Fix typo
[deliverable/binutils-gdb.git] / bfd / elf32-s390.c
CommitLineData
a85d7ed0 1/* IBM S/390-specific support for 32-bit ELF
7898deda 2 Copyright 2000, 2001 Free Software Foundation, Inc.
a85d7ed0
NC
3 Contributed by Carl B. Pedersen and Martin Schwidefsky.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22#include "bfd.h"
23#include "sysdep.h"
24#include "bfdlink.h"
25#include "libbfd.h"
26#include "elf-bfd.h"
27
28static reloc_howto_type *elf_s390_reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30static void elf_s390_info_to_howto
31 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
32static boolean elf_s390_is_local_label_name PARAMS ((bfd *, const char *));
33static struct bfd_hash_entry *elf_s390_link_hash_newfunc
34 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
35static struct bfd_link_hash_table *elf_s390_link_hash_table_create
36 PARAMS ((bfd *));
37static boolean elf_s390_check_relocs
38 PARAMS ((bfd *, struct bfd_link_info *, asection *,
39 const Elf_Internal_Rela *));
5a65713f
AJ
40static asection *elf_s390_gc_mark_hook
41 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
42 struct elf_link_hash_entry *, Elf_Internal_Sym *sym));
43static boolean elf_s390_gc_sweep_hook
44 PARAMS ((bfd *, struct bfd_link_info *, asection *,
45 const Elf_Internal_Rela *));
a85d7ed0
NC
46static boolean elf_s390_adjust_dynamic_symbol
47 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
48static boolean elf_s390_size_dynamic_sections
49 PARAMS ((bfd *, struct bfd_link_info *));
50static boolean elf_s390_relocate_section
51 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
52 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
53static boolean elf_s390_finish_dynamic_symbol
54 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
55 Elf_Internal_Sym *));
56static boolean elf_s390_finish_dynamic_sections
57 PARAMS ((bfd *, struct bfd_link_info *));
5a65713f 58static boolean elf_s390_object_p PARAMS ((bfd *));
29c2fb7c 59static enum elf_reloc_type_class elf_s390_reloc_type_class PARAMS ((int));
a85d7ed0
NC
60
61#define USE_RELA 1 /* We want RELA relocations, not REL. */
62
63#include "elf/s390.h"
64
65/* The relocation "howto" table. */
66
67static reloc_howto_type elf_howto_table[] =
68{
69 HOWTO (R_390_NONE, /* type */
70 0, /* rightshift */
71 0, /* size (0 = byte, 1 = short, 2 = long) */
72 0, /* bitsize */
73 false, /* pc_relative */
74 0, /* bitpos */
75 complain_overflow_dont, /* complain_on_overflow */
76 bfd_elf_generic_reloc, /* special_function */
77 "R_390_NONE", /* name */
78 false, /* partial_inplace */
79 0, /* src_mask */
80 0, /* dst_mask */
81 false), /* pcrel_offset */
82
83 HOWTO(R_390_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false),
84 HOWTO(R_390_12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false),
85 HOWTO(R_390_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false),
86 HOWTO(R_390_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false),
87 HOWTO(R_390_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true),
88 HOWTO(R_390_GOT12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false),
89 HOWTO(R_390_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false),
90 HOWTO(R_390_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true),
91 HOWTO(R_390_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", false, 0,0xffffffff, false),
92 HOWTO(R_390_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT",false, 0,0xffffffff, false),
93 HOWTO(R_390_JMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT",false, 0,0xffffffff, false),
94 HOWTO(R_390_RELATIVE, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE",false, 0,0xffffffff, false),
95 HOWTO(R_390_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF", false, 0,0xffffffff, false),
96 HOWTO(R_390_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,0xffffffff, true),
97 HOWTO(R_390_GOT16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false),
98 HOWTO(R_390_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true),
99 HOWTO(R_390_PC16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true),
100 HOWTO(R_390_PLT16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
101};
102
103/* GNU extension to record C++ vtable hierarchy. */
104static reloc_howto_type elf32_s390_vtinherit_howto =
105 HOWTO (R_390_GNU_VTINHERIT, 0,2,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false);
106static reloc_howto_type elf32_s390_vtentry_howto =
107 HOWTO (R_390_GNU_VTENTRY, 0,2,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false);
108
109static reloc_howto_type *
110elf_s390_reloc_type_lookup (abfd, code)
111 bfd *abfd ATTRIBUTE_UNUSED;
112 bfd_reloc_code_real_type code;
113{
114 switch (code) {
115 case BFD_RELOC_NONE:
116 return &elf_howto_table[(int) R_390_NONE];
117 case BFD_RELOC_8:
118 return &elf_howto_table[(int) R_390_8];
119 case BFD_RELOC_390_12:
120 return &elf_howto_table[(int) R_390_12];
121 case BFD_RELOC_16:
122 return &elf_howto_table[(int) R_390_16];
123 case BFD_RELOC_32:
124 return &elf_howto_table[(int) R_390_32];
125 case BFD_RELOC_CTOR:
126 return &elf_howto_table[(int) R_390_32];
127 case BFD_RELOC_32_PCREL:
128 return &elf_howto_table[(int) R_390_PC32];
129 case BFD_RELOC_390_GOT12:
130 return &elf_howto_table[(int) R_390_GOT12];
131 case BFD_RELOC_32_GOT_PCREL:
132 return &elf_howto_table[(int) R_390_GOT32];
133 case BFD_RELOC_390_PLT32:
134 return &elf_howto_table[(int) R_390_PLT32];
135 case BFD_RELOC_390_COPY:
136 return &elf_howto_table[(int) R_390_COPY];
137 case BFD_RELOC_390_GLOB_DAT:
138 return &elf_howto_table[(int) R_390_GLOB_DAT];
139 case BFD_RELOC_390_JMP_SLOT:
140 return &elf_howto_table[(int) R_390_JMP_SLOT];
141 case BFD_RELOC_390_RELATIVE:
142 return &elf_howto_table[(int) R_390_RELATIVE];
143 case BFD_RELOC_32_GOTOFF:
144 return &elf_howto_table[(int) R_390_GOTOFF];
145 case BFD_RELOC_390_GOTPC:
146 return &elf_howto_table[(int) R_390_GOTPC];
147 case BFD_RELOC_390_GOT16:
148 return &elf_howto_table[(int) R_390_GOT16];
149 case BFD_RELOC_16_PCREL:
150 return &elf_howto_table[(int) R_390_PC16];
151 case BFD_RELOC_390_PC16DBL:
152 return &elf_howto_table[(int) R_390_PC16DBL];
153 case BFD_RELOC_390_PLT16DBL:
154 return &elf_howto_table[(int) R_390_PLT16DBL];
155 case BFD_RELOC_VTABLE_INHERIT:
156 return &elf32_s390_vtinherit_howto;
157 case BFD_RELOC_VTABLE_ENTRY:
158 return &elf32_s390_vtentry_howto;
159 default:
160 break;
161 }
162 return 0;
163}
164
165/* We need to use ELF32_R_TYPE so we have our own copy of this function,
166 and elf32-s390.c has its own copy. */
167
168static void
169elf_s390_info_to_howto (abfd, cache_ptr, dst)
170 bfd *abfd ATTRIBUTE_UNUSED;
171 arelent *cache_ptr;
172 Elf_Internal_Rela *dst;
173{
174 switch (ELF32_R_TYPE(dst->r_info))
175 {
176 case R_390_GNU_VTINHERIT:
177 cache_ptr->howto = &elf32_s390_vtinherit_howto;
178 break;
179
180 case R_390_GNU_VTENTRY:
181 cache_ptr->howto = &elf32_s390_vtentry_howto;
182 break;
183
184 default:
185 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_390_max);
186 cache_ptr->howto = &elf_howto_table[ELF32_R_TYPE(dst->r_info)];
187 }
188}
189
190static boolean
191elf_s390_is_local_label_name (abfd, name)
192 bfd *abfd;
193 const char *name;
194{
195 if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L'))
196 return true;
197
198 return _bfd_elf_is_local_label_name (abfd, name);
199}
200
201/* Functions for the 390 ELF linker. */
202
203/* The name of the dynamic interpreter. This is put in the .interp
204 section. */
205
206#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
207
208/* The nop opcode we use. */
209
210#define s390_NOP 0x07070707
211
212
213/* The size in bytes of the first entry in the procedure linkage table. */
214#define PLT_FIRST_ENTRY_SIZE 32
215/* The size in bytes of an entry in the procedure linkage table. */
216#define PLT_ENTRY_SIZE 32
217
218#define GOT_ENTRY_SIZE 4
219
220/* The first three entries in a procedure linkage table are reserved,
221 and the initial contents are unimportant (we zero them out).
222 Subsequent entries look like this. See the SVR4 ABI 386
223 supplement to see how this works. */
224
225/* For the s390, simple addr offset can only be 0 - 4096.
226 To use the full 2 GB address space, several instructions
227 are needed to load an address in a register and execute
228 a branch( or just saving the address)
229
230 Furthermore, only r 0 and 1 are free to use!!! */
231
232/* The first 3 words in the GOT are then reserved.
233 Word 0 is the address of the dynamic table.
234 Word 1 is a pointer to a structure describing the object
235 Word 2 is used to point to the loader entry address.
236
237 The code for position independand PLT entries looks like this:
238
239 r12 holds addr of the current GOT at entry to the PLT
240
241 The GOT holds the address in the PLT to be executed.
242 The loader then gets:
243 24(15) = Pointer to the structure describing the object.
