* read.c (potable): Add string8, string16, string32 and string64. Add bit size for...
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
f0e6fdb2 2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 106static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 107static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 108static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
109static int internal_reloc_compare (const void *, const void *);
110static int internal_reloc_matches (const void *, const void *);
74869ac7 111extern asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 112static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
113
114/* Other functions called directly by the linker. */
115
116typedef void (*deps_callback_t)
7fa3d080 117 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 118extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
120
121
43cd72b9
BW
122/* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
7fa3d080 126
43cd72b9
BW
127int elf32xtensa_size_opt;
128
129
130/* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
e0001a05 133
7fa3d080 134typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 135
43cd72b9 136
43cd72b9
BW
137/* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
140 this information. */
141
142xtensa_isa xtensa_default_isa;
143
144
e0001a05
NC
145/* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
148
149static bfd_boolean relaxing_section = FALSE;
150
43cd72b9
BW
151/* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
153
154int elf32xtensa_no_literal_movement = 1;
155
e0001a05
NC
156\f
157static reloc_howto_type elf_howto_table[] =
158{
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 161 FALSE, 0, 0, FALSE),
e0001a05
NC
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 165
e0001a05
NC
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
173
e0001a05
NC
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 176 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 179 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 182 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
185 FALSE, 0, 0xffffffff, FALSE),
186
e0001a05 187 EMPTY_HOWTO (7),
e5f131d1
BW
188
189 /* Old relocations for backward compatibility. */
e0001a05 190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
196
e0001a05
NC
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
203
e0001a05
NC
204 EMPTY_HOWTO (13),
205 EMPTY_HOWTO (14),
e5f131d1 206
e0001a05
NC
207 /* GNU extension to record C++ vtable hierarchy. */
208 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
209 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 210 FALSE, 0, 0, FALSE),
e0001a05
NC
211 /* GNU extension to record C++ vtable member usage. */
212 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 214 FALSE, 0, 0, FALSE),
43cd72b9
BW
215
216 /* Relocations for supporting difference of symbols. */
217 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 218 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 219 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 220 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 221 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
223
224 /* General immediate operand relocations. */
225 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 226 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 227 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 228 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 229 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 231 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 233 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 235 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 237 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 239 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 241 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 243 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 245 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 247 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 249 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 251 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 253 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
255
256 /* "Alternate" relocations. The meaning of these is opcode-specific. */
257 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 259 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 261 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 263 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 265 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 267 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 269 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 271 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 273 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 275 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 277 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 279 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 281 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 283 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 285 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
e0001a05
NC
287};
288
43cd72b9 289#if DEBUG_GEN_RELOC
e0001a05
NC
290#define TRACE(str) \
291 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
292#else
293#define TRACE(str)
294#endif
295
296static reloc_howto_type *
7fa3d080
BW
297elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
298 bfd_reloc_code_real_type code)
e0001a05
NC
299{
300 switch (code)
301 {
302 case BFD_RELOC_NONE:
303 TRACE ("BFD_RELOC_NONE");
304 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
305
306 case BFD_RELOC_32:
307 TRACE ("BFD_RELOC_32");
308 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
309
43cd72b9
BW
310 case BFD_RELOC_XTENSA_DIFF8:
311 TRACE ("BFD_RELOC_XTENSA_DIFF8");
312 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
313
314 case BFD_RELOC_XTENSA_DIFF16:
315 TRACE ("BFD_RELOC_XTENSA_DIFF16");
316 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
317
318 case BFD_RELOC_XTENSA_DIFF32:
319 TRACE ("BFD_RELOC_XTENSA_DIFF32");
320 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
321
e0001a05
NC
322 case BFD_RELOC_XTENSA_RTLD:
323 TRACE ("BFD_RELOC_XTENSA_RTLD");
324 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
325
326 case BFD_RELOC_XTENSA_GLOB_DAT:
327 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
328 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
329
330 case BFD_RELOC_XTENSA_JMP_SLOT:
331 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
332 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
333
334 case BFD_RELOC_XTENSA_RELATIVE:
335 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
336 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
337
338 case BFD_RELOC_XTENSA_PLT:
339 TRACE ("BFD_RELOC_XTENSA_PLT");
340 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
341
342 case BFD_RELOC_XTENSA_OP0:
343 TRACE ("BFD_RELOC_XTENSA_OP0");
344 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
345
346 case BFD_RELOC_XTENSA_OP1:
347 TRACE ("BFD_RELOC_XTENSA_OP1");
348 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
349
350 case BFD_RELOC_XTENSA_OP2:
351 TRACE ("BFD_RELOC_XTENSA_OP2");
352 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
353
354 case BFD_RELOC_XTENSA_ASM_EXPAND:
355 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
356 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
357
358 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
359 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
360 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
361
362 case BFD_RELOC_VTABLE_INHERIT:
363 TRACE ("BFD_RELOC_VTABLE_INHERIT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
365
366 case BFD_RELOC_VTABLE_ENTRY:
367 TRACE ("BFD_RELOC_VTABLE_ENTRY");
368 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
369
370 default:
43cd72b9
BW
371 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
372 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
373 {
374 unsigned n = (R_XTENSA_SLOT0_OP +
375 (code - BFD_RELOC_XTENSA_SLOT0_OP));
376 return &elf_howto_table[n];
377 }
378
379 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
380 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
381 {
382 unsigned n = (R_XTENSA_SLOT0_ALT +
383 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
384 return &elf_howto_table[n];
385 }
386
e0001a05
NC
387 break;
388 }
389
390 TRACE ("Unknown");
391 return NULL;
392}
393
157090f7
AM
394static reloc_howto_type *
395elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
396 const char *r_name)
397{
398 unsigned int i;
399
400 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
401 if (elf_howto_table[i].name != NULL
402 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
403 return &elf_howto_table[i];
404
405 return NULL;
406}
407
e0001a05
NC
408
409/* Given an ELF "rela" relocation, find the corresponding howto and record
410 it in the BFD internal arelent representation of the relocation. */
411
412static void
7fa3d080
BW
413elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
414 arelent *cache_ptr,
415 Elf_Internal_Rela *dst)
e0001a05
NC
416{
417 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
418
419 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
420 cache_ptr->howto = &elf_howto_table[r_type];
421}
422
423\f
424/* Functions for the Xtensa ELF linker. */
425
426/* The name of the dynamic interpreter. This is put in the .interp
427 section. */
428
429#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
430
431/* The size in bytes of an entry in the procedure linkage table.
432 (This does _not_ include the space for the literals associated with
433 the PLT entry.) */
434
435#define PLT_ENTRY_SIZE 16
436
437/* For _really_ large PLTs, we may need to alternate between literals
438 and code to keep the literals within the 256K range of the L32R
439 instructions in the code. It's unlikely that anyone would ever need
440 such a big PLT, but an arbitrary limit on the PLT size would be bad.
441 Thus, we split the PLT into chunks. Since there's very little
442 overhead (2 extra literals) for each chunk, the chunk size is kept
443 small so that the code for handling multiple chunks get used and
444 tested regularly. With 254 entries, there are 1K of literals for
445 each chunk, and that seems like a nice round number. */
446
447#define PLT_ENTRIES_PER_CHUNK 254
448
449/* PLT entries are actually used as stub functions for lazy symbol
450 resolution. Once the symbol is resolved, the stub function is never
451 invoked. Note: the 32-byte frame size used here cannot be changed
452 without a corresponding change in the runtime linker. */
453
454static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
455{
456 0x6c, 0x10, 0x04, /* entry sp, 32 */
457 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
458 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
459 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
460 0x0a, 0x80, 0x00, /* jx a8 */
461 0 /* unused */
462};
463
464static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
465{
466 0x36, 0x41, 0x00, /* entry sp, 32 */
467 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
468 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
469 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
470 0xa0, 0x08, 0x00, /* jx a8 */
471 0 /* unused */
472};
473
f0e6fdb2
BW
474/* Xtensa ELF linker hash table. */
475
476struct elf_xtensa_link_hash_table
477{
478 struct elf_link_hash_table elf;
479
480 /* Short-cuts to get to dynamic linker sections. */
481 asection *sgot;
482 asection *sgotplt;
483 asection *srelgot;
484 asection *splt;
485 asection *srelplt;
486 asection *sgotloc;
487 asection *spltlittbl;
488
489 /* Total count of PLT relocations seen during check_relocs.
490 The actual PLT code must be split into multiple sections and all
491 the sections have to be created before size_dynamic_sections,
492 where we figure out the exact number of PLT entries that will be
493 needed. It is OK if this count is an overestimate, e.g., some
494 relocations may be removed by GC. */
495 int plt_reloc_count;
496};
497
498/* Get the Xtensa ELF linker hash table from a link_info structure. */
499
500#define elf_xtensa_hash_table(p) \
501 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
502
503/* Create an Xtensa ELF linker hash table. */
504
505static struct bfd_link_hash_table *
506elf_xtensa_link_hash_table_create (bfd *abfd)
507{
508 struct elf_xtensa_link_hash_table *ret;
509 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
510
511 ret = bfd_malloc (amt);
512 if (ret == NULL)
513 return NULL;
514
515 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
516 _bfd_elf_link_hash_newfunc,
517 sizeof (struct elf_link_hash_entry)))
518 {
519 free (ret);
520 return NULL;
521 }
522
523 ret->sgot = NULL;
524 ret->sgotplt = NULL;
525 ret->srelgot = NULL;
526 ret->splt = NULL;
527 ret->srelplt = NULL;
528 ret->sgotloc = NULL;
529 ret->spltlittbl = NULL;
530
531 ret->plt_reloc_count = 0;
532
533 return &ret->elf.root;
534}
571b5725
BW
535
536static inline bfd_boolean
4608f3d9 537elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 538 struct bfd_link_info *info)
571b5725
BW
539{
540 /* Check if we should do dynamic things to this symbol. The
541 "ignore_protected" argument need not be set, because Xtensa code
542 does not require special handling of STV_PROTECTED to make function
543 pointer comparisons work properly. The PLT addresses are never
544 used for function pointers. */
545
546 return _bfd_elf_dynamic_symbol_p (h, info, 0);
547}
548
e0001a05
NC
549\f
550static int
7fa3d080 551property_table_compare (const void *ap, const void *bp)
e0001a05
NC
552{
553 const property_table_entry *a = (const property_table_entry *) ap;
554 const property_table_entry *b = (const property_table_entry *) bp;
555
43cd72b9
BW
556 if (a->address == b->address)
557 {
43cd72b9
BW
558 if (a->size != b->size)
559 return (a->size - b->size);
560
561 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
562 return ((b->flags & XTENSA_PROP_ALIGN)
563 - (a->flags & XTENSA_PROP_ALIGN));
564
565 if ((a->flags & XTENSA_PROP_ALIGN)
566 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
567 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
568 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
569 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
570
571 if ((a->flags & XTENSA_PROP_UNREACHABLE)
572 != (b->flags & XTENSA_PROP_UNREACHABLE))
573 return ((b->flags & XTENSA_PROP_UNREACHABLE)
574 - (a->flags & XTENSA_PROP_UNREACHABLE));
575
576 return (a->flags - b->flags);
577 }
578
579 return (a->address - b->address);
580}
581
582
583static int
7fa3d080 584property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
585{
586 const property_table_entry *a = (const property_table_entry *) ap;
587 const property_table_entry *b = (const property_table_entry *) bp;
588
589 /* Check if one entry overlaps with the other. */
e0001a05
NC
590 if ((b->address >= a->address && b->address < (a->address + a->size))
591 || (a->address >= b->address && a->address < (b->address + b->size)))
592 return 0;
593
594 return (a->address - b->address);
595}
596
597
43cd72b9
BW
598/* Get the literal table or property table entries for the given
599 section. Sets TABLE_P and returns the number of entries. On
600 error, returns a negative value. */
e0001a05 601
7fa3d080
BW
602static int
603xtensa_read_table_entries (bfd *abfd,
604 asection *section,
605 property_table_entry **table_p,
606 const char *sec_name,
607 bfd_boolean output_addr)
e0001a05
NC
608{
609 asection *table_section;
e0001a05
NC
610 bfd_size_type table_size = 0;
611 bfd_byte *table_data;
612 property_table_entry *blocks;
e4115460 613 int blk, block_count;
e0001a05 614 bfd_size_type num_records;
bcc2cc8e
BW
615 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
616 bfd_vma section_addr, off;
43cd72b9 617 flagword predef_flags;
bcc2cc8e 618 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
619
620 if (!section
621 || !(section->flags & SEC_ALLOC)
622 || (section->flags & SEC_DEBUGGING))
623 {
624 *table_p = NULL;
625 return 0;
626 }
e0001a05 627
74869ac7 628 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 629 if (table_section)
eea6121a 630 table_size = table_section->size;
43cd72b9 631
e0001a05
NC
632 if (table_size == 0)
633 {
634 *table_p = NULL;
635 return 0;
636 }
637
43cd72b9
BW
638 predef_flags = xtensa_get_property_predef_flags (table_section);
639 table_entry_size = 12;
640 if (predef_flags)
641 table_entry_size -= 4;
642
643 num_records = table_size / table_entry_size;
e0001a05
NC
644 table_data = retrieve_contents (abfd, table_section, TRUE);
645 blocks = (property_table_entry *)
646 bfd_malloc (num_records * sizeof (property_table_entry));
647 block_count = 0;
43cd72b9
BW
648
649 if (output_addr)
650 section_addr = section->output_section->vma + section->output_offset;
651 else
652 section_addr = section->vma;
3ba3bc8c 653
e0001a05 654 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 655 if (internal_relocs && !table_section->reloc_done)
e0001a05 656 {
bcc2cc8e
BW
657 qsort (internal_relocs, table_section->reloc_count,
658 sizeof (Elf_Internal_Rela), internal_reloc_compare);
659 irel = internal_relocs;
660 }
661 else
662 irel = NULL;
663
664 section_limit = bfd_get_section_limit (abfd, section);
665 rel_end = internal_relocs + table_section->reloc_count;
666
667 for (off = 0; off < table_size; off += table_entry_size)
668 {
669 bfd_vma address = bfd_get_32 (abfd, table_data + off);
670
671 /* Skip any relocations before the current offset. This should help
672 avoid confusion caused by unexpected relocations for the preceding
673 table entry. */
674 while (irel &&
675 (irel->r_offset < off
676 || (irel->r_offset == off
677 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
678 {
679 irel += 1;
680 if (irel >= rel_end)
681 irel = 0;
682 }
e0001a05 683
bcc2cc8e 684 if (irel && irel->r_offset == off)
e0001a05 685 {
bcc2cc8e
BW
686 bfd_vma sym_off;
687 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
688 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 689
bcc2cc8e 690 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
691 continue;
692
bcc2cc8e
BW
693 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
694 BFD_ASSERT (sym_off == 0);
695 address += (section_addr + sym_off + irel->r_addend);
e0001a05 696 }
bcc2cc8e 697 else
e0001a05 698 {
bcc2cc8e
BW
699 if (address < section_addr
700 || address >= section_addr + section_limit)
701 continue;
e0001a05 702 }
bcc2cc8e
BW
703
704 blocks[block_count].address = address;
705 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
706 if (predef_flags)
707 blocks[block_count].flags = predef_flags;
708 else
709 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
710 block_count++;
e0001a05
NC
711 }
712
713 release_contents (table_section, table_data);
714 release_internal_relocs (table_section, internal_relocs);
715
43cd72b9 716 if (block_count > 0)
e0001a05
NC
717 {
718 /* Now sort them into address order for easy reference. */
719 qsort (blocks, block_count, sizeof (property_table_entry),
720 property_table_compare);
e4115460
BW
721
722 /* Check that the table contents are valid. Problems may occur,
723 for example, if an unrelocated object file is stripped. */
724 for (blk = 1; blk < block_count; blk++)
725 {
726 /* The only circumstance where two entries may legitimately
727 have the same address is when one of them is a zero-size
728 placeholder to mark a place where fill can be inserted.
729 The zero-size entry should come first. */
730 if (blocks[blk - 1].address == blocks[blk].address &&
731 blocks[blk - 1].size != 0)
732 {
733 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
734 abfd, section);
735 bfd_set_error (bfd_error_bad_value);
736 free (blocks);
737 return -1;
738 }
739 }
e0001a05 740 }
43cd72b9 741
e0001a05
NC
742 *table_p = blocks;
743 return block_count;
744}
745
746
7fa3d080
BW
747static property_table_entry *
748elf_xtensa_find_property_entry (property_table_entry *property_table,
749 int property_table_size,
750 bfd_vma addr)
e0001a05
NC
751{
752 property_table_entry entry;
43cd72b9 753 property_table_entry *rv;
e0001a05 754
43cd72b9
BW
755 if (property_table_size == 0)
756 return NULL;
e0001a05
NC
757
758 entry.address = addr;
759 entry.size = 1;
43cd72b9 760 entry.flags = 0;
e0001a05 761
43cd72b9
BW
762 rv = bsearch (&entry, property_table, property_table_size,
763 sizeof (property_table_entry), property_table_matches);
764 return rv;
765}
766
767
768static bfd_boolean
7fa3d080
BW
769elf_xtensa_in_literal_pool (property_table_entry *lit_table,
770 int lit_table_size,
771 bfd_vma addr)
43cd72b9
BW
772{
773 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
774 return TRUE;
775
776 return FALSE;
777}
778
779\f
780/* Look through the relocs for a section during the first phase, and
781 calculate needed space in the dynamic reloc sections. */
782
783static bfd_boolean
7fa3d080
BW
784elf_xtensa_check_relocs (bfd *abfd,
785 struct bfd_link_info *info,
786 asection *sec,
787 const Elf_Internal_Rela *relocs)
e0001a05 788{
f0e6fdb2 789 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
790 Elf_Internal_Shdr *symtab_hdr;
791 struct elf_link_hash_entry **sym_hashes;
792 const Elf_Internal_Rela *rel;
793 const Elf_Internal_Rela *rel_end;
e0001a05 794
1049f94e 795 if (info->relocatable)
e0001a05
NC
796 return TRUE;
797
f0e6fdb2 798 htab = elf_xtensa_hash_table (info);
e0001a05
NC
799 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
800 sym_hashes = elf_sym_hashes (abfd);
801
e0001a05
NC
802 rel_end = relocs + sec->reloc_count;
803 for (rel = relocs; rel < rel_end; rel++)
804 {
805 unsigned int r_type;
806 unsigned long r_symndx;
807 struct elf_link_hash_entry *h;
808
809 r_symndx = ELF32_R_SYM (rel->r_info);
810 r_type = ELF32_R_TYPE (rel->r_info);
811
812 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
813 {
d003868e
AM
814 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
815 abfd, r_symndx);
e0001a05
NC
816 return FALSE;
817 }
818
819 if (r_symndx < symtab_hdr->sh_info)
820 h = NULL;
821 else
822 {
823 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
824 while (h->root.type == bfd_link_hash_indirect
825 || h->root.type == bfd_link_hash_warning)
826 h = (struct elf_link_hash_entry *) h->root.u.i.link;
827 }
828
829 switch (r_type)
830 {
831 case R_XTENSA_32:
832 if (h == NULL)
833 goto local_literal;
834
835 if ((sec->flags & SEC_ALLOC) != 0)
836 {
e0001a05
NC
837 if (h->got.refcount <= 0)
838 h->got.refcount = 1;
839 else
840 h->got.refcount += 1;
841 }
842 break;
843
844 case R_XTENSA_PLT:
845 /* If this relocation is against a local symbol, then it's
846 exactly the same as a normal local GOT entry. */
847 if (h == NULL)
848 goto local_literal;
849
850 if ((sec->flags & SEC_ALLOC) != 0)
851 {
e0001a05
NC
852 if (h->plt.refcount <= 0)
853 {
f5385ebf 854 h->needs_plt = 1;
e0001a05
NC
855 h->plt.refcount = 1;
856 }
857 else
858 h->plt.refcount += 1;
859
860 /* Keep track of the total PLT relocation count even if we
861 don't yet know whether the dynamic sections will be
862 created. */
f0e6fdb2 863 htab->plt_reloc_count += 1;
e0001a05
NC
864
865 if (elf_hash_table (info)->dynamic_sections_created)
866 {
f0e6fdb2 867 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
868 return FALSE;
869 }
870 }
871 break;
872
873 local_literal:
874 if ((sec->flags & SEC_ALLOC) != 0)
875 {
876 bfd_signed_vma *local_got_refcounts;
877
878 /* This is a global offset table entry for a local symbol. */
879 local_got_refcounts = elf_local_got_refcounts (abfd);
880 if (local_got_refcounts == NULL)
881 {
882 bfd_size_type size;
883
884 size = symtab_hdr->sh_info;
885 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
886 local_got_refcounts =
887 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
888 if (local_got_refcounts == NULL)
889 return FALSE;
890 elf_local_got_refcounts (abfd) = local_got_refcounts;
891 }
892 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
893 }
894 break;
895
896 case R_XTENSA_OP0:
897 case R_XTENSA_OP1:
898 case R_XTENSA_OP2:
43cd72b9
BW
899 case R_XTENSA_SLOT0_OP:
900 case R_XTENSA_SLOT1_OP:
901 case R_XTENSA_SLOT2_OP:
902 case R_XTENSA_SLOT3_OP:
903 case R_XTENSA_SLOT4_OP:
904 case R_XTENSA_SLOT5_OP:
905 case R_XTENSA_SLOT6_OP:
906 case R_XTENSA_SLOT7_OP:
907 case R_XTENSA_SLOT8_OP:
908 case R_XTENSA_SLOT9_OP:
909 case R_XTENSA_SLOT10_OP:
910 case R_XTENSA_SLOT11_OP:
911 case R_XTENSA_SLOT12_OP:
912 case R_XTENSA_SLOT13_OP:
913 case R_XTENSA_SLOT14_OP:
914 case R_XTENSA_SLOT0_ALT:
915 case R_XTENSA_SLOT1_ALT:
916 case R_XTENSA_SLOT2_ALT:
917 case R_XTENSA_SLOT3_ALT:
918 case R_XTENSA_SLOT4_ALT:
919 case R_XTENSA_SLOT5_ALT:
920 case R_XTENSA_SLOT6_ALT:
921 case R_XTENSA_SLOT7_ALT:
922 case R_XTENSA_SLOT8_ALT:
923 case R_XTENSA_SLOT9_ALT:
924 case R_XTENSA_SLOT10_ALT:
925 case R_XTENSA_SLOT11_ALT:
926 case R_XTENSA_SLOT12_ALT:
927 case R_XTENSA_SLOT13_ALT:
928 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
929 case R_XTENSA_ASM_EXPAND:
930 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
931 case R_XTENSA_DIFF8:
932 case R_XTENSA_DIFF16:
933 case R_XTENSA_DIFF32:
e0001a05
NC
934 /* Nothing to do for these. */
935 break;
936
937 case R_XTENSA_GNU_VTINHERIT:
938 /* This relocation describes the C++ object vtable hierarchy.
939 Reconstruct it for later use during GC. */
c152c796 940 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
941 return FALSE;
942 break;
943
944 case R_XTENSA_GNU_VTENTRY:
945 /* This relocation describes which C++ vtable entries are actually
946 used. Record for later use during GC. */
d17e0c6e
JB
947 BFD_ASSERT (h != NULL);
948 if (h != NULL
949 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
950 return FALSE;
951 break;
952
953 default:
954 break;
955 }
956 }
957
e0001a05
NC
958 return TRUE;
959}
960
961
95147441
BW
962static void
963elf_xtensa_make_sym_local (struct bfd_link_info *info,
964 struct elf_link_hash_entry *h)
965{
966 if (info->shared)
967 {
968 if (h->plt.refcount > 0)
969 {
970 /* For shared objects, there's no need for PLT entries for local
971 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
972 if (h->got.refcount < 0)
973 h->got.refcount = 0;
974 h->got.refcount += h->plt.refcount;
975 h->plt.refcount = 0;
976 }
977 }
978 else
979 {
980 /* Don't need any dynamic relocations at all. */
981 h->plt.refcount = 0;
982 h->got.refcount = 0;
983 }
984}
985
986
987static void
988elf_xtensa_hide_symbol (struct bfd_link_info *info,
989 struct elf_link_hash_entry *h,
990 bfd_boolean force_local)
991{
992 /* For a shared link, move the plt refcount to the got refcount to leave
993 space for RELATIVE relocs. */
994 elf_xtensa_make_sym_local (info, h);
995
996 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
997}
998
999
e0001a05
NC
1000/* Return the section that should be marked against GC for a given
1001 relocation. */
1002
1003static asection *
7fa3d080 1004elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1005 struct bfd_link_info *info,
7fa3d080
BW
1006 Elf_Internal_Rela *rel,
1007 struct elf_link_hash_entry *h,
1008 Elf_Internal_Sym *sym)
e0001a05 1009{
e1e5c0b5
BW
1010 /* Property sections are marked "KEEP" in the linker scripts, but they
1011 should not cause other sections to be marked. (This approach relies
1012 on elf_xtensa_discard_info to remove property table entries that
1013 describe discarded sections. Alternatively, it might be more
1014 efficient to avoid using "KEEP" in the linker scripts and instead use
1015 the gc_mark_extra_sections hook to mark only the property sections
1016 that describe marked sections. That alternative does not work well
1017 with the current property table sections, which do not correspond
1018 one-to-one with the sections they describe, but that should be fixed
1019 someday.) */
1020 if (xtensa_is_property_section (sec))
1021 return NULL;
1022
07adf181
AM
1023 if (h != NULL)
1024 switch (ELF32_R_TYPE (rel->r_info))
1025 {
1026 case R_XTENSA_GNU_VTINHERIT:
1027 case R_XTENSA_GNU_VTENTRY:
1028 return NULL;
1029 }
1030
1031 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1032}
1033
7fa3d080 1034
e0001a05
NC
1035/* Update the GOT & PLT entry reference counts
1036 for the section being removed. */
1037
1038static bfd_boolean
7fa3d080
BW
1039elf_xtensa_gc_sweep_hook (bfd *abfd,
1040 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1041 asection *sec,
1042 const Elf_Internal_Rela *relocs)
e0001a05
NC
1043{
1044 Elf_Internal_Shdr *symtab_hdr;
1045 struct elf_link_hash_entry **sym_hashes;
1046 bfd_signed_vma *local_got_refcounts;
1047 const Elf_Internal_Rela *rel, *relend;
1048
1049 if ((sec->flags & SEC_ALLOC) == 0)
1050 return TRUE;
1051
1052 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1053 sym_hashes = elf_sym_hashes (abfd);
1054 local_got_refcounts = elf_local_got_refcounts (abfd);
1055
1056 relend = relocs + sec->reloc_count;
1057 for (rel = relocs; rel < relend; rel++)
1058 {
1059 unsigned long r_symndx;
1060 unsigned int r_type;
1061 struct elf_link_hash_entry *h = NULL;
1062
1063 r_symndx = ELF32_R_SYM (rel->r_info);
1064 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1065 {
1066 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1067 while (h->root.type == bfd_link_hash_indirect
1068 || h->root.type == bfd_link_hash_warning)
1069 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1070 }
e0001a05
NC
1071
1072 r_type = ELF32_R_TYPE (rel->r_info);
1073 switch (r_type)
1074 {
1075 case R_XTENSA_32:
1076 if (h == NULL)
1077 goto local_literal;
1078 if (h->got.refcount > 0)
1079 h->got.refcount--;
1080 break;
1081
1082 case R_XTENSA_PLT:
1083 if (h == NULL)
1084 goto local_literal;
1085 if (h->plt.refcount > 0)
1086 h->plt.refcount--;
1087 break;
1088
1089 local_literal:
1090 if (local_got_refcounts[r_symndx] > 0)
1091 local_got_refcounts[r_symndx] -= 1;
1092 break;
1093
1094 default:
1095 break;
1096 }
1097 }
1098
1099 return TRUE;
1100}
1101
1102
1103/* Create all the dynamic sections. */
1104
1105static bfd_boolean
7fa3d080 1106elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1107{
f0e6fdb2 1108 struct elf_xtensa_link_hash_table *htab;
e901de89 1109 flagword flags, noalloc_flags;
f0e6fdb2
BW
1110
1111 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1112
1113 /* First do all the standard stuff. */
1114 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1115 return FALSE;
f0e6fdb2
BW
1116 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1117 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1118 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1119 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
e0001a05
NC
1120
1121 /* Create any extra PLT sections in case check_relocs has already
1122 been called on all the non-dynamic input files. */
f0e6fdb2 1123 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1124 return FALSE;
1125
e901de89
BW
1126 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1127 | SEC_LINKER_CREATED | SEC_READONLY);
1128 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1129
1130 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1131 if (htab->sgotplt == NULL
1132 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1133 return FALSE;
1134
1135 /* Create ".rela.got". */
f0e6fdb2
BW
1136 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1137 if (htab->srelgot == NULL
1138 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
e0001a05
NC
1139 return FALSE;
1140
e901de89 1141 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1142 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1143 if (htab->sgotloc == NULL
1144 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1145 return FALSE;
1146
e0001a05 1147 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1148 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1149 noalloc_flags);
1150 if (htab->spltlittbl == NULL
1151 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1152 return FALSE;
1153
1154 return TRUE;
1155}
1156
1157
1158static bfd_boolean
f0e6fdb2 1159add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1160{
f0e6fdb2 1161 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1162 int chunk;
1163
1164 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1165 ".got.plt" sections. */
1166 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1167 {
1168 char *sname;
1169 flagword flags;
1170 asection *s;
1171
1172 /* Stop when we find a section has already been created. */
f0e6fdb2 1173 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1174 break;
1175
1176 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1177 | SEC_LINKER_CREATED | SEC_READONLY);
1178
1179 sname = (char *) bfd_malloc (10);
1180 sprintf (sname, ".plt.%u", chunk);
ba05963f 1181 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1182 if (s == NULL
e0001a05
NC
1183 || ! bfd_set_section_alignment (dynobj, s, 2))
1184 return FALSE;
1185
1186 sname = (char *) bfd_malloc (14);
1187 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1188 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1189 if (s == NULL
e0001a05
NC
1190 || ! bfd_set_section_alignment (dynobj, s, 2))
1191 return FALSE;
1192 }
1193
1194 return TRUE;
1195}
1196
1197
1198/* Adjust a symbol defined by a dynamic object and referenced by a
1199 regular object. The current definition is in some section of the
1200 dynamic object, but we're not including those sections. We have to
1201 change the definition to something the rest of the link can
1202 understand. */
1203
1204static bfd_boolean
7fa3d080
BW
1205elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1206 struct elf_link_hash_entry *h)
e0001a05
NC
1207{
1208 /* If this is a weak symbol, and there is a real definition, the
1209 processor independent code will have arranged for us to see the
1210 real definition first, and we can just use the same value. */
7fa3d080 1211 if (h->u.weakdef)
e0001a05 1212 {
f6e332e6
AM
1213 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1214 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1215 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1216 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1217 return TRUE;
1218 }
1219
1220 /* This is a reference to a symbol defined by a dynamic object. The
1221 reference must go through the GOT, so there's no need for COPY relocs,
1222 .dynbss, etc. */
1223
1224 return TRUE;
1225}
1226
1227
e0001a05 1228static bfd_boolean
f1ab2340 1229elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1230{
f1ab2340
BW
1231 struct bfd_link_info *info;
1232 struct elf_xtensa_link_hash_table *htab;
1233 bfd_boolean is_dynamic;
e0001a05 1234
f1ab2340
BW
1235 if (h->root.type == bfd_link_hash_indirect)
1236 return TRUE;
e0001a05
NC
1237
1238 if (h->root.type == bfd_link_hash_warning)
1239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1240
f1ab2340
BW
1241 info = (struct bfd_link_info *) arg;
1242 htab = elf_xtensa_hash_table (info);
e0001a05 1243
f1ab2340 1244 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 1245
f1ab2340 1246 if (! is_dynamic)
95147441 1247 elf_xtensa_make_sym_local (info, h);
e0001a05 1248
f1ab2340
BW
1249 if (h->plt.refcount > 0)
1250 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1251
1252 if (h->got.refcount > 0)
f1ab2340 1253 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1254
1255 return TRUE;
1256}
1257
1258
1259static void
f0e6fdb2 1260elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1261{
f0e6fdb2 1262 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1263 bfd *i;
1264
f0e6fdb2
BW
1265 htab = elf_xtensa_hash_table (info);
1266
e0001a05
NC
1267 for (i = info->input_bfds; i; i = i->link_next)
1268 {
1269 bfd_signed_vma *local_got_refcounts;
1270 bfd_size_type j, cnt;
1271 Elf_Internal_Shdr *symtab_hdr;
1272
1273 local_got_refcounts = elf_local_got_refcounts (i);
1274 if (!local_got_refcounts)
1275 continue;
1276
1277 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1278 cnt = symtab_hdr->sh_info;
1279
1280 for (j = 0; j < cnt; ++j)
1281 {
1282 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1283 htab->srelgot->size += (local_got_refcounts[j]
1284 * sizeof (Elf32_External_Rela));
e0001a05
NC
1285 }
1286 }
1287}
1288
1289
1290/* Set the sizes of the dynamic sections. */
1291
1292static bfd_boolean
7fa3d080
BW
1293elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1294 struct bfd_link_info *info)
e0001a05 1295{
f0e6fdb2 1296 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1297 bfd *dynobj, *abfd;
1298 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1299 bfd_boolean relplt, relgot;
1300 int plt_entries, plt_chunks, chunk;
1301
1302 plt_entries = 0;
1303 plt_chunks = 0;
e0001a05 1304
f0e6fdb2 1305 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1306 dynobj = elf_hash_table (info)->dynobj;
1307 if (dynobj == NULL)
1308 abort ();
f0e6fdb2
BW
1309 srelgot = htab->srelgot;
1310 srelplt = htab->srelplt;
e0001a05
NC
1311
1312 if (elf_hash_table (info)->dynamic_sections_created)
1313 {
f0e6fdb2
BW
1314 BFD_ASSERT (htab->srelgot != NULL
1315 && htab->srelplt != NULL
1316 && htab->sgot != NULL
1317 && htab->spltlittbl != NULL
1318 && htab->sgotloc != NULL);
1319
e0001a05 1320 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1321 if (info->executable)
e0001a05
NC
1322 {
1323 s = bfd_get_section_by_name (dynobj, ".interp");
1324 if (s == NULL)
1325 abort ();
eea6121a 1326 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1327 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1328 }
1329
1330 /* Allocate room for one word in ".got". */
f0e6fdb2 1331 htab->sgot->size = 4;
e0001a05 1332
f1ab2340
BW
1333 /* Allocate space in ".rela.got" for literals that reference global
1334 symbols and space in ".rela.plt" for literals that have PLT
1335 entries. */
e0001a05 1336 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1337 elf_xtensa_allocate_dynrelocs,
7fa3d080 1338 (void *) info);
e0001a05 1339
e0001a05
NC
1340 /* If we are generating a shared object, we also need space in
1341 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1342 reference local symbols. */
1343 if (info->shared)
f0e6fdb2 1344 elf_xtensa_allocate_local_got_size (info);
e0001a05 1345
e0001a05
NC
1346 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1347 each PLT entry, we need the PLT code plus a 4-byte literal.
1348 For each chunk of ".plt", we also need two more 4-byte
1349 literals, two corresponding entries in ".rela.got", and an
1350 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1351 spltlittbl = htab->spltlittbl;
eea6121a 1352 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1353 plt_chunks =
1354 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1355
1356 /* Iterate over all the PLT chunks, including any extra sections
1357 created earlier because the initial count of PLT relocations
1358 was an overestimate. */
1359 for (chunk = 0;
f0e6fdb2 1360 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1361 chunk++)
1362 {
1363 int chunk_entries;
1364
f0e6fdb2
BW
1365 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1366 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1367
1368 if (chunk < plt_chunks - 1)
1369 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1370 else if (chunk == plt_chunks - 1)
1371 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1372 else
1373 chunk_entries = 0;
1374
1375 if (chunk_entries != 0)
1376 {
eea6121a
AM
1377 sgotplt->size = 4 * (chunk_entries + 2);
1378 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1379 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1380 spltlittbl->size += 8;
e0001a05
NC
1381 }
1382 else
1383 {
eea6121a
AM
1384 sgotplt->size = 0;
1385 splt->size = 0;
e0001a05
NC
1386 }
1387 }
e901de89
BW
1388
1389 /* Allocate space in ".got.loc" to match the total size of all the
1390 literal tables. */
f0e6fdb2 1391 sgotloc = htab->sgotloc;
eea6121a 1392 sgotloc->size = spltlittbl->size;
e901de89
BW
1393 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1394 {
1395 if (abfd->flags & DYNAMIC)
1396 continue;
1397 for (s = abfd->sections; s != NULL; s = s->next)
1398 {
b536dc1e
BW
1399 if (! elf_discarded_section (s)
1400 && xtensa_is_littable_section (s)
1401 && s != spltlittbl)
eea6121a 1402 sgotloc->size += s->size;
e901de89
BW
1403 }
1404 }
e0001a05
NC
1405 }
1406
1407 /* Allocate memory for dynamic sections. */
1408 relplt = FALSE;
1409 relgot = FALSE;
1410 for (s = dynobj->sections; s != NULL; s = s->next)
1411 {
1412 const char *name;
e0001a05
NC
1413
1414 if ((s->flags & SEC_LINKER_CREATED) == 0)
1415 continue;
1416
1417 /* It's OK to base decisions on the section name, because none
1418 of the dynobj section names depend upon the input files. */
1419 name = bfd_get_section_name (dynobj, s);
1420
0112cd26 1421 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1422 {
c456f082 1423 if (s->size != 0)
e0001a05 1424 {
c456f082
AM
1425 if (strcmp (name, ".rela.plt") == 0)
1426 relplt = TRUE;
1427 else if (strcmp (name, ".rela.got") == 0)
1428 relgot = TRUE;
1429
1430 /* We use the reloc_count field as a counter if we need
1431 to copy relocs into the output file. */
1432 s->reloc_count = 0;
e0001a05
NC
1433 }
1434 }
0112cd26
NC
1435 else if (! CONST_STRNEQ (name, ".plt.")
