daily update
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
4b95cf5c 2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 106static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 107static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 108static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
109static int internal_reloc_compare (const void *, const void *);
110static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
111static asection *xtensa_get_property_section (asection *, const char *);
112extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 113static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
114
115/* Other functions called directly by the linker. */
116
117typedef void (*deps_callback_t)
7fa3d080 118 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 119extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
121
122
43cd72b9
BW
123/* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
7fa3d080 127
43cd72b9
BW
128int elf32xtensa_size_opt;
129
130
131/* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
e0001a05 134
7fa3d080 135typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 136
43cd72b9 137
43cd72b9
BW
138/* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143xtensa_isa xtensa_default_isa;
144
145
e0001a05
NC
146/* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150static bfd_boolean relaxing_section = FALSE;
151
43cd72b9
BW
152/* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155int elf32xtensa_no_literal_movement = 1;
156
b0dddeec
AM
157/* Rename one of the generic section flags to better document how it
158 is used here. */
159/* Whether relocations have been processed. */
160#define reloc_done sec_flg0
e0001a05
NC
161\f
162static reloc_howto_type elf_howto_table[] =
163{
164 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 166 FALSE, 0, 0, FALSE),
e0001a05
NC
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 170
e0001a05
NC
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178
e0001a05
NC
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 181 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 184 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 187 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
190 FALSE, 0, 0xffffffff, FALSE),
191
e0001a05 192 EMPTY_HOWTO (7),
e5f131d1
BW
193
194 /* Old relocations for backward compatibility. */
e0001a05 195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201
e0001a05
NC
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208
e0001a05 209 EMPTY_HOWTO (13),
1bbb5f21
BW
210
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 214
e0001a05
NC
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 218 FALSE, 0, 0, FALSE),
e0001a05
NC
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 222 FALSE, 0, 0, FALSE),
43cd72b9
BW
223
224 /* Relocations for supporting difference of symbols. */
225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
231
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
263
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
295
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 FALSE, 0, 0, FALSE),
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 FALSE, 0, 0, FALSE),
e0001a05
NC
318};
319
43cd72b9 320#if DEBUG_GEN_RELOC
e0001a05
NC
321#define TRACE(str) \
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323#else
324#define TRACE(str)
325#endif
326
327static reloc_howto_type *
7fa3d080
BW
328elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
e0001a05
NC
330{
331 switch (code)
332 {
333 case BFD_RELOC_NONE:
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336
337 case BFD_RELOC_32:
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340
1bbb5f21
BW
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344
43cd72b9
BW
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356
e0001a05
NC
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404
28dbbc02
BW
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432
e0001a05 433 default:
43cd72b9
BW
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 {
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
440 }
441
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 {
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
448 }
449
e0001a05
NC
450 break;
451 }
452
453 TRACE ("Unknown");
454 return NULL;
455}
456
157090f7
AM
457static reloc_howto_type *
458elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 const char *r_name)
460{
461 unsigned int i;
462
463 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464 if (elf_howto_table[i].name != NULL
465 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
466 return &elf_howto_table[i];
467
468 return NULL;
469}
470
e0001a05
NC
471
472/* Given an ELF "rela" relocation, find the corresponding howto and record
473 it in the BFD internal arelent representation of the relocation. */
474
475static void
7fa3d080
BW
476elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
477 arelent *cache_ptr,
478 Elf_Internal_Rela *dst)
e0001a05
NC
479{
480 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
481
482 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
483 cache_ptr->howto = &elf_howto_table[r_type];
484}
485
486\f
487/* Functions for the Xtensa ELF linker. */
488
489/* The name of the dynamic interpreter. This is put in the .interp
490 section. */
491
492#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
493
494/* The size in bytes of an entry in the procedure linkage table.
495 (This does _not_ include the space for the literals associated with
496 the PLT entry.) */
497
498#define PLT_ENTRY_SIZE 16
499
500/* For _really_ large PLTs, we may need to alternate between literals
501 and code to keep the literals within the 256K range of the L32R
502 instructions in the code. It's unlikely that anyone would ever need
503 such a big PLT, but an arbitrary limit on the PLT size would be bad.
504 Thus, we split the PLT into chunks. Since there's very little
505 overhead (2 extra literals) for each chunk, the chunk size is kept
506 small so that the code for handling multiple chunks get used and
507 tested regularly. With 254 entries, there are 1K of literals for
508 each chunk, and that seems like a nice round number. */
509
510#define PLT_ENTRIES_PER_CHUNK 254
511
512/* PLT entries are actually used as stub functions for lazy symbol
513 resolution. Once the symbol is resolved, the stub function is never
514 invoked. Note: the 32-byte frame size used here cannot be changed
515 without a corresponding change in the runtime linker. */
516
517static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
518{
519 0x6c, 0x10, 0x04, /* entry sp, 32 */
520 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
521 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
522 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
523 0x0a, 0x80, 0x00, /* jx a8 */
524 0 /* unused */
525};
526
527static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
528{
529 0x36, 0x41, 0x00, /* entry sp, 32 */
530 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
531 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
532 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
533 0xa0, 0x08, 0x00, /* jx a8 */
534 0 /* unused */
535};
536
28dbbc02
BW
537/* The size of the thread control block. */
538#define TCB_SIZE 8
539
540struct elf_xtensa_link_hash_entry
541{
542 struct elf_link_hash_entry elf;
543
544 bfd_signed_vma tlsfunc_refcount;
545
546#define GOT_UNKNOWN 0
547#define GOT_NORMAL 1
548#define GOT_TLS_GD 2 /* global or local dynamic */
549#define GOT_TLS_IE 4 /* initial or local exec */
550#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
551 unsigned char tls_type;
552};
553
554#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
555
556struct elf_xtensa_obj_tdata
557{
558 struct elf_obj_tdata root;
559
560 /* tls_type for each local got entry. */
561 char *local_got_tls_type;
562
563 bfd_signed_vma *local_tlsfunc_refcounts;
564};
565
566#define elf_xtensa_tdata(abfd) \
567 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
568
569#define elf_xtensa_local_got_tls_type(abfd) \
570 (elf_xtensa_tdata (abfd)->local_got_tls_type)
571
572#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
573 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
574
575#define is_xtensa_elf(bfd) \
576 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
577 && elf_tdata (bfd) != NULL \
4dfe6ac6 578 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
579
580static bfd_boolean
581elf_xtensa_mkobject (bfd *abfd)
582{
583 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 584 XTENSA_ELF_DATA);
28dbbc02
BW
585}
586
f0e6fdb2
BW
587/* Xtensa ELF linker hash table. */
588
589struct elf_xtensa_link_hash_table
590{
591 struct elf_link_hash_table elf;
592
593 /* Short-cuts to get to dynamic linker sections. */
594 asection *sgot;
595 asection *sgotplt;
596 asection *srelgot;
597 asection *splt;
598 asection *srelplt;
599 asection *sgotloc;
600 asection *spltlittbl;
601
602 /* Total count of PLT relocations seen during check_relocs.
603 The actual PLT code must be split into multiple sections and all
604 the sections have to be created before size_dynamic_sections,
605 where we figure out the exact number of PLT entries that will be
606 needed. It is OK if this count is an overestimate, e.g., some
607 relocations may be removed by GC. */
608 int plt_reloc_count;
28dbbc02
BW
609
610 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
611};
612
613/* Get the Xtensa ELF linker hash table from a link_info structure. */
614
615#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
616 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
617 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 618
28dbbc02
BW
619/* Create an entry in an Xtensa ELF linker hash table. */
620
621static struct bfd_hash_entry *
622elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
623 struct bfd_hash_table *table,
624 const char *string)
625{
626 /* Allocate the structure if it has not already been allocated by a
627 subclass. */
628 if (entry == NULL)
629 {
630 entry = bfd_hash_allocate (table,
631 sizeof (struct elf_xtensa_link_hash_entry));
632 if (entry == NULL)
633 return entry;
634 }
635
636 /* Call the allocation method of the superclass. */
637 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
638 if (entry != NULL)
639 {
640 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
641 eh->tlsfunc_refcount = 0;
642 eh->tls_type = GOT_UNKNOWN;
643 }
644
645 return entry;
646}
647
f0e6fdb2
BW
648/* Create an Xtensa ELF linker hash table. */
649
650static struct bfd_link_hash_table *
651elf_xtensa_link_hash_table_create (bfd *abfd)
652{
28dbbc02 653 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
654 struct elf_xtensa_link_hash_table *ret;
655 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
656
7bf52ea2 657 ret = bfd_zmalloc (amt);
f0e6fdb2
BW
658 if (ret == NULL)
659 return NULL;
660
661 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 662 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
663 sizeof (struct elf_xtensa_link_hash_entry),
664 XTENSA_ELF_DATA))
f0e6fdb2
BW
665 {
666 free (ret);
667 return NULL;
668 }
669
28dbbc02
BW
670 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
671 for it later. */
672 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
673 TRUE, FALSE, FALSE);
674 tlsbase->root.type = bfd_link_hash_new;
675 tlsbase->root.u.undef.abfd = NULL;
676 tlsbase->non_elf = 0;
677 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
678 ret->tlsbase->tls_type = GOT_UNKNOWN;
679
f0e6fdb2
BW
680 return &ret->elf.root;
681}
571b5725 682
28dbbc02
BW
683/* Copy the extra info we tack onto an elf_link_hash_entry. */
684
685static void
686elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
687 struct elf_link_hash_entry *dir,
688 struct elf_link_hash_entry *ind)
689{
690 struct elf_xtensa_link_hash_entry *edir, *eind;
691
692 edir = elf_xtensa_hash_entry (dir);
693 eind = elf_xtensa_hash_entry (ind);
694
695 if (ind->root.type == bfd_link_hash_indirect)
696 {
697 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
698 eind->tlsfunc_refcount = 0;
699
700 if (dir->got.refcount <= 0)
701 {
702 edir->tls_type = eind->tls_type;
703 eind->tls_type = GOT_UNKNOWN;
704 }
705 }
706
707 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
708}
709
571b5725 710static inline bfd_boolean
4608f3d9 711elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 712 struct bfd_link_info *info)
571b5725
BW
713{
714 /* Check if we should do dynamic things to this symbol. The
715 "ignore_protected" argument need not be set, because Xtensa code
716 does not require special handling of STV_PROTECTED to make function
717 pointer comparisons work properly. The PLT addresses are never
718 used for function pointers. */
719
720 return _bfd_elf_dynamic_symbol_p (h, info, 0);
721}
722
e0001a05
NC
723\f
724static int
7fa3d080 725property_table_compare (const void *ap, const void *bp)
e0001a05
NC
726{
727 const property_table_entry *a = (const property_table_entry *) ap;
728 const property_table_entry *b = (const property_table_entry *) bp;
729
43cd72b9
BW
730 if (a->address == b->address)
731 {
43cd72b9
BW
732 if (a->size != b->size)
733 return (a->size - b->size);
734
735 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
736 return ((b->flags & XTENSA_PROP_ALIGN)
737 - (a->flags & XTENSA_PROP_ALIGN));
738
739 if ((a->flags & XTENSA_PROP_ALIGN)
740 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
741 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
742 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
743 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
68ffbac6 744
43cd72b9
BW
745 if ((a->flags & XTENSA_PROP_UNREACHABLE)
746 != (b->flags & XTENSA_PROP_UNREACHABLE))
747 return ((b->flags & XTENSA_PROP_UNREACHABLE)
748 - (a->flags & XTENSA_PROP_UNREACHABLE));
749
750 return (a->flags - b->flags);
751 }
752
753 return (a->address - b->address);
754}
755
756
757static int
7fa3d080 758property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
759{
760 const property_table_entry *a = (const property_table_entry *) ap;
761 const property_table_entry *b = (const property_table_entry *) bp;
762
763 /* Check if one entry overlaps with the other. */
e0001a05
NC
764 if ((b->address >= a->address && b->address < (a->address + a->size))
765 || (a->address >= b->address && a->address < (b->address + b->size)))
766 return 0;
767
768 return (a->address - b->address);
769}
770
771
43cd72b9
BW
772/* Get the literal table or property table entries for the given
773 section. Sets TABLE_P and returns the number of entries. On
774 error, returns a negative value. */
e0001a05 775
7fa3d080
BW
776static int
777xtensa_read_table_entries (bfd *abfd,
778 asection *section,
779 property_table_entry **table_p,
780 const char *sec_name,
781 bfd_boolean output_addr)
e0001a05
NC
782{
783 asection *table_section;
e0001a05
NC
784 bfd_size_type table_size = 0;
785 bfd_byte *table_data;
786 property_table_entry *blocks;
e4115460 787 int blk, block_count;
e0001a05 788 bfd_size_type num_records;
bcc2cc8e
BW
789 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
790 bfd_vma section_addr, off;
43cd72b9 791 flagword predef_flags;
bcc2cc8e 792 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
793
794 if (!section
795 || !(section->flags & SEC_ALLOC)
796 || (section->flags & SEC_DEBUGGING))
797 {
798 *table_p = NULL;
799 return 0;
800 }
e0001a05 801
74869ac7 802 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 803 if (table_section)
eea6121a 804 table_size = table_section->size;
43cd72b9 805
68ffbac6 806 if (table_size == 0)
e0001a05
NC
807 {
808 *table_p = NULL;
809 return 0;
810 }
811
43cd72b9
BW
812 predef_flags = xtensa_get_property_predef_flags (table_section);
813 table_entry_size = 12;
814 if (predef_flags)
815 table_entry_size -= 4;
816
817 num_records = table_size / table_entry_size;
e0001a05
NC
818 table_data = retrieve_contents (abfd, table_section, TRUE);
819 blocks = (property_table_entry *)
820 bfd_malloc (num_records * sizeof (property_table_entry));
821 block_count = 0;
43cd72b9
BW
822
823 if (output_addr)
824 section_addr = section->output_section->vma + section->output_offset;
825 else
826 section_addr = section->vma;
3ba3bc8c 827
e0001a05 828 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 829 if (internal_relocs && !table_section->reloc_done)
e0001a05 830 {
bcc2cc8e
BW
831 qsort (internal_relocs, table_section->reloc_count,
832 sizeof (Elf_Internal_Rela), internal_reloc_compare);
833 irel = internal_relocs;
834 }
835 else
836 irel = NULL;
837
838 section_limit = bfd_get_section_limit (abfd, section);
839 rel_end = internal_relocs + table_section->reloc_count;
840
68ffbac6 841 for (off = 0; off < table_size; off += table_entry_size)
bcc2cc8e
BW
842 {
843 bfd_vma address = bfd_get_32 (abfd, table_data + off);
844
845 /* Skip any relocations before the current offset. This should help
846 avoid confusion caused by unexpected relocations for the preceding
847 table entry. */
848 while (irel &&
849 (irel->r_offset < off
850 || (irel->r_offset == off
851 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
852 {
853 irel += 1;
854 if (irel >= rel_end)
855 irel = 0;
856 }
e0001a05 857
bcc2cc8e 858 if (irel && irel->r_offset == off)
e0001a05 859 {
bcc2cc8e
BW
860 bfd_vma sym_off;
861 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
862 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 863
bcc2cc8e 864 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
865 continue;
866
bcc2cc8e
BW
867 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
868 BFD_ASSERT (sym_off == 0);
869 address += (section_addr + sym_off + irel->r_addend);
e0001a05 870 }
bcc2cc8e 871 else
e0001a05 872 {
bcc2cc8e
BW
873 if (address < section_addr
874 || address >= section_addr + section_limit)
875 continue;
e0001a05 876 }
bcc2cc8e
BW
877
878 blocks[block_count].address = address;
879 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
880 if (predef_flags)
881 blocks[block_count].flags = predef_flags;
882 else
883 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
884 block_count++;
e0001a05
NC
885 }
886
887 release_contents (table_section, table_data);
888 release_internal_relocs (table_section, internal_relocs);
889
43cd72b9 890 if (block_count > 0)
e0001a05
NC
891 {
892 /* Now sort them into address order for easy reference. */
893 qsort (blocks, block_count, sizeof (property_table_entry),
894 property_table_compare);
e4115460
BW
895
896 /* Check that the table contents are valid. Problems may occur,
897 for example, if an unrelocated object file is stripped. */
898 for (blk = 1; blk < block_count; blk++)
899 {
900 /* The only circumstance where two entries may legitimately
901 have the same address is when one of them is a zero-size
902 placeholder to mark a place where fill can be inserted.
903 The zero-size entry should come first. */
904 if (blocks[blk - 1].address == blocks[blk].address &&
905 blocks[blk - 1].size != 0)
906 {
907 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
908 abfd, section);
909 bfd_set_error (bfd_error_bad_value);
910 free (blocks);
911 return -1;
912 }
913 }
e0001a05 914 }
43cd72b9 915
e0001a05
NC
916 *table_p = blocks;
917 return block_count;
918}
919
920
7fa3d080
BW
921static property_table_entry *
922elf_xtensa_find_property_entry (property_table_entry *property_table,
923 int property_table_size,
924 bfd_vma addr)
e0001a05
NC
925{
926 property_table_entry entry;
43cd72b9 927 property_table_entry *rv;
e0001a05 928
43cd72b9
BW
929 if (property_table_size == 0)
930 return NULL;
e0001a05
NC
931
932 entry.address = addr;
933 entry.size = 1;
43cd72b9 934 entry.flags = 0;
e0001a05 935
43cd72b9
BW
936 rv = bsearch (&entry, property_table, property_table_size,
937 sizeof (property_table_entry), property_table_matches);
938 return rv;
939}
940
941
942static bfd_boolean
7fa3d080
BW
943elf_xtensa_in_literal_pool (property_table_entry *lit_table,
944 int lit_table_size,
945 bfd_vma addr)
43cd72b9
BW
946{
947 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
948 return TRUE;
949
950 return FALSE;
951}
952
953\f
954/* Look through the relocs for a section during the first phase, and
955 calculate needed space in the dynamic reloc sections. */
956
957static bfd_boolean
7fa3d080
BW
958elf_xtensa_check_relocs (bfd *abfd,
959 struct bfd_link_info *info,
960 asection *sec,
961 const Elf_Internal_Rela *relocs)
e0001a05 962{
f0e6fdb2 963 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
964 Elf_Internal_Shdr *symtab_hdr;
965 struct elf_link_hash_entry **sym_hashes;
966 const Elf_Internal_Rela *rel;
967 const Elf_Internal_Rela *rel_end;
e0001a05 968
28dbbc02 969 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
970 return TRUE;
971
28dbbc02
BW
972 BFD_ASSERT (is_xtensa_elf (abfd));
973
f0e6fdb2 974 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
975 if (htab == NULL)
976 return FALSE;
977
e0001a05
NC
978 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
979 sym_hashes = elf_sym_hashes (abfd);
980
e0001a05
NC
981 rel_end = relocs + sec->reloc_count;
982 for (rel = relocs; rel < rel_end; rel++)
983 {
984 unsigned int r_type;
985 unsigned long r_symndx;
28dbbc02
BW
986 struct elf_link_hash_entry *h = NULL;
987 struct elf_xtensa_link_hash_entry *eh;
988 int tls_type, old_tls_type;
989 bfd_boolean is_got = FALSE;
990 bfd_boolean is_plt = FALSE;
991 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
992
993 r_symndx = ELF32_R_SYM (rel->r_info);
994 r_type = ELF32_R_TYPE (rel->r_info);
995
996 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
997 {
d003868e
AM
998 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
999 abfd, r_symndx);
e0001a05
NC
1000 return FALSE;
1001 }
1002
28dbbc02 1003 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1004 {
1005 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1006 while (h->root.type == bfd_link_hash_indirect
1007 || h->root.type == bfd_link_hash_warning)
1008 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
1009
1010 /* PR15323, ref flags aren't set for references in the same
1011 object. */
1012 h->root.non_ir_ref = 1;
e0001a05 1013 }
28dbbc02 1014 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1015
1016 switch (r_type)
1017 {
28dbbc02
BW
1018 case R_XTENSA_TLSDESC_FN:
1019 if (info->shared)
1020 {
1021 tls_type = GOT_TLS_GD;
1022 is_got = TRUE;
1023 is_tlsfunc = TRUE;
1024 }
1025 else
1026 tls_type = GOT_TLS_IE;
1027 break;
e0001a05 1028
28dbbc02
BW
1029 case R_XTENSA_TLSDESC_ARG:
1030 if (info->shared)
e0001a05 1031 {
28dbbc02
BW
1032 tls_type = GOT_TLS_GD;
1033 is_got = TRUE;
1034 }
1035 else
1036 {
1037 tls_type = GOT_TLS_IE;
1038 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1039 is_got = TRUE;
e0001a05
NC
1040 }
1041 break;
1042
28dbbc02
BW
1043 case R_XTENSA_TLS_DTPOFF:
1044 if (info->shared)
1045 tls_type = GOT_TLS_GD;
1046 else
1047 tls_type = GOT_TLS_IE;
1048 break;
1049
1050 case R_XTENSA_TLS_TPOFF:
1051 tls_type = GOT_TLS_IE;
1052 if (info->shared)
1053 info->flags |= DF_STATIC_TLS;
1054 if (info->shared || h)
1055 is_got = TRUE;
1056 break;
1057
1058 case R_XTENSA_32:
1059 tls_type = GOT_NORMAL;
1060 is_got = TRUE;
1061 break;
1062
e0001a05 1063 case R_XTENSA_PLT:
28dbbc02
BW
1064 tls_type = GOT_NORMAL;
1065 is_plt = TRUE;
1066 break;
e0001a05 1067
28dbbc02
BW
1068 case R_XTENSA_GNU_VTINHERIT:
1069 /* This relocation describes the C++ object vtable hierarchy.
1070 Reconstruct it for later use during GC. */
1071 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1072 return FALSE;
1073 continue;
1074
1075 case R_XTENSA_GNU_VTENTRY:
1076 /* This relocation describes which C++ vtable entries are actually
1077 used. Record for later use during GC. */
1078 BFD_ASSERT (h != NULL);
1079 if (h != NULL
1080 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1081 return FALSE;
1082 continue;
1083
1084 default:
1085 /* Nothing to do for any other relocations. */
1086 continue;
1087 }
1088
1089 if (h)
1090 {
1091 if (is_plt)
e0001a05 1092 {
b45329f9
BW
1093 if (h->plt.refcount <= 0)
1094 {
1095 h->needs_plt = 1;
1096 h->plt.refcount = 1;
1097 }
1098 else
1099 h->plt.refcount += 1;
e0001a05
NC
1100
1101 /* Keep track of the total PLT relocation count even if we
1102 don't yet know whether the dynamic sections will be
1103 created. */
f0e6fdb2 1104 htab->plt_reloc_count += 1;
e0001a05
NC
1105
1106 if (elf_hash_table (info)->dynamic_sections_created)
1107 {
f0e6fdb2 1108 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1109 return FALSE;
1110 }
1111 }
28dbbc02 1112 else if (is_got)
b45329f9
BW
1113 {
1114 if (h->got.refcount <= 0)
1115 h->got.refcount = 1;
1116 else
1117 h->got.refcount += 1;
1118 }
28dbbc02
BW
1119
1120 if (is_tlsfunc)
1121 eh->tlsfunc_refcount += 1;
e0001a05 1122
28dbbc02
BW
1123 old_tls_type = eh->tls_type;
1124 }
1125 else
1126 {
1127 /* Allocate storage the first time. */
1128 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1129 {
28dbbc02
BW
1130 bfd_size_type size = symtab_hdr->sh_info;
1131 void *mem;
e0001a05 1132
28dbbc02
BW
1133 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1134 if (mem == NULL)
1135 return FALSE;
1136 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1137
28dbbc02
BW
1138 mem = bfd_zalloc (abfd, size);
1139 if (mem == NULL)
1140 return FALSE;
1141 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1142
1143 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1144 if (mem == NULL)
1145 return FALSE;
1146 elf_xtensa_local_tlsfunc_refcounts (abfd)
1147 = (bfd_signed_vma *) mem;
e0001a05 1148 }
e0001a05 1149
28dbbc02
BW
1150 /* This is a global offset table entry for a local symbol. */
1151 if (is_got || is_plt)
1152 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1153
28dbbc02
BW
1154 if (is_tlsfunc)
1155 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1156
28dbbc02
BW
1157 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1158 }
1159
1160 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1161 tls_type |= old_tls_type;
1162 /* If a TLS symbol is accessed using IE at least once,
1163 there is no point to use a dynamic model for it. */
1164 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1165 && ((old_tls_type & GOT_TLS_GD) == 0
1166 || (tls_type & GOT_TLS_IE) == 0))
1167 {
1168 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1169 tls_type = old_tls_type;
1170 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1171 tls_type |= old_tls_type;
1172 else
1173 {
1174 (*_bfd_error_handler)
1175 (_("%B: `%s' accessed both as normal and thread local symbol"),
1176 abfd,
1177 h ? h->root.root.string : "<local>");
1178 return FALSE;
1179 }
1180 }
1181
1182 if (old_tls_type != tls_type)
1183 {
1184 if (eh)
1185 eh->tls_type = tls_type;
1186 else
1187 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1188 }
1189 }
1190
e0001a05
NC
1191 return TRUE;
1192}
1193
1194
95147441
BW
1195static void
1196elf_xtensa_make_sym_local (struct bfd_link_info *info,
1197 struct elf_link_hash_entry *h)
1198{
1199 if (info->shared)
1200 {
1201 if (h->plt.refcount > 0)
1202 {
1203 /* For shared objects, there's no need for PLT entries for local
1204 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1205 if (h->got.refcount < 0)
1206 h->got.refcount = 0;
1207 h->got.refcount += h->plt.refcount;
1208 h->plt.refcount = 0;
1209 }
1210 }
1211 else
1212 {
1213 /* Don't need any dynamic relocations at all. */
1214 h->plt.refcount = 0;
1215 h->got.refcount = 0;
1216 }
1217}
1218
1219
1220static void
1221elf_xtensa_hide_symbol (struct bfd_link_info *info,
1222 struct elf_link_hash_entry *h,
1223 bfd_boolean force_local)
1224{
1225 /* For a shared link, move the plt refcount to the got refcount to leave
1226 space for RELATIVE relocs. */
1227 elf_xtensa_make_sym_local (info, h);
1228
1229 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1230}
1231
1232
e0001a05
NC
1233/* Return the section that should be marked against GC for a given
1234 relocation. */
1235
1236static asection *
7fa3d080 1237elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1238 struct bfd_link_info *info,
7fa3d080
BW
1239 Elf_Internal_Rela *rel,
1240 struct elf_link_hash_entry *h,
1241 Elf_Internal_Sym *sym)
e0001a05 1242{
e1e5c0b5
BW
1243 /* Property sections are marked "KEEP" in the linker scripts, but they
1244 should not cause other sections to be marked. (This approach relies
1245 on elf_xtensa_discard_info to remove property table entries that
1246 describe discarded sections. Alternatively, it might be more
1247 efficient to avoid using "KEEP" in the linker scripts and instead use
1248 the gc_mark_extra_sections hook to mark only the property sections
1249 that describe marked sections. That alternative does not work well
1250 with the current property table sections, which do not correspond
1251 one-to-one with the sections they describe, but that should be fixed
1252 someday.) */
1253 if (xtensa_is_property_section (sec))
1254 return NULL;
1255
07adf181
AM
1256 if (h != NULL)
1257 switch (ELF32_R_TYPE (rel->r_info))
1258 {
1259 case R_XTENSA_GNU_VTINHERIT:
1260 case R_XTENSA_GNU_VTENTRY:
1261 return NULL;
1262 }
1263
1264 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1265}
1266
7fa3d080 1267
e0001a05
NC
1268/* Update the GOT & PLT entry reference counts
1269 for the section being removed. */
1270
1271static bfd_boolean
7fa3d080 1272elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1273 struct bfd_link_info *info,
7fa3d080
BW
1274 asection *sec,
1275 const Elf_Internal_Rela *relocs)
e0001a05
NC
1276{
1277 Elf_Internal_Shdr *symtab_hdr;
1278 struct elf_link_hash_entry **sym_hashes;
e0001a05 1279 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1280 struct elf_xtensa_link_hash_table *htab;
1281
1282 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1283 if (htab == NULL)
1284 return FALSE;
e0001a05 1285
7dda2462
TG
1286 if (info->relocatable)
1287 return TRUE;
1288
e0001a05
NC
1289 if ((sec->flags & SEC_ALLOC) == 0)
1290 return TRUE;
1291
1292 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1293 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1294
1295 relend = relocs + sec->reloc_count;
1296 for (rel = relocs; rel < relend; rel++)
1297 {
1298 unsigned long r_symndx;
1299 unsigned int r_type;
1300 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1301 struct elf_xtensa_link_hash_entry *eh;
1302 bfd_boolean is_got = FALSE;
1303 bfd_boolean is_plt = FALSE;
1304 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1305
1306 r_symndx = ELF32_R_SYM (rel->r_info);
1307 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1308 {
1309 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1310 while (h->root.type == bfd_link_hash_indirect
1311 || h->root.type == bfd_link_hash_warning)
1312 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1313 }
28dbbc02 1314 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1315
1316 r_type = ELF32_R_TYPE (rel->r_info);
1317 switch (r_type)
1318 {
28dbbc02
BW
1319 case R_XTENSA_TLSDESC_FN:
1320 if (info->shared)
1321 {
1322 is_got = TRUE;
1323 is_tlsfunc = TRUE;
1324 }
e0001a05
NC
1325 break;
1326
28dbbc02
BW
1327 case R_XTENSA_TLSDESC_ARG:
1328 if (info->shared)
1329 is_got = TRUE;
1330 else
1331 {
1332 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1333 is_got = TRUE;
1334 }
e0001a05
NC
1335 break;
1336
28dbbc02
BW
1337 case R_XTENSA_TLS_TPOFF:
1338 if (info->shared || h)
1339 is_got = TRUE;
e0001a05
NC
1340 break;
1341
28dbbc02
BW
1342 case R_XTENSA_32:
1343 is_got = TRUE;
e0001a05 1344 break;
28dbbc02
BW
1345
1346 case R_XTENSA_PLT:
1347 is_plt = TRUE;
1348 break;
1349
1350 default:
1351 continue;
1352 }
1353
1354 if (h)
1355 {
1356 if (is_plt)
1357 {
1358 if (h->plt.refcount > 0)
1359 h->plt.refcount--;
1360 }
1361 else if (is_got)
1362 {
1363 if (h->got.refcount > 0)
1364 h->got.refcount--;
1365 }
1366 if (is_tlsfunc)
1367 {
1368 if (eh->tlsfunc_refcount > 0)
1369 eh->tlsfunc_refcount--;
1370 }
1371 }
1372 else
1373 {
1374 if (is_got || is_plt)
1375 {
1376 bfd_signed_vma *got_refcount
1377 = &elf_local_got_refcounts (abfd) [r_symndx];
1378 if (*got_refcount > 0)
1379 *got_refcount -= 1;
1380 }
1381 if (is_tlsfunc)
1382 {
1383 bfd_signed_vma *tlsfunc_refcount
1384 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1385 if (*tlsfunc_refcount > 0)
1386 *tlsfunc_refcount -= 1;
1387 }
e0001a05
NC
1388 }
1389 }
1390
1391 return TRUE;
1392}
1393
1394
1395/* Create all the dynamic sections. */
1396
1397static bfd_boolean
7fa3d080 1398elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1399{
f0e6fdb2 1400 struct elf_xtensa_link_hash_table *htab;
e901de89 1401 flagword flags, noalloc_flags;
f0e6fdb2
BW
1402
1403 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1404 if (htab == NULL)
1405 return FALSE;
e0001a05
NC
1406
1407 /* First do all the standard stuff. */
1408 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1409 return FALSE;
3d4d4302
AM
1410 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1411 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1412 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1413 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1414 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
e0001a05
NC
1415
1416 /* Create any extra PLT sections in case check_relocs has already
1417 been called on all the non-dynamic input files. */
f0e6fdb2 1418 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1419 return FALSE;
1420
e901de89
BW
1421 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1422 | SEC_LINKER_CREATED | SEC_READONLY);
1423 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1424
1425 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1426 if (htab->sgotplt == NULL
1427 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1428 return FALSE;
1429
e901de89 1430 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3d4d4302
AM
1431 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1432 flags);
f0e6fdb2
BW
1433 if (htab->sgotloc == NULL
1434 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1435 return FALSE;
1436
e0001a05 1437 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3d4d4302
AM
1438 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1439 noalloc_flags);
f0e6fdb2
BW
1440 if (htab->spltlittbl == NULL
1441 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1442 return FALSE;
1443
1444 return TRUE;
1445}
1446
1447
1448static bfd_boolean
f0e6fdb2 1449add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1450{
f0e6fdb2 1451 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1452 int chunk;
1453
1454 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1455 ".got.plt" sections. */
1456 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1457 {
1458 char *sname;
1459 flagword flags;
1460 asection *s;
1461
1462 /* Stop when we find a section has already been created. */
f0e6fdb2 1463 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1464 break;
1465
1466 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1467 | SEC_LINKER_CREATED | SEC_READONLY);
1468
1469 sname = (char *) bfd_malloc (10);
1470 sprintf (sname, ".plt.%u", chunk);
3d4d4302 1471 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1472 if (s == NULL
e0001a05
NC
1473 || ! bfd_set_section_alignment (dynobj, s, 2))
1474 return FALSE;
1475
1476 sname = (char *) bfd_malloc (14);
1477 sprintf (sname, ".got.plt.%u", chunk);
3d4d4302 1478 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
e0001a05 1479 if (s == NULL
e0001a05
NC
1480 || ! bfd_set_section_alignment (dynobj, s, 2))
1481 return FALSE;
1482 }
1483
1484 return TRUE;
1485}
1486
1487
1488/* Adjust a symbol defined by a dynamic object and referenced by a
1489 regular object. The current definition is in some section of the
1490 dynamic object, but we're not including those sections. We have to
1491 change the definition to something the rest of the link can
1492 understand. */
1493
1494static bfd_boolean
7fa3d080
BW
1495elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1496 struct elf_link_hash_entry *h)
e0001a05
NC
1497{
1498 /* If this is a weak symbol, and there is a real definition, the
1499 processor independent code will have arranged for us to see the
1500 real definition first, and we can just use the same value. */
7fa3d080 1501 if (h->u.weakdef)
e0001a05 1502 {
f6e332e6
AM
1503 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1504 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1505 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1506 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1507 return TRUE;
1508 }
1509
1510 /* This is a reference to a symbol defined by a dynamic object. The
1511 reference must go through the GOT, so there's no need for COPY relocs,
1512 .dynbss, etc. */
1513
1514 return TRUE;
1515}
1516
1517
e0001a05 1518static bfd_boolean
f1ab2340 1519elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1520{
f1ab2340
BW
1521 struct bfd_link_info *info;
1522 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1523 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1524
f1ab2340
BW
1525 if (h->root.type == bfd_link_hash_indirect)
1526 return TRUE;
e0001a05 1527
f1ab2340
BW
1528 info = (struct bfd_link_info *) arg;
1529 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1530 if (htab == NULL)
1531 return FALSE;
e0001a05 1532
28dbbc02
BW
1533 /* If we saw any use of an IE model for this symbol, we can then optimize
1534 away GOT entries for any TLSDESC_FN relocs. */
1535 if ((eh->tls_type & GOT_TLS_IE) != 0)
1536 {
1537 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1538 h->got.refcount -= eh->tlsfunc_refcount;
1539 }
e0001a05 1540
28dbbc02 1541 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1542 elf_xtensa_make_sym_local (info, h);
e0001a05 1543
f1ab2340
BW
1544 if (h->plt.refcount > 0)
1545 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1546
1547 if (h->got.refcount > 0)
f1ab2340 1548 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1549
1550 return TRUE;
1551}
1552
1553
1554static void
f0e6fdb2 1555elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1556{
f0e6fdb2 1557 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1558 bfd *i;
1559
f0e6fdb2 1560 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1561 if (htab == NULL)
1562 return;
f0e6fdb2 1563
e0001a05
NC
1564 for (i = info->input_bfds; i; i = i->link_next)
1565 {
1566 bfd_signed_vma *local_got_refcounts;
1567 bfd_size_type j, cnt;
1568 Elf_Internal_Shdr *symtab_hdr;
1569
1570 local_got_refcounts = elf_local_got_refcounts (i);
1571 if (!local_got_refcounts)
1572 continue;
1573
1574 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1575 cnt = symtab_hdr->sh_info;
1576
1577 for (j = 0; j < cnt; ++j)
1578 {
28dbbc02
BW
1579 /* If we saw any use of an IE model for this symbol, we can
1580 then optimize away GOT entries for any TLSDESC_FN relocs. */
1581 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1582 {
1583 bfd_signed_vma *tlsfunc_refcount
1584 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1585 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1586 local_got_refcounts[j] -= *tlsfunc_refcount;
1587 }
1588
e0001a05 1589 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1590 htab->srelgot->size += (local_got_refcounts[j]
1591 * sizeof (Elf32_External_Rela));
e0001a05
NC
1592 }
1593 }
1594}
1595
1596
1597/* Set the sizes of the dynamic sections. */
1598
1599static bfd_boolean
7fa3d080
BW
1600elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1601 struct bfd_link_info *info)
e0001a05 1602{
f0e6fdb2 1603 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1604 bfd *dynobj, *abfd;
1605 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1606 bfd_boolean relplt, relgot;
1607 int plt_entries, plt_chunks, chunk;
1608
1609 plt_entries = 0;
1610 plt_chunks = 0;
e0001a05 1611
f0e6fdb2 1612 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1613 if (htab == NULL)
1614 return FALSE;
1615
e0001a05
NC
1616 dynobj = elf_hash_table (info)->dynobj;
1617 if (dynobj == NULL)
1618 abort ();
f0e6fdb2
BW
1619 srelgot = htab->srelgot;
1620 srelplt = htab->srelplt;
e0001a05
NC
1621
1622 if (elf_hash_table (info)->dynamic_sections_created)
1623 {
f0e6fdb2
BW
1624 BFD_ASSERT (htab->srelgot != NULL
1625 && htab->srelplt != NULL
1626 && htab->sgot != NULL
1627 && htab->spltlittbl != NULL
1628 && htab->sgotloc != NULL);
1629
e0001a05 1630 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1631 if (info->executable)
e0001a05 1632 {
3d4d4302 1633 s = bfd_get_linker_section (dynobj, ".interp");
e0001a05
NC
1634 if (s == NULL)
1635 abort ();
eea6121a 1636 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1637 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1638 }
1639
1640 /* Allocate room for one word in ".got". */
f0e6fdb2 1641 htab->sgot->size = 4;
e0001a05 1642
f1ab2340
BW
1643 /* Allocate space in ".rela.got" for literals that reference global
1644 symbols and space in ".rela.plt" for literals that have PLT
1645 entries. */
e0001a05 1646 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1647 elf_xtensa_allocate_dynrelocs,
7fa3d080 1648 (void *) info);
e0001a05 1649
e0001a05
NC
1650 /* If we are generating a shared object, we also need space in
1651 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1652 reference local symbols. */
1653 if (info->shared)
f0e6fdb2 1654 elf_xtensa_allocate_local_got_size (info);
e0001a05 1655
e0001a05
NC
1656 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1657 each PLT entry, we need the PLT code plus a 4-byte literal.
1658 For each chunk of ".plt", we also need two more 4-byte
1659 literals, two corresponding entries in ".rela.got", and an
1660 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1661 spltlittbl = htab->spltlittbl;
eea6121a 1662 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1663 plt_chunks =
1664 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1665
1666 /* Iterate over all the PLT chunks, including any extra sections
1667 created earlier because the initial count of PLT relocations
1668 was an overestimate. */
1669 for (chunk = 0;
f0e6fdb2 1670 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1671 chunk++)
1672 {
1673 int chunk_entries;
1674
f0e6fdb2
BW
1675 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1676 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1677
1678 if (chunk < plt_chunks - 1)
1679 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1680 else if (chunk == plt_chunks - 1)
1681 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1682 else
1683 chunk_entries = 0;
1684
1685 if (chunk_entries != 0)
1686 {
eea6121a
AM
1687 sgotplt->size = 4 * (chunk_entries + 2);
1688 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1689 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1690 spltlittbl->size += 8;
e0001a05
NC
1691 }
1692 else
1693 {
eea6121a
AM
1694 sgotplt->size = 0;
1695 splt->size = 0;
e0001a05
NC
1696 }
1697 }
e901de89
BW
1698
1699 /* Allocate space in ".got.loc" to match the total size of all the
1700 literal tables. */
f0e6fdb2 1701 sgotloc = htab->sgotloc;
eea6121a 1702 sgotloc->size = spltlittbl->size;
e901de89
BW
1703 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1704 {
1705 if (abfd->flags & DYNAMIC)
1706 continue;
1707 for (s = abfd->sections; s != NULL; s = s->next)
1708 {
dbaa2011 1709 if (! discarded_section (s)
b536dc1e
BW
1710 && xtensa_is_littable_section (s)
1711 && s != spltlittbl)
eea6121a 1712 sgotloc->size += s->size;
e901de89
BW
1713 }
1714 }
e0001a05
NC
1715 }
1716
1717 /* Allocate memory for dynamic sections. */
1718 relplt = FALSE;
1719 relgot = FALSE;
1720 for (s = dynobj->sections; s != NULL; s = s->next)
1721 {
1722 const char *name;
e0001a05
NC
1723
1724 if ((s->flags & SEC_LINKER_CREATED) == 0)
1725 continue;
1726
1727 /* It's OK to base decisions on the section name, because none
1728 of the dynobj section names depend upon the input files. */
1729 name = bfd_get_section_name (dynobj, s);
1730
0112cd26 1731 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1732 {
c456f082 1733 if (s->size != 0)
e0001a05 1734 {
c456f082
AM
1735 if (strcmp (name, ".rela.plt") == 0)
1736 relplt = TRUE;
1737 else if (strcmp (name, ".rela.got") == 0)
1738 relgot = TRUE;
1739
1740 /* We use the reloc_count field as a counter if we need
1741 to copy relocs into the output file. */
1742 s->reloc_count = 0;
e0001a05
NC
1743 }
1744 }
0112cd26
NC
1745 else if (! CONST_STRNEQ (name, ".plt.")
