258 break;
3259
3260#if 0 /* for SGI_COMPAT */
3261 case SHN_MIPS_TEXT:
3262 asym->section = mips_elf_text_section_ptr;
3263 break;
3264
3265 case SHN_MIPS_DATA:
3266 asym->section = mips_elf_data_section_ptr;
3267 break;
3268#endif
3269 }
3270}
3271\f
3272/* When creating an Irix 5 executable, we need REGINFO and RTPROC
3273 segments. */
3274
103186c6
MM
3275int
3276_bfd_mips_elf_additional_program_headers (abfd)
252b5132
RH
3277 bfd *abfd;
3278{
3279 asection *s;
303f629d 3280 int ret = 0;
252b5132 3281
303f629d
MM
3282 if (!SGI_COMPAT (abfd))
3283 return 0;
252b5132 3284
303f629d 3285 /* See if we need a PT_MIPS_REGINFO segment. */
252b5132 3286 s = bfd_get_section_by_name (abfd, ".reginfo");
303f629d
MM
3287 if (s && (s->flags & SEC_LOAD))
3288 ++ret;
252b5132 3289
303f629d
MM
3290 /* See if we need a PT_MIPS_OPTIONS segment. */
3291 if (IRIX_COMPAT (abfd) == ict_irix6
3292 && bfd_get_section_by_name (abfd,
3293 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3294 ++ret;
3295
3296 /* See if we need a PT_MIPS_RTPROC segment. */
3297 if (IRIX_COMPAT (abfd) == ict_irix5
3298 && bfd_get_section_by_name (abfd, ".dynamic")
3299 && bfd_get_section_by_name (abfd, ".mdebug"))
3300 ++ret;
252b5132
RH
3301
3302 return ret;
3303}
3304
3305/* Modify the segment map for an Irix 5 executable. */
3306
103186c6
MM
3307boolean
3308_bfd_mips_elf_modify_segment_map (abfd)
252b5132
RH
3309 bfd *abfd;
3310{
3311 asection *s;
3312 struct elf_segment_map *m, **pm;
3313
3314 if (! SGI_COMPAT (abfd))
3315 return true;
3316
3317 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3318 segment. */
3319 s = bfd_get_section_by_name (abfd, ".reginfo");
3320 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3321 {
3322 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3323 if (m->p_type == PT_MIPS_REGINFO)
3324 break;
3325 if (m == NULL)
3326 {
3327 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3328 if (m == NULL)
3329 return false;
3330
3331 m->p_type = PT_MIPS_REGINFO;
3332 m->count = 1;
3333 m->sections[0] = s;
3334
3335 /* We want to put it after the PHDR and INTERP segments. */
3336 pm = &elf_tdata (abfd)->segment_map;
3337 while (*pm != NULL
3338 && ((*pm)->p_type == PT_PHDR
3339 || (*pm)->p_type == PT_INTERP))
3340 pm = &(*pm)->next;
3341
3342 m->next = *pm;
3343 *pm = m;
3344 }
3345 }
3346
303f629d
MM
3347 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3348 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3349 PT_OPTIONS segement immediately following the program header
3350 table. */
3351 if (IRIX_COMPAT (abfd) == ict_irix6)
252b5132 3352 {
303f629d
MM
3353 asection *s;
3354
3355 for (s = abfd->sections; s; s = s->next)
3356 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
252b5132 3357 break;
303f629d
MM
3358
3359 if (s)
252b5132 3360 {
303f629d
MM
3361 struct elf_segment_map *options_segment;
3362
435394bf
MM
3363 /* Usually, there's a program header table. But, sometimes
3364 there's not (like when running the `ld' testsuite). So,
3365 if there's no program header table, we just put the
3366 options segement at the end. */
3367 for (pm = &elf_tdata (abfd)->segment_map;
3368 *pm != NULL;
3369 pm = &(*pm)->next)
3370 if ((*pm)->p_type == PT_PHDR)
303f629d
MM
3371 break;
3372
303f629d
MM
3373 options_segment = bfd_zalloc (abfd,
3374 sizeof (struct elf_segment_map));
435394bf 3375 options_segment->next = *pm;
303f629d
MM
3376 options_segment->p_type = PT_MIPS_OPTIONS;
3377 options_segment->p_flags = PF_R;
3378 options_segment->p_flags_valid = true;
3379 options_segment->count = 1;
3380 options_segment->sections[0] = s;
435394bf 3381 *pm = options_segment;
303f629d
MM
3382 }
3383 }
3384 else
3385 {
3386 /* If there are .dynamic and .mdebug sections, we make a room
3387 for the RTPROC header. FIXME: Rewrite without section names. */
3388 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3389 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3390 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3391 {
3392 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3393 if (m->p_type == PT_MIPS_RTPROC)
3394 break;
3395 if (m == NULL)
252b5132 3396 {
303f629d
MM
3397 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3398 if (m == NULL)
3399 return false;
252b5132 3400
303f629d 3401 m->p_type = PT_MIPS_RTPROC;
252b5132 3402
303f629d
MM
3403 s = bfd_get_section_by_name (abfd, ".rtproc");
3404 if (s == NULL)
3405 {
3406 m->count = 0;
3407 m->p_flags = 0;
3408 m->p_flags_valid = 1;
3409 }
3410 else
3411 {
3412 m->count = 1;
3413 m->sections[0] = s;
3414 }
3415
3416 /* We want to put it after the DYNAMIC segment. */
3417 pm = &elf_tdata (abfd)->segment_map;
3418 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3419 pm = &(*pm)->next;
3420 if (*pm != NULL)
3421 pm = &(*pm)->next;
3422
3423 m->next = *pm;
3424 *pm = m;
3425 }
252b5132 3426 }
252b5132 3427
303f629d
MM
3428 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3429 .dynstr, .dynsym, and .hash sections, and everything in
3430 between. */
3431 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
3432 if ((*pm)->p_type == PT_DYNAMIC)
3433 break;
3434 m = *pm;
3435 if (m != NULL
3436 && m->count == 1
3437 && strcmp (m->sections[0]->name, ".dynamic") == 0)
252b5132 3438 {
303f629d
MM
3439 static const char *sec_names[] =
3440 { ".dynamic", ".dynstr", ".dynsym", ".hash" };
3441 bfd_vma low, high;
3442 unsigned int i, c;
3443 struct elf_segment_map *n;
3444
3445 low = 0xffffffff;
3446 high = 0;
3447 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
252b5132 3448 {
303f629d
MM
3449 s = bfd_get_section_by_name (abfd, sec_names[i]);
3450 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3451 {
3452 bfd_size_type sz;
3453
3454 if (low > s->vma)
3455 low = s->vma;
3456 sz = s->_cooked_size;
3457 if (sz == 0)
3458 sz = s->_raw_size;
3459 if (high < s->vma + sz)
3460 high = s->vma + sz;
3461 }
252b5132 3462 }
252b5132 3463
303f629d
MM
3464 c = 0;
3465 for (s = abfd->sections; s != NULL; s = s->next)
3466 if ((s->flags & SEC_LOAD) != 0
3467 && s->vma >= low
3468 && ((s->vma
3469 + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size))
3470 <= high))
3471 ++c;
3472
3473 n = ((struct elf_segment_map *)
3474 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3475 if (n == NULL)
3476 return false;
3477 *n = *m;
3478 n->count = c;
252b5132 3479
303f629d
MM
3480 i = 0;
3481 for (s = abfd->sections; s != NULL; s = s->next)
252b5132 3482 {
303f629d
MM
3483 if ((s->flags & SEC_LOAD) != 0
3484 && s->vma >= low
3485 && ((s->vma
3486 + (s->_cooked_size != 0 ?
3487 s->_cooked_size : s->_raw_size))
3488 <= high))
3489 {
3490 n->sections[i] = s;
3491 ++i;
3492 }
252b5132 3493 }
252b5132 3494
303f629d
MM
3495 *pm = n;
3496 }
252b5132
RH
3497 }
3498
3499 return true;
3500}
3501\f
3502/* The structure of the runtime procedure descriptor created by the
3503 loader for use by the static exception system. */
3504
3505typedef struct runtime_pdr {
3506 bfd_vma adr; /* memory address of start of procedure */
3507 long regmask; /* save register mask */
3508 long regoffset; /* save register offset */
3509 long fregmask; /* save floating point register mask */
3510 long fregoffset; /* save floating point register offset */
3511 long frameoffset; /* frame size */
3512 short framereg; /* frame pointer register */
3513 short pcreg; /* offset or reg of return pc */
3514 long irpss; /* index into the runtime string table */
3515 long reserved;
3516 struct exception_info *exception_info;/* pointer to exception array */
3517} RPDR, *pRPDR;
3518#define cbRPDR sizeof(RPDR)
3519#define rpdNil ((pRPDR) 0)
3520
3521/* Swap RPDR (runtime procedure table entry) for output. */
3522
3523static void ecoff_swap_rpdr_out
3524 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3525
3526static void
3527ecoff_swap_rpdr_out (abfd, in, ex)
3528 bfd *abfd;
3529 const RPDR *in;
3530 struct rpdr_ext *ex;
3531{
3532 /* ecoff_put_off was defined in ecoffswap.h. */
3533 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3534 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3535 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3536 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3537 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3538 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3539
3540 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3541 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3542
3543 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3544#if 0 /* FIXME */
3545 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3546#endif
3547}
3548\f
3549/* Read ECOFF debugging information from a .mdebug section into a
3550 ecoff_debug_info structure. */
3551
3552boolean
3553_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3554 bfd *abfd;
3555 asection *section;
3556 struct ecoff_debug_info *debug;
3557{
3558 HDRR *symhdr;
3559 const struct ecoff_debug_swap *swap;
3560 char *ext_hdr = NULL;
3561
3562 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3563 memset (debug, 0, sizeof(*debug));
3564
3565 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3566 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3567 goto error_return;
3568
3569 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3570 swap->external_hdr_size)
3571 == false)
3572 goto error_return;
3573
3574 symhdr = &debug->symbolic_header;
3575 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3576
3577 /* The symbolic header contains absolute file offsets and sizes to
3578 read. */
3579#define READ(ptr, offset, count, size, type) \
3580 if (symhdr->count == 0) \
3581 debug->ptr = NULL; \
3582 else \
3583 { \
3584 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3585 if (debug->ptr == NULL) \
3586 goto error_return; \
3587 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3588 || (bfd_read (debug->ptr, size, symhdr->count, \
3589 abfd) != size * symhdr->count)) \
3590 goto error_return; \
3591 }
3592
3593 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3594 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3595 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3596 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3597 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3598 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3599 union aux_ext *);
3600 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3601 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3602 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3603 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3604 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3605#undef READ
3606
3607 debug->fdr = NULL;
3608 debug->adjust = NULL;
3609
3610 return true;
3611
3612 error_return:
3613 if (ext_hdr != NULL)
3614 free (ext_hdr);
3615 if (debug->line != NULL)
3616 free (debug->line);
3617 if (debug->external_dnr != NULL)
3618 free (debug->external_dnr);
3619 if (debug->external_pdr != NULL)
3620 free (debug->external_pdr);
3621 if (debug->external_sym != NULL)
3622 free (debug->external_sym);
3623 if (debug->external_opt != NULL)
3624 free (debug->external_opt);
3625 if (debug->external_aux != NULL)
3626 free (debug->external_aux);
3627 if (debug->ss != NULL)
3628 free (debug->ss);
3629 if (debug->ssext != NULL)
3630 free (debug->ssext);
3631 if (debug->external_fdr != NULL)
3632 free (debug->external_fdr);
3633 if (debug->external_rfd != NULL)
3634 free (debug->external_rfd);
3635 if (debug->external_ext != NULL)
3636 free (debug->external_ext);
3637 return false;
3638}
3639\f
3640/* MIPS ELF local labels start with '$', not 'L'. */
3641
3642/*ARGSUSED*/
3643static boolean
3644mips_elf_is_local_label_name (abfd, name)
3645 bfd *abfd;
3646 const char *name;
3647{
3648 if (name[0] == '$')
3649 return true;
3650
3651 /* On Irix 6, the labels go back to starting with '.', so we accept
3652 the generic ELF local label syntax as well. */
3653 return _bfd_elf_is_local_label_name (abfd, name);
3654}
3655
3656/* MIPS ELF uses a special find_nearest_line routine in order the
3657 handle the ECOFF debugging information. */
3658
3659struct mips_elf_find_line
3660{
3661 struct ecoff_debug_info d;
3662 struct ecoff_find_line i;
3663};
3664
3665boolean
3666_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3667 functionname_ptr, line_ptr)
3668 bfd *abfd;
3669 asection *section;
3670 asymbol **symbols;
3671 bfd_vma offset;
3672 const char **filename_ptr;
3673 const char **functionname_ptr;
3674 unsigned int *line_ptr;
3675{
3676 asection *msec;
3677
3678 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3679 filename_ptr, functionname_ptr,
3680 line_ptr))
3681 return true;
3682
3683 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3684 filename_ptr, functionname_ptr,
5e38c3b8
MM
3685 line_ptr,
3686 ABI_64_P (abfd) ? 8 : 0))
252b5132
RH
3687 return true;
3688
3689 msec = bfd_get_section_by_name (abfd, ".mdebug");
3690 if (msec != NULL)
3691 {
3692 flagword origflags;
3693 struct mips_elf_find_line *fi;
3694 const struct ecoff_debug_swap * const swap =
3695 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3696
3697 /* If we are called during a link, mips_elf_final_link may have
3698 cleared the SEC_HAS_CONTENTS field. We force it back on here
3699 if appropriate (which it normally will be). */
3700 origflags = msec->flags;
3701 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3702 msec->flags |= SEC_HAS_CONTENTS;
3703
3704 fi = elf_tdata (abfd)->find_line_info;
3705 if (fi == NULL)
3706 {
3707 bfd_size_type external_fdr_size;
3708 char *fraw_src;
3709 char *fraw_end;
3710 struct fdr *fdr_ptr;
3711
3712 fi = ((struct mips_elf_find_line *)
3713 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3714 if (fi == NULL)
3715 {
3716 msec->flags = origflags;
3717 return false;
3718 }
3719
3720 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3721 {
3722 msec->flags = origflags;
3723 return false;
3724 }
3725
3726 /* Swap in the FDR information. */
3727 fi->d.fdr = ((struct fdr *)
3728 bfd_alloc (abfd,
3729 (fi->d.symbolic_header.ifdMax *
3730 sizeof (struct fdr))));
3731 if (fi->d.fdr == NULL)
3732 {
3733 msec->flags = origflags;
3734 return false;
3735 }
3736 external_fdr_size = swap->external_fdr_size;
3737 fdr_ptr = fi->d.fdr;
3738 fraw_src = (char *) fi->d.external_fdr;
3739 fraw_end = (fraw_src
3740 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3741 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3742 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3743
3744 elf_tdata (abfd)->find_line_info = fi;
3745
3746 /* Note that we don't bother to ever free this information.
3747 find_nearest_line is either called all the time, as in
3748 objdump -l, so the information should be saved, or it is
3749 rarely called, as in ld error messages, so the memory
3750 wasted is unimportant. Still, it would probably be a
3751 good idea for free_cached_info to throw it away. */
3752 }
3753
3754 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3755 &fi->i, filename_ptr, functionname_ptr,
3756 line_ptr))
3757 {
3758 msec->flags = origflags;
3759 return true;
3760 }
3761
3762 msec->flags = origflags;
3763 }
3764
3765 /* Fall back on the generic ELF find_nearest_line routine. */
3766
3767 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3768 filename_ptr, functionname_ptr,
3769 line_ptr);
3770}
3771\f
3772 /* The mips16 compiler uses a couple of special sections to handle
3773 floating point arguments.
3774
3775 Section names that look like .mips16.fn.FNNAME contain stubs that
3776 copy floating point arguments from the fp regs to the gp regs and
3777 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3778 call should be redirected to the stub instead. If no 32 bit
3779 function calls FNNAME, the stub should be discarded. We need to
3780 consider any reference to the function, not just a call, because
3781 if the address of the function is taken we will need the stub,
3782 since the address might be passed to a 32 bit function.
3783
3784 Section names that look like .mips16.call.FNNAME contain stubs
3785 that copy floating point arguments from the gp regs to the fp
3786 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3787 then any 16 bit function that calls FNNAME should be redirected
3788 to the stub instead. If FNNAME is not a 32 bit function, the
3789 stub should be discarded.
3790
3791 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3792 which call FNNAME and then copy the return value from the fp regs
3793 to the gp regs. These stubs store the return value in $18 while
3794 calling FNNAME; any function which might call one of these stubs
3795 must arrange to save $18 around the call. (This case is not
3796 needed for 32 bit functions that call 16 bit functions, because
3797 16 bit functions always return floating point values in both
3798 $f0/$f1 and $2/$3.)
3799
3800 Note that in all cases FNNAME might be defined statically.
3801 Therefore, FNNAME is not used literally. Instead, the relocation
3802 information will indicate which symbol the section is for.
3803
3804 We record any stubs that we find in the symbol table. */
3805
3806#define FN_STUB ".mips16.fn."
3807#define CALL_STUB ".mips16.call."
3808#define CALL_FP_STUB ".mips16.call.fp."
3809
252b5132
RH
3810/* MIPS ELF linker hash table. */
3811
3812struct mips_elf_link_hash_table
3813{
3814 struct elf_link_hash_table root;
3815#if 0
3816 /* We no longer use this. */
3817 /* String section indices for the dynamic section symbols. */
3818 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3819#endif
3820 /* The number of .rtproc entries. */
3821 bfd_size_type procedure_count;
3822 /* The size of the .compact_rel section (if SGI_COMPAT). */
3823 bfd_size_type compact_rel_size;
3824 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3825 entry is set to the address of __rld_obj_head as in Irix 5. */
3826 boolean use_rld_obj_head;
3827 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3828 bfd_vma rld_value;
3829 /* This is set if we see any mips16 stub sections. */
3830 boolean mips16_stubs_seen;
3831};
3832
3833/* Look up an entry in a MIPS ELF linker hash table. */
3834
3835#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3836 ((struct mips_elf_link_hash_entry *) \
3837 elf_link_hash_lookup (&(table)->root, (string), (create), \
3838 (copy), (follow)))
3839
3840/* Traverse a MIPS ELF linker hash table. */
3841
3842#define mips_elf_link_hash_traverse(table, func, info) \
3843 (elf_link_hash_traverse \
3844 (&(table)->root, \
3845 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3846 (info)))
3847
3848/* Get the MIPS ELF linker hash table from a link_info structure. */
3849
3850#define mips_elf_hash_table(p) \
3851 ((struct mips_elf_link_hash_table *) ((p)->hash))
3852
3853static boolean mips_elf_output_extsym
3854 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3855
3856/* Create an entry in a MIPS ELF linker hash table. */
3857
3858static struct bfd_hash_entry *
3859mips_elf_link_hash_newfunc (entry, table, string)
3860 struct bfd_hash_entry *entry;
3861 struct bfd_hash_table *table;
3862 const char *string;
3863{
3864 struct mips_elf_link_hash_entry *ret =
3865 (struct mips_elf_link_hash_entry *) entry;
3866
3867 /* Allocate the structure if it has not already been allocated by a
3868 subclass. */
3869 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3870 ret = ((struct mips_elf_link_hash_entry *)
3871 bfd_hash_allocate (table,
3872 sizeof (struct mips_elf_link_hash_entry)));
3873 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3874 return (struct bfd_hash_entry *) ret;
3875
3876 /* Call the allocation method of the superclass. */
3877 ret = ((struct mips_elf_link_hash_entry *)
3878 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3879 table, string));
3880 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3881 {
3882 /* Set local fields. */
3883 memset (&ret->esym, 0, sizeof (EXTR));
3884 /* We use -2 as a marker to indicate that the information has
3885 not been set. -1 means there is no associated ifd. */
3886 ret->esym.ifd = -2;
a3c7651d 3887 ret->possibly_dynamic_relocs = 0;
c6142e5d 3888 ret->min_dyn_reloc_index = 0;
252b5132
RH
3889 ret->fn_stub = NULL;
3890 ret->need_fn_stub = false;
3891 ret->call_stub = NULL;
3892 ret->call_fp_stub = NULL;
3893 }
3894
3895 return (struct bfd_hash_entry *) ret;
3896}
3897
3898/* Create a MIPS ELF linker hash table. */
3899
103186c6
MM
3900struct bfd_link_hash_table *
3901_bfd_mips_elf_link_hash_table_create (abfd)
252b5132
RH
3902 bfd *abfd;
3903{
3904 struct mips_elf_link_hash_table *ret;
3905
3906 ret = ((struct mips_elf_link_hash_table *)
3907 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3908 if (ret == (struct mips_elf_link_hash_table *) NULL)
3909 return NULL;
3910
3911 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
3912 mips_elf_link_hash_newfunc))
3913 {
3914 bfd_release (abfd, ret);
3915 return NULL;
3916 }
3917
3918#if 0
3919 /* We no longer use this. */
3920 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
3921 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
3922#endif
3923 ret->procedure_count = 0;
3924 ret->compact_rel_size = 0;
3925 ret->use_rld_obj_head = false;
3926 ret->rld_value = 0;
3927 ret->mips16_stubs_seen = false;
3928
3929 return &ret->root.root;
3930}
3931
3932/* Hook called by the linker routine which adds symbols from an object
3933 file. We must handle the special MIPS section numbers here. */
3934
3935/*ARGSUSED*/
103186c6
MM
3936boolean
3937_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
252b5132
RH
3938 bfd *abfd;
3939 struct bfd_link_info *info;
3940 const Elf_Internal_Sym *sym;
3941 const char **namep;
5f771d47 3942 flagword *flagsp ATTRIBUTE_UNUSED;
252b5132
RH
3943 asection **secp;
3944 bfd_vma *valp;
3945{
3946 if (SGI_COMPAT (abfd)
3947 && (abfd->flags & DYNAMIC) != 0
3948 && strcmp (*namep, "_rld_new_interface") == 0)
3949 {
3950 /* Skip Irix 5 rld entry name. */
3951 *namep = NULL;
3952 return true;
3953 }
3954
3955 switch (sym->st_shndx)
3956 {
3957 case SHN_COMMON:
3958 /* Common symbols less than the GP size are automatically
3959 treated as SHN_MIPS_SCOMMON symbols. */
7403cb63
MM
3960 if (sym->st_size > elf_gp_size (abfd)
3961 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
3962 break;
3963 /* Fall through. */
3964 case SHN_MIPS_SCOMMON:
3965 *secp = bfd_make_section_old_way (abfd, ".scommon");
3966 (*secp)->flags |= SEC_IS_COMMON;
3967 *valp = sym->st_size;
3968 break;
3969
3970 case SHN_MIPS_TEXT:
3971 /* This section is used in a shared object. */
3972 if (mips_elf_text_section_ptr == NULL)
3973 {
3974 /* Initialize the section. */
3975 mips_elf_text_section.name = ".text";
3976 mips_elf_text_section.flags = SEC_NO_FLAGS;
3977 mips_elf_text_section.output_section = NULL;
3978 mips_elf_text_section.symbol = &mips_elf_text_symbol;
3979 mips_elf_text_section.symbol_ptr_ptr = &mips_elf_text_symbol_ptr;
3980 mips_elf_text_symbol.name = ".text";
0035bd7b 3981 mips_elf_text_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC;
252b5132
RH
3982 mips_elf_text_symbol.section = &mips_elf_text_section;
3983 mips_elf_text_symbol_ptr = &mips_elf_text_symbol;
3984 mips_elf_text_section_ptr = &mips_elf_text_section;
3985 }
3986 /* This code used to do *secp = bfd_und_section_ptr if
3987 info->shared. I don't know why, and that doesn't make sense,
3988 so I took it out. */
3989 *secp = mips_elf_text_section_ptr;
3990 break;
3991
3992 case SHN_MIPS_ACOMMON:
3993 /* Fall through. XXX Can we treat this as allocated data? */
3994 case SHN_MIPS_DATA:
3995 /* This section is used in a shared object. */
3996 if (mips_elf_data_section_ptr == NULL)
3997 {
3998 /* Initialize the section. */
3999 mips_elf_data_section.name = ".data";
4000 mips_elf_data_section.flags = SEC_NO_FLAGS;
4001 mips_elf_data_section.output_section = NULL;
4002 mips_elf_data_section.symbol = &mips_elf_data_symbol;
4003 mips_elf_data_section.symbol_ptr_ptr = &mips_elf_data_symbol_ptr;
4004 mips_elf_data_symbol.name = ".data";
0035bd7b 4005 mips_elf_data_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC;
252b5132
RH
4006 mips_elf_data_symbol.section = &mips_elf_data_section;
4007 mips_elf_data_symbol_ptr = &mips_elf_data_symbol;
4008 mips_elf_data_section_ptr = &mips_elf_data_section;
4009 }
4010 /* This code used to do *secp = bfd_und_section_ptr if
4011 info->shared. I don't know why, and that doesn't make sense,
4012 so I took it out. */
4013 *secp = mips_elf_data_section_ptr;
4014 break;
4015
4016 case SHN_MIPS_SUNDEFINED:
4017 *secp = bfd_und_section_ptr;
4018 break;
4019 }
4020
4021 if (SGI_COMPAT (abfd)
4022 && ! info->shared
4023 && info->hash->creator == abfd->xvec
4024 && strcmp (*namep, "__rld_obj_head") == 0)
4025 {
4026 struct elf_link_hash_entry *h;
4027
4028 /* Mark __rld_obj_head as dynamic. */
4029 h = NULL;
4030 if (! (_bfd_generic_link_add_one_symbol
4031 (info, abfd, *namep, BSF_GLOBAL, *secp,
4032 (bfd_vma) *valp, (const char *) NULL, false,
4033 get_elf_backend_data (abfd)->collect,
4034 (struct bfd_link_hash_entry **) &h)))
4035 return false;
4036 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
4037 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4038 h->type = STT_OBJECT;
4039
4040 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4041 return false;
4042
4043 mips_elf_hash_table (info)->use_rld_obj_head = true;
4044 }
4045
4046 /* If this is a mips16 text symbol, add 1 to the value to make it
4047 odd. This will cause something like .word SYM to come up with
4048 the right value when it is loaded into the PC. */
4049 if (sym->st_other == STO_MIPS16)
4050 ++*valp;
4051
4052 return true;
4053}
4054
4055/* Structure used to pass information to mips_elf_output_extsym. */
4056
4057struct extsym_info
4058{
4059 bfd *abfd;
4060 struct bfd_link_info *info;
4061 struct ecoff_debug_info *debug;
4062 const struct ecoff_debug_swap *swap;
4063 boolean failed;
4064};
4065
4066/* This routine is used to write out ECOFF debugging external symbol
4067 information. It is called via mips_elf_link_hash_traverse. The
4068 ECOFF external symbol information must match the ELF external
4069 symbol information. Unfortunately, at this point we don't know
4070 whether a symbol is required by reloc information, so the two
4071 tables may wind up being different. We must sort out the external
4072 symbol information before we can set the final size of the .mdebug
4073 section, and we must set the size of the .mdebug section before we
4074 can relocate any sections, and we can't know which symbols are
4075 required by relocation until we relocate the sections.