244 28(15) = Offset in symbol table
245
246 The loader must then find the module where the function is
247 and insert the address in the GOT.
248
249 Note: 390 can only address +- 64 K relative.
250 We check if offset > 65536, then make a relative branch -64xxx
251 back to a previous defined branch
252
253PLT1: BASR 1,0 # 2 bytes
254 L 1,22(1) # 4 bytes Load offset in GOT in r 1
255 L 1,(1,12) # 4 bytes Load address from GOT in r1
256 BCR 15,1 # 2 bytes Jump to address
257RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
258 L 1,14(1) # 4 bytes Load offset in symol table in r1
259 BRC 15,-x # 4 bytes Jump to start of PLT
260 .word 0 # 2 bytes filler
261 .long ? # 4 bytes offset in GOT
262 .long ? # 4 bytes offset into symbol table
263
264 This was the general case. There are two additional, optimizes PLT
265 definitions. One for GOT offsets < 4096 and one for GOT offsets < 32768.
266 First the one for GOT offsets < 4096:
267
268PLT1: L 1,<offset>(12) # 4 bytes Load address from GOT in R1
269 BCR 15,1 # 2 bytes Jump to address
270 .word 0,0,0 # 6 bytes filler
271RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
272 L 1,14(1) # 4 bytes Load offset in symbol table in r1
273 BRC 15,-x # 4 bytes Jump to start of PLT
274 .word 0,0,0 # 6 bytes filler
275 .long ? # 4 bytes offset into symbol table
276
277 Second the one for GOT offsets < 32768:
278
279PLT1: LHI 1,<offset> # 4 bytes Load offset in GOT to r1
280 L 1,(1,12) # 4 bytes Load address from GOT to r1
281 BCR 15,1 # 2 bytes Jump to address
282 .word 0 # 2 bytes filler
283RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
284 L 1,14(1) # 4 bytes Load offset in symbol table in r1
285 BRC 15,-x # 4 bytes Jump to start of PLT
286 .word 0,0,0 # 6 bytes filler
287 .long ? # 4 bytes offset into symbol table
288
289Total = 32 bytes per PLT entry
290
291 The code for static build PLT entries looks like this:
292
293PLT1: BASR 1,0 # 2 bytes
294 L 1,22(1) # 4 bytes Load address of GOT entry
295 L 1,0(0,1) # 4 bytes Load address from GOT in r1
296 BCR 15,1 # 2 bytes Jump to address
297RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
298 L 1,14(1) # 4 bytes Load offset in symbol table in r1
299 BRC 15,-x # 4 bytes Jump to start of PLT
300 .word 0 # 2 bytes filler
301 .long ? # 4 bytes address of GOT entry
302 .long ? # 4 bytes offset into symbol table */
303
304#define PLT_PIC_ENTRY_WORD0 0x0d105810
305#define PLT_PIC_ENTRY_WORD1 0x10165811
306#define PLT_PIC_ENTRY_WORD2 0xc00007f1
307#define PLT_PIC_ENTRY_WORD3 0x0d105810
308#define PLT_PIC_ENTRY_WORD4 0x100ea7f4
309
310#define PLT_PIC12_ENTRY_WORD0 0x5810c000
311#define PLT_PIC12_ENTRY_WORD1 0x07f10000
312#define PLT_PIC12_ENTRY_WORD2 0x00000000
313#define PLT_PIC12_ENTRY_WORD3 0x0d105810
314#define PLT_PIC12_ENTRY_WORD4 0x100ea7f4
315
316#define PLT_PIC16_ENTRY_WORD0 0xa7180000
317#define PLT_PIC16_ENTRY_WORD1 0x5811c000
318#define PLT_PIC16_ENTRY_WORD2 0x07f10000
319#define PLT_PIC16_ENTRY_WORD3 0x0d105810
320#define PLT_PIC16_ENTRY_WORD4 0x100ea7f4
321
322#define PLT_ENTRY_WORD0 0x0d105810
323#define PLT_ENTRY_WORD1 0x10165810
324#define PLT_ENTRY_WORD2 0x100007f1
325#define PLT_ENTRY_WORD3 0x0d105810
326#define PLT_ENTRY_WORD4 0x100ea7f4
327
328/* The first PLT entry pushes the offset into the symbol table
329 from R1 onto the stack at 8(15) and the loader object info
330 at 12(15), loads the loader address in R1 and jumps to it. */
331
332/* The first entry in the PLT for PIC code:
333
334PLT0:
335 ST 1,28(15) # R1 has offset into symbol table
336 L 1,4(12) # Get loader ino(object struct address)
337 ST 1,24(15) # Store address
338 L 1,8(12) # Entry address of loader in R1
339 BR 1 # Jump to loader
340
341 The first entry in the PLT for static code:
342
343PLT0:
344 ST 1,28(15) # R1 has offset into symbol table
345 BASR 1,0
346 L 1,18(0,1) # Get address of GOT
347 MVC 24(4,15),4(1) # Move loader ino to stack
348 L 1,8(1) # Get address of loader
349 BR 1 # Jump to loader
350 .word 0 # filler
351 .long got # address of GOT */
352
353#define PLT_PIC_FIRST_ENTRY_WORD0 0x5010f01c
354#define PLT_PIC_FIRST_ENTRY_WORD1 0x5810c004
355#define PLT_PIC_FIRST_ENTRY_WORD2 0x5010f018
356#define PLT_PIC_FIRST_ENTRY_WORD3 0x5810c008
357#define PLT_PIC_FIRST_ENTRY_WORD4 0x07f10000
358
359#define PLT_FIRST_ENTRY_WORD0 0x5010f01c
360#define PLT_FIRST_ENTRY_WORD1 0x0d105810
361#define PLT_FIRST_ENTRY_WORD2 0x1012D203
362#define PLT_FIRST_ENTRY_WORD3 0xf0181004
363#define PLT_FIRST_ENTRY_WORD4 0x58101008
364#define PLT_FIRST_ENTRY_WORD5 0x07f10000
365
366/* The s390 linker needs to keep track of the number of relocs that it
367 decides to copy in check_relocs for each symbol. This is so that
368 it can discard PC relative relocs if it doesn't need them when
369 linking with -Bsymbolic. We store the information in a field
370 extending the regular ELF linker hash table. */
371
372/* This structure keeps track of the number of PC relative relocs we
373 have copied for a given symbol. */
374
375struct elf_s390_pcrel_relocs_copied
376{
377 /* Next section. */
378 struct elf_s390_pcrel_relocs_copied *next;
379 /* A section in dynobj. */
380 asection *section;
381 /* Number of relocs copied in this section. */
382 bfd_size_type count;
383};
384
385/* s390 ELF linker hash entry. */
386
387struct elf_s390_link_hash_entry
388{
389 struct elf_link_hash_entry root;
390
391 /* Number of PC relative relocs copied for this symbol. */
392 struct elf_s390_pcrel_relocs_copied *pcrel_relocs_copied;
393};
394
395/* s390 ELF linker hash table. */
396
397struct elf_s390_link_hash_table
398{
399 struct elf_link_hash_table root;
400};
401
402/* Declare this now that the above structures are defined. */
403
404static boolean elf_s390_discard_copies
405 PARAMS ((struct elf_s390_link_hash_entry *, PTR));
406
407/* Traverse an s390 ELF linker hash table. */
408
409#define elf_s390_link_hash_traverse(table, func, info) \
410 (elf_link_hash_traverse \
411 (&(table)->root, \
412 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
413 (info)))
414
415/* Get the s390 ELF linker hash table from a link_info structure. */
416
417#define elf_s390_hash_table(p) \
418 ((struct elf_s390_link_hash_table *) ((p)->hash))
419
420/* Create an entry in an s390 ELF linker hash table. */
421
422static struct bfd_hash_entry *
423elf_s390_link_hash_newfunc (entry, table, string)
424 struct bfd_hash_entry *entry;
425 struct bfd_hash_table *table;
426 const char *string;
427{
428 struct elf_s390_link_hash_entry *ret =
429 (struct elf_s390_link_hash_entry *) entry;
430
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (ret == (struct elf_s390_link_hash_entry *) NULL)
434 ret = ((struct elf_s390_link_hash_entry *)
435 bfd_hash_allocate (table,
436 sizeof (struct elf_s390_link_hash_entry)));
437 if (ret == (struct elf_s390_link_hash_entry *) NULL)
438 return (struct bfd_hash_entry *) ret;
439
440 /* Call the allocation method of the superclass. */
441 ret = ((struct elf_s390_link_hash_entry *)
442 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
443 table, string));
444 if (ret != (struct elf_s390_link_hash_entry *) NULL)
445 {
446 ret->pcrel_relocs_copied = NULL;
447 }
448
449 return (struct bfd_hash_entry *) ret;
450}
451
452/* Create an s390 ELF linker hash table. */
453
454static struct bfd_link_hash_table *
455elf_s390_link_hash_table_create (abfd)
456 bfd *abfd;
457{
458 struct elf_s390_link_hash_table *ret;
459
460 ret = ((struct elf_s390_link_hash_table *)
461 bfd_alloc (abfd, sizeof (struct elf_s390_link_hash_table)));
462 if (ret == (struct elf_s390_link_hash_table *) NULL)
463 return NULL;
464
465 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
466 elf_s390_link_hash_newfunc))
467 {
468 bfd_release (abfd, ret);
469 return NULL;
470 }
471
472 return &ret->root.root;
473}
474
475
476/* Look through the relocs for a section during the first phase, and
477 allocate space in the global offset table or procedure linkage
478 table. */
479
