Enable multi-arch for i386.
[deliverable/binutils-gdb.git] / bfd / elf32-s390.c
CommitLineData
a85d7ed0 1/* IBM S/390-specific support for 32-bit ELF
7898deda 2 Copyright 2000, 2001 Free Software Foundation, Inc.
a85d7ed0
NC
3 Contributed by Carl B. Pedersen and Martin Schwidefsky.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22#include "bfd.h"
23#include "sysdep.h"
24#include "bfdlink.h"
25#include "libbfd.h"
26#include "elf-bfd.h"
27
28static reloc_howto_type *elf_s390_reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30static void elf_s390_info_to_howto
31 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
32static boolean elf_s390_is_local_label_name PARAMS ((bfd *, const char *));
33static struct bfd_hash_entry *elf_s390_link_hash_newfunc
34 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
35static struct bfd_link_hash_table *elf_s390_link_hash_table_create
36 PARAMS ((bfd *));
37static boolean elf_s390_check_relocs
38 PARAMS ((bfd *, struct bfd_link_info *, asection *,
39 const Elf_Internal_Rela *));
5a65713f
AJ
40static asection *elf_s390_gc_mark_hook
41 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
42 struct elf_link_hash_entry *, Elf_Internal_Sym *sym));
43static boolean elf_s390_gc_sweep_hook
44 PARAMS ((bfd *, struct bfd_link_info *, asection *,
45 const Elf_Internal_Rela *));
a85d7ed0
NC
46static boolean elf_s390_adjust_dynamic_symbol
47 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
48static boolean elf_s390_size_dynamic_sections
49 PARAMS ((bfd *, struct bfd_link_info *));
50static boolean elf_s390_relocate_section
51 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
52 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
53static boolean elf_s390_finish_dynamic_symbol
54 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
55 Elf_Internal_Sym *));
56static boolean elf_s390_finish_dynamic_sections
57 PARAMS ((bfd *, struct bfd_link_info *));
5a65713f 58static boolean elf_s390_object_p PARAMS ((bfd *));
f51e552e
AM
59static enum elf_reloc_type_class elf_s390_reloc_type_class
60 PARAMS ((const Elf_Internal_Rela *));
a85d7ed0
NC
61
62#define USE_RELA 1 /* We want RELA relocations, not REL. */
63
64#include "elf/s390.h"
65
66/* The relocation "howto" table. */
67
68static reloc_howto_type elf_howto_table[] =
69{
70 HOWTO (R_390_NONE, /* type */
71 0, /* rightshift */
72 0, /* size (0 = byte, 1 = short, 2 = long) */
73 0, /* bitsize */
74 false, /* pc_relative */
75 0, /* bitpos */
76 complain_overflow_dont, /* complain_on_overflow */
77 bfd_elf_generic_reloc, /* special_function */
78 "R_390_NONE", /* name */
79 false, /* partial_inplace */
80 0, /* src_mask */
81 0, /* dst_mask */
82 false), /* pcrel_offset */
83
84 HOWTO(R_390_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false),
85 HOWTO(R_390_12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false),
86 HOWTO(R_390_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false),
87 HOWTO(R_390_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false),
88 HOWTO(R_390_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true),
89 HOWTO(R_390_GOT12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false),
90 HOWTO(R_390_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false),
91 HOWTO(R_390_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true),
92 HOWTO(R_390_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", false, 0,0xffffffff, false),
93 HOWTO(R_390_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT",false, 0,0xffffffff, false),
94 HOWTO(R_390_JMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT",false, 0,0xffffffff, false),
95 HOWTO(R_390_RELATIVE, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE",false, 0,0xffffffff, false),
96 HOWTO(R_390_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF", false, 0,0xffffffff, false),
97 HOWTO(R_390_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,0xffffffff, true),
98 HOWTO(R_390_GOT16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false),
99 HOWTO(R_390_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true),
100 HOWTO(R_390_PC16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true),
101 HOWTO(R_390_PLT16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
102};
103
104/* GNU extension to record C++ vtable hierarchy. */
105static reloc_howto_type elf32_s390_vtinherit_howto =
106 HOWTO (R_390_GNU_VTINHERIT, 0,2,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false);
107static reloc_howto_type elf32_s390_vtentry_howto =
dc810e39 108 HOWTO (R_390_GNU_VTENTRY, 0,2,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false);
a85d7ed0
NC
109
110static reloc_howto_type *
111elf_s390_reloc_type_lookup (abfd, code)
112 bfd *abfd ATTRIBUTE_UNUSED;
113 bfd_reloc_code_real_type code;
114{
115 switch (code) {
116 case BFD_RELOC_NONE:
117 return &elf_howto_table[(int) R_390_NONE];
118 case BFD_RELOC_8:
119 return &elf_howto_table[(int) R_390_8];
120 case BFD_RELOC_390_12:
121 return &elf_howto_table[(int) R_390_12];
122 case BFD_RELOC_16:
123 return &elf_howto_table[(int) R_390_16];
124 case BFD_RELOC_32:
125 return &elf_howto_table[(int) R_390_32];
126 case BFD_RELOC_CTOR:
127 return &elf_howto_table[(int) R_390_32];
128 case BFD_RELOC_32_PCREL:
129 return &elf_howto_table[(int) R_390_PC32];
130 case BFD_RELOC_390_GOT12:
131 return &elf_howto_table[(int) R_390_GOT12];
132 case BFD_RELOC_32_GOT_PCREL:
133 return &elf_howto_table[(int) R_390_GOT32];
134 case BFD_RELOC_390_PLT32:
135 return &elf_howto_table[(int) R_390_PLT32];
136 case BFD_RELOC_390_COPY:
137 return &elf_howto_table[(int) R_390_COPY];
138 case BFD_RELOC_390_GLOB_DAT:
139 return &elf_howto_table[(int) R_390_GLOB_DAT];
140 case BFD_RELOC_390_JMP_SLOT:
141 return &elf_howto_table[(int) R_390_JMP_SLOT];
142 case BFD_RELOC_390_RELATIVE:
143 return &elf_howto_table[(int) R_390_RELATIVE];
144 case BFD_RELOC_32_GOTOFF:
145 return &elf_howto_table[(int) R_390_GOTOFF];
146 case BFD_RELOC_390_GOTPC:
147 return &elf_howto_table[(int) R_390_GOTPC];
148 case BFD_RELOC_390_GOT16:
149 return &elf_howto_table[(int) R_390_GOT16];
150 case BFD_RELOC_16_PCREL:
151 return &elf_howto_table[(int) R_390_PC16];
152 case BFD_RELOC_390_PC16DBL:
153 return &elf_howto_table[(int) R_390_PC16DBL];
154 case BFD_RELOC_390_PLT16DBL:
155 return &elf_howto_table[(int) R_390_PLT16DBL];
156 case BFD_RELOC_VTABLE_INHERIT:
157 return &elf32_s390_vtinherit_howto;
158 case BFD_RELOC_VTABLE_ENTRY:
159 return &elf32_s390_vtentry_howto;
160 default:
dc810e39 161 break;
a85d7ed0
NC
162 }
163 return 0;
164}
165
166/* We need to use ELF32_R_TYPE so we have our own copy of this function,
167 and elf32-s390.c has its own copy. */
168
169static void
170elf_s390_info_to_howto (abfd, cache_ptr, dst)
171 bfd *abfd ATTRIBUTE_UNUSED;
172 arelent *cache_ptr;
173 Elf_Internal_Rela *dst;
174{
175 switch (ELF32_R_TYPE(dst->r_info))
176 {
177 case R_390_GNU_VTINHERIT:
178 cache_ptr->howto = &elf32_s390_vtinherit_howto;
179 break;
180
181 case R_390_GNU_VTENTRY:
182 cache_ptr->howto = &elf32_s390_vtentry_howto;
183 break;
184
185 default:
186 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_390_max);
187 cache_ptr->howto = &elf_howto_table[ELF32_R_TYPE(dst->r_info)];
dc810e39 188 }
a85d7ed0
NC
189}
190
191static boolean
192elf_s390_is_local_label_name (abfd, name)
193 bfd *abfd;
194 const char *name;
195{
196 if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L'))
197 return true;
198
199 return _bfd_elf_is_local_label_name (abfd, name);
200}
201
202/* Functions for the 390 ELF linker. */
203
204/* The name of the dynamic interpreter. This is put in the .interp
205 section. */
206
207#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
208
209/* The nop opcode we use. */
210
211#define s390_NOP 0x07070707
212
213
214/* The size in bytes of the first entry in the procedure linkage table. */
215#define PLT_FIRST_ENTRY_SIZE 32
216/* The size in bytes of an entry in the procedure linkage table. */
dc810e39 217#define PLT_ENTRY_SIZE 32
a85d7ed0
NC
218
219#define GOT_ENTRY_SIZE 4
220
221/* The first three entries in a procedure linkage table are reserved,
222 and the initial contents are unimportant (we zero them out).
223 Subsequent entries look like this. See the SVR4 ABI 386
224 supplement to see how this works. */
225
226/* For the s390, simple addr offset can only be 0 - 4096.
227 To use the full 2 GB address space, several instructions
228 are needed to load an address in a register and execute
229 a branch( or just saving the address)
230
dc810e39 231 Furthermore, only r 0 and 1 are free to use!!! */
a85d7ed0
NC
232
233/* The first 3 words in the GOT are then reserved.
