daily update
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
f0e6fdb2 2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
106static bfd_boolean xtensa_is_littable_section (asection *);
107static int internal_reloc_compare (const void *, const void *);
108static int internal_reloc_matches (const void *, const void *);
74869ac7 109extern asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 110static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
111
112/* Other functions called directly by the linker. */
113
114typedef void (*deps_callback_t)
7fa3d080 115 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 116extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
118
119
43cd72b9
BW
120/* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
7fa3d080 124
43cd72b9
BW
125int elf32xtensa_size_opt;
126
127
128/* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
e0001a05 131
7fa3d080 132typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 133
43cd72b9 134
43cd72b9
BW
135/* The GNU tools do not easily allow extending interfaces to pass around
136 the pointer to the Xtensa ISA information, so instead we add a global
137 variable here (in BFD) that can be used by any of the tools that need
138 this information. */
139
140xtensa_isa xtensa_default_isa;
141
142
e0001a05
NC
143/* When this is true, relocations may have been modified to refer to
144 symbols from other input files. The per-section list of "fix"
145 records needs to be checked when resolving relocations. */
146
147static bfd_boolean relaxing_section = FALSE;
148
43cd72b9
BW
149/* When this is true, during final links, literals that cannot be
150 coalesced and their relocations may be moved to other sections. */
151
152int elf32xtensa_no_literal_movement = 1;
153
e0001a05
NC
154\f
155static reloc_howto_type elf_howto_table[] =
156{
157 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
158 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 159 FALSE, 0, 0, FALSE),
e0001a05
NC
160 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
161 bfd_elf_xtensa_reloc, "R_XTENSA_32",
162 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 163
e0001a05
NC
164 /* Replace a 32-bit value with a value from the runtime linker (only
165 used by linker-generated stub functions). The r_addend value is
166 special: 1 means to substitute a pointer to the runtime linker's
167 dynamic resolver function; 2 means to substitute the link map for
168 the shared object. */
169 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
170 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
171
e0001a05
NC
172 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 174 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
175 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
176 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 177 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
178 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
179 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 180 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
181 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
183 FALSE, 0, 0xffffffff, FALSE),
184
e0001a05 185 EMPTY_HOWTO (7),
e5f131d1
BW
186
187 /* Old relocations for backward compatibility. */
e0001a05 188 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 189 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 190 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 191 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 192 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
193 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
194
e0001a05
NC
195 /* Assembly auto-expansion. */
196 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 197 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
198 /* Relax assembly auto-expansion. */
199 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
200 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
201
e0001a05
NC
202 EMPTY_HOWTO (13),
203 EMPTY_HOWTO (14),
e5f131d1 204
e0001a05
NC
205 /* GNU extension to record C++ vtable hierarchy. */
206 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
207 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 208 FALSE, 0, 0, FALSE),
e0001a05
NC
209 /* GNU extension to record C++ vtable member usage. */
210 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
211 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 212 FALSE, 0, 0, FALSE),
43cd72b9
BW
213
214 /* Relocations for supporting difference of symbols. */
215 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 216 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 217 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 218 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 219 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 220 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
221
222 /* General immediate operand relocations. */
223 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 224 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 225 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 226 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 227 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 228 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 229 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 231 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 233 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 235 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 237 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 239 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 241 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 243 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 245 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 247 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 249 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 251 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
253
254 /* "Alternate" relocations. The meaning of these is opcode-specific. */
255 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 257 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 259 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 261 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 263 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 265 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 267 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 269 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 271 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 273 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 275 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 277 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 279 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 281 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 283 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
e0001a05
NC
285};
286
43cd72b9 287#if DEBUG_GEN_RELOC
e0001a05
NC
288#define TRACE(str) \
289 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
290#else
291#define TRACE(str)
292#endif
293
294static reloc_howto_type *
7fa3d080
BW
295elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
296 bfd_reloc_code_real_type code)
e0001a05
NC
297{
298 switch (code)
299 {
300 case BFD_RELOC_NONE:
301 TRACE ("BFD_RELOC_NONE");
302 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
303
304 case BFD_RELOC_32:
305 TRACE ("BFD_RELOC_32");
306 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
307
43cd72b9
BW
308 case BFD_RELOC_XTENSA_DIFF8:
309 TRACE ("BFD_RELOC_XTENSA_DIFF8");
310 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
311
312 case BFD_RELOC_XTENSA_DIFF16:
313 TRACE ("BFD_RELOC_XTENSA_DIFF16");
314 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
315
316 case BFD_RELOC_XTENSA_DIFF32:
317 TRACE ("BFD_RELOC_XTENSA_DIFF32");
318 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
319
e0001a05
NC
320 case BFD_RELOC_XTENSA_RTLD:
321 TRACE ("BFD_RELOC_XTENSA_RTLD");
322 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
323
324 case BFD_RELOC_XTENSA_GLOB_DAT:
325 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
326 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
327
328 case BFD_RELOC_XTENSA_JMP_SLOT:
329 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
330 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
331
332 case BFD_RELOC_XTENSA_RELATIVE:
333 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
334 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
335
336 case BFD_RELOC_XTENSA_PLT:
337 TRACE ("BFD_RELOC_XTENSA_PLT");
338 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
339
340 case BFD_RELOC_XTENSA_OP0:
341 TRACE ("BFD_RELOC_XTENSA_OP0");
342 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
343
344 case BFD_RELOC_XTENSA_OP1:
345 TRACE ("BFD_RELOC_XTENSA_OP1");
346 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
347
348 case BFD_RELOC_XTENSA_OP2:
349 TRACE ("BFD_RELOC_XTENSA_OP2");
350 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
351
352 case BFD_RELOC_XTENSA_ASM_EXPAND:
353 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
354 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
355
356 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
357 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
358 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
359
360 case BFD_RELOC_VTABLE_INHERIT:
361 TRACE ("BFD_RELOC_VTABLE_INHERIT");
362 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
363
364 case BFD_RELOC_VTABLE_ENTRY:
365 TRACE ("BFD_RELOC_VTABLE_ENTRY");
366 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
367
368 default:
43cd72b9
BW
369 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
370 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
371 {
372 unsigned n = (R_XTENSA_SLOT0_OP +
373 (code - BFD_RELOC_XTENSA_SLOT0_OP));
374 return &elf_howto_table[n];
375 }
376
377 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
378 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
379 {
380 unsigned n = (R_XTENSA_SLOT0_ALT +
381 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
382 return &elf_howto_table[n];
383 }
384
e0001a05
NC
385 break;
386 }
387
388 TRACE ("Unknown");
389 return NULL;
390}
391
392
393/* Given an ELF "rela" relocation, find the corresponding howto and record
394 it in the BFD internal arelent representation of the relocation. */
395
396static void
7fa3d080
BW
397elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
398 arelent *cache_ptr,
399 Elf_Internal_Rela *dst)
e0001a05
NC
400{
401 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
402
403 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
404 cache_ptr->howto = &elf_howto_table[r_type];
405}
406
407\f
408/* Functions for the Xtensa ELF linker. */
409
410/* The name of the dynamic interpreter. This is put in the .interp
411 section. */
412
413#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
414
415/* The size in bytes of an entry in the procedure linkage table.
416 (This does _not_ include the space for the literals associated with
417 the PLT entry.) */
418
419#define PLT_ENTRY_SIZE 16
420
421/* For _really_ large PLTs, we may need to alternate between literals
422 and code to keep the literals within the 256K range of the L32R
423 instructions in the code. It's unlikely that anyone would ever need
424 such a big PLT, but an arbitrary limit on the PLT size would be bad.
425 Thus, we split the PLT into chunks. Since there's very little
426 overhead (2 extra literals) for each chunk, the chunk size is kept
427 small so that the code for handling multiple chunks get used and
428 tested regularly. With 254 entries, there are 1K of literals for
429 each chunk, and that seems like a nice round number. */
430
431#define PLT_ENTRIES_PER_CHUNK 254
432
433/* PLT entries are actually used as stub functions for lazy symbol
434 resolution. Once the symbol is resolved, the stub function is never
435 invoked. Note: the 32-byte frame size used here cannot be changed
436 without a corresponding change in the runtime linker. */
437
438static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
439{
440 0x6c, 0x10, 0x04, /* entry sp, 32 */
441 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
442 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
443 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
444 0x0a, 0x80, 0x00, /* jx a8 */
445 0 /* unused */
446};
447
448static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
449{
450 0x36, 0x41, 0x00, /* entry sp, 32 */
451 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
452 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
453 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
454 0xa0, 0x08, 0x00, /* jx a8 */
455 0 /* unused */
456};
457
f0e6fdb2
BW
458/* Xtensa ELF linker hash table. */
459
460struct elf_xtensa_link_hash_table
461{
462 struct elf_link_hash_table elf;
463
464 /* Short-cuts to get to dynamic linker sections. */
465 asection *sgot;
466 asection *sgotplt;
467 asection *srelgot;
468 asection *splt;
469 asection *srelplt;
470 asection *sgotloc;
471 asection *spltlittbl;
472
473 /* Total count of PLT relocations seen during check_relocs.