480static boolean
481elf_s390_check_relocs (abfd, info, sec, relocs)
482 bfd *abfd;
483 struct bfd_link_info *info;
484 asection *sec;
485 const Elf_Internal_Rela *relocs;
486{
487 bfd *dynobj;
488 Elf_Internal_Shdr *symtab_hdr;
489 struct elf_link_hash_entry **sym_hashes;
490 bfd_signed_vma *local_got_refcounts;
491 const Elf_Internal_Rela *rel;
492 const Elf_Internal_Rela *rel_end;
493 asection *sgot;
494 asection *srelgot;
495 asection *sreloc;
496
497 if (info->relocateable)
498 return true;
499
500 dynobj = elf_hash_table (info)->dynobj;
501 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
502 sym_hashes = elf_sym_hashes (abfd);
503 local_got_refcounts = elf_local_got_offsets (abfd);
504
505 sgot = NULL;
506 srelgot = NULL;
507 sreloc = NULL;
508
509 rel_end = relocs + sec->reloc_count;
510 for (rel = relocs; rel < rel_end; rel++)
511 {
512 unsigned long r_symndx;
513 struct elf_link_hash_entry *h;
514
515 r_symndx = ELF32_R_SYM (rel->r_info);
516
517 if (r_symndx < symtab_hdr->sh_info)
518 h = NULL;
519 else
520 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
521
522 /* Some relocs require a global offset table. */
523 if (dynobj == NULL)
524 {
525 switch (ELF32_R_TYPE (rel->r_info))
526 {
527 case R_390_GOT12:
528 case R_390_GOT16:
529 case R_390_GOT32:
530 case R_390_GOTOFF:
531 case R_390_GOTPC:
532 elf_hash_table (info)->dynobj = dynobj = abfd;
533 if (! _bfd_elf_create_got_section (dynobj, info))
534 return false;
535 break;
536
537 default:
538 break;
539 }
540 }
541
542
543 switch (ELF32_R_TYPE (rel->r_info))
544 {
545 case R_390_GOT12:
546 case R_390_GOT16:
547 case R_390_GOT32:
548 /* This symbol requires a global offset table entry. */
549
550 if (sgot == NULL)
551 {
552 sgot = bfd_get_section_by_name (dynobj, ".got");
553 BFD_ASSERT (sgot != NULL);
554 }
555
556
557 if (srelgot == NULL
558 && (h != NULL || info->shared))
559 {
560 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
561 if (srelgot == NULL)
562 {
563 srelgot = bfd_make_section (dynobj, ".rela.got");
564 if (srelgot == NULL
565 || ! bfd_set_section_flags (dynobj, srelgot,
566 (SEC_ALLOC
567 | SEC_LOAD
568 | SEC_HAS_CONTENTS
569 | SEC_IN_MEMORY
570 | SEC_LINKER_CREATED
571 | SEC_READONLY))
572 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
573 return false;
574 }
575 }
576
577 if (h != NULL)
578 {
579 if (h->got.refcount == -1)
580 {
581 h->got.refcount = 1;
582
583 /* Make sure this symbol is output as a dynamic symbol. */
584 if (h->dynindx == -1)
585 {
586 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
587 return false;
588 }
589
590 sgot->_raw_size += 4;
591 srelgot->_raw_size += sizeof (Elf32_External_Rela);
592 }
593 else
594 h->got.refcount += 1;
595 }
596 else
597 {
598 /* This is a global offset table entry for a local symbol. */
599 if (local_got_refcounts == NULL)
600 {
601 size_t size;
602
603 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
604 local_got_refcounts = (bfd_signed_vma *)
605 bfd_alloc (abfd, size);
606 if (local_got_refcounts == NULL)
607 return false;
608 elf_local_got_refcounts (abfd) = local_got_refcounts;
609 memset (local_got_refcounts, -1, size);
610 }
611 if (local_got_refcounts[r_symndx] == -1)
612 {
613 local_got_refcounts[r_symndx] = 1;
614
615 sgot->_raw_size += 4;
616 if (info->shared)
617 {
618 /* If we are generating a shared object, we need to
619 output a R_390_RELATIVE reloc so that the dynamic
620 linker can adjust this GOT entry. */
621 srelgot->_raw_size += sizeof (Elf32_External_Rela);
622 }
623 }
624 else
625 local_got_refcounts[r_symndx] += 1;
626 }
627 break;
628
629 case R_390_PLT16DBL:
630 case R_390_PLT32:
631 /* This symbol requires a procedure linkage table entry. We
632 actually build the entry in adjust_dynamic_symbol,
633 because this might be a case of linking PIC code which is
634 never referenced by a dynamic object, in which case we
635 don't need to generate a procedure linkage table entry
636 after all. */
637
638 /* If this is a local symbol, we resolve it directly without
639 creating a procedure linkage table entry. */
640 if (h == NULL)
641 continue;
642
643 if (h->plt.refcount == -1)
644 {
645 h->plt.refcount = 1;
646 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
647 }
648 else
649 h->plt.refcount += 1;
650 break;
651
652 case R_390_8:
653 case R_390_16:
654 case R_390_32:
655 case R_390_PC16:
656 case R_390_PC16DBL:
657 case R_390_PC32:
658 if (h != NULL)
659 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
660
661 /* If we are creating a shared library, and this is a reloc
662 against a global symbol, or a non PC relative reloc
663 against a local symbol, then we need to copy the reloc
664 into the shared library. However, if we are linking with
665 -Bsymbolic, we do not need to copy a reloc against a
666 global symbol which is defined in an object we are
667 including in the link (i.e., DEF_REGULAR is set). At
668 this point we have not seen all the input files, so it is
669 possible that DEF_REGULAR is not set now but will be set
670 later (it is never cleared). We account for that
671 possibility below by storing information in the
672 pcrel_relocs_copied field of the hash table entry. */
673 if (info->shared
674 && (sec->flags & SEC_ALLOC) != 0
675 && ((ELF32_R_TYPE (rel->r_info) != R_390_PC16 &&
676 ELF32_R_TYPE (rel->r_info) != R_390_PC16DBL &&
677 ELF32_R_TYPE (rel->r_info) != R_390_PC32)
678 || (h != NULL
679 && (! info->symbolic
680 || (h->elf_link_hash_flags
681 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
682 {
683 /* When creating a shared object, we must copy these
684 reloc types into the output file. We create a reloc
685 section in dynobj and make room for this reloc. */
686 if (sreloc == NULL)
687 {
688 const char *name;
689
690 name = (bfd_elf_string_from_elf_section
691 (abfd,
692 elf_elfheader (abfd)->e_shstrndx,
693 elf_section_data (sec)->rel_hdr.sh_name));
694 if (name == NULL)
695 return false;
696
697 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
698 && strcmp (bfd_get_section_name (abfd, sec),
699 name + 5) == 0);
700
701 sreloc = bfd_get_section_by_name (dynobj, name);
702 if (sreloc == NULL)
703 {
704 flagword flags;
705
706 sreloc = bfd_make_section (dynobj, name);
707 flags = (SEC_HAS_CONTENTS | SEC_READONLY
708 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
709 if ((sec->flags & SEC_ALLOC) != 0)
710 flags |= SEC_ALLOC | SEC_LOAD;
711 if (sreloc == NULL
712 || ! bfd_set_section_flags (dynobj, sreloc, flags)
713 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
714 return false;
715 }
29c2fb7c
AJ
716 if (sec->flags & SEC_READONLY)
717 info->flags |= DF_TEXTREL;
a85d7ed0
NC
718 }
719
720 sreloc->_raw_size += sizeof (Elf32_External_Rela);
721
722 /* If we are linking with -Bsymbolic, and this is a
723 global symbol, we count the number of PC relative
724 relocations we have entered for this symbol, so that
725 we can discard them again if the symbol is later
726 defined by a regular object. Note that this function
727 is only called if we are using an elf_s390 linker
728 hash table, which means that h is really a pointer to
729 an elf_s390_link_hash_entry. */
730 if (h != NULL
731 && (ELF32_R_TYPE (rel->r_info) == R_390_PC16 ||
732 ELF32_R_TYPE (rel->r_info) == R_390_PC16DBL ||
733 ELF32_R_TYPE (rel->r_info) == R_390_PC32))
734 {
735 struct elf_s390_link_hash_entry *eh;
736 struct elf_s390_pcrel_relocs_copied *p;
737
738 eh = (struct elf_s390_link_hash_entry *) h;
739
740 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
741 if (p->section == sreloc)
742 break;
743
744 if (p == NULL)
745 {
746 p = ((struct elf_s390_pcrel_relocs_copied *)
747 bfd_alloc (dynobj, sizeof *p));
748 if (p == NULL)
749 return false;
750 p->next = eh->pcrel_relocs_copied;
751 eh->pcrel_relocs_copied = p;
752 p->section = sreloc;
753 p->count = 0;
754 }
755
756 ++p->count;
757 }
758 }
759
760 break;
761
762 /* This relocation describes the C++ object vtable hierarchy.
