xtensa: optimize removed_by_actions
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
b90efa5b 2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 106static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 107static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 108static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
109static int internal_reloc_compare (const void *, const void *);
110static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
111static asection *xtensa_get_property_section (asection *, const char *);
112extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 113static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
114
115/* Other functions called directly by the linker. */
116
117typedef void (*deps_callback_t)
7fa3d080 118 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 119extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
121
122
43cd72b9
BW
123/* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
7fa3d080 127
43cd72b9
BW
128int elf32xtensa_size_opt;
129
130
131/* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
e0001a05 134
7fa3d080 135typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 136
43cd72b9 137
43cd72b9
BW
138/* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143xtensa_isa xtensa_default_isa;
144
145
e0001a05
NC
146/* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150static bfd_boolean relaxing_section = FALSE;
151
43cd72b9
BW
152/* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155int elf32xtensa_no_literal_movement = 1;
156
b0dddeec
AM
157/* Rename one of the generic section flags to better document how it
158 is used here. */
159/* Whether relocations have been processed. */
160#define reloc_done sec_flg0
e0001a05
NC
161\f
162static reloc_howto_type elf_howto_table[] =
163{
6346d5ca 164 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
e0001a05 165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 166 FALSE, 0, 0, FALSE),
e0001a05
NC
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 170
e0001a05
NC
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178
e0001a05
NC
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 181 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 184 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 187 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
190 FALSE, 0, 0xffffffff, FALSE),
191
e0001a05 192 EMPTY_HOWTO (7),
e5f131d1
BW
193
194 /* Old relocations for backward compatibility. */
e0001a05 195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201
e0001a05
NC
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208
e0001a05 209 EMPTY_HOWTO (13),
1bbb5f21
BW
210
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 214
e0001a05
NC
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 218 FALSE, 0, 0, FALSE),
e0001a05
NC
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 222 FALSE, 0, 0, FALSE),
43cd72b9
BW
223
224 /* Relocations for supporting difference of symbols. */
1058c753 225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
e5f131d1 226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
1058c753 227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
e5f131d1 228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
1058c753 229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
e5f131d1 230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
231
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
263
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
295
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 FALSE, 0, 0, FALSE),
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 FALSE, 0, 0, FALSE),
e0001a05
NC
318};
319
43cd72b9 320#if DEBUG_GEN_RELOC
e0001a05
NC
321#define TRACE(str) \
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323#else
324#define TRACE(str)
325#endif
326
327static reloc_howto_type *
7fa3d080
BW
328elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
e0001a05
NC
330{
331 switch (code)
332 {
333 case BFD_RELOC_NONE:
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336
337 case BFD_RELOC_32:
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340
1bbb5f21
BW
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344
43cd72b9
BW
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356
e0001a05
NC
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404
28dbbc02
BW
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432
e0001a05 433 default:
43cd72b9
BW
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 {
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
440 }
441
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 {
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
448 }
449
e0001a05
NC
450 break;
451 }
452
453 TRACE ("Unknown");
454 return NULL;
455}
456
157090f7
AM
457static reloc_howto_type *
458elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 const char *r_name)
460{
461 unsigned int i;
462
463 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464 if (elf_howto_table[i].name != NULL
465 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
466 return &elf_howto_table[i];
467
468 return NULL;
469}
470
e0001a05
NC
471
472/* Given an ELF "rela" relocation, find the corresponding howto and record
473 it in the BFD internal arelent representation of the relocation. */
474
475static void
7fa3d080
BW
476elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
477 arelent *cache_ptr,
478 Elf_Internal_Rela *dst)
e0001a05
NC
479{
480 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
481
5860e3f8
NC
482 if (r_type >= (unsigned int) R_XTENSA_max)
483 {
64d29018 484 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
5860e3f8
NC
485 r_type = 0;
486 }
e0001a05
NC
487 cache_ptr->howto = &elf_howto_table[r_type];
488}
489
490\f
491/* Functions for the Xtensa ELF linker. */
492
493/* The name of the dynamic interpreter. This is put in the .interp
494 section. */
495
496#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
497
498/* The size in bytes of an entry in the procedure linkage table.
499 (This does _not_ include the space for the literals associated with
500 the PLT entry.) */
501
502#define PLT_ENTRY_SIZE 16
503
504/* For _really_ large PLTs, we may need to alternate between literals
505 and code to keep the literals within the 256K range of the L32R
506 instructions in the code. It's unlikely that anyone would ever need
507 such a big PLT, but an arbitrary limit on the PLT size would be bad.
508 Thus, we split the PLT into chunks. Since there's very little
509 overhead (2 extra literals) for each chunk, the chunk size is kept
510 small so that the code for handling multiple chunks get used and
511 tested regularly. With 254 entries, there are 1K of literals for
512 each chunk, and that seems like a nice round number. */
513
514#define PLT_ENTRIES_PER_CHUNK 254
515
516/* PLT entries are actually used as stub functions for lazy symbol
517 resolution. Once the symbol is resolved, the stub function is never
518 invoked. Note: the 32-byte frame size used here cannot be changed
519 without a corresponding change in the runtime linker. */
520
521static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
522{
523 0x6c, 0x10, 0x04, /* entry sp, 32 */
524 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
525 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
526 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
527 0x0a, 0x80, 0x00, /* jx a8 */
528 0 /* unused */
529};
530
531static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
532{
533 0x36, 0x41, 0x00, /* entry sp, 32 */
534 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
535 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
536 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
537 0xa0, 0x08, 0x00, /* jx a8 */
538 0 /* unused */
539};
540
28dbbc02
BW
541/* The size of the thread control block. */
542#define TCB_SIZE 8
543
544struct elf_xtensa_link_hash_entry
545{
546 struct elf_link_hash_entry elf;
547
548 bfd_signed_vma tlsfunc_refcount;
549
550#define GOT_UNKNOWN 0
551#define GOT_NORMAL 1
552#define GOT_TLS_GD 2 /* global or local dynamic */
553#define GOT_TLS_IE 4 /* initial or local exec */
554#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
555 unsigned char tls_type;
556};
557
558#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
559
560struct elf_xtensa_obj_tdata
561{
562 struct elf_obj_tdata root;
563
564 /* tls_type for each local got entry. */
565 char *local_got_tls_type;
566
567 bfd_signed_vma *local_tlsfunc_refcounts;
568};
569
570#define elf_xtensa_tdata(abfd) \
571 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
572
573#define elf_xtensa_local_got_tls_type(abfd) \
574 (elf_xtensa_tdata (abfd)->local_got_tls_type)
575
576#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
577 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
578
579#define is_xtensa_elf(bfd) \
580 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
581 && elf_tdata (bfd) != NULL \
4dfe6ac6 582 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
583
584static bfd_boolean
585elf_xtensa_mkobject (bfd *abfd)
586{
587 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 588 XTENSA_ELF_DATA);
28dbbc02
BW
589}
590
f0e6fdb2
BW
591/* Xtensa ELF linker hash table. */
592
593struct elf_xtensa_link_hash_table
594{
595 struct elf_link_hash_table elf;
596
597 /* Short-cuts to get to dynamic linker sections. */
598 asection *sgot;
599 asection *sgotplt;
600 asection *srelgot;
601 asection *splt;
602 asection *srelplt;
603 asection *sgotloc;
604 asection *spltlittbl;
605
606 /* Total count of PLT relocations seen during check_relocs.
607 The actual PLT code must be split into multiple sections and all
608 the sections have to be created before size_dynamic_sections,
609 where we figure out the exact number of PLT entries that will be
610 needed. It is OK if this count is an overestimate, e.g., some
611 relocations may be removed by GC. */
612 int plt_reloc_count;
28dbbc02
BW
613
614 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
615};
616
617/* Get the Xtensa ELF linker hash table from a link_info structure. */
618
619#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
620 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
621 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 622
28dbbc02
BW
623/* Create an entry in an Xtensa ELF linker hash table. */
624
625static struct bfd_hash_entry *
626elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
627 struct bfd_hash_table *table,
628 const char *string)
629{
630 /* Allocate the structure if it has not already been allocated by a
631 subclass. */
632 if (entry == NULL)
633 {
634 entry = bfd_hash_allocate (table,
635 sizeof (struct elf_xtensa_link_hash_entry));
636 if (entry == NULL)
637 return entry;
638 }
639
640 /* Call the allocation method of the superclass. */
641 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
642 if (entry != NULL)
643 {
644 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
645 eh->tlsfunc_refcount = 0;
646 eh->tls_type = GOT_UNKNOWN;
647 }
648
649 return entry;
650}
651
f0e6fdb2
BW
652/* Create an Xtensa ELF linker hash table. */
653
654static struct bfd_link_hash_table *
655elf_xtensa_link_hash_table_create (bfd *abfd)
656{
28dbbc02 657 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
658 struct elf_xtensa_link_hash_table *ret;
659 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
660
7bf52ea2 661 ret = bfd_zmalloc (amt);
f0e6fdb2
BW
662 if (ret == NULL)
663 return NULL;
664
665 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 666 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
667 sizeof (struct elf_xtensa_link_hash_entry),
668 XTENSA_ELF_DATA))
f0e6fdb2
BW
669 {
670 free (ret);
671 return NULL;
672 }
673
28dbbc02
BW
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
675 for it later. */
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
677 TRUE, FALSE, FALSE);
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
683
f0e6fdb2
BW
684 return &ret->elf.root;
685}
571b5725 686
28dbbc02
BW
687/* Copy the extra info we tack onto an elf_link_hash_entry. */
688
689static void
690elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
693{
694 struct elf_xtensa_link_hash_entry *edir, *eind;
695
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
698
699 if (ind->root.type == bfd_link_hash_indirect)
700 {
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
703
704 if (dir->got.refcount <= 0)
705 {
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
708 }
709 }
710
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712}
713
571b5725 714static inline bfd_boolean
4608f3d9 715elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 716 struct bfd_link_info *info)
571b5725
BW
717{
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
723
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
725}
726
e0001a05
NC
727\f
728static int
7fa3d080 729property_table_compare (const void *ap, const void *bp)
e0001a05
NC
730{
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
733
43cd72b9
BW
734 if (a->address == b->address)
735 {
43cd72b9
BW
736 if (a->size != b->size)
737 return (a->size - b->size);
738
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
742
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
68ffbac6 748
43cd72b9
BW
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
753
754 return (a->flags - b->flags);
755 }
756
757 return (a->address - b->address);
758}
759
760
761static int
7fa3d080 762property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
763{
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
766
767 /* Check if one entry overlaps with the other. */
e0001a05
NC
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
770 return 0;
771
772 return (a->address - b->address);
773}
774
775
43cd72b9
BW
776/* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
e0001a05 779
7fa3d080
BW
780static int
781xtensa_read_table_entries (bfd *abfd,
782 asection *section,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
e0001a05
NC
786{
787 asection *table_section;
e0001a05
NC
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
e4115460 791 int blk, block_count;
e0001a05 792 bfd_size_type num_records;
bcc2cc8e
BW
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
43cd72b9 795 flagword predef_flags;
bcc2cc8e 796 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
797
798 if (!section
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
801 {
802 *table_p = NULL;
803 return 0;
804 }
e0001a05 805
74869ac7 806 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 807 if (table_section)
eea6121a 808 table_size = table_section->size;
43cd72b9 809
68ffbac6 810 if (table_size == 0)
e0001a05
NC
811 {
812 *table_p = NULL;
813 return 0;
814 }
815
43cd72b9
BW
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
818 if (predef_flags)
819 table_entry_size -= 4;
820
821 num_records = table_size / table_entry_size;
e0001a05
NC
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
825 block_count = 0;
43cd72b9
BW
826
827 if (output_addr)
828 section_addr = section->output_section->vma + section->output_offset;
829 else
830 section_addr = section->vma;
3ba3bc8c 831
e0001a05 832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 833 if (internal_relocs && !table_section->reloc_done)
e0001a05 834 {
bcc2cc8e
BW
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
838 }
839 else
840 irel = NULL;
841
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
844
68ffbac6 845 for (off = 0; off < table_size; off += table_entry_size)
bcc2cc8e
BW
846 {
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
848
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
851 table entry. */
852 while (irel &&
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
856 {
857 irel += 1;
858 if (irel >= rel_end)
859 irel = 0;
860 }
e0001a05 861
bcc2cc8e 862 if (irel && irel->r_offset == off)
e0001a05 863 {
bcc2cc8e
BW
864 bfd_vma sym_off;
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 867
bcc2cc8e 868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
869 continue;
870
bcc2cc8e
BW
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
e0001a05 874 }
bcc2cc8e 875 else
e0001a05 876 {
bcc2cc8e
BW
877 if (address < section_addr
878 || address >= section_addr + section_limit)
879 continue;
e0001a05 880 }
bcc2cc8e
BW
881
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
884 if (predef_flags)
885 blocks[block_count].flags = predef_flags;
886 else
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888 block_count++;
e0001a05
NC
889 }
890
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
893
43cd72b9 894 if (block_count > 0)
e0001a05
NC
895 {
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
e4115460
BW
899
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
903 {
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
910 {
911 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
912 abfd, section);
913 bfd_set_error (bfd_error_bad_value);
914 free (blocks);
915 return -1;
916 }
917 }
e0001a05 918 }
43cd72b9 919
e0001a05
NC
920 *table_p = blocks;
921 return block_count;
922}
923
924
7fa3d080
BW
925static property_table_entry *
926elf_xtensa_find_property_entry (property_table_entry *property_table,
927 int property_table_size,
928 bfd_vma addr)
e0001a05
NC
929{
930 property_table_entry entry;
43cd72b9 931 property_table_entry *rv;
e0001a05 932
43cd72b9
BW
933 if (property_table_size == 0)
934 return NULL;
e0001a05
NC
935
936 entry.address = addr;
937 entry.size = 1;
43cd72b9 938 entry.flags = 0;
e0001a05 939
43cd72b9
BW
940 rv = bsearch (&entry, property_table, property_table_size,
941 sizeof (property_table_entry), property_table_matches);
942 return rv;
943}
944
945
946static bfd_boolean
7fa3d080
BW
947elf_xtensa_in_literal_pool (property_table_entry *lit_table,
948 int lit_table_size,
949 bfd_vma addr)
43cd72b9
BW
950{
951 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
952 return TRUE;
953
954 return FALSE;
955}
956
957\f
958/* Look through the relocs for a section during the first phase, and
959 calculate needed space in the dynamic reloc sections. */
960
961static bfd_boolean
7fa3d080
BW
962elf_xtensa_check_relocs (bfd *abfd,
963 struct bfd_link_info *info,
964 asection *sec,
965 const Elf_Internal_Rela *relocs)
e0001a05 966{
f0e6fdb2 967 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
968 Elf_Internal_Shdr *symtab_hdr;
969 struct elf_link_hash_entry **sym_hashes;
970 const Elf_Internal_Rela *rel;
971 const Elf_Internal_Rela *rel_end;
e0001a05 972
28dbbc02 973 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
974 return TRUE;
975
28dbbc02
BW
976 BFD_ASSERT (is_xtensa_elf (abfd));
977
f0e6fdb2 978 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
979 if (htab == NULL)
980 return FALSE;
981
e0001a05
NC
982 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
983 sym_hashes = elf_sym_hashes (abfd);
984
e0001a05
NC
985 rel_end = relocs + sec->reloc_count;
986 for (rel = relocs; rel < rel_end; rel++)
987 {
988 unsigned int r_type;
989 unsigned long r_symndx;
28dbbc02
BW
990 struct elf_link_hash_entry *h = NULL;
991 struct elf_xtensa_link_hash_entry *eh;
992 int tls_type, old_tls_type;
993 bfd_boolean is_got = FALSE;
994 bfd_boolean is_plt = FALSE;
995 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
996
997 r_symndx = ELF32_R_SYM (rel->r_info);
998 r_type = ELF32_R_TYPE (rel->r_info);
999
1000 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1001 {
d003868e
AM
1002 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1003 abfd, r_symndx);
e0001a05
NC
1004 return FALSE;
1005 }
1006
28dbbc02 1007 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1008 {
1009 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1010 while (h->root.type == bfd_link_hash_indirect
1011 || h->root.type == bfd_link_hash_warning)
1012 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
1013
1014 /* PR15323, ref flags aren't set for references in the same
1015 object. */
1016 h->root.non_ir_ref = 1;
e0001a05 1017 }
28dbbc02 1018 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1019
1020 switch (r_type)
1021 {
28dbbc02
BW
1022 case R_XTENSA_TLSDESC_FN:
1023 if (info->shared)
1024 {
1025 tls_type = GOT_TLS_GD;
1026 is_got = TRUE;
1027 is_tlsfunc = TRUE;
1028 }
1029 else
1030 tls_type = GOT_TLS_IE;
1031 break;
e0001a05 1032
28dbbc02
BW
1033 case R_XTENSA_TLSDESC_ARG:
1034 if (info->shared)
e0001a05 1035 {
28dbbc02
BW
1036 tls_type = GOT_TLS_GD;
1037 is_got = TRUE;
1038 }
1039 else
1040 {
1041 tls_type = GOT_TLS_IE;
1042 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1043 is_got = TRUE;
e0001a05
NC
1044 }
1045 break;
1046
28dbbc02
BW
1047 case R_XTENSA_TLS_DTPOFF:
1048 if (info->shared)
1049 tls_type = GOT_TLS_GD;
1050 else
1051 tls_type = GOT_TLS_IE;
1052 break;
1053
1054 case R_XTENSA_TLS_TPOFF:
1055 tls_type = GOT_TLS_IE;
1056 if (info->shared)
1057 info->flags |= DF_STATIC_TLS;
1058 if (info->shared || h)
1059 is_got = TRUE;
1060 break;
1061
1062 case R_XTENSA_32:
1063 tls_type = GOT_NORMAL;
1064 is_got = TRUE;
1065 break;
1066
e0001a05 1067 case R_XTENSA_PLT:
28dbbc02
BW
1068 tls_type = GOT_NORMAL;
1069 is_plt = TRUE;
1070 break;
e0001a05 1071
28dbbc02
BW
1072 case R_XTENSA_GNU_VTINHERIT:
1073 /* This relocation describes the C++ object vtable hierarchy.
1074 Reconstruct it for later use during GC. */
1075 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1076 return FALSE;
1077 continue;
1078
1079 case R_XTENSA_GNU_VTENTRY:
1080 /* This relocation describes which C++ vtable entries are actually
1081 used. Record for later use during GC. */
1082 BFD_ASSERT (h != NULL);
1083 if (h != NULL
1084 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1085 return FALSE;
1086 continue;
1087
1088 default:
1089 /* Nothing to do for any other relocations. */
1090 continue;
1091 }
1092
1093 if (h)
1094 {
1095 if (is_plt)
e0001a05 1096 {
b45329f9
BW
1097 if (h->plt.refcount <= 0)
1098 {
1099 h->needs_plt = 1;
1100 h->plt.refcount = 1;
1101 }
1102 else
1103 h->plt.refcount += 1;
e0001a05
NC
1104
1105 /* Keep track of the total PLT relocation count even if we
1106 don't yet know whether the dynamic sections will be
1107 created. */
f0e6fdb2 1108 htab->plt_reloc_count += 1;
e0001a05
NC
1109
1110 if (elf_hash_table (info)->dynamic_sections_created)
1111 {
f0e6fdb2 1112 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1113 return FALSE;
1114 }
1115 }
28dbbc02 1116 else if (is_got)
b45329f9
BW
1117 {
1118 if (h->got.refcount <= 0)
1119 h->got.refcount = 1;
1120 else
1121 h->got.refcount += 1;
1122 }
28dbbc02
BW
1123
1124 if (is_tlsfunc)
1125 eh->tlsfunc_refcount += 1;
e0001a05 1126
28dbbc02
BW
1127 old_tls_type = eh->tls_type;
1128 }
1129 else
1130 {
1131 /* Allocate storage the first time. */
1132 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1133 {
28dbbc02
BW
1134 bfd_size_type size = symtab_hdr->sh_info;
1135 void *mem;
e0001a05 1136
28dbbc02
BW
1137 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1138 if (mem == NULL)
1139 return FALSE;
1140 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1141
28dbbc02
BW
1142 mem = bfd_zalloc (abfd, size);
1143 if (mem == NULL)
1144 return FALSE;
1145 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1146
1147 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1148 if (mem == NULL)
1149 return FALSE;
1150 elf_xtensa_local_tlsfunc_refcounts (abfd)
1151 = (bfd_signed_vma *) mem;
e0001a05 1152 }
e0001a05 1153
28dbbc02
BW
1154 /* This is a global offset table entry for a local symbol. */
1155 if (is_got || is_plt)
1156 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1157
28dbbc02
BW
1158 if (is_tlsfunc)
1159 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1160
28dbbc02
BW
1161 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1162 }
1163
1164 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1165 tls_type |= old_tls_type;
1166 /* If a TLS symbol is accessed using IE at least once,
1167 there is no point to use a dynamic model for it. */
1168 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1169 && ((old_tls_type & GOT_TLS_GD) == 0
1170 || (tls_type & GOT_TLS_IE) == 0))
1171 {
1172 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1173 tls_type = old_tls_type;
1174 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1175 tls_type |= old_tls_type;
1176 else
1177 {
1178 (*_bfd_error_handler)
1179 (_("%B: `%s' accessed both as normal and thread local symbol"),
1180 abfd,
1181 h ? h->root.root.string : "<local>");
1182 return FALSE;
1183 }
1184 }
1185
1186 if (old_tls_type != tls_type)
1187 {
1188 if (eh)
1189 eh->tls_type = tls_type;
1190 else
1191 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1192 }
1193 }
1194
e0001a05
NC
1195 return TRUE;
1196}
1197
1198
95147441
BW
1199static void
1200elf_xtensa_make_sym_local (struct bfd_link_info *info,
1201 struct elf_link_hash_entry *h)
1202{
1203 if (info->shared)
1204 {
1205 if (h->plt.refcount > 0)
1206 {
1207 /* For shared objects, there's no need for PLT entries for local
1208 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1209 if (h->got.refcount < 0)
1210 h->got.refcount = 0;
1211 h->got.refcount += h->plt.refcount;
1212 h->plt.refcount = 0;
1213 }
1214 }
1215 else
1216 {
1217 /* Don't need any dynamic relocations at all. */
1218 h->plt.refcount = 0;
1219 h->got.refcount = 0;
1220 }
1221}
1222
1223
1224static void
1225elf_xtensa_hide_symbol (struct bfd_link_info *info,
1226 struct elf_link_hash_entry *h,
1227 bfd_boolean force_local)
1228{
1229 /* For a shared link, move the plt refcount to the got refcount to leave
1230 space for RELATIVE relocs. */
1231 elf_xtensa_make_sym_local (info, h);
1232
1233 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1234}
1235
1236
e0001a05
NC
1237/* Return the section that should be marked against GC for a given
1238 relocation. */
1239
1240static asection *
7fa3d080 1241elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1242 struct bfd_link_info *info,
7fa3d080
BW
1243 Elf_Internal_Rela *rel,
1244 struct elf_link_hash_entry *h,
1245 Elf_Internal_Sym *sym)
e0001a05 1246{
e1e5c0b5
BW
1247 /* Property sections are marked "KEEP" in the linker scripts, but they
1248 should not cause other sections to be marked. (This approach relies
1249 on elf_xtensa_discard_info to remove property table entries that
1250 describe discarded sections. Alternatively, it might be more
1251 efficient to avoid using "KEEP" in the linker scripts and instead use
1252 the gc_mark_extra_sections hook to mark only the property sections
1253 that describe marked sections. That alternative does not work well
1254 with the current property table sections, which do not correspond
1255 one-to-one with the sections they describe, but that should be fixed
1256 someday.) */
1257 if (xtensa_is_property_section (sec))
1258 return NULL;
1259
07adf181
AM
1260 if (h != NULL)
1261 switch (ELF32_R_TYPE (rel->r_info))
1262 {
1263 case R_XTENSA_GNU_VTINHERIT:
1264 case R_XTENSA_GNU_VTENTRY:
1265 return NULL;
1266 }
1267
1268 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1269}
1270
7fa3d080 1271
e0001a05
NC
1272/* Update the GOT & PLT entry reference counts
1273 for the section being removed. */
1274
1275static bfd_boolean
7fa3d080 1276elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1277 struct bfd_link_info *info,
7fa3d080
BW
1278 asection *sec,
1279 const Elf_Internal_Rela *relocs)
e0001a05
NC
1280{
1281 Elf_Internal_Shdr *symtab_hdr;
1282 struct elf_link_hash_entry **sym_hashes;
e0001a05 1283 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1284 struct elf_xtensa_link_hash_table *htab;
1285
1286 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1287 if (htab == NULL)
1288 return FALSE;
e0001a05 1289
7dda2462
TG
1290 if (info->relocatable)
1291 return TRUE;
1292
e0001a05
NC
1293 if ((sec->flags & SEC_ALLOC) == 0)
1294 return TRUE;
1295
1296 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1297 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1298
1299 relend = relocs + sec->reloc_count;
1300 for (rel = relocs; rel < relend; rel++)
1301 {
1302 unsigned long r_symndx;
1303 unsigned int r_type;
1304 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1305 struct elf_xtensa_link_hash_entry *eh;
1306 bfd_boolean is_got = FALSE;
1307 bfd_boolean is_plt = FALSE;
1308 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1309
1310 r_symndx = ELF32_R_SYM (rel->r_info);
1311 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1312 {
1313 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1314 while (h->root.type == bfd_link_hash_indirect
1315 || h->root.type == bfd_link_hash_warning)
1316 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1317 }
28dbbc02 1318 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1319
1320 r_type = ELF32_R_TYPE (rel->r_info);
1321 switch (r_type)
1322 {
28dbbc02
BW
1323 case R_XTENSA_TLSDESC_FN:
1324 if (info->shared)
1325 {
1326 is_got = TRUE;
1327 is_tlsfunc = TRUE;
1328 }
e0001a05
NC
1329 break;
1330
28dbbc02
BW
1331 case R_XTENSA_TLSDESC_ARG:
1332 if (info->shared)
1333 is_got = TRUE;
1334 else
1335 {
1336 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1337 is_got = TRUE;
1338 }
e0001a05
NC
1339 break;
1340
28dbbc02
BW
1341 case R_XTENSA_TLS_TPOFF:
1342 if (info->shared || h)
1343 is_got = TRUE;
e0001a05
NC
1344 break;
1345
28dbbc02
BW
1346 case R_XTENSA_32:
1347 is_got = TRUE;
e0001a05 1348 break;
28dbbc02
BW
1349
1350 case R_XTENSA_PLT:
1351 is_plt = TRUE;
1352 break;
1353
1354 default:
1355 continue;
1356 }
1357
1358 if (h)
1359 {
1360 if (is_plt)
1361 {
1362 if (h->plt.refcount > 0)
1363 h->plt.refcount--;
1364 }
1365 else if (is_got)
1366 {
1367 if (h->got.refcount > 0)
1368 h->got.refcount--;
1369 }
1370 if (is_tlsfunc)
1371 {
1372 if (eh->tlsfunc_refcount > 0)
1373 eh->tlsfunc_refcount--;
1374 }
1375 }
1376 else
1377 {
1378 if (is_got || is_plt)
1379 {
1380 bfd_signed_vma *got_refcount
1381 = &elf_local_got_refcounts (abfd) [r_symndx];
1382 if (*got_refcount > 0)
1383 *got_refcount -= 1;
1384 }
1385 if (is_tlsfunc)
1386 {
1387 bfd_signed_vma *tlsfunc_refcount
1388 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1389 if (*tlsfunc_refcount > 0)
1390 *tlsfunc_refcount -= 1;
1391 }
e0001a05
NC
1392 }
1393 }
1394
1395 return TRUE;
1396}
1397
1398
1399/* Create all the dynamic sections. */
1400
1401static bfd_boolean
7fa3d080 1402elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1403{
f0e6fdb2 1404 struct elf_xtensa_link_hash_table *htab;
e901de89 1405 flagword flags, noalloc_flags;
f0e6fdb2
BW
1406
1407 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1408 if (htab == NULL)
1409 return FALSE;
e0001a05
NC
1410
1411 /* First do all the standard stuff. */
1412 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1413 return FALSE;
3d4d4302
AM
1414 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1415 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1416 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1417 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1418 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
e0001a05
NC
1419
1420 /* Create any extra PLT sections in case check_relocs has already
1421 been called on all the non-dynamic input files. */
f0e6fdb2 1422 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1423 return FALSE;
1424
e901de89
BW
1425 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1426 | SEC_LINKER_CREATED | SEC_READONLY);
1427 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1428
1429 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1430 if (htab->sgotplt == NULL
1431 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1432 return FALSE;
1433
e901de89 1434 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3d4d4302
AM
1435 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1436 flags);
f0e6fdb2
BW
1437 if (htab->sgotloc == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1439 return FALSE;
1440
e0001a05 1441 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3d4d4302
AM
1442 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1443 noalloc_flags);
f0e6fdb2
BW
1444 if (htab->spltlittbl == NULL
1445 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1446 return FALSE;
1447
1448 return TRUE;
1449}
1450
1451
1452static bfd_boolean
f0e6fdb2 1453add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1454{
f0e6fdb2 1455 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1456 int chunk;
1457
1458 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1459 ".got.plt" sections. */
1460 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1461 {
1462 char *sname;
1463 flagword flags;
1464 asection *s;
1465
1466 /* Stop when we find a section has already been created. */
f0e6fdb2 1467 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1468 break;
1469
1470 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1471 | SEC_LINKER_CREATED | SEC_READONLY);
1472
1473 sname = (char *) bfd_malloc (10);
1474 sprintf (sname, ".plt.%u", chunk);
3d4d4302 1475 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1476 if (s == NULL
e0001a05
NC
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1478 return FALSE;
1479
1480 sname = (char *) bfd_malloc (14);
1481 sprintf (sname, ".got.plt.%u", chunk);
3d4d4302 1482 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
e0001a05 1483 if (s == NULL
e0001a05
NC
1484 || ! bfd_set_section_alignment (dynobj, s, 2))
1485 return FALSE;
1486 }
1487
1488 return TRUE;
1489}
1490
1491
1492/* Adjust a symbol defined by a dynamic object and referenced by a
1493 regular object. The current definition is in some section of the
1494 dynamic object, but we're not including those sections. We have to
1495 change the definition to something the rest of the link can
1496 understand. */
1497
1498static bfd_boolean
7fa3d080
BW
1499elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1500 struct elf_link_hash_entry *h)
e0001a05
NC
1501{
1502 /* If this is a weak symbol, and there is a real definition, the
1503 processor independent code will have arranged for us to see the
1504 real definition first, and we can just use the same value. */
7fa3d080 1505 if (h->u.weakdef)
e0001a05 1506 {
f6e332e6
AM
1507 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1508 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1509 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1510 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1511 return TRUE;
1512 }
1513
1514 /* This is a reference to a symbol defined by a dynamic object. The
1515 reference must go through the GOT, so there's no need for COPY relocs,
1516 .dynbss, etc. */
1517
1518 return TRUE;
1519}
1520
1521
e0001a05 1522static bfd_boolean
f1ab2340 1523elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1524{
f1ab2340
BW
1525 struct bfd_link_info *info;
1526 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1527 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1528
f1ab2340
BW
1529 if (h->root.type == bfd_link_hash_indirect)
1530 return TRUE;
e0001a05 1531
f1ab2340
BW
1532 info = (struct bfd_link_info *) arg;
1533 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1534 if (htab == NULL)
1535 return FALSE;
e0001a05 1536
28dbbc02
BW
1537 /* If we saw any use of an IE model for this symbol, we can then optimize
1538 away GOT entries for any TLSDESC_FN relocs. */
1539 if ((eh->tls_type & GOT_TLS_IE) != 0)
1540 {
1541 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1542 h->got.refcount -= eh->tlsfunc_refcount;
1543 }
e0001a05 1544
28dbbc02 1545 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1546 elf_xtensa_make_sym_local (info, h);
e0001a05 1547
f1ab2340
BW
1548 if (h->plt.refcount > 0)
1549 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1550
1551 if (h->got.refcount > 0)
f1ab2340 1552 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1553
1554 return TRUE;
1555}
1556
1557
1558static void
f0e6fdb2 1559elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1560{
f0e6fdb2 1561 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1562 bfd *i;
1563
f0e6fdb2 1564 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1565 if (htab == NULL)
1566 return;
f0e6fdb2 1567
c72f2fb2 1568 for (i = info->input_bfds; i; i = i->link.next)
e0001a05
NC
1569 {
1570 bfd_signed_vma *local_got_refcounts;
1571 bfd_size_type j, cnt;
1572 Elf_Internal_Shdr *symtab_hdr;
1573
1574 local_got_refcounts = elf_local_got_refcounts (i);
1575 if (!local_got_refcounts)
1576 continue;
1577
1578 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1579 cnt = symtab_hdr->sh_info;
1580
1581 for (j = 0; j < cnt; ++j)
1582 {
28dbbc02
BW
1583 /* If we saw any use of an IE model for this symbol, we can
1584 then optimize away GOT entries for any TLSDESC_FN relocs. */
1585 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1586 {
1587 bfd_signed_vma *tlsfunc_refcount
1588 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1589 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1590 local_got_refcounts[j] -= *tlsfunc_refcount;
1591 }
1592
e0001a05 1593 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1594 htab->srelgot->size += (local_got_refcounts[j]
1595 * sizeof (Elf32_External_Rela));
e0001a05
NC
1596 }
1597 }
1598}
1599
1600
1601/* Set the sizes of the dynamic sections. */
1602
1603static bfd_boolean
7fa3d080
BW
1604elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1605 struct bfd_link_info *info)
e0001a05 1606{
f0e6fdb2 1607 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1608 bfd *dynobj, *abfd;
1609 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1610 bfd_boolean relplt, relgot;
1611 int plt_entries, plt_chunks, chunk;
1612
1613 plt_entries = 0;
1614 plt_chunks = 0;
e0001a05 1615
f0e6fdb2 1616 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1617 if (htab == NULL)
1618 return FALSE;
1619
e0001a05
NC
1620 dynobj = elf_hash_table (info)->dynobj;
1621 if (dynobj == NULL)
1622 abort ();
f0e6fdb2
BW
1623 srelgot = htab->srelgot;
1624 srelplt = htab->srelplt;
e0001a05
NC
1625
1626 if (elf_hash_table (info)->dynamic_sections_created)
1627 {
f0e6fdb2
BW
1628 BFD_ASSERT (htab->srelgot != NULL
1629 && htab->srelplt != NULL
1630 && htab->sgot != NULL
1631 && htab->spltlittbl != NULL
1632 && htab->sgotloc != NULL);
1633
e0001a05 1634 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1635 if (info->executable)
e0001a05 1636 {
3d4d4302 1637 s = bfd_get_linker_section (dynobj, ".interp");
e0001a05
NC
1638 if (s == NULL)
1639 abort ();
eea6121a 1640 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1641 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1642 }
1643
1644 /* Allocate room for one word in ".got". */
f0e6fdb2 1645 htab->sgot->size = 4;
e0001a05 1646
f1ab2340
BW
1647 /* Allocate space in ".rela.got" for literals that reference global
1648 symbols and space in ".rela.plt" for literals that have PLT
1649 entries. */
e0001a05 1650 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1651 elf_xtensa_allocate_dynrelocs,
7fa3d080 1652 (void *) info);
e0001a05 1653
e0001a05
NC
1654 /* If we are generating a shared object, we also need space in
1655 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1656 reference local symbols. */
1657 if (info->shared)
f0e6fdb2 1658 elf_xtensa_allocate_local_got_size (info);
e0001a05 1659
e0001a05
NC
1660 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1661 each PLT entry, we need the PLT code plus a 4-byte literal.
1662 For each chunk of ".plt", we also need two more 4-byte
1663 literals, two corresponding entries in ".rela.got", and an
1664 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1665 spltlittbl = htab->spltlittbl;
eea6121a 1666 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1667 plt_chunks =
1668 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1669
1670 /* Iterate over all the PLT chunks, including any extra sections
1671 created earlier because the initial count of PLT relocations
1672 was an overestimate. */
1673 for (chunk = 0;
f0e6fdb2 1674 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1675 chunk++)
1676 {
1677 int chunk_entries;
1678
f0e6fdb2
BW
1679 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1680 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1681
1682 if (chunk < plt_chunks - 1)
1683 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1684 else if (chunk == plt_chunks - 1)
1685 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1686 else
1687 chunk_entries = 0;
1688
1689 if (chunk_entries != 0)
1690 {
eea6121a
AM
1691 sgotplt->size = 4 * (chunk_entries + 2);
1692 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1693 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1694 spltlittbl->size += 8;
e0001a05
NC
1695 }
1696 else
1697 {
eea6121a
AM
1698 sgotplt->size = 0;
1699 splt->size = 0;
e0001a05
NC
1700 }
1701 }
e901de89
BW
1702
1703 /* Allocate space in ".got.loc" to match the total size of all the
1704 literal tables. */
f0e6fdb2 1705 sgotloc = htab->sgotloc;
eea6121a 1706 sgotloc->size = spltlittbl->size;
c72f2fb2 1707 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
e901de89
BW
1708 {
1709 if (abfd->flags & DYNAMIC)
1710 continue;
1711 for (s = abfd->sections; s != NULL; s = s->next)
1712 {
dbaa2011 1713 if (! discarded_section (s)
b536dc1e
BW
1714 && xtensa_is_littable_section (s)
1715 && s != spltlittbl)
eea6121a 1716 sgotloc->size += s->size;
e901de89
BW
1717 }
1718 }
e0001a05
NC
1719 }
1720
1721 /* Allocate memory for dynamic sections. */
1722 relplt = FALSE;
1723 relgot = FALSE;
1724 for (s = dynobj->sections; s != NULL; s = s->next)
1725 {
1726 const char *name;
e0001a05
NC
1727
1728 if ((s->flags & SEC_LINKER_CREATED) == 0)
1729 continue;
1730
1731 /* It's OK to base decisions on the section name, because none
1732 of the dynobj section names depend upon the input files. */
1733 name = bfd_get_section_name (dynobj, s);
1734
0112cd26 1735 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1736 {
c456f082 1737 if (s->size != 0)
e0001a05 1738 {
c456f082
AM
1739 if (strcmp (name, ".rela.plt") == 0)
1740 relplt = TRUE;
1741 else if (strcmp (name, ".rela.got") == 0)
1742 relgot = TRUE;
1743
1744 /* We use the reloc_count field as a counter if we need
1745 to copy relocs into the output file. */
1746 s->reloc_count = 0;
e0001a05
NC
1747 }
1748 }
0112cd26
NC
1749 else if (! CONST_STRNEQ (name, ".plt.")
1750 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1751 && strcmp (name, ".got") != 0
e0001a05
NC
1752 && strcmp (name, ".plt") != 0
1753 && strcmp (name, ".got.plt") != 0
e901de89
BW
1754 && strcmp (name, ".xt.lit.plt") != 0
1755 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1756 {
1757 /* It's not one of our sections, so don't allocate space. */
1758 continue;
1759 }
1760
c456f082
AM
1761 if (s->size == 0)
1762 {
1763 /* If we don't need this section, strip it from the output
1764 file. We must create the ".plt*" and ".got.plt*"
1765 sections in create_dynamic_sections and/or check_relocs
1766 based on a conservative estimate of the PLT relocation
1767 count, because the sections must be created before the
1768 linker maps input sections to output sections. The
1769 linker does that before size_dynamic_sections, where we
1770 compute the exact size of the PLT, so there may be more
1771 of these sections than are actually needed. */
1772 s->flags |= SEC_EXCLUDE;
1773 }
1774 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1775 {
1776 /* Allocate memory for the section contents. */
eea6121a 1777 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1778 if (s->contents == NULL)
e0001a05
NC
1779 return FALSE;
1780 }
1781 }
1782
1783 if (elf_hash_table (info)->dynamic_sections_created)
1784 {
1785 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1786 known until finish_dynamic_sections, but we need to get the relocs
1787 in place before they are sorted. */
e0001a05
NC
1788 for (chunk = 0; chunk < plt_chunks; chunk++)
1789 {
1790 Elf_Internal_Rela irela;
1791 bfd_byte *loc;
1792
1793 irela.r_offset = 0;
1794 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1795 irela.r_addend = 0;
1796
1797 loc = (srelgot->contents
1798 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1799 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1800 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1801 loc + sizeof (Elf32_External_Rela));
1802 srelgot->reloc_count += 2;
1803 }
1804
1805 /* Add some entries to the .dynamic section. We fill in the
1806 values later, in elf_xtensa_finish_dynamic_sections, but we
1807 must add the entries now so that we get the correct size for
1808 the .dynamic section. The DT_DEBUG entry is filled in by the
1809 dynamic linker and used by the debugger. */
1810#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1811 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1812
ba05963f 1813 if (info->executable)
e0001a05
NC
1814 {
1815 if (!add_dynamic_entry (DT_DEBUG, 0))
1816 return FALSE;
1817 }
1818
1819 if (relplt)
1820 {
c243ad3b 1821 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1822 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1823 || !add_dynamic_entry (DT_JMPREL, 0))
1824 return FALSE;
1825 }
1826
1827 if (relgot)
1828 {
1829 if (!add_dynamic_entry (DT_RELA, 0)
1830 || !add_dynamic_entry (DT_RELASZ, 0)
1831 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1832 return FALSE;
1833 }
1834
c243ad3b
BW
1835 if (!add_dynamic_entry (DT_PLTGOT, 0)
1836 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1837 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1838 return FALSE;
1839 }
1840#undef add_dynamic_entry
1841
1842 return TRUE;
1843}
1844
28dbbc02
BW
1845static bfd_boolean
1846elf_xtensa_always_size_sections (bfd *output_bfd,
1847 struct bfd_link_info *info)
1848{
1849 struct elf_xtensa_link_hash_table *htab;
1850 asection *tls_sec;
1851
1852 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1853 if (htab == NULL)
1854 return FALSE;
1855
28dbbc02
BW
1856 tls_sec = htab->elf.tls_sec;
1857
1858 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1859 {
1860 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1861 struct bfd_link_hash_entry *bh = &tlsbase->root;
1862 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1863
1864 tlsbase->type = STT_TLS;
1865 if (!(_bfd_generic_link_add_one_symbol
1866 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1867 tls_sec, 0, NULL, FALSE,
1868 bed->collect, &bh)))
1869 return FALSE;
1870 tlsbase->def_regular = 1;
1871 tlsbase->other = STV_HIDDEN;
1872 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1873 }
1874
1875 return TRUE;
1876}
1877
e0001a05 1878\f
28dbbc02
BW
1879/* Return the base VMA address which should be subtracted from real addresses
1880 when resolving @dtpoff relocation.