1436 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1437 && strcmp (name, ".got") != 0
e0001a05
NC
1438 && strcmp (name, ".plt") != 0
1439 && strcmp (name, ".got.plt") != 0
e901de89
BW
1440 && strcmp (name, ".xt.lit.plt") != 0
1441 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1442 {
1443 /* It's not one of our sections, so don't allocate space. */
1444 continue;
1445 }
1446
c456f082
AM
1447 if (s->size == 0)
1448 {
1449 /* If we don't need this section, strip it from the output
1450 file. We must create the ".plt*" and ".got.plt*"
1451 sections in create_dynamic_sections and/or check_relocs
1452 based on a conservative estimate of the PLT relocation
1453 count, because the sections must be created before the
1454 linker maps input sections to output sections. The
1455 linker does that before size_dynamic_sections, where we
1456 compute the exact size of the PLT, so there may be more
1457 of these sections than are actually needed. */
1458 s->flags |= SEC_EXCLUDE;
1459 }
1460 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1461 {
1462 /* Allocate memory for the section contents. */
eea6121a 1463 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1464 if (s->contents == NULL)
e0001a05
NC
1465 return FALSE;
1466 }
1467 }
1468
1469 if (elf_hash_table (info)->dynamic_sections_created)
1470 {
1471 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1472 known until finish_dynamic_sections, but we need to get the relocs
1473 in place before they are sorted. */
e0001a05
NC
1474 for (chunk = 0; chunk < plt_chunks; chunk++)
1475 {
1476 Elf_Internal_Rela irela;
1477 bfd_byte *loc;
1478
1479 irela.r_offset = 0;
1480 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1481 irela.r_addend = 0;
1482
1483 loc = (srelgot->contents
1484 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1485 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1486 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1487 loc + sizeof (Elf32_External_Rela));
1488 srelgot->reloc_count += 2;
1489 }
1490
1491 /* Add some entries to the .dynamic section. We fill in the
1492 values later, in elf_xtensa_finish_dynamic_sections, but we
1493 must add the entries now so that we get the correct size for
1494 the .dynamic section. The DT_DEBUG entry is filled in by the
1495 dynamic linker and used by the debugger. */
1496#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1497 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1498
ba05963f 1499 if (info->executable)
e0001a05
NC
1500 {
1501 if (!add_dynamic_entry (DT_DEBUG, 0))
1502 return FALSE;
1503 }
1504
1505 if (relplt)
1506 {
1507 if (!add_dynamic_entry (DT_PLTGOT, 0)
1508 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1509 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1510 || !add_dynamic_entry (DT_JMPREL, 0))
1511 return FALSE;
1512 }
1513
1514 if (relgot)
1515 {
1516 if (!add_dynamic_entry (DT_RELA, 0)
1517 || !add_dynamic_entry (DT_RELASZ, 0)
1518 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1519 return FALSE;
1520 }
1521
e0001a05
NC
1522 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1523 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1524 return FALSE;
1525 }
1526#undef add_dynamic_entry
1527
1528 return TRUE;
1529}
1530
e0001a05
NC
1531\f
1532/* Perform the specified relocation. The instruction at (contents + address)
1533 is modified to set one operand to represent the value in "relocation". The
1534 operand position is determined by the relocation type recorded in the
1535 howto. */
1536
1537#define CALL_SEGMENT_BITS (30)
7fa3d080 1538#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1539
1540static bfd_reloc_status_type
7fa3d080
BW
1541elf_xtensa_do_reloc (reloc_howto_type *howto,
1542 bfd *abfd,
1543 asection *input_section,
1544 bfd_vma relocation,
1545 bfd_byte *contents,
1546 bfd_vma address,
1547 bfd_boolean is_weak_undef,
1548 char **error_message)
e0001a05 1549{
43cd72b9 1550 xtensa_format fmt;
e0001a05 1551 xtensa_opcode opcode;
e0001a05 1552 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1553 static xtensa_insnbuf ibuff = NULL;
1554 static xtensa_insnbuf sbuff = NULL;
1555 bfd_vma self_address = 0;
1556 bfd_size_type input_size;
1557 int opnd, slot;
e0001a05
NC
1558 uint32 newval;
1559
43cd72b9
BW
1560 if (!ibuff)
1561 {
1562 ibuff = xtensa_insnbuf_alloc (isa);
1563 sbuff = xtensa_insnbuf_alloc (isa);
1564 }
1565
1566 input_size = bfd_get_section_limit (abfd, input_section);
1567
e0001a05
NC
1568 switch (howto->type)
1569 {
1570 case R_XTENSA_NONE:
43cd72b9
BW
1571 case R_XTENSA_DIFF8:
1572 case R_XTENSA_DIFF16:
1573 case R_XTENSA_DIFF32:
e0001a05
NC
1574 return bfd_reloc_ok;
1575
1576 case R_XTENSA_ASM_EXPAND:
1577 if (!is_weak_undef)
1578 {
1579 /* Check for windowed CALL across a 1GB boundary. */
1580 xtensa_opcode opcode =
1581 get_expanded_call_opcode (contents + address,
43cd72b9 1582 input_size - address, 0);
e0001a05
NC
1583 if (is_windowed_call_opcode (opcode))
1584 {
1585 self_address = (input_section->output_section->vma
1586 + input_section->output_offset
1587 + address);
43cd72b9
BW
1588 if ((self_address >> CALL_SEGMENT_BITS)
1589 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1590 {
1591 *error_message = "windowed longcall crosses 1GB boundary; "
1592 "return may fail";
1593 return bfd_reloc_dangerous;
1594 }
1595 }
1596 }
1597 return bfd_reloc_ok;
1598
1599 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1600 {
e0001a05 1601 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1602 bfd_reloc_status_type retval =
1603 elf_xtensa_do_asm_simplify (contents, address, input_size,
1604 error_message);
e0001a05 1605 if (retval != bfd_reloc_ok)
43cd72b9 1606 return bfd_reloc_dangerous;
e0001a05
NC
1607
1608 /* The CALL needs to be relocated. Continue below for that part. */
1609 address += 3;
43cd72b9 1610 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1611 }
1612 break;
1613
1614 case R_XTENSA_32:
1615 case R_XTENSA_PLT:
1616 {
1617 bfd_vma x;
1618 x = bfd_get_32 (abfd, contents + address);
1619 x = x + relocation;
1620 bfd_put_32 (abfd, x, contents + address);
1621 }
1622 return bfd_reloc_ok;
1623 }
1624
43cd72b9
BW
1625 /* Only instruction slot-specific relocations handled below.... */
1626 slot = get_relocation_slot (howto->type);
1627 if (slot == XTENSA_UNDEFINED)
e0001a05 1628 {
43cd72b9 1629 *error_message = "unexpected relocation";
e0001a05
NC
1630 return bfd_reloc_dangerous;
1631 }
1632
43cd72b9
BW
1633 /* Read the instruction into a buffer and decode the opcode. */
1634 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1635 input_size - address);
1636 fmt = xtensa_format_decode (isa, ibuff);
1637 if (fmt == XTENSA_UNDEFINED)
e0001a05 1638 {
43cd72b9 1639 *error_message = "cannot decode instruction format";
e0001a05
NC
1640 return bfd_reloc_dangerous;
1641 }
1642
43cd72b9 1643 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1644
43cd72b9
BW
1645 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1646 if (opcode == XTENSA_UNDEFINED)
e0001a05 1647 {
43cd72b9 1648 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1649 return bfd_reloc_dangerous;
1650 }
1651
43cd72b9
BW
1652 /* Check for opcode-specific "alternate" relocations. */
1653 if (is_alt_relocation (howto->type))
1654 {
1655 if (opcode == get_l32r_opcode ())
1656 {
1657 /* Handle the special-case of non-PC-relative L32R instructions. */
1658 bfd *output_bfd = input_section->output_section->owner;
1659 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1660 if (!lit4_sec)
1661 {
1662 *error_message = "relocation references missing .lit4 section";
1663 return bfd_reloc_dangerous;
1664 }
1665 self_address = ((lit4_sec->vma & ~0xfff)
1666 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1667 newval = relocation;
1668 opnd = 1;
1669 }
1670 else if (opcode == get_const16_opcode ())
1671 {
1672 /* ALT used for high 16 bits. */
1673 newval = relocation >> 16;
1674 opnd = 1;
1675 }
1676 else
1677 {
1678 /* No other "alternate" relocations currently defined. */
1679 *error_message = "unexpected relocation";
1680 return bfd_reloc_dangerous;
1681 }
1682 }
1683 else /* Not an "alternate" relocation.... */
1684 {
1685 if (opcode == get_const16_opcode ())
1686 {
1687 newval = relocation & 0xffff;
1688 opnd = 1;
1689 }
1690 else
1691 {
1692 /* ...normal PC-relative relocation.... */
1693
1694 /* Determine which operand is being relocated. */
1695 opnd = get_relocation_opnd (opcode, howto->type);
1696 if (opnd == XTENSA_UNDEFINED)
1697 {
1698 *error_message = "unexpected relocation";
1699 return bfd_reloc_dangerous;
1700 }
1701
1702 if (!howto->pc_relative)
1703 {
1704 *error_message = "expected PC-relative relocation";
1705 return bfd_reloc_dangerous;
1706 }
e0001a05 1707
43cd72b9
BW
1708 /* Calculate the PC address for this instruction. */
1709 self_address = (input_section->output_section->vma
1710 + input_section->output_offset
1711 + address);
e0001a05 1712
43cd72b9
BW
1713 newval = relocation;
1714 }
1715 }
e0001a05 1716
43cd72b9
BW
1717 /* Apply the relocation. */
1718 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1719 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1720 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1721 sbuff, newval))
e0001a05 1722 {
2db662be
BW
1723 const char *opname = xtensa_opcode_name (isa, opcode);
1724 const char *msg;
1725
1726 msg = "cannot encode";
1727 if (is_direct_call_opcode (opcode))
1728 {
1729 if ((relocation & 0x3) != 0)
1730 msg = "misaligned call target";
1731 else
1732 msg = "call target out of range";
1733 }
1734 else if (opcode == get_l32r_opcode ())
1735 {
1736 if ((relocation & 0x3) != 0)
1737 msg = "misaligned literal target";
1738 else if (is_alt_relocation (howto->type))
1739 msg = "literal target out of range (too many literals)";
1740 else if (self_address > relocation)
1741 msg = "literal target out of range (try using text-section-literals)";
1742 else
1743 msg = "literal placed after use";
1744 }
1745
1746 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1747 return bfd_reloc_dangerous;
1748 }
1749
43cd72b9 1750 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1751 if (is_direct_call_opcode (opcode)
1752 && is_windowed_call_opcode (opcode))
1753 {
43cd72b9
BW
1754 if ((self_address >> CALL_SEGMENT_BITS)
1755 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1756 {
43cd72b9
BW
1757 *error_message =
1758 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1759 return bfd_reloc_dangerous;
1760 }
1761 }
1762
43cd72b9
BW
1763 /* Write the modified instruction back out of the buffer. */
1764 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1765 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1766 input_size - address);
e0001a05
NC
1767 return bfd_reloc_ok;
1768}
1769
1770
2db662be 1771static char *
7fa3d080 1772vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1773{
1774 /* To reduce the size of the memory leak,
1775 we only use a single message buffer. */
1776 static bfd_size_type alloc_size = 0;
1777 static char *message = NULL;
1778 bfd_size_type orig_len, len = 0;
1779 bfd_boolean is_append;
1780
1781 VA_OPEN (ap, arglen);
1782 VA_FIXEDARG (ap, const char *, origmsg);
1783
1784 is_append = (origmsg == message);
1785
1786 orig_len = strlen (origmsg);
1787 len = orig_len + strlen (fmt) + arglen + 20;
1788 if (len > alloc_size)
1789 {
1790 message = (char *) bfd_realloc (message, len);
1791 alloc_size = len;
1792 }
1793 if (!is_append)
1794 memcpy (message, origmsg, orig_len);
1795 vsprintf (message + orig_len, fmt, ap);
1796 VA_CLOSE (ap);
1797 return message;
1798}
1799
1800
e0001a05
NC
1801/* This function is registered as the "special_function" in the
1802 Xtensa howto for handling simplify operations.
1803 bfd_perform_relocation / bfd_install_relocation use it to
1804 perform (install) the specified relocation. Since this replaces the code
1805 in bfd_perform_relocation, it is basically an Xtensa-specific,
1806 stripped-down version of bfd_perform_relocation. */
1807
1808static bfd_reloc_status_type
7fa3d080
BW
1809bfd_elf_xtensa_reloc (bfd *abfd,
1810 arelent *reloc_entry,
1811 asymbol *symbol,
1812 void *data,
1813 asection *input_section,
1814 bfd *output_bfd,
1815 char **error_message)
e0001a05
NC
1816{
1817 bfd_vma relocation;
1818 bfd_reloc_status_type flag;
1819 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1820 bfd_vma output_base = 0;
1821 reloc_howto_type *howto = reloc_entry->howto;
1822 asection *reloc_target_output_section;
1823 bfd_boolean is_weak_undef;
1824
dd1a320b
BW
1825 if (!xtensa_default_isa)
1826 xtensa_default_isa = xtensa_isa_init (0, 0);
1827
1049f94e 1828 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1829 output, and the reloc is against an external symbol, the resulting
1830 reloc will also be against the same symbol. In such a case, we
1831 don't want to change anything about the way the reloc is handled,
1832 since it will all be done at final link time. This test is similar
1833 to what bfd_elf_generic_reloc does except that it lets relocs with
1834 howto->partial_inplace go through even if the addend is non-zero.
1835 (The real problem is that partial_inplace is set for XTENSA_32
1836 relocs to begin with, but that's a long story and there's little we
1837 can do about it now....) */
1838
7fa3d080 1839 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1840 {
1841 reloc_entry->address += input_section->output_offset;
1842 return bfd_reloc_ok;
1843 }
1844
1845 /* Is the address of the relocation really within the section? */
07515404 1846 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1847 return bfd_reloc_outofrange;
1848
4cc11e76 1849 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1850 initial relocation command value. */
1851
1852 /* Get symbol value. (Common symbols are special.) */
1853 if (bfd_is_com_section (symbol->section))
1854 relocation = 0;
1855 else
1856 relocation = symbol->value;
1857
1858 reloc_target_output_section = symbol->section->output_section;
1859
1860 /* Convert input-section-relative symbol value to absolute. */
1861 if ((output_bfd && !howto->partial_inplace)
1862 || reloc_target_output_section == NULL)
1863 output_base = 0;
1864 else
1865 output_base = reloc_target_output_section->vma;
1866
1867 relocation += output_base + symbol->section->output_offset;
1868
1869 /* Add in supplied addend. */
1870 relocation += reloc_entry->addend;
1871
1872 /* Here the variable relocation holds the final address of the
1873 symbol we are relocating against, plus any addend. */
1874 if (output_bfd)
1875 {
1876 if (!howto->partial_inplace)
1877 {
1878 /* This is a partial relocation, and we want to apply the relocation
1879 to the reloc entry rather than the raw data. Everything except
1880 relocations against section symbols has already been handled
1881 above. */
43cd72b9 1882
e0001a05
NC
1883 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1884 reloc_entry->addend = relocation;
1885 reloc_entry->address += input_section->output_offset;
1886 return bfd_reloc_ok;
1887 }
1888 else
1889 {
1890 reloc_entry->address += input_section->output_offset;
1891 reloc_entry->addend = 0;
1892 }
1893 }
1894
1895 is_weak_undef = (bfd_is_und_section (symbol->section)
1896 && (symbol->flags & BSF_WEAK) != 0);
1897 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1898 (bfd_byte *) data, (bfd_vma) octets,
1899 is_weak_undef, error_message);
1900
1901 if (flag == bfd_reloc_dangerous)
1902 {
1903 /* Add the symbol name to the error message. */
1904 if (! *error_message)
1905 *error_message = "";
1906 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1907 strlen (symbol->name) + 17,
70961b9d
AM
1908 symbol->name,
1909 (unsigned long) reloc_entry->addend);
e0001a05
NC
1910 }
1911
1912 return flag;
1913}
1914
1915
1916/* Set up an entry in the procedure linkage table. */
1917
1918static bfd_vma
f0e6fdb2 1919elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
1920 bfd *output_bfd,
1921 unsigned reloc_index)
e0001a05
NC
1922{
1923 asection *splt, *sgotplt;
1924 bfd_vma plt_base, got_base;
1925 bfd_vma code_offset, lit_offset;
1926 int chunk;
1927
1928 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
1929 splt = elf_xtensa_get_plt_section (info, chunk);
1930 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
1931 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1932
1933 plt_base = splt->output_section->vma + splt->output_offset;
1934 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1935
1936 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1937 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1938
1939 /* Fill in the literal entry. This is the offset of the dynamic
1940 relocation entry. */
1941 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1942 sgotplt->contents + lit_offset);
1943
1944 /* Fill in the entry in the procedure linkage table. */
1945 memcpy (splt->contents + code_offset,
1946 (bfd_big_endian (output_bfd)
1947 ? elf_xtensa_be_plt_entry
1948 : elf_xtensa_le_plt_entry),
1949 PLT_ENTRY_SIZE);
1950 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1951 plt_base + code_offset + 3),
1952 splt->contents + code_offset + 4);
1953 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1954 plt_base + code_offset + 6),
1955 splt->contents + code_offset + 7);
1956 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1957 plt_base + code_offset + 9),
1958 splt->contents + code_offset + 10);
1959
1960 return plt_base + code_offset;
1961}
1962
1963
e0001a05 1964/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1965 both relocatable and final links. */
e0001a05
NC
1966
1967static bfd_boolean
7fa3d080
BW
1968elf_xtensa_relocate_section (bfd *output_bfd,
1969 struct bfd_link_info *info,
1970 bfd *input_bfd,
1971 asection *input_section,
1972 bfd_byte *contents,
1973 Elf_Internal_Rela *relocs,
1974 Elf_Internal_Sym *local_syms,
1975 asection **local_sections)
e0001a05 1976{
f0e6fdb2 1977 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1978 Elf_Internal_Shdr *symtab_hdr;
1979 Elf_Internal_Rela *rel;
1980 Elf_Internal_Rela *relend;
1981 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
1982 property_table_entry *lit_table = 0;
1983 int ltblsize = 0;
e0001a05 1984 char *error_message = NULL;
43cd72b9 1985 bfd_size_type input_size;
e0001a05 1986
43cd72b9
BW
1987 if (!xtensa_default_isa)
1988 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 1989
f0e6fdb2 1990 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1991 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1992 sym_hashes = elf_sym_hashes (input_bfd);
1993
88d65ad6
BW
1994 if (elf_hash_table (info)->dynamic_sections_created)
1995 {
1996 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
1997 &lit_table, XTENSA_LIT_SEC_NAME,
1998 TRUE);
88d65ad6
BW
1999 if (ltblsize < 0)
2000 return FALSE;
2001 }
2002
43cd72b9
BW
2003 input_size = bfd_get_section_limit (input_bfd, input_section);
2004
e0001a05
NC
2005 rel = relocs;
2006 relend = relocs + input_section->reloc_count;
2007 for (; rel < relend; rel++)
2008 {
2009 int r_type;
2010 reloc_howto_type *howto;
2011 unsigned long r_symndx;
2012 struct elf_link_hash_entry *h;
2013 Elf_Internal_Sym *sym;
2014 asection *sec;
2015 bfd_vma relocation;
2016 bfd_reloc_status_type r;
2017 bfd_boolean is_weak_undef;
2018 bfd_boolean unresolved_reloc;
9b8c98a4 2019 bfd_boolean warned;
e0001a05
NC
2020
2021 r_type = ELF32_R_TYPE (rel->r_info);
2022 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2023 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2024 continue;
2025
2026 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2027 {
2028 bfd_set_error (bfd_error_bad_value);
2029 return FALSE;
2030 }
2031 howto = &elf_howto_table[r_type];
2032
2033 r_symndx = ELF32_R_SYM (rel->r_info);
2034
ab96bf03
AM
2035 h = NULL;
2036 sym = NULL;
2037 sec = NULL;
2038 is_weak_undef = FALSE;
2039 unresolved_reloc = FALSE;
2040 warned = FALSE;
2041
2042 if (howto->partial_inplace && !info->relocatable)
2043 {
2044 /* Because R_XTENSA_32 was made partial_inplace to fix some
2045 problems with DWARF info in partial links, there may be
2046 an addend stored in the contents. Take it out of there
2047 and move it back into the addend field of the reloc. */
2048 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2049 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2050 }
2051
2052 if (r_symndx < symtab_hdr->sh_info)
2053 {
2054 sym = local_syms + r_symndx;
2055 sec = local_sections[r_symndx];
2056 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2057 }
2058 else
2059 {
2060 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2061 r_symndx, symtab_hdr, sym_hashes,
2062 h, sec, relocation,
2063 unresolved_reloc, warned);
2064
2065 if (relocation == 0
2066 && !unresolved_reloc
2067 && h->root.type == bfd_link_hash_undefweak)
2068 is_weak_undef = TRUE;
2069 }
2070
2071 if (sec != NULL && elf_discarded_section (sec))
2072 {
2073 /* For relocs against symbols from removed linkonce sections,
2074 or sections discarded by a linker script, we just want the
2075 section contents zeroed. Avoid any special processing. */
2076 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2077 rel->r_info = 0;
2078 rel->r_addend = 0;
2079 continue;
2080 }
2081
1049f94e 2082 if (info->relocatable)
e0001a05 2083 {
43cd72b9 2084 /* This is a relocatable link.
e0001a05
NC
2085 1) If the reloc is against a section symbol, adjust
2086 according to the output section.
2087 2) If there is a new target for this relocation,
2088 the new target will be in the same output section.
2089 We adjust the relocation by the output section
2090 difference. */
2091
2092 if (relaxing_section)
2093 {
2094 /* Check if this references a section in another input file. */
43cd72b9
BW
2095 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2096 contents))
2097 return FALSE;
e0001a05
NC
2098 r_type = ELF32_R_TYPE (rel->r_info);
2099 }
2100
43cd72b9 2101 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2102 {
43cd72b9 2103 char *error_message = NULL;
e0001a05
NC
2104 /* Convert ASM_SIMPLIFY into the simpler relocation
2105 so that they never escape a relaxing link. */
43cd72b9
BW
2106 r = contract_asm_expansion (contents, input_size, rel,
2107 &error_message);
2108 if (r != bfd_reloc_ok)
2109 {
2110 if (!((*info->callbacks->reloc_dangerous)
2111 (info, error_message, input_bfd, input_section,
2112 rel->r_offset)))
2113 return FALSE;
2114 }
e0001a05
NC
2115 r_type = ELF32_R_TYPE (rel->r_info);
2116 }
2117
1049f94e 2118 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2119 anything unless the reloc is against a section symbol,
2120 in which case we have to adjust according to where the
2121 section symbol winds up in the output section. */
2122 if (r_symndx < symtab_hdr->sh_info)
2123 {
2124 sym = local_syms + r_symndx;
2125 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2126 {
2127 sec = local_sections[r_symndx];
2128 rel->r_addend += sec->output_offset + sym->st_value;
2129 }
2130 }
2131
2132 /* If there is an addend with a partial_inplace howto,
2133 then move the addend to the contents. This is a hack
1049f94e 2134 to work around problems with DWARF in relocatable links
e0001a05
NC
2135 with some previous version of BFD. Now we can't easily get
2136 rid of the hack without breaking backward compatibility.... */
2137 if (rel->r_addend)
2138 {
2139 howto = &elf_howto_table[r_type];
2140 if (howto->partial_inplace)
2141 {
2142 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2143 rel->r_addend, contents,
2144 rel->r_offset, FALSE,
2145 &error_message);
2146 if (r != bfd_reloc_ok)
2147 {
2148 if (!((*info->callbacks->reloc_dangerous)
2149 (info, error_message, input_bfd, input_section,
2150 rel->r_offset)))
2151 return FALSE;
2152 }
2153 rel->r_addend = 0;
2154 }
2155 }
2156
1049f94e 2157 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2158 continue;
2159 }
2160
2161 /* This is a final link. */
2162
e0001a05
NC
2163 if (relaxing_section)
2164 {
2165 /* Check if this references a section in another input file. */
43cd72b9
BW
2166 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2167 &relocation);
e0001a05
NC
2168
2169 /* Update some already cached values. */
2170 r_type = ELF32_R_TYPE (rel->r_info);
2171 howto = &elf_howto_table[r_type];
2172 }
2173
2174 /* Sanity check the address. */
43cd72b9 2175 if (rel->r_offset >= input_size
e0001a05
NC
2176 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2177 {
43cd72b9
BW
2178 (*_bfd_error_handler)
2179 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2180 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2181 bfd_set_error (bfd_error_bad_value);
2182 return FALSE;
2183 }
2184
2185 /* Generate dynamic relocations. */
2186 if (elf_hash_table (info)->dynamic_sections_created)
2187 {
4608f3d9 2188 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 2189
43cd72b9 2190 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2191 {
2192 /* This is an error. The symbol's real value won't be known
2193 until runtime and it's likely to be out of range anyway. */
2194 const char *name = h->root.root.string;
2195 error_message = vsprint_msg ("invalid relocation for dynamic "
2196 "symbol", ": %s",
2197 strlen (name) + 2, name);
2198 if (!((*info->callbacks->reloc_dangerous)
2199 (info, error_message, input_bfd, input_section,
2200 rel->r_offset)))
2201 return FALSE;
2202 }
2203 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2204 && (input_section->flags & SEC_ALLOC) != 0
2205 && (dynamic_symbol || info->shared))
2206 {
2207 Elf_Internal_Rela outrel;
2208 bfd_byte *loc;
2209 asection *srel;
2210
2211 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2212 srel = htab->srelplt;
e0001a05 2213 else
f0e6fdb2 2214 srel = htab->srelgot;
e0001a05
NC
2215
2216 BFD_ASSERT (srel != NULL);
2217
2218 outrel.r_offset =
2219 _bfd_elf_section_offset (output_bfd, info,
2220 input_section, rel->r_offset);
2221
2222 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2223 memset (&outrel, 0, sizeof outrel);
2224 else
2225 {
f0578e28
BW
2226 outrel.r_offset += (input_section->output_section->vma
2227 + input_section->output_offset);
e0001a05 2228
88d65ad6
BW
2229 /* Complain if the relocation is in a read-only section
2230 and not in a literal pool. */
2231 if ((input_section->flags & SEC_READONLY) != 0
2232 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2233 outrel.r_offset))
88d65ad6
BW
2234 {
2235 error_message =
2236 _("dynamic relocation in read-only section");
2237 if (!((*info->callbacks->reloc_dangerous)
2238 (info, error_message, input_bfd, input_section,
2239 rel->r_offset)))
2240 return FALSE;
2241 }
2242
e0001a05
NC
2243 if (dynamic_symbol)
2244 {
2245 outrel.r_addend = rel->r_addend;
2246 rel->r_addend = 0;
2247
2248 if (r_type == R_XTENSA_32)
2249 {
2250 outrel.r_info =
2251 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2252 relocation = 0;
2253 }
2254 else /* r_type == R_XTENSA_PLT */
2255 {
2256 outrel.r_info =
2257 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2258
2259 /* Create the PLT entry and set the initial
2260 contents of the literal entry to the address of
2261 the PLT entry. */
43cd72b9 2262 relocation =
f0e6fdb2 2263 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2264 srel->reloc_count);
2265 }
2266 unresolved_reloc = FALSE;
2267 }
2268 else
2269 {
2270 /* Generate a RELATIVE relocation. */
2271 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2272 outrel.r_addend = 0;
2273 }
2274 }
2275
2276 loc = (srel->contents
2277 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2278 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2279 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2280 <= srel->size);
e0001a05
NC
2281 }
2282 }
2283
2284 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2285 because such sections are not SEC_ALLOC and thus ld.so will
2286 not process them. */
2287 if (unresolved_reloc
2288 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2289 && h->def_dynamic))
bf1747de
BW
2290 {
2291 (*_bfd_error_handler)
2292 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2293 input_bfd,
2294 input_section,
2295 (long) rel->r_offset,
2296 howto->name,
2297 h->root.root.string);
2298 return FALSE;
2299 }
e0001a05
NC
2300
2301 /* There's no point in calling bfd_perform_relocation here.
2302 Just go directly to our "special function". */
2303 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2304 relocation + rel->r_addend,
2305 contents, rel->r_offset, is_weak_undef,
2306 &error_message);
43cd72b9 2307
9b8c98a4 2308 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2309 {
2310 const char *name;
2311
43cd72b9 2312 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2313 BFD_ASSERT (error_message != NULL);
e0001a05 2314
7fa3d080 2315 if (h)
e0001a05
NC
2316 name = h->root.root.string;
2317 else
2318 {
2319 name = bfd_elf_string_from_elf_section
2320 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2321 if (name && *name == '\0')
2322 name = bfd_section_name (input_bfd, sec);
2323 }
2324 if (name)
43cd72b9
BW
2325 {
2326 if (rel->r_addend == 0)
2327 error_message = vsprint_msg (error_message, ": %s",
2328 strlen (name) + 2, name);
2329 else
2330 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2331 strlen (name) + 22,
0fd3a477 2332 name, (int)rel->r_addend);
43cd72b9
BW
2333 }
2334
e0001a05
NC
2335 if (!((*info->callbacks->reloc_dangerous)
2336 (info, error_message, input_bfd, input_section,
2337 rel->r_offset)))
2338 return FALSE;
2339 }
2340 }
2341
88d65ad6
BW
2342 if (lit_table)
2343 free (lit_table);
2344
3ba3bc8c
BW
2345 input_section->reloc_done = TRUE;
2346
e0001a05
NC
2347 return TRUE;
2348}
2349
2350
2351/* Finish up dynamic symbol handling. There's not much to do here since
2352 the PLT and GOT entries are all set up by relocate_section. */
2353
2354static bfd_boolean
7fa3d080
BW
2355elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2356 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2357 struct elf_link_hash_entry *h,
2358 Elf_Internal_Sym *sym)
e0001a05 2359{
bf1747de 2360 if (h->needs_plt && !h->def_regular)
e0001a05
NC
2361 {
2362 /* Mark the symbol as undefined, rather than as defined in
2363 the .plt section. Leave the value alone. */
2364 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
2365 /* If the symbol is weak, we do need to clear the value.
2366 Otherwise, the PLT entry would provide a definition for
2367 the symbol even if the symbol wasn't defined anywhere,
2368 and so the symbol would never be NULL. */
2369 if (!h->ref_regular_nonweak)
2370 sym->st_value = 0;
e0001a05
NC
2371 }
2372
2373 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2374 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2375 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2376 sym->st_shndx = SHN_ABS;
2377
2378 return TRUE;
2379}
2380
2381
2382/* Combine adjacent literal table entries in the output. Adjacent
2383 entries within each input section may have been removed during
2384 relaxation, but we repeat the process here, even though it's too late
2385 to shrink the output section, because it's important to minimize the
2386 number of literal table entries to reduce the start-up work for the
2387 runtime linker. Returns the number of remaining table entries or -1
2388 on error. */
2389
2390static int
7fa3d080
BW
2391elf_xtensa_combine_prop_entries (bfd *output_bfd,
2392 asection *sxtlit,
2393 asection *sgotloc)
e0001a05 2394{
e0001a05
NC
2395 bfd_byte *contents;
2396 property_table_entry *table;
e901de89 2397 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2398 bfd_vma offset;
2399 int n, m, num;
2400
eea6121a 2401 section_size = sxtlit->size;
e0001a05
NC
2402 BFD_ASSERT (section_size % 8 == 0);
2403 num = section_size / 8;
2404
eea6121a 2405 sgotloc_size = sgotloc->size;
e901de89 2406 if (sgotloc_size != section_size)
b536dc1e
BW
2407 {
2408 (*_bfd_error_handler)
43cd72b9 2409 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2410 return -1;
2411 }
e901de89 2412
eea6121a
AM
2413 table = bfd_malloc (num * sizeof (property_table_entry));
2414 if (table == 0)
e0001a05
NC
2415 return -1;
2416
2417 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2418 propagates to the output section, where it doesn't really apply and
eea6121a 2419 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2420 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2421
eea6121a
AM
2422 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2423 {
2424 if (contents != 0)
2425 free (contents);
2426 free (table);
2427 return -1;
2428 }
e0001a05
NC
2429
2430 /* There should never be any relocations left at this point, so this
2431 is quite a bit easier than what is done during relaxation. */
2432
2433 /* Copy the raw contents into a property table array and sort it. */
2434 offset = 0;
2435 for (n = 0; n < num; n++)
2436 {
2437 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2438 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2439 offset += 8;
2440 }
2441 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2442
2443 for (n = 0; n < num; n++)
2444 {
2445 bfd_boolean remove = FALSE;
2446
2447 if (table[n].size == 0)
2448 remove = TRUE;
2449 else if (n > 0 &&
2450 (table[n-1].address + table[n-1].size == table[n].address))
2451 {
2452 table[n-1].size += table[n].size;
2453 remove = TRUE;
2454 }
2455
2456 if (remove)
2457 {
2458 for (m = n; m < num - 1; m++)
2459 {
2460 table[m].address = table[m+1].address;
2461 table[m].size = table[m+1].size;
2462 }
2463
2464 n--;
2465 num--;
2466 }
2467 }
2468
2469 /* Copy the data back to the raw contents. */
2470 offset = 0;
2471 for (n = 0; n < num; n++)
2472 {
2473 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2474 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2475 offset += 8;
2476 }
2477
2478 /* Clear the removed bytes. */
2479 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2480 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2481
e901de89
BW
2482 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2483 section_size))
e0001a05
NC
2484 return -1;
2485
e901de89
BW
2486 /* Copy the contents to ".got.loc". */
2487 memcpy (sgotloc->contents, contents, section_size);
2488
e0001a05 2489 free (contents);
b614a702 2490 free (table);
e0001a05
NC
2491 return num;
2492}
2493
2494
2495/* Finish up the dynamic sections. */
2496
2497static bfd_boolean
7fa3d080
BW
2498elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2499 struct bfd_link_info *info)
e0001a05 2500{
f0e6fdb2 2501 struct elf_xtensa_link_hash_table *htab;
e0001a05 2502 bfd *dynobj;
e901de89 2503 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2504 Elf32_External_Dyn *dyncon, *dynconend;
2505 int num_xtlit_entries;
2506
2507 if (! elf_hash_table (info)->dynamic_sections_created)
2508 return TRUE;
2509
f0e6fdb2 2510 htab = elf_xtensa_hash_table (info);
e0001a05
NC
2511 dynobj = elf_hash_table (info)->dynobj;
2512 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2513 BFD_ASSERT (sdyn != NULL);
2514
2515 /* Set the first entry in the global offset table to the address of
2516 the dynamic section. */
f0e6fdb2 2517 sgot = htab->sgot;
e0001a05
NC
2518 if (sgot)
2519 {
eea6121a 2520 BFD_ASSERT (sgot->size == 4);
e0001a05 2521 if (sdyn == NULL)
7fa3d080 2522 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2523 else
2524 bfd_put_32 (output_bfd,
2525 sdyn->output_section->vma + sdyn->output_offset,
2526 sgot->contents);
2527 }
2528
f0e6fdb2 2529 srelplt = htab->srelplt;
7fa3d080 2530 if (srelplt && srelplt->size != 0)
e0001a05
NC
2531 {
2532 asection *sgotplt, *srelgot, *spltlittbl;
2533 int chunk, plt_chunks, plt_entries;
2534 Elf_Internal_Rela irela;
2535 bfd_byte *loc;
2536 unsigned rtld_reloc;
2537
f0e6fdb2
BW
2538 srelgot = htab->srelgot;
2539 spltlittbl = htab->spltlittbl;
2540 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
2541
2542 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2543 of them follow immediately after.... */
2544 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2545 {
2546 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2547 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2548 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2549 break;
2550 }
2551 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2552
eea6121a 2553 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2554 plt_chunks =
2555 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2556
2557 for (chunk = 0; chunk < plt_chunks; chunk++)
2558 {
2559 int chunk_entries = 0;
2560
f0e6fdb2 2561 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2562 BFD_ASSERT (sgotplt != NULL);
2563
2564 /* Emit special RTLD relocations for the first two entries in
2565 each chunk of the .got.plt section. */
2566
2567 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2568 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2569 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2570 irela.r_offset = (sgotplt->output_section->vma
2571 + sgotplt->output_offset);
2572 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2573 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2574 rtld_reloc += 1;
2575 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2576
2577 /* Next literal immediately follows the first. */
2578 loc += sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset + 4);
2583 /* Tell rtld to set value to object's link map. */
2584 irela.r_addend = 2;
2585 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2586 rtld_reloc += 1;
2587 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2588
2589 /* Fill in the literal table. */
2590 if (chunk < plt_chunks - 1)
2591 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2592 else
2593 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2594
eea6121a 2595 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2596 bfd_put_32 (output_bfd,
2597 sgotplt->output_section->vma + sgotplt->output_offset,
2598 spltlittbl->contents + (chunk * 8) + 0);
2599 bfd_put_32 (output_bfd,
2600 8 + (chunk_entries * 4),
2601 spltlittbl->contents + (chunk * 8) + 4);
2602 }
2603
2604 /* All the dynamic relocations have been emitted at this point.