763 Reconstruct it for later use during GC. */
764 case R_390_GNU_VTINHERIT:
765 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
766 return false;
767 break;
768
769 /* This relocation describes which C++ vtable entries are actually
770 used. Record for later use during GC. */
771 case R_390_GNU_VTENTRY:
772 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
773 return false;
774 break;
775
776 default:
777 break;
778 }
779 }
780
781 return true;
782}
783
784/* Return the section that should be marked against GC for a given
785 relocation. */
786
787static asection *
788elf_s390_gc_mark_hook (abfd, info, rel, h, sym)
789 bfd *abfd;
790 struct bfd_link_info *info ATTRIBUTE_UNUSED;
791 Elf_Internal_Rela *rel;
792 struct elf_link_hash_entry *h;
793 Elf_Internal_Sym *sym;
794{
795 if (h != NULL)
796 {
797 switch (ELF32_R_TYPE (rel->r_info))
798 {
799 case R_390_GNU_VTINHERIT:
800 case R_390_GNU_VTENTRY:
801 break;
802
803 default:
804 switch (h->root.type)
805 {
806 case bfd_link_hash_defined:
807 case bfd_link_hash_defweak:
808 return h->root.u.def.section;
809
810 case bfd_link_hash_common:
811 return h->root.u.c.p->section;
812
813 default:
814 break;
815 }
816 }
817 }
818 else
819 {
820 if (!(elf_bad_symtab (abfd)
821 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
822 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
823 && sym->st_shndx != SHN_COMMON))
824 {
825 return bfd_section_from_elf_index (abfd, sym->st_shndx);
826 }
827 }
828
829 return NULL;
830}
831
832/* Update the got entry reference counts for the section being removed. */
833
834static boolean
835elf_s390_gc_sweep_hook (abfd, info, sec, relocs)
836 bfd *abfd ATTRIBUTE_UNUSED;
837 struct bfd_link_info *info ATTRIBUTE_UNUSED;
838 asection *sec ATTRIBUTE_UNUSED;
839 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
840{
841 Elf_Internal_Shdr *symtab_hdr;
842 struct elf_link_hash_entry **sym_hashes;
843 bfd_signed_vma *local_got_refcounts;
844 const Elf_Internal_Rela *rel, *relend;
845 unsigned long r_symndx;
846 struct elf_link_hash_entry *h;
847 bfd *dynobj;
848 asection *sgot;
849 asection *srelgot;
850
851 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
852 sym_hashes = elf_sym_hashes (abfd);
853 local_got_refcounts = elf_local_got_refcounts (abfd);
854
855 dynobj = elf_hash_table (info)->dynobj;
856 if (dynobj == NULL)
857 return true;
858
859 sgot = bfd_get_section_by_name (dynobj, ".got");
860 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
861
862 relend = relocs + sec->reloc_count;
863 for (rel = relocs; rel < relend; rel++)
864 switch (ELF32_R_TYPE (rel->r_info))
865 {
866 case R_390_GOT12:
867 case R_390_GOT16:
868 case R_390_GOT32:
869 case R_390_GOTOFF:
870 case R_390_GOTPC:
871 r_symndx = ELF32_R_SYM (rel->r_info);
872 if (r_symndx >= symtab_hdr->sh_info)
873 {
874 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
875 if (h->got.refcount > 0)
876 {
877 h->got.refcount -= 1;
878 if (h->got.refcount == 0)
879 {
880 sgot->_raw_size -= 4;
881 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
882 }
883 }
884 }
885 else if (local_got_refcounts != NULL)
886 {
887 if (local_got_refcounts[r_symndx] > 0)
888 {
889 local_got_refcounts[r_symndx] -= 1;
890 if (local_got_refcounts[r_symndx] == 0)
891 {
892 sgot->_raw_size -= 4;
893 if (info->shared)
894 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
895 }
896 }
897 }
898 break;
899
900 case R_390_PLT16DBL:
901 case R_390_PLT32:
902 r_symndx = ELF32_R_SYM (rel->r_info);
903 if (r_symndx >= symtab_hdr->sh_info)
904 {
905 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
906 if (h->plt.refcount > 0)
907 h->plt.refcount -= 1;
908 }
909 break;
910
911 default:
912 break;
913 }
914
915 return true;
916}
917
918/* Adjust a symbol defined by a dynamic object and referenced by a
919 regular object. The current definition is in some section of the
920 dynamic object, but we're not including those sections. We have to
921 change the definition to something the rest of the link can
922 understand. */
923
924static boolean
925elf_s390_adjust_dynamic_symbol (info, h)
926 struct bfd_link_info *info;
927 struct elf_link_hash_entry *h;
928{
929 bfd *dynobj;
930 asection *s;
931 unsigned int power_of_two;
932
933 dynobj = elf_hash_table (info)->dynobj;
934
935 /* Make sure we know what is going on here. */
936 BFD_ASSERT (dynobj != NULL
937 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
938 || h->weakdef != NULL
939 || ((h->elf_link_hash_flags
940 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
941 && (h->elf_link_hash_flags
942 & ELF_LINK_HASH_REF_REGULAR) != 0
943 && (h->elf_link_hash_flags
944 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
945
946 /* If this is a function, put it in the procedure linkage table. We
947 will fill in the contents of the procedure linkage table later
948 (although we could actually do it here). */
949 if (h->type == STT_FUNC
950 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
951 {
952 if ((! info->shared
953 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
954 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
955 || (info->shared && h->plt.refcount <= 0))
956 {
957 /* This case can occur if we saw a PLT32 reloc in an input
958 file, but the symbol was never referred to by a dynamic
959 object, or if all references were garbage collected. In
960 such a case, we don't actually need to build a procedure
961 linkage table, and we can just do a PC32 reloc instead. */
962 h->plt.offset = (bfd_vma) -1;
963 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
964 return true;
965 }
966
967 /* Make sure this symbol is output as a dynamic symbol. */
968 if (h->dynindx == -1)
969 {
970 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
971 return false;
972 }
973
974 s = bfd_get_section_by_name (dynobj, ".plt");
975 BFD_ASSERT (s != NULL);
976
977 /* The first entry in .plt is reserved. */
978 if (s->_raw_size == 0)
979 s->_raw_size = PLT_FIRST_ENTRY_SIZE;
980
981 /* If this symbol is not defined in a regular file, and we are
982 not generating a shared library, then set the symbol to this
983 location in the .plt. This is required to make function
984 pointers compare as equal between the normal executable and
985 the shared library. */
986 if (! info->shared
987 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
988 {
989 h->root.u.def.section = s;
990 h->root.u.def.value = s->_raw_size;
991 }
992
993 h->plt.offset = s->_raw_size;
994
995 /* Make room for this entry. */
996 s->_raw_size += PLT_ENTRY_SIZE;
997
998 /* We also need to make an entry in the .got.plt section, which
999 will be placed in the .got section by the linker script. */
1000 s = bfd_get_section_by_name (dynobj, ".got.plt");
1001 BFD_ASSERT (s != NULL);
1002 s->_raw_size += GOT_ENTRY_SIZE;
1003
1004 /* We also need to make an entry in the .rela.plt section. */
1005 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1006 BFD_ASSERT (s != NULL);
1007 s->_raw_size += sizeof (Elf32_External_Rela);
1008
1009 return true;
1010 }
1011
1012 /* If this is a weak symbol, and there is a real definition, the
1013 processor independent code will have arranged for us to see the
1014 real definition first, and we can just use the same value. */
1015 if (h->weakdef != NULL)
1016 {
1017 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1018 || h->weakdef->root.type == bfd_link_hash_defweak);
1019 h->root.u.def.section = h->weakdef->root.u.def.section;
1020 h->root.u.def.value = h->weakdef->root.u.def.value;
1021 return true;
1022 }
1023
1024 /* This is a reference to a symbol defined by a dynamic object which
1025 is not a function. */
1026
1027 /* If we are creating a shared library, we must presume that the
1028 only references to the symbol are via the global offset table.