4076 Fortunately, it is relatively unlikely that any symbol will be
4077 stripped but required by a reloc. In particular, it can not happen
4078 when generating a final executable. */
4079
4080static boolean
4081mips_elf_output_extsym (h, data)
4082 struct mips_elf_link_hash_entry *h;
4083 PTR data;
4084{
4085 struct extsym_info *einfo = (struct extsym_info *) data;
4086 boolean strip;
4087 asection *sec, *output_section;
4088
4089 if (h->root.indx == -2)
4090 strip = false;
4091 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4092 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4093 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4094 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4095 strip = true;
4096 else if (einfo->info->strip == strip_all
4097 || (einfo->info->strip == strip_some
4098 && bfd_hash_lookup (einfo->info->keep_hash,
4099 h->root.root.root.string,
4100 false, false) == NULL))
4101 strip = true;
4102 else
4103 strip = false;
4104
4105 if (strip)
4106 return true;
4107
4108 if (h->esym.ifd == -2)
4109 {
4110 h->esym.jmptbl = 0;
4111 h->esym.cobol_main = 0;
4112 h->esym.weakext = 0;
4113 h->esym.reserved = 0;
4114 h->esym.ifd = ifdNil;
4115 h->esym.asym.value = 0;
4116 h->esym.asym.st = stGlobal;
4117
4118 if (SGI_COMPAT (einfo->abfd)
4119 && (h->root.root.type == bfd_link_hash_undefined
4120 || h->root.root.type == bfd_link_hash_undefweak))
4121 {
4122 const char *name;
4123
4124 /* Use undefined class. Also, set class and type for some
4125 special symbols. */
4126 name = h->root.root.root.string;
4127 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4128 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4129 {
4130 h->esym.asym.sc = scData;
4131 h->esym.asym.st = stLabel;
4132 h->esym.asym.value = 0;
4133 }
4134 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4135 {
4136 h->esym.asym.sc = scAbs;
4137 h->esym.asym.st = stLabel;
4138 h->esym.asym.value =
4139 mips_elf_hash_table (einfo->info)->procedure_count;
4140 }
4141 else if (strcmp (name, "_gp_disp") == 0)
4142 {
4143 h->esym.asym.sc = scAbs;
4144 h->esym.asym.st = stLabel;
4145 h->esym.asym.value = elf_gp (einfo->abfd);
4146 }
4147 else
4148 h->esym.asym.sc = scUndefined;
4149 }
4150 else if (h->root.root.type != bfd_link_hash_defined
4151 && h->root.root.type != bfd_link_hash_defweak)
4152 h->esym.asym.sc = scAbs;
4153 else
4154 {
4155 const char *name;
4156
4157 sec = h->root.root.u.def.section;
4158 output_section = sec->output_section;
4159
4160 /* When making a shared library and symbol h is the one from
4161 the another shared library, OUTPUT_SECTION may be null. */
4162 if (output_section == NULL)
4163 h->esym.asym.sc = scUndefined;
4164 else
4165 {
4166 name = bfd_section_name (output_section->owner, output_section);
4167
4168 if (strcmp (name, ".text") == 0)
4169 h->esym.asym.sc = scText;
4170 else if (strcmp (name, ".data") == 0)
4171 h->esym.asym.sc = scData;
4172 else if (strcmp (name, ".sdata") == 0)
4173 h->esym.asym.sc = scSData;
4174 else if (strcmp (name, ".rodata") == 0
4175 || strcmp (name, ".rdata") == 0)
4176 h->esym.asym.sc = scRData;
4177 else if (strcmp (name, ".bss") == 0)
4178 h->esym.asym.sc = scBss;
4179 else if (strcmp (name, ".sbss") == 0)
4180 h->esym.asym.sc = scSBss;
4181 else if (strcmp (name, ".init") == 0)
4182 h->esym.asym.sc = scInit;
4183 else if (strcmp (name, ".fini") == 0)
4184 h->esym.asym.sc = scFini;
4185 else
4186 h->esym.asym.sc = scAbs;
4187 }
4188 }
4189
4190 h->esym.asym.reserved = 0;
4191 h->esym.asym.index = indexNil;
4192 }
4193
4194 if (h->root.root.type == bfd_link_hash_common)
4195 h->esym.asym.value = h->root.root.u.c.size;
4196 else if (h->root.root.type == bfd_link_hash_defined
4197 || h->root.root.type == bfd_link_hash_defweak)
4198 {
4199 if (h->esym.asym.sc == scCommon)
4200 h->esym.asym.sc = scBss;
4201 else if (h->esym.asym.sc == scSCommon)
4202 h->esym.asym.sc = scSBss;
4203
4204 sec = h->root.root.u.def.section;
4205 output_section = sec->output_section;
4206 if (output_section != NULL)
4207 h->esym.asym.value = (h->root.root.u.def.value
4208 + sec->output_offset
4209 + output_section->vma);
4210 else
4211 h->esym.asym.value = 0;
4212 }
4213 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4214 {
4215 /* Set type and value for a symbol with a function stub. */
4216 h->esym.asym.st = stProc;
4217 sec = h->root.root.u.def.section;
4218 if (sec == NULL)
4219 h->esym.asym.value = 0;
4220 else
4221 {
4222 output_section = sec->output_section;
4223 if (output_section != NULL)
4224 h->esym.asym.value = (h->root.plt.offset
4225 + sec->output_offset
4226 + output_section->vma);
4227 else
4228 h->esym.asym.value = 0;
4229 }
4230#if 0 /* FIXME? */
4231 h->esym.ifd = 0;
4232#endif
4233 }
4234
4235 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4236 h->root.root.root.string,
4237 &h->esym))
4238 {
4239 einfo->failed = true;
4240 return false;
4241 }
4242
4243 return true;
4244}
4245
4246/* Create a runtime procedure table from the .mdebug section. */
4247
4248static boolean
4249mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4250 PTR handle;
4251 bfd *abfd;
4252 struct bfd_link_info *info;
4253 asection *s;
4254 struct ecoff_debug_info *debug;
4255{
4256 const struct ecoff_debug_swap *swap;
4257 HDRR *hdr = &debug->symbolic_header;
4258 RPDR *rpdr, *rp;
4259 struct rpdr_ext *erp;
4260 PTR rtproc;
4261 struct pdr_ext *epdr;
4262 struct sym_ext *esym;
4263 char *ss, **sv;
4264 char *str;
4265 unsigned long size, count;
4266 unsigned long sindex;
4267 unsigned long i;
4268 PDR pdr;
4269 SYMR sym;
4270 const char *no_name_func = _("static procedure (no name)");
4271
4272 epdr = NULL;
4273 rpdr = NULL;
4274 esym = NULL;
4275 ss = NULL;
4276 sv = NULL;
4277
4278 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4279
4280 sindex = strlen (no_name_func) + 1;
4281 count = hdr->ipdMax;
4282 if (count > 0)
4283 {
4284 size = swap->external_pdr_size;
4285
4286 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4287 if (epdr == NULL)
4288 goto error_return;
4289
4290 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4291 goto error_return;
4292
4293 size = sizeof (RPDR);
4294 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4295 if (rpdr == NULL)
4296 goto error_return;
4297
4298 sv = (char **) bfd_malloc (sizeof (char *) * count);
4299 if (sv == NULL)
4300 goto error_return;
4301
4302 count = hdr->isymMax;
4303 size = swap->external_sym_size;
4304 esym = (struct sym_ext *) bfd_malloc (size * count);
4305 if (esym == NULL)
4306 goto error_return;
4307
4308 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4309 goto error_return;
4310
4311 count = hdr->issMax;
4312 ss = (char *) bfd_malloc (count);
4313 if (ss == NULL)
4314 goto error_return;
4315 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4316 goto error_return;
4317
4318 count = hdr->ipdMax;
4319 for (i = 0; i < count; i++, rp++)
4320 {
4321 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4322 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4323 rp->adr = sym.value;
4324 rp->regmask = pdr.regmask;
4325 rp->regoffset = pdr.regoffset;
4326 rp->fregmask = pdr.fregmask;
4327 rp->fregoffset = pdr.fregoffset;
4328 rp->frameoffset = pdr.frameoffset;
4329 rp->framereg = pdr.framereg;
4330 rp->pcreg = pdr.pcreg;
4331 rp->irpss = sindex;
4332 sv[i] = ss + sym.iss;
4333 sindex += strlen (sv[i]) + 1;
4334 }
4335 }
4336
4337 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4338 size = BFD_ALIGN (size, 16);
4339 rtproc = (PTR) bfd_alloc (abfd, size);
4340 if (rtproc == NULL)
4341 {
4342 mips_elf_hash_table (info)->procedure_count = 0;
4343 goto error_return;
4344 }
4345
4346 mips_elf_hash_table (info)->procedure_count = count + 2;
4347
4348 erp = (struct rpdr_ext *) rtproc;
4349 memset (erp, 0, sizeof (struct rpdr_ext));
4350 erp++;
4351 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4352 strcpy (str, no_name_func);
4353 str += strlen (no_name_func) + 1;
4354 for (i = 0; i < count; i++)
4355 {
4356 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4357 strcpy (str, sv[i]);
4358 str += strlen (sv[i]) + 1;
4359 }
4360 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4361
4362 /* Set the size and contents of .rtproc section. */
4363 s->_raw_size = size;
4364 s->contents = (bfd_byte *) rtproc;
4365
4366 /* Skip this section later on (I don't think this currently
4367 matters, but someday it might). */
4368 s->link_order_head = (struct bfd_link_order *) NULL;
4369
4370 if (epdr != NULL)
4371 free (epdr);
4372 if (rpdr != NULL)
4373 free (rpdr);
4374 if (esym != NULL)
4375 free (esym);
4376 if (ss != NULL)
4377 free (ss);
4378 if (sv != NULL)
4379 free (sv);
4380
4381 return true;
4382
4383 error_return:
4384 if (epdr != NULL)
4385 free (epdr);
4386 if (rpdr != NULL)
4387 free (rpdr);
4388 if (esym != NULL)
4389 free (esym);
4390 if (ss != NULL)
4391 free (ss);
4392 if (sv != NULL)
4393 free (sv);
4394 return false;
4395}
4396
4397/* A comparison routine used to sort .gptab entries. */
4398
4399static int
4400gptab_compare (p1, p2)
4401 const PTR p1;
4402 const PTR p2;
4403{
4404 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4405 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4406
4407 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4408}
4409
4410/* We need to use a special link routine to handle the .reginfo and
4411 the .mdebug sections. We need to merge all instances of these
4412 sections together, not write them all out sequentially. */
4413
103186c6
MM
4414boolean
4415_bfd_mips_elf_final_link (abfd, info)
252b5132
RH
4416 bfd *abfd;
4417 struct bfd_link_info *info;
4418{
4419 asection **secpp;
4420 asection *o;
4421 struct bfd_link_order *p;
4422 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4423 asection *rtproc_sec;
4424 Elf32_RegInfo reginfo;
4425 struct ecoff_debug_info debug;
4426 const struct ecoff_debug_swap *swap
4427 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4428 HDRR *symhdr = &debug.symbolic_header;
4429 PTR mdebug_handle = NULL;
4430
303f629d
MM
4431 /* If all the things we linked together were PIC, but we're
4432 producing an executable (rather than a shared object), then the
4433 resulting file is CPIC (i.e., it calls PIC code.) */
0dda5f7a
ILT
4434 if (!info->shared
4435 && !info->relocateable
4436 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
252b5132 4437 {
303f629d
MM
4438 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4439 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
252b5132
RH
4440 }
4441
b3be9b46
RH
4442 /* We'd carefully arranged the dynamic symbol indices, and then the
4443 generic size_dynamic_sections renumbered them out from under us.
4444 Rather than trying somehow to prevent the renumbering, just do
4445 the sort again. */
441d6d79 4446 if (elf_hash_table (info)->dynamic_sections_created)
b3be9b46
RH
4447 {
4448 bfd *dynobj;
4449 asection *got;
4450 struct mips_got_info *g;
4451
435394bf
MM
4452 /* When we resort, we must tell mips_elf_sort_hash_table what
4453 the lowest index it may use is. That's the number of section
4454 symbols we're going to add. The generic ELF linker only
4455 adds these symbols when building a shared object. Note that
4456 we count the sections after (possibly) removing the .options
4457 section above. */
4458 if (!mips_elf_sort_hash_table (info, (info->shared
4459 ? bfd_count_sections (abfd) + 1
4460 : 1)))
b3be9b46
RH
4461 return false;
4462
4463 /* Make sure we didn't grow the global .got region. */
4464 dynobj = elf_hash_table (info)->dynobj;
4465 got = bfd_get_section_by_name (dynobj, ".got");
4466 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4467
8b237a89
MM
4468 if (g->global_gotsym != NULL)
4469 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4470 - g->global_gotsym->dynindx)
4471 <= g->global_gotno);
b3be9b46
RH
4472 }
4473
303f629d
MM
4474 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4475 include it, even though we don't process it quite right. (Some
4476 entries are supposed to be merged.) Empirically, we seem to be
4477 better off including it then not. */
4478 if (IRIX_COMPAT (abfd) == ict_irix5)
4479 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4480 {
4481 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4482 {
4483 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4484 if (p->type == bfd_indirect_link_order)
4485 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
4486 (*secpp)->link_order_head = NULL;
4487 *secpp = (*secpp)->next;
4488 --abfd->section_count;
4489
4490 break;
4491 }
4492 }
4493
252b5132
RH
4494 /* Get a value for the GP register. */
4495 if (elf_gp (abfd) == 0)
4496 {
4497 struct bfd_link_hash_entry *h;
4498
4499 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4500 if (h != (struct bfd_link_hash_entry *) NULL
4501 && h->type == bfd_link_hash_defined)
4502 elf_gp (abfd) = (h->u.def.value
4503 + h->u.def.section->output_section->vma
4504 + h->u.def.section->output_offset);
0db63c18
MM
4505 else if (info->relocateable)
4506 {
4507 bfd_vma lo;
4508
4509 /* Find the GP-relative section with the lowest offset. */
4510 lo = (bfd_vma) -1;
4511 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4512 if (o->vma < lo
4513 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4514 lo = o->vma;
4515
4516 /* And calculate GP relative to that. */
4517 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4518 }
252b5132
RH
4519 else
4520 {
4521 /* If the relocate_section function needs to do a reloc
4522 involving the GP value, it should make a reloc_dangerous
4523 callback to warn that GP is not defined. */
4524 }
4525 }
4526
4527 /* Go through the sections and collect the .reginfo and .mdebug
4528 information. */
4529 reginfo_sec = NULL;
4530 mdebug_sec = NULL;
4531 gptab_data_sec = NULL;
4532 gptab_bss_sec = NULL;
4533 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4534 {
4535 if (strcmp (o->name, ".reginfo") == 0)
4536 {
4537 memset (&reginfo, 0, sizeof reginfo);
4538
4539 /* We have found the .reginfo section in the output file.
4540 Look through all the link_orders comprising it and merge
4541 the information together. */
4542 for (p = o->link_order_head;
4543 p != (struct bfd_link_order *) NULL;
4544 p = p->next)
4545 {
4546 asection *input_section;
4547 bfd *input_bfd;
4548 Elf32_External_RegInfo ext;
4549 Elf32_RegInfo sub;
4550
4551 if (p->type != bfd_indirect_link_order)
4552 {
4553 if (p->type == bfd_fill_link_order)
4554 continue;
4555 abort ();
4556 }
4557
4558 input_section = p->u.indirect.section;
4559 input_bfd = input_section->owner;
4560
4561 /* The linker emulation code has probably clobbered the
4562 size to be zero bytes. */
4563 if (input_section->_raw_size == 0)
4564 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4565
4566 if (! bfd_get_section_contents (input_bfd, input_section,
4567 (PTR) &ext,
4568 (file_ptr) 0,
4569 sizeof ext))
4570 return false;
4571
4572 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4573
4574 reginfo.ri_gprmask |= sub.ri_gprmask;
4575 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4576 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4577 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4578 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4579
4580 /* ri_gp_value is set by the function
4581 mips_elf32_section_processing when the section is
4582 finally written out. */
4583
4584 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4585 elf_link_input_bfd ignores this section. */
4586 input_section->flags &=~ SEC_HAS_CONTENTS;
4587 }
4588
4589 /* Size has been set in mips_elf_always_size_sections */
4590 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4591
4592 /* Skip this section later on (I don't think this currently
4593 matters, but someday it might). */
4594 o->link_order_head = (struct bfd_link_order *) NULL;
4595
4596 reginfo_sec = o;
4597 }
4598
4599 if (strcmp (o->name, ".mdebug") == 0)
4600 {
4601 struct extsym_info einfo;
4602
4603 /* We have found the .mdebug section in the output file.