1746 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1747 && strcmp (name, ".got") != 0
e0001a05
NC
1748 && strcmp (name, ".plt") != 0
1749 && strcmp (name, ".got.plt") != 0
e901de89
BW
1750 && strcmp (name, ".xt.lit.plt") != 0
1751 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1752 {
1753 /* It's not one of our sections, so don't allocate space. */
1754 continue;
1755 }
1756
c456f082
AM
1757 if (s->size == 0)
1758 {
1759 /* If we don't need this section, strip it from the output
1760 file. We must create the ".plt*" and ".got.plt*"
1761 sections in create_dynamic_sections and/or check_relocs
1762 based on a conservative estimate of the PLT relocation
1763 count, because the sections must be created before the
1764 linker maps input sections to output sections. The
1765 linker does that before size_dynamic_sections, where we
1766 compute the exact size of the PLT, so there may be more
1767 of these sections than are actually needed. */
1768 s->flags |= SEC_EXCLUDE;
1769 }
1770 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1771 {
1772 /* Allocate memory for the section contents. */
eea6121a 1773 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1774 if (s->contents == NULL)
e0001a05
NC
1775 return FALSE;
1776 }
1777 }
1778
1779 if (elf_hash_table (info)->dynamic_sections_created)
1780 {
1781 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1782 known until finish_dynamic_sections, but we need to get the relocs
1783 in place before they are sorted. */
e0001a05
NC
1784 for (chunk = 0; chunk < plt_chunks; chunk++)
1785 {
1786 Elf_Internal_Rela irela;
1787 bfd_byte *loc;
1788
1789 irela.r_offset = 0;
1790 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1791 irela.r_addend = 0;
1792
1793 loc = (srelgot->contents
1794 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1795 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1796 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1797 loc + sizeof (Elf32_External_Rela));
1798 srelgot->reloc_count += 2;
1799 }
1800
1801 /* Add some entries to the .dynamic section. We fill in the
1802 values later, in elf_xtensa_finish_dynamic_sections, but we
1803 must add the entries now so that we get the correct size for
1804 the .dynamic section. The DT_DEBUG entry is filled in by the
1805 dynamic linker and used by the debugger. */
1806#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1807 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1808
ba05963f 1809 if (info->executable)
e0001a05
NC
1810 {
1811 if (!add_dynamic_entry (DT_DEBUG, 0))
1812 return FALSE;
1813 }
1814
1815 if (relplt)
1816 {
c243ad3b 1817 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1818 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1819 || !add_dynamic_entry (DT_JMPREL, 0))
1820 return FALSE;
1821 }
1822
1823 if (relgot)
1824 {
1825 if (!add_dynamic_entry (DT_RELA, 0)
1826 || !add_dynamic_entry (DT_RELASZ, 0)
1827 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1828 return FALSE;
1829 }
1830
c243ad3b
BW
1831 if (!add_dynamic_entry (DT_PLTGOT, 0)
1832 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1833 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1834 return FALSE;
1835 }
1836#undef add_dynamic_entry
1837
1838 return TRUE;
1839}
1840
28dbbc02
BW
1841static bfd_boolean
1842elf_xtensa_always_size_sections (bfd *output_bfd,
1843 struct bfd_link_info *info)
1844{
1845 struct elf_xtensa_link_hash_table *htab;
1846 asection *tls_sec;
1847
1848 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1849 if (htab == NULL)
1850 return FALSE;
1851
28dbbc02
BW
1852 tls_sec = htab->elf.tls_sec;
1853
1854 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1855 {
1856 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1857 struct bfd_link_hash_entry *bh = &tlsbase->root;
1858 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1859
1860 tlsbase->type = STT_TLS;
1861 if (!(_bfd_generic_link_add_one_symbol
1862 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1863 tls_sec, 0, NULL, FALSE,
1864 bed->collect, &bh)))
1865 return FALSE;
1866 tlsbase->def_regular = 1;
1867 tlsbase->other = STV_HIDDEN;
1868 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1869 }
1870
1871 return TRUE;
1872}
1873
e0001a05 1874\f
28dbbc02
BW
1875/* Return the base VMA address which should be subtracted from real addresses
1876 when resolving @dtpoff relocation.
1877 This is PT_TLS segment p_vaddr. */
1878
1879static bfd_vma
1880dtpoff_base (struct bfd_link_info *info)
1881{
1882 /* If tls_sec is NULL, we should have signalled an error already. */
1883 if (elf_hash_table (info)->tls_sec == NULL)
1884 return 0;
1885 return elf_hash_table (info)->tls_sec->vma;
1886}
1887
1888/* Return the relocation value for @tpoff relocation
1889 if STT_TLS virtual address is ADDRESS. */
1890
1891static bfd_vma
1892tpoff (struct bfd_link_info *info, bfd_vma address)
1893{
1894 struct elf_link_hash_table *htab = elf_hash_table (info);
1895 bfd_vma base;
1896
1897 /* If tls_sec is NULL, we should have signalled an error already. */
1898 if (htab->tls_sec == NULL)
1899 return 0;
1900 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1901 return address - htab->tls_sec->vma + base;
1902}
1903
e0001a05
NC
1904/* Perform the specified relocation. The instruction at (contents + address)
1905 is modified to set one operand to represent the value in "relocation". The
1906 operand position is determined by the relocation type recorded in the
1907 howto. */
1908
1909#define CALL_SEGMENT_BITS (30)
7fa3d080 1910#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1911
1912static bfd_reloc_status_type
7fa3d080
BW
1913elf_xtensa_do_reloc (reloc_howto_type *howto,
1914 bfd *abfd,
1915 asection *input_section,
1916 bfd_vma relocation,
1917 bfd_byte *contents,
1918 bfd_vma address,
1919 bfd_boolean is_weak_undef,
1920 char **error_message)
e0001a05 1921{
43cd72b9 1922 xtensa_format fmt;
e0001a05 1923 xtensa_opcode opcode;
e0001a05 1924 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1925 static xtensa_insnbuf ibuff = NULL;
1926 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1927 bfd_vma self_address;
43cd72b9
BW
1928 bfd_size_type input_size;
1929 int opnd, slot;
e0001a05
NC
1930 uint32 newval;
1931
43cd72b9
BW
1932 if (!ibuff)
1933 {
1934 ibuff = xtensa_insnbuf_alloc (isa);
1935 sbuff = xtensa_insnbuf_alloc (isa);
1936 }
1937
1938 input_size = bfd_get_section_limit (abfd, input_section);
1939
1bbb5f21
BW
1940 /* Calculate the PC address for this instruction. */
1941 self_address = (input_section->output_section->vma
1942 + input_section->output_offset
1943 + address);
1944
e0001a05
NC
1945 switch (howto->type)
1946 {
1947 case R_XTENSA_NONE:
43cd72b9
BW
1948 case R_XTENSA_DIFF8:
1949 case R_XTENSA_DIFF16:
1950 case R_XTENSA_DIFF32:
28dbbc02
BW
1951 case R_XTENSA_TLS_FUNC:
1952 case R_XTENSA_TLS_ARG:
1953 case R_XTENSA_TLS_CALL:
e0001a05
NC
1954 return bfd_reloc_ok;
1955
1956 case R_XTENSA_ASM_EXPAND:
1957 if (!is_weak_undef)
1958 {
1959 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1960 opcode = get_expanded_call_opcode (contents + address,
1961 input_size - address, 0);
e0001a05
NC
1962 if (is_windowed_call_opcode (opcode))
1963 {
43cd72b9 1964 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 1965 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1966 {
1967 *error_message = "windowed longcall crosses 1GB boundary; "
1968 "return may fail";
1969 return bfd_reloc_dangerous;
1970 }
1971 }
1972 }
1973 return bfd_reloc_ok;
1974
1975 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1976 {
e0001a05 1977 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1978 bfd_reloc_status_type retval =
1979 elf_xtensa_do_asm_simplify (contents, address, input_size,
1980 error_message);
e0001a05 1981 if (retval != bfd_reloc_ok)
43cd72b9 1982 return bfd_reloc_dangerous;
e0001a05
NC
1983
1984 /* The CALL needs to be relocated. Continue below for that part. */
1985 address += 3;
c46082c8 1986 self_address += 3;
43cd72b9 1987 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1988 }
1989 break;
1990
1991 case R_XTENSA_32:
e0001a05
NC
1992 {
1993 bfd_vma x;
1994 x = bfd_get_32 (abfd, contents + address);
1995 x = x + relocation;
1996 bfd_put_32 (abfd, x, contents + address);
1997 }
1998 return bfd_reloc_ok;
1bbb5f21
BW
1999
2000 case R_XTENSA_32_PCREL:
2001 bfd_put_32 (abfd, relocation - self_address, contents + address);
2002 return bfd_reloc_ok;
28dbbc02
BW
2003
2004 case R_XTENSA_PLT:
2005 case R_XTENSA_TLSDESC_FN:
2006 case R_XTENSA_TLSDESC_ARG:
2007 case R_XTENSA_TLS_DTPOFF:
2008 case R_XTENSA_TLS_TPOFF:
2009 bfd_put_32 (abfd, relocation, contents + address);
2010 return bfd_reloc_ok;
e0001a05
NC
2011 }
2012
43cd72b9
BW
2013 /* Only instruction slot-specific relocations handled below.... */
2014 slot = get_relocation_slot (howto->type);
2015 if (slot == XTENSA_UNDEFINED)
e0001a05 2016 {
43cd72b9 2017 *error_message = "unexpected relocation";
e0001a05
NC
2018 return bfd_reloc_dangerous;
2019 }
2020
43cd72b9
BW
2021 /* Read the instruction into a buffer and decode the opcode. */
2022 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2023 input_size - address);
2024 fmt = xtensa_format_decode (isa, ibuff);
2025 if (fmt == XTENSA_UNDEFINED)
e0001a05 2026 {
43cd72b9 2027 *error_message = "cannot decode instruction format";
e0001a05
NC
2028 return bfd_reloc_dangerous;
2029 }
2030
43cd72b9 2031 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2032
43cd72b9
BW
2033 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2034 if (opcode == XTENSA_UNDEFINED)
e0001a05 2035 {
43cd72b9 2036 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2037 return bfd_reloc_dangerous;
2038 }
2039
43cd72b9
BW
2040 /* Check for opcode-specific "alternate" relocations. */
2041 if (is_alt_relocation (howto->type))
2042 {
2043 if (opcode == get_l32r_opcode ())
2044 {
2045 /* Handle the special-case of non-PC-relative L32R instructions. */
2046 bfd *output_bfd = input_section->output_section->owner;
2047 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2048 if (!lit4_sec)
2049 {
2050 *error_message = "relocation references missing .lit4 section";
2051 return bfd_reloc_dangerous;
2052 }
2053 self_address = ((lit4_sec->vma & ~0xfff)
2054 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2055 newval = relocation;
2056 opnd = 1;
2057 }
2058 else if (opcode == get_const16_opcode ())
2059 {
2060 /* ALT used for high 16 bits. */
2061 newval = relocation >> 16;
2062 opnd = 1;
2063 }
2064 else
2065 {
2066 /* No other "alternate" relocations currently defined. */
2067 *error_message = "unexpected relocation";
2068 return bfd_reloc_dangerous;
2069 }
2070 }
2071 else /* Not an "alternate" relocation.... */
2072 {
2073 if (opcode == get_const16_opcode ())
2074 {
2075 newval = relocation & 0xffff;
2076 opnd = 1;
2077 }
2078 else
2079 {
2080 /* ...normal PC-relative relocation.... */
2081
2082 /* Determine which operand is being relocated. */
2083 opnd = get_relocation_opnd (opcode, howto->type);
2084 if (opnd == XTENSA_UNDEFINED)
2085 {
2086 *error_message = "unexpected relocation";
2087 return bfd_reloc_dangerous;
2088 }
2089
2090 if (!howto->pc_relative)
2091 {
2092 *error_message = "expected PC-relative relocation";
2093 return bfd_reloc_dangerous;
2094 }
e0001a05 2095
43cd72b9
BW
2096 newval = relocation;
2097 }
2098 }
e0001a05 2099
43cd72b9
BW
2100 /* Apply the relocation. */
2101 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2102 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2103 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2104 sbuff, newval))
e0001a05 2105 {
2db662be
BW
2106 const char *opname = xtensa_opcode_name (isa, opcode);
2107 const char *msg;
2108
2109 msg = "cannot encode";
2110 if (is_direct_call_opcode (opcode))
2111 {
2112 if ((relocation & 0x3) != 0)
2113 msg = "misaligned call target";
2114 else
2115 msg = "call target out of range";
2116 }
2117 else if (opcode == get_l32r_opcode ())
2118 {
2119 if ((relocation & 0x3) != 0)
2120 msg = "misaligned literal target";
2121 else if (is_alt_relocation (howto->type))
2122 msg = "literal target out of range (too many literals)";
2123 else if (self_address > relocation)
2124 msg = "literal target out of range (try using text-section-literals)";
2125 else
2126 msg = "literal placed after use";
2127 }
2128
2129 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2130 return bfd_reloc_dangerous;
2131 }
2132
43cd72b9 2133 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2134 if (is_direct_call_opcode (opcode)
2135 && is_windowed_call_opcode (opcode))
2136 {
43cd72b9 2137 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 2138 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2139 {
43cd72b9
BW
2140 *error_message =
2141 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2142 return bfd_reloc_dangerous;
2143 }
2144 }
2145
43cd72b9
BW
2146 /* Write the modified instruction back out of the buffer. */
2147 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2148 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2149 input_size - address);
e0001a05
NC
2150 return bfd_reloc_ok;
2151}
2152
2153
2db662be 2154static char *
7fa3d080 2155vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2156{
2157 /* To reduce the size of the memory leak,
2158 we only use a single message buffer. */
2159 static bfd_size_type alloc_size = 0;
2160 static char *message = NULL;
2161 bfd_size_type orig_len, len = 0;
2162 bfd_boolean is_append;
1651e569 2163 va_list ap;
e0001a05 2164
1651e569 2165 va_start (ap, arglen);
68ffbac6
L
2166
2167 is_append = (origmsg == message);
e0001a05
NC
2168
2169 orig_len = strlen (origmsg);
2170 len = orig_len + strlen (fmt) + arglen + 20;
2171 if (len > alloc_size)
2172 {
515ef31d 2173 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2174 alloc_size = len;
2175 }
515ef31d
NC
2176 if (message != NULL)
2177 {
2178 if (!is_append)
2179 memcpy (message, origmsg, orig_len);
2180 vsprintf (message + orig_len, fmt, ap);
2181 }
1651e569 2182 va_end (ap);
e0001a05
NC
2183 return message;
2184}
2185
2186
e0001a05
NC
2187/* This function is registered as the "special_function" in the
2188 Xtensa howto for handling simplify operations.
2189 bfd_perform_relocation / bfd_install_relocation use it to
2190 perform (install) the specified relocation. Since this replaces the code
2191 in bfd_perform_relocation, it is basically an Xtensa-specific,
2192 stripped-down version of bfd_perform_relocation. */
2193
2194static bfd_reloc_status_type
7fa3d080
BW
2195bfd_elf_xtensa_reloc (bfd *abfd,
2196 arelent *reloc_entry,
2197 asymbol *symbol,
2198 void *data,
2199 asection *input_section,
2200 bfd *output_bfd,
2201 char **error_message)
e0001a05
NC
2202{
2203 bfd_vma relocation;
2204 bfd_reloc_status_type flag;
2205 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2206 bfd_vma output_base = 0;
2207 reloc_howto_type *howto = reloc_entry->howto;
2208 asection *reloc_target_output_section;
2209 bfd_boolean is_weak_undef;
2210
dd1a320b
BW
2211 if (!xtensa_default_isa)
2212 xtensa_default_isa = xtensa_isa_init (0, 0);
2213
1049f94e 2214 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2215 output, and the reloc is against an external symbol, the resulting
2216 reloc will also be against the same symbol. In such a case, we
2217 don't want to change anything about the way the reloc is handled,
2218 since it will all be done at final link time. This test is similar
2219 to what bfd_elf_generic_reloc does except that it lets relocs with
2220 howto->partial_inplace go through even if the addend is non-zero.
2221 (The real problem is that partial_inplace is set for XTENSA_32
2222 relocs to begin with, but that's a long story and there's little we
2223 can do about it now....) */
2224
7fa3d080 2225 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2226 {
2227 reloc_entry->address += input_section->output_offset;
2228 return bfd_reloc_ok;
2229 }
2230
2231 /* Is the address of the relocation really within the section? */
07515404 2232 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2233 return bfd_reloc_outofrange;
2234
4cc11e76 2235 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2236 initial relocation command value. */
2237
2238 /* Get symbol value. (Common symbols are special.) */
2239 if (bfd_is_com_section (symbol->section))
2240 relocation = 0;
2241 else
2242 relocation = symbol->value;
2243
2244 reloc_target_output_section = symbol->section->output_section;
2245
2246 /* Convert input-section-relative symbol value to absolute. */
2247 if ((output_bfd && !howto->partial_inplace)
2248 || reloc_target_output_section == NULL)
2249 output_base = 0;
2250 else
2251 output_base = reloc_target_output_section->vma;
2252
2253 relocation += output_base + symbol->section->output_offset;
2254
2255 /* Add in supplied addend. */
2256 relocation += reloc_entry->addend;
2257
2258 /* Here the variable relocation holds the final address of the
2259 symbol we are relocating against, plus any addend. */
2260 if (output_bfd)
2261 {
2262 if (!howto->partial_inplace)
2263 {
2264 /* This is a partial relocation, and we want to apply the relocation
2265 to the reloc entry rather than the raw data. Everything except
2266 relocations against section symbols has already been handled
2267 above. */
43cd72b9 2268
e0001a05
NC
2269 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2270 reloc_entry->addend = relocation;
2271 reloc_entry->address += input_section->output_offset;
2272 return bfd_reloc_ok;
2273 }
2274 else
2275 {
2276 reloc_entry->address += input_section->output_offset;
2277 reloc_entry->addend = 0;
2278 }
2279 }
2280
2281 is_weak_undef = (bfd_is_und_section (symbol->section)
2282 && (symbol->flags & BSF_WEAK) != 0);
2283 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2284 (bfd_byte *) data, (bfd_vma) octets,
2285 is_weak_undef, error_message);
2286
2287 if (flag == bfd_reloc_dangerous)
2288 {
2289 /* Add the symbol name to the error message. */
2290 if (! *error_message)
2291 *error_message = "";
2292 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2293 strlen (symbol->name) + 17,
70961b9d
AM
2294 symbol->name,
2295 (unsigned long) reloc_entry->addend);
e0001a05
NC
2296 }
2297
2298 return flag;
2299}
2300
2301
2302/* Set up an entry in the procedure linkage table. */
2303
2304static bfd_vma
f0e6fdb2 2305elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2306 bfd *output_bfd,
2307 unsigned reloc_index)
e0001a05
NC
2308{
2309 asection *splt, *sgotplt;
2310 bfd_vma plt_base, got_base;
2311 bfd_vma code_offset, lit_offset;
2312 int chunk;
2313
2314 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2315 splt = elf_xtensa_get_plt_section (info, chunk);
2316 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2317 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2318
2319 plt_base = splt->output_section->vma + splt->output_offset;
2320 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2321
2322 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2323 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2324
2325 /* Fill in the literal entry. This is the offset of the dynamic
2326 relocation entry. */
2327 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2328 sgotplt->contents + lit_offset);
2329
2330 /* Fill in the entry in the procedure linkage table. */
2331 memcpy (splt->contents + code_offset,
2332 (bfd_big_endian (output_bfd)
2333 ? elf_xtensa_be_plt_entry
2334 : elf_xtensa_le_plt_entry),
2335 PLT_ENTRY_SIZE);
2336 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2337 plt_base + code_offset + 3),
2338 splt->contents + code_offset + 4);
2339 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2340 plt_base + code_offset + 6),
2341 splt->contents + code_offset + 7);
2342 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2343 plt_base + code_offset + 9),
2344 splt->contents + code_offset + 10);
2345
2346 return plt_base + code_offset;
2347}
2348
2349
28dbbc02
BW
2350static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2351
2352static bfd_boolean
2353replace_tls_insn (Elf_Internal_Rela *rel,
2354 bfd *abfd,
2355 asection *input_section,
2356 bfd_byte *contents,
2357 bfd_boolean is_ld_model,
2358 char **error_message)
2359{
2360 static xtensa_insnbuf ibuff = NULL;
2361 static xtensa_insnbuf sbuff = NULL;
2362 xtensa_isa isa = xtensa_default_isa;
2363 xtensa_format fmt;
2364 xtensa_opcode old_op, new_op;
2365 bfd_size_type input_size;
2366 int r_type;
2367 unsigned dest_reg, src_reg;
2368
2369 if (ibuff == NULL)
2370 {
2371 ibuff = xtensa_insnbuf_alloc (isa);
2372 sbuff = xtensa_insnbuf_alloc (isa);
2373 }
2374
2375 input_size = bfd_get_section_limit (abfd, input_section);
2376
2377 /* Read the instruction into a buffer and decode the opcode. */
2378 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2379 input_size - rel->r_offset);
2380 fmt = xtensa_format_decode (isa, ibuff);
2381 if (fmt == XTENSA_UNDEFINED)
2382 {
2383 *error_message = "cannot decode instruction format";
2384 return FALSE;
2385 }
2386
2387 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2388 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2389
2390 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2391 if (old_op == XTENSA_UNDEFINED)
2392 {
2393 *error_message = "cannot decode instruction opcode";
2394 return FALSE;
2395 }
2396
2397 r_type = ELF32_R_TYPE (rel->r_info);
2398 switch (r_type)
2399 {
2400 case R_XTENSA_TLS_FUNC:
2401 case R_XTENSA_TLS_ARG:
2402 if (old_op != get_l32r_opcode ()
2403 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2404 sbuff, &dest_reg) != 0)
2405 {
2406 *error_message = "cannot extract L32R destination for TLS access";
2407 return FALSE;
2408 }
2409 break;
2410
2411 case R_XTENSA_TLS_CALL:
2412 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2413 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2414 sbuff, &src_reg) != 0)
2415 {
2416 *error_message = "cannot extract CALLXn operands for TLS access";
2417 return FALSE;
2418 }
2419 break;
2420
2421 default:
2422 abort ();
2423 }
2424
2425 if (is_ld_model)
2426 {
2427 switch (r_type)
2428 {
2429 case R_XTENSA_TLS_FUNC:
2430 case R_XTENSA_TLS_ARG:
2431 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2432 versions of Xtensa). */
2433 new_op = xtensa_opcode_lookup (isa, "nop");
2434 if (new_op == XTENSA_UNDEFINED)
2435 {
2436 new_op = xtensa_opcode_lookup (isa, "or");
2437 if (new_op == XTENSA_UNDEFINED
2438 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2439 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2440 sbuff, 1) != 0
2441 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2442 sbuff, 1) != 0
2443 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2444 sbuff, 1) != 0)
2445 {
2446 *error_message = "cannot encode OR for TLS access";
2447 return FALSE;
2448 }
2449 }
2450 else
2451 {
2452 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2453 {
2454 *error_message = "cannot encode NOP for TLS access";
2455 return FALSE;
2456 }
2457 }
2458 break;
2459
2460 case R_XTENSA_TLS_CALL:
2461 /* Read THREADPTR into the CALLX's return value register. */
2462 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2463 if (new_op == XTENSA_UNDEFINED
2464 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2465 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2466 sbuff, dest_reg + 2) != 0)
2467 {
2468 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2469 return FALSE;
2470 }
2471 break;
2472 }
2473 }
2474 else
2475 {
2476 switch (r_type)
2477 {
2478 case R_XTENSA_TLS_FUNC:
2479 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2480 if (new_op == XTENSA_UNDEFINED
2481 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2482 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2483 sbuff, dest_reg) != 0)
2484 {
2485 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2486 return FALSE;
2487 }
2488 break;
2489
2490 case R_XTENSA_TLS_ARG:
2491 /* Nothing to do. Keep the original L32R instruction. */
2492 return TRUE;
2493
2494 case R_XTENSA_TLS_CALL:
2495 /* Add the CALLX's src register (holding the THREADPTR value)
2496 to the first argument register (holding the offset) and put
2497 the result in the CALLX's return value register. */
2498 new_op = xtensa_opcode_lookup (isa, "add");
2499 if (new_op == XTENSA_UNDEFINED
2500 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2501 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2502 sbuff, dest_reg + 2) != 0
2503 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2504 sbuff, dest_reg + 2) != 0
2505 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2506 sbuff, src_reg) != 0)
2507 {
2508 *error_message = "cannot encode ADD for TLS access";
2509 return FALSE;
2510 }
2511 break;
2512 }
2513 }
2514
2515 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2516 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2517 input_size - rel->r_offset);
2518
2519 return TRUE;
2520}
2521
2522
2523#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2524 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2525 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2526 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2527 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2528 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2529 || (R_TYPE) == R_XTENSA_TLS_ARG \
2530 || (R_TYPE) == R_XTENSA_TLS_CALL)
2531
e0001a05 2532/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2533 both relocatable and final links. */
e0001a05
NC
2534
2535static bfd_boolean
7fa3d080
BW
2536elf_xtensa_relocate_section (bfd *output_bfd,
2537 struct bfd_link_info *info,
2538 bfd *input_bfd,
2539 asection *input_section,
2540 bfd_byte *contents,
2541 Elf_Internal_Rela *relocs,
2542 Elf_Internal_Sym *local_syms,
2543 asection **local_sections)
e0001a05 2544{
f0e6fdb2 2545 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2546 Elf_Internal_Shdr *symtab_hdr;
2547 Elf_Internal_Rela *rel;
2548 Elf_Internal_Rela *relend;
2549 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2550 property_table_entry *lit_table = 0;
2551 int ltblsize = 0;
28dbbc02 2552 char *local_got_tls_types;
e0001a05 2553 char *error_message = NULL;
43cd72b9 2554 bfd_size_type input_size;
28dbbc02 2555 int tls_type;
e0001a05 2556
43cd72b9
BW
2557 if (!xtensa_default_isa)
2558 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2559
28dbbc02
BW
2560 BFD_ASSERT (is_xtensa_elf (input_bfd));
2561
f0e6fdb2 2562 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2563 if (htab == NULL)
2564 return FALSE;
2565
e0001a05
NC
2566 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2567 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2568 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2569
88d65ad6
BW
2570 if (elf_hash_table (info)->dynamic_sections_created)
2571 {
2572 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2573 &lit_table, XTENSA_LIT_SEC_NAME,
2574 TRUE);
88d65ad6
BW
2575 if (ltblsize < 0)
2576 return FALSE;
2577 }
2578
43cd72b9
BW
2579 input_size = bfd_get_section_limit (input_bfd, input_section);
2580
e0001a05
NC
2581 rel = relocs;
2582 relend = relocs + input_section->reloc_count;
2583 for (; rel < relend; rel++)
2584 {
2585 int r_type;
2586 reloc_howto_type *howto;
2587 unsigned long r_symndx;
2588 struct elf_link_hash_entry *h;
2589 Elf_Internal_Sym *sym;
28dbbc02
BW
2590 char sym_type;
2591 const char *name;
e0001a05
NC
2592 asection *sec;
2593 bfd_vma relocation;
2594 bfd_reloc_status_type r;
2595 bfd_boolean is_weak_undef;
2596 bfd_boolean unresolved_reloc;
9b8c98a4 2597 bfd_boolean warned;
28dbbc02 2598 bfd_boolean dynamic_symbol;
e0001a05
NC
2599
2600 r_type = ELF32_R_TYPE (rel->r_info);
2601 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2602 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2603 continue;
2604
2605 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2606 {
2607 bfd_set_error (bfd_error_bad_value);
2608 return FALSE;
2609 }
2610 howto = &elf_howto_table[r_type];
2611
2612 r_symndx = ELF32_R_SYM (rel->r_info);
2613
ab96bf03
AM
2614 h = NULL;
2615 sym = NULL;
2616 sec = NULL;
2617 is_weak_undef = FALSE;
2618 unresolved_reloc = FALSE;
2619 warned = FALSE;
2620
2621 if (howto->partial_inplace && !info->relocatable)
2622 {
2623 /* Because R_XTENSA_32 was made partial_inplace to fix some
2624 problems with DWARF info in partial links, there may be
2625 an addend stored in the contents. Take it out of there
2626 and move it back into the addend field of the reloc. */
2627 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2628 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2629 }
2630
2631 if (r_symndx < symtab_hdr->sh_info)
2632 {
2633 sym = local_syms + r_symndx;
28dbbc02 2634 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2635 sec = local_sections[r_symndx];
2636 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2637 }
2638 else
2639 {
62d887d4
L
2640 bfd_boolean ignored;
2641
ab96bf03
AM
2642 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2643 r_symndx, symtab_hdr, sym_hashes,
2644 h, sec, relocation,
62d887d4 2645 unresolved_reloc, warned, ignored);
ab96bf03
AM
2646
2647 if (relocation == 0
2648 && !unresolved_reloc
2649 && h->root.type == bfd_link_hash_undefweak)
2650 is_weak_undef = TRUE;
28dbbc02
BW
2651
2652 sym_type = h->type;
ab96bf03
AM
2653 }
2654
dbaa2011 2655 if (sec != NULL && discarded_section (sec))
e4067dbb 2656 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 2657 rel, 1, relend, howto, 0, contents);
ab96bf03 2658
1049f94e 2659 if (info->relocatable)
e0001a05 2660 {
7aa09196
SA
2661 bfd_vma dest_addr;
2662 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2663
43cd72b9 2664 /* This is a relocatable link.
e0001a05
NC
2665 1) If the reloc is against a section symbol, adjust
2666 according to the output section.
2667 2) If there is a new target for this relocation,
2668 the new target will be in the same output section.
2669 We adjust the relocation by the output section
2670 difference. */
2671
2672 if (relaxing_section)
2673 {
2674 /* Check if this references a section in another input file. */
43cd72b9
BW
2675 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2676 contents))
2677 return FALSE;
e0001a05
NC
2678 }
2679
7aa09196
SA
2680 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2681 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2682
43cd72b9 2683 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2684 {
91d6fa6a 2685 error_message = NULL;
e0001a05
NC
2686 /* Convert ASM_SIMPLIFY into the simpler relocation
2687 so that they never escape a relaxing link. */
43cd72b9
BW
2688 r = contract_asm_expansion (contents, input_size, rel,
2689 &error_message);
2690 if (r != bfd_reloc_ok)
2691 {
2692 if (!((*info->callbacks->reloc_dangerous)
2693 (info, error_message, input_bfd, input_section,
2694 rel->r_offset)))
2695 return FALSE;
2696 }
e0001a05
NC
2697 r_type = ELF32_R_TYPE (rel->r_info);
2698 }
2699
1049f94e 2700 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2701 anything unless the reloc is against a section symbol,
2702 in which case we have to adjust according to where the
2703 section symbol winds up in the output section. */
2704 if (r_symndx < symtab_hdr->sh_info)
2705 {
2706 sym = local_syms + r_symndx;
2707 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2708 {
2709 sec = local_sections[r_symndx];
2710 rel->r_addend += sec->output_offset + sym->st_value;
2711 }
2712 }
2713
2714 /* If there is an addend with a partial_inplace howto,
2715 then move the addend to the contents. This is a hack
1049f94e 2716 to work around problems with DWARF in relocatable links
e0001a05
NC
2717 with some previous version of BFD. Now we can't easily get
2718 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2719 r = bfd_reloc_ok;
2720 howto = &elf_howto_table[r_type];
2721 if (howto->partial_inplace && rel->r_addend)
2722 {
2723 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2724 rel->r_addend, contents,
2725 rel->r_offset, FALSE,
2726 &error_message);
2727 rel->r_addend = 0;
2728 }
2729 else
e0001a05 2730 {
7aa09196
SA
2731 /* Put the correct bits in the target instruction, even
2732 though the relocation will still be present in the output
2733 file. This makes disassembly clearer, as well as
2734 allowing loadable kernel modules to work without needing
2735 relocations on anything other than calls and l32r's. */
2736
2737 /* If it is not in the same section, there is nothing we can do. */
2738 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2739 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2740 {
2741 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2742 dest_addr, contents,
e0001a05
NC
2743 rel->r_offset, FALSE,
2744 &error_message);
e0001a05
NC
2745 }
2746 }
7aa09196
SA
2747 if (r != bfd_reloc_ok)
2748 {
2749 if (!((*info->callbacks->reloc_dangerous)
2750 (info, error_message, input_bfd, input_section,
2751 rel->r_offset)))
2752 return FALSE;
2753 }
e0001a05 2754
1049f94e 2755 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2756 continue;
2757 }
2758
2759 /* This is a final link. */
2760
e0001a05
NC
2761 if (relaxing_section)
2762 {
2763 /* Check if this references a section in another input file. */
43cd72b9
BW
2764 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2765 &relocation);
e0001a05
NC
2766 }
2767
2768 /* Sanity check the address. */
43cd72b9 2769 if (rel->r_offset >= input_size
e0001a05
NC
2770 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2771 {
43cd72b9
BW
2772 (*_bfd_error_handler)
2773 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2774 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2775 bfd_set_error (bfd_error_bad_value);
2776 return FALSE;
2777 }
2778
28dbbc02
BW
2779 if (h != NULL)
2780 name = h->root.root.string;
2781 else
e0001a05 2782 {
28dbbc02
BW
2783 name = (bfd_elf_string_from_elf_section
2784 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2785 if (name == NULL || *name == '\0')
2786 name = bfd_section_name (input_bfd, sec);
2787 }
e0001a05 2788
cf35638d 2789 if (r_symndx != STN_UNDEF
28dbbc02
BW
2790 && r_type != R_XTENSA_NONE
2791 && (h == NULL
2792 || h->root.type == bfd_link_hash_defined
2793 || h->root.type == bfd_link_hash_defweak)
2794 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2795 {
2796 (*_bfd_error_handler)
2797 ((sym_type == STT_TLS
2798 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2799 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2800 input_bfd,
2801 input_section,
2802 (long) rel->r_offset,
2803 howto->name,
2804 name);
2805 }
2806
2807 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2808
2809 tls_type = GOT_UNKNOWN;
2810 if (h)
2811 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2812 else if (local_got_tls_types)
2813 tls_type = local_got_tls_types [r_symndx];
2814
2815 switch (r_type)
2816 {
2817 case R_XTENSA_32:
2818 case R_XTENSA_PLT:
2819 if (elf_hash_table (info)->dynamic_sections_created
2820 && (input_section->flags & SEC_ALLOC) != 0
2821 && (dynamic_symbol || info->shared))
e0001a05
NC
2822 {
2823 Elf_Internal_Rela outrel;
2824 bfd_byte *loc;
2825 asection *srel;
2826
2827 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2828 srel = htab->srelplt;
e0001a05 2829 else
f0e6fdb2 2830 srel = htab->srelgot;
e0001a05
NC
2831
2832 BFD_ASSERT (srel != NULL);
2833
2834 outrel.r_offset =
2835 _bfd_elf_section_offset (output_bfd, info,
2836 input_section, rel->r_offset);
2837
2838 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2839 memset (&outrel, 0, sizeof outrel);
2840 else
2841 {
f0578e28
BW
2842 outrel.r_offset += (input_section->output_section->vma
2843 + input_section->output_offset);
e0001a05 2844
88d65ad6
BW
2845 /* Complain if the relocation is in a read-only section
2846 and not in a literal pool. */
2847 if ((input_section->flags & SEC_READONLY) != 0
2848 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2849 outrel.r_offset))
88d65ad6
BW
2850 {
2851 error_message =
2852 _("dynamic relocation in read-only section");
2853 if (!((*info->callbacks->reloc_dangerous)
2854 (info, error_message, input_bfd, input_section,
2855 rel->r_offset)))
2856 return FALSE;
2857 }
2858
e0001a05
NC
2859 if (dynamic_symbol)
2860 {
2861 outrel.r_addend = rel->r_addend;
2862 rel->r_addend = 0;
2863
2864 if (r_type == R_XTENSA_32)
2865 {
2866 outrel.r_info =
2867 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2868 relocation = 0;
2869 }
2870 else /* r_type == R_XTENSA_PLT */
2871 {
2872 outrel.r_info =
2873 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2874
2875 /* Create the PLT entry and set the initial
2876 contents of the literal entry to the address of
2877 the PLT entry. */
43cd72b9 2878 relocation =
f0e6fdb2 2879 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2880 srel->reloc_count);
2881 }
2882 unresolved_reloc = FALSE;
2883 }
2884 else
2885 {
2886 /* Generate a RELATIVE relocation. */
2887 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2888 outrel.r_addend = 0;
2889 }
2890 }
2891
2892 loc = (srel->contents
2893 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2894 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2895 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2896 <= srel->size);
e0001a05 2897 }
d9ab3f29
BW
2898 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2899 {
2900 /* This should only happen for non-PIC code, which is not
2901 supposed to be used on systems with dynamic linking.
2902 Just ignore these relocations. */
2903 continue;
2904 }
28dbbc02
BW
2905 break;
2906
2907 case R_XTENSA_TLS_TPOFF:
2908 /* Switch to LE model for local symbols in an executable. */
2909 if (! info->shared && ! dynamic_symbol)
2910 {
2911 relocation = tpoff (info, relocation);
2912 break;
2913 }
2914 /* fall through */
2915
2916 case R_XTENSA_TLSDESC_FN:
2917 case R_XTENSA_TLSDESC_ARG:
2918 {
2919 if (r_type == R_XTENSA_TLSDESC_FN)
2920 {
2921 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2922 r_type = R_XTENSA_NONE;
2923 }
2924 else if (r_type == R_XTENSA_TLSDESC_ARG)
2925 {
2926 if (info->shared)
2927 {
2928 if ((tls_type & GOT_TLS_IE) != 0)
2929 r_type = R_XTENSA_TLS_TPOFF;
2930 }
2931 else
2932 {
2933 r_type = R_XTENSA_TLS_TPOFF;
2934 if (! dynamic_symbol)
2935 {
2936 relocation = tpoff (info, relocation);
2937 break;
2938 }
2939 }
2940 }
2941
2942 if (r_type == R_XTENSA_NONE)
2943 /* Nothing to do here; skip to the next reloc. */
2944 continue;
2945
2946 if (! elf_hash_table (info)->dynamic_sections_created)
2947 {
2948 error_message =
2949 _("TLS relocation invalid without dynamic sections");
2950 if (!((*info->callbacks->reloc_dangerous)
2951 (info, error_message, input_bfd, input_section,
2952 rel->r_offset)))
2953 return FALSE;
2954 }
2955 else
2956 {
2957 Elf_Internal_Rela outrel;
2958 bfd_byte *loc;
2959 asection *srel = htab->srelgot;
2960 int indx;
2961
2962 outrel.r_offset = (input_section->output_section->vma
2963 + input_section->output_offset
2964 + rel->r_offset);
2965
2966 /* Complain if the relocation is in a read-only section
2967 and not in a literal pool. */
2968 if ((input_section->flags & SEC_READONLY) != 0
2969 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2970 outrel.r_offset))
2971 {
2972 error_message =
2973 _("dynamic relocation in read-only section");
2974 if (!((*info->callbacks->reloc_dangerous)
2975 (info, error_message, input_bfd, input_section,
2976 rel->r_offset)))
2977 return FALSE;
2978 }
2979
2980 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2981 if (indx == 0)
2982 outrel.r_addend = relocation - dtpoff_base (info);
2983 else
2984 outrel.r_addend = 0;
2985 rel->r_addend = 0;
2986
2987 outrel.r_info = ELF32_R_INFO (indx, r_type);
2988 relocation = 0;
2989 unresolved_reloc = FALSE;
2990
2991 BFD_ASSERT (srel);
2992 loc = (srel->contents
2993 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2994 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2995 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2996 <= srel->size);
2997 }
2998 }
2999 break;
3000
3001 case R_XTENSA_TLS_DTPOFF:
3002 if (! info->shared)
3003 /* Switch from LD model to LE model. */
3004 relocation = tpoff (info, relocation);
3005 else
3006 relocation -= dtpoff_base (info);
3007 break;
3008
3009 case R_XTENSA_TLS_FUNC:
3010 case R_XTENSA_TLS_ARG:
3011 case R_XTENSA_TLS_CALL:
3012 /* Check if optimizing to IE or LE model. */
3013 if ((tls_type & GOT_TLS_IE) != 0)
3014 {
3015 bfd_boolean is_ld_model =
3016 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3017 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3018 is_ld_model, &error_message))
3019 {
3020 if (!((*info->callbacks->reloc_dangerous)
3021 (info, error_message, input_bfd, input_section,
3022 rel->r_offset)))
3023 return FALSE;
3024 }
3025
3026 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3027 {
3028 /* Skip subsequent relocations on the same instruction. */
3029 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3030 rel++;
3031 }
3032 }
3033 continue;
3034
3035 default:
3036 if (elf_hash_table (info)->dynamic_sections_created
3037 && dynamic_symbol && (is_operand_relocation (r_type)
3038 || r_type == R_XTENSA_32_PCREL))
3039 {
3040 error_message =
3041 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3042 strlen (name) + 2, name);
3043 if (!((*info->callbacks->reloc_dangerous)
3044 (info, error_message, input_bfd, input_section,
3045 rel->r_offset)))
3046 return FALSE;
3047 continue;
3048 }
3049 break;
e0001a05
NC
3050 }
3051
3052 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3053 because such sections are not SEC_ALLOC and thus ld.so will
3054 not process them. */
3055 if (unresolved_reloc
3056 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
3057 && h->def_dynamic)
3058 && _bfd_elf_section_offset (output_bfd, info, input_section,
3059 rel->r_offset) != (bfd_vma) -1)
bf1747de
BW
3060 {
3061 (*_bfd_error_handler)
3062 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3063 input_bfd,
3064 input_section,
3065 (long) rel->r_offset,
3066 howto->name,
28dbbc02 3067 name);
bf1747de
BW
3068 return FALSE;
3069 }
e0001a05 3070
28dbbc02
BW
3071 /* TLS optimizations may have changed r_type; update "howto". */
3072 howto = &elf_howto_table[r_type];
3073
e0001a05
NC
3074 /* There's no point in calling bfd_perform_relocation here.