474 The actual PLT code must be split into multiple sections and all
475 the sections have to be created before size_dynamic_sections,
476 where we figure out the exact number of PLT entries that will be
477 needed. It is OK if this count is an overestimate, e.g., some
478 relocations may be removed by GC. */
479 int plt_reloc_count;
480};
481
482/* Get the Xtensa ELF linker hash table from a link_info structure. */
483
484#define elf_xtensa_hash_table(p) \
485 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
486
487/* Create an Xtensa ELF linker hash table. */
488
489static struct bfd_link_hash_table *
490elf_xtensa_link_hash_table_create (bfd *abfd)
491{
492 struct elf_xtensa_link_hash_table *ret;
493 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
494
495 ret = bfd_malloc (amt);
496 if (ret == NULL)
497 return NULL;
498
499 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
500 _bfd_elf_link_hash_newfunc,
501 sizeof (struct elf_link_hash_entry)))
502 {
503 free (ret);
504 return NULL;
505 }
506
507 ret->sgot = NULL;
508 ret->sgotplt = NULL;
509 ret->srelgot = NULL;
510 ret->splt = NULL;
511 ret->srelplt = NULL;
512 ret->sgotloc = NULL;
513 ret->spltlittbl = NULL;
514
515 ret->plt_reloc_count = 0;
516
517 return &ret->elf.root;
518}
571b5725
BW
519
520static inline bfd_boolean
4608f3d9 521elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 522 struct bfd_link_info *info)
571b5725
BW
523{
524 /* Check if we should do dynamic things to this symbol. The
525 "ignore_protected" argument need not be set, because Xtensa code
526 does not require special handling of STV_PROTECTED to make function
527 pointer comparisons work properly. The PLT addresses are never
528 used for function pointers. */
529
530 return _bfd_elf_dynamic_symbol_p (h, info, 0);
531}
532
e0001a05
NC
533\f
534static int
7fa3d080 535property_table_compare (const void *ap, const void *bp)
e0001a05
NC
536{
537 const property_table_entry *a = (const property_table_entry *) ap;
538 const property_table_entry *b = (const property_table_entry *) bp;
539
43cd72b9
BW
540 if (a->address == b->address)
541 {
43cd72b9
BW
542 if (a->size != b->size)
543 return (a->size - b->size);
544
545 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
546 return ((b->flags & XTENSA_PROP_ALIGN)
547 - (a->flags & XTENSA_PROP_ALIGN));
548
549 if ((a->flags & XTENSA_PROP_ALIGN)
550 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
551 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
552 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
553 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
554
555 if ((a->flags & XTENSA_PROP_UNREACHABLE)
556 != (b->flags & XTENSA_PROP_UNREACHABLE))
557 return ((b->flags & XTENSA_PROP_UNREACHABLE)
558 - (a->flags & XTENSA_PROP_UNREACHABLE));
559
560 return (a->flags - b->flags);
561 }
562
563 return (a->address - b->address);
564}
565
566
567static int
7fa3d080 568property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
569{
570 const property_table_entry *a = (const property_table_entry *) ap;
571 const property_table_entry *b = (const property_table_entry *) bp;
572
573 /* Check if one entry overlaps with the other. */
e0001a05
NC
574 if ((b->address >= a->address && b->address < (a->address + a->size))
575 || (a->address >= b->address && a->address < (b->address + b->size)))
576 return 0;
577
578 return (a->address - b->address);
579}
580
581
43cd72b9
BW
582/* Get the literal table or property table entries for the given
583 section. Sets TABLE_P and returns the number of entries. On
584 error, returns a negative value. */
e0001a05 585
7fa3d080
BW
586static int
587xtensa_read_table_entries (bfd *abfd,
588 asection *section,
589 property_table_entry **table_p,
590 const char *sec_name,
591 bfd_boolean output_addr)
e0001a05
NC
592{
593 asection *table_section;
e0001a05
NC
594 bfd_size_type table_size = 0;
595 bfd_byte *table_data;
596 property_table_entry *blocks;
e4115460 597 int blk, block_count;
e0001a05
NC
598 bfd_size_type num_records;
599 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 600 bfd_vma section_addr;
43cd72b9
BW
601 flagword predef_flags;
602 bfd_size_type table_entry_size;
603
604 if (!section
605 || !(section->flags & SEC_ALLOC)
606 || (section->flags & SEC_DEBUGGING))
607 {
608 *table_p = NULL;
609 return 0;
610 }
e0001a05 611
74869ac7 612 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 613 if (table_section)
eea6121a 614 table_size = table_section->size;
43cd72b9 615
e0001a05
NC
616 if (table_size == 0)
617 {
618 *table_p = NULL;
619 return 0;
620 }
621
43cd72b9
BW
622 predef_flags = xtensa_get_property_predef_flags (table_section);
623 table_entry_size = 12;
624 if (predef_flags)
625 table_entry_size -= 4;
626
627 num_records = table_size / table_entry_size;
e0001a05
NC
628 table_data = retrieve_contents (abfd, table_section, TRUE);
629 blocks = (property_table_entry *)
630 bfd_malloc (num_records * sizeof (property_table_entry));
631 block_count = 0;
43cd72b9
BW
632
633 if (output_addr)
634 section_addr = section->output_section->vma + section->output_offset;
635 else
636 section_addr = section->vma;
3ba3bc8c 637
e0001a05
NC
638 /* If the file has not yet been relocated, process the relocations
639 and sort out the table entries that apply to the specified section. */
640 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 641 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
642 {
643 unsigned i;
644
645 for (i = 0; i < table_section->reloc_count; i++)
646 {
647 Elf_Internal_Rela *rel = &internal_relocs[i];
648 unsigned long r_symndx;
649
650 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
651 continue;
652
653 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
654 r_symndx = ELF32_R_SYM (rel->r_info);
655
656 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
657 {
658 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9 659 BFD_ASSERT (sym_off == 0);
e0001a05 660 blocks[block_count].address =
3ba3bc8c 661 (section_addr + sym_off + rel->r_addend
e0001a05
NC
662 + bfd_get_32 (abfd, table_data + rel->r_offset));
663 blocks[block_count].size =
664 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
665 if (predef_flags)
666 blocks[block_count].flags = predef_flags;
667 else
668 blocks[block_count].flags =
669 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
670 block_count++;
671 }
672 }
673 }
674 else
675 {
3ba3bc8c
BW
676 /* The file has already been relocated and the addresses are
677 already in the table. */
e0001a05 678 bfd_vma off;
43cd72b9 679 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 680
43cd72b9 681 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
682 {
683 bfd_vma address = bfd_get_32 (abfd, table_data + off);
684
3ba3bc8c 685 if (address >= section_addr
43cd72b9 686 && address < section_addr + section_limit)
e0001a05
NC
687 {
688 blocks[block_count].address = address;
689 blocks[block_count].size =
690 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
691 if (predef_flags)
692 blocks[block_count].flags = predef_flags;
693 else
694 blocks[block_count].flags =
695 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
696 block_count++;
697 }
698 }
699 }
700
701 release_contents (table_section, table_data);
702 release_internal_relocs (table_section, internal_relocs);
703
43cd72b9 704 if (block_count > 0)
e0001a05
NC
705 {
706 /* Now sort them into address order for easy reference. */
707 qsort (blocks, block_count, sizeof (property_table_entry),
708 property_table_compare);
e4115460
BW
709
710 /* Check that the table contents are valid. Problems may occur,
711 for example, if an unrelocated object file is stripped. */
712 for (blk = 1; blk < block_count; blk++)
713 {
714 /* The only circumstance where two entries may legitimately
715 have the same address is when one of them is a zero-size
716 placeholder to mark a place where fill can be inserted.
717 The zero-size entry should come first. */
718 if (blocks[blk - 1].address == blocks[blk].address &&
719 blocks[blk - 1].size != 0)
720 {
721 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
722 abfd, section);
723 bfd_set_error (bfd_error_bad_value);
724 free (blocks);
725 return -1;
726 }
727 }
e0001a05 728 }
43cd72b9 729
e0001a05
NC
730 *table_p = blocks;
731 return block_count;
732}
733
734
7fa3d080
BW
735static property_table_entry *
736elf_xtensa_find_property_entry (property_table_entry *property_table,
737 int property_table_size,
738 bfd_vma addr)
e0001a05
NC
739{
740 property_table_entry entry;
43cd72b9 741 property_table_entry *rv;
e0001a05 742
43cd72b9
BW
743 if (property_table_size == 0)
744 return NULL;
e0001a05
NC
745
746 entry.address = addr;
747 entry.size = 1;
43cd72b9 748 entry.flags = 0;
e0001a05 749
43cd72b9
BW
750 rv = bsearch (&entry, property_table, property_table_size,
751 sizeof (property_table_entry), property_table_matches);
752 return rv;
753}
754
755
756static bfd_boolean
7fa3d080
BW
757elf_xtensa_in_literal_pool (property_table_entry *lit_table,
758 int lit_table_size,
759 bfd_vma addr)
43cd72b9
BW
760{
761 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
762 return TRUE;
763
764 return FALSE;
765}
766
767\f
768/* Look through the relocs for a section during the first phase, and
769 calculate needed space in the dynamic reloc sections. */
770
771static bfd_boolean
7fa3d080
BW
772elf_xtensa_check_relocs (bfd *abfd,
773 struct bfd_link_info *info,
774 asection *sec,
775 const Elf_Internal_Rela *relocs)
e0001a05 776{
f0e6fdb2 777 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
778 Elf_Internal_Shdr *symtab_hdr;
779 struct elf_link_hash_entry **sym_hashes;
780 const Elf_Internal_Rela *rel;
781 const Elf_Internal_Rela *rel_end;
e0001a05 782
1049f94e 783 if (info->relocatable)
e0001a05
NC
784 return TRUE;
785
f0e6fdb2 786 htab = elf_xtensa_hash_table (info);
e0001a05
NC
787 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
788 sym_hashes = elf_sym_hashes (abfd);
789
e0001a05
NC
790 rel_end = relocs + sec->reloc_count;
791 for (rel = relocs; rel < rel_end; rel++)
792 {
793 unsigned int r_type;
794 unsigned long r_symndx;
795 struct elf_link_hash_entry *h;
796
797 r_symndx = ELF32_R_SYM (rel->r_info);
798 r_type = ELF32_R_TYPE (rel->r_info);
799
800 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
801 {
d003868e
AM
802 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
803 abfd, r_symndx);
e0001a05
NC
804 return FALSE;
805 }
806
807 if (r_symndx < symtab_hdr->sh_info)
808 h = NULL;
809 else
810 {
811 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
812 while (h->root.type == bfd_link_hash_indirect
813 || h->root.type == bfd_link_hash_warning)
814 h = (struct elf_link_hash_entry *) h->root.u.i.link;
815 }
816
817 switch (r_type)
818 {
819 case R_XTENSA_32:
820 if (h == NULL)
821 goto local_literal;
822
823 if ((sec->flags & SEC_ALLOC) != 0)
824 {
e0001a05
NC
825 if (h->got.refcount <= 0)
826 h->got.refcount = 1;
827 else
828 h->got.refcount += 1;
829 }
830 break;
831
832 case R_XTENSA_PLT:
833 /* If this relocation is against a local symbol, then it's
834 exactly the same as a normal local GOT entry. */
835 if (h == NULL)
836 goto local_literal;
837
838 if ((sec->flags & SEC_ALLOC) != 0)
839 {
e0001a05
NC
840 if (h->plt.refcount <= 0)
841 {
f5385ebf 842 h->needs_plt = 1;
e0001a05
NC
843 h->plt.refcount = 1;
844 }
845 else
846 h->plt.refcount += 1;
847
848 /* Keep track of the total PLT relocation count even if we
849 don't yet know whether the dynamic sections will be
850 created. */
f0e6fdb2 851 htab->plt_reloc_count += 1;
e0001a05
NC
852
853 if (elf_hash_table (info)->dynamic_sections_created)
854 {
f0e6fdb2 855 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
856 return FALSE;
857 }
858 }
859 break;
860
861 local_literal:
862 if ((sec->flags & SEC_ALLOC) != 0)
863 {
864 bfd_signed_vma *local_got_refcounts;
865
866 /* This is a global offset table entry for a local symbol. */
867 local_got_refcounts = elf_local_got_refcounts (abfd);
868 if (local_got_refcounts == NULL)
869 {
870 bfd_size_type size;
871
872 size = symtab_hdr->sh_info;
873 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
874 local_got_refcounts =
875 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
876 if (local_got_refcounts == NULL)
877 return FALSE;
878 elf_local_got_refcounts (abfd) = local_got_refcounts;
879 }
880 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
881 }
882 break;
883
884 case R_XTENSA_OP0:
885 case R_XTENSA_OP1:
886 case R_XTENSA_OP2:
43cd72b9
BW
887 case R_XTENSA_SLOT0_OP:
888 case R_XTENSA_SLOT1_OP:
889 case R_XTENSA_SLOT2_OP:
890 case R_XTENSA_SLOT3_OP:
891 case R_XTENSA_SLOT4_OP:
892 case R_XTENSA_SLOT5_OP:
893 case R_XTENSA_SLOT6_OP:
894 case R_XTENSA_SLOT7_OP:
895 case R_XTENSA_SLOT8_OP:
896 case R_XTENSA_SLOT9_OP:
897 case R_XTENSA_SLOT10_OP:
898 case R_XTENSA_SLOT11_OP:
899 case R_XTENSA_SLOT12_OP:
900 case R_XTENSA_SLOT13_OP:
901 case R_XTENSA_SLOT14_OP:
902 case R_XTENSA_SLOT0_ALT:
903 case R_XTENSA_SLOT1_ALT:
904 case R_XTENSA_SLOT2_ALT:
905 case R_XTENSA_SLOT3_ALT:
906 case R_XTENSA_SLOT4_ALT:
907 case R_XTENSA_SLOT5_ALT:
908 case R_XTENSA_SLOT6_ALT:
909 case R_XTENSA_SLOT7_ALT:
910 case R_XTENSA_SLOT8_ALT:
911 case R_XTENSA_SLOT9_ALT:
912 case R_XTENSA_SLOT10_ALT:
913 case R_XTENSA_SLOT11_ALT:
914 case R_XTENSA_SLOT12_ALT:
915 case R_XTENSA_SLOT13_ALT:
916 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
917 case R_XTENSA_ASM_EXPAND:
918 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
919 case R_XTENSA_DIFF8:
920 case R_XTENSA_DIFF16:
921 case R_XTENSA_DIFF32:
e0001a05
NC
922 /* Nothing to do for these. */
923 break;
924
925 case R_XTENSA_GNU_VTINHERIT:
926 /* This relocation describes the C++ object vtable hierarchy.