4604 Look through all the link_orders comprising it and merge
4605 the information together. */
4606 symhdr->magic = swap->sym_magic;
4607 /* FIXME: What should the version stamp be? */
4608 symhdr->vstamp = 0;
4609 symhdr->ilineMax = 0;
4610 symhdr->cbLine = 0;
4611 symhdr->idnMax = 0;
4612 symhdr->ipdMax = 0;
4613 symhdr->isymMax = 0;
4614 symhdr->ioptMax = 0;
4615 symhdr->iauxMax = 0;
4616 symhdr->issMax = 0;
4617 symhdr->issExtMax = 0;
4618 symhdr->ifdMax = 0;
4619 symhdr->crfd = 0;
4620 symhdr->iextMax = 0;
4621
4622 /* We accumulate the debugging information itself in the
4623 debug_info structure. */
4624 debug.line = NULL;
4625 debug.external_dnr = NULL;
4626 debug.external_pdr = NULL;
4627 debug.external_sym = NULL;
4628 debug.external_opt = NULL;
4629 debug.external_aux = NULL;
4630 debug.ss = NULL;
4631 debug.ssext = debug.ssext_end = NULL;
4632 debug.external_fdr = NULL;
4633 debug.external_rfd = NULL;
4634 debug.external_ext = debug.external_ext_end = NULL;
4635
4636 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4637 if (mdebug_handle == (PTR) NULL)
4638 return false;
4639
4640 if (SGI_COMPAT (abfd))
4641 {
4642 asection *s;
4643 EXTR esym;
4644 bfd_vma last;
4645 unsigned int i;
4646 static const char * const name[] =
4647 { ".text", ".init", ".fini", ".data",
4648 ".rodata", ".sdata", ".sbss", ".bss" };
4649 static const int sc[] = { scText, scInit, scFini, scData,
4650 scRData, scSData, scSBss, scBss };
4651
4652 esym.jmptbl = 0;
4653 esym.cobol_main = 0;
4654 esym.weakext = 0;
4655 esym.reserved = 0;
4656 esym.ifd = ifdNil;
4657 esym.asym.iss = issNil;
4658 esym.asym.st = stLocal;
4659 esym.asym.reserved = 0;
4660 esym.asym.index = indexNil;
4661 last = 0;
4662 for (i = 0; i < 8; i++)
4663 {
4664 esym.asym.sc = sc[i];
4665 s = bfd_get_section_by_name (abfd, name[i]);
4666 if (s != NULL)
4667 {
4668 esym.asym.value = s->vma;
4669 last = s->vma + s->_raw_size;
4670 }
4671 else
4672 esym.asym.value = last;
4673
4674 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
4675 name[i], &esym))
4676 return false;
4677 }
4678 }
4679
4680 for (p = o->link_order_head;
4681 p != (struct bfd_link_order *) NULL;
4682 p = p->next)
4683 {
4684 asection *input_section;
4685 bfd *input_bfd;
4686 const struct ecoff_debug_swap *input_swap;
4687 struct ecoff_debug_info input_debug;
4688 char *eraw_src;
4689 char *eraw_end;
4690
4691 if (p->type != bfd_indirect_link_order)
4692 {
4693 if (p->type == bfd_fill_link_order)
4694 continue;
4695 abort ();
4696 }
4697
4698 input_section = p->u.indirect.section;
4699 input_bfd = input_section->owner;
4700
4701 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4702 || (get_elf_backend_data (input_bfd)
4703 ->elf_backend_ecoff_debug_swap) == NULL)
4704 {
4705 /* I don't know what a non MIPS ELF bfd would be
4706 doing with a .mdebug section, but I don't really
4707 want to deal with it. */
4708 continue;
4709 }
4710
4711 input_swap = (get_elf_backend_data (input_bfd)
4712 ->elf_backend_ecoff_debug_swap);
4713
4714 BFD_ASSERT (p->size == input_section->_raw_size);
4715
4716 /* The ECOFF linking code expects that we have already
4717 read in the debugging information and set up an
4718 ecoff_debug_info structure, so we do that now. */
4719 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4720 &input_debug))
4721 return false;
4722
4723 if (! (bfd_ecoff_debug_accumulate
4724 (mdebug_handle, abfd, &debug, swap, input_bfd,
4725 &input_debug, input_swap, info)))
4726 return false;
4727
4728 /* Loop through the external symbols. For each one with
4729 interesting information, try to find the symbol in
4730 the linker global hash table and save the information
4731 for the output external symbols. */
4732 eraw_src = input_debug.external_ext;
4733 eraw_end = (eraw_src
4734 + (input_debug.symbolic_header.iextMax
4735 * input_swap->external_ext_size));
4736 for (;
4737 eraw_src < eraw_end;
4738 eraw_src += input_swap->external_ext_size)
4739 {
4740 EXTR ext;
4741 const char *name;
4742 struct mips_elf_link_hash_entry *h;
4743
4744 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4745 if (ext.asym.sc == scNil
4746 || ext.asym.sc == scUndefined
4747 || ext.asym.sc == scSUndefined)
4748 continue;
4749
4750 name = input_debug.ssext + ext.asym.iss;
4751 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4752 name, false, false, true);
4753 if (h == NULL || h->esym.ifd != -2)
4754 continue;
4755
4756 if (ext.ifd != -1)
4757 {
4758 BFD_ASSERT (ext.ifd
4759 < input_debug.symbolic_header.ifdMax);
4760 ext.ifd = input_debug.ifdmap[ext.ifd];
4761 }
4762
4763 h->esym = ext;
4764 }
4765
4766 /* Free up the information we just read. */
4767 free (input_debug.line);
4768 free (input_debug.external_dnr);
4769 free (input_debug.external_pdr);
4770 free (input_debug.external_sym);
4771 free (input_debug.external_opt);
4772 free (input_debug.external_aux);
4773 free (input_debug.ss);
4774 free (input_debug.ssext);
4775 free (input_debug.external_fdr);
4776 free (input_debug.external_rfd);
4777 free (input_debug.external_ext);
4778
4779 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4780 elf_link_input_bfd ignores this section. */
4781 input_section->flags &=~ SEC_HAS_CONTENTS;
4782 }
4783
4784 if (SGI_COMPAT (abfd) && info->shared)
4785 {
4786 /* Create .rtproc section. */
4787 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4788 if (rtproc_sec == NULL)
4789 {
4790 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4791 | SEC_LINKER_CREATED | SEC_READONLY);
4792
4793 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4794 if (rtproc_sec == NULL
4795 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4796 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4797 return false;
4798 }
4799
4800 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4801 info, rtproc_sec, &debug))
4802 return false;
4803 }
4804
4805 /* Build the external symbol information. */
4806 einfo.abfd = abfd;
4807 einfo.info = info;
4808 einfo.debug = &debug;
4809 einfo.swap = swap;
4810 einfo.failed = false;
4811 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4812 mips_elf_output_extsym,
4813 (PTR) &einfo);
4814 if (einfo.failed)
4815 return false;
4816
4817 /* Set the size of the .mdebug section. */
4818 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4819
4820 /* Skip this section later on (I don't think this currently
4821 matters, but someday it might). */
4822 o->link_order_head = (struct bfd_link_order *) NULL;
4823
4824 mdebug_sec = o;
4825 }
4826
4827 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4828 {
4829 const char *subname;
4830 unsigned int c;
4831 Elf32_gptab *tab;
4832 Elf32_External_gptab *ext_tab;
4833 unsigned int i;
4834
4835 /* The .gptab.sdata and .gptab.sbss sections hold
4836 information describing how the small data area would
4837 change depending upon the -G switch. These sections
4838 not used in executables files. */
4839 if (! info->relocateable)
4840 {
4841 asection **secpp;
4842
4843 for (p = o->link_order_head;
4844 p != (struct bfd_link_order *) NULL;
4845 p = p->next)
4846 {
4847 asection *input_section;
4848
4849 if (p->type != bfd_indirect_link_order)
4850 {
4851 if (p->type == bfd_fill_link_order)
4852 continue;
4853 abort ();
4854 }
4855
4856 input_section = p->u.indirect.section;
4857
4858 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4859 elf_link_input_bfd ignores this section. */
4860 input_section->flags &=~ SEC_HAS_CONTENTS;
4861 }
4862
4863 /* Skip this section later on (I don't think this
4864 currently matters, but someday it might). */
4865 o->link_order_head = (struct bfd_link_order *) NULL;
4866
4867 /* Really remove the section. */
4868 for (secpp = &abfd->sections;
4869 *secpp != o;
4870 secpp = &(*secpp)->next)
4871 ;
4872 *secpp = (*secpp)->next;
4873 --abfd->section_count;
4874
4875 continue;
4876 }
4877
4878 /* There is one gptab for initialized data, and one for
4879 uninitialized data. */
4880 if (strcmp (o->name, ".gptab.sdata") == 0)
4881 gptab_data_sec = o;
4882 else if (strcmp (o->name, ".gptab.sbss") == 0)
4883 gptab_bss_sec = o;
4884 else
4885 {
4886 (*_bfd_error_handler)
4887 (_("%s: illegal section name `%s'"),
4888 bfd_get_filename (abfd), o->name);
4889 bfd_set_error (bfd_error_nonrepresentable_section);
4890 return false;
4891 }
4892
4893 /* The linker script always combines .gptab.data and
4894 .gptab.sdata into .gptab.sdata, and likewise for
4895 .gptab.bss and .gptab.sbss. It is possible that there is
4896 no .sdata or .sbss section in the output file, in which
4897 case we must change the name of the output section. */
4898 subname = o->name + sizeof ".gptab" - 1;
4899 if (bfd_get_section_by_name (abfd, subname) == NULL)
4900 {
4901 if (o == gptab_data_sec)
4902 o->name = ".gptab.data";
4903 else
4904 o->name = ".gptab.bss";
4905 subname = o->name + sizeof ".gptab" - 1;
4906 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
4907 }
4908
4909 /* Set up the first entry. */
4910 c = 1;
4911 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
4912 if (tab == NULL)
4913 return false;
4914 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
4915 tab[0].gt_header.gt_unused = 0;
4916
4917 /* Combine the input sections. */
4918 for (p = o->link_order_head;
4919 p != (struct bfd_link_order *) NULL;
4920 p = p->next)
4921 {
4922 asection *input_section;
4923 bfd *input_bfd;
4924 bfd_size_type size;
4925 unsigned long last;
4926 bfd_size_type gpentry;
4927
4928 if (p->type != bfd_indirect_link_order)
4929 {
4930 if (p->type == bfd_fill_link_order)
4931 continue;
4932 abort ();
4933 }
4934
4935 input_section = p->u.indirect.section;
4936 input_bfd = input_section->owner;
4937
4938 /* Combine the gptab entries for this input section one
4939 by one. We know that the input gptab entries are
4940 sorted by ascending -G value. */
4941 size = bfd_section_size (input_bfd, input_section);
4942 last = 0;
4943 for (gpentry = sizeof (Elf32_External_gptab);
4944 gpentry < size;
4945 gpentry += sizeof (Elf32_External_gptab))
4946 {
4947 Elf32_External_gptab ext_gptab;
4948 Elf32_gptab int_gptab;
4949 unsigned long val;
4950 unsigned long add;
4951 boolean exact;
4952 unsigned int look;
4953
4954 if (! (bfd_get_section_contents
4955 (input_bfd, input_section, (PTR) &ext_gptab,
4956 gpentry, sizeof (Elf32_External_gptab))))
4957 {
4958 free (tab);
4959 return false;
4960 }
4961
4962 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
4963 &int_gptab);
4964 val = int_gptab.gt_entry.gt_g_value;
4965 add = int_gptab.gt_entry.gt_bytes - last;
4966
4967 exact = false;
4968 for (look = 1; look < c; look++)
4969 {
4970 if (tab[look].gt_entry.gt_g_value >= val)
4971 tab[look].gt_entry.gt_bytes += add;
4972
4973 if (tab[look].gt_entry.gt_g_value == val)
4974 exact = true;
4975 }
4976
4977 if (! exact)
4978 {
4979 Elf32_gptab *new_tab;
4980 unsigned int max;
4981
4982 /* We need a new table entry. */
4983 new_tab = ((Elf32_gptab *)
4984 bfd_realloc ((PTR) tab,
4985 (c + 1) * sizeof (Elf32_gptab)));
4986 if (new_tab == NULL)
4987 {
4988 free (tab);
4989 return false;
4990 }
4991 tab = new_tab;
4992 tab[c].gt_entry.gt_g_value = val;
4993 tab[c].gt_entry.gt_bytes = add;
4994
4995 /* Merge in the size for the next smallest -G
4996 value, since that will be implied by this new
4997 value. */
4998 max = 0;
4999 for (look = 1; look < c; look++)
5000 {
5001 if (tab[look].gt_entry.gt_g_value < val
5002 && (max == 0
5003 || (tab[look].gt_entry.gt_g_value
5004 > tab[max].gt_entry.gt_g_value)))
5005 max = look;
5006 }
5007 if (max != 0)
5008 tab[c].gt_entry.gt_bytes +=
5009 tab[max].gt_entry.gt_bytes;
5010
5011 ++c;
5012 }
5013
5014 last = int_gptab.gt_entry.gt_bytes;
5015 }
5016
5017 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5018 elf_link_input_bfd ignores this section. */
5019 input_section->flags &=~ SEC_HAS_CONTENTS;
5020 }
5021
5022 /* The table must be sorted by -G value. */
5023 if (c > 2)
5024 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5025
5026 /* Swap out the table. */
5027 ext_tab = ((Elf32_External_gptab *)
5028 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5029 if (ext_tab == NULL)
5030 {
5031 free (tab);
5032 return false;
5033 }
5034
5035 for (i = 0; i < c; i++)
5036 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5037 free (tab);
5038
5039 o->_raw_size = c * sizeof (Elf32_External_gptab);
5040 o->contents = (bfd_byte *) ext_tab;
5041
5042 /* Skip this section later on (I don't think this currently
5043 matters, but someday it might). */
5044 o->link_order_head = (struct bfd_link_order *) NULL;
5045 }
5046 }
5047
5048 /* Invoke the regular ELF backend linker to do all the work. */
9ebbd33e
MM
5049 if (ABI_64_P (abfd))
5050 {
5051#ifdef BFD64
5052 if (!bfd_elf64_bfd_final_link (abfd, info))
5053 return false;
5054#else
5055 abort ();
103186c6 5056 return false;
9ebbd33e
MM
5057#endif /* BFD64 */
5058 }
5059 else if (!bfd_elf32_bfd_final_link (abfd, info))
5060 return false;
252b5132
RH
5061
5062 /* Now write out the computed sections. */
5063
5064 if (reginfo_sec != (asection *) NULL)
5065 {
5066 Elf32_External_RegInfo ext;
5067
5068 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5069 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5070 (file_ptr) 0, sizeof ext))
5071 return false;
5072 }
5073
5074 if (mdebug_sec != (asection *) NULL)
5075 {
5076 BFD_ASSERT (abfd->output_has_begun);
5077 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5078 swap, info,
5079 mdebug_sec->filepos))
5080 return false;
5081
5082 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5083 }
5084
5085 if (gptab_data_sec != (asection *) NULL)
5086 {
5087 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5088 gptab_data_sec->contents,
5089 (file_ptr) 0,
5090 gptab_data_sec->_raw_size))
5091 return false;
5092 }
5093
5094 if (gptab_bss_sec != (asection *) NULL)
5095 {
5096 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5097 gptab_bss_sec->contents,
5098 (file_ptr) 0,
5099 gptab_bss_sec->_raw_size))
5100 return false;
5101 }
5102
5103 if (SGI_COMPAT (abfd))
5104 {
5105 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5106 if (rtproc_sec != NULL)
5107 {
5108 if (! bfd_set_section_contents (abfd, rtproc_sec,
5109 rtproc_sec->contents,
5110 (file_ptr) 0,
5111 rtproc_sec->_raw_size))
5112 return false;
5113 }
5114 }
5115
5116 return true;
5117}
5118
7403cb63 5119/* Returns the GOT section for ABFD. */
252b5132 5120
7403cb63
MM
5121static asection *
5122mips_elf_got_section (abfd)
5123 bfd *abfd;
252b5132 5124{
7403cb63
MM
5125 return bfd_get_section_by_name (abfd, ".got");
5126}
5127
5128/* Returns the GOT information associated with the link indicated by
5129 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5130 section. */
5131
5132static struct mips_got_info *
5133mips_elf_got_info (abfd, sgotp)
5134 bfd *abfd;
5135 asection **sgotp;
5136{
5137 asection *sgot;
252b5132
RH
5138 struct mips_got_info *g;
5139
7403cb63
MM
5140 sgot = mips_elf_got_section (abfd);
5141 BFD_ASSERT (sgot != NULL);
5142 BFD_ASSERT (elf_section_data (sgot) != NULL);
5143 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5144 BFD_ASSERT (g != NULL);
252b5132 5145
7403cb63
MM
5146 if (sgotp)
5147 *sgotp = sgot;
5148 return g;
5149}
252b5132 5150
6387d602
ILT
5151/* Return whether a relocation is against a local symbol. */
5152
5153static boolean
5154mips_elf_local_relocation_p (input_bfd, relocation, local_sections)
5155 bfd *input_bfd;
5156 const Elf_Internal_Rela *relocation;
5157 asection **local_sections;
5158{
5159 unsigned long r_symndx;
5160 Elf_Internal_Shdr *symtab_hdr;
5161
5162 r_symndx = ELF32_R_SYM (relocation->r_info);
5163 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5164 if (! elf_bad_symtab (input_bfd))
5165 return r_symndx < symtab_hdr->sh_info;
5166 else
5167 {
5168 /* The symbol table does not follow the rule that local symbols
5169 must come before globals. */
5170 return local_sections[r_symndx] != NULL;
5171 }
5172}
5173
7403cb63 5174/* Sign-extend VALUE, which has the indicated number of BITS. */
252b5132 5175
7403cb63
MM
5176static bfd_vma
5177mips_elf_sign_extend (value, bits)
5178 bfd_vma value;
5179 int bits;
5180{
0af99795 5181 if (value & ((bfd_vma)1 << (bits - 1)))
7403cb63
MM
5182 /* VALUE is negative. */
5183 value |= ((bfd_vma) - 1) << bits;
5184
5185 return value;
5186}
252b5132 5187
7403cb63
MM
5188/* Return non-zero if the indicated VALUE has overflowed the maximum
5189 range expressable by a signed number with the indicated number of
5190 BITS. */
252b5132 5191
7403cb63
MM
5192static boolean
5193mips_elf_overflow_p (value, bits)
5194 bfd_vma value;
5195 int bits;
5196{
5197 bfd_signed_vma svalue = (bfd_signed_vma) value;
252b5132 5198
7403cb63
MM
5199 if (svalue > (1 << (bits - 1)) - 1)
5200 /* The value is too big. */
5201 return true;
5202 else if (svalue < -(1 << (bits - 1)))
5203 /* The value is too small. */
5204 return true;
5205
5206 /* All is well. */
5207 return false;
5208}
252b5132 5209
7403cb63 5210/* Calculate the %high function. */
252b5132 5211
7403cb63
MM
5212static bfd_vma
5213mips_elf_high (value)
5214 bfd_vma value;
5215{
5216 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5217}
252b5132 5218
7403cb63
MM
5219/* Calculate the %higher function. */
5220
5221static bfd_vma
5222mips_elf_higher (value)
5f771d47 5223 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5224{
5225#ifdef BFD64
5226 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5227#else
5228 abort ();
5229 return (bfd_vma) -1;
5230#endif
5231}
5232
5233/* Calculate the %highest function. */
5234
5235static bfd_vma
5236mips_elf_highest (value)
5f771d47 5237 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5238{
5239#ifdef BFD64
0af99795 5240 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
7403cb63
MM
5241#else
5242 abort ();
5243 return (bfd_vma) -1;
5244#endif
5245}
5246
5247/* Returns the GOT index for the global symbol indicated by H. */
5248
5249static bfd_vma
5250mips_elf_global_got_index (abfd, h)
5251 bfd *abfd;
5252 struct elf_link_hash_entry *h;
5253{
5254 bfd_vma index;
5255 asection *sgot;
5256 struct mips_got_info *g;
5257
5258 g = mips_elf_got_info (abfd, &sgot);
5259
5260 /* Once we determine the global GOT entry with the lowest dynamic
5261 symbol table index, we must put all dynamic symbols with greater
5262 indices into the GOT. That makes it easy to calculate the GOT
5263 offset. */
5264 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
103186c6
MM
5265 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5266 * MIPS_ELF_GOT_SIZE (abfd));
7403cb63
MM
5267 BFD_ASSERT (index < sgot->_raw_size);
5268
5269 return index;
5270}
5271
5272/* Returns the offset for the entry at the INDEXth position
5273 in the GOT. */
5274
5275static bfd_vma
5276mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5277 bfd *dynobj;
5278 bfd *output_bfd;
5279 bfd_vma index;
5280{
5281 asection *sgot;
5282 bfd_vma gp;
7403cb63 5283
103186c6 5284 sgot = mips_elf_got_section (dynobj);
7403cb63
MM
5285 gp = _bfd_get_gp_value (output_bfd);
5286 return (sgot->output_section->vma + sgot->output_offset + index -
5287 gp);
5288}
5289
5290/* If H is a symbol that needs a global GOT entry, but has a dynamic
5291 symbol table index lower than any we've seen to date, record it for
5292 posterity. */
5293
5294static boolean
5295mips_elf_record_global_got_symbol (h, info, g)
5296 struct elf_link_hash_entry *h;
5297 struct bfd_link_info *info;
5f771d47 5298 struct mips_got_info *g ATTRIBUTE_UNUSED;
7403cb63
MM
5299{
5300 /* A global symbol in the GOT must also be in the dynamic symbol
5301 table. */
5302 if (h->dynindx == -1
5303 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5304 return false;
5305
5306 /* If we've already marked this entry as need GOT space, we don't
5307 need to do it again. */
5308 if (h->got.offset != (bfd_vma) - 1)
5309 return true;
5310
5311 /* By setting this to a value other than -1, we are indicating that
5312 there needs to be a GOT entry for H. */
5313 h->got.offset = 0;
5314
5315 return true;
5316}
5317
5318/* This structure is passed to mips_elf_sort_hash_table_f when sorting
5319 the dynamic symbols. */
5320
5321struct mips_elf_hash_sort_data
5322{
5323 /* The symbol in the global GOT with the lowest dynamic symbol table
5324 index. */
5325 struct elf_link_hash_entry *low;
5326 /* The least dynamic symbol table index corresponding to a symbol
5327 with a GOT entry. */
5328 long min_got_dynindx;
5329 /* The greatest dynamic symbol table index not corresponding to a
5330 symbol without a GOT entry. */
5331 long max_non_got_dynindx;
5332};
5333
5334/* If H needs a GOT entry, assign it the highest available dynamic
5335 index. Otherwise, assign it the lowest available dynamic
5336 index. */
5337
5338static boolean
5339mips_elf_sort_hash_table_f (h, data)
5340 struct mips_elf_link_hash_entry *h;
5341 PTR data;
5342{
5343 struct mips_elf_hash_sort_data *hsd
5344 = (struct mips_elf_hash_sort_data *) data;
5345
5346 /* Symbols without dynamic symbol table entries aren't interesting
5347 at all. */
5348 if (h->root.dynindx == -1)
5349 return true;
5350
5351 if (h->root.got.offset != 0)
5352 h->root.dynindx = hsd->max_non_got_dynindx++;
5353 else
5354 {
5355 h->root.dynindx = --hsd->min_got_dynindx;
5356 hsd->low = (struct elf_link_hash_entry *) h;
5357 }
5358
5359 return true;
5360}
5361
5362/* Sort the dynamic symbol table so that symbols that need GOT entries
5363 appear towards the end. This reduces the amount of GOT space
b3be9b46
RH
5364 required. MAX_LOCAL is used to set the number of local symbols
5365 known to be in the dynamic symbol table. During
5366 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5367 section symbols are added and the count is higher. */
7403cb63
MM
5368
5369static boolean
b3be9b46 5370mips_elf_sort_hash_table (info, max_local)
7403cb63 5371 struct bfd_link_info *info;
b3be9b46 5372 unsigned long max_local;
7403cb63
MM
5373{
5374 struct mips_elf_hash_sort_data hsd;
5375 struct mips_got_info *g;
5376 bfd *dynobj;
5377
5378 dynobj = elf_hash_table (info)->dynobj;
5379
5380 hsd.low = NULL;
5381 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
b3be9b46 5382 hsd.max_non_got_dynindx = max_local;
7403cb63
MM
5383 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5384 elf_hash_table (info)),
5385 mips_elf_sort_hash_table_f,
5386 &hsd);
5387
5388 /* There shoud have been enough room in the symbol table to
5389 accomodate both the GOT and non-GOT symbols. */
5390 BFD_ASSERT (hsd.min_got_dynindx == hsd.max_non_got_dynindx);
5391
5392 /* Now we know which dynamic symbol has the lowest dynamic symbol
5393 table index in the GOT. */
5394 g = mips_elf_got_info (dynobj, NULL);
5395 g->global_gotsym = hsd.low;
5396
5397 return true;
5398}
5399
5400/* Create a local GOT entry for VALUE. Return the index of the entry,
5401 or -1 if it could not be created. */
5402
5403static bfd_vma
5404mips_elf_create_local_got_entry (abfd, g, sgot, value)
5405 bfd *abfd;
5406 struct mips_got_info *g;
5407 asection *sgot;
5408 bfd_vma value;
5409{
5410 if (g->assigned_gotno >= g->local_gotno)
5411 {
5412 /* We didn't allocate enough space in the GOT. */
5413 (*_bfd_error_handler)
5414 (_("not enough GOT space for local GOT entries"));
5415 bfd_set_error (bfd_error_bad_value);
5416 return (bfd_vma) -1;
5417 }
5418
103186c6
MM
5419 MIPS_ELF_PUT_WORD (abfd, value,
5420 (sgot->contents
5421 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5422 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
7403cb63
MM
5423}
5424
5425/* Returns the GOT offset at which the indicated address can be found.
5426 If there is not yet a GOT entry for this value, create one. Returns
5427 -1 if no satisfactory GOT offset can be found. */
5428
5429static bfd_vma
5430mips_elf_local_got_index (abfd, info, value)
5431 bfd *abfd;
5432 struct bfd_link_info *info;
5433 bfd_vma value;
5434{
5435 asection *sgot;
5436 struct mips_got_info *g;
5437 bfd_byte *entry;
5438
5439 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5440
5441 /* Look to see if we already have an appropriate entry. */
103186c6
MM
5442 for (entry = (sgot->contents
5443 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5444 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5445 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5446 {
103186c6 5447 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5448 if (address == value)
5449 return entry - sgot->contents;
5450 }
5451
5452 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5453}
5454
5455/* Find a GOT entry that is within 32KB of the VALUE. These entries
5456 are supposed to be placed at small offsets in the GOT, i.e.,
5457 within 32KB of GP. Return the index into the GOT for this page,
5458 and store the offset from this entry to the desired address in
5459 OFFSETP, if it is non-NULL. */
5460
5461static bfd_vma
5462mips_elf_got_page (abfd, info, value, offsetp)
5463 bfd *abfd;
5464 struct bfd_link_info *info;
5465 bfd_vma value;
5466 bfd_vma *offsetp;
5467{
5468 asection *sgot;
5469 struct mips_got_info *g;
5470 bfd_byte *entry;
5471 bfd_byte *last_entry;
86033394 5472 bfd_vma index = 0;
7403cb63
MM
5473 bfd_vma address;
5474
5475 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5476
5477 /* Look to see if we aleady have an appropriate entry. */
103186c6
MM
5478 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5479 for (entry = (sgot->contents
5480 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5481 entry != last_entry;
103186c6 5482 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5483 {
103186c6
MM
5484 address = MIPS_ELF_GET_WORD (abfd, entry);
5485
7403cb63
MM
5486 if (!mips_elf_overflow_p (value - address, 16))
5487 {
5488 /* This entry will serve as the page pointer. We can add a
5489 16-bit number to it to get the actual address. */
5490 index = entry - sgot->contents;
5491 break;
252b5132 5492 }
7403cb63
MM
5493 }
5494
5495 /* If we didn't have an appropriate entry, we create one now. */
5496 if (entry == last_entry)
5497 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5498
5499 if (offsetp)
5500 {
103186c6 5501 address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5502 *offsetp = value - address;
5503 }
5504
5505 return index;
5506}
5507
5508/* Find a GOT entry whose higher-order 16 bits are the same as those
5509 for value. Return the index into the GOT for this entry. */
5510
5511static bfd_vma
5512mips_elf_got16_entry (abfd, info, value)
5513 bfd *abfd;
5514 struct bfd_link_info *info;
5515 bfd_vma value;
5516{
5517 asection *sgot;
5518 struct mips_got_info *g;
5519 bfd_byte *entry;
5520 bfd_byte *last_entry;
86033394 5521 bfd_vma index = 0;
7403cb63
MM
5522 bfd_vma address;
5523
b944b044
MM
5524 /* Although the ABI says that it is "the high-order 16 bits" that we
5525 want, it is really the %high value. The complete value is
5526 calculated with a `addiu' of a LO16 relocation, just as with a
5527 HI16/LO16 pair. */
7b1f1231 5528 value = mips_elf_high (value) << 16;
7403cb63
MM
5529 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5530
5531 /* Look to see if we already have an appropriate entry. */
103186c6
MM
5532 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5533 for (entry = (sgot->contents
5534 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5535 entry != last_entry;
103186c6 5536 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5537 {
103186c6 5538 address = MIPS_ELF_GET_WORD (abfd, entry);
e049a0de 5539 if ((address & 0xffff0000) == value)
252b5132 5540 {
7403cb63 5541 /* This entry has the right high-order 16 bits. */
4f2860ca 5542 index = entry - sgot->contents;
7403cb63
MM
5543 break;
5544 }
5545 }
5546
5547 /* If we didn't have an appropriate entry, we create one now. */
5548 if (entry == last_entry)
5549 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5550
5551 return index;
5552}
5553
bb2d6cd7 5554/* Returns the first relocation of type r_type found, beginning with
23b255aa 5555 RELOCATION. RELEND is one-past-the-end of the relocation table. */
7403cb63 5556
23b255aa 5557static const Elf_Internal_Rela *
bb2d6cd7
GK
5558mips_elf_next_relocation (r_type, relocation, relend)
5559 unsigned int r_type;
103186c6
MM
5560 const Elf_Internal_Rela *relocation;
5561 const Elf_Internal_Rela *relend;
7403cb63
MM
5562{
5563 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5564 immediately following. However, for the IRIX6 ABI, the next
5565 relocation may be a composed relocation consisting of several
5566 relocations for the same address. In that case, the R_MIPS_LO16
435394bf 5567 relocation may occur as one of these. We permit a similar
7403cb63
MM
5568 extension in general, as that is useful for GCC. */
5569 while (relocation < relend)
5570 {
bb2d6cd7 5571 if (ELF32_R_TYPE (relocation->r_info) == r_type)
23b255aa 5572 return relocation;
7403cb63
MM
5573
5574 ++relocation;
5575 }
5576
5577 /* We didn't find it. */
6387d602 5578 bfd_set_error (bfd_error_bad_value);
23b255aa 5579 return NULL;
7403cb63
MM
5580}
5581
7b1f1231
MM
5582/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5583 is the original relocation, which is now being transformed into a
5584 dyanmic relocation. The ADDENDP is adjusted if necessary; the
5585 caller should store the result in place of the original addend. */
7403cb63 5586
7b1f1231
MM
5587static boolean
5588mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5589 symbol, addendp, input_section)
7403cb63
MM
5590 bfd *output_bfd;
5591 struct bfd_link_info *info;
103186c6 5592 const Elf_Internal_Rela *rel;
7b1f1231
MM
5593 struct mips_elf_link_hash_entry *h;
5594 asection *sec;
5595 bfd_vma symbol;
5596 bfd_vma *addendp;
7403cb63
MM
5597 asection *input_section;
5598{
5599 Elf_Internal_Rel outrel;
5600 boolean skip;
5601 asection *sreloc;
5602 bfd *dynobj;
5603 int r_type;
5604
5605 r_type = ELF32_R_TYPE (rel->r_info);
5606 dynobj = elf_hash_table (info)->dynobj;
103186c6
MM
5607 sreloc
5608 = bfd_get_section_by_name (dynobj,
5609 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
7403cb63
MM
5610 BFD_ASSERT (sreloc != NULL);
5611
5612 skip = false;
5613
7b1f1231
MM
5614 /* We begin by assuming that the offset for the dynamic relocation
5615 is the same as for the original relocation. We'll adjust this
5616 later to reflect the correct output offsets. */
7403cb63
MM
5617 if (elf_section_data (input_section)->stab_info == NULL)
5618 outrel.r_offset = rel->r_offset;
5619 else
5620 {
7b1f1231
MM
5621 /* Except that in a stab section things are more complex.