3075 Just go directly to our "special function". */
3076 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3077 relocation + rel->r_addend,
3078 contents, rel->r_offset, is_weak_undef,
3079 &error_message);
43cd72b9 3080
9b8c98a4 3081 if (r != bfd_reloc_ok && !warned)
e0001a05 3082 {
43cd72b9 3083 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3084 BFD_ASSERT (error_message != NULL);
e0001a05 3085
28dbbc02
BW
3086 if (rel->r_addend == 0)
3087 error_message = vsprint_msg (error_message, ": %s",
3088 strlen (name) + 2, name);
e0001a05 3089 else
28dbbc02
BW
3090 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3091 strlen (name) + 22,
3092 name, (int) rel->r_addend);
43cd72b9 3093
e0001a05
NC
3094 if (!((*info->callbacks->reloc_dangerous)
3095 (info, error_message, input_bfd, input_section,
3096 rel->r_offset)))
3097 return FALSE;
3098 }
3099 }
3100
88d65ad6
BW
3101 if (lit_table)
3102 free (lit_table);
3103
3ba3bc8c
BW
3104 input_section->reloc_done = TRUE;
3105
e0001a05
NC
3106 return TRUE;
3107}
3108
3109
3110/* Finish up dynamic symbol handling. There's not much to do here since
3111 the PLT and GOT entries are all set up by relocate_section. */
3112
3113static bfd_boolean
7fa3d080
BW
3114elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3115 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3116 struct elf_link_hash_entry *h,
3117 Elf_Internal_Sym *sym)
e0001a05 3118{
bf1747de 3119 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3120 {
3121 /* Mark the symbol as undefined, rather than as defined in
3122 the .plt section. Leave the value alone. */
3123 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3124 /* If the symbol is weak, we do need to clear the value.
3125 Otherwise, the PLT entry would provide a definition for
3126 the symbol even if the symbol wasn't defined anywhere,
3127 and so the symbol would never be NULL. */
3128 if (!h->ref_regular_nonweak)
3129 sym->st_value = 0;
e0001a05
NC
3130 }
3131
3132 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9637f6ef 3133 if (h == elf_hash_table (info)->hdynamic
22edb2f1 3134 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3135 sym->st_shndx = SHN_ABS;
3136
3137 return TRUE;
3138}
3139
3140
3141/* Combine adjacent literal table entries in the output. Adjacent
3142 entries within each input section may have been removed during
3143 relaxation, but we repeat the process here, even though it's too late
3144 to shrink the output section, because it's important to minimize the
3145 number of literal table entries to reduce the start-up work for the
3146 runtime linker. Returns the number of remaining table entries or -1
3147 on error. */
3148
3149static int
7fa3d080
BW
3150elf_xtensa_combine_prop_entries (bfd *output_bfd,
3151 asection *sxtlit,
3152 asection *sgotloc)
e0001a05 3153{
e0001a05
NC
3154 bfd_byte *contents;
3155 property_table_entry *table;
e901de89 3156 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3157 bfd_vma offset;
3158 int n, m, num;
3159
eea6121a 3160 section_size = sxtlit->size;
e0001a05
NC
3161 BFD_ASSERT (section_size % 8 == 0);
3162 num = section_size / 8;
3163
eea6121a 3164 sgotloc_size = sgotloc->size;
e901de89 3165 if (sgotloc_size != section_size)
b536dc1e
BW
3166 {
3167 (*_bfd_error_handler)
43cd72b9 3168 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3169 return -1;
3170 }
e901de89 3171
eea6121a
AM
3172 table = bfd_malloc (num * sizeof (property_table_entry));
3173 if (table == 0)
e0001a05
NC
3174 return -1;
3175
3176 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3177 propagates to the output section, where it doesn't really apply and
eea6121a 3178 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3179 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3180
eea6121a
AM
3181 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3182 {
3183 if (contents != 0)
3184 free (contents);
3185 free (table);
3186 return -1;
3187 }
e0001a05
NC
3188
3189 /* There should never be any relocations left at this point, so this
3190 is quite a bit easier than what is done during relaxation. */
3191
3192 /* Copy the raw contents into a property table array and sort it. */
3193 offset = 0;
3194 for (n = 0; n < num; n++)
3195 {
3196 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3197 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3198 offset += 8;
3199 }
3200 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3201
3202 for (n = 0; n < num; n++)
3203 {
91d6fa6a 3204 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3205
3206 if (table[n].size == 0)
91d6fa6a
NC
3207 remove_entry = TRUE;
3208 else if (n > 0
3209 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3210 {
3211 table[n-1].size += table[n].size;
91d6fa6a 3212 remove_entry = TRUE;
e0001a05
NC
3213 }
3214
91d6fa6a 3215 if (remove_entry)
e0001a05
NC
3216 {
3217 for (m = n; m < num - 1; m++)
3218 {
3219 table[m].address = table[m+1].address;
3220 table[m].size = table[m+1].size;
3221 }
3222
3223 n--;
3224 num--;
3225 }
3226 }
3227
3228 /* Copy the data back to the raw contents. */
3229 offset = 0;
3230 for (n = 0; n < num; n++)
3231 {
3232 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3233 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3234 offset += 8;
3235 }
3236
3237 /* Clear the removed bytes. */
3238 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3239 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3240
e901de89
BW
3241 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3242 section_size))
e0001a05
NC
3243 return -1;
3244
e901de89
BW
3245 /* Copy the contents to ".got.loc". */
3246 memcpy (sgotloc->contents, contents, section_size);
3247
e0001a05 3248 free (contents);
b614a702 3249 free (table);
e0001a05
NC
3250 return num;
3251}
3252
3253
3254/* Finish up the dynamic sections. */
3255
3256static bfd_boolean
7fa3d080
BW
3257elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3258 struct bfd_link_info *info)
e0001a05 3259{
f0e6fdb2 3260 struct elf_xtensa_link_hash_table *htab;
e0001a05 3261 bfd *dynobj;
e901de89 3262 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3263 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3264 int num_xtlit_entries = 0;
e0001a05
NC
3265
3266 if (! elf_hash_table (info)->dynamic_sections_created)
3267 return TRUE;
3268
f0e6fdb2 3269 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3270 if (htab == NULL)
3271 return FALSE;
3272
e0001a05 3273 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3274 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
e0001a05
NC
3275 BFD_ASSERT (sdyn != NULL);
3276
3277 /* Set the first entry in the global offset table to the address of
3278 the dynamic section. */
f0e6fdb2 3279 sgot = htab->sgot;
e0001a05
NC
3280 if (sgot)
3281 {
eea6121a 3282 BFD_ASSERT (sgot->size == 4);
e0001a05 3283 if (sdyn == NULL)
7fa3d080 3284 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3285 else
3286 bfd_put_32 (output_bfd,
3287 sdyn->output_section->vma + sdyn->output_offset,
3288 sgot->contents);
3289 }
3290
f0e6fdb2 3291 srelplt = htab->srelplt;
7fa3d080 3292 if (srelplt && srelplt->size != 0)
e0001a05
NC
3293 {
3294 asection *sgotplt, *srelgot, *spltlittbl;
3295 int chunk, plt_chunks, plt_entries;
3296 Elf_Internal_Rela irela;
3297 bfd_byte *loc;
3298 unsigned rtld_reloc;
3299
f0e6fdb2
BW
3300 srelgot = htab->srelgot;
3301 spltlittbl = htab->spltlittbl;
3302 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3303
3304 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3305 of them follow immediately after.... */
3306 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3307 {
3308 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3309 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3310 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3311 break;
3312 }
3313 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3314
eea6121a 3315 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3316 plt_chunks =
3317 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3318
3319 for (chunk = 0; chunk < plt_chunks; chunk++)
3320 {
3321 int chunk_entries = 0;
3322
f0e6fdb2 3323 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3324 BFD_ASSERT (sgotplt != NULL);
3325
3326 /* Emit special RTLD relocations for the first two entries in
3327 each chunk of the .got.plt section. */
3328
3329 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3330 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3331 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3332 irela.r_offset = (sgotplt->output_section->vma
3333 + sgotplt->output_offset);
3334 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3335 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3336 rtld_reloc += 1;
3337 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3338
3339 /* Next literal immediately follows the first. */
3340 loc += sizeof (Elf32_External_Rela);
3341 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3342 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3343 irela.r_offset = (sgotplt->output_section->vma
3344 + sgotplt->output_offset + 4);
3345 /* Tell rtld to set value to object's link map. */
3346 irela.r_addend = 2;
3347 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3348 rtld_reloc += 1;
3349 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3350
3351 /* Fill in the literal table. */
3352 if (chunk < plt_chunks - 1)
3353 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3354 else
3355 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3356
eea6121a 3357 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3358 bfd_put_32 (output_bfd,
3359 sgotplt->output_section->vma + sgotplt->output_offset,
3360 spltlittbl->contents + (chunk * 8) + 0);
3361 bfd_put_32 (output_bfd,
3362 8 + (chunk_entries * 4),
3363 spltlittbl->contents + (chunk * 8) + 4);
3364 }
3365
3366 /* All the dynamic relocations have been emitted at this point.
3367 Make sure the relocation sections are the correct size. */
eea6121a
AM
3368 if (srelgot->size != (sizeof (Elf32_External_Rela)
3369 * srelgot->reloc_count)
3370 || srelplt->size != (sizeof (Elf32_External_Rela)
3371 * srelplt->reloc_count))
e0001a05
NC
3372 abort ();
3373
3374 /* The .xt.lit.plt section has just been modified. This must
3375 happen before the code below which combines adjacent literal
3376 table entries, and the .xt.lit.plt contents have to be forced to
3377 the output here. */
3378 if (! bfd_set_section_contents (output_bfd,
3379 spltlittbl->output_section,
3380 spltlittbl->contents,
3381 spltlittbl->output_offset,
eea6121a 3382 spltlittbl->size))
e0001a05
NC
3383 return FALSE;
3384 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3385 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3386 }
3387
3388 /* Combine adjacent literal table entries. */
1049f94e 3389 BFD_ASSERT (! info->relocatable);
e901de89 3390 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3391 sgotloc = htab->sgotloc;
d9ab3f29
BW
3392 BFD_ASSERT (sgotloc);
3393 if (sxtlit)
3394 {
3395 num_xtlit_entries =
3396 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3397 if (num_xtlit_entries < 0)
3398 return FALSE;
3399 }
e0001a05
NC
3400
3401 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3402 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3403 for (; dyncon < dynconend; dyncon++)
3404 {
3405 Elf_Internal_Dyn dyn;
e0001a05
NC
3406
3407 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3408
3409 switch (dyn.d_tag)
3410 {
3411 default:
3412 break;
3413
3414 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3415 dyn.d_un.d_val = num_xtlit_entries;
3416 break;
3417
3418 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 3419 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
3420 break;
3421
e0001a05 3422 case DT_PLTGOT:
e29297b7 3423 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
3424 break;
3425
e0001a05 3426 case DT_JMPREL:
e29297b7 3427 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
3428 break;
3429
3430 case DT_PLTRELSZ:
e29297b7 3431 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
3432 break;
3433
3434 case DT_RELASZ:
3435 /* Adjust RELASZ to not include JMPREL. This matches what
3436 glibc expects and what is done for several other ELF
3437 targets (e.g., i386, alpha), but the "correct" behavior
3438 seems to be unresolved. Since the linker script arranges
3439 for .rela.plt to follow all other relocation sections, we
3440 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3441 if (htab->srelplt)
e29297b7 3442 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
3443 break;
3444 }
3445
3446 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3447 }
3448
3449 return TRUE;
3450}
3451
3452\f
3453/* Functions for dealing with the e_flags field. */
3454
3455/* Merge backend specific data from an object file to the output
3456 object file when linking. */
3457
3458static bfd_boolean
7fa3d080 3459elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3460{
3461 unsigned out_mach, in_mach;
3462 flagword out_flag, in_flag;
3463
cc643b88 3464 /* Check if we have the same endianness. */
e0001a05
NC
3465 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3466 return FALSE;
3467
3468 /* Don't even pretend to support mixed-format linking. */
3469 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3470 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3471 return FALSE;
3472
3473 out_flag = elf_elfheader (obfd)->e_flags;
3474 in_flag = elf_elfheader (ibfd)->e_flags;
3475
3476 out_mach = out_flag & EF_XTENSA_MACH;
3477 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3478 if (out_mach != in_mach)
e0001a05
NC
3479 {
3480 (*_bfd_error_handler)
43cd72b9 3481 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3482 ibfd, out_mach, in_mach);
e0001a05
NC
3483 bfd_set_error (bfd_error_wrong_format);
3484 return FALSE;
3485 }
3486
3487 if (! elf_flags_init (obfd))
3488 {
3489 elf_flags_init (obfd) = TRUE;
3490 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3491
e0001a05
NC
3492 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3493 && bfd_get_arch_info (obfd)->the_default)
3494 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3495 bfd_get_mach (ibfd));
43cd72b9 3496
e0001a05
NC
3497 return TRUE;
3498 }
3499
68ffbac6 3500 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
43cd72b9 3501 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3502
68ffbac6 3503 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
43cd72b9 3504 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3505
3506 return TRUE;
3507}
3508
3509
3510static bfd_boolean
7fa3d080 3511elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3512{
3513 BFD_ASSERT (!elf_flags_init (abfd)
3514 || elf_elfheader (abfd)->e_flags == flags);
3515
3516 elf_elfheader (abfd)->e_flags |= flags;
3517 elf_flags_init (abfd) = TRUE;
3518
3519 return TRUE;
3520}
3521
3522
e0001a05 3523static bfd_boolean
7fa3d080 3524elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3525{
3526 FILE *f = (FILE *) farg;
3527 flagword e_flags = elf_elfheader (abfd)->e_flags;
3528
3529 fprintf (f, "\nXtensa header:\n");
43cd72b9 3530 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3531 fprintf (f, "\nMachine = Base\n");
3532 else
3533 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3534
3535 fprintf (f, "Insn tables = %s\n",
3536 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3537
3538 fprintf (f, "Literal tables = %s\n",
3539 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3540
3541 return _bfd_elf_print_private_bfd_data (abfd, farg);
3542}
3543
3544
3545/* Set the right machine number for an Xtensa ELF file. */
3546
3547static bfd_boolean
7fa3d080 3548elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3549{
3550 int mach;
3551 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3552
3553 switch (arch)
3554 {
3555 case E_XTENSA_MACH:
3556 mach = bfd_mach_xtensa;
3557 break;
3558 default:
3559 return FALSE;
3560 }
3561
3562 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3563 return TRUE;
3564}
3565
3566
3567/* The final processing done just before writing out an Xtensa ELF object
3568 file. This gets the Xtensa architecture right based on the machine
3569 number. */
3570
3571static void
7fa3d080
BW
3572elf_xtensa_final_write_processing (bfd *abfd,
3573 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3574{
3575 int mach;
3576 unsigned long val;
3577
3578 switch (mach = bfd_get_mach (abfd))
3579 {
3580 case bfd_mach_xtensa:
3581 val = E_XTENSA_MACH;
3582 break;
3583 default:
3584 return;
3585 }
3586
3587 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3588 elf_elfheader (abfd)->e_flags |= val;
3589}
3590
3591
3592static enum elf_reloc_type_class
7e612e98
AM
3593elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3594 const asection *rel_sec ATTRIBUTE_UNUSED,
3595 const Elf_Internal_Rela *rela)
e0001a05
NC
3596{
3597 switch ((int) ELF32_R_TYPE (rela->r_info))
3598 {
3599 case R_XTENSA_RELATIVE:
3600 return reloc_class_relative;
3601 case R_XTENSA_JMP_SLOT:
3602 return reloc_class_plt;
3603 default:
3604 return reloc_class_normal;
3605 }
3606}
3607
3608\f
3609static bfd_boolean
7fa3d080
BW
3610elf_xtensa_discard_info_for_section (bfd *abfd,
3611 struct elf_reloc_cookie *cookie,
3612 struct bfd_link_info *info,
3613 asection *sec)
e0001a05
NC
3614{
3615 bfd_byte *contents;
e0001a05 3616 bfd_vma offset, actual_offset;
1d25768e
BW
3617 bfd_size_type removed_bytes = 0;
3618 bfd_size_type entry_size;
e0001a05
NC
3619
3620 if (sec->output_section
3621 && bfd_is_abs_section (sec->output_section))
3622 return FALSE;
3623
1d25768e
BW
3624 if (xtensa_is_proptable_section (sec))
3625 entry_size = 12;
3626 else
3627 entry_size = 8;
3628
a3ef2d63 3629 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3630 return FALSE;
3631
e0001a05
NC
3632 contents = retrieve_contents (abfd, sec, info->keep_memory);
3633 if (!contents)
3634 return FALSE;
3635
3636 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3637 if (!cookie->rels)
3638 {
3639 release_contents (sec, contents);
3640 return FALSE;
3641 }
3642
1d25768e
BW
3643 /* Sort the relocations. They should already be in order when
3644 relaxation is enabled, but it might not be. */
3645 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3646 internal_reloc_compare);
3647
e0001a05
NC
3648 cookie->rel = cookie->rels;
3649 cookie->relend = cookie->rels + sec->reloc_count;
3650
a3ef2d63 3651 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3652 {
3653 actual_offset = offset - removed_bytes;
3654
3655 /* The ...symbol_deleted_p function will skip over relocs but it
3656 won't adjust their offsets, so do that here. */
3657 while (cookie->rel < cookie->relend
3658 && cookie->rel->r_offset < offset)
3659 {
3660 cookie->rel->r_offset -= removed_bytes;
3661 cookie->rel++;
3662 }
3663
3664 while (cookie->rel < cookie->relend
3665 && cookie->rel->r_offset == offset)
3666 {
c152c796 3667 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3668 {
3669 /* Remove the table entry. (If the reloc type is NONE, then
3670 the entry has already been merged with another and deleted
3671 during relaxation.) */
3672 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3673 {
3674 /* Shift the contents up. */
a3ef2d63 3675 if (offset + entry_size < sec->size)
e0001a05 3676 memmove (&contents[actual_offset],
1d25768e 3677 &contents[actual_offset + entry_size],
a3ef2d63 3678 sec->size - offset - entry_size);
1d25768e 3679 removed_bytes += entry_size;
e0001a05
NC
3680 }
3681
3682 /* Remove this relocation. */
3683 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3684 }
3685
3686 /* Adjust the relocation offset for previous removals. This
3687 should not be done before calling ...symbol_deleted_p
3688 because it might mess up the offset comparisons there.
3689 Make sure the offset doesn't underflow in the case where
3690 the first entry is removed. */
3691 if (cookie->rel->r_offset >= removed_bytes)
3692 cookie->rel->r_offset -= removed_bytes;
3693 else
3694 cookie->rel->r_offset = 0;
3695
3696 cookie->rel++;
3697 }
3698 }
3699
3700 if (removed_bytes != 0)
3701 {
3702 /* Adjust any remaining relocs (shouldn't be any). */
3703 for (; cookie->rel < cookie->relend; cookie->rel++)
3704 {
3705 if (cookie->rel->r_offset >= removed_bytes)
3706 cookie->rel->r_offset -= removed_bytes;
3707 else
3708 cookie->rel->r_offset = 0;
3709 }
3710
3711 /* Clear the removed bytes. */
a3ef2d63 3712 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3713
3714 pin_contents (sec, contents);
3715 pin_internal_relocs (sec, cookie->rels);
3716
eea6121a 3717 /* Shrink size. */
a3ef2d63
BW
3718 if (sec->rawsize == 0)
3719 sec->rawsize = sec->size;
3720 sec->size -= removed_bytes;
b536dc1e
BW
3721
3722 if (xtensa_is_littable_section (sec))
3723 {
f0e6fdb2
BW
3724 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3725 if (sgotloc)
3726 sgotloc->size -= removed_bytes;
b536dc1e 3727 }
e0001a05
NC
3728 }
3729 else
3730 {
3731 release_contents (sec, contents);
3732 release_internal_relocs (sec, cookie->rels);
3733 }
3734
3735 return (removed_bytes != 0);
3736}
3737
3738
3739static bfd_boolean
7fa3d080
BW
3740elf_xtensa_discard_info (bfd *abfd,
3741 struct elf_reloc_cookie *cookie,
3742 struct bfd_link_info *info)
e0001a05
NC
3743{
3744 asection *sec;
3745 bfd_boolean changed = FALSE;
3746
3747 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3748 {
3749 if (xtensa_is_property_section (sec))
3750 {
3751 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3752 changed = TRUE;
3753 }
3754 }
3755
3756 return changed;
3757}
3758
3759
3760static bfd_boolean
7fa3d080 3761elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3762{
3763 return xtensa_is_property_section (sec);
3764}
3765
a77dc2cc
BW
3766
3767static unsigned int
3768elf_xtensa_action_discarded (asection *sec)
3769{
3770 if (strcmp (".xt_except_table", sec->name) == 0)
3771 return 0;
3772
3773 if (strcmp (".xt_except_desc", sec->name) == 0)
3774 return 0;
3775
3776 return _bfd_elf_default_action_discarded (sec);
3777}
3778
e0001a05
NC
3779\f
3780/* Support for core dump NOTE sections. */
3781
3782static bfd_boolean
7fa3d080 3783elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3784{
3785 int offset;
eea6121a 3786 unsigned int size;
e0001a05
NC
3787
3788 /* The size for Xtensa is variable, so don't try to recognize the format
3789 based on the size. Just assume this is GNU/Linux. */
3790
3791 /* pr_cursig */
228e534f 3792 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
e0001a05
NC
3793
3794 /* pr_pid */
228e534f 3795 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3796
3797 /* pr_reg */
3798 offset = 72;
eea6121a 3799 size = note->descsz - offset - 4;
e0001a05
NC
3800
3801 /* Make a ".reg/999" section. */
3802 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3803 size, note->descpos + offset);
e0001a05
NC
3804}
3805
3806
3807static bfd_boolean
7fa3d080 3808elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3809{
3810 switch (note->descsz)
3811 {
3812 default:
3813 return FALSE;
3814
3815 case 128: /* GNU/Linux elf_prpsinfo */
228e534f 3816 elf_tdata (abfd)->core->program
e0001a05 3817 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
228e534f 3818 elf_tdata (abfd)->core->command
e0001a05
NC
3819 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3820 }
3821
3822 /* Note that for some reason, a spurious space is tacked
3823 onto the end of the args in some (at least one anyway)
3824 implementations, so strip it off if it exists. */
3825
3826 {
228e534f 3827 char *command = elf_tdata (abfd)->core->command;
e0001a05
NC
3828 int n = strlen (command);
3829
3830 if (0 < n && command[n - 1] == ' ')
3831 command[n - 1] = '\0';
3832 }
3833
3834 return TRUE;
3835}
3836
3837\f
3838/* Generic Xtensa configurability stuff. */
3839
3840static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3841static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3842static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3843static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3844static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3845static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3846static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3847static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3848
3849static void
7fa3d080 3850init_call_opcodes (void)
e0001a05
NC
3851{
3852 if (callx0_op == XTENSA_UNDEFINED)
3853 {
3854 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3855 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3856 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3857 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3858 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3859 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3860 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3861 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3862 }
3863}
3864
3865
3866static bfd_boolean
7fa3d080 3867is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3868{
3869 init_call_opcodes ();
3870 return (opcode == callx0_op
3871 || opcode == callx4_op
3872 || opcode == callx8_op
3873 || opcode == callx12_op);
3874}
3875
3876
3877static bfd_boolean
7fa3d080 3878is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3879{
3880 init_call_opcodes ();
3881 return (opcode == call0_op
3882 || opcode == call4_op
3883 || opcode == call8_op
3884 || opcode == call12_op);
3885}
3886
3887
3888static bfd_boolean
7fa3d080 3889is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3890{
3891 init_call_opcodes ();
3892 return (opcode == call4_op
3893 || opcode == call8_op
3894 || opcode == call12_op
3895 || opcode == callx4_op
3896 || opcode == callx8_op
3897 || opcode == callx12_op);
3898}
3899
3900
28dbbc02
BW
3901static bfd_boolean
3902get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3903{
3904 unsigned dst = (unsigned) -1;
3905
3906 init_call_opcodes ();
3907 if (opcode == callx0_op)
3908 dst = 0;
3909 else if (opcode == callx4_op)
3910 dst = 4;
3911 else if (opcode == callx8_op)
3912 dst = 8;
3913 else if (opcode == callx12_op)
3914 dst = 12;
3915
3916 if (dst == (unsigned) -1)
3917 return FALSE;
3918
3919 *pdst = dst;
3920 return TRUE;
3921}
3922
3923
43cd72b9
BW
3924static xtensa_opcode
3925get_const16_opcode (void)
3926{
3927 static bfd_boolean done_lookup = FALSE;
3928 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3929 if (!done_lookup)
3930 {
3931 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3932 done_lookup = TRUE;
3933 }
3934 return const16_opcode;
3935}
3936
3937
e0001a05
NC
3938static xtensa_opcode
3939get_l32r_opcode (void)
3940{
3941 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3942 static bfd_boolean done_lookup = FALSE;
3943
3944 if (!done_lookup)
e0001a05
NC
3945 {
3946 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3947 done_lookup = TRUE;
e0001a05
NC
3948 }
3949 return l32r_opcode;
3950}
3951
3952
3953static bfd_vma
7fa3d080 3954l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3955{
3956 bfd_vma offset;
3957
3958 offset = addr - ((pc+3) & -4);
3959 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3960 offset = (signed int) offset >> 2;
3961 BFD_ASSERT ((signed int) offset >> 16 == -1);
3962 return offset;
3963}
3964
3965
e0001a05 3966static int
7fa3d080 3967get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3968{
43cd72b9
BW
3969 xtensa_isa isa = xtensa_default_isa;
3970 int last_immed, last_opnd, opi;
3971
3972 if (opcode == XTENSA_UNDEFINED)
3973 return XTENSA_UNDEFINED;
3974
3975 /* Find the last visible PC-relative immediate operand for the opcode.
3976 If there are no PC-relative immediates, then choose the last visible
3977 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3978 last_immed = XTENSA_UNDEFINED;
3979 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3980 for (opi = last_opnd - 1; opi >= 0; opi--)
3981 {
3982 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3983 continue;
3984 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3985 {
3986 last_immed = opi;
3987 break;
3988 }
3989 if (last_immed == XTENSA_UNDEFINED
3990 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3991 last_immed = opi;
3992 }
3993 if (last_immed < 0)
3994 return XTENSA_UNDEFINED;
3995
3996 /* If the operand number was specified in an old-style relocation,
3997 check for consistency with the operand computed above. */
3998 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3999 {
4000 int reloc_opnd = r_type - R_XTENSA_OP0;
4001 if (reloc_opnd != last_immed)
4002 return XTENSA_UNDEFINED;
4003 }
4004
4005 return last_immed;
4006}
4007
4008
4009int
7fa3d080 4010get_relocation_slot (int r_type)
43cd72b9
BW
4011{
4012 switch (r_type)
4013 {
4014 case R_XTENSA_OP0:
4015 case R_XTENSA_OP1:
4016 case R_XTENSA_OP2:
4017 return 0;
4018
4019 default:
4020 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4021 return r_type - R_XTENSA_SLOT0_OP;
4022 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4023 return r_type - R_XTENSA_SLOT0_ALT;
4024 break;
4025 }
4026
4027 return XTENSA_UNDEFINED;
e0001a05
NC
4028}
4029
4030
4031/* Get the opcode for a relocation. */
4032
4033static xtensa_opcode
7fa3d080
BW
4034get_relocation_opcode (bfd *abfd,
4035 asection *sec,
4036 bfd_byte *contents,
4037 Elf_Internal_Rela *irel)
e0001a05
NC
4038{
4039 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4040 static xtensa_insnbuf sbuff = NULL;
e0001a05 4041 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4042 xtensa_format fmt;
4043 int slot;
e0001a05
NC
4044
4045 if (contents == NULL)
4046 return XTENSA_UNDEFINED;
4047
43cd72b9 4048 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4049 return XTENSA_UNDEFINED;
4050
4051 if (ibuff == NULL)
43cd72b9
BW
4052 {
4053 ibuff = xtensa_insnbuf_alloc (isa);
4054 sbuff = xtensa_insnbuf_alloc (isa);
4055 }
4056
e0001a05 4057 /* Decode the instruction. */
43cd72b9
BW
4058 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4059 sec->size - irel->r_offset);
4060 fmt = xtensa_format_decode (isa, ibuff);
4061 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4062 if (slot == XTENSA_UNDEFINED)
4063 return XTENSA_UNDEFINED;
4064 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4065 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4066}
4067
4068
4069bfd_boolean
7fa3d080
BW
4070is_l32r_relocation (bfd *abfd,
4071 asection *sec,
4072 bfd_byte *contents,
4073 Elf_Internal_Rela *irel)
e0001a05
NC
4074{
4075 xtensa_opcode opcode;
43cd72b9 4076 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4077 return FALSE;
43cd72b9 4078 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4079 return (opcode == get_l32r_opcode ());
4080}
4081
e0001a05 4082
43cd72b9 4083static bfd_size_type
7fa3d080
BW
4084get_asm_simplify_size (bfd_byte *contents,
4085 bfd_size_type content_len,
4086 bfd_size_type offset)
e0001a05 4087{
43cd72b9 4088 bfd_size_type insnlen, size = 0;
e0001a05 4089
43cd72b9
BW
4090 /* Decode the size of the next two instructions. */
4091 insnlen = insn_decode_len (contents, content_len, offset);
4092 if (insnlen == 0)
4093 return 0;
e0001a05 4094
43cd72b9 4095 size += insnlen;
68ffbac6 4096
43cd72b9
BW
4097 insnlen = insn_decode_len (contents, content_len, offset + size);
4098 if (insnlen == 0)
4099 return 0;
e0001a05 4100
43cd72b9
BW
4101 size += insnlen;
4102 return size;
4103}
e0001a05 4104
43cd72b9
BW
4105
4106bfd_boolean
7fa3d080 4107is_alt_relocation (int r_type)
43cd72b9
BW
4108{
4109 return (r_type >= R_XTENSA_SLOT0_ALT
4110 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4111}
4112
4113
43cd72b9 4114bfd_boolean
7fa3d080 4115is_operand_relocation (int r_type)
e0001a05 4116{
43cd72b9
BW
4117 switch (r_type)
4118 {
4119 case R_XTENSA_OP0:
4120 case R_XTENSA_OP1:
4121 case R_XTENSA_OP2:
4122 return TRUE;
e0001a05 4123
43cd72b9
BW
4124 default:
4125 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4126 return TRUE;
4127 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4128 return TRUE;
4129 break;
4130 }
e0001a05 4131
43cd72b9 4132 return FALSE;
e0001a05
NC
4133}
4134
68ffbac6 4135
43cd72b9 4136#define MIN_INSN_LENGTH 2
e0001a05 4137
43cd72b9
BW
4138/* Return 0 if it fails to decode. */
4139
4140bfd_size_type
7fa3d080
BW
4141insn_decode_len (bfd_byte *contents,
4142 bfd_size_type content_len,
4143 bfd_size_type offset)
e0001a05 4144{
43cd72b9
BW
4145 int insn_len;
4146 xtensa_isa isa = xtensa_default_isa;
4147 xtensa_format fmt;
4148 static xtensa_insnbuf ibuff = NULL;
e0001a05 4149
43cd72b9
BW
4150 if (offset + MIN_INSN_LENGTH > content_len)
4151 return 0;
e0001a05 4152
43cd72b9
BW
4153 if (ibuff == NULL)
4154 ibuff = xtensa_insnbuf_alloc (isa);
4155 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4156 content_len - offset);
4157 fmt = xtensa_format_decode (isa, ibuff);
4158 if (fmt == XTENSA_UNDEFINED)
4159 return 0;
4160 insn_len = xtensa_format_length (isa, fmt);
4161 if (insn_len == XTENSA_UNDEFINED)
4162 return 0;
4163 return insn_len;
e0001a05
NC
4164}
4165
4166
43cd72b9
BW
4167/* Decode the opcode for a single slot instruction.
4168 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4169
43cd72b9 4170xtensa_opcode
7fa3d080
BW
4171insn_decode_opcode (bfd_byte *contents,
4172 bfd_size_type content_len,
4173 bfd_size_type offset,
4174 int slot)
e0001a05 4175{
e0001a05 4176 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4177 xtensa_format fmt;
4178 static xtensa_insnbuf insnbuf = NULL;
4179 static xtensa_insnbuf slotbuf = NULL;
4180
4181 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4182 return XTENSA_UNDEFINED;
4183
4184 if (insnbuf == NULL)
43cd72b9
BW
4185 {
4186 insnbuf = xtensa_insnbuf_alloc (isa);
4187 slotbuf = xtensa_insnbuf_alloc (isa);
4188 }
4189
4190 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4191 content_len - offset);
4192 fmt = xtensa_format_decode (isa, insnbuf);
4193 if (fmt == XTENSA_UNDEFINED)
e0001a05 4194 return XTENSA_UNDEFINED;
43cd72b9
BW
4195
4196 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4197 return XTENSA_UNDEFINED;
e0001a05 4198
43cd72b9
BW
4199 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4200 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4201}
e0001a05 4202
e0001a05 4203
43cd72b9
BW
4204/* The offset is the offset in the contents.