927 Reconstruct it for later use during GC. */
c152c796 928 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
929 return FALSE;
930 break;
931
932 case R_XTENSA_GNU_VTENTRY:
933 /* This relocation describes which C++ vtable entries are actually
934 used. Record for later use during GC. */
c152c796 935 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
936 return FALSE;
937 break;
938
939 default:
940 break;
941 }
942 }
943
e0001a05
NC
944 return TRUE;
945}
946
947
e0001a05
NC
948/* Return the section that should be marked against GC for a given
949 relocation. */
950
951static asection *
7fa3d080 952elf_xtensa_gc_mark_hook (asection *sec,
07adf181 953 struct bfd_link_info *info,
7fa3d080
BW
954 Elf_Internal_Rela *rel,
955 struct elf_link_hash_entry *h,
956 Elf_Internal_Sym *sym)
e0001a05 957{
07adf181
AM
958 if (h != NULL)
959 switch (ELF32_R_TYPE (rel->r_info))
960 {
961 case R_XTENSA_GNU_VTINHERIT:
962 case R_XTENSA_GNU_VTENTRY:
963 return NULL;
964 }
965
966 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
967}
968
7fa3d080 969
e0001a05
NC
970/* Update the GOT & PLT entry reference counts
971 for the section being removed. */
972
973static bfd_boolean
7fa3d080
BW
974elf_xtensa_gc_sweep_hook (bfd *abfd,
975 struct bfd_link_info *info ATTRIBUTE_UNUSED,
976 asection *sec,
977 const Elf_Internal_Rela *relocs)
e0001a05
NC
978{
979 Elf_Internal_Shdr *symtab_hdr;
980 struct elf_link_hash_entry **sym_hashes;
981 bfd_signed_vma *local_got_refcounts;
982 const Elf_Internal_Rela *rel, *relend;
983
984 if ((sec->flags & SEC_ALLOC) == 0)
985 return TRUE;
986
987 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
988 sym_hashes = elf_sym_hashes (abfd);
989 local_got_refcounts = elf_local_got_refcounts (abfd);
990
991 relend = relocs + sec->reloc_count;
992 for (rel = relocs; rel < relend; rel++)
993 {
994 unsigned long r_symndx;
995 unsigned int r_type;
996 struct elf_link_hash_entry *h = NULL;
997
998 r_symndx = ELF32_R_SYM (rel->r_info);
999 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1000 {
1001 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1002 while (h->root.type == bfd_link_hash_indirect
1003 || h->root.type == bfd_link_hash_warning)
1004 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1005 }
e0001a05
NC
1006
1007 r_type = ELF32_R_TYPE (rel->r_info);
1008 switch (r_type)
1009 {
1010 case R_XTENSA_32:
1011 if (h == NULL)
1012 goto local_literal;
1013 if (h->got.refcount > 0)
1014 h->got.refcount--;
1015 break;
1016
1017 case R_XTENSA_PLT:
1018 if (h == NULL)
1019 goto local_literal;
1020 if (h->plt.refcount > 0)
1021 h->plt.refcount--;
1022 break;
1023
1024 local_literal:
1025 if (local_got_refcounts[r_symndx] > 0)
1026 local_got_refcounts[r_symndx] -= 1;
1027 break;
1028
1029 default:
1030 break;
1031 }
1032 }
1033
1034 return TRUE;
1035}
1036
1037
1038/* Create all the dynamic sections. */
1039
1040static bfd_boolean
7fa3d080 1041elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1042{
f0e6fdb2 1043 struct elf_xtensa_link_hash_table *htab;
e901de89 1044 flagword flags, noalloc_flags;
f0e6fdb2
BW
1045
1046 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1047
1048 /* First do all the standard stuff. */
1049 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1050 return FALSE;
f0e6fdb2
BW
1051 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1052 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1053 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1054 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
e0001a05
NC
1055
1056 /* Create any extra PLT sections in case check_relocs has already
1057 been called on all the non-dynamic input files. */
f0e6fdb2 1058 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1059 return FALSE;
1060
e901de89
BW
1061 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1062 | SEC_LINKER_CREATED | SEC_READONLY);
1063 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1064
1065 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1066 if (htab->sgotplt == NULL
1067 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1068 return FALSE;
1069
1070 /* Create ".rela.got". */
f0e6fdb2
BW
1071 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1072 if (htab->srelgot == NULL
1073 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
e0001a05
NC
1074 return FALSE;
1075
e901de89 1076 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1077 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1078 if (htab->sgotloc == NULL
1079 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1080 return FALSE;
1081
e0001a05 1082 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1083 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1084 noalloc_flags);
1085 if (htab->spltlittbl == NULL
1086 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1087 return FALSE;
1088
1089 return TRUE;
1090}
1091
1092
1093static bfd_boolean
f0e6fdb2 1094add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1095{
f0e6fdb2 1096 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1097 int chunk;
1098
1099 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1100 ".got.plt" sections. */
1101 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1102 {
1103 char *sname;
1104 flagword flags;
1105 asection *s;
1106
1107 /* Stop when we find a section has already been created. */
f0e6fdb2 1108 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1109 break;
1110
1111 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1112 | SEC_LINKER_CREATED | SEC_READONLY);
1113
1114 sname = (char *) bfd_malloc (10);
1115 sprintf (sname, ".plt.%u", chunk);
ba05963f 1116 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1117 if (s == NULL
e0001a05
NC
1118 || ! bfd_set_section_alignment (dynobj, s, 2))
1119 return FALSE;
1120
1121 sname = (char *) bfd_malloc (14);
1122 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1123 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1124 if (s == NULL
e0001a05
NC
1125 || ! bfd_set_section_alignment (dynobj, s, 2))
1126 return FALSE;
1127 }
1128
1129 return TRUE;
1130}
1131
1132
1133/* Adjust a symbol defined by a dynamic object and referenced by a
1134 regular object. The current definition is in some section of the
1135 dynamic object, but we're not including those sections. We have to
1136 change the definition to something the rest of the link can
1137 understand. */
1138
1139static bfd_boolean
7fa3d080
BW
1140elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1141 struct elf_link_hash_entry *h)
e0001a05
NC
1142{
1143 /* If this is a weak symbol, and there is a real definition, the
1144 processor independent code will have arranged for us to see the
1145 real definition first, and we can just use the same value. */
7fa3d080 1146 if (h->u.weakdef)
e0001a05 1147 {
f6e332e6
AM
1148 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1149 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1150 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1151 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1152 return TRUE;
1153 }
1154
1155 /* This is a reference to a symbol defined by a dynamic object. The
1156 reference must go through the GOT, so there's no need for COPY relocs,
1157 .dynbss, etc. */
1158
1159 return TRUE;
1160}
1161
1162
e0001a05 1163static bfd_boolean
f1ab2340 1164elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1165{
f1ab2340
BW
1166 struct bfd_link_info *info;
1167 struct elf_xtensa_link_hash_table *htab;
1168 bfd_boolean is_dynamic;
e0001a05 1169
f1ab2340
BW
1170 if (h->root.type == bfd_link_hash_indirect)
1171 return TRUE;
e0001a05
NC
1172
1173 if (h->root.type == bfd_link_hash_warning)
1174 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1175
f1ab2340
BW
1176 info = (struct bfd_link_info *) arg;
1177 htab = elf_xtensa_hash_table (info);
e0001a05 1178
f1ab2340 1179 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 1180
f1ab2340
BW
1181 if (! is_dynamic)
1182 {
1183 if (info->shared)
1184 {
1185 /* For shared objects, there's no need for PLT entries for local
1186 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1187 if (h->plt.refcount > 0)
1188 {
1189 if (h->got.refcount < 0)
1190 h->got.refcount = 0;
1191 h->got.refcount += h->plt.refcount;
1192 h->plt.refcount = 0;
1193 }
1194 }
1195 else
1196 {
1197 /* Don't need any dynamic relocations at all. */
1198 h->plt.refcount = 0;
1199 h->got.refcount = 0;
1200 }
1201 }
e0001a05 1202
f1ab2340
BW
1203 if (h->plt.refcount > 0)
1204 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1205
1206 if (h->got.refcount > 0)
f1ab2340 1207 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1208
1209 return TRUE;
1210}
1211
1212
1213static void
f0e6fdb2 1214elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1215{
f0e6fdb2 1216 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1217 bfd *i;
1218
f0e6fdb2
BW
1219 htab = elf_xtensa_hash_table (info);
1220
e0001a05
NC
1221 for (i = info->input_bfds; i; i = i->link_next)
1222 {
1223 bfd_signed_vma *local_got_refcounts;
1224 bfd_size_type j, cnt;
1225 Elf_Internal_Shdr *symtab_hdr;
1226
1227 local_got_refcounts = elf_local_got_refcounts (i);
1228 if (!local_got_refcounts)
1229 continue;
1230
1231 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1232 cnt = symtab_hdr->sh_info;
1233
1234 for (j = 0; j < cnt; ++j)
1235 {
1236 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1237 htab->srelgot->size += (local_got_refcounts[j]
1238 * sizeof (Elf32_External_Rela));
e0001a05
NC
1239 }
1240 }
1241}
1242
1243
1244/* Set the sizes of the dynamic sections. */
1245
1246static bfd_boolean
7fa3d080
BW
1247elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1248 struct bfd_link_info *info)
e0001a05 1249{
f0e6fdb2 1250 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1251 bfd *dynobj, *abfd;
1252 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1253 bfd_boolean relplt, relgot;
1254 int plt_entries, plt_chunks, chunk;
1255
1256 plt_entries = 0;
1257 plt_chunks = 0;
e0001a05 1258
f0e6fdb2 1259 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1260 dynobj = elf_hash_table (info)->dynobj;
1261 if (dynobj == NULL)
1262 abort ();
f0e6fdb2
BW
1263 srelgot = htab->srelgot;
1264 srelplt = htab->srelplt;
e0001a05
NC
1265
1266 if (elf_hash_table (info)->dynamic_sections_created)
1267 {
f0e6fdb2
BW
1268 BFD_ASSERT (htab->srelgot != NULL
1269 && htab->srelplt != NULL
1270 && htab->sgot != NULL
1271 && htab->spltlittbl != NULL
1272 && htab->sgotloc != NULL);
1273
e0001a05 1274 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1275 if (info->executable)
e0001a05
NC
1276 {
1277 s = bfd_get_section_by_name (dynobj, ".interp");
1278 if (s == NULL)
1279 abort ();
eea6121a 1280 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1281 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1282 }
1283
1284 /* Allocate room for one word in ".got". */
f0e6fdb2 1285 htab->sgot->size = 4;
e0001a05 1286
f1ab2340
BW
1287 /* Allocate space in ".rela.got" for literals that reference global
1288 symbols and space in ".rela.plt" for literals that have PLT
1289 entries. */
e0001a05 1290 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1291 elf_xtensa_allocate_dynrelocs,
7fa3d080 1292 (void *) info);
e0001a05 1293
e0001a05
NC
1294 /* If we are generating a shared object, we also need space in
1295 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1296 reference local symbols. */
1297 if (info->shared)
f0e6fdb2 1298 elf_xtensa_allocate_local_got_size (info);
e0001a05 1299
e0001a05
NC
1300 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1301 each PLT entry, we need the PLT code plus a 4-byte literal.