234 Word 0 is the address of the dynamic table.
235 Word 1 is a pointer to a structure describing the object
236 Word 2 is used to point to the loader entry address.
237
238 The code for position independand PLT entries looks like this:
239
240 r12 holds addr of the current GOT at entry to the PLT
241
242 The GOT holds the address in the PLT to be executed.
243 The loader then gets:
244 24(15) = Pointer to the structure describing the object.
dc810e39 245 28(15) = Offset in symbol table
a85d7ed0
NC
246
247 The loader must then find the module where the function is
248 and insert the address in the GOT.
249
250 Note: 390 can only address +- 64 K relative.
251 We check if offset > 65536, then make a relative branch -64xxx
252 back to a previous defined branch
253
254PLT1: BASR 1,0 # 2 bytes
255 L 1,22(1) # 4 bytes Load offset in GOT in r 1
256 L 1,(1,12) # 4 bytes Load address from GOT in r1
257 BCR 15,1 # 2 bytes Jump to address
258RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
259 L 1,14(1) # 4 bytes Load offset in symol table in r1
260 BRC 15,-x # 4 bytes Jump to start of PLT
261 .word 0 # 2 bytes filler
262 .long ? # 4 bytes offset in GOT
263 .long ? # 4 bytes offset into symbol table
264
265 This was the general case. There are two additional, optimizes PLT
266 definitions. One for GOT offsets < 4096 and one for GOT offsets < 32768.
267 First the one for GOT offsets < 4096:
268
269PLT1: L 1,<offset>(12) # 4 bytes Load address from GOT in R1
270 BCR 15,1 # 2 bytes Jump to address
271 .word 0,0,0 # 6 bytes filler
272RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
273 L 1,14(1) # 4 bytes Load offset in symbol table in r1
274 BRC 15,-x # 4 bytes Jump to start of PLT
275 .word 0,0,0 # 6 bytes filler
276 .long ? # 4 bytes offset into symbol table
277
278 Second the one for GOT offsets < 32768:
279
280PLT1: LHI 1,<offset> # 4 bytes Load offset in GOT to r1
281 L 1,(1,12) # 4 bytes Load address from GOT to r1
282 BCR 15,1 # 2 bytes Jump to address
283 .word 0 # 2 bytes filler
284RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
285 L 1,14(1) # 4 bytes Load offset in symbol table in r1
286 BRC 15,-x # 4 bytes Jump to start of PLT
287 .word 0,0,0 # 6 bytes filler
288 .long ? # 4 bytes offset into symbol table
289
290Total = 32 bytes per PLT entry
291
292 The code for static build PLT entries looks like this:
293
294PLT1: BASR 1,0 # 2 bytes
295 L 1,22(1) # 4 bytes Load address of GOT entry
296 L 1,0(0,1) # 4 bytes Load address from GOT in r1
297 BCR 15,1 # 2 bytes Jump to address
298RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
299 L 1,14(1) # 4 bytes Load offset in symbol table in r1
300 BRC 15,-x # 4 bytes Jump to start of PLT
301 .word 0 # 2 bytes filler
302 .long ? # 4 bytes address of GOT entry
303 .long ? # 4 bytes offset into symbol table */
304
305#define PLT_PIC_ENTRY_WORD0 0x0d105810
306#define PLT_PIC_ENTRY_WORD1 0x10165811
307#define PLT_PIC_ENTRY_WORD2 0xc00007f1
308#define PLT_PIC_ENTRY_WORD3 0x0d105810
309#define PLT_PIC_ENTRY_WORD4 0x100ea7f4
310
311#define PLT_PIC12_ENTRY_WORD0 0x5810c000
312#define PLT_PIC12_ENTRY_WORD1 0x07f10000
313#define PLT_PIC12_ENTRY_WORD2 0x00000000
314#define PLT_PIC12_ENTRY_WORD3 0x0d105810
315#define PLT_PIC12_ENTRY_WORD4 0x100ea7f4
316
317#define PLT_PIC16_ENTRY_WORD0 0xa7180000
318#define PLT_PIC16_ENTRY_WORD1 0x5811c000
319#define PLT_PIC16_ENTRY_WORD2 0x07f10000
320#define PLT_PIC16_ENTRY_WORD3 0x0d105810
321#define PLT_PIC16_ENTRY_WORD4 0x100ea7f4
322
323#define PLT_ENTRY_WORD0 0x0d105810
324#define PLT_ENTRY_WORD1 0x10165810
325#define PLT_ENTRY_WORD2 0x100007f1
326#define PLT_ENTRY_WORD3 0x0d105810
327#define PLT_ENTRY_WORD4 0x100ea7f4
328
329/* The first PLT entry pushes the offset into the symbol table
330 from R1 onto the stack at 8(15) and the loader object info
331 at 12(15), loads the loader address in R1 and jumps to it. */
332
333/* The first entry in the PLT for PIC code:
334
335PLT0:
336 ST 1,28(15) # R1 has offset into symbol table
337 L 1,4(12) # Get loader ino(object struct address)
dc810e39 338 ST 1,24(15) # Store address
a85d7ed0
NC
339 L 1,8(12) # Entry address of loader in R1
340 BR 1 # Jump to loader
341
342 The first entry in the PLT for static code:
343
344PLT0:
345 ST 1,28(15) # R1 has offset into symbol table
346 BASR 1,0
347 L 1,18(0,1) # Get address of GOT
348 MVC 24(4,15),4(1) # Move loader ino to stack
349 L 1,8(1) # Get address of loader
350 BR 1 # Jump to loader
351 .word 0 # filler
352 .long got # address of GOT */
353
354#define PLT_PIC_FIRST_ENTRY_WORD0 0x5010f01c
355#define PLT_PIC_FIRST_ENTRY_WORD1 0x5810c004
356#define PLT_PIC_FIRST_ENTRY_WORD2 0x5010f018
357#define PLT_PIC_FIRST_ENTRY_WORD3 0x5810c008
358#define PLT_PIC_FIRST_ENTRY_WORD4 0x07f10000
359
360#define PLT_FIRST_ENTRY_WORD0 0x5010f01c
361#define PLT_FIRST_ENTRY_WORD1 0x0d105810
362#define PLT_FIRST_ENTRY_WORD2 0x1012D203
363#define PLT_FIRST_ENTRY_WORD3 0xf0181004
364#define PLT_FIRST_ENTRY_WORD4 0x58101008
365#define PLT_FIRST_ENTRY_WORD5 0x07f10000
366
367/* The s390 linker needs to keep track of the number of relocs that it
368 decides to copy in check_relocs for each symbol. This is so that
369 it can discard PC relative relocs if it doesn't need them when
370 linking with -Bsymbolic. We store the information in a field
371 extending the regular ELF linker hash table. */
372
373/* This structure keeps track of the number of PC relative relocs we
374 have copied for a given symbol. */
375
376struct elf_s390_pcrel_relocs_copied
377{
378 /* Next section. */
379 struct elf_s390_pcrel_relocs_copied *next;
380 /* A section in dynobj. */
381 asection *section;
382 /* Number of relocs copied in this section. */
383 bfd_size_type count;
384};
385
386/* s390 ELF linker hash entry. */
387
388struct elf_s390_link_hash_entry
389{
390 struct elf_link_hash_entry root;
391
392 /* Number of PC relative relocs copied for this symbol. */
393 struct elf_s390_pcrel_relocs_copied *pcrel_relocs_copied;
394};
395
396/* s390 ELF linker hash table. */
397
398struct elf_s390_link_hash_table
399{
400 struct elf_link_hash_table root;
401};
402
403/* Declare this now that the above structures are defined. */
404
405static boolean elf_s390_discard_copies
406 PARAMS ((struct elf_s390_link_hash_entry *, PTR));
407
408/* Traverse an s390 ELF linker hash table. */
409
410#define elf_s390_link_hash_traverse(table, func, info) \
411 (elf_link_hash_traverse \
412 (&(table)->root, \
413 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
414 (info)))
415
416/* Get the s390 ELF linker hash table from a link_info structure. */
417
418#define elf_s390_hash_table(p) \
419 ((struct elf_s390_link_hash_table *) ((p)->hash))
420
421/* Create an entry in an s390 ELF linker hash table. */
422
423static struct bfd_hash_entry *
424elf_s390_link_hash_newfunc (entry, table, string)
425 struct bfd_hash_entry *entry;
426 struct bfd_hash_table *table;
427 const char *string;
428{
429 struct elf_s390_link_hash_entry *ret =
430 (struct elf_s390_link_hash_entry *) entry;
431
432 /* Allocate the structure if it has not already been allocated by a
433 subclass. */
434 if (ret == (struct elf_s390_link_hash_entry *) NULL)
435 ret = ((struct elf_s390_link_hash_entry *)
436 bfd_hash_allocate (table,
437 sizeof (struct elf_s390_link_hash_entry)));
438 if (ret == (struct elf_s390_link_hash_entry *) NULL)
439 return (struct bfd_hash_entry *) ret;
440
441 /* Call the allocation method of the superclass. */
442 ret = ((struct elf_s390_link_hash_entry *)
443 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
444 table, string));
445 if (ret != (struct elf_s390_link_hash_entry *) NULL)
446 {
447 ret->pcrel_relocs_copied = NULL;
448 }
449
450 return (struct bfd_hash_entry *) ret;
451}
452
453/* Create an s390 ELF linker hash table. */
454
455static struct bfd_link_hash_table *
456elf_s390_link_hash_table_create (abfd)
457 bfd *abfd;
458{
459 struct elf_s390_link_hash_table *ret;
dc810e39 460 bfd_size_type amt = sizeof (struct elf_s390_link_hash_table);
a85d7ed0 461
dc810e39 462 ret = (struct elf_s390_link_hash_table *) bfd_alloc (abfd, amt);
a85d7ed0
NC
463 if (ret == (struct elf_s390_link_hash_table *) NULL)
464 return NULL;
465
466 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
467 elf_s390_link_hash_newfunc))