2605 Make sure the relocation sections are the correct size. */
eea6121a
AM
2606 if (srelgot->size != (sizeof (Elf32_External_Rela)
2607 * srelgot->reloc_count)
2608 || srelplt->size != (sizeof (Elf32_External_Rela)
2609 * srelplt->reloc_count))
e0001a05
NC
2610 abort ();
2611
2612 /* The .xt.lit.plt section has just been modified. This must
2613 happen before the code below which combines adjacent literal
2614 table entries, and the .xt.lit.plt contents have to be forced to
2615 the output here. */
2616 if (! bfd_set_section_contents (output_bfd,
2617 spltlittbl->output_section,
2618 spltlittbl->contents,
2619 spltlittbl->output_offset,
eea6121a 2620 spltlittbl->size))
e0001a05
NC
2621 return FALSE;
2622 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2623 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2624 }
2625
2626 /* Combine adjacent literal table entries. */
1049f94e 2627 BFD_ASSERT (! info->relocatable);
e901de89 2628 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 2629 sgotloc = htab->sgotloc;
b536dc1e 2630 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2631 num_xtlit_entries =
2632 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2633 if (num_xtlit_entries < 0)
2634 return FALSE;
2635
2636 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2637 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2638 for (; dyncon < dynconend; dyncon++)
2639 {
2640 Elf_Internal_Dyn dyn;
e0001a05
NC
2641
2642 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2643
2644 switch (dyn.d_tag)
2645 {
2646 default:
2647 break;
2648
2649 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2650 dyn.d_un.d_val = num_xtlit_entries;
2651 break;
2652
2653 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 2654 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
2655 break;
2656
e0001a05 2657 case DT_PLTGOT:
e29297b7 2658 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
2659 break;
2660
e0001a05 2661 case DT_JMPREL:
e29297b7 2662 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
2663 break;
2664
2665 case DT_PLTRELSZ:
e29297b7 2666 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
2667 break;
2668
2669 case DT_RELASZ:
2670 /* Adjust RELASZ to not include JMPREL. This matches what
2671 glibc expects and what is done for several other ELF
2672 targets (e.g., i386, alpha), but the "correct" behavior
2673 seems to be unresolved. Since the linker script arranges
2674 for .rela.plt to follow all other relocation sections, we
2675 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 2676 if (htab->srelplt)
e29297b7 2677 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
2678 break;
2679 }
2680
2681 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2682 }
2683
2684 return TRUE;
2685}
2686
2687\f
2688/* Functions for dealing with the e_flags field. */
2689
2690/* Merge backend specific data from an object file to the output
2691 object file when linking. */
2692
2693static bfd_boolean
7fa3d080 2694elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2695{
2696 unsigned out_mach, in_mach;
2697 flagword out_flag, in_flag;
2698
2699 /* Check if we have the same endianess. */
2700 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2701 return FALSE;
2702
2703 /* Don't even pretend to support mixed-format linking. */
2704 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2705 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2706 return FALSE;
2707
2708 out_flag = elf_elfheader (obfd)->e_flags;
2709 in_flag = elf_elfheader (ibfd)->e_flags;
2710
2711 out_mach = out_flag & EF_XTENSA_MACH;
2712 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2713 if (out_mach != in_mach)
e0001a05
NC
2714 {
2715 (*_bfd_error_handler)
43cd72b9 2716 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2717 ibfd, out_mach, in_mach);
e0001a05
NC
2718 bfd_set_error (bfd_error_wrong_format);
2719 return FALSE;
2720 }
2721
2722 if (! elf_flags_init (obfd))
2723 {
2724 elf_flags_init (obfd) = TRUE;
2725 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2726
e0001a05
NC
2727 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2728 && bfd_get_arch_info (obfd)->the_default)
2729 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2730 bfd_get_mach (ibfd));
43cd72b9 2731
e0001a05
NC
2732 return TRUE;
2733 }
2734
43cd72b9
BW
2735 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2736 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2737
43cd72b9
BW
2738 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2739 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2740
2741 return TRUE;
2742}
2743
2744
2745static bfd_boolean
7fa3d080 2746elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2747{
2748 BFD_ASSERT (!elf_flags_init (abfd)
2749 || elf_elfheader (abfd)->e_flags == flags);
2750
2751 elf_elfheader (abfd)->e_flags |= flags;
2752 elf_flags_init (abfd) = TRUE;
2753
2754 return TRUE;
2755}
2756
2757
e0001a05 2758static bfd_boolean
7fa3d080 2759elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2760{
2761 FILE *f = (FILE *) farg;
2762 flagword e_flags = elf_elfheader (abfd)->e_flags;
2763
2764 fprintf (f, "\nXtensa header:\n");
43cd72b9 2765 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2766 fprintf (f, "\nMachine = Base\n");
2767 else
2768 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2769
2770 fprintf (f, "Insn tables = %s\n",
2771 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2772
2773 fprintf (f, "Literal tables = %s\n",
2774 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2775
2776 return _bfd_elf_print_private_bfd_data (abfd, farg);
2777}
2778
2779
2780/* Set the right machine number for an Xtensa ELF file. */
2781
2782static bfd_boolean
7fa3d080 2783elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2784{
2785 int mach;
2786 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2787
2788 switch (arch)
2789 {
2790 case E_XTENSA_MACH:
2791 mach = bfd_mach_xtensa;
2792 break;
2793 default:
2794 return FALSE;
2795 }
2796
2797 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2798 return TRUE;
2799}
2800
2801
2802/* The final processing done just before writing out an Xtensa ELF object
2803 file. This gets the Xtensa architecture right based on the machine
2804 number. */
2805
2806static void
7fa3d080
BW
2807elf_xtensa_final_write_processing (bfd *abfd,
2808 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2809{
2810 int mach;
2811 unsigned long val;
2812
2813 switch (mach = bfd_get_mach (abfd))
2814 {
2815 case bfd_mach_xtensa:
2816 val = E_XTENSA_MACH;
2817 break;
2818 default:
2819 return;
2820 }
2821
2822 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2823 elf_elfheader (abfd)->e_flags |= val;
2824}
2825
2826
2827static enum elf_reloc_type_class
7fa3d080 2828elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2829{
2830 switch ((int) ELF32_R_TYPE (rela->r_info))
2831 {
2832 case R_XTENSA_RELATIVE:
2833 return reloc_class_relative;
2834 case R_XTENSA_JMP_SLOT:
2835 return reloc_class_plt;
2836 default:
2837 return reloc_class_normal;
2838 }
2839}
2840
2841\f
2842static bfd_boolean
7fa3d080
BW
2843elf_xtensa_discard_info_for_section (bfd *abfd,
2844 struct elf_reloc_cookie *cookie,
2845 struct bfd_link_info *info,
2846 asection *sec)
e0001a05
NC
2847{
2848 bfd_byte *contents;
2849 bfd_vma section_size;
2850 bfd_vma offset, actual_offset;
1d25768e
BW
2851 bfd_size_type removed_bytes = 0;
2852 bfd_size_type entry_size;
e0001a05
NC
2853
2854 if (sec->output_section
2855 && bfd_is_abs_section (sec->output_section))
2856 return FALSE;
2857
1d25768e
BW
2858 if (xtensa_is_proptable_section (sec))
2859 entry_size = 12;
2860 else
2861 entry_size = 8;
2862
2863 section_size = sec->size;
2864 if (section_size == 0 || section_size % entry_size != 0)
2865 return FALSE;
2866
e0001a05
NC
2867 contents = retrieve_contents (abfd, sec, info->keep_memory);
2868 if (!contents)
2869 return FALSE;
2870
2871 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2872 if (!cookie->rels)
2873 {
2874 release_contents (sec, contents);
2875 return FALSE;
2876 }
2877
1d25768e
BW
2878 /* Sort the relocations. They should already be in order when
2879 relaxation is enabled, but it might not be. */
2880 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2881 internal_reloc_compare);
2882
e0001a05
NC
2883 cookie->rel = cookie->rels;
2884 cookie->relend = cookie->rels + sec->reloc_count;
2885
1d25768e 2886 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
2887 {
2888 actual_offset = offset - removed_bytes;
2889
2890 /* The ...symbol_deleted_p function will skip over relocs but it
2891 won't adjust their offsets, so do that here. */
2892 while (cookie->rel < cookie->relend
2893 && cookie->rel->r_offset < offset)
2894 {
2895 cookie->rel->r_offset -= removed_bytes;
2896 cookie->rel++;
2897 }
2898
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset == offset)
2901 {
c152c796 2902 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2903 {
2904 /* Remove the table entry. (If the reloc type is NONE, then
2905 the entry has already been merged with another and deleted
2906 during relaxation.) */
2907 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2908 {
2909 /* Shift the contents up. */
1d25768e 2910 if (offset + entry_size < section_size)
e0001a05 2911 memmove (&contents[actual_offset],
1d25768e
BW
2912 &contents[actual_offset + entry_size],
2913 section_size - offset - entry_size);
2914 removed_bytes += entry_size;
e0001a05
NC
2915 }
2916
2917 /* Remove this relocation. */
2918 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2919 }
2920
2921 /* Adjust the relocation offset for previous removals. This
2922 should not be done before calling ...symbol_deleted_p
2923 because it might mess up the offset comparisons there.
2924 Make sure the offset doesn't underflow in the case where
2925 the first entry is removed. */
2926 if (cookie->rel->r_offset >= removed_bytes)
2927 cookie->rel->r_offset -= removed_bytes;
2928 else
2929 cookie->rel->r_offset = 0;
2930
2931 cookie->rel++;
2932 }
2933 }
2934
2935 if (removed_bytes != 0)
2936 {
2937 /* Adjust any remaining relocs (shouldn't be any). */
2938 for (; cookie->rel < cookie->relend; cookie->rel++)
2939 {
2940 if (cookie->rel->r_offset >= removed_bytes)
2941 cookie->rel->r_offset -= removed_bytes;
2942 else
2943 cookie->rel->r_offset = 0;
2944 }
2945
2946 /* Clear the removed bytes. */
2947 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2948
2949 pin_contents (sec, contents);
2950 pin_internal_relocs (sec, cookie->rels);
2951
eea6121a
AM
2952 /* Shrink size. */
2953 sec->size = section_size - removed_bytes;
b536dc1e
BW
2954
2955 if (xtensa_is_littable_section (sec))
2956 {
f0e6fdb2
BW
2957 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2958 if (sgotloc)
2959 sgotloc->size -= removed_bytes;
b536dc1e 2960 }
e0001a05
NC
2961 }
2962 else
2963 {
2964 release_contents (sec, contents);
2965 release_internal_relocs (sec, cookie->rels);
2966 }
2967
2968 return (removed_bytes != 0);
2969}
2970
2971
2972static bfd_boolean
7fa3d080
BW
2973elf_xtensa_discard_info (bfd *abfd,
2974 struct elf_reloc_cookie *cookie,
2975 struct bfd_link_info *info)
e0001a05
NC
2976{
2977 asection *sec;
2978 bfd_boolean changed = FALSE;
2979
2980 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2981 {
2982 if (xtensa_is_property_section (sec))
2983 {
2984 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2985 changed = TRUE;
2986 }
2987 }
2988
2989 return changed;
2990}
2991
2992
2993static bfd_boolean
7fa3d080 2994elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
2995{
2996 return xtensa_is_property_section (sec);
2997}
2998
a77dc2cc
BW
2999
3000static unsigned int
3001elf_xtensa_action_discarded (asection *sec)
3002{
3003 if (strcmp (".xt_except_table", sec->name) == 0)
3004 return 0;
3005
3006 if (strcmp (".xt_except_desc", sec->name) == 0)
3007 return 0;
3008
3009 return _bfd_elf_default_action_discarded (sec);
3010}
3011
e0001a05
NC
3012\f
3013/* Support for core dump NOTE sections. */
3014
3015static bfd_boolean
7fa3d080 3016elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3017{
3018 int offset;
eea6121a 3019 unsigned int size;
e0001a05
NC
3020
3021 /* The size for Xtensa is variable, so don't try to recognize the format
3022 based on the size. Just assume this is GNU/Linux. */
3023
3024 /* pr_cursig */
3025 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3026
3027 /* pr_pid */
3028 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3029
3030 /* pr_reg */
3031 offset = 72;
eea6121a 3032 size = note->descsz - offset - 4;
e0001a05
NC
3033
3034 /* Make a ".reg/999" section. */
3035 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3036 size, note->descpos + offset);
e0001a05
NC
3037}
3038
3039
3040static bfd_boolean
7fa3d080 3041elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3042{
3043 switch (note->descsz)
3044 {
3045 default:
3046 return FALSE;
3047
3048 case 128: /* GNU/Linux elf_prpsinfo */
3049 elf_tdata (abfd)->core_program
3050 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3051 elf_tdata (abfd)->core_command
3052 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3053 }
3054
3055 /* Note that for some reason, a spurious space is tacked
3056 onto the end of the args in some (at least one anyway)
3057 implementations, so strip it off if it exists. */
3058
3059 {
3060 char *command = elf_tdata (abfd)->core_command;
3061 int n = strlen (command);
3062
3063 if (0 < n && command[n - 1] == ' ')
3064 command[n - 1] = '\0';
3065 }
3066
3067 return TRUE;
3068}
3069
3070\f
3071/* Generic Xtensa configurability stuff. */
3072
3073static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3074static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3075static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3076static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3077static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3078static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3079static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3080static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3081
3082static void
7fa3d080 3083init_call_opcodes (void)
e0001a05
NC
3084{
3085 if (callx0_op == XTENSA_UNDEFINED)
3086 {
3087 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3088 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3089 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3090 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3091 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3092 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3093 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3094 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3095 }
3096}
3097
3098
3099static bfd_boolean
7fa3d080 3100is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3101{
3102 init_call_opcodes ();
3103 return (opcode == callx0_op
3104 || opcode == callx4_op
3105 || opcode == callx8_op
3106 || opcode == callx12_op);
3107}
3108
3109
3110static bfd_boolean
7fa3d080 3111is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3112{
3113 init_call_opcodes ();
3114 return (opcode == call0_op
3115 || opcode == call4_op
3116 || opcode == call8_op
3117 || opcode == call12_op);
3118}
3119
3120
3121static bfd_boolean
7fa3d080 3122is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3123{
3124 init_call_opcodes ();
3125 return (opcode == call4_op
3126 || opcode == call8_op
3127 || opcode == call12_op
3128 || opcode == callx4_op
3129 || opcode == callx8_op
3130 || opcode == callx12_op);
3131}
3132
3133
43cd72b9
BW
3134static xtensa_opcode
3135get_const16_opcode (void)
3136{
3137 static bfd_boolean done_lookup = FALSE;
3138 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3139 if (!done_lookup)
3140 {
3141 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3142 done_lookup = TRUE;
3143 }
3144 return const16_opcode;
3145}
3146
3147
e0001a05
NC
3148static xtensa_opcode
3149get_l32r_opcode (void)
3150{
3151 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3152 static bfd_boolean done_lookup = FALSE;
3153
3154 if (!done_lookup)
e0001a05
NC
3155 {
3156 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3157 done_lookup = TRUE;
e0001a05
NC
3158 }
3159 return l32r_opcode;
3160}
3161
3162
3163static bfd_vma
7fa3d080 3164l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3165{
3166 bfd_vma offset;
3167
3168 offset = addr - ((pc+3) & -4);
3169 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3170 offset = (signed int) offset >> 2;
3171 BFD_ASSERT ((signed int) offset >> 16 == -1);
3172 return offset;
3173}
3174
3175
e0001a05 3176static int
7fa3d080 3177get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3178{
43cd72b9
BW
3179 xtensa_isa isa = xtensa_default_isa;
3180 int last_immed, last_opnd, opi;
3181
3182 if (opcode == XTENSA_UNDEFINED)
3183 return XTENSA_UNDEFINED;
3184
3185 /* Find the last visible PC-relative immediate operand for the opcode.
3186 If there are no PC-relative immediates, then choose the last visible
3187 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3188 last_immed = XTENSA_UNDEFINED;
3189 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3190 for (opi = last_opnd - 1; opi >= 0; opi--)
3191 {
3192 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3193 continue;
3194 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3195 {
3196 last_immed = opi;
3197 break;
3198 }
3199 if (last_immed == XTENSA_UNDEFINED
3200 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3201 last_immed = opi;
3202 }
3203 if (last_immed < 0)
3204 return XTENSA_UNDEFINED;
3205
3206 /* If the operand number was specified in an old-style relocation,
3207 check for consistency with the operand computed above. */
3208 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3209 {
3210 int reloc_opnd = r_type - R_XTENSA_OP0;
3211 if (reloc_opnd != last_immed)
3212 return XTENSA_UNDEFINED;
3213 }
3214
3215 return last_immed;
3216}
3217
3218
3219int
7fa3d080 3220get_relocation_slot (int r_type)
43cd72b9
BW
3221{
3222 switch (r_type)
3223 {
3224 case R_XTENSA_OP0:
3225 case R_XTENSA_OP1:
3226 case R_XTENSA_OP2:
3227 return 0;
3228
3229 default:
3230 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3231 return r_type - R_XTENSA_SLOT0_OP;
3232 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3233 return r_type - R_XTENSA_SLOT0_ALT;
3234 break;
3235 }
3236
3237 return XTENSA_UNDEFINED;
e0001a05
NC
3238}
3239
3240
3241/* Get the opcode for a relocation. */
3242
3243static xtensa_opcode
7fa3d080
BW
3244get_relocation_opcode (bfd *abfd,
3245 asection *sec,
3246 bfd_byte *contents,
3247 Elf_Internal_Rela *irel)
e0001a05
NC
3248{
3249 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3250 static xtensa_insnbuf sbuff = NULL;
e0001a05 3251 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3252 xtensa_format fmt;
3253 int slot;
e0001a05
NC
3254
3255 if (contents == NULL)
3256 return XTENSA_UNDEFINED;
3257
43cd72b9 3258 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3259 return XTENSA_UNDEFINED;
3260
3261 if (ibuff == NULL)
43cd72b9
BW
3262 {
3263 ibuff = xtensa_insnbuf_alloc (isa);
3264 sbuff = xtensa_insnbuf_alloc (isa);
3265 }
3266
e0001a05 3267 /* Decode the instruction. */
43cd72b9
BW
3268 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3269 sec->size - irel->r_offset);
3270 fmt = xtensa_format_decode (isa, ibuff);
3271 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3272 if (slot == XTENSA_UNDEFINED)
3273 return XTENSA_UNDEFINED;
3274 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3275 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3276}
3277
3278
3279bfd_boolean
7fa3d080
BW
3280is_l32r_relocation (bfd *abfd,
3281 asection *sec,
3282 bfd_byte *contents,
3283 Elf_Internal_Rela *irel)
e0001a05
NC
3284{
3285 xtensa_opcode opcode;
43cd72b9 3286 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3287 return FALSE;
43cd72b9 3288 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3289 return (opcode == get_l32r_opcode ());
3290}
3291
e0001a05 3292
43cd72b9 3293static bfd_size_type
7fa3d080
BW
3294get_asm_simplify_size (bfd_byte *contents,
3295 bfd_size_type content_len,
3296 bfd_size_type offset)
e0001a05 3297{
43cd72b9 3298 bfd_size_type insnlen, size = 0;
e0001a05 3299
43cd72b9
BW
3300 /* Decode the size of the next two instructions. */
3301 insnlen = insn_decode_len (contents, content_len, offset);
3302 if (insnlen == 0)
3303 return 0;
e0001a05 3304
43cd72b9 3305 size += insnlen;
e0001a05 3306
43cd72b9
BW
3307 insnlen = insn_decode_len (contents, content_len, offset + size);
3308 if (insnlen == 0)
3309 return 0;
e0001a05 3310
43cd72b9
BW
3311 size += insnlen;
3312 return size;
3313}
e0001a05 3314
43cd72b9
BW
3315
3316bfd_boolean
7fa3d080 3317is_alt_relocation (int r_type)
43cd72b9
BW
3318{
3319 return (r_type >= R_XTENSA_SLOT0_ALT
3320 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3321}
3322
3323
43cd72b9 3324bfd_boolean
7fa3d080 3325is_operand_relocation (int r_type)
e0001a05 3326{
43cd72b9
BW
3327 switch (r_type)
3328 {
3329 case R_XTENSA_OP0:
3330 case R_XTENSA_OP1:
3331 case R_XTENSA_OP2:
3332 return TRUE;
e0001a05 3333
43cd72b9
BW
3334 default:
3335 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3336 return TRUE;
3337 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3338 return TRUE;
3339 break;
3340 }
e0001a05 3341
43cd72b9 3342 return FALSE;
e0001a05
NC
3343}
3344
43cd72b9
BW
3345
3346#define MIN_INSN_LENGTH 2
e0001a05 3347
43cd72b9
BW
3348/* Return 0 if it fails to decode. */
3349
3350bfd_size_type
7fa3d080
BW
3351insn_decode_len (bfd_byte *contents,
3352 bfd_size_type content_len,
3353 bfd_size_type offset)
e0001a05 3354{
43cd72b9
BW
3355 int insn_len;
3356 xtensa_isa isa = xtensa_default_isa;
3357 xtensa_format fmt;
3358 static xtensa_insnbuf ibuff = NULL;
e0001a05 3359
43cd72b9
BW
3360 if (offset + MIN_INSN_LENGTH > content_len)
3361 return 0;
e0001a05 3362
43cd72b9
BW
3363 if (ibuff == NULL)
3364 ibuff = xtensa_insnbuf_alloc (isa);
3365 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3366 content_len - offset);
3367 fmt = xtensa_format_decode (isa, ibuff);
3368 if (fmt == XTENSA_UNDEFINED)
3369 return 0;
3370 insn_len = xtensa_format_length (isa, fmt);
3371 if (insn_len == XTENSA_UNDEFINED)
3372 return 0;
3373 return insn_len;
e0001a05
NC
3374}
3375
3376
43cd72b9
BW
3377/* Decode the opcode for a single slot instruction.
3378 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3379
43cd72b9 3380xtensa_opcode
7fa3d080
BW
3381insn_decode_opcode (bfd_byte *contents,
3382 bfd_size_type content_len,
3383 bfd_size_type offset,
3384 int slot)
e0001a05 3385{
e0001a05 3386 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3387 xtensa_format fmt;
3388 static xtensa_insnbuf insnbuf = NULL;
3389 static xtensa_insnbuf slotbuf = NULL;
3390
3391 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3392 return XTENSA_UNDEFINED;
3393
3394 if (insnbuf == NULL)
43cd72b9
BW
3395 {
3396 insnbuf = xtensa_insnbuf_alloc (isa);
3397 slotbuf = xtensa_insnbuf_alloc (isa);
3398 }
3399
3400 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3401 content_len - offset);
3402 fmt = xtensa_format_decode (isa, insnbuf);
3403 if (fmt == XTENSA_UNDEFINED)
e0001a05 3404 return XTENSA_UNDEFINED;
43cd72b9
BW
3405
3406 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3407 return XTENSA_UNDEFINED;
e0001a05 3408
43cd72b9
BW
3409 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3410 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3411}
e0001a05 3412
e0001a05 3413
43cd72b9
BW
3414/* The offset is the offset in the contents.
3415 The address is the address of that offset. */
e0001a05 3416
43cd72b9 3417static bfd_boolean
7fa3d080
BW
3418check_branch_target_aligned (bfd_byte *contents,
3419 bfd_size_type content_length,
3420 bfd_vma offset,
3421 bfd_vma address)
43cd72b9
BW
3422{
3423 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3424 if (insn_len == 0)
3425 return FALSE;
3426 return check_branch_target_aligned_address (address, insn_len);
3427}
e0001a05 3428
e0001a05 3429
43cd72b9 3430static bfd_boolean
7fa3d080
BW
3431check_loop_aligned (bfd_byte *contents,
3432 bfd_size_type content_length,
3433 bfd_vma offset,
3434 bfd_vma address)
e0001a05 3435{
43cd72b9 3436 bfd_size_type loop_len, insn_len;
64b607e6 3437 xtensa_opcode opcode;
e0001a05 3438
64b607e6
BW
3439 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3440 if (opcode == XTENSA_UNDEFINED
3441 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3442 {
3443 BFD_ASSERT (FALSE);
3444 return FALSE;
3445 }
3446
43cd72b9 3447 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 3448 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
3449 if (loop_len == 0 || insn_len == 0)
3450 {
3451 BFD_ASSERT (FALSE);
3452 return FALSE;
3453 }
e0001a05 3454
43cd72b9
BW
3455 return check_branch_target_aligned_address (address + loop_len, insn_len);
3456}
e0001a05 3457
e0001a05
NC
3458
3459static bfd_boolean
7fa3d080 3460check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3461{
43cd72b9
BW
3462 if (len == 8)
3463 return (addr % 8 == 0);
3464 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3465}
3466
43cd72b9
BW
3467\f
3468/* Instruction widening and narrowing. */
e0001a05 3469
7fa3d080
BW
3470/* When FLIX is available we need to access certain instructions only
3471 when they are 16-bit or 24-bit instructions. This table caches
3472 information about such instructions by walking through all the
3473 opcodes and finding the smallest single-slot format into which each
3474 can be encoded. */
3475
3476static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3477
3478
7fa3d080
BW
3479static void
3480init_op_single_format_table (void)
e0001a05 3481{
7fa3d080
BW
3482 xtensa_isa isa = xtensa_default_isa;
3483 xtensa_insnbuf ibuf;
3484 xtensa_opcode opcode;
3485 xtensa_format fmt;
3486 int num_opcodes;
3487
3488 if (op_single_fmt_table)
3489 return;
3490
3491 ibuf = xtensa_insnbuf_alloc (isa);
3492 num_opcodes = xtensa_isa_num_opcodes (isa);
3493
3494 op_single_fmt_table = (xtensa_format *)
3495 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3496 for (opcode = 0; opcode < num_opcodes; opcode++)
3497 {
3498 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3499 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3500 {
3501 if (xtensa_format_num_slots (isa, fmt) == 1
3502 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3503 {
3504 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3505 int fmt_length = xtensa_format_length (isa, fmt);
3506 if (old_fmt == XTENSA_UNDEFINED
3507 || fmt_length < xtensa_format_length (isa, old_fmt))
3508 op_single_fmt_table[opcode] = fmt;
3509 }
3510 }
3511 }
3512 xtensa_insnbuf_free (isa, ibuf);
3513}
3514
3515
3516static xtensa_format
3517get_single_format (xtensa_opcode opcode)
3518{
3519 init_op_single_format_table ();
3520 return op_single_fmt_table[opcode];
3521}
e0001a05 3522
e0001a05 3523
43cd72b9
BW
3524/* For the set of narrowable instructions we do NOT include the
3525 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3526 involved during linker relaxation that may require these to
3527 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3528 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3529
7fa3d080
BW
3530struct string_pair
3531{
3532 const char *wide;
3533 const char *narrow;
3534};
3535
43cd72b9 3536struct string_pair narrowable[] =
e0001a05 3537{
43cd72b9
BW
3538 { "add", "add.n" },
3539 { "addi", "addi.n" },
3540 { "addmi", "addi.n" },
3541 { "l32i", "l32i.n" },
3542 { "movi", "movi.n" },
3543 { "ret", "ret.n" },
3544 { "retw", "retw.n" },
3545 { "s32i", "s32i.n" },
3546 { "or", "mov.n" } /* special case only when op1 == op2 */
3547};
e0001a05 3548
43cd72b9 3549struct string_pair widenable[] =
e0001a05 3550{
43cd72b9
BW
3551 { "add", "add.n" },
3552 { "addi", "addi.n" },
3553 { "addmi", "addi.n" },
3554 { "beqz", "beqz.n" },
3555 { "bnez", "bnez.n" },
3556 { "l32i", "l32i.n" },
3557 { "movi", "movi.n" },
3558 { "ret", "ret.n" },
3559 { "retw", "retw.n" },
3560 { "s32i", "s32i.n" },
3561 { "or", "mov.n" } /* special case only when op1 == op2 */
3562};
e0001a05
NC
3563
3564
64b607e6
BW
3565/* Check if an instruction can be "narrowed", i.e., changed from a standard
3566 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3567 return the instruction buffer holding the narrow instruction. Otherwise,
3568 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
3569 but require some special case operand checks in some cases. */
3570
64b607e6
BW
3571static xtensa_insnbuf
3572can_narrow_instruction (xtensa_insnbuf slotbuf,
3573 xtensa_format fmt,
3574 xtensa_opcode opcode)
e0001a05 3575{
43cd72b9 3576 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3577 xtensa_format o_fmt;
3578 unsigned opi;
e0001a05 3579
43cd72b9
BW
3580 static xtensa_insnbuf o_insnbuf = NULL;
3581 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3582
64b607e6 3583 if (o_insnbuf == NULL)
43cd72b9 3584 {
43cd72b9
BW
3585 o_insnbuf = xtensa_insnbuf_alloc (isa);
3586 o_slotbuf = xtensa_insnbuf_alloc (isa);
3587 }
e0001a05 3588
64b607e6 3589 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
3590 {
3591 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3592
43cd72b9
BW
3593 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3594 {
3595 uint32 value, newval;
3596 int i, operand_count, o_operand_count;
3597 xtensa_opcode o_opcode;
e0001a05 3598
43cd72b9
BW
3599 /* Address does not matter in this case. We might need to
3600 fix it to handle branches/jumps. */
3601 bfd_vma self_address = 0;
e0001a05 3602
43cd72b9
BW
3603 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3604 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3605 return 0;
43cd72b9
BW
3606 o_fmt = get_single_format (o_opcode);
3607 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3608 return 0;
e0001a05 3609
43cd72b9
BW
3610 if (xtensa_format_length (isa, fmt) != 3
3611 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 3612 return 0;
e0001a05 3613
43cd72b9
BW
3614 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3615 operand_count = xtensa_opcode_num_operands (isa, opcode);
3616 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3617
43cd72b9 3618 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3619 return 0;
e0001a05 3620
43cd72b9
BW
3621 if (!is_or)
3622 {
3623 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3624 return 0;
43cd72b9
BW
3625 }
3626 else
3627 {
3628 uint32 rawval0, rawval1, rawval2;
e0001a05 3629
64b607e6
BW
3630 if (o_operand_count + 1 != operand_count
3631 || xtensa_operand_get_field (isa, opcode, 0,
3632 fmt, 0, slotbuf, &rawval0) != 0
3633 || xtensa_operand_get_field (isa, opcode, 1,
3634 fmt, 0, slotbuf, &rawval1) != 0
3635 || xtensa_operand_get_field (isa, opcode, 2,
3636 fmt, 0, slotbuf, &rawval2) != 0
3637 || rawval1 != rawval2
3638 || rawval0 == rawval1 /* it is a nop */)
3639 return 0;
43cd72b9 3640 }
e0001a05 3641
43cd72b9
BW
3642 for (i = 0; i < o_operand_count; ++i)
3643 {
3644 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3645 slotbuf, &value)
3646 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 3647 return 0;
e0001a05 3648
43cd72b9
BW
3649 /* PC-relative branches need adjustment, but
3650 the PC-rel operand will always have a relocation. */
3651 newval = value;
3652 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3653 self_address)
3654 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3655 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3656 o_slotbuf, newval))
64b607e6 3657 return 0;
43cd72b9 3658 }
e0001a05 3659
64b607e6
BW
3660 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3661 return 0;
e0001a05 3662
64b607e6 3663 return o_insnbuf;
43cd72b9
BW
3664 }
3665 }
64b607e6 3666 return 0;
43cd72b9 3667}
e0001a05 3668
e0001a05 3669
64b607e6
BW
3670/* Attempt to narrow an instruction. If the narrowing is valid, perform
3671 the action in-place directly into the contents and return TRUE. Otherwise,
3672 the return value is FALSE and the contents are not modified. */
e0001a05 3673
43cd72b9 3674static bfd_boolean
64b607e6
BW
3675narrow_instruction (bfd_byte *contents,
3676 bfd_size_type content_length,
3677 bfd_size_type offset)
e0001a05 3678{
43cd72b9 3679 xtensa_opcode opcode;
64b607e6 3680 bfd_size_type insn_len;
43cd72b9 3681 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3682 xtensa_format fmt;
3683 xtensa_insnbuf o_insnbuf;
e0001a05 3684
43cd72b9
BW
3685 static xtensa_insnbuf insnbuf = NULL;
3686 static xtensa_insnbuf slotbuf = NULL;
e0001a05 3687
43cd72b9
BW
3688 if (insnbuf == NULL)
3689 {
3690 insnbuf = xtensa_insnbuf_alloc (isa);
3691 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 3692 }
e0001a05 3693
43cd72b9 3694 BFD_ASSERT (offset < content_length);
2c8c90bc 3695
43cd72b9 3696 if (content_length < 2)
e0001a05
NC
3697 return FALSE;
3698
64b607e6 3699 /* We will hand-code a few of these for a little while.
43cd72b9
BW
3700 These have all been specified in the assembler aleady. */
3701 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3702 content_length - offset);
3703 fmt = xtensa_format_decode (isa, insnbuf);
3704 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3705 return FALSE;
3706
43cd72b9 3707 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3708 return FALSE;
3709
43cd72b9
BW
3710 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3711 if (opcode == XTENSA_UNDEFINED)
e0001a05 3712 return FALSE;
43cd72b9
BW
3713 insn_len = xtensa_format_length (isa, fmt);
3714 if (insn_len > content_length)
3715 return FALSE;
3716
64b607e6
BW
3717 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3718 if (o_insnbuf)
3719 {
3720 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3721 content_length - offset);
3722 return TRUE;
3723 }
3724
3725 return FALSE;
3726}
3727
3728
3729/* Check if an instruction can be "widened", i.e., changed from a 2-byte
3730 "density" instruction to a standard 3-byte instruction. If it is valid,
3731 return the instruction buffer holding the wide instruction. Otherwise,
3732 return 0. The set of valid widenings are specified by a string table
3733 but require some special case operand checks in some cases. */
3734
3735static xtensa_insnbuf
3736can_widen_instruction (xtensa_insnbuf slotbuf,
3737 xtensa_format fmt,
3738 xtensa_opcode opcode)
3739{
3740 xtensa_isa isa = xtensa_default_isa;
3741 xtensa_format o_fmt;
3742 unsigned opi;
3743
3744 static xtensa_insnbuf o_insnbuf = NULL;
3745 static xtensa_insnbuf o_slotbuf = NULL;
3746
3747 if (o_insnbuf == NULL)
3748 {
3749 o_insnbuf = xtensa_insnbuf_alloc (isa);
3750 o_slotbuf = xtensa_insnbuf_alloc (isa);
3751 }
3752
3753 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 3754 {
43cd72b9
BW
3755 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3756 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3757 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3758
43cd72b9
BW
3759 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3760 {
3761 uint32 value, newval;
3762 int i, operand_count, o_operand_count, check_operand_count;
3763 xtensa_opcode o_opcode;
e0001a05 3764
43cd72b9
BW
3765 /* Address does not matter in this case. We might need to fix it
3766 to handle branches/jumps. */
3767 bfd_vma self_address = 0;
e0001a05 3768
43cd72b9
BW
3769 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3770 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3771 return 0;
43cd72b9
BW
3772 o_fmt = get_single_format (o_opcode);
3773 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3774 return 0;
e0001a05 3775
43cd72b9
BW
3776 if (xtensa_format_length (isa, fmt) != 2
3777 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 3778 return 0;
e0001a05 3779
43cd72b9
BW
3780 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3781 operand_count = xtensa_opcode_num_operands (isa, opcode);
3782 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3783 check_operand_count = o_operand_count;
e0001a05 3784
43cd72b9 3785 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3786 return 0;
e0001a05 3787
43cd72b9
BW
3788 if (!is_or)
3789 {
3790 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3791 return 0;
43cd72b9
BW
3792 }
3793 else
3794 {
3795 uint32 rawval0, rawval1;
3796
64b607e6
BW
3797 if (o_operand_count != operand_count + 1
3798 || xtensa_operand_get_field (isa, opcode, 0,
3799 fmt, 0, slotbuf, &rawval0) != 0
3800 || xtensa_operand_get_field (isa, opcode, 1,
3801 fmt, 0, slotbuf, &rawval1) != 0
3802 || rawval0 == rawval1 /* it is a nop */)
3803 return 0;
43cd72b9
BW
3804 }
3805 if (is_branch)
3806 check_operand_count--;
3807
64b607e6 3808 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
3809 {
3810 int new_i = i;
3811 if (is_or && i == o_operand_count - 1)
3812 new_i = i - 1;
3813 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3814 slotbuf, &value)
3815 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 3816 return 0;
43cd72b9
BW
3817
3818 /* PC-relative branches need adjustment, but
3819 the PC-rel operand will always have a relocation. */
3820 newval = value;
3821 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3822 self_address)
3823 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3824 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3825 o_slotbuf, newval))
64b607e6 3826 return 0;
43cd72b9
BW
3827 }
3828
3829 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 3830 return 0;
43cd72b9 3831
64b607e6 3832 return o_insnbuf;
43cd72b9
BW
3833 }
3834 }
64b607e6
BW
3835 return 0;
3836}
3837
3838
3839/* Attempt to widen an instruction. If the widening is valid, perform
3840 the action in-place directly into the contents and return TRUE. Otherwise,
3841 the return value is FALSE and the contents are not modified. */
3842
3843static bfd_boolean
3844widen_instruction (bfd_byte *contents,
3845 bfd_size_type content_length,
3846 bfd_size_type offset)
3847{
3848 xtensa_opcode opcode;
3849 bfd_size_type insn_len;
3850 xtensa_isa isa = xtensa_default_isa;
3851 xtensa_format fmt;
3852 xtensa_insnbuf o_insnbuf;
3853
3854 static xtensa_insnbuf insnbuf = NULL;
3855 static xtensa_insnbuf slotbuf = NULL;
3856
3857 if (insnbuf == NULL)
3858 {
3859 insnbuf = xtensa_insnbuf_alloc (isa);
3860 slotbuf = xtensa_insnbuf_alloc (isa);
3861 }
3862
3863 BFD_ASSERT (offset < content_length);
3864
3865 if (content_length < 2)
3866 return FALSE;
3867
3868 /* We will hand-code a few of these for a little while.