1302 For each chunk of ".plt", we also need two more 4-byte
1303 literals, two corresponding entries in ".rela.got", and an
1304 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1305 spltlittbl = htab->spltlittbl;
eea6121a 1306 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1307 plt_chunks =
1308 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1309
1310 /* Iterate over all the PLT chunks, including any extra sections
1311 created earlier because the initial count of PLT relocations
1312 was an overestimate. */
1313 for (chunk = 0;
f0e6fdb2 1314 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1315 chunk++)
1316 {
1317 int chunk_entries;
1318
f0e6fdb2
BW
1319 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1320 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1321
1322 if (chunk < plt_chunks - 1)
1323 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1324 else if (chunk == plt_chunks - 1)
1325 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1326 else
1327 chunk_entries = 0;
1328
1329 if (chunk_entries != 0)
1330 {
eea6121a
AM
1331 sgotplt->size = 4 * (chunk_entries + 2);
1332 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1333 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1334 spltlittbl->size += 8;
e0001a05
NC
1335 }
1336 else
1337 {
eea6121a
AM
1338 sgotplt->size = 0;
1339 splt->size = 0;
e0001a05
NC
1340 }
1341 }
e901de89
BW
1342
1343 /* Allocate space in ".got.loc" to match the total size of all the
1344 literal tables. */
f0e6fdb2 1345 sgotloc = htab->sgotloc;
eea6121a 1346 sgotloc->size = spltlittbl->size;
e901de89
BW
1347 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1348 {
1349 if (abfd->flags & DYNAMIC)
1350 continue;
1351 for (s = abfd->sections; s != NULL; s = s->next)
1352 {
b536dc1e
BW
1353 if (! elf_discarded_section (s)
1354 && xtensa_is_littable_section (s)
1355 && s != spltlittbl)
eea6121a 1356 sgotloc->size += s->size;
e901de89
BW
1357 }
1358 }
e0001a05
NC
1359 }
1360
1361 /* Allocate memory for dynamic sections. */
1362 relplt = FALSE;
1363 relgot = FALSE;
1364 for (s = dynobj->sections; s != NULL; s = s->next)
1365 {
1366 const char *name;
e0001a05
NC
1367
1368 if ((s->flags & SEC_LINKER_CREATED) == 0)
1369 continue;
1370
1371 /* It's OK to base decisions on the section name, because none
1372 of the dynobj section names depend upon the input files. */
1373 name = bfd_get_section_name (dynobj, s);
1374
0112cd26 1375 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1376 {
c456f082 1377 if (s->size != 0)
e0001a05 1378 {
c456f082
AM
1379 if (strcmp (name, ".rela.plt") == 0)
1380 relplt = TRUE;
1381 else if (strcmp (name, ".rela.got") == 0)
1382 relgot = TRUE;
1383
1384 /* We use the reloc_count field as a counter if we need
1385 to copy relocs into the output file. */
1386 s->reloc_count = 0;
e0001a05
NC
1387 }
1388 }
0112cd26
NC
1389 else if (! CONST_STRNEQ (name, ".plt.")
1390 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1391 && strcmp (name, ".got") != 0
e0001a05
NC
1392 && strcmp (name, ".plt") != 0
1393 && strcmp (name, ".got.plt") != 0
e901de89
BW
1394 && strcmp (name, ".xt.lit.plt") != 0
1395 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1396 {
1397 /* It's not one of our sections, so don't allocate space. */
1398 continue;
1399 }
1400
c456f082
AM
1401 if (s->size == 0)
1402 {
1403 /* If we don't need this section, strip it from the output
1404 file. We must create the ".plt*" and ".got.plt*"
1405 sections in create_dynamic_sections and/or check_relocs
1406 based on a conservative estimate of the PLT relocation
1407 count, because the sections must be created before the
1408 linker maps input sections to output sections. The
1409 linker does that before size_dynamic_sections, where we
1410 compute the exact size of the PLT, so there may be more
1411 of these sections than are actually needed. */
1412 s->flags |= SEC_EXCLUDE;
1413 }
1414 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1415 {
1416 /* Allocate memory for the section contents. */
eea6121a 1417 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1418 if (s->contents == NULL)
e0001a05
NC
1419 return FALSE;
1420 }
1421 }
1422
1423 if (elf_hash_table (info)->dynamic_sections_created)
1424 {
1425 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1426 known until finish_dynamic_sections, but we need to get the relocs
1427 in place before they are sorted. */
e0001a05
NC
1428 for (chunk = 0; chunk < plt_chunks; chunk++)
1429 {
1430 Elf_Internal_Rela irela;
1431 bfd_byte *loc;
1432
1433 irela.r_offset = 0;
1434 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1435 irela.r_addend = 0;
1436
1437 loc = (srelgot->contents
1438 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1439 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1440 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1441 loc + sizeof (Elf32_External_Rela));
1442 srelgot->reloc_count += 2;
1443 }
1444
1445 /* Add some entries to the .dynamic section. We fill in the
1446 values later, in elf_xtensa_finish_dynamic_sections, but we
1447 must add the entries now so that we get the correct size for
1448 the .dynamic section. The DT_DEBUG entry is filled in by the
1449 dynamic linker and used by the debugger. */
1450#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1451 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1452
ba05963f 1453 if (info->executable)
e0001a05
NC
1454 {
1455 if (!add_dynamic_entry (DT_DEBUG, 0))
1456 return FALSE;
1457 }
1458
1459 if (relplt)
1460 {
1461 if (!add_dynamic_entry (DT_PLTGOT, 0)
1462 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1463 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1464 || !add_dynamic_entry (DT_JMPREL, 0))
1465 return FALSE;
1466 }
1467
1468 if (relgot)
1469 {
1470 if (!add_dynamic_entry (DT_RELA, 0)
1471 || !add_dynamic_entry (DT_RELASZ, 0)
1472 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1473 return FALSE;
1474 }
1475
e0001a05
NC
1476 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1477 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1478 return FALSE;
1479 }
1480#undef add_dynamic_entry
1481
1482 return TRUE;
1483}
1484
e0001a05
NC
1485\f
1486/* Perform the specified relocation. The instruction at (contents + address)
1487 is modified to set one operand to represent the value in "relocation". The
1488 operand position is determined by the relocation type recorded in the
1489 howto. */
1490
1491#define CALL_SEGMENT_BITS (30)
7fa3d080 1492#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1493
1494static bfd_reloc_status_type
7fa3d080
BW
1495elf_xtensa_do_reloc (reloc_howto_type *howto,
1496 bfd *abfd,
1497 asection *input_section,
1498 bfd_vma relocation,
1499 bfd_byte *contents,
1500 bfd_vma address,
1501 bfd_boolean is_weak_undef,
1502 char **error_message)
e0001a05 1503{
43cd72b9 1504 xtensa_format fmt;
e0001a05 1505 xtensa_opcode opcode;
e0001a05 1506 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1507 static xtensa_insnbuf ibuff = NULL;
1508 static xtensa_insnbuf sbuff = NULL;
1509 bfd_vma self_address = 0;
1510 bfd_size_type input_size;
1511 int opnd, slot;
e0001a05
NC
1512 uint32 newval;
1513
43cd72b9
BW
1514 if (!ibuff)
1515 {
1516 ibuff = xtensa_insnbuf_alloc (isa);
1517 sbuff = xtensa_insnbuf_alloc (isa);
1518 }
1519
1520 input_size = bfd_get_section_limit (abfd, input_section);
1521
e0001a05
NC
1522 switch (howto->type)
1523 {
1524 case R_XTENSA_NONE:
43cd72b9
BW
1525 case R_XTENSA_DIFF8:
1526 case R_XTENSA_DIFF16:
1527 case R_XTENSA_DIFF32:
e0001a05
NC
1528 return bfd_reloc_ok;
1529
1530 case R_XTENSA_ASM_EXPAND:
1531 if (!is_weak_undef)
1532 {
1533 /* Check for windowed CALL across a 1GB boundary. */
1534 xtensa_opcode opcode =
1535 get_expanded_call_opcode (contents + address,
43cd72b9 1536 input_size - address, 0);
e0001a05
NC
1537 if (is_windowed_call_opcode (opcode))
1538 {
1539 self_address = (input_section->output_section->vma
1540 + input_section->output_offset
1541 + address);
43cd72b9
BW
1542 if ((self_address >> CALL_SEGMENT_BITS)
1543 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1544 {
1545 *error_message = "windowed longcall crosses 1GB boundary; "
1546 "return may fail";
1547 return bfd_reloc_dangerous;
1548 }
1549 }
1550 }
1551 return bfd_reloc_ok;
1552
1553 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1554 {
e0001a05 1555 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1556 bfd_reloc_status_type retval =
1557 elf_xtensa_do_asm_simplify (contents, address, input_size,
1558 error_message);
e0001a05 1559 if (retval != bfd_reloc_ok)
43cd72b9 1560 return bfd_reloc_dangerous;
e0001a05
NC
1561
1562 /* The CALL needs to be relocated. Continue below for that part. */
1563 address += 3;
43cd72b9 1564 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1565 }
1566 break;
1567
1568 case R_XTENSA_32:
1569 case R_XTENSA_PLT:
1570 {
1571 bfd_vma x;
1572 x = bfd_get_32 (abfd, contents + address);
1573 x = x + relocation;
1574 bfd_put_32 (abfd, x, contents + address);
1575 }
1576 return bfd_reloc_ok;
1577 }
1578
43cd72b9
BW
1579 /* Only instruction slot-specific relocations handled below.... */
1580 slot = get_relocation_slot (howto->type);
1581 if (slot == XTENSA_UNDEFINED)
e0001a05 1582 {
43cd72b9 1583 *error_message = "unexpected relocation";
e0001a05
NC
1584 return bfd_reloc_dangerous;
1585 }
1586
43cd72b9
BW
1587 /* Read the instruction into a buffer and decode the opcode. */
1588 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1589 input_size - address);
1590 fmt = xtensa_format_decode (isa, ibuff);
1591 if (fmt == XTENSA_UNDEFINED)
e0001a05 1592 {
43cd72b9 1593 *error_message = "cannot decode instruction format";
e0001a05
NC
1594 return bfd_reloc_dangerous;
1595 }
1596
43cd72b9 1597 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1598
43cd72b9
BW
1599 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1600 if (opcode == XTENSA_UNDEFINED)
e0001a05 1601 {
43cd72b9 1602 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1603 return bfd_reloc_dangerous;
1604 }
1605
43cd72b9
BW
1606 /* Check for opcode-specific "alternate" relocations. */
1607 if (is_alt_relocation (howto->type))
1608 {
1609 if (opcode == get_l32r_opcode ())
1610 {
1611 /* Handle the special-case of non-PC-relative L32R instructions. */
1612 bfd *output_bfd = input_section->output_section->owner;
1613 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1614 if (!lit4_sec)
1615 {
1616 *error_message = "relocation references missing .lit4 section";
1617 return bfd_reloc_dangerous;
1618 }
1619 self_address = ((lit4_sec->vma & ~0xfff)
1620 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1621 newval = relocation;
1622 opnd = 1;
1623 }
1624 else if (opcode == get_const16_opcode ())
1625 {
1626 /* ALT used for high 16 bits. */
1627 newval = relocation >> 16;
1628 opnd = 1;
1629 }
1630 else
1631 {
1632 /* No other "alternate" relocations currently defined. */
1633 *error_message = "unexpected relocation";
1634 return bfd_reloc_dangerous;
1635 }
1636 }
1637 else /* Not an "alternate" relocation.... */
1638 {
1639 if (opcode == get_const16_opcode ())
1640 {
1641 newval = relocation & 0xffff;
1642 opnd = 1;
1643 }
1644 else
1645 {
1646 /* ...normal PC-relative relocation.... */
1647
1648 /* Determine which operand is being relocated. */
1649 opnd = get_relocation_opnd (opcode, howto->type);
1650 if (opnd == XTENSA_UNDEFINED)
1651 {
1652 *error_message = "unexpected relocation";
1653 return bfd_reloc_dangerous;
1654 }
1655
1656 if (!howto->pc_relative)
1657 {
1658 *error_message = "expected PC-relative relocation";
1659 return bfd_reloc_dangerous;
1660 }
e0001a05 1661
43cd72b9
BW
1662 /* Calculate the PC address for this instruction. */
1663 self_address = (input_section->output_section->vma
1664 + input_section->output_offset
1665 + address);
e0001a05 1666
43cd72b9
BW
1667 newval = relocation;
1668 }
1669 }
e0001a05 1670
43cd72b9
BW
1671 /* Apply the relocation. */
1672 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1673 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1674 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1675 sbuff, newval))
e0001a05 1676 {
2db662be
BW
1677 const char *opname = xtensa_opcode_name (isa, opcode);
1678 const char *msg;
1679
1680 msg = "cannot encode";
1681 if (is_direct_call_opcode (opcode))
1682 {
1683 if ((relocation & 0x3) != 0)
1684 msg = "misaligned call target";
1685 else
1686 msg = "call target out of range";
1687 }
1688 else if (opcode == get_l32r_opcode ())
1689 {
1690 if ((relocation & 0x3) != 0)
1691 msg = "misaligned literal target";
1692 else if (is_alt_relocation (howto->type))
1693 msg = "literal target out of range (too many literals)";
1694 else if (self_address > relocation)
1695 msg = "literal target out of range (try using text-section-literals)";
1696 else
1697 msg = "literal placed after use";
1698 }
1699
1700 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1701 return bfd_reloc_dangerous;
1702 }
1703
43cd72b9 1704 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1705 if (is_direct_call_opcode (opcode)
1706 && is_windowed_call_opcode (opcode))
1707 {
43cd72b9
BW
1708 if ((self_address >> CALL_SEGMENT_BITS)
1709 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1710 {
43cd72b9
BW
1711 *error_message =
1712 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1713 return bfd_reloc_dangerous;
1714 }
1715 }
1716
43cd72b9
BW
1717 /* Write the modified instruction back out of the buffer. */
1718 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1719 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1720 input_size - address);
e0001a05
NC
1721 return bfd_reloc_ok;
1722}
1723
1724
2db662be 1725static char *
7fa3d080 1726vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1727{
1728 /* To reduce the size of the memory leak,
1729 we only use a single message buffer. */
1730 static bfd_size_type alloc_size = 0;
1731 static char *message = NULL;
1732 bfd_size_type orig_len, len = 0;
1733 bfd_boolean is_append;
1734
1735 VA_OPEN (ap, arglen);
1736 VA_FIXEDARG (ap, const char *, origmsg);
1737
1738 is_append = (origmsg == message);
1739
1740 orig_len = strlen (origmsg);
1741 len = orig_len + strlen (fmt) + arglen + 20;
1742 if (len > alloc_size)
1743 {
1744 message = (char *) bfd_realloc (message, len);
1745 alloc_size = len;
1746 }
1747 if (!is_append)
1748 memcpy (message, origmsg, orig_len);
1749 vsprintf (message + orig_len, fmt, ap);
1750 VA_CLOSE (ap);
1751 return message;