1029 For such cases we need not do anything here; the relocations will
1030 be handled correctly by relocate_section. */
1031 if (info->shared)
1032 return true;
1033
1034 /* If there are no references to this symbol that do not use the
1035 GOT, we don't need to generate a copy reloc. */
1036 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1037 return true;
1038
1039 /* We must allocate the symbol in our .dynbss section, which will
1040 become part of the .bss section of the executable. There will be
1041 an entry for this symbol in the .dynsym section. The dynamic
1042 object will contain position independent code, so all references
1043 from the dynamic object to this symbol will go through the global
1044 offset table. The dynamic linker will use the .dynsym entry to
1045 determine the address it must put in the global offset table, so
1046 both the dynamic object and the regular object will refer to the
1047 same memory location for the variable. */
1048
1049 s = bfd_get_section_by_name (dynobj, ".dynbss");
1050 BFD_ASSERT (s != NULL);
1051
1052 /* We must generate a R_390_COPY reloc to tell the dynamic linker
1053 to copy the initial value out of the dynamic object and into the
1054 runtime process image. We need to remember the offset into the
1055 .rel.bss section we are going to use. */
1056 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1057 {
1058 asection *srel;
1059
1060 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1061 BFD_ASSERT (srel != NULL);
1062 srel->_raw_size += sizeof (Elf32_External_Rela);
1063 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1064 }
1065
1066 /* We need to figure out the alignment required for this symbol. I
1067 have no idea how ELF linkers handle this. */
1068 power_of_two = bfd_log2 (h->size);
1069 if (power_of_two > 3)
1070 power_of_two = 3;
1071
1072 /* Apply the required alignment. */
1073 s->_raw_size = BFD_ALIGN (s->_raw_size,
1074 (bfd_size_type) (1 << power_of_two));
1075 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1076 {
1077 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1078 return false;
1079 }
1080
1081 /* Define the symbol as being at this point in the section. */
1082 h->root.u.def.section = s;
1083 h->root.u.def.value = s->_raw_size;
1084
1085 /* Increment the section size to make room for the symbol. */
1086 s->_raw_size += h->size;
1087
1088 return true;
1089}
1090
1091/* Set the sizes of the dynamic sections. */
1092
1093static boolean
1094elf_s390_size_dynamic_sections (output_bfd, info)
29c2fb7c 1095 bfd *output_bfd ATTRIBUTE_UNUSED;
a85d7ed0
NC
1096 struct bfd_link_info *info;
1097{
1098 bfd *dynobj;
1099 asection *s;
a85d7ed0
NC
1100 boolean relocs;
1101 boolean plt;
1102
1103 dynobj = elf_hash_table (info)->dynobj;
1104 BFD_ASSERT (dynobj != NULL);
1105
1106 if (elf_hash_table (info)->dynamic_sections_created)
1107 {
1108 /* Set the contents of the .interp section to the interpreter. */
1109 if (! info->shared)
1110 {
1111 s = bfd_get_section_by_name (dynobj, ".interp");
1112 BFD_ASSERT (s != NULL);
1113 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1114 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1115 }
1116 }
1117 else
1118 {
1119 /* We may have created entries in the .rela.got section.
1120 However, if we are not creating the dynamic sections, we will
1121 not actually use these entries. Reset the size of .rela.got,
1122 which will cause it to get stripped from the output file
1123 below. */
1124 s = bfd_get_section_by_name (dynobj, ".rela.got");
1125 if (s != NULL)
1126 s->_raw_size = 0;
1127 }
1128
1129 /* If this is a -Bsymbolic shared link, then we need to discard all
1130 PC relative relocs against symbols defined in a regular object.
1131 We allocated space for them in the check_relocs routine, but we
1132 will not fill them in in the relocate_section routine. */
1133 if (info->shared)
1134 elf_s390_link_hash_traverse (elf_s390_hash_table (info),
1135 elf_s390_discard_copies,
1136 (PTR) info);
1137
1138 /* The check_relocs and adjust_dynamic_symbol entry points have
1139 determined the sizes of the various dynamic sections. Allocate
1140 memory for them. */
1141 plt = false;
a85d7ed0
NC
1142 relocs = false;
1143 for (s = dynobj->sections; s != NULL; s = s->next)
1144 {
1145 const char *name;
1146 boolean strip;
1147
1148 if ((s->flags & SEC_LINKER_CREATED) == 0)
1149 continue;
1150
1151 /* It's OK to base decisions on the section name, because none
1152 of the dynobj section names depend upon the input files. */
1153 name = bfd_get_section_name (dynobj, s);
1154
1155 strip = false;
1156
1157 if (strcmp (name, ".plt") == 0)
1158 {
1159 if (s->_raw_size == 0)
1160 {
1161 /* Strip this section if we don't need it; see the
1162 comment below. */
1163 strip = true;
1164 }
1165 else
1166 {
1167 /* Remember whether there is a PLT. */
1168 plt = true;
1169 }
1170 }
1171 else if (strncmp (name, ".rela", 5) == 0)
1172 {
1173 if (s->_raw_size == 0)
1174 {
1175 /* If we don't need this section, strip it from the
1176 output file. This is to handle .rela.bss and
1177 .rel.plt. We must create it in
1178 create_dynamic_sections, because it must be created
1179 before the linker maps input sections to output
1180 sections. The linker does that before
1181 adjust_dynamic_symbol is called, and it is that
1182 function which decides whether anything needs to go
1183 into these sections. */
1184 strip = true;
1185 }
1186 else
1187 {
a85d7ed0
NC
1188 /* Remember whether there are any reloc sections other
1189 than .rela.plt. */
1190 if (strcmp (name, ".rela.plt") != 0)
29c2fb7c 1191 relocs = true;
a85d7ed0
NC
1192
1193 /* We use the reloc_count field as a counter if we need
1194 to copy relocs into the output file. */
1195 s->reloc_count = 0;
1196 }
1197 }
1198 else if (strncmp (name, ".got", 4) != 0)
1199 {
1200 /* It's not one of our sections, so don't allocate space. */
1201 continue;
1202 }
1203
1204 if (strip)
1205 {
1206 _bfd_strip_section_from_output (info, s);
1207 continue;
1208 }
1209
1210 /* Allocate memory for the section contents. */
1211 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1212 if (s->contents == NULL && s->_raw_size != 0)
1213 return false;
1214 }
1215
1216 if (elf_hash_table (info)->dynamic_sections_created)
1217 {
1218 /* Add some entries to the .dynamic section. We fill in the
1219 values later, in elf_s390_finish_dynamic_sections, but we
1220 must add the entries now so that we get the correct size for
1221 the .dynamic section. The DT_DEBUG entry is filled in by the
1222 dynamic linker and used by the debugger. */
1223 if (! info->shared)
1224 {
1225 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1226 return false;
1227 }
1228
1229 if (plt)
1230 {
1231 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1232 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1233 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1234 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1235 return false;
1236 }
1237
1238 if (relocs)
1239 {
1240 if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
1241 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
1242 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
1243 sizeof (Elf32_External_Rela)))
1244 return false;
1245 }
1246
29c2fb7c 1247 if ((info->flags & DF_TEXTREL) != 0)
a85d7ed0
NC
1248 {
1249 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1250 return false;
1251 info->flags |= DF_TEXTREL;
1252 }
1253 }
1254
1255 return true;
1256}
1257
1258/* This function is called via elf_s390_link_hash_traverse if we are
1259 creating a shared object with -Bsymbolic. It discards the space
1260 allocated to copy PC relative relocs against symbols which are
1261 defined in regular objects. We allocated space for them in the
1262 check_relocs routine, but we won't fill them in in the
1263 relocate_section routine. */
1264
1265/*ARGSUSED*/
1266static boolean
1267elf_s390_discard_copies (h, inf)
1268 struct elf_s390_link_hash_entry *h;
1269 PTR inf;
1270{
1271 struct elf_s390_pcrel_relocs_copied *s;
1272 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1273
1274 /* If a symbol has been forced local or we have found a regular
1275 definition for the symbolic link case, then we won't be needing
1276 any relocs. */
1277 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1278 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1279 || info->symbolic))
1280 {
1281 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1282 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
1283 }
1284 return true;
1285}
1286/* Relocate a 390 ELF section. */
1287
1288static boolean
1289elf_s390_relocate_section (output_bfd, info, input_bfd, input_section,
1290 contents, relocs, local_syms, local_sections)
1291 bfd *output_bfd;
1292 struct bfd_link_info *info;
1293 bfd *input_bfd;
1294 asection *input_section;
1295 bfd_byte *contents;
1296 Elf_Internal_Rela *relocs;
1297 Elf_Internal_Sym *local_syms;
1298 asection **local_sections;