3869 These have all been specified in the assembler aleady. */
3870 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3871 content_length - offset);
3872 fmt = xtensa_format_decode (isa, insnbuf);
3873 if (xtensa_format_num_slots (isa, fmt) != 1)
3874 return FALSE;
3875
3876 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3877 return FALSE;
3878
3879 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3880 if (opcode == XTENSA_UNDEFINED)
3881 return FALSE;
3882 insn_len = xtensa_format_length (isa, fmt);
3883 if (insn_len > content_length)
3884 return FALSE;
3885
3886 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3887 if (o_insnbuf)
3888 {
3889 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3890 content_length - offset);
3891 return TRUE;
3892 }
43cd72b9 3893 return FALSE;
e0001a05
NC
3894}
3895
43cd72b9
BW
3896\f
3897/* Code for transforming CALLs at link-time. */
e0001a05 3898
43cd72b9 3899static bfd_reloc_status_type
7fa3d080
BW
3900elf_xtensa_do_asm_simplify (bfd_byte *contents,
3901 bfd_vma address,
3902 bfd_vma content_length,
3903 char **error_message)
e0001a05 3904{
43cd72b9
BW
3905 static xtensa_insnbuf insnbuf = NULL;
3906 static xtensa_insnbuf slotbuf = NULL;
3907 xtensa_format core_format = XTENSA_UNDEFINED;
3908 xtensa_opcode opcode;
3909 xtensa_opcode direct_call_opcode;
3910 xtensa_isa isa = xtensa_default_isa;
3911 bfd_byte *chbuf = contents + address;
3912 int opn;
e0001a05 3913
43cd72b9 3914 if (insnbuf == NULL)
e0001a05 3915 {
43cd72b9
BW
3916 insnbuf = xtensa_insnbuf_alloc (isa);
3917 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3918 }
e0001a05 3919
43cd72b9
BW
3920 if (content_length < address)
3921 {
3922 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3923 return bfd_reloc_other;
3924 }
e0001a05 3925
43cd72b9
BW
3926 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3927 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3928 if (direct_call_opcode == XTENSA_UNDEFINED)
3929 {
3930 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3931 return bfd_reloc_other;
3932 }
3933
3934 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3935 core_format = xtensa_format_lookup (isa, "x24");
3936 opcode = xtensa_opcode_lookup (isa, "or");
3937 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3938 for (opn = 0; opn < 3; opn++)
3939 {
3940 uint32 regno = 1;
3941 xtensa_operand_encode (isa, opcode, opn, &regno);
3942 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3943 slotbuf, regno);
3944 }
3945 xtensa_format_encode (isa, core_format, insnbuf);
3946 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3947 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3948
43cd72b9
BW
3949 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3950 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3951 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3952
43cd72b9
BW
3953 xtensa_format_encode (isa, core_format, insnbuf);
3954 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3955 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3956 content_length - address - 3);
e0001a05 3957
43cd72b9
BW
3958 return bfd_reloc_ok;
3959}
e0001a05 3960
e0001a05 3961
43cd72b9 3962static bfd_reloc_status_type
7fa3d080
BW
3963contract_asm_expansion (bfd_byte *contents,
3964 bfd_vma content_length,
3965 Elf_Internal_Rela *irel,
3966 char **error_message)
43cd72b9
BW
3967{
3968 bfd_reloc_status_type retval =
3969 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3970 error_message);
e0001a05 3971
43cd72b9
BW
3972 if (retval != bfd_reloc_ok)
3973 return bfd_reloc_dangerous;
e0001a05 3974
43cd72b9
BW
3975 /* Update the irel->r_offset field so that the right immediate and
3976 the right instruction are modified during the relocation. */
3977 irel->r_offset += 3;
3978 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3979 return bfd_reloc_ok;
3980}
e0001a05 3981
e0001a05 3982
43cd72b9 3983static xtensa_opcode
7fa3d080 3984swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3985{
43cd72b9 3986 init_call_opcodes ();
e0001a05 3987
43cd72b9
BW
3988 if (opcode == callx0_op) return call0_op;
3989 if (opcode == callx4_op) return call4_op;
3990 if (opcode == callx8_op) return call8_op;
3991 if (opcode == callx12_op) return call12_op;
e0001a05 3992
43cd72b9
BW
3993 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3994 return XTENSA_UNDEFINED;
3995}
e0001a05 3996
e0001a05 3997
43cd72b9
BW
3998/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3999 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4000 If not, return XTENSA_UNDEFINED. */
e0001a05 4001
43cd72b9
BW
4002#define L32R_TARGET_REG_OPERAND 0
4003#define CONST16_TARGET_REG_OPERAND 0
4004#define CALLN_SOURCE_OPERAND 0
e0001a05 4005
43cd72b9 4006static xtensa_opcode
7fa3d080 4007get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4008{
43cd72b9
BW
4009 static xtensa_insnbuf insnbuf = NULL;
4010 static xtensa_insnbuf slotbuf = NULL;
4011 xtensa_format fmt;
4012 xtensa_opcode opcode;
4013 xtensa_isa isa = xtensa_default_isa;
4014 uint32 regno, const16_regno, call_regno;
4015 int offset = 0;
e0001a05 4016
43cd72b9 4017 if (insnbuf == NULL)
e0001a05 4018 {
43cd72b9
BW
4019 insnbuf = xtensa_insnbuf_alloc (isa);
4020 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4021 }
43cd72b9
BW
4022
4023 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4024 fmt = xtensa_format_decode (isa, insnbuf);
4025 if (fmt == XTENSA_UNDEFINED
4026 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4027 return XTENSA_UNDEFINED;
4028
4029 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4030 if (opcode == XTENSA_UNDEFINED)
4031 return XTENSA_UNDEFINED;
4032
4033 if (opcode == get_l32r_opcode ())
e0001a05 4034 {
43cd72b9
BW
4035 if (p_uses_l32r)
4036 *p_uses_l32r = TRUE;
4037 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4038 fmt, 0, slotbuf, &regno)
4039 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4040 &regno))
4041 return XTENSA_UNDEFINED;
e0001a05 4042 }
43cd72b9 4043 else if (opcode == get_const16_opcode ())
e0001a05 4044 {
43cd72b9
BW
4045 if (p_uses_l32r)
4046 *p_uses_l32r = FALSE;
4047 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4048 fmt, 0, slotbuf, &regno)
4049 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4050 &regno))
4051 return XTENSA_UNDEFINED;
4052
4053 /* Check that the next instruction is also CONST16. */
4054 offset += xtensa_format_length (isa, fmt);
4055 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4056 fmt = xtensa_format_decode (isa, insnbuf);
4057 if (fmt == XTENSA_UNDEFINED
4058 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4059 return XTENSA_UNDEFINED;
4060 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4061 if (opcode != get_const16_opcode ())
4062 return XTENSA_UNDEFINED;
4063
4064 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4065 fmt, 0, slotbuf, &const16_regno)
4066 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4067 &const16_regno)
4068 || const16_regno != regno)
4069 return XTENSA_UNDEFINED;
e0001a05 4070 }
43cd72b9
BW
4071 else
4072 return XTENSA_UNDEFINED;
e0001a05 4073
43cd72b9
BW
4074 /* Next instruction should be an CALLXn with operand 0 == regno. */
4075 offset += xtensa_format_length (isa, fmt);
4076 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4077 fmt = xtensa_format_decode (isa, insnbuf);
4078 if (fmt == XTENSA_UNDEFINED
4079 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4080 return XTENSA_UNDEFINED;
4081 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4082 if (opcode == XTENSA_UNDEFINED
4083 || !is_indirect_call_opcode (opcode))
4084 return XTENSA_UNDEFINED;
e0001a05 4085
43cd72b9
BW
4086 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4087 fmt, 0, slotbuf, &call_regno)
4088 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4089 &call_regno))
4090 return XTENSA_UNDEFINED;
e0001a05 4091
43cd72b9
BW
4092 if (call_regno != regno)
4093 return XTENSA_UNDEFINED;
e0001a05 4094
43cd72b9
BW
4095 return opcode;
4096}
e0001a05 4097
43cd72b9
BW
4098\f
4099/* Data structures used during relaxation. */
e0001a05 4100
43cd72b9 4101/* r_reloc: relocation values. */
e0001a05 4102
43cd72b9
BW
4103/* Through the relaxation process, we need to keep track of the values
4104 that will result from evaluating relocations. The standard ELF
4105 relocation structure is not sufficient for this purpose because we're
4106 operating on multiple input files at once, so we need to know which
4107 input file a relocation refers to. The r_reloc structure thus
4108 records both the input file (bfd) and ELF relocation.
e0001a05 4109
43cd72b9
BW
4110 For efficiency, an r_reloc also contains a "target_offset" field to
4111 cache the target-section-relative offset value that is represented by
4112 the relocation.
4113
4114 The r_reloc also contains a virtual offset that allows multiple
4115 inserted literals to be placed at the same "address" with
4116 different offsets. */
e0001a05 4117
43cd72b9 4118typedef struct r_reloc_struct r_reloc;
e0001a05 4119
43cd72b9 4120struct r_reloc_struct
e0001a05 4121{
43cd72b9
BW
4122 bfd *abfd;
4123 Elf_Internal_Rela rela;
e0001a05 4124 bfd_vma target_offset;
43cd72b9 4125 bfd_vma virtual_offset;
e0001a05
NC
4126};
4127
e0001a05 4128
43cd72b9
BW
4129/* The r_reloc structure is included by value in literal_value, but not
4130 every literal_value has an associated relocation -- some are simple
4131 constants. In such cases, we set all the fields in the r_reloc
4132 struct to zero. The r_reloc_is_const function should be used to
4133 detect this case. */
e0001a05 4134
43cd72b9 4135static bfd_boolean
7fa3d080 4136r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4137{
43cd72b9 4138 return (r_rel->abfd == NULL);
e0001a05
NC
4139}
4140
4141
43cd72b9 4142static bfd_vma
7fa3d080 4143r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4144{
43cd72b9
BW
4145 bfd_vma target_offset;
4146 unsigned long r_symndx;
e0001a05 4147
43cd72b9
BW
4148 BFD_ASSERT (!r_reloc_is_const (r_rel));
4149 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4150 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4151 return (target_offset + r_rel->rela.r_addend);
4152}
e0001a05 4153
e0001a05 4154
43cd72b9 4155static struct elf_link_hash_entry *
7fa3d080 4156r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4157{
43cd72b9
BW
4158 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4159 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4160}
e0001a05 4161
43cd72b9
BW
4162
4163static asection *
7fa3d080 4164r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4165{
4166 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4167 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4168}
e0001a05
NC
4169
4170
4171static bfd_boolean
7fa3d080 4172r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4173{
43cd72b9
BW
4174 asection *sec;
4175 if (r_rel == NULL)
e0001a05 4176 return FALSE;
e0001a05 4177
43cd72b9
BW
4178 sec = r_reloc_get_section (r_rel);
4179 if (sec == bfd_abs_section_ptr
4180 || sec == bfd_com_section_ptr
4181 || sec == bfd_und_section_ptr)
4182 return FALSE;
4183 return TRUE;
e0001a05
NC
4184}
4185
4186
7fa3d080
BW
4187static void
4188r_reloc_init (r_reloc *r_rel,
4189 bfd *abfd,
4190 Elf_Internal_Rela *irel,
4191 bfd_byte *contents,
4192 bfd_size_type content_length)
4193{
4194 int r_type;
4195 reloc_howto_type *howto;
4196
4197 if (irel)
4198 {
4199 r_rel->rela = *irel;
4200 r_rel->abfd = abfd;
4201 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4202 r_rel->virtual_offset = 0;
4203 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4204 howto = &elf_howto_table[r_type];
4205 if (howto->partial_inplace)
4206 {
4207 bfd_vma inplace_val;
4208 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4209
4210 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4211 r_rel->target_offset += inplace_val;
4212 }
4213 }
4214 else
4215 memset (r_rel, 0, sizeof (r_reloc));
4216}
4217
4218
43cd72b9
BW
4219#if DEBUG
4220
e0001a05 4221static void
7fa3d080 4222print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4223{
43cd72b9
BW
4224 if (r_reloc_is_defined (r_rel))
4225 {
4226 asection *sec = r_reloc_get_section (r_rel);
4227 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4228 }
4229 else if (r_reloc_get_hash_entry (r_rel))
4230 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4231 else
4232 fprintf (fp, " ?? + ");
e0001a05 4233
43cd72b9
BW
4234 fprintf_vma (fp, r_rel->target_offset);
4235 if (r_rel->virtual_offset)
4236 {
4237 fprintf (fp, " + ");
4238 fprintf_vma (fp, r_rel->virtual_offset);
4239 }
4240
4241 fprintf (fp, ")");
4242}
e0001a05 4243
43cd72b9 4244#endif /* DEBUG */
e0001a05 4245
43cd72b9
BW
4246\f
4247/* source_reloc: relocations that reference literals. */
e0001a05 4248
43cd72b9
BW
4249/* To determine whether literals can be coalesced, we need to first
4250 record all the relocations that reference the literals. The
4251 source_reloc structure below is used for this purpose. The
4252 source_reloc entries are kept in a per-literal-section array, sorted
4253 by offset within the literal section (i.e., target offset).
e0001a05 4254
43cd72b9
BW
4255 The source_sec and r_rel.rela.r_offset fields identify the source of
4256 the relocation. The r_rel field records the relocation value, i.e.,
4257 the offset of the literal being referenced. The opnd field is needed
4258 to determine the range of the immediate field to which the relocation
4259 applies, so we can determine whether another literal with the same
4260 value is within range. The is_null field is true when the relocation
4261 is being removed (e.g., when an L32R is being removed due to a CALLX
4262 that is converted to a direct CALL). */
e0001a05 4263
43cd72b9
BW
4264typedef struct source_reloc_struct source_reloc;
4265
4266struct source_reloc_struct
e0001a05 4267{
43cd72b9
BW
4268 asection *source_sec;
4269 r_reloc r_rel;
4270 xtensa_opcode opcode;
4271 int opnd;
4272 bfd_boolean is_null;
4273 bfd_boolean is_abs_literal;
4274};
e0001a05 4275
e0001a05 4276
e0001a05 4277static void
7fa3d080
BW
4278init_source_reloc (source_reloc *reloc,
4279 asection *source_sec,
4280 const r_reloc *r_rel,
4281 xtensa_opcode opcode,
4282 int opnd,
4283 bfd_boolean is_abs_literal)
e0001a05 4284{
43cd72b9
BW
4285 reloc->source_sec = source_sec;
4286 reloc->r_rel = *r_rel;
4287 reloc->opcode = opcode;
4288 reloc->opnd = opnd;
4289 reloc->is_null = FALSE;
4290 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4291}
4292
e0001a05 4293
43cd72b9
BW
4294/* Find the source_reloc for a particular source offset and relocation
4295 type. Note that the array is sorted by _target_ offset, so this is
4296 just a linear search. */
e0001a05 4297
43cd72b9 4298static source_reloc *
7fa3d080
BW
4299find_source_reloc (source_reloc *src_relocs,
4300 int src_count,
4301 asection *sec,
4302 Elf_Internal_Rela *irel)
e0001a05 4303{
43cd72b9 4304 int i;
e0001a05 4305
43cd72b9
BW
4306 for (i = 0; i < src_count; i++)
4307 {
4308 if (src_relocs[i].source_sec == sec
4309 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4310 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4311 == ELF32_R_TYPE (irel->r_info)))
4312 return &src_relocs[i];
4313 }
e0001a05 4314
43cd72b9 4315 return NULL;
e0001a05
NC
4316}
4317
4318
43cd72b9 4319static int
7fa3d080 4320source_reloc_compare (const void *ap, const void *bp)
e0001a05 4321{
43cd72b9
BW
4322 const source_reloc *a = (const source_reloc *) ap;
4323 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4324
43cd72b9
BW
4325 if (a->r_rel.target_offset != b->r_rel.target_offset)
4326 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4327
43cd72b9
BW
4328 /* We don't need to sort on these criteria for correctness,
4329 but enforcing a more strict ordering prevents unstable qsort
4330 from behaving differently with different implementations.
4331 Without the code below we get correct but different results
4332 on Solaris 2.7 and 2.8. We would like to always produce the
4333 same results no matter the host. */
4334
4335 if ((!a->is_null) - (!b->is_null))
4336 return ((!a->is_null) - (!b->is_null));
4337 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4338}
4339
43cd72b9
BW
4340\f
4341/* Literal values and value hash tables. */
e0001a05 4342
43cd72b9
BW
4343/* Literals with the same value can be coalesced. The literal_value
4344 structure records the value of a literal: the "r_rel" field holds the
4345 information from the relocation on the literal (if there is one) and
4346 the "value" field holds the contents of the literal word itself.
e0001a05 4347
43cd72b9
BW
4348 The value_map structure records a literal value along with the
4349 location of a literal holding that value. The value_map hash table
4350 is indexed by the literal value, so that we can quickly check if a
4351 particular literal value has been seen before and is thus a candidate
4352 for coalescing. */
e0001a05 4353
43cd72b9
BW
4354typedef struct literal_value_struct literal_value;
4355typedef struct value_map_struct value_map;
4356typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4357
43cd72b9 4358struct literal_value_struct
e0001a05 4359{
43cd72b9
BW
4360 r_reloc r_rel;
4361 unsigned long value;
4362 bfd_boolean is_abs_literal;
4363};
4364
4365struct value_map_struct
4366{
4367 literal_value val; /* The literal value. */
4368 r_reloc loc; /* Location of the literal. */
4369 value_map *next;
4370};
4371
4372struct value_map_hash_table_struct
4373{
4374 unsigned bucket_count;
4375 value_map **buckets;
4376 unsigned count;
4377 bfd_boolean has_last_loc;
4378 r_reloc last_loc;
4379};
4380
4381
e0001a05 4382static void
7fa3d080
BW
4383init_literal_value (literal_value *lit,
4384 const r_reloc *r_rel,
4385 unsigned long value,
4386 bfd_boolean is_abs_literal)
e0001a05 4387{
43cd72b9
BW
4388 lit->r_rel = *r_rel;
4389 lit->value = value;
4390 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4391}
4392
4393
43cd72b9 4394static bfd_boolean
7fa3d080
BW
4395literal_value_equal (const literal_value *src1,
4396 const literal_value *src2,
4397 bfd_boolean final_static_link)
e0001a05 4398{
43cd72b9 4399 struct elf_link_hash_entry *h1, *h2;
e0001a05 4400
43cd72b9
BW
4401 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4402 return FALSE;
e0001a05 4403
43cd72b9
BW
4404 if (r_reloc_is_const (&src1->r_rel))
4405 return (src1->value == src2->value);
e0001a05 4406
43cd72b9
BW
4407 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4408 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4409 return FALSE;
e0001a05 4410
43cd72b9
BW
4411 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4412 return FALSE;
4413
4414 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4415 return FALSE;
4416
4417 if (src1->value != src2->value)
4418 return FALSE;
4419
4420 /* Now check for the same section (if defined) or the same elf_hash
4421 (if undefined or weak). */
4422 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4423 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4424 if (r_reloc_is_defined (&src1->r_rel)
4425 && (final_static_link
4426 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4427 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4428 {
4429 if (r_reloc_get_section (&src1->r_rel)
4430 != r_reloc_get_section (&src2->r_rel))
4431 return FALSE;
4432 }
4433 else
4434 {
4435 /* Require that the hash entries (i.e., symbols) be identical. */
4436 if (h1 != h2 || h1 == 0)
4437 return FALSE;
4438 }
4439
4440 if (src1->is_abs_literal != src2->is_abs_literal)
4441 return FALSE;
4442
4443 return TRUE;
e0001a05
NC
4444}
4445
e0001a05 4446
43cd72b9
BW
4447/* Must be power of 2. */
4448#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4449
43cd72b9 4450static value_map_hash_table *
7fa3d080 4451value_map_hash_table_init (void)
43cd72b9
BW
4452{
4453 value_map_hash_table *values;
e0001a05 4454
43cd72b9
BW
4455 values = (value_map_hash_table *)
4456 bfd_zmalloc (sizeof (value_map_hash_table));
4457 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4458 values->count = 0;
4459 values->buckets = (value_map **)
4460 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4461 if (values->buckets == NULL)
4462 {
4463 free (values);
4464 return NULL;
4465 }
4466 values->has_last_loc = FALSE;
4467
4468 return values;
4469}
4470
4471
4472static void
7fa3d080 4473value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4474{
43cd72b9
BW
4475 free (table->buckets);
4476 free (table);
4477}
4478
4479
4480static unsigned
7fa3d080 4481hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4482{
4483 return (val >> 2) + (val >> 10);
4484}
4485
4486
4487static unsigned
7fa3d080 4488literal_value_hash (const literal_value *src)
43cd72b9
BW
4489{
4490 unsigned hash_val;
e0001a05 4491
43cd72b9
BW
4492 hash_val = hash_bfd_vma (src->value);
4493 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4494 {
43cd72b9
BW
4495 void *sec_or_hash;
4496
4497 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4498 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4499 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4500
4501 /* Now check for the same section and the same elf_hash. */
4502 if (r_reloc_is_defined (&src->r_rel))
4503 sec_or_hash = r_reloc_get_section (&src->r_rel);
4504 else
4505 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4506 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4507 }
43cd72b9
BW
4508 return hash_val;
4509}
e0001a05 4510
e0001a05 4511
43cd72b9 4512/* Check if the specified literal_value has been seen before. */
e0001a05 4513
43cd72b9 4514static value_map *
7fa3d080
BW
4515value_map_get_cached_value (value_map_hash_table *map,
4516 const literal_value *val,
4517 bfd_boolean final_static_link)
43cd72b9
BW
4518{
4519 value_map *map_e;
4520 value_map *bucket;
4521 unsigned idx;
4522
4523 idx = literal_value_hash (val);
4524 idx = idx & (map->bucket_count - 1);
4525 bucket = map->buckets[idx];
4526 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4527 {
43cd72b9
BW
4528 if (literal_value_equal (&map_e->val, val, final_static_link))
4529 return map_e;
4530 }
4531 return NULL;
4532}
e0001a05 4533
e0001a05 4534
43cd72b9
BW
4535/* Record a new literal value. It is illegal to call this if VALUE
4536 already has an entry here. */
4537
4538static value_map *
7fa3d080
BW
4539add_value_map (value_map_hash_table *map,
4540 const literal_value *val,
4541 const r_reloc *loc,
4542 bfd_boolean final_static_link)
43cd72b9
BW
4543{
4544 value_map **bucket_p;
4545 unsigned idx;
4546
4547 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4548 if (val_e == NULL)
4549 {
4550 bfd_set_error (bfd_error_no_memory);
4551 return NULL;
e0001a05
NC
4552 }
4553
43cd72b9
BW
4554 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4555 val_e->val = *val;
4556 val_e->loc = *loc;
4557
4558 idx = literal_value_hash (val);
4559 idx = idx & (map->bucket_count - 1);
4560 bucket_p = &map->buckets[idx];
4561
4562 val_e->next = *bucket_p;
4563 *bucket_p = val_e;
4564 map->count++;
4565 /* FIXME: Consider resizing the hash table if we get too many entries. */
4566
4567 return val_e;
e0001a05
NC
4568}
4569
43cd72b9
BW
4570\f
4571/* Lists of text actions (ta_) for narrowing, widening, longcall
4572 conversion, space fill, code & literal removal, etc. */
4573
4574/* The following text actions are generated:
4575
4576 "ta_remove_insn" remove an instruction or instructions
4577 "ta_remove_longcall" convert longcall to call
4578 "ta_convert_longcall" convert longcall to nop/call
4579 "ta_narrow_insn" narrow a wide instruction
4580 "ta_widen" widen a narrow instruction
4581 "ta_fill" add fill or remove fill
4582 removed < 0 is a fill; branches to the fill address will be
4583 changed to address + fill size (e.g., address - removed)
4584 removed >= 0 branches to the fill address will stay unchanged
4585 "ta_remove_literal" remove a literal; this action is
4586 indicated when a literal is removed
4587 or replaced.
4588 "ta_add_literal" insert a new literal; this action is
4589 indicated when a literal has been moved.
4590 It may use a virtual_offset because
4591 multiple literals can be placed at the
4592 same location.
4593
4594 For each of these text actions, we also record the number of bytes
4595 removed by performing the text action. In the case of a "ta_widen"
4596 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4597
4598typedef struct text_action_struct text_action;
4599typedef struct text_action_list_struct text_action_list;
4600typedef enum text_action_enum_t text_action_t;
4601
4602enum text_action_enum_t
4603{
4604 ta_none,
4605 ta_remove_insn, /* removed = -size */
4606 ta_remove_longcall, /* removed = -size */
4607 ta_convert_longcall, /* removed = 0 */
4608 ta_narrow_insn, /* removed = -1 */
4609 ta_widen_insn, /* removed = +1 */
4610 ta_fill, /* removed = +size */
4611 ta_remove_literal,
4612 ta_add_literal
4613};
e0001a05 4614
e0001a05 4615
43cd72b9
BW
4616/* Structure for a text action record. */
4617struct text_action_struct
e0001a05 4618{
43cd72b9
BW
4619 text_action_t action;
4620 asection *sec; /* Optional */
4621 bfd_vma offset;
4622 bfd_vma virtual_offset; /* Zero except for adding literals. */
4623 int removed_bytes;
4624 literal_value value; /* Only valid when adding literals. */
e0001a05 4625
43cd72b9
BW
4626 text_action *next;
4627};
e0001a05 4628
e0001a05 4629
43cd72b9
BW
4630/* List of all of the actions taken on a text section. */
4631struct text_action_list_struct
4632{
4633 text_action *head;
4634};
e0001a05 4635
e0001a05 4636
7fa3d080
BW
4637static text_action *
4638find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4639{
4640 text_action **m_p;
4641
4642 /* It is not necessary to fill at the end of a section. */
4643 if (sec->size == offset)
4644 return NULL;
4645
7fa3d080 4646 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4647 {
4648 text_action *t = *m_p;
4649 /* When the action is another fill at the same address,
4650 just increase the size. */
4651 if (t->offset == offset && t->action == ta_fill)
4652 return t;
4653 }
4654 return NULL;
4655}
4656
4657
4658static int
7fa3d080
BW
4659compute_removed_action_diff (const text_action *ta,
4660 asection *sec,
4661 bfd_vma offset,
4662 int removed,
4663 int removable_space)
43cd72b9
BW
4664{
4665 int new_removed;
4666 int current_removed = 0;
4667
7fa3d080 4668 if (ta)
43cd72b9
BW
4669 current_removed = ta->removed_bytes;
4670
4671 BFD_ASSERT (ta == NULL || ta->offset == offset);
4672 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4673
4674 /* It is not necessary to fill at the end of a section. Clean this up. */
4675 if (sec->size == offset)
4676 new_removed = removable_space - 0;
4677 else
4678 {
4679 int space;
4680 int added = -removed - current_removed;
4681 /* Ignore multiples of the section alignment. */
4682 added = ((1 << sec->alignment_power) - 1) & added;
4683 new_removed = (-added);
4684
4685 /* Modify for removable. */
4686 space = removable_space - new_removed;
4687 new_removed = (removable_space
4688 - (((1 << sec->alignment_power) - 1) & space));
4689 }
4690 return (new_removed - current_removed);
4691}
4692
4693
7fa3d080
BW
4694static void
4695adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4696{
4697 ta->removed_bytes += fill_diff;
4698}
4699
4700
4701/* Add a modification action to the text. For the case of adding or
4702 removing space, modify any current fill and assume that
4703 "unreachable_space" bytes can be freely contracted. Note that a
4704 negative removed value is a fill. */
4705
4706static void
7fa3d080
BW
4707text_action_add (text_action_list *l,
4708 text_action_t action,
4709 asection *sec,
4710 bfd_vma offset,
4711 int removed)
43cd72b9
BW
4712{
4713 text_action **m_p;
4714 text_action *ta;
4715
4716 /* It is not necessary to fill at the end of a section. */
4717 if (action == ta_fill && sec->size == offset)
4718 return;
4719
4720 /* It is not necessary to fill 0 bytes. */
4721 if (action == ta_fill && removed == 0)
4722 return;
4723
7fa3d080 4724 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4725 {
4726 text_action *t = *m_p;
4727 /* When the action is another fill at the same address,
4728 just increase the size. */
4729 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4730 {
4731 t->removed_bytes += removed;
4732 return;
4733 }
4734 }
4735
4736 /* Create a new record and fill it up. */
4737 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4738 ta->action = action;
4739 ta->sec = sec;
4740 ta->offset = offset;
4741 ta->removed_bytes = removed;
4742 ta->next = (*m_p);
4743 *m_p = ta;
4744}
4745
4746
4747static void
7fa3d080
BW
4748text_action_add_literal (text_action_list *l,
4749 text_action_t action,
4750 const r_reloc *loc,
4751 const literal_value *value,
4752 int removed)
43cd72b9
BW
4753{
4754 text_action **m_p;
4755 text_action *ta;
4756 asection *sec = r_reloc_get_section (loc);
4757 bfd_vma offset = loc->target_offset;
4758 bfd_vma virtual_offset = loc->virtual_offset;
4759
4760 BFD_ASSERT (action == ta_add_literal);
4761
4762 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4763 {
4764 if ((*m_p)->offset > offset
4765 && ((*m_p)->offset != offset
4766 || (*m_p)->virtual_offset > virtual_offset))
4767 break;
4768 }
4769
4770 /* Create a new record and fill it up. */
4771 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4772 ta->action = action;
4773 ta->sec = sec;
4774 ta->offset = offset;
4775 ta->virtual_offset = virtual_offset;
4776 ta->value = *value;
4777 ta->removed_bytes = removed;
4778 ta->next = (*m_p);
4779 *m_p = ta;
4780}
4781
4782
7fa3d080
BW
4783static bfd_vma
4784offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4785{
4786 text_action *r;
4787 int removed = 0;
4788
4789 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4790 {
4791 if (r->offset < offset
4792 || (r->action == ta_fill && r->removed_bytes < 0))
4793 removed += r->removed_bytes;
4794 }
4795
4796 return (offset - removed);
4797}
4798
4799
03e94c08
BW
4800static unsigned
4801action_list_count (text_action_list *action_list)
4802{
4803 text_action *r = action_list->head;
4804 unsigned count = 0;
4805 for (r = action_list->head; r != NULL; r = r->next)
4806 {
4807 count++;
4808 }
4809 return count;
4810}
4811
4812
7fa3d080
BW
4813static bfd_vma
4814offset_with_removed_text_before_fill (text_action_list *action_list,
4815 bfd_vma offset)
43cd72b9
BW
4816{
4817 text_action *r;
4818 int removed = 0;
4819
4820 for (r = action_list->head; r && r->offset < offset; r = r->next)
4821 removed += r->removed_bytes;
4822
4823 return (offset - removed);
4824}
4825
4826
4827/* The find_insn_action routine will only find non-fill actions. */
4828
7fa3d080
BW
4829static text_action *
4830find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4831{
4832 text_action *t;
4833 for (t = action_list->head; t; t = t->next)
4834 {
4835 if (t->offset == offset)
4836 {
4837 switch (t->action)
4838 {
4839 case ta_none:
4840 case ta_fill:
4841 break;
4842 case ta_remove_insn:
4843 case ta_remove_longcall:
4844 case ta_convert_longcall:
4845 case ta_narrow_insn:
4846 case ta_widen_insn:
4847 return t;
4848 case ta_remove_literal:
4849 case ta_add_literal:
4850 BFD_ASSERT (0);
4851 break;
4852 }
4853 }
4854 }
4855 return NULL;
4856}
4857
4858
4859#if DEBUG
4860
4861static void
7fa3d080 4862print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4863{
4864 text_action *r;
4865
4866 fprintf (fp, "Text Action\n");
4867 for (r = action_list->head; r != NULL; r = r->next)
4868 {
4869 const char *t = "unknown";
4870 switch (r->action)
4871 {
4872 case ta_remove_insn:
4873 t = "remove_insn"; break;
4874 case ta_remove_longcall:
4875 t = "remove_longcall"; break;
4876 case ta_convert_longcall:
4877 t = "remove_longcall"; break;
4878 case ta_narrow_insn:
4879 t = "narrow_insn"; break;
4880 case ta_widen_insn:
4881 t = "widen_insn"; break;
4882 case ta_fill:
4883 t = "fill"; break;
4884 case ta_none:
4885 t = "none"; break;
4886 case ta_remove_literal:
4887 t = "remove_literal"; break;
4888 case ta_add_literal:
4889 t = "add_literal"; break;
4890 }
4891
4892 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4893 r->sec->owner->filename,
4894 r->sec->name, r->offset, t, r->removed_bytes);
4895 }
4896}
4897
4898#endif /* DEBUG */
4899
4900\f
4901/* Lists of literals being coalesced or removed. */
4902
4903/* In the usual case, the literal identified by "from" is being
4904 coalesced with another literal identified by "to". If the literal is
4905 unused and is being removed altogether, "to.abfd" will be NULL.
4906 The removed_literal entries are kept on a per-section list, sorted
4907 by the "from" offset field. */
4908
4909typedef struct removed_literal_struct removed_literal;
4910typedef struct removed_literal_list_struct removed_literal_list;
4911
4912struct removed_literal_struct
4913{
4914 r_reloc from;
4915 r_reloc to;
4916 removed_literal *next;
4917};
4918
4919struct removed_literal_list_struct
4920{
4921 removed_literal *head;
4922 removed_literal *tail;
4923};
4924
4925
43cd72b9
BW
4926/* Record that the literal at "from" is being removed. If "to" is not
4927 NULL, the "from" literal is being coalesced with the "to" literal. */
4928
4929static void
7fa3d080
BW
4930add_removed_literal (removed_literal_list *removed_list,
4931 const r_reloc *from,
4932 const r_reloc *to)
43cd72b9
BW
4933{
4934 removed_literal *r, *new_r, *next_r;
4935
4936 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4937
4938 new_r->from = *from;
4939 if (to)
4940 new_r->to = *to;
4941 else
4942 new_r->to.abfd = NULL;
4943 new_r->next = NULL;
4944
4945 r = removed_list->head;
4946 if (r == NULL)
4947 {
4948 removed_list->head = new_r;
4949 removed_list->tail = new_r;
4950 }
4951 /* Special check for common case of append. */
4952 else if (removed_list->tail->from.target_offset < from->target_offset)
4953 {
4954 removed_list->tail->next = new_r;
4955 removed_list->tail = new_r;
4956 }
4957 else
4958 {
7fa3d080 4959 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4960 {
4961 r = r->next;
4962 }
4963 next_r = r->next;
4964 r->next = new_r;
4965 new_r->next = next_r;
4966 if (next_r == NULL)
4967 removed_list->tail = new_r;
4968 }
4969}
4970
4971
4972/* Check if the list of removed literals contains an entry for the
4973 given address. Return the entry if found. */
4974
4975static removed_literal *
7fa3d080 4976find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4977{
4978 removed_literal *r = removed_list->head;
4979 while (r && r->from.target_offset < addr)
4980 r = r->next;
4981 if (r && r->from.target_offset == addr)
4982 return r;
4983 return NULL;
4984}
4985
4986
4987#if DEBUG
4988
4989static void
7fa3d080 4990print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4991{
4992 removed_literal *r;
4993 r = removed_list->head;
4994 if (r)
4995 fprintf (fp, "Removed Literals\n");
4996 for (; r != NULL; r = r->next)
4997 {
4998 print_r_reloc (fp, &r->from);
4999 fprintf (fp, " => ");
5000 if (r->to.abfd == NULL)
5001 fprintf (fp, "REMOVED");
5002 else
5003 print_r_reloc (fp, &r->to);
5004 fprintf (fp, "\n");
5005 }
5006}
5007
5008#endif /* DEBUG */
5009
5010\f
5011/* Per-section data for relaxation. */
5012
5013typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5014
5015struct xtensa_relax_info_struct
5016{
5017 bfd_boolean is_relaxable_literal_section;
5018 bfd_boolean is_relaxable_asm_section;
5019 int visited; /* Number of times visited. */
5020
5021 source_reloc *src_relocs; /* Array[src_count]. */
5022 int src_count;
5023 int src_next; /* Next src_relocs entry to assign. */
5024
5025 removed_literal_list removed_list;
5026 text_action_list action_list;
5027
5028 reloc_bfd_fix *fix_list;
5029 reloc_bfd_fix *fix_array;
5030 unsigned fix_array_count;
5031
5032 /* Support for expanding the reloc array that is stored
5033 in the section structure. If the relocations have been
5034 reallocated, the newly allocated relocations will be referenced
5035 here along with the actual size allocated. The relocation
5036 count will always be found in the section structure. */
5037 Elf_Internal_Rela *allocated_relocs;
5038 unsigned relocs_count;
5039 unsigned allocated_relocs_count;
5040};
5041
5042struct elf_xtensa_section_data
5043{
5044 struct bfd_elf_section_data elf;
5045 xtensa_relax_info relax_info;
5046};
5047
43cd72b9
BW
5048
5049static bfd_boolean
7fa3d080 5050elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5051{
f592407e
AM
5052 if (!sec->used_by_bfd)
5053 {
5054 struct elf_xtensa_section_data *sdata;
5055 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5056
f592407e
AM
5057 sdata = bfd_zalloc (abfd, amt);
5058 if (sdata == NULL)
5059 return FALSE;
5060 sec->used_by_bfd = sdata;
5061 }
43cd72b9
BW
5062
5063 return _bfd_elf_new_section_hook (abfd, sec);
5064}
5065
5066
7fa3d080
BW
5067static xtensa_relax_info *
5068get_xtensa_relax_info (asection *sec)
5069{
5070 struct elf_xtensa_section_data *section_data;
5071
5072 /* No info available if no section or if it is an output section. */
5073 if (!sec || sec == sec->output_section)
5074 return NULL;
5075
5076 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5077 return &section_data->relax_info;
5078}
5079
5080
43cd72b9 5081static void
7fa3d080 5082init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5083{
5084 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5085
5086 relax_info->is_relaxable_literal_section = FALSE;
5087 relax_info->is_relaxable_asm_section = FALSE;
5088 relax_info->visited = 0;
5089
5090 relax_info->src_relocs = NULL;
5091 relax_info->src_count = 0;
5092 relax_info->src_next = 0;
5093
5094 relax_info->removed_list.head = NULL;
5095 relax_info->removed_list.tail = NULL;
5096
5097 relax_info->action_list.head = NULL;
5098
5099 relax_info->fix_list = NULL;
5100 relax_info->fix_array = NULL;
5101 relax_info->fix_array_count = 0;
5102
5103 relax_info->allocated_relocs = NULL;
5104 relax_info->relocs_count = 0;
5105 relax_info->allocated_relocs_count = 0;
5106}
5107
43cd72b9
BW
5108\f
5109/* Coalescing literals may require a relocation to refer to a section in
5110 a different input file, but the standard relocation information
5111 cannot express that. Instead, the reloc_bfd_fix structures are used
5112 to "fix" the relocations that refer to sections in other input files.