1752}
1753
1754
e0001a05
NC
1755/* This function is registered as the "special_function" in the
1756 Xtensa howto for handling simplify operations.
1757 bfd_perform_relocation / bfd_install_relocation use it to
1758 perform (install) the specified relocation. Since this replaces the code
1759 in bfd_perform_relocation, it is basically an Xtensa-specific,
1760 stripped-down version of bfd_perform_relocation. */
1761
1762static bfd_reloc_status_type
7fa3d080
BW
1763bfd_elf_xtensa_reloc (bfd *abfd,
1764 arelent *reloc_entry,
1765 asymbol *symbol,
1766 void *data,
1767 asection *input_section,
1768 bfd *output_bfd,
1769 char **error_message)
e0001a05
NC
1770{
1771 bfd_vma relocation;
1772 bfd_reloc_status_type flag;
1773 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1774 bfd_vma output_base = 0;
1775 reloc_howto_type *howto = reloc_entry->howto;
1776 asection *reloc_target_output_section;
1777 bfd_boolean is_weak_undef;
1778
dd1a320b
BW
1779 if (!xtensa_default_isa)
1780 xtensa_default_isa = xtensa_isa_init (0, 0);
1781
1049f94e 1782 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1783 output, and the reloc is against an external symbol, the resulting
1784 reloc will also be against the same symbol. In such a case, we
1785 don't want to change anything about the way the reloc is handled,
1786 since it will all be done at final link time. This test is similar
1787 to what bfd_elf_generic_reloc does except that it lets relocs with
1788 howto->partial_inplace go through even if the addend is non-zero.
1789 (The real problem is that partial_inplace is set for XTENSA_32
1790 relocs to begin with, but that's a long story and there's little we
1791 can do about it now....) */
1792
7fa3d080 1793 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1794 {
1795 reloc_entry->address += input_section->output_offset;
1796 return bfd_reloc_ok;
1797 }
1798
1799 /* Is the address of the relocation really within the section? */
07515404 1800 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1801 return bfd_reloc_outofrange;
1802
4cc11e76 1803 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1804 initial relocation command value. */
1805
1806 /* Get symbol value. (Common symbols are special.) */
1807 if (bfd_is_com_section (symbol->section))
1808 relocation = 0;
1809 else
1810 relocation = symbol->value;
1811
1812 reloc_target_output_section = symbol->section->output_section;
1813
1814 /* Convert input-section-relative symbol value to absolute. */
1815 if ((output_bfd && !howto->partial_inplace)
1816 || reloc_target_output_section == NULL)
1817 output_base = 0;
1818 else
1819 output_base = reloc_target_output_section->vma;
1820
1821 relocation += output_base + symbol->section->output_offset;
1822
1823 /* Add in supplied addend. */
1824 relocation += reloc_entry->addend;
1825
1826 /* Here the variable relocation holds the final address of the
1827 symbol we are relocating against, plus any addend. */
1828 if (output_bfd)
1829 {
1830 if (!howto->partial_inplace)
1831 {
1832 /* This is a partial relocation, and we want to apply the relocation
1833 to the reloc entry rather than the raw data. Everything except
1834 relocations against section symbols has already been handled
1835 above. */
43cd72b9 1836
e0001a05
NC
1837 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1838 reloc_entry->addend = relocation;
1839 reloc_entry->address += input_section->output_offset;
1840 return bfd_reloc_ok;
1841 }
1842 else
1843 {
1844 reloc_entry->address += input_section->output_offset;
1845 reloc_entry->addend = 0;
1846 }
1847 }
1848
1849 is_weak_undef = (bfd_is_und_section (symbol->section)
1850 && (symbol->flags & BSF_WEAK) != 0);
1851 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1852 (bfd_byte *) data, (bfd_vma) octets,
1853 is_weak_undef, error_message);
1854
1855 if (flag == bfd_reloc_dangerous)
1856 {
1857 /* Add the symbol name to the error message. */
1858 if (! *error_message)
1859 *error_message = "";
1860 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1861 strlen (symbol->name) + 17,
70961b9d
AM
1862 symbol->name,
1863 (unsigned long) reloc_entry->addend);
e0001a05
NC
1864 }
1865
1866 return flag;
1867}
1868
1869
1870/* Set up an entry in the procedure linkage table. */
1871
1872static bfd_vma
f0e6fdb2 1873elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
1874 bfd *output_bfd,
1875 unsigned reloc_index)
e0001a05
NC
1876{
1877 asection *splt, *sgotplt;
1878 bfd_vma plt_base, got_base;
1879 bfd_vma code_offset, lit_offset;
1880 int chunk;
1881
1882 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
1883 splt = elf_xtensa_get_plt_section (info, chunk);
1884 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
1885 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1886
1887 plt_base = splt->output_section->vma + splt->output_offset;
1888 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1889
1890 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1891 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1892
1893 /* Fill in the literal entry. This is the offset of the dynamic
1894 relocation entry. */
1895 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1896 sgotplt->contents + lit_offset);
1897
1898 /* Fill in the entry in the procedure linkage table. */
1899 memcpy (splt->contents + code_offset,
1900 (bfd_big_endian (output_bfd)
1901 ? elf_xtensa_be_plt_entry
1902 : elf_xtensa_le_plt_entry),
1903 PLT_ENTRY_SIZE);
1904 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1905 plt_base + code_offset + 3),
1906 splt->contents + code_offset + 4);
1907 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1908 plt_base + code_offset + 6),
1909 splt->contents + code_offset + 7);
1910 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1911 plt_base + code_offset + 9),
1912 splt->contents + code_offset + 10);
1913
1914 return plt_base + code_offset;
1915}
1916
1917
e0001a05 1918/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1919 both relocatable and final links. */
e0001a05
NC
1920
1921static bfd_boolean
7fa3d080
BW
1922elf_xtensa_relocate_section (bfd *output_bfd,
1923 struct bfd_link_info *info,
1924 bfd *input_bfd,
1925 asection *input_section,
1926 bfd_byte *contents,
1927 Elf_Internal_Rela *relocs,
1928 Elf_Internal_Sym *local_syms,
1929 asection **local_sections)
e0001a05 1930{
f0e6fdb2 1931 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1932 Elf_Internal_Shdr *symtab_hdr;
1933 Elf_Internal_Rela *rel;
1934 Elf_Internal_Rela *relend;
1935 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
1936 property_table_entry *lit_table = 0;
1937 int ltblsize = 0;
e0001a05 1938 char *error_message = NULL;
43cd72b9 1939 bfd_size_type input_size;
e0001a05 1940
43cd72b9
BW
1941 if (!xtensa_default_isa)
1942 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 1943
f0e6fdb2 1944 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1945 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1946 sym_hashes = elf_sym_hashes (input_bfd);
1947
88d65ad6
BW
1948 if (elf_hash_table (info)->dynamic_sections_created)
1949 {
1950 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
1951 &lit_table, XTENSA_LIT_SEC_NAME,
1952 TRUE);
88d65ad6
BW
1953 if (ltblsize < 0)
1954 return FALSE;
1955 }
1956
43cd72b9
BW
1957 input_size = bfd_get_section_limit (input_bfd, input_section);
1958
e0001a05
NC
1959 rel = relocs;
1960 relend = relocs + input_section->reloc_count;
1961 for (; rel < relend; rel++)
1962 {
1963 int r_type;
1964 reloc_howto_type *howto;
1965 unsigned long r_symndx;
1966 struct elf_link_hash_entry *h;
1967 Elf_Internal_Sym *sym;
1968 asection *sec;
1969 bfd_vma relocation;
1970 bfd_reloc_status_type r;
1971 bfd_boolean is_weak_undef;
1972 bfd_boolean unresolved_reloc;
9b8c98a4 1973 bfd_boolean warned;
e0001a05
NC
1974
1975 r_type = ELF32_R_TYPE (rel->r_info);
1976 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
1977 || r_type == (int) R_XTENSA_GNU_VTENTRY)
1978 continue;
1979
1980 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
1981 {
1982 bfd_set_error (bfd_error_bad_value);
1983 return FALSE;
1984 }
1985 howto = &elf_howto_table[r_type];
1986
1987 r_symndx = ELF32_R_SYM (rel->r_info);
1988
1049f94e 1989 if (info->relocatable)
e0001a05 1990 {
43cd72b9 1991 /* This is a relocatable link.
e0001a05
NC
1992 1) If the reloc is against a section symbol, adjust
1993 according to the output section.
1994 2) If there is a new target for this relocation,
1995 the new target will be in the same output section.