1881 This is PT_TLS segment p_vaddr. */
1882
1883static bfd_vma
1884dtpoff_base (struct bfd_link_info *info)
1885{
1886 /* If tls_sec is NULL, we should have signalled an error already. */
1887 if (elf_hash_table (info)->tls_sec == NULL)
1888 return 0;
1889 return elf_hash_table (info)->tls_sec->vma;
1890}
1891
1892/* Return the relocation value for @tpoff relocation
1893 if STT_TLS virtual address is ADDRESS. */
1894
1895static bfd_vma
1896tpoff (struct bfd_link_info *info, bfd_vma address)
1897{
1898 struct elf_link_hash_table *htab = elf_hash_table (info);
1899 bfd_vma base;
1900
1901 /* If tls_sec is NULL, we should have signalled an error already. */
1902 if (htab->tls_sec == NULL)
1903 return 0;
1904 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1905 return address - htab->tls_sec->vma + base;
1906}
1907
e0001a05
NC
1908/* Perform the specified relocation. The instruction at (contents + address)
1909 is modified to set one operand to represent the value in "relocation". The
1910 operand position is determined by the relocation type recorded in the
1911 howto. */
1912
1913#define CALL_SEGMENT_BITS (30)
7fa3d080 1914#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1915
1916static bfd_reloc_status_type
7fa3d080
BW
1917elf_xtensa_do_reloc (reloc_howto_type *howto,
1918 bfd *abfd,
1919 asection *input_section,
1920 bfd_vma relocation,
1921 bfd_byte *contents,
1922 bfd_vma address,
1923 bfd_boolean is_weak_undef,
1924 char **error_message)
e0001a05 1925{
43cd72b9 1926 xtensa_format fmt;
e0001a05 1927 xtensa_opcode opcode;
e0001a05 1928 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1929 static xtensa_insnbuf ibuff = NULL;
1930 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1931 bfd_vma self_address;
43cd72b9
BW
1932 bfd_size_type input_size;
1933 int opnd, slot;
e0001a05
NC
1934 uint32 newval;
1935
43cd72b9
BW
1936 if (!ibuff)
1937 {
1938 ibuff = xtensa_insnbuf_alloc (isa);
1939 sbuff = xtensa_insnbuf_alloc (isa);
1940 }
1941
1942 input_size = bfd_get_section_limit (abfd, input_section);
1943
1bbb5f21
BW
1944 /* Calculate the PC address for this instruction. */
1945 self_address = (input_section->output_section->vma
1946 + input_section->output_offset
1947 + address);
1948
e0001a05
NC
1949 switch (howto->type)
1950 {
1951 case R_XTENSA_NONE:
43cd72b9
BW
1952 case R_XTENSA_DIFF8:
1953 case R_XTENSA_DIFF16:
1954 case R_XTENSA_DIFF32:
28dbbc02
BW
1955 case R_XTENSA_TLS_FUNC:
1956 case R_XTENSA_TLS_ARG:
1957 case R_XTENSA_TLS_CALL:
e0001a05
NC
1958 return bfd_reloc_ok;
1959
1960 case R_XTENSA_ASM_EXPAND:
1961 if (!is_weak_undef)
1962 {
1963 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1964 opcode = get_expanded_call_opcode (contents + address,
1965 input_size - address, 0);
e0001a05
NC
1966 if (is_windowed_call_opcode (opcode))
1967 {
43cd72b9 1968 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 1969 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1970 {
1971 *error_message = "windowed longcall crosses 1GB boundary; "
1972 "return may fail";
1973 return bfd_reloc_dangerous;
1974 }
1975 }
1976 }
1977 return bfd_reloc_ok;
1978
1979 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1980 {
e0001a05 1981 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1982 bfd_reloc_status_type retval =
1983 elf_xtensa_do_asm_simplify (contents, address, input_size,
1984 error_message);
e0001a05 1985 if (retval != bfd_reloc_ok)
43cd72b9 1986 return bfd_reloc_dangerous;
e0001a05
NC
1987
1988 /* The CALL needs to be relocated. Continue below for that part. */
1989 address += 3;
c46082c8 1990 self_address += 3;
43cd72b9 1991 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1992 }
1993 break;
1994
1995 case R_XTENSA_32:
e0001a05
NC
1996 {
1997 bfd_vma x;
1998 x = bfd_get_32 (abfd, contents + address);
1999 x = x + relocation;
2000 bfd_put_32 (abfd, x, contents + address);
2001 }
2002 return bfd_reloc_ok;
1bbb5f21
BW
2003
2004 case R_XTENSA_32_PCREL:
2005 bfd_put_32 (abfd, relocation - self_address, contents + address);
2006 return bfd_reloc_ok;
28dbbc02
BW
2007
2008 case R_XTENSA_PLT:
2009 case R_XTENSA_TLSDESC_FN:
2010 case R_XTENSA_TLSDESC_ARG:
2011 case R_XTENSA_TLS_DTPOFF:
2012 case R_XTENSA_TLS_TPOFF:
2013 bfd_put_32 (abfd, relocation, contents + address);
2014 return bfd_reloc_ok;
e0001a05
NC
2015 }
2016
43cd72b9
BW
2017 /* Only instruction slot-specific relocations handled below.... */
2018 slot = get_relocation_slot (howto->type);
2019 if (slot == XTENSA_UNDEFINED)
e0001a05 2020 {
43cd72b9 2021 *error_message = "unexpected relocation";
e0001a05
NC
2022 return bfd_reloc_dangerous;
2023 }
2024
43cd72b9
BW
2025 /* Read the instruction into a buffer and decode the opcode. */
2026 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2027 input_size - address);
2028 fmt = xtensa_format_decode (isa, ibuff);
2029 if (fmt == XTENSA_UNDEFINED)
e0001a05 2030 {
43cd72b9 2031 *error_message = "cannot decode instruction format";
e0001a05
NC
2032 return bfd_reloc_dangerous;
2033 }
2034
43cd72b9 2035 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2036
43cd72b9
BW
2037 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2038 if (opcode == XTENSA_UNDEFINED)
e0001a05 2039 {
43cd72b9 2040 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2041 return bfd_reloc_dangerous;
2042 }
2043
43cd72b9
BW
2044 /* Check for opcode-specific "alternate" relocations. */
2045 if (is_alt_relocation (howto->type))
2046 {
2047 if (opcode == get_l32r_opcode ())
2048 {
2049 /* Handle the special-case of non-PC-relative L32R instructions. */
2050 bfd *output_bfd = input_section->output_section->owner;
2051 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2052 if (!lit4_sec)
2053 {
2054 *error_message = "relocation references missing .lit4 section";
2055 return bfd_reloc_dangerous;
2056 }
2057 self_address = ((lit4_sec->vma & ~0xfff)
2058 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2059 newval = relocation;
2060 opnd = 1;
2061 }
2062 else if (opcode == get_const16_opcode ())
2063 {
2064 /* ALT used for high 16 bits. */
2065 newval = relocation >> 16;
2066 opnd = 1;
2067 }
2068 else
2069 {
2070 /* No other "alternate" relocations currently defined. */
2071 *error_message = "unexpected relocation";
2072 return bfd_reloc_dangerous;
2073 }
2074 }
2075 else /* Not an "alternate" relocation.... */
2076 {
2077 if (opcode == get_const16_opcode ())
2078 {
2079 newval = relocation & 0xffff;
2080 opnd = 1;
2081 }
2082 else
2083 {
2084 /* ...normal PC-relative relocation.... */
2085
2086 /* Determine which operand is being relocated. */
2087 opnd = get_relocation_opnd (opcode, howto->type);
2088 if (opnd == XTENSA_UNDEFINED)
2089 {
2090 *error_message = "unexpected relocation";
2091 return bfd_reloc_dangerous;
2092 }
2093
2094 if (!howto->pc_relative)
2095 {
2096 *error_message = "expected PC-relative relocation";
2097 return bfd_reloc_dangerous;
2098 }
e0001a05 2099
43cd72b9
BW
2100 newval = relocation;
2101 }
2102 }
e0001a05 2103
43cd72b9
BW
2104 /* Apply the relocation. */
2105 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2106 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2107 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2108 sbuff, newval))
e0001a05 2109 {
2db662be
BW
2110 const char *opname = xtensa_opcode_name (isa, opcode);
2111 const char *msg;
2112
2113 msg = "cannot encode";
2114 if (is_direct_call_opcode (opcode))
2115 {
2116 if ((relocation & 0x3) != 0)
2117 msg = "misaligned call target";
2118 else
2119 msg = "call target out of range";
2120 }
2121 else if (opcode == get_l32r_opcode ())
2122 {
2123 if ((relocation & 0x3) != 0)
2124 msg = "misaligned literal target";
2125 else if (is_alt_relocation (howto->type))
2126 msg = "literal target out of range (too many literals)";
2127 else if (self_address > relocation)
2128 msg = "literal target out of range (try using text-section-literals)";
2129 else
2130 msg = "literal placed after use";
2131 }
2132
2133 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2134 return bfd_reloc_dangerous;
2135 }
2136
43cd72b9 2137 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2138 if (is_direct_call_opcode (opcode)
2139 && is_windowed_call_opcode (opcode))
2140 {
43cd72b9 2141 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 2142 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2143 {
43cd72b9
BW
2144 *error_message =
2145 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2146 return bfd_reloc_dangerous;
2147 }
2148 }
2149
43cd72b9
BW
2150 /* Write the modified instruction back out of the buffer. */
2151 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2152 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2153 input_size - address);
e0001a05
NC
2154 return bfd_reloc_ok;
2155}
2156
2157
2db662be 2158static char *
7fa3d080 2159vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2160{
2161 /* To reduce the size of the memory leak,
2162 we only use a single message buffer. */
2163 static bfd_size_type alloc_size = 0;
2164 static char *message = NULL;
2165 bfd_size_type orig_len, len = 0;
2166 bfd_boolean is_append;
1651e569 2167 va_list ap;
e0001a05 2168
1651e569 2169 va_start (ap, arglen);
68ffbac6
L
2170
2171 is_append = (origmsg == message);
e0001a05
NC
2172
2173 orig_len = strlen (origmsg);
2174 len = orig_len + strlen (fmt) + arglen + 20;
2175 if (len > alloc_size)
2176 {
515ef31d 2177 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2178 alloc_size = len;
2179 }
515ef31d
NC
2180 if (message != NULL)
2181 {
2182 if (!is_append)
2183 memcpy (message, origmsg, orig_len);
2184 vsprintf (message + orig_len, fmt, ap);
2185 }
1651e569 2186 va_end (ap);
e0001a05
NC
2187 return message;
2188}
2189
2190
e0001a05
NC
2191/* This function is registered as the "special_function" in the
2192 Xtensa howto for handling simplify operations.
2193 bfd_perform_relocation / bfd_install_relocation use it to
2194 perform (install) the specified relocation. Since this replaces the code
2195 in bfd_perform_relocation, it is basically an Xtensa-specific,
2196 stripped-down version of bfd_perform_relocation. */
2197
2198static bfd_reloc_status_type
7fa3d080
BW
2199bfd_elf_xtensa_reloc (bfd *abfd,
2200 arelent *reloc_entry,
2201 asymbol *symbol,
2202 void *data,
2203 asection *input_section,
2204 bfd *output_bfd,
2205 char **error_message)
e0001a05
NC
2206{
2207 bfd_vma relocation;
2208 bfd_reloc_status_type flag;
2209 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2210 bfd_vma output_base = 0;
2211 reloc_howto_type *howto = reloc_entry->howto;
2212 asection *reloc_target_output_section;
2213 bfd_boolean is_weak_undef;
2214
dd1a320b
BW
2215 if (!xtensa_default_isa)
2216 xtensa_default_isa = xtensa_isa_init (0, 0);
2217
1049f94e 2218 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2219 output, and the reloc is against an external symbol, the resulting
2220 reloc will also be against the same symbol. In such a case, we
2221 don't want to change anything about the way the reloc is handled,
2222 since it will all be done at final link time. This test is similar
2223 to what bfd_elf_generic_reloc does except that it lets relocs with
2224 howto->partial_inplace go through even if the addend is non-zero.
2225 (The real problem is that partial_inplace is set for XTENSA_32
2226 relocs to begin with, but that's a long story and there's little we
2227 can do about it now....) */
2228
7fa3d080 2229 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2230 {
2231 reloc_entry->address += input_section->output_offset;
2232 return bfd_reloc_ok;
2233 }
2234
2235 /* Is the address of the relocation really within the section? */
07515404 2236 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2237 return bfd_reloc_outofrange;
2238
4cc11e76 2239 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2240 initial relocation command value. */
2241
2242 /* Get symbol value. (Common symbols are special.) */
2243 if (bfd_is_com_section (symbol->section))
2244 relocation = 0;
2245 else
2246 relocation = symbol->value;
2247
2248 reloc_target_output_section = symbol->section->output_section;
2249
2250 /* Convert input-section-relative symbol value to absolute. */
2251 if ((output_bfd && !howto->partial_inplace)
2252 || reloc_target_output_section == NULL)
2253 output_base = 0;
2254 else
2255 output_base = reloc_target_output_section->vma;
2256
2257 relocation += output_base + symbol->section->output_offset;
2258
2259 /* Add in supplied addend. */
2260 relocation += reloc_entry->addend;
2261
2262 /* Here the variable relocation holds the final address of the
2263 symbol we are relocating against, plus any addend. */
2264 if (output_bfd)
2265 {
2266 if (!howto->partial_inplace)
2267 {
2268 /* This is a partial relocation, and we want to apply the relocation
2269 to the reloc entry rather than the raw data. Everything except
2270 relocations against section symbols has already been handled
2271 above. */
43cd72b9 2272
e0001a05
NC
2273 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2274 reloc_entry->addend = relocation;
2275 reloc_entry->address += input_section->output_offset;
2276 return bfd_reloc_ok;
2277 }
2278 else
2279 {
2280 reloc_entry->address += input_section->output_offset;
2281 reloc_entry->addend = 0;
2282 }
2283 }
2284
2285 is_weak_undef = (bfd_is_und_section (symbol->section)
2286 && (symbol->flags & BSF_WEAK) != 0);
2287 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2288 (bfd_byte *) data, (bfd_vma) octets,
2289 is_weak_undef, error_message);
2290
2291 if (flag == bfd_reloc_dangerous)
2292 {
2293 /* Add the symbol name to the error message. */
2294 if (! *error_message)
2295 *error_message = "";
2296 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2297 strlen (symbol->name) + 17,
70961b9d
AM
2298 symbol->name,
2299 (unsigned long) reloc_entry->addend);
e0001a05
NC
2300 }
2301
2302 return flag;
2303}
2304
2305
2306/* Set up an entry in the procedure linkage table. */
2307
2308static bfd_vma
f0e6fdb2 2309elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2310 bfd *output_bfd,
2311 unsigned reloc_index)
e0001a05
NC
2312{
2313 asection *splt, *sgotplt;
2314 bfd_vma plt_base, got_base;
2315 bfd_vma code_offset, lit_offset;
2316 int chunk;
2317
2318 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2319 splt = elf_xtensa_get_plt_section (info, chunk);
2320 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2321 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2322
2323 plt_base = splt->output_section->vma + splt->output_offset;
2324 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2325
2326 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2327 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2328
2329 /* Fill in the literal entry. This is the offset of the dynamic
2330 relocation entry. */
2331 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2332 sgotplt->contents + lit_offset);
2333
2334 /* Fill in the entry in the procedure linkage table. */
2335 memcpy (splt->contents + code_offset,
2336 (bfd_big_endian (output_bfd)
2337 ? elf_xtensa_be_plt_entry
2338 : elf_xtensa_le_plt_entry),
2339 PLT_ENTRY_SIZE);
2340 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2341 plt_base + code_offset + 3),
2342 splt->contents + code_offset + 4);
2343 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2344 plt_base + code_offset + 6),
2345 splt->contents + code_offset + 7);
2346 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2347 plt_base + code_offset + 9),
2348 splt->contents + code_offset + 10);
2349
2350 return plt_base + code_offset;
2351}
2352
2353
28dbbc02
BW
2354static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2355
2356static bfd_boolean
2357replace_tls_insn (Elf_Internal_Rela *rel,
2358 bfd *abfd,
2359 asection *input_section,
2360 bfd_byte *contents,
2361 bfd_boolean is_ld_model,
2362 char **error_message)
2363{
2364 static xtensa_insnbuf ibuff = NULL;
2365 static xtensa_insnbuf sbuff = NULL;
2366 xtensa_isa isa = xtensa_default_isa;
2367 xtensa_format fmt;
2368 xtensa_opcode old_op, new_op;
2369 bfd_size_type input_size;
2370 int r_type;
2371 unsigned dest_reg, src_reg;
2372
2373 if (ibuff == NULL)
2374 {
2375 ibuff = xtensa_insnbuf_alloc (isa);
2376 sbuff = xtensa_insnbuf_alloc (isa);
2377 }
2378
2379 input_size = bfd_get_section_limit (abfd, input_section);
2380
2381 /* Read the instruction into a buffer and decode the opcode. */
2382 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2383 input_size - rel->r_offset);
2384 fmt = xtensa_format_decode (isa, ibuff);
2385 if (fmt == XTENSA_UNDEFINED)
2386 {
2387 *error_message = "cannot decode instruction format";
2388 return FALSE;
2389 }
2390
2391 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2392 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2393
2394 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2395 if (old_op == XTENSA_UNDEFINED)
2396 {
2397 *error_message = "cannot decode instruction opcode";
2398 return FALSE;
2399 }
2400
2401 r_type = ELF32_R_TYPE (rel->r_info);
2402 switch (r_type)
2403 {
2404 case R_XTENSA_TLS_FUNC:
2405 case R_XTENSA_TLS_ARG:
2406 if (old_op != get_l32r_opcode ()
2407 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2408 sbuff, &dest_reg) != 0)
2409 {
2410 *error_message = "cannot extract L32R destination for TLS access";
2411 return FALSE;
2412 }
2413 break;
2414
2415 case R_XTENSA_TLS_CALL:
2416 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2417 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2418 sbuff, &src_reg) != 0)
2419 {
2420 *error_message = "cannot extract CALLXn operands for TLS access";
2421 return FALSE;
2422 }
2423 break;
2424
2425 default:
2426 abort ();
2427 }
2428
2429 if (is_ld_model)
2430 {
2431 switch (r_type)
2432 {
2433 case R_XTENSA_TLS_FUNC:
2434 case R_XTENSA_TLS_ARG:
2435 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2436 versions of Xtensa). */
2437 new_op = xtensa_opcode_lookup (isa, "nop");
2438 if (new_op == XTENSA_UNDEFINED)
2439 {
2440 new_op = xtensa_opcode_lookup (isa, "or");
2441 if (new_op == XTENSA_UNDEFINED
2442 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2443 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2444 sbuff, 1) != 0
2445 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2446 sbuff, 1) != 0
2447 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2448 sbuff, 1) != 0)
2449 {
2450 *error_message = "cannot encode OR for TLS access";
2451 return FALSE;
2452 }
2453 }
2454 else
2455 {
2456 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2457 {
2458 *error_message = "cannot encode NOP for TLS access";
2459 return FALSE;
2460 }
2461 }
2462 break;
2463
2464 case R_XTENSA_TLS_CALL:
2465 /* Read THREADPTR into the CALLX's return value register. */
2466 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2467 if (new_op == XTENSA_UNDEFINED
2468 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2469 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2470 sbuff, dest_reg + 2) != 0)
2471 {
2472 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2473 return FALSE;
2474 }
2475 break;
2476 }
2477 }
2478 else
2479 {
2480 switch (r_type)
2481 {
2482 case R_XTENSA_TLS_FUNC:
2483 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2484 if (new_op == XTENSA_UNDEFINED
2485 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2486 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2487 sbuff, dest_reg) != 0)
2488 {
2489 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2490 return FALSE;
2491 }
2492 break;
2493
2494 case R_XTENSA_TLS_ARG:
2495 /* Nothing to do. Keep the original L32R instruction. */
2496 return TRUE;
2497
2498 case R_XTENSA_TLS_CALL:
2499 /* Add the CALLX's src register (holding the THREADPTR value)
2500 to the first argument register (holding the offset) and put
2501 the result in the CALLX's return value register. */
2502 new_op = xtensa_opcode_lookup (isa, "add");
2503 if (new_op == XTENSA_UNDEFINED
2504 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2505 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2506 sbuff, dest_reg + 2) != 0
2507 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2508 sbuff, dest_reg + 2) != 0
2509 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2510 sbuff, src_reg) != 0)
2511 {
2512 *error_message = "cannot encode ADD for TLS access";
2513 return FALSE;
2514 }
2515 break;
2516 }
2517 }
2518
2519 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2520 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2521 input_size - rel->r_offset);
2522
2523 return TRUE;
2524}
2525
2526
2527#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2528 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2529 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2530 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2531 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2532 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2533 || (R_TYPE) == R_XTENSA_TLS_ARG \
2534 || (R_TYPE) == R_XTENSA_TLS_CALL)
2535
e0001a05 2536/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2537 both relocatable and final links. */
e0001a05
NC
2538
2539static bfd_boolean
7fa3d080
BW
2540elf_xtensa_relocate_section (bfd *output_bfd,
2541 struct bfd_link_info *info,
2542 bfd *input_bfd,
2543 asection *input_section,
2544 bfd_byte *contents,
2545 Elf_Internal_Rela *relocs,
2546 Elf_Internal_Sym *local_syms,
2547 asection **local_sections)
e0001a05 2548{
f0e6fdb2 2549 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2550 Elf_Internal_Shdr *symtab_hdr;
2551 Elf_Internal_Rela *rel;
2552 Elf_Internal_Rela *relend;
2553 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2554 property_table_entry *lit_table = 0;
2555 int ltblsize = 0;
28dbbc02 2556 char *local_got_tls_types;
e0001a05 2557 char *error_message = NULL;
43cd72b9 2558 bfd_size_type input_size;
28dbbc02 2559 int tls_type;
e0001a05 2560
43cd72b9
BW
2561 if (!xtensa_default_isa)
2562 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2563
28dbbc02
BW
2564 BFD_ASSERT (is_xtensa_elf (input_bfd));
2565
f0e6fdb2 2566 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2567 if (htab == NULL)
2568 return FALSE;
2569
e0001a05
NC
2570 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2571 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2572 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2573
88d65ad6
BW
2574 if (elf_hash_table (info)->dynamic_sections_created)
2575 {
2576 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2577 &lit_table, XTENSA_LIT_SEC_NAME,
2578 TRUE);
88d65ad6
BW
2579 if (ltblsize < 0)
2580 return FALSE;
2581 }
2582
43cd72b9
BW
2583 input_size = bfd_get_section_limit (input_bfd, input_section);
2584
e0001a05
NC
2585 rel = relocs;
2586 relend = relocs + input_section->reloc_count;
2587 for (; rel < relend; rel++)
2588 {
2589 int r_type;
2590 reloc_howto_type *howto;
2591 unsigned long r_symndx;
2592 struct elf_link_hash_entry *h;
2593 Elf_Internal_Sym *sym;
28dbbc02
BW
2594 char sym_type;
2595 const char *name;
e0001a05
NC
2596 asection *sec;
2597 bfd_vma relocation;
2598 bfd_reloc_status_type r;
2599 bfd_boolean is_weak_undef;
2600 bfd_boolean unresolved_reloc;
9b8c98a4 2601 bfd_boolean warned;
28dbbc02 2602 bfd_boolean dynamic_symbol;
e0001a05
NC
2603
2604 r_type = ELF32_R_TYPE (rel->r_info);
2605 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2606 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2607 continue;
2608
2609 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2610 {
2611 bfd_set_error (bfd_error_bad_value);
2612 return FALSE;
2613 }
2614 howto = &elf_howto_table[r_type];
2615
2616 r_symndx = ELF32_R_SYM (rel->r_info);
2617
ab96bf03
AM
2618 h = NULL;
2619 sym = NULL;
2620 sec = NULL;
2621 is_weak_undef = FALSE;
2622 unresolved_reloc = FALSE;
2623 warned = FALSE;
2624
2625 if (howto->partial_inplace && !info->relocatable)
2626 {
2627 /* Because R_XTENSA_32 was made partial_inplace to fix some
2628 problems with DWARF info in partial links, there may be
2629 an addend stored in the contents. Take it out of there
2630 and move it back into the addend field of the reloc. */
2631 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2632 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2633 }
2634
2635 if (r_symndx < symtab_hdr->sh_info)
2636 {
2637 sym = local_syms + r_symndx;
28dbbc02 2638 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2639 sec = local_sections[r_symndx];
2640 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2641 }
2642 else
2643 {
62d887d4
L
2644 bfd_boolean ignored;
2645
ab96bf03
AM
2646 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2647 r_symndx, symtab_hdr, sym_hashes,
2648 h, sec, relocation,
62d887d4 2649 unresolved_reloc, warned, ignored);
ab96bf03
AM
2650
2651 if (relocation == 0
2652 && !unresolved_reloc
2653 && h->root.type == bfd_link_hash_undefweak)
2654 is_weak_undef = TRUE;
28dbbc02
BW
2655
2656 sym_type = h->type;
ab96bf03
AM
2657 }
2658
dbaa2011 2659 if (sec != NULL && discarded_section (sec))
e4067dbb 2660 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 2661 rel, 1, relend, howto, 0, contents);
ab96bf03 2662
1049f94e 2663 if (info->relocatable)
e0001a05 2664 {
7aa09196
SA
2665 bfd_vma dest_addr;
2666 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2667
43cd72b9 2668 /* This is a relocatable link.
e0001a05
NC
2669 1) If the reloc is against a section symbol, adjust
2670 according to the output section.
2671 2) If there is a new target for this relocation,
2672 the new target will be in the same output section.
2673 We adjust the relocation by the output section
2674 difference. */
2675
2676 if (relaxing_section)
2677 {
2678 /* Check if this references a section in another input file. */
43cd72b9
BW
2679 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2680 contents))
2681 return FALSE;
e0001a05
NC
2682 }
2683
7aa09196
SA
2684 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2685 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2686
43cd72b9 2687 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2688 {
91d6fa6a 2689 error_message = NULL;
e0001a05
NC
2690 /* Convert ASM_SIMPLIFY into the simpler relocation
2691 so that they never escape a relaxing link. */
43cd72b9
BW
2692 r = contract_asm_expansion (contents, input_size, rel,
2693 &error_message);
2694 if (r != bfd_reloc_ok)
2695 {
2696 if (!((*info->callbacks->reloc_dangerous)
2697 (info, error_message, input_bfd, input_section,
2698 rel->r_offset)))
2699 return FALSE;
2700 }
e0001a05
NC
2701 r_type = ELF32_R_TYPE (rel->r_info);
2702 }
2703
1049f94e 2704 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2705 anything unless the reloc is against a section symbol,
2706 in which case we have to adjust according to where the
2707 section symbol winds up in the output section. */
2708 if (r_symndx < symtab_hdr->sh_info)
2709 {
2710 sym = local_syms + r_symndx;
2711 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2712 {
2713 sec = local_sections[r_symndx];
2714 rel->r_addend += sec->output_offset + sym->st_value;
2715 }
2716 }
2717
2718 /* If there is an addend with a partial_inplace howto,
2719 then move the addend to the contents. This is a hack
1049f94e 2720 to work around problems with DWARF in relocatable links
e0001a05
NC
2721 with some previous version of BFD. Now we can't easily get
2722 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2723 r = bfd_reloc_ok;
2724 howto = &elf_howto_table[r_type];
2725 if (howto->partial_inplace && rel->r_addend)
2726 {
2727 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2728 rel->r_addend, contents,
2729 rel->r_offset, FALSE,
2730 &error_message);
2731 rel->r_addend = 0;
2732 }
2733 else
e0001a05 2734 {
7aa09196
SA
2735 /* Put the correct bits in the target instruction, even
2736 though the relocation will still be present in the output
2737 file. This makes disassembly clearer, as well as
2738 allowing loadable kernel modules to work without needing
2739 relocations on anything other than calls and l32r's. */
2740
2741 /* If it is not in the same section, there is nothing we can do. */
2742 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2743 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2744 {
2745 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2746 dest_addr, contents,
e0001a05
NC
2747 rel->r_offset, FALSE,
2748 &error_message);
e0001a05
NC
2749 }
2750 }
7aa09196
SA
2751 if (r != bfd_reloc_ok)
2752 {
2753 if (!((*info->callbacks->reloc_dangerous)
2754 (info, error_message, input_bfd, input_section,
2755 rel->r_offset)))
2756 return FALSE;
2757 }
e0001a05 2758
1049f94e 2759 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2760 continue;
2761 }
2762
2763 /* This is a final link. */
2764
e0001a05
NC
2765 if (relaxing_section)
2766 {
2767 /* Check if this references a section in another input file. */
43cd72b9
BW
2768 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2769 &relocation);
e0001a05
NC
2770 }
2771
2772 /* Sanity check the address. */
43cd72b9 2773 if (rel->r_offset >= input_size
e0001a05
NC
2774 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2775 {
43cd72b9
BW
2776 (*_bfd_error_handler)
2777 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2778 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2779 bfd_set_error (bfd_error_bad_value);
2780 return FALSE;
2781 }
2782
28dbbc02
BW
2783 if (h != NULL)
2784 name = h->root.root.string;
2785 else
e0001a05 2786 {
28dbbc02
BW
2787 name = (bfd_elf_string_from_elf_section
2788 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2789 if (name == NULL || *name == '\0')
2790 name = bfd_section_name (input_bfd, sec);
2791 }
e0001a05 2792
cf35638d 2793 if (r_symndx != STN_UNDEF
28dbbc02
BW
2794 && r_type != R_XTENSA_NONE
2795 && (h == NULL
2796 || h->root.type == bfd_link_hash_defined
2797 || h->root.type == bfd_link_hash_defweak)
2798 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2799 {
2800 (*_bfd_error_handler)
2801 ((sym_type == STT_TLS
2802 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2803 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2804 input_bfd,
2805 input_section,
2806 (long) rel->r_offset,
2807 howto->name,
2808 name);
2809 }
2810
2811 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2812
2813 tls_type = GOT_UNKNOWN;
2814 if (h)
2815 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2816 else if (local_got_tls_types)
2817 tls_type = local_got_tls_types [r_symndx];
2818
2819 switch (r_type)
2820 {
2821 case R_XTENSA_32:
2822 case R_XTENSA_PLT:
2823 if (elf_hash_table (info)->dynamic_sections_created
2824 && (input_section->flags & SEC_ALLOC) != 0
2825 && (dynamic_symbol || info->shared))
e0001a05
NC
2826 {
2827 Elf_Internal_Rela outrel;
2828 bfd_byte *loc;
2829 asection *srel;
2830
2831 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2832 srel = htab->srelplt;
e0001a05 2833 else
f0e6fdb2 2834 srel = htab->srelgot;
e0001a05
NC
2835
2836 BFD_ASSERT (srel != NULL);
2837
2838 outrel.r_offset =
2839 _bfd_elf_section_offset (output_bfd, info,
2840 input_section, rel->r_offset);
2841
2842 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2843 memset (&outrel, 0, sizeof outrel);
2844 else
2845 {
f0578e28
BW
2846 outrel.r_offset += (input_section->output_section->vma
2847 + input_section->output_offset);
e0001a05 2848
88d65ad6
BW
2849 /* Complain if the relocation is in a read-only section
2850 and not in a literal pool. */
2851 if ((input_section->flags & SEC_READONLY) != 0
2852 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2853 outrel.r_offset))
88d65ad6
BW
2854 {
2855 error_message =
2856 _("dynamic relocation in read-only section");
2857 if (!((*info->callbacks->reloc_dangerous)
2858 (info, error_message, input_bfd, input_section,
2859 rel->r_offset)))
2860 return FALSE;
2861 }
2862
e0001a05
NC
2863 if (dynamic_symbol)
2864 {
2865 outrel.r_addend = rel->r_addend;
2866 rel->r_addend = 0;
2867
2868 if (r_type == R_XTENSA_32)
2869 {
2870 outrel.r_info =
2871 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2872 relocation = 0;
2873 }
2874 else /* r_type == R_XTENSA_PLT */
2875 {
2876 outrel.r_info =
2877 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2878
2879 /* Create the PLT entry and set the initial
2880 contents of the literal entry to the address of
2881 the PLT entry. */
43cd72b9 2882 relocation =
f0e6fdb2 2883 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2884 srel->reloc_count);
2885 }
2886 unresolved_reloc = FALSE;
2887 }
2888 else
2889 {
2890 /* Generate a RELATIVE relocation. */
2891 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2892 outrel.r_addend = 0;
2893 }
2894 }
2895
2896 loc = (srel->contents
2897 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2899 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2900 <= srel->size);
e0001a05 2901 }
d9ab3f29
BW
2902 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2903 {
2904 /* This should only happen for non-PIC code, which is not
2905 supposed to be used on systems with dynamic linking.
2906 Just ignore these relocations. */
2907 continue;
2908 }
28dbbc02
BW
2909 break;
2910
2911 case R_XTENSA_TLS_TPOFF:
2912 /* Switch to LE model for local symbols in an executable. */
2913 if (! info->shared && ! dynamic_symbol)
2914 {
2915 relocation = tpoff (info, relocation);
2916 break;
2917 }
2918 /* fall through */
2919
2920 case R_XTENSA_TLSDESC_FN:
2921 case R_XTENSA_TLSDESC_ARG:
2922 {
2923 if (r_type == R_XTENSA_TLSDESC_FN)
2924 {
2925 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2926 r_type = R_XTENSA_NONE;
2927 }
2928 else if (r_type == R_XTENSA_TLSDESC_ARG)
2929 {
2930 if (info->shared)
2931 {
2932 if ((tls_type & GOT_TLS_IE) != 0)
2933 r_type = R_XTENSA_TLS_TPOFF;
2934 }
2935 else
2936 {
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 if (! dynamic_symbol)
2939 {
2940 relocation = tpoff (info, relocation);
2941 break;
2942 }
2943 }
2944 }
2945
2946 if (r_type == R_XTENSA_NONE)
2947 /* Nothing to do here; skip to the next reloc. */
2948 continue;
2949
2950 if (! elf_hash_table (info)->dynamic_sections_created)
2951 {
2952 error_message =
2953 _("TLS relocation invalid without dynamic sections");
2954 if (!((*info->callbacks->reloc_dangerous)
2955 (info, error_message, input_bfd, input_section,
2956 rel->r_offset)))
2957 return FALSE;
2958 }
2959 else
2960 {
2961 Elf_Internal_Rela outrel;
2962 bfd_byte *loc;
2963 asection *srel = htab->srelgot;
2964 int indx;
2965
2966 outrel.r_offset = (input_section->output_section->vma
2967 + input_section->output_offset
2968 + rel->r_offset);
2969
2970 /* Complain if the relocation is in a read-only section
2971 and not in a literal pool. */
2972 if ((input_section->flags & SEC_READONLY) != 0
2973 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2974 outrel.r_offset))
2975 {
2976 error_message =
2977 _("dynamic relocation in read-only section");
2978 if (!((*info->callbacks->reloc_dangerous)
2979 (info, error_message, input_bfd, input_section,
2980 rel->r_offset)))
2981 return FALSE;
2982 }
2983
2984 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2985 if (indx == 0)
2986 outrel.r_addend = relocation - dtpoff_base (info);
2987 else
2988 outrel.r_addend = 0;
2989 rel->r_addend = 0;
2990
2991 outrel.r_info = ELF32_R_INFO (indx, r_type);
2992 relocation = 0;
2993 unresolved_reloc = FALSE;
2994
2995 BFD_ASSERT (srel);
2996 loc = (srel->contents
2997 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2998 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2999 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3000 <= srel->size);
3001 }
3002 }
3003 break;
3004
3005 case R_XTENSA_TLS_DTPOFF:
3006 if (! info->shared)
3007 /* Switch from LD model to LE model. */
3008 relocation = tpoff (info, relocation);
3009 else
3010 relocation -= dtpoff_base (info);
3011 break;
3012
3013 case R_XTENSA_TLS_FUNC:
3014 case R_XTENSA_TLS_ARG:
3015 case R_XTENSA_TLS_CALL:
3016 /* Check if optimizing to IE or LE model. */
3017 if ((tls_type & GOT_TLS_IE) != 0)
3018 {
3019 bfd_boolean is_ld_model =
3020 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3021 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3022 is_ld_model, &error_message))
3023 {
3024 if (!((*info->callbacks->reloc_dangerous)
3025 (info, error_message, input_bfd, input_section,
3026 rel->r_offset)))
3027 return FALSE;
3028 }
3029
3030 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3031 {
3032 /* Skip subsequent relocations on the same instruction. */
3033 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3034 rel++;
3035 }
3036 }
3037 continue;
3038
3039 default:
3040 if (elf_hash_table (info)->dynamic_sections_created
3041 && dynamic_symbol && (is_operand_relocation (r_type)
3042 || r_type == R_XTENSA_32_PCREL))
3043 {
3044 error_message =
3045 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3046 strlen (name) + 2, name);
3047 if (!((*info->callbacks->reloc_dangerous)
3048 (info, error_message, input_bfd, input_section,
3049 rel->r_offset)))
3050 return FALSE;
3051 continue;
3052 }
3053 break;
e0001a05
NC
3054 }
3055
3056 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3057 because such sections are not SEC_ALLOC and thus ld.so will
3058 not process them. */
3059 if (unresolved_reloc
3060 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
3061 && h->def_dynamic)
3062 && _bfd_elf_section_offset (output_bfd, info, input_section,
3063 rel->r_offset) != (bfd_vma) -1)
bf1747de
BW
3064 {
3065 (*_bfd_error_handler)
3066 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3067 input_bfd,
3068 input_section,
3069 (long) rel->r_offset,
3070 howto->name,
28dbbc02 3071 name);
bf1747de
BW
3072 return FALSE;
3073 }
e0001a05 3074
28dbbc02
BW
3075 /* TLS optimizations may have changed r_type; update "howto". */
3076 howto = &elf_howto_table[r_type];
3077
e0001a05
NC
3078 /* There's no point in calling bfd_perform_relocation here.
3079 Just go directly to our "special function". */
3080 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3081 relocation + rel->r_addend,
3082 contents, rel->r_offset, is_weak_undef,
3083 &error_message);
43cd72b9 3084
9b8c98a4 3085 if (r != bfd_reloc_ok && !warned)
e0001a05 3086 {
43cd72b9 3087 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3088 BFD_ASSERT (error_message != NULL);
e0001a05 3089
28dbbc02
BW
3090 if (rel->r_addend == 0)
3091 error_message = vsprint_msg (error_message, ": %s",
3092 strlen (name) + 2, name);
e0001a05 3093 else
28dbbc02
BW
3094 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3095 strlen (name) + 22,
3096 name, (int) rel->r_addend);
43cd72b9 3097
e0001a05
NC
3098 if (!((*info->callbacks->reloc_dangerous)
3099 (info, error_message, input_bfd, input_section,
3100 rel->r_offset)))
3101 return FALSE;
3102 }
3103 }
3104
88d65ad6
BW
3105 if (lit_table)
3106 free (lit_table);
3107
3ba3bc8c
BW
3108 input_section->reloc_done = TRUE;
3109
e0001a05
NC
3110 return TRUE;
3111}
3112
3113
3114/* Finish up dynamic symbol handling. There's not much to do here since
3115 the PLT and GOT entries are all set up by relocate_section. */
3116
3117static bfd_boolean
7fa3d080
BW
3118elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3119 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3120 struct elf_link_hash_entry *h,
3121 Elf_Internal_Sym *sym)
e0001a05 3122{
bf1747de 3123 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3124 {
3125 /* Mark the symbol as undefined, rather than as defined in
3126 the .plt section. Leave the value alone. */
3127 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3128 /* If the symbol is weak, we do need to clear the value.