5113 These structures are kept on per-section lists. The "src_type" field
5114 records the relocation type in case there are multiple relocations on
5115 the same location. FIXME: This is ugly; an alternative might be to
5116 add new symbols with the "owner" field to some other input file. */
5117
5118struct reloc_bfd_fix_struct
5119{
5120 asection *src_sec;
5121 bfd_vma src_offset;
5122 unsigned src_type; /* Relocation type. */
5123
5124 bfd *target_abfd;
5125 asection *target_sec;
5126 bfd_vma target_offset;
5127 bfd_boolean translated;
5128
5129 reloc_bfd_fix *next;
5130};
5131
5132
43cd72b9 5133static reloc_bfd_fix *
7fa3d080
BW
5134reloc_bfd_fix_init (asection *src_sec,
5135 bfd_vma src_offset,
5136 unsigned src_type,
5137 bfd *target_abfd,
5138 asection *target_sec,
5139 bfd_vma target_offset,
5140 bfd_boolean translated)
43cd72b9
BW
5141{
5142 reloc_bfd_fix *fix;
5143
5144 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5145 fix->src_sec = src_sec;
5146 fix->src_offset = src_offset;
5147 fix->src_type = src_type;
5148 fix->target_abfd = target_abfd;
5149 fix->target_sec = target_sec;
5150 fix->target_offset = target_offset;
5151 fix->translated = translated;
5152
5153 return fix;
5154}
5155
5156
5157static void
7fa3d080 5158add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5159{
5160 xtensa_relax_info *relax_info;
5161
5162 relax_info = get_xtensa_relax_info (src_sec);
5163 fix->next = relax_info->fix_list;
5164 relax_info->fix_list = fix;
5165}
5166
5167
5168static int
7fa3d080 5169fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5170{
5171 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5172 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5173
5174 if (a->src_offset != b->src_offset)
5175 return (a->src_offset - b->src_offset);
5176 return (a->src_type - b->src_type);
5177}
5178
5179
5180static void
7fa3d080 5181cache_fix_array (asection *sec)
43cd72b9
BW
5182{
5183 unsigned i, count = 0;
5184 reloc_bfd_fix *r;
5185 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5186
5187 if (relax_info == NULL)
5188 return;
5189 if (relax_info->fix_list == NULL)
5190 return;
5191
5192 for (r = relax_info->fix_list; r != NULL; r = r->next)
5193 count++;
5194
5195 relax_info->fix_array =
5196 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5197 relax_info->fix_array_count = count;
5198
5199 r = relax_info->fix_list;
5200 for (i = 0; i < count; i++, r = r->next)
5201 {
5202 relax_info->fix_array[count - 1 - i] = *r;
5203 relax_info->fix_array[count - 1 - i].next = NULL;
5204 }
5205
5206 qsort (relax_info->fix_array, relax_info->fix_array_count,
5207 sizeof (reloc_bfd_fix), fix_compare);
5208}
5209
5210
5211static reloc_bfd_fix *
7fa3d080 5212get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5213{
5214 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5215 reloc_bfd_fix *rv;
5216 reloc_bfd_fix key;
5217
5218 if (relax_info == NULL)
5219 return NULL;
5220 if (relax_info->fix_list == NULL)
5221 return NULL;
5222
5223 if (relax_info->fix_array == NULL)
5224 cache_fix_array (sec);
5225
5226 key.src_offset = offset;
5227 key.src_type = type;
5228 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5229 sizeof (reloc_bfd_fix), fix_compare);
5230 return rv;
5231}
5232
5233\f
5234/* Section caching. */
5235
5236typedef struct section_cache_struct section_cache_t;
5237
5238struct section_cache_struct
5239{
5240 asection *sec;
5241
5242 bfd_byte *contents; /* Cache of the section contents. */
5243 bfd_size_type content_length;
5244
5245 property_table_entry *ptbl; /* Cache of the section property table. */
5246 unsigned pte_count;
5247
5248 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5249 unsigned reloc_count;
5250};
5251
5252
7fa3d080
BW
5253static void
5254init_section_cache (section_cache_t *sec_cache)
5255{
5256 memset (sec_cache, 0, sizeof (*sec_cache));
5257}
43cd72b9
BW
5258
5259
5260static void
7fa3d080 5261clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5262{
7fa3d080
BW
5263 if (sec_cache->sec)
5264 {
5265 release_contents (sec_cache->sec, sec_cache->contents);
5266 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5267 if (sec_cache->ptbl)
5268 free (sec_cache->ptbl);
5269 memset (sec_cache, 0, sizeof (sec_cache));
5270 }
43cd72b9
BW
5271}
5272
5273
5274static bfd_boolean
7fa3d080
BW
5275section_cache_section (section_cache_t *sec_cache,
5276 asection *sec,
5277 struct bfd_link_info *link_info)
43cd72b9
BW
5278{
5279 bfd *abfd;
5280 property_table_entry *prop_table = NULL;
5281 int ptblsize = 0;
5282 bfd_byte *contents = NULL;
5283 Elf_Internal_Rela *internal_relocs = NULL;
5284 bfd_size_type sec_size;
5285
5286 if (sec == NULL)
5287 return FALSE;
5288 if (sec == sec_cache->sec)
5289 return TRUE;
5290
5291 abfd = sec->owner;
5292 sec_size = bfd_get_section_limit (abfd, sec);
5293
5294 /* Get the contents. */
5295 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5296 if (contents == NULL && sec_size != 0)
5297 goto err;
5298
5299 /* Get the relocations. */
5300 internal_relocs = retrieve_internal_relocs (abfd, sec,
5301 link_info->keep_memory);
5302
5303 /* Get the entry table. */
5304 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5305 XTENSA_PROP_SEC_NAME, FALSE);
5306 if (ptblsize < 0)
5307 goto err;
5308
5309 /* Fill in the new section cache. */
5310 clear_section_cache (sec_cache);
5311 memset (sec_cache, 0, sizeof (sec_cache));
5312
5313 sec_cache->sec = sec;
5314 sec_cache->contents = contents;
5315 sec_cache->content_length = sec_size;
5316 sec_cache->relocs = internal_relocs;
5317 sec_cache->reloc_count = sec->reloc_count;
5318 sec_cache->pte_count = ptblsize;
5319 sec_cache->ptbl = prop_table;
5320
5321 return TRUE;
5322
5323 err:
5324 release_contents (sec, contents);
5325 release_internal_relocs (sec, internal_relocs);
5326 if (prop_table)
5327 free (prop_table);
5328 return FALSE;
5329}
5330
43cd72b9
BW
5331\f
5332/* Extended basic blocks. */
5333
5334/* An ebb_struct represents an Extended Basic Block. Within this
5335 range, we guarantee that all instructions are decodable, the
5336 property table entries are contiguous, and no property table
5337 specifies a segment that cannot have instructions moved. This
5338 structure contains caches of the contents, property table and
5339 relocations for the specified section for easy use. The range is
5340 specified by ranges of indices for the byte offset, property table
5341 offsets and relocation offsets. These must be consistent. */
5342
5343typedef struct ebb_struct ebb_t;
5344
5345struct ebb_struct
5346{
5347 asection *sec;
5348
5349 bfd_byte *contents; /* Cache of the section contents. */
5350 bfd_size_type content_length;
5351
5352 property_table_entry *ptbl; /* Cache of the section property table. */
5353 unsigned pte_count;
5354
5355 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5356 unsigned reloc_count;
5357
5358 bfd_vma start_offset; /* Offset in section. */
5359 unsigned start_ptbl_idx; /* Offset in the property table. */
5360 unsigned start_reloc_idx; /* Offset in the relocations. */
5361
5362 bfd_vma end_offset;
5363 unsigned end_ptbl_idx;
5364 unsigned end_reloc_idx;
5365
5366 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5367
5368 /* The unreachable property table at the end of this set of blocks;
5369 NULL if the end is not an unreachable block. */
5370 property_table_entry *ends_unreachable;
5371};
5372
5373
5374enum ebb_target_enum
5375{
5376 EBB_NO_ALIGN = 0,
5377 EBB_DESIRE_TGT_ALIGN,
5378 EBB_REQUIRE_TGT_ALIGN,
5379 EBB_REQUIRE_LOOP_ALIGN,
5380 EBB_REQUIRE_ALIGN
5381};
5382
5383
5384/* proposed_action_struct is similar to the text_action_struct except
5385 that is represents a potential transformation, not one that will
5386 occur. We build a list of these for an extended basic block
5387 and use them to compute the actual actions desired. We must be
5388 careful that the entire set of actual actions we perform do not
5389 break any relocations that would fit if the actions were not
5390 performed. */
5391
5392typedef struct proposed_action_struct proposed_action;
5393
5394struct proposed_action_struct
5395{
5396 enum ebb_target_enum align_type; /* for the target alignment */
5397 bfd_vma alignment_pow;
5398 text_action_t action;
5399 bfd_vma offset;
5400 int removed_bytes;
5401 bfd_boolean do_action; /* If false, then we will not perform the action. */
5402};
5403
5404
5405/* The ebb_constraint_struct keeps a set of proposed actions for an
5406 extended basic block. */
5407
5408typedef struct ebb_constraint_struct ebb_constraint;
5409
5410struct ebb_constraint_struct
5411{
5412 ebb_t ebb;
5413 bfd_boolean start_movable;
5414
5415 /* Bytes of extra space at the beginning if movable. */
5416 int start_extra_space;
5417
5418 enum ebb_target_enum start_align;
5419
5420 bfd_boolean end_movable;
5421
5422 /* Bytes of extra space at the end if movable. */
5423 int end_extra_space;
5424
5425 unsigned action_count;
5426 unsigned action_allocated;
5427
5428 /* Array of proposed actions. */
5429 proposed_action *actions;
5430
5431 /* Action alignments -- one for each proposed action. */
5432 enum ebb_target_enum *action_aligns;
5433};
5434
5435
43cd72b9 5436static void
7fa3d080 5437init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5438{
5439 memset (c, 0, sizeof (ebb_constraint));
5440}
5441
5442
5443static void
7fa3d080 5444free_ebb_constraint (ebb_constraint *c)
43cd72b9 5445{
7fa3d080 5446 if (c->actions)
43cd72b9
BW
5447 free (c->actions);
5448}
5449
5450
5451static void
7fa3d080
BW
5452init_ebb (ebb_t *ebb,
5453 asection *sec,
5454 bfd_byte *contents,
5455 bfd_size_type content_length,
5456 property_table_entry *prop_table,
5457 unsigned ptblsize,
5458 Elf_Internal_Rela *internal_relocs,
5459 unsigned reloc_count)
43cd72b9
BW
5460{
5461 memset (ebb, 0, sizeof (ebb_t));
5462 ebb->sec = sec;
5463 ebb->contents = contents;
5464 ebb->content_length = content_length;
5465 ebb->ptbl = prop_table;
5466 ebb->pte_count = ptblsize;
5467 ebb->relocs = internal_relocs;
5468 ebb->reloc_count = reloc_count;
5469 ebb->start_offset = 0;
5470 ebb->end_offset = ebb->content_length - 1;
5471 ebb->start_ptbl_idx = 0;
5472 ebb->end_ptbl_idx = ptblsize;
5473 ebb->start_reloc_idx = 0;
5474 ebb->end_reloc_idx = reloc_count;
5475}
5476
5477
5478/* Extend the ebb to all decodable contiguous sections. The algorithm
5479 for building a basic block around an instruction is to push it
5480 forward until we hit the end of a section, an unreachable block or
5481 a block that cannot be transformed. Then we push it backwards
5482 searching for similar conditions. */
5483
7fa3d080
BW
5484static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5485static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5486static bfd_size_type insn_block_decodable_len
5487 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5488
43cd72b9 5489static bfd_boolean
7fa3d080 5490extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5491{
5492 if (!extend_ebb_bounds_forward (ebb))
5493 return FALSE;
5494 if (!extend_ebb_bounds_backward (ebb))
5495 return FALSE;
5496 return TRUE;
5497}
5498
5499
5500static bfd_boolean
7fa3d080 5501extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5502{
5503 property_table_entry *the_entry, *new_entry;
5504
5505 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5506
5507 /* Stop when (1) we cannot decode an instruction, (2) we are at
5508 the end of the property tables, (3) we hit a non-contiguous property
5509 table entry, (4) we hit a NO_TRANSFORM region. */
5510
5511 while (1)
5512 {
5513 bfd_vma entry_end;
5514 bfd_size_type insn_block_len;
5515
5516 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5517 insn_block_len =
5518 insn_block_decodable_len (ebb->contents, ebb->content_length,
5519 ebb->end_offset,
5520 entry_end - ebb->end_offset);
5521 if (insn_block_len != (entry_end - ebb->end_offset))
5522 {
5523 (*_bfd_error_handler)
5524 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5525 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5526 return FALSE;
5527 }
5528 ebb->end_offset += insn_block_len;
5529
5530 if (ebb->end_offset == ebb->sec->size)
5531 ebb->ends_section = TRUE;
5532
5533 /* Update the reloc counter. */
5534 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5535 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5536 < ebb->end_offset))
5537 {
5538 ebb->end_reloc_idx++;
5539 }
5540
5541 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5542 return TRUE;
5543
5544 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5545 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 5546 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5547 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5548 break;
5549
5550 if (the_entry->address + the_entry->size != new_entry->address)
5551 break;
5552
5553 the_entry = new_entry;
5554 ebb->end_ptbl_idx++;
5555 }
5556
5557 /* Quick check for an unreachable or end of file just at the end. */
5558 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5559 {
5560 if (ebb->end_offset == ebb->content_length)
5561 ebb->ends_section = TRUE;
5562 }
5563 else
5564 {
5565 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5566 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5567 && the_entry->address + the_entry->size == new_entry->address)
5568 ebb->ends_unreachable = new_entry;
5569 }
5570
5571 /* Any other ending requires exact alignment. */
5572 return TRUE;
5573}
5574
5575
5576static bfd_boolean
7fa3d080 5577extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5578{
5579 property_table_entry *the_entry, *new_entry;
5580
5581 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5582
5583 /* Stop when (1) we cannot decode the instructions in the current entry.
5584 (2) we are at the beginning of the property tables, (3) we hit a
5585 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5586
5587 while (1)
5588 {
5589 bfd_vma block_begin;
5590 bfd_size_type insn_block_len;
5591
5592 block_begin = the_entry->address - ebb->sec->vma;
5593 insn_block_len =
5594 insn_block_decodable_len (ebb->contents, ebb->content_length,
5595 block_begin,
5596 ebb->start_offset - block_begin);
5597 if (insn_block_len != ebb->start_offset - block_begin)
5598 {
5599 (*_bfd_error_handler)
5600 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5601 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5602 return FALSE;
5603 }
5604 ebb->start_offset -= insn_block_len;
5605
5606 /* Update the reloc counter. */
5607 while (ebb->start_reloc_idx > 0
5608 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5609 >= ebb->start_offset))
5610 {
5611 ebb->start_reloc_idx--;
5612 }
5613
5614 if (ebb->start_ptbl_idx == 0)
5615 return TRUE;
5616
5617 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5618 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 5619 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5620 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5621 return TRUE;
5622 if (new_entry->address + new_entry->size != the_entry->address)
5623 return TRUE;
5624
5625 the_entry = new_entry;
5626 ebb->start_ptbl_idx--;
5627 }
5628 return TRUE;
5629}
5630
5631
5632static bfd_size_type
7fa3d080
BW
5633insn_block_decodable_len (bfd_byte *contents,
5634 bfd_size_type content_len,
5635 bfd_vma block_offset,
5636 bfd_size_type block_len)
43cd72b9
BW
5637{
5638 bfd_vma offset = block_offset;
5639
5640 while (offset < block_offset + block_len)
5641 {
5642 bfd_size_type insn_len = 0;
5643
5644 insn_len = insn_decode_len (contents, content_len, offset);
5645 if (insn_len == 0)
5646 return (offset - block_offset);
5647 offset += insn_len;
5648 }
5649 return (offset - block_offset);
5650}
5651
5652
5653static void
7fa3d080 5654ebb_propose_action (ebb_constraint *c,
7fa3d080 5655 enum ebb_target_enum align_type,
288f74fa 5656 bfd_vma alignment_pow,
7fa3d080
BW
5657 text_action_t action,
5658 bfd_vma offset,
5659 int removed_bytes,
5660 bfd_boolean do_action)
43cd72b9 5661{
b08b5071 5662 proposed_action *act;
43cd72b9 5663
43cd72b9
BW
5664 if (c->action_allocated <= c->action_count)
5665 {
b08b5071 5666 unsigned new_allocated, i;
823fc61f 5667 proposed_action *new_actions;
b08b5071
BW
5668
5669 new_allocated = (c->action_count + 2) * 2;
823fc61f 5670 new_actions = (proposed_action *)
43cd72b9
BW
5671 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5672
5673 for (i = 0; i < c->action_count; i++)
5674 new_actions[i] = c->actions[i];
7fa3d080 5675 if (c->actions)
43cd72b9
BW
5676 free (c->actions);
5677 c->actions = new_actions;
5678 c->action_allocated = new_allocated;
5679 }
b08b5071
BW
5680
5681 act = &c->actions[c->action_count];
5682 act->align_type = align_type;
5683 act->alignment_pow = alignment_pow;
5684 act->action = action;
5685 act->offset = offset;
5686 act->removed_bytes = removed_bytes;
5687 act->do_action = do_action;
5688
43cd72b9
BW
5689 c->action_count++;
5690}
5691
5692\f
5693/* Access to internal relocations, section contents and symbols. */
5694
5695/* During relaxation, we need to modify relocations, section contents,
5696 and symbol definitions, and we need to keep the original values from
5697 being reloaded from the input files, i.e., we need to "pin" the
5698 modified values in memory. We also want to continue to observe the
5699 setting of the "keep-memory" flag. The following functions wrap the
5700 standard BFD functions to take care of this for us. */
5701
5702static Elf_Internal_Rela *
7fa3d080 5703retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5704{
5705 Elf_Internal_Rela *internal_relocs;
5706
5707 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5708 return NULL;
5709
5710 internal_relocs = elf_section_data (sec)->relocs;
5711 if (internal_relocs == NULL)
5712 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5713 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5714 return internal_relocs;
5715}
5716
5717
5718static void
7fa3d080 5719pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5720{
5721 elf_section_data (sec)->relocs = internal_relocs;
5722}
5723
5724
5725static void
7fa3d080 5726release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5727{
5728 if (internal_relocs
5729 && elf_section_data (sec)->relocs != internal_relocs)
5730 free (internal_relocs);
5731}
5732
5733
5734static bfd_byte *
7fa3d080 5735retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5736{
5737 bfd_byte *contents;
5738 bfd_size_type sec_size;
5739
5740 sec_size = bfd_get_section_limit (abfd, sec);
5741 contents = elf_section_data (sec)->this_hdr.contents;
5742
5743 if (contents == NULL && sec_size != 0)
5744 {
5745 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5746 {
7fa3d080 5747 if (contents)
43cd72b9
BW
5748 free (contents);
5749 return NULL;
5750 }
5751 if (keep_memory)
5752 elf_section_data (sec)->this_hdr.contents = contents;
5753 }
5754 return contents;
5755}
5756
5757
5758static void
7fa3d080 5759pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5760{
5761 elf_section_data (sec)->this_hdr.contents = contents;
5762}
5763
5764
5765static void
7fa3d080 5766release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5767{
5768 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5769 free (contents);
5770}
5771
5772
5773static Elf_Internal_Sym *
7fa3d080 5774retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5775{
5776 Elf_Internal_Shdr *symtab_hdr;
5777 Elf_Internal_Sym *isymbuf;
5778 size_t locsymcount;
5779
5780 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5781 locsymcount = symtab_hdr->sh_info;
5782
5783 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5784 if (isymbuf == NULL && locsymcount != 0)
5785 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5786 NULL, NULL, NULL);
5787
5788 /* Save the symbols for this input file so they won't be read again. */
5789 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5790 symtab_hdr->contents = (unsigned char *) isymbuf;
5791
5792 return isymbuf;
5793}
5794
5795\f
5796/* Code for link-time relaxation. */
5797
5798/* Initialization for relaxation: */
7fa3d080 5799static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5800static bfd_boolean find_relaxable_sections
7fa3d080 5801 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5802static bfd_boolean collect_source_relocs
7fa3d080 5803 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5804static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5805 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5806 bfd_boolean *);
43cd72b9 5807static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5808 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5809static bfd_boolean compute_text_actions
7fa3d080
BW
5810 (bfd *, asection *, struct bfd_link_info *);
5811static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5812static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5813static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5814 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5815 const xtensa_opcode *);
7fa3d080 5816static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5817static void text_action_add_proposed
7fa3d080
BW
5818 (text_action_list *, const ebb_constraint *, asection *);
5819static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5820
5821/* First pass: */
5822static bfd_boolean compute_removed_literals
7fa3d080 5823 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5824static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5825 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5826static bfd_boolean is_removable_literal
99ded152
BW
5827 (const source_reloc *, int, const source_reloc *, int, asection *,
5828 property_table_entry *, int);
43cd72b9 5829static bfd_boolean remove_dead_literal
7fa3d080
BW
5830 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5831 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5832static bfd_boolean identify_literal_placement
5833 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5834 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5835 source_reloc *, property_table_entry *, int, section_cache_t *,
5836 bfd_boolean);
5837static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5838static bfd_boolean coalesce_shared_literal
7fa3d080 5839 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5840static bfd_boolean move_shared_literal
7fa3d080
BW
5841 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5842 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5843
5844/* Second pass: */
7fa3d080
BW
5845static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5846static bfd_boolean translate_section_fixes (asection *);
5847static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5848static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5849static void shrink_dynamic_reloc_sections
7fa3d080 5850 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5851static bfd_boolean move_literal
7fa3d080
BW
5852 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5853 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5854static bfd_boolean relax_property_section
7fa3d080 5855 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5856
5857/* Third pass: */
7fa3d080 5858static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5859
5860
5861static bfd_boolean
7fa3d080
BW
5862elf_xtensa_relax_section (bfd *abfd,
5863 asection *sec,
5864 struct bfd_link_info *link_info,
5865 bfd_boolean *again)
43cd72b9
BW
5866{
5867 static value_map_hash_table *values = NULL;
5868 static bfd_boolean relocations_analyzed = FALSE;
5869 xtensa_relax_info *relax_info;
5870
5871 if (!relocations_analyzed)
5872 {
5873 /* Do some overall initialization for relaxation. */
5874 values = value_map_hash_table_init ();
5875 if (values == NULL)
5876 return FALSE;
5877 relaxing_section = TRUE;
5878 if (!analyze_relocations (link_info))
5879 return FALSE;
5880 relocations_analyzed = TRUE;
5881 }
5882 *again = FALSE;
5883
5884 /* Don't mess with linker-created sections. */
5885 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5886 return TRUE;
5887
5888 relax_info = get_xtensa_relax_info (sec);
5889 BFD_ASSERT (relax_info != NULL);
5890
5891 switch (relax_info->visited)
5892 {
5893 case 0:
5894 /* Note: It would be nice to fold this pass into
5895 analyze_relocations, but it is important for this step that the
5896 sections be examined in link order. */
5897 if (!compute_removed_literals (abfd, sec, link_info, values))
5898 return FALSE;
5899 *again = TRUE;
5900 break;
5901
5902 case 1:
5903 if (values)
5904 value_map_hash_table_delete (values);
5905 values = NULL;
5906 if (!relax_section (abfd, sec, link_info))
5907 return FALSE;
5908 *again = TRUE;
5909 break;
5910
5911 case 2:
5912 if (!relax_section_symbols (abfd, sec))
5913 return FALSE;
5914 break;
5915 }
5916
5917 relax_info->visited++;
5918 return TRUE;
5919}
5920
5921\f
5922/* Initialization for relaxation. */
5923
5924/* This function is called once at the start of relaxation. It scans
5925 all the input sections and marks the ones that are relaxable (i.e.,
5926 literal sections with L32R relocations against them), and then
5927 collects source_reloc information for all the relocations against
5928 those relaxable sections. During this process, it also detects
5929 longcalls, i.e., calls relaxed by the assembler into indirect
5930 calls, that can be optimized back into direct calls. Within each
5931 extended basic block (ebb) containing an optimized longcall, it
5932 computes a set of "text actions" that can be performed to remove
5933 the L32R associated with the longcall while optionally preserving
5934 branch target alignments. */
5935
5936static bfd_boolean
7fa3d080 5937analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5938{
5939 bfd *abfd;
5940 asection *sec;
5941 bfd_boolean is_relaxable = FALSE;
5942
5943 /* Initialize the per-section relaxation info. */
5944 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5945 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5946 {
5947 init_xtensa_relax_info (sec);
5948 }
5949
5950 /* Mark relaxable sections (and count relocations against each one). */
5951 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5952 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5953 {
5954 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5955 return FALSE;
5956 }
5957
5958 /* Bail out if there are no relaxable sections. */
5959 if (!is_relaxable)
5960 return TRUE;
5961
5962 /* Allocate space for source_relocs. */
5963 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5964 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5965 {
5966 xtensa_relax_info *relax_info;
5967
5968 relax_info = get_xtensa_relax_info (sec);
5969 if (relax_info->is_relaxable_literal_section
5970 || relax_info->is_relaxable_asm_section)
5971 {
5972 relax_info->src_relocs = (source_reloc *)
5973 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5974 }
25c6282a
BW
5975 else
5976 relax_info->src_count = 0;
43cd72b9
BW
5977 }
5978
5979 /* Collect info on relocations against each relaxable section. */
5980 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5981 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5982 {
5983 if (!collect_source_relocs (abfd, sec, link_info))
5984 return FALSE;
5985 }
5986
5987 /* Compute the text actions. */
5988 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5989 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5990 {
5991 if (!compute_text_actions (abfd, sec, link_info))
5992 return FALSE;
5993 }
5994
5995 return TRUE;
5996}
5997
5998
5999/* Find all the sections that might be relaxed. The motivation for
6000 this pass is that collect_source_relocs() needs to record _all_ the
6001 relocations that target each relaxable section. That is expensive
6002 and unnecessary unless the target section is actually going to be
6003 relaxed. This pass identifies all such sections by checking if
6004 they have L32Rs pointing to them. In the process, the total number
6005 of relocations targeting each section is also counted so that we
6006 know how much space to allocate for source_relocs against each
6007 relaxable literal section. */
6008
6009static bfd_boolean
7fa3d080
BW
6010find_relaxable_sections (bfd *abfd,
6011 asection *sec,
6012 struct bfd_link_info *link_info,
6013 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6014{
6015 Elf_Internal_Rela *internal_relocs;
6016 bfd_byte *contents;
6017 bfd_boolean ok = TRUE;
6018 unsigned i;
6019 xtensa_relax_info *source_relax_info;
25c6282a 6020 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6021
6022 internal_relocs = retrieve_internal_relocs (abfd, sec,
6023 link_info->keep_memory);
6024 if (internal_relocs == NULL)
6025 return ok;
6026
6027 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6028 if (contents == NULL && sec->size != 0)
6029 {
6030 ok = FALSE;
6031 goto error_return;
6032 }
6033
6034 source_relax_info = get_xtensa_relax_info (sec);
6035 for (i = 0; i < sec->reloc_count; i++)
6036 {
6037 Elf_Internal_Rela *irel = &internal_relocs[i];
6038 r_reloc r_rel;
6039 asection *target_sec;
6040 xtensa_relax_info *target_relax_info;
6041
6042 /* If this section has not already been marked as "relaxable", and
6043 if it contains any ASM_EXPAND relocations (marking expanded
6044 longcalls) that can be optimized into direct calls, then mark
6045 the section as "relaxable". */
6046 if (source_relax_info
6047 && !source_relax_info->is_relaxable_asm_section
6048 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6049 {
6050 bfd_boolean is_reachable = FALSE;
6051 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6052 link_info, &is_reachable)
6053 && is_reachable)
6054 {
6055 source_relax_info->is_relaxable_asm_section = TRUE;
6056 *is_relaxable_p = TRUE;
6057 }
6058 }
6059
6060 r_reloc_init (&r_rel, abfd, irel, contents,
6061 bfd_get_section_limit (abfd, sec));
6062
6063 target_sec = r_reloc_get_section (&r_rel);
6064 target_relax_info = get_xtensa_relax_info (target_sec);
6065 if (!target_relax_info)
6066 continue;
6067
6068 /* Count PC-relative operand relocations against the target section.
6069 Note: The conditions tested here must match the conditions under
6070 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6071 is_l32r_reloc = FALSE;
6072 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6073 {
6074 xtensa_opcode opcode =
6075 get_relocation_opcode (abfd, sec, contents, irel);
6076 if (opcode != XTENSA_UNDEFINED)
6077 {
6078 is_l32r_reloc = (opcode == get_l32r_opcode ());
6079 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6080 || is_l32r_reloc)
6081 target_relax_info->src_count++;
6082 }
6083 }
43cd72b9 6084
25c6282a 6085 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6086 {
6087 /* Mark the target section as relaxable. */
6088 target_relax_info->is_relaxable_literal_section = TRUE;
6089 *is_relaxable_p = TRUE;
6090 }
6091 }
6092
6093 error_return:
6094 release_contents (sec, contents);
6095 release_internal_relocs (sec, internal_relocs);
6096 return ok;
6097}
6098
6099
6100/* Record _all_ the relocations that point to relaxable sections, and
6101 get rid of ASM_EXPAND relocs by either converting them to
6102 ASM_SIMPLIFY or by removing them. */
6103
6104static bfd_boolean
7fa3d080
BW
6105collect_source_relocs (bfd *abfd,
6106 asection *sec,
6107 struct bfd_link_info *link_info)
43cd72b9
BW
6108{
6109 Elf_Internal_Rela *internal_relocs;
6110 bfd_byte *contents;
6111 bfd_boolean ok = TRUE;
6112 unsigned i;
6113 bfd_size_type sec_size;
6114
6115 internal_relocs = retrieve_internal_relocs (abfd, sec,
6116 link_info->keep_memory);
6117 if (internal_relocs == NULL)
6118 return ok;
6119
6120 sec_size = bfd_get_section_limit (abfd, sec);
6121 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6122 if (contents == NULL && sec_size != 0)
6123 {
6124 ok = FALSE;
6125 goto error_return;
6126 }
6127
6128 /* Record relocations against relaxable literal sections. */
6129 for (i = 0; i < sec->reloc_count; i++)
6130 {
6131 Elf_Internal_Rela *irel = &internal_relocs[i];
6132 r_reloc r_rel;
6133 asection *target_sec;
6134 xtensa_relax_info *target_relax_info;
6135
6136 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6137
6138 target_sec = r_reloc_get_section (&r_rel);
6139 target_relax_info = get_xtensa_relax_info (target_sec);
6140
6141 if (target_relax_info
6142 && (target_relax_info->is_relaxable_literal_section
6143 || target_relax_info->is_relaxable_asm_section))
6144 {
6145 xtensa_opcode opcode = XTENSA_UNDEFINED;
6146 int opnd = -1;
6147 bfd_boolean is_abs_literal = FALSE;
6148
6149 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6150 {
6151 /* None of the current alternate relocs are PC-relative,
6152 and only PC-relative relocs matter here. However, we
6153 still need to record the opcode for literal
6154 coalescing. */
6155 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6156 if (opcode == get_l32r_opcode ())
6157 {
6158 is_abs_literal = TRUE;
6159 opnd = 1;
6160 }
6161 else
6162 opcode = XTENSA_UNDEFINED;
6163 }
6164 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6165 {
6166 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6167 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6168 }
6169
6170 if (opcode != XTENSA_UNDEFINED)
6171 {
6172 int src_next = target_relax_info->src_next++;
6173 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6174
6175 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6176 is_abs_literal);
6177 }
6178 }
6179 }
6180
6181 /* Now get rid of ASM_EXPAND relocations. At this point, the
6182 src_relocs array for the target literal section may still be
6183 incomplete, but it must at least contain the entries for the L32R
6184 relocations associated with ASM_EXPANDs because they were just
6185 added in the preceding loop over the relocations. */
6186
6187 for (i = 0; i < sec->reloc_count; i++)
6188 {
6189 Elf_Internal_Rela *irel = &internal_relocs[i];
6190 bfd_boolean is_reachable;
6191
6192 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6193 &is_reachable))
6194 continue;
6195
6196 if (is_reachable)
6197 {
6198 Elf_Internal_Rela *l32r_irel;
6199 r_reloc r_rel;
6200 asection *target_sec;
6201 xtensa_relax_info *target_relax_info;
6202
6203 /* Mark the source_reloc for the L32R so that it will be
6204 removed in compute_removed_literals(), along with the
6205 associated literal. */
6206 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6207 irel, internal_relocs);
6208 if (l32r_irel == NULL)
6209 continue;
6210
6211 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6212
6213 target_sec = r_reloc_get_section (&r_rel);
6214 target_relax_info = get_xtensa_relax_info (target_sec);
6215
6216 if (target_relax_info
6217 && (target_relax_info->is_relaxable_literal_section
6218 || target_relax_info->is_relaxable_asm_section))
6219 {
6220 source_reloc *s_reloc;
6221
6222 /* Search the source_relocs for the entry corresponding to
6223 the l32r_irel. Note: The src_relocs array is not yet
6224 sorted, but it wouldn't matter anyway because we're
6225 searching by source offset instead of target offset. */
6226 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6227 target_relax_info->src_next,
6228 sec, l32r_irel);
6229 BFD_ASSERT (s_reloc);
6230 s_reloc->is_null = TRUE;
6231 }
6232
6233 /* Convert this reloc to ASM_SIMPLIFY. */
6234 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6235 R_XTENSA_ASM_SIMPLIFY);
6236 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6237
6238 pin_internal_relocs (sec, internal_relocs);
6239 }
6240 else
6241 {
6242 /* It is resolvable but doesn't reach. We resolve now
6243 by eliminating the relocation -- the call will remain
6244 expanded into L32R/CALLX. */
6245 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6246 pin_internal_relocs (sec, internal_relocs);
6247 }
6248 }
6249
6250 error_return:
6251 release_contents (sec, contents);
6252 release_internal_relocs (sec, internal_relocs);
6253 return ok;
6254}
6255
6256
6257/* Return TRUE if the asm expansion can be resolved. Generally it can
6258 be resolved on a final link or when a partial link locates it in the
6259 same section as the target. Set "is_reachable" flag if the target of
6260 the call is within the range of a direct call, given the current VMA
6261 for this section and the target section. */
6262
6263bfd_boolean
7fa3d080
BW
6264is_resolvable_asm_expansion (bfd *abfd,
6265 asection *sec,
6266 bfd_byte *contents,
6267 Elf_Internal_Rela *irel,
6268 struct bfd_link_info *link_info,
6269 bfd_boolean *is_reachable_p)
43cd72b9
BW
6270{
6271 asection *target_sec;
6272 bfd_vma target_offset;
6273 r_reloc r_rel;
6274 xtensa_opcode opcode, direct_call_opcode;
6275 bfd_vma self_address;
6276 bfd_vma dest_address;
6277 bfd_boolean uses_l32r;
6278 bfd_size_type sec_size;
6279
6280 *is_reachable_p = FALSE;
6281
6282 if (contents == NULL)
6283 return FALSE;
6284
6285 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6286 return FALSE;
6287
6288 sec_size = bfd_get_section_limit (abfd, sec);
6289 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6290 sec_size - irel->r_offset, &uses_l32r);
6291 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6292 if (!uses_l32r)
6293 return FALSE;
6294
6295 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6296 if (direct_call_opcode == XTENSA_UNDEFINED)
6297 return FALSE;
6298
6299 /* Check and see that the target resolves. */
6300 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6301 if (!r_reloc_is_defined (&r_rel))
6302 return FALSE;
6303
6304 target_sec = r_reloc_get_section (&r_rel);
6305 target_offset = r_rel.target_offset;
6306
6307 /* If the target is in a shared library, then it doesn't reach. This
6308 isn't supposed to come up because the compiler should never generate
6309 non-PIC calls on systems that use shared libraries, but the linker
6310 shouldn't crash regardless. */
6311 if (!target_sec->output_section)
6312 return FALSE;
6313
6314 /* For relocatable sections, we can only simplify when the output
6315 section of the target is the same as the output section of the
6316 source. */
6317 if (link_info->relocatable
6318 && (target_sec->output_section != sec->output_section
6319 || is_reloc_sym_weak (abfd, irel)))
6320 return FALSE;
6321
6322 self_address = (sec->output_section->vma
6323 + sec->output_offset + irel->r_offset + 3);
6324 dest_address = (target_sec->output_section->vma
6325 + target_sec->output_offset + target_offset);
6326
6327 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6328 self_address, dest_address);
6329
6330 if ((self_address >> CALL_SEGMENT_BITS) !=
6331 (dest_address >> CALL_SEGMENT_BITS))
6332 return FALSE;
6333
6334 return TRUE;
6335}
6336
6337
6338static Elf_Internal_Rela *
7fa3d080
BW
6339find_associated_l32r_irel (bfd *abfd,
6340 asection *sec,
6341 bfd_byte *contents,
6342 Elf_Internal_Rela *other_irel,
6343 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6344{
6345 unsigned i;
e0001a05 6346
43cd72b9
BW
6347 for (i = 0; i < sec->reloc_count; i++)
6348 {
6349 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6350
43cd72b9
BW
6351 if (irel == other_irel)
6352 continue;
6353 if (irel->r_offset != other_irel->r_offset)
6354 continue;
6355 if (is_l32r_relocation (abfd, sec, contents, irel))
6356 return irel;
6357 }
6358
6359 return NULL;
e0001a05
NC
6360}
6361
6362
cb337148
BW
6363static xtensa_opcode *
6364build_reloc_opcodes (bfd *abfd,
6365 asection *sec,
6366 bfd_byte *contents,
6367 Elf_Internal_Rela *internal_relocs)
6368{
6369 unsigned i;
6370 xtensa_opcode *reloc_opcodes =
6371 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6372 for (i = 0; i < sec->reloc_count; i++)
6373 {
6374 Elf_Internal_Rela *irel = &internal_relocs[i];
6375 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6376 }
6377 return reloc_opcodes;
6378}
6379
6380
43cd72b9
BW
6381/* The compute_text_actions function will build a list of potential
6382 transformation actions for code in the extended basic block of each
6383 longcall that is optimized to a direct call. From this list we
6384 generate a set of actions to actually perform that optimizes for
6385 space and, if not using size_opt, maintains branch target
6386 alignments.