1996 We adjust the relocation by the output section
1997 difference. */
1998
1999 if (relaxing_section)
2000 {
2001 /* Check if this references a section in another input file. */
43cd72b9
BW
2002 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2003 contents))
2004 return FALSE;
e0001a05
NC
2005 r_type = ELF32_R_TYPE (rel->r_info);
2006 }
2007
43cd72b9 2008 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2009 {
43cd72b9 2010 char *error_message = NULL;
e0001a05
NC
2011 /* Convert ASM_SIMPLIFY into the simpler relocation
2012 so that they never escape a relaxing link. */
43cd72b9
BW
2013 r = contract_asm_expansion (contents, input_size, rel,
2014 &error_message);
2015 if (r != bfd_reloc_ok)
2016 {
2017 if (!((*info->callbacks->reloc_dangerous)
2018 (info, error_message, input_bfd, input_section,
2019 rel->r_offset)))
2020 return FALSE;
2021 }
e0001a05
NC
2022 r_type = ELF32_R_TYPE (rel->r_info);
2023 }
2024
1049f94e 2025 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2026 anything unless the reloc is against a section symbol,
2027 in which case we have to adjust according to where the
2028 section symbol winds up in the output section. */
2029 if (r_symndx < symtab_hdr->sh_info)
2030 {
2031 sym = local_syms + r_symndx;
2032 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2033 {
2034 sec = local_sections[r_symndx];
2035 rel->r_addend += sec->output_offset + sym->st_value;
2036 }
2037 }
2038
2039 /* If there is an addend with a partial_inplace howto,
2040 then move the addend to the contents. This is a hack
1049f94e 2041 to work around problems with DWARF in relocatable links
e0001a05
NC
2042 with some previous version of BFD. Now we can't easily get
2043 rid of the hack without breaking backward compatibility.... */
2044 if (rel->r_addend)
2045 {
2046 howto = &elf_howto_table[r_type];
2047 if (howto->partial_inplace)
2048 {
2049 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2050 rel->r_addend, contents,
2051 rel->r_offset, FALSE,
2052 &error_message);
2053 if (r != bfd_reloc_ok)
2054 {
2055 if (!((*info->callbacks->reloc_dangerous)
2056 (info, error_message, input_bfd, input_section,
2057 rel->r_offset)))
2058 return FALSE;
2059 }
2060 rel->r_addend = 0;
2061 }
2062 }
2063
1049f94e 2064 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2065 continue;
2066 }
2067
2068 /* This is a final link. */
2069
2070 h = NULL;
2071 sym = NULL;
2072 sec = NULL;
2073 is_weak_undef = FALSE;
2074 unresolved_reloc = FALSE;
9b8c98a4 2075 warned = FALSE;
e0001a05
NC
2076
2077 if (howto->partial_inplace)
2078 {
2079 /* Because R_XTENSA_32 was made partial_inplace to fix some
2080 problems with DWARF info in partial links, there may be
2081 an addend stored in the contents. Take it out of there
2082 and move it back into the addend field of the reloc. */
2083 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2084 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2085 }
2086
2087 if (r_symndx < symtab_hdr->sh_info)
2088 {
2089 sym = local_syms + r_symndx;
2090 sec = local_sections[r_symndx];
8517fae7 2091 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
e0001a05
NC
2092 }
2093 else
2094 {
b2a8e766
AM
2095 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2096 r_symndx, symtab_hdr, sym_hashes,
2097 h, sec, relocation,
2098 unresolved_reloc, warned);
560e09e9
NC
2099
2100 if (relocation == 0
2101 && !unresolved_reloc
2102 && h->root.type == bfd_link_hash_undefweak)
e0001a05 2103 is_weak_undef = TRUE;
e0001a05
NC
2104 }
2105
2106 if (relaxing_section)
2107 {
2108 /* Check if this references a section in another input file. */
43cd72b9
BW
2109 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2110 &relocation);
e0001a05
NC
2111
2112 /* Update some already cached values. */
2113 r_type = ELF32_R_TYPE (rel->r_info);
2114 howto = &elf_howto_table[r_type];
2115 }
2116
2117 /* Sanity check the address. */
43cd72b9 2118 if (rel->r_offset >= input_size
e0001a05
NC
2119 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2120 {
43cd72b9
BW
2121 (*_bfd_error_handler)
2122 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2123 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2124 bfd_set_error (bfd_error_bad_value);
2125 return FALSE;
2126 }
2127
2128 /* Generate dynamic relocations. */
2129 if (elf_hash_table (info)->dynamic_sections_created)
2130 {
4608f3d9 2131 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 2132
43cd72b9 2133 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2134 {
2135 /* This is an error. The symbol's real value won't be known
2136 until runtime and it's likely to be out of range anyway. */
2137 const char *name = h->root.root.string;
2138 error_message = vsprint_msg ("invalid relocation for dynamic "
2139 "symbol", ": %s",
2140 strlen (name) + 2, name);
2141 if (!((*info->callbacks->reloc_dangerous)
2142 (info, error_message, input_bfd, input_section,
2143 rel->r_offset)))
2144 return FALSE;
2145 }
2146 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2147 && (input_section->flags & SEC_ALLOC) != 0
2148 && (dynamic_symbol || info->shared))
2149 {
2150 Elf_Internal_Rela outrel;
2151 bfd_byte *loc;
2152 asection *srel;
2153
2154 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2155 srel = htab->srelplt;
e0001a05 2156 else
f0e6fdb2 2157 srel = htab->srelgot;
e0001a05
NC
2158
2159 BFD_ASSERT (srel != NULL);
2160
2161 outrel.r_offset =
2162 _bfd_elf_section_offset (output_bfd, info,
2163 input_section, rel->r_offset);
2164
2165 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2166 memset (&outrel, 0, sizeof outrel);
2167 else
2168 {
f0578e28
BW
2169 outrel.r_offset += (input_section->output_section->vma
2170 + input_section->output_offset);
e0001a05 2171
88d65ad6
BW
2172 /* Complain if the relocation is in a read-only section
2173 and not in a literal pool. */
2174 if ((input_section->flags & SEC_READONLY) != 0
2175 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2176 outrel.r_offset))
88d65ad6
BW
2177 {
2178 error_message =
2179 _("dynamic relocation in read-only section");
2180 if (!((*info->callbacks->reloc_dangerous)
2181 (info, error_message, input_bfd, input_section,
2182 rel->r_offset)))
2183 return FALSE;
2184 }
2185
e0001a05
NC
2186 if (dynamic_symbol)
2187 {
2188 outrel.r_addend = rel->r_addend;
2189 rel->r_addend = 0;
2190
2191 if (r_type == R_XTENSA_32)
2192 {
2193 outrel.r_info =
2194 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2195 relocation = 0;
2196 }
2197 else /* r_type == R_XTENSA_PLT */
2198 {
2199 outrel.r_info =
2200 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2201
2202 /* Create the PLT entry and set the initial
2203 contents of the literal entry to the address of
2204 the PLT entry. */
43cd72b9 2205 relocation =
f0e6fdb2 2206 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2207 srel->reloc_count);
2208 }
2209 unresolved_reloc = FALSE;
2210 }
2211 else
2212 {
2213 /* Generate a RELATIVE relocation. */
2214 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2215 outrel.r_addend = 0;
2216 }
2217 }
2218
2219 loc = (srel->contents
2220 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2221 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2222 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2223 <= srel->size);
e0001a05
NC
2224 }
2225 }
2226
2227 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2228 because such sections are not SEC_ALLOC and thus ld.so will
2229 not process them. */
2230 if (unresolved_reloc
2231 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2232 && h->def_dynamic))
bf1747de
BW
2233 {
2234 (*_bfd_error_handler)
2235 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2236 input_bfd,
2237 input_section,
2238 (long) rel->r_offset,
2239 howto->name,
2240 h->root.root.string);
2241 return FALSE;
2242 }
e0001a05 2243
b1e24c02
DJ
2244 if (r_symndx == 0)
2245 {
2246 /* r_symndx will be zero only for relocs against symbols from
2247 removed linkonce sections, or sections discarded by a linker
2248 script. For these relocs, we just want the section contents
2249 zeroed. Avoid any special processing. */
2250 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2251 continue;
2252 }
2253
e0001a05
NC
2254 /* There's no point in calling bfd_perform_relocation here.
2255 Just go directly to our "special function". */
2256 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2257 relocation + rel->r_addend,
2258 contents, rel->r_offset, is_weak_undef,
2259 &error_message);
43cd72b9 2260
9b8c98a4 2261 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2262 {
2263 const char *name;
2264
43cd72b9 2265 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2266 BFD_ASSERT (error_message != NULL);
e0001a05 2267
7fa3d080 2268 if (h)
e0001a05
NC
2269 name = h->root.root.string;
2270 else
2271 {
2272 name = bfd_elf_string_from_elf_section
2273 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2274 if (name && *name == '\0')
2275 name = bfd_section_name (input_bfd, sec);
2276 }
2277 if (name)
43cd72b9
BW
2278 {
2279 if (rel->r_addend == 0)
2280 error_message = vsprint_msg (error_message, ": %s",
2281 strlen (name) + 2, name);
2282 else
2283 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2284 strlen (name) + 22,
0fd3a477 2285 name, (int)rel->r_addend);
43cd72b9
BW
2286 }
2287
e0001a05
NC
2288 if (!((*info->callbacks->reloc_dangerous)
2289 (info, error_message, input_bfd, input_section,
2290 rel->r_offset)))
2291 return FALSE;
2292 }
2293 }
2294
88d65ad6
BW
2295 if (lit_table)
2296 free (lit_table);
2297
3ba3bc8c
BW
2298 input_section->reloc_done = TRUE;
2299
e0001a05
NC
2300 return TRUE;
2301}
2302
2303
2304/* Finish up dynamic symbol handling. There's not much to do here since
2305 the PLT and GOT entries are all set up by relocate_section. */
2306
2307static bfd_boolean
7fa3d080
BW
2308elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2309 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2310 struct elf_link_hash_entry *h,
2311 Elf_Internal_Sym *sym)
e0001a05 2312{
bf1747de 2313 if (h->needs_plt && !h->def_regular)
e0001a05
NC
2314 {
2315 /* Mark the symbol as undefined, rather than as defined in
2316 the .plt section. Leave the value alone. */
2317 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
2318 /* If the symbol is weak, we do need to clear the value.