4205 The address is the address of that offset. */
e0001a05 4206
43cd72b9 4207static bfd_boolean
7fa3d080
BW
4208check_branch_target_aligned (bfd_byte *contents,
4209 bfd_size_type content_length,
4210 bfd_vma offset,
4211 bfd_vma address)
43cd72b9
BW
4212{
4213 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4214 if (insn_len == 0)
4215 return FALSE;
4216 return check_branch_target_aligned_address (address, insn_len);
4217}
e0001a05 4218
e0001a05 4219
43cd72b9 4220static bfd_boolean
7fa3d080
BW
4221check_loop_aligned (bfd_byte *contents,
4222 bfd_size_type content_length,
4223 bfd_vma offset,
4224 bfd_vma address)
e0001a05 4225{
43cd72b9 4226 bfd_size_type loop_len, insn_len;
64b607e6 4227 xtensa_opcode opcode;
e0001a05 4228
64b607e6
BW
4229 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4230 if (opcode == XTENSA_UNDEFINED
4231 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4232 {
4233 BFD_ASSERT (FALSE);
4234 return FALSE;
4235 }
68ffbac6 4236
43cd72b9 4237 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4238 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4239 if (loop_len == 0 || insn_len == 0)
4240 {
4241 BFD_ASSERT (FALSE);
4242 return FALSE;
4243 }
e0001a05 4244
43cd72b9
BW
4245 return check_branch_target_aligned_address (address + loop_len, insn_len);
4246}
e0001a05 4247
e0001a05
NC
4248
4249static bfd_boolean
7fa3d080 4250check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4251{
43cd72b9
BW
4252 if (len == 8)
4253 return (addr % 8 == 0);
4254 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4255}
4256
43cd72b9
BW
4257\f
4258/* Instruction widening and narrowing. */
e0001a05 4259
7fa3d080
BW
4260/* When FLIX is available we need to access certain instructions only
4261 when they are 16-bit or 24-bit instructions. This table caches
4262 information about such instructions by walking through all the
4263 opcodes and finding the smallest single-slot format into which each
4264 can be encoded. */
4265
4266static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4267
4268
7fa3d080
BW
4269static void
4270init_op_single_format_table (void)
e0001a05 4271{
7fa3d080
BW
4272 xtensa_isa isa = xtensa_default_isa;
4273 xtensa_insnbuf ibuf;
4274 xtensa_opcode opcode;
4275 xtensa_format fmt;
4276 int num_opcodes;
4277
4278 if (op_single_fmt_table)
4279 return;
4280
4281 ibuf = xtensa_insnbuf_alloc (isa);
4282 num_opcodes = xtensa_isa_num_opcodes (isa);
4283
4284 op_single_fmt_table = (xtensa_format *)
4285 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4286 for (opcode = 0; opcode < num_opcodes; opcode++)
4287 {
4288 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4289 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4290 {
4291 if (xtensa_format_num_slots (isa, fmt) == 1
4292 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4293 {
4294 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4295 int fmt_length = xtensa_format_length (isa, fmt);
4296 if (old_fmt == XTENSA_UNDEFINED
4297 || fmt_length < xtensa_format_length (isa, old_fmt))
4298 op_single_fmt_table[opcode] = fmt;
4299 }
4300 }
4301 }
4302 xtensa_insnbuf_free (isa, ibuf);
4303}
4304
4305
4306static xtensa_format
4307get_single_format (xtensa_opcode opcode)
4308{
4309 init_op_single_format_table ();
4310 return op_single_fmt_table[opcode];
4311}
e0001a05 4312
e0001a05 4313
43cd72b9
BW
4314/* For the set of narrowable instructions we do NOT include the
4315 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4316 involved during linker relaxation that may require these to
4317 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4318 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4319
7fa3d080
BW
4320struct string_pair
4321{
4322 const char *wide;
4323 const char *narrow;
4324};
4325
43cd72b9 4326struct string_pair narrowable[] =
e0001a05 4327{
43cd72b9
BW
4328 { "add", "add.n" },
4329 { "addi", "addi.n" },
4330 { "addmi", "addi.n" },
4331 { "l32i", "l32i.n" },
4332 { "movi", "movi.n" },
4333 { "ret", "ret.n" },
4334 { "retw", "retw.n" },
4335 { "s32i", "s32i.n" },
4336 { "or", "mov.n" } /* special case only when op1 == op2 */
4337};
e0001a05 4338
43cd72b9 4339struct string_pair widenable[] =
e0001a05 4340{
43cd72b9
BW
4341 { "add", "add.n" },
4342 { "addi", "addi.n" },
4343 { "addmi", "addi.n" },
4344 { "beqz", "beqz.n" },
4345 { "bnez", "bnez.n" },
4346 { "l32i", "l32i.n" },
4347 { "movi", "movi.n" },
4348 { "ret", "ret.n" },
4349 { "retw", "retw.n" },
4350 { "s32i", "s32i.n" },
4351 { "or", "mov.n" } /* special case only when op1 == op2 */
4352};
e0001a05
NC
4353
4354
64b607e6
BW
4355/* Check if an instruction can be "narrowed", i.e., changed from a standard
4356 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4357 return the instruction buffer holding the narrow instruction. Otherwise,
4358 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4359 but require some special case operand checks in some cases. */
4360
64b607e6
BW
4361static xtensa_insnbuf
4362can_narrow_instruction (xtensa_insnbuf slotbuf,
4363 xtensa_format fmt,
4364 xtensa_opcode opcode)
e0001a05 4365{
43cd72b9 4366 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4367 xtensa_format o_fmt;
4368 unsigned opi;
e0001a05 4369
43cd72b9
BW
4370 static xtensa_insnbuf o_insnbuf = NULL;
4371 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4372
64b607e6 4373 if (o_insnbuf == NULL)
43cd72b9 4374 {
43cd72b9
BW
4375 o_insnbuf = xtensa_insnbuf_alloc (isa);
4376 o_slotbuf = xtensa_insnbuf_alloc (isa);
4377 }
e0001a05 4378
64b607e6 4379 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4380 {
4381 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4382
43cd72b9
BW
4383 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4384 {
4385 uint32 value, newval;
4386 int i, operand_count, o_operand_count;
4387 xtensa_opcode o_opcode;
e0001a05 4388
43cd72b9
BW
4389 /* Address does not matter in this case. We might need to
4390 fix it to handle branches/jumps. */
4391 bfd_vma self_address = 0;
e0001a05 4392
43cd72b9
BW
4393 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4394 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4395 return 0;
43cd72b9
BW
4396 o_fmt = get_single_format (o_opcode);
4397 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4398 return 0;
e0001a05 4399
43cd72b9
BW
4400 if (xtensa_format_length (isa, fmt) != 3
4401 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4402 return 0;
e0001a05 4403
43cd72b9
BW
4404 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4405 operand_count = xtensa_opcode_num_operands (isa, opcode);
4406 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4407
43cd72b9 4408 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4409 return 0;
e0001a05 4410
43cd72b9
BW
4411 if (!is_or)
4412 {
4413 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4414 return 0;
43cd72b9
BW
4415 }
4416 else
4417 {
4418 uint32 rawval0, rawval1, rawval2;
e0001a05 4419
64b607e6
BW
4420 if (o_operand_count + 1 != operand_count
4421 || xtensa_operand_get_field (isa, opcode, 0,
4422 fmt, 0, slotbuf, &rawval0) != 0
4423 || xtensa_operand_get_field (isa, opcode, 1,
4424 fmt, 0, slotbuf, &rawval1) != 0
4425 || xtensa_operand_get_field (isa, opcode, 2,
4426 fmt, 0, slotbuf, &rawval2) != 0
4427 || rawval1 != rawval2
4428 || rawval0 == rawval1 /* it is a nop */)
4429 return 0;
43cd72b9 4430 }
e0001a05 4431
43cd72b9
BW
4432 for (i = 0; i < o_operand_count; ++i)
4433 {
4434 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4435 slotbuf, &value)
4436 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4437 return 0;
e0001a05 4438
43cd72b9
BW
4439 /* PC-relative branches need adjustment, but
4440 the PC-rel operand will always have a relocation. */
4441 newval = value;
4442 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4443 self_address)
4444 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4445 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4446 o_slotbuf, newval))
64b607e6 4447 return 0;
43cd72b9 4448 }
e0001a05 4449
64b607e6
BW
4450 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4451 return 0;
e0001a05 4452
64b607e6 4453 return o_insnbuf;
43cd72b9
BW
4454 }
4455 }
64b607e6 4456 return 0;
43cd72b9 4457}
e0001a05 4458
e0001a05 4459
64b607e6
BW
4460/* Attempt to narrow an instruction. If the narrowing is valid, perform
4461 the action in-place directly into the contents and return TRUE. Otherwise,
4462 the return value is FALSE and the contents are not modified. */
e0001a05 4463
43cd72b9 4464static bfd_boolean
64b607e6
BW
4465narrow_instruction (bfd_byte *contents,
4466 bfd_size_type content_length,
4467 bfd_size_type offset)
e0001a05 4468{
43cd72b9 4469 xtensa_opcode opcode;
64b607e6 4470 bfd_size_type insn_len;
43cd72b9 4471 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4472 xtensa_format fmt;
4473 xtensa_insnbuf o_insnbuf;
e0001a05 4474
43cd72b9
BW
4475 static xtensa_insnbuf insnbuf = NULL;
4476 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4477
43cd72b9
BW
4478 if (insnbuf == NULL)
4479 {
4480 insnbuf = xtensa_insnbuf_alloc (isa);
4481 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4482 }
e0001a05 4483
43cd72b9 4484 BFD_ASSERT (offset < content_length);
2c8c90bc 4485
43cd72b9 4486 if (content_length < 2)
e0001a05
NC
4487 return FALSE;
4488
64b607e6 4489 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4490 These have all been specified in the assembler aleady. */
4491 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4492 content_length - offset);
4493 fmt = xtensa_format_decode (isa, insnbuf);
4494 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4495 return FALSE;
4496
43cd72b9 4497 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4498 return FALSE;
4499
43cd72b9
BW
4500 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4501 if (opcode == XTENSA_UNDEFINED)
e0001a05 4502 return FALSE;
43cd72b9
BW
4503 insn_len = xtensa_format_length (isa, fmt);
4504 if (insn_len > content_length)
4505 return FALSE;
4506
64b607e6
BW
4507 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4508 if (o_insnbuf)
4509 {
4510 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4511 content_length - offset);
4512 return TRUE;
4513 }
4514
4515 return FALSE;
4516}
4517
4518
4519/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4520 "density" instruction to a standard 3-byte instruction. If it is valid,
4521 return the instruction buffer holding the wide instruction. Otherwise,
4522 return 0. The set of valid widenings are specified by a string table
4523 but require some special case operand checks in some cases. */
4524
4525static xtensa_insnbuf
4526can_widen_instruction (xtensa_insnbuf slotbuf,
4527 xtensa_format fmt,
4528 xtensa_opcode opcode)
4529{
4530 xtensa_isa isa = xtensa_default_isa;
4531 xtensa_format o_fmt;
4532 unsigned opi;
4533
4534 static xtensa_insnbuf o_insnbuf = NULL;
4535 static xtensa_insnbuf o_slotbuf = NULL;
4536
4537 if (o_insnbuf == NULL)
4538 {
4539 o_insnbuf = xtensa_insnbuf_alloc (isa);
4540 o_slotbuf = xtensa_insnbuf_alloc (isa);
4541 }
4542
4543 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4544 {
43cd72b9
BW
4545 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4546 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4547 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4548
43cd72b9
BW
4549 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4550 {
4551 uint32 value, newval;
4552 int i, operand_count, o_operand_count, check_operand_count;
4553 xtensa_opcode o_opcode;
e0001a05 4554
43cd72b9
BW
4555 /* Address does not matter in this case. We might need to fix it
4556 to handle branches/jumps. */
4557 bfd_vma self_address = 0;
e0001a05 4558
43cd72b9
BW
4559 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4560 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4561 return 0;
43cd72b9
BW
4562 o_fmt = get_single_format (o_opcode);
4563 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4564 return 0;
e0001a05 4565
43cd72b9
BW
4566 if (xtensa_format_length (isa, fmt) != 2
4567 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4568 return 0;
e0001a05 4569
43cd72b9
BW
4570 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4571 operand_count = xtensa_opcode_num_operands (isa, opcode);
4572 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4573 check_operand_count = o_operand_count;
e0001a05 4574
43cd72b9 4575 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4576 return 0;
e0001a05 4577
43cd72b9
BW
4578 if (!is_or)
4579 {
4580 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4581 return 0;
43cd72b9
BW
4582 }
4583 else
4584 {
4585 uint32 rawval0, rawval1;
4586
64b607e6
BW
4587 if (o_operand_count != operand_count + 1
4588 || xtensa_operand_get_field (isa, opcode, 0,
4589 fmt, 0, slotbuf, &rawval0) != 0
4590 || xtensa_operand_get_field (isa, opcode, 1,
4591 fmt, 0, slotbuf, &rawval1) != 0
4592 || rawval0 == rawval1 /* it is a nop */)
4593 return 0;
43cd72b9
BW
4594 }
4595 if (is_branch)
4596 check_operand_count--;
4597
64b607e6 4598 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4599 {
4600 int new_i = i;
4601 if (is_or && i == o_operand_count - 1)
4602 new_i = i - 1;
4603 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4604 slotbuf, &value)
4605 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4606 return 0;
43cd72b9
BW
4607
4608 /* PC-relative branches need adjustment, but
4609 the PC-rel operand will always have a relocation. */
4610 newval = value;
4611 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4612 self_address)
4613 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4614 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4615 o_slotbuf, newval))
64b607e6 4616 return 0;
43cd72b9
BW
4617 }
4618
4619 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4620 return 0;
43cd72b9 4621
64b607e6 4622 return o_insnbuf;
43cd72b9
BW
4623 }
4624 }
64b607e6
BW
4625 return 0;
4626}
4627
68ffbac6 4628
64b607e6
BW
4629/* Attempt to widen an instruction. If the widening is valid, perform
4630 the action in-place directly into the contents and return TRUE. Otherwise,
4631 the return value is FALSE and the contents are not modified. */
4632
4633static bfd_boolean
4634widen_instruction (bfd_byte *contents,
4635 bfd_size_type content_length,
4636 bfd_size_type offset)
4637{
4638 xtensa_opcode opcode;
4639 bfd_size_type insn_len;
4640 xtensa_isa isa = xtensa_default_isa;
4641 xtensa_format fmt;
4642 xtensa_insnbuf o_insnbuf;
4643
4644 static xtensa_insnbuf insnbuf = NULL;
4645 static xtensa_insnbuf slotbuf = NULL;
4646
4647 if (insnbuf == NULL)
4648 {
4649 insnbuf = xtensa_insnbuf_alloc (isa);
4650 slotbuf = xtensa_insnbuf_alloc (isa);
4651 }
4652
4653 BFD_ASSERT (offset < content_length);
4654
4655 if (content_length < 2)
4656 return FALSE;
4657
4658 /* We will hand-code a few of these for a little while.
4659 These have all been specified in the assembler aleady. */
4660 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4661 content_length - offset);
4662 fmt = xtensa_format_decode (isa, insnbuf);
4663 if (xtensa_format_num_slots (isa, fmt) != 1)
4664 return FALSE;
4665
4666 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4667 return FALSE;
4668
4669 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4670 if (opcode == XTENSA_UNDEFINED)
4671 return FALSE;
4672 insn_len = xtensa_format_length (isa, fmt);
4673 if (insn_len > content_length)
4674 return FALSE;
4675
4676 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4677 if (o_insnbuf)
4678 {
4679 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4680 content_length - offset);
4681 return TRUE;
4682 }
43cd72b9 4683 return FALSE;
e0001a05
NC
4684}
4685
43cd72b9
BW
4686\f
4687/* Code for transforming CALLs at link-time. */
e0001a05 4688
43cd72b9 4689static bfd_reloc_status_type
7fa3d080
BW
4690elf_xtensa_do_asm_simplify (bfd_byte *contents,
4691 bfd_vma address,
4692 bfd_vma content_length,
4693 char **error_message)
e0001a05 4694{
43cd72b9
BW
4695 static xtensa_insnbuf insnbuf = NULL;
4696 static xtensa_insnbuf slotbuf = NULL;
4697 xtensa_format core_format = XTENSA_UNDEFINED;
4698 xtensa_opcode opcode;
4699 xtensa_opcode direct_call_opcode;
4700 xtensa_isa isa = xtensa_default_isa;
4701 bfd_byte *chbuf = contents + address;
4702 int opn;
e0001a05 4703
43cd72b9 4704 if (insnbuf == NULL)
e0001a05 4705 {
43cd72b9
BW
4706 insnbuf = xtensa_insnbuf_alloc (isa);
4707 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4708 }
e0001a05 4709
43cd72b9
BW
4710 if (content_length < address)
4711 {
4712 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4713 return bfd_reloc_other;
4714 }
e0001a05 4715
43cd72b9
BW
4716 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4717 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4718 if (direct_call_opcode == XTENSA_UNDEFINED)
4719 {
4720 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4721 return bfd_reloc_other;
4722 }
68ffbac6 4723
43cd72b9
BW
4724 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4725 core_format = xtensa_format_lookup (isa, "x24");
4726 opcode = xtensa_opcode_lookup (isa, "or");
4727 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
68ffbac6 4728 for (opn = 0; opn < 3; opn++)
43cd72b9
BW
4729 {
4730 uint32 regno = 1;
4731 xtensa_operand_encode (isa, opcode, opn, &regno);
4732 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4733 slotbuf, regno);
4734 }
4735 xtensa_format_encode (isa, core_format, insnbuf);
4736 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4737 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4738
43cd72b9
BW
4739 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4740 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4741 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4742
43cd72b9
BW
4743 xtensa_format_encode (isa, core_format, insnbuf);
4744 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4745 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4746 content_length - address - 3);
e0001a05 4747
43cd72b9
BW
4748 return bfd_reloc_ok;
4749}
e0001a05 4750
e0001a05 4751
43cd72b9 4752static bfd_reloc_status_type
7fa3d080
BW
4753contract_asm_expansion (bfd_byte *contents,
4754 bfd_vma content_length,
4755 Elf_Internal_Rela *irel,
4756 char **error_message)
43cd72b9
BW
4757{
4758 bfd_reloc_status_type retval =
4759 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4760 error_message);
e0001a05 4761
43cd72b9
BW
4762 if (retval != bfd_reloc_ok)
4763 return bfd_reloc_dangerous;
e0001a05 4764
43cd72b9
BW
4765 /* Update the irel->r_offset field so that the right immediate and
4766 the right instruction are modified during the relocation. */
4767 irel->r_offset += 3;
4768 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4769 return bfd_reloc_ok;
4770}
e0001a05 4771
e0001a05 4772
43cd72b9 4773static xtensa_opcode
7fa3d080 4774swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4775{
43cd72b9 4776 init_call_opcodes ();
e0001a05 4777
43cd72b9
BW
4778 if (opcode == callx0_op) return call0_op;
4779 if (opcode == callx4_op) return call4_op;
4780 if (opcode == callx8_op) return call8_op;
4781 if (opcode == callx12_op) return call12_op;
e0001a05 4782
43cd72b9
BW
4783 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4784 return XTENSA_UNDEFINED;
4785}
e0001a05 4786
e0001a05 4787
43cd72b9
BW
4788/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4789 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4790 If not, return XTENSA_UNDEFINED. */
e0001a05 4791
43cd72b9
BW
4792#define L32R_TARGET_REG_OPERAND 0
4793#define CONST16_TARGET_REG_OPERAND 0
4794#define CALLN_SOURCE_OPERAND 0
e0001a05 4795
68ffbac6 4796static xtensa_opcode
7fa3d080 4797get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4798{
43cd72b9
BW
4799 static xtensa_insnbuf insnbuf = NULL;
4800 static xtensa_insnbuf slotbuf = NULL;
4801 xtensa_format fmt;
4802 xtensa_opcode opcode;
4803 xtensa_isa isa = xtensa_default_isa;
4804 uint32 regno, const16_regno, call_regno;
4805 int offset = 0;
e0001a05 4806
43cd72b9 4807 if (insnbuf == NULL)
e0001a05 4808 {
43cd72b9
BW
4809 insnbuf = xtensa_insnbuf_alloc (isa);
4810 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4811 }
43cd72b9
BW
4812
4813 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4814 fmt = xtensa_format_decode (isa, insnbuf);
4815 if (fmt == XTENSA_UNDEFINED
4816 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4817 return XTENSA_UNDEFINED;
4818
4819 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4820 if (opcode == XTENSA_UNDEFINED)
4821 return XTENSA_UNDEFINED;
4822
4823 if (opcode == get_l32r_opcode ())
e0001a05 4824 {
43cd72b9
BW
4825 if (p_uses_l32r)
4826 *p_uses_l32r = TRUE;
4827 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4828 fmt, 0, slotbuf, &regno)
4829 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4830 &regno))
4831 return XTENSA_UNDEFINED;
e0001a05 4832 }
43cd72b9 4833 else if (opcode == get_const16_opcode ())
e0001a05 4834 {
43cd72b9
BW
4835 if (p_uses_l32r)
4836 *p_uses_l32r = FALSE;
4837 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4838 fmt, 0, slotbuf, &regno)
4839 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4840 &regno))
4841 return XTENSA_UNDEFINED;
4842
4843 /* Check that the next instruction is also CONST16. */
4844 offset += xtensa_format_length (isa, fmt);
4845 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4846 fmt = xtensa_format_decode (isa, insnbuf);
4847 if (fmt == XTENSA_UNDEFINED
4848 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4849 return XTENSA_UNDEFINED;
4850 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4851 if (opcode != get_const16_opcode ())
4852 return XTENSA_UNDEFINED;
4853
4854 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4855 fmt, 0, slotbuf, &const16_regno)
4856 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4857 &const16_regno)
4858 || const16_regno != regno)
4859 return XTENSA_UNDEFINED;
e0001a05 4860 }
43cd72b9
BW
4861 else
4862 return XTENSA_UNDEFINED;
e0001a05 4863
43cd72b9
BW
4864 /* Next instruction should be an CALLXn with operand 0 == regno. */
4865 offset += xtensa_format_length (isa, fmt);
4866 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4867 fmt = xtensa_format_decode (isa, insnbuf);
4868 if (fmt == XTENSA_UNDEFINED
4869 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4870 return XTENSA_UNDEFINED;
4871 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
68ffbac6 4872 if (opcode == XTENSA_UNDEFINED
43cd72b9
BW
4873 || !is_indirect_call_opcode (opcode))
4874 return XTENSA_UNDEFINED;
e0001a05 4875
43cd72b9
BW
4876 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4877 fmt, 0, slotbuf, &call_regno)
4878 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4879 &call_regno))
4880 return XTENSA_UNDEFINED;
e0001a05 4881
43cd72b9
BW
4882 if (call_regno != regno)
4883 return XTENSA_UNDEFINED;
e0001a05 4884
43cd72b9
BW
4885 return opcode;
4886}
e0001a05 4887
43cd72b9
BW
4888\f
4889/* Data structures used during relaxation. */
e0001a05 4890
43cd72b9 4891/* r_reloc: relocation values. */
e0001a05 4892
43cd72b9
BW
4893/* Through the relaxation process, we need to keep track of the values
4894 that will result from evaluating relocations. The standard ELF
4895 relocation structure is not sufficient for this purpose because we're
4896 operating on multiple input files at once, so we need to know which
4897 input file a relocation refers to. The r_reloc structure thus
4898 records both the input file (bfd) and ELF relocation.
e0001a05 4899
43cd72b9
BW
4900 For efficiency, an r_reloc also contains a "target_offset" field to
4901 cache the target-section-relative offset value that is represented by
4902 the relocation.
68ffbac6 4903
43cd72b9
BW
4904 The r_reloc also contains a virtual offset that allows multiple
4905 inserted literals to be placed at the same "address" with
4906 different offsets. */
e0001a05 4907
43cd72b9 4908typedef struct r_reloc_struct r_reloc;
e0001a05 4909
43cd72b9 4910struct r_reloc_struct
e0001a05 4911{
43cd72b9
BW
4912 bfd *abfd;
4913 Elf_Internal_Rela rela;
e0001a05 4914 bfd_vma target_offset;
43cd72b9 4915 bfd_vma virtual_offset;
e0001a05
NC
4916};
4917
e0001a05 4918
43cd72b9
BW
4919/* The r_reloc structure is included by value in literal_value, but not
4920 every literal_value has an associated relocation -- some are simple
4921 constants. In such cases, we set all the fields in the r_reloc
4922 struct to zero. The r_reloc_is_const function should be used to
4923 detect this case. */
e0001a05 4924
43cd72b9 4925static bfd_boolean
7fa3d080 4926r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4927{
43cd72b9 4928 return (r_rel->abfd == NULL);
e0001a05
NC
4929}
4930
4931
43cd72b9 4932static bfd_vma
7fa3d080 4933r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4934{
43cd72b9
BW
4935 bfd_vma target_offset;
4936 unsigned long r_symndx;
e0001a05 4937
43cd72b9
BW
4938 BFD_ASSERT (!r_reloc_is_const (r_rel));
4939 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4940 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4941 return (target_offset + r_rel->rela.r_addend);
4942}
e0001a05 4943
e0001a05 4944
43cd72b9 4945static struct elf_link_hash_entry *
7fa3d080 4946r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4947{
43cd72b9
BW
4948 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4949 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4950}
e0001a05 4951
43cd72b9
BW
4952
4953static asection *
7fa3d080 4954r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4955{
4956 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4957 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4958}
e0001a05
NC
4959
4960
4961static bfd_boolean
7fa3d080 4962r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4963{
43cd72b9
BW
4964 asection *sec;
4965 if (r_rel == NULL)
e0001a05 4966 return FALSE;
e0001a05 4967
43cd72b9
BW
4968 sec = r_reloc_get_section (r_rel);
4969 if (sec == bfd_abs_section_ptr
4970 || sec == bfd_com_section_ptr
4971 || sec == bfd_und_section_ptr)
4972 return FALSE;
4973 return TRUE;
e0001a05
NC
4974}
4975
4976
7fa3d080
BW
4977static void
4978r_reloc_init (r_reloc *r_rel,
4979 bfd *abfd,
4980 Elf_Internal_Rela *irel,
4981 bfd_byte *contents,
4982 bfd_size_type content_length)
4983{
4984 int r_type;
4985 reloc_howto_type *howto;
4986
4987 if (irel)
4988 {
4989 r_rel->rela = *irel;
4990 r_rel->abfd = abfd;
4991 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4992 r_rel->virtual_offset = 0;
4993 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4994 howto = &elf_howto_table[r_type];
4995 if (howto->partial_inplace)
4996 {
4997 bfd_vma inplace_val;
4998 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4999
5000 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5001 r_rel->target_offset += inplace_val;
5002 }
5003 }
5004 else
5005 memset (r_rel, 0, sizeof (r_reloc));
5006}
5007
5008
43cd72b9
BW
5009#if DEBUG
5010
e0001a05 5011static void
7fa3d080 5012print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 5013{
43cd72b9
BW
5014 if (r_reloc_is_defined (r_rel))
5015 {
5016 asection *sec = r_reloc_get_section (r_rel);
5017 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5018 }
5019 else if (r_reloc_get_hash_entry (r_rel))
5020 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5021 else
5022 fprintf (fp, " ?? + ");
e0001a05 5023
43cd72b9
BW
5024 fprintf_vma (fp, r_rel->target_offset);
5025 if (r_rel->virtual_offset)
5026 {
5027 fprintf (fp, " + ");
5028 fprintf_vma (fp, r_rel->virtual_offset);
5029 }
68ffbac6 5030
43cd72b9
BW
5031 fprintf (fp, ")");
5032}
e0001a05 5033
43cd72b9 5034#endif /* DEBUG */
e0001a05 5035
43cd72b9
BW
5036\f
5037/* source_reloc: relocations that reference literals. */
e0001a05 5038
43cd72b9
BW
5039/* To determine whether literals can be coalesced, we need to first
5040 record all the relocations that reference the literals. The
5041 source_reloc structure below is used for this purpose. The
5042 source_reloc entries are kept in a per-literal-section array, sorted
5043 by offset within the literal section (i.e., target offset).
e0001a05 5044
43cd72b9
BW
5045 The source_sec and r_rel.rela.r_offset fields identify the source of
5046 the relocation. The r_rel field records the relocation value, i.e.,
5047 the offset of the literal being referenced. The opnd field is needed
5048 to determine the range of the immediate field to which the relocation
5049 applies, so we can determine whether another literal with the same
5050 value is within range. The is_null field is true when the relocation
5051 is being removed (e.g., when an L32R is being removed due to a CALLX
5052 that is converted to a direct CALL). */
e0001a05 5053
43cd72b9
BW
5054typedef struct source_reloc_struct source_reloc;
5055
5056struct source_reloc_struct
e0001a05 5057{
43cd72b9
BW
5058 asection *source_sec;
5059 r_reloc r_rel;
5060 xtensa_opcode opcode;
5061 int opnd;
5062 bfd_boolean is_null;
5063 bfd_boolean is_abs_literal;
5064};
e0001a05 5065
e0001a05 5066
e0001a05 5067static void
7fa3d080
BW
5068init_source_reloc (source_reloc *reloc,
5069 asection *source_sec,
5070 const r_reloc *r_rel,
5071 xtensa_opcode opcode,
5072 int opnd,
5073 bfd_boolean is_abs_literal)
e0001a05 5074{
43cd72b9
BW
5075 reloc->source_sec = source_sec;
5076 reloc->r_rel = *r_rel;
5077 reloc->opcode = opcode;
5078 reloc->opnd = opnd;
5079 reloc->is_null = FALSE;
5080 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5081}
5082
e0001a05 5083
43cd72b9
BW
5084/* Find the source_reloc for a particular source offset and relocation
5085 type. Note that the array is sorted by _target_ offset, so this is
5086 just a linear search. */
e0001a05 5087
43cd72b9 5088static source_reloc *
7fa3d080
BW
5089find_source_reloc (source_reloc *src_relocs,
5090 int src_count,
5091 asection *sec,
5092 Elf_Internal_Rela *irel)
e0001a05 5093{
43cd72b9 5094 int i;
e0001a05 5095
43cd72b9
BW
5096 for (i = 0; i < src_count; i++)
5097 {
5098 if (src_relocs[i].source_sec == sec
5099 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5100 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5101 == ELF32_R_TYPE (irel->r_info)))
5102 return &src_relocs[i];
5103 }
e0001a05 5104
43cd72b9 5105 return NULL;
e0001a05
NC
5106}
5107
5108
43cd72b9 5109static int
7fa3d080 5110source_reloc_compare (const void *ap, const void *bp)
e0001a05 5111{
43cd72b9
BW
5112 const source_reloc *a = (const source_reloc *) ap;
5113 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5114
43cd72b9
BW
5115 if (a->r_rel.target_offset != b->r_rel.target_offset)
5116 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5117
43cd72b9
BW
5118 /* We don't need to sort on these criteria for correctness,
5119 but enforcing a more strict ordering prevents unstable qsort
5120 from behaving differently with different implementations.
5121 Without the code below we get correct but different results
5122 on Solaris 2.7 and 2.8. We would like to always produce the
5123 same results no matter the host. */
5124
5125 if ((!a->is_null) - (!b->is_null))
5126 return ((!a->is_null) - (!b->is_null));
5127 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5128}
5129
43cd72b9
BW
5130\f
5131/* Literal values and value hash tables. */
e0001a05 5132
43cd72b9
BW
5133/* Literals with the same value can be coalesced. The literal_value
5134 structure records the value of a literal: the "r_rel" field holds the
5135 information from the relocation on the literal (if there is one) and
5136 the "value" field holds the contents of the literal word itself.
e0001a05 5137
43cd72b9
BW
5138 The value_map structure records a literal value along with the
5139 location of a literal holding that value. The value_map hash table
5140 is indexed by the literal value, so that we can quickly check if a
5141 particular literal value has been seen before and is thus a candidate
5142 for coalescing. */
e0001a05 5143
43cd72b9
BW
5144typedef struct literal_value_struct literal_value;
5145typedef struct value_map_struct value_map;
5146typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5147
43cd72b9 5148struct literal_value_struct
e0001a05 5149{
68ffbac6 5150 r_reloc r_rel;
43cd72b9
BW
5151 unsigned long value;
5152 bfd_boolean is_abs_literal;
5153};
5154
5155struct value_map_struct
5156{
5157 literal_value val; /* The literal value. */
5158 r_reloc loc; /* Location of the literal. */
5159 value_map *next;
5160};
5161
5162struct value_map_hash_table_struct
5163{
5164 unsigned bucket_count;
5165 value_map **buckets;
5166 unsigned count;
5167 bfd_boolean has_last_loc;
5168 r_reloc last_loc;
5169};
5170
5171
e0001a05 5172static void
7fa3d080
BW
5173init_literal_value (literal_value *lit,
5174 const r_reloc *r_rel,
5175 unsigned long value,
5176 bfd_boolean is_abs_literal)
e0001a05 5177{
43cd72b9
BW
5178 lit->r_rel = *r_rel;
5179 lit->value = value;
5180 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5181}
5182
5183
43cd72b9 5184static bfd_boolean
7fa3d080
BW
5185literal_value_equal (const literal_value *src1,
5186 const literal_value *src2,
5187 bfd_boolean final_static_link)
e0001a05 5188{
43cd72b9 5189 struct elf_link_hash_entry *h1, *h2;
e0001a05 5190
68ffbac6 5191 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
43cd72b9 5192 return FALSE;
e0001a05 5193
43cd72b9
BW
5194 if (r_reloc_is_const (&src1->r_rel))
5195 return (src1->value == src2->value);
e0001a05 5196
43cd72b9
BW
5197 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5198 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5199 return FALSE;
e0001a05 5200
43cd72b9
BW
5201 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5202 return FALSE;
68ffbac6 5203
43cd72b9
BW
5204 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5205 return FALSE;
5206
5207 if (src1->value != src2->value)
5208 return FALSE;
68ffbac6 5209
43cd72b9
BW
5210 /* Now check for the same section (if defined) or the same elf_hash
5211 (if undefined or weak). */
5212 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5213 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5214 if (r_reloc_is_defined (&src1->r_rel)
5215 && (final_static_link
5216 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5217 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5218 {
5219 if (r_reloc_get_section (&src1->r_rel)
5220 != r_reloc_get_section (&src2->r_rel))
5221 return FALSE;
5222 }
5223 else
5224 {
5225 /* Require that the hash entries (i.e., symbols) be identical. */
5226 if (h1 != h2 || h1 == 0)
5227 return FALSE;
5228 }
5229
5230 if (src1->is_abs_literal != src2->is_abs_literal)
5231 return FALSE;
5232
5233 return TRUE;
e0001a05
NC
5234}
5235
e0001a05 5236
43cd72b9
BW
5237/* Must be power of 2. */
5238#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5239
43cd72b9 5240static value_map_hash_table *
7fa3d080 5241value_map_hash_table_init (void)
43cd72b9
BW
5242{
5243 value_map_hash_table *values;
e0001a05 5244
43cd72b9
BW
5245 values = (value_map_hash_table *)
5246 bfd_zmalloc (sizeof (value_map_hash_table));
5247 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5248 values->count = 0;
5249 values->buckets = (value_map **)
5250 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
68ffbac6 5251 if (values->buckets == NULL)
43cd72b9
BW
5252 {
5253 free (values);
5254 return NULL;
5255 }
5256 values->has_last_loc = FALSE;
5257
5258 return values;
5259}
5260
5261
5262static void
7fa3d080 5263value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5264{
43cd72b9
BW
5265 free (table->buckets);
5266 free (table);
5267}
5268
5269
5270static unsigned
7fa3d080 5271hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5272{
5273 return (val >> 2) + (val >> 10);
5274}
5275
5276
5277static unsigned
7fa3d080 5278literal_value_hash (const literal_value *src)
43cd72b9
BW
5279{
5280 unsigned hash_val;
e0001a05 5281
43cd72b9
BW
5282 hash_val = hash_bfd_vma (src->value);
5283 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5284 {
43cd72b9
BW
5285 void *sec_or_hash;
5286
5287 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5288 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5289 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
68ffbac6 5290
43cd72b9
BW
5291 /* Now check for the same section and the same elf_hash. */
5292 if (r_reloc_is_defined (&src->r_rel))
5293 sec_or_hash = r_reloc_get_section (&src->r_rel);
5294 else
5295 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5296 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5297 }
43cd72b9
BW
5298 return hash_val;
5299}
e0001a05 5300
e0001a05 5301
43cd72b9 5302/* Check if the specified literal_value has been seen before. */
e0001a05 5303
43cd72b9 5304static value_map *
7fa3d080
BW
5305value_map_get_cached_value (value_map_hash_table *map,
5306 const literal_value *val,
5307 bfd_boolean final_static_link)
43cd72b9
BW
5308{
5309 value_map *map_e;
5310 value_map *bucket;
5311 unsigned idx;
5312
5313 idx = literal_value_hash (val);
5314 idx = idx & (map->bucket_count - 1);
5315 bucket = map->buckets[idx];
5316 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5317 {
43cd72b9
BW
5318 if (literal_value_equal (&map_e->val, val, final_static_link))
5319 return map_e;
5320 }
5321 return NULL;
5322}
e0001a05 5323
e0001a05 5324
43cd72b9
BW
5325/* Record a new literal value. It is illegal to call this if VALUE
5326 already has an entry here. */
5327
5328static value_map *
7fa3d080
BW
5329add_value_map (value_map_hash_table *map,
5330 const literal_value *val,
5331 const r_reloc *loc,
5332 bfd_boolean final_static_link)
43cd72b9
BW
5333{
5334 value_map **bucket_p;
5335 unsigned idx;
5336
5337 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5338 if (val_e == NULL)
5339 {
5340 bfd_set_error (bfd_error_no_memory);
5341 return NULL;
e0001a05
NC
5342 }
5343
43cd72b9
BW
5344 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5345 val_e->val = *val;
5346 val_e->loc = *loc;
5347
5348 idx = literal_value_hash (val);
5349 idx = idx & (map->bucket_count - 1);
5350 bucket_p = &map->buckets[idx];
5351
5352 val_e->next = *bucket_p;
5353 *bucket_p = val_e;
5354 map->count++;
5355 /* FIXME: Consider resizing the hash table if we get too many entries. */
68ffbac6 5356
43cd72b9 5357 return val_e;
e0001a05
NC
5358}
5359
43cd72b9
BW
5360\f
5361/* Lists of text actions (ta_) for narrowing, widening, longcall
5362 conversion, space fill, code & literal removal, etc. */
5363
5364/* The following text actions are generated:
5365
5366 "ta_remove_insn" remove an instruction or instructions
5367 "ta_remove_longcall" convert longcall to call
5368 "ta_convert_longcall" convert longcall to nop/call
5369 "ta_narrow_insn" narrow a wide instruction
5370 "ta_widen" widen a narrow instruction
5371 "ta_fill" add fill or remove fill
5372 removed < 0 is a fill; branches to the fill address will be
5373 changed to address + fill size (e.g., address - removed)
5374 removed >= 0 branches to the fill address will stay unchanged
5375 "ta_remove_literal" remove a literal; this action is
5376 indicated when a literal is removed
5377 or replaced.
5378 "ta_add_literal" insert a new literal; this action is
5379 indicated when a literal has been moved.
5380 It may use a virtual_offset because
5381 multiple literals can be placed at the
5382 same location.
5383
5384 For each of these text actions, we also record the number of bytes
5385 removed by performing the text action. In the case of a "ta_widen"
5386 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5387
5388typedef struct text_action_struct text_action;
5389typedef struct text_action_list_struct text_action_list;
5390typedef enum text_action_enum_t text_action_t;
5391
5392enum text_action_enum_t
5393{
5394 ta_none,
5395 ta_remove_insn, /* removed = -size */
5396 ta_remove_longcall, /* removed = -size */
5397 ta_convert_longcall, /* removed = 0 */
5398 ta_narrow_insn, /* removed = -1 */
5399 ta_widen_insn, /* removed = +1 */
5400 ta_fill, /* removed = +size */
5401 ta_remove_literal,
5402 ta_add_literal
5403};
e0001a05 5404
e0001a05 5405
43cd72b9
BW
5406/* Structure for a text action record. */
5407struct text_action_struct
e0001a05 5408{
43cd72b9
BW
5409 text_action_t action;
5410 asection *sec; /* Optional */
5411 bfd_vma offset;
5412 bfd_vma virtual_offset; /* Zero except for adding literals. */
5413 int removed_bytes;
5414 literal_value value; /* Only valid when adding literals. */
e0001a05 5415
43cd72b9
BW
5416 text_action *next;
5417};
e0001a05 5418
e0001a05 5419
43cd72b9
BW
5420/* List of all of the actions taken on a text section. */
5421struct text_action_list_struct
5422{
5423 text_action *head;
5424};
e0001a05 5425
e0001a05 5426
7fa3d080
BW
5427static text_action *
5428find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
5429{
5430 text_action **m_p;
5431
5432 /* It is not necessary to fill at the end of a section. */
5433 if (sec->size == offset)
5434 return NULL;
5435
7fa3d080 5436 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5437 {
5438 text_action *t = *m_p;
5439 /* When the action is another fill at the same address,
5440 just increase the size. */
5441 if (t->offset == offset && t->action == ta_fill)
5442 return t;
5443 }
5444 return NULL;
5445}
5446
5447
5448static int
7fa3d080
BW
5449compute_removed_action_diff (const text_action *ta,
5450 asection *sec,
5451 bfd_vma offset,
5452 int removed,
5453 int removable_space)
43cd72b9
BW
5454{
5455 int new_removed;
5456 int current_removed = 0;
5457
7fa3d080 5458 if (ta)
43cd72b9
BW
5459 current_removed = ta->removed_bytes;
5460
5461 BFD_ASSERT (ta == NULL || ta->offset == offset);
5462 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5463
5464 /* It is not necessary to fill at the end of a section. Clean this up. */
5465 if (sec->size == offset)
5466 new_removed = removable_space - 0;
5467 else
5468 {
5469 int space;
5470 int added = -removed - current_removed;
5471 /* Ignore multiples of the section alignment. */
5472 added = ((1 << sec->alignment_power) - 1) & added;
5473 new_removed = (-added);
5474
5475 /* Modify for removable. */
5476 space = removable_space - new_removed;
5477 new_removed = (removable_space
5478 - (((1 << sec->alignment_power) - 1) & space));
5479 }
5480 return (new_removed - current_removed);
5481}
5482
5483
7fa3d080
BW
5484static void
5485adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5486{
5487 ta->removed_bytes += fill_diff;
5488}
5489
5490
5491/* Add a modification action to the text. For the case of adding or
5492 removing space, modify any current fill and assume that
5493 "unreachable_space" bytes can be freely contracted. Note that a
5494 negative removed value is a fill. */
5495
68ffbac6 5496static void
7fa3d080
BW
5497text_action_add (text_action_list *l,
5498 text_action_t action,
5499 asection *sec,
5500 bfd_vma offset,
5501 int removed)
43cd72b9
BW
5502{
5503 text_action **m_p;
5504 text_action *ta;
5505
5506 /* It is not necessary to fill at the end of a section. */
5507 if (action == ta_fill && sec->size == offset)
5508 return;
5509
5510 /* It is not necessary to fill 0 bytes. */
5511 if (action == ta_fill && removed == 0)
5512 return;
5513
7fa3d080 5514 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5515 {
5516 text_action *t = *m_p;
68ffbac6
L
5517
5518 if (action == ta_fill)
43cd72b9 5519 {
658ff993
SA
5520 /* When the action is another fill at the same address,
5521 just increase the size. */
5522 if (t->offset == offset && t->action == ta_fill)
5523 {
5524 t->removed_bytes += removed;
5525 return;
5526 }
5527 /* Fills need to happen before widens so that we don't
5528 insert fill bytes into the instruction stream. */
5529 if (t->offset == offset && t->action == ta_widen_insn)
5530 break;
43cd72b9
BW
5531 }
5532 }
5533
5534 /* Create a new record and fill it up. */
5535 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5536 ta->action = action;
5537 ta->sec = sec;
5538 ta->offset = offset;
5539 ta->removed_bytes = removed;
5540 ta->next = (*m_p);
5541 *m_p = ta;
5542}
5543
5544
5545static void
7fa3d080
BW
5546text_action_add_literal (text_action_list *l,
5547 text_action_t action,
5548 const r_reloc *loc,
5549 const literal_value *value,
5550 int removed)
43cd72b9
BW
5551{
5552 text_action **m_p;
5553 text_action *ta;
5554 asection *sec = r_reloc_get_section (loc);
5555 bfd_vma offset = loc->target_offset;
5556 bfd_vma virtual_offset = loc->virtual_offset;
5557
5558 BFD_ASSERT (action == ta_add_literal);
5559
5560 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5561 {
5562 if ((*m_p)->offset > offset
5563 && ((*m_p)->offset != offset
5564 || (*m_p)->virtual_offset > virtual_offset))
5565 break;
5566 }
5567
5568 /* Create a new record and fill it up. */
5569 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5570 ta->action = action;
5571 ta->sec = sec;
5572 ta->offset = offset;
5573 ta->virtual_offset = virtual_offset;
5574 ta->value = *value;
5575 ta->removed_bytes = removed;
5576 ta->next = (*m_p);
5577 *m_p = ta;
5578}
5579
5580
03669f1c
BW
5581/* Find the total offset adjustment for the relaxations specified by
5582 text_actions, beginning from a particular starting action. This is
5583 typically used from offset_with_removed_text to search an entire list of
5584 actions, but it may also be called directly when adjusting adjacent offsets
5585 so that each search may begin where the previous one left off. */
5586
5587static int
5588removed_by_actions (text_action **p_start_action,
5589 bfd_vma offset,
5590 bfd_boolean before_fill)
43cd72b9
BW
5591{
5592 text_action *r;
5593 int removed = 0;
5594
03669f1c
BW
5595 r = *p_start_action;
5596 while (r)
43cd72b9 5597 {
03669f1c
BW
5598 if (r->offset > offset)
5599 break;
5600
5601 if (r->offset == offset
5602 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5603 break;
5604
5605 removed += r->removed_bytes;
5606
5607 r = r->next;
43cd72b9
BW
5608 }
5609
03669f1c
BW
5610 *p_start_action = r;
5611 return removed;
5612}
5613
5614
68ffbac6 5615static bfd_vma
03669f1c
BW
5616offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5617{
5618 text_action *r = action_list->head;
5619 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
5620}
5621
5622
03e94c08
BW
5623static unsigned
5624action_list_count (text_action_list *action_list)
5625{
5626 text_action *r = action_list->head;
5627 unsigned count = 0;
5628 for (r = action_list->head; r != NULL; r = r->next)
5629 {
5630 count++;
5631 }
5632 return count;
5633}
5634
5635
43cd72b9
BW
5636/* The find_insn_action routine will only find non-fill actions. */
5637
7fa3d080
BW
5638static text_action *
5639find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
5640{
5641 text_action *t;
5642 for (t = action_list->head; t; t = t->next)
5643 {
5644 if (t->offset == offset)
5645 {
5646 switch (t->action)
5647 {
5648 case ta_none:
5649 case ta_fill:
5650 break;
5651 case ta_remove_insn:
5652 case ta_remove_longcall:
5653 case ta_convert_longcall:
5654 case ta_narrow_insn:
5655 case ta_widen_insn:
5656 return t;
5657 case ta_remove_literal:
5658 case ta_add_literal:
5659 BFD_ASSERT (0);
5660 break;
5661 }
5662 }
5663 }
5664 return NULL;
5665}
5666
5667
5668#if DEBUG
5669
5670static void
7fa3d080 5671print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
5672{
5673 text_action *r;
5674
5675 fprintf (fp, "Text Action\n");
5676 for (r = action_list->head; r != NULL; r = r->next)
5677 {
5678 const char *t = "unknown";
5679 switch (r->action)
5680 {
5681 case ta_remove_insn:
5682 t = "remove_insn"; break;
5683 case ta_remove_longcall:
5684 t = "remove_longcall"; break;
5685 case ta_convert_longcall:
c46082c8 5686 t = "convert_longcall"; break;
43cd72b9
BW
5687 case ta_narrow_insn:
5688 t = "narrow_insn"; break;
5689 case ta_widen_insn:
5690 t = "widen_insn"; break;
5691 case ta_fill:
5692 t = "fill"; break;
5693 case ta_none:
5694 t = "none"; break;
5695 case ta_remove_literal:
5696 t = "remove_literal"; break;
5697 case ta_add_literal:
5698 t = "add_literal"; break;
5699 }
5700
5701 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5702 r->sec->owner->filename,
9ccb8af9 5703 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
43cd72b9
BW
5704 }
5705}
5706
5707#endif /* DEBUG */
5708
5709\f
5710/* Lists of literals being coalesced or removed. */
5711
5712/* In the usual case, the literal identified by "from" is being
5713 coalesced with another literal identified by "to". If the literal is
5714 unused and is being removed altogether, "to.abfd" will be NULL.