e0001a05 6387
43cd72b9
BW
6388 These actions to be performed are placed on a per-section list.
6389 The actual changes are performed by relax_section() in the second
6390 pass. */
6391
6392bfd_boolean
7fa3d080
BW
6393compute_text_actions (bfd *abfd,
6394 asection *sec,
6395 struct bfd_link_info *link_info)
e0001a05 6396{
cb337148 6397 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6398 xtensa_relax_info *relax_info;
e0001a05 6399 bfd_byte *contents;
43cd72b9 6400 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6401 bfd_boolean ok = TRUE;
6402 unsigned i;
43cd72b9
BW
6403 property_table_entry *prop_table = 0;
6404 int ptblsize = 0;
6405 bfd_size_type sec_size;
43cd72b9 6406
43cd72b9
BW
6407 relax_info = get_xtensa_relax_info (sec);
6408 BFD_ASSERT (relax_info);
25c6282a
BW
6409 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6410
6411 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
6412 if (!relax_info->is_relaxable_asm_section)
6413 return ok;
e0001a05
NC
6414
6415 internal_relocs = retrieve_internal_relocs (abfd, sec,
6416 link_info->keep_memory);
e0001a05 6417
43cd72b9
BW
6418 if (internal_relocs)
6419 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6420 internal_reloc_compare);
6421
6422 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6423 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6424 if (contents == NULL && sec_size != 0)
e0001a05
NC
6425 {
6426 ok = FALSE;
6427 goto error_return;
6428 }
6429
43cd72b9
BW
6430 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6431 XTENSA_PROP_SEC_NAME, FALSE);
6432 if (ptblsize < 0)
6433 {
6434 ok = FALSE;
6435 goto error_return;
6436 }
6437
6438 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6439 {
6440 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6441 bfd_vma r_offset;
6442 property_table_entry *the_entry;
6443 int ptbl_idx;
6444 ebb_t *ebb;
6445 ebb_constraint ebb_table;
6446 bfd_size_type simplify_size;
6447
6448 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6449 continue;
6450 r_offset = irel->r_offset;
e0001a05 6451
43cd72b9
BW
6452 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6453 if (simplify_size == 0)
6454 {
6455 (*_bfd_error_handler)
6456 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6457 sec->owner, sec, r_offset);
6458 continue;
6459 }
e0001a05 6460
43cd72b9
BW
6461 /* If the instruction table is not around, then don't do this
6462 relaxation. */
6463 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6464 sec->vma + irel->r_offset);
6465 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6466 {
6467 text_action_add (&relax_info->action_list,
6468 ta_convert_longcall, sec, r_offset,
6469 0);
6470 continue;
6471 }
6472
6473 /* If the next longcall happens to be at the same address as an
6474 unreachable section of size 0, then skip forward. */
6475 ptbl_idx = the_entry - prop_table;
6476 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6477 && the_entry->size == 0
6478 && ptbl_idx + 1 < ptblsize
6479 && (prop_table[ptbl_idx + 1].address
6480 == prop_table[ptbl_idx].address))
6481 {
6482 ptbl_idx++;
6483 the_entry++;
6484 }
e0001a05 6485
99ded152 6486 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
6487 /* NO_REORDER is OK */
6488 continue;
e0001a05 6489
43cd72b9
BW
6490 init_ebb_constraint (&ebb_table);
6491 ebb = &ebb_table.ebb;
6492 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6493 internal_relocs, sec->reloc_count);
6494 ebb->start_offset = r_offset + simplify_size;
6495 ebb->end_offset = r_offset + simplify_size;
6496 ebb->start_ptbl_idx = ptbl_idx;
6497 ebb->end_ptbl_idx = ptbl_idx;
6498 ebb->start_reloc_idx = i;
6499 ebb->end_reloc_idx = i;
6500
cb337148
BW
6501 /* Precompute the opcode for each relocation. */
6502 if (reloc_opcodes == NULL)
6503 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6504 internal_relocs);
6505
43cd72b9
BW
6506 if (!extend_ebb_bounds (ebb)
6507 || !compute_ebb_proposed_actions (&ebb_table)
6508 || !compute_ebb_actions (&ebb_table)
6509 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6510 internal_relocs, &ebb_table,
6511 reloc_opcodes)
43cd72b9 6512 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6513 {
43cd72b9
BW
6514 /* If anything goes wrong or we get unlucky and something does
6515 not fit, with our plan because of expansion between
6516 critical branches, just convert to a NOP. */
6517
6518 text_action_add (&relax_info->action_list,
6519 ta_convert_longcall, sec, r_offset, 0);
6520 i = ebb_table.ebb.end_reloc_idx;
6521 free_ebb_constraint (&ebb_table);
6522 continue;
e0001a05 6523 }
43cd72b9
BW
6524
6525 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6526
6527 /* Update the index so we do not go looking at the relocations
6528 we have already processed. */
6529 i = ebb_table.ebb.end_reloc_idx;
6530 free_ebb_constraint (&ebb_table);
e0001a05
NC
6531 }
6532
43cd72b9 6533#if DEBUG
7fa3d080 6534 if (relax_info->action_list.head)
43cd72b9
BW
6535 print_action_list (stderr, &relax_info->action_list);
6536#endif
6537
6538error_return:
e0001a05
NC
6539 release_contents (sec, contents);
6540 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6541 if (prop_table)
6542 free (prop_table);
cb337148
BW
6543 if (reloc_opcodes)
6544 free (reloc_opcodes);
43cd72b9 6545
e0001a05
NC
6546 return ok;
6547}
6548
6549
64b607e6
BW
6550/* Do not widen an instruction if it is preceeded by a
6551 loop opcode. It might cause misalignment. */
6552
6553static bfd_boolean
6554prev_instr_is_a_loop (bfd_byte *contents,
6555 bfd_size_type content_length,
6556 bfd_size_type offset)
6557{
6558 xtensa_opcode prev_opcode;
6559
6560 if (offset < 3)
6561 return FALSE;
6562 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6563 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6564}
6565
6566
43cd72b9 6567/* Find all of the possible actions for an extended basic block. */
e0001a05 6568
43cd72b9 6569bfd_boolean
7fa3d080 6570compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6571{
43cd72b9
BW
6572 const ebb_t *ebb = &ebb_table->ebb;
6573 unsigned rel_idx = ebb->start_reloc_idx;
6574 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
6575 bfd_vma offset = 0;
6576 xtensa_isa isa = xtensa_default_isa;
6577 xtensa_format fmt;
6578 static xtensa_insnbuf insnbuf = NULL;
6579 static xtensa_insnbuf slotbuf = NULL;
6580
6581 if (insnbuf == NULL)
6582 {
6583 insnbuf = xtensa_insnbuf_alloc (isa);
6584 slotbuf = xtensa_insnbuf_alloc (isa);
6585 }
e0001a05 6586
43cd72b9
BW
6587 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6588 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6589
43cd72b9 6590 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6591 {
64b607e6 6592 bfd_vma start_offset, end_offset;
43cd72b9 6593 bfd_size_type insn_len;
e0001a05 6594
43cd72b9
BW
6595 start_offset = entry->address - ebb->sec->vma;
6596 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6597
43cd72b9
BW
6598 if (entry == start_entry)
6599 start_offset = ebb->start_offset;
6600 if (entry == end_entry)
6601 end_offset = ebb->end_offset;
6602 offset = start_offset;
e0001a05 6603
43cd72b9
BW
6604 if (offset == entry->address - ebb->sec->vma
6605 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6606 {
6607 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6608 BFD_ASSERT (offset != end_offset);
6609 if (offset == end_offset)
6610 return FALSE;
e0001a05 6611
43cd72b9
BW
6612 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6613 offset);
43cd72b9 6614 if (insn_len == 0)
64b607e6
BW
6615 goto decode_error;
6616
43cd72b9
BW
6617 if (check_branch_target_aligned_address (offset, insn_len))
6618 align_type = EBB_REQUIRE_TGT_ALIGN;
6619
6620 ebb_propose_action (ebb_table, align_type, 0,
6621 ta_none, offset, 0, TRUE);
6622 }
6623
6624 while (offset != end_offset)
e0001a05 6625 {
43cd72b9 6626 Elf_Internal_Rela *irel;
e0001a05 6627 xtensa_opcode opcode;
e0001a05 6628
43cd72b9
BW
6629 while (rel_idx < ebb->end_reloc_idx
6630 && (ebb->relocs[rel_idx].r_offset < offset
6631 || (ebb->relocs[rel_idx].r_offset == offset
6632 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6633 != R_XTENSA_ASM_SIMPLIFY))))
6634 rel_idx++;
6635
6636 /* Check for longcall. */
6637 irel = &ebb->relocs[rel_idx];
6638 if (irel->r_offset == offset
6639 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6640 {
6641 bfd_size_type simplify_size;
e0001a05 6642
43cd72b9
BW
6643 simplify_size = get_asm_simplify_size (ebb->contents,
6644 ebb->content_length,
6645 irel->r_offset);
6646 if (simplify_size == 0)
64b607e6 6647 goto decode_error;
43cd72b9
BW
6648
6649 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6650 ta_convert_longcall, offset, 0, TRUE);
6651
6652 offset += simplify_size;
6653 continue;
6654 }
e0001a05 6655
64b607e6
BW
6656 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6657 goto decode_error;
6658 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6659 ebb->content_length - offset);
6660 fmt = xtensa_format_decode (isa, insnbuf);
6661 if (fmt == XTENSA_UNDEFINED)
6662 goto decode_error;
6663 insn_len = xtensa_format_length (isa, fmt);
6664 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6665 goto decode_error;
6666
6667 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 6668 {
64b607e6
BW
6669 offset += insn_len;
6670 continue;
43cd72b9 6671 }
64b607e6
BW
6672
6673 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6674 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6675 if (opcode == XTENSA_UNDEFINED)
6676 goto decode_error;
6677
43cd72b9 6678 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 6679 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 6680 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
6681 {
6682 /* Add an instruction narrow action. */
6683 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6684 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 6685 }
99ded152 6686 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
6687 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6688 && ! prev_instr_is_a_loop (ebb->contents,
6689 ebb->content_length, offset))
43cd72b9
BW
6690 {
6691 /* Add an instruction widen action. */
6692 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6693 ta_widen_insn, offset, 0, FALSE);
43cd72b9 6694 }
64b607e6 6695 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
6696 {
6697 /* Check for branch targets. */
6698 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6699 ta_none, offset, 0, TRUE);
43cd72b9
BW
6700 }
6701
6702 offset += insn_len;
e0001a05
NC
6703 }
6704 }
6705
43cd72b9
BW
6706 if (ebb->ends_unreachable)
6707 {
6708 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6709 ta_fill, ebb->end_offset, 0, TRUE);
6710 }
e0001a05 6711
43cd72b9 6712 return TRUE;
64b607e6
BW
6713
6714 decode_error:
6715 (*_bfd_error_handler)
6716 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6717 ebb->sec->owner, ebb->sec, offset);
6718 return FALSE;
43cd72b9
BW
6719}
6720
6721
6722/* After all of the information has collected about the
6723 transformations possible in an EBB, compute the appropriate actions
6724 here in compute_ebb_actions. We still must check later to make
6725 sure that the actions do not break any relocations. The algorithm
6726 used here is pretty greedy. Basically, it removes as many no-ops
6727 as possible so that the end of the EBB has the same alignment
6728 characteristics as the original. First, it uses narrowing, then
6729 fill space at the end of the EBB, and finally widenings. If that
6730 does not work, it tries again with one fewer no-op removed. The
6731 optimization will only be performed if all of the branch targets
6732 that were aligned before transformation are also aligned after the
6733 transformation.
6734
6735 When the size_opt flag is set, ignore the branch target alignments,
6736 narrow all wide instructions, and remove all no-ops unless the end
6737 of the EBB prevents it. */
6738
6739bfd_boolean
7fa3d080 6740compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6741{
6742 unsigned i = 0;
6743 unsigned j;
6744 int removed_bytes = 0;
6745 ebb_t *ebb = &ebb_table->ebb;
6746 unsigned seg_idx_start = 0;
6747 unsigned seg_idx_end = 0;
6748
6749 /* We perform this like the assembler relaxation algorithm: Start by
6750 assuming all instructions are narrow and all no-ops removed; then
6751 walk through.... */
6752
6753 /* For each segment of this that has a solid constraint, check to
6754 see if there are any combinations that will keep the constraint.
6755 If so, use it. */
6756 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6757 {
43cd72b9
BW
6758 bfd_boolean requires_text_end_align = FALSE;
6759 unsigned longcall_count = 0;
6760 unsigned longcall_convert_count = 0;
6761 unsigned narrowable_count = 0;
6762 unsigned narrowable_convert_count = 0;
6763 unsigned widenable_count = 0;
6764 unsigned widenable_convert_count = 0;
e0001a05 6765
43cd72b9
BW
6766 proposed_action *action = NULL;
6767 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6768
43cd72b9 6769 seg_idx_start = seg_idx_end;
e0001a05 6770
43cd72b9
BW
6771 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6772 {
6773 action = &ebb_table->actions[i];
6774 if (action->action == ta_convert_longcall)
6775 longcall_count++;
6776 if (action->action == ta_narrow_insn)
6777 narrowable_count++;
6778 if (action->action == ta_widen_insn)
6779 widenable_count++;
6780 if (action->action == ta_fill)
6781 break;
6782 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6783 break;
6784 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6785 && !elf32xtensa_size_opt)
6786 break;
6787 }
6788 seg_idx_end = i;
e0001a05 6789
43cd72b9
BW
6790 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6791 requires_text_end_align = TRUE;
e0001a05 6792
43cd72b9
BW
6793 if (elf32xtensa_size_opt && !requires_text_end_align
6794 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6795 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6796 {
6797 longcall_convert_count = longcall_count;
6798 narrowable_convert_count = narrowable_count;
6799 widenable_convert_count = 0;
6800 }
6801 else
6802 {
6803 /* There is a constraint. Convert the max number of longcalls. */
6804 narrowable_convert_count = 0;
6805 longcall_convert_count = 0;
6806 widenable_convert_count = 0;
e0001a05 6807
43cd72b9 6808 for (j = 0; j < longcall_count; j++)
e0001a05 6809 {
43cd72b9
BW
6810 int removed = (longcall_count - j) * 3 & (align - 1);
6811 unsigned desire_narrow = (align - removed) & (align - 1);
6812 unsigned desire_widen = removed;
6813 if (desire_narrow <= narrowable_count)
6814 {
6815 narrowable_convert_count = desire_narrow;
6816 narrowable_convert_count +=
6817 (align * ((narrowable_count - narrowable_convert_count)
6818 / align));
6819 longcall_convert_count = (longcall_count - j);
6820 widenable_convert_count = 0;
6821 break;
6822 }
6823 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6824 {
6825 narrowable_convert_count = 0;
6826 longcall_convert_count = longcall_count - j;
6827 widenable_convert_count = desire_widen;
6828 break;
6829 }
6830 }
6831 }
e0001a05 6832
43cd72b9
BW
6833 /* Now the number of conversions are saved. Do them. */
6834 for (i = seg_idx_start; i < seg_idx_end; i++)
6835 {
6836 action = &ebb_table->actions[i];
6837 switch (action->action)
6838 {
6839 case ta_convert_longcall:
6840 if (longcall_convert_count != 0)
6841 {
6842 action->action = ta_remove_longcall;
6843 action->do_action = TRUE;
6844 action->removed_bytes += 3;
6845 longcall_convert_count--;
6846 }
6847 break;
6848 case ta_narrow_insn:
6849 if (narrowable_convert_count != 0)
6850 {
6851 action->do_action = TRUE;
6852 action->removed_bytes += 1;
6853 narrowable_convert_count--;
6854 }
6855 break;
6856 case ta_widen_insn:
6857 if (widenable_convert_count != 0)
6858 {
6859 action->do_action = TRUE;
6860 action->removed_bytes -= 1;
6861 widenable_convert_count--;
6862 }
6863 break;
6864 default:
6865 break;
e0001a05 6866 }
43cd72b9
BW
6867 }
6868 }
e0001a05 6869
43cd72b9
BW
6870 /* Now we move on to some local opts. Try to remove each of the
6871 remaining longcalls. */
e0001a05 6872
43cd72b9
BW
6873 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6874 {
6875 removed_bytes = 0;
6876 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6877 {
43cd72b9
BW
6878 int old_removed_bytes = removed_bytes;
6879 proposed_action *action = &ebb_table->actions[i];
6880
6881 if (action->do_action && action->action == ta_convert_longcall)
6882 {
6883 bfd_boolean bad_alignment = FALSE;
6884 removed_bytes += 3;
6885 for (j = i + 1; j < ebb_table->action_count; j++)
6886 {
6887 proposed_action *new_action = &ebb_table->actions[j];
6888 bfd_vma offset = new_action->offset;
6889 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6890 {
6891 if (!check_branch_target_aligned
6892 (ebb_table->ebb.contents,
6893 ebb_table->ebb.content_length,
6894 offset, offset - removed_bytes))
6895 {
6896 bad_alignment = TRUE;
6897 break;
6898 }
6899 }
6900 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6901 {
6902 if (!check_loop_aligned (ebb_table->ebb.contents,
6903 ebb_table->ebb.content_length,
6904 offset,
6905 offset - removed_bytes))
6906 {
6907 bad_alignment = TRUE;
6908 break;
6909 }
6910 }
6911 if (new_action->action == ta_narrow_insn
6912 && !new_action->do_action
6913 && ebb_table->ebb.sec->alignment_power == 2)
6914 {
6915 /* Narrow an instruction and we are done. */
6916 new_action->do_action = TRUE;
6917 new_action->removed_bytes += 1;
6918 bad_alignment = FALSE;
6919 break;
6920 }
6921 if (new_action->action == ta_widen_insn
6922 && new_action->do_action
6923 && ebb_table->ebb.sec->alignment_power == 2)
6924 {
6925 /* Narrow an instruction and we are done. */
6926 new_action->do_action = FALSE;
6927 new_action->removed_bytes += 1;
6928 bad_alignment = FALSE;
6929 break;
6930 }
5c5d6806
BW
6931 if (new_action->do_action)
6932 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
6933 }
6934 if (!bad_alignment)
6935 {
6936 action->removed_bytes += 3;
6937 action->action = ta_remove_longcall;
6938 action->do_action = TRUE;
6939 }
6940 }
6941 removed_bytes = old_removed_bytes;
6942 if (action->do_action)
6943 removed_bytes += action->removed_bytes;
e0001a05
NC
6944 }
6945 }
6946
43cd72b9
BW
6947 removed_bytes = 0;
6948 for (i = 0; i < ebb_table->action_count; ++i)
6949 {
6950 proposed_action *action = &ebb_table->actions[i];
6951 if (action->do_action)
6952 removed_bytes += action->removed_bytes;
6953 }
6954
6955 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6956 && ebb->ends_unreachable)
6957 {
6958 proposed_action *action;
6959 int br;
6960 int extra_space;
6961
6962 BFD_ASSERT (ebb_table->action_count != 0);
6963 action = &ebb_table->actions[ebb_table->action_count - 1];
6964 BFD_ASSERT (action->action == ta_fill);
6965 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6966
6967 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6968 br = action->removed_bytes + removed_bytes + extra_space;
6969 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6970
6971 action->removed_bytes = extra_space - br;
6972 }
6973 return TRUE;
e0001a05
NC
6974}
6975
6976
03e94c08
BW
6977/* The xlate_map is a sorted array of address mappings designed to
6978 answer the offset_with_removed_text() query with a binary search instead
6979 of a linear search through the section's action_list. */
6980
6981typedef struct xlate_map_entry xlate_map_entry_t;
6982typedef struct xlate_map xlate_map_t;
6983
6984struct xlate_map_entry
6985{
6986 unsigned orig_address;
6987 unsigned new_address;
6988 unsigned size;
6989};
6990
6991struct xlate_map
6992{
6993 unsigned entry_count;
6994 xlate_map_entry_t *entry;
6995};
6996
6997
6998static int
6999xlate_compare (const void *a_v, const void *b_v)
7000{
7001 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7002 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7003 if (a->orig_address < b->orig_address)
7004 return -1;
7005 if (a->orig_address > (b->orig_address + b->size - 1))
7006 return 1;
7007 return 0;
7008}
7009
7010
7011static bfd_vma
7012xlate_offset_with_removed_text (const xlate_map_t *map,
7013 text_action_list *action_list,
7014 bfd_vma offset)
7015{
7016 xlate_map_entry_t tmp;
7017 void *r;
7018 xlate_map_entry_t *e;
7019
7020 if (map == NULL)
7021 return offset_with_removed_text (action_list, offset);
7022
7023 if (map->entry_count == 0)
7024 return offset;
7025
7026 tmp.orig_address = offset;
7027 tmp.new_address = offset;
7028 tmp.size = 1;
7029
7030 r = bsearch (&offset, map->entry, map->entry_count,
7031 sizeof (xlate_map_entry_t), &xlate_compare);
7032 e = (xlate_map_entry_t *) r;
7033
7034 BFD_ASSERT (e != NULL);
7035 if (e == NULL)
7036 return offset;
7037 return e->new_address - e->orig_address + offset;
7038}
7039
7040
7041/* Build a binary searchable offset translation map from a section's
7042 action list. */
7043
7044static xlate_map_t *
7045build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7046{
7047 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7048 text_action_list *action_list = &relax_info->action_list;
7049 unsigned num_actions = 0;
7050 text_action *r;
7051 int removed;
7052 xlate_map_entry_t *current_entry;
7053
7054 if (map == NULL)
7055 return NULL;
7056
7057 num_actions = action_list_count (action_list);
7058 map->entry = (xlate_map_entry_t *)
7059 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7060 if (map->entry == NULL)
7061 {
7062 free (map);
7063 return NULL;
7064 }
7065 map->entry_count = 0;
7066
7067 removed = 0;
7068 current_entry = &map->entry[0];
7069
7070 current_entry->orig_address = 0;
7071 current_entry->new_address = 0;
7072 current_entry->size = 0;
7073
7074 for (r = action_list->head; r != NULL; r = r->next)
7075 {
7076 unsigned orig_size = 0;
7077 switch (r->action)
7078 {
7079 case ta_none:
7080 case ta_remove_insn:
7081 case ta_convert_longcall:
7082 case ta_remove_literal:
7083 case ta_add_literal:
7084 break;
7085 case ta_remove_longcall:
7086 orig_size = 6;
7087 break;
7088 case ta_narrow_insn:
7089 orig_size = 3;
7090 break;
7091 case ta_widen_insn:
7092 orig_size = 2;
7093 break;
7094 case ta_fill:
7095 break;
7096 }
7097 current_entry->size =
7098 r->offset + orig_size - current_entry->orig_address;
7099 if (current_entry->size != 0)
7100 {
7101 current_entry++;
7102 map->entry_count++;
7103 }
7104 current_entry->orig_address = r->offset + orig_size;
7105 removed += r->removed_bytes;
7106 current_entry->new_address = r->offset + orig_size - removed;
7107 current_entry->size = 0;
7108 }
7109
7110 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7111 - current_entry->orig_address);
7112 if (current_entry->size != 0)
7113 map->entry_count++;
7114
7115 return map;
7116}
7117
7118
7119/* Free an offset translation map. */
7120
7121static void
7122free_xlate_map (xlate_map_t *map)
7123{
7124 if (map && map->entry)
7125 free (map->entry);
7126 if (map)
7127 free (map);
7128}
7129
7130
43cd72b9
BW
7131/* Use check_section_ebb_pcrels_fit to make sure that all of the
7132 relocations in a section will fit if a proposed set of actions
7133 are performed. */
e0001a05 7134
43cd72b9 7135static bfd_boolean
7fa3d080
BW
7136check_section_ebb_pcrels_fit (bfd *abfd,
7137 asection *sec,
7138 bfd_byte *contents,
7139 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7140 const ebb_constraint *constraint,
7141 const xtensa_opcode *reloc_opcodes)
e0001a05 7142{
43cd72b9
BW
7143 unsigned i, j;
7144 Elf_Internal_Rela *irel;
03e94c08
BW
7145 xlate_map_t *xmap = NULL;
7146 bfd_boolean ok = TRUE;
43cd72b9 7147 xtensa_relax_info *relax_info;
e0001a05 7148
43cd72b9 7149 relax_info = get_xtensa_relax_info (sec);
e0001a05 7150
03e94c08
BW
7151 if (relax_info && sec->reloc_count > 100)
7152 {
7153 xmap = build_xlate_map (sec, relax_info);
7154 /* NULL indicates out of memory, but the slow version
7155 can still be used. */
7156 }
7157
43cd72b9
BW
7158 for (i = 0; i < sec->reloc_count; i++)
7159 {
7160 r_reloc r_rel;
7161 bfd_vma orig_self_offset, orig_target_offset;
7162 bfd_vma self_offset, target_offset;
7163 int r_type;
7164 reloc_howto_type *howto;
7165 int self_removed_bytes, target_removed_bytes;
e0001a05 7166
43cd72b9
BW
7167 irel = &internal_relocs[i];
7168 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7169
43cd72b9
BW
7170 howto = &elf_howto_table[r_type];
7171 /* We maintain the required invariant: PC-relative relocations
7172 that fit before linking must fit after linking. Thus we only
7173 need to deal with relocations to the same section that are
7174 PC-relative. */
7175 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7176 || !howto->pc_relative)
7177 continue;
e0001a05 7178
43cd72b9
BW
7179 r_reloc_init (&r_rel, abfd, irel, contents,
7180 bfd_get_section_limit (abfd, sec));
e0001a05 7181
43cd72b9
BW
7182 if (r_reloc_get_section (&r_rel) != sec)
7183 continue;
e0001a05 7184
43cd72b9
BW
7185 orig_self_offset = irel->r_offset;
7186 orig_target_offset = r_rel.target_offset;
e0001a05 7187
43cd72b9
BW
7188 self_offset = orig_self_offset;
7189 target_offset = orig_target_offset;
7190
7191 if (relax_info)
7192 {
03e94c08
BW
7193 self_offset =
7194 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7195 orig_self_offset);
7196 target_offset =
7197 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7198 orig_target_offset);
43cd72b9
BW
7199 }
7200
7201 self_removed_bytes = 0;
7202 target_removed_bytes = 0;
7203
7204 for (j = 0; j < constraint->action_count; ++j)
7205 {
7206 proposed_action *action = &constraint->actions[j];
7207 bfd_vma offset = action->offset;
7208 int removed_bytes = action->removed_bytes;
7209 if (offset < orig_self_offset
7210 || (offset == orig_self_offset && action->action == ta_fill
7211 && action->removed_bytes < 0))
7212 self_removed_bytes += removed_bytes;
7213 if (offset < orig_target_offset
7214 || (offset == orig_target_offset && action->action == ta_fill
7215 && action->removed_bytes < 0))
7216 target_removed_bytes += removed_bytes;
7217 }
7218 self_offset -= self_removed_bytes;
7219 target_offset -= target_removed_bytes;
7220
7221 /* Try to encode it. Get the operand and check. */
7222 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7223 {
7224 /* None of the current alternate relocs are PC-relative,
7225 and only PC-relative relocs matter here. */
7226 }
7227 else
7228 {
7229 xtensa_opcode opcode;
7230 int opnum;
7231
cb337148
BW
7232 if (reloc_opcodes)
7233 opcode = reloc_opcodes[i];
7234 else
7235 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7236 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7237 {
7238 ok = FALSE;
7239 break;
7240 }
43cd72b9
BW
7241
7242 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7243 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7244 {
7245 ok = FALSE;
7246 break;
7247 }
43cd72b9
BW
7248
7249 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7250 {
7251 ok = FALSE;
7252 break;
7253 }
43cd72b9
BW
7254 }
7255 }
7256
03e94c08
BW
7257 if (xmap)
7258 free_xlate_map (xmap);
7259
7260 return ok;
43cd72b9
BW
7261}
7262
7263
7264static bfd_boolean
7fa3d080 7265check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7266{
7267 int removed = 0;
7268 unsigned i;
7269
7270 for (i = 0; i < constraint->action_count; i++)
7271 {
7272 const proposed_action *action = &constraint->actions[i];
7273 if (action->do_action)
7274 removed += action->removed_bytes;
7275 }
7276 if (removed < 0)
e0001a05
NC
7277 return FALSE;
7278
7279 return TRUE;
7280}
7281
7282
43cd72b9 7283void
7fa3d080
BW
7284text_action_add_proposed (text_action_list *l,
7285 const ebb_constraint *ebb_table,
7286 asection *sec)
e0001a05
NC
7287{
7288 unsigned i;
7289
43cd72b9 7290 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7291 {
43cd72b9 7292 proposed_action *action = &ebb_table->actions[i];
e0001a05 7293
43cd72b9 7294 if (!action->do_action)
e0001a05 7295 continue;
43cd72b9
BW
7296 switch (action->action)
7297 {
7298 case ta_remove_insn:
7299 case ta_remove_longcall:
7300 case ta_convert_longcall:
7301 case ta_narrow_insn:
7302 case ta_widen_insn:
7303 case ta_fill:
7304 case ta_remove_literal:
7305 text_action_add (l, action->action, sec, action->offset,
7306 action->removed_bytes);
7307 break;
7308 case ta_none:
7309 break;
7310 default:
7311 BFD_ASSERT (0);
7312 break;
7313 }
e0001a05 7314 }
43cd72b9 7315}
e0001a05 7316
43cd72b9
BW
7317
7318int
7fa3d080 7319compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7320{
7321 int fill_extra_space;
7322
7323 if (!entry)
7324 return 0;
7325
7326 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7327 return 0;
7328
7329 fill_extra_space = entry->size;
7330 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7331 {
7332 /* Fill bytes for alignment:
7333 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7334 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7335 int nsm = (1 << pow) - 1;
7336 bfd_vma addr = entry->address + entry->size;
7337 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7338 fill_extra_space += align_fill;
7339 }
7340 return fill_extra_space;
e0001a05
NC
7341}
7342
43cd72b9 7343\f
e0001a05
NC
7344/* First relaxation pass. */
7345
43cd72b9
BW
7346/* If the section contains relaxable literals, check each literal to
7347 see if it has the same value as another literal that has already
7348 been seen, either in the current section or a previous one. If so,
7349 add an entry to the per-section list of removed literals. The
e0001a05
NC
7350 actual changes are deferred until the next pass. */
7351
7352static bfd_boolean
7fa3d080
BW
7353compute_removed_literals (bfd *abfd,
7354 asection *sec,
7355 struct bfd_link_info *link_info,
7356 value_map_hash_table *values)
e0001a05
NC
7357{
7358 xtensa_relax_info *relax_info;
7359 bfd_byte *contents;
7360 Elf_Internal_Rela *internal_relocs;
43cd72b9 7361 source_reloc *src_relocs, *rel;
e0001a05 7362 bfd_boolean ok = TRUE;
43cd72b9
BW
7363 property_table_entry *prop_table = NULL;
7364 int ptblsize;
7365 int i, prev_i;
7366 bfd_boolean last_loc_is_prev = FALSE;
7367 bfd_vma last_target_offset = 0;
7368 section_cache_t target_sec_cache;
7369 bfd_size_type sec_size;
7370
7371 init_section_cache (&target_sec_cache);
e0001a05
NC
7372
7373 /* Do nothing if it is not a relaxable literal section. */
7374 relax_info = get_xtensa_relax_info (sec);
7375 BFD_ASSERT (relax_info);
e0001a05
NC
7376 if (!relax_info->is_relaxable_literal_section)
7377 return ok;
7378
7379 internal_relocs = retrieve_internal_relocs (abfd, sec,
7380 link_info->keep_memory);
7381
43cd72b9 7382 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7383 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7384 if (contents == NULL && sec_size != 0)
e0001a05
NC
7385 {
7386 ok = FALSE;
7387 goto error_return;
7388 }
7389
7390 /* Sort the source_relocs by target offset. */
7391 src_relocs = relax_info->src_relocs;
7392 qsort (src_relocs, relax_info->src_count,
7393 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7394 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7395 internal_reloc_compare);
e0001a05 7396
43cd72b9
BW
7397 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7398 XTENSA_PROP_SEC_NAME, FALSE);
7399 if (ptblsize < 0)
7400 {
7401 ok = FALSE;
7402 goto error_return;
7403 }
7404
7405 prev_i = -1;
e0001a05
NC
7406 for (i = 0; i < relax_info->src_count; i++)
7407 {
e0001a05 7408 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7409
7410 rel = &src_relocs[i];
43cd72b9
BW
7411 if (get_l32r_opcode () != rel->opcode)
7412 continue;
e0001a05
NC
7413 irel = get_irel_at_offset (sec, internal_relocs,
7414 rel->r_rel.target_offset);
7415
43cd72b9
BW
7416 /* If the relocation on this is not a simple R_XTENSA_32 or
7417 R_XTENSA_PLT then do not consider it. This may happen when
7418 the difference of two symbols is used in a literal. */
7419 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7420 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7421 continue;
7422
e0001a05
NC
7423 /* If the target_offset for this relocation is the same as the
7424 previous relocation, then we've already considered whether the
7425 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7426 if (i != 0 && prev_i != -1
7427 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7428 continue;
43cd72b9
BW
7429 prev_i = i;
7430
7431 if (last_loc_is_prev &&
7432 last_target_offset + 4 != rel->r_rel.target_offset)
7433 last_loc_is_prev = FALSE;
e0001a05
NC
7434
7435 /* Check if the relocation was from an L32R that is being removed
7436 because a CALLX was converted to a direct CALL, and check if
7437 there are no other relocations to the literal. */
99ded152
BW
7438 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7439 sec, prop_table, ptblsize))
e0001a05 7440 {
43cd72b9
BW
7441 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7442 irel, rel, prop_table, ptblsize))
e0001a05 7443 {
43cd72b9
BW
7444 ok = FALSE;
7445 goto error_return;
e0001a05 7446 }
43cd72b9 7447 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7448 continue;
7449 }
7450
43cd72b9
BW
7451 if (!identify_literal_placement (abfd, sec, contents, link_info,
7452 values,
7453 &last_loc_is_prev, irel,
7454 relax_info->src_count - i, rel,
7455 prop_table, ptblsize,
7456 &target_sec_cache, rel->is_abs_literal))
e0001a05 7457 {
43cd72b9
BW
7458 ok = FALSE;
7459 goto error_return;
7460 }
7461 last_target_offset = rel->r_rel.target_offset;
7462 }
e0001a05 7463
43cd72b9
BW
7464#if DEBUG
7465 print_removed_literals (stderr, &relax_info->removed_list);
7466 print_action_list (stderr, &relax_info->action_list);
7467#endif /* DEBUG */
7468
7469error_return:
7470 if (prop_table) free (prop_table);
7471 clear_section_cache (&target_sec_cache);
7472
7473 release_contents (sec, contents);
7474 release_internal_relocs (sec, internal_relocs);
7475 return ok;
7476}
7477
7478
7479static Elf_Internal_Rela *
7fa3d080
BW
7480get_irel_at_offset (asection *sec,
7481 Elf_Internal_Rela *internal_relocs,
7482 bfd_vma offset)
43cd72b9
BW
7483{
7484 unsigned i;
7485 Elf_Internal_Rela *irel;
7486 unsigned r_type;
7487 Elf_Internal_Rela key;
7488
7489 if (!internal_relocs)
7490 return NULL;
7491
7492 key.r_offset = offset;
7493 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7494 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7495 if (!irel)
7496 return NULL;
7497
7498 /* bsearch does not guarantee which will be returned if there are
7499 multiple matches. We need the first that is not an alignment. */
7500 i = irel - internal_relocs;
7501 while (i > 0)
7502 {
7503 if (internal_relocs[i-1].r_offset != offset)
7504 break;
7505 i--;
7506 }
7507 for ( ; i < sec->reloc_count; i++)
7508 {
7509 irel = &internal_relocs[i];
7510 r_type = ELF32_R_TYPE (irel->r_info);
7511 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7512 return irel;
7513 }
7514
7515 return NULL;
7516}
7517
7518
7519bfd_boolean
7fa3d080
BW
7520is_removable_literal (const source_reloc *rel,
7521 int i,
7522 const source_reloc *src_relocs,
99ded152
BW
7523 int src_count,
7524 asection *sec,
7525 property_table_entry *prop_table,
7526 int ptblsize)
43cd72b9
BW
7527{
7528 const source_reloc *curr_rel;
99ded152
BW
7529 property_table_entry *entry;
7530
43cd72b9
BW
7531 if (!rel->is_null)
7532 return FALSE;
7533
99ded152
BW
7534 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7535 sec->vma + rel->r_rel.target_offset);
7536 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7537 return FALSE;
7538
43cd72b9
BW
7539 for (++i; i < src_count; ++i)
7540 {
7541 curr_rel = &src_relocs[i];
7542 /* If all others have the same target offset.... */
7543 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7544 return TRUE;
7545
7546 if (!curr_rel->is_null
7547 && !xtensa_is_property_section (curr_rel->source_sec)
7548 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7549 return FALSE;
7550 }
7551 return TRUE;
7552}
7553
7554
7555bfd_boolean
7fa3d080
BW
7556remove_dead_literal (bfd *abfd,
7557 asection *sec,
7558 struct bfd_link_info *link_info,
7559 Elf_Internal_Rela *internal_relocs,
7560 Elf_Internal_Rela *irel,
7561 source_reloc *rel,
7562 property_table_entry *prop_table,
7563 int ptblsize)
43cd72b9
BW
7564{
7565 property_table_entry *entry;
7566 xtensa_relax_info *relax_info;
7567
7568 relax_info = get_xtensa_relax_info (sec);
7569 if (!relax_info)
7570 return FALSE;
7571
7572 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7573 sec->vma + rel->r_rel.target_offset);
7574
7575 /* Mark the unused literal so that it will be removed. */
7576 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7577
7578 text_action_add (&relax_info->action_list,
7579 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7580
7581 /* If the section is 4-byte aligned, do not add fill. */
7582 if (sec->alignment_power > 2)
7583 {
7584 int fill_extra_space;
7585 bfd_vma entry_sec_offset;
7586 text_action *fa;
7587 property_table_entry *the_add_entry;
7588 int removed_diff;
7589
7590 if (entry)
7591 entry_sec_offset = entry->address - sec->vma + entry->size;
7592 else
7593 entry_sec_offset = rel->r_rel.target_offset + 4;
7594
7595 /* If the literal range is at the end of the section,
7596 do not add fill. */
7597 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7598 entry_sec_offset);
7599 fill_extra_space = compute_fill_extra_space (the_add_entry);
7600
7601 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7602 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7603 -4, fill_extra_space);
7604 if (fa)
7605 adjust_fill_action (fa, removed_diff);
7606 else
7607 text_action_add (&relax_info->action_list,
7608 ta_fill, sec, entry_sec_offset, removed_diff);
7609 }
7610
7611 /* Zero out the relocation on this literal location. */
7612 if (irel)
7613 {
7614 if (elf_hash_table (link_info)->dynamic_sections_created)
7615 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7616
7617 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7618 pin_internal_relocs (sec, internal_relocs);
7619 }
7620
7621 /* Do not modify "last_loc_is_prev". */
7622 return TRUE;
7623}
7624
7625
7626bfd_boolean
7fa3d080
BW
7627identify_literal_placement (bfd *abfd,
7628 asection *sec,
7629 bfd_byte *contents,
7630 struct bfd_link_info *link_info,
7631 value_map_hash_table *values,
7632 bfd_boolean *last_loc_is_prev_p,
7633 Elf_Internal_Rela *irel,
7634 int remaining_src_rels,
7635 source_reloc *rel,
7636 property_table_entry *prop_table,
7637 int ptblsize,
7638 section_cache_t *target_sec_cache,
7639 bfd_boolean is_abs_literal)
43cd72b9
BW
7640{
7641 literal_value val;
7642 value_map *val_map;
7643 xtensa_relax_info *relax_info;
7644 bfd_boolean literal_placed = FALSE;
7645 r_reloc r_rel;
7646 unsigned long value;
7647 bfd_boolean final_static_link;
7648 bfd_size_type sec_size;
7649
7650 relax_info = get_xtensa_relax_info (sec);
7651 if (!relax_info)
7652 return FALSE;
7653
7654 sec_size = bfd_get_section_limit (abfd, sec);
7655
7656 final_static_link =
7657 (!link_info->relocatable
7658 && !elf_hash_table (link_info)->dynamic_sections_created);
7659
7660 /* The placement algorithm first checks to see if the literal is
7661 already in the value map. If so and the value map is reachable
7662 from all uses, then the literal is moved to that location. If
7663 not, then we identify the last location where a fresh literal was
7664 placed. If the literal can be safely moved there, then we do so.