3129 Otherwise, the PLT entry would provide a definition for
3130 the symbol even if the symbol wasn't defined anywhere,
3131 and so the symbol would never be NULL. */
3132 if (!h->ref_regular_nonweak)
3133 sym->st_value = 0;
e0001a05
NC
3134 }
3135
3136 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9637f6ef 3137 if (h == elf_hash_table (info)->hdynamic
22edb2f1 3138 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3139 sym->st_shndx = SHN_ABS;
3140
3141 return TRUE;
3142}
3143
3144
3145/* Combine adjacent literal table entries in the output. Adjacent
3146 entries within each input section may have been removed during
3147 relaxation, but we repeat the process here, even though it's too late
3148 to shrink the output section, because it's important to minimize the
3149 number of literal table entries to reduce the start-up work for the
3150 runtime linker. Returns the number of remaining table entries or -1
3151 on error. */
3152
3153static int
7fa3d080
BW
3154elf_xtensa_combine_prop_entries (bfd *output_bfd,
3155 asection *sxtlit,
3156 asection *sgotloc)
e0001a05 3157{
e0001a05
NC
3158 bfd_byte *contents;
3159 property_table_entry *table;
e901de89 3160 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3161 bfd_vma offset;
3162 int n, m, num;
3163
eea6121a 3164 section_size = sxtlit->size;
e0001a05
NC
3165 BFD_ASSERT (section_size % 8 == 0);
3166 num = section_size / 8;
3167
eea6121a 3168 sgotloc_size = sgotloc->size;
e901de89 3169 if (sgotloc_size != section_size)
b536dc1e
BW
3170 {
3171 (*_bfd_error_handler)
43cd72b9 3172 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3173 return -1;
3174 }
e901de89 3175
eea6121a
AM
3176 table = bfd_malloc (num * sizeof (property_table_entry));
3177 if (table == 0)
e0001a05
NC
3178 return -1;
3179
3180 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3181 propagates to the output section, where it doesn't really apply and
eea6121a 3182 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3183 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3184
eea6121a
AM
3185 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3186 {
3187 if (contents != 0)
3188 free (contents);
3189 free (table);
3190 return -1;
3191 }
e0001a05
NC
3192
3193 /* There should never be any relocations left at this point, so this
3194 is quite a bit easier than what is done during relaxation. */
3195
3196 /* Copy the raw contents into a property table array and sort it. */
3197 offset = 0;
3198 for (n = 0; n < num; n++)
3199 {
3200 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3201 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3202 offset += 8;
3203 }
3204 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3205
3206 for (n = 0; n < num; n++)
3207 {
91d6fa6a 3208 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3209
3210 if (table[n].size == 0)
91d6fa6a
NC
3211 remove_entry = TRUE;
3212 else if (n > 0
3213 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3214 {
3215 table[n-1].size += table[n].size;
91d6fa6a 3216 remove_entry = TRUE;
e0001a05
NC
3217 }
3218
91d6fa6a 3219 if (remove_entry)
e0001a05
NC
3220 {
3221 for (m = n; m < num - 1; m++)
3222 {
3223 table[m].address = table[m+1].address;
3224 table[m].size = table[m+1].size;
3225 }
3226
3227 n--;
3228 num--;
3229 }
3230 }
3231
3232 /* Copy the data back to the raw contents. */
3233 offset = 0;
3234 for (n = 0; n < num; n++)
3235 {
3236 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3237 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3238 offset += 8;
3239 }
3240
3241 /* Clear the removed bytes. */
3242 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3243 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3244
e901de89
BW
3245 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3246 section_size))
e0001a05
NC
3247 return -1;
3248
e901de89
BW
3249 /* Copy the contents to ".got.loc". */
3250 memcpy (sgotloc->contents, contents, section_size);
3251
e0001a05 3252 free (contents);
b614a702 3253 free (table);
e0001a05
NC
3254 return num;
3255}
3256
3257
3258/* Finish up the dynamic sections. */
3259
3260static bfd_boolean
7fa3d080
BW
3261elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3262 struct bfd_link_info *info)
e0001a05 3263{
f0e6fdb2 3264 struct elf_xtensa_link_hash_table *htab;
e0001a05 3265 bfd *dynobj;
e901de89 3266 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3267 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3268 int num_xtlit_entries = 0;
e0001a05
NC
3269
3270 if (! elf_hash_table (info)->dynamic_sections_created)
3271 return TRUE;
3272
f0e6fdb2 3273 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3274 if (htab == NULL)
3275 return FALSE;
3276
e0001a05 3277 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3278 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
e0001a05
NC
3279 BFD_ASSERT (sdyn != NULL);
3280
3281 /* Set the first entry in the global offset table to the address of
3282 the dynamic section. */
f0e6fdb2 3283 sgot = htab->sgot;
e0001a05
NC
3284 if (sgot)
3285 {
eea6121a 3286 BFD_ASSERT (sgot->size == 4);
e0001a05 3287 if (sdyn == NULL)
7fa3d080 3288 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3289 else
3290 bfd_put_32 (output_bfd,
3291 sdyn->output_section->vma + sdyn->output_offset,
3292 sgot->contents);
3293 }
3294
f0e6fdb2 3295 srelplt = htab->srelplt;
7fa3d080 3296 if (srelplt && srelplt->size != 0)
e0001a05
NC
3297 {
3298 asection *sgotplt, *srelgot, *spltlittbl;
3299 int chunk, plt_chunks, plt_entries;
3300 Elf_Internal_Rela irela;
3301 bfd_byte *loc;
3302 unsigned rtld_reloc;
3303
f0e6fdb2
BW
3304 srelgot = htab->srelgot;
3305 spltlittbl = htab->spltlittbl;
3306 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3307
3308 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3309 of them follow immediately after.... */
3310 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3311 {
3312 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3313 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3314 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3315 break;
3316 }
3317 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3318
eea6121a 3319 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3320 plt_chunks =
3321 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3322
3323 for (chunk = 0; chunk < plt_chunks; chunk++)
3324 {
3325 int chunk_entries = 0;
3326
f0e6fdb2 3327 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3328 BFD_ASSERT (sgotplt != NULL);
3329
3330 /* Emit special RTLD relocations for the first two entries in
3331 each chunk of the .got.plt section. */
3332
3333 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3334 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3335 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3336 irela.r_offset = (sgotplt->output_section->vma
3337 + sgotplt->output_offset);
3338 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3339 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3340 rtld_reloc += 1;
3341 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3342
3343 /* Next literal immediately follows the first. */
3344 loc += sizeof (Elf32_External_Rela);
3345 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3346 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3347 irela.r_offset = (sgotplt->output_section->vma
3348 + sgotplt->output_offset + 4);
3349 /* Tell rtld to set value to object's link map. */
3350 irela.r_addend = 2;
3351 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3352 rtld_reloc += 1;
3353 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3354
3355 /* Fill in the literal table. */
3356 if (chunk < plt_chunks - 1)
3357 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3358 else
3359 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3360
eea6121a 3361 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3362 bfd_put_32 (output_bfd,
3363 sgotplt->output_section->vma + sgotplt->output_offset,
3364 spltlittbl->contents + (chunk * 8) + 0);
3365 bfd_put_32 (output_bfd,
3366 8 + (chunk_entries * 4),
3367 spltlittbl->contents + (chunk * 8) + 4);
3368 }
3369
3370 /* All the dynamic relocations have been emitted at this point.
3371 Make sure the relocation sections are the correct size. */
eea6121a
AM
3372 if (srelgot->size != (sizeof (Elf32_External_Rela)
3373 * srelgot->reloc_count)
3374 || srelplt->size != (sizeof (Elf32_External_Rela)
3375 * srelplt->reloc_count))
e0001a05
NC
3376 abort ();
3377
3378 /* The .xt.lit.plt section has just been modified. This must
3379 happen before the code below which combines adjacent literal
3380 table entries, and the .xt.lit.plt contents have to be forced to
3381 the output here. */
3382 if (! bfd_set_section_contents (output_bfd,
3383 spltlittbl->output_section,
3384 spltlittbl->contents,
3385 spltlittbl->output_offset,
eea6121a 3386 spltlittbl->size))
e0001a05
NC
3387 return FALSE;
3388 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3389 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3390 }
3391
3392 /* Combine adjacent literal table entries. */
1049f94e 3393 BFD_ASSERT (! info->relocatable);
e901de89 3394 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3395 sgotloc = htab->sgotloc;
d9ab3f29
BW
3396 BFD_ASSERT (sgotloc);
3397 if (sxtlit)
3398 {
3399 num_xtlit_entries =
3400 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3401 if (num_xtlit_entries < 0)
3402 return FALSE;
3403 }
e0001a05
NC
3404
3405 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3406 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3407 for (; dyncon < dynconend; dyncon++)
3408 {
3409 Elf_Internal_Dyn dyn;
e0001a05
NC
3410
3411 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3412
3413 switch (dyn.d_tag)
3414 {
3415 default:
3416 break;
3417
3418 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3419 dyn.d_un.d_val = num_xtlit_entries;
3420 break;
3421
3422 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 3423 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
3424 break;
3425
e0001a05 3426 case DT_PLTGOT:
e29297b7 3427 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
3428 break;
3429
e0001a05 3430 case DT_JMPREL:
e29297b7 3431 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
3432 break;
3433
3434 case DT_PLTRELSZ:
e29297b7 3435 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
3436 break;
3437
3438 case DT_RELASZ:
3439 /* Adjust RELASZ to not include JMPREL. This matches what
3440 glibc expects and what is done for several other ELF
3441 targets (e.g., i386, alpha), but the "correct" behavior
3442 seems to be unresolved. Since the linker script arranges
3443 for .rela.plt to follow all other relocation sections, we
3444 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3445 if (htab->srelplt)
e29297b7 3446 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
3447 break;
3448 }
3449
3450 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3451 }
3452
3453 return TRUE;
3454}
3455
3456\f
3457/* Functions for dealing with the e_flags field. */
3458
3459/* Merge backend specific data from an object file to the output
3460 object file when linking. */
3461
3462static bfd_boolean
7fa3d080 3463elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3464{
3465 unsigned out_mach, in_mach;
3466 flagword out_flag, in_flag;
3467
cc643b88 3468 /* Check if we have the same endianness. */
e0001a05
NC
3469 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3470 return FALSE;
3471
3472 /* Don't even pretend to support mixed-format linking. */
3473 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3474 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3475 return FALSE;
3476
3477 out_flag = elf_elfheader (obfd)->e_flags;
3478 in_flag = elf_elfheader (ibfd)->e_flags;
3479
3480 out_mach = out_flag & EF_XTENSA_MACH;
3481 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3482 if (out_mach != in_mach)
e0001a05
NC
3483 {
3484 (*_bfd_error_handler)
43cd72b9 3485 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3486 ibfd, out_mach, in_mach);
e0001a05
NC
3487 bfd_set_error (bfd_error_wrong_format);
3488 return FALSE;
3489 }
3490
3491 if (! elf_flags_init (obfd))
3492 {
3493 elf_flags_init (obfd) = TRUE;
3494 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3495
e0001a05
NC
3496 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3497 && bfd_get_arch_info (obfd)->the_default)
3498 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3499 bfd_get_mach (ibfd));
43cd72b9 3500
e0001a05
NC
3501 return TRUE;
3502 }
3503
68ffbac6 3504 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
43cd72b9 3505 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3506
68ffbac6 3507 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
43cd72b9 3508 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3509
3510 return TRUE;
3511}
3512
3513
3514static bfd_boolean
7fa3d080 3515elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3516{
3517 BFD_ASSERT (!elf_flags_init (abfd)
3518 || elf_elfheader (abfd)->e_flags == flags);
3519
3520 elf_elfheader (abfd)->e_flags |= flags;
3521 elf_flags_init (abfd) = TRUE;
3522
3523 return TRUE;
3524}
3525
3526
e0001a05 3527static bfd_boolean
7fa3d080 3528elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3529{
3530 FILE *f = (FILE *) farg;
3531 flagword e_flags = elf_elfheader (abfd)->e_flags;
3532
3533 fprintf (f, "\nXtensa header:\n");
43cd72b9 3534 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3535 fprintf (f, "\nMachine = Base\n");
3536 else
3537 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3538
3539 fprintf (f, "Insn tables = %s\n",
3540 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3541
3542 fprintf (f, "Literal tables = %s\n",
3543 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3544
3545 return _bfd_elf_print_private_bfd_data (abfd, farg);
3546}
3547
3548
3549/* Set the right machine number for an Xtensa ELF file. */
3550
3551static bfd_boolean
7fa3d080 3552elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3553{
3554 int mach;
3555 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3556
3557 switch (arch)
3558 {
3559 case E_XTENSA_MACH:
3560 mach = bfd_mach_xtensa;
3561 break;
3562 default:
3563 return FALSE;
3564 }
3565
3566 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3567 return TRUE;
3568}
3569
3570
3571/* The final processing done just before writing out an Xtensa ELF object
3572 file. This gets the Xtensa architecture right based on the machine
3573 number. */
3574
3575static void
7fa3d080
BW
3576elf_xtensa_final_write_processing (bfd *abfd,
3577 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3578{
3579 int mach;
3580 unsigned long val;
3581
3582 switch (mach = bfd_get_mach (abfd))
3583 {
3584 case bfd_mach_xtensa:
3585 val = E_XTENSA_MACH;
3586 break;
3587 default:
3588 return;
3589 }
3590
3591 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3592 elf_elfheader (abfd)->e_flags |= val;
3593}
3594
3595
3596static enum elf_reloc_type_class
7e612e98
AM
3597elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3598 const asection *rel_sec ATTRIBUTE_UNUSED,
3599 const Elf_Internal_Rela *rela)
e0001a05
NC
3600{
3601 switch ((int) ELF32_R_TYPE (rela->r_info))
3602 {
3603 case R_XTENSA_RELATIVE:
3604 return reloc_class_relative;
3605 case R_XTENSA_JMP_SLOT:
3606 return reloc_class_plt;
3607 default:
3608 return reloc_class_normal;
3609 }
3610}
3611
3612\f
3613static bfd_boolean
7fa3d080
BW
3614elf_xtensa_discard_info_for_section (bfd *abfd,
3615 struct elf_reloc_cookie *cookie,
3616 struct bfd_link_info *info,
3617 asection *sec)
e0001a05
NC
3618{
3619 bfd_byte *contents;
e0001a05 3620 bfd_vma offset, actual_offset;
1d25768e
BW
3621 bfd_size_type removed_bytes = 0;
3622 bfd_size_type entry_size;
e0001a05
NC
3623
3624 if (sec->output_section
3625 && bfd_is_abs_section (sec->output_section))
3626 return FALSE;
3627
1d25768e
BW
3628 if (xtensa_is_proptable_section (sec))
3629 entry_size = 12;
3630 else
3631 entry_size = 8;
3632
a3ef2d63 3633 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3634 return FALSE;
3635
e0001a05
NC
3636 contents = retrieve_contents (abfd, sec, info->keep_memory);
3637 if (!contents)
3638 return FALSE;
3639
3640 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3641 if (!cookie->rels)
3642 {
3643 release_contents (sec, contents);
3644 return FALSE;
3645 }
3646
1d25768e
BW
3647 /* Sort the relocations. They should already be in order when
3648 relaxation is enabled, but it might not be. */
3649 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3650 internal_reloc_compare);
3651
e0001a05
NC
3652 cookie->rel = cookie->rels;
3653 cookie->relend = cookie->rels + sec->reloc_count;
3654
a3ef2d63 3655 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3656 {
3657 actual_offset = offset - removed_bytes;
3658
3659 /* The ...symbol_deleted_p function will skip over relocs but it
3660 won't adjust their offsets, so do that here. */
3661 while (cookie->rel < cookie->relend
3662 && cookie->rel->r_offset < offset)
3663 {
3664 cookie->rel->r_offset -= removed_bytes;
3665 cookie->rel++;
3666 }
3667
3668 while (cookie->rel < cookie->relend
3669 && cookie->rel->r_offset == offset)
3670 {
c152c796 3671 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3672 {
3673 /* Remove the table entry. (If the reloc type is NONE, then
3674 the entry has already been merged with another and deleted
3675 during relaxation.) */
3676 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3677 {
3678 /* Shift the contents up. */
a3ef2d63 3679 if (offset + entry_size < sec->size)
e0001a05 3680 memmove (&contents[actual_offset],
1d25768e 3681 &contents[actual_offset + entry_size],
a3ef2d63 3682 sec->size - offset - entry_size);
1d25768e 3683 removed_bytes += entry_size;
e0001a05
NC
3684 }
3685
3686 /* Remove this relocation. */
3687 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3688 }
3689
3690 /* Adjust the relocation offset for previous removals. This
3691 should not be done before calling ...symbol_deleted_p
3692 because it might mess up the offset comparisons there.
3693 Make sure the offset doesn't underflow in the case where
3694 the first entry is removed. */
3695 if (cookie->rel->r_offset >= removed_bytes)
3696 cookie->rel->r_offset -= removed_bytes;
3697 else
3698 cookie->rel->r_offset = 0;
3699
3700 cookie->rel++;
3701 }
3702 }
3703
3704 if (removed_bytes != 0)
3705 {
3706 /* Adjust any remaining relocs (shouldn't be any). */
3707 for (; cookie->rel < cookie->relend; cookie->rel++)
3708 {
3709 if (cookie->rel->r_offset >= removed_bytes)
3710 cookie->rel->r_offset -= removed_bytes;
3711 else
3712 cookie->rel->r_offset = 0;
3713 }
3714
3715 /* Clear the removed bytes. */
a3ef2d63 3716 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3717
3718 pin_contents (sec, contents);
3719 pin_internal_relocs (sec, cookie->rels);
3720
eea6121a 3721 /* Shrink size. */
a3ef2d63
BW
3722 if (sec->rawsize == 0)
3723 sec->rawsize = sec->size;
3724 sec->size -= removed_bytes;
b536dc1e
BW
3725
3726 if (xtensa_is_littable_section (sec))
3727 {
f0e6fdb2
BW
3728 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3729 if (sgotloc)
3730 sgotloc->size -= removed_bytes;
b536dc1e 3731 }
e0001a05
NC
3732 }
3733 else
3734 {
3735 release_contents (sec, contents);
3736 release_internal_relocs (sec, cookie->rels);
3737 }
3738
3739 return (removed_bytes != 0);
3740}
3741
3742
3743static bfd_boolean
7fa3d080
BW
3744elf_xtensa_discard_info (bfd *abfd,
3745 struct elf_reloc_cookie *cookie,
3746 struct bfd_link_info *info)
e0001a05
NC
3747{
3748 asection *sec;
3749 bfd_boolean changed = FALSE;
3750
3751 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3752 {
3753 if (xtensa_is_property_section (sec))
3754 {
3755 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3756 changed = TRUE;
3757 }
3758 }
3759
3760 return changed;
3761}
3762
3763
3764static bfd_boolean
7fa3d080 3765elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3766{
3767 return xtensa_is_property_section (sec);
3768}
3769
a77dc2cc
BW
3770
3771static unsigned int
3772elf_xtensa_action_discarded (asection *sec)
3773{
3774 if (strcmp (".xt_except_table", sec->name) == 0)
3775 return 0;
3776
3777 if (strcmp (".xt_except_desc", sec->name) == 0)
3778 return 0;
3779
3780 return _bfd_elf_default_action_discarded (sec);
3781}
3782
e0001a05
NC
3783\f
3784/* Support for core dump NOTE sections. */
3785
3786static bfd_boolean
7fa3d080 3787elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3788{
3789 int offset;
eea6121a 3790 unsigned int size;
e0001a05
NC
3791
3792 /* The size for Xtensa is variable, so don't try to recognize the format
3793 based on the size. Just assume this is GNU/Linux. */
3794
3795 /* pr_cursig */
228e534f 3796 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
e0001a05
NC
3797
3798 /* pr_pid */
228e534f 3799 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3800
3801 /* pr_reg */
3802 offset = 72;
eea6121a 3803 size = note->descsz - offset - 4;
e0001a05
NC
3804
3805 /* Make a ".reg/999" section. */
3806 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3807 size, note->descpos + offset);
e0001a05
NC
3808}
3809
3810
3811static bfd_boolean
7fa3d080 3812elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3813{
3814 switch (note->descsz)
3815 {
3816 default:
3817 return FALSE;
3818
3819 case 128: /* GNU/Linux elf_prpsinfo */
228e534f 3820 elf_tdata (abfd)->core->program
e0001a05 3821 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
228e534f 3822 elf_tdata (abfd)->core->command
e0001a05
NC
3823 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3824 }
3825
3826 /* Note that for some reason, a spurious space is tacked
3827 onto the end of the args in some (at least one anyway)
3828 implementations, so strip it off if it exists. */
3829
3830 {
228e534f 3831 char *command = elf_tdata (abfd)->core->command;
e0001a05
NC
3832 int n = strlen (command);
3833
3834 if (0 < n && command[n - 1] == ' ')
3835 command[n - 1] = '\0';
3836 }
3837
3838 return TRUE;
3839}
3840
3841\f
3842/* Generic Xtensa configurability stuff. */
3843
3844static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3845static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3846static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3847static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3848static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3849static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3850static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3851static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3852
3853static void
7fa3d080 3854init_call_opcodes (void)
e0001a05
NC
3855{
3856 if (callx0_op == XTENSA_UNDEFINED)
3857 {
3858 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3859 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3860 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3861 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3862 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3863 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3864 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3865 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3866 }
3867}
3868
3869
3870static bfd_boolean
7fa3d080 3871is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3872{
3873 init_call_opcodes ();
3874 return (opcode == callx0_op
3875 || opcode == callx4_op
3876 || opcode == callx8_op
3877 || opcode == callx12_op);
3878}
3879
3880
3881static bfd_boolean
7fa3d080 3882is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3883{
3884 init_call_opcodes ();
3885 return (opcode == call0_op
3886 || opcode == call4_op
3887 || opcode == call8_op
3888 || opcode == call12_op);
3889}
3890
3891
3892static bfd_boolean
7fa3d080 3893is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3894{
3895 init_call_opcodes ();
3896 return (opcode == call4_op
3897 || opcode == call8_op
3898 || opcode == call12_op
3899 || opcode == callx4_op
3900 || opcode == callx8_op
3901 || opcode == callx12_op);
3902}
3903
3904
28dbbc02
BW
3905static bfd_boolean
3906get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3907{
3908 unsigned dst = (unsigned) -1;
3909
3910 init_call_opcodes ();
3911 if (opcode == callx0_op)
3912 dst = 0;
3913 else if (opcode == callx4_op)
3914 dst = 4;
3915 else if (opcode == callx8_op)
3916 dst = 8;
3917 else if (opcode == callx12_op)
3918 dst = 12;
3919
3920 if (dst == (unsigned) -1)
3921 return FALSE;
3922
3923 *pdst = dst;
3924 return TRUE;
3925}
3926
3927
43cd72b9
BW
3928static xtensa_opcode
3929get_const16_opcode (void)
3930{
3931 static bfd_boolean done_lookup = FALSE;
3932 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3933 if (!done_lookup)
3934 {
3935 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3936 done_lookup = TRUE;
3937 }
3938 return const16_opcode;
3939}
3940
3941
e0001a05
NC
3942static xtensa_opcode
3943get_l32r_opcode (void)
3944{
3945 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3946 static bfd_boolean done_lookup = FALSE;
3947
3948 if (!done_lookup)
e0001a05
NC
3949 {
3950 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3951 done_lookup = TRUE;
e0001a05
NC
3952 }
3953 return l32r_opcode;
3954}
3955
3956
3957static bfd_vma
7fa3d080 3958l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3959{
3960 bfd_vma offset;
3961
3962 offset = addr - ((pc+3) & -4);
3963 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3964 offset = (signed int) offset >> 2;
3965 BFD_ASSERT ((signed int) offset >> 16 == -1);
3966 return offset;
3967}
3968
3969
e0001a05 3970static int
7fa3d080 3971get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3972{
43cd72b9
BW
3973 xtensa_isa isa = xtensa_default_isa;
3974 int last_immed, last_opnd, opi;
3975
3976 if (opcode == XTENSA_UNDEFINED)
3977 return XTENSA_UNDEFINED;
3978
3979 /* Find the last visible PC-relative immediate operand for the opcode.
3980 If there are no PC-relative immediates, then choose the last visible
3981 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3982 last_immed = XTENSA_UNDEFINED;
3983 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3984 for (opi = last_opnd - 1; opi >= 0; opi--)
3985 {
3986 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3987 continue;
3988 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3989 {
3990 last_immed = opi;
3991 break;
3992 }
3993 if (last_immed == XTENSA_UNDEFINED
3994 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3995 last_immed = opi;
3996 }
3997 if (last_immed < 0)
3998 return XTENSA_UNDEFINED;
3999
4000 /* If the operand number was specified in an old-style relocation,
4001 check for consistency with the operand computed above. */
4002 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4003 {
4004 int reloc_opnd = r_type - R_XTENSA_OP0;
4005 if (reloc_opnd != last_immed)
4006 return XTENSA_UNDEFINED;
4007 }
4008
4009 return last_immed;
4010}
4011
4012
4013int
7fa3d080 4014get_relocation_slot (int r_type)
43cd72b9
BW
4015{
4016 switch (r_type)
4017 {
4018 case R_XTENSA_OP0:
4019 case R_XTENSA_OP1:
4020 case R_XTENSA_OP2:
4021 return 0;
4022
4023 default:
4024 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4025 return r_type - R_XTENSA_SLOT0_OP;
4026 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4027 return r_type - R_XTENSA_SLOT0_ALT;
4028 break;
4029 }
4030
4031 return XTENSA_UNDEFINED;
e0001a05
NC
4032}
4033
4034
4035/* Get the opcode for a relocation. */
4036
4037static xtensa_opcode
7fa3d080
BW
4038get_relocation_opcode (bfd *abfd,
4039 asection *sec,
4040 bfd_byte *contents,
4041 Elf_Internal_Rela *irel)
e0001a05
NC
4042{
4043 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4044 static xtensa_insnbuf sbuff = NULL;
e0001a05 4045 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4046 xtensa_format fmt;
4047 int slot;
e0001a05
NC
4048
4049 if (contents == NULL)
4050 return XTENSA_UNDEFINED;
4051
43cd72b9 4052 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4053 return XTENSA_UNDEFINED;
4054
4055 if (ibuff == NULL)
43cd72b9
BW
4056 {
4057 ibuff = xtensa_insnbuf_alloc (isa);
4058 sbuff = xtensa_insnbuf_alloc (isa);
4059 }
4060
e0001a05 4061 /* Decode the instruction. */
43cd72b9
BW
4062 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4063 sec->size - irel->r_offset);
4064 fmt = xtensa_format_decode (isa, ibuff);
4065 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4066 if (slot == XTENSA_UNDEFINED)
4067 return XTENSA_UNDEFINED;
4068 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4069 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4070}
4071
4072
4073bfd_boolean
7fa3d080
BW
4074is_l32r_relocation (bfd *abfd,
4075 asection *sec,
4076 bfd_byte *contents,
4077 Elf_Internal_Rela *irel)
e0001a05
NC
4078{
4079 xtensa_opcode opcode;
43cd72b9 4080 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4081 return FALSE;
43cd72b9 4082 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4083 return (opcode == get_l32r_opcode ());
4084}
4085
e0001a05 4086
43cd72b9 4087static bfd_size_type
7fa3d080
BW
4088get_asm_simplify_size (bfd_byte *contents,
4089 bfd_size_type content_len,
4090 bfd_size_type offset)
e0001a05 4091{
43cd72b9 4092 bfd_size_type insnlen, size = 0;
e0001a05 4093
43cd72b9
BW
4094 /* Decode the size of the next two instructions. */
4095 insnlen = insn_decode_len (contents, content_len, offset);
4096 if (insnlen == 0)
4097 return 0;
e0001a05 4098
43cd72b9 4099 size += insnlen;
68ffbac6 4100
43cd72b9
BW
4101 insnlen = insn_decode_len (contents, content_len, offset + size);
4102 if (insnlen == 0)
4103 return 0;
e0001a05 4104
43cd72b9
BW
4105 size += insnlen;
4106 return size;
4107}
e0001a05 4108
43cd72b9
BW
4109
4110bfd_boolean
7fa3d080 4111is_alt_relocation (int r_type)
43cd72b9
BW
4112{
4113 return (r_type >= R_XTENSA_SLOT0_ALT
4114 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4115}
4116
4117
43cd72b9 4118bfd_boolean
7fa3d080 4119is_operand_relocation (int r_type)
e0001a05 4120{
43cd72b9
BW
4121 switch (r_type)
4122 {
4123 case R_XTENSA_OP0:
4124 case R_XTENSA_OP1:
4125 case R_XTENSA_OP2:
4126 return TRUE;
e0001a05 4127
43cd72b9
BW
4128 default:
4129 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4130 return TRUE;
4131 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4132 return TRUE;
4133 break;
4134 }
e0001a05 4135
43cd72b9 4136 return FALSE;
e0001a05
NC
4137}
4138
68ffbac6 4139
43cd72b9 4140#define MIN_INSN_LENGTH 2
e0001a05 4141
43cd72b9
BW
4142/* Return 0 if it fails to decode. */
4143
4144bfd_size_type
7fa3d080
BW
4145insn_decode_len (bfd_byte *contents,
4146 bfd_size_type content_len,
4147 bfd_size_type offset)
e0001a05 4148{
43cd72b9
BW
4149 int insn_len;
4150 xtensa_isa isa = xtensa_default_isa;
4151 xtensa_format fmt;
4152 static xtensa_insnbuf ibuff = NULL;
e0001a05 4153
43cd72b9
BW
4154 if (offset + MIN_INSN_LENGTH > content_len)
4155 return 0;
e0001a05 4156
43cd72b9
BW
4157 if (ibuff == NULL)
4158 ibuff = xtensa_insnbuf_alloc (isa);
4159 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4160 content_len - offset);
4161 fmt = xtensa_format_decode (isa, ibuff);
4162 if (fmt == XTENSA_UNDEFINED)
4163 return 0;
4164 insn_len = xtensa_format_length (isa, fmt);
4165 if (insn_len == XTENSA_UNDEFINED)
4166 return 0;
4167 return insn_len;
e0001a05
NC
4168}
4169
4170
43cd72b9
BW
4171/* Decode the opcode for a single slot instruction.
4172 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4173
43cd72b9 4174xtensa_opcode
7fa3d080
BW
4175insn_decode_opcode (bfd_byte *contents,
4176 bfd_size_type content_len,
4177 bfd_size_type offset,
4178 int slot)
e0001a05 4179{
e0001a05 4180 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4181 xtensa_format fmt;
4182 static xtensa_insnbuf insnbuf = NULL;
4183 static xtensa_insnbuf slotbuf = NULL;
4184
4185 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4186 return XTENSA_UNDEFINED;
4187
4188 if (insnbuf == NULL)
43cd72b9
BW
4189 {
4190 insnbuf = xtensa_insnbuf_alloc (isa);
4191 slotbuf = xtensa_insnbuf_alloc (isa);
4192 }
4193
4194 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4195 content_len - offset);
4196 fmt = xtensa_format_decode (isa, insnbuf);
4197 if (fmt == XTENSA_UNDEFINED)
e0001a05 4198 return XTENSA_UNDEFINED;
43cd72b9
BW
4199
4200 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4201 return XTENSA_UNDEFINED;
e0001a05 4202
43cd72b9
BW
4203 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4204 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4205}
e0001a05 4206
e0001a05 4207
43cd72b9
BW
4208/* The offset is the offset in the contents.
4209 The address is the address of that offset. */
e0001a05 4210
43cd72b9 4211static bfd_boolean
7fa3d080
BW
4212check_branch_target_aligned (bfd_byte *contents,
4213 bfd_size_type content_length,
4214 bfd_vma offset,
4215 bfd_vma address)
43cd72b9
BW
4216{
4217 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4218 if (insn_len == 0)
4219 return FALSE;
4220 return check_branch_target_aligned_address (address, insn_len);
4221}
e0001a05 4222
e0001a05 4223
43cd72b9 4224static bfd_boolean
7fa3d080
BW
4225check_loop_aligned (bfd_byte *contents,
4226 bfd_size_type content_length,
4227 bfd_vma offset,
4228 bfd_vma address)
e0001a05 4229{
43cd72b9 4230 bfd_size_type loop_len, insn_len;
64b607e6 4231 xtensa_opcode opcode;
e0001a05 4232
64b607e6
BW
4233 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4234 if (opcode == XTENSA_UNDEFINED
4235 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4236 {
4237 BFD_ASSERT (FALSE);
4238 return FALSE;
4239 }
68ffbac6 4240
43cd72b9 4241 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4242 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4243 if (loop_len == 0 || insn_len == 0)
4244 {
4245 BFD_ASSERT (FALSE);
4246 return FALSE;
4247 }
e0001a05 4248
43cd72b9
BW
4249 return check_branch_target_aligned_address (address + loop_len, insn_len);
4250}
e0001a05 4251
e0001a05
NC
4252
4253static bfd_boolean
7fa3d080 4254check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4255{
43cd72b9
BW
4256 if (len == 8)
4257 return (addr % 8 == 0);
4258 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4259}
4260
43cd72b9
BW
4261\f
4262/* Instruction widening and narrowing. */
e0001a05 4263
7fa3d080
BW
4264/* When FLIX is available we need to access certain instructions only
4265 when they are 16-bit or 24-bit instructions. This table caches
4266 information about such instructions by walking through all the
4267 opcodes and finding the smallest single-slot format into which each
4268 can be encoded. */
4269
4270static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4271
4272
7fa3d080
BW
4273static void
4274init_op_single_format_table (void)
e0001a05 4275{
7fa3d080
BW
4276 xtensa_isa isa = xtensa_default_isa;
4277 xtensa_insnbuf ibuf;
4278 xtensa_opcode opcode;
4279 xtensa_format fmt;
4280 int num_opcodes;
4281
4282 if (op_single_fmt_table)
4283 return;
4284
4285 ibuf = xtensa_insnbuf_alloc (isa);
4286 num_opcodes = xtensa_isa_num_opcodes (isa);
4287
4288 op_single_fmt_table = (xtensa_format *)
4289 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4290 for (opcode = 0; opcode < num_opcodes; opcode++)
4291 {
4292 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4293 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4294 {
4295 if (xtensa_format_num_slots (isa, fmt) == 1
4296 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4297 {
4298 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4299 int fmt_length = xtensa_format_length (isa, fmt);
4300 if (old_fmt == XTENSA_UNDEFINED
4301 || fmt_length < xtensa_format_length (isa, old_fmt))
4302 op_single_fmt_table[opcode] = fmt;
4303 }
4304 }
4305 }
4306 xtensa_insnbuf_free (isa, ibuf);
4307}
4308
4309
4310static xtensa_format
4311get_single_format (xtensa_opcode opcode)
4312{
4313 init_op_single_format_table ();
4314 return op_single_fmt_table[opcode];
4315}
e0001a05 4316
e0001a05 4317
43cd72b9
BW
4318/* For the set of narrowable instructions we do NOT include the
4319 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4320 involved during linker relaxation that may require these to
4321 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4322 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4323
7fa3d080
BW
4324struct string_pair
4325{
4326 const char *wide;
4327 const char *narrow;
4328};
4329
43cd72b9 4330struct string_pair narrowable[] =
e0001a05 4331{
43cd72b9
BW
4332 { "add", "add.n" },
4333 { "addi", "addi.n" },
4334 { "addmi", "addi.n" },
4335 { "l32i", "l32i.n" },
4336 { "movi", "movi.n" },
4337 { "ret", "ret.n" },
4338 { "retw", "retw.n" },
4339 { "s32i", "s32i.n" },
4340 { "or", "mov.n" } /* special case only when op1 == op2 */
4341};
e0001a05 4342
43cd72b9 4343struct string_pair widenable[] =
e0001a05 4344{
43cd72b9
BW
4345 { "add", "add.n" },
4346 { "addi", "addi.n" },
4347 { "addmi", "addi.n" },
4348 { "beqz", "beqz.n" },
4349 { "bnez", "bnez.n" },
4350 { "l32i", "l32i.n" },
4351 { "movi", "movi.n" },
4352 { "ret", "ret.n" },
4353 { "retw", "retw.n" },
4354 { "s32i", "s32i.n" },
4355 { "or", "mov.n" } /* special case only when op1 == op2 */
4356};
e0001a05
NC
4357
4358
64b607e6
BW
4359/* Check if an instruction can be "narrowed", i.e., changed from a standard
4360 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4361 return the instruction buffer holding the narrow instruction. Otherwise,
4362 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4363 but require some special case operand checks in some cases. */
4364
64b607e6
BW
4365static xtensa_insnbuf
4366can_narrow_instruction (xtensa_insnbuf slotbuf,
4367 xtensa_format fmt,
4368 xtensa_opcode opcode)
e0001a05 4369{
43cd72b9 4370 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4371 xtensa_format o_fmt;
4372 unsigned opi;
e0001a05 4373
43cd72b9
BW
4374 static xtensa_insnbuf o_insnbuf = NULL;
4375 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4376
64b607e6 4377 if (o_insnbuf == NULL)
43cd72b9 4378 {
43cd72b9
BW
4379 o_insnbuf = xtensa_insnbuf_alloc (isa);
4380 o_slotbuf = xtensa_insnbuf_alloc (isa);
4381 }
e0001a05 4382
64b607e6 4383 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4384 {
4385 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4386
43cd72b9
BW
4387 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4388 {
4389 uint32 value, newval;
4390 int i, operand_count, o_operand_count;
4391 xtensa_opcode o_opcode;
e0001a05 4392
43cd72b9
BW
4393 /* Address does not matter in this case. We might need to
4394 fix it to handle branches/jumps. */
4395 bfd_vma self_address = 0;
e0001a05 4396
43cd72b9
BW
4397 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4398 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4399 return 0;
43cd72b9
BW
4400 o_fmt = get_single_format (o_opcode);
4401 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4402 return 0;
e0001a05 4403
43cd72b9
BW
4404 if (xtensa_format_length (isa, fmt) != 3
4405 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4406 return 0;
e0001a05 4407
43cd72b9
BW
4408 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4409 operand_count = xtensa_opcode_num_operands (isa, opcode);
4410 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4411
43cd72b9 4412 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4413 return 0;
e0001a05 4414
43cd72b9
BW
4415 if (!is_or)
4416 {
4417 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4418 return 0;
43cd72b9
BW
4419 }
4420 else
4421 {
4422 uint32 rawval0, rawval1, rawval2;
e0001a05 4423
64b607e6
BW
4424 if (o_operand_count + 1 != operand_count
4425 || xtensa_operand_get_field (isa, opcode, 0,
4426 fmt, 0, slotbuf, &rawval0) != 0
4427 || xtensa_operand_get_field (isa, opcode, 1,
4428 fmt, 0, slotbuf, &rawval1) != 0
4429 || xtensa_operand_get_field (isa, opcode, 2,
4430 fmt, 0, slotbuf, &rawval2) != 0
4431 || rawval1 != rawval2
4432 || rawval0 == rawval1 /* it is a nop */)
4433 return 0;
43cd72b9 4434 }
e0001a05 4435
43cd72b9
BW
4436 for (i = 0; i < o_operand_count; ++i)
4437 {
4438 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4439 slotbuf, &value)
4440 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4441 return 0;
e0001a05 4442
43cd72b9
BW
4443 /* PC-relative branches need adjustment, but
4444 the PC-rel operand will always have a relocation. */
4445 newval = value;
4446 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4447 self_address)
4448 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4449 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4450 o_slotbuf, newval))
64b607e6 4451 return 0;
43cd72b9 4452 }
e0001a05 4453
64b607e6
BW
4454 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4455 return 0;
e0001a05 4456
64b607e6 4457 return o_insnbuf;
43cd72b9
BW
4458 }
4459 }
64b607e6 4460 return 0;
43cd72b9 4461}
e0001a05 4462
e0001a05 4463
64b607e6
BW
4464/* Attempt to narrow an instruction. If the narrowing is valid, perform
4465 the action in-place directly into the contents and return TRUE. Otherwise,
4466 the return value is FALSE and the contents are not modified. */
e0001a05 4467
43cd72b9 4468static bfd_boolean
64b607e6
BW
4469narrow_instruction (bfd_byte *contents,
4470 bfd_size_type content_length,
4471 bfd_size_type offset)
e0001a05 4472{
43cd72b9 4473 xtensa_opcode opcode;
64b607e6 4474 bfd_size_type insn_len;
43cd72b9 4475 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4476 xtensa_format fmt;
4477 xtensa_insnbuf o_insnbuf;
e0001a05 4478
43cd72b9
BW
4479 static xtensa_insnbuf insnbuf = NULL;
4480 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4481
43cd72b9
BW
4482 if (insnbuf == NULL)
4483 {
4484 insnbuf = xtensa_insnbuf_alloc (isa);
4485 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4486 }
e0001a05 4487
43cd72b9 4488 BFD_ASSERT (offset < content_length);
2c8c90bc 4489
43cd72b9 4490 if (content_length < 2)
e0001a05
NC
4491 return FALSE;
4492
64b607e6 4493 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4494 These have all been specified in the assembler aleady. */
4495 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4496 content_length - offset);
4497 fmt = xtensa_format_decode (isa, insnbuf);
4498 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4499 return FALSE;
4500
43cd72b9 4501 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4502 return FALSE;
4503
43cd72b9
BW
4504 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4505 if (opcode == XTENSA_UNDEFINED)
e0001a05 4506 return FALSE;
43cd72b9
BW
4507 insn_len = xtensa_format_length (isa, fmt);
4508 if (insn_len > content_length)
4509 return FALSE;
4510
64b607e6
BW
4511 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4512 if (o_insnbuf)
4513 {
4514 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4515 content_length - offset);
4516 return TRUE;
4517 }
4518
4519 return FALSE;
4520}
4521
4522
4523/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4524 "density" instruction to a standard 3-byte instruction. If it is valid,
4525 return the instruction buffer holding the wide instruction. Otherwise,
4526 return 0. The set of valid widenings are specified by a string table
4527 but require some special case operand checks in some cases. */
4528
4529static xtensa_insnbuf
4530can_widen_instruction (xtensa_insnbuf slotbuf,
4531 xtensa_format fmt,
4532 xtensa_opcode opcode)
4533{
4534 xtensa_isa isa = xtensa_default_isa;
4535 xtensa_format o_fmt;
4536 unsigned opi;
4537
4538 static xtensa_insnbuf o_insnbuf = NULL;
4539 static xtensa_insnbuf o_slotbuf = NULL;
4540
4541 if (o_insnbuf == NULL)
4542 {
4543 o_insnbuf = xtensa_insnbuf_alloc (isa);
4544 o_slotbuf = xtensa_insnbuf_alloc (isa);
4545 }
4546
4547 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4548 {
43cd72b9
BW
4549 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4550 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4551 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4552
43cd72b9
BW
4553 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4554 {
4555 uint32 value, newval;
4556 int i, operand_count, o_operand_count, check_operand_count;
4557 xtensa_opcode o_opcode;
e0001a05 4558
43cd72b9
BW
4559 /* Address does not matter in this case. We might need to fix it
4560 to handle branches/jumps. */
4561 bfd_vma self_address = 0;
e0001a05 4562
43cd72b9
BW
4563 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4564 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4565 return 0;
43cd72b9
BW
4566 o_fmt = get_single_format (o_opcode);
4567 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4568 return 0;
e0001a05 4569
43cd72b9
BW
4570 if (xtensa_format_length (isa, fmt) != 2
4571 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4572 return 0;
e0001a05 4573
43cd72b9
BW
4574 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4575 operand_count = xtensa_opcode_num_operands (isa, opcode);
4576 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4577 check_operand_count = o_operand_count;
e0001a05 4578
43cd72b9 4579 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4580 return 0;
e0001a05 4581
43cd72b9
BW
4582 if (!is_or)
4583 {
4584 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4585 return 0;
43cd72b9
BW
4586 }
4587 else
4588 {
4589 uint32 rawval0, rawval1;
4590
64b607e6
BW
4591 if (o_operand_count != operand_count + 1
4592 || xtensa_operand_get_field (isa, opcode, 0,
4593 fmt, 0, slotbuf, &rawval0) != 0
4594 || xtensa_operand_get_field (isa, opcode, 1,
4595 fmt, 0, slotbuf, &rawval1) != 0
4596 || rawval0 == rawval1 /* it is a nop */)
4597 return 0;
43cd72b9
BW
4598 }
4599 if (is_branch)
4600 check_operand_count--;
4601
64b607e6 4602 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4603 {
4604 int new_i = i;
4605 if (is_or && i == o_operand_count - 1)
4606 new_i = i - 1;
4607 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4608 slotbuf, &value)
4609 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4610 return 0;
43cd72b9
BW
4611
4612 /* PC-relative branches need adjustment, but
4613 the PC-rel operand will always have a relocation. */
4614 newval = value;
4615 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4616 self_address)
4617 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4618 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4619 o_slotbuf, newval))
64b607e6 4620 return 0;
43cd72b9
BW
4621 }
4622
4623 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4624 return 0;
43cd72b9 4625
64b607e6 4626 return o_insnbuf;
43cd72b9
BW
4627 }
4628 }
64b607e6
BW
4629 return 0;
4630}
4631
68ffbac6 4632
64b607e6
BW
4633/* Attempt to widen an instruction. If the widening is valid, perform
4634 the action in-place directly into the contents and return TRUE. Otherwise,
4635 the return value is FALSE and the contents are not modified. */
4636
4637static bfd_boolean
4638widen_instruction (bfd_byte *contents,
4639 bfd_size_type content_length,
4640 bfd_size_type offset)
4641{
4642 xtensa_opcode opcode;
4643 bfd_size_type insn_len;
4644 xtensa_isa isa = xtensa_default_isa;
4645 xtensa_format fmt;
4646 xtensa_insnbuf o_insnbuf;
4647
4648 static xtensa_insnbuf insnbuf = NULL;
4649 static xtensa_insnbuf slotbuf = NULL;
4650
4651 if (insnbuf == NULL)
4652 {
4653 insnbuf = xtensa_insnbuf_alloc (isa);
4654 slotbuf = xtensa_insnbuf_alloc (isa);
4655 }
4656
4657 BFD_ASSERT (offset < content_length);
4658
4659 if (content_length < 2)
4660 return FALSE;
4661
4662 /* We will hand-code a few of these for a little while.