5622 Because we compress stab information, the offset given in the
5623 relocation may not be the one we want; we must let the stabs
5624 machinery tell us the offset. */
5625 outrel.r_offset
5626 = (_bfd_stab_section_offset
5627 (output_bfd, &elf_hash_table (info)->stab_info,
5628 input_section,
5629 &elf_section_data (input_section)->stab_info,
5630 rel->r_offset));
5631 /* If we didn't need the relocation at all, this value will be
5632 -1. */
5633 if (outrel.r_offset == (bfd_vma) -1)
7403cb63 5634 skip = true;
7403cb63 5635 }
7403cb63
MM
5636
5637 /* If we've decided to skip this relocation, just output an emtpy
7b1f1231
MM
5638 record. Note that R_MIPS_NONE == 0, so that this call to memset
5639 is a way of setting R_TYPE to R_MIPS_NONE. */
7403cb63
MM
5640 if (skip)
5641 memset (&outrel, 0, sizeof (outrel));
7b1f1231
MM
5642 else
5643 {
5644 long indx;
5645 bfd_vma section_offset;
5646
5647 /* We must now calculate the dynamic symbol table index to use
5648 in the relocation. */
5649 if (h != NULL
5650 && (! info->symbolic || (h->root.elf_link_hash_flags
5651 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5652 {
5653 indx = h->root.dynindx;
5654 BFD_ASSERT (indx != -1);
5655 }
5656 else
5657 {
5658 if (sec != NULL && bfd_is_abs_section (sec))
5659 indx = 0;
5660 else if (sec == NULL || sec->owner == NULL)
5661 {
5662 bfd_set_error (bfd_error_bad_value);
5663 return false;
5664 }
5665 else
5666 {
5667 indx = elf_section_data (sec->output_section)->dynindx;
5668 if (indx == 0)
5669 abort ();
5670 }
5671
5672 /* Figure out how far the target of the relocation is from
5673 the beginning of its section. */
5674 section_offset = symbol - sec->output_section->vma;
5675 /* The relocation we're building is section-relative.
5676 Therefore, the original addend must be adjusted by the
5677 section offset. */
5678 *addendp += symbol - sec->output_section->vma;
5679 /* Now, the relocation is just against the section. */
5680 symbol = sec->output_section->vma;
5681 }
5682
5683 /* If the relocation was previously an absolute relocation, we
5684 must adjust it by the value we give it in the dynamic symbol
5685 table. */
5686 if (r_type != R_MIPS_REL32)
5687 *addendp += symbol;
5688
5689 /* The relocation is always an REL32 relocation because we don't
5690 know where the shared library will wind up at load-time. */
5691 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5692
5693 /* Adjust the output offset of the relocation to reference the
5694 correct location in the output file. */
5695 outrel.r_offset += (input_section->output_section->vma
5696 + input_section->output_offset);
5697 }
7403cb63 5698
7b1f1231
MM
5699 /* Put the relocation back out. We have to use the special
5700 relocation outputter in the 64-bit case since the 64-bit
5701 relocation format is non-standard. */
103186c6
MM
5702 if (ABI_64_P (output_bfd))
5703 {
5704 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5705 (output_bfd, &outrel,
5706 (sreloc->contents
5707 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5708 }
5709 else
5710 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5711 (((Elf32_External_Rel *)
5712 sreloc->contents)
5713 + sreloc->reloc_count));
7b1f1231
MM
5714
5715 /* Record the index of the first relocation referencing H. This
5716 information is later emitted in the .msym section. */
5717 if (h != NULL
5718 && (h->min_dyn_reloc_index == 0
5719 || sreloc->reloc_count < h->min_dyn_reloc_index))
5720 h->min_dyn_reloc_index = sreloc->reloc_count;
5721
5722 /* We've now added another relocation. */
7403cb63
MM
5723 ++sreloc->reloc_count;
5724
5725 /* Make sure the output section is writable. The dynamic linker
5726 will be writing to it. */
5727 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5728 |= SHF_WRITE;
5729
5730 /* On IRIX5, make an entry of compact relocation info. */
5731 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5732 {
5733 asection* scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5734 bfd_byte *cr;
5735
5736 if (scpt)
5737 {
5738 Elf32_crinfo cptrel;
5739
5740 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5741 cptrel.vaddr = (rel->r_offset
5742 + input_section->output_section->vma
5743 + input_section->output_offset);
5744 if (r_type == R_MIPS_REL32)
5745 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
252b5132 5746 else
7403cb63
MM
5747 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5748 mips_elf_set_cr_dist2to (cptrel, 0);
7b1f1231 5749 cptrel.konst = *addendp;
7403cb63
MM
5750
5751 cr = (scpt->contents
5752 + sizeof (Elf32_External_compact_rel));
5753 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5754 ((Elf32_External_crinfo *) cr
5755 + scpt->reloc_count));
5756 ++scpt->reloc_count;
5757 }
5758 }
252b5132 5759
7b1f1231 5760 return true;
7403cb63 5761}
252b5132 5762
7403cb63
MM
5763/* Calculate the value produced by the RELOCATION (which comes from
5764 the INPUT_BFD). The ADDEND is the addend to use for this
5765 RELOCATION; RELOCATION->R_ADDEND is ignored.
5766
5767 The result of the relocation calculation is stored in VALUEP.
197b9ca0
MM
5768 REQUIRE_JALXP indicates whether or not the opcode used with this
5769 relocation must be JALX.
7403cb63
MM
5770
5771 This function returns bfd_reloc_continue if the caller need take no
5772 further action regarding this relocation, bfd_reloc_notsupported if
5773 something goes dramatically wrong, bfd_reloc_overflow if an
5774 overflow occurs, and bfd_reloc_ok to indicate success. */
5775
5776static bfd_reloc_status_type
5777mips_elf_calculate_relocation (abfd,
5778 input_bfd,
5779 input_section,
5780 info,
5781 relocation,
5782 addend,
5783 howto,
7403cb63
MM
5784 local_syms,
5785 local_sections,
5786 valuep,
197b9ca0
MM
5787 namep,
5788 require_jalxp)
7403cb63
MM
5789 bfd *abfd;
5790 bfd *input_bfd;
5791 asection *input_section;
5792 struct bfd_link_info *info;
103186c6 5793 const Elf_Internal_Rela *relocation;
7403cb63
MM
5794 bfd_vma addend;
5795 reloc_howto_type *howto;
7403cb63
MM
5796 Elf_Internal_Sym *local_syms;
5797 asection **local_sections;
5798 bfd_vma *valuep;
5799 const char **namep;
197b9ca0 5800 boolean *require_jalxp;
7403cb63
MM
5801{
5802 /* The eventual value we will return. */
5803 bfd_vma value;
5804 /* The address of the symbol against which the relocation is
5805 occurring. */
5806 bfd_vma symbol = 0;
5807 /* The final GP value to be used for the relocatable, executable, or
5808 shared object file being produced. */
5809 bfd_vma gp = (bfd_vma) - 1;
5810 /* The place (section offset or address) of the storage unit being
5811 relocated. */
5812 bfd_vma p;
5813 /* The value of GP used to create the relocatable object. */
5814 bfd_vma gp0 = (bfd_vma) - 1;
5815 /* The offset into the global offset table at which the address of
5816 the relocation entry symbol, adjusted by the addend, resides
5817 during execution. */
5818 bfd_vma g = (bfd_vma) - 1;
5819 /* The section in which the symbol referenced by the relocation is
5820 located. */
5821 asection *sec = NULL;
5822 struct mips_elf_link_hash_entry* h = NULL;
103186c6
MM
5823 /* True if the symbol referred to by this relocation is a local
5824 symbol. */
7403cb63 5825 boolean local_p;
103186c6 5826 /* True if the symbol referred to by this relocation is "_gp_disp". */
7403cb63
MM
5827 boolean gp_disp_p = false;
5828 Elf_Internal_Shdr *symtab_hdr;
5829 size_t extsymoff;
103186c6 5830 unsigned long r_symndx;
7403cb63 5831 int r_type;
103186c6
MM
5832 /* True if overflow occurred during the calculation of the
5833 relocation value. */
7403cb63 5834 boolean overflowed_p;
197b9ca0
MM
5835 /* True if this relocation refers to a MIPS16 function. */
5836 boolean target_is_16_bit_code_p = false;
7403cb63
MM
5837
5838 /* Parse the relocation. */
5839 r_symndx = ELF32_R_SYM (relocation->r_info);
5840 r_type = ELF32_R_TYPE (relocation->r_info);
5841 p = (input_section->output_section->vma
5842 + input_section->output_offset
5843 + relocation->r_offset);
5844
5845 /* Assume that there will be no overflow. */
5846 overflowed_p = false;
5847
6387d602
ILT
5848 /* Figure out whether or not the symbol is local, and get the offset
5849 used in the array of hash table entries. */
7403cb63 5850 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6387d602
ILT
5851 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5852 local_sections);
5853 if (! elf_bad_symtab (input_bfd))
5854 extsymoff = symtab_hdr->sh_info;
5855 else
7403cb63
MM
5856 {
5857 /* The symbol table does not follow the rule that local symbols
5858 must come before globals. */
5859 extsymoff = 0;
7403cb63
MM
5860 }
5861
5862 /* Figure out the value of the symbol. */
5863 if (local_p)
5864 {
5865 Elf_Internal_Sym *sym;
5866
5867 sym = local_syms + r_symndx;
5868 sec = local_sections[r_symndx];
5869
5870 symbol = sec->output_section->vma + sec->output_offset;
5871 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5872 symbol += sym->st_value;
5873
5874 /* MIPS16 text labels should be treated as odd. */
5875 if (sym->st_other == STO_MIPS16)
5876 ++symbol;
5877
5878 /* Record the name of this symbol, for our caller. */
5879 *namep = bfd_elf_string_from_elf_section (input_bfd,
5880 symtab_hdr->sh_link,
5881 sym->st_name);
e049a0de 5882 if (*namep == '\0')
7403cb63 5883 *namep = bfd_section_name (input_bfd, sec);
197b9ca0
MM
5884
5885 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
7403cb63
MM
5886 }
5887 else
5888 {
5889 /* For global symbols we look up the symbol in the hash-table. */
5890 h = ((struct mips_elf_link_hash_entry *)
5891 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5892 /* Find the real hash-table entry for this symbol. */
5893 while (h->root.type == bfd_link_hash_indirect
5894 || h->root.type == bfd_link_hash_warning)
5895 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5896
5897 /* Record the name of this symbol, for our caller. */
5898 *namep = h->root.root.root.string;
5899
5900 /* See if this is the special _gp_disp symbol. Note that such a
5901 symbol must always be a global symbol. */
5902 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
5903 {
5904 /* Relocations against _gp_disp are permitted only with
5905 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5906 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
5907 return bfd_reloc_notsupported;
5908
5909 gp_disp_p = true;
5910 }
97a4bb05
MM
5911 /* If this symbol is defined, calculate its address. Note that
5912 _gp_disp is a magic symbol, always implicitly defined by the
5913 linker, so it's inappropriate to check to see whether or not
5914 its defined. */
5915 else if ((h->root.root.type == bfd_link_hash_defined
5916 || h->root.root.type == bfd_link_hash_defweak)
5917 && h->root.root.u.def.section)
7403cb63
MM
5918 {
5919 sec = h->root.root.u.def.section;
5920 if (sec->output_section)
5921 symbol = (h->root.root.u.def.value
5922 + sec->output_section->vma
5923 + sec->output_offset);
252b5132 5924 else
7403cb63
MM
5925 symbol = h->root.root.u.def.value;
5926 }
97287574
MM
5927 else if (h->root.root.type == bfd_link_hash_undefweak)
5928 /* We allow relocations against undefined weak symbols, giving
5929 it the value zero, so that you can undefined weak functions
5930 and check to see if they exist by looking at their
5931 addresses. */
5932 symbol = 0;
3811169e 5933 else if (info->shared && !info->symbolic && !info->no_undefined)
8535d39c 5934 symbol = 0;
3811169e
MM
5935 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0)
5936 {
5937 /* If this is a dynamic link, we should have created a
5938 _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections.
5939 Otherwise, we should define the symbol with a value of 0.
5940 FIXME: It should probably get into the symbol table
5941 somehow as well. */
5942 BFD_ASSERT (! info->shared);
5943 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
8535d39c 5944 symbol = 0;
3811169e 5945 }
7403cb63
MM
5946 else
5947 {
5cc7c785
L
5948 if (! ((*info->callbacks->undefined_symbol)
5949 (info, h->root.root.root.string, input_bfd,
5950 input_section, relocation->r_offset,
5951 (!info->shared || info->no_undefined))))
5952 return bfd_reloc_undefined;
5953 symbol = 0;
7403cb63 5954 }
197b9ca0
MM
5955
5956 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
5957 }
5958
5959 /* If this is a 32-bit call to a 16-bit function with a stub, we
5960 need to redirect the call to the stub, unless we're already *in*
5961 a stub. */
5962 if (r_type != R_MIPS16_26 && !info->relocateable
5963 && ((h != NULL && h->fn_stub != NULL)
5964 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
5965 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5966 && !mips_elf_stub_section_p (input_bfd, input_section))
5967 {
5968 /* This is a 32-bit call to a 16-bit function. We should
5969 have already noticed that we were going to need the
5970 stub. */
5971 if (local_p)
5972 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5973 else
5974 {
5975 BFD_ASSERT (h->need_fn_stub);
5976 sec = h->fn_stub;
5977 }
5978
5979 symbol = sec->output_section->vma + sec->output_offset;
7403cb63 5980 }
197b9ca0
MM
5981 /* If this is a 16-bit call to a 32-bit function with a stub, we
5982 need to redirect the call to the stub. */
5983 else if (r_type == R_MIPS16_26 && !info->relocateable
5984 && h != NULL
5985 && (h->call_stub != NULL || h->call_fp_stub != NULL)
5986 && !target_is_16_bit_code_p)
5987 {
5988 /* If both call_stub and call_fp_stub are defined, we can figure
5989 out which one to use by seeing which one appears in the input
5990 file. */
5991 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5992 {
5993 asection *o;
5994
5995 sec = NULL;
5996 for (o = input_bfd->sections; o != NULL; o = o->next)
5997 {
5998 if (strncmp (bfd_get_section_name (input_bfd, o),
5999 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6000 {
6001 sec = h->call_fp_stub;
6002 break;
6003 }
6004 }
6005 if (sec == NULL)
6006 sec = h->call_stub;
6007 }
6008 else if (h->call_stub != NULL)
6009 sec = h->call_stub;
6010 else
6011 sec = h->call_fp_stub;
6012
6013 BFD_ASSERT (sec->_raw_size > 0);
6014 symbol = sec->output_section->vma + sec->output_offset;
6015 }
6016
6017 /* Calls from 16-bit code to 32-bit code and vice versa require the
6018 special jalx instruction. */
6387d602
ILT
6019 *require_jalxp = (!info->relocateable
6020 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
252b5132 6021
7403cb63
MM
6022 /* If we haven't already determined the GOT offset, or the GP value,
6023 and we're going to need it, get it now. */
6024 switch (r_type)
6025 {
6026 case R_MIPS_CALL16:
2841ecd0 6027 case R_MIPS_GOT16:
7403cb63
MM
6028 case R_MIPS_GOT_DISP:
6029 case R_MIPS_GOT_HI16:
6030 case R_MIPS_CALL_HI16:
6031 case R_MIPS_GOT_LO16:
6032 case R_MIPS_CALL_LO16:
6033 /* Find the index into the GOT where this value is located. */
4f2860ca 6034 if (!local_p)
7403cb63
MM
6035 {
6036 BFD_ASSERT (addend == 0);
6037 g = mips_elf_global_got_index
6038 (elf_hash_table (info)->dynobj,
6039 (struct elf_link_hash_entry*) h);
6040 }
4f2860ca
MM
6041 else if (r_type == R_MIPS_GOT16)
6042 /* There's no need to create a local GOT entry here; the
6043 calculation for a local GOT16 entry does not involve G. */
6044 break;
7403cb63
MM
6045 else
6046 {
6047 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6048 if (g == (bfd_vma) -1)
6049 return false;
6050 }
252b5132 6051
7403cb63
MM
6052 /* Convert GOT indices to actual offsets. */
6053 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6054 abfd, g);
6055 break;
6056
6057 case R_MIPS_HI16:
6058 case R_MIPS_LO16:
6059 case R_MIPS_GPREL16:
6060 case R_MIPS_GPREL32:
0af99795 6061 case R_MIPS_LITERAL:
7403cb63
MM
6062 gp0 = _bfd_get_gp_value (input_bfd);
6063 gp = _bfd_get_gp_value (abfd);
6064 break;
252b5132 6065
7403cb63
MM
6066 default:
6067 break;
6068 }
252b5132 6069
7403cb63
MM
6070 /* Figure out what kind of relocation is being performed. */
6071 switch (r_type)
6072 {
6073 case R_MIPS_NONE:
6074 return bfd_reloc_continue;
252b5132 6075
7403cb63
MM
6076 case R_MIPS_16:
6077 value = symbol + mips_elf_sign_extend (addend, 16);
6078 overflowed_p = mips_elf_overflow_p (value, 16);
6079 break;
252b5132 6080
7403cb63
MM
6081 case R_MIPS_32:
6082 case R_MIPS_REL32:
a3c7651d 6083 case R_MIPS_64:
7b1f1231
MM
6084 if ((info->shared
6085 || (elf_hash_table (info)->dynamic_sections_created
6086 && h != NULL
6087 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
6088 == 0)))
6089 && (input_section->flags & SEC_ALLOC) != 0)
7403cb63 6090 {
7b1f1231
MM
6091 /* If we're creating a shared library, or this relocation is
6092 against a symbol in a shared library, then we can't know
6093 where the symbol will end up. So, we create a relocation
6094 record in the output, and leave the job up to the dynamic
6095 linker. */
6096 value = addend;
6097 if (!mips_elf_create_dynamic_relocation (abfd,
6098 info,
6099 relocation,
6100 h,
6101 sec,
6102 symbol,
6103 &value,
6104 input_section))
6105 return false;
7403cb63
MM
6106 }
6107 else
6108 {
a3c7651d 6109 if (r_type != R_MIPS_REL32)
7403cb63
MM
6110 value = symbol + addend;
6111 else
6112 value = addend;
6113 }
6114 value &= howto->dst_mask;
6115 break;
6116
bb2d6cd7
GK
6117 case R_MIPS_PC32:
6118 case R_MIPS_PC64:
6119 case R_MIPS_GNU_REL_LO16:
6120 value = symbol + addend - p;
6121 value &= howto->dst_mask;
6122 break;
6123
6124 case R_MIPS_GNU_REL16_S2:
6125 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6126 overflowed_p = mips_elf_overflow_p (value, 18);
6127 value = (value >> 2) & howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_GNU_REL_HI16:
6131 value = mips_elf_high (addend + symbol - p);
6132 value &= howto->dst_mask;
6133 break;
6134
e53bd91b
MM
6135 case R_MIPS16_26:
6136 /* The calculation for R_MIPS_26 is just the same as for an
6137 R_MIPS_26. It's only the storage of the relocated field into
1e52e2ee 6138 the output file that's different. That's handled in
e53bd91b
MM
6139 mips_elf_perform_relocation. So, we just fall through to the
6140 R_MIPS_26 case here. */
7403cb63
MM
6141 case R_MIPS_26:
6142 if (local_p)
6143 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6144 else
6145 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6146 value &= howto->dst_mask;
6147 break;
6148
6149 case R_MIPS_HI16:
6150 if (!gp_disp_p)
6151 {
6152 value = mips_elf_high (addend + symbol);
6153 value &= howto->dst_mask;
6154 }
6155 else
6156 {
6157 value = mips_elf_high (addend + gp - p);
6158 overflowed_p = mips_elf_overflow_p (value, 16);
6159 }
6160 break;
6161
6162 case R_MIPS_LO16:
6163 if (!gp_disp_p)
6164 value = (symbol + addend) & howto->dst_mask;
6165 else
6166 {
6167 value = addend + gp - p + 4;
97a4bb05
MM
6168 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6169 for overflow. But, on, say, Irix 5, relocations against
6170 _gp_disp are normally generated from the .cpload
6171 pseudo-op. It generates code that normally looks like
6172 this:
6173
6174 lui $gp,%hi(_gp_disp)
6175 addiu $gp,$gp,%lo(_gp_disp)
6176 addu $gp,$gp,$t9
6177
6178 Here $t9 holds the address of the function being called,
6179 as required by the MIPS ELF ABI. The R_MIPS_LO16
e53bd91b 6180 relocation can easily overflow in this situation, but the
97a4bb05
MM
6181 R_MIPS_HI16 relocation will handle the overflow.
6182 Therefore, we consider this a bug in the MIPS ABI, and do
6183 not check for overflow here. */
7403cb63
MM
6184 }
6185 break;
6186
6187 case R_MIPS_LITERAL:
6188 /* Because we don't merge literal sections, we can handle this
6189 just like R_MIPS_GPREL16. In the long run, we should merge
6190 shared literals, and then we will need to additional work
6191 here. */
6192
6193 /* Fall through. */
6194
b7233c24
MM
6195 case R_MIPS16_GPREL:
6196 /* The R_MIPS16_GPREL performs the same calculation as
6197 R_MIPS_GPREL16, but stores the relocated bits in a different
6198 order. We don't need to do anything special here; the
6199 differences are handled in mips_elf_perform_relocation. */
7403cb63
MM
6200 case R_MIPS_GPREL16:
6201 if (local_p)
6202 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6203 else
6204 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6205 overflowed_p = mips_elf_overflow_p (value, 16);
6206 break;
6207
6208 case R_MIPS_GOT16:
6209 if (local_p)
6210 {
6211 value = mips_elf_got16_entry (abfd, info, symbol + addend);
6212 if (value == (bfd_vma) -1)
6213 return false;
6214 value
6215 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6216 abfd,
6217 value);
6218 overflowed_p = mips_elf_overflow_p (value, 16);
6219 break;
6220 }
6221
6222 /* Fall through. */
6223
6224 case R_MIPS_CALL16:
6225 case R_MIPS_GOT_DISP:
6226 value = g;
6227 overflowed_p = mips_elf_overflow_p (value, 16);
6228 break;
6229
6230 case R_MIPS_GPREL32:
6231 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6232 break;
6233
6234 case R_MIPS_PC16:
6235 value = mips_elf_sign_extend (addend, 16) + symbol - p;
2a6d49ea 6236 value = (bfd_vma) ((bfd_signed_vma) value / 4);
7403cb63
MM
6237 overflowed_p = mips_elf_overflow_p (value, 16);
6238 break;
6239
6240 case R_MIPS_GOT_HI16:
6241 case R_MIPS_CALL_HI16:
6242 /* We're allowed to handle these two relocations identically.