468 {
469 bfd_release (abfd, ret);
470 return NULL;
471 }
472
473 return &ret->root.root;
474}
475
476
477/* Look through the relocs for a section during the first phase, and
478 allocate space in the global offset table or procedure linkage
479 table. */
480
481static boolean
482elf_s390_check_relocs (abfd, info, sec, relocs)
483 bfd *abfd;
484 struct bfd_link_info *info;
485 asection *sec;
486 const Elf_Internal_Rela *relocs;
487{
488 bfd *dynobj;
489 Elf_Internal_Shdr *symtab_hdr;
490 struct elf_link_hash_entry **sym_hashes;
491 bfd_signed_vma *local_got_refcounts;
492 const Elf_Internal_Rela *rel;
493 const Elf_Internal_Rela *rel_end;
494 asection *sgot;
495 asection *srelgot;
496 asection *sreloc;
497
498 if (info->relocateable)
499 return true;
500
501 dynobj = elf_hash_table (info)->dynobj;
502 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
503 sym_hashes = elf_sym_hashes (abfd);
504 local_got_refcounts = elf_local_got_offsets (abfd);
505
506 sgot = NULL;
507 srelgot = NULL;
508 sreloc = NULL;
509
510 rel_end = relocs + sec->reloc_count;
511 for (rel = relocs; rel < rel_end; rel++)
512 {
513 unsigned long r_symndx;
514 struct elf_link_hash_entry *h;
515
516 r_symndx = ELF32_R_SYM (rel->r_info);
517
518 if (r_symndx < symtab_hdr->sh_info)
519 h = NULL;
520 else
dc810e39 521 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
a85d7ed0
NC
522
523 /* Some relocs require a global offset table. */
524 if (dynobj == NULL)
525 {
526 switch (ELF32_R_TYPE (rel->r_info))
527 {
528 case R_390_GOT12:
529 case R_390_GOT16:
530 case R_390_GOT32:
531 case R_390_GOTOFF:
532 case R_390_GOTPC:
533 elf_hash_table (info)->dynobj = dynobj = abfd;
534 if (! _bfd_elf_create_got_section (dynobj, info))
535 return false;
536 break;
537
538 default:
539 break;
540 }
541 }
542
543
544 switch (ELF32_R_TYPE (rel->r_info))
545 {
546 case R_390_GOT12:
547 case R_390_GOT16:
548 case R_390_GOT32:
549 /* This symbol requires a global offset table entry. */
550
551 if (sgot == NULL)
552 {
553 sgot = bfd_get_section_by_name (dynobj, ".got");
554 BFD_ASSERT (sgot != NULL);
555 }
556
557
558 if (srelgot == NULL
559 && (h != NULL || info->shared))
560 {
561 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
562 if (srelgot == NULL)
563 {
564 srelgot = bfd_make_section (dynobj, ".rela.got");
565 if (srelgot == NULL
566 || ! bfd_set_section_flags (dynobj, srelgot,
567 (SEC_ALLOC
568 | SEC_LOAD
569 | SEC_HAS_CONTENTS
570 | SEC_IN_MEMORY
571 | SEC_LINKER_CREATED
572 | SEC_READONLY))
573 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
574 return false;
575 }
576 }
577
578 if (h != NULL)
579 {
51b64d56 580 if (h->got.refcount == 0)
a85d7ed0 581 {
a85d7ed0
NC
582 /* Make sure this symbol is output as a dynamic symbol. */
583 if (h->dynindx == -1)
584 {
585 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
586 return false;
587 }
588
589 sgot->_raw_size += 4;
590 srelgot->_raw_size += sizeof (Elf32_External_Rela);
591 }
51b64d56 592 h->got.refcount += 1;
a85d7ed0
NC
593 }
594 else
595 {
596 /* This is a global offset table entry for a local symbol. */
597 if (local_got_refcounts == NULL)
598 {
dc810e39 599 bfd_size_type size;
a85d7ed0 600
dc810e39
AM
601 size = symtab_hdr->sh_info;
602 size *= sizeof (bfd_signed_vma);
a85d7ed0 603 local_got_refcounts = (bfd_signed_vma *)
51b64d56 604 bfd_zalloc (abfd, size);
a85d7ed0
NC
605 if (local_got_refcounts == NULL)
606 return false;
607 elf_local_got_refcounts (abfd) = local_got_refcounts;
a85d7ed0 608 }
51b64d56 609 if (local_got_refcounts[r_symndx] == 0)
a85d7ed0 610 {
a85d7ed0
NC
611 sgot->_raw_size += 4;
612 if (info->shared)
613 {
614 /* If we are generating a shared object, we need to
615 output a R_390_RELATIVE reloc so that the dynamic
616 linker can adjust this GOT entry. */
617 srelgot->_raw_size += sizeof (Elf32_External_Rela);
618 }
619 }
51b64d56 620 local_got_refcounts[r_symndx] += 1;
a85d7ed0
NC
621 }
622 break;
623
624 case R_390_PLT16DBL:
625 case R_390_PLT32:
626 /* This symbol requires a procedure linkage table entry. We
627 actually build the entry in adjust_dynamic_symbol,
628 because this might be a case of linking PIC code which is
629 never referenced by a dynamic object, in which case we
630 don't need to generate a procedure linkage table entry
631 after all. */
632
633 /* If this is a local symbol, we resolve it directly without
634 creating a procedure linkage table entry. */
635 if (h == NULL)
636 continue;
637
51b64d56
AM
638 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
639 h->plt.refcount += 1;
a85d7ed0
NC
640 break;
641
642 case R_390_8:
643 case R_390_16:
644 case R_390_32:
645 case R_390_PC16:
646 case R_390_PC16DBL:
647 case R_390_PC32:
648 if (h != NULL)
649 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
650
651 /* If we are creating a shared library, and this is a reloc
652 against a global symbol, or a non PC relative reloc
653 against a local symbol, then we need to copy the reloc
654 into the shared library. However, if we are linking with
655 -Bsymbolic, we do not need to copy a reloc against a
656 global symbol which is defined in an object we are
657 including in the link (i.e., DEF_REGULAR is set). At
658 this point we have not seen all the input files, so it is
659 possible that DEF_REGULAR is not set now but will be set
660 later (it is never cleared). We account for that
661 possibility below by storing information in the
662 pcrel_relocs_copied field of the hash table entry. */
663 if (info->shared
664 && (sec->flags & SEC_ALLOC) != 0
665 && ((ELF32_R_TYPE (rel->r_info) != R_390_PC16 &&
666 ELF32_R_TYPE (rel->r_info) != R_390_PC16DBL &&
667 ELF32_R_TYPE (rel->r_info) != R_390_PC32)
668 || (h != NULL
669 && (! info->symbolic
670 || (h->elf_link_hash_flags
671 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
672 {
673 /* When creating a shared object, we must copy these
674 reloc types into the output file. We create a reloc
675 section in dynobj and make room for this reloc. */
676 if (sreloc == NULL)
677 {
678 const char *name;
679
680 name = (bfd_elf_string_from_elf_section
681 (abfd,
682 elf_elfheader (abfd)->e_shstrndx,
683 elf_section_data (sec)->rel_hdr.sh_name));
684 if (name == NULL)
685 return false;
686
687 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
688 && strcmp (bfd_get_section_name (abfd, sec),
689 name + 5) == 0);
690
691 sreloc = bfd_get_section_by_name (dynobj, name);
692 if (sreloc == NULL)
693 {
694 flagword flags;
695
696 sreloc = bfd_make_section (dynobj, name);
697 flags = (SEC_HAS_CONTENTS | SEC_READONLY
698 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
699 if ((sec->flags & SEC_ALLOC) != 0)
700 flags |= SEC_ALLOC | SEC_LOAD;
701 if (sreloc == NULL
702 || ! bfd_set_section_flags (dynobj, sreloc, flags)
703 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
704 return false;
705 }
29c2fb7c
AJ
706 if (sec->flags & SEC_READONLY)
707 info->flags |= DF_TEXTREL;
a85d7ed0
NC
708 }
709
710 sreloc->_raw_size += sizeof (Elf32_External_Rela);
711
712 /* If we are linking with -Bsymbolic, and this is a
713 global symbol, we count the number of PC relative
714 relocations we have entered for this symbol, so that
715 we can discard them again if the symbol is later
716 defined by a regular object. Note that this function
717 is only called if we are using an elf_s390 linker
718 hash table, which means that h is really a pointer to
719 an elf_s390_link_hash_entry. */
720 if (h != NULL
721 && (ELF32_R_TYPE (rel->r_info) == R_390_PC16 ||
722 ELF32_R_TYPE (rel->r_info) == R_390_PC16DBL ||
723 ELF32_R_TYPE (rel->r_info) == R_390_PC32))
724 {
725 struct elf_s390_link_hash_entry *eh;
726 struct elf_s390_pcrel_relocs_copied *p;
727
728 eh = (struct elf_s390_link_hash_entry *) h;
729
730 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
731 if (p->section == sreloc)
732 break;
733
734 if (p == NULL)
735 {
736 p = ((struct elf_s390_pcrel_relocs_copied *)
dc810e39 737 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
a85d7ed0
NC
738 if (p == NULL)
739 return false;
740 p->next = eh->pcrel_relocs_copied;
741 eh->pcrel_relocs_copied = p;
742 p->section = sreloc;
743 p->count = 0;
744 }
745
746 ++p->count;
747 }
748 }
749
750 break;
751
752 /* This relocation describes the C++ object vtable hierarchy.