4663 These have all been specified in the assembler aleady. */
4664 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4665 content_length - offset);
4666 fmt = xtensa_format_decode (isa, insnbuf);
4667 if (xtensa_format_num_slots (isa, fmt) != 1)
4668 return FALSE;
4669
4670 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4671 return FALSE;
4672
4673 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4674 if (opcode == XTENSA_UNDEFINED)
4675 return FALSE;
4676 insn_len = xtensa_format_length (isa, fmt);
4677 if (insn_len > content_length)
4678 return FALSE;
4679
4680 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4681 if (o_insnbuf)
4682 {
4683 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4684 content_length - offset);
4685 return TRUE;
4686 }
43cd72b9 4687 return FALSE;
e0001a05
NC
4688}
4689
43cd72b9
BW
4690\f
4691/* Code for transforming CALLs at link-time. */
e0001a05 4692
43cd72b9 4693static bfd_reloc_status_type
7fa3d080
BW
4694elf_xtensa_do_asm_simplify (bfd_byte *contents,
4695 bfd_vma address,
4696 bfd_vma content_length,
4697 char **error_message)
e0001a05 4698{
43cd72b9
BW
4699 static xtensa_insnbuf insnbuf = NULL;
4700 static xtensa_insnbuf slotbuf = NULL;
4701 xtensa_format core_format = XTENSA_UNDEFINED;
4702 xtensa_opcode opcode;
4703 xtensa_opcode direct_call_opcode;
4704 xtensa_isa isa = xtensa_default_isa;
4705 bfd_byte *chbuf = contents + address;
4706 int opn;
e0001a05 4707
43cd72b9 4708 if (insnbuf == NULL)
e0001a05 4709 {
43cd72b9
BW
4710 insnbuf = xtensa_insnbuf_alloc (isa);
4711 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4712 }
e0001a05 4713
43cd72b9
BW
4714 if (content_length < address)
4715 {
4716 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4717 return bfd_reloc_other;
4718 }
e0001a05 4719
43cd72b9
BW
4720 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4721 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4722 if (direct_call_opcode == XTENSA_UNDEFINED)
4723 {
4724 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4725 return bfd_reloc_other;
4726 }
68ffbac6 4727
43cd72b9
BW
4728 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4729 core_format = xtensa_format_lookup (isa, "x24");
4730 opcode = xtensa_opcode_lookup (isa, "or");
4731 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
68ffbac6 4732 for (opn = 0; opn < 3; opn++)
43cd72b9
BW
4733 {
4734 uint32 regno = 1;
4735 xtensa_operand_encode (isa, opcode, opn, &regno);
4736 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4737 slotbuf, regno);
4738 }
4739 xtensa_format_encode (isa, core_format, insnbuf);
4740 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4741 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4742
43cd72b9
BW
4743 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4744 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4745 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4746
43cd72b9
BW
4747 xtensa_format_encode (isa, core_format, insnbuf);
4748 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4749 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4750 content_length - address - 3);
e0001a05 4751
43cd72b9
BW
4752 return bfd_reloc_ok;
4753}
e0001a05 4754
e0001a05 4755
43cd72b9 4756static bfd_reloc_status_type
7fa3d080
BW
4757contract_asm_expansion (bfd_byte *contents,
4758 bfd_vma content_length,
4759 Elf_Internal_Rela *irel,
4760 char **error_message)
43cd72b9
BW
4761{
4762 bfd_reloc_status_type retval =
4763 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4764 error_message);
e0001a05 4765
43cd72b9
BW
4766 if (retval != bfd_reloc_ok)
4767 return bfd_reloc_dangerous;
e0001a05 4768
43cd72b9
BW
4769 /* Update the irel->r_offset field so that the right immediate and
4770 the right instruction are modified during the relocation. */
4771 irel->r_offset += 3;
4772 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4773 return bfd_reloc_ok;
4774}
e0001a05 4775
e0001a05 4776
43cd72b9 4777static xtensa_opcode
7fa3d080 4778swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4779{
43cd72b9 4780 init_call_opcodes ();
e0001a05 4781
43cd72b9
BW
4782 if (opcode == callx0_op) return call0_op;
4783 if (opcode == callx4_op) return call4_op;
4784 if (opcode == callx8_op) return call8_op;
4785 if (opcode == callx12_op) return call12_op;
e0001a05 4786
43cd72b9
BW
4787 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4788 return XTENSA_UNDEFINED;
4789}
e0001a05 4790
e0001a05 4791
43cd72b9
BW
4792/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4793 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4794 If not, return XTENSA_UNDEFINED. */
e0001a05 4795
43cd72b9
BW
4796#define L32R_TARGET_REG_OPERAND 0
4797#define CONST16_TARGET_REG_OPERAND 0
4798#define CALLN_SOURCE_OPERAND 0
e0001a05 4799
68ffbac6 4800static xtensa_opcode
7fa3d080 4801get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4802{
43cd72b9
BW
4803 static xtensa_insnbuf insnbuf = NULL;
4804 static xtensa_insnbuf slotbuf = NULL;
4805 xtensa_format fmt;
4806 xtensa_opcode opcode;
4807 xtensa_isa isa = xtensa_default_isa;
4808 uint32 regno, const16_regno, call_regno;
4809 int offset = 0;
e0001a05 4810
43cd72b9 4811 if (insnbuf == NULL)
e0001a05 4812 {
43cd72b9
BW
4813 insnbuf = xtensa_insnbuf_alloc (isa);
4814 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4815 }
43cd72b9
BW
4816
4817 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4818 fmt = xtensa_format_decode (isa, insnbuf);
4819 if (fmt == XTENSA_UNDEFINED
4820 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4821 return XTENSA_UNDEFINED;
4822
4823 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4824 if (opcode == XTENSA_UNDEFINED)
4825 return XTENSA_UNDEFINED;
4826
4827 if (opcode == get_l32r_opcode ())
e0001a05 4828 {
43cd72b9
BW
4829 if (p_uses_l32r)
4830 *p_uses_l32r = TRUE;
4831 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4832 fmt, 0, slotbuf, &regno)
4833 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4834 &regno))
4835 return XTENSA_UNDEFINED;
e0001a05 4836 }
43cd72b9 4837 else if (opcode == get_const16_opcode ())
e0001a05 4838 {
43cd72b9
BW
4839 if (p_uses_l32r)
4840 *p_uses_l32r = FALSE;
4841 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4842 fmt, 0, slotbuf, &regno)
4843 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4844 &regno))
4845 return XTENSA_UNDEFINED;
4846
4847 /* Check that the next instruction is also CONST16. */
4848 offset += xtensa_format_length (isa, fmt);
4849 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4850 fmt = xtensa_format_decode (isa, insnbuf);
4851 if (fmt == XTENSA_UNDEFINED
4852 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4853 return XTENSA_UNDEFINED;
4854 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4855 if (opcode != get_const16_opcode ())
4856 return XTENSA_UNDEFINED;
4857
4858 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4859 fmt, 0, slotbuf, &const16_regno)
4860 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4861 &const16_regno)
4862 || const16_regno != regno)
4863 return XTENSA_UNDEFINED;
e0001a05 4864 }
43cd72b9
BW
4865 else
4866 return XTENSA_UNDEFINED;
e0001a05 4867
43cd72b9
BW
4868 /* Next instruction should be an CALLXn with operand 0 == regno. */
4869 offset += xtensa_format_length (isa, fmt);
4870 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4871 fmt = xtensa_format_decode (isa, insnbuf);
4872 if (fmt == XTENSA_UNDEFINED
4873 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4874 return XTENSA_UNDEFINED;
4875 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
68ffbac6 4876 if (opcode == XTENSA_UNDEFINED
43cd72b9
BW
4877 || !is_indirect_call_opcode (opcode))
4878 return XTENSA_UNDEFINED;
e0001a05 4879
43cd72b9
BW
4880 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4881 fmt, 0, slotbuf, &call_regno)
4882 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4883 &call_regno))
4884 return XTENSA_UNDEFINED;
e0001a05 4885
43cd72b9
BW
4886 if (call_regno != regno)
4887 return XTENSA_UNDEFINED;
e0001a05 4888
43cd72b9
BW
4889 return opcode;
4890}
e0001a05 4891
43cd72b9
BW
4892\f
4893/* Data structures used during relaxation. */
e0001a05 4894
43cd72b9 4895/* r_reloc: relocation values. */
e0001a05 4896
43cd72b9
BW
4897/* Through the relaxation process, we need to keep track of the values
4898 that will result from evaluating relocations. The standard ELF
4899 relocation structure is not sufficient for this purpose because we're
4900 operating on multiple input files at once, so we need to know which
4901 input file a relocation refers to. The r_reloc structure thus
4902 records both the input file (bfd) and ELF relocation.
e0001a05 4903
43cd72b9
BW
4904 For efficiency, an r_reloc also contains a "target_offset" field to
4905 cache the target-section-relative offset value that is represented by
4906 the relocation.
68ffbac6 4907
43cd72b9
BW
4908 The r_reloc also contains a virtual offset that allows multiple
4909 inserted literals to be placed at the same "address" with
4910 different offsets. */
e0001a05 4911
43cd72b9 4912typedef struct r_reloc_struct r_reloc;
e0001a05 4913
43cd72b9 4914struct r_reloc_struct
e0001a05 4915{
43cd72b9
BW
4916 bfd *abfd;
4917 Elf_Internal_Rela rela;
e0001a05 4918 bfd_vma target_offset;
43cd72b9 4919 bfd_vma virtual_offset;
e0001a05
NC
4920};
4921
e0001a05 4922
43cd72b9
BW
4923/* The r_reloc structure is included by value in literal_value, but not
4924 every literal_value has an associated relocation -- some are simple
4925 constants. In such cases, we set all the fields in the r_reloc
4926 struct to zero. The r_reloc_is_const function should be used to
4927 detect this case. */
e0001a05 4928
43cd72b9 4929static bfd_boolean
7fa3d080 4930r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4931{
43cd72b9 4932 return (r_rel->abfd == NULL);
e0001a05
NC
4933}
4934
4935
43cd72b9 4936static bfd_vma
7fa3d080 4937r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4938{
43cd72b9
BW
4939 bfd_vma target_offset;
4940 unsigned long r_symndx;
e0001a05 4941
43cd72b9
BW
4942 BFD_ASSERT (!r_reloc_is_const (r_rel));
4943 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4944 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4945 return (target_offset + r_rel->rela.r_addend);
4946}
e0001a05 4947
e0001a05 4948
43cd72b9 4949static struct elf_link_hash_entry *
7fa3d080 4950r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4951{
43cd72b9
BW
4952 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4953 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4954}
e0001a05 4955
43cd72b9
BW
4956
4957static asection *
7fa3d080 4958r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4959{
4960 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4961 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4962}
e0001a05
NC
4963
4964
4965static bfd_boolean
7fa3d080 4966r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4967{
43cd72b9
BW
4968 asection *sec;
4969 if (r_rel == NULL)
e0001a05 4970 return FALSE;
e0001a05 4971
43cd72b9
BW
4972 sec = r_reloc_get_section (r_rel);
4973 if (sec == bfd_abs_section_ptr
4974 || sec == bfd_com_section_ptr
4975 || sec == bfd_und_section_ptr)
4976 return FALSE;
4977 return TRUE;
e0001a05
NC
4978}
4979
4980
7fa3d080
BW
4981static void
4982r_reloc_init (r_reloc *r_rel,
4983 bfd *abfd,
4984 Elf_Internal_Rela *irel,
4985 bfd_byte *contents,
4986 bfd_size_type content_length)
4987{
4988 int r_type;
4989 reloc_howto_type *howto;
4990
4991 if (irel)
4992 {
4993 r_rel->rela = *irel;
4994 r_rel->abfd = abfd;
4995 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4996 r_rel->virtual_offset = 0;
4997 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4998 howto = &elf_howto_table[r_type];
4999 if (howto->partial_inplace)
5000 {
5001 bfd_vma inplace_val;
5002 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5003
5004 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5005 r_rel->target_offset += inplace_val;
5006 }
5007 }
5008 else
5009 memset (r_rel, 0, sizeof (r_reloc));
5010}
5011
5012
43cd72b9
BW
5013#if DEBUG
5014
e0001a05 5015static void
7fa3d080 5016print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 5017{
43cd72b9
BW
5018 if (r_reloc_is_defined (r_rel))
5019 {
5020 asection *sec = r_reloc_get_section (r_rel);
5021 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5022 }
5023 else if (r_reloc_get_hash_entry (r_rel))
5024 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5025 else
5026 fprintf (fp, " ?? + ");
e0001a05 5027
43cd72b9
BW
5028 fprintf_vma (fp, r_rel->target_offset);
5029 if (r_rel->virtual_offset)
5030 {
5031 fprintf (fp, " + ");
5032 fprintf_vma (fp, r_rel->virtual_offset);
5033 }
68ffbac6 5034
43cd72b9
BW
5035 fprintf (fp, ")");
5036}
e0001a05 5037
43cd72b9 5038#endif /* DEBUG */
e0001a05 5039
43cd72b9
BW
5040\f
5041/* source_reloc: relocations that reference literals. */
e0001a05 5042
43cd72b9
BW
5043/* To determine whether literals can be coalesced, we need to first
5044 record all the relocations that reference the literals. The
5045 source_reloc structure below is used for this purpose. The
5046 source_reloc entries are kept in a per-literal-section array, sorted
5047 by offset within the literal section (i.e., target offset).
e0001a05 5048
43cd72b9
BW
5049 The source_sec and r_rel.rela.r_offset fields identify the source of
5050 the relocation. The r_rel field records the relocation value, i.e.,
5051 the offset of the literal being referenced. The opnd field is needed
5052 to determine the range of the immediate field to which the relocation
5053 applies, so we can determine whether another literal with the same
5054 value is within range. The is_null field is true when the relocation
5055 is being removed (e.g., when an L32R is being removed due to a CALLX
5056 that is converted to a direct CALL). */
e0001a05 5057
43cd72b9
BW
5058typedef struct source_reloc_struct source_reloc;
5059
5060struct source_reloc_struct
e0001a05 5061{
43cd72b9
BW
5062 asection *source_sec;
5063 r_reloc r_rel;
5064 xtensa_opcode opcode;
5065 int opnd;
5066 bfd_boolean is_null;
5067 bfd_boolean is_abs_literal;
5068};
e0001a05 5069
e0001a05 5070
e0001a05 5071static void
7fa3d080
BW
5072init_source_reloc (source_reloc *reloc,
5073 asection *source_sec,
5074 const r_reloc *r_rel,
5075 xtensa_opcode opcode,
5076 int opnd,
5077 bfd_boolean is_abs_literal)
e0001a05 5078{
43cd72b9
BW
5079 reloc->source_sec = source_sec;
5080 reloc->r_rel = *r_rel;
5081 reloc->opcode = opcode;
5082 reloc->opnd = opnd;
5083 reloc->is_null = FALSE;
5084 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5085}
5086
e0001a05 5087
43cd72b9
BW
5088/* Find the source_reloc for a particular source offset and relocation
5089 type. Note that the array is sorted by _target_ offset, so this is
5090 just a linear search. */
e0001a05 5091
43cd72b9 5092static source_reloc *
7fa3d080
BW
5093find_source_reloc (source_reloc *src_relocs,
5094 int src_count,
5095 asection *sec,
5096 Elf_Internal_Rela *irel)
e0001a05 5097{
43cd72b9 5098 int i;
e0001a05 5099
43cd72b9
BW
5100 for (i = 0; i < src_count; i++)
5101 {
5102 if (src_relocs[i].source_sec == sec
5103 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5104 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5105 == ELF32_R_TYPE (irel->r_info)))
5106 return &src_relocs[i];
5107 }
e0001a05 5108
43cd72b9 5109 return NULL;
e0001a05
NC
5110}
5111
5112
43cd72b9 5113static int
7fa3d080 5114source_reloc_compare (const void *ap, const void *bp)
e0001a05 5115{
43cd72b9
BW
5116 const source_reloc *a = (const source_reloc *) ap;
5117 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5118
43cd72b9
BW
5119 if (a->r_rel.target_offset != b->r_rel.target_offset)
5120 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5121
43cd72b9
BW
5122 /* We don't need to sort on these criteria for correctness,
5123 but enforcing a more strict ordering prevents unstable qsort
5124 from behaving differently with different implementations.
5125 Without the code below we get correct but different results
5126 on Solaris 2.7 and 2.8. We would like to always produce the
5127 same results no matter the host. */
5128
5129 if ((!a->is_null) - (!b->is_null))
5130 return ((!a->is_null) - (!b->is_null));
5131 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5132}
5133
43cd72b9
BW
5134\f
5135/* Literal values and value hash tables. */
e0001a05 5136
43cd72b9
BW
5137/* Literals with the same value can be coalesced. The literal_value
5138 structure records the value of a literal: the "r_rel" field holds the
5139 information from the relocation on the literal (if there is one) and
5140 the "value" field holds the contents of the literal word itself.
e0001a05 5141
43cd72b9
BW
5142 The value_map structure records a literal value along with the
5143 location of a literal holding that value. The value_map hash table
5144 is indexed by the literal value, so that we can quickly check if a
5145 particular literal value has been seen before and is thus a candidate
5146 for coalescing. */
e0001a05 5147
43cd72b9
BW
5148typedef struct literal_value_struct literal_value;
5149typedef struct value_map_struct value_map;
5150typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5151
43cd72b9 5152struct literal_value_struct
e0001a05 5153{
68ffbac6 5154 r_reloc r_rel;
43cd72b9
BW
5155 unsigned long value;
5156 bfd_boolean is_abs_literal;
5157};
5158
5159struct value_map_struct
5160{
5161 literal_value val; /* The literal value. */
5162 r_reloc loc; /* Location of the literal. */
5163 value_map *next;
5164};
5165
5166struct value_map_hash_table_struct
5167{
5168 unsigned bucket_count;
5169 value_map **buckets;
5170 unsigned count;
5171 bfd_boolean has_last_loc;
5172 r_reloc last_loc;
5173};
5174
5175
e0001a05 5176static void
7fa3d080
BW
5177init_literal_value (literal_value *lit,
5178 const r_reloc *r_rel,
5179 unsigned long value,
5180 bfd_boolean is_abs_literal)
e0001a05 5181{
43cd72b9
BW
5182 lit->r_rel = *r_rel;
5183 lit->value = value;
5184 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5185}
5186
5187
43cd72b9 5188static bfd_boolean
7fa3d080
BW
5189literal_value_equal (const literal_value *src1,
5190 const literal_value *src2,
5191 bfd_boolean final_static_link)
e0001a05 5192{
43cd72b9 5193 struct elf_link_hash_entry *h1, *h2;
e0001a05 5194
68ffbac6 5195 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
43cd72b9 5196 return FALSE;
e0001a05 5197
43cd72b9
BW
5198 if (r_reloc_is_const (&src1->r_rel))
5199 return (src1->value == src2->value);
e0001a05 5200
43cd72b9
BW
5201 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5202 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5203 return FALSE;
e0001a05 5204
43cd72b9
BW
5205 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5206 return FALSE;
68ffbac6 5207
43cd72b9
BW
5208 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5209 return FALSE;
5210
5211 if (src1->value != src2->value)
5212 return FALSE;
68ffbac6 5213
43cd72b9
BW
5214 /* Now check for the same section (if defined) or the same elf_hash
5215 (if undefined or weak). */
5216 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5217 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5218 if (r_reloc_is_defined (&src1->r_rel)
5219 && (final_static_link
5220 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5221 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5222 {
5223 if (r_reloc_get_section (&src1->r_rel)
5224 != r_reloc_get_section (&src2->r_rel))
5225 return FALSE;
5226 }
5227 else
5228 {
5229 /* Require that the hash entries (i.e., symbols) be identical. */
5230 if (h1 != h2 || h1 == 0)
5231 return FALSE;
5232 }
5233
5234 if (src1->is_abs_literal != src2->is_abs_literal)
5235 return FALSE;
5236
5237 return TRUE;
e0001a05
NC
5238}
5239
e0001a05 5240
43cd72b9
BW
5241/* Must be power of 2. */
5242#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5243
43cd72b9 5244static value_map_hash_table *
7fa3d080 5245value_map_hash_table_init (void)
43cd72b9
BW
5246{
5247 value_map_hash_table *values;
e0001a05 5248
43cd72b9
BW
5249 values = (value_map_hash_table *)
5250 bfd_zmalloc (sizeof (value_map_hash_table));
5251 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5252 values->count = 0;
5253 values->buckets = (value_map **)
5254 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
68ffbac6 5255 if (values->buckets == NULL)
43cd72b9
BW
5256 {
5257 free (values);
5258 return NULL;
5259 }
5260 values->has_last_loc = FALSE;
5261
5262 return values;
5263}
5264
5265
5266static void
7fa3d080 5267value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5268{
43cd72b9
BW
5269 free (table->buckets);
5270 free (table);
5271}
5272
5273
5274static unsigned
7fa3d080 5275hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5276{
5277 return (val >> 2) + (val >> 10);
5278}
5279
5280
5281static unsigned
7fa3d080 5282literal_value_hash (const literal_value *src)
43cd72b9
BW
5283{
5284 unsigned hash_val;
e0001a05 5285
43cd72b9
BW
5286 hash_val = hash_bfd_vma (src->value);
5287 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5288 {
43cd72b9
BW
5289 void *sec_or_hash;
5290
5291 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5292 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5293 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
68ffbac6 5294
43cd72b9
BW
5295 /* Now check for the same section and the same elf_hash. */
5296 if (r_reloc_is_defined (&src->r_rel))
5297 sec_or_hash = r_reloc_get_section (&src->r_rel);
5298 else
5299 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5300 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5301 }
43cd72b9
BW
5302 return hash_val;
5303}
e0001a05 5304
e0001a05 5305
43cd72b9 5306/* Check if the specified literal_value has been seen before. */
e0001a05 5307
43cd72b9 5308static value_map *
7fa3d080
BW
5309value_map_get_cached_value (value_map_hash_table *map,
5310 const literal_value *val,
5311 bfd_boolean final_static_link)
43cd72b9
BW
5312{
5313 value_map *map_e;
5314 value_map *bucket;
5315 unsigned idx;
5316
5317 idx = literal_value_hash (val);
5318 idx = idx & (map->bucket_count - 1);
5319 bucket = map->buckets[idx];
5320 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5321 {
43cd72b9
BW
5322 if (literal_value_equal (&map_e->val, val, final_static_link))
5323 return map_e;
5324 }
5325 return NULL;
5326}
e0001a05 5327
e0001a05 5328
43cd72b9
BW
5329/* Record a new literal value. It is illegal to call this if VALUE
5330 already has an entry here. */
5331
5332static value_map *
7fa3d080
BW
5333add_value_map (value_map_hash_table *map,
5334 const literal_value *val,
5335 const r_reloc *loc,
5336 bfd_boolean final_static_link)
43cd72b9
BW
5337{
5338 value_map **bucket_p;
5339 unsigned idx;
5340
5341 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5342 if (val_e == NULL)
5343 {
5344 bfd_set_error (bfd_error_no_memory);
5345 return NULL;
e0001a05
NC
5346 }
5347
43cd72b9
BW
5348 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5349 val_e->val = *val;
5350 val_e->loc = *loc;
5351
5352 idx = literal_value_hash (val);
5353 idx = idx & (map->bucket_count - 1);
5354 bucket_p = &map->buckets[idx];
5355
5356 val_e->next = *bucket_p;
5357 *bucket_p = val_e;
5358 map->count++;
5359 /* FIXME: Consider resizing the hash table if we get too many entries. */
68ffbac6 5360
43cd72b9 5361 return val_e;
e0001a05
NC
5362}
5363
43cd72b9
BW
5364\f
5365/* Lists of text actions (ta_) for narrowing, widening, longcall
5366 conversion, space fill, code & literal removal, etc. */
5367
5368/* The following text actions are generated:
5369
5370 "ta_remove_insn" remove an instruction or instructions
5371 "ta_remove_longcall" convert longcall to call
5372 "ta_convert_longcall" convert longcall to nop/call
5373 "ta_narrow_insn" narrow a wide instruction
5374 "ta_widen" widen a narrow instruction
5375 "ta_fill" add fill or remove fill
5376 removed < 0 is a fill; branches to the fill address will be
5377 changed to address + fill size (e.g., address - removed)
5378 removed >= 0 branches to the fill address will stay unchanged
5379 "ta_remove_literal" remove a literal; this action is
5380 indicated when a literal is removed
5381 or replaced.
5382 "ta_add_literal" insert a new literal; this action is
5383 indicated when a literal has been moved.
5384 It may use a virtual_offset because
5385 multiple literals can be placed at the
5386 same location.
5387
5388 For each of these text actions, we also record the number of bytes
5389 removed by performing the text action. In the case of a "ta_widen"
5390 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5391
5392typedef struct text_action_struct text_action;
5393typedef struct text_action_list_struct text_action_list;
5394typedef enum text_action_enum_t text_action_t;
5395
5396enum text_action_enum_t
5397{
5398 ta_none,
5399 ta_remove_insn, /* removed = -size */
5400 ta_remove_longcall, /* removed = -size */
5401 ta_convert_longcall, /* removed = 0 */
5402 ta_narrow_insn, /* removed = -1 */
5403 ta_widen_insn, /* removed = +1 */
5404 ta_fill, /* removed = +size */
5405 ta_remove_literal,
5406 ta_add_literal
5407};
e0001a05 5408
e0001a05 5409
43cd72b9
BW
5410/* Structure for a text action record. */
5411struct text_action_struct
e0001a05 5412{
43cd72b9
BW
5413 text_action_t action;
5414 asection *sec; /* Optional */
5415 bfd_vma offset;
5416 bfd_vma virtual_offset; /* Zero except for adding literals. */
5417 int removed_bytes;
5418 literal_value value; /* Only valid when adding literals. */
e0001a05 5419
43cd72b9
BW
5420 text_action *next;
5421};
e0001a05 5422
071aa5c9
MF
5423struct removal_by_action_entry_struct
5424{
5425 bfd_vma offset;
5426 int removed;
5427 int eq_removed;
5428 int eq_removed_before_fill;
5429};
5430typedef struct removal_by_action_entry_struct removal_by_action_entry;
5431
5432struct removal_by_action_map_struct
5433{
5434 unsigned n_entries;
5435 removal_by_action_entry *entry;
5436};
5437typedef struct removal_by_action_map_struct removal_by_action_map;
5438
e0001a05 5439
43cd72b9
BW
5440/* List of all of the actions taken on a text section. */
5441struct text_action_list_struct
5442{
5443 text_action *head;
071aa5c9 5444 removal_by_action_map map;
43cd72b9 5445};
e0001a05 5446
e0001a05 5447
7fa3d080
BW
5448static text_action *
5449find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
5450{
5451 text_action **m_p;
5452
5453 /* It is not necessary to fill at the end of a section. */
5454 if (sec->size == offset)
5455 return NULL;
5456
7fa3d080 5457 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5458 {
5459 text_action *t = *m_p;
5460 /* When the action is another fill at the same address,
5461 just increase the size. */
5462 if (t->offset == offset && t->action == ta_fill)
5463 return t;
5464 }
5465 return NULL;
5466}
5467
5468
5469static int
7fa3d080
BW
5470compute_removed_action_diff (const text_action *ta,
5471 asection *sec,
5472 bfd_vma offset,
5473 int removed,
5474 int removable_space)
43cd72b9
BW
5475{
5476 int new_removed;
5477 int current_removed = 0;
5478
7fa3d080 5479 if (ta)
43cd72b9
BW
5480 current_removed = ta->removed_bytes;
5481
5482 BFD_ASSERT (ta == NULL || ta->offset == offset);
5483 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5484
5485 /* It is not necessary to fill at the end of a section. Clean this up. */
5486 if (sec->size == offset)
5487 new_removed = removable_space - 0;
5488 else
5489 {
5490 int space;
5491 int added = -removed - current_removed;
5492 /* Ignore multiples of the section alignment. */
5493 added = ((1 << sec->alignment_power) - 1) & added;
5494 new_removed = (-added);
5495
5496 /* Modify for removable. */
5497 space = removable_space - new_removed;
5498 new_removed = (removable_space
5499 - (((1 << sec->alignment_power) - 1) & space));
5500 }
5501 return (new_removed - current_removed);
5502}
5503
5504
7fa3d080
BW
5505static void
5506adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5507{
5508 ta->removed_bytes += fill_diff;
5509}
5510
5511
5512/* Add a modification action to the text. For the case of adding or
5513 removing space, modify any current fill and assume that
5514 "unreachable_space" bytes can be freely contracted. Note that a
5515 negative removed value is a fill. */
5516
68ffbac6 5517static void
7fa3d080
BW
5518text_action_add (text_action_list *l,
5519 text_action_t action,
5520 asection *sec,
5521 bfd_vma offset,
5522 int removed)
43cd72b9
BW
5523{
5524 text_action **m_p;
5525 text_action *ta;
5526
5527 /* It is not necessary to fill at the end of a section. */
5528 if (action == ta_fill && sec->size == offset)
5529 return;
5530
5531 /* It is not necessary to fill 0 bytes. */
5532 if (action == ta_fill && removed == 0)
5533 return;
5534
7fa3d080 5535 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5536 {
5537 text_action *t = *m_p;
68ffbac6
L
5538
5539 if (action == ta_fill)
43cd72b9 5540 {
658ff993
SA
5541 /* When the action is another fill at the same address,
5542 just increase the size. */
5543 if (t->offset == offset && t->action == ta_fill)
5544 {
5545 t->removed_bytes += removed;
5546 return;
5547 }
5548 /* Fills need to happen before widens so that we don't
5549 insert fill bytes into the instruction stream. */
5550 if (t->offset == offset && t->action == ta_widen_insn)
5551 break;
43cd72b9
BW
5552 }
5553 }
5554
5555 /* Create a new record and fill it up. */
5556 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5557 ta->action = action;
5558 ta->sec = sec;
5559 ta->offset = offset;
5560 ta->removed_bytes = removed;
5561 ta->next = (*m_p);
5562 *m_p = ta;
5563}
5564
5565
5566static void
7fa3d080
BW
5567text_action_add_literal (text_action_list *l,
5568 text_action_t action,
5569 const r_reloc *loc,
5570 const literal_value *value,
5571 int removed)
43cd72b9
BW
5572{
5573 text_action **m_p;
5574 text_action *ta;
5575 asection *sec = r_reloc_get_section (loc);
5576 bfd_vma offset = loc->target_offset;
5577 bfd_vma virtual_offset = loc->virtual_offset;
5578
5579 BFD_ASSERT (action == ta_add_literal);
5580
5581 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5582 {
5583 if ((*m_p)->offset > offset
5584 && ((*m_p)->offset != offset
5585 || (*m_p)->virtual_offset > virtual_offset))
5586 break;
5587 }
5588
5589 /* Create a new record and fill it up. */
5590 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5591 ta->action = action;
5592 ta->sec = sec;
5593 ta->offset = offset;
5594 ta->virtual_offset = virtual_offset;
5595 ta->value = *value;
5596 ta->removed_bytes = removed;
5597 ta->next = (*m_p);
5598 *m_p = ta;
5599}
5600
5601
03669f1c
BW
5602/* Find the total offset adjustment for the relaxations specified by
5603 text_actions, beginning from a particular starting action. This is
5604 typically used from offset_with_removed_text to search an entire list of
5605 actions, but it may also be called directly when adjusting adjacent offsets
5606 so that each search may begin where the previous one left off. */
5607
5608static int
5609removed_by_actions (text_action **p_start_action,
5610 bfd_vma offset,
5611 bfd_boolean before_fill)
43cd72b9
BW
5612{
5613 text_action *r;
5614 int removed = 0;
5615
03669f1c
BW
5616 r = *p_start_action;
5617 while (r)
43cd72b9 5618 {
03669f1c
BW
5619 if (r->offset > offset)
5620 break;
5621
5622 if (r->offset == offset
5623 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5624 break;
5625
5626 removed += r->removed_bytes;
5627
5628 r = r->next;
43cd72b9
BW
5629 }
5630
03669f1c
BW
5631 *p_start_action = r;
5632 return removed;
5633}
5634
5635
68ffbac6 5636static bfd_vma
03669f1c
BW
5637offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5638{
5639 text_action *r = action_list->head;
5640 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
5641}
5642
5643
03e94c08
BW
5644static unsigned
5645action_list_count (text_action_list *action_list)
5646{
5647 text_action *r = action_list->head;
5648 unsigned count = 0;
5649 for (r = action_list->head; r != NULL; r = r->next)
5650 {
5651 count++;
5652 }
5653 return count;
5654}
5655
071aa5c9
MF
5656static void
5657map_removal_by_action (text_action_list *action_list)
5658{
5659 text_action *r;
5660 int removed = 0;
5661 removal_by_action_map map;
5662 bfd_boolean eq_complete;
5663
5664 map.n_entries = 0;
5665 map.entry = bfd_malloc (action_list_count (action_list) *
5666 sizeof (removal_by_action_entry));
5667 eq_complete = FALSE;
5668
5669 for (r = action_list->head; r;)
5670 {
5671 removal_by_action_entry *ientry = map.entry + map.n_entries;
5672
5673 if (map.n_entries && (ientry - 1)->offset == r->offset)
5674 {
5675 --ientry;
5676 }
5677 else
5678 {
5679 ++map.n_entries;
5680 eq_complete = FALSE;
5681 ientry->offset = r->offset;
5682 ientry->eq_removed_before_fill = removed;
5683 }
5684
5685 if (!eq_complete)
5686 {
5687 if (r->action != ta_fill || r->removed_bytes >= 0)
5688 {
5689 ientry->eq_removed = removed;
5690 eq_complete = TRUE;
5691 }
5692 else
5693 ientry->eq_removed = removed + r->removed_bytes;
5694 }
5695
5696 removed += r->removed_bytes;
5697 ientry->removed = removed;
5698 r = r->next;
5699 }
5700 action_list->map = map;
5701}
5702
5703static int
5704removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5705 bfd_boolean before_fill)
5706{
5707 unsigned a, b;
5708
5709 if (!action_list->map.entry)
5710 map_removal_by_action (action_list);
5711
5712 if (!action_list->map.n_entries)
5713 return 0;
5714
5715 a = 0;
5716 b = action_list->map.n_entries;
5717
5718 while (b - a > 1)
5719 {
5720 unsigned c = (a + b) / 2;
5721
5722 if (action_list->map.entry[c].offset <= offset)
5723 a = c;
5724 else
5725 b = c;
5726 }
5727
5728 if (action_list->map.entry[a].offset < offset)
5729 {
5730 return action_list->map.entry[a].removed;
5731 }
5732 else if (action_list->map.entry[a].offset == offset)
5733 {
5734 return before_fill ?
5735 action_list->map.entry[a].eq_removed_before_fill :
5736 action_list->map.entry[a].eq_removed;
5737 }
5738 else
5739 {
5740 return 0;
5741 }
5742}
5743
5744static bfd_vma
5745offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5746{
5747 int removed = removed_by_actions_map (action_list, offset, FALSE);
5748 return offset - removed;
5749}
5750
03e94c08 5751
43cd72b9
BW
5752/* The find_insn_action routine will only find non-fill actions. */
5753
7fa3d080
BW
5754static text_action *
5755find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
5756{
5757 text_action *t;
5758 for (t = action_list->head; t; t = t->next)
5759 {
5760 if (t->offset == offset)
5761 {
5762 switch (t->action)
5763 {
5764 case ta_none:
5765 case ta_fill:
5766 break;
5767 case ta_remove_insn:
5768 case ta_remove_longcall:
5769 case ta_convert_longcall:
5770 case ta_narrow_insn:
5771 case ta_widen_insn:
5772 return t;
5773 case ta_remove_literal:
5774 case ta_add_literal:
5775 BFD_ASSERT (0);
5776 break;
5777 }
5778 }
5779 }
5780 return NULL;
5781}
5782
5783
5784#if DEBUG
5785
5786static void
7fa3d080 5787print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
5788{
5789 text_action *r;
5790
5791 fprintf (fp, "Text Action\n");
5792 for (r = action_list->head; r != NULL; r = r->next)
5793 {
5794 const char *t = "unknown";
5795 switch (r->action)
5796 {
5797 case ta_remove_insn:
5798 t = "remove_insn"; break;
5799 case ta_remove_longcall:
5800 t = "remove_longcall"; break;
5801 case ta_convert_longcall:
c46082c8 5802 t = "convert_longcall"; break;
43cd72b9
BW
5803 case ta_narrow_insn:
5804 t = "narrow_insn"; break;
5805 case ta_widen_insn:
5806 t = "widen_insn"; break;
5807 case ta_fill:
5808 t = "fill"; break;
5809 case ta_none:
5810 t = "none"; break;
5811 case ta_remove_literal:
5812 t = "remove_literal"; break;
5813 case ta_add_literal:
5814 t = "add_literal"; break;
5815 }
5816
5817 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5818 r->sec->owner->filename,
9ccb8af9 5819 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
43cd72b9
BW
5820 }
5821}
5822
5823#endif /* DEBUG */
5824
5825\f
5826/* Lists of literals being coalesced or removed. */
5827
5828/* In the usual case, the literal identified by "from" is being
5829 coalesced with another literal identified by "to". If the literal is
5830 unused and is being removed altogether, "to.abfd" will be NULL.
5831 The removed_literal entries are kept on a per-section list, sorted
5832 by the "from" offset field. */
5833
5834typedef struct removed_literal_struct removed_literal;
5835typedef struct removed_literal_list_struct removed_literal_list;
5836
5837struct removed_literal_struct
5838{
5839 r_reloc from;
5840 r_reloc to;
5841 removed_literal *next;
5842};
5843
5844struct removed_literal_list_struct
5845{
5846 removed_literal *head;
5847 removed_literal *tail;
5848};
5849
5850
43cd72b9
BW
5851/* Record that the literal at "from" is being removed. If "to" is not
5852 NULL, the "from" literal is being coalesced with the "to" literal. */
5853
5854static void
7fa3d080
BW
5855add_removed_literal (removed_literal_list *removed_list,
5856 const r_reloc *from,
5857 const r_reloc *to)
43cd72b9
BW
5858{
5859 removed_literal *r, *new_r, *next_r;
5860
5861 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5862
5863 new_r->from = *from;
5864 if (to)
5865 new_r->to = *to;
5866 else
5867 new_r->to.abfd = NULL;
5868 new_r->next = NULL;
68ffbac6 5869
43cd72b9 5870 r = removed_list->head;
68ffbac6 5871 if (r == NULL)
43cd72b9
BW
5872 {
5873 removed_list->head = new_r;
5874 removed_list->tail = new_r;
5875 }
5876 /* Special check for common case of append. */
5877 else if (removed_list->tail->from.target_offset < from->target_offset)
5878 {
5879 removed_list->tail->next = new_r;
5880 removed_list->tail = new_r;
5881 }
5882 else
5883 {
68ffbac6 5884 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5885 {
5886 r = r->next;
5887 }
5888 next_r = r->next;
5889 r->next = new_r;
5890 new_r->next = next_r;
5891 if (next_r == NULL)
5892 removed_list->tail = new_r;
5893 }
5894}
5895
5896
5897/* Check if the list of removed literals contains an entry for the
5898 given address. Return the entry if found. */
5899
5900static removed_literal *
7fa3d080 5901find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
5902{
5903 removed_literal *r = removed_list->head;
5904 while (r && r->from.target_offset < addr)
5905 r = r->next;
5906 if (r && r->from.target_offset == addr)
5907 return r;
5908 return NULL;
5909}
5910
5911
5912#if DEBUG
5913
5914static void
7fa3d080 5915print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5916{
5917 removed_literal *r;
5918 r = removed_list->head;
5919 if (r)
5920 fprintf (fp, "Removed Literals\n");
5921 for (; r != NULL; r = r->next)
5922 {
5923 print_r_reloc (fp, &r->from);
5924 fprintf (fp, " => ");
5925 if (r->to.abfd == NULL)
5926 fprintf (fp, "REMOVED");
5927 else
5928 print_r_reloc (fp, &r->to);
5929 fprintf (fp, "\n");
5930 }
5931}
5932
5933#endif /* DEBUG */
5934
5935\f
5936/* Per-section data for relaxation. */
5937
5938typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5939
5940struct xtensa_relax_info_struct
5941{
5942 bfd_boolean is_relaxable_literal_section;
5943 bfd_boolean is_relaxable_asm_section;
5944 int visited; /* Number of times visited. */
5945
5946 source_reloc *src_relocs; /* Array[src_count]. */
5947 int src_count;
5948 int src_next; /* Next src_relocs entry to assign. */
5949
5950 removed_literal_list removed_list;
5951 text_action_list action_list;
5952
5953 reloc_bfd_fix *fix_list;
5954 reloc_bfd_fix *fix_array;
5955 unsigned fix_array_count;
5956
5957 /* Support for expanding the reloc array that is stored
5958 in the section structure. If the relocations have been
5959 reallocated, the newly allocated relocations will be referenced
5960 here along with the actual size allocated. The relocation
5961 count will always be found in the section structure. */
68ffbac6 5962 Elf_Internal_Rela *allocated_relocs;
43cd72b9
BW
5963 unsigned relocs_count;
5964 unsigned allocated_relocs_count;
5965};
5966
5967struct elf_xtensa_section_data
5968{
5969 struct bfd_elf_section_data elf;
5970 xtensa_relax_info relax_info;
5971};
5972
43cd72b9
BW
5973
5974static bfd_boolean
7fa3d080 5975elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5976{
f592407e
AM
5977 if (!sec->used_by_bfd)
5978 {
5979 struct elf_xtensa_section_data *sdata;
5980 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5981
f592407e
AM
5982 sdata = bfd_zalloc (abfd, amt);
5983 if (sdata == NULL)
5984 return FALSE;
5985 sec->used_by_bfd = sdata;
5986 }
43cd72b9
BW
5987
5988 return _bfd_elf_new_section_hook (abfd, sec);
5989}
5990
5991
7fa3d080
BW
5992static xtensa_relax_info *
5993get_xtensa_relax_info (asection *sec)
5994{
5995 struct elf_xtensa_section_data *section_data;
5996
5997 /* No info available if no section or if it is an output section. */
5998 if (!sec || sec == sec->output_section)
5999 return NULL;
6000
6001 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6002 return &section_data->relax_info;
6003}
6004
6005
43cd72b9 6006static void
7fa3d080 6007init_xtensa_relax_info (asection *sec)
43cd72b9
BW
6008{
6009 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6010
6011 relax_info->is_relaxable_literal_section = FALSE;
6012 relax_info->is_relaxable_asm_section = FALSE;
6013 relax_info->visited = 0;
6014
6015 relax_info->src_relocs = NULL;
6016 relax_info->src_count = 0;
6017 relax_info->src_next = 0;
6018
6019 relax_info->removed_list.head = NULL;
6020 relax_info->removed_list.tail = NULL;
6021
6022 relax_info->action_list.head = NULL;
6023
071aa5c9
MF
6024 relax_info->action_list.map.n_entries = 0;
6025 relax_info->action_list.map.entry = NULL;
6026
43cd72b9
BW
6027 relax_info->fix_list = NULL;
6028 relax_info->fix_array = NULL;
6029 relax_info->fix_array_count = 0;
6030
68ffbac6 6031 relax_info->allocated_relocs = NULL;
43cd72b9
BW
6032 relax_info->relocs_count = 0;
6033 relax_info->allocated_relocs_count = 0;
6034}
6035
43cd72b9
BW
6036\f
6037/* Coalescing literals may require a relocation to refer to a section in
6038 a different input file, but the standard relocation information
6039 cannot express that. Instead, the reloc_bfd_fix structures are used
6040 to "fix" the relocations that refer to sections in other input files.