6243 The dynamic linker is allowed to handle the CALL relocations
6244 differently by creating a lazy evaluation stub. */
6245 value = g;
6246 value = mips_elf_high (value);
6247 value &= howto->dst_mask;
6248 break;
6249
6250 case R_MIPS_GOT_LO16:
6251 case R_MIPS_CALL_LO16:
6252 value = g & howto->dst_mask;
6253 break;
6254
7403cb63
MM
6255 case R_MIPS_GOT_PAGE:
6256 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6257 if (value == (bfd_vma) -1)
6258 return false;
6259 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6260 abfd,
6261 value);
6262 overflowed_p = mips_elf_overflow_p (value, 16);
6263 break;
6264
6265 case R_MIPS_GOT_OFST:
6266 mips_elf_got_page (abfd, info, symbol + addend, &value);
6267 overflowed_p = mips_elf_overflow_p (value, 16);
6268 break;
6269
6270 case R_MIPS_SUB:
6271 value = symbol - addend;
6272 value &= howto->dst_mask;
6273 break;
6274
6275 case R_MIPS_HIGHER:
6276 value = mips_elf_higher (addend + symbol);
6277 value &= howto->dst_mask;
6278 break;
6279
6280 case R_MIPS_HIGHEST:
6281 value = mips_elf_highest (addend + symbol);
6282 value &= howto->dst_mask;
6283 break;
6284
6285 case R_MIPS_SCN_DISP:
6286 value = symbol + addend - sec->output_offset;
6287 value &= howto->dst_mask;
6288 break;
6289
6290 case R_MIPS_PJUMP:
6291 case R_MIPS_JALR:
6292 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6293 hint; we could improve performance by honoring that hint. */
6294 return bfd_reloc_continue;
6295
6296 case R_MIPS_GNU_VTINHERIT:
6297 case R_MIPS_GNU_VTENTRY:
6298 /* We don't do anything with these at present. */
6299 return bfd_reloc_continue;
6300
7403cb63
MM
6301 default:
6302 /* An unrecognized relocation type. */
6303 return bfd_reloc_notsupported;
6304 }
6305
6306 /* Store the VALUE for our caller. */
6307 *valuep = value;
6308 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6309}
6310
6311/* Obtain the field relocated by RELOCATION. */
6312
6313static bfd_vma
6314mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6315 reloc_howto_type *howto;
103186c6 6316 const Elf_Internal_Rela *relocation;
7403cb63
MM
6317 bfd *input_bfd;
6318 bfd_byte *contents;
6319{
6320 bfd_vma x;
6321 bfd_byte *location = contents + relocation->r_offset;
6322
b7233c24
MM
6323 /* Obtain the bytes. */
6324 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
7403cb63 6325
6296902e
MM
6326 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6327 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
1e52e2ee
MM
6328 && bfd_little_endian (input_bfd))
6329 /* The two 16-bit words will be reversed on a little-endian
6330 system. See mips_elf_perform_relocation for more details. */
6331 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6332
7403cb63
MM
6333 return x;
6334}
6335
6336/* It has been determined that the result of the RELOCATION is the
6337 VALUE. Use HOWTO to place VALUE into the output file at the
6338 appropriate position. The SECTION is the section to which the
197b9ca0
MM
6339 relocation applies. If REQUIRE_JALX is true, then the opcode used
6340 for the relocation must be either JAL or JALX, and it is
6341 unconditionally converted to JALX.
7403cb63
MM
6342
6343 Returns false if anything goes wrong. */
252b5132 6344
197b9ca0 6345static boolean
e53bd91b 6346mips_elf_perform_relocation (info, howto, relocation, value,
197b9ca0
MM
6347 input_bfd, input_section,
6348 contents, require_jalx)
e53bd91b 6349 struct bfd_link_info *info;
7403cb63 6350 reloc_howto_type *howto;
103186c6 6351 const Elf_Internal_Rela *relocation;
7403cb63
MM
6352 bfd_vma value;
6353 bfd *input_bfd;
197b9ca0 6354 asection *input_section;
7403cb63 6355 bfd_byte *contents;
197b9ca0 6356 boolean require_jalx;
7403cb63
MM
6357{
6358 bfd_vma x;
e53bd91b 6359 bfd_byte *location;
197b9ca0 6360 int r_type = ELF32_R_TYPE (relocation->r_info);
e53bd91b
MM
6361
6362 /* Figure out where the relocation is occurring. */
6363 location = contents + relocation->r_offset;
252b5132 6364
7403cb63
MM
6365 /* Obtain the current value. */
6366 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
252b5132 6367
7403cb63
MM
6368 /* Clear the field we are setting. */
6369 x &= ~howto->dst_mask;
252b5132 6370
e53bd91b
MM
6371 /* If this is the R_MIPS16_26 relocation, we must store the
6372 value in a funny way. */
197b9ca0 6373 if (r_type == R_MIPS16_26)
7403cb63 6374 {
e53bd91b
MM
6375 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6376 Most mips16 instructions are 16 bits, but these instructions
6377 are 32 bits.
6378
6379 The format of these instructions is:
6380
6381 +--------------+--------------------------------+
6382 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6383 +--------------+--------------------------------+
6384 ! Immediate 15:0 !
6385 +-----------------------------------------------+
6386
6387 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6388 Note that the immediate value in the first word is swapped.
6389
6390 When producing a relocateable object file, R_MIPS16_26 is
6391 handled mostly like R_MIPS_26. In particular, the addend is
6392 stored as a straight 26-bit value in a 32-bit instruction.
6393 (gas makes life simpler for itself by never adjusting a
6394 R_MIPS16_26 reloc to be against a section, so the addend is
6395 always zero). However, the 32 bit instruction is stored as 2
6396 16-bit values, rather than a single 32-bit value. In a
6397 big-endian file, the result is the same; in a little-endian
6398 file, the two 16-bit halves of the 32 bit value are swapped.
6399 This is so that a disassembler can recognize the jal
6400 instruction.
6401
6402 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6403 instruction stored as two 16-bit values. The addend A is the
6404 contents of the targ26 field. The calculation is the same as
6405 R_MIPS_26. When storing the calculated value, reorder the
6406 immediate value as shown above, and don't forget to store the
6407 value as two 16-bit values.
6408
6409 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6410 defined as
6411
6412 big-endian:
6413 +--------+----------------------+
6414 | | |
6415 | | targ26-16 |
6416 |31 26|25 0|
6417 +--------+----------------------+
6418
6419 little-endian:
6420 +----------+------+-------------+
6421 | | | |
6422 | sub1 | | sub2 |
6423 |0 9|10 15|16 31|
6424 +----------+--------------------+
6425 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6426 ((sub1 << 16) | sub2)).
6427
6428 When producing a relocateable object file, the calculation is
6429 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6430 When producing a fully linked file, the calculation is
6431 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6432 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6433
6434 if (!info->relocateable)
6435 /* Shuffle the bits according to the formula above. */
6436 value = (((value & 0x1f0000) << 5)
6437 | ((value & 0x3e00000) >> 5)
6438 | (value & 0xffff));
6439
e53bd91b 6440 }
197b9ca0 6441 else if (r_type == R_MIPS16_GPREL)
b7233c24
MM
6442 {
6443 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6444 mode. A typical instruction will have a format like this:
6445
6446 +--------------+--------------------------------+
6447 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6448 +--------------+--------------------------------+
6449 ! Major ! rx ! ry ! Imm 4:0 !
6450 +--------------+--------------------------------+
6451
6452 EXTEND is the five bit value 11110. Major is the instruction
6453 opcode.
6454
6455 This is handled exactly like R_MIPS_GPREL16, except that the
6456 addend is retrieved and stored as shown in this diagram; that
6457 is, the Imm fields above replace the V-rel16 field.
6458
6296902e
MM
6459 All we need to do here is shuffle the bits appropriately. As
6460 above, the two 16-bit halves must be swapped on a
6461 little-endian system. */
b7233c24
MM
6462 value = (((value & 0x7e0) << 16)
6463 | ((value & 0xf800) << 5)
6464 | (value & 0x1f));
6465 }
252b5132 6466
e53bd91b
MM
6467 /* Set the field. */
6468 x |= (value & howto->dst_mask);
252b5132 6469
197b9ca0
MM
6470 /* If required, turn JAL into JALX. */
6471 if (require_jalx)
6472 {
6473 boolean ok;
6474 bfd_vma opcode = x >> 26;
6475 bfd_vma jalx_opcode;
6476
6477 /* Check to see if the opcode is already JAL or JALX. */
6478 if (r_type == R_MIPS16_26)
6479 {
6480 ok = ((opcode == 0x6) || (opcode == 0x7));
6481 jalx_opcode = 0x7;
6482 }
6483 else
6484 {
6485 ok = ((opcode == 0x3) || (opcode == 0x1d));
6486 jalx_opcode = 0x1d;
6487 }
6488
6489 /* If the opcode is not JAL or JALX, there's a problem. */
6490 if (!ok)
6491 {
6492 (*_bfd_error_handler)
6493 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6494 bfd_get_filename (input_bfd),
6495 input_section->name,
6496 (unsigned long) relocation->r_offset);
6497 bfd_set_error (bfd_error_bad_value);
6498 return false;
6499 }
6500
6501 /* Make this the JALX opcode. */
6502 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6503 }
6504
6296902e
MM
6505 /* Swap the high- and low-order 16 bits on little-endian systems
6506 when doing a MIPS16 relocation. */
197b9ca0 6507 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6296902e
MM
6508 && bfd_little_endian (input_bfd))
6509 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6510
e53bd91b
MM
6511 /* Put the value into the output. */
6512 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
197b9ca0
MM
6513 return true;
6514}
6515
6516/* Returns true if SECTION is a MIPS16 stub section. */
6517
6518static boolean
6519mips_elf_stub_section_p (abfd, section)
6387d602 6520 bfd *abfd ATTRIBUTE_UNUSED;
197b9ca0
MM
6521 asection *section;
6522{
6523 const char *name = bfd_get_section_name (abfd, section);
6524
6525 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6526 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6527 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
7403cb63 6528}
252b5132 6529
7403cb63 6530/* Relocate a MIPS ELF section. */
252b5132 6531
103186c6
MM
6532boolean
6533_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6534 contents, relocs, local_syms, local_sections)
7403cb63
MM
6535 bfd *output_bfd;
6536 struct bfd_link_info *info;
6537 bfd *input_bfd;
6538 asection *input_section;
6539 bfd_byte *contents;
6540 Elf_Internal_Rela *relocs;
6541 Elf_Internal_Sym *local_syms;
6542 asection **local_sections;
6543{
31367b81 6544 Elf_Internal_Rela *rel;
103186c6 6545 const Elf_Internal_Rela *relend;
86033394 6546 bfd_vma addend = 0;
7403cb63 6547 boolean use_saved_addend_p = false;
103186c6 6548 struct elf_backend_data *bed;
252b5132 6549
103186c6
MM
6550 bed = get_elf_backend_data (output_bfd);
6551 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7403cb63
MM
6552 for (rel = relocs; rel < relend; ++rel)
6553 {
6554 const char *name;
6555 bfd_vma value;
7403cb63 6556 reloc_howto_type *howto;
197b9ca0 6557 boolean require_jalx;
31367b81
MM
6558 /* True if the relocation is a RELA relocation, rather than a
6559 REL relocation. */
6560 boolean rela_relocation_p = true;
6561 int r_type = ELF32_R_TYPE (rel->r_info);
252b5132 6562
7403cb63 6563 /* Find the relocation howto for this relocation. */
31367b81 6564 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
0af99795
GK
6565 {
6566 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6567 64-bit code, but make sure all their addresses are in the
6568 lowermost or uppermost 32-bit section of the 64-bit address
6569 space. Thus, when they use an R_MIPS_64 they mean what is
6570 usually meant by R_MIPS_32, with the exception that the
6571 stored value is sign-extended to 64 bits. */
6572 howto = elf_mips_howto_table + R_MIPS_32;
6573
6574 /* On big-endian systems, we need to lie about the position
6575 of the reloc. */
6576 if (bfd_big_endian (input_bfd))
6577 rel->r_offset += 4;
6578 }
a3c7651d 6579 else
c9b3cbf3 6580 howto = mips_rtype_to_howto (r_type);
252b5132 6581
7403cb63
MM
6582 if (!use_saved_addend_p)
6583 {
6584 Elf_Internal_Shdr *rel_hdr;
6585
6586 /* If these relocations were originally of the REL variety,
6587 we must pull the addend out of the field that will be
6588 relocated. Otherwise, we simply use the contents of the
6589 RELA relocation. To determine which flavor or relocation
6590 this is, we depend on the fact that the INPUT_SECTION's
6591 REL_HDR is read before its REL_HDR2. */
6592 rel_hdr = &elf_section_data (input_section)->rel_hdr;
5f771d47 6593 if ((size_t) (rel - relocs)
103186c6
MM
6594 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6595 * bed->s->int_rels_per_ext_rel))
7403cb63 6596 rel_hdr = elf_section_data (input_section)->rel_hdr2;
103186c6 6597 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7403cb63 6598 {
31367b81
MM
6599 /* Note that this is a REL relocation. */
6600 rela_relocation_p = false;
7403cb63 6601
31367b81 6602 /* Get the addend, which is stored in the input file. */
7403cb63
MM
6603 addend = mips_elf_obtain_contents (howto,
6604 rel,
6605 input_bfd,
6606 contents);
6607 addend &= howto->src_mask;
6608
6609 /* For some kinds of relocations, the ADDEND is a
6610 combination of the addend stored in two different
6611 relocations. */
6387d602 6612 if (r_type == R_MIPS_HI16
bb2d6cd7 6613 || r_type == R_MIPS_GNU_REL_HI16
6387d602
ILT
6614 || (r_type == R_MIPS_GOT16
6615 && mips_elf_local_relocation_p (input_bfd, rel,
6616 local_sections)))
252b5132 6617 {
23b255aa
MM
6618 bfd_vma l;
6619 const Elf_Internal_Rela *lo16_relocation;
6620 reloc_howto_type *lo16_howto;
bb2d6cd7 6621 int lo;
23b255aa 6622
e7c44218
MM
6623 /* The combined value is the sum of the HI16 addend,
6624 left-shifted by sixteen bits, and the LO16
6625 addend, sign extended. (Usually, the code does
6626 a `lui' of the HI16 value, and then an `addiu' of
6627 the LO16 value.)
6628
bb2d6cd7
GK
6629 Scan ahead to find a matching LO16 relocation. */
6630 if (r_type == R_MIPS_GNU_REL_HI16)
6631 lo = R_MIPS_GNU_REL_LO16;
6632 else
6633 lo = R_MIPS_LO16;
23b255aa 6634 lo16_relocation
bb2d6cd7 6635 = mips_elf_next_relocation (lo, rel, relend);
23b255aa 6636 if (lo16_relocation == NULL)
7403cb63 6637 return false;
252b5132 6638
23b255aa 6639 /* Obtain the addend kept there. */
bb2d6cd7 6640 lo16_howto = mips_rtype_to_howto (lo);
23b255aa
MM
6641 l = mips_elf_obtain_contents (lo16_howto,
6642 lo16_relocation,
6643 input_bfd, contents);
6644 l &= lo16_howto->src_mask;
e7c44218 6645 l = mips_elf_sign_extend (l, 16);
23b255aa 6646
7403cb63 6647 addend <<= 16;
252b5132 6648
7403cb63 6649 /* Compute the combined addend. */
e7c44218 6650 addend += l;
252b5132 6651 }
b7233c24
MM
6652 else if (r_type == R_MIPS16_GPREL)
6653 {
6654 /* The addend is scrambled in the object file. See
6655 mips_elf_perform_relocation for details on the
6656 format. */
6657 addend = (((addend & 0x1f0000) >> 5)
6658 | ((addend & 0x7e00000) >> 16)
6659 | (addend & 0x1f));
6660 }
252b5132
RH
6661 }
6662 else
7403cb63
MM
6663 addend = rel->r_addend;
6664 }
252b5132 6665
31367b81
MM
6666 if (info->relocateable)
6667 {
6668 Elf_Internal_Sym *sym;
6669 unsigned long r_symndx;
6670
7893e6a2
GK
6671 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6672 && bfd_big_endian (input_bfd))
6673 rel->r_offset -= 4;
6674
31367b81 6675 /* Since we're just relocating, all we need to do is copy
0db63c18
MM
6676 the relocations back out to the object file, unless
6677 they're against a section symbol, in which case we need
6678 to adjust by the section offset, or unless they're GP
6679 relative in which case we need to adjust by the amount
6680 that we're adjusting GP in this relocateable object. */
31367b81
MM
6681
6682 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections))
f1a5f37e 6683 /* There's nothing to do for non-local relocations. */
31367b81
MM
6684 continue;
6685
0db63c18
MM
6686 if (r_type == R_MIPS16_GPREL
6687 || r_type == R_MIPS_GPREL16
0af99795
GK
6688 || r_type == R_MIPS_GPREL32
6689 || r_type == R_MIPS_LITERAL)
0db63c18
MM
6690 addend -= (_bfd_get_gp_value (output_bfd)
6691 - _bfd_get_gp_value (input_bfd));
bb2d6cd7
GK
6692 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6693 || r_type == R_MIPS_GNU_REL16_S2)
e7c44218
MM
6694 /* The addend is stored without its two least
6695 significant bits (which are always zero.) In a
6696 non-relocateable link, calculate_relocation will do
6697 this shift; here, we must do it ourselves. */
6698 addend <<= 2;
31367b81 6699
4f2860ca
MM
6700 r_symndx = ELF32_R_SYM (rel->r_info);
6701 sym = local_syms + r_symndx;
6702 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6703 /* Adjust the addend appropriately. */
6704 addend += local_sections[r_symndx]->output_offset;
6705
f1a5f37e
MM
6706 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6707 then we only want to write out the high-order 16 bits.
6708 The subsequent R_MIPS_LO16 will handle the low-order bits. */
bb2d6cd7
GK
6709 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6710 || r_type == R_MIPS_GNU_REL_HI16)
23b255aa 6711 addend = mips_elf_high (addend);
5a44662b
MM
6712 /* If the relocation is for an R_MIPS_26 relocation, then
6713 the two low-order bits are not stored in the object file;
6714 they are implicitly zero. */
bb2d6cd7
GK
6715 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6716 || r_type == R_MIPS_GNU_REL16_S2)
5a44662b 6717 addend >>= 2;
f1a5f37e 6718
31367b81
MM
6719 if (rela_relocation_p)
6720 /* If this is a RELA relocation, just update the addend.