753 Reconstruct it for later use during GC. */
754 case R_390_GNU_VTINHERIT:
755 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
756 return false;
757 break;
758
759 /* This relocation describes which C++ vtable entries are actually
760 used. Record for later use during GC. */
761 case R_390_GNU_VTENTRY:
762 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
763 return false;
764 break;
dc810e39 765
a85d7ed0
NC
766 default:
767 break;
768 }
769 }
770
771 return true;
772}
773
774/* Return the section that should be marked against GC for a given
775 relocation. */
776
777static asection *
778elf_s390_gc_mark_hook (abfd, info, rel, h, sym)
779 bfd *abfd;
780 struct bfd_link_info *info ATTRIBUTE_UNUSED;
781 Elf_Internal_Rela *rel;
782 struct elf_link_hash_entry *h;
783 Elf_Internal_Sym *sym;
784{
785 if (h != NULL)
786 {
787 switch (ELF32_R_TYPE (rel->r_info))
788 {
789 case R_390_GNU_VTINHERIT:
790 case R_390_GNU_VTENTRY:
791 break;
792
793 default:
794 switch (h->root.type)
795 {
796 case bfd_link_hash_defined:
797 case bfd_link_hash_defweak:
798 return h->root.u.def.section;
799
800 case bfd_link_hash_common:
801 return h->root.u.c.p->section;
802
803 default:
804 break;
805 }
806 }
807 }
808 else
809 {
810 if (!(elf_bad_symtab (abfd)
811 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
812 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
813 && sym->st_shndx != SHN_COMMON))
814 {
815 return bfd_section_from_elf_index (abfd, sym->st_shndx);
816 }
817 }
818
819 return NULL;
820}
821
822/* Update the got entry reference counts for the section being removed. */
823
824static boolean
825elf_s390_gc_sweep_hook (abfd, info, sec, relocs)
826 bfd *abfd ATTRIBUTE_UNUSED;
827 struct bfd_link_info *info ATTRIBUTE_UNUSED;
828 asection *sec ATTRIBUTE_UNUSED;
829 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
830{
831 Elf_Internal_Shdr *symtab_hdr;
832 struct elf_link_hash_entry **sym_hashes;
833 bfd_signed_vma *local_got_refcounts;
834 const Elf_Internal_Rela *rel, *relend;
835 unsigned long r_symndx;
836 struct elf_link_hash_entry *h;
837 bfd *dynobj;
838 asection *sgot;
839 asection *srelgot;
840
841 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
842 sym_hashes = elf_sym_hashes (abfd);
843 local_got_refcounts = elf_local_got_refcounts (abfd);
844
845 dynobj = elf_hash_table (info)->dynobj;
846 if (dynobj == NULL)
847 return true;
848
849 sgot = bfd_get_section_by_name (dynobj, ".got");
850 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
851
852 relend = relocs + sec->reloc_count;
853 for (rel = relocs; rel < relend; rel++)
854 switch (ELF32_R_TYPE (rel->r_info))
855 {
856 case R_390_GOT12:
857 case R_390_GOT16:
858 case R_390_GOT32:
859 case R_390_GOTOFF:
860 case R_390_GOTPC:
861 r_symndx = ELF32_R_SYM (rel->r_info);
862 if (r_symndx >= symtab_hdr->sh_info)
863 {
864 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
865 if (h->got.refcount > 0)
866 {
867 h->got.refcount -= 1;
868 if (h->got.refcount == 0)
869 {
870 sgot->_raw_size -= 4;
871 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
872 }
873 }
874 }
875 else if (local_got_refcounts != NULL)
876 {
877 if (local_got_refcounts[r_symndx] > 0)
878 {
879 local_got_refcounts[r_symndx] -= 1;
880 if (local_got_refcounts[r_symndx] == 0)
881 {
882 sgot->_raw_size -= 4;
883 if (info->shared)
884 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
885 }
886 }
887 }
888 break;
889
890 case R_390_PLT16DBL:
891 case R_390_PLT32:
892 r_symndx = ELF32_R_SYM (rel->r_info);
893 if (r_symndx >= symtab_hdr->sh_info)
894 {
895 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
896 if (h->plt.refcount > 0)
897 h->plt.refcount -= 1;
898 }
899 break;
900
901 default:
902 break;
903 }
904
905 return true;
906}
907
908/* Adjust a symbol defined by a dynamic object and referenced by a
909 regular object. The current definition is in some section of the
910 dynamic object, but we're not including those sections. We have to
911 change the definition to something the rest of the link can
912 understand. */
913
914static boolean
915elf_s390_adjust_dynamic_symbol (info, h)
916 struct bfd_link_info *info;
917 struct elf_link_hash_entry *h;
918{
919 bfd *dynobj;
920 asection *s;
921 unsigned int power_of_two;
922
923 dynobj = elf_hash_table (info)->dynobj;
924
925 /* Make sure we know what is going on here. */
926 BFD_ASSERT (dynobj != NULL
927 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
928 || h->weakdef != NULL
929 || ((h->elf_link_hash_flags
930 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
931 && (h->elf_link_hash_flags
932 & ELF_LINK_HASH_REF_REGULAR) != 0
933 && (h->elf_link_hash_flags
934 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
935
936 /* If this is a function, put it in the procedure linkage table. We
937 will fill in the contents of the procedure linkage table later
938 (although we could actually do it here). */
939 if (h->type == STT_FUNC
940 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
941 {
942 if ((! info->shared
943 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
944 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
945 || (info->shared && h->plt.refcount <= 0))
946 {
947 /* This case can occur if we saw a PLT32 reloc in an input
948 file, but the symbol was never referred to by a dynamic
949 object, or if all references were garbage collected. In
950 such a case, we don't actually need to build a procedure
951 linkage table, and we can just do a PC32 reloc instead. */
952 h->plt.offset = (bfd_vma) -1;
953 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
954 return true;
955 }
956
957 /* Make sure this symbol is output as a dynamic symbol. */
958 if (h->dynindx == -1)
959 {
960 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
961 return false;
962 }
963
964 s = bfd_get_section_by_name (dynobj, ".plt");
965 BFD_ASSERT (s != NULL);
966
967 /* The first entry in .plt is reserved. */
968 if (s->_raw_size == 0)
969 s->_raw_size = PLT_FIRST_ENTRY_SIZE;
970
971 /* If this symbol is not defined in a regular file, and we are
972 not generating a shared library, then set the symbol to this
973 location in the .plt. This is required to make function
974 pointers compare as equal between the normal executable and
975 the shared library. */
976 if (! info->shared
977 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
978 {
979 h->root.u.def.section = s;
980 h->root.u.def.value = s->_raw_size;
981 }
982
983 h->plt.offset = s->_raw_size;
984
985 /* Make room for this entry. */
986 s->_raw_size += PLT_ENTRY_SIZE;
987
988 /* We also need to make an entry in the .got.plt section, which
989 will be placed in the .got section by the linker script. */
990 s = bfd_get_section_by_name (dynobj, ".got.plt");
991 BFD_ASSERT (s != NULL);
992 s->_raw_size += GOT_ENTRY_SIZE;
993
994 /* We also need to make an entry in the .rela.plt section. */
995 s = bfd_get_section_by_name (dynobj, ".rela.plt");
996 BFD_ASSERT (s != NULL);
997 s->_raw_size += sizeof (Elf32_External_Rela);
998
999 return true;
1000 }
bbd7ec4a
AM
1001 else
1002 h->plt.offset = (bfd_vma) -1;
a85d7ed0
NC
1003
1004 /* If this is a weak symbol, and there is a real definition, the
1005 processor independent code will have arranged for us to see the
1006 real definition first, and we can just use the same value. */
1007 if (h->weakdef != NULL)
1008 {
1009 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1010 || h->weakdef->root.type == bfd_link_hash_defweak);
1011 h->root.u.def.section = h->weakdef->root.u.def.section;
1012 h->root.u.def.value = h->weakdef->root.u.def.value;
1013 return true;
1014 }
1015
1016 /* This is a reference to a symbol defined by a dynamic object which
1017 is not a function. */
1018
1019 /* If we are creating a shared library, we must presume that the
1020 only references to the symbol are via the global offset table.