5715 The removed_literal entries are kept on a per-section list, sorted
5716 by the "from" offset field. */
5717
5718typedef struct removed_literal_struct removed_literal;
5719typedef struct removed_literal_list_struct removed_literal_list;
5720
5721struct removed_literal_struct
5722{
5723 r_reloc from;
5724 r_reloc to;
5725 removed_literal *next;
5726};
5727
5728struct removed_literal_list_struct
5729{
5730 removed_literal *head;
5731 removed_literal *tail;
5732};
5733
5734
43cd72b9
BW
5735/* Record that the literal at "from" is being removed. If "to" is not
5736 NULL, the "from" literal is being coalesced with the "to" literal. */
5737
5738static void
7fa3d080
BW
5739add_removed_literal (removed_literal_list *removed_list,
5740 const r_reloc *from,
5741 const r_reloc *to)
43cd72b9
BW
5742{
5743 removed_literal *r, *new_r, *next_r;
5744
5745 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5746
5747 new_r->from = *from;
5748 if (to)
5749 new_r->to = *to;
5750 else
5751 new_r->to.abfd = NULL;
5752 new_r->next = NULL;
68ffbac6 5753
43cd72b9 5754 r = removed_list->head;
68ffbac6 5755 if (r == NULL)
43cd72b9
BW
5756 {
5757 removed_list->head = new_r;
5758 removed_list->tail = new_r;
5759 }
5760 /* Special check for common case of append. */
5761 else if (removed_list->tail->from.target_offset < from->target_offset)
5762 {
5763 removed_list->tail->next = new_r;
5764 removed_list->tail = new_r;
5765 }
5766 else
5767 {
68ffbac6 5768 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5769 {
5770 r = r->next;
5771 }
5772 next_r = r->next;
5773 r->next = new_r;
5774 new_r->next = next_r;
5775 if (next_r == NULL)
5776 removed_list->tail = new_r;
5777 }
5778}
5779
5780
5781/* Check if the list of removed literals contains an entry for the
5782 given address. Return the entry if found. */
5783
5784static removed_literal *
7fa3d080 5785find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
5786{
5787 removed_literal *r = removed_list->head;
5788 while (r && r->from.target_offset < addr)
5789 r = r->next;
5790 if (r && r->from.target_offset == addr)
5791 return r;
5792 return NULL;
5793}
5794
5795
5796#if DEBUG
5797
5798static void
7fa3d080 5799print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5800{
5801 removed_literal *r;
5802 r = removed_list->head;
5803 if (r)
5804 fprintf (fp, "Removed Literals\n");
5805 for (; r != NULL; r = r->next)
5806 {
5807 print_r_reloc (fp, &r->from);
5808 fprintf (fp, " => ");
5809 if (r->to.abfd == NULL)
5810 fprintf (fp, "REMOVED");
5811 else
5812 print_r_reloc (fp, &r->to);
5813 fprintf (fp, "\n");
5814 }
5815}
5816
5817#endif /* DEBUG */
5818
5819\f
5820/* Per-section data for relaxation. */
5821
5822typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5823
5824struct xtensa_relax_info_struct
5825{
5826 bfd_boolean is_relaxable_literal_section;
5827 bfd_boolean is_relaxable_asm_section;
5828 int visited; /* Number of times visited. */
5829
5830 source_reloc *src_relocs; /* Array[src_count]. */
5831 int src_count;
5832 int src_next; /* Next src_relocs entry to assign. */
5833
5834 removed_literal_list removed_list;
5835 text_action_list action_list;
5836
5837 reloc_bfd_fix *fix_list;
5838 reloc_bfd_fix *fix_array;
5839 unsigned fix_array_count;
5840
5841 /* Support for expanding the reloc array that is stored
5842 in the section structure. If the relocations have been
5843 reallocated, the newly allocated relocations will be referenced
5844 here along with the actual size allocated. The relocation
5845 count will always be found in the section structure. */
68ffbac6 5846 Elf_Internal_Rela *allocated_relocs;
43cd72b9
BW
5847 unsigned relocs_count;
5848 unsigned allocated_relocs_count;
5849};
5850
5851struct elf_xtensa_section_data
5852{
5853 struct bfd_elf_section_data elf;
5854 xtensa_relax_info relax_info;
5855};
5856
43cd72b9
BW
5857
5858static bfd_boolean
7fa3d080 5859elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5860{
f592407e
AM
5861 if (!sec->used_by_bfd)
5862 {
5863 struct elf_xtensa_section_data *sdata;
5864 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5865
f592407e
AM
5866 sdata = bfd_zalloc (abfd, amt);
5867 if (sdata == NULL)
5868 return FALSE;
5869 sec->used_by_bfd = sdata;
5870 }
43cd72b9
BW
5871
5872 return _bfd_elf_new_section_hook (abfd, sec);
5873}
5874
5875
7fa3d080
BW
5876static xtensa_relax_info *
5877get_xtensa_relax_info (asection *sec)
5878{
5879 struct elf_xtensa_section_data *section_data;
5880
5881 /* No info available if no section or if it is an output section. */
5882 if (!sec || sec == sec->output_section)
5883 return NULL;
5884
5885 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5886 return &section_data->relax_info;
5887}
5888
5889
43cd72b9 5890static void
7fa3d080 5891init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5892{
5893 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5894
5895 relax_info->is_relaxable_literal_section = FALSE;
5896 relax_info->is_relaxable_asm_section = FALSE;
5897 relax_info->visited = 0;
5898
5899 relax_info->src_relocs = NULL;
5900 relax_info->src_count = 0;
5901 relax_info->src_next = 0;
5902
5903 relax_info->removed_list.head = NULL;
5904 relax_info->removed_list.tail = NULL;
5905
5906 relax_info->action_list.head = NULL;
5907
5908 relax_info->fix_list = NULL;
5909 relax_info->fix_array = NULL;
5910 relax_info->fix_array_count = 0;
5911
68ffbac6 5912 relax_info->allocated_relocs = NULL;
43cd72b9
BW
5913 relax_info->relocs_count = 0;
5914 relax_info->allocated_relocs_count = 0;
5915}
5916
43cd72b9
BW
5917\f
5918/* Coalescing literals may require a relocation to refer to a section in
5919 a different input file, but the standard relocation information
5920 cannot express that. Instead, the reloc_bfd_fix structures are used
5921 to "fix" the relocations that refer to sections in other input files.
5922 These structures are kept on per-section lists. The "src_type" field
5923 records the relocation type in case there are multiple relocations on
5924 the same location. FIXME: This is ugly; an alternative might be to
5925 add new symbols with the "owner" field to some other input file. */
5926
5927struct reloc_bfd_fix_struct
5928{
5929 asection *src_sec;
5930 bfd_vma src_offset;
5931 unsigned src_type; /* Relocation type. */
68ffbac6 5932
43cd72b9
BW
5933 asection *target_sec;
5934 bfd_vma target_offset;
5935 bfd_boolean translated;
68ffbac6 5936
43cd72b9
BW
5937 reloc_bfd_fix *next;
5938};
5939
5940
43cd72b9 5941static reloc_bfd_fix *
7fa3d080
BW
5942reloc_bfd_fix_init (asection *src_sec,
5943 bfd_vma src_offset,
5944 unsigned src_type,
7fa3d080
BW
5945 asection *target_sec,
5946 bfd_vma target_offset,
5947 bfd_boolean translated)
43cd72b9
BW
5948{
5949 reloc_bfd_fix *fix;
5950
5951 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5952 fix->src_sec = src_sec;
5953 fix->src_offset = src_offset;
5954 fix->src_type = src_type;
43cd72b9
BW
5955 fix->target_sec = target_sec;
5956 fix->target_offset = target_offset;
5957 fix->translated = translated;
5958
5959 return fix;
5960}
5961
5962
5963static void
7fa3d080 5964add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5965{
5966 xtensa_relax_info *relax_info;
5967
5968 relax_info = get_xtensa_relax_info (src_sec);
5969 fix->next = relax_info->fix_list;
5970 relax_info->fix_list = fix;
5971}
5972
5973
5974static int
7fa3d080 5975fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5976{
5977 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5978 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5979
5980 if (a->src_offset != b->src_offset)
5981 return (a->src_offset - b->src_offset);
5982 return (a->src_type - b->src_type);
5983}
5984
5985
5986static void
7fa3d080 5987cache_fix_array (asection *sec)
43cd72b9
BW
5988{
5989 unsigned i, count = 0;
5990 reloc_bfd_fix *r;
5991 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5992
5993 if (relax_info == NULL)
5994 return;
5995 if (relax_info->fix_list == NULL)
5996 return;
5997
5998 for (r = relax_info->fix_list; r != NULL; r = r->next)
5999 count++;
6000
6001 relax_info->fix_array =
6002 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6003 relax_info->fix_array_count = count;
6004
6005 r = relax_info->fix_list;
6006 for (i = 0; i < count; i++, r = r->next)
6007 {
6008 relax_info->fix_array[count - 1 - i] = *r;
6009 relax_info->fix_array[count - 1 - i].next = NULL;
6010 }
6011
6012 qsort (relax_info->fix_array, relax_info->fix_array_count,
6013 sizeof (reloc_bfd_fix), fix_compare);
6014}
6015
6016
6017static reloc_bfd_fix *
7fa3d080 6018get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6019{
6020 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6021 reloc_bfd_fix *rv;
6022 reloc_bfd_fix key;
6023
6024 if (relax_info == NULL)
6025 return NULL;
6026 if (relax_info->fix_list == NULL)
6027 return NULL;
6028
6029 if (relax_info->fix_array == NULL)
6030 cache_fix_array (sec);
6031
6032 key.src_offset = offset;
6033 key.src_type = type;
6034 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6035 sizeof (reloc_bfd_fix), fix_compare);
6036 return rv;
6037}
6038
6039\f
6040/* Section caching. */
6041
6042typedef struct section_cache_struct section_cache_t;
6043
6044struct section_cache_struct
6045{
6046 asection *sec;
6047
6048 bfd_byte *contents; /* Cache of the section contents. */
6049 bfd_size_type content_length;
6050
6051 property_table_entry *ptbl; /* Cache of the section property table. */
6052 unsigned pte_count;
6053
6054 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6055 unsigned reloc_count;
6056};
6057
6058
7fa3d080
BW
6059static void
6060init_section_cache (section_cache_t *sec_cache)
6061{
6062 memset (sec_cache, 0, sizeof (*sec_cache));
6063}
43cd72b9
BW
6064
6065
6066static void
65e911f9 6067free_section_cache (section_cache_t *sec_cache)
43cd72b9 6068{
7fa3d080
BW
6069 if (sec_cache->sec)
6070 {
6071 release_contents (sec_cache->sec, sec_cache->contents);
6072 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6073 if (sec_cache->ptbl)
6074 free (sec_cache->ptbl);
7fa3d080 6075 }
43cd72b9
BW
6076}
6077
6078
6079static bfd_boolean
7fa3d080
BW
6080section_cache_section (section_cache_t *sec_cache,
6081 asection *sec,
6082 struct bfd_link_info *link_info)
43cd72b9
BW
6083{
6084 bfd *abfd;
6085 property_table_entry *prop_table = NULL;
6086 int ptblsize = 0;
6087 bfd_byte *contents = NULL;
6088 Elf_Internal_Rela *internal_relocs = NULL;
6089 bfd_size_type sec_size;
6090
6091 if (sec == NULL)
6092 return FALSE;
6093 if (sec == sec_cache->sec)
6094 return TRUE;
6095
6096 abfd = sec->owner;
6097 sec_size = bfd_get_section_limit (abfd, sec);
6098
6099 /* Get the contents. */
6100 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6101 if (contents == NULL && sec_size != 0)
6102 goto err;
6103
6104 /* Get the relocations. */
6105 internal_relocs = retrieve_internal_relocs (abfd, sec,
6106 link_info->keep_memory);
6107
6108 /* Get the entry table. */
6109 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6110 XTENSA_PROP_SEC_NAME, FALSE);
6111 if (ptblsize < 0)
6112 goto err;
6113
6114 /* Fill in the new section cache. */
65e911f9
AM
6115 free_section_cache (sec_cache);
6116 init_section_cache (sec_cache);
43cd72b9
BW
6117
6118 sec_cache->sec = sec;
6119 sec_cache->contents = contents;
6120 sec_cache->content_length = sec_size;
6121 sec_cache->relocs = internal_relocs;
6122 sec_cache->reloc_count = sec->reloc_count;
6123 sec_cache->pte_count = ptblsize;
6124 sec_cache->ptbl = prop_table;
6125
6126 return TRUE;
6127
6128 err:
6129 release_contents (sec, contents);
6130 release_internal_relocs (sec, internal_relocs);
6131 if (prop_table)
6132 free (prop_table);
6133 return FALSE;
6134}
6135
43cd72b9
BW
6136\f
6137/* Extended basic blocks. */
6138
6139/* An ebb_struct represents an Extended Basic Block. Within this
6140 range, we guarantee that all instructions are decodable, the
6141 property table entries are contiguous, and no property table
6142 specifies a segment that cannot have instructions moved. This
6143 structure contains caches of the contents, property table and
6144 relocations for the specified section for easy use. The range is
6145 specified by ranges of indices for the byte offset, property table
6146 offsets and relocation offsets. These must be consistent. */
6147
6148typedef struct ebb_struct ebb_t;
6149
6150struct ebb_struct
6151{
6152 asection *sec;
6153
6154 bfd_byte *contents; /* Cache of the section contents. */
6155 bfd_size_type content_length;
6156
6157 property_table_entry *ptbl; /* Cache of the section property table. */
6158 unsigned pte_count;
6159
6160 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6161 unsigned reloc_count;
6162
6163 bfd_vma start_offset; /* Offset in section. */
6164 unsigned start_ptbl_idx; /* Offset in the property table. */
6165 unsigned start_reloc_idx; /* Offset in the relocations. */
6166
6167 bfd_vma end_offset;
6168 unsigned end_ptbl_idx;
6169 unsigned end_reloc_idx;
6170
6171 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6172
6173 /* The unreachable property table at the end of this set of blocks;
6174 NULL if the end is not an unreachable block. */
6175 property_table_entry *ends_unreachable;
6176};
6177
6178
6179enum ebb_target_enum
6180{
6181 EBB_NO_ALIGN = 0,
6182 EBB_DESIRE_TGT_ALIGN,
6183 EBB_REQUIRE_TGT_ALIGN,
6184 EBB_REQUIRE_LOOP_ALIGN,
6185 EBB_REQUIRE_ALIGN
6186};
6187
6188
6189/* proposed_action_struct is similar to the text_action_struct except
6190 that is represents a potential transformation, not one that will
6191 occur. We build a list of these for an extended basic block
6192 and use them to compute the actual actions desired. We must be
6193 careful that the entire set of actual actions we perform do not
6194 break any relocations that would fit if the actions were not
6195 performed. */
6196
6197typedef struct proposed_action_struct proposed_action;
6198
6199struct proposed_action_struct
6200{
6201 enum ebb_target_enum align_type; /* for the target alignment */
6202 bfd_vma alignment_pow;
6203 text_action_t action;
6204 bfd_vma offset;
6205 int removed_bytes;
6206 bfd_boolean do_action; /* If false, then we will not perform the action. */
6207};
6208
6209
6210/* The ebb_constraint_struct keeps a set of proposed actions for an
6211 extended basic block. */
6212
6213typedef struct ebb_constraint_struct ebb_constraint;
6214
6215struct ebb_constraint_struct
6216{
6217 ebb_t ebb;
6218 bfd_boolean start_movable;
6219
6220 /* Bytes of extra space at the beginning if movable. */
6221 int start_extra_space;
6222
6223 enum ebb_target_enum start_align;
6224
6225 bfd_boolean end_movable;
6226
6227 /* Bytes of extra space at the end if movable. */
6228 int end_extra_space;
6229
6230 unsigned action_count;
6231 unsigned action_allocated;
6232
6233 /* Array of proposed actions. */
6234 proposed_action *actions;
6235
6236 /* Action alignments -- one for each proposed action. */
6237 enum ebb_target_enum *action_aligns;
6238};
6239
6240
43cd72b9 6241static void
7fa3d080 6242init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6243{
6244 memset (c, 0, sizeof (ebb_constraint));
6245}
6246
6247
6248static void
7fa3d080 6249free_ebb_constraint (ebb_constraint *c)
43cd72b9 6250{
7fa3d080 6251 if (c->actions)
43cd72b9
BW
6252 free (c->actions);
6253}
6254
6255
6256static void
7fa3d080
BW
6257init_ebb (ebb_t *ebb,
6258 asection *sec,
6259 bfd_byte *contents,
6260 bfd_size_type content_length,
6261 property_table_entry *prop_table,
6262 unsigned ptblsize,
6263 Elf_Internal_Rela *internal_relocs,
6264 unsigned reloc_count)
43cd72b9
BW
6265{
6266 memset (ebb, 0, sizeof (ebb_t));
6267 ebb->sec = sec;
6268 ebb->contents = contents;
6269 ebb->content_length = content_length;
6270 ebb->ptbl = prop_table;
6271 ebb->pte_count = ptblsize;
6272 ebb->relocs = internal_relocs;
6273 ebb->reloc_count = reloc_count;
6274 ebb->start_offset = 0;
6275 ebb->end_offset = ebb->content_length - 1;
6276 ebb->start_ptbl_idx = 0;
6277 ebb->end_ptbl_idx = ptblsize;
6278 ebb->start_reloc_idx = 0;
6279 ebb->end_reloc_idx = reloc_count;
6280}
6281
6282
6283/* Extend the ebb to all decodable contiguous sections. The algorithm
6284 for building a basic block around an instruction is to push it
6285 forward until we hit the end of a section, an unreachable block or
6286 a block that cannot be transformed. Then we push it backwards
6287 searching for similar conditions. */
6288
7fa3d080
BW
6289static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6290static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6291static bfd_size_type insn_block_decodable_len
6292 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6293
43cd72b9 6294static bfd_boolean
7fa3d080 6295extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6296{
6297 if (!extend_ebb_bounds_forward (ebb))
6298 return FALSE;
6299 if (!extend_ebb_bounds_backward (ebb))
6300 return FALSE;
6301 return TRUE;
6302}
6303
6304
6305static bfd_boolean
7fa3d080 6306extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6307{
6308 property_table_entry *the_entry, *new_entry;
6309
6310 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6311
6312 /* Stop when (1) we cannot decode an instruction, (2) we are at
6313 the end of the property tables, (3) we hit a non-contiguous property
6314 table entry, (4) we hit a NO_TRANSFORM region. */
6315
6316 while (1)
6317 {
6318 bfd_vma entry_end;
6319 bfd_size_type insn_block_len;
6320
6321 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6322 insn_block_len =
6323 insn_block_decodable_len (ebb->contents, ebb->content_length,
6324 ebb->end_offset,
6325 entry_end - ebb->end_offset);
6326 if (insn_block_len != (entry_end - ebb->end_offset))
6327 {
6328 (*_bfd_error_handler)
6329 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6330 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6331 return FALSE;
6332 }
6333 ebb->end_offset += insn_block_len;
6334
6335 if (ebb->end_offset == ebb->sec->size)
6336 ebb->ends_section = TRUE;
6337
6338 /* Update the reloc counter. */
6339 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6340 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6341 < ebb->end_offset))
6342 {
6343 ebb->end_reloc_idx++;
6344 }
6345
6346 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6347 return TRUE;
6348
6349 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6350 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6351 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6352 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6353 break;
6354
6355 if (the_entry->address + the_entry->size != new_entry->address)
6356 break;
6357
6358 the_entry = new_entry;
6359 ebb->end_ptbl_idx++;
6360 }
6361
6362 /* Quick check for an unreachable or end of file just at the end. */
6363 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6364 {
6365 if (ebb->end_offset == ebb->content_length)
6366 ebb->ends_section = TRUE;
6367 }
6368 else
6369 {
6370 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6371 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6372 && the_entry->address + the_entry->size == new_entry->address)
6373 ebb->ends_unreachable = new_entry;
6374 }
6375
6376 /* Any other ending requires exact alignment. */
6377 return TRUE;
6378}
6379
6380
6381static bfd_boolean
7fa3d080 6382extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6383{
6384 property_table_entry *the_entry, *new_entry;
6385
6386 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6387
6388 /* Stop when (1) we cannot decode the instructions in the current entry.
6389 (2) we are at the beginning of the property tables, (3) we hit a
6390 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6391
6392 while (1)
6393 {
6394 bfd_vma block_begin;
6395 bfd_size_type insn_block_len;
6396
6397 block_begin = the_entry->address - ebb->sec->vma;
6398 insn_block_len =
6399 insn_block_decodable_len (ebb->contents, ebb->content_length,
6400 block_begin,
6401 ebb->start_offset - block_begin);
6402 if (insn_block_len != ebb->start_offset - block_begin)
6403 {
6404 (*_bfd_error_handler)
6405 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6406 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6407 return FALSE;
6408 }
6409 ebb->start_offset -= insn_block_len;
6410
6411 /* Update the reloc counter. */
6412 while (ebb->start_reloc_idx > 0
6413 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6414 >= ebb->start_offset))
6415 {
6416 ebb->start_reloc_idx--;
6417 }
6418
6419 if (ebb->start_ptbl_idx == 0)
6420 return TRUE;
6421
6422 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6423 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6424 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6425 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6426 return TRUE;
6427 if (new_entry->address + new_entry->size != the_entry->address)
6428 return TRUE;
6429
6430 the_entry = new_entry;
6431 ebb->start_ptbl_idx--;
6432 }
6433 return TRUE;
6434}
6435
6436
6437static bfd_size_type
7fa3d080
BW
6438insn_block_decodable_len (bfd_byte *contents,
6439 bfd_size_type content_len,
6440 bfd_vma block_offset,
6441 bfd_size_type block_len)
43cd72b9
BW
6442{
6443 bfd_vma offset = block_offset;
6444
6445 while (offset < block_offset + block_len)
6446 {
6447 bfd_size_type insn_len = 0;
6448
6449 insn_len = insn_decode_len (contents, content_len, offset);
6450 if (insn_len == 0)
6451 return (offset - block_offset);
6452 offset += insn_len;
6453 }
6454 return (offset - block_offset);
6455}
6456
6457
6458static void
7fa3d080 6459ebb_propose_action (ebb_constraint *c,
7fa3d080 6460 enum ebb_target_enum align_type,
288f74fa 6461 bfd_vma alignment_pow,
7fa3d080
BW
6462 text_action_t action,
6463 bfd_vma offset,
6464 int removed_bytes,
6465 bfd_boolean do_action)
43cd72b9 6466{
b08b5071 6467 proposed_action *act;
43cd72b9 6468
43cd72b9
BW
6469 if (c->action_allocated <= c->action_count)
6470 {
b08b5071 6471 unsigned new_allocated, i;
823fc61f 6472 proposed_action *new_actions;
b08b5071
BW
6473
6474 new_allocated = (c->action_count + 2) * 2;
823fc61f 6475 new_actions = (proposed_action *)
43cd72b9
BW
6476 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6477
6478 for (i = 0; i < c->action_count; i++)
6479 new_actions[i] = c->actions[i];
7fa3d080 6480 if (c->actions)
43cd72b9
BW
6481 free (c->actions);
6482 c->actions = new_actions;
6483 c->action_allocated = new_allocated;
6484 }
b08b5071
BW
6485
6486 act = &c->actions[c->action_count];
6487 act->align_type = align_type;
6488 act->alignment_pow = alignment_pow;
6489 act->action = action;
6490 act->offset = offset;
6491 act->removed_bytes = removed_bytes;
6492 act->do_action = do_action;
6493
43cd72b9
BW
6494 c->action_count++;
6495}
6496
6497\f
6498/* Access to internal relocations, section contents and symbols. */
6499
6500/* During relaxation, we need to modify relocations, section contents,
6501 and symbol definitions, and we need to keep the original values from
6502 being reloaded from the input files, i.e., we need to "pin" the
6503 modified values in memory. We also want to continue to observe the
6504 setting of the "keep-memory" flag. The following functions wrap the
6505 standard BFD functions to take care of this for us. */
6506
6507static Elf_Internal_Rela *
7fa3d080 6508retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6509{
6510 Elf_Internal_Rela *internal_relocs;
6511
6512 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6513 return NULL;
6514
6515 internal_relocs = elf_section_data (sec)->relocs;
6516 if (internal_relocs == NULL)
6517 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6518 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6519 return internal_relocs;
6520}
6521
6522
6523static void
7fa3d080 6524pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6525{
6526 elf_section_data (sec)->relocs = internal_relocs;
6527}
6528
6529
6530static void
7fa3d080 6531release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6532{
6533 if (internal_relocs
6534 && elf_section_data (sec)->relocs != internal_relocs)
6535 free (internal_relocs);
6536}
6537
6538
6539static bfd_byte *
7fa3d080 6540retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6541{
6542 bfd_byte *contents;
6543 bfd_size_type sec_size;
6544
6545 sec_size = bfd_get_section_limit (abfd, sec);
6546 contents = elf_section_data (sec)->this_hdr.contents;
68ffbac6 6547
43cd72b9
BW
6548 if (contents == NULL && sec_size != 0)
6549 {
6550 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6551 {
7fa3d080 6552 if (contents)
43cd72b9
BW
6553 free (contents);
6554 return NULL;
6555 }
68ffbac6 6556 if (keep_memory)
43cd72b9
BW
6557 elf_section_data (sec)->this_hdr.contents = contents;
6558 }
6559 return contents;
6560}
6561
6562
6563static void
7fa3d080 6564pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6565{
6566 elf_section_data (sec)->this_hdr.contents = contents;
6567}
6568
6569
6570static void
7fa3d080 6571release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6572{
6573 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6574 free (contents);
6575}
6576
6577
6578static Elf_Internal_Sym *
7fa3d080 6579retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6580{
6581 Elf_Internal_Shdr *symtab_hdr;
6582 Elf_Internal_Sym *isymbuf;
6583 size_t locsymcount;
6584
6585 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6586 locsymcount = symtab_hdr->sh_info;
6587
6588 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6589 if (isymbuf == NULL && locsymcount != 0)
6590 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6591 NULL, NULL, NULL);
6592
6593 /* Save the symbols for this input file so they won't be read again. */
6594 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6595 symtab_hdr->contents = (unsigned char *) isymbuf;
6596
6597 return isymbuf;
6598}
6599
6600\f
6601/* Code for link-time relaxation. */
6602
6603/* Initialization for relaxation: */
7fa3d080 6604static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6605static bfd_boolean find_relaxable_sections
7fa3d080 6606 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6607static bfd_boolean collect_source_relocs
7fa3d080 6608 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6609static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6610 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6611 bfd_boolean *);
43cd72b9 6612static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6613 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6614static bfd_boolean compute_text_actions
7fa3d080
BW
6615 (bfd *, asection *, struct bfd_link_info *);
6616static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6617static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 6618static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
6619 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6620 const xtensa_opcode *);
7fa3d080 6621static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6622static void text_action_add_proposed
7fa3d080
BW
6623 (text_action_list *, const ebb_constraint *, asection *);
6624static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6625
6626/* First pass: */
6627static bfd_boolean compute_removed_literals
7fa3d080 6628 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6629static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6630 (asection *, Elf_Internal_Rela *, bfd_vma);
68ffbac6 6631static bfd_boolean is_removable_literal
99ded152
BW
6632 (const source_reloc *, int, const source_reloc *, int, asection *,
6633 property_table_entry *, int);
43cd72b9 6634static bfd_boolean remove_dead_literal
7fa3d080 6635 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
68ffbac6 6636 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
7fa3d080
BW
6637static bfd_boolean identify_literal_placement
6638 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6639 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6640 source_reloc *, property_table_entry *, int, section_cache_t *,
6641 bfd_boolean);
6642static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6643static bfd_boolean coalesce_shared_literal
7fa3d080 6644 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6645static bfd_boolean move_shared_literal
7fa3d080
BW
6646 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6647 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6648
6649/* Second pass: */
7fa3d080
BW
6650static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6651static bfd_boolean translate_section_fixes (asection *);
6652static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6653static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6654static void shrink_dynamic_reloc_sections
7fa3d080 6655 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6656static bfd_boolean move_literal
7fa3d080
BW
6657 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6658 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6659static bfd_boolean relax_property_section
7fa3d080 6660 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6661
6662/* Third pass: */
7fa3d080 6663static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6664
6665
68ffbac6 6666static bfd_boolean
7fa3d080
BW
6667elf_xtensa_relax_section (bfd *abfd,
6668 asection *sec,
6669 struct bfd_link_info *link_info,
6670 bfd_boolean *again)
43cd72b9
BW
6671{
6672 static value_map_hash_table *values = NULL;
6673 static bfd_boolean relocations_analyzed = FALSE;
6674 xtensa_relax_info *relax_info;
6675
6676 if (!relocations_analyzed)
6677 {
6678 /* Do some overall initialization for relaxation. */
6679 values = value_map_hash_table_init ();
6680 if (values == NULL)
6681 return FALSE;
6682 relaxing_section = TRUE;
6683 if (!analyze_relocations (link_info))
6684 return FALSE;
6685 relocations_analyzed = TRUE;
6686 }
6687 *again = FALSE;
6688
6689 /* Don't mess with linker-created sections. */
6690 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6691 return TRUE;
6692
6693 relax_info = get_xtensa_relax_info (sec);
6694 BFD_ASSERT (relax_info != NULL);
6695
6696 switch (relax_info->visited)
6697 {
6698 case 0:
6699 /* Note: It would be nice to fold this pass into
6700 analyze_relocations, but it is important for this step that the
6701 sections be examined in link order. */
6702 if (!compute_removed_literals (abfd, sec, link_info, values))
6703 return FALSE;
6704 *again = TRUE;
6705 break;
6706
6707 case 1:
6708 if (values)
6709 value_map_hash_table_delete (values);
6710 values = NULL;
6711 if (!relax_section (abfd, sec, link_info))
6712 return FALSE;
6713 *again = TRUE;
6714 break;
6715
6716 case 2:
6717 if (!relax_section_symbols (abfd, sec))
6718 return FALSE;
6719 break;
6720 }
6721
6722 relax_info->visited++;
6723 return TRUE;
6724}
6725
6726\f
6727/* Initialization for relaxation. */
6728
6729/* This function is called once at the start of relaxation. It scans
6730 all the input sections and marks the ones that are relaxable (i.e.,
6731 literal sections with L32R relocations against them), and then
6732 collects source_reloc information for all the relocations against
6733 those relaxable sections. During this process, it also detects
6734 longcalls, i.e., calls relaxed by the assembler into indirect
6735 calls, that can be optimized back into direct calls. Within each
6736 extended basic block (ebb) containing an optimized longcall, it
6737 computes a set of "text actions" that can be performed to remove
6738 the L32R associated with the longcall while optionally preserving
6739 branch target alignments. */
6740
6741static bfd_boolean
7fa3d080 6742analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6743{
6744 bfd *abfd;
6745 asection *sec;
6746 bfd_boolean is_relaxable = FALSE;
6747
6748 /* Initialize the per-section relaxation info. */
6749 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6750 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6751 {
6752 init_xtensa_relax_info (sec);
6753 }
6754
6755 /* Mark relaxable sections (and count relocations against each one). */
6756 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6757 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6758 {
6759 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6760 return FALSE;
6761 }
6762
6763 /* Bail out if there are no relaxable sections. */
6764 if (!is_relaxable)
6765 return TRUE;
6766
6767 /* Allocate space for source_relocs. */
6768 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6769 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6770 {
6771 xtensa_relax_info *relax_info;
6772
6773 relax_info = get_xtensa_relax_info (sec);
6774 if (relax_info->is_relaxable_literal_section
6775 || relax_info->is_relaxable_asm_section)
6776 {
6777 relax_info->src_relocs = (source_reloc *)
6778 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6779 }
25c6282a
BW
6780 else
6781 relax_info->src_count = 0;
43cd72b9
BW
6782 }
6783
6784 /* Collect info on relocations against each relaxable section. */
6785 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6786 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6787 {
6788 if (!collect_source_relocs (abfd, sec, link_info))
6789 return FALSE;
6790 }
6791
6792 /* Compute the text actions. */
6793 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6794 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6795 {
6796 if (!compute_text_actions (abfd, sec, link_info))
6797 return FALSE;
6798 }
6799
6800 return TRUE;
6801}
6802
6803
6804/* Find all the sections that might be relaxed. The motivation for
6805 this pass is that collect_source_relocs() needs to record _all_ the
6806 relocations that target each relaxable section. That is expensive
6807 and unnecessary unless the target section is actually going to be
6808 relaxed. This pass identifies all such sections by checking if
6809 they have L32Rs pointing to them. In the process, the total number
6810 of relocations targeting each section is also counted so that we
6811 know how much space to allocate for source_relocs against each
6812 relaxable literal section. */
6813
6814static bfd_boolean
7fa3d080
BW
6815find_relaxable_sections (bfd *abfd,
6816 asection *sec,
6817 struct bfd_link_info *link_info,
6818 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6819{
6820 Elf_Internal_Rela *internal_relocs;
6821 bfd_byte *contents;
6822 bfd_boolean ok = TRUE;
6823 unsigned i;
6824 xtensa_relax_info *source_relax_info;
25c6282a 6825 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6826
6827 internal_relocs = retrieve_internal_relocs (abfd, sec,
6828 link_info->keep_memory);
68ffbac6 6829 if (internal_relocs == NULL)
43cd72b9
BW
6830 return ok;
6831
6832 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6833 if (contents == NULL && sec->size != 0)
6834 {
6835 ok = FALSE;
6836 goto error_return;
6837 }
6838
6839 source_relax_info = get_xtensa_relax_info (sec);
68ffbac6 6840 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6841 {
6842 Elf_Internal_Rela *irel = &internal_relocs[i];
6843 r_reloc r_rel;
6844 asection *target_sec;
6845 xtensa_relax_info *target_relax_info;
6846
6847 /* If this section has not already been marked as "relaxable", and
6848 if it contains any ASM_EXPAND relocations (marking expanded
6849 longcalls) that can be optimized into direct calls, then mark
6850 the section as "relaxable". */
6851 if (source_relax_info
6852 && !source_relax_info->is_relaxable_asm_section
6853 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6854 {
6855 bfd_boolean is_reachable = FALSE;
6856 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6857 link_info, &is_reachable)
6858 && is_reachable)
6859 {
6860 source_relax_info->is_relaxable_asm_section = TRUE;
6861 *is_relaxable_p = TRUE;
6862 }
6863 }
6864
6865 r_reloc_init (&r_rel, abfd, irel, contents,
6866 bfd_get_section_limit (abfd, sec));
6867
6868 target_sec = r_reloc_get_section (&r_rel);
6869 target_relax_info = get_xtensa_relax_info (target_sec);
6870 if (!target_relax_info)
6871 continue;
6872
6873 /* Count PC-relative operand relocations against the target section.