1299{
1300 bfd *dynobj;
1301 Elf_Internal_Shdr *symtab_hdr;
1302 struct elf_link_hash_entry **sym_hashes;
1303 bfd_vma *local_got_offsets;
1304 asection *sgot;
1305 asection *splt;
1306 asection *sreloc;
1307 Elf_Internal_Rela *rel;
1308 Elf_Internal_Rela *relend;
1309
1310 dynobj = elf_hash_table (info)->dynobj;
1311 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1312 sym_hashes = elf_sym_hashes (input_bfd);
1313 local_got_offsets = elf_local_got_offsets (input_bfd);
1314
1315 sgot = NULL;
1316 splt = NULL;
1317 sreloc = NULL;
1318 if (dynobj != NULL)
1319 {
1320 splt = bfd_get_section_by_name (dynobj, ".plt");
1321 sgot = bfd_get_section_by_name (dynobj, ".got");
1322 }
1323
1324 rel = relocs;
1325 relend = relocs + input_section->reloc_count;
1326 for (; rel < relend; rel++)
1327 {
1328 int r_type;
1329 reloc_howto_type *howto;
1330 unsigned long r_symndx;
1331 struct elf_link_hash_entry *h;
1332 Elf_Internal_Sym *sym;
1333 asection *sec;
1334 bfd_vma relocation;
1335 bfd_reloc_status_type r;
1336
1337 r_type = ELF32_R_TYPE (rel->r_info);
1338 if (r_type == (int) R_390_GNU_VTINHERIT
1339 || r_type == (int) R_390_GNU_VTENTRY)
1340 continue;
1341 if (r_type < 0 || r_type >= (int) R_390_max)
1342 {
1343 bfd_set_error (bfd_error_bad_value);
1344 return false;
1345 }
1346 howto = elf_howto_table + r_type;
1347
1348 r_symndx = ELF32_R_SYM (rel->r_info);
1349
1350 if (info->relocateable)
1351 {
1352 /* This is a relocateable link. We don't have to change
1353 anything, unless the reloc is against a section symbol,
1354 in which case we have to adjust according to where the
1355 section symbol winds up in the output section. */
1356 if (r_symndx < symtab_hdr->sh_info)
1357 {
1358 sym = local_syms + r_symndx;
1359 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1360 {
1361 sec = local_sections[r_symndx];
1362 rel->r_addend += sec->output_offset + sym->st_value;
1363 }
1364 }
1365
1366 continue;
1367 }
1368
1369 /* This is a final link. */
1370 h = NULL;
1371 sym = NULL;
1372 sec = NULL;
1373 if (r_symndx < symtab_hdr->sh_info)
1374 {
1375 sym = local_syms + r_symndx;
1376 sec = local_sections[r_symndx];
1377 relocation = (sec->output_section->vma
1378 + sec->output_offset
1379 + sym->st_value);
1380 }
1381 else
1382 {
1383 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1384 while (h->root.type == bfd_link_hash_indirect
1385 || h->root.type == bfd_link_hash_warning)
1386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1387 if (h->root.type == bfd_link_hash_defined
1388 || h->root.type == bfd_link_hash_defweak)
1389 {
1390 sec = h->root.u.def.section;
1391 if (r_type == R_390_GOTPC
1392 || ((r_type == R_390_PLT16DBL ||
1393 r_type == R_390_PLT32)
1394 && splt != NULL
1395 && h->plt.offset != (bfd_vma) -1)
1396 || ((r_type == R_390_GOT12 ||
1397 r_type == R_390_GOT16 ||
1398 r_type == R_390_GOT32)
1399 && elf_hash_table (info)->dynamic_sections_created
1400 && (! info->shared
1401 || (! info->symbolic && h->dynindx != -1)
1402 || (h->elf_link_hash_flags
1403 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1404 || (info->shared
1405 && ((! info->symbolic && h->dynindx != -1)
1406 || (h->elf_link_hash_flags
1407 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1408 && ( r_type == R_390_8 ||
1409 r_type == R_390_16 ||
1410 r_type == R_390_32 ||
1411 r_type == R_390_PC16 ||
1412 r_type == R_390_PC16DBL ||
1413 r_type == R_390_PC32)
1414 && ((input_section->flags & SEC_ALLOC) != 0
1415 /* DWARF will emit R_386_32 relocations in its
1416 sections against symbols defined externally
1417 in shared libraries. We can't do anything
1418 with them here. */
1419 || ((input_section->flags & SEC_DEBUGGING) != 0
1420 && (h->elf_link_hash_flags
1421 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1422 {
1423 /* In these cases, we don't need the relocation
1424 value. We check specially because in some
1425 obscure cases sec->output_section will be NULL. */
1426 relocation = 0;
1427 }
1428 else if (sec->output_section == NULL)
1429 {
1430 (*_bfd_error_handler)
1431 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1432 bfd_get_filename (input_bfd), h->root.root.string,
1433 bfd_get_section_name (input_bfd, input_section));
1434 relocation = 0;
1435 }
1436 else
1437 relocation = (h->root.u.def.value
1438 + sec->output_section->vma
1439 + sec->output_offset);
1440 }
1441 else if (h->root.type == bfd_link_hash_undefweak)
1442 relocation = 0;
1443 else if (info->shared && !info->symbolic
1444 && !info->no_undefined
1445 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1446 relocation = 0;
1447 else
1448 {
1449 if (! ((*info->callbacks->undefined_symbol)
1450 (info, h->root.root.string, input_bfd,
1451 input_section, rel->r_offset,
1452 (!info->shared || info->no_undefined
1453 || ELF_ST_VISIBILITY (h->other)))))
1454 return false;
1455 relocation = 0;
1456 }
1457 }
1458
1459 switch (r_type)
1460 {
1461 case R_390_GOT12:
1462 case R_390_GOT16:
1463 case R_390_GOT32:
1464 /* Relocation is to the entry for this symbol in the global
1465 offset table. */
1466 BFD_ASSERT (sgot != NULL);
1467
1468 if (h != NULL)
1469 {
1470 bfd_vma off;
1471
1472 off = h->got.offset;
1473 BFD_ASSERT (off != (bfd_vma) -1);
1474
1475 if (! elf_hash_table (info)->dynamic_sections_created
1476 || (info->shared
1477 && (info->symbolic || h->dynindx == -1)
1478 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1479 {
1480 /* This is actually a static link, or it is a
1481 -Bsymbolic link and the symbol is defined
1482 locally, or the symbol was forced to be local
1483 because of a version file. We must initialize
1484 this entry in the global offset table. Since the
1485 offset must always be a multiple of 2, we use the
1486 least significant bit to record whether we have
1487 initialized it already.
1488
1489 When doing a dynamic link, we create a .rel.got
1490 relocation entry to initialize the value. This
1491 is done in the finish_dynamic_symbol routine. */
1492 if ((off & 1) != 0)
1493 off &= ~1;
1494 else
1495 {
1496 bfd_put_32 (output_bfd, relocation,
1497 sgot->contents + off);
1498 h->got.offset |= 1;
1499 }
1500 }
1501 relocation = sgot->output_offset + off;
1502 }
1503 else
1504 {
1505 bfd_vma off;
1506
1507 BFD_ASSERT (local_got_offsets != NULL
1508 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1509
1510 off = local_got_offsets[r_symndx];
1511
1512 /* The offset must always be a multiple of 4. We use
1513 the least significant bit to record whether we have
1514 already generated the necessary reloc. */
1515 if ((off & 1) != 0)
1516 off &= ~1;
1517 else
1518 {
1519 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1520
1521 if (info->shared)
1522 {
1523 asection *srelgot;
1524 Elf_Internal_Rela outrel;
1525
1526 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1527 BFD_ASSERT (srelgot != NULL);
1528
1529 outrel.r_offset = (sgot->output_section->vma
1530 + sgot->output_offset
1531 + off);
1532 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1533 outrel.r_addend = relocation;
1534 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1535 (((Elf32_External_Rela *)
1536 srelgot->contents)
1537 + srelgot->reloc_count));
1538 ++srelgot->reloc_count;
1539 }
1540
1541 local_got_offsets[r_symndx] |= 1;
1542 }
1543
1544 relocation = sgot->output_offset + off;
1545 }
1546
1547
1548 break;
1549
1550 case R_390_GOTOFF:
1551 /* Relocation is relative to the start of the global offset
1552 table. */
1553
1554 if (sgot == NULL)
1555 {
1556 sgot = bfd_get_section_by_name (dynobj, ".got");
1557 BFD_ASSERT (sgot != NULL);
1558 }
1559
1560 /* Note that sgot->output_offset is not involved in this
1561 calculation. We always want the start of .got. If we
1562 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1563 permitted by the ABI, we might have to change this
1564 calculation. */
1565 relocation -= sgot->output_section->vma;
1566
1567 break;
1568
1569 case R_390_GOTPC:
1570 /* Use global offset table as symbol value. */
1571
1572 if (sgot == NULL)
1573 {
1574 sgot = bfd_get_section_by_name (dynobj, ".got");
1575 BFD_ASSERT (sgot != NULL);
1576 }
1577
1578 relocation = sgot->output_section->vma;
1579
1580 break;
1581
1582 case R_390_PLT16DBL:
1583 case R_390_PLT32:
1584 /* Relocation is to the entry for this symbol in the
1585 procedure linkage table. */
1586
1587 /* Resolve a PLT32 reloc against a local symbol directly,
1588 without using the procedure linkage table. */
1589 if (h == NULL)
1590 break;
1591
1592 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1593 {
1594 /* We didn't make a PLT entry for this symbol. This
1595 happens when statically linking PIC code, or when
1596 using -Bsymbolic. */
1597 break;
1598 }
1599
1600 relocation = (splt->output_section->vma
1601 + splt->output_offset
1602 + h->plt.offset);
1603
1604 break;
1605
1606 case R_390_8:
1607 case R_390_16:
1608 case R_390_32:
1609 case R_390_PC16:
1610 case R_390_PC16DBL:
1611 case R_390_PC32:
1612 if (info->shared