6041 These structures are kept on per-section lists. The "src_type" field
6042 records the relocation type in case there are multiple relocations on
6043 the same location. FIXME: This is ugly; an alternative might be to
6044 add new symbols with the "owner" field to some other input file. */
6045
6046struct reloc_bfd_fix_struct
6047{
6048 asection *src_sec;
6049 bfd_vma src_offset;
6050 unsigned src_type; /* Relocation type. */
68ffbac6 6051
43cd72b9
BW
6052 asection *target_sec;
6053 bfd_vma target_offset;
6054 bfd_boolean translated;
68ffbac6 6055
43cd72b9
BW
6056 reloc_bfd_fix *next;
6057};
6058
6059
43cd72b9 6060static reloc_bfd_fix *
7fa3d080
BW
6061reloc_bfd_fix_init (asection *src_sec,
6062 bfd_vma src_offset,
6063 unsigned src_type,
7fa3d080
BW
6064 asection *target_sec,
6065 bfd_vma target_offset,
6066 bfd_boolean translated)
43cd72b9
BW
6067{
6068 reloc_bfd_fix *fix;
6069
6070 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6071 fix->src_sec = src_sec;
6072 fix->src_offset = src_offset;
6073 fix->src_type = src_type;
43cd72b9
BW
6074 fix->target_sec = target_sec;
6075 fix->target_offset = target_offset;
6076 fix->translated = translated;
6077
6078 return fix;
6079}
6080
6081
6082static void
7fa3d080 6083add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
6084{
6085 xtensa_relax_info *relax_info;
6086
6087 relax_info = get_xtensa_relax_info (src_sec);
6088 fix->next = relax_info->fix_list;
6089 relax_info->fix_list = fix;
6090}
6091
6092
6093static int
7fa3d080 6094fix_compare (const void *ap, const void *bp)
43cd72b9
BW
6095{
6096 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6097 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6098
6099 if (a->src_offset != b->src_offset)
6100 return (a->src_offset - b->src_offset);
6101 return (a->src_type - b->src_type);
6102}
6103
6104
6105static void
7fa3d080 6106cache_fix_array (asection *sec)
43cd72b9
BW
6107{
6108 unsigned i, count = 0;
6109 reloc_bfd_fix *r;
6110 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6111
6112 if (relax_info == NULL)
6113 return;
6114 if (relax_info->fix_list == NULL)
6115 return;
6116
6117 for (r = relax_info->fix_list; r != NULL; r = r->next)
6118 count++;
6119
6120 relax_info->fix_array =
6121 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6122 relax_info->fix_array_count = count;
6123
6124 r = relax_info->fix_list;
6125 for (i = 0; i < count; i++, r = r->next)
6126 {
6127 relax_info->fix_array[count - 1 - i] = *r;
6128 relax_info->fix_array[count - 1 - i].next = NULL;
6129 }
6130
6131 qsort (relax_info->fix_array, relax_info->fix_array_count,
6132 sizeof (reloc_bfd_fix), fix_compare);
6133}
6134
6135
6136static reloc_bfd_fix *
7fa3d080 6137get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6138{
6139 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6140 reloc_bfd_fix *rv;
6141 reloc_bfd_fix key;
6142
6143 if (relax_info == NULL)
6144 return NULL;
6145 if (relax_info->fix_list == NULL)
6146 return NULL;
6147
6148 if (relax_info->fix_array == NULL)
6149 cache_fix_array (sec);
6150
6151 key.src_offset = offset;
6152 key.src_type = type;
6153 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6154 sizeof (reloc_bfd_fix), fix_compare);
6155 return rv;
6156}
6157
6158\f
6159/* Section caching. */
6160
6161typedef struct section_cache_struct section_cache_t;
6162
6163struct section_cache_struct
6164{
6165 asection *sec;
6166
6167 bfd_byte *contents; /* Cache of the section contents. */
6168 bfd_size_type content_length;
6169
6170 property_table_entry *ptbl; /* Cache of the section property table. */
6171 unsigned pte_count;
6172
6173 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6174 unsigned reloc_count;
6175};
6176
6177
7fa3d080
BW
6178static void
6179init_section_cache (section_cache_t *sec_cache)
6180{
6181 memset (sec_cache, 0, sizeof (*sec_cache));
6182}
43cd72b9
BW
6183
6184
6185static void
65e911f9 6186free_section_cache (section_cache_t *sec_cache)
43cd72b9 6187{
7fa3d080
BW
6188 if (sec_cache->sec)
6189 {
6190 release_contents (sec_cache->sec, sec_cache->contents);
6191 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6192 if (sec_cache->ptbl)
6193 free (sec_cache->ptbl);
7fa3d080 6194 }
43cd72b9
BW
6195}
6196
6197
6198static bfd_boolean
7fa3d080
BW
6199section_cache_section (section_cache_t *sec_cache,
6200 asection *sec,
6201 struct bfd_link_info *link_info)
43cd72b9
BW
6202{
6203 bfd *abfd;
6204 property_table_entry *prop_table = NULL;
6205 int ptblsize = 0;
6206 bfd_byte *contents = NULL;
6207 Elf_Internal_Rela *internal_relocs = NULL;
6208 bfd_size_type sec_size;
6209
6210 if (sec == NULL)
6211 return FALSE;
6212 if (sec == sec_cache->sec)
6213 return TRUE;
6214
6215 abfd = sec->owner;
6216 sec_size = bfd_get_section_limit (abfd, sec);
6217
6218 /* Get the contents. */
6219 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6220 if (contents == NULL && sec_size != 0)
6221 goto err;
6222
6223 /* Get the relocations. */
6224 internal_relocs = retrieve_internal_relocs (abfd, sec,
6225 link_info->keep_memory);
6226
6227 /* Get the entry table. */
6228 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6229 XTENSA_PROP_SEC_NAME, FALSE);
6230 if (ptblsize < 0)
6231 goto err;
6232
6233 /* Fill in the new section cache. */
65e911f9
AM
6234 free_section_cache (sec_cache);
6235 init_section_cache (sec_cache);
43cd72b9
BW
6236
6237 sec_cache->sec = sec;
6238 sec_cache->contents = contents;
6239 sec_cache->content_length = sec_size;
6240 sec_cache->relocs = internal_relocs;
6241 sec_cache->reloc_count = sec->reloc_count;
6242 sec_cache->pte_count = ptblsize;
6243 sec_cache->ptbl = prop_table;
6244
6245 return TRUE;
6246
6247 err:
6248 release_contents (sec, contents);
6249 release_internal_relocs (sec, internal_relocs);
6250 if (prop_table)
6251 free (prop_table);
6252 return FALSE;
6253}
6254
43cd72b9
BW
6255\f
6256/* Extended basic blocks. */
6257
6258/* An ebb_struct represents an Extended Basic Block. Within this
6259 range, we guarantee that all instructions are decodable, the
6260 property table entries are contiguous, and no property table
6261 specifies a segment that cannot have instructions moved. This
6262 structure contains caches of the contents, property table and
6263 relocations for the specified section for easy use. The range is
6264 specified by ranges of indices for the byte offset, property table
6265 offsets and relocation offsets. These must be consistent. */
6266
6267typedef struct ebb_struct ebb_t;
6268
6269struct ebb_struct
6270{
6271 asection *sec;
6272
6273 bfd_byte *contents; /* Cache of the section contents. */
6274 bfd_size_type content_length;
6275
6276 property_table_entry *ptbl; /* Cache of the section property table. */
6277 unsigned pte_count;
6278
6279 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6280 unsigned reloc_count;
6281
6282 bfd_vma start_offset; /* Offset in section. */
6283 unsigned start_ptbl_idx; /* Offset in the property table. */
6284 unsigned start_reloc_idx; /* Offset in the relocations. */
6285
6286 bfd_vma end_offset;
6287 unsigned end_ptbl_idx;
6288 unsigned end_reloc_idx;
6289
6290 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6291
6292 /* The unreachable property table at the end of this set of blocks;
6293 NULL if the end is not an unreachable block. */
6294 property_table_entry *ends_unreachable;
6295};
6296
6297
6298enum ebb_target_enum
6299{
6300 EBB_NO_ALIGN = 0,
6301 EBB_DESIRE_TGT_ALIGN,
6302 EBB_REQUIRE_TGT_ALIGN,
6303 EBB_REQUIRE_LOOP_ALIGN,
6304 EBB_REQUIRE_ALIGN
6305};
6306
6307
6308/* proposed_action_struct is similar to the text_action_struct except
6309 that is represents a potential transformation, not one that will
6310 occur. We build a list of these for an extended basic block
6311 and use them to compute the actual actions desired. We must be
6312 careful that the entire set of actual actions we perform do not
6313 break any relocations that would fit if the actions were not
6314 performed. */
6315
6316typedef struct proposed_action_struct proposed_action;
6317
6318struct proposed_action_struct
6319{
6320 enum ebb_target_enum align_type; /* for the target alignment */
6321 bfd_vma alignment_pow;
6322 text_action_t action;
6323 bfd_vma offset;
6324 int removed_bytes;
6325 bfd_boolean do_action; /* If false, then we will not perform the action. */
6326};
6327
6328
6329/* The ebb_constraint_struct keeps a set of proposed actions for an
6330 extended basic block. */
6331
6332typedef struct ebb_constraint_struct ebb_constraint;
6333
6334struct ebb_constraint_struct
6335{
6336 ebb_t ebb;
6337 bfd_boolean start_movable;
6338
6339 /* Bytes of extra space at the beginning if movable. */
6340 int start_extra_space;
6341
6342 enum ebb_target_enum start_align;
6343
6344 bfd_boolean end_movable;
6345
6346 /* Bytes of extra space at the end if movable. */
6347 int end_extra_space;
6348
6349 unsigned action_count;
6350 unsigned action_allocated;
6351
6352 /* Array of proposed actions. */
6353 proposed_action *actions;
6354
6355 /* Action alignments -- one for each proposed action. */
6356 enum ebb_target_enum *action_aligns;
6357};
6358
6359
43cd72b9 6360static void
7fa3d080 6361init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6362{
6363 memset (c, 0, sizeof (ebb_constraint));
6364}
6365
6366
6367static void
7fa3d080 6368free_ebb_constraint (ebb_constraint *c)
43cd72b9 6369{
7fa3d080 6370 if (c->actions)
43cd72b9
BW
6371 free (c->actions);
6372}
6373
6374
6375static void
7fa3d080
BW
6376init_ebb (ebb_t *ebb,
6377 asection *sec,
6378 bfd_byte *contents,
6379 bfd_size_type content_length,
6380 property_table_entry *prop_table,
6381 unsigned ptblsize,
6382 Elf_Internal_Rela *internal_relocs,
6383 unsigned reloc_count)
43cd72b9
BW
6384{
6385 memset (ebb, 0, sizeof (ebb_t));
6386 ebb->sec = sec;
6387 ebb->contents = contents;
6388 ebb->content_length = content_length;
6389 ebb->ptbl = prop_table;
6390 ebb->pte_count = ptblsize;
6391 ebb->relocs = internal_relocs;
6392 ebb->reloc_count = reloc_count;
6393 ebb->start_offset = 0;
6394 ebb->end_offset = ebb->content_length - 1;
6395 ebb->start_ptbl_idx = 0;
6396 ebb->end_ptbl_idx = ptblsize;
6397 ebb->start_reloc_idx = 0;
6398 ebb->end_reloc_idx = reloc_count;
6399}
6400
6401
6402/* Extend the ebb to all decodable contiguous sections. The algorithm
6403 for building a basic block around an instruction is to push it
6404 forward until we hit the end of a section, an unreachable block or
6405 a block that cannot be transformed. Then we push it backwards
6406 searching for similar conditions. */
6407
7fa3d080
BW
6408static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6409static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6410static bfd_size_type insn_block_decodable_len
6411 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6412
43cd72b9 6413static bfd_boolean
7fa3d080 6414extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6415{
6416 if (!extend_ebb_bounds_forward (ebb))
6417 return FALSE;
6418 if (!extend_ebb_bounds_backward (ebb))
6419 return FALSE;
6420 return TRUE;
6421}
6422
6423
6424static bfd_boolean
7fa3d080 6425extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6426{
6427 property_table_entry *the_entry, *new_entry;
6428
6429 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6430
6431 /* Stop when (1) we cannot decode an instruction, (2) we are at
6432 the end of the property tables, (3) we hit a non-contiguous property
6433 table entry, (4) we hit a NO_TRANSFORM region. */
6434
6435 while (1)
6436 {
6437 bfd_vma entry_end;
6438 bfd_size_type insn_block_len;
6439
6440 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6441 insn_block_len =
6442 insn_block_decodable_len (ebb->contents, ebb->content_length,
6443 ebb->end_offset,
6444 entry_end - ebb->end_offset);
6445 if (insn_block_len != (entry_end - ebb->end_offset))
6446 {
6447 (*_bfd_error_handler)
6448 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6449 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6450 return FALSE;
6451 }
6452 ebb->end_offset += insn_block_len;
6453
6454 if (ebb->end_offset == ebb->sec->size)
6455 ebb->ends_section = TRUE;
6456
6457 /* Update the reloc counter. */
6458 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6459 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6460 < ebb->end_offset))
6461 {
6462 ebb->end_reloc_idx++;
6463 }
6464
6465 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6466 return TRUE;
6467
6468 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6469 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6470 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6471 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6472 break;
6473
6474 if (the_entry->address + the_entry->size != new_entry->address)
6475 break;
6476
6477 the_entry = new_entry;
6478 ebb->end_ptbl_idx++;
6479 }
6480
6481 /* Quick check for an unreachable or end of file just at the end. */
6482 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6483 {
6484 if (ebb->end_offset == ebb->content_length)
6485 ebb->ends_section = TRUE;
6486 }
6487 else
6488 {
6489 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6490 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6491 && the_entry->address + the_entry->size == new_entry->address)
6492 ebb->ends_unreachable = new_entry;
6493 }
6494
6495 /* Any other ending requires exact alignment. */
6496 return TRUE;
6497}
6498
6499
6500static bfd_boolean
7fa3d080 6501extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6502{
6503 property_table_entry *the_entry, *new_entry;
6504
6505 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6506
6507 /* Stop when (1) we cannot decode the instructions in the current entry.
6508 (2) we are at the beginning of the property tables, (3) we hit a
6509 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6510
6511 while (1)
6512 {
6513 bfd_vma block_begin;
6514 bfd_size_type insn_block_len;
6515
6516 block_begin = the_entry->address - ebb->sec->vma;
6517 insn_block_len =
6518 insn_block_decodable_len (ebb->contents, ebb->content_length,
6519 block_begin,
6520 ebb->start_offset - block_begin);
6521 if (insn_block_len != ebb->start_offset - block_begin)
6522 {
6523 (*_bfd_error_handler)
6524 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6525 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6526 return FALSE;
6527 }
6528 ebb->start_offset -= insn_block_len;
6529
6530 /* Update the reloc counter. */
6531 while (ebb->start_reloc_idx > 0
6532 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6533 >= ebb->start_offset))
6534 {
6535 ebb->start_reloc_idx--;
6536 }
6537
6538 if (ebb->start_ptbl_idx == 0)
6539 return TRUE;
6540
6541 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6542 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6543 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6544 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6545 return TRUE;
6546 if (new_entry->address + new_entry->size != the_entry->address)
6547 return TRUE;
6548
6549 the_entry = new_entry;
6550 ebb->start_ptbl_idx--;
6551 }
6552 return TRUE;
6553}
6554
6555
6556static bfd_size_type
7fa3d080
BW
6557insn_block_decodable_len (bfd_byte *contents,
6558 bfd_size_type content_len,
6559 bfd_vma block_offset,
6560 bfd_size_type block_len)
43cd72b9
BW
6561{
6562 bfd_vma offset = block_offset;
6563
6564 while (offset < block_offset + block_len)
6565 {
6566 bfd_size_type insn_len = 0;
6567
6568 insn_len = insn_decode_len (contents, content_len, offset);
6569 if (insn_len == 0)
6570 return (offset - block_offset);
6571 offset += insn_len;
6572 }
6573 return (offset - block_offset);
6574}
6575
6576
6577static void
7fa3d080 6578ebb_propose_action (ebb_constraint *c,
7fa3d080 6579 enum ebb_target_enum align_type,
288f74fa 6580 bfd_vma alignment_pow,
7fa3d080
BW
6581 text_action_t action,
6582 bfd_vma offset,
6583 int removed_bytes,
6584 bfd_boolean do_action)
43cd72b9 6585{
b08b5071 6586 proposed_action *act;
43cd72b9 6587
43cd72b9
BW
6588 if (c->action_allocated <= c->action_count)
6589 {
b08b5071 6590 unsigned new_allocated, i;
823fc61f 6591 proposed_action *new_actions;
b08b5071
BW
6592
6593 new_allocated = (c->action_count + 2) * 2;
823fc61f 6594 new_actions = (proposed_action *)
43cd72b9
BW
6595 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6596
6597 for (i = 0; i < c->action_count; i++)
6598 new_actions[i] = c->actions[i];
7fa3d080 6599 if (c->actions)
43cd72b9
BW
6600 free (c->actions);
6601 c->actions = new_actions;
6602 c->action_allocated = new_allocated;
6603 }
b08b5071
BW
6604
6605 act = &c->actions[c->action_count];
6606 act->align_type = align_type;
6607 act->alignment_pow = alignment_pow;
6608 act->action = action;
6609 act->offset = offset;
6610 act->removed_bytes = removed_bytes;
6611 act->do_action = do_action;
6612
43cd72b9
BW
6613 c->action_count++;
6614}
6615
6616\f
6617/* Access to internal relocations, section contents and symbols. */
6618
6619/* During relaxation, we need to modify relocations, section contents,
6620 and symbol definitions, and we need to keep the original values from
6621 being reloaded from the input files, i.e., we need to "pin" the
6622 modified values in memory. We also want to continue to observe the
6623 setting of the "keep-memory" flag. The following functions wrap the
6624 standard BFD functions to take care of this for us. */
6625
6626static Elf_Internal_Rela *
7fa3d080 6627retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6628{
6629 Elf_Internal_Rela *internal_relocs;
6630
6631 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6632 return NULL;
6633
6634 internal_relocs = elf_section_data (sec)->relocs;
6635 if (internal_relocs == NULL)
6636 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6637 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6638 return internal_relocs;
6639}
6640
6641
6642static void
7fa3d080 6643pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6644{
6645 elf_section_data (sec)->relocs = internal_relocs;
6646}
6647
6648
6649static void
7fa3d080 6650release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6651{
6652 if (internal_relocs
6653 && elf_section_data (sec)->relocs != internal_relocs)
6654 free (internal_relocs);
6655}
6656
6657
6658static bfd_byte *
7fa3d080 6659retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6660{
6661 bfd_byte *contents;
6662 bfd_size_type sec_size;
6663
6664 sec_size = bfd_get_section_limit (abfd, sec);
6665 contents = elf_section_data (sec)->this_hdr.contents;
68ffbac6 6666
43cd72b9
BW
6667 if (contents == NULL && sec_size != 0)
6668 {
6669 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6670 {
7fa3d080 6671 if (contents)
43cd72b9
BW
6672 free (contents);
6673 return NULL;
6674 }
68ffbac6 6675 if (keep_memory)
43cd72b9
BW
6676 elf_section_data (sec)->this_hdr.contents = contents;
6677 }
6678 return contents;
6679}
6680
6681
6682static void
7fa3d080 6683pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6684{
6685 elf_section_data (sec)->this_hdr.contents = contents;
6686}
6687
6688
6689static void
7fa3d080 6690release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6691{
6692 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6693 free (contents);
6694}
6695
6696
6697static Elf_Internal_Sym *
7fa3d080 6698retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6699{
6700 Elf_Internal_Shdr *symtab_hdr;
6701 Elf_Internal_Sym *isymbuf;
6702 size_t locsymcount;
6703
6704 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6705 locsymcount = symtab_hdr->sh_info;
6706
6707 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6708 if (isymbuf == NULL && locsymcount != 0)
6709 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6710 NULL, NULL, NULL);
6711
6712 /* Save the symbols for this input file so they won't be read again. */
6713 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6714 symtab_hdr->contents = (unsigned char *) isymbuf;
6715
6716 return isymbuf;
6717}
6718
6719\f
6720/* Code for link-time relaxation. */
6721
6722/* Initialization for relaxation: */
7fa3d080 6723static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6724static bfd_boolean find_relaxable_sections
7fa3d080 6725 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6726static bfd_boolean collect_source_relocs
7fa3d080 6727 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6728static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6729 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6730 bfd_boolean *);
43cd72b9 6731static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6732 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6733static bfd_boolean compute_text_actions
7fa3d080
BW
6734 (bfd *, asection *, struct bfd_link_info *);
6735static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6736static bfd_boolean compute_ebb_actions (ebb_constraint *);
b2b326d2 6737typedef struct reloc_range_list_struct reloc_range_list;
43cd72b9 6738static bfd_boolean check_section_ebb_pcrels_fit
b2b326d2
MF
6739 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6740 reloc_range_list *, const ebb_constraint *,
cb337148 6741 const xtensa_opcode *);
7fa3d080 6742static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6743static void text_action_add_proposed
7fa3d080
BW
6744 (text_action_list *, const ebb_constraint *, asection *);
6745static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6746
6747/* First pass: */
6748static bfd_boolean compute_removed_literals
7fa3d080 6749 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6750static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6751 (asection *, Elf_Internal_Rela *, bfd_vma);
68ffbac6 6752static bfd_boolean is_removable_literal
99ded152
BW
6753 (const source_reloc *, int, const source_reloc *, int, asection *,
6754 property_table_entry *, int);
43cd72b9 6755static bfd_boolean remove_dead_literal
7fa3d080 6756 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
68ffbac6 6757 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
7fa3d080
BW
6758static bfd_boolean identify_literal_placement
6759 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6760 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6761 source_reloc *, property_table_entry *, int, section_cache_t *,
6762 bfd_boolean);
6763static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6764static bfd_boolean coalesce_shared_literal
7fa3d080 6765 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6766static bfd_boolean move_shared_literal
7fa3d080
BW
6767 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6768 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6769
6770/* Second pass: */
7fa3d080
BW
6771static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6772static bfd_boolean translate_section_fixes (asection *);
6773static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6774static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6775static void shrink_dynamic_reloc_sections
7fa3d080 6776 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6777static bfd_boolean move_literal
7fa3d080
BW
6778 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6779 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6780static bfd_boolean relax_property_section
7fa3d080 6781 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6782
6783/* Third pass: */
7fa3d080 6784static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6785
6786
68ffbac6 6787static bfd_boolean
7fa3d080
BW
6788elf_xtensa_relax_section (bfd *abfd,
6789 asection *sec,
6790 struct bfd_link_info *link_info,
6791 bfd_boolean *again)
43cd72b9
BW
6792{
6793 static value_map_hash_table *values = NULL;
6794 static bfd_boolean relocations_analyzed = FALSE;
6795 xtensa_relax_info *relax_info;
6796
6797 if (!relocations_analyzed)
6798 {
6799 /* Do some overall initialization for relaxation. */
6800 values = value_map_hash_table_init ();
6801 if (values == NULL)
6802 return FALSE;
6803 relaxing_section = TRUE;
6804 if (!analyze_relocations (link_info))
6805 return FALSE;
6806 relocations_analyzed = TRUE;
6807 }
6808 *again = FALSE;
6809
6810 /* Don't mess with linker-created sections. */
6811 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6812 return TRUE;
6813
6814 relax_info = get_xtensa_relax_info (sec);
6815 BFD_ASSERT (relax_info != NULL);
6816
6817 switch (relax_info->visited)
6818 {
6819 case 0:
6820 /* Note: It would be nice to fold this pass into
6821 analyze_relocations, but it is important for this step that the
6822 sections be examined in link order. */
6823 if (!compute_removed_literals (abfd, sec, link_info, values))
6824 return FALSE;
6825 *again = TRUE;
6826 break;
6827
6828 case 1:
6829 if (values)
6830 value_map_hash_table_delete (values);
6831 values = NULL;
6832 if (!relax_section (abfd, sec, link_info))
6833 return FALSE;
6834 *again = TRUE;
6835 break;
6836
6837 case 2:
6838 if (!relax_section_symbols (abfd, sec))
6839 return FALSE;
6840 break;
6841 }
6842
6843 relax_info->visited++;
6844 return TRUE;
6845}
6846
6847\f
6848/* Initialization for relaxation. */
6849
6850/* This function is called once at the start of relaxation. It scans
6851 all the input sections and marks the ones that are relaxable (i.e.,
6852 literal sections with L32R relocations against them), and then
6853 collects source_reloc information for all the relocations against
6854 those relaxable sections. During this process, it also detects
6855 longcalls, i.e., calls relaxed by the assembler into indirect
6856 calls, that can be optimized back into direct calls. Within each
6857 extended basic block (ebb) containing an optimized longcall, it
6858 computes a set of "text actions" that can be performed to remove
6859 the L32R associated with the longcall while optionally preserving
6860 branch target alignments. */
6861
6862static bfd_boolean
7fa3d080 6863analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6864{
6865 bfd *abfd;
6866 asection *sec;
6867 bfd_boolean is_relaxable = FALSE;
6868
6869 /* Initialize the per-section relaxation info. */
c72f2fb2 6870 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6871 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6872 {
6873 init_xtensa_relax_info (sec);
6874 }
6875
6876 /* Mark relaxable sections (and count relocations against each one). */
c72f2fb2 6877 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6878 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6879 {
6880 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6881 return FALSE;
6882 }
6883
6884 /* Bail out if there are no relaxable sections. */
6885 if (!is_relaxable)
6886 return TRUE;
6887
6888 /* Allocate space for source_relocs. */
c72f2fb2 6889 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6890 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6891 {
6892 xtensa_relax_info *relax_info;
6893
6894 relax_info = get_xtensa_relax_info (sec);
6895 if (relax_info->is_relaxable_literal_section
6896 || relax_info->is_relaxable_asm_section)
6897 {
6898 relax_info->src_relocs = (source_reloc *)
6899 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6900 }
25c6282a
BW
6901 else
6902 relax_info->src_count = 0;
43cd72b9
BW
6903 }
6904
6905 /* Collect info on relocations against each relaxable section. */
c72f2fb2 6906 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6907 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6908 {
6909 if (!collect_source_relocs (abfd, sec, link_info))
6910 return FALSE;
6911 }
6912
6913 /* Compute the text actions. */
c72f2fb2 6914 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6915 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6916 {
6917 if (!compute_text_actions (abfd, sec, link_info))
6918 return FALSE;
6919 }
6920
6921 return TRUE;
6922}
6923
6924
6925/* Find all the sections that might be relaxed. The motivation for
6926 this pass is that collect_source_relocs() needs to record _all_ the
6927 relocations that target each relaxable section. That is expensive
6928 and unnecessary unless the target section is actually going to be
6929 relaxed. This pass identifies all such sections by checking if
6930 they have L32Rs pointing to them. In the process, the total number
6931 of relocations targeting each section is also counted so that we
6932 know how much space to allocate for source_relocs against each
6933 relaxable literal section. */
6934
6935static bfd_boolean
7fa3d080
BW
6936find_relaxable_sections (bfd *abfd,
6937 asection *sec,
6938 struct bfd_link_info *link_info,
6939 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6940{
6941 Elf_Internal_Rela *internal_relocs;
6942 bfd_byte *contents;
6943 bfd_boolean ok = TRUE;
6944 unsigned i;
6945 xtensa_relax_info *source_relax_info;
25c6282a 6946 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6947
6948 internal_relocs = retrieve_internal_relocs (abfd, sec,
6949 link_info->keep_memory);
68ffbac6 6950 if (internal_relocs == NULL)
43cd72b9
BW
6951 return ok;
6952
6953 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6954 if (contents == NULL && sec->size != 0)
6955 {
6956 ok = FALSE;
6957 goto error_return;
6958 }
6959
6960 source_relax_info = get_xtensa_relax_info (sec);
68ffbac6 6961 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6962 {
6963 Elf_Internal_Rela *irel = &internal_relocs[i];
6964 r_reloc r_rel;
6965 asection *target_sec;
6966 xtensa_relax_info *target_relax_info;
6967
6968 /* If this section has not already been marked as "relaxable", and
6969 if it contains any ASM_EXPAND relocations (marking expanded
6970 longcalls) that can be optimized into direct calls, then mark
6971 the section as "relaxable". */
6972 if (source_relax_info
6973 && !source_relax_info->is_relaxable_asm_section
6974 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6975 {
6976 bfd_boolean is_reachable = FALSE;
6977 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6978 link_info, &is_reachable)
6979 && is_reachable)
6980 {
6981 source_relax_info->is_relaxable_asm_section = TRUE;
6982 *is_relaxable_p = TRUE;
6983 }
6984 }
6985
6986 r_reloc_init (&r_rel, abfd, irel, contents,
6987 bfd_get_section_limit (abfd, sec));
6988
6989 target_sec = r_reloc_get_section (&r_rel);
6990 target_relax_info = get_xtensa_relax_info (target_sec);
6991 if (!target_relax_info)
6992 continue;
6993
6994 /* Count PC-relative operand relocations against the target section.
6995 Note: The conditions tested here must match the conditions under
6996 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6997 is_l32r_reloc = FALSE;
6998 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6999 {
7000 xtensa_opcode opcode =
7001 get_relocation_opcode (abfd, sec, contents, irel);
7002 if (opcode != XTENSA_UNDEFINED)
7003 {
7004 is_l32r_reloc = (opcode == get_l32r_opcode ());
7005 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7006 || is_l32r_reloc)
7007 target_relax_info->src_count++;
7008 }
7009 }
43cd72b9 7010
25c6282a 7011 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
7012 {
7013 /* Mark the target section as relaxable. */
7014 target_relax_info->is_relaxable_literal_section = TRUE;
7015 *is_relaxable_p = TRUE;
7016 }
7017 }
7018
7019 error_return:
7020 release_contents (sec, contents);
7021 release_internal_relocs (sec, internal_relocs);
7022 return ok;
7023}
7024
7025
7026/* Record _all_ the relocations that point to relaxable sections, and
7027 get rid of ASM_EXPAND relocs by either converting them to
7028 ASM_SIMPLIFY or by removing them. */
7029
7030static bfd_boolean
7fa3d080
BW
7031collect_source_relocs (bfd *abfd,
7032 asection *sec,
7033 struct bfd_link_info *link_info)
43cd72b9
BW
7034{
7035 Elf_Internal_Rela *internal_relocs;
7036 bfd_byte *contents;
7037 bfd_boolean ok = TRUE;
7038 unsigned i;
7039 bfd_size_type sec_size;
7040
68ffbac6 7041 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 7042 link_info->keep_memory);
68ffbac6 7043 if (internal_relocs == NULL)
43cd72b9
BW
7044 return ok;
7045
7046 sec_size = bfd_get_section_limit (abfd, sec);
7047 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7048 if (contents == NULL && sec_size != 0)
7049 {
7050 ok = FALSE;
7051 goto error_return;
7052 }
7053
7054 /* Record relocations against relaxable literal sections. */
68ffbac6 7055 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7056 {
7057 Elf_Internal_Rela *irel = &internal_relocs[i];
7058 r_reloc r_rel;
7059 asection *target_sec;
7060 xtensa_relax_info *target_relax_info;
7061
7062 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7063
7064 target_sec = r_reloc_get_section (&r_rel);
7065 target_relax_info = get_xtensa_relax_info (target_sec);
7066
7067 if (target_relax_info
7068 && (target_relax_info->is_relaxable_literal_section
7069 || target_relax_info->is_relaxable_asm_section))
7070 {
7071 xtensa_opcode opcode = XTENSA_UNDEFINED;
7072 int opnd = -1;
7073 bfd_boolean is_abs_literal = FALSE;
7074
7075 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7076 {
7077 /* None of the current alternate relocs are PC-relative,
7078 and only PC-relative relocs matter here. However, we
7079 still need to record the opcode for literal
7080 coalescing. */
7081 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7082 if (opcode == get_l32r_opcode ())
7083 {
7084 is_abs_literal = TRUE;
7085 opnd = 1;
7086 }
7087 else
7088 opcode = XTENSA_UNDEFINED;
7089 }
7090 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7091 {
7092 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7093 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7094 }
7095
7096 if (opcode != XTENSA_UNDEFINED)
7097 {
7098 int src_next = target_relax_info->src_next++;
7099 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7100
7101 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7102 is_abs_literal);
7103 }
7104 }
7105 }
7106
7107 /* Now get rid of ASM_EXPAND relocations. At this point, the
7108 src_relocs array for the target literal section may still be
7109 incomplete, but it must at least contain the entries for the L32R
7110 relocations associated with ASM_EXPANDs because they were just
7111 added in the preceding loop over the relocations. */
7112
68ffbac6 7113 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7114 {
7115 Elf_Internal_Rela *irel = &internal_relocs[i];
7116 bfd_boolean is_reachable;
7117
7118 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7119 &is_reachable))
7120 continue;
7121
7122 if (is_reachable)
7123 {
7124 Elf_Internal_Rela *l32r_irel;
7125 r_reloc r_rel;
7126 asection *target_sec;
7127 xtensa_relax_info *target_relax_info;
7128
7129 /* Mark the source_reloc for the L32R so that it will be
7130 removed in compute_removed_literals(), along with the
7131 associated literal. */
7132 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7133 irel, internal_relocs);
7134 if (l32r_irel == NULL)
7135 continue;
7136
7137 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7138
7139 target_sec = r_reloc_get_section (&r_rel);
7140 target_relax_info = get_xtensa_relax_info (target_sec);
7141
7142 if (target_relax_info
7143 && (target_relax_info->is_relaxable_literal_section
7144 || target_relax_info->is_relaxable_asm_section))
7145 {
7146 source_reloc *s_reloc;
7147
7148 /* Search the source_relocs for the entry corresponding to
7149 the l32r_irel. Note: The src_relocs array is not yet
7150 sorted, but it wouldn't matter anyway because we're
7151 searching by source offset instead of target offset. */
68ffbac6 7152 s_reloc = find_source_reloc (target_relax_info->src_relocs,
43cd72b9
BW
7153 target_relax_info->src_next,
7154 sec, l32r_irel);
7155 BFD_ASSERT (s_reloc);
7156 s_reloc->is_null = TRUE;
7157 }
7158
7159 /* Convert this reloc to ASM_SIMPLIFY. */
7160 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7161 R_XTENSA_ASM_SIMPLIFY);
7162 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7163
7164 pin_internal_relocs (sec, internal_relocs);
7165 }
7166 else
7167 {
7168 /* It is resolvable but doesn't reach. We resolve now
7169 by eliminating the relocation -- the call will remain
7170 expanded into L32R/CALLX. */
7171 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7172 pin_internal_relocs (sec, internal_relocs);
7173 }
7174 }
7175
7176 error_return:
7177 release_contents (sec, contents);
7178 release_internal_relocs (sec, internal_relocs);
7179 return ok;
7180}
7181
7182
7183/* Return TRUE if the asm expansion can be resolved. Generally it can
7184 be resolved on a final link or when a partial link locates it in the
7185 same section as the target. Set "is_reachable" flag if the target of
7186 the call is within the range of a direct call, given the current VMA
7187 for this section and the target section. */
7188
7189bfd_boolean
7fa3d080
BW
7190is_resolvable_asm_expansion (bfd *abfd,
7191 asection *sec,
7192 bfd_byte *contents,
7193 Elf_Internal_Rela *irel,
7194 struct bfd_link_info *link_info,
7195 bfd_boolean *is_reachable_p)
43cd72b9
BW
7196{
7197 asection *target_sec;
7198 bfd_vma target_offset;
7199 r_reloc r_rel;
7200 xtensa_opcode opcode, direct_call_opcode;
7201 bfd_vma self_address;
7202 bfd_vma dest_address;
7203 bfd_boolean uses_l32r;
7204 bfd_size_type sec_size;
7205
7206 *is_reachable_p = FALSE;
7207
7208 if (contents == NULL)
7209 return FALSE;
7210
68ffbac6 7211 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
43cd72b9
BW
7212 return FALSE;
7213
7214 sec_size = bfd_get_section_limit (abfd, sec);
7215 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7216 sec_size - irel->r_offset, &uses_l32r);
7217 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7218 if (!uses_l32r)
7219 return FALSE;
68ffbac6 7220
43cd72b9
BW
7221 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7222 if (direct_call_opcode == XTENSA_UNDEFINED)
7223 return FALSE;
7224
7225 /* Check and see that the target resolves. */
7226 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7227 if (!r_reloc_is_defined (&r_rel))
7228 return FALSE;
7229
7230 target_sec = r_reloc_get_section (&r_rel);
7231 target_offset = r_rel.target_offset;
7232
7233 /* If the target is in a shared library, then it doesn't reach. This
7234 isn't supposed to come up because the compiler should never generate
7235 non-PIC calls on systems that use shared libraries, but the linker
7236 shouldn't crash regardless. */
7237 if (!target_sec->output_section)
7238 return FALSE;
68ffbac6 7239
43cd72b9
BW
7240 /* For relocatable sections, we can only simplify when the output
7241 section of the target is the same as the output section of the
7242 source. */
7243 if (link_info->relocatable
7244 && (target_sec->output_section != sec->output_section
7245 || is_reloc_sym_weak (abfd, irel)))
7246 return FALSE;
7247
331ed130
SA
7248 if (target_sec->output_section != sec->output_section)
7249 {
7250 /* If the two sections are sufficiently far away that relaxation
7251 might take the call out of range, we can't simplify. For
7252 example, a positive displacement call into another memory
7253 could get moved to a lower address due to literal removal,
7254 but the destination won't move, and so the displacment might
7255 get larger.
7256
7257 If the displacement is negative, assume the destination could
7258 move as far back as the start of the output section. The
7259 self_address will be at least as far into the output section
7260 as it is prior to relaxation.