6874 Note: The conditions tested here must match the conditions under
6875 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6876 is_l32r_reloc = FALSE;
6877 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6878 {
6879 xtensa_opcode opcode =
6880 get_relocation_opcode (abfd, sec, contents, irel);
6881 if (opcode != XTENSA_UNDEFINED)
6882 {
6883 is_l32r_reloc = (opcode == get_l32r_opcode ());
6884 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6885 || is_l32r_reloc)
6886 target_relax_info->src_count++;
6887 }
6888 }
43cd72b9 6889
25c6282a 6890 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6891 {
6892 /* Mark the target section as relaxable. */
6893 target_relax_info->is_relaxable_literal_section = TRUE;
6894 *is_relaxable_p = TRUE;
6895 }
6896 }
6897
6898 error_return:
6899 release_contents (sec, contents);
6900 release_internal_relocs (sec, internal_relocs);
6901 return ok;
6902}
6903
6904
6905/* Record _all_ the relocations that point to relaxable sections, and
6906 get rid of ASM_EXPAND relocs by either converting them to
6907 ASM_SIMPLIFY or by removing them. */
6908
6909static bfd_boolean
7fa3d080
BW
6910collect_source_relocs (bfd *abfd,
6911 asection *sec,
6912 struct bfd_link_info *link_info)
43cd72b9
BW
6913{
6914 Elf_Internal_Rela *internal_relocs;
6915 bfd_byte *contents;
6916 bfd_boolean ok = TRUE;
6917 unsigned i;
6918 bfd_size_type sec_size;
6919
68ffbac6 6920 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 6921 link_info->keep_memory);
68ffbac6 6922 if (internal_relocs == NULL)
43cd72b9
BW
6923 return ok;
6924
6925 sec_size = bfd_get_section_limit (abfd, sec);
6926 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6927 if (contents == NULL && sec_size != 0)
6928 {
6929 ok = FALSE;
6930 goto error_return;
6931 }
6932
6933 /* Record relocations against relaxable literal sections. */
68ffbac6 6934 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6935 {
6936 Elf_Internal_Rela *irel = &internal_relocs[i];
6937 r_reloc r_rel;
6938 asection *target_sec;
6939 xtensa_relax_info *target_relax_info;
6940
6941 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6942
6943 target_sec = r_reloc_get_section (&r_rel);
6944 target_relax_info = get_xtensa_relax_info (target_sec);
6945
6946 if (target_relax_info
6947 && (target_relax_info->is_relaxable_literal_section
6948 || target_relax_info->is_relaxable_asm_section))
6949 {
6950 xtensa_opcode opcode = XTENSA_UNDEFINED;
6951 int opnd = -1;
6952 bfd_boolean is_abs_literal = FALSE;
6953
6954 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6955 {
6956 /* None of the current alternate relocs are PC-relative,
6957 and only PC-relative relocs matter here. However, we
6958 still need to record the opcode for literal
6959 coalescing. */
6960 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6961 if (opcode == get_l32r_opcode ())
6962 {
6963 is_abs_literal = TRUE;
6964 opnd = 1;
6965 }
6966 else
6967 opcode = XTENSA_UNDEFINED;
6968 }
6969 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6970 {
6971 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6972 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6973 }
6974
6975 if (opcode != XTENSA_UNDEFINED)
6976 {
6977 int src_next = target_relax_info->src_next++;
6978 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6979
6980 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6981 is_abs_literal);
6982 }
6983 }
6984 }
6985
6986 /* Now get rid of ASM_EXPAND relocations. At this point, the
6987 src_relocs array for the target literal section may still be
6988 incomplete, but it must at least contain the entries for the L32R
6989 relocations associated with ASM_EXPANDs because they were just
6990 added in the preceding loop over the relocations. */
6991
68ffbac6 6992 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6993 {
6994 Elf_Internal_Rela *irel = &internal_relocs[i];
6995 bfd_boolean is_reachable;
6996
6997 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6998 &is_reachable))
6999 continue;
7000
7001 if (is_reachable)
7002 {
7003 Elf_Internal_Rela *l32r_irel;
7004 r_reloc r_rel;
7005 asection *target_sec;
7006 xtensa_relax_info *target_relax_info;
7007
7008 /* Mark the source_reloc for the L32R so that it will be
7009 removed in compute_removed_literals(), along with the
7010 associated literal. */
7011 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7012 irel, internal_relocs);
7013 if (l32r_irel == NULL)
7014 continue;
7015
7016 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7017
7018 target_sec = r_reloc_get_section (&r_rel);
7019 target_relax_info = get_xtensa_relax_info (target_sec);
7020
7021 if (target_relax_info
7022 && (target_relax_info->is_relaxable_literal_section
7023 || target_relax_info->is_relaxable_asm_section))
7024 {
7025 source_reloc *s_reloc;
7026
7027 /* Search the source_relocs for the entry corresponding to
7028 the l32r_irel. Note: The src_relocs array is not yet
7029 sorted, but it wouldn't matter anyway because we're
7030 searching by source offset instead of target offset. */
68ffbac6 7031 s_reloc = find_source_reloc (target_relax_info->src_relocs,
43cd72b9
BW
7032 target_relax_info->src_next,
7033 sec, l32r_irel);
7034 BFD_ASSERT (s_reloc);
7035 s_reloc->is_null = TRUE;
7036 }
7037
7038 /* Convert this reloc to ASM_SIMPLIFY. */
7039 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7040 R_XTENSA_ASM_SIMPLIFY);
7041 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7042
7043 pin_internal_relocs (sec, internal_relocs);
7044 }
7045 else
7046 {
7047 /* It is resolvable but doesn't reach. We resolve now
7048 by eliminating the relocation -- the call will remain
7049 expanded into L32R/CALLX. */
7050 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7051 pin_internal_relocs (sec, internal_relocs);
7052 }
7053 }
7054
7055 error_return:
7056 release_contents (sec, contents);
7057 release_internal_relocs (sec, internal_relocs);
7058 return ok;
7059}
7060
7061
7062/* Return TRUE if the asm expansion can be resolved. Generally it can
7063 be resolved on a final link or when a partial link locates it in the
7064 same section as the target. Set "is_reachable" flag if the target of
7065 the call is within the range of a direct call, given the current VMA
7066 for this section and the target section. */
7067
7068bfd_boolean
7fa3d080
BW
7069is_resolvable_asm_expansion (bfd *abfd,
7070 asection *sec,
7071 bfd_byte *contents,
7072 Elf_Internal_Rela *irel,
7073 struct bfd_link_info *link_info,
7074 bfd_boolean *is_reachable_p)
43cd72b9
BW
7075{
7076 asection *target_sec;
7077 bfd_vma target_offset;
7078 r_reloc r_rel;
7079 xtensa_opcode opcode, direct_call_opcode;
7080 bfd_vma self_address;
7081 bfd_vma dest_address;
7082 bfd_boolean uses_l32r;
7083 bfd_size_type sec_size;
7084
7085 *is_reachable_p = FALSE;
7086
7087 if (contents == NULL)
7088 return FALSE;
7089
68ffbac6 7090 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
43cd72b9
BW
7091 return FALSE;
7092
7093 sec_size = bfd_get_section_limit (abfd, sec);
7094 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7095 sec_size - irel->r_offset, &uses_l32r);
7096 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7097 if (!uses_l32r)
7098 return FALSE;
68ffbac6 7099
43cd72b9
BW
7100 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7101 if (direct_call_opcode == XTENSA_UNDEFINED)
7102 return FALSE;
7103
7104 /* Check and see that the target resolves. */
7105 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7106 if (!r_reloc_is_defined (&r_rel))
7107 return FALSE;
7108
7109 target_sec = r_reloc_get_section (&r_rel);
7110 target_offset = r_rel.target_offset;
7111
7112 /* If the target is in a shared library, then it doesn't reach. This
7113 isn't supposed to come up because the compiler should never generate
7114 non-PIC calls on systems that use shared libraries, but the linker
7115 shouldn't crash regardless. */
7116 if (!target_sec->output_section)
7117 return FALSE;
68ffbac6 7118
43cd72b9
BW
7119 /* For relocatable sections, we can only simplify when the output
7120 section of the target is the same as the output section of the
7121 source. */
7122 if (link_info->relocatable
7123 && (target_sec->output_section != sec->output_section
7124 || is_reloc_sym_weak (abfd, irel)))
7125 return FALSE;
7126
7127 self_address = (sec->output_section->vma
7128 + sec->output_offset + irel->r_offset + 3);
7129 dest_address = (target_sec->output_section->vma
7130 + target_sec->output_offset + target_offset);
68ffbac6 7131
43cd72b9
BW
7132 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7133 self_address, dest_address);
7134
7135 if ((self_address >> CALL_SEGMENT_BITS) !=
7136 (dest_address >> CALL_SEGMENT_BITS))
7137 return FALSE;
7138
7139 return TRUE;
7140}
7141
7142
7143static Elf_Internal_Rela *
7fa3d080
BW
7144find_associated_l32r_irel (bfd *abfd,
7145 asection *sec,
7146 bfd_byte *contents,
7147 Elf_Internal_Rela *other_irel,
7148 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7149{
7150 unsigned i;
e0001a05 7151
68ffbac6 7152 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7153 {
7154 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7155
43cd72b9
BW
7156 if (irel == other_irel)
7157 continue;
7158 if (irel->r_offset != other_irel->r_offset)
7159 continue;
7160 if (is_l32r_relocation (abfd, sec, contents, irel))
7161 return irel;
7162 }
7163
7164 return NULL;
e0001a05
NC
7165}
7166
7167
cb337148
BW
7168static xtensa_opcode *
7169build_reloc_opcodes (bfd *abfd,
7170 asection *sec,
7171 bfd_byte *contents,
7172 Elf_Internal_Rela *internal_relocs)
7173{
7174 unsigned i;
7175 xtensa_opcode *reloc_opcodes =
7176 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7177 for (i = 0; i < sec->reloc_count; i++)
7178 {
7179 Elf_Internal_Rela *irel = &internal_relocs[i];
7180 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7181 }
7182 return reloc_opcodes;
7183}
7184
7185
43cd72b9
BW
7186/* The compute_text_actions function will build a list of potential
7187 transformation actions for code in the extended basic block of each
7188 longcall that is optimized to a direct call. From this list we
7189 generate a set of actions to actually perform that optimizes for
7190 space and, if not using size_opt, maintains branch target
7191 alignments.
e0001a05 7192
43cd72b9
BW
7193 These actions to be performed are placed on a per-section list.
7194 The actual changes are performed by relax_section() in the second
7195 pass. */
7196
7197bfd_boolean
7fa3d080
BW
7198compute_text_actions (bfd *abfd,
7199 asection *sec,
7200 struct bfd_link_info *link_info)
e0001a05 7201{
cb337148 7202 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7203 xtensa_relax_info *relax_info;
e0001a05 7204 bfd_byte *contents;
43cd72b9 7205 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7206 bfd_boolean ok = TRUE;
7207 unsigned i;
43cd72b9
BW
7208 property_table_entry *prop_table = 0;
7209 int ptblsize = 0;
7210 bfd_size_type sec_size;
43cd72b9 7211
43cd72b9
BW
7212 relax_info = get_xtensa_relax_info (sec);
7213 BFD_ASSERT (relax_info);
25c6282a
BW
7214 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7215
7216 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7217 if (!relax_info->is_relaxable_asm_section)
7218 return ok;
e0001a05
NC
7219
7220 internal_relocs = retrieve_internal_relocs (abfd, sec,
7221 link_info->keep_memory);
e0001a05 7222
43cd72b9
BW
7223 if (internal_relocs)
7224 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7225 internal_reloc_compare);
7226
7227 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7228 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7229 if (contents == NULL && sec_size != 0)
e0001a05
NC
7230 {
7231 ok = FALSE;
7232 goto error_return;
7233 }
7234
43cd72b9
BW
7235 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7236 XTENSA_PROP_SEC_NAME, FALSE);
7237 if (ptblsize < 0)
7238 {
7239 ok = FALSE;
7240 goto error_return;
7241 }
7242
7243 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7244 {
7245 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7246 bfd_vma r_offset;
7247 property_table_entry *the_entry;
7248 int ptbl_idx;
7249 ebb_t *ebb;
7250 ebb_constraint ebb_table;
7251 bfd_size_type simplify_size;
7252
7253 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7254 continue;
7255 r_offset = irel->r_offset;
e0001a05 7256
43cd72b9
BW
7257 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7258 if (simplify_size == 0)
7259 {
7260 (*_bfd_error_handler)
7261 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7262 sec->owner, sec, r_offset);
7263 continue;
7264 }
e0001a05 7265
43cd72b9
BW
7266 /* If the instruction table is not around, then don't do this
7267 relaxation. */
7268 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7269 sec->vma + irel->r_offset);
7270 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7271 {
7272 text_action_add (&relax_info->action_list,
7273 ta_convert_longcall, sec, r_offset,
7274 0);
7275 continue;
7276 }
7277
7278 /* If the next longcall happens to be at the same address as an
7279 unreachable section of size 0, then skip forward. */
7280 ptbl_idx = the_entry - prop_table;
7281 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7282 && the_entry->size == 0
7283 && ptbl_idx + 1 < ptblsize
7284 && (prop_table[ptbl_idx + 1].address
7285 == prop_table[ptbl_idx].address))
7286 {
7287 ptbl_idx++;
7288 the_entry++;
7289 }
e0001a05 7290
99ded152 7291 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7292 /* NO_REORDER is OK */
7293 continue;
e0001a05 7294
43cd72b9
BW
7295 init_ebb_constraint (&ebb_table);
7296 ebb = &ebb_table.ebb;
7297 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7298 internal_relocs, sec->reloc_count);
7299 ebb->start_offset = r_offset + simplify_size;
7300 ebb->end_offset = r_offset + simplify_size;
7301 ebb->start_ptbl_idx = ptbl_idx;
7302 ebb->end_ptbl_idx = ptbl_idx;
7303 ebb->start_reloc_idx = i;
7304 ebb->end_reloc_idx = i;
7305
cb337148
BW
7306 /* Precompute the opcode for each relocation. */
7307 if (reloc_opcodes == NULL)
7308 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7309 internal_relocs);
7310
43cd72b9
BW
7311 if (!extend_ebb_bounds (ebb)
7312 || !compute_ebb_proposed_actions (&ebb_table)
7313 || !compute_ebb_actions (&ebb_table)
7314 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
7315 internal_relocs, &ebb_table,
7316 reloc_opcodes)
43cd72b9 7317 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7318 {
43cd72b9
BW
7319 /* If anything goes wrong or we get unlucky and something does
7320 not fit, with our plan because of expansion between
7321 critical branches, just convert to a NOP. */
7322
7323 text_action_add (&relax_info->action_list,
7324 ta_convert_longcall, sec, r_offset, 0);
7325 i = ebb_table.ebb.end_reloc_idx;
7326 free_ebb_constraint (&ebb_table);
7327 continue;
e0001a05 7328 }
43cd72b9
BW
7329
7330 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7331
7332 /* Update the index so we do not go looking at the relocations
7333 we have already processed. */
7334 i = ebb_table.ebb.end_reloc_idx;
7335 free_ebb_constraint (&ebb_table);
e0001a05
NC
7336 }
7337
43cd72b9 7338#if DEBUG
7fa3d080 7339 if (relax_info->action_list.head)
43cd72b9
BW
7340 print_action_list (stderr, &relax_info->action_list);
7341#endif
7342
7343error_return:
e0001a05
NC
7344 release_contents (sec, contents);
7345 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7346 if (prop_table)
7347 free (prop_table);
cb337148
BW
7348 if (reloc_opcodes)
7349 free (reloc_opcodes);
43cd72b9 7350
e0001a05
NC
7351 return ok;
7352}
7353
7354
64b607e6
BW
7355/* Do not widen an instruction if it is preceeded by a
7356 loop opcode. It might cause misalignment. */
7357
7358static bfd_boolean
7359prev_instr_is_a_loop (bfd_byte *contents,
7360 bfd_size_type content_length,
7361 bfd_size_type offset)
7362{
7363 xtensa_opcode prev_opcode;
7364
7365 if (offset < 3)
7366 return FALSE;
7367 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7368 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
68ffbac6 7369}
64b607e6
BW
7370
7371
43cd72b9 7372/* Find all of the possible actions for an extended basic block. */
e0001a05 7373
43cd72b9 7374bfd_boolean
7fa3d080 7375compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7376{
43cd72b9
BW
7377 const ebb_t *ebb = &ebb_table->ebb;
7378 unsigned rel_idx = ebb->start_reloc_idx;
7379 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7380 bfd_vma offset = 0;
7381 xtensa_isa isa = xtensa_default_isa;
7382 xtensa_format fmt;
7383 static xtensa_insnbuf insnbuf = NULL;
7384 static xtensa_insnbuf slotbuf = NULL;
7385
7386 if (insnbuf == NULL)
7387 {
7388 insnbuf = xtensa_insnbuf_alloc (isa);
7389 slotbuf = xtensa_insnbuf_alloc (isa);
7390 }
e0001a05 7391
43cd72b9
BW
7392 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7393 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7394
43cd72b9 7395 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7396 {
64b607e6 7397 bfd_vma start_offset, end_offset;
43cd72b9 7398 bfd_size_type insn_len;
e0001a05 7399
43cd72b9
BW
7400 start_offset = entry->address - ebb->sec->vma;
7401 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7402
43cd72b9
BW
7403 if (entry == start_entry)
7404 start_offset = ebb->start_offset;
7405 if (entry == end_entry)
7406 end_offset = ebb->end_offset;
7407 offset = start_offset;
e0001a05 7408
43cd72b9
BW
7409 if (offset == entry->address - ebb->sec->vma
7410 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7411 {
7412 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7413 BFD_ASSERT (offset != end_offset);
7414 if (offset == end_offset)
7415 return FALSE;
e0001a05 7416
43cd72b9
BW
7417 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7418 offset);
68ffbac6 7419 if (insn_len == 0)
64b607e6
BW
7420 goto decode_error;
7421
43cd72b9
BW
7422 if (check_branch_target_aligned_address (offset, insn_len))
7423 align_type = EBB_REQUIRE_TGT_ALIGN;
7424
7425 ebb_propose_action (ebb_table, align_type, 0,
7426 ta_none, offset, 0, TRUE);
7427 }
7428
7429 while (offset != end_offset)
e0001a05 7430 {
43cd72b9 7431 Elf_Internal_Rela *irel;
e0001a05 7432 xtensa_opcode opcode;
e0001a05 7433
43cd72b9
BW
7434 while (rel_idx < ebb->end_reloc_idx
7435 && (ebb->relocs[rel_idx].r_offset < offset
7436 || (ebb->relocs[rel_idx].r_offset == offset
7437 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7438 != R_XTENSA_ASM_SIMPLIFY))))
7439 rel_idx++;
7440
7441 /* Check for longcall. */
7442 irel = &ebb->relocs[rel_idx];
7443 if (irel->r_offset == offset
7444 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7445 {
7446 bfd_size_type simplify_size;
e0001a05 7447
68ffbac6 7448 simplify_size = get_asm_simplify_size (ebb->contents,
43cd72b9
BW
7449 ebb->content_length,
7450 irel->r_offset);
7451 if (simplify_size == 0)
64b607e6 7452 goto decode_error;
43cd72b9
BW
7453
7454 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7455 ta_convert_longcall, offset, 0, TRUE);
68ffbac6 7456
43cd72b9
BW
7457 offset += simplify_size;
7458 continue;
7459 }
e0001a05 7460
64b607e6
BW
7461 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7462 goto decode_error;
7463 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7464 ebb->content_length - offset);
7465 fmt = xtensa_format_decode (isa, insnbuf);
7466 if (fmt == XTENSA_UNDEFINED)
7467 goto decode_error;
7468 insn_len = xtensa_format_length (isa, fmt);
7469 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7470 goto decode_error;
7471
7472 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7473 {
64b607e6
BW
7474 offset += insn_len;
7475 continue;
43cd72b9 7476 }
64b607e6
BW
7477
7478 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7479 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7480 if (opcode == XTENSA_UNDEFINED)
7481 goto decode_error;
7482
43cd72b9 7483 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7484 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7485 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7486 {
7487 /* Add an instruction narrow action. */
7488 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7489 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7490 }
99ded152 7491 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7492 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7493 && ! prev_instr_is_a_loop (ebb->contents,
7494 ebb->content_length, offset))
43cd72b9
BW
7495 {
7496 /* Add an instruction widen action. */
7497 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7498 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7499 }
64b607e6 7500 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7501 {
7502 /* Check for branch targets. */
7503 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7504 ta_none, offset, 0, TRUE);
43cd72b9
BW
7505 }
7506
7507 offset += insn_len;
e0001a05
NC
7508 }
7509 }
7510
43cd72b9
BW
7511 if (ebb->ends_unreachable)
7512 {
7513 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7514 ta_fill, ebb->end_offset, 0, TRUE);
7515 }
e0001a05 7516
43cd72b9 7517 return TRUE;
64b607e6
BW
7518
7519 decode_error:
7520 (*_bfd_error_handler)
7521 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7522 ebb->sec->owner, ebb->sec, offset);
7523 return FALSE;
43cd72b9
BW
7524}
7525
7526
7527/* After all of the information has collected about the
7528 transformations possible in an EBB, compute the appropriate actions
7529 here in compute_ebb_actions. We still must check later to make
7530 sure that the actions do not break any relocations. The algorithm
7531 used here is pretty greedy. Basically, it removes as many no-ops
7532 as possible so that the end of the EBB has the same alignment
7533 characteristics as the original. First, it uses narrowing, then
7534 fill space at the end of the EBB, and finally widenings. If that
7535 does not work, it tries again with one fewer no-op removed. The
7536 optimization will only be performed if all of the branch targets
7537 that were aligned before transformation are also aligned after the
7538 transformation.
7539
7540 When the size_opt flag is set, ignore the branch target alignments,
7541 narrow all wide instructions, and remove all no-ops unless the end
7542 of the EBB prevents it. */
7543
7544bfd_boolean
7fa3d080 7545compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7546{
7547 unsigned i = 0;
7548 unsigned j;
7549 int removed_bytes = 0;
7550 ebb_t *ebb = &ebb_table->ebb;
7551 unsigned seg_idx_start = 0;
7552 unsigned seg_idx_end = 0;
7553
7554 /* We perform this like the assembler relaxation algorithm: Start by
7555 assuming all instructions are narrow and all no-ops removed; then
7556 walk through.... */
7557
7558 /* For each segment of this that has a solid constraint, check to
7559 see if there are any combinations that will keep the constraint.
7560 If so, use it. */
7561 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7562 {
43cd72b9
BW
7563 bfd_boolean requires_text_end_align = FALSE;
7564 unsigned longcall_count = 0;
7565 unsigned longcall_convert_count = 0;
7566 unsigned narrowable_count = 0;
7567 unsigned narrowable_convert_count = 0;
7568 unsigned widenable_count = 0;
7569 unsigned widenable_convert_count = 0;
e0001a05 7570
43cd72b9
BW
7571 proposed_action *action = NULL;
7572 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7573
43cd72b9 7574 seg_idx_start = seg_idx_end;
e0001a05 7575
43cd72b9
BW
7576 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7577 {
7578 action = &ebb_table->actions[i];
7579 if (action->action == ta_convert_longcall)
7580 longcall_count++;
7581 if (action->action == ta_narrow_insn)
7582 narrowable_count++;
7583 if (action->action == ta_widen_insn)
7584 widenable_count++;
7585 if (action->action == ta_fill)
7586 break;
7587 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7588 break;
7589 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7590 && !elf32xtensa_size_opt)
7591 break;
7592 }
7593 seg_idx_end = i;
e0001a05 7594
43cd72b9
BW
7595 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7596 requires_text_end_align = TRUE;
e0001a05 7597
43cd72b9
BW
7598 if (elf32xtensa_size_opt && !requires_text_end_align
7599 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7600 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7601 {
7602 longcall_convert_count = longcall_count;
7603 narrowable_convert_count = narrowable_count;
7604 widenable_convert_count = 0;
7605 }
7606 else
7607 {
7608 /* There is a constraint. Convert the max number of longcalls. */
7609 narrowable_convert_count = 0;
7610 longcall_convert_count = 0;
7611 widenable_convert_count = 0;
e0001a05 7612
43cd72b9 7613 for (j = 0; j < longcall_count; j++)
e0001a05 7614 {
43cd72b9
BW
7615 int removed = (longcall_count - j) * 3 & (align - 1);
7616 unsigned desire_narrow = (align - removed) & (align - 1);
7617 unsigned desire_widen = removed;
7618 if (desire_narrow <= narrowable_count)
7619 {
7620 narrowable_convert_count = desire_narrow;
7621 narrowable_convert_count +=
7622 (align * ((narrowable_count - narrowable_convert_count)
7623 / align));
7624 longcall_convert_count = (longcall_count - j);
7625 widenable_convert_count = 0;
7626 break;
7627 }
7628 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7629 {
7630 narrowable_convert_count = 0;
7631 longcall_convert_count = longcall_count - j;
7632 widenable_convert_count = desire_widen;
7633 break;
7634 }
7635 }
7636 }
e0001a05 7637
43cd72b9
BW
7638 /* Now the number of conversions are saved. Do them. */
7639 for (i = seg_idx_start; i < seg_idx_end; i++)
7640 {
7641 action = &ebb_table->actions[i];
7642 switch (action->action)
7643 {
7644 case ta_convert_longcall:
7645 if (longcall_convert_count != 0)
7646 {
7647 action->action = ta_remove_longcall;
7648 action->do_action = TRUE;
7649 action->removed_bytes += 3;
7650 longcall_convert_count--;
7651 }
7652 break;
7653 case ta_narrow_insn:
7654 if (narrowable_convert_count != 0)
7655 {
7656 action->do_action = TRUE;
7657 action->removed_bytes += 1;
7658 narrowable_convert_count--;
7659 }
7660 break;
7661 case ta_widen_insn:
7662 if (widenable_convert_count != 0)
7663 {
7664 action->do_action = TRUE;
7665 action->removed_bytes -= 1;
7666 widenable_convert_count--;
7667 }
7668 break;
7669 default:
7670 break;
e0001a05 7671 }
43cd72b9
BW
7672 }
7673 }
e0001a05 7674
43cd72b9
BW
7675 /* Now we move on to some local opts. Try to remove each of the
7676 remaining longcalls. */
e0001a05 7677
43cd72b9
BW
7678 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7679 {
7680 removed_bytes = 0;
7681 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7682 {
43cd72b9
BW
7683 int old_removed_bytes = removed_bytes;
7684 proposed_action *action = &ebb_table->actions[i];
7685
7686 if (action->do_action && action->action == ta_convert_longcall)
7687 {
7688 bfd_boolean bad_alignment = FALSE;
7689 removed_bytes += 3;
7690 for (j = i + 1; j < ebb_table->action_count; j++)
7691 {
7692 proposed_action *new_action = &ebb_table->actions[j];
7693 bfd_vma offset = new_action->offset;
7694 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7695 {
7696 if (!check_branch_target_aligned
7697 (ebb_table->ebb.contents,
7698 ebb_table->ebb.content_length,
7699 offset, offset - removed_bytes))
7700 {
7701 bad_alignment = TRUE;
7702 break;
7703 }
7704 }
7705 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7706 {
7707 if (!check_loop_aligned (ebb_table->ebb.contents,
7708 ebb_table->ebb.content_length,
7709 offset,
7710 offset - removed_bytes))
7711 {
7712 bad_alignment = TRUE;
7713 break;
7714 }
7715 }
7716 if (new_action->action == ta_narrow_insn
7717 && !new_action->do_action
7718 && ebb_table->ebb.sec->alignment_power == 2)
7719 {
7720 /* Narrow an instruction and we are done. */
7721 new_action->do_action = TRUE;
7722 new_action->removed_bytes += 1;
7723 bad_alignment = FALSE;
7724 break;
7725 }
7726 if (new_action->action == ta_widen_insn
7727 && new_action->do_action
7728 && ebb_table->ebb.sec->alignment_power == 2)
7729 {
7730 /* Narrow an instruction and we are done. */
7731 new_action->do_action = FALSE;
7732 new_action->removed_bytes += 1;
7733 bad_alignment = FALSE;
7734 break;
7735 }
5c5d6806
BW
7736 if (new_action->do_action)
7737 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
7738 }
7739 if (!bad_alignment)
7740 {
7741 action->removed_bytes += 3;
7742 action->action = ta_remove_longcall;
7743 action->do_action = TRUE;
7744 }
7745 }
7746 removed_bytes = old_removed_bytes;
7747 if (action->do_action)
7748 removed_bytes += action->removed_bytes;
e0001a05
NC
7749 }
7750 }
7751
43cd72b9
BW
7752 removed_bytes = 0;
7753 for (i = 0; i < ebb_table->action_count; ++i)
7754 {
7755 proposed_action *action = &ebb_table->actions[i];
7756 if (action->do_action)
7757 removed_bytes += action->removed_bytes;
7758 }
7759
7760 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7761 && ebb->ends_unreachable)
7762 {
7763 proposed_action *action;
7764 int br;
7765 int extra_space;
7766
7767 BFD_ASSERT (ebb_table->action_count != 0);
7768 action = &ebb_table->actions[ebb_table->action_count - 1];
7769 BFD_ASSERT (action->action == ta_fill);
7770 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7771
7772 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7773 br = action->removed_bytes + removed_bytes + extra_space;
7774 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7775
7776 action->removed_bytes = extra_space - br;
7777 }
7778 return TRUE;
e0001a05
NC
7779}
7780
7781
03e94c08
BW
7782/* The xlate_map is a sorted array of address mappings designed to
7783 answer the offset_with_removed_text() query with a binary search instead
7784 of a linear search through the section's action_list. */
7785
7786typedef struct xlate_map_entry xlate_map_entry_t;
7787typedef struct xlate_map xlate_map_t;
7788
7789struct xlate_map_entry
7790{
7791 unsigned orig_address;
7792 unsigned new_address;
7793 unsigned size;
7794};
7795
7796struct xlate_map
7797{
7798 unsigned entry_count;
7799 xlate_map_entry_t *entry;
7800};
7801
7802
68ffbac6 7803static int
03e94c08
BW
7804xlate_compare (const void *a_v, const void *b_v)
7805{
7806 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7807 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7808 if (a->orig_address < b->orig_address)
7809 return -1;
7810 if (a->orig_address > (b->orig_address + b->size - 1))
7811 return 1;
7812 return 0;
7813}
7814
7815
7816static bfd_vma
7817xlate_offset_with_removed_text (const xlate_map_t *map,
7818 text_action_list *action_list,
7819 bfd_vma offset)
7820{
03e94c08
BW
7821 void *r;
7822 xlate_map_entry_t *e;
7823
7824 if (map == NULL)
7825 return offset_with_removed_text (action_list, offset);
7826
7827 if (map->entry_count == 0)
7828 return offset;
7829
03e94c08
BW
7830 r = bsearch (&offset, map->entry, map->entry_count,
7831 sizeof (xlate_map_entry_t), &xlate_compare);
7832 e = (xlate_map_entry_t *) r;
68ffbac6 7833
03e94c08
BW
7834 BFD_ASSERT (e != NULL);
7835 if (e == NULL)
7836 return offset;
7837 return e->new_address - e->orig_address + offset;
7838}
7839
7840
7841/* Build a binary searchable offset translation map from a section's
7842 action list. */
7843
7844static xlate_map_t *
7845build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7846{
7847 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7848 text_action_list *action_list = &relax_info->action_list;
7849 unsigned num_actions = 0;
7850 text_action *r;
7851 int removed;
7852 xlate_map_entry_t *current_entry;
7853
7854 if (map == NULL)
7855 return NULL;
7856
7857 num_actions = action_list_count (action_list);
68ffbac6 7858 map->entry = (xlate_map_entry_t *)
03e94c08
BW
7859 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7860 if (map->entry == NULL)
7861 {
7862 free (map);
7863 return NULL;
7864 }
7865 map->entry_count = 0;
68ffbac6 7866
03e94c08
BW
7867 removed = 0;
7868 current_entry = &map->entry[0];
7869
7870 current_entry->orig_address = 0;
7871 current_entry->new_address = 0;
7872 current_entry->size = 0;
7873
7874 for (r = action_list->head; r != NULL; r = r->next)
7875 {
7876 unsigned orig_size = 0;
7877 switch (r->action)
7878 {
7879 case ta_none:
7880 case ta_remove_insn:
7881 case ta_convert_longcall:
7882 case ta_remove_literal:
7883 case ta_add_literal:
7884 break;
7885 case ta_remove_longcall:
7886 orig_size = 6;
7887 break;
7888 case ta_narrow_insn:
7889 orig_size = 3;
7890 break;
7891 case ta_widen_insn:
7892 orig_size = 2;
7893 break;
7894 case ta_fill:
7895 break;
7896 }
7897 current_entry->size =
7898 r->offset + orig_size - current_entry->orig_address;
7899 if (current_entry->size != 0)
7900 {
7901 current_entry++;
7902 map->entry_count++;
7903 }
7904 current_entry->orig_address = r->offset + orig_size;
7905 removed += r->removed_bytes;
7906 current_entry->new_address = r->offset + orig_size - removed;
7907 current_entry->size = 0;
7908 }
7909
7910 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7911 - current_entry->orig_address);
7912 if (current_entry->size != 0)
7913 map->entry_count++;
7914
7915 return map;
7916}
7917
7918
7919/* Free an offset translation map. */
7920
68ffbac6 7921static void
03e94c08
BW
7922free_xlate_map (xlate_map_t *map)
7923{
7924 if (map && map->entry)
7925 free (map->entry);
7926 if (map)
7927 free (map);
7928}
7929
7930
43cd72b9
BW
7931/* Use check_section_ebb_pcrels_fit to make sure that all of the
7932 relocations in a section will fit if a proposed set of actions
7933 are performed. */
e0001a05 7934
43cd72b9 7935static bfd_boolean
7fa3d080
BW
7936check_section_ebb_pcrels_fit (bfd *abfd,
7937 asection *sec,
7938 bfd_byte *contents,
7939 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7940 const ebb_constraint *constraint,
7941 const xtensa_opcode *reloc_opcodes)
e0001a05 7942{
43cd72b9
BW
7943 unsigned i, j;
7944 Elf_Internal_Rela *irel;
03e94c08
BW
7945 xlate_map_t *xmap = NULL;
7946 bfd_boolean ok = TRUE;
43cd72b9 7947 xtensa_relax_info *relax_info;
e0001a05 7948
43cd72b9 7949 relax_info = get_xtensa_relax_info (sec);
e0001a05 7950
03e94c08
BW
7951 if (relax_info && sec->reloc_count > 100)
7952 {
7953 xmap = build_xlate_map (sec, relax_info);
7954 /* NULL indicates out of memory, but the slow version
7955 can still be used. */
7956 }
7957
43cd72b9
BW
7958 for (i = 0; i < sec->reloc_count; i++)
7959 {
7960 r_reloc r_rel;
7961 bfd_vma orig_self_offset, orig_target_offset;
7962 bfd_vma self_offset, target_offset;
7963 int r_type;
7964 reloc_howto_type *howto;
7965 int self_removed_bytes, target_removed_bytes;
e0001a05 7966
43cd72b9
BW
7967 irel = &internal_relocs[i];
7968 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7969
43cd72b9
BW
7970 howto = &elf_howto_table[r_type];
7971 /* We maintain the required invariant: PC-relative relocations
7972 that fit before linking must fit after linking. Thus we only
7973 need to deal with relocations to the same section that are
7974 PC-relative. */
1bbb5f21
BW
7975 if (r_type == R_XTENSA_ASM_SIMPLIFY
7976 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7977 || !howto->pc_relative)
7978 continue;
e0001a05 7979
43cd72b9
BW
7980 r_reloc_init (&r_rel, abfd, irel, contents,
7981 bfd_get_section_limit (abfd, sec));
e0001a05 7982
43cd72b9
BW
7983 if (r_reloc_get_section (&r_rel) != sec)
7984 continue;
e0001a05 7985
43cd72b9
BW
7986 orig_self_offset = irel->r_offset;
7987 orig_target_offset = r_rel.target_offset;
e0001a05 7988
43cd72b9
BW
7989 self_offset = orig_self_offset;
7990 target_offset = orig_target_offset;
7991
7992 if (relax_info)
7993 {
03e94c08
BW
7994 self_offset =
7995 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7996 orig_self_offset);
7997 target_offset =
7998 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7999 orig_target_offset);
43cd72b9
BW
8000 }
8001
8002 self_removed_bytes = 0;
8003 target_removed_bytes = 0;
8004
8005 for (j = 0; j < constraint->action_count; ++j)
8006 {
8007 proposed_action *action = &constraint->actions[j];
8008 bfd_vma offset = action->offset;
8009 int removed_bytes = action->removed_bytes;
8010 if (offset < orig_self_offset
8011 || (offset == orig_self_offset && action->action == ta_fill
8012 && action->removed_bytes < 0))
8013 self_removed_bytes += removed_bytes;
8014 if (offset < orig_target_offset
8015 || (offset == orig_target_offset && action->action == ta_fill
8016 && action->removed_bytes < 0))
8017 target_removed_bytes += removed_bytes;
8018 }
8019 self_offset -= self_removed_bytes;
8020 target_offset -= target_removed_bytes;
8021
8022 /* Try to encode it. Get the operand and check. */
8023 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8024 {
8025 /* None of the current alternate relocs are PC-relative,
8026 and only PC-relative relocs matter here. */
8027 }
8028 else
8029 {
8030 xtensa_opcode opcode;
8031 int opnum;
8032
cb337148
BW
8033 if (reloc_opcodes)
8034 opcode = reloc_opcodes[i];
8035 else
8036 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 8037 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
8038 {
8039 ok = FALSE;
8040 break;
8041 }
43cd72b9
BW
8042
8043 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8044 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
8045 {
8046 ok = FALSE;
8047 break;
8048 }
43cd72b9
BW
8049
8050 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8051 {
8052 ok = FALSE;
8053 break;
8054 }
43cd72b9
BW
8055 }
8056 }
8057
03e94c08
BW
8058 if (xmap)
8059 free_xlate_map (xmap);
8060
8061 return ok;
43cd72b9
BW
8062}
8063
8064
8065static bfd_boolean
7fa3d080 8066check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8067{
8068 int removed = 0;
8069 unsigned i;
8070
8071 for (i = 0; i < constraint->action_count; i++)
8072 {
8073 const proposed_action *action = &constraint->actions[i];
8074 if (action->do_action)
8075 removed += action->removed_bytes;
8076 }
8077 if (removed < 0)
e0001a05
NC
8078 return FALSE;
8079
8080 return TRUE;
8081}
8082
8083
43cd72b9 8084void
7fa3d080
BW
8085text_action_add_proposed (text_action_list *l,
8086 const ebb_constraint *ebb_table,
8087 asection *sec)
e0001a05
NC
8088{
8089 unsigned i;
8090
43cd72b9 8091 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8092 {
43cd72b9 8093 proposed_action *action = &ebb_table->actions[i];
e0001a05 8094
43cd72b9 8095 if (!action->do_action)
e0001a05 8096 continue;
43cd72b9
BW
8097 switch (action->action)
8098 {
8099 case ta_remove_insn:
8100 case ta_remove_longcall:
8101 case ta_convert_longcall:
8102 case ta_narrow_insn:
8103 case ta_widen_insn:
8104 case ta_fill:
8105 case ta_remove_literal:
8106 text_action_add (l, action->action, sec, action->offset,
8107 action->removed_bytes);
8108 break;
8109 case ta_none:
8110 break;
8111 default:
8112 BFD_ASSERT (0);
8113 break;
8114 }
e0001a05 8115 }
43cd72b9 8116}
e0001a05 8117
43cd72b9
BW
8118
8119int
7fa3d080 8120compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8121{
8122 int fill_extra_space;
8123
8124 if (!entry)
8125 return 0;
8126
8127 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8128 return 0;
8129
8130 fill_extra_space = entry->size;
8131 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8132 {
8133 /* Fill bytes for alignment:
8134 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8135 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8136 int nsm = (1 << pow) - 1;
8137 bfd_vma addr = entry->address + entry->size;
8138 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8139 fill_extra_space += align_fill;
8140 }
8141 return fill_extra_space;
e0001a05
NC
8142}
8143
43cd72b9 8144\f
e0001a05
NC
8145/* First relaxation pass. */
8146
43cd72b9
BW
8147/* If the section contains relaxable literals, check each literal to
8148 see if it has the same value as another literal that has already
8149 been seen, either in the current section or a previous one. If so,
8150 add an entry to the per-section list of removed literals. The
e0001a05
NC
8151 actual changes are deferred until the next pass. */
8152
68ffbac6 8153static bfd_boolean
7fa3d080
BW
8154compute_removed_literals (bfd *abfd,
8155 asection *sec,
8156 struct bfd_link_info *link_info,
8157 value_map_hash_table *values)
e0001a05
NC
8158{
8159 xtensa_relax_info *relax_info;
8160 bfd_byte *contents;
8161 Elf_Internal_Rela *internal_relocs;
43cd72b9 8162 source_reloc *src_relocs, *rel;
e0001a05 8163 bfd_boolean ok = TRUE;
43cd72b9
BW
8164 property_table_entry *prop_table = NULL;
8165 int ptblsize;
8166 int i, prev_i;
8167 bfd_boolean last_loc_is_prev = FALSE;
8168 bfd_vma last_target_offset = 0;
8169 section_cache_t target_sec_cache;
8170 bfd_size_type sec_size;
8171
8172 init_section_cache (&target_sec_cache);
e0001a05
NC
8173
8174 /* Do nothing if it is not a relaxable literal section. */
8175 relax_info = get_xtensa_relax_info (sec);
8176 BFD_ASSERT (relax_info);
e0001a05
NC
8177 if (!relax_info->is_relaxable_literal_section)
8178 return ok;
8179
68ffbac6 8180 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
8181 link_info->keep_memory);
8182
43cd72b9 8183 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8184 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8185 if (contents == NULL && sec_size != 0)
e0001a05
NC
8186 {
8187 ok = FALSE;
8188 goto error_return;
8189 }
8190
8191 /* Sort the source_relocs by target offset. */
8192 src_relocs = relax_info->src_relocs;
8193 qsort (src_relocs, relax_info->src_count,
8194 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8195 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8196 internal_reloc_compare);
e0001a05 8197
43cd72b9
BW
8198 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8199 XTENSA_PROP_SEC_NAME, FALSE);
8200 if (ptblsize < 0)
8201 {
8202 ok = FALSE;
8203 goto error_return;
8204 }
8205
8206 prev_i = -1;
e0001a05
NC
8207 for (i = 0; i < relax_info->src_count; i++)
8208 {
e0001a05 8209 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8210
8211 rel = &src_relocs[i];
43cd72b9
BW
8212 if (get_l32r_opcode () != rel->opcode)
8213 continue;
e0001a05
NC
8214 irel = get_irel_at_offset (sec, internal_relocs,
8215 rel->r_rel.target_offset);
8216
43cd72b9
BW
8217 /* If the relocation on this is not a simple R_XTENSA_32 or
8218 R_XTENSA_PLT then do not consider it. This may happen when
8219 the difference of two symbols is used in a literal. */
8220 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8221 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8222 continue;
8223
e0001a05
NC
8224 /* If the target_offset for this relocation is the same as the
8225 previous relocation, then we've already considered whether the
8226 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8227 if (i != 0 && prev_i != -1
8228 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8229 continue;
43cd72b9
BW
8230 prev_i = i;
8231
68ffbac6 8232 if (last_loc_is_prev &&
43cd72b9
BW
8233 last_target_offset + 4 != rel->r_rel.target_offset)
8234 last_loc_is_prev = FALSE;
e0001a05
NC
8235
8236 /* Check if the relocation was from an L32R that is being removed
8237 because a CALLX was converted to a direct CALL, and check if
8238 there are no other relocations to the literal. */
68ffbac6 8239 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
99ded152 8240 sec, prop_table, ptblsize))
e0001a05 8241 {
43cd72b9
BW
8242 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8243 irel, rel, prop_table, ptblsize))
e0001a05 8244 {
43cd72b9
BW
8245 ok = FALSE;
8246 goto error_return;
e0001a05 8247 }
43cd72b9 8248 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8249 continue;
8250 }
8251
43cd72b9 8252 if (!identify_literal_placement (abfd, sec, contents, link_info,
68ffbac6
L
8253 values,
8254 &last_loc_is_prev, irel,
43cd72b9
BW
8255 relax_info->src_count - i, rel,
8256 prop_table, ptblsize,
8257 &target_sec_cache, rel->is_abs_literal))
e0001a05 8258 {
43cd72b9
BW
8259 ok = FALSE;
8260 goto error_return;
8261 }
8262 last_target_offset = rel->r_rel.target_offset;
8263 }
e0001a05 8264
43cd72b9
BW
8265#if DEBUG
8266 print_removed_literals (stderr, &relax_info->removed_list);
8267 print_action_list (stderr, &relax_info->action_list);
8268#endif /* DEBUG */
8269
8270error_return:
65e911f9
AM
8271 if (prop_table)
8272 free (prop_table);
8273 free_section_cache (&target_sec_cache);
43cd72b9
BW
8274
8275 release_contents (sec, contents);
8276 release_internal_relocs (sec, internal_relocs);
8277 return ok;
8278}
8279
8280
8281static Elf_Internal_Rela *
7fa3d080
BW
8282get_irel_at_offset (asection *sec,
8283 Elf_Internal_Rela *internal_relocs,
8284 bfd_vma offset)
43cd72b9
BW
8285{
8286 unsigned i;
8287 Elf_Internal_Rela *irel;
8288 unsigned r_type;
8289 Elf_Internal_Rela key;
8290
68ffbac6 8291 if (!internal_relocs)
43cd72b9
BW
8292 return NULL;
8293
8294 key.r_offset = offset;
8295 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8296 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8297 if (!irel)
8298 return NULL;
8299
8300 /* bsearch does not guarantee which will be returned if there are
8301 multiple matches. We need the first that is not an alignment. */
8302 i = irel - internal_relocs;
8303 while (i > 0)
8304 {
8305 if (internal_relocs[i-1].r_offset != offset)
8306 break;
8307 i--;
8308 }
8309 for ( ; i < sec->reloc_count; i++)
8310 {
8311 irel = &internal_relocs[i];
8312 r_type = ELF32_R_TYPE (irel->r_info);
8313 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8314 return irel;
8315 }
8316
8317 return NULL;
8318}
8319
8320
8321bfd_boolean
7fa3d080
BW
8322is_removable_literal (const source_reloc *rel,
8323 int i,
8324 const source_reloc *src_relocs,
99ded152
BW
8325 int src_count,
8326 asection *sec,
8327 property_table_entry *prop_table,
8328 int ptblsize)
43cd72b9
BW
8329{
8330 const source_reloc *curr_rel;
99ded152
BW
8331 property_table_entry *entry;
8332
43cd72b9
BW
8333 if (!rel->is_null)
8334 return FALSE;
68ffbac6
L
8335
8336 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
99ded152
BW
8337 sec->vma + rel->r_rel.target_offset);
8338 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8339 return FALSE;
8340
43cd72b9
BW
8341 for (++i; i < src_count; ++i)
8342 {
8343 curr_rel = &src_relocs[i];
8344 /* If all others have the same target offset.... */
8345 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8346 return TRUE;
8347
8348 if (!curr_rel->is_null
8349 && !xtensa_is_property_section (curr_rel->source_sec)
8350 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8351 return FALSE;
8352 }
8353 return TRUE;
8354}
8355
8356
68ffbac6 8357bfd_boolean
7fa3d080
BW
8358remove_dead_literal (bfd *abfd,
8359 asection *sec,
8360 struct bfd_link_info *link_info,
8361 Elf_Internal_Rela *internal_relocs,
8362 Elf_Internal_Rela *irel,
8363 source_reloc *rel,
8364 property_table_entry *prop_table,
8365 int ptblsize)
43cd72b9
BW
8366{
8367 property_table_entry *entry;
8368 xtensa_relax_info *relax_info;
8369
8370 relax_info = get_xtensa_relax_info (sec);
8371 if (!relax_info)
8372 return FALSE;
8373
8374 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8375 sec->vma + rel->r_rel.target_offset);
8376
8377 /* Mark the unused literal so that it will be removed. */
8378 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8379
8380 text_action_add (&relax_info->action_list,
8381 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8382
8383 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8384 if (sec->alignment_power > 2)
43cd72b9
BW
8385 {
8386 int fill_extra_space;
8387 bfd_vma entry_sec_offset;
8388 text_action *fa;
8389 property_table_entry *the_add_entry;
8390 int removed_diff;
8391
8392 if (entry)
8393 entry_sec_offset = entry->address - sec->vma + entry->size;
8394 else
8395 entry_sec_offset = rel->r_rel.target_offset + 4;
8396
8397 /* If the literal range is at the end of the section,
8398 do not add fill. */
8399 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8400 entry_sec_offset);
8401 fill_extra_space = compute_fill_extra_space (the_add_entry);
8402
8403 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8404 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8405 -4, fill_extra_space);
8406 if (fa)
8407 adjust_fill_action (fa, removed_diff);
8408 else
8409 text_action_add (&relax_info->action_list,
8410 ta_fill, sec, entry_sec_offset, removed_diff);
8411 }
8412
8413 /* Zero out the relocation on this literal location. */
8414 if (irel)
8415 {
8416 if (elf_hash_table (link_info)->dynamic_sections_created)
8417 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8418
8419 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8420 pin_internal_relocs (sec, internal_relocs);
8421 }
8422
8423 /* Do not modify "last_loc_is_prev". */
8424 return TRUE;
8425}
8426
8427
68ffbac6 8428bfd_boolean
7fa3d080
BW
8429identify_literal_placement (bfd *abfd,
8430 asection *sec,
8431 bfd_byte *contents,
8432 struct bfd_link_info *link_info,
8433 value_map_hash_table *values,
8434 bfd_boolean *last_loc_is_prev_p,
8435 Elf_Internal_Rela *irel,
8436 int remaining_src_rels,
8437 source_reloc *rel,
8438 property_table_entry *prop_table,
8439 int ptblsize,
8440 section_cache_t *target_sec_cache,
8441 bfd_boolean is_abs_literal)
43cd72b9
BW
8442{
8443 literal_value val;
8444 value_map *val_map;
8445 xtensa_relax_info *relax_info;
8446 bfd_boolean literal_placed = FALSE;
8447 r_reloc r_rel;
8448 unsigned long value;
8449 bfd_boolean final_static_link;
8450 bfd_size_type sec_size;
8451
8452 relax_info = get_xtensa_relax_info (sec);
8453 if (!relax_info)
8454 return FALSE;
8455
8456 sec_size = bfd_get_section_limit (abfd, sec);
8457
8458 final_static_link =
8459 (!link_info->relocatable
8460 && !elf_hash_table (link_info)->dynamic_sections_created);
8461
8462 /* The placement algorithm first checks to see if the literal is
8463 already in the value map. If so and the value map is reachable
8464 from all uses, then the literal is moved to that location. If
8465 not, then we identify the last location where a fresh literal was
8466 placed. If the literal can be safely moved there, then we do so.