7665 If not, then we assume that the literal is not to move and leave
7666 the literal where it is, marking it as the last literal
7667 location. */
7668
7669 /* Find the literal value. */
7670 value = 0;
7671 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7672 if (!irel)
7673 {
7674 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7675 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7676 }
7677 init_literal_value (&val, &r_rel, value, is_abs_literal);
7678
7679 /* Check if we've seen another literal with the same value that
7680 is in the same output section. */
7681 val_map = value_map_get_cached_value (values, &val, final_static_link);
7682
7683 if (val_map
7684 && (r_reloc_get_section (&val_map->loc)->output_section
7685 == sec->output_section)
7686 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7687 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7688 {
7689 /* No change to last_loc_is_prev. */
7690 literal_placed = TRUE;
7691 }
7692
7693 /* For relocatable links, do not try to move literals. To do it
7694 correctly might increase the number of relocations in an input
7695 section making the default relocatable linking fail. */
7696 if (!link_info->relocatable && !literal_placed
7697 && values->has_last_loc && !(*last_loc_is_prev_p))
7698 {
7699 asection *target_sec = r_reloc_get_section (&values->last_loc);
7700 if (target_sec && target_sec->output_section == sec->output_section)
7701 {
7702 /* Increment the virtual offset. */
7703 r_reloc try_loc = values->last_loc;
7704 try_loc.virtual_offset += 4;
7705
7706 /* There is a last loc that was in the same output section. */
7707 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7708 && move_shared_literal (sec, link_info, rel,
7709 prop_table, ptblsize,
7710 &try_loc, &val, target_sec_cache))
e0001a05 7711 {
43cd72b9
BW
7712 values->last_loc.virtual_offset += 4;
7713 literal_placed = TRUE;
7714 if (!val_map)
7715 val_map = add_value_map (values, &val, &try_loc,
7716 final_static_link);
7717 else
7718 val_map->loc = try_loc;
e0001a05
NC
7719 }
7720 }
43cd72b9
BW
7721 }
7722
7723 if (!literal_placed)
7724 {
7725 /* Nothing worked, leave the literal alone but update the last loc. */
7726 values->has_last_loc = TRUE;
7727 values->last_loc = rel->r_rel;
7728 if (!val_map)
7729 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7730 else
43cd72b9
BW
7731 val_map->loc = rel->r_rel;
7732 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7733 }
7734
43cd72b9 7735 return TRUE;
e0001a05
NC
7736}
7737
7738
7739/* Check if the original relocations (presumably on L32R instructions)
7740 identified by reloc[0..N] can be changed to reference the literal
7741 identified by r_rel. If r_rel is out of range for any of the
7742 original relocations, then we don't want to coalesce the original
7743 literal with the one at r_rel. We only check reloc[0..N], where the
7744 offsets are all the same as for reloc[0] (i.e., they're all
7745 referencing the same literal) and where N is also bounded by the
7746 number of remaining entries in the "reloc" array. The "reloc" array
7747 is sorted by target offset so we know all the entries for the same
7748 literal will be contiguous. */
7749
7750static bfd_boolean
7fa3d080
BW
7751relocations_reach (source_reloc *reloc,
7752 int remaining_relocs,
7753 const r_reloc *r_rel)
e0001a05
NC
7754{
7755 bfd_vma from_offset, source_address, dest_address;
7756 asection *sec;
7757 int i;
7758
7759 if (!r_reloc_is_defined (r_rel))
7760 return FALSE;
7761
7762 sec = r_reloc_get_section (r_rel);
7763 from_offset = reloc[0].r_rel.target_offset;
7764
7765 for (i = 0; i < remaining_relocs; i++)
7766 {
7767 if (reloc[i].r_rel.target_offset != from_offset)
7768 break;
7769
7770 /* Ignore relocations that have been removed. */
7771 if (reloc[i].is_null)
7772 continue;
7773
7774 /* The original and new output section for these must be the same
7775 in order to coalesce. */
7776 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7777 != sec->output_section)
7778 return FALSE;
7779
d638e0ac
BW
7780 /* Absolute literals in the same output section can always be
7781 combined. */
7782 if (reloc[i].is_abs_literal)
7783 continue;
7784
43cd72b9
BW
7785 /* A literal with no PC-relative relocations can be moved anywhere. */
7786 if (reloc[i].opnd != -1)
e0001a05
NC
7787 {
7788 /* Otherwise, check to see that it fits. */
7789 source_address = (reloc[i].source_sec->output_section->vma
7790 + reloc[i].source_sec->output_offset
7791 + reloc[i].r_rel.rela.r_offset);
7792 dest_address = (sec->output_section->vma
7793 + sec->output_offset
7794 + r_rel->target_offset);
7795
43cd72b9
BW
7796 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7797 source_address, dest_address))
e0001a05
NC
7798 return FALSE;
7799 }
7800 }
7801
7802 return TRUE;
7803}
7804
7805
43cd72b9
BW
7806/* Move a literal to another literal location because it is
7807 the same as the other literal value. */
e0001a05 7808
43cd72b9 7809static bfd_boolean
7fa3d080
BW
7810coalesce_shared_literal (asection *sec,
7811 source_reloc *rel,
7812 property_table_entry *prop_table,
7813 int ptblsize,
7814 value_map *val_map)
e0001a05 7815{
43cd72b9
BW
7816 property_table_entry *entry;
7817 text_action *fa;
7818 property_table_entry *the_add_entry;
7819 int removed_diff;
7820 xtensa_relax_info *relax_info;
7821
7822 relax_info = get_xtensa_relax_info (sec);
7823 if (!relax_info)
7824 return FALSE;
7825
7826 entry = elf_xtensa_find_property_entry
7827 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 7828 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
7829 return TRUE;
7830
7831 /* Mark that the literal will be coalesced. */
7832 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7833
7834 text_action_add (&relax_info->action_list,
7835 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7836
7837 /* If the section is 4-byte aligned, do not add fill. */
7838 if (sec->alignment_power > 2)
e0001a05 7839 {
43cd72b9
BW
7840 int fill_extra_space;
7841 bfd_vma entry_sec_offset;
7842
7843 if (entry)
7844 entry_sec_offset = entry->address - sec->vma + entry->size;
7845 else
7846 entry_sec_offset = rel->r_rel.target_offset + 4;
7847
7848 /* If the literal range is at the end of the section,
7849 do not add fill. */
7850 fill_extra_space = 0;
7851 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7852 entry_sec_offset);
7853 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7854 fill_extra_space = the_add_entry->size;
7855
7856 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7857 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7858 -4, fill_extra_space);
7859 if (fa)
7860 adjust_fill_action (fa, removed_diff);
7861 else
7862 text_action_add (&relax_info->action_list,
7863 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7864 }
43cd72b9
BW
7865
7866 return TRUE;
7867}
7868
7869
7870/* Move a literal to another location. This may actually increase the
7871 total amount of space used because of alignments so we need to do
7872 this carefully. Also, it may make a branch go out of range. */
7873
7874static bfd_boolean
7fa3d080
BW
7875move_shared_literal (asection *sec,
7876 struct bfd_link_info *link_info,
7877 source_reloc *rel,
7878 property_table_entry *prop_table,
7879 int ptblsize,
7880 const r_reloc *target_loc,
7881 const literal_value *lit_value,
7882 section_cache_t *target_sec_cache)
43cd72b9
BW
7883{
7884 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7885 text_action *fa, *target_fa;
7886 int removed_diff;
7887 xtensa_relax_info *relax_info, *target_relax_info;
7888 asection *target_sec;
7889 ebb_t *ebb;
7890 ebb_constraint ebb_table;
7891 bfd_boolean relocs_fit;
7892
7893 /* If this routine always returns FALSE, the literals that cannot be
7894 coalesced will not be moved. */
7895 if (elf32xtensa_no_literal_movement)
7896 return FALSE;
7897
7898 relax_info = get_xtensa_relax_info (sec);
7899 if (!relax_info)
7900 return FALSE;
7901
7902 target_sec = r_reloc_get_section (target_loc);
7903 target_relax_info = get_xtensa_relax_info (target_sec);
7904
7905 /* Literals to undefined sections may not be moved because they
7906 must report an error. */
7907 if (bfd_is_und_section (target_sec))
7908 return FALSE;
7909
7910 src_entry = elf_xtensa_find_property_entry
7911 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7912
7913 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7914 return FALSE;
7915
7916 target_entry = elf_xtensa_find_property_entry
7917 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7918 target_sec->vma + target_loc->target_offset);
7919
7920 if (!target_entry)
7921 return FALSE;
7922
7923 /* Make sure that we have not broken any branches. */
7924 relocs_fit = FALSE;
7925
7926 init_ebb_constraint (&ebb_table);
7927 ebb = &ebb_table.ebb;
7928 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7929 target_sec_cache->content_length,
7930 target_sec_cache->ptbl, target_sec_cache->pte_count,
7931 target_sec_cache->relocs, target_sec_cache->reloc_count);
7932
7933 /* Propose to add 4 bytes + worst-case alignment size increase to
7934 destination. */
7935 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7936 ta_fill, target_loc->target_offset,
7937 -4 - (1 << target_sec->alignment_power), TRUE);
7938
7939 /* Check all of the PC-relative relocations to make sure they still fit. */
7940 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7941 target_sec_cache->contents,
7942 target_sec_cache->relocs,
cb337148 7943 &ebb_table, NULL);
43cd72b9
BW
7944
7945 if (!relocs_fit)
7946 return FALSE;
7947
7948 text_action_add_literal (&target_relax_info->action_list,
7949 ta_add_literal, target_loc, lit_value, -4);
7950
7951 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7952 {
7953 /* May need to add or remove some fill to maintain alignment. */
7954 int fill_extra_space;
7955 bfd_vma entry_sec_offset;
7956
7957 entry_sec_offset =
7958 target_entry->address - target_sec->vma + target_entry->size;
7959
7960 /* If the literal range is at the end of the section,
7961 do not add fill. */
7962 fill_extra_space = 0;
7963 the_add_entry =
7964 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7965 target_sec_cache->pte_count,
7966 entry_sec_offset);
7967 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7968 fill_extra_space = the_add_entry->size;
7969
7970 target_fa = find_fill_action (&target_relax_info->action_list,
7971 target_sec, entry_sec_offset);
7972 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7973 entry_sec_offset, 4,
7974 fill_extra_space);
7975 if (target_fa)
7976 adjust_fill_action (target_fa, removed_diff);
7977 else
7978 text_action_add (&target_relax_info->action_list,
7979 ta_fill, target_sec, entry_sec_offset, removed_diff);
7980 }
7981
7982 /* Mark that the literal will be moved to the new location. */
7983 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7984
7985 /* Remove the literal. */
7986 text_action_add (&relax_info->action_list,
7987 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7988
7989 /* If the section is 4-byte aligned, do not add fill. */
7990 if (sec->alignment_power > 2 && target_entry != src_entry)
7991 {
7992 int fill_extra_space;
7993 bfd_vma entry_sec_offset;
7994
7995 if (src_entry)
7996 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7997 else
7998 entry_sec_offset = rel->r_rel.target_offset+4;
7999
8000 /* If the literal range is at the end of the section,
8001 do not add fill. */
8002 fill_extra_space = 0;
8003 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8004 entry_sec_offset);
8005 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8006 fill_extra_space = the_add_entry->size;
8007
8008 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8009 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8010 -4, fill_extra_space);
8011 if (fa)
8012 adjust_fill_action (fa, removed_diff);
8013 else
8014 text_action_add (&relax_info->action_list,
8015 ta_fill, sec, entry_sec_offset, removed_diff);
8016 }
8017
8018 return TRUE;
e0001a05
NC
8019}
8020
8021\f
8022/* Second relaxation pass. */
8023
8024/* Modify all of the relocations to point to the right spot, and if this
8025 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8026 section size. */
e0001a05 8027
43cd72b9 8028bfd_boolean
7fa3d080 8029relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8030{
8031 Elf_Internal_Rela *internal_relocs;
8032 xtensa_relax_info *relax_info;
8033 bfd_byte *contents;
8034 bfd_boolean ok = TRUE;
8035 unsigned i;
43cd72b9
BW
8036 bfd_boolean rv = FALSE;
8037 bfd_boolean virtual_action;
8038 bfd_size_type sec_size;
e0001a05 8039
43cd72b9 8040 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8041 relax_info = get_xtensa_relax_info (sec);
8042 BFD_ASSERT (relax_info);
8043
43cd72b9
BW
8044 /* First translate any of the fixes that have been added already. */
8045 translate_section_fixes (sec);
8046
e0001a05
NC
8047 /* Handle property sections (e.g., literal tables) specially. */
8048 if (xtensa_is_property_section (sec))
8049 {
8050 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8051 return relax_property_section (abfd, sec, link_info);
8052 }
8053
43cd72b9
BW
8054 internal_relocs = retrieve_internal_relocs (abfd, sec,
8055 link_info->keep_memory);
8056 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8057 if (contents == NULL && sec_size != 0)
8058 {
8059 ok = FALSE;
8060 goto error_return;
8061 }
8062
8063 if (internal_relocs)
8064 {
8065 for (i = 0; i < sec->reloc_count; i++)
8066 {
8067 Elf_Internal_Rela *irel;
8068 xtensa_relax_info *target_relax_info;
8069 bfd_vma source_offset, old_source_offset;
8070 r_reloc r_rel;
8071 unsigned r_type;
8072 asection *target_sec;
8073
8074 /* Locally change the source address.
8075 Translate the target to the new target address.
8076 If it points to this section and has been removed,
8077 NULLify it.
8078 Write it back. */
8079
8080 irel = &internal_relocs[i];
8081 source_offset = irel->r_offset;
8082 old_source_offset = source_offset;
8083
8084 r_type = ELF32_R_TYPE (irel->r_info);
8085 r_reloc_init (&r_rel, abfd, irel, contents,
8086 bfd_get_section_limit (abfd, sec));
8087
8088 /* If this section could have changed then we may need to
8089 change the relocation's offset. */
8090
8091 if (relax_info->is_relaxable_literal_section
8092 || relax_info->is_relaxable_asm_section)
8093 {
8094 if (r_type != R_XTENSA_NONE
8095 && find_removed_literal (&relax_info->removed_list,
8096 irel->r_offset))
8097 {
8098 /* Remove this relocation. */
8099 if (elf_hash_table (link_info)->dynamic_sections_created)
8100 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8101 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8102 irel->r_offset = offset_with_removed_text
8103 (&relax_info->action_list, irel->r_offset);
8104 pin_internal_relocs (sec, internal_relocs);
8105 continue;
8106 }
8107
8108 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8109 {
8110 text_action *action =
8111 find_insn_action (&relax_info->action_list,
8112 irel->r_offset);
8113 if (action && (action->action == ta_convert_longcall
8114 || action->action == ta_remove_longcall))
8115 {
8116 bfd_reloc_status_type retval;
8117 char *error_message = NULL;
8118
8119 retval = contract_asm_expansion (contents, sec_size,
8120 irel, &error_message);
8121 if (retval != bfd_reloc_ok)
8122 {
8123 (*link_info->callbacks->reloc_dangerous)
8124 (link_info, error_message, abfd, sec,
8125 irel->r_offset);
8126 goto error_return;
8127 }
8128 /* Update the action so that the code that moves
8129 the contents will do the right thing. */
8130 if (action->action == ta_remove_longcall)
8131 action->action = ta_remove_insn;
8132 else
8133 action->action = ta_none;
8134 /* Refresh the info in the r_rel. */
8135 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8136 r_type = ELF32_R_TYPE (irel->r_info);
8137 }
8138 }
8139
8140 source_offset = offset_with_removed_text
8141 (&relax_info->action_list, irel->r_offset);
8142 irel->r_offset = source_offset;
8143 }
8144
8145 /* If the target section could have changed then
8146 we may need to change the relocation's target offset. */
8147
8148 target_sec = r_reloc_get_section (&r_rel);
8149 target_relax_info = get_xtensa_relax_info (target_sec);
8150
8151 if (target_relax_info
8152 && (target_relax_info->is_relaxable_literal_section
8153 || target_relax_info->is_relaxable_asm_section))
8154 {
8155 r_reloc new_reloc;
8156 reloc_bfd_fix *fix;
8157 bfd_vma addend_displacement;
8158
8159 translate_reloc (&r_rel, &new_reloc);
8160
8161 if (r_type == R_XTENSA_DIFF8
8162 || r_type == R_XTENSA_DIFF16
8163 || r_type == R_XTENSA_DIFF32)
8164 {
8165 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8166
8167 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8168 {
8169 (*link_info->callbacks->reloc_dangerous)
8170 (link_info, _("invalid relocation address"),
8171 abfd, sec, old_source_offset);
8172 goto error_return;
8173 }
8174
8175 switch (r_type)
8176 {
8177 case R_XTENSA_DIFF8:
8178 diff_value =
8179 bfd_get_8 (abfd, &contents[old_source_offset]);
8180 break;
8181 case R_XTENSA_DIFF16:
8182 diff_value =
8183 bfd_get_16 (abfd, &contents[old_source_offset]);
8184 break;
8185 case R_XTENSA_DIFF32:
8186 diff_value =
8187 bfd_get_32 (abfd, &contents[old_source_offset]);
8188 break;
8189 }
8190
8191 new_end_offset = offset_with_removed_text
8192 (&target_relax_info->action_list,
8193 r_rel.target_offset + diff_value);
8194 diff_value = new_end_offset - new_reloc.target_offset;
8195
8196 switch (r_type)
8197 {
8198 case R_XTENSA_DIFF8:
8199 diff_mask = 0xff;
8200 bfd_put_8 (abfd, diff_value,
8201 &contents[old_source_offset]);
8202 break;
8203 case R_XTENSA_DIFF16:
8204 diff_mask = 0xffff;
8205 bfd_put_16 (abfd, diff_value,
8206 &contents[old_source_offset]);
8207 break;
8208 case R_XTENSA_DIFF32:
8209 diff_mask = 0xffffffff;
8210 bfd_put_32 (abfd, diff_value,
8211 &contents[old_source_offset]);
8212 break;
8213 }
8214
8215 /* Check for overflow. */
8216 if ((diff_value & ~diff_mask) != 0)
8217 {
8218 (*link_info->callbacks->reloc_dangerous)
8219 (link_info, _("overflow after relaxation"),
8220 abfd, sec, old_source_offset);
8221 goto error_return;
8222 }
8223
8224 pin_contents (sec, contents);
8225 }
8226
8227 /* FIXME: If the relocation still references a section in
8228 the same input file, the relocation should be modified
8229 directly instead of adding a "fix" record. */
8230
8231 addend_displacement =
8232 new_reloc.target_offset + new_reloc.virtual_offset;
8233
8234 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8235 r_reloc_get_section (&new_reloc),
8236 addend_displacement, TRUE);
8237 add_fix (sec, fix);
8238 }
8239
8240 pin_internal_relocs (sec, internal_relocs);
8241 }
8242 }
8243
8244 if ((relax_info->is_relaxable_literal_section
8245 || relax_info->is_relaxable_asm_section)
8246 && relax_info->action_list.head)
8247 {
8248 /* Walk through the planned actions and build up a table
8249 of move, copy and fill records. Use the move, copy and
8250 fill records to perform the actions once. */
8251
8252 bfd_size_type size = sec->size;
8253 int removed = 0;
8254 bfd_size_type final_size, copy_size, orig_insn_size;
8255 bfd_byte *scratch = NULL;
8256 bfd_byte *dup_contents = NULL;
8257 bfd_size_type orig_size = size;
8258 bfd_vma orig_dot = 0;
8259 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8260 orig dot in physical memory. */
8261 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8262 bfd_vma dup_dot = 0;
8263
8264 text_action *action = relax_info->action_list.head;
8265
8266 final_size = sec->size;
8267 for (action = relax_info->action_list.head; action;
8268 action = action->next)
8269 {
8270 final_size -= action->removed_bytes;
8271 }
8272
8273 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8274 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8275
8276 /* The dot is the current fill location. */
8277#if DEBUG
8278 print_action_list (stderr, &relax_info->action_list);
8279#endif
8280
8281 for (action = relax_info->action_list.head; action;
8282 action = action->next)
8283 {
8284 virtual_action = FALSE;
8285 if (action->offset > orig_dot)
8286 {
8287 orig_dot += orig_dot_copied;
8288 orig_dot_copied = 0;
8289 orig_dot_vo = 0;
8290 /* Out of the virtual world. */
8291 }
8292
8293 if (action->offset > orig_dot)
8294 {
8295 copy_size = action->offset - orig_dot;
8296 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8297 orig_dot += copy_size;
8298 dup_dot += copy_size;
8299 BFD_ASSERT (action->offset == orig_dot);
8300 }
8301 else if (action->offset < orig_dot)
8302 {
8303 if (action->action == ta_fill
8304 && action->offset - action->removed_bytes == orig_dot)
8305 {
8306 /* This is OK because the fill only effects the dup_dot. */
8307 }
8308 else if (action->action == ta_add_literal)
8309 {
8310 /* TBD. Might need to handle this. */
8311 }
8312 }
8313 if (action->offset == orig_dot)
8314 {
8315 if (action->virtual_offset > orig_dot_vo)
8316 {
8317 if (orig_dot_vo == 0)
8318 {
8319 /* Need to copy virtual_offset bytes. Probably four. */
8320 copy_size = action->virtual_offset - orig_dot_vo;
8321 memmove (&dup_contents[dup_dot],
8322 &contents[orig_dot], copy_size);
8323 orig_dot_copied = copy_size;
8324 dup_dot += copy_size;
8325 }
8326 virtual_action = TRUE;
8327 }
8328 else
8329 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8330 }
8331 switch (action->action)
8332 {
8333 case ta_remove_literal:
8334 case ta_remove_insn:
8335 BFD_ASSERT (action->removed_bytes >= 0);
8336 orig_dot += action->removed_bytes;
8337 break;
8338
8339 case ta_narrow_insn:
8340 orig_insn_size = 3;
8341 copy_size = 2;
8342 memmove (scratch, &contents[orig_dot], orig_insn_size);
8343 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 8344 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
8345 BFD_ASSERT (rv);
8346 memmove (&dup_contents[dup_dot], scratch, copy_size);
8347 orig_dot += orig_insn_size;
8348 dup_dot += copy_size;
8349 break;
8350
8351 case ta_fill:
8352 if (action->removed_bytes >= 0)
8353 orig_dot += action->removed_bytes;
8354 else
8355 {
8356 /* Already zeroed in dup_contents. Just bump the
8357 counters. */
8358 dup_dot += (-action->removed_bytes);
8359 }
8360 break;
8361
8362 case ta_none:
8363 BFD_ASSERT (action->removed_bytes == 0);
8364 break;
8365
8366 case ta_convert_longcall:
8367 case ta_remove_longcall:
8368 /* These will be removed or converted before we get here. */
8369 BFD_ASSERT (0);
8370 break;
8371
8372 case ta_widen_insn:
8373 orig_insn_size = 2;
8374 copy_size = 3;
8375 memmove (scratch, &contents[orig_dot], orig_insn_size);
8376 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 8377 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
8378 BFD_ASSERT (rv);
8379 memmove (&dup_contents[dup_dot], scratch, copy_size);
8380 orig_dot += orig_insn_size;
8381 dup_dot += copy_size;
8382 break;
8383
8384 case ta_add_literal:
8385 orig_insn_size = 0;
8386 copy_size = 4;
8387 BFD_ASSERT (action->removed_bytes == -4);
8388 /* TBD -- place the literal value here and insert
8389 into the table. */
8390 memset (&dup_contents[dup_dot], 0, 4);
8391 pin_internal_relocs (sec, internal_relocs);
8392 pin_contents (sec, contents);
8393
8394 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8395 relax_info, &internal_relocs, &action->value))
8396 goto error_return;
8397
8398 if (virtual_action)
8399 orig_dot_vo += copy_size;
8400
8401 orig_dot += orig_insn_size;
8402 dup_dot += copy_size;
8403 break;
8404
8405 default:
8406 /* Not implemented yet. */
8407 BFD_ASSERT (0);
8408 break;
8409 }
8410
8411 size -= action->removed_bytes;
8412 removed += action->removed_bytes;
8413 BFD_ASSERT (dup_dot <= final_size);
8414 BFD_ASSERT (orig_dot <= orig_size);
8415 }
8416
8417 orig_dot += orig_dot_copied;
8418 orig_dot_copied = 0;
8419
8420 if (orig_dot != orig_size)
8421 {
8422 copy_size = orig_size - orig_dot;
8423 BFD_ASSERT (orig_size > orig_dot);
8424 BFD_ASSERT (dup_dot + copy_size == final_size);
8425 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8426 orig_dot += copy_size;
8427 dup_dot += copy_size;
8428 }
8429 BFD_ASSERT (orig_size == orig_dot);
8430 BFD_ASSERT (final_size == dup_dot);
8431
8432 /* Move the dup_contents back. */
8433 if (final_size > orig_size)
8434 {
8435 /* Contents need to be reallocated. Swap the dup_contents into
8436 contents. */
8437 sec->contents = dup_contents;
8438 free (contents);
8439 contents = dup_contents;
8440 pin_contents (sec, contents);
8441 }
8442 else
8443 {
8444 BFD_ASSERT (final_size <= orig_size);
8445 memset (contents, 0, orig_size);
8446 memcpy (contents, dup_contents, final_size);
8447 free (dup_contents);
8448 }
8449 free (scratch);
8450 pin_contents (sec, contents);
8451
8452 sec->size = final_size;
8453 }
8454
8455 error_return:
8456 release_internal_relocs (sec, internal_relocs);
8457 release_contents (sec, contents);
8458 return ok;
8459}
8460
8461
8462static bfd_boolean
7fa3d080 8463translate_section_fixes (asection *sec)
43cd72b9
BW
8464{
8465 xtensa_relax_info *relax_info;
8466 reloc_bfd_fix *r;
8467
8468 relax_info = get_xtensa_relax_info (sec);
8469 if (!relax_info)
8470 return TRUE;
8471
8472 for (r = relax_info->fix_list; r != NULL; r = r->next)
8473 if (!translate_reloc_bfd_fix (r))
8474 return FALSE;
e0001a05 8475
43cd72b9
BW
8476 return TRUE;
8477}
e0001a05 8478
e0001a05 8479
43cd72b9
BW
8480/* Translate a fix given the mapping in the relax info for the target
8481 section. If it has already been translated, no work is required. */
e0001a05 8482
43cd72b9 8483static bfd_boolean
7fa3d080 8484translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8485{
8486 reloc_bfd_fix new_fix;
8487 asection *sec;
8488 xtensa_relax_info *relax_info;
8489 removed_literal *removed;
8490 bfd_vma new_offset, target_offset;
e0001a05 8491
43cd72b9
BW
8492 if (fix->translated)
8493 return TRUE;
e0001a05 8494
43cd72b9
BW
8495 sec = fix->target_sec;
8496 target_offset = fix->target_offset;
e0001a05 8497
43cd72b9
BW
8498 relax_info = get_xtensa_relax_info (sec);
8499 if (!relax_info)
8500 {
8501 fix->translated = TRUE;
8502 return TRUE;
8503 }
e0001a05 8504
43cd72b9 8505 new_fix = *fix;
e0001a05 8506
43cd72b9
BW
8507 /* The fix does not need to be translated if the section cannot change. */
8508 if (!relax_info->is_relaxable_literal_section
8509 && !relax_info->is_relaxable_asm_section)
8510 {
8511 fix->translated = TRUE;
8512 return TRUE;
8513 }
e0001a05 8514
43cd72b9
BW
8515 /* If the literal has been moved and this relocation was on an
8516 opcode, then the relocation should move to the new literal
8517 location. Otherwise, the relocation should move within the
8518 section. */
8519
8520 removed = FALSE;
8521 if (is_operand_relocation (fix->src_type))
8522 {
8523 /* Check if the original relocation is against a literal being
8524 removed. */
8525 removed = find_removed_literal (&relax_info->removed_list,
8526 target_offset);
e0001a05
NC
8527 }
8528
43cd72b9 8529 if (removed)
e0001a05 8530 {
43cd72b9 8531 asection *new_sec;
e0001a05 8532
43cd72b9
BW
8533 /* The fact that there is still a relocation to this literal indicates
8534 that the literal is being coalesced, not simply removed. */
8535 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8536
43cd72b9
BW
8537 /* This was moved to some other address (possibly another section). */
8538 new_sec = r_reloc_get_section (&removed->to);
8539 if (new_sec != sec)
e0001a05 8540 {
43cd72b9
BW
8541 sec = new_sec;
8542 relax_info = get_xtensa_relax_info (sec);
8543 if (!relax_info ||
8544 (!relax_info->is_relaxable_literal_section
8545 && !relax_info->is_relaxable_asm_section))
e0001a05 8546 {
43cd72b9
BW
8547 target_offset = removed->to.target_offset;
8548 new_fix.target_sec = new_sec;
8549 new_fix.target_offset = target_offset;
8550 new_fix.translated = TRUE;
8551 *fix = new_fix;
8552 return TRUE;
e0001a05 8553 }
e0001a05 8554 }
43cd72b9
BW
8555 target_offset = removed->to.target_offset;
8556 new_fix.target_sec = new_sec;
e0001a05 8557 }
43cd72b9
BW
8558
8559 /* The target address may have been moved within its section. */
8560 new_offset = offset_with_removed_text (&relax_info->action_list,
8561 target_offset);
8562
8563 new_fix.target_offset = new_offset;
8564 new_fix.target_offset = new_offset;
8565 new_fix.translated = TRUE;
8566 *fix = new_fix;
8567 return TRUE;
e0001a05
NC
8568}
8569
8570
8571/* Fix up a relocation to take account of removed literals. */
8572
8573static void
7fa3d080 8574translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8575{
8576 asection *sec;
8577 xtensa_relax_info *relax_info;
8578 removed_literal *removed;
43cd72b9 8579 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8580
8581 *new_rel = *orig_rel;
8582
8583 if (!r_reloc_is_defined (orig_rel))
8584 return;
8585 sec = r_reloc_get_section (orig_rel);
8586
8587 relax_info = get_xtensa_relax_info (sec);
8588 BFD_ASSERT (relax_info);
8589
43cd72b9
BW
8590 if (!relax_info->is_relaxable_literal_section
8591 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8592 return;
8593
43cd72b9
BW
8594 target_offset = orig_rel->target_offset;
8595
8596 removed = FALSE;
8597 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8598 {
8599 /* Check if the original relocation is against a literal being
8600 removed. */
8601 removed = find_removed_literal (&relax_info->removed_list,
8602 target_offset);
8603 }
8604 if (removed && removed->to.abfd)
e0001a05
NC
8605 {
8606 asection *new_sec;
8607
8608 /* The fact that there is still a relocation to this literal indicates
8609 that the literal is being coalesced, not simply removed. */
8610 BFD_ASSERT (removed->to.abfd != NULL);
8611
43cd72b9
BW
8612 /* This was moved to some other address
8613 (possibly in another section). */
e0001a05
NC
8614 *new_rel = removed->to;
8615 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8616 if (new_sec != sec)
e0001a05
NC
8617 {
8618 sec = new_sec;
8619 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8620 if (!relax_info
8621 || (!relax_info->is_relaxable_literal_section
8622 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8623 return;
8624 }
43cd72b9 8625 target_offset = new_rel->target_offset;
e0001a05
NC
8626 }
8627
8628 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8629 new_offset = offset_with_removed_text (&relax_info->action_list,
8630 target_offset);
e0001a05
NC
8631
8632 /* Modify the offset and addend. */
43cd72b9 8633 removed_bytes = target_offset - new_offset;
e0001a05 8634 new_rel->target_offset = new_offset;
43cd72b9 8635 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8636}
8637
8638
8639/* For dynamic links, there may be a dynamic relocation for each
8640 literal. The number of dynamic relocations must be computed in
8641 size_dynamic_sections, which occurs before relaxation. When a
8642 literal is removed, this function checks if there is a corresponding
8643 dynamic relocation and shrinks the size of the appropriate dynamic
8644 relocation section accordingly. At this point, the contents of the
8645 dynamic relocation sections have not yet been filled in, so there's
8646 nothing else that needs to be done. */
8647
8648static void
7fa3d080
BW
8649shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8650 bfd *abfd,
8651 asection *input_section,
8652 Elf_Internal_Rela *rel)
e0001a05 8653{
f0e6fdb2 8654 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
8655 Elf_Internal_Shdr *symtab_hdr;
8656 struct elf_link_hash_entry **sym_hashes;
8657 unsigned long r_symndx;
8658 int r_type;
8659 struct elf_link_hash_entry *h;
8660 bfd_boolean dynamic_symbol;
8661
f0e6fdb2 8662 htab = elf_xtensa_hash_table (info);
e0001a05
NC
8663 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8664 sym_hashes = elf_sym_hashes (abfd);
8665
8666 r_type = ELF32_R_TYPE (rel->r_info);
8667 r_symndx = ELF32_R_SYM (rel->r_info);
8668
8669 if (r_symndx < symtab_hdr->sh_info)
8670 h = NULL;
8671 else
8672 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8673
4608f3d9 8674 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
8675
8676 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8677 && (input_section->flags & SEC_ALLOC) != 0
8678 && (dynamic_symbol || info->shared))
8679 {
e0001a05
NC
8680 asection *srel;
8681 bfd_boolean is_plt = FALSE;
8682
e0001a05
NC
8683 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8684 {
f0e6fdb2 8685 srel = htab->srelplt;
e0001a05
NC
8686 is_plt = TRUE;
8687 }
8688 else
f0e6fdb2 8689 srel = htab->srelgot;
e0001a05
NC
8690
8691 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 8692 BFD_ASSERT (srel != NULL);
eea6121a
AM
8693 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8694 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8695
8696 if (is_plt)
8697 {
8698 asection *splt, *sgotplt, *srelgot;
8699 int reloc_index, chunk;
8700
8701 /* Find the PLT reloc index of the entry being removed. This
8702 is computed from the size of ".rela.plt". It is needed to
8703 figure out which PLT chunk to resize. Usually "last index
8704 = size - 1" since the index starts at zero, but in this
8705 context, the size has just been decremented so there's no
8706 need to subtract one. */
eea6121a 8707 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8708
8709 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
8710 splt = elf_xtensa_get_plt_section (info, chunk);
8711 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
8712 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8713
8714 /* Check if an entire PLT chunk has just been eliminated. */
8715 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8716 {
8717 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 8718 srelgot = htab->srelgot;
e0001a05
NC
8719 BFD_ASSERT (srelgot != NULL);
8720 srelgot->reloc_count -= 2;
eea6121a
AM
8721 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8722 sgotplt->size -= 8;
e0001a05
NC
8723
8724 /* There should be only one entry left (and it will be
8725 removed below). */
eea6121a
AM
8726 BFD_ASSERT (sgotplt->size == 4);
8727 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8728 }
8729
eea6121a
AM
8730 BFD_ASSERT (sgotplt->size >= 4);
8731 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8732
eea6121a
AM
8733 sgotplt->size -= 4;
8734 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8735 }
8736 }
8737}
8738
8739
43cd72b9
BW
8740/* Take an r_rel and move it to another section. This usually
8741 requires extending the interal_relocation array and pinning it. If
8742 the original r_rel is from the same BFD, we can complete this here.