bb2d6cd7 6721 We have to cast away constness for REL. */
31367b81
MM
6722 rel->r_addend = addend;
6723 else
6724 {
6725 /* Otherwise, we have to write the value back out. Note
6726 that we use the source mask, rather than the
6727 destination mask because the place to which we are
6728 writing will be source of the addend in the final
6729 link. */
6730 addend &= howto->src_mask;
7893e6a2
GK
6731
6732 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6733 /* See the comment above about using R_MIPS_64 in the 32-bit
6734 ABI. Here, we need to update the addend. It would be
6735 possible to get away with just using the R_MIPS_32 reloc
6736 but for endianness. */
6737 {
6738 bfd_vma sign_bits;
6739 bfd_vma low_bits;
6740 bfd_vma high_bits;
6741
fc633e5b
AM
6742 if (addend & ((bfd_vma) 1 << 31))
6743 sign_bits = ((bfd_vma) 1 << 32) - 1;
7893e6a2
GK
6744 else
6745 sign_bits = 0;
6746
6747 /* If we don't know that we have a 64-bit type,
6748 do two separate stores. */
6749 if (bfd_big_endian (input_bfd))
6750 {
6751 /* Store the sign-bits (which are most significant)
6752 first. */
6753 low_bits = sign_bits;
6754 high_bits = addend;
6755 }
6756 else
6757 {
6758 low_bits = addend;
6759 high_bits = sign_bits;
6760 }
6761 bfd_put_32 (input_bfd, low_bits,
6762 contents + rel->r_offset);
6763 bfd_put_32 (input_bfd, high_bits,
6764 contents + rel->r_offset + 4);
6765 continue;
6766 }
6767
31367b81
MM
6768 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6769 input_bfd, input_section,
6770 contents, false))
6771 return false;
6772 }
6773
6774 /* Go on to the next relocation. */
6775 continue;
6776 }
6777
7403cb63
MM
6778 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6779 relocations for the same offset. In that case we are
6780 supposed to treat the output of each relocation as the addend
6781 for the next. */
103186c6
MM
6782 if (rel + 1 < relend
6783 && rel->r_offset == rel[1].r_offset
b89db8f2 6784 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7403cb63
MM
6785 use_saved_addend_p = true;
6786 else
6787 use_saved_addend_p = false;
6788
6789 /* Figure out what value we are supposed to relocate. */
6790 switch (mips_elf_calculate_relocation (output_bfd,
6791 input_bfd,
6792 input_section,
6793 info,
6794 rel,
6795 addend,
6796 howto,
7403cb63
MM
6797 local_syms,
6798 local_sections,
6799 &value,
197b9ca0
MM
6800 &name,
6801 &require_jalx))
7403cb63
MM
6802 {
6803 case bfd_reloc_continue:
6804 /* There's nothing to do. */
6805 continue;
252b5132 6806
7403cb63 6807 case bfd_reloc_undefined:
6387d602 6808 /* mips_elf_calculate_relocation already called the
bb2d6cd7 6809 undefined_symbol callback. There's no real point in
97287574
MM
6810 trying to perform the relocation at this point, so we
6811 just skip ahead to the next relocation. */
6812 continue;
252b5132 6813
7403cb63
MM
6814 case bfd_reloc_notsupported:
6815 abort ();
6816 break;
252b5132 6817
7403cb63
MM
6818 case bfd_reloc_overflow:
6819 if (use_saved_addend_p)
6820 /* Ignore overflow until we reach the last relocation for
6821 a given location. */
6822 ;
6387d602
ILT
6823 else
6824 {
6825 BFD_ASSERT (name != NULL);
6826 if (! ((*info->callbacks->reloc_overflow)
6827 (info, name, howto->name, (bfd_vma) 0,
6828 input_bfd, input_section, rel->r_offset)))
6829 return false;
6830 }
7403cb63 6831 break;
252b5132 6832
7403cb63
MM
6833 case bfd_reloc_ok:
6834 break;
6835
6836 default:
6837 abort ();
6838 break;
252b5132
RH
6839 }
6840
7403cb63
MM
6841 /* If we've got another relocation for the address, keep going
6842 until we reach the last one. */
6843 if (use_saved_addend_p)
252b5132 6844 {
7403cb63
MM
6845 addend = value;
6846 continue;
252b5132 6847 }
7403cb63 6848
31367b81 6849 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
a3c7651d
MM
6850 /* See the comment above about using R_MIPS_64 in the 32-bit
6851 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6852 that calculated the right value. Now, however, we
6853 sign-extend the 32-bit result to 64-bits, and store it as a
6854 64-bit value. We are especially generous here in that we
6855 go to extreme lengths to support this usage on systems with
6856 only a 32-bit VMA. */
6857 {
a3c7651d
MM
6858 bfd_vma sign_bits;
6859 bfd_vma low_bits;
6860 bfd_vma high_bits;
6861
fc633e5b
AM
6862 if (value & ((bfd_vma) 1 << 31))
6863 sign_bits = ((bfd_vma) 1 << 32) - 1;
a3c7651d
MM
6864 else
6865 sign_bits = 0;
6866
7893e6a2
GK
6867 /* If we don't know that we have a 64-bit type,
6868 do two separate stores. */
a3c7651d
MM
6869 if (bfd_big_endian (input_bfd))
6870 {
0af99795
GK
6871 /* Undo what we did above. */
6872 rel->r_offset -= 4;
a3c7651d
MM
6873 /* Store the sign-bits (which are most significant)
6874 first. */
6875 low_bits = sign_bits;
6876 high_bits = value;
6877 }
6878 else
6879 {
6880 low_bits = value;
6881 high_bits = sign_bits;
6882 }
6883 bfd_put_32 (input_bfd, low_bits,
6884 contents + rel->r_offset);
6885 bfd_put_32 (input_bfd, high_bits,
6886 contents + rel->r_offset + 4);
6887 continue;
a3c7651d
MM
6888 }
6889
7403cb63 6890 /* Actually perform the relocation. */
197b9ca0
MM
6891 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
6892 input_section, contents,
6893 require_jalx))
6894 return false;
252b5132
RH
6895 }
6896
6897 return true;
6898}
6899
6900/* This hook function is called before the linker writes out a global
6901 symbol. We mark symbols as small common if appropriate. This is
6902 also where we undo the increment of the value for a mips16 symbol. */
6903
6904/*ARGSIGNORED*/
103186c6
MM
6905boolean
6906_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
5f771d47
ILT
6907 bfd *abfd ATTRIBUTE_UNUSED;
6908 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6909 const char *name ATTRIBUTE_UNUSED;
252b5132
RH
6910 Elf_Internal_Sym *sym;
6911 asection *input_sec;
6912{
6913 /* If we see a common symbol, which implies a relocatable link, then
6914 if a symbol was small common in an input file, mark it as small
6915 common in the output file. */
6916 if (sym->st_shndx == SHN_COMMON
6917 && strcmp (input_sec->name, ".scommon") == 0)
6918 sym->st_shndx = SHN_MIPS_SCOMMON;
6919
6920 if (sym->st_other == STO_MIPS16
6921 && (sym->st_value & 1) != 0)
6922 --sym->st_value;
6923
6924 return true;
6925}
6926\f
6927/* Functions for the dynamic linker. */
6928
6929/* The name of the dynamic interpreter. This is put in the .interp
6930 section. */
6931
103186c6
MM
6932#define ELF_DYNAMIC_INTERPRETER(abfd) \
6933 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
6934 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
6935 : "/usr/lib/libc.so.1")
252b5132
RH
6936
6937/* Create dynamic sections when linking against a dynamic object. */
6938
103186c6
MM
6939boolean
6940_bfd_mips_elf_create_dynamic_sections (abfd, info)
252b5132
RH
6941 bfd *abfd;
6942 struct bfd_link_info *info;
6943{
6944 struct elf_link_hash_entry *h;
6945 flagword flags;
6946 register asection *s;
6947 const char * const *namep;
6948
6949 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6950 | SEC_LINKER_CREATED | SEC_READONLY);
6951
6952 /* Mips ABI requests the .dynamic section to be read only. */
6953 s = bfd_get_section_by_name (abfd, ".dynamic");
6954 if (s != NULL)
6955 {
6956 if (! bfd_set_section_flags (abfd, s, flags))
6957 return false;
6958 }
6959
6960 /* We need to create .got section. */
6961 if (! mips_elf_create_got_section (abfd, info))
6962 return false;
6963
c6142e5d
MM
6964 /* Create the .msym section on IRIX6. It is used by the dynamic
6965 linker to speed up dynamic relocations, and to avoid computing
6966 the ELF hash for symbols. */
6967 if (IRIX_COMPAT (abfd) == ict_irix6
6968 && !mips_elf_create_msym_section (abfd))
6969 return false;
6970
252b5132 6971 /* Create .stub section. */
7403cb63
MM
6972 if (bfd_get_section_by_name (abfd,
6973 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
252b5132 6974 {
7403cb63 6975 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
252b5132 6976 if (s == NULL
7403cb63 6977 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
103186c6
MM
6978 || ! bfd_set_section_alignment (abfd, s,
6979 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
6980 return false;
6981 }
6982
7403cb63 6983 if (IRIX_COMPAT (abfd) == ict_irix5
252b5132
RH
6984 && !info->shared
6985 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6986 {
6987 s = bfd_make_section (abfd, ".rld_map");
6988 if (s == NULL
6989 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
103186c6
MM
6990 || ! bfd_set_section_alignment (abfd, s,
6991 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
6992 return false;
6993 }
6994
303f629d
MM
6995 /* On IRIX5, we adjust add some additional symbols and change the
6996 alignments of several sections. There is no ABI documentation
6997 indicating that this is necessary on IRIX6, nor any evidence that
6998 the linker takes such action. */
6999 if (IRIX_COMPAT (abfd) == ict_irix5)
252b5132
RH
7000 {
7001 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7002 {
7003 h = NULL;
7004 if (! (_bfd_generic_link_add_one_symbol
7005 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7006 (bfd_vma) 0, (const char *) NULL, false,
7007 get_elf_backend_data (abfd)->collect,
7008 (struct bfd_link_hash_entry **) &h)))
7009 return false;
7010 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7011 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7012 h->type = STT_SECTION;
7013
7014 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7015 return false;
7016 }
7017
7018 /* We need to create a .compact_rel section. */
7019 if (! mips_elf_create_compact_rel_section (abfd, info))
7020 return false;
7021
7022 /* Change aligments of some sections. */
7023 s = bfd_get_section_by_name (abfd, ".hash");
7024 if (s != NULL)
7025 bfd_set_section_alignment (abfd, s, 4);
7026 s = bfd_get_section_by_name (abfd, ".dynsym");
7027 if (s != NULL)
7028 bfd_set_section_alignment (abfd, s, 4);
7029 s = bfd_get_section_by_name (abfd, ".dynstr");
7030 if (s != NULL)
7031 bfd_set_section_alignment (abfd, s, 4);
7032 s = bfd_get_section_by_name (abfd, ".reginfo");
7033 if (s != NULL)
7034 bfd_set_section_alignment (abfd, s, 4);
7035 s = bfd_get_section_by_name (abfd, ".dynamic");
7036 if (s != NULL)
7037 bfd_set_section_alignment (abfd, s, 4);
7038 }
7039
7040 if (!info->shared)
7041 {
7042 h = NULL;
7043 if (! (_bfd_generic_link_add_one_symbol
7044 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7045 (bfd_vma) 0, (const char *) NULL, false,
7046 get_elf_backend_data (abfd)->collect,
7047 (struct bfd_link_hash_entry **) &h)))
7048 return false;
7049 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7050 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7051 h->type = STT_SECTION;
7052
7053 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7054 return false;
7055
7056 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7057 {
7058 /* __rld_map is a four byte word located in the .data section
7059 and is filled in by the rtld to contain a pointer to
7060 the _r_debug structure. Its symbol value will be set in
7061 mips_elf_finish_dynamic_symbol. */
7062 s = bfd_get_section_by_name (abfd, ".rld_map");
7063 BFD_ASSERT (s != NULL);
7064
7065 h = NULL;
7066 if (! (_bfd_generic_link_add_one_symbol
7067 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7068 (bfd_vma) 0, (const char *) NULL, false,
7069 get_elf_backend_data (abfd)->collect,
7070 (struct bfd_link_hash_entry **) &h)))
7071 return false;
7072 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7073 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7074 h->type = STT_OBJECT;
7075
7076 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7077 return false;
7078 }
7079 }
7080
7081 return true;
7082}
7083
7084/* Create the .compact_rel section. */
7085
7086static boolean
7087mips_elf_create_compact_rel_section (abfd, info)
7088 bfd *abfd;
5f771d47 7089 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7090{
7091 flagword flags;
7092 register asection *s;
7093
7094 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7095 {
7096 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7097 | SEC_READONLY);
7098
7099 s = bfd_make_section (abfd, ".compact_rel");
7100 if (s == NULL
7101 || ! bfd_set_section_flags (abfd, s, flags)
103186c6
MM
7102 || ! bfd_set_section_alignment (abfd, s,
7103 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
7104 return false;
7105
7106 s->_raw_size = sizeof (Elf32_External_compact_rel);
7107 }
7108
7109 return true;
7110}
7111
7112/* Create the .got section to hold the global offset table. */
7113
7114static boolean
7115mips_elf_create_got_section (abfd, info)
7116 bfd *abfd;
7117 struct bfd_link_info *info;
7118{
7119 flagword flags;
7120 register asection *s;
7121 struct elf_link_hash_entry *h;
7122 struct mips_got_info *g;
7123
7124 /* This function may be called more than once. */
103186c6 7125 if (mips_elf_got_section (abfd))
252b5132
RH
7126 return true;
7127
7128 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7129 | SEC_LINKER_CREATED);
7130
7131 s = bfd_make_section (abfd, ".got");
7132 if (s == NULL
7133 || ! bfd_set_section_flags (abfd, s, flags)
7134 || ! bfd_set_section_alignment (abfd, s, 4))
7135 return false;
7136
7137 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7138 linker script because we don't want to define the symbol if we
7139 are not creating a global offset table. */
7140 h = NULL;
7141 if (! (_bfd_generic_link_add_one_symbol
7142 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7143 (bfd_vma) 0, (const char *) NULL, false,
7144 get_elf_backend_data (abfd)->collect,
7145 (struct bfd_link_hash_entry **) &h)))
7146 return false;
7147 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7148 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7149 h->type = STT_OBJECT;
7150
7151 if (info->shared
7152 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7153 return false;
7154
7155 /* The first several global offset table entries are reserved. */
103186c6 7156 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
252b5132
RH
7157
7158 g = (struct mips_got_info *) bfd_alloc (abfd,
7159 sizeof (struct mips_got_info));
7160 if (g == NULL)
7161 return false;
7403cb63 7162 g->global_gotsym = NULL;
252b5132
RH
7163 g->local_gotno = MIPS_RESERVED_GOTNO;
7164 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7165 if (elf_section_data (s) == NULL)
7166 {
7167 s->used_by_bfd =
7168 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7169 if (elf_section_data (s) == NULL)
7170 return false;
7171 }
7172 elf_section_data (s)->tdata = (PTR) g;
7403cb63
MM
7173 elf_section_data (s)->this_hdr.sh_flags
7174 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
252b5132
RH
7175
7176 return true;
7177}
7178
c6142e5d
MM
7179/* Returns the .msym section for ABFD, creating it if it does not
7180 already exist. Returns NULL to indicate error. */
7181
7182static asection *
7183mips_elf_create_msym_section (abfd)
7184 bfd *abfd;
7185{
7186 asection *s;
7187
7188 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7189 if (!s)
7190 {
7191 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7192 if (!s
7193 || !bfd_set_section_flags (abfd, s,
7194 SEC_ALLOC
7195 | SEC_LOAD
7196 | SEC_HAS_CONTENTS
7197 | SEC_LINKER_CREATED
7198 | SEC_READONLY)
103186c6
MM
7199 || !bfd_set_section_alignment (abfd, s,
7200 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
c6142e5d
MM
7201 return NULL;
7202 }
7203
7204 return s;
7205}
7206
103186c6
MM
7207/* Add room for N relocations to the .rel.dyn section in ABFD. */
7208
7209static void
7210mips_elf_allocate_dynamic_relocations (abfd, n)
7211 bfd *abfd;
7212 unsigned int n;
7213{
7214 asection *s;
7215
7216 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7217 BFD_ASSERT (s != NULL);
7218
7219 if (s->_raw_size == 0)
7220 {
7221 /* Make room for a null element. */
7222 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7223 ++s->reloc_count;
7224 }
7225 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7226}
7227
252b5132
RH
7228/* Look through the relocs for a section during the first phase, and
7229 allocate space in the global offset table. */
7230
103186c6
MM
7231boolean
7232_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
252b5132
RH
7233 bfd *abfd;
7234 struct bfd_link_info *info;
7235 asection *sec;
7236 const Elf_Internal_Rela *relocs;
7237{
7238 const char *name;
7239 bfd *dynobj;
7240 Elf_Internal_Shdr *symtab_hdr;
7241 struct elf_link_hash_entry **sym_hashes;
7242 struct mips_got_info *g;
7243 size_t extsymoff;
7244 const Elf_Internal_Rela *rel;
7245 const Elf_Internal_Rela *rel_end;
7246 asection *sgot;
7247 asection *sreloc;
103186c6 7248 struct elf_backend_data *bed;
252b5132
RH
7249
7250 if (info->relocateable)
7251 return true;
7252
7253 dynobj = elf_hash_table (info)->dynobj;
7254 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7255 sym_hashes = elf_sym_hashes (abfd);
7256 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7257
7258 /* Check for the mips16 stub sections. */
7259
7260 name = bfd_get_section_name (abfd, sec);
7261 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7262 {
7263 unsigned long r_symndx;
7264
7265 /* Look at the relocation information to figure out which symbol
7266 this is for. */
7267
7268 r_symndx = ELF32_R_SYM (relocs->r_info);
7269
7270 if (r_symndx < extsymoff
7271 || sym_hashes[r_symndx - extsymoff] == NULL)
7272 {
7273 asection *o;
7274
7275 /* This stub is for a local symbol. This stub will only be
7276 needed if there is some relocation in this BFD, other
7277 than a 16 bit function call, which refers to this symbol. */
7278 for (o = abfd->sections; o != NULL; o = o->next)
7279 {
7280 Elf_Internal_Rela *sec_relocs;
7281 const Elf_Internal_Rela *r, *rend;
7282
7283 /* We can ignore stub sections when looking for relocs. */
7284 if ((o->flags & SEC_RELOC) == 0
7285 || o->reloc_count == 0
7286 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7287 sizeof FN_STUB - 1) == 0
7288 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7289 sizeof CALL_STUB - 1) == 0
7290 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7291 sizeof CALL_FP_STUB - 1) == 0)
7292 continue;
7293
7294 sec_relocs = (_bfd_elf32_link_read_relocs
7295 (abfd, o, (PTR) NULL,
7296 (Elf_Internal_Rela *) NULL,
7297 info->keep_memory));
7298 if (sec_relocs == NULL)
7299 return false;
7300
7301 rend = sec_relocs + o->reloc_count;
7302 for (r = sec_relocs; r < rend; r++)
7303 if (ELF32_R_SYM (r->r_info) == r_symndx
7304 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7305 break;
7306
7307 if (! info->keep_memory)
7308 free (sec_relocs);
7309
7310 if (r < rend)
7311 break;
7312 }
7313
7314 if (o == NULL)
7315 {
7316 /* There is no non-call reloc for this stub, so we do
7317 not need it. Since this function is called before
7318 the linker maps input sections to output sections, we
7319 can easily discard it by setting the SEC_EXCLUDE
7320 flag. */
7321 sec->flags |= SEC_EXCLUDE;
7322 return true;
7323 }
7324
7325 /* Record this stub in an array of local symbol stubs for
7326 this BFD. */
7327 if (elf_tdata (abfd)->local_stubs == NULL)
7328 {
7329 unsigned long symcount;
7330 asection **n;
7331
7332 if (elf_bad_symtab (abfd))
103186c6 7333 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
252b5132
RH
7334 else
7335 symcount = symtab_hdr->sh_info;
7336 n = (asection **) bfd_zalloc (abfd,
7337 symcount * sizeof (asection *));
7338 if (n == NULL)
7339 return false;
7340 elf_tdata (abfd)->local_stubs = n;
7341 }
7342
7343 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7344
7345 /* We don't need to set mips16_stubs_seen in this case.
7346 That flag is used to see whether we need to look through
7347 the global symbol table for stubs. We don't need to set
7348 it here, because we just have a local stub. */
7349 }
7350 else
7351 {
7352 struct mips_elf_link_hash_entry *h;
7353
7354 h = ((struct mips_elf_link_hash_entry *)
7355 sym_hashes[r_symndx - extsymoff]);
7356
7357 /* H is the symbol this stub is for. */
7358
7359 h->fn_stub = sec;
7360 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7361 }
7362 }
7363 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7364 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7365 {
7366 unsigned long r_symndx;
7367 struct mips_elf_link_hash_entry *h;
7368 asection **loc;
7369
7370 /* Look at the relocation information to figure out which symbol
7371 this is for. */
7372
7373 r_symndx = ELF32_R_SYM (relocs->r_info);
7374
7375 if (r_symndx < extsymoff
7376 || sym_hashes[r_symndx - extsymoff] == NULL)
7377 {
7378 /* This stub was actually built for a static symbol defined
7379 in the same file. We assume that all static symbols in
7380 mips16 code are themselves mips16, so we can simply
7381 discard this stub. Since this function is called before
7382 the linker maps input sections to output sections, we can
7383 easily discard it by setting the SEC_EXCLUDE flag. */
7384 sec->flags |= SEC_EXCLUDE;
7385 return true;
7386 }
7387
7388 h = ((struct mips_elf_link_hash_entry *)
7389 sym_hashes[r_symndx - extsymoff]);
7390
7391 /* H is the symbol this stub is for. */
7392
7393 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7394 loc = &h->call_fp_stub;
7395 else
7396 loc = &h->call_stub;
7397
7398 /* If we already have an appropriate stub for this function, we
7399 don't need another one, so we can discard this one. Since
7400 this function is called before the linker maps input sections
7401 to output sections, we can easily discard it by setting the
7402 SEC_EXCLUDE flag. We can also discard this section if we
7403 happen to already know that this is a mips16 function; it is
7404 not necessary to check this here, as it is checked later, but
7405 it is slightly faster to check now. */
7406 if (*loc != NULL || h->root.other == STO_MIPS16)
7407 {
7408 sec->flags |= SEC_EXCLUDE;
7409 return true;
7410 }
7411
7412 *loc = sec;
7413 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7414 }
7415
7416 if (dynobj == NULL)
7417 {
7418 sgot = NULL;
7419 g = NULL;
7420 }
7421 else
7422 {
103186c6 7423 sgot = mips_elf_got_section (dynobj);
252b5132
RH
7424 if (sgot == NULL)
7425 g = NULL;
7426 else
7427 {
7428 BFD_ASSERT (elf_section_data (sgot) != NULL);
7429 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7430 BFD_ASSERT (g != NULL);
7431 }
7432 }
7433
7434 sreloc = NULL;
103186c6
MM
7435 bed = get_elf_backend_data (abfd);
7436 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7437 for (rel = relocs; rel < rel_end; ++rel)
252b5132
RH
7438 {
7439 unsigned long r_symndx;
7403cb63 7440 int r_type;
252b5132
RH
7441 struct elf_link_hash_entry *h;
7442
7443 r_symndx = ELF32_R_SYM (rel->r_info);
7403cb63 7444 r_type = ELF32_R_TYPE (rel->r_info);
252b5132
RH
7445
7446 if (r_symndx < extsymoff)
7447 h = NULL;
7448 else
7449 {
7450 h = sym_hashes[r_symndx - extsymoff];
7451
7452 /* This may be an indirect symbol created because of a version. */
7453 if (h != NULL)
7454 {
7455 while (h->root.type == bfd_link_hash_indirect)
7456 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7457 }
7458 }
7459
7460 /* Some relocs require a global offset table. */
7461 if (dynobj == NULL || sgot == NULL)
7462 {
7403cb63 7463 switch (r_type)
252b5132
RH
7464 {
7465 case R_MIPS_GOT16:
7466 case R_MIPS_CALL16:
7467 case R_MIPS_CALL_HI16:
7468 case R_MIPS_CALL_LO16:
7469 case R_MIPS_GOT_HI16:
7470 case R_MIPS_GOT_LO16:
435394bf
MM
7471 case R_MIPS_GOT_PAGE:
7472 case R_MIPS_GOT_OFST:
7473 case R_MIPS_GOT_DISP:
252b5132
RH
7474 if (dynobj == NULL)
7475 elf_hash_table (info)->dynobj = dynobj = abfd;
7476 if (! mips_elf_create_got_section (dynobj, info))
7477 return false;
7403cb63 7478 g = mips_elf_got_info (dynobj, &sgot);
252b5132
RH
7479 break;
7480
7481 case R_MIPS_32:
7482 case R_MIPS_REL32:
a3c7651d 7483 case R_MIPS_64:
252b5132
RH
7484 if (dynobj == NULL
7485 && (info->shared || h != NULL)
7486 && (sec->flags & SEC_ALLOC) != 0)
7487 elf_hash_table (info)->dynobj = dynobj = abfd;
7488 break;
7489
7490 default:
7491 break;
7492 }
7493 }
7494
7403cb63
MM
7495 if (!h && (r_type == R_MIPS_CALL_LO16
7496 || r_type == R_MIPS_GOT_LO16
9458945f 7497 || r_type == R_MIPS_GOT_DISP))
252b5132 7498 {
7403cb63 7499 /* We may need a local GOT entry for this relocation. We
97287574
MM
7500 don't count R_MIPS_GOT_PAGE because we can estimate the
7501 maximum number of pages needed by looking at the size of
9458945f
MM
7502 the segment. Similar comments apply to R_MIPS_GOT16. We
7503 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7504 these are always followed by an R_MIPS_GOT_LO16 or
7505 R_MIPS_CALL_LO16.
7403cb63
MM
7506
7507 This estimation is very conservative since we can merge
7508 duplicate entries in the GOT. In order to be less
7509 conservative, we could actually build the GOT here,
7510 rather than in relocate_section. */
7511 g->local_gotno++;
a3c7651d 7512 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7403cb63 7513 }
252b5132 7514
7403cb63
MM
7515 switch (r_type)
7516 {
7517 case R_MIPS_CALL16:
252b5132
RH
7518 if (h == NULL)
7519 {
7520 (*_bfd_error_handler)
7521 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7522 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7523 bfd_set_error (bfd_error_bad_value);
7524 return false;
7525 }
7403cb63 7526 /* Fall through. */
252b5132 7527
7403cb63
MM
7528 case R_MIPS_CALL_HI16:
7529 case R_MIPS_CALL_LO16:
5a44662b
MM
7530 if (h != NULL)
7531 {
7532 /* This symbol requires a global offset table entry. */
7533 if (!mips_elf_record_global_got_symbol (h, info, g))
7534 return false;
252b5132 7535
5a44662b
MM
7536 /* We need a stub, not a plt entry for the undefined
7537 function. But we record it as if it needs plt. See
7538 elf_adjust_dynamic_symbol in elflink.h. */
7539 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7540 h->type = STT_FUNC;
7541 }
252b5132
RH
7542 break;
7543
7544 case R_MIPS_GOT16:
7545 case R_MIPS_GOT_HI16:
7546 case R_MIPS_GOT_LO16:
7403cb63 7547 case R_MIPS_GOT_DISP:
252b5132 7548 /* This symbol requires a global offset table entry. */
7403cb63
MM
7549 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7550 return false;
252b5132
RH
7551 break;
7552
7553 case R_MIPS_32:
7554 case R_MIPS_REL32:
a3c7651d 7555 case R_MIPS_64:
252b5132
RH
7556 if ((info->shared || h != NULL)
7557 && (sec->flags & SEC_ALLOC) != 0)
7558 {
7559 if (sreloc == NULL)
7560 {
103186c6 7561 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
252b5132
RH
7562
7563 sreloc = bfd_get_section_by_name (dynobj, name);
7564 if (sreloc == NULL)
7565 {
7566 sreloc = bfd_make_section (dynobj, name);
7567 if (sreloc == NULL
7568 || ! bfd_set_section_flags (dynobj, sreloc,
7569 (SEC_ALLOC
7570 | SEC_LOAD
7571 | SEC_HAS_CONTENTS
7572 | SEC_IN_MEMORY
7573 | SEC_LINKER_CREATED
7574 | SEC_READONLY))
7575 || ! bfd_set_section_alignment (dynobj, sreloc,
7576 4))
7577 return false;
7578 }
7579 }
7580 if (info->shared)
103186c6
MM
7581 /* When creating a shared object, we must copy these
7582 reloc types into the output file as R_MIPS_REL32
7583 relocs. We make room for this reloc in the
7584 .rel.dyn reloc section. */
7585 mips_elf_allocate_dynamic_relocations (dynobj, 1);
252b5132
RH
7586 else
7587 {
7588 struct mips_elf_link_hash_entry *hmips;
7589
7590 /* We only need to copy this reloc if the symbol is
7591 defined in a dynamic object. */
7592 hmips = (struct mips_elf_link_hash_entry *) h;
a3c7651d 7593 ++hmips->possibly_dynamic_relocs;
252b5132 7594 }
7403cb63
MM
7595
7596 /* Even though we don't directly need a GOT entry for
7597 this symbol, a symbol must have a dynamic symbol
5499724a 7598 table index greater that DT_MIPS_GOTSYM if there are
7403cb63 7599 dynamic relocations against it. */
7b1f1231
MM
7600 if (h != NULL
7601 && !mips_elf_record_global_got_symbol (h, info, g))
7403cb63 7602 return false;
252b5132
RH
7603 }
7604
103186c6 7605 if (SGI_COMPAT (dynobj))
252b5132
RH
7606 mips_elf_hash_table (info)->compact_rel_size +=
7607 sizeof (Elf32_External_crinfo);
252b5132
RH
7608 break;
7609
7610 case R_MIPS_26:
7611 case R_MIPS_GPREL16:
7612 case R_MIPS_LITERAL:
7613 case R_MIPS_GPREL32:
103186c6 7614 if (SGI_COMPAT (dynobj))
252b5132
RH
7615 mips_elf_hash_table (info)->compact_rel_size +=
7616 sizeof (Elf32_External_crinfo);
7617 break;
7618
7619 /* This relocation describes the C++ object vtable hierarchy.