1613 && (input_section->flags & SEC_ALLOC) != 0
1614 && ((r_type != R_390_PC16 &&
1615 r_type != R_390_PC16DBL &&
1616 r_type != R_390_PC32)
1617 || (h != NULL
1618 && h->dynindx != -1
1619 && (! info->symbolic
1620 || (h->elf_link_hash_flags
1621 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1622 {
1623 Elf_Internal_Rela outrel;
1624 boolean skip, relocate;
1625
1626 /* When generating a shared object, these relocations
1627 are copied into the output file to be resolved at run
1628 time. */
1629
1630 if (sreloc == NULL)
1631 {
1632 const char *name;
1633
1634 name = (bfd_elf_string_from_elf_section
1635 (input_bfd,
1636 elf_elfheader (input_bfd)->e_shstrndx,
1637 elf_section_data (input_section)->rel_hdr.sh_name));
1638 if (name == NULL)
1639 return false;
1640
1641 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1642 && strcmp (bfd_get_section_name (input_bfd,
1643 input_section),
1644 name + 5) == 0);
1645
1646 sreloc = bfd_get_section_by_name (dynobj, name);
1647 BFD_ASSERT (sreloc != NULL);
1648 }
1649
1650 skip = false;
1651
1652 if (elf_section_data (input_section)->stab_info == NULL)
1653 outrel.r_offset = rel->r_offset;
1654 else
1655 {
1656 bfd_vma off;
1657
1658 off = (_bfd_stab_section_offset
1659 (output_bfd, &elf_hash_table (info)->stab_info,
1660 input_section,
1661 &elf_section_data (input_section)->stab_info,
1662 rel->r_offset));
1663 if (off == (bfd_vma) -1)
1664 skip = true;
1665 outrel.r_offset = off;
1666 }
1667
1668 outrel.r_offset += (input_section->output_section->vma
1669 + input_section->output_offset);
1670
1671 if (skip)
1672 {
1673 memset (&outrel, 0, sizeof outrel);
1674 relocate = false;
1675 }
1676 else if (r_type == R_390_PC16 ||
1677 r_type == R_390_PC16DBL ||
1678 r_type == R_390_PC32)
1679 {
1680 BFD_ASSERT (h != NULL && h->dynindx != -1);
1681 relocate = false;
1682 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1683 outrel.r_addend = relocation + rel->r_addend;
1684 }
1685 else
1686 {
1687 /* h->dynindx may be -1 if this symbol was marked to
1688 become local. */
1689 if (h == NULL
1690 || ((info->symbolic || h->dynindx == -1)
1691 && (h->elf_link_hash_flags
1692 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1693 {
1694 relocate = true;
1695 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1696 outrel.r_addend = relocation + rel->r_addend;
1697 }
1698 else
1699 {
1700 BFD_ASSERT (h->dynindx != -1);
1701 relocate = false;
1702 outrel.r_info = ELF32_R_INFO (h->dynindx, R_390_32);
1703 outrel.r_addend = relocation + rel->r_addend;
1704 }
1705 }
1706
1707 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1708 (((Elf32_External_Rela *)
1709 sreloc->contents)
1710 + sreloc->reloc_count));
1711 ++sreloc->reloc_count;
1712
1713 /* If this reloc is against an external symbol, we do
1714 not want to fiddle with the addend. Otherwise, we
1715 need to include the symbol value so that it becomes
1716 an addend for the dynamic reloc. */
1717 if (! relocate)
1718 continue;
1719 }
1720
1721 break;
1722
1723 default:
1724 break;
1725 }
1726
1727 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1728 contents, rel->r_offset,
1729 relocation, rel->r_addend);
1730
1731 if (r != bfd_reloc_ok)
1732 {
1733 switch (r)
1734 {
1735 default:
1736 case bfd_reloc_outofrange:
1737 abort ();
1738 case bfd_reloc_overflow:
1739 {
1740 const char *name;
1741
1742 if (h != NULL)
1743 name = h->root.root.string;
1744 else
1745 {
1746 name = bfd_elf_string_from_elf_section (input_bfd,
1747 symtab_hdr->sh_link,
1748 sym->st_name);
1749 if (name == NULL)
1750 return false;
1751 if (*name == '\0')
1752 name = bfd_section_name (input_bfd, sec);
1753 }
1754 if (! ((*info->callbacks->reloc_overflow)
1755 (info, name, howto->name, (bfd_vma) 0,
1756 input_bfd, input_section, rel->r_offset)))
1757 return false;
1758 }
1759 break;
1760 }
1761 }
1762 }
1763
1764 return true;
1765}
1766
1767/* Finish up dynamic symbol handling. We set the contents of various
1768 dynamic sections here. */
1769
1770static boolean
1771elf_s390_finish_dynamic_symbol (output_bfd, info, h, sym)
1772 bfd *output_bfd;
1773 struct bfd_link_info *info;
1774 struct elf_link_hash_entry *h;
1775 Elf_Internal_Sym *sym;
1776{
1777 bfd *dynobj;
1778
1779 dynobj = elf_hash_table (info)->dynobj;
1780
1781 if (h->plt.offset != (bfd_vma) -1)
1782 {
1783 asection *splt;
1784 asection *srela;
1785 Elf_Internal_Rela rela;
1786 bfd_vma relative_offset;
1787 bfd_vma got_offset;
1788 bfd_vma plt_index;
1789 asection *sgot;
1790
1791 /* This symbol has an entry in the procedure linkage table. Set
1792 it up. */
1793
1794 BFD_ASSERT (h->dynindx != -1);
1795
1796 splt = bfd_get_section_by_name (dynobj, ".plt");
1797 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1798 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1799 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1800
1801 /* Calc. index no.
1802 Current offset - size first entry / entry size. */
1803 plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE;
1804
1805 /* Offset in GOT is PLT index plus GOT headers(3) times 4,
1806 addr & GOT addr. */
1807 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1808
1809 /* S390 uses halfwords for relative branch calc! */
1810 relative_offset = - ((PLT_FIRST_ENTRY_SIZE +
1811 (PLT_ENTRY_SIZE * plt_index) + 18)/2);
1812 /* If offset is > 32768, branch to a previous branch
1813 390 can only handle +-64 K jumps. */
1814 if ( -32768 > (int)relative_offset )
1815 relative_offset = -(((65536/PLT_ENTRY_SIZE-1)*PLT_ENTRY_SIZE)/2);
1816
1817 /* Fill in the entry in the procedure linkage table. */
1818 if (!info->shared)
1819 {
1820 bfd_put_32 (output_bfd, PLT_ENTRY_WORD0,
1821 splt->contents + h->plt.offset);
1822 bfd_put_32 (output_bfd, PLT_ENTRY_WORD1,
1823 splt->contents + h->plt.offset + 4);
1824 bfd_put_32 (output_bfd, PLT_ENTRY_WORD2,
1825 splt->contents + h->plt.offset + 8);
1826 bfd_put_32 (output_bfd, PLT_ENTRY_WORD3,
1827 splt->contents + h->plt.offset + 12);
1828 bfd_put_32 (output_bfd, PLT_ENTRY_WORD4,
1829 splt->contents + h->plt.offset + 16);
1830 bfd_put_32 (output_bfd, 0+(relative_offset << 16),
1831 splt->contents + h->plt.offset + 20);
1832 bfd_put_32 (output_bfd,
1833 (sgot->output_section->vma +
1834 sgot->output_offset +
1835 got_offset),
1836 splt->contents + h->plt.offset + 24);
1837 }
1838 else if (got_offset < 4096)
1839 {
1840 bfd_put_32 (output_bfd, PLT_PIC12_ENTRY_WORD0 + got_offset,
1841 splt->contents + h->plt.offset);
1842 bfd_put_32 (output_bfd, PLT_PIC12_ENTRY_WORD1,
1843 splt->contents + h->plt.offset + 4);
1844 bfd_put_32 (output_bfd, PLT_PIC12_ENTRY_WORD2,
1845 splt->contents + h->plt.offset + 8);
1846 bfd_put_32 (output_bfd, PLT_PIC12_ENTRY_WORD3,
1847 splt->contents + h->plt.offset + 12);
1848 bfd_put_32 (output_bfd, PLT_PIC12_ENTRY_WORD4,
1849 splt->contents + h->plt.offset + 16);
1850 bfd_put_32 (output_bfd, 0+(relative_offset << 16),
1851 splt->contents + h->plt.offset + 20);
1852 bfd_put_32 (output_bfd, 0,
1853 splt->contents + h->plt.offset + 24);
1854 }
1855 else if (got_offset < 32768)
1856 {
1857 bfd_put_32 (output_bfd, PLT_PIC16_ENTRY_WORD0 + got_offset,
1858 splt->contents + h->plt.offset);
1859 bfd_put_32 (output_bfd, PLT_PIC16_ENTRY_WORD1,
1860 splt->contents + h->plt.offset + 4);
1861 bfd_put_32 (output_bfd, PLT_PIC16_ENTRY_WORD2,
1862 splt->contents + h->plt.offset + 8);
1863 bfd_put_32 (output_bfd, PLT_PIC16_ENTRY_WORD3,
1864 splt->contents + h->plt.offset + 12);
1865 bfd_put_32 (output_bfd, PLT_PIC16_ENTRY_WORD4,
1866 splt->contents + h->plt.offset + 16);
1867 bfd_put_32 (output_bfd, 0+(relative_offset << 16),
1868 splt->contents + h->plt.offset + 20);
1869 bfd_put_32 (output_bfd, 0,
1870 splt->contents + h->plt.offset + 24);
1871 }
1872 else
1873 {
1874 bfd_put_32 (output_bfd, PLT_PIC_ENTRY_WORD0,
1875 splt->contents + h->plt.offset);
1876 bfd_put_32 (output_bfd, PLT_PIC_ENTRY_WORD1,
1877 splt->contents + h->plt.offset + 4);
1878 bfd_put_32 (output_bfd, PLT_PIC_ENTRY_WORD2,
1879 splt->contents + h->plt.offset + 8);
1880 bfd_put_32 (output_bfd, PLT_PIC_ENTRY_WORD3,
1881 splt->contents + h->plt.offset + 12);
1882 bfd_put_32 (output_bfd, PLT_PIC_ENTRY_WORD4,
1883 splt->contents + h->plt.offset + 16);
1884 bfd_put_32 (output_bfd, 0+(relative_offset << 16),
1885 splt->contents + h->plt.offset + 20);
1886 bfd_put_32 (output_bfd, got_offset,
1887 splt->contents + h->plt.offset + 24);
1888 }
1889 /* Insert offset into reloc. table here. */
1890 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
1891 splt->contents + h->plt.offset + 28);
1892 /* Fill in the entry in the .rela.plt section. */
1893 rela.r_offset = (sgot->output_section->vma
1894 + sgot->output_offset
1895 + got_offset);
1896 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_JMP_SLOT);
1897 rela.r_addend = 0;
1898 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1899 ((Elf32_External_Rela *) srela->contents
1900 + plt_index ));
1901
1902 /* Fill in the entry in the global offset table.