1021 For such cases we need not do anything here; the relocations will
1022 be handled correctly by relocate_section. */
1023 if (info->shared)
1024 return true;
1025
1026 /* If there are no references to this symbol that do not use the
1027 GOT, we don't need to generate a copy reloc. */
1028 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1029 return true;
1030
1031 /* We must allocate the symbol in our .dynbss section, which will
1032 become part of the .bss section of the executable. There will be
1033 an entry for this symbol in the .dynsym section. The dynamic
1034 object will contain position independent code, so all references
1035 from the dynamic object to this symbol will go through the global
1036 offset table. The dynamic linker will use the .dynsym entry to
1037 determine the address it must put in the global offset table, so
1038 both the dynamic object and the regular object will refer to the
1039 same memory location for the variable. */
1040
1041 s = bfd_get_section_by_name (dynobj, ".dynbss");
1042 BFD_ASSERT (s != NULL);
1043
1044 /* We must generate a R_390_COPY reloc to tell the dynamic linker
1045 to copy the initial value out of the dynamic object and into the
1046 runtime process image. We need to remember the offset into the
1047 .rel.bss section we are going to use. */
1048 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1049 {
1050 asection *srel;
1051
1052 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1053 BFD_ASSERT (srel != NULL);
1054 srel->_raw_size += sizeof (Elf32_External_Rela);
1055 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1056 }
1057
1058 /* We need to figure out the alignment required for this symbol. I
1059 have no idea how ELF linkers handle this. */
1060 power_of_two = bfd_log2 (h->size);
1061 if (power_of_two > 3)
1062 power_of_two = 3;
1063
1064 /* Apply the required alignment. */
1065 s->_raw_size = BFD_ALIGN (s->_raw_size,
1066 (bfd_size_type) (1 << power_of_two));
1067 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1068 {
1069 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1070 return false;
1071 }
1072
1073 /* Define the symbol as being at this point in the section. */
1074 h->root.u.def.section = s;
1075 h->root.u.def.value = s->_raw_size;
1076
1077 /* Increment the section size to make room for the symbol. */
1078 s->_raw_size += h->size;
1079
1080 return true;
1081}
1082
1083/* Set the sizes of the dynamic sections. */
1084
1085static boolean
1086elf_s390_size_dynamic_sections (output_bfd, info)
29c2fb7c 1087 bfd *output_bfd ATTRIBUTE_UNUSED;
a85d7ed0
NC
1088 struct bfd_link_info *info;
1089{
1090 bfd *dynobj;
1091 asection *s;
a85d7ed0
NC
1092 boolean relocs;
1093 boolean plt;
1094
1095 dynobj = elf_hash_table (info)->dynobj;
1096 BFD_ASSERT (dynobj != NULL);
1097
1098 if (elf_hash_table (info)->dynamic_sections_created)
1099 {
1100 /* Set the contents of the .interp section to the interpreter. */
1101 if (! info->shared)
1102 {
1103 s = bfd_get_section_by_name (dynobj, ".interp");
1104 BFD_ASSERT (s != NULL);
1105 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1106 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1107 }
1108 }
1109 else
1110 {
1111 /* We may have created entries in the .rela.got section.
1112 However, if we are not creating the dynamic sections, we will
1113 not actually use these entries. Reset the size of .rela.got,
1114 which will cause it to get stripped from the output file
1115 below. */
1116 s = bfd_get_section_by_name (dynobj, ".rela.got");
1117 if (s != NULL)
1118 s->_raw_size = 0;
1119 }
1120
1121 /* If this is a -Bsymbolic shared link, then we need to discard all
1122 PC relative relocs against symbols defined in a regular object.
1123 We allocated space for them in the check_relocs routine, but we
1124 will not fill them in in the relocate_section routine. */
1125 if (info->shared)
1126 elf_s390_link_hash_traverse (elf_s390_hash_table (info),
1127 elf_s390_discard_copies,
1128 (PTR) info);
1129
1130 /* The check_relocs and adjust_dynamic_symbol entry points have
1131 determined the sizes of the various dynamic sections. Allocate
1132 memory for them. */
1133 plt = false;
a85d7ed0
NC
1134 relocs = false;
1135 for (s = dynobj->sections; s != NULL; s = s->next)
1136 {
1137 const char *name;
1138 boolean strip;
1139
1140 if ((s->flags & SEC_LINKER_CREATED) == 0)
1141 continue;
1142
1143 /* It's OK to base decisions on the section name, because none
1144 of the dynobj section names depend upon the input files. */
1145 name = bfd_get_section_name (dynobj, s);
1146
1147 strip = false;
1148
1149 if (strcmp (name, ".plt") == 0)
1150 {
1151 if (s->_raw_size == 0)
1152 {
1153 /* Strip this section if we don't need it; see the
1154 comment below. */
1155 strip = true;
1156 }
1157 else
1158 {
1159 /* Remember whether there is a PLT. */
1160 plt = true;
1161 }
1162 }
1163 else if (strncmp (name, ".rela", 5) == 0)
1164 {
1165 if (s->_raw_size == 0)
1166 {
1167 /* If we don't need this section, strip it from the
1168 output file. This is to handle .rela.bss and
1169 .rel.plt. We must create it in
1170 create_dynamic_sections, because it must be created
1171 before the linker maps input sections to output
1172 sections. The linker does that before
1173 adjust_dynamic_symbol is called, and it is that
1174 function which decides whether anything needs to go
1175 into these sections. */
1176 strip = true;
1177 }
1178 else
1179 {
a85d7ed0
NC
1180 /* Remember whether there are any reloc sections other
1181 than .rela.plt. */
1182 if (strcmp (name, ".rela.plt") != 0)
29c2fb7c 1183 relocs = true;
a85d7ed0
NC
1184
1185 /* We use the reloc_count field as a counter if we need
1186 to copy relocs into the output file. */
1187 s->reloc_count = 0;
1188 }
1189 }
1190 else if (strncmp (name, ".got", 4) != 0)
1191 {
1192 /* It's not one of our sections, so don't allocate space. */
1193 continue;
1194 }
1195
1196 if (strip)
1197 {
1198 _bfd_strip_section_from_output (info, s);
1199 continue;
1200 }
1201
1202 /* Allocate memory for the section contents. */
1203 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1204 if (s->contents == NULL && s->_raw_size != 0)
1205 return false;
1206 }
1207
1208 if (elf_hash_table (info)->dynamic_sections_created)
1209 {
1210 /* Add some entries to the .dynamic section. We fill in the
1211 values later, in elf_s390_finish_dynamic_sections, but we
1212 must add the entries now so that we get the correct size for
1213 the .dynamic section. The DT_DEBUG entry is filled in by the
1214 dynamic linker and used by the debugger. */
dc810e39
AM
1215#define add_dynamic_entry(TAG, VAL) \
1216 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1217
a85d7ed0
NC
1218 if (! info->shared)
1219 {
dc810e39 1220 if (!add_dynamic_entry (DT_DEBUG, 0))
a85d7ed0
NC
1221 return false;
1222 }
1223
1224 if (plt)
1225 {
dc810e39
AM
1226 if (!add_dynamic_entry (DT_PLTGOT, 0)
1227 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1228 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1229 || !add_dynamic_entry (DT_JMPREL, 0))
a85d7ed0
NC
1230 return false;
1231 }
1232
1233 if (relocs)
1234 {
dc810e39
AM
1235 if (!add_dynamic_entry (DT_RELA, 0)
1236 || !add_dynamic_entry (DT_RELASZ, 0)
1237 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
a85d7ed0
NC
1238 return false;
1239 }
1240
29c2fb7c 1241 if ((info->flags & DF_TEXTREL) != 0)
a85d7ed0 1242 {
dc810e39 1243 if (!add_dynamic_entry (DT_TEXTREL, 0))
a85d7ed0
NC
1244 return false;
1245 info->flags |= DF_TEXTREL;
1246 }
1247 }
dc810e39 1248#undef add_dynamic_entry
a85d7ed0
NC
1249
1250 return true;
1251}
1252
1253/* This function is called via elf_s390_link_hash_traverse if we are
1254 creating a shared object with -Bsymbolic. It discards the space
1255 allocated to copy PC relative relocs against symbols which are
1256 defined in regular objects. We allocated space for them in the
1257 check_relocs routine, but we won't fill them in in the
1258 relocate_section routine. */
1259
1260/*ARGSUSED*/
1261static boolean
1262elf_s390_discard_copies (h, inf)
1263 struct elf_s390_link_hash_entry *h;
1264 PTR inf;
1265{
1266 struct elf_s390_pcrel_relocs_copied *s;
1267 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1268
1269 /* If a symbol has been forced local or we have found a regular
1270 definition for the symbolic link case, then we won't be needing
1271 any relocs. */
1272 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1273 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1274 || info->symbolic))
1275 {
1276 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1277 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
1278 }
1279 return true;
1280}
1281/* Relocate a 390 ELF section. */
1282
1283static boolean
1284elf_s390_relocate_section (output_bfd, info, input_bfd, input_section,
1285 contents, relocs, local_syms, local_sections)
1286 bfd *output_bfd;
1287 struct bfd_link_info *info;
1288 bfd *input_bfd;
1289 asection *input_section;
1290 bfd_byte *contents;
1291 Elf_Internal_Rela *relocs;
1292 Elf_Internal_Sym *local_syms;
1293 asection **local_sections;
1294{
1295 bfd *dynobj;
1296 Elf_Internal_Shdr *symtab_hdr;
1297 struct elf_link_hash_entry **sym_hashes;
1298 bfd_vma *local_got_offsets;
1299 asection *sgot;
1300 asection *splt;
1301 asection *sreloc;
1302 Elf_Internal_Rela *rel;