7620 Reconstruct it for later use during GC. */
7621 case R_MIPS_GNU_VTINHERIT:
7622 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7623 return false;
7624 break;
7625
7626 /* This relocation describes which C++ vtable entries are actually
7627 used. Record for later use during GC. */
7628 case R_MIPS_GNU_VTENTRY:
7629 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7630 return false;
7631 break;
7632
7633 default:
7634 break;
7635 }
7636
7637 /* If this reloc is not a 16 bit call, and it has a global
7638 symbol, then we will need the fn_stub if there is one.
7639 References from a stub section do not count. */
7640 if (h != NULL
7403cb63 7641 && r_type != R_MIPS16_26
252b5132
RH
7642 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7643 sizeof FN_STUB - 1) != 0
7644 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7645 sizeof CALL_STUB - 1) != 0
7646 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7647 sizeof CALL_FP_STUB - 1) != 0)
7648 {
7649 struct mips_elf_link_hash_entry *mh;
7650
7651 mh = (struct mips_elf_link_hash_entry *) h;
7652 mh->need_fn_stub = true;
7653 }
7654 }
7655
7656 return true;
7657}
7658
7659/* Return the section that should be marked against GC for a given
7660 relocation. */
7661
103186c6
MM
7662asection *
7663_bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
252b5132 7664 bfd *abfd;
5f771d47 7665 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7666 Elf_Internal_Rela *rel;
7667 struct elf_link_hash_entry *h;
7668 Elf_Internal_Sym *sym;
7669{
7670 /* ??? Do mips16 stub sections need to be handled special? */
7671
7672 if (h != NULL)
7673 {
7674 switch (ELF32_R_TYPE (rel->r_info))
7675 {
7676 case R_MIPS_GNU_VTINHERIT:
7677 case R_MIPS_GNU_VTENTRY:
7678 break;
7679
7680 default:
7681 switch (h->root.type)
7682 {
7683 case bfd_link_hash_defined:
7684 case bfd_link_hash_defweak:
7685 return h->root.u.def.section;
7686
7687 case bfd_link_hash_common:
7688 return h->root.u.c.p->section;
7689
7690 default:
7691 break;
7692 }
7693 }
7694 }
7695 else
7696 {
7697 if (!(elf_bad_symtab (abfd)
7698 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7699 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7700 && sym->st_shndx != SHN_COMMON))
7701 {
7702 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7703 }
7704 }
7705
7706 return NULL;
7707}
7708
7709/* Update the got entry reference counts for the section being removed. */
7710
103186c6
MM
7711boolean
7712_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
5f771d47
ILT
7713 bfd *abfd ATTRIBUTE_UNUSED;
7714 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7715 asection *sec ATTRIBUTE_UNUSED;
7716 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
252b5132
RH
7717{
7718#if 0
7719 Elf_Internal_Shdr *symtab_hdr;
7720 struct elf_link_hash_entry **sym_hashes;
7721 bfd_signed_vma *local_got_refcounts;
7722 const Elf_Internal_Rela *rel, *relend;
7723 unsigned long r_symndx;
7724 struct elf_link_hash_entry *h;
7725
7726 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7727 sym_hashes = elf_sym_hashes (abfd);
7728 local_got_refcounts = elf_local_got_refcounts (abfd);
7729
7730 relend = relocs + sec->reloc_count;
7731 for (rel = relocs; rel < relend; rel++)
7732 switch (ELF32_R_TYPE (rel->r_info))
7733 {
7734 case R_MIPS_GOT16:
7735 case R_MIPS_CALL16:
7736 case R_MIPS_CALL_HI16:
7737 case R_MIPS_CALL_LO16:
7738 case R_MIPS_GOT_HI16:
7739 case R_MIPS_GOT_LO16:
7740 /* ??? It would seem that the existing MIPS code does no sort
7741 of reference counting or whatnot on its GOT and PLT entries,
7742 so it is not possible to garbage collect them at this time. */
7743 break;
7744
7745 default:
7746 break;
7747 }
7748#endif
7749
7750 return true;
7751}
7752
7753
7754/* Adjust a symbol defined by a dynamic object and referenced by a
7755 regular object. The current definition is in some section of the
7756 dynamic object, but we're not including those sections. We have to
7757 change the definition to something the rest of the link can
7758 understand. */
7759
103186c6
MM
7760boolean
7761_bfd_mips_elf_adjust_dynamic_symbol (info, h)
252b5132
RH
7762 struct bfd_link_info *info;
7763 struct elf_link_hash_entry *h;
7764{
7765 bfd *dynobj;
7766 struct mips_elf_link_hash_entry *hmips;
7767 asection *s;
7768
7769 dynobj = elf_hash_table (info)->dynobj;
7770
7771 /* Make sure we know what is going on here. */
7772 BFD_ASSERT (dynobj != NULL
7773 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
7774 || h->weakdef != NULL
7775 || ((h->elf_link_hash_flags
7776 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
7777 && (h->elf_link_hash_flags
7778 & ELF_LINK_HASH_REF_REGULAR) != 0
7779 && (h->elf_link_hash_flags
7780 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
7781
7782 /* If this symbol is defined in a dynamic object, we need to copy
7783 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7784 file. */
7785 hmips = (struct mips_elf_link_hash_entry *) h;
7786 if (! info->relocateable
a3c7651d 7787 && hmips->possibly_dynamic_relocs != 0
252b5132 7788 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
a3c7651d
MM
7789 mips_elf_allocate_dynamic_relocations (dynobj,
7790 hmips->possibly_dynamic_relocs);
252b5132
RH
7791
7792 /* For a function, create a stub, if needed. */
7793 if (h->type == STT_FUNC
7794 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
7795 {
7796 if (! elf_hash_table (info)->dynamic_sections_created)
7797 return true;
7798
7799 /* If this symbol is not defined in a regular file, then set
7800 the symbol to the stub location. This is required to make
7801 function pointers compare as equal between the normal
7802 executable and the shared library. */
7803 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7804 {
7805 /* We need .stub section. */
303f629d
MM
7806 s = bfd_get_section_by_name (dynobj,
7807 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
7808 BFD_ASSERT (s != NULL);
7809
7810 h->root.u.def.section = s;
7811 h->root.u.def.value = s->_raw_size;
7812
7813 /* XXX Write this stub address somewhere. */
7814 h->plt.offset = s->_raw_size;
7815
7816 /* Make room for this stub code. */
7817 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7818
7819 /* The last half word of the stub will be filled with the index
7820 of this symbol in .dynsym section. */
7821 return true;
7822 }
7823 }
7824
7825 /* If this is a weak symbol, and there is a real definition, the
7826 processor independent code will have arranged for us to see the
7827 real definition first, and we can just use the same value. */
7828 if (h->weakdef != NULL)
7829 {
7830 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
7831 || h->weakdef->root.type == bfd_link_hash_defweak);
7832 h->root.u.def.section = h->weakdef->root.u.def.section;
7833 h->root.u.def.value = h->weakdef->root.u.def.value;
7834 return true;
7835 }
7836
7837 /* This is a reference to a symbol defined by a dynamic object which
7838 is not a function. */
7839
7840 return true;
7841}
7842
7843/* This function is called after all the input files have been read,
7844 and the input sections have been assigned to output sections. We
7845 check for any mips16 stub sections that we can discard. */
7846
7847static boolean mips_elf_check_mips16_stubs
7848 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
7849
103186c6
MM
7850boolean
7851_bfd_mips_elf_always_size_sections (output_bfd, info)
252b5132
RH
7852 bfd *output_bfd;
7853 struct bfd_link_info *info;
7854{
7855 asection *ri;
7856
7857 /* The .reginfo section has a fixed size. */
7858 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7859 if (ri != NULL)
7860 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7861
7862 if (info->relocateable
7863 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
7864 return true;
7865
7866 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7867 mips_elf_check_mips16_stubs,
7868 (PTR) NULL);
7869
7870 return true;
7871}
7872
7873/* Check the mips16 stubs for a particular symbol, and see if we can
7874 discard them. */
7875
7876/*ARGSUSED*/
7877static boolean
7878mips_elf_check_mips16_stubs (h, data)
7879 struct mips_elf_link_hash_entry *h;
5f771d47 7880 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
7881{
7882 if (h->fn_stub != NULL
7883 && ! h->need_fn_stub)
7884 {
7885 /* We don't need the fn_stub; the only references to this symbol
7886 are 16 bit calls. Clobber the size to 0 to prevent it from
7887 being included in the link. */
7888 h->fn_stub->_raw_size = 0;
7889 h->fn_stub->_cooked_size = 0;
7890 h->fn_stub->flags &= ~ SEC_RELOC;
7891 h->fn_stub->reloc_count = 0;
7892 h->fn_stub->flags |= SEC_EXCLUDE;
7893 }
7894
7895 if (h->call_stub != NULL
7896 && h->root.other == STO_MIPS16)
7897 {
7898 /* We don't need the call_stub; this is a 16 bit function, so
7899 calls from other 16 bit functions are OK. Clobber the size
7900 to 0 to prevent it from being included in the link. */
7901 h->call_stub->_raw_size = 0;
7902 h->call_stub->_cooked_size = 0;
7903 h->call_stub->flags &= ~ SEC_RELOC;
7904 h->call_stub->reloc_count = 0;
7905 h->call_stub->flags |= SEC_EXCLUDE;
7906 }
7907
7908 if (h->call_fp_stub != NULL
7909 && h->root.other == STO_MIPS16)
7910 {
7911 /* We don't need the call_stub; this is a 16 bit function, so
7912 calls from other 16 bit functions are OK. Clobber the size
7913 to 0 to prevent it from being included in the link. */
7914 h->call_fp_stub->_raw_size = 0;
7915 h->call_fp_stub->_cooked_size = 0;
7916 h->call_fp_stub->flags &= ~ SEC_RELOC;
7917 h->call_fp_stub->reloc_count = 0;
7918 h->call_fp_stub->flags |= SEC_EXCLUDE;
7919 }
7920
7921 return true;
7922}
7923
7924/* Set the sizes of the dynamic sections. */
7925
103186c6
MM
7926boolean
7927_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
252b5132
RH
7928 bfd *output_bfd;
7929 struct bfd_link_info *info;
7930{
7931 bfd *dynobj;
7932 asection *s;
7933 boolean reltext;
7a12753d 7934 struct mips_got_info *g = NULL;
252b5132
RH
7935
7936 dynobj = elf_hash_table (info)->dynobj;
7937 BFD_ASSERT (dynobj != NULL);
7938
7939 if (elf_hash_table (info)->dynamic_sections_created)
7940 {
7941 /* Set the contents of the .interp section to the interpreter. */
7942 if (! info->shared)
7943 {
7944 s = bfd_get_section_by_name (dynobj, ".interp");
7945 BFD_ASSERT (s != NULL);
303f629d
MM
7946 s->_raw_size
7947 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7948 s->contents
7403cb63 7949 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
252b5132
RH
7950 }
7951 }
7952
252b5132
RH
7953 /* The check_relocs and adjust_dynamic_symbol entry points have
7954 determined the sizes of the various dynamic sections. Allocate
7955 memory for them. */
7956 reltext = false;
7957 for (s = dynobj->sections; s != NULL; s = s->next)
7958 {
7959 const char *name;
7960 boolean strip;
7961
7962 /* It's OK to base decisions on the section name, because none
7963 of the dynobj section names depend upon the input files. */
7964 name = bfd_get_section_name (dynobj, s);
7965
7966 if ((s->flags & SEC_LINKER_CREATED) == 0)
7967 continue;
7968
7969 strip = false;
7970
7971 if (strncmp (name, ".rel", 4) == 0)
7972 {
7973 if (s->_raw_size == 0)
7974 {
7975 /* We only strip the section if the output section name
7976 has the same name. Otherwise, there might be several
7977 input sections for this output section. FIXME: This
7978 code is probably not needed these days anyhow, since
7979 the linker now does not create empty output sections. */
7980 if (s->output_section != NULL
7981 && strcmp (name,
7982 bfd_get_section_name (s->output_section->owner,
7983 s->output_section)) == 0)
7984 strip = true;
7985 }
7986 else
7987 {
7988 const char *outname;
7989 asection *target;
7990
7991 /* If this relocation section applies to a read only
7992 section, then we probably need a DT_TEXTREL entry.
7993 If the relocation section is .rel.dyn, we always
7994 assert a DT_TEXTREL entry rather than testing whether
7995 there exists a relocation to a read only section or
7996 not. */
7997 outname = bfd_get_section_name (output_bfd,
7998 s->output_section);
7999 target = bfd_get_section_by_name (output_bfd, outname + 4);
8000 if ((target != NULL
8001 && (target->flags & SEC_READONLY) != 0
8002 && (target->flags & SEC_ALLOC) != 0)
103186c6
MM
8003 || strcmp (outname,
8004 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
8005 reltext = true;
8006
8007 /* We use the reloc_count field as a counter if we need
8008 to copy relocs into the output file. */
103186c6
MM
8009 if (strcmp (name,
8010 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
252b5132
RH
8011 s->reloc_count = 0;
8012 }
8013 }
8014 else if (strncmp (name, ".got", 4) == 0)
8015 {
8016 int i;
7403cb63
MM
8017 bfd_size_type loadable_size = 0;
8018 bfd_size_type local_gotno;
8019 struct _bfd *sub;
252b5132 8020
7403cb63 8021 BFD_ASSERT (elf_section_data (s) != NULL);
252b5132 8022 g = (struct mips_got_info *) elf_section_data (s)->tdata;
7403cb63
MM
8023 BFD_ASSERT (g != NULL);
8024
8025 /* Calculate the total loadable size of the output. That
8026 will give us the maximum number of GOT_PAGE entries
8027 required. */
8028 for (sub = info->input_bfds; sub; sub = sub->link_next)
8029 {
8030 asection *subsection;
8031
8032 for (subsection = sub->sections;
8033 subsection;
8034 subsection = subsection->next)
8035 {
8036 if ((subsection->flags & SEC_ALLOC) == 0)
8037 continue;
8038 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8039 }
8040 }
8041 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8042
8043 /* Assume there are two loadable segments consisting of
9458945f 8044 contiguous sections. Is 5 enough? */
7403cb63 8045 local_gotno = (loadable_size >> 16) + 5;
9458945f
MM
8046 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8047 /* It's possible we will need GOT_PAGE entries as well as
8048 GOT16 entries. Often, these will be able to share GOT
8049 entries, but not always. */
8050 local_gotno *= 2;
8051
7403cb63 8052 g->local_gotno += local_gotno;
103186c6 8053 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
7403cb63
MM
8054
8055 /* There has to be a global GOT entry for every symbol with
8056 a dynamic symbol table index of DT_MIPS_GOTSYM or
8057 higher. Therefore, it make sense to put those symbols
8058 that need GOT entries at the end of the symbol table. We
8059 do that here. */
b3be9b46 8060 if (!mips_elf_sort_hash_table (info, 1))
7403cb63
MM
8061 return false;
8062
8b237a89
MM
8063 if (g->global_gotsym != NULL)
8064 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8065 else
8066 /* If there are no global symbols, or none requiring
8067 relocations, then GLOBAL_GOTSYM will be NULL. */
8068 i = 0;
b3be9b46 8069 g->global_gotno = i;
103186c6 8070 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
252b5132 8071 }
303f629d 8072 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
8073 {
8074 /* Irix rld assumes that the function stub isn't at the end
8075 of .text section. So put a dummy. XXX */
8076 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8077 }
8078 else if (! info->shared
8079 && ! mips_elf_hash_table (info)->use_rld_obj_head
8080 && strncmp (name, ".rld_map", 8) == 0)
8081 {
8082 /* We add a room for __rld_map. It will be filled in by the
8083 rtld to contain a pointer to the _r_debug structure. */
8084 s->_raw_size += 4;
8085 }
8086 else if (SGI_COMPAT (output_bfd)
8087 && strncmp (name, ".compact_rel", 12) == 0)
8088 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
c6142e5d
MM
8089 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8090 == 0)
8091 s->_raw_size = (sizeof (Elf32_External_Msym)
8092 * (elf_hash_table (info)->dynsymcount
8093 + bfd_count_sections (output_bfd)));
252b5132
RH
8094 else if (strncmp (name, ".init", 5) != 0)
8095 {
8096 /* It's not one of our sections, so don't allocate space. */
8097 continue;
8098 }
8099
8100 if (strip)
8101 {
7f8d5fc9 8102 _bfd_strip_section_from_output (info, s);
252b5132
RH
8103 continue;
8104 }
8105
8106 /* Allocate memory for the section contents. */
303f629d 8107 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
252b5132
RH
8108 if (s->contents == NULL && s->_raw_size != 0)
8109 {
8110 bfd_set_error (bfd_error_no_memory);
8111 return false;
8112 }
252b5132
RH
8113 }
8114
8115 if (elf_hash_table (info)->dynamic_sections_created)
8116 {
8117 /* Add some entries to the .dynamic section. We fill in the
8118 values later, in elf_mips_finish_dynamic_sections, but we
8119 must add the entries now so that we get the correct size for
8120 the .dynamic section. The DT_DEBUG entry is filled in by the
8121 dynamic linker and used by the debugger. */
8122 if (! info->shared)
8123 {
8124 if (SGI_COMPAT (output_bfd))
8125 {
8126 /* SGI object has the equivalence of DT_DEBUG in the
8127 DT_MIPS_RLD_MAP entry. */
103186c6 8128 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
252b5132
RH
8129 return false;
8130 }
8131 else
103186c6 8132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
252b5132
RH
8133 return false;
8134 }
8135
8136 if (reltext)
8137 {
103186c6 8138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
252b5132
RH
8139 return false;
8140 }
8141
103186c6 8142 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
252b5132
RH
8143 return false;
8144
103186c6
MM
8145 if (bfd_get_section_by_name (dynobj,
8146 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
252b5132 8147 {
103186c6 8148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
252b5132
RH
8149 return false;
8150
103186c6 8151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
252b5132
RH
8152 return false;
8153
103186c6 8154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
252b5132
RH
8155 return false;
8156 }
8157
103186c6 8158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
252b5132
RH
8159 return false;
8160
103186c6 8161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
252b5132
RH
8162 return false;
8163
8164 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8165 {
103186c6 8166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
252b5132
RH
8167 return false;
8168
8169 s = bfd_get_section_by_name (dynobj, ".liblist");
8170 BFD_ASSERT (s != NULL);
8171
103186c6 8172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
252b5132
RH
8173 return false;
8174 }
8175
103186c6 8176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
252b5132
RH
8177 return false;
8178
103186c6 8179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
252b5132
RH
8180 return false;
8181
8182#if 0
8183 /* Time stamps in executable files are a bad idea. */
103186c6 8184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
252b5132
RH
8185 return false;
8186#endif
8187
8188#if 0 /* FIXME */
103186c6 8189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
252b5132
RH
8190 return false;
8191#endif
8192
8193#if 0 /* FIXME */
103186c6 8194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
252b5132
RH
8195 return false;
8196#endif
8197
103186c6 8198 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
252b5132
RH
8199 return false;
8200
103186c6 8201 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
252b5132
RH
8202 return false;
8203
103186c6 8204 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
252b5132
RH
8205 return false;
8206
103186c6 8207 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
252b5132
RH
8208 return false;
8209
5499724a 8210 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
252b5132
RH
8211 return false;
8212
7403cb63 8213 if (IRIX_COMPAT (dynobj) == ict_irix5
103186c6 8214 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
252b5132
RH
8215 return false;
8216
7403cb63
MM
8217 if (IRIX_COMPAT (dynobj) == ict_irix6
8218 && (bfd_get_section_by_name
8219 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
103186c6 8220 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7403cb63 8221 return false;
c6142e5d
MM
8222
8223 if (bfd_get_section_by_name (dynobj,
8224 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
103186c6 8225 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
c6142e5d 8226 return false;
252b5132
RH
8227 }
8228
252b5132
RH
8229 return true;
8230}
8231
7403cb63
MM
8232/* If NAME is one of the special IRIX6 symbols defined by the linker,
8233 adjust it appropriately now. */
8234
8235static void
8236mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
5f771d47 8237 bfd *abfd ATTRIBUTE_UNUSED;
7403cb63
MM
8238 const char *name;
8239 Elf_Internal_Sym *sym;
8240{
8241 /* The linker script takes care of providing names and values for
8242 these, but we must place them into the right sections. */
8243 static const char* const text_section_symbols[] = {
8244 "_ftext",
8245 "_etext",
8246 "__dso_displacement",
8247 "__elf_header",
8248 "__program_header_table",
8249 NULL
8250 };
8251
8252 static const char* const data_section_symbols[] = {
8253 "_fdata",
8254 "_edata",
8255 "_end",
8256 "_fbss",
8257 NULL
8258 };
8259
8260 const char* const *p;
8261 int i;
8262
8263 for (i = 0; i < 2; ++i)
8264 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8265 *p;
8266 ++p)
8267 if (strcmp (*p, name) == 0)
8268 {
8269 /* All of these symbols are given type STT_SECTION by the
8270 IRIX6 linker. */
8271 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8272
8273 /* The IRIX linker puts these symbols in special sections. */
8274 if (i == 0)
8275 sym->st_shndx = SHN_MIPS_TEXT;
8276 else
8277 sym->st_shndx = SHN_MIPS_DATA;
8278
8279 break;
8280 }
8281}
8282
252b5132
RH
8283/* Finish up dynamic symbol handling. We set the contents of various
8284 dynamic sections here. */
8285
103186c6
MM
8286boolean
8287_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
252b5132
RH
8288 bfd *output_bfd;
8289 struct bfd_link_info *info;
8290 struct elf_link_hash_entry *h;
8291 Elf_Internal_Sym *sym;
8292{
8293 bfd *dynobj;
8294 bfd_vma gval;
8295 asection *sgot;
c6142e5d 8296 asection *smsym;
252b5132
RH
8297 struct mips_got_info *g;
8298 const char *name;
c6142e5d 8299 struct mips_elf_link_hash_entry *mh;
252b5132
RH
8300
8301 dynobj = elf_hash_table (info)->dynobj;
8302 gval = sym->st_value;
c6142e5d 8303 mh = (struct mips_elf_link_hash_entry *) h;
252b5132
RH
8304
8305 if (h->plt.offset != (bfd_vma) -1)
8306 {
8307 asection *s;
8308 bfd_byte *p;
8309 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8310
8311 /* This symbol has a stub. Set it up. */
8312
8313 BFD_ASSERT (h->dynindx != -1);
8314
303f629d
MM
8315 s = bfd_get_section_by_name (dynobj,
8316 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8317 BFD_ASSERT (s != NULL);
8318
8319 /* Fill the stub. */
8320 p = stub;
8321 bfd_put_32 (output_bfd, STUB_LW(output_bfd), p);
8322 p += 4;
8323 bfd_put_32 (output_bfd, STUB_MOVE, p);
8324 p += 4;
8325
8326 /* FIXME: Can h->dynindex be more than 64K? */
8327 if (h->dynindx & 0xffff0000)
8328 return false;
8329
8330 bfd_put_32 (output_bfd, STUB_JALR, p);
8331 p += 4;
8332 bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, p);
8333
8334 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8335 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8336
8337 /* Mark the symbol as undefined. plt.offset != -1 occurs
8338 only for the referenced symbol. */
8339 sym->st_shndx = SHN_UNDEF;
8340
8341 /* The run-time linker uses the st_value field of the symbol
8342 to reset the global offset table entry for this external
8343 to its stub address when unlinking a shared object. */
8344 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8345 sym->st_value = gval;
8346 }
8347
8348 BFD_ASSERT (h->dynindx != -1);
8349
103186c6 8350 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8351 BFD_ASSERT (sgot != NULL);
8352 BFD_ASSERT (elf_section_data (sgot) != NULL);
8353 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8354 BFD_ASSERT (g != NULL);
8355
7403cb63
MM
8356 /* Run through the global symbol table, creating GOT entries for all
8357 the symbols that need them. */
8b237a89
MM
8358 if (g->global_gotsym != NULL
8359 && h->dynindx >= g->global_gotsym->dynindx)
252b5132 8360 {
7403cb63
MM
8361 bfd_vma offset;
8362 bfd_vma value;
252b5132 8363
7403cb63
MM
8364 if (sym->st_value)
8365 value = sym->st_value;
8366 else
8367 /* For an entity defined in a shared object, this will be
8368 NULL. (For functions in shared objects for
8369 which we have created stubs, ST_VALUE will be non-NULL.