7261
7262 If the displacement is postive, assume the destination will be in
7263 it's pre-relaxed location (because relaxation only makes sections
7264 smaller). The self_address could go all the way to the beginning
7265 of the output section. */
7266
7267 dest_address = target_sec->output_section->vma;
7268 self_address = sec->output_section->vma;
7269
7270 if (sec->output_section->vma > target_sec->output_section->vma)
7271 self_address += sec->output_offset + irel->r_offset + 3;
7272 else
7273 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7274 /* Call targets should be four-byte aligned. */
7275 dest_address = (dest_address + 3) & ~3;
7276 }
7277 else
7278 {
7279
7280 self_address = (sec->output_section->vma
7281 + sec->output_offset + irel->r_offset + 3);
7282 dest_address = (target_sec->output_section->vma
7283 + target_sec->output_offset + target_offset);
7284 }
68ffbac6 7285
43cd72b9
BW
7286 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7287 self_address, dest_address);
7288
7289 if ((self_address >> CALL_SEGMENT_BITS) !=
7290 (dest_address >> CALL_SEGMENT_BITS))
7291 return FALSE;
7292
7293 return TRUE;
7294}
7295
7296
7297static Elf_Internal_Rela *
7fa3d080
BW
7298find_associated_l32r_irel (bfd *abfd,
7299 asection *sec,
7300 bfd_byte *contents,
7301 Elf_Internal_Rela *other_irel,
7302 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7303{
7304 unsigned i;
e0001a05 7305
68ffbac6 7306 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7307 {
7308 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7309
43cd72b9
BW
7310 if (irel == other_irel)
7311 continue;
7312 if (irel->r_offset != other_irel->r_offset)
7313 continue;
7314 if (is_l32r_relocation (abfd, sec, contents, irel))
7315 return irel;
7316 }
7317
7318 return NULL;
e0001a05
NC
7319}
7320
7321
cb337148
BW
7322static xtensa_opcode *
7323build_reloc_opcodes (bfd *abfd,
7324 asection *sec,
7325 bfd_byte *contents,
7326 Elf_Internal_Rela *internal_relocs)
7327{
7328 unsigned i;
7329 xtensa_opcode *reloc_opcodes =
7330 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7331 for (i = 0; i < sec->reloc_count; i++)
7332 {
7333 Elf_Internal_Rela *irel = &internal_relocs[i];
7334 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7335 }
7336 return reloc_opcodes;
7337}
7338
b2b326d2
MF
7339struct reloc_range_struct
7340{
7341 bfd_vma addr;
7342 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7343 /* Original irel index in the array of relocations for a section. */
7344 unsigned irel_index;
7345};
7346typedef struct reloc_range_struct reloc_range;
7347
7348typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7349struct reloc_range_list_entry_struct
7350{
7351 reloc_range_list_entry *next;
7352 reloc_range_list_entry *prev;
7353 Elf_Internal_Rela *irel;
7354 xtensa_opcode opcode;
7355 int opnum;
7356};
7357
7358struct reloc_range_list_struct
7359{
7360 /* The rest of the structure is only meaningful when ok is TRUE. */
7361 bfd_boolean ok;
7362
7363 unsigned n_range; /* Number of range markers. */
7364 reloc_range *range; /* Sorted range markers. */
7365
7366 unsigned first; /* Index of a first range element in the list. */
7367 unsigned last; /* One past index of a last range element in the list. */
7368
7369 unsigned n_list; /* Number of list elements. */
7370 reloc_range_list_entry *reloc; /* */
7371 reloc_range_list_entry list_root;
7372};
7373
7374static int
7375reloc_range_compare (const void *a, const void *b)
7376{
7377 const reloc_range *ra = a;
7378 const reloc_range *rb = b;
7379
7380 if (ra->addr != rb->addr)
7381 return ra->addr < rb->addr ? -1 : 1;
7382 if (ra->add != rb->add)
7383 return ra->add ? -1 : 1;
7384 return 0;
7385}
7386
7387static void
7388build_reloc_ranges (bfd *abfd, asection *sec,
7389 bfd_byte *contents,
7390 Elf_Internal_Rela *internal_relocs,
7391 xtensa_opcode *reloc_opcodes,
7392 reloc_range_list *list)
7393{
7394 unsigned i;
7395 size_t n = 0;
7396 size_t max_n = 0;
7397 reloc_range *ranges = NULL;
7398 reloc_range_list_entry *reloc =
7399 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7400
7401 memset (list, 0, sizeof (*list));
7402 list->ok = TRUE;
7403
7404 for (i = 0; i < sec->reloc_count; i++)
7405 {
7406 Elf_Internal_Rela *irel = &internal_relocs[i];
7407 int r_type = ELF32_R_TYPE (irel->r_info);
7408 reloc_howto_type *howto = &elf_howto_table[r_type];
7409 r_reloc r_rel;
7410
7411 if (r_type == R_XTENSA_ASM_SIMPLIFY
7412 || r_type == R_XTENSA_32_PCREL
7413 || !howto->pc_relative)
7414 continue;
7415
7416 r_reloc_init (&r_rel, abfd, irel, contents,
7417 bfd_get_section_limit (abfd, sec));
7418
7419 if (r_reloc_get_section (&r_rel) != sec)
7420 continue;
7421
7422 if (n + 2 > max_n)
7423 {
7424 max_n = (max_n + 2) * 2;
7425 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7426 }
7427
7428 ranges[n].addr = irel->r_offset;
7429 ranges[n + 1].addr = r_rel.target_offset;
7430
7431 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7432 ranges[n + 1].add = !ranges[n].add;
7433
7434 ranges[n].irel_index = i;
7435 ranges[n + 1].irel_index = i;
7436
7437 n += 2;
7438
7439 reloc[i].irel = irel;
7440
7441 /* Every relocation won't possibly be checked in the optimized version of
7442 check_section_ebb_pcrels_fit, so this needs to be done here. */
7443 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7444 {
7445 /* None of the current alternate relocs are PC-relative,
7446 and only PC-relative relocs matter here. */
7447 }
7448 else
7449 {
7450 xtensa_opcode opcode;
7451 int opnum;
7452
7453 if (reloc_opcodes)
7454 opcode = reloc_opcodes[i];
7455 else
7456 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7457
7458 if (opcode == XTENSA_UNDEFINED)
7459 {
7460 list->ok = FALSE;
7461 break;
7462 }
7463
7464 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7465 if (opnum == XTENSA_UNDEFINED)
7466 {
7467 list->ok = FALSE;
7468 break;
7469 }
7470
7471 /* Record relocation opcode and opnum as we've calculated them
7472 anyway and they won't change. */
7473 reloc[i].opcode = opcode;
7474 reloc[i].opnum = opnum;
7475 }
7476 }
7477
7478 if (list->ok)
7479 {
7480 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7481 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7482
7483 list->n_range = n;
7484 list->range = ranges;
7485 list->reloc = reloc;
7486 list->list_root.prev = &list->list_root;
7487 list->list_root.next = &list->list_root;
7488 }
7489 else
7490 {
7491 free (ranges);
7492 free (reloc);
7493 }
7494}
7495
7496static void reloc_range_list_append (reloc_range_list *list,
7497 unsigned irel_index)
7498{
7499 reloc_range_list_entry *entry = list->reloc + irel_index;
7500
7501 entry->prev = list->list_root.prev;
7502 entry->next = &list->list_root;
7503 entry->prev->next = entry;
7504 entry->next->prev = entry;
7505 ++list->n_list;
7506}
7507
7508static void reloc_range_list_remove (reloc_range_list *list,
7509 unsigned irel_index)
7510{
7511 reloc_range_list_entry *entry = list->reloc + irel_index;
7512
7513 entry->next->prev = entry->prev;
7514 entry->prev->next = entry->next;
7515 --list->n_list;
7516}
7517
7518/* Update relocation list object so that it lists all relocations that cross
7519 [first; last] range. Range bounds should not decrease with successive
7520 invocations. */
7521static void reloc_range_list_update_range (reloc_range_list *list,
7522 bfd_vma first, bfd_vma last)
7523{
7524 /* This should not happen: EBBs are iterated from lower addresses to higher.
7525 But even if that happens there's no need to break: just flush current list
7526 and start from scratch. */
7527 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7528 (list->first > 0 && list->range[list->first - 1].addr >= first))
7529 {
7530 list->first = 0;
7531 list->last = 0;
7532 list->n_list = 0;
7533 list->list_root.next = &list->list_root;
7534 list->list_root.prev = &list->list_root;
7535 fprintf (stderr, "%s: move backwards requested\n", __func__);
7536 }
7537
7538 for (; list->last < list->n_range &&
7539 list->range[list->last].addr <= last; ++list->last)
7540 if (list->range[list->last].add)
7541 reloc_range_list_append (list, list->range[list->last].irel_index);
7542
7543 for (; list->first < list->n_range &&
7544 list->range[list->first].addr < first; ++list->first)
7545 if (!list->range[list->first].add)
7546 reloc_range_list_remove (list, list->range[list->first].irel_index);
7547}
7548
7549static void free_reloc_range_list (reloc_range_list *list)
7550{
7551 free (list->range);
7552 free (list->reloc);
7553}
cb337148 7554
43cd72b9
BW
7555/* The compute_text_actions function will build a list of potential
7556 transformation actions for code in the extended basic block of each
7557 longcall that is optimized to a direct call. From this list we
7558 generate a set of actions to actually perform that optimizes for
7559 space and, if not using size_opt, maintains branch target
7560 alignments.
e0001a05 7561
43cd72b9
BW
7562 These actions to be performed are placed on a per-section list.
7563 The actual changes are performed by relax_section() in the second
7564 pass. */
7565
7566bfd_boolean
7fa3d080
BW
7567compute_text_actions (bfd *abfd,
7568 asection *sec,
7569 struct bfd_link_info *link_info)
e0001a05 7570{
cb337148 7571 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7572 xtensa_relax_info *relax_info;
e0001a05 7573 bfd_byte *contents;
43cd72b9 7574 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7575 bfd_boolean ok = TRUE;
7576 unsigned i;
43cd72b9
BW
7577 property_table_entry *prop_table = 0;
7578 int ptblsize = 0;
7579 bfd_size_type sec_size;
b2b326d2 7580 reloc_range_list relevant_relocs;
43cd72b9 7581
43cd72b9
BW
7582 relax_info = get_xtensa_relax_info (sec);
7583 BFD_ASSERT (relax_info);
25c6282a
BW
7584 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7585
7586 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7587 if (!relax_info->is_relaxable_asm_section)
7588 return ok;
e0001a05
NC
7589
7590 internal_relocs = retrieve_internal_relocs (abfd, sec,
7591 link_info->keep_memory);
e0001a05 7592
43cd72b9
BW
7593 if (internal_relocs)
7594 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7595 internal_reloc_compare);
7596
7597 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7598 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7599 if (contents == NULL && sec_size != 0)
e0001a05
NC
7600 {
7601 ok = FALSE;
7602 goto error_return;
7603 }
7604
43cd72b9
BW
7605 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7606 XTENSA_PROP_SEC_NAME, FALSE);
7607 if (ptblsize < 0)
7608 {
7609 ok = FALSE;
7610 goto error_return;
7611 }
7612
b2b326d2
MF
7613 /* Precompute the opcode for each relocation. */
7614 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7615
7616 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7617 &relevant_relocs);
7618
43cd72b9 7619 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7620 {
7621 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7622 bfd_vma r_offset;
7623 property_table_entry *the_entry;
7624 int ptbl_idx;
7625 ebb_t *ebb;
7626 ebb_constraint ebb_table;
7627 bfd_size_type simplify_size;
7628
7629 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7630 continue;
7631 r_offset = irel->r_offset;
e0001a05 7632
43cd72b9
BW
7633 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7634 if (simplify_size == 0)
7635 {
7636 (*_bfd_error_handler)
7637 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7638 sec->owner, sec, r_offset);
7639 continue;
7640 }
e0001a05 7641
43cd72b9
BW
7642 /* If the instruction table is not around, then don't do this
7643 relaxation. */
7644 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7645 sec->vma + irel->r_offset);
7646 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7647 {
7648 text_action_add (&relax_info->action_list,
7649 ta_convert_longcall, sec, r_offset,
7650 0);
7651 continue;
7652 }
7653
7654 /* If the next longcall happens to be at the same address as an
7655 unreachable section of size 0, then skip forward. */
7656 ptbl_idx = the_entry - prop_table;
7657 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7658 && the_entry->size == 0
7659 && ptbl_idx + 1 < ptblsize
7660 && (prop_table[ptbl_idx + 1].address
7661 == prop_table[ptbl_idx].address))
7662 {
7663 ptbl_idx++;
7664 the_entry++;
7665 }
e0001a05 7666
99ded152 7667 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7668 /* NO_REORDER is OK */
7669 continue;
e0001a05 7670
43cd72b9
BW
7671 init_ebb_constraint (&ebb_table);
7672 ebb = &ebb_table.ebb;
7673 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7674 internal_relocs, sec->reloc_count);
7675 ebb->start_offset = r_offset + simplify_size;
7676 ebb->end_offset = r_offset + simplify_size;
7677 ebb->start_ptbl_idx = ptbl_idx;
7678 ebb->end_ptbl_idx = ptbl_idx;
7679 ebb->start_reloc_idx = i;
7680 ebb->end_reloc_idx = i;
7681
7682 if (!extend_ebb_bounds (ebb)
7683 || !compute_ebb_proposed_actions (&ebb_table)
7684 || !compute_ebb_actions (&ebb_table)
7685 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
b2b326d2
MF
7686 internal_relocs,
7687 &relevant_relocs,
7688 &ebb_table, reloc_opcodes)
43cd72b9 7689 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7690 {
43cd72b9
BW
7691 /* If anything goes wrong or we get unlucky and something does
7692 not fit, with our plan because of expansion between
7693 critical branches, just convert to a NOP. */
7694
7695 text_action_add (&relax_info->action_list,
7696 ta_convert_longcall, sec, r_offset, 0);
7697 i = ebb_table.ebb.end_reloc_idx;
7698 free_ebb_constraint (&ebb_table);
7699 continue;
e0001a05 7700 }
43cd72b9
BW
7701
7702 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7703
7704 /* Update the index so we do not go looking at the relocations
7705 we have already processed. */
7706 i = ebb_table.ebb.end_reloc_idx;
7707 free_ebb_constraint (&ebb_table);
e0001a05
NC
7708 }
7709
b2b326d2
MF
7710 free_reloc_range_list (&relevant_relocs);
7711
43cd72b9 7712#if DEBUG
7fa3d080 7713 if (relax_info->action_list.head)
43cd72b9
BW
7714 print_action_list (stderr, &relax_info->action_list);
7715#endif
7716
7717error_return:
e0001a05
NC
7718 release_contents (sec, contents);
7719 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7720 if (prop_table)
7721 free (prop_table);
cb337148
BW
7722 if (reloc_opcodes)
7723 free (reloc_opcodes);
43cd72b9 7724
e0001a05
NC
7725 return ok;
7726}
7727
7728
64b607e6
BW
7729/* Do not widen an instruction if it is preceeded by a
7730 loop opcode. It might cause misalignment. */
7731
7732static bfd_boolean
7733prev_instr_is_a_loop (bfd_byte *contents,
7734 bfd_size_type content_length,
7735 bfd_size_type offset)
7736{
7737 xtensa_opcode prev_opcode;
7738
7739 if (offset < 3)
7740 return FALSE;
7741 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7742 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
68ffbac6 7743}
64b607e6
BW
7744
7745
43cd72b9 7746/* Find all of the possible actions for an extended basic block. */
e0001a05 7747
43cd72b9 7748bfd_boolean
7fa3d080 7749compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7750{
43cd72b9
BW
7751 const ebb_t *ebb = &ebb_table->ebb;
7752 unsigned rel_idx = ebb->start_reloc_idx;
7753 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7754 bfd_vma offset = 0;
7755 xtensa_isa isa = xtensa_default_isa;
7756 xtensa_format fmt;
7757 static xtensa_insnbuf insnbuf = NULL;
7758 static xtensa_insnbuf slotbuf = NULL;
7759
7760 if (insnbuf == NULL)
7761 {
7762 insnbuf = xtensa_insnbuf_alloc (isa);
7763 slotbuf = xtensa_insnbuf_alloc (isa);
7764 }
e0001a05 7765
43cd72b9
BW
7766 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7767 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7768
43cd72b9 7769 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7770 {
64b607e6 7771 bfd_vma start_offset, end_offset;
43cd72b9 7772 bfd_size_type insn_len;
e0001a05 7773
43cd72b9
BW
7774 start_offset = entry->address - ebb->sec->vma;
7775 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7776
43cd72b9
BW
7777 if (entry == start_entry)
7778 start_offset = ebb->start_offset;
7779 if (entry == end_entry)
7780 end_offset = ebb->end_offset;
7781 offset = start_offset;
e0001a05 7782
43cd72b9
BW
7783 if (offset == entry->address - ebb->sec->vma
7784 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7785 {
7786 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7787 BFD_ASSERT (offset != end_offset);
7788 if (offset == end_offset)
7789 return FALSE;
e0001a05 7790
43cd72b9
BW
7791 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7792 offset);
68ffbac6 7793 if (insn_len == 0)
64b607e6
BW
7794 goto decode_error;
7795
43cd72b9
BW
7796 if (check_branch_target_aligned_address (offset, insn_len))
7797 align_type = EBB_REQUIRE_TGT_ALIGN;
7798
7799 ebb_propose_action (ebb_table, align_type, 0,
7800 ta_none, offset, 0, TRUE);
7801 }
7802
7803 while (offset != end_offset)
e0001a05 7804 {
43cd72b9 7805 Elf_Internal_Rela *irel;
e0001a05 7806 xtensa_opcode opcode;
e0001a05 7807
43cd72b9
BW
7808 while (rel_idx < ebb->end_reloc_idx
7809 && (ebb->relocs[rel_idx].r_offset < offset
7810 || (ebb->relocs[rel_idx].r_offset == offset
7811 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7812 != R_XTENSA_ASM_SIMPLIFY))))
7813 rel_idx++;
7814
7815 /* Check for longcall. */
7816 irel = &ebb->relocs[rel_idx];
7817 if (irel->r_offset == offset
7818 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7819 {
7820 bfd_size_type simplify_size;
e0001a05 7821
68ffbac6 7822 simplify_size = get_asm_simplify_size (ebb->contents,
43cd72b9
BW
7823 ebb->content_length,
7824 irel->r_offset);
7825 if (simplify_size == 0)
64b607e6 7826 goto decode_error;
43cd72b9
BW
7827
7828 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7829 ta_convert_longcall, offset, 0, TRUE);
68ffbac6 7830
43cd72b9
BW
7831 offset += simplify_size;
7832 continue;
7833 }
e0001a05 7834
64b607e6
BW
7835 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7836 goto decode_error;
7837 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7838 ebb->content_length - offset);
7839 fmt = xtensa_format_decode (isa, insnbuf);
7840 if (fmt == XTENSA_UNDEFINED)
7841 goto decode_error;
7842 insn_len = xtensa_format_length (isa, fmt);
7843 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7844 goto decode_error;
7845
7846 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7847 {
64b607e6
BW
7848 offset += insn_len;
7849 continue;
43cd72b9 7850 }
64b607e6
BW
7851
7852 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7853 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7854 if (opcode == XTENSA_UNDEFINED)
7855 goto decode_error;
7856
43cd72b9 7857 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7858 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7859 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7860 {
7861 /* Add an instruction narrow action. */
7862 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7863 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7864 }
99ded152 7865 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7866 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7867 && ! prev_instr_is_a_loop (ebb->contents,
7868 ebb->content_length, offset))
43cd72b9
BW
7869 {
7870 /* Add an instruction widen action. */
7871 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7872 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7873 }
64b607e6 7874 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7875 {
7876 /* Check for branch targets. */
7877 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7878 ta_none, offset, 0, TRUE);
43cd72b9
BW
7879 }
7880
7881 offset += insn_len;
e0001a05
NC
7882 }
7883 }
7884
43cd72b9
BW
7885 if (ebb->ends_unreachable)
7886 {
7887 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7888 ta_fill, ebb->end_offset, 0, TRUE);
7889 }
e0001a05 7890
43cd72b9 7891 return TRUE;
64b607e6
BW
7892
7893 decode_error:
7894 (*_bfd_error_handler)
7895 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7896 ebb->sec->owner, ebb->sec, offset);
7897 return FALSE;
43cd72b9
BW
7898}
7899
7900
7901/* After all of the information has collected about the
7902 transformations possible in an EBB, compute the appropriate actions
7903 here in compute_ebb_actions. We still must check later to make
7904 sure that the actions do not break any relocations. The algorithm
7905 used here is pretty greedy. Basically, it removes as many no-ops
7906 as possible so that the end of the EBB has the same alignment
7907 characteristics as the original. First, it uses narrowing, then
7908 fill space at the end of the EBB, and finally widenings. If that
7909 does not work, it tries again with one fewer no-op removed. The
7910 optimization will only be performed if all of the branch targets
7911 that were aligned before transformation are also aligned after the
7912 transformation.
7913
7914 When the size_opt flag is set, ignore the branch target alignments,
7915 narrow all wide instructions, and remove all no-ops unless the end
7916 of the EBB prevents it. */
7917
7918bfd_boolean
7fa3d080 7919compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7920{
7921 unsigned i = 0;
7922 unsigned j;
7923 int removed_bytes = 0;
7924 ebb_t *ebb = &ebb_table->ebb;
7925 unsigned seg_idx_start = 0;
7926 unsigned seg_idx_end = 0;
7927
7928 /* We perform this like the assembler relaxation algorithm: Start by
7929 assuming all instructions are narrow and all no-ops removed; then
7930 walk through.... */
7931
7932 /* For each segment of this that has a solid constraint, check to
7933 see if there are any combinations that will keep the constraint.
7934 If so, use it. */
7935 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7936 {
43cd72b9
BW
7937 bfd_boolean requires_text_end_align = FALSE;
7938 unsigned longcall_count = 0;
7939 unsigned longcall_convert_count = 0;
7940 unsigned narrowable_count = 0;
7941 unsigned narrowable_convert_count = 0;
7942 unsigned widenable_count = 0;
7943 unsigned widenable_convert_count = 0;
e0001a05 7944
43cd72b9
BW
7945 proposed_action *action = NULL;
7946 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7947
43cd72b9 7948 seg_idx_start = seg_idx_end;
e0001a05 7949
43cd72b9
BW
7950 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7951 {
7952 action = &ebb_table->actions[i];
7953 if (action->action == ta_convert_longcall)
7954 longcall_count++;
7955 if (action->action == ta_narrow_insn)
7956 narrowable_count++;
7957 if (action->action == ta_widen_insn)
7958 widenable_count++;
7959 if (action->action == ta_fill)
7960 break;
7961 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7962 break;
7963 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7964 && !elf32xtensa_size_opt)
7965 break;
7966 }
7967 seg_idx_end = i;
e0001a05 7968
43cd72b9
BW
7969 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7970 requires_text_end_align = TRUE;
e0001a05 7971
43cd72b9
BW
7972 if (elf32xtensa_size_opt && !requires_text_end_align
7973 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7974 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7975 {
7976 longcall_convert_count = longcall_count;
7977 narrowable_convert_count = narrowable_count;
7978 widenable_convert_count = 0;
7979 }
7980 else
7981 {
7982 /* There is a constraint. Convert the max number of longcalls. */
7983 narrowable_convert_count = 0;
7984 longcall_convert_count = 0;
7985 widenable_convert_count = 0;
e0001a05 7986
43cd72b9 7987 for (j = 0; j < longcall_count; j++)
e0001a05 7988 {
43cd72b9
BW
7989 int removed = (longcall_count - j) * 3 & (align - 1);
7990 unsigned desire_narrow = (align - removed) & (align - 1);
7991 unsigned desire_widen = removed;
7992 if (desire_narrow <= narrowable_count)
7993 {
7994 narrowable_convert_count = desire_narrow;
7995 narrowable_convert_count +=
7996 (align * ((narrowable_count - narrowable_convert_count)
7997 / align));
7998 longcall_convert_count = (longcall_count - j);
7999 widenable_convert_count = 0;
8000 break;
8001 }
8002 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8003 {
8004 narrowable_convert_count = 0;
8005 longcall_convert_count = longcall_count - j;
8006 widenable_convert_count = desire_widen;
8007 break;
8008 }
8009 }
8010 }
e0001a05 8011
43cd72b9
BW
8012 /* Now the number of conversions are saved. Do them. */
8013 for (i = seg_idx_start; i < seg_idx_end; i++)
8014 {
8015 action = &ebb_table->actions[i];
8016 switch (action->action)
8017 {
8018 case ta_convert_longcall:
8019 if (longcall_convert_count != 0)
8020 {
8021 action->action = ta_remove_longcall;
8022 action->do_action = TRUE;
8023 action->removed_bytes += 3;
8024 longcall_convert_count--;
8025 }
8026 break;
8027 case ta_narrow_insn:
8028 if (narrowable_convert_count != 0)
8029 {
8030 action->do_action = TRUE;
8031 action->removed_bytes += 1;
8032 narrowable_convert_count--;
8033 }
8034 break;
8035 case ta_widen_insn:
8036 if (widenable_convert_count != 0)
8037 {
8038 action->do_action = TRUE;
8039 action->removed_bytes -= 1;
8040 widenable_convert_count--;
8041 }
8042 break;
8043 default:
8044 break;
e0001a05 8045 }
43cd72b9
BW
8046 }
8047 }
e0001a05 8048
43cd72b9
BW
8049 /* Now we move on to some local opts. Try to remove each of the
8050 remaining longcalls. */
e0001a05 8051
43cd72b9
BW
8052 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8053 {
8054 removed_bytes = 0;
8055 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8056 {
43cd72b9
BW
8057 int old_removed_bytes = removed_bytes;
8058 proposed_action *action = &ebb_table->actions[i];
8059
8060 if (action->do_action && action->action == ta_convert_longcall)
8061 {
8062 bfd_boolean bad_alignment = FALSE;
8063 removed_bytes += 3;
8064 for (j = i + 1; j < ebb_table->action_count; j++)
8065 {
8066 proposed_action *new_action = &ebb_table->actions[j];
8067 bfd_vma offset = new_action->offset;
8068 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8069 {
8070 if (!check_branch_target_aligned
8071 (ebb_table->ebb.contents,
8072 ebb_table->ebb.content_length,
8073 offset, offset - removed_bytes))
8074 {
8075 bad_alignment = TRUE;
8076 break;
8077 }
8078 }
8079 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8080 {
8081 if (!check_loop_aligned (ebb_table->ebb.contents,
8082 ebb_table->ebb.content_length,
8083 offset,
8084 offset - removed_bytes))
8085 {
8086 bad_alignment = TRUE;
8087 break;
8088 }
8089 }
8090 if (new_action->action == ta_narrow_insn
8091 && !new_action->do_action
8092 && ebb_table->ebb.sec->alignment_power == 2)
8093 {
8094 /* Narrow an instruction and we are done. */
8095 new_action->do_action = TRUE;
8096 new_action->removed_bytes += 1;
8097 bad_alignment = FALSE;
8098 break;
8099 }
8100 if (new_action->action == ta_widen_insn
8101 && new_action->do_action
8102 && ebb_table->ebb.sec->alignment_power == 2)
8103 {
8104 /* Narrow an instruction and we are done. */
8105 new_action->do_action = FALSE;
8106 new_action->removed_bytes += 1;
8107 bad_alignment = FALSE;
8108 break;
8109 }
5c5d6806
BW
8110 if (new_action->do_action)
8111 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
8112 }
8113 if (!bad_alignment)
8114 {
8115 action->removed_bytes += 3;
8116 action->action = ta_remove_longcall;
8117 action->do_action = TRUE;
8118 }
8119 }
8120 removed_bytes = old_removed_bytes;
8121 if (action->do_action)
8122 removed_bytes += action->removed_bytes;
e0001a05
NC
8123 }
8124 }
8125
43cd72b9
BW
8126 removed_bytes = 0;
8127 for (i = 0; i < ebb_table->action_count; ++i)
8128 {
8129 proposed_action *action = &ebb_table->actions[i];
8130 if (action->do_action)
8131 removed_bytes += action->removed_bytes;
8132 }
8133
8134 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8135 && ebb->ends_unreachable)
8136 {
8137 proposed_action *action;
8138 int br;
8139 int extra_space;
8140
8141 BFD_ASSERT (ebb_table->action_count != 0);
8142 action = &ebb_table->actions[ebb_table->action_count - 1];
8143 BFD_ASSERT (action->action == ta_fill);
8144 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8145
8146 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8147 br = action->removed_bytes + removed_bytes + extra_space;
8148 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8149
8150 action->removed_bytes = extra_space - br;
8151 }
8152 return TRUE;
e0001a05
NC
8153}
8154
8155
03e94c08
BW
8156/* The xlate_map is a sorted array of address mappings designed to
8157 answer the offset_with_removed_text() query with a binary search instead
8158 of a linear search through the section's action_list. */
8159
8160typedef struct xlate_map_entry xlate_map_entry_t;
8161typedef struct xlate_map xlate_map_t;
8162
8163struct xlate_map_entry
8164{
8165 unsigned orig_address;
8166 unsigned new_address;
8167 unsigned size;
8168};
8169
8170struct xlate_map
8171{
8172 unsigned entry_count;
8173 xlate_map_entry_t *entry;
8174};
8175
8176
68ffbac6 8177static int
03e94c08
BW
8178xlate_compare (const void *a_v, const void *b_v)
8179{
8180 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8181 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8182 if (a->orig_address < b->orig_address)
8183 return -1;
8184 if (a->orig_address > (b->orig_address + b->size - 1))
8185 return 1;
8186 return 0;
8187}
8188
8189
8190static bfd_vma
8191xlate_offset_with_removed_text (const xlate_map_t *map,
8192 text_action_list *action_list,
8193 bfd_vma offset)
8194{
03e94c08
BW
8195 void *r;
8196 xlate_map_entry_t *e;
8197
8198 if (map == NULL)
8199 return offset_with_removed_text (action_list, offset);
8200
8201 if (map->entry_count == 0)
8202 return offset;
8203
03e94c08
BW
8204 r = bsearch (&offset, map->entry, map->entry_count,
8205 sizeof (xlate_map_entry_t), &xlate_compare);
8206 e = (xlate_map_entry_t *) r;
68ffbac6 8207
03e94c08
BW
8208 BFD_ASSERT (e != NULL);
8209 if (e == NULL)
8210 return offset;
8211 return e->new_address - e->orig_address + offset;
8212}
8213
8214
8215/* Build a binary searchable offset translation map from a section's
8216 action list. */
8217
8218static xlate_map_t *
8219build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8220{
8221 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8222 text_action_list *action_list = &relax_info->action_list;
8223 unsigned num_actions = 0;
8224 text_action *r;
8225 int removed;
8226 xlate_map_entry_t *current_entry;
8227
8228 if (map == NULL)
8229 return NULL;
8230
8231 num_actions = action_list_count (action_list);
68ffbac6 8232 map->entry = (xlate_map_entry_t *)
03e94c08
BW
8233 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8234 if (map->entry == NULL)
8235 {
8236 free (map);
8237 return NULL;
8238 }
8239 map->entry_count = 0;
68ffbac6 8240
03e94c08
BW
8241 removed = 0;
8242 current_entry = &map->entry[0];
8243
8244 current_entry->orig_address = 0;
8245 current_entry->new_address = 0;
8246 current_entry->size = 0;
8247
8248 for (r = action_list->head; r != NULL; r = r->next)
8249 {
8250 unsigned orig_size = 0;
8251 switch (r->action)
8252 {
8253 case ta_none:
8254 case ta_remove_insn:
8255 case ta_convert_longcall:
8256 case ta_remove_literal:
8257 case ta_add_literal:
8258 break;
8259 case ta_remove_longcall:
8260 orig_size = 6;
8261 break;
8262 case ta_narrow_insn:
8263 orig_size = 3;
8264 break;
8265 case ta_widen_insn:
8266 orig_size = 2;
8267 break;
8268 case ta_fill:
8269 break;
8270 }
8271 current_entry->size =
8272 r->offset + orig_size - current_entry->orig_address;
8273 if (current_entry->size != 0)
8274 {
8275 current_entry++;
8276 map->entry_count++;
8277 }
8278 current_entry->orig_address = r->offset + orig_size;
8279 removed += r->removed_bytes;
8280 current_entry->new_address = r->offset + orig_size - removed;
8281 current_entry->size = 0;
8282 }
8283
8284 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8285 - current_entry->orig_address);
8286 if (current_entry->size != 0)
8287 map->entry_count++;
8288
8289 return map;
8290}
8291
8292
8293/* Free an offset translation map. */
8294
68ffbac6 8295static void
03e94c08
BW
8296free_xlate_map (xlate_map_t *map)
8297{
8298 if (map && map->entry)
8299 free (map->entry);
8300 if (map)
8301 free (map);
8302}
8303
8304
43cd72b9
BW
8305/* Use check_section_ebb_pcrels_fit to make sure that all of the
8306 relocations in a section will fit if a proposed set of actions
8307 are performed. */
e0001a05 8308
43cd72b9 8309static bfd_boolean
7fa3d080
BW
8310check_section_ebb_pcrels_fit (bfd *abfd,
8311 asection *sec,
8312 bfd_byte *contents,
8313 Elf_Internal_Rela *internal_relocs,
b2b326d2 8314 reloc_range_list *relevant_relocs,
cb337148
BW
8315 const ebb_constraint *constraint,
8316 const xtensa_opcode *reloc_opcodes)
e0001a05 8317{
43cd72b9 8318 unsigned i, j;
b2b326d2 8319 unsigned n = sec->reloc_count;
43cd72b9 8320 Elf_Internal_Rela *irel;
03e94c08
BW
8321 xlate_map_t *xmap = NULL;
8322 bfd_boolean ok = TRUE;
43cd72b9 8323 xtensa_relax_info *relax_info;
b2b326d2 8324 reloc_range_list_entry *entry = NULL;
e0001a05 8325
43cd72b9 8326 relax_info = get_xtensa_relax_info (sec);
e0001a05 8327
03e94c08
BW
8328 if (relax_info && sec->reloc_count > 100)
8329 {
8330 xmap = build_xlate_map (sec, relax_info);
8331 /* NULL indicates out of memory, but the slow version
8332 can still be used. */
8333 }
8334
b2b326d2
MF
8335 if (relevant_relocs && constraint->action_count)
8336 {
8337 if (!relevant_relocs->ok)
8338 {
8339 ok = FALSE;
8340 n = 0;
8341 }
8342 else
8343 {
8344 bfd_vma min_offset, max_offset;
8345 min_offset = max_offset = constraint->actions[0].offset;
8346
8347 for (i = 1; i < constraint->action_count; ++i)
8348 {
8349 proposed_action *action = &constraint->actions[i];
8350 bfd_vma offset = action->offset;
8351
8352 if (offset < min_offset)
8353 min_offset = offset;
8354 if (offset > max_offset)
8355 max_offset = offset;
8356 }
8357 reloc_range_list_update_range (relevant_relocs, min_offset,
8358 max_offset);
8359 n = relevant_relocs->n_list;
8360 entry = &relevant_relocs->list_root;
8361 }
8362 }
8363 else
8364 {
8365 relevant_relocs = NULL;
8366 }
8367
8368 for (i = 0; i < n; i++)
43cd72b9
BW
8369 {
8370 r_reloc r_rel;
8371 bfd_vma orig_self_offset, orig_target_offset;
8372 bfd_vma self_offset, target_offset;
8373 int r_type;
8374 reloc_howto_type *howto;
8375 int self_removed_bytes, target_removed_bytes;
e0001a05 8376
b2b326d2
MF
8377 if (relevant_relocs)
8378 {
8379 entry = entry->next;
8380 irel = entry->irel;
8381 }
8382 else
8383 {
8384 irel = internal_relocs + i;
8385 }
43cd72b9 8386 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 8387
43cd72b9
BW
8388 howto = &elf_howto_table[r_type];
8389 /* We maintain the required invariant: PC-relative relocations
8390 that fit before linking must fit after linking. Thus we only
8391 need to deal with relocations to the same section that are
8392 PC-relative. */
1bbb5f21
BW
8393 if (r_type == R_XTENSA_ASM_SIMPLIFY
8394 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
8395 || !howto->pc_relative)
8396 continue;
e0001a05 8397
43cd72b9
BW
8398 r_reloc_init (&r_rel, abfd, irel, contents,
8399 bfd_get_section_limit (abfd, sec));
e0001a05 8400
43cd72b9
BW
8401 if (r_reloc_get_section (&r_rel) != sec)
8402 continue;
e0001a05 8403
43cd72b9
BW
8404 orig_self_offset = irel->r_offset;
8405 orig_target_offset = r_rel.target_offset;
e0001a05 8406
43cd72b9
BW
8407 self_offset = orig_self_offset;
8408 target_offset = orig_target_offset;
8409
8410 if (relax_info)
8411 {
03e94c08
BW
8412 self_offset =
8413 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8414 orig_self_offset);
8415 target_offset =
8416 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8417 orig_target_offset);
43cd72b9
BW
8418 }
8419
8420 self_removed_bytes = 0;
8421 target_removed_bytes = 0;
8422
8423 for (j = 0; j < constraint->action_count; ++j)
8424 {
8425 proposed_action *action = &constraint->actions[j];
8426 bfd_vma offset = action->offset;
8427 int removed_bytes = action->removed_bytes;
8428 if (offset < orig_self_offset
8429 || (offset == orig_self_offset && action->action == ta_fill
8430 && action->removed_bytes < 0))
8431 self_removed_bytes += removed_bytes;
8432 if (offset < orig_target_offset
8433 || (offset == orig_target_offset && action->action == ta_fill
8434 && action->removed_bytes < 0))
8435 target_removed_bytes += removed_bytes;
8436 }
8437 self_offset -= self_removed_bytes;
8438 target_offset -= target_removed_bytes;
8439
8440 /* Try to encode it. Get the operand and check. */
8441 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8442 {
8443 /* None of the current alternate relocs are PC-relative,
8444 and only PC-relative relocs matter here. */
8445 }
8446 else
8447 {
8448 xtensa_opcode opcode;
8449 int opnum;
8450
b2b326d2 8451 if (relevant_relocs)
03e94c08 8452 {
b2b326d2
MF
8453 opcode = entry->opcode;
8454 opnum = entry->opnum;
03e94c08 8455 }
b2b326d2 8456 else
03e94c08 8457 {
b2b326d2
MF
8458 if (reloc_opcodes)
8459 opcode = reloc_opcodes[relevant_relocs ?
8460 (unsigned)(entry - relevant_relocs->reloc) : i];
8461 else
8462 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8463 if (opcode == XTENSA_UNDEFINED)
8464 {
8465 ok = FALSE;
8466 break;
8467 }
8468
8469 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8470 if (opnum == XTENSA_UNDEFINED)
8471 {
8472 ok = FALSE;
8473 break;
8474 }
03e94c08 8475 }
43cd72b9
BW
8476
8477 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8478 {
8479 ok = FALSE;
8480 break;
8481 }
43cd72b9
BW
8482 }
8483 }
8484
03e94c08
BW
8485 if (xmap)
8486 free_xlate_map (xmap);
8487
8488 return ok;
43cd72b9
BW
8489}
8490
8491
8492static bfd_boolean
7fa3d080 8493check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8494{
8495 int removed = 0;
8496 unsigned i;
8497
8498 for (i = 0; i < constraint->action_count; i++)
8499 {
8500 const proposed_action *action = &constraint->actions[i];
8501 if (action->do_action)
8502 removed += action->removed_bytes;
8503 }
8504 if (removed < 0)
e0001a05
NC
8505 return FALSE;
8506
8507 return TRUE;
8508}
8509
8510
43cd72b9 8511void
7fa3d080
BW
8512text_action_add_proposed (text_action_list *l,
8513 const ebb_constraint *ebb_table,
8514 asection *sec)
e0001a05
NC
8515{
8516 unsigned i;
8517
43cd72b9 8518 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8519 {
43cd72b9 8520 proposed_action *action = &ebb_table->actions[i];
e0001a05 8521
43cd72b9 8522 if (!action->do_action)
e0001a05 8523 continue;
43cd72b9
BW
8524 switch (action->action)
8525 {
8526 case ta_remove_insn:
8527 case ta_remove_longcall:
8528 case ta_convert_longcall:
8529 case ta_narrow_insn:
8530 case ta_widen_insn:
8531 case ta_fill:
8532 case ta_remove_literal:
8533 text_action_add (l, action->action, sec, action->offset,
8534 action->removed_bytes);
8535 break;
8536 case ta_none:
8537 break;
8538 default:
8539 BFD_ASSERT (0);
8540 break;
8541 }
e0001a05 8542 }
43cd72b9 8543}
e0001a05 8544
43cd72b9
BW
8545
8546int
7fa3d080 8547compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8548{
8549 int fill_extra_space;
8550
8551 if (!entry)
8552 return 0;
8553
8554 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8555 return 0;
8556
8557 fill_extra_space = entry->size;
8558 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8559 {
8560 /* Fill bytes for alignment:
8561 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8562 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8563 int nsm = (1 << pow) - 1;
8564 bfd_vma addr = entry->address + entry->size;
8565 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8566 fill_extra_space += align_fill;
8567 }
8568 return fill_extra_space;
e0001a05
NC
8569}
8570
43cd72b9 8571\f
e0001a05
NC
8572/* First relaxation pass. */
8573
43cd72b9
BW
8574/* If the section contains relaxable literals, check each literal to
8575 see if it has the same value as another literal that has already
8576 been seen, either in the current section or a previous one. If so,
8577 add an entry to the per-section list of removed literals. The
e0001a05
NC
8578 actual changes are deferred until the next pass. */
8579
68ffbac6 8580static bfd_boolean
7fa3d080
BW
8581compute_removed_literals (bfd *abfd,
8582 asection *sec,
8583 struct bfd_link_info *link_info,
8584 value_map_hash_table *values)
e0001a05
NC
8585{
8586 xtensa_relax_info *relax_info;
8587 bfd_byte *contents;
8588 Elf_Internal_Rela *internal_relocs;
43cd72b9 8589 source_reloc *src_relocs, *rel;
e0001a05 8590 bfd_boolean ok = TRUE;
43cd72b9
BW
8591 property_table_entry *prop_table = NULL;
8592 int ptblsize;
8593 int i, prev_i;
8594 bfd_boolean last_loc_is_prev = FALSE;
8595 bfd_vma last_target_offset = 0;
8596 section_cache_t target_sec_cache;
8597 bfd_size_type sec_size;
8598
8599 init_section_cache (&target_sec_cache);
e0001a05
NC
8600
8601 /* Do nothing if it is not a relaxable literal section. */
8602 relax_info = get_xtensa_relax_info (sec);
8603 BFD_ASSERT (relax_info);
e0001a05
NC
8604 if (!relax_info->is_relaxable_literal_section)
8605 return ok;
8606
68ffbac6 8607 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
8608 link_info->keep_memory);
8609
43cd72b9 8610 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8611 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8612 if (contents == NULL && sec_size != 0)
e0001a05
NC
8613 {
8614 ok = FALSE;
8615 goto error_return;
8616 }
8617
8618 /* Sort the source_relocs by target offset. */
8619 src_relocs = relax_info->src_relocs;
8620 qsort (src_relocs, relax_info->src_count,
8621 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8622 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8623 internal_reloc_compare);
e0001a05 8624
43cd72b9
BW
8625 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8626 XTENSA_PROP_SEC_NAME, FALSE);
8627 if (ptblsize < 0)
8628 {
8629 ok = FALSE;
8630 goto error_return;
8631 }
8632
8633 prev_i = -1;
e0001a05
NC
8634 for (i = 0; i < relax_info->src_count; i++)
8635 {
e0001a05 8636 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8637
8638 rel = &src_relocs[i];
43cd72b9
BW
8639 if (get_l32r_opcode () != rel->opcode)
8640 continue;
e0001a05
NC
8641 irel = get_irel_at_offset (sec, internal_relocs,
8642 rel->r_rel.target_offset);
8643
43cd72b9
BW
8644 /* If the relocation on this is not a simple R_XTENSA_32 or
8645 R_XTENSA_PLT then do not consider it. This may happen when
8646 the difference of two symbols is used in a literal. */
8647 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8648 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8649 continue;
8650
e0001a05
NC
8651 /* If the target_offset for this relocation is the same as the
8652 previous relocation, then we've already considered whether the
8653 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8654 if (i != 0 && prev_i != -1
8655 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8656 continue;
43cd72b9
BW
8657 prev_i = i;
8658
68ffbac6 8659 if (last_loc_is_prev &&
43cd72b9
BW
8660 last_target_offset + 4 != rel->r_rel.target_offset)
8661 last_loc_is_prev = FALSE;
e0001a05
NC
8662
8663 /* Check if the relocation was from an L32R that is being removed
8664 because a CALLX was converted to a direct CALL, and check if
8665 there are no other relocations to the literal. */
68ffbac6 8666 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
99ded152 8667 sec, prop_table, ptblsize))
e0001a05 8668 {
43cd72b9
BW
8669 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8670 irel, rel, prop_table, ptblsize))
e0001a05 8671 {
43cd72b9
BW
8672 ok = FALSE;
8673 goto error_return;
e0001a05 8674 }
43cd72b9 8675 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8676 continue;
8677 }
8678
43cd72b9 8679 if (!identify_literal_placement (abfd, sec, contents, link_info,
68ffbac6
L
8680 values,
8681 &last_loc_is_prev, irel,
43cd72b9
BW
8682 relax_info->src_count - i, rel,
8683 prop_table, ptblsize,
8684 &target_sec_cache, rel->is_abs_literal))
e0001a05 8685 {
43cd72b9
BW
8686 ok = FALSE;
8687 goto error_return;
8688 }
8689 last_target_offset = rel->r_rel.target_offset;
8690 }
e0001a05 8691
43cd72b9
BW
8692#if DEBUG
8693 print_removed_literals (stderr, &relax_info->removed_list);
8694 print_action_list (stderr, &relax_info->action_list);
8695#endif /* DEBUG */
8696
8697error_return:
65e911f9
AM
8698 if (prop_table)
8699 free (prop_table);
8700 free_section_cache (&target_sec_cache);
43cd72b9
BW
8701
8702 release_contents (sec, contents);
8703 release_internal_relocs (sec, internal_relocs);
8704 return ok;
8705}
8706
8707
8708static Elf_Internal_Rela *
7fa3d080
BW
8709get_irel_at_offset (asection *sec,
8710 Elf_Internal_Rela *internal_relocs,
8711 bfd_vma offset)
43cd72b9
BW
8712{
8713 unsigned i;
8714 Elf_Internal_Rela *irel;
8715 unsigned r_type;
8716 Elf_Internal_Rela key;
8717
68ffbac6 8718 if (!internal_relocs)
43cd72b9
BW
8719 return NULL;
8720
8721 key.r_offset = offset;
8722 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8723 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8724 if (!irel)
8725 return NULL;
8726
8727 /* bsearch does not guarantee which will be returned if there are
8728 multiple matches. We need the first that is not an alignment. */
8729 i = irel - internal_relocs;
8730 while (i > 0)
8731 {
8732 if (internal_relocs[i-1].r_offset != offset)
8733 break;
8734 i--;
8735 }
8736 for ( ; i < sec->reloc_count; i++)
8737 {
8738 irel = &internal_relocs[i];
8739 r_type = ELF32_R_TYPE (irel->r_info);
8740 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8741 return irel;
8742 }
8743
8744 return NULL;
8745}
8746
8747
8748bfd_boolean
7fa3d080
BW
8749is_removable_literal (const source_reloc *rel,
8750 int i,
8751 const source_reloc *src_relocs,
99ded152
BW
8752 int src_count,
8753 asection *sec,
8754 property_table_entry *prop_table,
8755 int ptblsize)
43cd72b9
BW
8756{
8757 const source_reloc *curr_rel;
99ded152
BW
8758 property_table_entry *entry;
8759
43cd72b9
BW
8760 if (!rel->is_null)
8761 return FALSE;
68ffbac6
L
8762
8763 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
99ded152
BW
8764 sec->vma + rel->r_rel.target_offset);
8765 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8766 return FALSE;
8767
43cd72b9
BW
8768 for (++i; i < src_count; ++i)
8769 {
8770 curr_rel = &src_relocs[i];
8771 /* If all others have the same target offset.... */
8772 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8773 return TRUE;
8774
8775 if (!curr_rel->is_null
8776 && !xtensa_is_property_section (curr_rel->source_sec)
8777 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8778 return FALSE;
8779 }
8780 return TRUE;
8781}
8782
8783
68ffbac6 8784bfd_boolean
7fa3d080
BW
8785remove_dead_literal (bfd *abfd,
8786 asection *sec,
8787 struct bfd_link_info *link_info,
8788 Elf_Internal_Rela *internal_relocs,
8789 Elf_Internal_Rela *irel,
8790 source_reloc *rel,
8791 property_table_entry *prop_table,
8792 int ptblsize)
43cd72b9
BW
8793{
8794 property_table_entry *entry;
8795 xtensa_relax_info *relax_info;
8796
8797 relax_info = get_xtensa_relax_info (sec);
8798 if (!relax_info)
8799 return FALSE;
8800
8801 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8802 sec->vma + rel->r_rel.target_offset);
8803
8804 /* Mark the unused literal so that it will be removed. */
8805 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8806
8807 text_action_add (&relax_info->action_list,
8808 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8809
8810 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8811 if (sec->alignment_power > 2)
43cd72b9
BW
8812 {
8813 int fill_extra_space;
8814 bfd_vma entry_sec_offset;
8815 text_action *fa;
8816 property_table_entry *the_add_entry;
8817 int removed_diff;
8818
8819 if (entry)
8820 entry_sec_offset = entry->address - sec->vma + entry->size;
8821 else
8822 entry_sec_offset = rel->r_rel.target_offset + 4;
8823
8824 /* If the literal range is at the end of the section,
8825 do not add fill. */
8826 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8827 entry_sec_offset);
8828 fill_extra_space = compute_fill_extra_space (the_add_entry);
8829
8830 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8831 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8832 -4, fill_extra_space);
8833 if (fa)
8834 adjust_fill_action (fa, removed_diff);
8835 else
8836 text_action_add (&relax_info->action_list,
8837 ta_fill, sec, entry_sec_offset, removed_diff);
8838 }
8839
8840 /* Zero out the relocation on this literal location. */
8841 if (irel)
8842 {
8843 if (elf_hash_table (link_info)->dynamic_sections_created)
8844 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8845
8846 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8847 pin_internal_relocs (sec, internal_relocs);
8848 }
8849
8850 /* Do not modify "last_loc_is_prev". */
8851 return TRUE;
8852}
8853
8854
68ffbac6 8855bfd_boolean
7fa3d080
BW
8856identify_literal_placement (bfd *abfd,
8857 asection *sec,
8858 bfd_byte *contents,
8859 struct bfd_link_info *link_info,
8860 value_map_hash_table *values,
8861 bfd_boolean *last_loc_is_prev_p,
8862 Elf_Internal_Rela *irel,
8863 int remaining_src_rels,
8864 source_reloc *rel,
8865 property_table_entry *prop_table,
8866 int ptblsize,
8867 section_cache_t *target_sec_cache,
8868 bfd_boolean is_abs_literal)
43cd72b9
BW
8869{
8870 literal_value val;
8871 value_map *val_map;
8872 xtensa_relax_info *relax_info;
8873 bfd_boolean literal_placed = FALSE;
8874 r_reloc r_rel;
8875 unsigned long value;
8876 bfd_boolean final_static_link;
8877 bfd_size_type sec_size;
8878
8879 relax_info = get_xtensa_relax_info (sec);
8880 if (!relax_info)
8881 return FALSE;
8882
8883 sec_size = bfd_get_section_limit (abfd, sec);
8884
8885 final_static_link =
8886 (!link_info->relocatable
8887 && !elf_hash_table (link_info)->dynamic_sections_created);
8888
8889 /* The placement algorithm first checks to see if the literal is
8890 already in the value map. If so and the value map is reachable
8891 from all uses, then the literal is moved to that location. If
8892 not, then we identify the last location where a fresh literal was
8893 placed. If the literal can be safely moved there, then we do so.