1303 Elf_Internal_Rela *relend;
1304
1305 dynobj = elf_hash_table (info)->dynobj;
1306 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1307 sym_hashes = elf_sym_hashes (input_bfd);
1308 local_got_offsets = elf_local_got_offsets (input_bfd);
1309
1310 sgot = NULL;
1311 splt = NULL;
1312 sreloc = NULL;
1313 if (dynobj != NULL)
1314 {
1315 splt = bfd_get_section_by_name (dynobj, ".plt");
1316 sgot = bfd_get_section_by_name (dynobj, ".got");
1317 }
1318
1319 rel = relocs;
1320 relend = relocs + input_section->reloc_count;
1321 for (; rel < relend; rel++)
1322 {
1323 int r_type;
1324 reloc_howto_type *howto;
1325 unsigned long r_symndx;
1326 struct elf_link_hash_entry *h;
1327 Elf_Internal_Sym *sym;
1328 asection *sec;
1329 bfd_vma relocation;
1330 bfd_reloc_status_type r;
1331
1332 r_type = ELF32_R_TYPE (rel->r_info);
1333 if (r_type == (int) R_390_GNU_VTINHERIT
1334 || r_type == (int) R_390_GNU_VTENTRY)
1335 continue;
1336 if (r_type < 0 || r_type >= (int) R_390_max)
1337 {
1338 bfd_set_error (bfd_error_bad_value);
1339 return false;
1340 }
1341 howto = elf_howto_table + r_type;
1342
1343 r_symndx = ELF32_R_SYM (rel->r_info);
1344
1345 if (info->relocateable)
1346 {
1347 /* This is a relocateable link. We don't have to change
1348 anything, unless the reloc is against a section symbol,
1349 in which case we have to adjust according to where the
1350 section symbol winds up in the output section. */
1351 if (r_symndx < symtab_hdr->sh_info)
1352 {
1353 sym = local_syms + r_symndx;
1354 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1355 {
1356 sec = local_sections[r_symndx];
1357 rel->r_addend += sec->output_offset + sym->st_value;
1358 }
1359 }
1360
1361 continue;
1362 }
1363
1364 /* This is a final link. */
1365 h = NULL;
1366 sym = NULL;
1367 sec = NULL;
1368 if (r_symndx < symtab_hdr->sh_info)
1369 {
1370 sym = local_syms + r_symndx;
1371 sec = local_sections[r_symndx];
1372 relocation = (sec->output_section->vma
1373 + sec->output_offset
1374 + sym->st_value);
1375 }
1376 else
1377 {
1378 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1379 while (h->root.type == bfd_link_hash_indirect
1380 || h->root.type == bfd_link_hash_warning)
1381 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1382 if (h->root.type == bfd_link_hash_defined
1383 || h->root.type == bfd_link_hash_defweak)
1384 {
1385 sec = h->root.u.def.section;
1386 if (r_type == R_390_GOTPC
1387 || ((r_type == R_390_PLT16DBL ||
1388 r_type == R_390_PLT32)
1389 && splt != NULL
1390 && h->plt.offset != (bfd_vma) -1)
1391 || ((r_type == R_390_GOT12 ||
1392 r_type == R_390_GOT16 ||
1393 r_type == R_390_GOT32)
1394 && elf_hash_table (info)->dynamic_sections_created
1395 && (! info->shared
1396 || (! info->symbolic && h->dynindx != -1)
1397 || (h->elf_link_hash_flags
1398 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1399 || (info->shared
1400 && ((! info->symbolic && h->dynindx != -1)
1401 || (h->elf_link_hash_flags
1402 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1403 && ( r_type == R_390_8 ||
1404 r_type == R_390_16 ||
1405 r_type == R_390_32 ||
1406 r_type == R_390_PC16 ||
1407 r_type == R_390_PC16DBL ||
1408 r_type == R_390_PC32)
1409 && ((input_section->flags & SEC_ALLOC) != 0
1410 /* DWARF will emit R_386_32 relocations in its
1411 sections against symbols defined externally
1412 in shared libraries. We can't do anything
1413 with them here. */
1414 || ((input_section->flags & SEC_DEBUGGING) != 0
1415 && (h->elf_link_hash_flags
1416 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1417 {
1418 /* In these cases, we don't need the relocation
1419 value. We check specially because in some
1420 obscure cases sec->output_section will be NULL. */
1421 relocation = 0;
1422 }
1423 else if (sec->output_section == NULL)
1424 {
1425 (*_bfd_error_handler)
1426 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
8f615d07 1427 bfd_archive_filename (input_bfd), h->root.root.string,
a85d7ed0
NC
1428 bfd_get_section_name (input_bfd, input_section));
1429 relocation = 0;
1430 }
1431 else
1432 relocation = (h->root.u.def.value
1433 + sec->output_section->vma
1434 + sec->output_offset);
1435 }
1436 else if (h->root.type == bfd_link_hash_undefweak)
1437 relocation = 0;
671bae9c
NC
1438 else if (info->shared
1439 && (!info->symbolic || info->allow_shlib_undefined)
a85d7ed0
NC
1440 && !info->no_undefined
1441 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1442 relocation = 0;
1443 else
1444 {
1445 if (! ((*info->callbacks->undefined_symbol)
1446 (info, h->root.root.string, input_bfd,
1447 input_section, rel->r_offset,
1448 (!info->shared || info->no_undefined
1449 || ELF_ST_VISIBILITY (h->other)))))
1450 return false;
1451 relocation = 0;
1452 }
1453 }
1454
1455 switch (r_type)
1456 {
1457 case R_390_GOT12:
1458 case R_390_GOT16:
1459 case R_390_GOT32:
1460 /* Relocation is to the entry for this symbol in the global
1461 offset table. */
1462 BFD_ASSERT (sgot != NULL);
1463
1464 if (h != NULL)
1465 {
1466 bfd_vma off;
1467
1468 off = h->got.offset;
1469 BFD_ASSERT (off != (bfd_vma) -1);
1470
1471 if (! elf_hash_table (info)->dynamic_sections_created
1472 || (info->shared
1473 && (info->symbolic || h->dynindx == -1)
1474 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1475 {
1476 /* This is actually a static link, or it is a
1477 -Bsymbolic link and the symbol is defined
1478 locally, or the symbol was forced to be local
1479 because of a version file. We must initialize
1480 this entry in the global offset table. Since the
1481 offset must always be a multiple of 2, we use the
1482 least significant bit to record whether we have
1483 initialized it already.
1484
1485 When doing a dynamic link, we create a .rel.got
1486 relocation entry to initialize the value. This
1487 is done in the finish_dynamic_symbol routine. */
1488 if ((off & 1) != 0)
1489 off &= ~1;
1490 else
1491 {
1492 bfd_put_32 (output_bfd, relocation,
1493 sgot->contents + off);
1494 h->got.offset |= 1;
1495 }
1496 }
1497 relocation = sgot->output_offset + off;
1498 }
1499 else
1500 {
1501 bfd_vma off;
1502
1503 BFD_ASSERT (local_got_offsets != NULL
1504 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1505
1506 off = local_got_offsets[r_symndx];
1507
1508 /* The offset must always be a multiple of 4. We use
1509 the least significant bit to record whether we have
1510 already generated the necessary reloc. */
1511 if ((off & 1) != 0)
1512 off &= ~1;
1513 else
1514 {
1515 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1516
1517 if (info->shared)
1518 {
1519 asection *srelgot;
1520 Elf_Internal_Rela outrel;
1521
1522 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1523 BFD_ASSERT (srelgot != NULL);
1524
1525 outrel.r_offset = (sgot->output_section->vma
1526 + sgot->output_offset
1527 + off);
1528 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1529 outrel.r_addend = relocation;
1530 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1531 (((Elf32_External_Rela *)
1532 srelgot->contents)
1533 + srelgot->reloc_count));
1534 ++srelgot->reloc_count;
1535 }
1536
1537 local_got_offsets[r_symndx] |= 1;
1538 }
1539
1540 relocation = sgot->output_offset + off;
1541 }
1542
1543
1544 break;
dc810e39 1545
a85d7ed0
NC
1546 case R_390_GOTOFF:
1547 /* Relocation is relative to the start of the global offset
1548 table. */
1549
1550 if (sgot == NULL)
1551 {
1552 sgot = bfd_get_section_by_name (dynobj, ".got");
1553 BFD_ASSERT (sgot != NULL);
1554 }
1555
1556 /* Note that sgot->output_offset is not involved in this
1557 calculation. We always want the start of .got. If we
1558 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1559 permitted by the ABI, we might have to change this
1560 calculation. */
1561 relocation -= sgot->output_section->vma;
1562
1563 break;
1564
1565 case R_390_GOTPC:
1566 /* Use global offset table as symbol value. */
1567
1568 if (sgot == NULL)
1569 {
1570 sgot = bfd_get_section_by_name (dynobj, ".got");
1571 BFD_ASSERT (sgot != NULL);
1572 }
1573
1574 relocation = sgot->output_section->vma;
1575
1576 break;
1577
1578 case R_390_PLT16DBL:
1579 case R_390_PLT32:
1580 /* Relocation is to the entry for this symbol in the
1581 procedure linkage table. */
1582
1583 /* Resolve a PLT32 reloc against a local symbol directly,
1584 without using the procedure linkage table. */
1585 if (h == NULL)
1586 break;
1587
1588 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1589 {
1590 /* We didn't make a PLT entry for this symbol. This
1591 happens when statically linking PIC code, or when
1592 using -Bsymbolic. */
1593 break;
1594 }
1595
1596 relocation = (splt->output_section->vma
1597 + splt->output_offset
1598 + h->plt.offset);
1599
1600 break;
1601
1602 case R_390_8:
1603 case R_390_16:
1604 case R_390_32:
1605 case R_390_PC16:
1606 case R_390_PC16DBL:
1607 case R_390_PC32:
1608 if (info->shared
1609 && (input_section->flags & SEC_ALLOC) != 0
1610 && ((r_type != R_390_PC16 &&
1611 r_type != R_390_PC16DBL &&
1612 r_type != R_390_PC32)
1613 || (h != NULL
1614 && h->dynindx != -1
1615 && (! info->symbolic
1616 || (h->elf_link_hash_flags
1617 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1618 {
1619 Elf_Internal_Rela outrel;
1620 boolean skip, relocate;
1621
1622 /* When generating a shared object, these relocations
1623 are copied into the output file to be resolved at run
1624 time. */
1625