8370 That's because such the functions are now no longer defined
8371 in a shared object.) */
8372 value = h->root.u.def.value;
8373
8374 offset = mips_elf_global_got_index (dynobj, h);
103186c6 8375 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
252b5132
RH
8376 }
8377
c6142e5d
MM
8378 /* Create a .msym entry, if appropriate. */
8379 smsym = bfd_get_section_by_name (dynobj,
8380 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8381 if (smsym)
8382 {
8383 Elf32_Internal_Msym msym;
8384
8385 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8386 /* It is undocumented what the `1' indicates, but IRIX6 uses
8387 this value. */
8388 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8389 bfd_mips_elf_swap_msym_out
8390 (dynobj, &msym,
8391 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8392 }
8393
252b5132
RH
8394 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8395 name = h->root.root.string;
8396 if (strcmp (name, "_DYNAMIC") == 0
8397 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8398 sym->st_shndx = SHN_ABS;
8399 else if (strcmp (name, "_DYNAMIC_LINK") == 0)
8400 {
8401 sym->st_shndx = SHN_ABS;
8402 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8403 sym->st_value = 1;
8404 }
8405 else if (SGI_COMPAT (output_bfd))
8406 {
8407 if (strcmp (name, "_gp_disp") == 0)
8408 {
8409 sym->st_shndx = SHN_ABS;
8410 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8411 sym->st_value = elf_gp (output_bfd);
8412 }
8413 else if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8414 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8415 {
8416 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8417 sym->st_other = STO_PROTECTED;
8418 sym->st_value = 0;
8419 sym->st_shndx = SHN_MIPS_DATA;
8420 }
8421 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8422 {
8423 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8424 sym->st_other = STO_PROTECTED;
8425 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8426 sym->st_shndx = SHN_ABS;
8427 }
8428 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8429 {
8430 if (h->type == STT_FUNC)
8431 sym->st_shndx = SHN_MIPS_TEXT;
8432 else if (h->type == STT_OBJECT)
8433 sym->st_shndx = SHN_MIPS_DATA;
8434 }
8435 }
8436
7403cb63
MM
8437 /* Handle the IRIX6-specific symbols. */
8438 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8439 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8440
252b5132
RH
8441 if (SGI_COMPAT (output_bfd)
8442 && ! info->shared)
8443 {
8444 if (! mips_elf_hash_table (info)->use_rld_obj_head
8445 && strcmp (name, "__rld_map") == 0)
8446 {
8447 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8448 BFD_ASSERT (s != NULL);
8449 sym->st_value = s->output_section->vma + s->output_offset;
8450 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8451 if (mips_elf_hash_table (info)->rld_value == 0)
8452 mips_elf_hash_table (info)->rld_value = sym->st_value;
8453 }
8454 else if (mips_elf_hash_table (info)->use_rld_obj_head
8455 && strcmp (name, "__rld_obj_head") == 0)
8456 {
303f629d
MM
8457 /* IRIX6 does not use a .rld_map section. */
8458 if (IRIX_COMPAT (output_bfd) == ict_irix5)
8459 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8460 != NULL);
252b5132
RH
8461 mips_elf_hash_table (info)->rld_value = sym->st_value;
8462 }
8463 }
8464
8465 /* If this is a mips16 symbol, force the value to be even. */
8466 if (sym->st_other == STO_MIPS16
8467 && (sym->st_value & 1) != 0)
8468 --sym->st_value;
8469
8470 return true;
8471}
8472
8473/* Finish up the dynamic sections. */
8474
103186c6
MM
8475boolean
8476_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
252b5132
RH
8477 bfd *output_bfd;
8478 struct bfd_link_info *info;
8479{
8480 bfd *dynobj;
8481 asection *sdyn;
8482 asection *sgot;
8483 struct mips_got_info *g;
8484
8485 dynobj = elf_hash_table (info)->dynobj;
8486
8487 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8488
103186c6 8489 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8490 if (sgot == NULL)
8491 g = NULL;
8492 else
8493 {
8494 BFD_ASSERT (elf_section_data (sgot) != NULL);
8495 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8496 BFD_ASSERT (g != NULL);
8497 }
8498
8499 if (elf_hash_table (info)->dynamic_sections_created)
8500 {
103186c6 8501 bfd_byte *b;
252b5132
RH
8502
8503 BFD_ASSERT (sdyn != NULL);
8504 BFD_ASSERT (g != NULL);
8505
103186c6
MM
8506 for (b = sdyn->contents;
8507 b < sdyn->contents + sdyn->_raw_size;
8508 b += MIPS_ELF_DYN_SIZE (dynobj))
252b5132
RH
8509 {
8510 Elf_Internal_Dyn dyn;
8511 const char *name;
8512 size_t elemsize;
8513 asection *s;
103186c6 8514 boolean swap_out_p;
252b5132 8515
103186c6
MM
8516 /* Read in the current dynamic entry. */
8517 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8518
8519 /* Assume that we're going to modify it and write it out. */
8520 swap_out_p = true;
252b5132
RH
8521
8522 switch (dyn.d_tag)
8523 {
252b5132 8524 case DT_RELENT:
103186c6
MM
8525 s = (bfd_get_section_by_name
8526 (dynobj,
8527 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
252b5132 8528 BFD_ASSERT (s != NULL);
103186c6 8529 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
252b5132
RH
8530 break;
8531
8532 case DT_STRSZ:
8533 /* Rewrite DT_STRSZ. */
8534 dyn.d_un.d_val =
8535 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
252b5132
RH
8536 break;
8537
8538 case DT_PLTGOT:
8539 name = ".got";
8540 goto get_vma;
8541 case DT_MIPS_CONFLICT:
8542 name = ".conflict";
8543 goto get_vma;
8544 case DT_MIPS_LIBLIST:
8545 name = ".liblist";
8546 get_vma:
8547 s = bfd_get_section_by_name (output_bfd, name);
8548 BFD_ASSERT (s != NULL);
8549 dyn.d_un.d_ptr = s->vma;
252b5132
RH
8550 break;
8551
8552 case DT_MIPS_RLD_VERSION:
8553 dyn.d_un.d_val = 1; /* XXX */
252b5132
RH
8554 break;
8555
8556 case DT_MIPS_FLAGS:
8557 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
252b5132
RH
8558 break;
8559
8560 case DT_MIPS_CONFLICTNO:
8561 name = ".conflict";
8562 elemsize = sizeof (Elf32_Conflict);
8563 goto set_elemno;
8564
8565 case DT_MIPS_LIBLISTNO:
8566 name = ".liblist";
8567 elemsize = sizeof (Elf32_Lib);
8568 set_elemno:
8569 s = bfd_get_section_by_name (output_bfd, name);
8570 if (s != NULL)
8571 {
8572 if (s->_cooked_size != 0)
8573 dyn.d_un.d_val = s->_cooked_size / elemsize;
8574 else
8575 dyn.d_un.d_val = s->_raw_size / elemsize;
8576 }
8577 else
8578 dyn.d_un.d_val = 0;
252b5132
RH
8579 break;
8580
8581 case DT_MIPS_TIME_STAMP:
8582 time ((time_t *) &dyn.d_un.d_val);
252b5132
RH
8583 break;
8584
8585 case DT_MIPS_ICHECKSUM:
8586 /* XXX FIXME: */
103186c6 8587 swap_out_p = false;
252b5132
RH
8588 break;
8589
8590 case DT_MIPS_IVERSION:
8591 /* XXX FIXME: */
103186c6 8592 swap_out_p = false;
252b5132
RH
8593 break;
8594
8595 case DT_MIPS_BASE_ADDRESS:
8596 s = output_bfd->sections;
8597 BFD_ASSERT (s != NULL);
8598 dyn.d_un.d_ptr = s->vma & ~(0xffff);
252b5132
RH
8599 break;
8600
8601 case DT_MIPS_LOCAL_GOTNO:
8602 dyn.d_un.d_val = g->local_gotno;
252b5132
RH
8603 break;
8604
5499724a
MM
8605 case DT_MIPS_UNREFEXTNO:
8606 /* The index into the dynamic symbol table which is the
8607 entry of the first external symbol that is not
8608 referenced within the same object. */
8609 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8610 break;
8611
8612 case DT_MIPS_GOTSYM:
8613 if (g->global_gotsym)
8614 {
8615 dyn.d_un.d_val = g->global_gotsym->dynindx;
8616 break;
8617 }
8618 /* In case if we don't have global got symbols we default
8619 to setting DT_MIPS_GOTSYM to the same value as
8620 DT_MIPS_SYMTABNO, so we just fall through. */
8621
252b5132
RH
8622 case DT_MIPS_SYMTABNO:
8623 name = ".dynsym";
103186c6 8624 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
252b5132
RH
8625 s = bfd_get_section_by_name (output_bfd, name);
8626 BFD_ASSERT (s != NULL);
8627
8628 if (s->_cooked_size != 0)
8629 dyn.d_un.d_val = s->_cooked_size / elemsize;
8630 else
8631 dyn.d_un.d_val = s->_raw_size / elemsize;
252b5132
RH
8632 break;
8633
252b5132
RH
8634 case DT_MIPS_HIPAGENO:
8635 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
252b5132
RH
8636 break;
8637
8638 case DT_MIPS_RLD_MAP:
8639 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
252b5132
RH
8640 break;
8641
7403cb63
MM
8642 case DT_MIPS_OPTIONS:
8643 s = (bfd_get_section_by_name
8644 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8645 dyn.d_un.d_ptr = s->vma;
7403cb63
MM
8646 break;
8647
c6142e5d
MM
8648 case DT_MIPS_MSYM:
8649 s = (bfd_get_section_by_name
8650 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8651 dyn.d_un.d_ptr = s->vma;
103186c6
MM
8652 break;
8653
8654 default:
8655 swap_out_p = false;
c6142e5d 8656 break;
252b5132 8657 }
103186c6
MM
8658
8659 if (swap_out_p)
8660 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8661 (dynobj, &dyn, b);
252b5132
RH
8662 }
8663 }
8664
8665 /* The first entry of the global offset table will be filled at
8666 runtime. The second entry will be used by some runtime loaders.
8667 This isn't the case of Irix rld. */
8668 if (sgot != NULL && sgot->_raw_size > 0)
8669 {
103186c6
MM
8670 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8671 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8672 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
252b5132
RH
8673 }
8674
8675 if (sgot != NULL)
103186c6
MM
8676 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8677 = MIPS_ELF_GOT_SIZE (output_bfd);
252b5132
RH
8678
8679 {
c6142e5d 8680 asection *smsym;
252b5132 8681 asection *s;
252b5132
RH
8682 Elf32_compact_rel cpt;
8683
30b30c21
RH
8684 /* ??? The section symbols for the output sections were set up in
8685 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8686 symbols. Should we do so? */
252b5132 8687
c6142e5d
MM
8688 smsym = bfd_get_section_by_name (dynobj,
8689 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
30b30c21 8690 if (smsym != NULL)
252b5132 8691 {
103186c6 8692 Elf32_Internal_Msym msym;
c6142e5d 8693
103186c6
MM
8694 msym.ms_hash_value = 0;
8695 msym.ms_info = ELF32_MS_INFO (0, 1);
c6142e5d 8696
103186c6
MM
8697 for (s = output_bfd->sections; s != NULL; s = s->next)
8698 {
30b30c21 8699 long dynindx = elf_section_data (s)->dynindx;
252b5132 8700
30b30c21
RH
8701 bfd_mips_elf_swap_msym_out
8702 (output_bfd, &msym,
8703 (((Elf32_External_Msym *) smsym->contents)
8704 + dynindx));
8705 }
252b5132
RH
8706 }
8707
8708 if (SGI_COMPAT (output_bfd))
8709 {
8710 /* Write .compact_rel section out. */
8711 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8712 if (s != NULL)
8713 {
8714 cpt.id1 = 1;
8715 cpt.num = s->reloc_count;
8716 cpt.id2 = 2;
8717 cpt.offset = (s->output_section->filepos
8718 + sizeof (Elf32_External_compact_rel));
8719 cpt.reserved0 = 0;
8720 cpt.reserved1 = 0;
8721 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8722 ((Elf32_External_compact_rel *)
8723 s->contents));
8724
8725 /* Clean up a dummy stub function entry in .text. */
303f629d
MM
8726 s = bfd_get_section_by_name (dynobj,
8727 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8728 if (s != NULL)
8729 {
8730 file_ptr dummy_offset;
8731
8732 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
8733 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
8734 memset (s->contents + dummy_offset, 0,
8735 MIPS_FUNCTION_STUB_SIZE);
8736 }
8737 }
8738 }
8739
8740 /* Clean up a first relocation in .rel.dyn. */
103186c6
MM
8741 s = bfd_get_section_by_name (dynobj,
8742 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
252b5132 8743 if (s != NULL && s->_raw_size > 0)
103186c6 8744 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
252b5132
RH
8745 }
8746
8747 return true;
8748}
8749\f
8750/* This is almost identical to bfd_generic_get_... except that some
8751 MIPS relocations need to be handled specially. Sigh. */
8752
8753static bfd_byte *
8754elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
8755 relocateable, symbols)
8756 bfd *abfd;
8757 struct bfd_link_info *link_info;
8758 struct bfd_link_order *link_order;
8759 bfd_byte *data;
8760 boolean relocateable;
8761 asymbol **symbols;
8762{
8763 /* Get enough memory to hold the stuff */
8764 bfd *input_bfd = link_order->u.indirect.section->owner;
8765 asection *input_section = link_order->u.indirect.section;
8766
8767 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8768 arelent **reloc_vector = NULL;
8769 long reloc_count;
8770
8771 if (reloc_size < 0)
8772 goto error_return;
8773
8774 reloc_vector = (arelent **) bfd_malloc (reloc_size);
8775 if (reloc_vector == NULL && reloc_size != 0)
8776 goto error_return;
8777
8778 /* read in the section */
8779 if (!bfd_get_section_contents (input_bfd,
8780 input_section,
8781 (PTR) data,
8782 0,
8783 input_section->_raw_size))
8784 goto error_return;
8785
8786 /* We're not relaxing the section, so just copy the size info */
8787 input_section->_cooked_size = input_section->_raw_size;
8788 input_section->reloc_done = true;
8789
8790 reloc_count = bfd_canonicalize_reloc (input_bfd,
8791 input_section,
8792 reloc_vector,
8793 symbols);
8794 if (reloc_count < 0)
8795 goto error_return;
8796
8797 if (reloc_count > 0)
8798 {
8799 arelent **parent;
8800 /* for mips */
8801 int gp_found;
8802 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8803
8804 {
8805 struct bfd_hash_entry *h;
8806 struct bfd_link_hash_entry *lh;
8807 /* Skip all this stuff if we aren't mixing formats. */
8808 if (abfd && input_bfd
8809 && abfd->xvec == input_bfd->xvec)
8810 lh = 0;
8811 else
8812 {
8813 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
8814 lh = (struct bfd_link_hash_entry *) h;
8815 }
8816 lookup:
8817 if (lh)
8818 {
8819 switch (lh->type)
8820 {
8821 case bfd_link_hash_undefined:
8822 case bfd_link_hash_undefweak:
8823 case bfd_link_hash_common:
8824 gp_found = 0;
8825 break;
8826 case bfd_link_hash_defined:
8827 case bfd_link_hash_defweak:
8828 gp_found = 1;
8829 gp = lh->u.def.value;
8830 break;
8831 case bfd_link_hash_indirect:
8832 case bfd_link_hash_warning:
8833 lh = lh->u.i.link;
8834 /* @@FIXME ignoring warning for now */
8835 goto lookup;
8836 case bfd_link_hash_new:
8837 default:
8838 abort ();
8839 }
8840 }
8841 else
8842 gp_found = 0;
8843 }
8844 /* end mips */
8845 for (parent = reloc_vector; *parent != (arelent *) NULL;
8846 parent++)
8847 {
8848 char *error_message = (char *) NULL;
8849 bfd_reloc_status_type r;
8850
8851 /* Specific to MIPS: Deal with relocation types that require
8852 knowing the gp of the output bfd. */
8853 asymbol *sym = *(*parent)->sym_ptr_ptr;
8854 if (bfd_is_abs_section (sym->section) && abfd)
8855 {
8856 /* The special_function wouldn't get called anyways. */
8857 }
8858 else if (!gp_found)
8859 {
8860 /* The gp isn't there; let the special function code
8861 fall over on its own. */
8862 }
8863 else if ((*parent)->howto->special_function
8864 == _bfd_mips_elf_gprel16_reloc)
8865 {
8866 /* bypass special_function call */
8867 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
8868 relocateable, (PTR) data, gp);
8869 goto skip_bfd_perform_relocation;
8870 }
8871 /* end mips specific stuff */
8872
8873 r = bfd_perform_relocation (input_bfd,
8874 *parent,
8875 (PTR) data,
8876 input_section,
8877 relocateable ? abfd : (bfd *) NULL,
8878 &error_message);
8879 skip_bfd_perform_relocation:
8880
8881 if (relocateable)
8882 {
8883 asection *os = input_section->output_section;
8884
8885 /* A partial link, so keep the relocs */
8886 os->orelocation[os->reloc_count] = *parent;
8887 os->reloc_count++;
8888 }
8889
8890 if (r != bfd_reloc_ok)
8891 {
8892 switch (r)
8893 {
8894 case bfd_reloc_undefined:
8895 if (!((*link_info->callbacks->undefined_symbol)
8896 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
8897 input_bfd, input_section, (*parent)->address,
8898 true)))
252b5132
RH
8899 goto error_return;
8900 break;
8901 case bfd_reloc_dangerous:
8902 BFD_ASSERT (error_message != (char *) NULL);
8903 if (!((*link_info->callbacks->reloc_dangerous)
8904 (link_info, error_message, input_bfd, input_section,
8905 (*parent)->address)))
8906 goto error_return;
8907 break;
8908 case bfd_reloc_overflow:
8909 if (!((*link_info->callbacks->reloc_overflow)
8910 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8911 (*parent)->howto->name, (*parent)->addend,
8912 input_bfd, input_section, (*parent)->address)))
8913 goto error_return;
8914 break;
8915 case bfd_reloc_outofrange:
8916 default:
8917 abort ();
8918 break;
8919 }
8920
8921 }
8922 }
8923 }
8924 if (reloc_vector != NULL)
8925 free (reloc_vector);
8926 return data;
8927
8928error_return:
8929 if (reloc_vector != NULL)
8930 free (reloc_vector);
8931 return NULL;
8932}
8933#define bfd_elf32_bfd_get_relocated_section_contents \
8934 elf32_mips_get_relocated_section_contents
8935\f
8936/* ECOFF swapping routines. These are used when dealing with the
8937 .mdebug section, which is in the ECOFF debugging format. */
8938static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap =
8939{
8940 /* Symbol table magic number. */
8941 magicSym,
8942 /* Alignment of debugging information. E.g., 4. */
8943 4,
8944 /* Sizes of external symbolic information. */
8945 sizeof (struct hdr_ext),
8946 sizeof (struct dnr_ext),
8947 sizeof (struct pdr_ext),
8948 sizeof (struct sym_ext),
8949 sizeof (struct opt_ext),
8950 sizeof (struct fdr_ext),
8951 sizeof (struct rfd_ext),
8952 sizeof (struct ext_ext),
8953 /* Functions to swap in external symbolic data. */
8954 ecoff_swap_hdr_in,
8955 ecoff_swap_dnr_in,
8956 ecoff_swap_pdr_in,
8957 ecoff_swap_sym_in,
8958 ecoff_swap_opt_in,
8959 ecoff_swap_fdr_in,
8960 ecoff_swap_rfd_in,
8961 ecoff_swap_ext_in,
8962 _bfd_ecoff_swap_tir_in,
8963 _bfd_ecoff_swap_rndx_in,
8964 /* Functions to swap out external symbolic data. */
8965 ecoff_swap_hdr_out,
8966 ecoff_swap_dnr_out,
8967 ecoff_swap_pdr_out,
8968 ecoff_swap_sym_out,
8969 ecoff_swap_opt_out,
8970 ecoff_swap_fdr_out,
8971 ecoff_swap_rfd_out,
8972 ecoff_swap_ext_out,
8973 _bfd_ecoff_swap_tir_out,
8974 _bfd_ecoff_swap_rndx_out,
8975 /* Function to read in symbolic data. */
8976 _bfd_mips_elf_read_ecoff_info
8977};
8978\f
8979#define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
8980#define TARGET_LITTLE_NAME "elf32-littlemips"
8981#define TARGET_BIG_SYM bfd_elf32_bigmips_vec
8982#define TARGET_BIG_NAME "elf32-bigmips"
8983#define ELF_ARCH bfd_arch_mips
8984#define ELF_MACHINE_CODE EM_MIPS
8985
8986/* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
8987 a value of 0x1000, and we are compatible. */
8988#define ELF_MAXPAGESIZE 0x1000
8989
8990#define elf_backend_collect true
8991#define elf_backend_type_change_ok true
8992#define elf_backend_can_gc_sections true
86dc0f79 8993#define elf_backend_sign_extend_vma true
3f830999 8994#define elf_info_to_howto mips_info_to_howto_rela
252b5132
RH
8995#define elf_info_to_howto_rel mips_info_to_howto_rel
8996#define elf_backend_sym_is_global mips_elf_sym_is_global
103186c6
MM
8997#define elf_backend_object_p _bfd_mips_elf_object_p
8998#define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
252b5132
RH
8999#define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9000#define elf_backend_section_from_bfd_section \
9001 _bfd_mips_elf_section_from_bfd_section
103186c6 9002#define elf_backend_section_processing _bfd_mips_elf_section_processing
252b5132
RH
9003#define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9004#define elf_backend_additional_program_headers \
103186c6
MM
9005 _bfd_mips_elf_additional_program_headers
9006#define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
252b5132
RH
9007#define elf_backend_final_write_processing \
9008 _bfd_mips_elf_final_write_processing
9009#define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
103186c6
MM
9010#define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9011#define elf_backend_create_dynamic_sections \
9012 _bfd_mips_elf_create_dynamic_sections
9013#define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9014#define elf_backend_adjust_dynamic_symbol \
9015 _bfd_mips_elf_adjust_dynamic_symbol
9016#define elf_backend_always_size_sections \
9017 _bfd_mips_elf_always_size_sections
9018#define elf_backend_size_dynamic_sections \
9019 _bfd_mips_elf_size_dynamic_sections
9020#define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9021#define elf_backend_link_output_symbol_hook \
9022 _bfd_mips_elf_link_output_symbol_hook
9023#define elf_backend_finish_dynamic_symbol \
9024 _bfd_mips_elf_finish_dynamic_symbol
9025#define elf_backend_finish_dynamic_sections \
9026 _bfd_mips_elf_finish_dynamic_sections
9027#define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9028#define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9029
9030#define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9031#define elf_backend_plt_header_size 0
252b5132
RH
9032
9033#define bfd_elf32_bfd_is_local_label_name \
9034 mips_elf_is_local_label_name
9035#define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9036#define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9037#define bfd_elf32_bfd_link_hash_table_create \
103186c6
MM
9038 _bfd_mips_elf_link_hash_table_create
9039#define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
252b5132
RH
9040#define bfd_elf32_bfd_copy_private_bfd_data \
9041 _bfd_mips_elf_copy_private_bfd_data
9042#define bfd_elf32_bfd_merge_private_bfd_data \
9043 _bfd_mips_elf_merge_private_bfd_data
9044#define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9045#define bfd_elf32_bfd_print_private_bfd_data \
9046 _bfd_mips_elf_print_private_bfd_data
252b5132 9047#include "elf32-target.h"
This page took 0.490145 seconds and 4 git commands to generate.