8467 If not, then we assume that the literal is not to move and leave
8468 the literal where it is, marking it as the last literal
8469 location. */
8470
8471 /* Find the literal value. */
8472 value = 0;
8473 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8474 if (!irel)
8475 {
8476 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8477 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8478 }
8479 init_literal_value (&val, &r_rel, value, is_abs_literal);
8480
8481 /* Check if we've seen another literal with the same value that
8482 is in the same output section. */
8483 val_map = value_map_get_cached_value (values, &val, final_static_link);
8484
8485 if (val_map
8486 && (r_reloc_get_section (&val_map->loc)->output_section
8487 == sec->output_section)
8488 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8489 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8490 {
8491 /* No change to last_loc_is_prev. */
8492 literal_placed = TRUE;
8493 }
8494
8495 /* For relocatable links, do not try to move literals. To do it
8496 correctly might increase the number of relocations in an input
8497 section making the default relocatable linking fail. */
68ffbac6 8498 if (!link_info->relocatable && !literal_placed
43cd72b9
BW
8499 && values->has_last_loc && !(*last_loc_is_prev_p))
8500 {
8501 asection *target_sec = r_reloc_get_section (&values->last_loc);
8502 if (target_sec && target_sec->output_section == sec->output_section)
8503 {
8504 /* Increment the virtual offset. */
8505 r_reloc try_loc = values->last_loc;
8506 try_loc.virtual_offset += 4;
8507
8508 /* There is a last loc that was in the same output section. */
8509 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8510 && move_shared_literal (sec, link_info, rel,
68ffbac6 8511 prop_table, ptblsize,
43cd72b9 8512 &try_loc, &val, target_sec_cache))
e0001a05 8513 {
43cd72b9
BW
8514 values->last_loc.virtual_offset += 4;
8515 literal_placed = TRUE;
8516 if (!val_map)
8517 val_map = add_value_map (values, &val, &try_loc,
8518 final_static_link);
8519 else
8520 val_map->loc = try_loc;
e0001a05
NC
8521 }
8522 }
43cd72b9
BW
8523 }
8524
8525 if (!literal_placed)
8526 {
8527 /* Nothing worked, leave the literal alone but update the last loc. */
8528 values->has_last_loc = TRUE;
8529 values->last_loc = rel->r_rel;
8530 if (!val_map)
8531 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8532 else
43cd72b9
BW
8533 val_map->loc = rel->r_rel;
8534 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8535 }
8536
43cd72b9 8537 return TRUE;
e0001a05
NC
8538}
8539
8540
8541/* Check if the original relocations (presumably on L32R instructions)
8542 identified by reloc[0..N] can be changed to reference the literal
8543 identified by r_rel. If r_rel is out of range for any of the
8544 original relocations, then we don't want to coalesce the original
8545 literal with the one at r_rel. We only check reloc[0..N], where the
8546 offsets are all the same as for reloc[0] (i.e., they're all
8547 referencing the same literal) and where N is also bounded by the
8548 number of remaining entries in the "reloc" array. The "reloc" array
8549 is sorted by target offset so we know all the entries for the same
8550 literal will be contiguous. */
8551
8552static bfd_boolean
7fa3d080
BW
8553relocations_reach (source_reloc *reloc,
8554 int remaining_relocs,
8555 const r_reloc *r_rel)
e0001a05
NC
8556{
8557 bfd_vma from_offset, source_address, dest_address;
8558 asection *sec;
8559 int i;
8560
8561 if (!r_reloc_is_defined (r_rel))
8562 return FALSE;
8563
8564 sec = r_reloc_get_section (r_rel);
8565 from_offset = reloc[0].r_rel.target_offset;
8566
8567 for (i = 0; i < remaining_relocs; i++)
8568 {
8569 if (reloc[i].r_rel.target_offset != from_offset)
8570 break;
8571
8572 /* Ignore relocations that have been removed. */
8573 if (reloc[i].is_null)
8574 continue;
8575
8576 /* The original and new output section for these must be the same
8577 in order to coalesce. */
8578 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8579 != sec->output_section)
8580 return FALSE;
8581
d638e0ac
BW
8582 /* Absolute literals in the same output section can always be
8583 combined. */
8584 if (reloc[i].is_abs_literal)
8585 continue;
8586
43cd72b9
BW
8587 /* A literal with no PC-relative relocations can be moved anywhere. */
8588 if (reloc[i].opnd != -1)
e0001a05
NC
8589 {
8590 /* Otherwise, check to see that it fits. */
8591 source_address = (reloc[i].source_sec->output_section->vma
8592 + reloc[i].source_sec->output_offset
8593 + reloc[i].r_rel.rela.r_offset);
8594 dest_address = (sec->output_section->vma
8595 + sec->output_offset
8596 + r_rel->target_offset);
8597
43cd72b9
BW
8598 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8599 source_address, dest_address))
e0001a05
NC
8600 return FALSE;
8601 }
8602 }
8603
8604 return TRUE;
8605}
8606
8607
43cd72b9
BW
8608/* Move a literal to another literal location because it is
8609 the same as the other literal value. */
e0001a05 8610
68ffbac6 8611static bfd_boolean
7fa3d080
BW
8612coalesce_shared_literal (asection *sec,
8613 source_reloc *rel,
8614 property_table_entry *prop_table,
8615 int ptblsize,
8616 value_map *val_map)
e0001a05 8617{
43cd72b9
BW
8618 property_table_entry *entry;
8619 text_action *fa;
8620 property_table_entry *the_add_entry;
8621 int removed_diff;
8622 xtensa_relax_info *relax_info;
8623
8624 relax_info = get_xtensa_relax_info (sec);
8625 if (!relax_info)
8626 return FALSE;
8627
8628 entry = elf_xtensa_find_property_entry
8629 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 8630 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
8631 return TRUE;
8632
8633 /* Mark that the literal will be coalesced. */
8634 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8635
8636 text_action_add (&relax_info->action_list,
8637 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8638
8639 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8640 if (sec->alignment_power > 2)
e0001a05 8641 {
43cd72b9
BW
8642 int fill_extra_space;
8643 bfd_vma entry_sec_offset;
8644
8645 if (entry)
8646 entry_sec_offset = entry->address - sec->vma + entry->size;
8647 else
8648 entry_sec_offset = rel->r_rel.target_offset + 4;
8649
8650 /* If the literal range is at the end of the section,
8651 do not add fill. */
8652 fill_extra_space = 0;
8653 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8654 entry_sec_offset);
8655 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8656 fill_extra_space = the_add_entry->size;
8657
8658 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8659 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8660 -4, fill_extra_space);
8661 if (fa)
8662 adjust_fill_action (fa, removed_diff);
8663 else
8664 text_action_add (&relax_info->action_list,
8665 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 8666 }
43cd72b9
BW
8667
8668 return TRUE;
8669}
8670
8671
8672/* Move a literal to another location. This may actually increase the
8673 total amount of space used because of alignments so we need to do
8674 this carefully. Also, it may make a branch go out of range. */
8675
68ffbac6 8676static bfd_boolean
7fa3d080
BW
8677move_shared_literal (asection *sec,
8678 struct bfd_link_info *link_info,
8679 source_reloc *rel,
8680 property_table_entry *prop_table,
8681 int ptblsize,
8682 const r_reloc *target_loc,
8683 const literal_value *lit_value,
8684 section_cache_t *target_sec_cache)
43cd72b9
BW
8685{
8686 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8687 text_action *fa, *target_fa;
8688 int removed_diff;
8689 xtensa_relax_info *relax_info, *target_relax_info;
8690 asection *target_sec;
8691 ebb_t *ebb;
8692 ebb_constraint ebb_table;
8693 bfd_boolean relocs_fit;
8694
8695 /* If this routine always returns FALSE, the literals that cannot be
8696 coalesced will not be moved. */
8697 if (elf32xtensa_no_literal_movement)
8698 return FALSE;
8699
8700 relax_info = get_xtensa_relax_info (sec);
8701 if (!relax_info)
8702 return FALSE;
8703
8704 target_sec = r_reloc_get_section (target_loc);
8705 target_relax_info = get_xtensa_relax_info (target_sec);
8706
8707 /* Literals to undefined sections may not be moved because they
8708 must report an error. */
8709 if (bfd_is_und_section (target_sec))
8710 return FALSE;
8711
8712 src_entry = elf_xtensa_find_property_entry
8713 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8714
8715 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8716 return FALSE;
8717
8718 target_entry = elf_xtensa_find_property_entry
68ffbac6 8719 (target_sec_cache->ptbl, target_sec_cache->pte_count,
43cd72b9
BW
8720 target_sec->vma + target_loc->target_offset);
8721
8722 if (!target_entry)
8723 return FALSE;
8724
8725 /* Make sure that we have not broken any branches. */
8726 relocs_fit = FALSE;
8727
8728 init_ebb_constraint (&ebb_table);
8729 ebb = &ebb_table.ebb;
68ffbac6 8730 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
43cd72b9
BW
8731 target_sec_cache->content_length,
8732 target_sec_cache->ptbl, target_sec_cache->pte_count,
8733 target_sec_cache->relocs, target_sec_cache->reloc_count);
8734
8735 /* Propose to add 4 bytes + worst-case alignment size increase to
8736 destination. */
8737 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8738 ta_fill, target_loc->target_offset,
8739 -4 - (1 << target_sec->alignment_power), TRUE);
8740
8741 /* Check all of the PC-relative relocations to make sure they still fit. */
68ffbac6 8742 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
43cd72b9
BW
8743 target_sec_cache->contents,
8744 target_sec_cache->relocs,
cb337148 8745 &ebb_table, NULL);
43cd72b9 8746
68ffbac6 8747 if (!relocs_fit)
43cd72b9
BW
8748 return FALSE;
8749
8750 text_action_add_literal (&target_relax_info->action_list,
8751 ta_add_literal, target_loc, lit_value, -4);
8752
68ffbac6 8753 if (target_sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
8754 {
8755 /* May need to add or remove some fill to maintain alignment. */
8756 int fill_extra_space;
8757 bfd_vma entry_sec_offset;
8758
68ffbac6 8759 entry_sec_offset =
43cd72b9
BW
8760 target_entry->address - target_sec->vma + target_entry->size;
8761
8762 /* If the literal range is at the end of the section,
8763 do not add fill. */
8764 fill_extra_space = 0;
8765 the_add_entry =
8766 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8767 target_sec_cache->pte_count,
8768 entry_sec_offset);
8769 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8770 fill_extra_space = the_add_entry->size;
8771
8772 target_fa = find_fill_action (&target_relax_info->action_list,
8773 target_sec, entry_sec_offset);
8774 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8775 entry_sec_offset, 4,
8776 fill_extra_space);
8777 if (target_fa)
8778 adjust_fill_action (target_fa, removed_diff);
8779 else
8780 text_action_add (&target_relax_info->action_list,
8781 ta_fill, target_sec, entry_sec_offset, removed_diff);
8782 }
8783
8784 /* Mark that the literal will be moved to the new location. */
8785 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8786
8787 /* Remove the literal. */
8788 text_action_add (&relax_info->action_list,
8789 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8790
8791 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8792 if (sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
8793 {
8794 int fill_extra_space;
8795 bfd_vma entry_sec_offset;
8796
8797 if (src_entry)
8798 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8799 else
8800 entry_sec_offset = rel->r_rel.target_offset+4;
8801
8802 /* If the literal range is at the end of the section,
8803 do not add fill. */
8804 fill_extra_space = 0;
8805 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8806 entry_sec_offset);
8807 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8808 fill_extra_space = the_add_entry->size;
8809
8810 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8811 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8812 -4, fill_extra_space);
8813 if (fa)
8814 adjust_fill_action (fa, removed_diff);
8815 else
8816 text_action_add (&relax_info->action_list,
8817 ta_fill, sec, entry_sec_offset, removed_diff);
8818 }
8819
8820 return TRUE;
e0001a05
NC
8821}
8822
8823\f
8824/* Second relaxation pass. */
8825
8826/* Modify all of the relocations to point to the right spot, and if this
8827 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8828 section size. */
e0001a05 8829
43cd72b9 8830bfd_boolean
7fa3d080 8831relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8832{
8833 Elf_Internal_Rela *internal_relocs;
8834 xtensa_relax_info *relax_info;
8835 bfd_byte *contents;
8836 bfd_boolean ok = TRUE;
8837 unsigned i;
43cd72b9
BW
8838 bfd_boolean rv = FALSE;
8839 bfd_boolean virtual_action;
8840 bfd_size_type sec_size;
e0001a05 8841
43cd72b9 8842 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8843 relax_info = get_xtensa_relax_info (sec);
8844 BFD_ASSERT (relax_info);
8845
43cd72b9
BW
8846 /* First translate any of the fixes that have been added already. */
8847 translate_section_fixes (sec);
8848
e0001a05
NC
8849 /* Handle property sections (e.g., literal tables) specially. */
8850 if (xtensa_is_property_section (sec))
8851 {
8852 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8853 return relax_property_section (abfd, sec, link_info);
8854 }
8855
68ffbac6 8856 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 8857 link_info->keep_memory);
7aa09196
SA
8858 if (!internal_relocs && !relax_info->action_list.head)
8859 return TRUE;
8860
43cd72b9
BW
8861 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8862 if (contents == NULL && sec_size != 0)
8863 {
8864 ok = FALSE;
8865 goto error_return;
8866 }
8867
8868 if (internal_relocs)
8869 {
8870 for (i = 0; i < sec->reloc_count; i++)
8871 {
8872 Elf_Internal_Rela *irel;
8873 xtensa_relax_info *target_relax_info;
8874 bfd_vma source_offset, old_source_offset;
8875 r_reloc r_rel;
8876 unsigned r_type;
8877 asection *target_sec;
8878
8879 /* Locally change the source address.
8880 Translate the target to the new target address.
8881 If it points to this section and has been removed,
8882 NULLify it.
8883 Write it back. */
8884
8885 irel = &internal_relocs[i];
8886 source_offset = irel->r_offset;
8887 old_source_offset = source_offset;
8888
8889 r_type = ELF32_R_TYPE (irel->r_info);
8890 r_reloc_init (&r_rel, abfd, irel, contents,
8891 bfd_get_section_limit (abfd, sec));
8892
8893 /* If this section could have changed then we may need to
8894 change the relocation's offset. */
8895
8896 if (relax_info->is_relaxable_literal_section
8897 || relax_info->is_relaxable_asm_section)
8898 {
9b7f5d20
BW
8899 pin_internal_relocs (sec, internal_relocs);
8900
43cd72b9
BW
8901 if (r_type != R_XTENSA_NONE
8902 && find_removed_literal (&relax_info->removed_list,
8903 irel->r_offset))
8904 {
8905 /* Remove this relocation. */
8906 if (elf_hash_table (link_info)->dynamic_sections_created)
8907 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8908 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8909 irel->r_offset = offset_with_removed_text
8910 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8911 continue;
8912 }
8913
8914 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8915 {
8916 text_action *action =
8917 find_insn_action (&relax_info->action_list,
8918 irel->r_offset);
8919 if (action && (action->action == ta_convert_longcall
8920 || action->action == ta_remove_longcall))
8921 {
8922 bfd_reloc_status_type retval;
8923 char *error_message = NULL;
8924
8925 retval = contract_asm_expansion (contents, sec_size,
8926 irel, &error_message);
8927 if (retval != bfd_reloc_ok)
8928 {
8929 (*link_info->callbacks->reloc_dangerous)
8930 (link_info, error_message, abfd, sec,
8931 irel->r_offset);
8932 goto error_return;
8933 }
8934 /* Update the action so that the code that moves
8935 the contents will do the right thing. */
8936 if (action->action == ta_remove_longcall)
8937 action->action = ta_remove_insn;
8938 else
8939 action->action = ta_none;
8940 /* Refresh the info in the r_rel. */
8941 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8942 r_type = ELF32_R_TYPE (irel->r_info);
8943 }
8944 }
8945
8946 source_offset = offset_with_removed_text
8947 (&relax_info->action_list, irel->r_offset);
8948 irel->r_offset = source_offset;
8949 }
8950
8951 /* If the target section could have changed then
8952 we may need to change the relocation's target offset. */
8953
8954 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8955
ae326da8
BW
8956 /* For a reference to a discarded section from a DWARF section,
8957 i.e., where action_discarded is PRETEND, the symbol will
8958 eventually be modified to refer to the kept section (at least if
8959 the kept and discarded sections are the same size). Anticipate
8960 that here and adjust things accordingly. */
8961 if (! elf_xtensa_ignore_discarded_relocs (sec)
8962 && elf_xtensa_action_discarded (sec) == PRETEND
dbaa2011 8963 && sec->sec_info_type != SEC_INFO_TYPE_STABS
ae326da8 8964 && target_sec != NULL
dbaa2011 8965 && discarded_section (target_sec))
ae326da8
BW
8966 {
8967 /* It would be natural to call _bfd_elf_check_kept_section
8968 here, but it's not exported from elflink.c. It's also a
8969 fairly expensive check. Adjusting the relocations to the
8970 discarded section is fairly harmless; it will only adjust
8971 some addends and difference values. If it turns out that
8972 _bfd_elf_check_kept_section fails later, it won't matter,
8973 so just compare the section names to find the right group
8974 member. */
8975 asection *kept = target_sec->kept_section;
8976 if (kept != NULL)
8977 {
8978 if ((kept->flags & SEC_GROUP) != 0)
8979 {
8980 asection *first = elf_next_in_group (kept);
8981 asection *s = first;
8982
8983 kept = NULL;
8984 while (s != NULL)
8985 {
8986 if (strcmp (s->name, target_sec->name) == 0)
8987 {
8988 kept = s;
8989 break;
8990 }
8991 s = elf_next_in_group (s);
8992 if (s == first)
8993 break;
8994 }
8995 }
8996 }
8997 if (kept != NULL
8998 && ((target_sec->rawsize != 0
8999 ? target_sec->rawsize : target_sec->size)
9000 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9001 target_sec = kept;
9002 }
9003
9004 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9005 if (target_relax_info
9006 && (target_relax_info->is_relaxable_literal_section
9007 || target_relax_info->is_relaxable_asm_section))
9008 {
9009 r_reloc new_reloc;
9b7f5d20 9010 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9011
9012 if (r_type == R_XTENSA_DIFF8
9013 || r_type == R_XTENSA_DIFF16
9014 || r_type == R_XTENSA_DIFF32)
9015 {
9016 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
9017
9018 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9019 {
9020 (*link_info->callbacks->reloc_dangerous)
9021 (link_info, _("invalid relocation address"),
9022 abfd, sec, old_source_offset);
9023 goto error_return;
9024 }
9025
9026 switch (r_type)
9027 {
9028 case R_XTENSA_DIFF8:
9029 diff_value =
9030 bfd_get_8 (abfd, &contents[old_source_offset]);
9031 break;
9032 case R_XTENSA_DIFF16:
9033 diff_value =
9034 bfd_get_16 (abfd, &contents[old_source_offset]);
9035 break;
9036 case R_XTENSA_DIFF32:
9037 diff_value =
9038 bfd_get_32 (abfd, &contents[old_source_offset]);
9039 break;
9040 }
9041
9042 new_end_offset = offset_with_removed_text
9043 (&target_relax_info->action_list,
9044 r_rel.target_offset + diff_value);
9045 diff_value = new_end_offset - new_reloc.target_offset;
9046
9047 switch (r_type)
9048 {
9049 case R_XTENSA_DIFF8:
9050 diff_mask = 0xff;
9051 bfd_put_8 (abfd, diff_value,
9052 &contents[old_source_offset]);
9053 break;
9054 case R_XTENSA_DIFF16:
9055 diff_mask = 0xffff;
9056 bfd_put_16 (abfd, diff_value,
9057 &contents[old_source_offset]);
9058 break;
9059 case R_XTENSA_DIFF32:
9060 diff_mask = 0xffffffff;
9061 bfd_put_32 (abfd, diff_value,
9062 &contents[old_source_offset]);
9063 break;
9064 }
9065
9066 /* Check for overflow. */
9067 if ((diff_value & ~diff_mask) != 0)
9068 {
9069 (*link_info->callbacks->reloc_dangerous)
9070 (link_info, _("overflow after relaxation"),
9071 abfd, sec, old_source_offset);
9072 goto error_return;
9073 }
9074
9075 pin_contents (sec, contents);
9076 }
dc96b90a
BW
9077
9078 /* If the relocation still references a section in the same
9079 input file, modify the relocation directly instead of
9080 adding a "fix" record. */
9081 if (target_sec->owner == abfd)
9082 {
9083 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9084 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9085 irel->r_addend = new_reloc.rela.r_addend;
9086 pin_internal_relocs (sec, internal_relocs);
9087 }
9b7f5d20
BW
9088 else
9089 {
dc96b90a
BW
9090 bfd_vma addend_displacement;
9091 reloc_bfd_fix *fix;
9092
9093 addend_displacement =
9094 new_reloc.target_offset + new_reloc.virtual_offset;
9095 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9096 target_sec,
9097 addend_displacement, TRUE);
9098 add_fix (sec, fix);
9b7f5d20 9099 }
43cd72b9 9100 }
43cd72b9
BW
9101 }
9102 }
9103
9104 if ((relax_info->is_relaxable_literal_section
9105 || relax_info->is_relaxable_asm_section)
9106 && relax_info->action_list.head)
9107 {
9108 /* Walk through the planned actions and build up a table
9109 of move, copy and fill records. Use the move, copy and
9110 fill records to perform the actions once. */
9111
43cd72b9
BW
9112 int removed = 0;
9113 bfd_size_type final_size, copy_size, orig_insn_size;
9114 bfd_byte *scratch = NULL;
9115 bfd_byte *dup_contents = NULL;
a3ef2d63 9116 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9117 bfd_vma orig_dot = 0;
9118 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9119 orig dot in physical memory. */
9120 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9121 bfd_vma dup_dot = 0;
9122
9123 text_action *action = relax_info->action_list.head;
9124
9125 final_size = sec->size;
9126 for (action = relax_info->action_list.head; action;
9127 action = action->next)
9128 {
9129 final_size -= action->removed_bytes;
9130 }
9131
9132 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9133 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9134
9135 /* The dot is the current fill location. */
9136#if DEBUG
9137 print_action_list (stderr, &relax_info->action_list);
9138#endif
9139
9140 for (action = relax_info->action_list.head; action;
9141 action = action->next)
9142 {
9143 virtual_action = FALSE;
9144 if (action->offset > orig_dot)
9145 {
9146 orig_dot += orig_dot_copied;
9147 orig_dot_copied = 0;
9148 orig_dot_vo = 0;
9149 /* Out of the virtual world. */
9150 }
9151
9152 if (action->offset > orig_dot)
9153 {
9154 copy_size = action->offset - orig_dot;
9155 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9156 orig_dot += copy_size;
9157 dup_dot += copy_size;
9158 BFD_ASSERT (action->offset == orig_dot);
9159 }
9160 else if (action->offset < orig_dot)
9161 {
9162 if (action->action == ta_fill
9163 && action->offset - action->removed_bytes == orig_dot)
9164 {
9165 /* This is OK because the fill only effects the dup_dot. */
9166 }
9167 else if (action->action == ta_add_literal)
9168 {
9169 /* TBD. Might need to handle this. */
9170 }
9171 }
9172 if (action->offset == orig_dot)
9173 {
9174 if (action->virtual_offset > orig_dot_vo)
9175 {
9176 if (orig_dot_vo == 0)
9177 {
9178 /* Need to copy virtual_offset bytes. Probably four. */
9179 copy_size = action->virtual_offset - orig_dot_vo;
9180 memmove (&dup_contents[dup_dot],
9181 &contents[orig_dot], copy_size);
9182 orig_dot_copied = copy_size;
9183 dup_dot += copy_size;
9184 }
9185 virtual_action = TRUE;
68ffbac6 9186 }
43cd72b9
BW
9187 else
9188 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9189 }
9190 switch (action->action)
9191 {
9192 case ta_remove_literal:
9193 case ta_remove_insn:
9194 BFD_ASSERT (action->removed_bytes >= 0);
9195 orig_dot += action->removed_bytes;
9196 break;
9197
9198 case ta_narrow_insn:
9199 orig_insn_size = 3;
9200 copy_size = 2;
9201 memmove (scratch, &contents[orig_dot], orig_insn_size);
9202 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9203 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9204 BFD_ASSERT (rv);
9205 memmove (&dup_contents[dup_dot], scratch, copy_size);
9206 orig_dot += orig_insn_size;
9207 dup_dot += copy_size;
9208 break;
9209
9210 case ta_fill:
9211 if (action->removed_bytes >= 0)
9212 orig_dot += action->removed_bytes;
9213 else
9214 {
9215 /* Already zeroed in dup_contents. Just bump the
9216 counters. */
9217 dup_dot += (-action->removed_bytes);
9218 }
9219 break;
9220
9221 case ta_none:
9222 BFD_ASSERT (action->removed_bytes == 0);
9223 break;
9224
9225 case ta_convert_longcall:
9226 case ta_remove_longcall:
9227 /* These will be removed or converted before we get here. */
9228 BFD_ASSERT (0);
9229 break;
9230
9231 case ta_widen_insn:
9232 orig_insn_size = 2;
9233 copy_size = 3;
9234 memmove (scratch, &contents[orig_dot], orig_insn_size);
9235 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9236 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9237 BFD_ASSERT (rv);
9238 memmove (&dup_contents[dup_dot], scratch, copy_size);
9239 orig_dot += orig_insn_size;
9240 dup_dot += copy_size;
9241 break;
9242
9243 case ta_add_literal:
9244 orig_insn_size = 0;
9245 copy_size = 4;
9246 BFD_ASSERT (action->removed_bytes == -4);
9247 /* TBD -- place the literal value here and insert
9248 into the table. */
9249 memset (&dup_contents[dup_dot], 0, 4);
9250 pin_internal_relocs (sec, internal_relocs);
9251 pin_contents (sec, contents);
9252
9253 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9254 relax_info, &internal_relocs, &action->value))
9255 goto error_return;
9256
68ffbac6 9257 if (virtual_action)
43cd72b9
BW
9258 orig_dot_vo += copy_size;
9259
9260 orig_dot += orig_insn_size;
9261 dup_dot += copy_size;
9262 break;
9263
9264 default:
9265 /* Not implemented yet. */
9266 BFD_ASSERT (0);
9267 break;
9268 }
9269
43cd72b9
BW
9270 removed += action->removed_bytes;
9271 BFD_ASSERT (dup_dot <= final_size);
9272 BFD_ASSERT (orig_dot <= orig_size);
9273 }
9274
9275 orig_dot += orig_dot_copied;
9276 orig_dot_copied = 0;
9277
9278 if (orig_dot != orig_size)
9279 {
9280 copy_size = orig_size - orig_dot;
9281 BFD_ASSERT (orig_size > orig_dot);
9282 BFD_ASSERT (dup_dot + copy_size == final_size);
9283 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9284 orig_dot += copy_size;
9285 dup_dot += copy_size;
9286 }
9287 BFD_ASSERT (orig_size == orig_dot);
9288 BFD_ASSERT (final_size == dup_dot);
9289
9290 /* Move the dup_contents back. */
9291 if (final_size > orig_size)
9292 {
9293 /* Contents need to be reallocated. Swap the dup_contents into
9294 contents. */
9295 sec->contents = dup_contents;
9296 free (contents);
9297 contents = dup_contents;
9298 pin_contents (sec, contents);
9299 }
9300 else
9301 {
9302 BFD_ASSERT (final_size <= orig_size);
9303 memset (contents, 0, orig_size);
9304 memcpy (contents, dup_contents, final_size);
9305 free (dup_contents);
9306 }
9307 free (scratch);
9308 pin_contents (sec, contents);
9309
a3ef2d63
BW
9310 if (sec->rawsize == 0)
9311 sec->rawsize = sec->size;
43cd72b9
BW
9312 sec->size = final_size;
9313 }
9314
9315 error_return:
9316 release_internal_relocs (sec, internal_relocs);
9317 release_contents (sec, contents);
9318 return ok;
9319}
9320
9321
68ffbac6 9322static bfd_boolean
7fa3d080 9323translate_section_fixes (asection *sec)
43cd72b9
BW
9324{
9325 xtensa_relax_info *relax_info;
9326 reloc_bfd_fix *r;
9327
9328 relax_info = get_xtensa_relax_info (sec);
9329 if (!relax_info)
9330 return TRUE;
9331
9332 for (r = relax_info->fix_list; r != NULL; r = r->next)
9333 if (!translate_reloc_bfd_fix (r))
9334 return FALSE;
e0001a05 9335
43cd72b9
BW
9336 return TRUE;
9337}
e0001a05 9338
e0001a05 9339
43cd72b9
BW
9340/* Translate a fix given the mapping in the relax info for the target
9341 section. If it has already been translated, no work is required. */
e0001a05 9342
68ffbac6 9343static bfd_boolean
7fa3d080 9344translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9345{
9346 reloc_bfd_fix new_fix;
9347 asection *sec;
9348 xtensa_relax_info *relax_info;
9349 removed_literal *removed;
9350 bfd_vma new_offset, target_offset;
e0001a05 9351
43cd72b9
BW
9352 if (fix->translated)
9353 return TRUE;
e0001a05 9354
43cd72b9
BW
9355 sec = fix->target_sec;
9356 target_offset = fix->target_offset;
e0001a05 9357
43cd72b9
BW
9358 relax_info = get_xtensa_relax_info (sec);
9359 if (!relax_info)
9360 {
9361 fix->translated = TRUE;
9362 return TRUE;
9363 }
e0001a05 9364
43cd72b9 9365 new_fix = *fix;
e0001a05 9366
43cd72b9
BW
9367 /* The fix does not need to be translated if the section cannot change. */
9368 if (!relax_info->is_relaxable_literal_section
9369 && !relax_info->is_relaxable_asm_section)
9370 {
9371 fix->translated = TRUE;
9372 return TRUE;
9373 }
e0001a05 9374
43cd72b9
BW
9375 /* If the literal has been moved and this relocation was on an
9376 opcode, then the relocation should move to the new literal
9377 location. Otherwise, the relocation should move within the
9378 section. */
9379
9380 removed = FALSE;
9381 if (is_operand_relocation (fix->src_type))
9382 {
9383 /* Check if the original relocation is against a literal being
9384 removed. */
9385 removed = find_removed_literal (&relax_info->removed_list,
9386 target_offset);
e0001a05
NC
9387 }
9388
68ffbac6 9389 if (removed)
e0001a05 9390 {
43cd72b9 9391 asection *new_sec;
e0001a05 9392
43cd72b9
BW
9393 /* The fact that there is still a relocation to this literal indicates
9394 that the literal is being coalesced, not simply removed. */
9395 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9396
43cd72b9
BW
9397 /* This was moved to some other address (possibly another section). */
9398 new_sec = r_reloc_get_section (&removed->to);
68ffbac6 9399 if (new_sec != sec)
e0001a05 9400 {
43cd72b9
BW
9401 sec = new_sec;
9402 relax_info = get_xtensa_relax_info (sec);
68ffbac6 9403 if (!relax_info ||
43cd72b9
BW
9404 (!relax_info->is_relaxable_literal_section
9405 && !relax_info->is_relaxable_asm_section))
e0001a05 9406 {
43cd72b9
BW
9407 target_offset = removed->to.target_offset;
9408 new_fix.target_sec = new_sec;
9409 new_fix.target_offset = target_offset;
9410 new_fix.translated = TRUE;
9411 *fix = new_fix;
9412 return TRUE;
e0001a05 9413 }
e0001a05 9414 }
43cd72b9
BW
9415 target_offset = removed->to.target_offset;
9416 new_fix.target_sec = new_sec;
e0001a05 9417 }
43cd72b9
BW
9418
9419 /* The target address may have been moved within its section. */
9420 new_offset = offset_with_removed_text (&relax_info->action_list,
9421 target_offset);
9422
9423 new_fix.target_offset = new_offset;
9424 new_fix.target_offset = new_offset;
9425 new_fix.translated = TRUE;
9426 *fix = new_fix;
9427 return TRUE;
e0001a05
NC
9428}
9429
9430
9431/* Fix up a relocation to take account of removed literals. */
9432
9b7f5d20
BW
9433static asection *
9434translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9435{
e0001a05
NC
9436 xtensa_relax_info *relax_info;
9437 removed_literal *removed;
9b7f5d20
BW
9438 bfd_vma target_offset, base_offset;
9439 text_action *act;
e0001a05
NC
9440
9441 *new_rel = *orig_rel;
9442
9443 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9444 return sec ;
e0001a05
NC
9445
9446 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9447 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9448 || relax_info->is_relaxable_asm_section));
e0001a05 9449
43cd72b9
BW
9450 target_offset = orig_rel->target_offset;
9451
9452 removed = FALSE;
9453 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9454 {
9455 /* Check if the original relocation is against a literal being
9456 removed. */
9457 removed = find_removed_literal (&relax_info->removed_list,
9458 target_offset);
9459 }
9460 if (removed && removed->to.abfd)
e0001a05
NC
9461 {
9462 asection *new_sec;
9463
9464 /* The fact that there is still a relocation to this literal indicates
9465 that the literal is being coalesced, not simply removed. */
9466 BFD_ASSERT (removed->to.abfd != NULL);
9467
43cd72b9
BW
9468 /* This was moved to some other address
9469 (possibly in another section). */
e0001a05
NC
9470 *new_rel = removed->to;
9471 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9472 if (new_sec != sec)
e0001a05
NC
9473 {
9474 sec = new_sec;
9475 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9476 if (!relax_info
9477 || (!relax_info->is_relaxable_literal_section
9478 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9479 return sec;
e0001a05 9480 }
43cd72b9 9481 target_offset = new_rel->target_offset;
e0001a05
NC
9482 }
9483
9b7f5d20
BW
9484 /* Find the base offset of the reloc symbol, excluding any addend from the
9485 reloc or from the section contents (for a partial_inplace reloc). Then
9486 find the adjusted values of the offsets due to relaxation. The base
9487 offset is needed to determine the change to the reloc's addend; the reloc
9488 addend should not be adjusted due to relaxations located before the base
9489 offset. */
9490
9491 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9492 act = relax_info->action_list.head;
9493 if (base_offset <= target_offset)
9494 {
9495 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9496 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9497 new_rel->target_offset = target_offset - base_removed - addend_removed;
9498 new_rel->rela.r_addend -= addend_removed;
9499 }
9500 else
9501 {
9502 /* Handle a negative addend. The base offset comes first. */
9503 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9504 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9505 new_rel->target_offset = target_offset - tgt_removed;
9506 new_rel->rela.r_addend += addend_removed;
9507 }
e0001a05 9508
9b7f5d20 9509 return sec;
e0001a05
NC
9510}
9511
9512
9513/* For dynamic links, there may be a dynamic relocation for each
9514 literal. The number of dynamic relocations must be computed in
9515 size_dynamic_sections, which occurs before relaxation. When a
9516 literal is removed, this function checks if there is a corresponding
9517 dynamic relocation and shrinks the size of the appropriate dynamic
9518 relocation section accordingly. At this point, the contents of the
9519 dynamic relocation sections have not yet been filled in, so there's
9520 nothing else that needs to be done. */
9521
9522static void
7fa3d080
BW
9523shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9524 bfd *abfd,
9525 asection *input_section,
9526 Elf_Internal_Rela *rel)
e0001a05 9527{
f0e6fdb2 9528 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9529 Elf_Internal_Shdr *symtab_hdr;
9530 struct elf_link_hash_entry **sym_hashes;
9531 unsigned long r_symndx;
9532 int r_type;
9533 struct elf_link_hash_entry *h;
9534 bfd_boolean dynamic_symbol;
9535
f0e6fdb2 9536 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
9537 if (htab == NULL)
9538 return;
9539
e0001a05
NC
9540 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9541 sym_hashes = elf_sym_hashes (abfd);
9542
9543 r_type = ELF32_R_TYPE (rel->r_info);
9544 r_symndx = ELF32_R_SYM (rel->r_info);
9545
9546 if (r_symndx < symtab_hdr->sh_info)
9547 h = NULL;
9548 else
9549 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9550
4608f3d9 9551 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
9552
9553 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9554 && (input_section->flags & SEC_ALLOC) != 0
9555 && (dynamic_symbol || info->shared))
9556 {
e0001a05
NC
9557 asection *srel;
9558 bfd_boolean is_plt = FALSE;
9559
e0001a05
NC
9560 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9561 {
f0e6fdb2 9562 srel = htab->srelplt;
e0001a05
NC
9563 is_plt = TRUE;
9564 }
9565 else
f0e6fdb2 9566 srel = htab->srelgot;
e0001a05
NC
9567
9568 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 9569 BFD_ASSERT (srel != NULL);
eea6121a
AM
9570 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9571 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
9572
9573 if (is_plt)
9574 {
9575 asection *splt, *sgotplt, *srelgot;
9576 int reloc_index, chunk;
9577
9578 /* Find the PLT reloc index of the entry being removed. This
9579 is computed from the size of ".rela.plt". It is needed to
9580 figure out which PLT chunk to resize. Usually "last index
9581 = size - 1" since the index starts at zero, but in this
9582 context, the size has just been decremented so there's no
9583 need to subtract one. */
eea6121a 9584 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
9585
9586 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
9587 splt = elf_xtensa_get_plt_section (info, chunk);
9588 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
9589 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9590
9591 /* Check if an entire PLT chunk has just been eliminated. */
9592 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9593 {
9594 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 9595 srelgot = htab->srelgot;
e0001a05
NC
9596 BFD_ASSERT (srelgot != NULL);
9597 srelgot->reloc_count -= 2;
eea6121a
AM
9598 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9599 sgotplt->size -= 8;
e0001a05
NC
9600
9601 /* There should be only one entry left (and it will be
9602 removed below). */
eea6121a
AM
9603 BFD_ASSERT (sgotplt->size == 4);
9604 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
9605 }
9606
eea6121a
AM
9607 BFD_ASSERT (sgotplt->size >= 4);
9608 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 9609
eea6121a
AM
9610 sgotplt->size -= 4;
9611 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
9612 }
9613 }
9614}
9615
9616
43cd72b9
BW
9617/* Take an r_rel and move it to another section. This usually
9618 requires extending the interal_relocation array and pinning it. If
9619 the original r_rel is from the same BFD, we can complete this here.