1626 if (sreloc == NULL)
1627 {
1628 const char *name;
1629
1630 name = (bfd_elf_string_from_elf_section
1631 (input_bfd,
1632 elf_elfheader (input_bfd)->e_shstrndx,
1633 elf_section_data (input_section)->rel_hdr.sh_name));
1634 if (name == NULL)
1635 return false;
1636
1637 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1638 && strcmp (bfd_get_section_name (input_bfd,
1639 input_section),
1640 name + 5) == 0);
1641
1642 sreloc = bfd_get_section_by_name (dynobj, name);
1643 BFD_ASSERT (sreloc != NULL);
1644 }
1645
1646 skip = false;
1647
1648 if (elf_section_data (input_section)->stab_info == NULL)
1649 outrel.r_offset = rel->r_offset;
1650 else
1651 {
1652 bfd_vma off;
1653
1654 off = (_bfd_stab_section_offset
1655 (output_bfd, &elf_hash_table (info)->stab_info,
1656 input_section,
1657 &elf_section_data (input_section)->stab_info,
1658 rel->r_offset));
1659 if (off == (bfd_vma) -1)
1660 skip = true;
1661 outrel.r_offset = off;
1662 }
1663
1664 outrel.r_offset += (input_section->output_section->vma
1665 + input_section->output_offset);
1666
1667 if (skip)
1668 {
1669 memset (&outrel, 0, sizeof outrel);
1670 relocate = false;
1671 }
1672 else if (r_type == R_390_PC16 ||
1673 r_type == R_390_PC16DBL ||
1674 r_type == R_390_PC32)
1675 {
1676 BFD_ASSERT (h != NULL && h->dynindx != -1);
1677 relocate = false;
1678 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1679 outrel.r_addend = relocation + rel->r_addend;
1680 }
1681 else
1682 {
1683 /* h->dynindx may be -1 if this symbol was marked to
1684 become local. */
1685 if (h == NULL
1686 || ((info->symbolic || h->dynindx == -1)
1687 && (h->elf_link_hash_flags
1688 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1689 {
1690 relocate = true;
1691 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1692 outrel.r_addend = relocation + rel->r_addend;
1693 }
1694 else
1695 {
1696 BFD_ASSERT (h->dynindx != -1);
1697 relocate = false;
1698 outrel.r_info = ELF32_R_INFO (h->dynindx, R_390_32);
1699 outrel.r_addend = relocation + rel->r_addend;
1700 }
1701 }
1702
1703 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1704 (((Elf32_External_Rela *)
1705 sreloc->contents)
1706 + sreloc->reloc_count));
1707 ++sreloc->reloc_count;
1708
1709 /* If this reloc is against an external symbol, we do
1710 not want to fiddle with the addend. Otherwise, we
1711 need to include the symbol value so that it becomes
1712 an addend for the dynamic reloc. */
1713 if (! relocate)
1714 continue;
1715 }
1716
1717 break;
1718
1719 default:
1720 break;
1721 }
1722
1723 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1724 contents, rel->r_offset,
1725 relocation, rel->r_addend);
1726
1727 if (r != bfd_reloc_ok)
1728 {
1729 switch (r)
1730 {
1731 default:
1732 case bfd_reloc_outofrange:
1733 abort ();
1734 case bfd_reloc_overflow:
1735 {
1736 const char *name;
1737
1738 if (h != NULL)
1739 name = h->root.root.string;
1740 else
1741 {
1742 name = bfd_elf_string_from_elf_section (input_bfd,
1743 symtab_hdr->sh_link,
1744 sym->st_name);
1745 if (name == NULL)
1746 return false;
1747 if (*name == '\0')
1748 name = bfd_section_name (input_bfd, sec);
1749 }
1750 if (! ((*info->callbacks->reloc_overflow)
1751 (info, name, howto->name, (bfd_vma) 0,
1752 input_bfd, input_section, rel->r_offset)))
1753 return false;
1754 }
1755 break;
1756 }
1757 }
1758 }
1759
1760 return true;
1761}
1762
1763/* Finish up dynamic symbol handling. We set the contents of various
1764 dynamic sections here. */
1765
1766static boolean
1767elf_s390_finish_dynamic_symbol (output_bfd, info, h, sym)
1768 bfd *output_bfd;
1769 struct bfd_link_info *info;
1770 struct elf_link_hash_entry *h;
1771 Elf_Internal_Sym *sym;
1772{
1773 bfd *dynobj;
1774
1775 dynobj = elf_hash_table (info)->dynobj;
1776
1777 if (h->plt.offset != (bfd_vma) -1)
1778 {
1779 asection *splt;
1780 asection *srela;
1781 Elf_Internal_Rela rela;
1782 bfd_vma relative_offset;
1783 bfd_vma got_offset;
1784 bfd_vma plt_index;
1785 asection *sgot;
1786
1787 /* This symbol has an entry in the procedure linkage table. Set
1788 it up. */
1789
1790 BFD_ASSERT (h->dynindx != -1);
1791
1792 splt = bfd_get_section_by_name (dynobj, ".plt");
1793 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1794 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1795 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1796
dc810e39 1797 /* Calc. index no.
a85d7ed0
NC
1798 Current offset - size first entry / entry size. */
1799 plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE;
1800
1801 /* Offset in GOT is PLT index plus GOT headers(3) times 4,
1802 addr & GOT addr. */
1803 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1804
1805 /* S390 uses halfwords for relative branch calc! */
dc810e39
AM
1806 relative_offset = - ((PLT_FIRST_ENTRY_SIZE +
1807 (PLT_ENTRY_SIZE * plt_index) + 18) / 2);
a85d7ed0
NC
1808 /* If offset is > 32768, branch to a previous branch
1809 390 can only handle +-64 K jumps. */
dc810e39
AM
1810 if ( -32768 > (int) relative_offset )
1811 relative_offset =
1812 -(unsigned) (((65536 / PLT_ENTRY_SIZE - 1) * PLT_ENTRY_SIZE) / 2);
a85d7ed0
NC
1813
1814 /* Fill in the entry in the procedure linkage table. */
1815 if (!info->shared)
1816 {
dc810e39 1817 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD0,
a85d7ed0 1818 splt->contents + h->plt.offset);
dc810e39 1819 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD1,
a85d7ed0 1820 splt->contents + h->plt.offset + 4);
dc810e39 1821 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD2,
a85d7ed0 1822 splt->contents + h->plt.offset + 8);
dc810e39 1823 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD3,
a85d7ed0 1824 splt->contents + h->plt.offset + 12);
dc810e39 1825 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD4,
a85d7ed0 1826 splt->contents + h->plt.offset + 16);
dc810e39 1827 bfd_put_32 (output_bfd, (bfd_vma) 0 + (relative_offset << 16),
a85d7ed0
NC
1828 splt->contents + h->plt.offset + 20);
1829 bfd_put_32 (output_bfd,
dc810e39
AM
1830 (sgot->output_section->vma
1831 + sgot->output_offset
1832 + got_offset),
a85d7ed0
NC
1833 splt->contents + h->plt.offset + 24);
1834 }
1835 else if (got_offset < 4096)
1836 {
dc810e39 1837 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD0 + got_offset,
a85d7ed0 1838 splt->contents + h->plt.offset);
dc810e39 1839 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD1,
a85d7ed0 1840 splt->contents + h->plt.offset + 4);
dc810e39 1841 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD2,
a85d7ed0 1842 splt->contents + h->plt.offset + 8);
dc810e39 1843 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD3,
a85d7ed0 1844 splt->contents + h->plt.offset + 12);
dc810e39 1845 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD4,
a85d7ed0 1846 splt->contents + h->plt.offset + 16);
dc810e39 1847 bfd_put_32 (output_bfd, (bfd_vma) 0 + (relative_offset << 16),
a85d7ed0 1848 splt->contents + h->plt.offset + 20);
dc810e39 1849 bfd_put_32 (output_bfd, (bfd_vma) 0,
a85d7ed0
NC
1850 splt->contents + h->plt.offset + 24);
1851 }
1852 else if (got_offset < 32768)
1853 {
dc810e39 1854 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD0 + got_offset,
a85d7ed0 1855 splt->contents + h->plt.offset);
dc810e39 1856 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD1,
a85d7ed0 1857 splt->contents + h->plt.offset + 4);
dc810e39 1858 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD2,
a85d7ed0 1859 splt->contents + h->plt.offset + 8);
dc810e39 1860 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD3,
a85d7ed0 1861 splt->contents + h->plt.offset + 12);
dc810e39 1862 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD4,
a85d7ed0 1863 splt->contents + h->plt.offset + 16);
dc810e39 1864 bfd_put_32 (output_bfd, (bfd_vma) 0 + (relative_offset << 16),
a85d7ed0 1865 splt->contents + h->plt.offset + 20);
dc810e39 1866 bfd_put_32 (output_bfd, (bfd_vma) 0,
a85d7ed0
NC
1867 splt->contents + h->plt.offset + 24);
1868 }
1869 else
1870 {
dc810e39 1871 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD0,
a85d7ed0 1872 splt->contents + h->plt.offset);
dc810e39 1873 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD1,
a85d7ed0 1874 splt->contents + h->plt.offset + 4);
dc810e39 1875 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD2,
a85d7ed0 1876 splt->contents + h->plt.offset + 8);
dc810e39 1877 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD3,
a85d7ed0 1878 splt->contents + h->plt.offset + 12);
dc810e39 1879 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD4,
a85d7ed0 1880 splt->contents + h->plt.offset + 16);
dc810e39 1881 bfd_put_32 (output_bfd, (bfd_vma) 0 + (relative_offset << 16),
a85d7ed0
NC
1882 splt->contents + h->plt.offset + 20);
1883 bfd_put_32 (output_bfd, got_offset,
1884 splt->contents + h->plt.offset + 24);
1885 }
1886 /* Insert offset into reloc. table here. */
1887 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
1888 splt->contents + h->plt.offset + 28);
1889 /* Fill in the entry in the .rela.plt section. */
1890 rela.r_offset = (sgot->output_section->vma
1891 + sgot->output_offset
1892 + got_offset);
1893 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_JMP_SLOT);
1894 rela.r_addend = 0;
1895 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1896 ((Elf32_External_Rela *) srela->contents
1897 + plt_index ));
1898
1899 /* Fill in the entry in the global offset table.