2319 Otherwise, the PLT entry would provide a definition for
2320 the symbol even if the symbol wasn't defined anywhere,
2321 and so the symbol would never be NULL. */
2322 if (!h->ref_regular_nonweak)
2323 sym->st_value = 0;
e0001a05
NC
2324 }
2325
2326 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2327 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2328 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2329 sym->st_shndx = SHN_ABS;
2330
2331 return TRUE;
2332}
2333
2334
2335/* Combine adjacent literal table entries in the output. Adjacent
2336 entries within each input section may have been removed during
2337 relaxation, but we repeat the process here, even though it's too late
2338 to shrink the output section, because it's important to minimize the
2339 number of literal table entries to reduce the start-up work for the
2340 runtime linker. Returns the number of remaining table entries or -1
2341 on error. */
2342
2343static int
7fa3d080
BW
2344elf_xtensa_combine_prop_entries (bfd *output_bfd,
2345 asection *sxtlit,
2346 asection *sgotloc)
e0001a05 2347{
e0001a05
NC
2348 bfd_byte *contents;
2349 property_table_entry *table;
e901de89 2350 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2351 bfd_vma offset;
2352 int n, m, num;
2353
eea6121a 2354 section_size = sxtlit->size;
e0001a05
NC
2355 BFD_ASSERT (section_size % 8 == 0);
2356 num = section_size / 8;
2357
eea6121a 2358 sgotloc_size = sgotloc->size;
e901de89 2359 if (sgotloc_size != section_size)
b536dc1e
BW
2360 {
2361 (*_bfd_error_handler)
43cd72b9 2362 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2363 return -1;
2364 }
e901de89 2365
eea6121a
AM
2366 table = bfd_malloc (num * sizeof (property_table_entry));
2367 if (table == 0)
e0001a05
NC
2368 return -1;
2369
2370 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2371 propagates to the output section, where it doesn't really apply and
eea6121a 2372 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2373 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2374
eea6121a
AM
2375 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2376 {
2377 if (contents != 0)
2378 free (contents);
2379 free (table);
2380 return -1;
2381 }
e0001a05
NC
2382
2383 /* There should never be any relocations left at this point, so this
2384 is quite a bit easier than what is done during relaxation. */
2385
2386 /* Copy the raw contents into a property table array and sort it. */
2387 offset = 0;
2388 for (n = 0; n < num; n++)
2389 {
2390 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2391 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2392 offset += 8;
2393 }
2394 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2395
2396 for (n = 0; n < num; n++)
2397 {
2398 bfd_boolean remove = FALSE;
2399
2400 if (table[n].size == 0)
2401 remove = TRUE;
2402 else if (n > 0 &&
2403 (table[n-1].address + table[n-1].size == table[n].address))
2404 {
2405 table[n-1].size += table[n].size;
2406 remove = TRUE;
2407 }
2408
2409 if (remove)
2410 {
2411 for (m = n; m < num - 1; m++)
2412 {
2413 table[m].address = table[m+1].address;
2414 table[m].size = table[m+1].size;
2415 }
2416
2417 n--;
2418 num--;
2419 }
2420 }
2421
2422 /* Copy the data back to the raw contents. */
2423 offset = 0;
2424 for (n = 0; n < num; n++)
2425 {
2426 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2427 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2428 offset += 8;
2429 }
2430
2431 /* Clear the removed bytes. */
2432 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2433 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2434
e901de89
BW
2435 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2436 section_size))
e0001a05
NC
2437 return -1;
2438
e901de89
BW
2439 /* Copy the contents to ".got.loc". */
2440 memcpy (sgotloc->contents, contents, section_size);
2441
e0001a05 2442 free (contents);
b614a702 2443 free (table);
e0001a05
NC
2444 return num;
2445}
2446
2447
2448/* Finish up the dynamic sections. */
2449
2450static bfd_boolean
7fa3d080
BW
2451elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2452 struct bfd_link_info *info)
e0001a05 2453{
f0e6fdb2 2454 struct elf_xtensa_link_hash_table *htab;
e0001a05 2455 bfd *dynobj;
e901de89 2456 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2457 Elf32_External_Dyn *dyncon, *dynconend;
2458 int num_xtlit_entries;
2459
2460 if (! elf_hash_table (info)->dynamic_sections_created)
2461 return TRUE;
2462
f0e6fdb2 2463 htab = elf_xtensa_hash_table (info);
e0001a05
NC
2464 dynobj = elf_hash_table (info)->dynobj;
2465 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2466 BFD_ASSERT (sdyn != NULL);
2467
2468 /* Set the first entry in the global offset table to the address of
2469 the dynamic section. */
f0e6fdb2 2470 sgot = htab->sgot;
e0001a05
NC
2471 if (sgot)
2472 {
eea6121a 2473 BFD_ASSERT (sgot->size == 4);
e0001a05 2474 if (sdyn == NULL)
7fa3d080 2475 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2476 else
2477 bfd_put_32 (output_bfd,
2478 sdyn->output_section->vma + sdyn->output_offset,
2479 sgot->contents);
2480 }
2481
f0e6fdb2 2482 srelplt = htab->srelplt;
7fa3d080 2483 if (srelplt && srelplt->size != 0)
e0001a05
NC
2484 {
2485 asection *sgotplt, *srelgot, *spltlittbl;
2486 int chunk, plt_chunks, plt_entries;
2487 Elf_Internal_Rela irela;
2488 bfd_byte *loc;
2489 unsigned rtld_reloc;
2490
f0e6fdb2
BW
2491 srelgot = htab->srelgot;
2492 spltlittbl = htab->spltlittbl;
2493 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
2494
2495 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2496 of them follow immediately after.... */
2497 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2498 {
2499 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2500 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2501 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2502 break;
2503 }
2504 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2505
eea6121a 2506 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2507 plt_chunks =
2508 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2509
2510 for (chunk = 0; chunk < plt_chunks; chunk++)
2511 {
2512 int chunk_entries = 0;
2513
f0e6fdb2 2514 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2515 BFD_ASSERT (sgotplt != NULL);
2516
2517 /* Emit special RTLD relocations for the first two entries in
2518 each chunk of the .got.plt section. */
2519
2520 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2521 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2522 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2523 irela.r_offset = (sgotplt->output_section->vma
2524 + sgotplt->output_offset);
2525 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2526 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2527 rtld_reloc += 1;
2528 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2529
2530 /* Next literal immediately follows the first. */
2531 loc += sizeof (Elf32_External_Rela);
2532 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2533 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2534 irela.r_offset = (sgotplt->output_section->vma
2535 + sgotplt->output_offset + 4);
2536 /* Tell rtld to set value to object's link map. */
2537 irela.r_addend = 2;
2538 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2539 rtld_reloc += 1;
2540 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2541
2542 /* Fill in the literal table. */
2543 if (chunk < plt_chunks - 1)
2544 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2545 else
2546 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2547
eea6121a 2548 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2549 bfd_put_32 (output_bfd,
2550 sgotplt->output_section->vma + sgotplt->output_offset,
2551 spltlittbl->contents + (chunk * 8) + 0);
2552 bfd_put_32 (output_bfd,
2553 8 + (chunk_entries * 4),
2554 spltlittbl->contents + (chunk * 8) + 4);
2555 }
2556
2557 /* All the dynamic relocations have been emitted at this point.
2558 Make sure the relocation sections are the correct size. */
eea6121a
AM
2559 if (srelgot->size != (sizeof (Elf32_External_Rela)
2560 * srelgot->reloc_count)
2561 || srelplt->size != (sizeof (Elf32_External_Rela)
2562 * srelplt->reloc_count))
e0001a05
NC
2563 abort ();
2564
2565 /* The .xt.lit.plt section has just been modified. This must
2566 happen before the code below which combines adjacent literal
2567 table entries, and the .xt.lit.plt contents have to be forced to
2568 the output here. */
2569 if (! bfd_set_section_contents (output_bfd,
2570 spltlittbl->output_section,
2571 spltlittbl->contents,
2572 spltlittbl->output_offset,
eea6121a 2573 spltlittbl->size))
e0001a05
NC
2574 return FALSE;
2575 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2576 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2577 }
2578
2579 /* Combine adjacent literal table entries. */
1049f94e 2580 BFD_ASSERT (! info->relocatable);
e901de89 2581 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 2582 sgotloc = htab->sgotloc;
b536dc1e 2583 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2584 num_xtlit_entries =
2585 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2586 if (num_xtlit_entries < 0)
2587 return FALSE;
2588
2589 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2590 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2591 for (; dyncon < dynconend; dyncon++)
2592 {
2593 Elf_Internal_Dyn dyn;
e0001a05
NC
2594
2595 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2596
2597 switch (dyn.d_tag)
2598 {
2599 default:
2600 break;
2601
2602 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2603 dyn.d_un.d_val = num_xtlit_entries;
2604 break;
2605
2606 case DT_XTENSA_GOT_LOC_OFF:
f0e6fdb2
BW
2607 dyn.d_un.d_ptr = htab->sgotloc->vma;
2608 break;
2609
e0001a05 2610 case DT_PLTGOT:
f0e6fdb2
BW
2611 dyn.d_un.d_ptr = htab->sgot->vma;
2612 break;
2613
e0001a05 2614 case DT_JMPREL:
f0e6fdb2 2615 dyn.d_un.d_ptr = htab->srelplt->vma;
e0001a05
NC
2616 break;
2617
2618 case DT_PLTRELSZ:
f0e6fdb2 2619 dyn.d_un.d_val = htab->srelplt->size;
e0001a05
NC
2620 break;
2621
2622 case DT_RELASZ:
2623 /* Adjust RELASZ to not include JMPREL. This matches what
2624 glibc expects and what is done for several other ELF
2625 targets (e.g., i386, alpha), but the "correct" behavior
2626 seems to be unresolved. Since the linker script arranges
2627 for .rela.plt to follow all other relocation sections, we
2628 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2
BW
2629 if (htab->srelplt)
2630 dyn.d_un.d_val -= htab->srelplt->size;
e0001a05
NC
2631 break;
2632 }
2633
2634 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2635 }
2636
2637 return TRUE;
2638}
2639
2640\f
2641/* Functions for dealing with the e_flags field. */
2642
2643/* Merge backend specific data from an object file to the output
2644 object file when linking. */
2645
2646static bfd_boolean
7fa3d080 2647elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2648{
2649 unsigned out_mach, in_mach;
2650 flagword out_flag, in_flag;
2651
2652 /* Check if we have the same endianess. */
2653 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2654 return FALSE;
2655
2656 /* Don't even pretend to support mixed-format linking. */
2657 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2658 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2659 return FALSE;
2660
2661 out_flag = elf_elfheader (obfd)->e_flags;
2662 in_flag = elf_elfheader (ibfd)->e_flags;
2663
2664 out_mach = out_flag & EF_XTENSA_MACH;
2665 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2666 if (out_mach != in_mach)
e0001a05
NC
2667 {
2668 (*_bfd_error_handler)
43cd72b9 2669 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2670 ibfd, out_mach, in_mach);
e0001a05
NC
2671 bfd_set_error (bfd_error_wrong_format);
2672 return FALSE;
2673 }
2674
2675 if (! elf_flags_init (obfd))
2676 {
2677 elf_flags_init (obfd) = TRUE;
2678 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2679
e0001a05
NC
2680 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2681 && bfd_get_arch_info (obfd)->the_default)
2682 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2683 bfd_get_mach (ibfd));
43cd72b9 2684
e0001a05
NC
2685 return TRUE;
2686 }
2687
43cd72b9
BW
2688 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2689 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2690
43cd72b9
BW
2691 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2692 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2693
2694 return TRUE;
2695}
2696
2697
2698static bfd_boolean
7fa3d080 2699elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2700{
2701 BFD_ASSERT (!elf_flags_init (abfd)
2702 || elf_elfheader (abfd)->e_flags == flags);
2703
2704 elf_elfheader (abfd)->e_flags |= flags;
2705 elf_flags_init (abfd) = TRUE;
2706
2707 return TRUE;
2708}
2709
2710
e0001a05 2711static bfd_boolean
7fa3d080 2712elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2713{
2714 FILE *f = (FILE *) farg;
2715 flagword e_flags = elf_elfheader (abfd)->e_flags;
2716
2717 fprintf (f, "\nXtensa header:\n");
43cd72b9 2718 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2719 fprintf (f, "\nMachine = Base\n");
2720 else
2721 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2722
2723 fprintf (f, "Insn tables = %s\n",
2724 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2725
2726 fprintf (f, "Literal tables = %s\n",
2727 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2728
2729 return _bfd_elf_print_private_bfd_data (abfd, farg);
2730}
2731
2732
2733/* Set the right machine number for an Xtensa ELF file. */
2734
2735static bfd_boolean
7fa3d080 2736elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2737{
2738 int mach;
2739 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2740
2741 switch (arch)
2742 {
2743 case E_XTENSA_MACH:
2744 mach = bfd_mach_xtensa;
2745 break;
2746 default:
2747 return FALSE;
2748 }
2749
2750 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2751 return TRUE;
2752}
2753
2754
2755/* The final processing done just before writing out an Xtensa ELF object
2756 file. This gets the Xtensa architecture right based on the machine
2757 number. */
2758
2759static void
7fa3d080
BW
2760elf_xtensa_final_write_processing (bfd *abfd,
2761 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2762{
2763 int mach;
2764 unsigned long val;
2765
2766 switch (mach = bfd_get_mach (abfd))
2767 {
2768 case bfd_mach_xtensa:
2769 val = E_XTENSA_MACH;
2770 break;
2771 default:
2772 return;
2773 }
2774
2775 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2776 elf_elfheader (abfd)->e_flags |= val;
2777}
2778
2779
2780static enum elf_reloc_type_class
7fa3d080 2781elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2782{
2783 switch ((int) ELF32_R_TYPE (rela->r_info))
2784 {
2785 case R_XTENSA_RELATIVE:
2786 return reloc_class_relative;
2787 case R_XTENSA_JMP_SLOT:
2788 return reloc_class_plt;
2789 default:
2790 return reloc_class_normal;
2791 }
2792}
2793
2794\f
2795static bfd_boolean
7fa3d080
BW
2796elf_xtensa_discard_info_for_section (bfd *abfd,
2797 struct elf_reloc_cookie *cookie,
2798 struct bfd_link_info *info,
2799 asection *sec)
e0001a05
NC
2800{
2801 bfd_byte *contents;
2802 bfd_vma section_size;
2803 bfd_vma offset, actual_offset;
2804 size_t removed_bytes = 0;
2805
eea6121a 2806 section_size = sec->size;
e0001a05
NC
2807 if (section_size == 0 || section_size % 8 != 0)
2808 return FALSE;
2809
2810 if (sec->output_section
2811 && bfd_is_abs_section (sec->output_section))
2812 return FALSE;
2813
2814 contents = retrieve_contents (abfd, sec, info->keep_memory);
2815 if (!contents)
2816 return FALSE;
2817
2818 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2819 if (!cookie->rels)
2820 {
2821 release_contents (sec, contents);
2822 return FALSE;
2823 }
2824
2825 cookie->rel = cookie->rels;
2826 cookie->relend = cookie->rels + sec->reloc_count;
2827
2828 for (offset = 0; offset < section_size; offset += 8)
2829 {
2830 actual_offset = offset - removed_bytes;
2831
2832 /* The ...symbol_deleted_p function will skip over relocs but it
2833 won't adjust their offsets, so do that here. */
2834 while (cookie->rel < cookie->relend
2835 && cookie->rel->r_offset < offset)
2836 {
2837 cookie->rel->r_offset -= removed_bytes;
2838 cookie->rel++;
2839 }
2840
2841 while (cookie->rel < cookie->relend
2842 && cookie->rel->r_offset == offset)
2843 {
c152c796 2844 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2845 {
2846 /* Remove the table entry. (If the reloc type is NONE, then
2847 the entry has already been merged with another and deleted
2848 during relaxation.) */
2849 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2850 {
2851 /* Shift the contents up. */
2852 if (offset + 8 < section_size)
2853 memmove (&contents[actual_offset],
2854 &contents[actual_offset+8],
2855 section_size - offset - 8);
2856 removed_bytes += 8;
2857 }
2858
2859 /* Remove this relocation. */
2860 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2861 }
2862
2863 /* Adjust the relocation offset for previous removals. This
2864 should not be done before calling ...symbol_deleted_p
2865 because it might mess up the offset comparisons there.