8894 If not, then we assume that the literal is not to move and leave
8895 the literal where it is, marking it as the last literal
8896 location. */
8897
8898 /* Find the literal value. */
8899 value = 0;
8900 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8901 if (!irel)
8902 {
8903 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8904 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8905 }
8906 init_literal_value (&val, &r_rel, value, is_abs_literal);
8907
8908 /* Check if we've seen another literal with the same value that
8909 is in the same output section. */
8910 val_map = value_map_get_cached_value (values, &val, final_static_link);
8911
8912 if (val_map
8913 && (r_reloc_get_section (&val_map->loc)->output_section
8914 == sec->output_section)
8915 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8916 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8917 {
8918 /* No change to last_loc_is_prev. */
8919 literal_placed = TRUE;
8920 }
8921
8922 /* For relocatable links, do not try to move literals. To do it
8923 correctly might increase the number of relocations in an input
8924 section making the default relocatable linking fail. */
68ffbac6 8925 if (!link_info->relocatable && !literal_placed
43cd72b9
BW
8926 && values->has_last_loc && !(*last_loc_is_prev_p))
8927 {
8928 asection *target_sec = r_reloc_get_section (&values->last_loc);
8929 if (target_sec && target_sec->output_section == sec->output_section)
8930 {
8931 /* Increment the virtual offset. */
8932 r_reloc try_loc = values->last_loc;
8933 try_loc.virtual_offset += 4;
8934
8935 /* There is a last loc that was in the same output section. */
8936 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8937 && move_shared_literal (sec, link_info, rel,
68ffbac6 8938 prop_table, ptblsize,
43cd72b9 8939 &try_loc, &val, target_sec_cache))
e0001a05 8940 {
43cd72b9
BW
8941 values->last_loc.virtual_offset += 4;
8942 literal_placed = TRUE;
8943 if (!val_map)
8944 val_map = add_value_map (values, &val, &try_loc,
8945 final_static_link);
8946 else
8947 val_map->loc = try_loc;
e0001a05
NC
8948 }
8949 }
43cd72b9
BW
8950 }
8951
8952 if (!literal_placed)
8953 {
8954 /* Nothing worked, leave the literal alone but update the last loc. */
8955 values->has_last_loc = TRUE;
8956 values->last_loc = rel->r_rel;
8957 if (!val_map)
8958 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8959 else
43cd72b9
BW
8960 val_map->loc = rel->r_rel;
8961 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8962 }
8963
43cd72b9 8964 return TRUE;
e0001a05
NC
8965}
8966
8967
8968/* Check if the original relocations (presumably on L32R instructions)
8969 identified by reloc[0..N] can be changed to reference the literal
8970 identified by r_rel. If r_rel is out of range for any of the
8971 original relocations, then we don't want to coalesce the original
8972 literal with the one at r_rel. We only check reloc[0..N], where the
8973 offsets are all the same as for reloc[0] (i.e., they're all
8974 referencing the same literal) and where N is also bounded by the
8975 number of remaining entries in the "reloc" array. The "reloc" array
8976 is sorted by target offset so we know all the entries for the same
8977 literal will be contiguous. */
8978
8979static bfd_boolean
7fa3d080
BW
8980relocations_reach (source_reloc *reloc,
8981 int remaining_relocs,
8982 const r_reloc *r_rel)
e0001a05
NC
8983{
8984 bfd_vma from_offset, source_address, dest_address;
8985 asection *sec;
8986 int i;
8987
8988 if (!r_reloc_is_defined (r_rel))
8989 return FALSE;
8990
8991 sec = r_reloc_get_section (r_rel);
8992 from_offset = reloc[0].r_rel.target_offset;
8993
8994 for (i = 0; i < remaining_relocs; i++)
8995 {
8996 if (reloc[i].r_rel.target_offset != from_offset)
8997 break;
8998
8999 /* Ignore relocations that have been removed. */
9000 if (reloc[i].is_null)
9001 continue;
9002
9003 /* The original and new output section for these must be the same
9004 in order to coalesce. */
9005 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9006 != sec->output_section)
9007 return FALSE;
9008
d638e0ac
BW
9009 /* Absolute literals in the same output section can always be
9010 combined. */
9011 if (reloc[i].is_abs_literal)
9012 continue;
9013
43cd72b9
BW
9014 /* A literal with no PC-relative relocations can be moved anywhere. */
9015 if (reloc[i].opnd != -1)
e0001a05
NC
9016 {
9017 /* Otherwise, check to see that it fits. */
9018 source_address = (reloc[i].source_sec->output_section->vma
9019 + reloc[i].source_sec->output_offset
9020 + reloc[i].r_rel.rela.r_offset);
9021 dest_address = (sec->output_section->vma
9022 + sec->output_offset
9023 + r_rel->target_offset);
9024
43cd72b9
BW
9025 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9026 source_address, dest_address))
e0001a05
NC
9027 return FALSE;
9028 }
9029 }
9030
9031 return TRUE;
9032}
9033
9034
43cd72b9
BW
9035/* Move a literal to another literal location because it is
9036 the same as the other literal value. */
e0001a05 9037
68ffbac6 9038static bfd_boolean
7fa3d080
BW
9039coalesce_shared_literal (asection *sec,
9040 source_reloc *rel,
9041 property_table_entry *prop_table,
9042 int ptblsize,
9043 value_map *val_map)
e0001a05 9044{
43cd72b9
BW
9045 property_table_entry *entry;
9046 text_action *fa;
9047 property_table_entry *the_add_entry;
9048 int removed_diff;
9049 xtensa_relax_info *relax_info;
9050
9051 relax_info = get_xtensa_relax_info (sec);
9052 if (!relax_info)
9053 return FALSE;
9054
9055 entry = elf_xtensa_find_property_entry
9056 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 9057 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
9058 return TRUE;
9059
9060 /* Mark that the literal will be coalesced. */
9061 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9062
9063 text_action_add (&relax_info->action_list,
9064 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9065
9066 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9067 if (sec->alignment_power > 2)
e0001a05 9068 {
43cd72b9
BW
9069 int fill_extra_space;
9070 bfd_vma entry_sec_offset;
9071
9072 if (entry)
9073 entry_sec_offset = entry->address - sec->vma + entry->size;
9074 else
9075 entry_sec_offset = rel->r_rel.target_offset + 4;
9076
9077 /* If the literal range is at the end of the section,
9078 do not add fill. */
9079 fill_extra_space = 0;
9080 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9081 entry_sec_offset);
9082 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9083 fill_extra_space = the_add_entry->size;
9084
9085 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9086 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9087 -4, fill_extra_space);
9088 if (fa)
9089 adjust_fill_action (fa, removed_diff);
9090 else
9091 text_action_add (&relax_info->action_list,
9092 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 9093 }
43cd72b9
BW
9094
9095 return TRUE;
9096}
9097
9098
9099/* Move a literal to another location. This may actually increase the
9100 total amount of space used because of alignments so we need to do
9101 this carefully. Also, it may make a branch go out of range. */
9102
68ffbac6 9103static bfd_boolean
7fa3d080
BW
9104move_shared_literal (asection *sec,
9105 struct bfd_link_info *link_info,
9106 source_reloc *rel,
9107 property_table_entry *prop_table,
9108 int ptblsize,
9109 const r_reloc *target_loc,
9110 const literal_value *lit_value,
9111 section_cache_t *target_sec_cache)
43cd72b9
BW
9112{
9113 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9114 text_action *fa, *target_fa;
9115 int removed_diff;
9116 xtensa_relax_info *relax_info, *target_relax_info;
9117 asection *target_sec;
9118 ebb_t *ebb;
9119 ebb_constraint ebb_table;
9120 bfd_boolean relocs_fit;
9121
9122 /* If this routine always returns FALSE, the literals that cannot be
9123 coalesced will not be moved. */
9124 if (elf32xtensa_no_literal_movement)
9125 return FALSE;
9126
9127 relax_info = get_xtensa_relax_info (sec);
9128 if (!relax_info)
9129 return FALSE;
9130
9131 target_sec = r_reloc_get_section (target_loc);
9132 target_relax_info = get_xtensa_relax_info (target_sec);
9133
9134 /* Literals to undefined sections may not be moved because they
9135 must report an error. */
9136 if (bfd_is_und_section (target_sec))
9137 return FALSE;
9138
9139 src_entry = elf_xtensa_find_property_entry
9140 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9141
9142 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9143 return FALSE;
9144
9145 target_entry = elf_xtensa_find_property_entry
68ffbac6 9146 (target_sec_cache->ptbl, target_sec_cache->pte_count,
43cd72b9
BW
9147 target_sec->vma + target_loc->target_offset);
9148
9149 if (!target_entry)
9150 return FALSE;
9151
9152 /* Make sure that we have not broken any branches. */
9153 relocs_fit = FALSE;
9154
9155 init_ebb_constraint (&ebb_table);
9156 ebb = &ebb_table.ebb;
68ffbac6 9157 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
43cd72b9
BW
9158 target_sec_cache->content_length,
9159 target_sec_cache->ptbl, target_sec_cache->pte_count,
9160 target_sec_cache->relocs, target_sec_cache->reloc_count);
9161
9162 /* Propose to add 4 bytes + worst-case alignment size increase to
9163 destination. */
9164 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9165 ta_fill, target_loc->target_offset,
9166 -4 - (1 << target_sec->alignment_power), TRUE);
9167
9168 /* Check all of the PC-relative relocations to make sure they still fit. */
68ffbac6 9169 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
43cd72b9 9170 target_sec_cache->contents,
b2b326d2 9171 target_sec_cache->relocs, NULL,
cb337148 9172 &ebb_table, NULL);
43cd72b9 9173
68ffbac6 9174 if (!relocs_fit)
43cd72b9
BW
9175 return FALSE;
9176
9177 text_action_add_literal (&target_relax_info->action_list,
9178 ta_add_literal, target_loc, lit_value, -4);
9179
68ffbac6 9180 if (target_sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9181 {
9182 /* May need to add or remove some fill to maintain alignment. */
9183 int fill_extra_space;
9184 bfd_vma entry_sec_offset;
9185
68ffbac6 9186 entry_sec_offset =
43cd72b9
BW
9187 target_entry->address - target_sec->vma + target_entry->size;
9188
9189 /* If the literal range is at the end of the section,
9190 do not add fill. */
9191 fill_extra_space = 0;
9192 the_add_entry =
9193 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9194 target_sec_cache->pte_count,
9195 entry_sec_offset);
9196 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9197 fill_extra_space = the_add_entry->size;
9198
9199 target_fa = find_fill_action (&target_relax_info->action_list,
9200 target_sec, entry_sec_offset);
9201 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9202 entry_sec_offset, 4,
9203 fill_extra_space);
9204 if (target_fa)
9205 adjust_fill_action (target_fa, removed_diff);
9206 else
9207 text_action_add (&target_relax_info->action_list,
9208 ta_fill, target_sec, entry_sec_offset, removed_diff);
9209 }
9210
9211 /* Mark that the literal will be moved to the new location. */
9212 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9213
9214 /* Remove the literal. */
9215 text_action_add (&relax_info->action_list,
9216 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9217
9218 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9219 if (sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9220 {
9221 int fill_extra_space;
9222 bfd_vma entry_sec_offset;
9223
9224 if (src_entry)
9225 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9226 else
9227 entry_sec_offset = rel->r_rel.target_offset+4;
9228
9229 /* If the literal range is at the end of the section,
9230 do not add fill. */
9231 fill_extra_space = 0;
9232 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9233 entry_sec_offset);
9234 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9235 fill_extra_space = the_add_entry->size;
9236
9237 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9238 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9239 -4, fill_extra_space);
9240 if (fa)
9241 adjust_fill_action (fa, removed_diff);
9242 else
9243 text_action_add (&relax_info->action_list,
9244 ta_fill, sec, entry_sec_offset, removed_diff);
9245 }
9246
9247 return TRUE;
e0001a05
NC
9248}
9249
9250\f
9251/* Second relaxation pass. */
9252
9253/* Modify all of the relocations to point to the right spot, and if this
9254 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 9255 section size. */
e0001a05 9256
43cd72b9 9257bfd_boolean
7fa3d080 9258relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
9259{
9260 Elf_Internal_Rela *internal_relocs;
9261 xtensa_relax_info *relax_info;
9262 bfd_byte *contents;
9263 bfd_boolean ok = TRUE;
9264 unsigned i;
43cd72b9
BW
9265 bfd_boolean rv = FALSE;
9266 bfd_boolean virtual_action;
9267 bfd_size_type sec_size;
e0001a05 9268
43cd72b9 9269 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9270 relax_info = get_xtensa_relax_info (sec);
9271 BFD_ASSERT (relax_info);
9272
43cd72b9
BW
9273 /* First translate any of the fixes that have been added already. */
9274 translate_section_fixes (sec);
9275
e0001a05
NC
9276 /* Handle property sections (e.g., literal tables) specially. */
9277 if (xtensa_is_property_section (sec))
9278 {
9279 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9280 return relax_property_section (abfd, sec, link_info);
9281 }
9282
68ffbac6 9283 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 9284 link_info->keep_memory);
7aa09196
SA
9285 if (!internal_relocs && !relax_info->action_list.head)
9286 return TRUE;
9287
43cd72b9
BW
9288 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9289 if (contents == NULL && sec_size != 0)
9290 {
9291 ok = FALSE;
9292 goto error_return;
9293 }
9294
9295 if (internal_relocs)
9296 {
9297 for (i = 0; i < sec->reloc_count; i++)
9298 {
9299 Elf_Internal_Rela *irel;
9300 xtensa_relax_info *target_relax_info;
9301 bfd_vma source_offset, old_source_offset;
9302 r_reloc r_rel;
9303 unsigned r_type;
9304 asection *target_sec;
9305
9306 /* Locally change the source address.
9307 Translate the target to the new target address.
9308 If it points to this section and has been removed,
9309 NULLify it.
9310 Write it back. */
9311
9312 irel = &internal_relocs[i];
9313 source_offset = irel->r_offset;
9314 old_source_offset = source_offset;
9315
9316 r_type = ELF32_R_TYPE (irel->r_info);
9317 r_reloc_init (&r_rel, abfd, irel, contents,
9318 bfd_get_section_limit (abfd, sec));
9319
9320 /* If this section could have changed then we may need to
9321 change the relocation's offset. */
9322
9323 if (relax_info->is_relaxable_literal_section
9324 || relax_info->is_relaxable_asm_section)
9325 {
9b7f5d20
BW
9326 pin_internal_relocs (sec, internal_relocs);
9327
43cd72b9
BW
9328 if (r_type != R_XTENSA_NONE
9329 && find_removed_literal (&relax_info->removed_list,
9330 irel->r_offset))
9331 {
9332 /* Remove this relocation. */
9333 if (elf_hash_table (link_info)->dynamic_sections_created)
9334 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9335 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
071aa5c9 9336 irel->r_offset = offset_with_removed_text_map
43cd72b9 9337 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
9338 continue;
9339 }
9340
9341 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9342 {
9343 text_action *action =
9344 find_insn_action (&relax_info->action_list,
9345 irel->r_offset);
9346 if (action && (action->action == ta_convert_longcall
9347 || action->action == ta_remove_longcall))
9348 {
9349 bfd_reloc_status_type retval;
9350 char *error_message = NULL;
9351
9352 retval = contract_asm_expansion (contents, sec_size,
9353 irel, &error_message);
9354 if (retval != bfd_reloc_ok)
9355 {
9356 (*link_info->callbacks->reloc_dangerous)
9357 (link_info, error_message, abfd, sec,
9358 irel->r_offset);
9359 goto error_return;
9360 }
9361 /* Update the action so that the code that moves
9362 the contents will do the right thing. */
9363 if (action->action == ta_remove_longcall)
9364 action->action = ta_remove_insn;
9365 else
9366 action->action = ta_none;
9367 /* Refresh the info in the r_rel. */
9368 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9369 r_type = ELF32_R_TYPE (irel->r_info);
9370 }
9371 }
9372
071aa5c9 9373 source_offset = offset_with_removed_text_map
43cd72b9
BW
9374 (&relax_info->action_list, irel->r_offset);
9375 irel->r_offset = source_offset;
9376 }
9377
9378 /* If the target section could have changed then
9379 we may need to change the relocation's target offset. */
9380
9381 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 9382
ae326da8
BW
9383 /* For a reference to a discarded section from a DWARF section,
9384 i.e., where action_discarded is PRETEND, the symbol will
9385 eventually be modified to refer to the kept section (at least if
9386 the kept and discarded sections are the same size). Anticipate
9387 that here and adjust things accordingly. */
9388 if (! elf_xtensa_ignore_discarded_relocs (sec)
9389 && elf_xtensa_action_discarded (sec) == PRETEND
dbaa2011 9390 && sec->sec_info_type != SEC_INFO_TYPE_STABS
ae326da8 9391 && target_sec != NULL
dbaa2011 9392 && discarded_section (target_sec))
ae326da8
BW
9393 {
9394 /* It would be natural to call _bfd_elf_check_kept_section
9395 here, but it's not exported from elflink.c. It's also a
9396 fairly expensive check. Adjusting the relocations to the
9397 discarded section is fairly harmless; it will only adjust
9398 some addends and difference values. If it turns out that
9399 _bfd_elf_check_kept_section fails later, it won't matter,
9400 so just compare the section names to find the right group
9401 member. */
9402 asection *kept = target_sec->kept_section;
9403 if (kept != NULL)
9404 {
9405 if ((kept->flags & SEC_GROUP) != 0)
9406 {
9407 asection *first = elf_next_in_group (kept);
9408 asection *s = first;
9409
9410 kept = NULL;
9411 while (s != NULL)
9412 {
9413 if (strcmp (s->name, target_sec->name) == 0)
9414 {
9415 kept = s;
9416 break;
9417 }
9418 s = elf_next_in_group (s);
9419 if (s == first)
9420 break;
9421 }
9422 }
9423 }
9424 if (kept != NULL
9425 && ((target_sec->rawsize != 0
9426 ? target_sec->rawsize : target_sec->size)
9427 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9428 target_sec = kept;
9429 }
9430
9431 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9432 if (target_relax_info
9433 && (target_relax_info->is_relaxable_literal_section
9434 || target_relax_info->is_relaxable_asm_section))
9435 {
9436 r_reloc new_reloc;
9b7f5d20 9437 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9438
9439 if (r_type == R_XTENSA_DIFF8
9440 || r_type == R_XTENSA_DIFF16
9441 || r_type == R_XTENSA_DIFF32)
9442 {
1058c753
VA
9443 bfd_signed_vma diff_value = 0;
9444 bfd_vma new_end_offset, diff_mask = 0;
43cd72b9
BW
9445
9446 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9447 {
9448 (*link_info->callbacks->reloc_dangerous)
9449 (link_info, _("invalid relocation address"),
9450 abfd, sec, old_source_offset);
9451 goto error_return;
9452 }
9453
9454 switch (r_type)
9455 {
9456 case R_XTENSA_DIFF8:
9457 diff_value =
1058c753 9458 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9459 break;
9460 case R_XTENSA_DIFF16:
9461 diff_value =
1058c753 9462 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9463 break;
9464 case R_XTENSA_DIFF32:
9465 diff_value =
1058c753 9466 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9467 break;
9468 }
9469
071aa5c9 9470 new_end_offset = offset_with_removed_text_map
43cd72b9
BW
9471 (&target_relax_info->action_list,
9472 r_rel.target_offset + diff_value);
9473 diff_value = new_end_offset - new_reloc.target_offset;
9474
9475 switch (r_type)
9476 {
9477 case R_XTENSA_DIFF8:
1058c753
VA
9478 diff_mask = 0x7f;
9479 bfd_put_signed_8 (abfd, diff_value,
43cd72b9
BW
9480 &contents[old_source_offset]);
9481 break;
9482 case R_XTENSA_DIFF16:
1058c753
VA
9483 diff_mask = 0x7fff;
9484 bfd_put_signed_16 (abfd, diff_value,
43cd72b9
BW
9485 &contents[old_source_offset]);
9486 break;
9487 case R_XTENSA_DIFF32:
1058c753
VA
9488 diff_mask = 0x7fffffff;
9489 bfd_put_signed_32 (abfd, diff_value,
43cd72b9
BW
9490 &contents[old_source_offset]);
9491 break;
9492 }
9493
1058c753
VA
9494 /* Check for overflow. Sign bits must be all zeroes or all ones */
9495 if ((diff_value & ~diff_mask) != 0 &&
9496 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
43cd72b9
BW
9497 {
9498 (*link_info->callbacks->reloc_dangerous)
9499 (link_info, _("overflow after relaxation"),
9500 abfd, sec, old_source_offset);
9501 goto error_return;
9502 }
9503
9504 pin_contents (sec, contents);
9505 }
dc96b90a
BW
9506
9507 /* If the relocation still references a section in the same
9508 input file, modify the relocation directly instead of
9509 adding a "fix" record. */
9510 if (target_sec->owner == abfd)
9511 {
9512 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9513 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9514 irel->r_addend = new_reloc.rela.r_addend;
9515 pin_internal_relocs (sec, internal_relocs);
9516 }
9b7f5d20
BW
9517 else
9518 {
dc96b90a
BW
9519 bfd_vma addend_displacement;
9520 reloc_bfd_fix *fix;
9521
9522 addend_displacement =
9523 new_reloc.target_offset + new_reloc.virtual_offset;
9524 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9525 target_sec,
9526 addend_displacement, TRUE);
9527 add_fix (sec, fix);
9b7f5d20 9528 }
43cd72b9 9529 }
43cd72b9
BW
9530 }
9531 }
9532
9533 if ((relax_info->is_relaxable_literal_section
9534 || relax_info->is_relaxable_asm_section)
9535 && relax_info->action_list.head)
9536 {
9537 /* Walk through the planned actions and build up a table
9538 of move, copy and fill records. Use the move, copy and
9539 fill records to perform the actions once. */
9540
43cd72b9
BW
9541 int removed = 0;
9542 bfd_size_type final_size, copy_size, orig_insn_size;
9543 bfd_byte *scratch = NULL;
9544 bfd_byte *dup_contents = NULL;
a3ef2d63 9545 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9546 bfd_vma orig_dot = 0;
9547 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9548 orig dot in physical memory. */
9549 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9550 bfd_vma dup_dot = 0;
9551
9552 text_action *action = relax_info->action_list.head;
9553
9554 final_size = sec->size;
9555 for (action = relax_info->action_list.head; action;
9556 action = action->next)
9557 {
9558 final_size -= action->removed_bytes;
9559 }
9560
9561 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9562 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9563
9564 /* The dot is the current fill location. */
9565#if DEBUG
9566 print_action_list (stderr, &relax_info->action_list);
9567#endif
9568
9569 for (action = relax_info->action_list.head; action;
9570 action = action->next)
9571 {
9572 virtual_action = FALSE;
9573 if (action->offset > orig_dot)
9574 {
9575 orig_dot += orig_dot_copied;
9576 orig_dot_copied = 0;
9577 orig_dot_vo = 0;
9578 /* Out of the virtual world. */
9579 }
9580
9581 if (action->offset > orig_dot)
9582 {
9583 copy_size = action->offset - orig_dot;
9584 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9585 orig_dot += copy_size;
9586 dup_dot += copy_size;
9587 BFD_ASSERT (action->offset == orig_dot);
9588 }
9589 else if (action->offset < orig_dot)
9590 {
9591 if (action->action == ta_fill
9592 && action->offset - action->removed_bytes == orig_dot)
9593 {
9594 /* This is OK because the fill only effects the dup_dot. */
9595 }
9596 else if (action->action == ta_add_literal)
9597 {
9598 /* TBD. Might need to handle this. */
9599 }
9600 }
9601 if (action->offset == orig_dot)
9602 {
9603 if (action->virtual_offset > orig_dot_vo)
9604 {
9605 if (orig_dot_vo == 0)
9606 {
9607 /* Need to copy virtual_offset bytes. Probably four. */
9608 copy_size = action->virtual_offset - orig_dot_vo;
9609 memmove (&dup_contents[dup_dot],
9610 &contents[orig_dot], copy_size);
9611 orig_dot_copied = copy_size;
9612 dup_dot += copy_size;
9613 }
9614 virtual_action = TRUE;
68ffbac6 9615 }
43cd72b9
BW
9616 else
9617 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9618 }
9619 switch (action->action)
9620 {
9621 case ta_remove_literal:
9622 case ta_remove_insn:
9623 BFD_ASSERT (action->removed_bytes >= 0);
9624 orig_dot += action->removed_bytes;
9625 break;
9626
9627 case ta_narrow_insn:
9628 orig_insn_size = 3;
9629 copy_size = 2;
9630 memmove (scratch, &contents[orig_dot], orig_insn_size);
9631 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9632 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9633 BFD_ASSERT (rv);
9634 memmove (&dup_contents[dup_dot], scratch, copy_size);
9635 orig_dot += orig_insn_size;
9636 dup_dot += copy_size;
9637 break;
9638
9639 case ta_fill:
9640 if (action->removed_bytes >= 0)
9641 orig_dot += action->removed_bytes;
9642 else
9643 {
9644 /* Already zeroed in dup_contents. Just bump the
9645 counters. */
9646 dup_dot += (-action->removed_bytes);
9647 }
9648 break;
9649
9650 case ta_none:
9651 BFD_ASSERT (action->removed_bytes == 0);
9652 break;
9653
9654 case ta_convert_longcall:
9655 case ta_remove_longcall:
9656 /* These will be removed or converted before we get here. */
9657 BFD_ASSERT (0);
9658 break;
9659
9660 case ta_widen_insn:
9661 orig_insn_size = 2;
9662 copy_size = 3;
9663 memmove (scratch, &contents[orig_dot], orig_insn_size);
9664 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9665 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9666 BFD_ASSERT (rv);
9667 memmove (&dup_contents[dup_dot], scratch, copy_size);
9668 orig_dot += orig_insn_size;
9669 dup_dot += copy_size;
9670 break;
9671
9672 case ta_add_literal:
9673 orig_insn_size = 0;
9674 copy_size = 4;
9675 BFD_ASSERT (action->removed_bytes == -4);
9676 /* TBD -- place the literal value here and insert
9677 into the table. */
9678 memset (&dup_contents[dup_dot], 0, 4);
9679 pin_internal_relocs (sec, internal_relocs);
9680 pin_contents (sec, contents);
9681
9682 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9683 relax_info, &internal_relocs, &action->value))
9684 goto error_return;
9685
68ffbac6 9686 if (virtual_action)
43cd72b9
BW
9687 orig_dot_vo += copy_size;
9688
9689 orig_dot += orig_insn_size;
9690 dup_dot += copy_size;
9691 break;
9692
9693 default:
9694 /* Not implemented yet. */
9695 BFD_ASSERT (0);
9696 break;
9697 }
9698
43cd72b9
BW
9699 removed += action->removed_bytes;
9700 BFD_ASSERT (dup_dot <= final_size);
9701 BFD_ASSERT (orig_dot <= orig_size);
9702 }
9703
9704 orig_dot += orig_dot_copied;
9705 orig_dot_copied = 0;
9706
9707 if (orig_dot != orig_size)
9708 {
9709 copy_size = orig_size - orig_dot;
9710 BFD_ASSERT (orig_size > orig_dot);
9711 BFD_ASSERT (dup_dot + copy_size == final_size);
9712 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9713 orig_dot += copy_size;
9714 dup_dot += copy_size;
9715 }
9716 BFD_ASSERT (orig_size == orig_dot);
9717 BFD_ASSERT (final_size == dup_dot);
9718
9719 /* Move the dup_contents back. */
9720 if (final_size > orig_size)
9721 {
9722 /* Contents need to be reallocated. Swap the dup_contents into
9723 contents. */
9724 sec->contents = dup_contents;
9725 free (contents);
9726 contents = dup_contents;
9727 pin_contents (sec, contents);
9728 }
9729 else
9730 {
9731 BFD_ASSERT (final_size <= orig_size);
9732 memset (contents, 0, orig_size);
9733 memcpy (contents, dup_contents, final_size);
9734 free (dup_contents);
9735 }
9736 free (scratch);
9737 pin_contents (sec, contents);
9738
a3ef2d63
BW
9739 if (sec->rawsize == 0)
9740 sec->rawsize = sec->size;
43cd72b9
BW
9741 sec->size = final_size;
9742 }
9743
9744 error_return:
9745 release_internal_relocs (sec, internal_relocs);
9746 release_contents (sec, contents);
9747 return ok;
9748}
9749
9750
68ffbac6 9751static bfd_boolean
7fa3d080 9752translate_section_fixes (asection *sec)
43cd72b9
BW
9753{
9754 xtensa_relax_info *relax_info;
9755 reloc_bfd_fix *r;
9756
9757 relax_info = get_xtensa_relax_info (sec);
9758 if (!relax_info)
9759 return TRUE;
9760
9761 for (r = relax_info->fix_list; r != NULL; r = r->next)
9762 if (!translate_reloc_bfd_fix (r))
9763 return FALSE;
e0001a05 9764
43cd72b9
BW
9765 return TRUE;
9766}
e0001a05 9767
e0001a05 9768
43cd72b9
BW
9769/* Translate a fix given the mapping in the relax info for the target
9770 section. If it has already been translated, no work is required. */
e0001a05 9771
68ffbac6 9772static bfd_boolean
7fa3d080 9773translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9774{
9775 reloc_bfd_fix new_fix;
9776 asection *sec;
9777 xtensa_relax_info *relax_info;
9778 removed_literal *removed;
9779 bfd_vma new_offset, target_offset;
e0001a05 9780
43cd72b9
BW
9781 if (fix->translated)
9782 return TRUE;
e0001a05 9783
43cd72b9
BW
9784 sec = fix->target_sec;
9785 target_offset = fix->target_offset;
e0001a05 9786
43cd72b9
BW
9787 relax_info = get_xtensa_relax_info (sec);
9788 if (!relax_info)
9789 {
9790 fix->translated = TRUE;
9791 return TRUE;
9792 }
e0001a05 9793
43cd72b9 9794 new_fix = *fix;
e0001a05 9795
43cd72b9
BW
9796 /* The fix does not need to be translated if the section cannot change. */
9797 if (!relax_info->is_relaxable_literal_section
9798 && !relax_info->is_relaxable_asm_section)
9799 {
9800 fix->translated = TRUE;
9801 return TRUE;
9802 }
e0001a05 9803
43cd72b9
BW
9804 /* If the literal has been moved and this relocation was on an
9805 opcode, then the relocation should move to the new literal
9806 location. Otherwise, the relocation should move within the
9807 section. */
9808
9809 removed = FALSE;
9810 if (is_operand_relocation (fix->src_type))
9811 {
9812 /* Check if the original relocation is against a literal being
9813 removed. */
9814 removed = find_removed_literal (&relax_info->removed_list,
9815 target_offset);
e0001a05
NC
9816 }
9817
68ffbac6 9818 if (removed)
e0001a05 9819 {
43cd72b9 9820 asection *new_sec;
e0001a05 9821
43cd72b9
BW
9822 /* The fact that there is still a relocation to this literal indicates
9823 that the literal is being coalesced, not simply removed. */
9824 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9825
43cd72b9
BW
9826 /* This was moved to some other address (possibly another section). */
9827 new_sec = r_reloc_get_section (&removed->to);
68ffbac6 9828 if (new_sec != sec)
e0001a05 9829 {
43cd72b9
BW
9830 sec = new_sec;
9831 relax_info = get_xtensa_relax_info (sec);
68ffbac6 9832 if (!relax_info ||
43cd72b9
BW
9833 (!relax_info->is_relaxable_literal_section
9834 && !relax_info->is_relaxable_asm_section))
e0001a05 9835 {
43cd72b9
BW
9836 target_offset = removed->to.target_offset;
9837 new_fix.target_sec = new_sec;
9838 new_fix.target_offset = target_offset;
9839 new_fix.translated = TRUE;
9840 *fix = new_fix;
9841 return TRUE;
e0001a05 9842 }
e0001a05 9843 }
43cd72b9
BW
9844 target_offset = removed->to.target_offset;
9845 new_fix.target_sec = new_sec;
e0001a05 9846 }
43cd72b9
BW
9847
9848 /* The target address may have been moved within its section. */
9849 new_offset = offset_with_removed_text (&relax_info->action_list,
9850 target_offset);
9851
9852 new_fix.target_offset = new_offset;
9853 new_fix.target_offset = new_offset;
9854 new_fix.translated = TRUE;
9855 *fix = new_fix;
9856 return TRUE;
e0001a05
NC
9857}
9858
9859
9860/* Fix up a relocation to take account of removed literals. */
9861
9b7f5d20
BW
9862static asection *
9863translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9864{
e0001a05
NC
9865 xtensa_relax_info *relax_info;
9866 removed_literal *removed;
9b7f5d20 9867 bfd_vma target_offset, base_offset;
e0001a05
NC
9868
9869 *new_rel = *orig_rel;
9870
9871 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9872 return sec ;
e0001a05
NC
9873
9874 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9875 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9876 || relax_info->is_relaxable_asm_section));
e0001a05 9877
43cd72b9
BW
9878 target_offset = orig_rel->target_offset;
9879
9880 removed = FALSE;
9881 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9882 {
9883 /* Check if the original relocation is against a literal being
9884 removed. */
9885 removed = find_removed_literal (&relax_info->removed_list,
9886 target_offset);
9887 }
9888 if (removed && removed->to.abfd)
e0001a05
NC
9889 {
9890 asection *new_sec;
9891
9892 /* The fact that there is still a relocation to this literal indicates
9893 that the literal is being coalesced, not simply removed. */
9894 BFD_ASSERT (removed->to.abfd != NULL);
9895
43cd72b9
BW
9896 /* This was moved to some other address
9897 (possibly in another section). */
e0001a05
NC
9898 *new_rel = removed->to;
9899 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9900 if (new_sec != sec)
e0001a05
NC
9901 {
9902 sec = new_sec;
9903 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9904 if (!relax_info
9905 || (!relax_info->is_relaxable_literal_section
9906 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9907 return sec;
e0001a05 9908 }
43cd72b9 9909 target_offset = new_rel->target_offset;
e0001a05
NC
9910 }
9911
9b7f5d20
BW
9912 /* Find the base offset of the reloc symbol, excluding any addend from the
9913 reloc or from the section contents (for a partial_inplace reloc). Then
9914 find the adjusted values of the offsets due to relaxation. The base
9915 offset is needed to determine the change to the reloc's addend; the reloc
9916 addend should not be adjusted due to relaxations located before the base
9917 offset. */
9918
9919 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9b7f5d20
BW
9920 if (base_offset <= target_offset)
9921 {
071aa5c9
MF
9922 int base_removed = removed_by_actions_map (&relax_info->action_list,
9923 base_offset, FALSE);
9924 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9925 target_offset, FALSE) -
9926 base_removed;
9927
9b7f5d20
BW
9928 new_rel->target_offset = target_offset - base_removed - addend_removed;
9929 new_rel->rela.r_addend -= addend_removed;
9930 }
9931 else
9932 {
9933 /* Handle a negative addend. The base offset comes first. */
071aa5c9
MF
9934 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
9935 target_offset, FALSE);
9936 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9937 base_offset, FALSE) -
9938 tgt_removed;
9939
9b7f5d20
BW
9940 new_rel->target_offset = target_offset - tgt_removed;
9941 new_rel->rela.r_addend += addend_removed;
9942 }
e0001a05 9943
9b7f5d20 9944 return sec;
e0001a05
NC
9945}
9946
9947
9948/* For dynamic links, there may be a dynamic relocation for each
9949 literal. The number of dynamic relocations must be computed in
9950 size_dynamic_sections, which occurs before relaxation. When a
9951 literal is removed, this function checks if there is a corresponding
9952 dynamic relocation and shrinks the size of the appropriate dynamic
9953 relocation section accordingly. At this point, the contents of the
9954 dynamic relocation sections have not yet been filled in, so there's
9955 nothing else that needs to be done. */
9956
9957static void
7fa3d080
BW
9958shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9959 bfd *abfd,
9960 asection *input_section,
9961 Elf_Internal_Rela *rel)
e0001a05 9962{
f0e6fdb2 9963 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9964 Elf_Internal_Shdr *symtab_hdr;
9965 struct elf_link_hash_entry **sym_hashes;
9966 unsigned long r_symndx;
9967 int r_type;
9968 struct elf_link_hash_entry *h;
9969 bfd_boolean dynamic_symbol;
9970
f0e6fdb2 9971 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
9972 if (htab == NULL)
9973 return;
9974
e0001a05
NC
9975 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9976 sym_hashes = elf_sym_hashes (abfd);
9977
9978 r_type = ELF32_R_TYPE (rel->r_info);
9979 r_symndx = ELF32_R_SYM (rel->r_info);
9980
9981 if (r_symndx < symtab_hdr->sh_info)
9982 h = NULL;
9983 else
9984 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9985
4608f3d9 9986 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
9987
9988 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9989 && (input_section->flags & SEC_ALLOC) != 0
9990 && (dynamic_symbol || info->shared))
9991 {
e0001a05
NC
9992 asection *srel;
9993 bfd_boolean is_plt = FALSE;
9994
e0001a05
NC
9995 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9996 {
f0e6fdb2 9997 srel = htab->srelplt;
e0001a05
NC
9998 is_plt = TRUE;
9999 }
10000 else
f0e6fdb2 10001 srel = htab->srelgot;
e0001a05
NC
10002
10003 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 10004 BFD_ASSERT (srel != NULL);
eea6121a
AM
10005 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10006 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
10007
10008 if (is_plt)
10009 {
10010 asection *splt, *sgotplt, *srelgot;
10011 int reloc_index, chunk;
10012
10013 /* Find the PLT reloc index of the entry being removed. This
10014 is computed from the size of ".rela.plt". It is needed to
10015 figure out which PLT chunk to resize. Usually "last index
10016 = size - 1" since the index starts at zero, but in this
10017 context, the size has just been decremented so there's no
10018 need to subtract one. */
eea6121a 10019 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
10020
10021 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
10022 splt = elf_xtensa_get_plt_section (info, chunk);
10023 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
10024 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10025
10026 /* Check if an entire PLT chunk has just been eliminated. */
10027 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10028 {
10029 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 10030 srelgot = htab->srelgot;
e0001a05
NC
10031 BFD_ASSERT (srelgot != NULL);
10032 srelgot->reloc_count -= 2;
eea6121a
AM
10033 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10034 sgotplt->size -= 8;
e0001a05
NC
10035
10036 /* There should be only one entry left (and it will be
10037 removed below). */
eea6121a
AM
10038 BFD_ASSERT (sgotplt->size == 4);
10039 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
10040 }
10041
eea6121a
AM
10042 BFD_ASSERT (sgotplt->size >= 4);
10043 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 10044
eea6121a
AM
10045 sgotplt->size -= 4;
10046 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
10047 }
10048 }
10049}
10050
10051
43cd72b9
BW
10052/* Take an r_rel and move it to another section. This usually
10053 requires extending the interal_relocation array and pinning it. If
10054 the original r_rel is from the same BFD, we can complete this here.