9620 Otherwise, we add a fix record to let the final link fix the
9621 appropriate address. Contents and internal relocations for the
9622 section must be pinned after calling this routine. */
9623
9624static bfd_boolean
7fa3d080
BW
9625move_literal (bfd *abfd,
9626 struct bfd_link_info *link_info,
9627 asection *sec,
9628 bfd_vma offset,
9629 bfd_byte *contents,
9630 xtensa_relax_info *relax_info,
9631 Elf_Internal_Rela **internal_relocs_p,
9632 const literal_value *lit)
43cd72b9
BW
9633{
9634 Elf_Internal_Rela *new_relocs = NULL;
9635 size_t new_relocs_count = 0;
9636 Elf_Internal_Rela this_rela;
9637 const r_reloc *r_rel;
9638
9639 r_rel = &lit->r_rel;
9640 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9641
9642 if (r_reloc_is_const (r_rel))
9643 bfd_put_32 (abfd, lit->value, contents + offset);
9644 else
9645 {
9646 int r_type;
9647 unsigned i;
43cd72b9
BW
9648 reloc_bfd_fix *fix;
9649 unsigned insert_at;
9650
9651 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
9652
9653 /* This is the difficult case. We have to create a fix up. */
9654 this_rela.r_offset = offset;
9655 this_rela.r_info = ELF32_R_INFO (0, r_type);
9656 this_rela.r_addend =
9657 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9658 bfd_put_32 (abfd, lit->value, contents + offset);
9659
9660 /* Currently, we cannot move relocations during a relocatable link. */
9661 BFD_ASSERT (!link_info->relocatable);
0f5f1638 9662 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
9663 r_reloc_get_section (r_rel),
9664 r_rel->target_offset + r_rel->virtual_offset,
9665 FALSE);
9666 /* We also need to mark that relocations are needed here. */
9667 sec->flags |= SEC_RELOC;
9668
9669 translate_reloc_bfd_fix (fix);
9670 /* This fix has not yet been translated. */
9671 add_fix (sec, fix);
9672
9673 /* Add the relocation. If we have already allocated our own
9674 space for the relocations and we have room for more, then use
9675 it. Otherwise, allocate new space and move the literals. */
9676 insert_at = sec->reloc_count;
9677 for (i = 0; i < sec->reloc_count; ++i)
9678 {
9679 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9680 {
9681 insert_at = i;
9682 break;
9683 }
9684 }
9685
9686 if (*internal_relocs_p != relax_info->allocated_relocs
9687 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9688 {
9689 BFD_ASSERT (relax_info->allocated_relocs == NULL
9690 || sec->reloc_count == relax_info->relocs_count);
9691
68ffbac6 9692 if (relax_info->allocated_relocs_count == 0)
43cd72b9
BW
9693 new_relocs_count = (sec->reloc_count + 2) * 2;
9694 else
9695 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9696
9697 new_relocs = (Elf_Internal_Rela *)
9698 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9699 if (!new_relocs)
9700 return FALSE;
9701
9702 /* We could handle this more quickly by finding the split point. */
9703 if (insert_at != 0)
9704 memcpy (new_relocs, *internal_relocs_p,
9705 insert_at * sizeof (Elf_Internal_Rela));
9706
9707 new_relocs[insert_at] = this_rela;
9708
9709 if (insert_at != sec->reloc_count)
9710 memcpy (new_relocs + insert_at + 1,
9711 (*internal_relocs_p) + insert_at,
68ffbac6 9712 (sec->reloc_count - insert_at)
43cd72b9
BW
9713 * sizeof (Elf_Internal_Rela));
9714
9715 if (*internal_relocs_p != relax_info->allocated_relocs)
9716 {
9717 /* The first time we re-allocate, we can only free the
9718 old relocs if they were allocated with bfd_malloc.
9719 This is not true when keep_memory is in effect. */
9720 if (!link_info->keep_memory)
9721 free (*internal_relocs_p);
9722 }
9723 else
9724 free (*internal_relocs_p);
9725 relax_info->allocated_relocs = new_relocs;
9726 relax_info->allocated_relocs_count = new_relocs_count;
9727 elf_section_data (sec)->relocs = new_relocs;
9728 sec->reloc_count++;
9729 relax_info->relocs_count = sec->reloc_count;
9730 *internal_relocs_p = new_relocs;
9731 }
9732 else
9733 {
9734 if (insert_at != sec->reloc_count)
9735 {
9736 unsigned idx;
9737 for (idx = sec->reloc_count; idx > insert_at; idx--)
9738 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9739 }
9740 (*internal_relocs_p)[insert_at] = this_rela;
9741 sec->reloc_count++;
9742 if (relax_info->allocated_relocs)
9743 relax_info->relocs_count = sec->reloc_count;
9744 }
9745 }
9746 return TRUE;
9747}
9748
9749
e0001a05
NC
9750/* This is similar to relax_section except that when a target is moved,
9751 we shift addresses up. We also need to modify the size. This
9752 algorithm does NOT allow for relocations into the middle of the
9753 property sections. */
9754
43cd72b9 9755static bfd_boolean
7fa3d080
BW
9756relax_property_section (bfd *abfd,
9757 asection *sec,
9758 struct bfd_link_info *link_info)
e0001a05
NC
9759{
9760 Elf_Internal_Rela *internal_relocs;
9761 bfd_byte *contents;
1d25768e 9762 unsigned i;
e0001a05 9763 bfd_boolean ok = TRUE;
43cd72b9
BW
9764 bfd_boolean is_full_prop_section;
9765 size_t last_zfill_target_offset = 0;
9766 asection *last_zfill_target_sec = NULL;
9767 bfd_size_type sec_size;
1d25768e 9768 bfd_size_type entry_size;
e0001a05 9769
43cd72b9 9770 sec_size = bfd_get_section_limit (abfd, sec);
68ffbac6 9771 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
9772 link_info->keep_memory);
9773 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9774 if (contents == NULL && sec_size != 0)
e0001a05
NC
9775 {
9776 ok = FALSE;
9777 goto error_return;
9778 }
9779
1d25768e
BW
9780 is_full_prop_section = xtensa_is_proptable_section (sec);
9781 if (is_full_prop_section)
9782 entry_size = 12;
9783 else
9784 entry_size = 8;
43cd72b9
BW
9785
9786 if (internal_relocs)
e0001a05 9787 {
43cd72b9 9788 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9789 {
9790 Elf_Internal_Rela *irel;
9791 xtensa_relax_info *target_relax_info;
e0001a05
NC
9792 unsigned r_type;
9793 asection *target_sec;
43cd72b9
BW
9794 literal_value val;
9795 bfd_byte *size_p, *flags_p;
e0001a05
NC
9796
9797 /* Locally change the source address.
9798 Translate the target to the new target address.
9799 If it points to this section and has been removed, MOVE IT.
9800 Also, don't forget to modify the associated SIZE at
9801 (offset + 4). */
9802
9803 irel = &internal_relocs[i];
9804 r_type = ELF32_R_TYPE (irel->r_info);
9805 if (r_type == R_XTENSA_NONE)
9806 continue;
9807
43cd72b9
BW
9808 /* Find the literal value. */
9809 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9810 size_p = &contents[irel->r_offset + 4];
9811 flags_p = NULL;
9812 if (is_full_prop_section)
1d25768e
BW
9813 flags_p = &contents[irel->r_offset + 8];
9814 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 9815
43cd72b9 9816 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
9817 target_relax_info = get_xtensa_relax_info (target_sec);
9818
9819 if (target_relax_info
43cd72b9
BW
9820 && (target_relax_info->is_relaxable_literal_section
9821 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9822 {
9823 /* Translate the relocation's destination. */
03669f1c
BW
9824 bfd_vma old_offset = val.r_rel.target_offset;
9825 bfd_vma new_offset;
e0001a05 9826 long old_size, new_size;
03669f1c
BW
9827 text_action *act = target_relax_info->action_list.head;
9828 new_offset = old_offset -
9829 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9830
9831 /* Assert that we are not out of bounds. */
43cd72b9 9832 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9833 new_size = old_size;
43cd72b9
BW
9834
9835 if (old_size == 0)
9836 {
9837 /* Only the first zero-sized unreachable entry is
9838 allowed to expand. In this case the new offset
9839 should be the offset before the fill and the new
9840 size is the expansion size. For other zero-sized
9841 entries the resulting size should be zero with an
9842 offset before or after the fill address depending
9843 on whether the expanding unreachable entry
9844 preceeds it. */
03669f1c
BW
9845 if (last_zfill_target_sec == 0
9846 || last_zfill_target_sec != target_sec
9847 || last_zfill_target_offset != old_offset)
43cd72b9 9848 {
03669f1c
BW
9849 bfd_vma new_end_offset = new_offset;
9850
9851 /* Recompute the new_offset, but this time don't
9852 include any fill inserted by relaxation. */
9853 act = target_relax_info->action_list.head;
9854 new_offset = old_offset -
9855 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9856
9857 /* If it is not unreachable and we have not yet
9858 seen an unreachable at this address, place it
9859 before the fill address. */
03669f1c
BW
9860 if (flags_p && (bfd_get_32 (abfd, flags_p)
9861 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9862 {
03669f1c
BW
9863 new_size = new_end_offset - new_offset;
9864
43cd72b9 9865 last_zfill_target_sec = target_sec;
03669f1c 9866 last_zfill_target_offset = old_offset;
43cd72b9
BW
9867 }
9868 }
9869 }
9870 else
03669f1c
BW
9871 new_size -=
9872 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9873
e0001a05
NC
9874 if (new_size != old_size)
9875 {
9876 bfd_put_32 (abfd, new_size, size_p);
9877 pin_contents (sec, contents);
9878 }
43cd72b9 9879
03669f1c 9880 if (new_offset != old_offset)
e0001a05 9881 {
03669f1c 9882 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9883 irel->r_addend += diff;
9884 pin_internal_relocs (sec, internal_relocs);
9885 }
9886 }
9887 }
9888 }
9889
9890 /* Combine adjacent property table entries. This is also done in
9891 finish_dynamic_sections() but at that point it's too late to
9892 reclaim the space in the output section, so we do this twice. */
9893
43cd72b9 9894 if (internal_relocs && (!link_info->relocatable
1d25768e 9895 || xtensa_is_littable_section (sec)))
e0001a05
NC
9896 {
9897 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9898 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9899 int removed_bytes = 0;
1d25768e 9900 bfd_vma offset;
43cd72b9
BW
9901 flagword predef_flags;
9902
43cd72b9 9903 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9904
1d25768e 9905 /* Walk over memory and relocations at the same time.
e0001a05
NC
9906 This REQUIRES that the internal_relocs be sorted by offset. */
9907 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9908 internal_reloc_compare);
e0001a05
NC
9909
9910 pin_internal_relocs (sec, internal_relocs);
9911 pin_contents (sec, contents);
9912
1d25768e
BW
9913 next_rel = internal_relocs;
9914 rel_end = internal_relocs + sec->reloc_count;
9915
a3ef2d63 9916 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9917
a3ef2d63 9918 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9919 {
1d25768e 9920 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9921 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9922 bfd_boolean remove_this_rel;
43cd72b9 9923 flagword flags;
e0001a05 9924
1d25768e
BW
9925 /* Find the first relocation for the entry at the current offset.
9926 Adjust the offsets of any extra relocations for the previous
9927 entry. */
9928 offset_rel = NULL;
9929 if (next_rel)
9930 {
9931 for (irel = next_rel; irel < rel_end; irel++)
9932 {
9933 if ((irel->r_offset == offset
9934 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9935 || irel->r_offset > offset)
9936 {
9937 offset_rel = irel;
9938 break;
9939 }
9940 irel->r_offset -= removed_bytes;
1d25768e
BW
9941 }
9942 }
e0001a05 9943
1d25768e
BW
9944 /* Find the next relocation (if there are any left). */
9945 extra_rel = NULL;
9946 if (offset_rel)
e0001a05 9947 {
1d25768e 9948 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9949 {
1d25768e
BW
9950 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9951 {
9952 extra_rel = irel;
9953 break;
9954 }
e0001a05 9955 }
e0001a05
NC
9956 }
9957
1d25768e
BW
9958 /* Check if there are relocations on the current entry. There
9959 should usually be a relocation on the offset field. If there
9960 are relocations on the size or flags, then we can't optimize
9961 this entry. Also, find the next relocation to examine on the
9962 next iteration. */
9963 if (offset_rel)
e0001a05 9964 {
1d25768e 9965 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9966 {
1d25768e
BW
9967 next_rel = offset_rel;
9968 /* There are no relocations on the current entry, but we
9969 might still be able to remove it if the size is zero. */
9970 offset_rel = NULL;
9971 }
9972 else if (offset_rel->r_offset > offset
9973 || (extra_rel
9974 && extra_rel->r_offset < offset + entry_size))
9975 {
9976 /* There is a relocation on the size or flags, so we can't
9977 do anything with this entry. Continue with the next. */
9978 next_rel = offset_rel;
9979 continue;
9980 }
9981 else
9982 {
9983 BFD_ASSERT (offset_rel->r_offset == offset);
9984 offset_rel->r_offset -= removed_bytes;
9985 next_rel = offset_rel + 1;
e0001a05 9986 }
e0001a05 9987 }
1d25768e
BW
9988 else
9989 next_rel = NULL;
e0001a05 9990
1d25768e 9991 remove_this_rel = FALSE;
e0001a05
NC
9992 bytes_to_remove = 0;
9993 actual_offset = offset - removed_bytes;
9994 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9995
68ffbac6 9996 if (is_full_prop_section)
43cd72b9
BW
9997 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9998 else
9999 flags = predef_flags;
10000
1d25768e
BW
10001 if (size == 0
10002 && (flags & XTENSA_PROP_ALIGN) == 0
10003 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10004 {
43cd72b9
BW
10005 /* Always remove entries with zero size and no alignment. */
10006 bytes_to_remove = entry_size;
1d25768e
BW
10007 if (offset_rel)
10008 remove_this_rel = TRUE;
e0001a05 10009 }
1d25768e
BW
10010 else if (offset_rel
10011 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10012 {
1d25768e 10013 if (last_irel)
e0001a05 10014 {
1d25768e
BW
10015 flagword old_flags;
10016 bfd_vma old_size =
10017 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10018 bfd_vma old_address =
10019 (last_irel->r_addend
10020 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10021 bfd_vma new_address =
10022 (offset_rel->r_addend
10023 + bfd_get_32 (abfd, &contents[actual_offset]));
68ffbac6 10024 if (is_full_prop_section)
1d25768e
BW
10025 old_flags = bfd_get_32
10026 (abfd, &contents[last_irel->r_offset + 8]);
10027 else
10028 old_flags = predef_flags;
10029
10030 if ((ELF32_R_SYM (offset_rel->r_info)
10031 == ELF32_R_SYM (last_irel->r_info))
10032 && old_address + old_size == new_address
10033 && old_flags == flags
10034 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10035 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10036 {
1d25768e
BW
10037 /* Fix the old size. */
10038 bfd_put_32 (abfd, old_size + size,
10039 &contents[last_irel->r_offset + 4]);
10040 bytes_to_remove = entry_size;
10041 remove_this_rel = TRUE;
e0001a05
NC
10042 }
10043 else
1d25768e 10044 last_irel = offset_rel;
e0001a05 10045 }
1d25768e
BW
10046 else
10047 last_irel = offset_rel;
e0001a05
NC
10048 }
10049
1d25768e 10050 if (remove_this_rel)
e0001a05 10051 {
1d25768e 10052 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10053 offset_rel->r_offset = 0;
e0001a05
NC
10054 }
10055
10056 if (bytes_to_remove != 0)
10057 {
10058 removed_bytes += bytes_to_remove;
a3ef2d63 10059 if (offset + bytes_to_remove < sec->size)
e0001a05 10060 memmove (&contents[actual_offset],
43cd72b9 10061 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10062 sec->size - offset - bytes_to_remove);
e0001a05
NC
10063 }
10064 }
10065
43cd72b9 10066 if (removed_bytes)
e0001a05 10067 {
1d25768e
BW
10068 /* Fix up any extra relocations on the last entry. */
10069 for (irel = next_rel; irel < rel_end; irel++)
10070 irel->r_offset -= removed_bytes;
10071
e0001a05 10072 /* Clear the removed bytes. */
a3ef2d63 10073 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10074
a3ef2d63
BW
10075 if (sec->rawsize == 0)
10076 sec->rawsize = sec->size;
10077 sec->size -= removed_bytes;
e901de89
BW
10078
10079 if (xtensa_is_littable_section (sec))
10080 {
f0e6fdb2
BW
10081 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10082 if (sgotloc)
10083 sgotloc->size -= removed_bytes;
e901de89 10084 }
e0001a05
NC
10085 }
10086 }
e901de89 10087
e0001a05
NC
10088 error_return:
10089 release_internal_relocs (sec, internal_relocs);
10090 release_contents (sec, contents);
10091 return ok;
10092}
10093
10094\f
10095/* Third relaxation pass. */
10096
10097/* Change symbol values to account for removed literals. */
10098
43cd72b9 10099bfd_boolean
7fa3d080 10100relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10101{
10102 xtensa_relax_info *relax_info;
10103 unsigned int sec_shndx;
10104 Elf_Internal_Shdr *symtab_hdr;
10105 Elf_Internal_Sym *isymbuf;
10106 unsigned i, num_syms, num_locals;
10107
10108 relax_info = get_xtensa_relax_info (sec);
10109 BFD_ASSERT (relax_info);
10110
43cd72b9
BW
10111 if (!relax_info->is_relaxable_literal_section
10112 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10113 return TRUE;
10114
10115 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10116
10117 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10118 isymbuf = retrieve_local_syms (abfd);
10119
10120 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10121 num_locals = symtab_hdr->sh_info;
10122
10123 /* Adjust the local symbols defined in this section. */
10124 for (i = 0; i < num_locals; i++)
10125 {
10126 Elf_Internal_Sym *isym = &isymbuf[i];
10127
10128 if (isym->st_shndx == sec_shndx)
10129 {
03669f1c
BW
10130 text_action *act = relax_info->action_list.head;
10131 bfd_vma orig_addr = isym->st_value;
43cd72b9 10132
03669f1c 10133 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10134
03669f1c
BW
10135 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10136 isym->st_size -=
10137 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
10138 }
10139 }
10140
10141 /* Now adjust the global symbols defined in this section. */
10142 for (i = 0; i < (num_syms - num_locals); i++)
10143 {
10144 struct elf_link_hash_entry *sym_hash;
10145
10146 sym_hash = elf_sym_hashes (abfd)[i];
10147
10148 if (sym_hash->root.type == bfd_link_hash_warning)
10149 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10150
10151 if ((sym_hash->root.type == bfd_link_hash_defined
10152 || sym_hash->root.type == bfd_link_hash_defweak)
10153 && sym_hash->root.u.def.section == sec)
10154 {
03669f1c
BW
10155 text_action *act = relax_info->action_list.head;
10156 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 10157
03669f1c
BW
10158 sym_hash->root.u.def.value -=
10159 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10160
03669f1c
BW
10161 if (sym_hash->type == STT_FUNC)
10162 sym_hash->size -=
10163 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
10164 }
10165 }
10166
10167 return TRUE;
10168}
10169
10170\f
10171/* "Fix" handling functions, called while performing relocations. */
10172
43cd72b9 10173static bfd_boolean
7fa3d080
BW
10174do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10175 bfd *input_bfd,
10176 asection *input_section,
10177 bfd_byte *contents)
e0001a05
NC
10178{
10179 r_reloc r_rel;
10180 asection *sec, *old_sec;
10181 bfd_vma old_offset;
10182 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10183 reloc_bfd_fix *fix;
10184
10185 if (r_type == R_XTENSA_NONE)
43cd72b9 10186 return TRUE;
e0001a05 10187
43cd72b9
BW
10188 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10189 if (!fix)
10190 return TRUE;
e0001a05 10191
43cd72b9
BW
10192 r_reloc_init (&r_rel, input_bfd, rel, contents,
10193 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10194 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10195 old_offset = r_rel.target_offset;
10196
10197 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10198 {
43cd72b9
BW
10199 if (r_type != R_XTENSA_ASM_EXPAND)
10200 {
10201 (*_bfd_error_handler)
10202 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10203 input_bfd, input_section, rel->r_offset,
10204 elf_howto_table[r_type].name);
10205 return FALSE;
10206 }
e0001a05
NC
10207 /* Leave it be. Resolution will happen in a later stage. */
10208 }
10209 else
10210 {
10211 sec = fix->target_sec;
10212 rel->r_addend += ((sec->output_offset + fix->target_offset)
10213 - (old_sec->output_offset + old_offset));
10214 }
43cd72b9 10215 return TRUE;
e0001a05
NC
10216}
10217
10218
10219static void
7fa3d080
BW
10220do_fix_for_final_link (Elf_Internal_Rela *rel,
10221 bfd *input_bfd,
10222 asection *input_section,
10223 bfd_byte *contents,
10224 bfd_vma *relocationp)
e0001a05
NC
10225{
10226 asection *sec;
10227 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10228 reloc_bfd_fix *fix;
43cd72b9 10229 bfd_vma fixup_diff;
e0001a05
NC
10230
10231 if (r_type == R_XTENSA_NONE)
10232 return;
10233
43cd72b9
BW
10234 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10235 if (!fix)
e0001a05
NC
10236 return;
10237
10238 sec = fix->target_sec;
43cd72b9
BW
10239
10240 fixup_diff = rel->r_addend;
10241 if (elf_howto_table[fix->src_type].partial_inplace)
10242 {
10243 bfd_vma inplace_val;
10244 BFD_ASSERT (fix->src_offset
10245 < bfd_get_section_limit (input_bfd, input_section));
10246 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10247 fixup_diff += inplace_val;
10248 }
10249
e0001a05
NC
10250 *relocationp = (sec->output_section->vma
10251 + sec->output_offset
43cd72b9 10252 + fix->target_offset - fixup_diff);
e0001a05
NC
10253}
10254
10255\f
10256/* Miscellaneous utility functions.... */
10257
10258static asection *
f0e6fdb2 10259elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10260{
f0e6fdb2
BW
10261 struct elf_xtensa_link_hash_table *htab;
10262 bfd *dynobj;
e0001a05
NC
10263 char plt_name[10];
10264
10265 if (chunk == 0)
f0e6fdb2
BW
10266 {
10267 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10268 if (htab == NULL)
10269 return NULL;
10270
f0e6fdb2
BW
10271 return htab->splt;
10272 }
e0001a05 10273
f0e6fdb2 10274 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10275 sprintf (plt_name, ".plt.%u", chunk);
3d4d4302 10276 return bfd_get_linker_section (dynobj, plt_name);
e0001a05
NC
10277}
10278
10279
10280static asection *
f0e6fdb2 10281elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10282{
f0e6fdb2
BW
10283 struct elf_xtensa_link_hash_table *htab;
10284 bfd *dynobj;
e0001a05
NC
10285 char got_name[14];
10286
10287 if (chunk == 0)
f0e6fdb2
BW
10288 {
10289 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10290 if (htab == NULL)
10291 return NULL;
f0e6fdb2
BW
10292 return htab->sgotplt;
10293 }
e0001a05 10294
f0e6fdb2 10295 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10296 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10297 return bfd_get_linker_section (dynobj, got_name);
e0001a05
NC
10298}
10299
10300
10301/* Get the input section for a given symbol index.
10302 If the symbol is:
10303 . a section symbol, return the section;
10304 . a common symbol, return the common section;
10305 . an undefined symbol, return the undefined section;
10306 . an indirect symbol, follow the links;
10307 . an absolute value, return the absolute section. */
10308
10309static asection *
7fa3d080 10310get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10311{
10312 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10313 asection *target_sec = NULL;
43cd72b9 10314 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10315 {
10316 Elf_Internal_Sym *isymbuf;
10317 unsigned int section_index;
10318
10319 isymbuf = retrieve_local_syms (abfd);
10320 section_index = isymbuf[r_symndx].st_shndx;
10321
10322 if (section_index == SHN_UNDEF)
10323 target_sec = bfd_und_section_ptr;
e0001a05
NC
10324 else if (section_index == SHN_ABS)
10325 target_sec = bfd_abs_section_ptr;
10326 else if (section_index == SHN_COMMON)
10327 target_sec = bfd_com_section_ptr;
43cd72b9 10328 else
cb33740c 10329 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10330 }
10331 else
10332 {
10333 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10334 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10335
10336 while (h->root.type == bfd_link_hash_indirect
10337 || h->root.type == bfd_link_hash_warning)
10338 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10339
10340 switch (h->root.type)
10341 {
10342 case bfd_link_hash_defined:
10343 case bfd_link_hash_defweak:
10344 target_sec = h->root.u.def.section;
10345 break;
10346 case bfd_link_hash_common:
10347 target_sec = bfd_com_section_ptr;
10348 break;
10349 case bfd_link_hash_undefined:
10350 case bfd_link_hash_undefweak:
10351 target_sec = bfd_und_section_ptr;
10352 break;
10353 default: /* New indirect warning. */
10354 target_sec = bfd_und_section_ptr;
10355 break;
10356 }
10357 }
10358 return target_sec;
10359}
10360
10361
10362static struct elf_link_hash_entry *
7fa3d080 10363get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10364{
10365 unsigned long indx;
10366 struct elf_link_hash_entry *h;
10367 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10368
10369 if (r_symndx < symtab_hdr->sh_info)
10370 return NULL;
43cd72b9 10371
e0001a05
NC
10372 indx = r_symndx - symtab_hdr->sh_info;
10373 h = elf_sym_hashes (abfd)[indx];
10374 while (h->root.type == bfd_link_hash_indirect
10375 || h->root.type == bfd_link_hash_warning)
10376 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10377 return h;
10378}
10379
10380
10381/* Get the section-relative offset for a symbol number. */
10382
10383static bfd_vma
7fa3d080 10384get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10385{
10386 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10387 bfd_vma offset = 0;
10388
43cd72b9 10389 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10390 {
10391 Elf_Internal_Sym *isymbuf;
10392 isymbuf = retrieve_local_syms (abfd);
10393 offset = isymbuf[r_symndx].st_value;
10394 }
10395 else
10396 {
10397 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10398 struct elf_link_hash_entry *h =
10399 elf_sym_hashes (abfd)[indx];
10400
10401 while (h->root.type == bfd_link_hash_indirect
10402 || h->root.type == bfd_link_hash_warning)
10403 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10404 if (h->root.type == bfd_link_hash_defined
10405 || h->root.type == bfd_link_hash_defweak)
10406 offset = h->root.u.def.value;
10407 }
10408 return offset;
10409}
10410
10411
10412static bfd_boolean
7fa3d080 10413is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10414{
10415 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10416 struct elf_link_hash_entry *h;
10417
10418 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10419 if (h && h->root.type == bfd_link_hash_defweak)
10420 return TRUE;
10421 return FALSE;
10422}
10423
10424
10425static bfd_boolean
7fa3d080
BW
10426pcrel_reloc_fits (xtensa_opcode opc,
10427 int opnd,
10428 bfd_vma self_address,
10429 bfd_vma dest_address)
e0001a05 10430{
43cd72b9
BW
10431 xtensa_isa isa = xtensa_default_isa;
10432 uint32 valp = dest_address;
10433 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10434 || xtensa_operand_encode (isa, opc, opnd, &valp))
10435 return FALSE;
10436 return TRUE;
e0001a05
NC
10437}
10438
10439
68ffbac6 10440static bfd_boolean
7fa3d080 10441xtensa_is_property_section (asection *sec)
e0001a05 10442{
1d25768e
BW
10443 if (xtensa_is_insntable_section (sec)
10444 || xtensa_is_littable_section (sec)
10445 || xtensa_is_proptable_section (sec))
b614a702 10446 return TRUE;
e901de89 10447
1d25768e
BW
10448 return FALSE;
10449}
10450
10451
68ffbac6 10452static bfd_boolean
1d25768e
BW
10453xtensa_is_insntable_section (asection *sec)
10454{
10455 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10456 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10457 return TRUE;
10458
e901de89
BW
10459 return FALSE;
10460}
10461
10462
68ffbac6 10463static bfd_boolean
7fa3d080 10464xtensa_is_littable_section (asection *sec)
e901de89 10465{
1d25768e
BW
10466 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10467 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10468 return TRUE;
e901de89 10469
1d25768e
BW
10470 return FALSE;
10471}
10472
10473
68ffbac6 10474static bfd_boolean
1d25768e
BW
10475xtensa_is_proptable_section (asection *sec)
10476{
10477 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10478 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10479 return TRUE;
e0001a05 10480
e901de89 10481 return FALSE;
e0001a05
NC
10482}
10483
10484
43cd72b9 10485static int
7fa3d080 10486internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10487{
43cd72b9
BW
10488 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10489 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10490
10491 if (a->r_offset != b->r_offset)
10492 return (a->r_offset - b->r_offset);
10493
10494 /* We don't need to sort on these criteria for correctness,
10495 but enforcing a more strict ordering prevents unstable qsort
10496 from behaving differently with different implementations.
10497 Without the code below we get correct but different results
10498 on Solaris 2.7 and 2.8. We would like to always produce the
10499 same results no matter the host. */
10500
10501 if (a->r_info != b->r_info)
10502 return (a->r_info - b->r_info);
10503
10504 return (a->r_addend - b->r_addend);
e0001a05
NC
10505}
10506
10507
10508static int
7fa3d080 10509internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10510{
10511 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10512 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10513
43cd72b9
BW
10514 /* Check if one entry overlaps with the other; this shouldn't happen
10515 except when searching for a match. */
e0001a05
NC
10516 return (a->r_offset - b->r_offset);
10517}
10518
10519
74869ac7
BW
10520/* Predicate function used to look up a section in a particular group. */
10521
10522static bfd_boolean
10523match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10524{
10525 const char *gname = inf;
10526 const char *group_name = elf_group_name (sec);
68ffbac6 10527
74869ac7
BW
10528 return (group_name == gname
10529 || (group_name != NULL
10530 && gname != NULL
10531 && strcmp (group_name, gname) == 0));
10532}
10533
10534
1d25768e
BW
10535static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10536
51c8ebc1
BW
10537static char *
10538xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 10539{
74869ac7
BW
10540 const char *suffix, *group_name;
10541 char *prop_sec_name;
74869ac7
BW
10542
10543 group_name = elf_group_name (sec);
10544 if (group_name)
10545 {
10546 suffix = strrchr (sec->name, '.');
10547 if (suffix == sec->name)
10548 suffix = 0;
10549 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10550 + (suffix ? strlen (suffix) : 0));
10551 strcpy (prop_sec_name, base_name);
10552 if (suffix)
10553 strcat (prop_sec_name, suffix);
10554 }
10555 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 10556 {
43cd72b9 10557 char *linkonce_kind = 0;
b614a702 10558
68ffbac6 10559 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 10560 linkonce_kind = "x.";
68ffbac6 10561 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 10562 linkonce_kind = "p.";
43cd72b9
BW
10563 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10564 linkonce_kind = "prop.";
e0001a05 10565 else
b614a702
BW
10566 abort ();
10567
43cd72b9
BW
10568 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10569 + strlen (linkonce_kind) + 1);
b614a702 10570 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 10571 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
10572
10573 suffix = sec->name + linkonce_len;
096c35a7 10574 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 10575 the new linkonce_kind (but not for "prop" sections). */
0112cd26 10576 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
10577 suffix += 2;
10578 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
10579 }
10580 else
10581 prop_sec_name = strdup (base_name);
10582
51c8ebc1
BW
10583 return prop_sec_name;
10584}
10585
10586
10587static asection *
10588xtensa_get_property_section (asection *sec, const char *base_name)
10589{
10590 char *prop_sec_name;
10591 asection *prop_sec;
10592
10593 prop_sec_name = xtensa_property_section_name (sec, base_name);
10594 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10595 match_section_group,
10596 (void *) elf_group_name (sec));
10597 free (prop_sec_name);
10598 return prop_sec;
10599}
10600
10601
10602asection *
10603xtensa_make_property_section (asection *sec, const char *base_name)
10604{
10605 char *prop_sec_name;
10606 asection *prop_sec;
10607
74869ac7 10608 /* Check if the section already exists. */
51c8ebc1 10609 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
10610 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10611 match_section_group,
51c8ebc1 10612 (void *) elf_group_name (sec));
74869ac7
BW
10613 /* If not, create it. */
10614 if (! prop_sec)
10615 {
10616 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10617 flags |= (bfd_get_section_flags (sec->owner, sec)
10618 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10619
10620 prop_sec = bfd_make_section_anyway_with_flags
10621 (sec->owner, strdup (prop_sec_name), flags);
10622 if (! prop_sec)
10623 return 0;
b614a702 10624
51c8ebc1 10625 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
10626 }
10627
74869ac7
BW
10628 free (prop_sec_name);
10629 return prop_sec;
e0001a05
NC
10630}
10631
43cd72b9
BW
10632
10633flagword
7fa3d080 10634xtensa_get_property_predef_flags (asection *sec)
43cd72b9 10635{
1d25768e 10636 if (xtensa_is_insntable_section (sec))
43cd72b9 10637 return (XTENSA_PROP_INSN
99ded152 10638 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10639 | XTENSA_PROP_INSN_NO_REORDER);
10640
10641 if (xtensa_is_littable_section (sec))
10642 return (XTENSA_PROP_LITERAL
99ded152 10643 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10644 | XTENSA_PROP_INSN_NO_REORDER);
10645
10646 return 0;
10647}
10648
e0001a05
NC
10649\f
10650/* Other functions called directly by the linker. */
10651
10652bfd_boolean
7fa3d080
BW
10653xtensa_callback_required_dependence (bfd *abfd,
10654 asection *sec,
10655 struct bfd_link_info *link_info,
10656 deps_callback_t callback,
10657 void *closure)
e0001a05
NC
10658{
10659 Elf_Internal_Rela *internal_relocs;
10660 bfd_byte *contents;
10661 unsigned i;
10662 bfd_boolean ok = TRUE;
43cd72b9
BW
10663 bfd_size_type sec_size;
10664
10665 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
10666
10667 /* ".plt*" sections have no explicit relocations but they contain L32R
10668 instructions that reference the corresponding ".got.plt*" sections. */
10669 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 10670 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
10671 {
10672 asection *sgotplt;
10673
10674 /* Find the corresponding ".got.plt*" section. */
10675 if (sec->name[4] == '\0')
3d4d4302 10676 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
e0001a05
NC
10677 else
10678 {
10679 char got_name[14];
10680 int chunk = 0;
10681
10682 BFD_ASSERT (sec->name[4] == '.');
10683 chunk = strtol (&sec->name[5], NULL, 10);
10684
10685 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10686 sgotplt = bfd_get_linker_section (sec->owner, got_name);
e0001a05
NC
10687 }
10688 BFD_ASSERT (sgotplt);
10689
10690 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10691 section referencing a literal at the very beginning of
10692 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 10693 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
10694 }
10695
13161072
BW
10696 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10697 when building uclibc, which runs "ld -b binary /dev/null". */
10698 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10699 return ok;
10700
68ffbac6 10701 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
10702 link_info->keep_memory);
10703 if (internal_relocs == NULL
43cd72b9 10704 || sec->reloc_count == 0)
e0001a05
NC
10705 return ok;
10706
10707 /* Cache the contents for the duration of this scan. */
10708 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10709 if (contents == NULL && sec_size != 0)
e0001a05
NC
10710 {
10711 ok = FALSE;
10712 goto error_return;
10713 }
10714
43cd72b9
BW
10715 if (!xtensa_default_isa)
10716 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 10717
43cd72b9 10718 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10719 {
10720 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 10721 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
10722 {
10723 r_reloc l32r_rel;
10724 asection *target_sec;
10725 bfd_vma target_offset;
43cd72b9
BW
10726
10727 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
10728 target_sec = NULL;
10729 target_offset = 0;
10730 /* L32Rs must be local to the input file. */
10731 if (r_reloc_is_defined (&l32r_rel))
10732 {
10733 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 10734 target_offset = l32r_rel.target_offset;
e0001a05
NC
10735 }
10736 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10737 closure);
10738 }
10739 }
10740
10741 error_return:
10742 release_internal_relocs (sec, internal_relocs);
10743 release_contents (sec, contents);
10744 return ok;
10745}
10746
2f89ff8d
L
10747/* The default literal sections should always be marked as "code" (i.e.,
10748 SHF_EXECINSTR). This is particularly important for the Linux kernel
10749 module loader so that the literals are not placed after the text. */
b35d266b 10750static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 10751{
0112cd26
NC
10752 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10753 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10754 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 10755 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 10756 { NULL, 0, 0, 0, 0 }
7f4d3958 10757};
e0001a05 10758\f
ae95ffa6 10759#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05
NC
10760#ifndef ELF_ARCH
10761#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10762#define TARGET_LITTLE_NAME "elf32-xtensa-le"
10763#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10764#define TARGET_BIG_NAME "elf32-xtensa-be"
10765#define ELF_ARCH bfd_arch_xtensa
10766
4af0a1d8
BW
10767#define ELF_MACHINE_CODE EM_XTENSA
10768#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
10769
10770#if XCHAL_HAVE_MMU
10771#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10772#else /* !XCHAL_HAVE_MMU */
10773#define ELF_MAXPAGESIZE 1
10774#endif /* !XCHAL_HAVE_MMU */
10775#endif /* ELF_ARCH */
10776
10777#define elf_backend_can_gc_sections 1
10778#define elf_backend_can_refcount 1
10779#define elf_backend_plt_readonly 1
10780#define elf_backend_got_header_size 4
10781#define elf_backend_want_dynbss 0
10782#define elf_backend_want_got_plt 1
10783
10784#define elf_info_to_howto elf_xtensa_info_to_howto_rela
10785
28dbbc02
BW
10786#define bfd_elf32_mkobject elf_xtensa_mkobject
10787
e0001a05
NC
10788#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10789#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10790#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10791#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10792#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
10793#define bfd_elf32_bfd_reloc_name_lookup \
10794 elf_xtensa_reloc_name_lookup
e0001a05 10795#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 10796#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
10797
10798#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10799#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
10800#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10801#define elf_backend_discard_info elf_xtensa_discard_info
10802#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10803#define elf_backend_final_write_processing elf_xtensa_final_write_processing
10804#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10805#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10806#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10807#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10808#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10809#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 10810#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
10811#define elf_backend_object_p elf_xtensa_object_p
10812#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10813#define elf_backend_relocate_section elf_xtensa_relocate_section
10814#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 10815#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
10816#define elf_backend_omit_section_dynsym \
10817 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 10818#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 10819#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 10820#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
10821
10822#include "elf32-target.h"
This page took 1.182157 seconds and 4 git commands to generate.