1903 Points to instruction after GOT offset. */
1904 bfd_put_32 (output_bfd,
1905 (splt->output_section->vma
1906 + splt->output_offset
1907 + h->plt.offset
1908 + 12),
1909 sgot->contents + got_offset);
1910
1911
1912 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1913 {
1914 /* Mark the symbol as undefined, rather than as defined in
1915 the .plt section. Leave the value alone. */
1916 sym->st_shndx = SHN_UNDEF;
1917 }
1918 }
1919
1920 if (h->got.offset != (bfd_vma) -1)
1921 {
1922 asection *sgot;
1923 asection *srela;
1924 Elf_Internal_Rela rela;
1925
1926 /* This symbol has an entry in the global offset table. Set it
1927 up. */
1928
1929 sgot = bfd_get_section_by_name (dynobj, ".got");
1930 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1931 BFD_ASSERT (sgot != NULL && srela != NULL);
1932
1933 rela.r_offset = (sgot->output_section->vma
1934 + sgot->output_offset
1935 + (h->got.offset &~ 1));
1936
1937 /* If this is a static link, or it is a -Bsymbolic link and the
1938 symbol is defined locally or was forced to be local because
1939 of a version file, we just want to emit a RELATIVE reloc.
1940 The entry in the global offset table will already have been
1941 initialized in the relocate_section function. */
1942 if (! elf_hash_table (info)->dynamic_sections_created
1943 || (info->shared
1944 && (info->symbolic || h->dynindx == -1)
1945 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1946 {
1947 rela.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1948 rela.r_addend = (h->root.u.def.value
1949 + h->root.u.def.section->output_section->vma
1950 + h->root.u.def.section->output_offset);
1951 }
1952 else
1953 {
1954 BFD_ASSERT((h->got.offset & 1) == 0);
1955 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1956 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_GLOB_DAT);
1957 rela.r_addend = 0;
1958 }
1959
1960 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1961 ((Elf32_External_Rela *) srela->contents
1962 + srela->reloc_count));
1963 ++srela->reloc_count;
1964 }
1965
1966 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1967 {
1968 asection *s;
1969 Elf_Internal_Rela rela;
1970
1971 /* This symbols needs a copy reloc. Set it up. */
1972
1973 BFD_ASSERT (h->dynindx != -1
1974 && (h->root.type == bfd_link_hash_defined
1975 || h->root.type == bfd_link_hash_defweak));
1976
1977
1978 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1979 ".rela.bss");
1980 BFD_ASSERT (s != NULL);
1981
1982 rela.r_offset = (h->root.u.def.value
1983 + h->root.u.def.section->output_section->vma
1984 + h->root.u.def.section->output_offset);
1985 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_COPY);
1986 rela.r_addend = 0;
1987 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1988 ((Elf32_External_Rela *) s->contents
1989 + s->reloc_count));
1990 ++s->reloc_count;
1991 }
1992
1993 /* Mark some specially defined symbols as absolute. */
1994 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1995 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
1996 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
1997 sym->st_shndx = SHN_ABS;
1998
1999 return true;
2000}
2001
2002/* Finish up the dynamic sections. */
2003
2004static boolean
2005elf_s390_finish_dynamic_sections (output_bfd, info)
2006 bfd *output_bfd;
2007 struct bfd_link_info *info;
2008{
2009 bfd *dynobj;
2010 asection *sdyn;
2011 asection *sgot;
2012
2013 dynobj = elf_hash_table (info)->dynobj;
2014
2015 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
2016 BFD_ASSERT (sgot != NULL);
2017 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2018
2019 if (elf_hash_table (info)->dynamic_sections_created)
2020 {
2021 asection *splt;
2022 Elf32_External_Dyn *dyncon, *dynconend;
2023
2024 BFD_ASSERT (sdyn != NULL);
2025
2026 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2027 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2028 for (; dyncon < dynconend; dyncon++)
2029 {
2030 Elf_Internal_Dyn dyn;
2031 const char *name;
2032 asection *s;
2033
2034 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2035
2036 switch (dyn.d_tag)
2037 {
2038 default:
2039 break;
2040
2041 case DT_PLTGOT:
2042 name = ".got";
2043 goto get_vma;
2044 case DT_JMPREL:
2045 name = ".rela.plt";
2046 get_vma:
2047 s = bfd_get_section_by_name(output_bfd, name);
2048 BFD_ASSERT (s != NULL);
2049 dyn.d_un.d_ptr = s->vma;
2050 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2051 break;
2052
2053 case DT_PLTRELSZ:
2054 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2055 BFD_ASSERT (s != NULL);
2056 if (s->_cooked_size != 0)
2057 dyn.d_un.d_val = s->_cooked_size;
2058 else
2059 dyn.d_un.d_val = s->_raw_size;
2060 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2061 break;
2062 }
2063 }
2064
2065 /* Fill in the special first entry in the procedure linkage table. */
2066 splt = bfd_get_section_by_name (dynobj, ".plt");
2067 if (splt && splt->_raw_size > 0)
2068 {
2069 memset (splt->contents, 0, PLT_FIRST_ENTRY_SIZE);
2070 if (info->shared)
2071 {
2072 bfd_put_32 (output_bfd, PLT_PIC_FIRST_ENTRY_WORD0,
2073 splt->contents );
2074 bfd_put_32 (output_bfd, PLT_PIC_FIRST_ENTRY_WORD1,
2075 splt->contents +4 );
2076 bfd_put_32 (output_bfd, PLT_PIC_FIRST_ENTRY_WORD2,
2077 splt->contents +8 );
2078 bfd_put_32 (output_bfd, PLT_PIC_FIRST_ENTRY_WORD3,
2079 splt->contents +12 );
2080 bfd_put_32 (output_bfd, PLT_PIC_FIRST_ENTRY_WORD4,
2081 splt->contents +16 );
2082 }
2083 else
2084 {
2085 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD0,
2086 splt->contents );
2087 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD1,
2088 splt->contents +4 );
2089 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD2,
2090 splt->contents +8 );
2091 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD3,
2092 splt->contents +12 );
2093 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD4,
2094 splt->contents +16 );
2095 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD5,
2096 splt->contents +20 );
2097 bfd_put_32 (output_bfd,
2098 sgot->output_section->vma + sgot->output_offset,
2099 splt->contents + 24);
2100 }
2101 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
2102 }
2103
2104 }
2105
2106 /* Set the first entry in the global offset table to the address of
2107 the dynamic section. */
2108 if (sgot->_raw_size > 0)
2109 {
2110 if (sdyn == NULL)
2111 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2112 else
2113 bfd_put_32 (output_bfd,
2114 sdyn->output_section->vma + sdyn->output_offset,
2115 sgot->contents);
2116
2117 /* One entry for shared object struct ptr. */
2118 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2119 /* One entry for _dl_runtime_resolve. */
2120 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2121 }
2122
2123 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2124
2125 return true;
2126}
2127
2128static boolean
2129elf_s390_object_p (abfd)
2130 bfd *abfd;
2131{
2132 return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_esa);
2133}
2134
29c2fb7c
AJ
2135static enum elf_reloc_type_class
2136elf_s390_reloc_type_class (type)
2137 int type;
2138{
2139 switch (type)
2140 {
2141 case R_390_RELATIVE:
2142 return reloc_class_relative;
2143 case R_390_JMP_SLOT:
2144 return reloc_class_plt;
2145 case R_390_COPY:
2146 return reloc_class_copy;
2147 default:
2148 return reloc_class_normal;
2149 }
2150}
2151
a85d7ed0
NC
2152#define TARGET_BIG_SYM bfd_elf32_s390_vec
2153#define TARGET_BIG_NAME "elf32-s390"
2154#define ELF_ARCH bfd_arch_s390
2155#define ELF_MACHINE_CODE EM_S390
2156#define ELF_MACHINE_ALT1 EM_S390_OLD
2157#define ELF_MAXPAGESIZE 0x1000
2158
2159#define elf_backend_can_gc_sections 1
2160#define elf_backend_want_got_plt 1
2161#define elf_backend_plt_readonly 1
2162#define elf_backend_want_plt_sym 0
2163#define elf_backend_got_header_size 12
2164#define elf_backend_plt_header_size PLT_ENTRY_SIZE
2165
2166#define elf_info_to_howto elf_s390_info_to_howto
2167
2168#define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2169#define bfd_elf32_bfd_is_local_label_name elf_s390_is_local_label_name
2170#define bfd_elf32_bfd_link_hash_table_create elf_s390_link_hash_table_create
2171#define bfd_elf32_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2172
2173#define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2174#define elf_backend_check_relocs elf_s390_check_relocs
2175#define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
2176#define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2177#define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2178#define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2179#define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2180#define elf_backend_relocate_section elf_s390_relocate_section
2181#define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
29c2fb7c 2182#define elf_backend_reloc_type_class elf_s390_reloc_type_class
a85d7ed0
NC
2183
2184#define elf_backend_object_p elf_s390_object_p
2185
2186#include "elf32-target.h"
This page took 0.142479 seconds and 4 git commands to generate.