1900 Points to instruction after GOT offset. */
1901 bfd_put_32 (output_bfd,
1902 (splt->output_section->vma
1903 + splt->output_offset
1904 + h->plt.offset
1905 + 12),
1906 sgot->contents + got_offset);
1907
1908
1909 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1910 {
1911 /* Mark the symbol as undefined, rather than as defined in
1912 the .plt section. Leave the value alone. */
1913 sym->st_shndx = SHN_UNDEF;
1914 }
1915 }
1916
1917 if (h->got.offset != (bfd_vma) -1)
1918 {
1919 asection *sgot;
1920 asection *srela;
1921 Elf_Internal_Rela rela;
1922
1923 /* This symbol has an entry in the global offset table. Set it
1924 up. */
1925
1926 sgot = bfd_get_section_by_name (dynobj, ".got");
1927 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1928 BFD_ASSERT (sgot != NULL && srela != NULL);
1929
1930 rela.r_offset = (sgot->output_section->vma
1931 + sgot->output_offset
dc810e39 1932 + (h->got.offset &~ (bfd_vma) 1));
a85d7ed0
NC
1933
1934 /* If this is a static link, or it is a -Bsymbolic link and the
1935 symbol is defined locally or was forced to be local because
1936 of a version file, we just want to emit a RELATIVE reloc.
1937 The entry in the global offset table will already have been
1938 initialized in the relocate_section function. */
1939 if (! elf_hash_table (info)->dynamic_sections_created
1940 || (info->shared
1941 && (info->symbolic || h->dynindx == -1)
1942 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1943 {
1944 rela.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1945 rela.r_addend = (h->root.u.def.value
1946 + h->root.u.def.section->output_section->vma
1947 + h->root.u.def.section->output_offset);
1948 }
1949 else
1950 {
1951 BFD_ASSERT((h->got.offset & 1) == 0);
1952 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1953 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_GLOB_DAT);
1954 rela.r_addend = 0;
1955 }
1956
1957 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1958 ((Elf32_External_Rela *) srela->contents
1959 + srela->reloc_count));
1960 ++srela->reloc_count;
1961 }
1962
1963 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1964 {
1965 asection *s;
1966 Elf_Internal_Rela rela;
1967
1968 /* This symbols needs a copy reloc. Set it up. */
1969
1970 BFD_ASSERT (h->dynindx != -1
1971 && (h->root.type == bfd_link_hash_defined
1972 || h->root.type == bfd_link_hash_defweak));
1973
1974
1975 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1976 ".rela.bss");
1977 BFD_ASSERT (s != NULL);
1978
1979 rela.r_offset = (h->root.u.def.value
1980 + h->root.u.def.section->output_section->vma
1981 + h->root.u.def.section->output_offset);
1982 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_COPY);
1983 rela.r_addend = 0;
1984 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1985 ((Elf32_External_Rela *) s->contents
1986 + s->reloc_count));
1987 ++s->reloc_count;
1988 }
1989
1990 /* Mark some specially defined symbols as absolute. */
1991 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1992 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
1993 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
1994 sym->st_shndx = SHN_ABS;
1995
1996 return true;
1997}
1998
1999/* Finish up the dynamic sections. */
2000
2001static boolean
2002elf_s390_finish_dynamic_sections (output_bfd, info)
2003 bfd *output_bfd;
2004 struct bfd_link_info *info;
2005{
2006 bfd *dynobj;
2007 asection *sdyn;
2008 asection *sgot;
2009
2010 dynobj = elf_hash_table (info)->dynobj;
2011
2012 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
2013 BFD_ASSERT (sgot != NULL);
2014 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2015
2016 if (elf_hash_table (info)->dynamic_sections_created)
2017 {
2018 asection *splt;
2019 Elf32_External_Dyn *dyncon, *dynconend;
2020
2021 BFD_ASSERT (sdyn != NULL);
2022
2023 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2024 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2025 for (; dyncon < dynconend; dyncon++)
2026 {
2027 Elf_Internal_Dyn dyn;
2028 const char *name;
2029 asection *s;
2030
2031 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2032
2033 switch (dyn.d_tag)
2034 {
2035 default:
2036 break;
2037
2038 case DT_PLTGOT:
2039 name = ".got";
2040 goto get_vma;
2041 case DT_JMPREL:
2042 name = ".rela.plt";
2043 get_vma:
2044 s = bfd_get_section_by_name(output_bfd, name);
2045 BFD_ASSERT (s != NULL);
2046 dyn.d_un.d_ptr = s->vma;
2047 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2048 break;
2049
2050 case DT_PLTRELSZ:
2051 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2052 BFD_ASSERT (s != NULL);
2053 if (s->_cooked_size != 0)
2054 dyn.d_un.d_val = s->_cooked_size;
2055 else
2056 dyn.d_un.d_val = s->_raw_size;
2057 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2058 break;
2059 }
2060 }
2061
2062 /* Fill in the special first entry in the procedure linkage table. */
2063 splt = bfd_get_section_by_name (dynobj, ".plt");
2064 if (splt && splt->_raw_size > 0)
2065 {
2066 memset (splt->contents, 0, PLT_FIRST_ENTRY_SIZE);
2067 if (info->shared)
2068 {
dc810e39 2069 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD0,
a85d7ed0 2070 splt->contents );
dc810e39
AM
2071 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD1,
2072 splt->contents + 4 );
2073 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD2,
2074 splt->contents + 8 );
2075 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD3,
2076 splt->contents + 12 );
2077 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD4,
2078 splt->contents + 16 );
a85d7ed0
NC
2079 }
2080 else
2081 {
dc810e39 2082 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD0,
a85d7ed0 2083 splt->contents );
dc810e39
AM
2084 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD1,
2085 splt->contents + 4 );
2086 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD2,
2087 splt->contents + 8 );
2088 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD3,
2089 splt->contents + 12 );
2090 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD4,
2091 splt->contents + 16 );
2092 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD5,
2093 splt->contents + 20 );
a85d7ed0
NC
2094 bfd_put_32 (output_bfd,
2095 sgot->output_section->vma + sgot->output_offset,
2096 splt->contents + 24);
2097 }
2098 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
2099 }
2100
2101 }
2102
2103 /* Set the first entry in the global offset table to the address of
2104 the dynamic section. */
2105 if (sgot->_raw_size > 0)
2106 {
2107 if (sdyn == NULL)
2108 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2109 else
2110 bfd_put_32 (output_bfd,
2111 sdyn->output_section->vma + sdyn->output_offset,
2112 sgot->contents);
2113
2114 /* One entry for shared object struct ptr. */
2115 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2116 /* One entry for _dl_runtime_resolve. */
2117 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2118 }
2119
2120 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2121
2122 return true;
2123}
2124
2125static boolean
2126elf_s390_object_p (abfd)
2127 bfd *abfd;
2128{
2129 return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_esa);
2130}
2131
29c2fb7c 2132static enum elf_reloc_type_class
f51e552e
AM
2133elf_s390_reloc_type_class (rela)
2134 const Elf_Internal_Rela *rela;
29c2fb7c 2135{
f51e552e 2136 switch ((int) ELF32_R_TYPE (rela->r_info))
29c2fb7c
AJ
2137 {
2138 case R_390_RELATIVE:
2139 return reloc_class_relative;
2140 case R_390_JMP_SLOT:
2141 return reloc_class_plt;
2142 case R_390_COPY:
2143 return reloc_class_copy;
2144 default:
2145 return reloc_class_normal;
2146 }
2147}
2148
a85d7ed0
NC
2149#define TARGET_BIG_SYM bfd_elf32_s390_vec
2150#define TARGET_BIG_NAME "elf32-s390"
2151#define ELF_ARCH bfd_arch_s390
2152#define ELF_MACHINE_CODE EM_S390
2153#define ELF_MACHINE_ALT1 EM_S390_OLD
2154#define ELF_MAXPAGESIZE 0x1000
2155
2156#define elf_backend_can_gc_sections 1
51b64d56 2157#define elf_backend_can_refcount 1
a85d7ed0
NC
2158#define elf_backend_want_got_plt 1
2159#define elf_backend_plt_readonly 1
2160#define elf_backend_want_plt_sym 0
2161#define elf_backend_got_header_size 12
2162#define elf_backend_plt_header_size PLT_ENTRY_SIZE
2163
2164#define elf_info_to_howto elf_s390_info_to_howto
2165
2166#define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2167#define bfd_elf32_bfd_is_local_label_name elf_s390_is_local_label_name
2168#define bfd_elf32_bfd_link_hash_table_create elf_s390_link_hash_table_create
2169#define bfd_elf32_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2170
2171#define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2172#define elf_backend_check_relocs elf_s390_check_relocs
2173#define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
2174#define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2175#define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2176#define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2177#define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2178#define elf_backend_relocate_section elf_s390_relocate_section
2179#define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
29c2fb7c 2180#define elf_backend_reloc_type_class elf_s390_reloc_type_class
a85d7ed0
NC
2181
2182#define elf_backend_object_p elf_s390_object_p
2183
2184#include "elf32-target.h"
This page took 0.159565 seconds and 4 git commands to generate.