10055 Otherwise, we add a fix record to let the final link fix the
10056 appropriate address. Contents and internal relocations for the
10057 section must be pinned after calling this routine. */
10058
10059static bfd_boolean
7fa3d080
BW
10060move_literal (bfd *abfd,
10061 struct bfd_link_info *link_info,
10062 asection *sec,
10063 bfd_vma offset,
10064 bfd_byte *contents,
10065 xtensa_relax_info *relax_info,
10066 Elf_Internal_Rela **internal_relocs_p,
10067 const literal_value *lit)
43cd72b9
BW
10068{
10069 Elf_Internal_Rela *new_relocs = NULL;
10070 size_t new_relocs_count = 0;
10071 Elf_Internal_Rela this_rela;
10072 const r_reloc *r_rel;
10073
10074 r_rel = &lit->r_rel;
10075 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10076
10077 if (r_reloc_is_const (r_rel))
10078 bfd_put_32 (abfd, lit->value, contents + offset);
10079 else
10080 {
10081 int r_type;
10082 unsigned i;
43cd72b9
BW
10083 reloc_bfd_fix *fix;
10084 unsigned insert_at;
10085
10086 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
10087
10088 /* This is the difficult case. We have to create a fix up. */
10089 this_rela.r_offset = offset;
10090 this_rela.r_info = ELF32_R_INFO (0, r_type);
10091 this_rela.r_addend =
10092 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10093 bfd_put_32 (abfd, lit->value, contents + offset);
10094
10095 /* Currently, we cannot move relocations during a relocatable link. */
10096 BFD_ASSERT (!link_info->relocatable);
0f5f1638 10097 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
10098 r_reloc_get_section (r_rel),
10099 r_rel->target_offset + r_rel->virtual_offset,
10100 FALSE);
10101 /* We also need to mark that relocations are needed here. */
10102 sec->flags |= SEC_RELOC;
10103
10104 translate_reloc_bfd_fix (fix);
10105 /* This fix has not yet been translated. */
10106 add_fix (sec, fix);
10107
10108 /* Add the relocation. If we have already allocated our own
10109 space for the relocations and we have room for more, then use
10110 it. Otherwise, allocate new space and move the literals. */
10111 insert_at = sec->reloc_count;
10112 for (i = 0; i < sec->reloc_count; ++i)
10113 {
10114 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10115 {
10116 insert_at = i;
10117 break;
10118 }
10119 }
10120
10121 if (*internal_relocs_p != relax_info->allocated_relocs
10122 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10123 {
10124 BFD_ASSERT (relax_info->allocated_relocs == NULL
10125 || sec->reloc_count == relax_info->relocs_count);
10126
68ffbac6 10127 if (relax_info->allocated_relocs_count == 0)
43cd72b9
BW
10128 new_relocs_count = (sec->reloc_count + 2) * 2;
10129 else
10130 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10131
10132 new_relocs = (Elf_Internal_Rela *)
10133 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10134 if (!new_relocs)
10135 return FALSE;
10136
10137 /* We could handle this more quickly by finding the split point. */
10138 if (insert_at != 0)
10139 memcpy (new_relocs, *internal_relocs_p,
10140 insert_at * sizeof (Elf_Internal_Rela));
10141
10142 new_relocs[insert_at] = this_rela;
10143
10144 if (insert_at != sec->reloc_count)
10145 memcpy (new_relocs + insert_at + 1,
10146 (*internal_relocs_p) + insert_at,
68ffbac6 10147 (sec->reloc_count - insert_at)
43cd72b9
BW
10148 * sizeof (Elf_Internal_Rela));
10149
10150 if (*internal_relocs_p != relax_info->allocated_relocs)
10151 {
10152 /* The first time we re-allocate, we can only free the
10153 old relocs if they were allocated with bfd_malloc.
10154 This is not true when keep_memory is in effect. */
10155 if (!link_info->keep_memory)
10156 free (*internal_relocs_p);
10157 }
10158 else
10159 free (*internal_relocs_p);
10160 relax_info->allocated_relocs = new_relocs;
10161 relax_info->allocated_relocs_count = new_relocs_count;
10162 elf_section_data (sec)->relocs = new_relocs;
10163 sec->reloc_count++;
10164 relax_info->relocs_count = sec->reloc_count;
10165 *internal_relocs_p = new_relocs;
10166 }
10167 else
10168 {
10169 if (insert_at != sec->reloc_count)
10170 {
10171 unsigned idx;
10172 for (idx = sec->reloc_count; idx > insert_at; idx--)
10173 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10174 }
10175 (*internal_relocs_p)[insert_at] = this_rela;
10176 sec->reloc_count++;
10177 if (relax_info->allocated_relocs)
10178 relax_info->relocs_count = sec->reloc_count;
10179 }
10180 }
10181 return TRUE;
10182}
10183
10184
e0001a05
NC
10185/* This is similar to relax_section except that when a target is moved,
10186 we shift addresses up. We also need to modify the size. This
10187 algorithm does NOT allow for relocations into the middle of the
10188 property sections. */
10189
43cd72b9 10190static bfd_boolean
7fa3d080
BW
10191relax_property_section (bfd *abfd,
10192 asection *sec,
10193 struct bfd_link_info *link_info)
e0001a05
NC
10194{
10195 Elf_Internal_Rela *internal_relocs;
10196 bfd_byte *contents;
1d25768e 10197 unsigned i;
e0001a05 10198 bfd_boolean ok = TRUE;
43cd72b9
BW
10199 bfd_boolean is_full_prop_section;
10200 size_t last_zfill_target_offset = 0;
10201 asection *last_zfill_target_sec = NULL;
10202 bfd_size_type sec_size;
1d25768e 10203 bfd_size_type entry_size;
e0001a05 10204
43cd72b9 10205 sec_size = bfd_get_section_limit (abfd, sec);
68ffbac6 10206 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
10207 link_info->keep_memory);
10208 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10209 if (contents == NULL && sec_size != 0)
e0001a05
NC
10210 {
10211 ok = FALSE;
10212 goto error_return;
10213 }
10214
1d25768e
BW
10215 is_full_prop_section = xtensa_is_proptable_section (sec);
10216 if (is_full_prop_section)
10217 entry_size = 12;
10218 else
10219 entry_size = 8;
43cd72b9
BW
10220
10221 if (internal_relocs)
e0001a05 10222 {
43cd72b9 10223 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10224 {
10225 Elf_Internal_Rela *irel;
10226 xtensa_relax_info *target_relax_info;
e0001a05
NC
10227 unsigned r_type;
10228 asection *target_sec;
43cd72b9
BW
10229 literal_value val;
10230 bfd_byte *size_p, *flags_p;
e0001a05
NC
10231
10232 /* Locally change the source address.
10233 Translate the target to the new target address.
10234 If it points to this section and has been removed, MOVE IT.
10235 Also, don't forget to modify the associated SIZE at
10236 (offset + 4). */
10237
10238 irel = &internal_relocs[i];
10239 r_type = ELF32_R_TYPE (irel->r_info);
10240 if (r_type == R_XTENSA_NONE)
10241 continue;
10242
43cd72b9
BW
10243 /* Find the literal value. */
10244 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10245 size_p = &contents[irel->r_offset + 4];
10246 flags_p = NULL;
10247 if (is_full_prop_section)
1d25768e
BW
10248 flags_p = &contents[irel->r_offset + 8];
10249 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 10250
43cd72b9 10251 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
10252 target_relax_info = get_xtensa_relax_info (target_sec);
10253
10254 if (target_relax_info
43cd72b9
BW
10255 && (target_relax_info->is_relaxable_literal_section
10256 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
10257 {
10258 /* Translate the relocation's destination. */
03669f1c
BW
10259 bfd_vma old_offset = val.r_rel.target_offset;
10260 bfd_vma new_offset;
e0001a05 10261 long old_size, new_size;
071aa5c9
MF
10262 int removed_by_old_offset =
10263 removed_by_actions_map (&target_relax_info->action_list,
10264 old_offset, FALSE);
10265 new_offset = old_offset - removed_by_old_offset;
e0001a05
NC
10266
10267 /* Assert that we are not out of bounds. */
43cd72b9 10268 old_size = bfd_get_32 (abfd, size_p);
03669f1c 10269 new_size = old_size;
43cd72b9
BW
10270
10271 if (old_size == 0)
10272 {
10273 /* Only the first zero-sized unreachable entry is
10274 allowed to expand. In this case the new offset
10275 should be the offset before the fill and the new
10276 size is the expansion size. For other zero-sized
10277 entries the resulting size should be zero with an
10278 offset before or after the fill address depending
10279 on whether the expanding unreachable entry
10280 preceeds it. */
03669f1c
BW
10281 if (last_zfill_target_sec == 0
10282 || last_zfill_target_sec != target_sec
10283 || last_zfill_target_offset != old_offset)
43cd72b9 10284 {
03669f1c
BW
10285 bfd_vma new_end_offset = new_offset;
10286
10287 /* Recompute the new_offset, but this time don't
10288 include any fill inserted by relaxation. */
071aa5c9
MF
10289 removed_by_old_offset =
10290 removed_by_actions_map (&target_relax_info->action_list,
10291 old_offset, TRUE);
10292 new_offset = old_offset - removed_by_old_offset;
43cd72b9
BW
10293
10294 /* If it is not unreachable and we have not yet
10295 seen an unreachable at this address, place it
10296 before the fill address. */
03669f1c
BW
10297 if (flags_p && (bfd_get_32 (abfd, flags_p)
10298 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 10299 {
03669f1c
BW
10300 new_size = new_end_offset - new_offset;
10301
43cd72b9 10302 last_zfill_target_sec = target_sec;
03669f1c 10303 last_zfill_target_offset = old_offset;
43cd72b9
BW
10304 }
10305 }
10306 }
10307 else
071aa5c9
MF
10308 {
10309 int removed_by_old_offset_size =
10310 removed_by_actions_map (&target_relax_info->action_list,
10311 old_offset + old_size, TRUE);
10312 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10313 }
43cd72b9 10314
e0001a05
NC
10315 if (new_size != old_size)
10316 {
10317 bfd_put_32 (abfd, new_size, size_p);
10318 pin_contents (sec, contents);
10319 }
43cd72b9 10320
03669f1c 10321 if (new_offset != old_offset)
e0001a05 10322 {
03669f1c 10323 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
10324 irel->r_addend += diff;
10325 pin_internal_relocs (sec, internal_relocs);
10326 }
10327 }
10328 }
10329 }
10330
10331 /* Combine adjacent property table entries. This is also done in
10332 finish_dynamic_sections() but at that point it's too late to
10333 reclaim the space in the output section, so we do this twice. */
10334
43cd72b9 10335 if (internal_relocs && (!link_info->relocatable
1d25768e 10336 || xtensa_is_littable_section (sec)))
e0001a05
NC
10337 {
10338 Elf_Internal_Rela *last_irel = NULL;
1d25768e 10339 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 10340 int removed_bytes = 0;
1d25768e 10341 bfd_vma offset;
43cd72b9
BW
10342 flagword predef_flags;
10343
43cd72b9 10344 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 10345
1d25768e 10346 /* Walk over memory and relocations at the same time.
e0001a05
NC
10347 This REQUIRES that the internal_relocs be sorted by offset. */
10348 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10349 internal_reloc_compare);
e0001a05
NC
10350
10351 pin_internal_relocs (sec, internal_relocs);
10352 pin_contents (sec, contents);
10353
1d25768e
BW
10354 next_rel = internal_relocs;
10355 rel_end = internal_relocs + sec->reloc_count;
10356
a3ef2d63 10357 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 10358
a3ef2d63 10359 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 10360 {
1d25768e 10361 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 10362 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 10363 bfd_boolean remove_this_rel;
43cd72b9 10364 flagword flags;
e0001a05 10365
1d25768e
BW
10366 /* Find the first relocation for the entry at the current offset.
10367 Adjust the offsets of any extra relocations for the previous
10368 entry. */
10369 offset_rel = NULL;
10370 if (next_rel)
10371 {
10372 for (irel = next_rel; irel < rel_end; irel++)
10373 {
10374 if ((irel->r_offset == offset
10375 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10376 || irel->r_offset > offset)
10377 {
10378 offset_rel = irel;
10379 break;
10380 }
10381 irel->r_offset -= removed_bytes;
1d25768e
BW
10382 }
10383 }
e0001a05 10384
1d25768e
BW
10385 /* Find the next relocation (if there are any left). */
10386 extra_rel = NULL;
10387 if (offset_rel)
e0001a05 10388 {
1d25768e 10389 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 10390 {
1d25768e
BW
10391 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10392 {
10393 extra_rel = irel;
10394 break;
10395 }
e0001a05 10396 }
e0001a05
NC
10397 }
10398
1d25768e
BW
10399 /* Check if there are relocations on the current entry. There
10400 should usually be a relocation on the offset field. If there
10401 are relocations on the size or flags, then we can't optimize
10402 this entry. Also, find the next relocation to examine on the
10403 next iteration. */
10404 if (offset_rel)
e0001a05 10405 {
1d25768e 10406 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 10407 {
1d25768e
BW
10408 next_rel = offset_rel;
10409 /* There are no relocations on the current entry, but we
10410 might still be able to remove it if the size is zero. */
10411 offset_rel = NULL;
10412 }
10413 else if (offset_rel->r_offset > offset
10414 || (extra_rel
10415 && extra_rel->r_offset < offset + entry_size))
10416 {
10417 /* There is a relocation on the size or flags, so we can't
10418 do anything with this entry. Continue with the next. */
10419 next_rel = offset_rel;
10420 continue;
10421 }
10422 else
10423 {
10424 BFD_ASSERT (offset_rel->r_offset == offset);
10425 offset_rel->r_offset -= removed_bytes;
10426 next_rel = offset_rel + 1;
e0001a05 10427 }
e0001a05 10428 }
1d25768e
BW
10429 else
10430 next_rel = NULL;
e0001a05 10431
1d25768e 10432 remove_this_rel = FALSE;
e0001a05
NC
10433 bytes_to_remove = 0;
10434 actual_offset = offset - removed_bytes;
10435 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10436
68ffbac6 10437 if (is_full_prop_section)
43cd72b9
BW
10438 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10439 else
10440 flags = predef_flags;
10441
1d25768e
BW
10442 if (size == 0
10443 && (flags & XTENSA_PROP_ALIGN) == 0
10444 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10445 {
43cd72b9
BW
10446 /* Always remove entries with zero size and no alignment. */
10447 bytes_to_remove = entry_size;
1d25768e
BW
10448 if (offset_rel)
10449 remove_this_rel = TRUE;
e0001a05 10450 }
1d25768e
BW
10451 else if (offset_rel
10452 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10453 {
1d25768e 10454 if (last_irel)
e0001a05 10455 {
1d25768e
BW
10456 flagword old_flags;
10457 bfd_vma old_size =
10458 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10459 bfd_vma old_address =
10460 (last_irel->r_addend
10461 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10462 bfd_vma new_address =
10463 (offset_rel->r_addend
10464 + bfd_get_32 (abfd, &contents[actual_offset]));
68ffbac6 10465 if (is_full_prop_section)
1d25768e
BW
10466 old_flags = bfd_get_32
10467 (abfd, &contents[last_irel->r_offset + 8]);
10468 else
10469 old_flags = predef_flags;
10470
10471 if ((ELF32_R_SYM (offset_rel->r_info)
10472 == ELF32_R_SYM (last_irel->r_info))
10473 && old_address + old_size == new_address
10474 && old_flags == flags
10475 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10476 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10477 {
1d25768e
BW
10478 /* Fix the old size. */
10479 bfd_put_32 (abfd, old_size + size,
10480 &contents[last_irel->r_offset + 4]);
10481 bytes_to_remove = entry_size;
10482 remove_this_rel = TRUE;
e0001a05
NC
10483 }
10484 else
1d25768e 10485 last_irel = offset_rel;
e0001a05 10486 }
1d25768e
BW
10487 else
10488 last_irel = offset_rel;
e0001a05
NC
10489 }
10490
1d25768e 10491 if (remove_this_rel)
e0001a05 10492 {
1d25768e 10493 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10494 offset_rel->r_offset = 0;
e0001a05
NC
10495 }
10496
10497 if (bytes_to_remove != 0)
10498 {
10499 removed_bytes += bytes_to_remove;
a3ef2d63 10500 if (offset + bytes_to_remove < sec->size)
e0001a05 10501 memmove (&contents[actual_offset],
43cd72b9 10502 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10503 sec->size - offset - bytes_to_remove);
e0001a05
NC
10504 }
10505 }
10506
43cd72b9 10507 if (removed_bytes)
e0001a05 10508 {
1d25768e
BW
10509 /* Fix up any extra relocations on the last entry. */
10510 for (irel = next_rel; irel < rel_end; irel++)
10511 irel->r_offset -= removed_bytes;
10512
e0001a05 10513 /* Clear the removed bytes. */
a3ef2d63 10514 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10515
a3ef2d63
BW
10516 if (sec->rawsize == 0)
10517 sec->rawsize = sec->size;
10518 sec->size -= removed_bytes;
e901de89
BW
10519
10520 if (xtensa_is_littable_section (sec))
10521 {
f0e6fdb2
BW
10522 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10523 if (sgotloc)
10524 sgotloc->size -= removed_bytes;
e901de89 10525 }
e0001a05
NC
10526 }
10527 }
e901de89 10528
e0001a05
NC
10529 error_return:
10530 release_internal_relocs (sec, internal_relocs);
10531 release_contents (sec, contents);
10532 return ok;
10533}
10534
10535\f
10536/* Third relaxation pass. */
10537
10538/* Change symbol values to account for removed literals. */
10539
43cd72b9 10540bfd_boolean
7fa3d080 10541relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10542{
10543 xtensa_relax_info *relax_info;
10544 unsigned int sec_shndx;
10545 Elf_Internal_Shdr *symtab_hdr;
10546 Elf_Internal_Sym *isymbuf;
10547 unsigned i, num_syms, num_locals;
10548
10549 relax_info = get_xtensa_relax_info (sec);
10550 BFD_ASSERT (relax_info);
10551
43cd72b9
BW
10552 if (!relax_info->is_relaxable_literal_section
10553 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10554 return TRUE;
10555
10556 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10557
10558 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10559 isymbuf = retrieve_local_syms (abfd);
10560
10561 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10562 num_locals = symtab_hdr->sh_info;
10563
10564 /* Adjust the local symbols defined in this section. */
10565 for (i = 0; i < num_locals; i++)
10566 {
10567 Elf_Internal_Sym *isym = &isymbuf[i];
10568
10569 if (isym->st_shndx == sec_shndx)
10570 {
03669f1c 10571 bfd_vma orig_addr = isym->st_value;
071aa5c9
MF
10572 int removed = removed_by_actions_map (&relax_info->action_list,
10573 orig_addr, FALSE);
43cd72b9 10574
071aa5c9 10575 isym->st_value -= removed;
03669f1c
BW
10576 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10577 isym->st_size -=
071aa5c9
MF
10578 removed_by_actions_map (&relax_info->action_list,
10579 orig_addr + isym->st_size, FALSE) -
10580 removed;
e0001a05
NC
10581 }
10582 }
10583
10584 /* Now adjust the global symbols defined in this section. */
10585 for (i = 0; i < (num_syms - num_locals); i++)
10586 {
10587 struct elf_link_hash_entry *sym_hash;
10588
10589 sym_hash = elf_sym_hashes (abfd)[i];
10590
10591 if (sym_hash->root.type == bfd_link_hash_warning)
10592 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10593
10594 if ((sym_hash->root.type == bfd_link_hash_defined
10595 || sym_hash->root.type == bfd_link_hash_defweak)
10596 && sym_hash->root.u.def.section == sec)
10597 {
03669f1c 10598 bfd_vma orig_addr = sym_hash->root.u.def.value;
071aa5c9
MF
10599 int removed = removed_by_actions_map (&relax_info->action_list,
10600 orig_addr, FALSE);
43cd72b9 10601
071aa5c9 10602 sym_hash->root.u.def.value -= removed;
43cd72b9 10603
03669f1c
BW
10604 if (sym_hash->type == STT_FUNC)
10605 sym_hash->size -=
071aa5c9
MF
10606 removed_by_actions_map (&relax_info->action_list,
10607 orig_addr + sym_hash->size, FALSE) -
10608 removed;
e0001a05
NC
10609 }
10610 }
10611
10612 return TRUE;
10613}
10614
10615\f
10616/* "Fix" handling functions, called while performing relocations. */
10617
43cd72b9 10618static bfd_boolean
7fa3d080
BW
10619do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10620 bfd *input_bfd,
10621 asection *input_section,
10622 bfd_byte *contents)
e0001a05
NC
10623{
10624 r_reloc r_rel;
10625 asection *sec, *old_sec;
10626 bfd_vma old_offset;
10627 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10628 reloc_bfd_fix *fix;
10629
10630 if (r_type == R_XTENSA_NONE)
43cd72b9 10631 return TRUE;
e0001a05 10632
43cd72b9
BW
10633 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10634 if (!fix)
10635 return TRUE;
e0001a05 10636
43cd72b9
BW
10637 r_reloc_init (&r_rel, input_bfd, rel, contents,
10638 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10639 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10640 old_offset = r_rel.target_offset;
10641
10642 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10643 {
43cd72b9
BW
10644 if (r_type != R_XTENSA_ASM_EXPAND)
10645 {
10646 (*_bfd_error_handler)
10647 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10648 input_bfd, input_section, rel->r_offset,
10649 elf_howto_table[r_type].name);
10650 return FALSE;
10651 }
e0001a05
NC
10652 /* Leave it be. Resolution will happen in a later stage. */
10653 }
10654 else
10655 {
10656 sec = fix->target_sec;
10657 rel->r_addend += ((sec->output_offset + fix->target_offset)
10658 - (old_sec->output_offset + old_offset));
10659 }
43cd72b9 10660 return TRUE;
e0001a05
NC
10661}
10662
10663
10664static void
7fa3d080
BW
10665do_fix_for_final_link (Elf_Internal_Rela *rel,
10666 bfd *input_bfd,
10667 asection *input_section,
10668 bfd_byte *contents,
10669 bfd_vma *relocationp)
e0001a05
NC
10670{
10671 asection *sec;
10672 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10673 reloc_bfd_fix *fix;
43cd72b9 10674 bfd_vma fixup_diff;
e0001a05
NC
10675
10676 if (r_type == R_XTENSA_NONE)
10677 return;
10678
43cd72b9
BW
10679 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10680 if (!fix)
e0001a05
NC
10681 return;
10682
10683 sec = fix->target_sec;
43cd72b9
BW
10684
10685 fixup_diff = rel->r_addend;
10686 if (elf_howto_table[fix->src_type].partial_inplace)
10687 {
10688 bfd_vma inplace_val;
10689 BFD_ASSERT (fix->src_offset
10690 < bfd_get_section_limit (input_bfd, input_section));
10691 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10692 fixup_diff += inplace_val;
10693 }
10694
e0001a05
NC
10695 *relocationp = (sec->output_section->vma
10696 + sec->output_offset
43cd72b9 10697 + fix->target_offset - fixup_diff);
e0001a05
NC
10698}
10699
10700\f
10701/* Miscellaneous utility functions.... */
10702
10703static asection *
f0e6fdb2 10704elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10705{
f0e6fdb2
BW
10706 struct elf_xtensa_link_hash_table *htab;
10707 bfd *dynobj;
e0001a05
NC
10708 char plt_name[10];
10709
10710 if (chunk == 0)
f0e6fdb2
BW
10711 {
10712 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10713 if (htab == NULL)
10714 return NULL;
10715
f0e6fdb2
BW
10716 return htab->splt;
10717 }
e0001a05 10718
f0e6fdb2 10719 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10720 sprintf (plt_name, ".plt.%u", chunk);
3d4d4302 10721 return bfd_get_linker_section (dynobj, plt_name);
e0001a05
NC
10722}
10723
10724
10725static asection *
f0e6fdb2 10726elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10727{
f0e6fdb2
BW
10728 struct elf_xtensa_link_hash_table *htab;
10729 bfd *dynobj;
e0001a05
NC
10730 char got_name[14];
10731
10732 if (chunk == 0)
f0e6fdb2
BW
10733 {
10734 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10735 if (htab == NULL)
10736 return NULL;
f0e6fdb2
BW
10737 return htab->sgotplt;
10738 }
e0001a05 10739
f0e6fdb2 10740 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10741 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10742 return bfd_get_linker_section (dynobj, got_name);
e0001a05
NC
10743}
10744
10745
10746/* Get the input section for a given symbol index.
10747 If the symbol is:
10748 . a section symbol, return the section;
10749 . a common symbol, return the common section;
10750 . an undefined symbol, return the undefined section;
10751 . an indirect symbol, follow the links;
10752 . an absolute value, return the absolute section. */
10753
10754static asection *
7fa3d080 10755get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10756{
10757 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10758 asection *target_sec = NULL;
43cd72b9 10759 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10760 {
10761 Elf_Internal_Sym *isymbuf;
10762 unsigned int section_index;
10763
10764 isymbuf = retrieve_local_syms (abfd);
10765 section_index = isymbuf[r_symndx].st_shndx;
10766
10767 if (section_index == SHN_UNDEF)
10768 target_sec = bfd_und_section_ptr;
e0001a05
NC
10769 else if (section_index == SHN_ABS)
10770 target_sec = bfd_abs_section_ptr;
10771 else if (section_index == SHN_COMMON)
10772 target_sec = bfd_com_section_ptr;
43cd72b9 10773 else
cb33740c 10774 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10775 }
10776 else
10777 {
10778 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10779 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10780
10781 while (h->root.type == bfd_link_hash_indirect
10782 || h->root.type == bfd_link_hash_warning)
10783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10784
10785 switch (h->root.type)
10786 {
10787 case bfd_link_hash_defined:
10788 case bfd_link_hash_defweak:
10789 target_sec = h->root.u.def.section;
10790 break;
10791 case bfd_link_hash_common:
10792 target_sec = bfd_com_section_ptr;
10793 break;
10794 case bfd_link_hash_undefined:
10795 case bfd_link_hash_undefweak:
10796 target_sec = bfd_und_section_ptr;
10797 break;
10798 default: /* New indirect warning. */
10799 target_sec = bfd_und_section_ptr;
10800 break;
10801 }
10802 }
10803 return target_sec;
10804}
10805
10806
10807static struct elf_link_hash_entry *
7fa3d080 10808get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10809{
10810 unsigned long indx;
10811 struct elf_link_hash_entry *h;
10812 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10813
10814 if (r_symndx < symtab_hdr->sh_info)
10815 return NULL;
43cd72b9 10816
e0001a05
NC
10817 indx = r_symndx - symtab_hdr->sh_info;
10818 h = elf_sym_hashes (abfd)[indx];
10819 while (h->root.type == bfd_link_hash_indirect
10820 || h->root.type == bfd_link_hash_warning)
10821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10822 return h;
10823}
10824
10825
10826/* Get the section-relative offset for a symbol number. */
10827
10828static bfd_vma
7fa3d080 10829get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10830{
10831 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10832 bfd_vma offset = 0;
10833
43cd72b9 10834 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10835 {
10836 Elf_Internal_Sym *isymbuf;
10837 isymbuf = retrieve_local_syms (abfd);
10838 offset = isymbuf[r_symndx].st_value;
10839 }
10840 else
10841 {
10842 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10843 struct elf_link_hash_entry *h =
10844 elf_sym_hashes (abfd)[indx];
10845
10846 while (h->root.type == bfd_link_hash_indirect
10847 || h->root.type == bfd_link_hash_warning)
10848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10849 if (h->root.type == bfd_link_hash_defined
10850 || h->root.type == bfd_link_hash_defweak)
10851 offset = h->root.u.def.value;
10852 }
10853 return offset;
10854}
10855
10856
10857static bfd_boolean
7fa3d080 10858is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10859{
10860 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10861 struct elf_link_hash_entry *h;
10862
10863 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10864 if (h && h->root.type == bfd_link_hash_defweak)
10865 return TRUE;
10866 return FALSE;
10867}
10868
10869
10870static bfd_boolean
7fa3d080
BW
10871pcrel_reloc_fits (xtensa_opcode opc,
10872 int opnd,
10873 bfd_vma self_address,
10874 bfd_vma dest_address)
e0001a05 10875{
43cd72b9
BW
10876 xtensa_isa isa = xtensa_default_isa;
10877 uint32 valp = dest_address;
10878 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10879 || xtensa_operand_encode (isa, opc, opnd, &valp))
10880 return FALSE;
10881 return TRUE;
e0001a05
NC
10882}
10883
10884
68ffbac6 10885static bfd_boolean
7fa3d080 10886xtensa_is_property_section (asection *sec)
e0001a05 10887{
1d25768e
BW
10888 if (xtensa_is_insntable_section (sec)
10889 || xtensa_is_littable_section (sec)
10890 || xtensa_is_proptable_section (sec))
b614a702 10891 return TRUE;
e901de89 10892
1d25768e
BW
10893 return FALSE;
10894}
10895
10896
68ffbac6 10897static bfd_boolean
1d25768e
BW
10898xtensa_is_insntable_section (asection *sec)
10899{
10900 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10901 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10902 return TRUE;
10903
e901de89
BW
10904 return FALSE;
10905}
10906
10907
68ffbac6 10908static bfd_boolean
7fa3d080 10909xtensa_is_littable_section (asection *sec)
e901de89 10910{
1d25768e
BW
10911 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10912 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10913 return TRUE;
e901de89 10914
1d25768e
BW
10915 return FALSE;
10916}
10917
10918
68ffbac6 10919static bfd_boolean
1d25768e
BW
10920xtensa_is_proptable_section (asection *sec)
10921{
10922 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10923 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10924 return TRUE;
e0001a05 10925
e901de89 10926 return FALSE;
e0001a05
NC
10927}
10928
10929
43cd72b9 10930static int
7fa3d080 10931internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10932{
43cd72b9
BW
10933 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10934 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10935
10936 if (a->r_offset != b->r_offset)
10937 return (a->r_offset - b->r_offset);
10938
10939 /* We don't need to sort on these criteria for correctness,
10940 but enforcing a more strict ordering prevents unstable qsort
10941 from behaving differently with different implementations.
10942 Without the code below we get correct but different results
10943 on Solaris 2.7 and 2.8. We would like to always produce the
10944 same results no matter the host. */
10945
10946 if (a->r_info != b->r_info)
10947 return (a->r_info - b->r_info);
10948
10949 return (a->r_addend - b->r_addend);
e0001a05
NC
10950}
10951
10952
10953static int
7fa3d080 10954internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10955{
10956 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10957 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10958
43cd72b9
BW
10959 /* Check if one entry overlaps with the other; this shouldn't happen
10960 except when searching for a match. */
e0001a05
NC
10961 return (a->r_offset - b->r_offset);
10962}
10963
10964
74869ac7
BW
10965/* Predicate function used to look up a section in a particular group. */
10966
10967static bfd_boolean
10968match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10969{
10970 const char *gname = inf;
10971 const char *group_name = elf_group_name (sec);
68ffbac6 10972
74869ac7
BW
10973 return (group_name == gname
10974 || (group_name != NULL
10975 && gname != NULL
10976 && strcmp (group_name, gname) == 0));
10977}
10978
10979
1d25768e
BW
10980static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10981
51c8ebc1
BW
10982static char *
10983xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 10984{
74869ac7
BW
10985 const char *suffix, *group_name;
10986 char *prop_sec_name;
74869ac7
BW
10987
10988 group_name = elf_group_name (sec);
10989 if (group_name)
10990 {
10991 suffix = strrchr (sec->name, '.');
10992 if (suffix == sec->name)
10993 suffix = 0;
10994 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10995 + (suffix ? strlen (suffix) : 0));
10996 strcpy (prop_sec_name, base_name);
10997 if (suffix)
10998 strcat (prop_sec_name, suffix);
10999 }
11000 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 11001 {
43cd72b9 11002 char *linkonce_kind = 0;
b614a702 11003
68ffbac6 11004 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 11005 linkonce_kind = "x.";
68ffbac6 11006 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 11007 linkonce_kind = "p.";
43cd72b9
BW
11008 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11009 linkonce_kind = "prop.";
e0001a05 11010 else
b614a702
BW
11011 abort ();
11012
43cd72b9
BW
11013 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11014 + strlen (linkonce_kind) + 1);
b614a702 11015 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 11016 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
11017
11018 suffix = sec->name + linkonce_len;
096c35a7 11019 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 11020 the new linkonce_kind (but not for "prop" sections). */
0112cd26 11021 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
11022 suffix += 2;
11023 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
11024 }
11025 else
11026 prop_sec_name = strdup (base_name);
11027
51c8ebc1
BW
11028 return prop_sec_name;
11029}
11030
11031
11032static asection *
11033xtensa_get_property_section (asection *sec, const char *base_name)
11034{
11035 char *prop_sec_name;
11036 asection *prop_sec;
11037
11038 prop_sec_name = xtensa_property_section_name (sec, base_name);
11039 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11040 match_section_group,
11041 (void *) elf_group_name (sec));
11042 free (prop_sec_name);
11043 return prop_sec;
11044}
11045
11046
11047asection *
11048xtensa_make_property_section (asection *sec, const char *base_name)
11049{
11050 char *prop_sec_name;
11051 asection *prop_sec;
11052
74869ac7 11053 /* Check if the section already exists. */
51c8ebc1 11054 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
11055 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11056 match_section_group,
51c8ebc1 11057 (void *) elf_group_name (sec));
74869ac7
BW
11058 /* If not, create it. */
11059 if (! prop_sec)
11060 {
11061 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11062 flags |= (bfd_get_section_flags (sec->owner, sec)
11063 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11064
11065 prop_sec = bfd_make_section_anyway_with_flags
11066 (sec->owner, strdup (prop_sec_name), flags);
11067 if (! prop_sec)
11068 return 0;
b614a702 11069
51c8ebc1 11070 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
11071 }
11072
74869ac7
BW
11073 free (prop_sec_name);
11074 return prop_sec;
e0001a05
NC
11075}
11076
43cd72b9
BW
11077
11078flagword
7fa3d080 11079xtensa_get_property_predef_flags (asection *sec)
43cd72b9 11080{
1d25768e 11081 if (xtensa_is_insntable_section (sec))
43cd72b9 11082 return (XTENSA_PROP_INSN
99ded152 11083 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11084 | XTENSA_PROP_INSN_NO_REORDER);
11085
11086 if (xtensa_is_littable_section (sec))
11087 return (XTENSA_PROP_LITERAL
99ded152 11088 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11089 | XTENSA_PROP_INSN_NO_REORDER);
11090
11091 return 0;
11092}
11093
e0001a05
NC
11094\f
11095/* Other functions called directly by the linker. */
11096
11097bfd_boolean
7fa3d080
BW
11098xtensa_callback_required_dependence (bfd *abfd,
11099 asection *sec,
11100 struct bfd_link_info *link_info,
11101 deps_callback_t callback,
11102 void *closure)
e0001a05
NC
11103{
11104 Elf_Internal_Rela *internal_relocs;
11105 bfd_byte *contents;
11106 unsigned i;
11107 bfd_boolean ok = TRUE;
43cd72b9
BW
11108 bfd_size_type sec_size;
11109
11110 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
11111
11112 /* ".plt*" sections have no explicit relocations but they contain L32R
11113 instructions that reference the corresponding ".got.plt*" sections. */
11114 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 11115 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
11116 {
11117 asection *sgotplt;
11118
11119 /* Find the corresponding ".got.plt*" section. */
11120 if (sec->name[4] == '\0')
3d4d4302 11121 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
e0001a05
NC
11122 else
11123 {
11124 char got_name[14];
11125 int chunk = 0;
11126
11127 BFD_ASSERT (sec->name[4] == '.');
11128 chunk = strtol (&sec->name[5], NULL, 10);
11129
11130 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 11131 sgotplt = bfd_get_linker_section (sec->owner, got_name);
e0001a05
NC
11132 }
11133 BFD_ASSERT (sgotplt);
11134
11135 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11136 section referencing a literal at the very beginning of
11137 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 11138 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
11139 }
11140
13161072
BW
11141 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11142 when building uclibc, which runs "ld -b binary /dev/null". */
11143 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11144 return ok;
11145
68ffbac6 11146 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
11147 link_info->keep_memory);
11148 if (internal_relocs == NULL
43cd72b9 11149 || sec->reloc_count == 0)
e0001a05
NC
11150 return ok;
11151
11152 /* Cache the contents for the duration of this scan. */
11153 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 11154 if (contents == NULL && sec_size != 0)
e0001a05
NC
11155 {
11156 ok = FALSE;
11157 goto error_return;
11158 }
11159
43cd72b9
BW
11160 if (!xtensa_default_isa)
11161 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 11162
43cd72b9 11163 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
11164 {
11165 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 11166 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
11167 {
11168 r_reloc l32r_rel;
11169 asection *target_sec;
11170 bfd_vma target_offset;
43cd72b9
BW
11171
11172 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
11173 target_sec = NULL;
11174 target_offset = 0;
11175 /* L32Rs must be local to the input file. */
11176 if (r_reloc_is_defined (&l32r_rel))
11177 {
11178 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 11179 target_offset = l32r_rel.target_offset;
e0001a05
NC
11180 }
11181 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11182 closure);
11183 }
11184 }
11185
11186 error_return:
11187 release_internal_relocs (sec, internal_relocs);
11188 release_contents (sec, contents);
11189 return ok;
11190}
11191
2f89ff8d
L
11192/* The default literal sections should always be marked as "code" (i.e.,
11193 SHF_EXECINSTR). This is particularly important for the Linux kernel
11194 module loader so that the literals are not placed after the text. */
b35d266b 11195static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 11196{
0112cd26
NC
11197 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11198 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11199 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 11200 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 11201 { NULL, 0, 0, 0, 0 }
7f4d3958 11202};
e0001a05 11203\f
ae95ffa6 11204#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05 11205#ifndef ELF_ARCH
6d00b590 11206#define TARGET_LITTLE_SYM xtensa_elf32_le_vec
e0001a05 11207#define TARGET_LITTLE_NAME "elf32-xtensa-le"
6d00b590 11208#define TARGET_BIG_SYM xtensa_elf32_be_vec
e0001a05
NC
11209#define TARGET_BIG_NAME "elf32-xtensa-be"
11210#define ELF_ARCH bfd_arch_xtensa
11211
4af0a1d8
BW
11212#define ELF_MACHINE_CODE EM_XTENSA
11213#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
11214
11215#if XCHAL_HAVE_MMU
11216#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11217#else /* !XCHAL_HAVE_MMU */
11218#define ELF_MAXPAGESIZE 1
11219#endif /* !XCHAL_HAVE_MMU */
11220#endif /* ELF_ARCH */
11221
11222#define elf_backend_can_gc_sections 1
11223#define elf_backend_can_refcount 1
11224#define elf_backend_plt_readonly 1
11225#define elf_backend_got_header_size 4
11226#define elf_backend_want_dynbss 0
11227#define elf_backend_want_got_plt 1
11228
11229#define elf_info_to_howto elf_xtensa_info_to_howto_rela
11230
28dbbc02
BW
11231#define bfd_elf32_mkobject elf_xtensa_mkobject
11232
e0001a05
NC
11233#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11234#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11235#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11236#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11237#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
11238#define bfd_elf32_bfd_reloc_name_lookup \
11239 elf_xtensa_reloc_name_lookup
e0001a05 11240#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 11241#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
11242
11243#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11244#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
11245#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11246#define elf_backend_discard_info elf_xtensa_discard_info
11247#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11248#define elf_backend_final_write_processing elf_xtensa_final_write_processing
11249#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11250#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11251#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11252#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11253#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11254#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 11255#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
11256#define elf_backend_object_p elf_xtensa_object_p
11257#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11258#define elf_backend_relocate_section elf_xtensa_relocate_section
11259#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 11260#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
11261#define elf_backend_omit_section_dynsym \
11262 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 11263#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 11264#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 11265#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
11266
11267#include "elf32-target.h"
This page took 1.335538 seconds and 4 git commands to generate.