8743 Otherwise, we add a fix record to let the final link fix the
8744 appropriate address. Contents and internal relocations for the
8745 section must be pinned after calling this routine. */
8746
8747static bfd_boolean
7fa3d080
BW
8748move_literal (bfd *abfd,
8749 struct bfd_link_info *link_info,
8750 asection *sec,
8751 bfd_vma offset,
8752 bfd_byte *contents,
8753 xtensa_relax_info *relax_info,
8754 Elf_Internal_Rela **internal_relocs_p,
8755 const literal_value *lit)
43cd72b9
BW
8756{
8757 Elf_Internal_Rela *new_relocs = NULL;
8758 size_t new_relocs_count = 0;
8759 Elf_Internal_Rela this_rela;
8760 const r_reloc *r_rel;
8761
8762 r_rel = &lit->r_rel;
8763 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8764
8765 if (r_reloc_is_const (r_rel))
8766 bfd_put_32 (abfd, lit->value, contents + offset);
8767 else
8768 {
8769 int r_type;
8770 unsigned i;
8771 asection *target_sec;
8772 reloc_bfd_fix *fix;
8773 unsigned insert_at;
8774
8775 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8776 target_sec = r_reloc_get_section (r_rel);
8777
8778 /* This is the difficult case. We have to create a fix up. */
8779 this_rela.r_offset = offset;
8780 this_rela.r_info = ELF32_R_INFO (0, r_type);
8781 this_rela.r_addend =
8782 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8783 bfd_put_32 (abfd, lit->value, contents + offset);
8784
8785 /* Currently, we cannot move relocations during a relocatable link. */
8786 BFD_ASSERT (!link_info->relocatable);
8787 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8788 r_reloc_get_section (r_rel),
8789 r_rel->target_offset + r_rel->virtual_offset,
8790 FALSE);
8791 /* We also need to mark that relocations are needed here. */
8792 sec->flags |= SEC_RELOC;
8793
8794 translate_reloc_bfd_fix (fix);
8795 /* This fix has not yet been translated. */
8796 add_fix (sec, fix);
8797
8798 /* Add the relocation. If we have already allocated our own
8799 space for the relocations and we have room for more, then use
8800 it. Otherwise, allocate new space and move the literals. */
8801 insert_at = sec->reloc_count;
8802 for (i = 0; i < sec->reloc_count; ++i)
8803 {
8804 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8805 {
8806 insert_at = i;
8807 break;
8808 }
8809 }
8810
8811 if (*internal_relocs_p != relax_info->allocated_relocs
8812 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8813 {
8814 BFD_ASSERT (relax_info->allocated_relocs == NULL
8815 || sec->reloc_count == relax_info->relocs_count);
8816
8817 if (relax_info->allocated_relocs_count == 0)
8818 new_relocs_count = (sec->reloc_count + 2) * 2;
8819 else
8820 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8821
8822 new_relocs = (Elf_Internal_Rela *)
8823 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8824 if (!new_relocs)
8825 return FALSE;
8826
8827 /* We could handle this more quickly by finding the split point. */
8828 if (insert_at != 0)
8829 memcpy (new_relocs, *internal_relocs_p,
8830 insert_at * sizeof (Elf_Internal_Rela));
8831
8832 new_relocs[insert_at] = this_rela;
8833
8834 if (insert_at != sec->reloc_count)
8835 memcpy (new_relocs + insert_at + 1,
8836 (*internal_relocs_p) + insert_at,
8837 (sec->reloc_count - insert_at)
8838 * sizeof (Elf_Internal_Rela));
8839
8840 if (*internal_relocs_p != relax_info->allocated_relocs)
8841 {
8842 /* The first time we re-allocate, we can only free the
8843 old relocs if they were allocated with bfd_malloc.
8844 This is not true when keep_memory is in effect. */
8845 if (!link_info->keep_memory)
8846 free (*internal_relocs_p);
8847 }
8848 else
8849 free (*internal_relocs_p);
8850 relax_info->allocated_relocs = new_relocs;
8851 relax_info->allocated_relocs_count = new_relocs_count;
8852 elf_section_data (sec)->relocs = new_relocs;
8853 sec->reloc_count++;
8854 relax_info->relocs_count = sec->reloc_count;
8855 *internal_relocs_p = new_relocs;
8856 }
8857 else
8858 {
8859 if (insert_at != sec->reloc_count)
8860 {
8861 unsigned idx;
8862 for (idx = sec->reloc_count; idx > insert_at; idx--)
8863 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8864 }
8865 (*internal_relocs_p)[insert_at] = this_rela;
8866 sec->reloc_count++;
8867 if (relax_info->allocated_relocs)
8868 relax_info->relocs_count = sec->reloc_count;
8869 }
8870 }
8871 return TRUE;
8872}
8873
8874
e0001a05
NC
8875/* This is similar to relax_section except that when a target is moved,
8876 we shift addresses up. We also need to modify the size. This
8877 algorithm does NOT allow for relocations into the middle of the
8878 property sections. */
8879
43cd72b9 8880static bfd_boolean
7fa3d080
BW
8881relax_property_section (bfd *abfd,
8882 asection *sec,
8883 struct bfd_link_info *link_info)
e0001a05
NC
8884{
8885 Elf_Internal_Rela *internal_relocs;
8886 bfd_byte *contents;
1d25768e 8887 unsigned i;
e0001a05 8888 bfd_boolean ok = TRUE;
43cd72b9
BW
8889 bfd_boolean is_full_prop_section;
8890 size_t last_zfill_target_offset = 0;
8891 asection *last_zfill_target_sec = NULL;
8892 bfd_size_type sec_size;
1d25768e 8893 bfd_size_type entry_size;
e0001a05 8894
43cd72b9 8895 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8896 internal_relocs = retrieve_internal_relocs (abfd, sec,
8897 link_info->keep_memory);
8898 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8899 if (contents == NULL && sec_size != 0)
e0001a05
NC
8900 {
8901 ok = FALSE;
8902 goto error_return;
8903 }
8904
1d25768e
BW
8905 is_full_prop_section = xtensa_is_proptable_section (sec);
8906 if (is_full_prop_section)
8907 entry_size = 12;
8908 else
8909 entry_size = 8;
43cd72b9
BW
8910
8911 if (internal_relocs)
e0001a05 8912 {
43cd72b9 8913 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8914 {
8915 Elf_Internal_Rela *irel;
8916 xtensa_relax_info *target_relax_info;
e0001a05
NC
8917 unsigned r_type;
8918 asection *target_sec;
43cd72b9
BW
8919 literal_value val;
8920 bfd_byte *size_p, *flags_p;
e0001a05
NC
8921
8922 /* Locally change the source address.
8923 Translate the target to the new target address.
8924 If it points to this section and has been removed, MOVE IT.
8925 Also, don't forget to modify the associated SIZE at
8926 (offset + 4). */
8927
8928 irel = &internal_relocs[i];
8929 r_type = ELF32_R_TYPE (irel->r_info);
8930 if (r_type == R_XTENSA_NONE)
8931 continue;
8932
43cd72b9
BW
8933 /* Find the literal value. */
8934 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8935 size_p = &contents[irel->r_offset + 4];
8936 flags_p = NULL;
8937 if (is_full_prop_section)
1d25768e
BW
8938 flags_p = &contents[irel->r_offset + 8];
8939 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 8940
43cd72b9 8941 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8942 target_relax_info = get_xtensa_relax_info (target_sec);
8943
8944 if (target_relax_info
43cd72b9
BW
8945 && (target_relax_info->is_relaxable_literal_section
8946 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8947 {
8948 /* Translate the relocation's destination. */
43cd72b9 8949 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8950 long old_size, new_size;
8951
43cd72b9
BW
8952 new_offset = offset_with_removed_text
8953 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8954
8955 /* Assert that we are not out of bounds. */
43cd72b9
BW
8956 old_size = bfd_get_32 (abfd, size_p);
8957
8958 if (old_size == 0)
8959 {
8960 /* Only the first zero-sized unreachable entry is
8961 allowed to expand. In this case the new offset
8962 should be the offset before the fill and the new
8963 size is the expansion size. For other zero-sized
8964 entries the resulting size should be zero with an
8965 offset before or after the fill address depending
8966 on whether the expanding unreachable entry
8967 preceeds it. */
8968 if (last_zfill_target_sec
8969 && last_zfill_target_sec == target_sec
8970 && last_zfill_target_offset == val.r_rel.target_offset)
8971 new_end_offset = new_offset;
8972 else
8973 {
8974 new_end_offset = new_offset;
8975 new_offset = offset_with_removed_text_before_fill
8976 (&target_relax_info->action_list,
8977 val.r_rel.target_offset);
8978
8979 /* If it is not unreachable and we have not yet
8980 seen an unreachable at this address, place it
8981 before the fill address. */
8982 if (!flags_p
8983 || (bfd_get_32 (abfd, flags_p)
8984 & XTENSA_PROP_UNREACHABLE) == 0)
8985 new_end_offset = new_offset;
8986 else
8987 {
8988 last_zfill_target_sec = target_sec;
8989 last_zfill_target_offset = val.r_rel.target_offset;
8990 }
8991 }
8992 }
8993 else
8994 {
8995 new_end_offset = offset_with_removed_text_before_fill
8996 (&target_relax_info->action_list,
8997 val.r_rel.target_offset + old_size);
8998 }
e0001a05 8999
e0001a05 9000 new_size = new_end_offset - new_offset;
43cd72b9 9001
e0001a05
NC
9002 if (new_size != old_size)
9003 {
9004 bfd_put_32 (abfd, new_size, size_p);
9005 pin_contents (sec, contents);
9006 }
43cd72b9
BW
9007
9008 if (new_offset != val.r_rel.target_offset)
e0001a05 9009 {
43cd72b9 9010 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
9011 irel->r_addend += diff;
9012 pin_internal_relocs (sec, internal_relocs);
9013 }
9014 }
9015 }
9016 }
9017
9018 /* Combine adjacent property table entries. This is also done in
9019 finish_dynamic_sections() but at that point it's too late to
9020 reclaim the space in the output section, so we do this twice. */
9021
43cd72b9 9022 if (internal_relocs && (!link_info->relocatable
1d25768e 9023 || xtensa_is_littable_section (sec)))
e0001a05
NC
9024 {
9025 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9026 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9027 int removed_bytes = 0;
1d25768e 9028 bfd_vma offset;
e0001a05 9029 bfd_vma section_size;
43cd72b9
BW
9030 flagword predef_flags;
9031
43cd72b9 9032 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9033
1d25768e 9034 /* Walk over memory and relocations at the same time.
e0001a05
NC
9035 This REQUIRES that the internal_relocs be sorted by offset. */
9036 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9037 internal_reloc_compare);
e0001a05
NC
9038
9039 pin_internal_relocs (sec, internal_relocs);
9040 pin_contents (sec, contents);
9041
1d25768e
BW
9042 next_rel = internal_relocs;
9043 rel_end = internal_relocs + sec->reloc_count;
9044
eea6121a 9045 section_size = sec->size;
43cd72b9 9046 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 9047
43cd72b9 9048 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05 9049 {
1d25768e 9050 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9051 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9052 bfd_boolean remove_this_rel;
43cd72b9 9053 flagword flags;
e0001a05 9054
1d25768e
BW
9055 /* Find the first relocation for the entry at the current offset.
9056 Adjust the offsets of any extra relocations for the previous
9057 entry. */
9058 offset_rel = NULL;
9059 if (next_rel)
9060 {
9061 for (irel = next_rel; irel < rel_end; irel++)
9062 {
9063 if ((irel->r_offset == offset
9064 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9065 || irel->r_offset > offset)
9066 {
9067 offset_rel = irel;
9068 break;
9069 }
9070 irel->r_offset -= removed_bytes;
1d25768e
BW
9071 }
9072 }
e0001a05 9073
1d25768e
BW
9074 /* Find the next relocation (if there are any left). */
9075 extra_rel = NULL;
9076 if (offset_rel)
e0001a05 9077 {
1d25768e 9078 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9079 {
1d25768e
BW
9080 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9081 {
9082 extra_rel = irel;
9083 break;
9084 }
e0001a05 9085 }
e0001a05
NC
9086 }
9087
1d25768e
BW
9088 /* Check if there are relocations on the current entry. There
9089 should usually be a relocation on the offset field. If there
9090 are relocations on the size or flags, then we can't optimize
9091 this entry. Also, find the next relocation to examine on the
9092 next iteration. */
9093 if (offset_rel)
e0001a05 9094 {
1d25768e 9095 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9096 {
1d25768e
BW
9097 next_rel = offset_rel;
9098 /* There are no relocations on the current entry, but we
9099 might still be able to remove it if the size is zero. */
9100 offset_rel = NULL;
9101 }
9102 else if (offset_rel->r_offset > offset
9103 || (extra_rel
9104 && extra_rel->r_offset < offset + entry_size))
9105 {
9106 /* There is a relocation on the size or flags, so we can't
9107 do anything with this entry. Continue with the next. */
9108 next_rel = offset_rel;
9109 continue;
9110 }
9111 else
9112 {
9113 BFD_ASSERT (offset_rel->r_offset == offset);
9114 offset_rel->r_offset -= removed_bytes;
9115 next_rel = offset_rel + 1;
e0001a05 9116 }
e0001a05 9117 }
1d25768e
BW
9118 else
9119 next_rel = NULL;
e0001a05 9120
1d25768e 9121 remove_this_rel = FALSE;
e0001a05
NC
9122 bytes_to_remove = 0;
9123 actual_offset = offset - removed_bytes;
9124 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9125
43cd72b9
BW
9126 if (is_full_prop_section)
9127 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9128 else
9129 flags = predef_flags;
9130
1d25768e
BW
9131 if (size == 0
9132 && (flags & XTENSA_PROP_ALIGN) == 0
9133 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9134 {
43cd72b9
BW
9135 /* Always remove entries with zero size and no alignment. */
9136 bytes_to_remove = entry_size;
1d25768e
BW
9137 if (offset_rel)
9138 remove_this_rel = TRUE;
e0001a05 9139 }
1d25768e
BW
9140 else if (offset_rel
9141 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 9142 {
1d25768e 9143 if (last_irel)
e0001a05 9144 {
1d25768e
BW
9145 flagword old_flags;
9146 bfd_vma old_size =
9147 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9148 bfd_vma old_address =
9149 (last_irel->r_addend
9150 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9151 bfd_vma new_address =
9152 (offset_rel->r_addend
9153 + bfd_get_32 (abfd, &contents[actual_offset]));
9154 if (is_full_prop_section)
9155 old_flags = bfd_get_32
9156 (abfd, &contents[last_irel->r_offset + 8]);
9157 else
9158 old_flags = predef_flags;
9159
9160 if ((ELF32_R_SYM (offset_rel->r_info)
9161 == ELF32_R_SYM (last_irel->r_info))
9162 && old_address + old_size == new_address
9163 && old_flags == flags
9164 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9165 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9166 {
1d25768e
BW
9167 /* Fix the old size. */
9168 bfd_put_32 (abfd, old_size + size,
9169 &contents[last_irel->r_offset + 4]);
9170 bytes_to_remove = entry_size;
9171 remove_this_rel = TRUE;
e0001a05
NC
9172 }
9173 else
1d25768e 9174 last_irel = offset_rel;
e0001a05 9175 }
1d25768e
BW
9176 else
9177 last_irel = offset_rel;
e0001a05
NC
9178 }
9179
1d25768e 9180 if (remove_this_rel)
e0001a05 9181 {
1d25768e
BW
9182 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9183 /* In case this is the last entry, move the relocation offset
9184 to the previous entry, if there is one. */
9185 if (offset_rel->r_offset >= bytes_to_remove)
9186 offset_rel->r_offset -= bytes_to_remove;
9187 else
9188 offset_rel->r_offset = 0;
e0001a05
NC
9189 }
9190
9191 if (bytes_to_remove != 0)
9192 {
9193 removed_bytes += bytes_to_remove;
43cd72b9 9194 if (offset + bytes_to_remove < section_size)
e0001a05 9195 memmove (&contents[actual_offset],
43cd72b9
BW
9196 &contents[actual_offset + bytes_to_remove],
9197 section_size - offset - bytes_to_remove);
e0001a05
NC
9198 }
9199 }
9200
43cd72b9 9201 if (removed_bytes)
e0001a05 9202 {
1d25768e
BW
9203 /* Fix up any extra relocations on the last entry. */
9204 for (irel = next_rel; irel < rel_end; irel++)
9205 irel->r_offset -= removed_bytes;
9206
e0001a05
NC
9207 /* Clear the removed bytes. */
9208 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9209
eea6121a 9210 sec->size = section_size - removed_bytes;
e901de89
BW
9211
9212 if (xtensa_is_littable_section (sec))
9213 {
f0e6fdb2
BW
9214 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9215 if (sgotloc)
9216 sgotloc->size -= removed_bytes;
e901de89 9217 }
e0001a05
NC
9218 }
9219 }
e901de89 9220
e0001a05
NC
9221 error_return:
9222 release_internal_relocs (sec, internal_relocs);
9223 release_contents (sec, contents);
9224 return ok;
9225}
9226
9227\f
9228/* Third relaxation pass. */
9229
9230/* Change symbol values to account for removed literals. */
9231
43cd72b9 9232bfd_boolean
7fa3d080 9233relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9234{
9235 xtensa_relax_info *relax_info;
9236 unsigned int sec_shndx;
9237 Elf_Internal_Shdr *symtab_hdr;
9238 Elf_Internal_Sym *isymbuf;
9239 unsigned i, num_syms, num_locals;
9240
9241 relax_info = get_xtensa_relax_info (sec);
9242 BFD_ASSERT (relax_info);
9243
43cd72b9
BW
9244 if (!relax_info->is_relaxable_literal_section
9245 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9246 return TRUE;
9247
9248 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9249
9250 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9251 isymbuf = retrieve_local_syms (abfd);
9252
9253 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9254 num_locals = symtab_hdr->sh_info;
9255
9256 /* Adjust the local symbols defined in this section. */
9257 for (i = 0; i < num_locals; i++)
9258 {
9259 Elf_Internal_Sym *isym = &isymbuf[i];
9260
9261 if (isym->st_shndx == sec_shndx)
9262 {
43cd72b9
BW
9263 bfd_vma new_address = offset_with_removed_text
9264 (&relax_info->action_list, isym->st_value);
9265 bfd_vma new_size = isym->st_size;
9266
9267 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9268 {
9269 bfd_vma new_end = offset_with_removed_text
9270 (&relax_info->action_list, isym->st_value + isym->st_size);
9271 new_size = new_end - new_address;
9272 }
9273
9274 isym->st_value = new_address;
9275 isym->st_size = new_size;
e0001a05
NC
9276 }
9277 }
9278
9279 /* Now adjust the global symbols defined in this section. */
9280 for (i = 0; i < (num_syms - num_locals); i++)
9281 {
9282 struct elf_link_hash_entry *sym_hash;
9283
9284 sym_hash = elf_sym_hashes (abfd)[i];
9285
9286 if (sym_hash->root.type == bfd_link_hash_warning)
9287 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9288
9289 if ((sym_hash->root.type == bfd_link_hash_defined
9290 || sym_hash->root.type == bfd_link_hash_defweak)
9291 && sym_hash->root.u.def.section == sec)
9292 {
43cd72b9
BW
9293 bfd_vma new_address = offset_with_removed_text
9294 (&relax_info->action_list, sym_hash->root.u.def.value);
9295 bfd_vma new_size = sym_hash->size;
9296
9297 if (sym_hash->type == STT_FUNC)
9298 {
9299 bfd_vma new_end = offset_with_removed_text
9300 (&relax_info->action_list,
9301 sym_hash->root.u.def.value + sym_hash->size);
9302 new_size = new_end - new_address;
9303 }
9304
9305 sym_hash->root.u.def.value = new_address;
9306 sym_hash->size = new_size;
e0001a05
NC
9307 }
9308 }
9309
9310 return TRUE;
9311}
9312
9313\f
9314/* "Fix" handling functions, called while performing relocations. */
9315
43cd72b9 9316static bfd_boolean
7fa3d080
BW
9317do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9318 bfd *input_bfd,
9319 asection *input_section,
9320 bfd_byte *contents)
e0001a05
NC
9321{
9322 r_reloc r_rel;
9323 asection *sec, *old_sec;
9324 bfd_vma old_offset;
9325 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9326 reloc_bfd_fix *fix;
9327
9328 if (r_type == R_XTENSA_NONE)
43cd72b9 9329 return TRUE;
e0001a05 9330
43cd72b9
BW
9331 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9332 if (!fix)
9333 return TRUE;
e0001a05 9334
43cd72b9
BW
9335 r_reloc_init (&r_rel, input_bfd, rel, contents,
9336 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9337 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9338 old_offset = r_rel.target_offset;
9339
9340 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9341 {
43cd72b9
BW
9342 if (r_type != R_XTENSA_ASM_EXPAND)
9343 {
9344 (*_bfd_error_handler)
9345 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9346 input_bfd, input_section, rel->r_offset,
9347 elf_howto_table[r_type].name);
9348 return FALSE;
9349 }
e0001a05
NC
9350 /* Leave it be. Resolution will happen in a later stage. */
9351 }
9352 else
9353 {
9354 sec = fix->target_sec;
9355 rel->r_addend += ((sec->output_offset + fix->target_offset)
9356 - (old_sec->output_offset + old_offset));
9357 }
43cd72b9 9358 return TRUE;
e0001a05
NC
9359}
9360
9361
9362static void
7fa3d080
BW
9363do_fix_for_final_link (Elf_Internal_Rela *rel,
9364 bfd *input_bfd,
9365 asection *input_section,
9366 bfd_byte *contents,
9367 bfd_vma *relocationp)
e0001a05
NC
9368{
9369 asection *sec;
9370 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9371 reloc_bfd_fix *fix;
43cd72b9 9372 bfd_vma fixup_diff;
e0001a05
NC
9373
9374 if (r_type == R_XTENSA_NONE)
9375 return;
9376
43cd72b9
BW
9377 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9378 if (!fix)
e0001a05
NC
9379 return;
9380
9381 sec = fix->target_sec;
43cd72b9
BW
9382
9383 fixup_diff = rel->r_addend;
9384 if (elf_howto_table[fix->src_type].partial_inplace)
9385 {
9386 bfd_vma inplace_val;
9387 BFD_ASSERT (fix->src_offset
9388 < bfd_get_section_limit (input_bfd, input_section));
9389 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9390 fixup_diff += inplace_val;
9391 }
9392
e0001a05
NC
9393 *relocationp = (sec->output_section->vma
9394 + sec->output_offset
43cd72b9 9395 + fix->target_offset - fixup_diff);
e0001a05
NC
9396}
9397
9398\f
9399/* Miscellaneous utility functions.... */
9400
9401static asection *
f0e6fdb2 9402elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 9403{
f0e6fdb2
BW
9404 struct elf_xtensa_link_hash_table *htab;
9405 bfd *dynobj;
e0001a05
NC
9406 char plt_name[10];
9407
9408 if (chunk == 0)
f0e6fdb2
BW
9409 {
9410 htab = elf_xtensa_hash_table (info);
9411 return htab->splt;
9412 }
e0001a05 9413
f0e6fdb2 9414 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9415 sprintf (plt_name, ".plt.%u", chunk);
9416 return bfd_get_section_by_name (dynobj, plt_name);
9417}
9418
9419
9420static asection *
f0e6fdb2 9421elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 9422{
f0e6fdb2
BW
9423 struct elf_xtensa_link_hash_table *htab;
9424 bfd *dynobj;
e0001a05
NC
9425 char got_name[14];
9426
9427 if (chunk == 0)
f0e6fdb2
BW
9428 {
9429 htab = elf_xtensa_hash_table (info);
9430 return htab->sgotplt;
9431 }
e0001a05 9432
f0e6fdb2 9433 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9434 sprintf (got_name, ".got.plt.%u", chunk);
9435 return bfd_get_section_by_name (dynobj, got_name);
9436}
9437
9438
9439/* Get the input section for a given symbol index.
9440 If the symbol is:
9441 . a section symbol, return the section;
9442 . a common symbol, return the common section;
9443 . an undefined symbol, return the undefined section;
9444 . an indirect symbol, follow the links;
9445 . an absolute value, return the absolute section. */
9446
9447static asection *
7fa3d080 9448get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9449{
9450 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9451 asection *target_sec = NULL;
43cd72b9 9452 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9453 {
9454 Elf_Internal_Sym *isymbuf;
9455 unsigned int section_index;
9456
9457 isymbuf = retrieve_local_syms (abfd);
9458 section_index = isymbuf[r_symndx].st_shndx;
9459
9460 if (section_index == SHN_UNDEF)
9461 target_sec = bfd_und_section_ptr;
9462 else if (section_index > 0 && section_index < SHN_LORESERVE)
9463 target_sec = bfd_section_from_elf_index (abfd, section_index);
9464 else if (section_index == SHN_ABS)
9465 target_sec = bfd_abs_section_ptr;
9466 else if (section_index == SHN_COMMON)
9467 target_sec = bfd_com_section_ptr;
43cd72b9 9468 else
e0001a05
NC
9469 /* Who knows? */
9470 target_sec = NULL;
9471 }
9472 else
9473 {
9474 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9475 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9476
9477 while (h->root.type == bfd_link_hash_indirect
9478 || h->root.type == bfd_link_hash_warning)
9479 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9480
9481 switch (h->root.type)
9482 {
9483 case bfd_link_hash_defined:
9484 case bfd_link_hash_defweak:
9485 target_sec = h->root.u.def.section;
9486 break;
9487 case bfd_link_hash_common:
9488 target_sec = bfd_com_section_ptr;
9489 break;
9490 case bfd_link_hash_undefined:
9491 case bfd_link_hash_undefweak:
9492 target_sec = bfd_und_section_ptr;
9493 break;
9494 default: /* New indirect warning. */
9495 target_sec = bfd_und_section_ptr;
9496 break;
9497 }
9498 }
9499 return target_sec;
9500}
9501
9502
9503static struct elf_link_hash_entry *
7fa3d080 9504get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9505{
9506 unsigned long indx;
9507 struct elf_link_hash_entry *h;
9508 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9509
9510 if (r_symndx < symtab_hdr->sh_info)
9511 return NULL;
43cd72b9 9512
e0001a05
NC
9513 indx = r_symndx - symtab_hdr->sh_info;
9514 h = elf_sym_hashes (abfd)[indx];
9515 while (h->root.type == bfd_link_hash_indirect
9516 || h->root.type == bfd_link_hash_warning)
9517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9518 return h;
9519}
9520
9521
9522/* Get the section-relative offset for a symbol number. */
9523
9524static bfd_vma
7fa3d080 9525get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9526{
9527 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9528 bfd_vma offset = 0;
9529
43cd72b9 9530 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9531 {
9532 Elf_Internal_Sym *isymbuf;
9533 isymbuf = retrieve_local_syms (abfd);
9534 offset = isymbuf[r_symndx].st_value;
9535 }
9536 else
9537 {
9538 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9539 struct elf_link_hash_entry *h =
9540 elf_sym_hashes (abfd)[indx];
9541
9542 while (h->root.type == bfd_link_hash_indirect
9543 || h->root.type == bfd_link_hash_warning)
9544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9545 if (h->root.type == bfd_link_hash_defined
9546 || h->root.type == bfd_link_hash_defweak)
9547 offset = h->root.u.def.value;
9548 }
9549 return offset;
9550}
9551
9552
9553static bfd_boolean
7fa3d080 9554is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9555{
9556 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9557 struct elf_link_hash_entry *h;
9558
9559 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9560 if (h && h->root.type == bfd_link_hash_defweak)
9561 return TRUE;
9562 return FALSE;
9563}
9564
9565
9566static bfd_boolean
7fa3d080
BW
9567pcrel_reloc_fits (xtensa_opcode opc,
9568 int opnd,
9569 bfd_vma self_address,
9570 bfd_vma dest_address)
e0001a05 9571{
43cd72b9
BW
9572 xtensa_isa isa = xtensa_default_isa;
9573 uint32 valp = dest_address;
9574 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9575 || xtensa_operand_encode (isa, opc, opnd, &valp))
9576 return FALSE;
9577 return TRUE;
e0001a05
NC
9578}
9579
9580
9581static bfd_boolean
7fa3d080 9582xtensa_is_property_section (asection *sec)
e0001a05 9583{
1d25768e
BW
9584 if (xtensa_is_insntable_section (sec)
9585 || xtensa_is_littable_section (sec)
9586 || xtensa_is_proptable_section (sec))
b614a702 9587 return TRUE;
e901de89 9588
1d25768e
BW
9589 return FALSE;
9590}
9591
9592
9593static bfd_boolean
9594xtensa_is_insntable_section (asection *sec)
9595{
9596 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9597 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
9598 return TRUE;
9599
e901de89
BW
9600 return FALSE;
9601}
9602
9603
9604static bfd_boolean
7fa3d080 9605xtensa_is_littable_section (asection *sec)
e901de89 9606{
1d25768e
BW
9607 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9608 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 9609 return TRUE;
e901de89 9610
1d25768e
BW
9611 return FALSE;
9612}
9613
9614
9615static bfd_boolean
9616xtensa_is_proptable_section (asection *sec)
9617{
9618 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9619 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 9620 return TRUE;
e0001a05 9621
e901de89 9622 return FALSE;
e0001a05
NC
9623}
9624
9625
43cd72b9 9626static int
7fa3d080 9627internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9628{
43cd72b9
BW
9629 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9630 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9631
9632 if (a->r_offset != b->r_offset)
9633 return (a->r_offset - b->r_offset);
9634
9635 /* We don't need to sort on these criteria for correctness,
9636 but enforcing a more strict ordering prevents unstable qsort
9637 from behaving differently with different implementations.
9638 Without the code below we get correct but different results
9639 on Solaris 2.7 and 2.8. We would like to always produce the
9640 same results no matter the host. */
9641
9642 if (a->r_info != b->r_info)
9643 return (a->r_info - b->r_info);
9644
9645 return (a->r_addend - b->r_addend);
e0001a05
NC
9646}
9647
9648
9649static int
7fa3d080 9650internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9651{
9652 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9653 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9654
43cd72b9
BW
9655 /* Check if one entry overlaps with the other; this shouldn't happen
9656 except when searching for a match. */
e0001a05
NC
9657 return (a->r_offset - b->r_offset);
9658}
9659
9660
74869ac7
BW
9661/* Predicate function used to look up a section in a particular group. */
9662
9663static bfd_boolean
9664match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9665{
9666 const char *gname = inf;
9667 const char *group_name = elf_group_name (sec);
9668
9669 return (group_name == gname
9670 || (group_name != NULL
9671 && gname != NULL
9672 && strcmp (group_name, gname) == 0));
9673}
9674
9675
1d25768e
BW
9676static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9677
74869ac7
BW
9678asection *
9679xtensa_get_property_section (asection *sec, const char *base_name)
e0001a05 9680{
74869ac7
BW
9681 const char *suffix, *group_name;
9682 char *prop_sec_name;
9683 asection *prop_sec;
9684
9685 group_name = elf_group_name (sec);
9686 if (group_name)
9687 {
9688 suffix = strrchr (sec->name, '.');
9689 if (suffix == sec->name)
9690 suffix = 0;
9691 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9692 + (suffix ? strlen (suffix) : 0));
9693 strcpy (prop_sec_name, base_name);
9694 if (suffix)
9695 strcat (prop_sec_name, suffix);
9696 }
9697 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9698 {
43cd72b9 9699 char *linkonce_kind = 0;
b614a702
BW
9700
9701 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9702 linkonce_kind = "x.";
b614a702 9703 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9704 linkonce_kind = "p.";
43cd72b9
BW
9705 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9706 linkonce_kind = "prop.";
e0001a05 9707 else
b614a702
BW
9708 abort ();
9709
43cd72b9
BW
9710 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9711 + strlen (linkonce_kind) + 1);
b614a702 9712 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9713 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9714
9715 suffix = sec->name + linkonce_len;
096c35a7 9716 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 9717 the new linkonce_kind (but not for "prop" sections). */
0112cd26 9718 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
9719 suffix += 2;
9720 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
9721 }
9722 else
9723 prop_sec_name = strdup (base_name);
9724
9725 /* Check if the section already exists. */
9726 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9727 match_section_group,
9728 (void *) group_name);
9729 /* If not, create it. */
9730 if (! prop_sec)
9731 {
9732 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9733 flags |= (bfd_get_section_flags (sec->owner, sec)
9734 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9735
9736 prop_sec = bfd_make_section_anyway_with_flags
9737 (sec->owner, strdup (prop_sec_name), flags);
9738 if (! prop_sec)
9739 return 0;
b614a702 9740
74869ac7 9741 elf_group_name (prop_sec) = group_name;
e0001a05
NC
9742 }
9743
74869ac7
BW
9744 free (prop_sec_name);
9745 return prop_sec;
e0001a05
NC
9746}
9747
43cd72b9
BW
9748
9749flagword
7fa3d080 9750xtensa_get_property_predef_flags (asection *sec)
43cd72b9 9751{
1d25768e 9752 if (xtensa_is_insntable_section (sec))
43cd72b9 9753 return (XTENSA_PROP_INSN
99ded152 9754 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9755 | XTENSA_PROP_INSN_NO_REORDER);
9756
9757 if (xtensa_is_littable_section (sec))
9758 return (XTENSA_PROP_LITERAL
99ded152 9759 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9760 | XTENSA_PROP_INSN_NO_REORDER);
9761
9762 return 0;
9763}
9764
e0001a05
NC
9765\f
9766/* Other functions called directly by the linker. */
9767
9768bfd_boolean
7fa3d080
BW
9769xtensa_callback_required_dependence (bfd *abfd,
9770 asection *sec,
9771 struct bfd_link_info *link_info,
9772 deps_callback_t callback,
9773 void *closure)
e0001a05
NC
9774{
9775 Elf_Internal_Rela *internal_relocs;
9776 bfd_byte *contents;
9777 unsigned i;
9778 bfd_boolean ok = TRUE;
43cd72b9
BW
9779 bfd_size_type sec_size;
9780
9781 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9782
9783 /* ".plt*" sections have no explicit relocations but they contain L32R
9784 instructions that reference the corresponding ".got.plt*" sections. */
9785 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 9786 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
9787 {
9788 asection *sgotplt;
9789
9790 /* Find the corresponding ".got.plt*" section. */
9791 if (sec->name[4] == '\0')
9792 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9793 else
9794 {
9795 char got_name[14];
9796 int chunk = 0;
9797
9798 BFD_ASSERT (sec->name[4] == '.');
9799 chunk = strtol (&sec->name[5], NULL, 10);
9800
9801 sprintf (got_name, ".got.plt.%u", chunk);
9802 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9803 }
9804 BFD_ASSERT (sgotplt);
9805
9806 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9807 section referencing a literal at the very beginning of
9808 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9809 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9810 }
9811
13161072
BW
9812 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9813 when building uclibc, which runs "ld -b binary /dev/null". */
9814 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9815 return ok;
9816
e0001a05
NC
9817 internal_relocs = retrieve_internal_relocs (abfd, sec,
9818 link_info->keep_memory);
9819 if (internal_relocs == NULL
43cd72b9 9820 || sec->reloc_count == 0)
e0001a05
NC
9821 return ok;
9822
9823 /* Cache the contents for the duration of this scan. */
9824 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9825 if (contents == NULL && sec_size != 0)
e0001a05
NC
9826 {
9827 ok = FALSE;
9828 goto error_return;
9829 }
9830
43cd72b9
BW
9831 if (!xtensa_default_isa)
9832 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9833
43cd72b9 9834 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9835 {
9836 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9837 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9838 {
9839 r_reloc l32r_rel;
9840 asection *target_sec;
9841 bfd_vma target_offset;
43cd72b9
BW
9842
9843 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9844 target_sec = NULL;
9845 target_offset = 0;
9846 /* L32Rs must be local to the input file. */
9847 if (r_reloc_is_defined (&l32r_rel))
9848 {
9849 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9850 target_offset = l32r_rel.target_offset;
e0001a05
NC
9851 }
9852 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9853 closure);
9854 }
9855 }
9856
9857 error_return:
9858 release_internal_relocs (sec, internal_relocs);
9859 release_contents (sec, contents);
9860 return ok;
9861}
9862
2f89ff8d
L
9863/* The default literal sections should always be marked as "code" (i.e.,
9864 SHF_EXECINSTR). This is particularly important for the Linux kernel
9865 module loader so that the literals are not placed after the text. */
b35d266b 9866static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9867{
0112cd26
NC
9868 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9869 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9870 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 9871 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 9872 { NULL, 0, 0, 0, 0 }
7f4d3958 9873};
e0001a05
NC
9874\f
9875#ifndef ELF_ARCH
9876#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9877#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9878#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9879#define TARGET_BIG_NAME "elf32-xtensa-be"
9880#define ELF_ARCH bfd_arch_xtensa
9881
4af0a1d8
BW
9882#define ELF_MACHINE_CODE EM_XTENSA
9883#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9884
9885#if XCHAL_HAVE_MMU
9886#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9887#else /* !XCHAL_HAVE_MMU */
9888#define ELF_MAXPAGESIZE 1
9889#endif /* !XCHAL_HAVE_MMU */
9890#endif /* ELF_ARCH */
9891
9892#define elf_backend_can_gc_sections 1
9893#define elf_backend_can_refcount 1
9894#define elf_backend_plt_readonly 1
9895#define elf_backend_got_header_size 4
9896#define elf_backend_want_dynbss 0
9897#define elf_backend_want_got_plt 1
9898
9899#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9900
e0001a05
NC
9901#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9902#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9903#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9904#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9905#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
9906#define bfd_elf32_bfd_reloc_name_lookup \
9907 elf_xtensa_reloc_name_lookup
e0001a05 9908#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 9909#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
9910
9911#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9912#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9913#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9914#define elf_backend_discard_info elf_xtensa_discard_info
9915#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9916#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9917#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9918#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9919#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9920#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9921#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9922#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 9923#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
9924#define elf_backend_object_p elf_xtensa_object_p
9925#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9926#define elf_backend_relocate_section elf_xtensa_relocate_section
9927#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
74541ad4
AM
9928#define elf_backend_omit_section_dynsym \
9929 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 9930#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 9931#define elf_backend_action_discarded elf_xtensa_action_discarded
e0001a05
NC
9932
9933#include "elf32-target.h"
This page took 0.821937 seconds and 4 git commands to generate.