2866 Make sure the offset doesn't underflow in the case where
2867 the first entry is removed. */
2868 if (cookie->rel->r_offset >= removed_bytes)
2869 cookie->rel->r_offset -= removed_bytes;
2870 else
2871 cookie->rel->r_offset = 0;
2872
2873 cookie->rel++;
2874 }
2875 }
2876
2877 if (removed_bytes != 0)
2878 {
2879 /* Adjust any remaining relocs (shouldn't be any). */
2880 for (; cookie->rel < cookie->relend; cookie->rel++)
2881 {
2882 if (cookie->rel->r_offset >= removed_bytes)
2883 cookie->rel->r_offset -= removed_bytes;
2884 else
2885 cookie->rel->r_offset = 0;
2886 }
2887
2888 /* Clear the removed bytes. */
2889 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2890
2891 pin_contents (sec, contents);
2892 pin_internal_relocs (sec, cookie->rels);
2893
eea6121a
AM
2894 /* Shrink size. */
2895 sec->size = section_size - removed_bytes;
b536dc1e
BW
2896
2897 if (xtensa_is_littable_section (sec))
2898 {
f0e6fdb2
BW
2899 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2900 if (sgotloc)
2901 sgotloc->size -= removed_bytes;
b536dc1e 2902 }
e0001a05
NC
2903 }
2904 else
2905 {
2906 release_contents (sec, contents);
2907 release_internal_relocs (sec, cookie->rels);
2908 }
2909
2910 return (removed_bytes != 0);
2911}
2912
2913
2914static bfd_boolean
7fa3d080
BW
2915elf_xtensa_discard_info (bfd *abfd,
2916 struct elf_reloc_cookie *cookie,
2917 struct bfd_link_info *info)
e0001a05
NC
2918{
2919 asection *sec;
2920 bfd_boolean changed = FALSE;
2921
2922 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2923 {
2924 if (xtensa_is_property_section (sec))
2925 {
2926 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2927 changed = TRUE;
2928 }
2929 }
2930
2931 return changed;
2932}
2933
2934
2935static bfd_boolean
7fa3d080 2936elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
2937{
2938 return xtensa_is_property_section (sec);
2939}
2940
a77dc2cc
BW
2941
2942static unsigned int
2943elf_xtensa_action_discarded (asection *sec)
2944{
2945 if (strcmp (".xt_except_table", sec->name) == 0)
2946 return 0;
2947
2948 if (strcmp (".xt_except_desc", sec->name) == 0)
2949 return 0;
2950
2951 return _bfd_elf_default_action_discarded (sec);
2952}
2953
e0001a05
NC
2954\f
2955/* Support for core dump NOTE sections. */
2956
2957static bfd_boolean
7fa3d080 2958elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2959{
2960 int offset;
eea6121a 2961 unsigned int size;
e0001a05
NC
2962
2963 /* The size for Xtensa is variable, so don't try to recognize the format
2964 based on the size. Just assume this is GNU/Linux. */
2965
2966 /* pr_cursig */
2967 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2968
2969 /* pr_pid */
2970 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2971
2972 /* pr_reg */
2973 offset = 72;
eea6121a 2974 size = note->descsz - offset - 4;
e0001a05
NC
2975
2976 /* Make a ".reg/999" section. */
2977 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 2978 size, note->descpos + offset);
e0001a05
NC
2979}
2980
2981
2982static bfd_boolean
7fa3d080 2983elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2984{
2985 switch (note->descsz)
2986 {
2987 default:
2988 return FALSE;
2989
2990 case 128: /* GNU/Linux elf_prpsinfo */
2991 elf_tdata (abfd)->core_program
2992 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
2993 elf_tdata (abfd)->core_command
2994 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
2995 }
2996
2997 /* Note that for some reason, a spurious space is tacked
2998 onto the end of the args in some (at least one anyway)
2999 implementations, so strip it off if it exists. */
3000
3001 {
3002 char *command = elf_tdata (abfd)->core_command;
3003 int n = strlen (command);
3004
3005 if (0 < n && command[n - 1] == ' ')
3006 command[n - 1] = '\0';
3007 }
3008
3009 return TRUE;
3010}
3011
3012\f
3013/* Generic Xtensa configurability stuff. */
3014
3015static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3016static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3017static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3018static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3019static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3020static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3021static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3022static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3023
3024static void
7fa3d080 3025init_call_opcodes (void)
e0001a05
NC
3026{
3027 if (callx0_op == XTENSA_UNDEFINED)
3028 {
3029 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3030 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3031 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3032 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3033 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3034 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3035 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3036 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3037 }
3038}
3039
3040
3041static bfd_boolean
7fa3d080 3042is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3043{
3044 init_call_opcodes ();
3045 return (opcode == callx0_op
3046 || opcode == callx4_op
3047 || opcode == callx8_op
3048 || opcode == callx12_op);
3049}
3050
3051
3052static bfd_boolean
7fa3d080 3053is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3054{
3055 init_call_opcodes ();
3056 return (opcode == call0_op
3057 || opcode == call4_op
3058 || opcode == call8_op
3059 || opcode == call12_op);
3060}
3061
3062
3063static bfd_boolean
7fa3d080 3064is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3065{
3066 init_call_opcodes ();
3067 return (opcode == call4_op
3068 || opcode == call8_op
3069 || opcode == call12_op
3070 || opcode == callx4_op
3071 || opcode == callx8_op
3072 || opcode == callx12_op);
3073}
3074
3075
43cd72b9
BW
3076static xtensa_opcode
3077get_const16_opcode (void)
3078{
3079 static bfd_boolean done_lookup = FALSE;
3080 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3081 if (!done_lookup)
3082 {
3083 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3084 done_lookup = TRUE;
3085 }
3086 return const16_opcode;
3087}
3088
3089
e0001a05
NC
3090static xtensa_opcode
3091get_l32r_opcode (void)
3092{
3093 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3094 static bfd_boolean done_lookup = FALSE;
3095
3096 if (!done_lookup)
e0001a05
NC
3097 {
3098 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3099 done_lookup = TRUE;
e0001a05
NC
3100 }
3101 return l32r_opcode;
3102}
3103
3104
3105static bfd_vma
7fa3d080 3106l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3107{
3108 bfd_vma offset;
3109
3110 offset = addr - ((pc+3) & -4);
3111 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3112 offset = (signed int) offset >> 2;
3113 BFD_ASSERT ((signed int) offset >> 16 == -1);
3114 return offset;
3115}
3116
3117
e0001a05 3118static int
7fa3d080 3119get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3120{
43cd72b9
BW
3121 xtensa_isa isa = xtensa_default_isa;
3122 int last_immed, last_opnd, opi;
3123
3124 if (opcode == XTENSA_UNDEFINED)
3125 return XTENSA_UNDEFINED;
3126
3127 /* Find the last visible PC-relative immediate operand for the opcode.
3128 If there are no PC-relative immediates, then choose the last visible
3129 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3130 last_immed = XTENSA_UNDEFINED;
3131 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3132 for (opi = last_opnd - 1; opi >= 0; opi--)
3133 {
3134 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3135 continue;
3136 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3137 {
3138 last_immed = opi;
3139 break;
3140 }
3141 if (last_immed == XTENSA_UNDEFINED
3142 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3143 last_immed = opi;
3144 }
3145 if (last_immed < 0)
3146 return XTENSA_UNDEFINED;
3147
3148 /* If the operand number was specified in an old-style relocation,
3149 check for consistency with the operand computed above. */
3150 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3151 {
3152 int reloc_opnd = r_type - R_XTENSA_OP0;
3153 if (reloc_opnd != last_immed)
3154 return XTENSA_UNDEFINED;
3155 }
3156
3157 return last_immed;
3158}
3159
3160
3161int
7fa3d080 3162get_relocation_slot (int r_type)
43cd72b9
BW
3163{
3164 switch (r_type)
3165 {
3166 case R_XTENSA_OP0:
3167 case R_XTENSA_OP1:
3168 case R_XTENSA_OP2:
3169 return 0;
3170
3171 default:
3172 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3173 return r_type - R_XTENSA_SLOT0_OP;
3174 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3175 return r_type - R_XTENSA_SLOT0_ALT;
3176 break;
3177 }
3178
3179 return XTENSA_UNDEFINED;
e0001a05
NC
3180}
3181
3182
3183/* Get the opcode for a relocation. */
3184
3185static xtensa_opcode
7fa3d080
BW
3186get_relocation_opcode (bfd *abfd,
3187 asection *sec,
3188 bfd_byte *contents,
3189 Elf_Internal_Rela *irel)
e0001a05
NC
3190{
3191 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3192 static xtensa_insnbuf sbuff = NULL;
e0001a05 3193 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3194 xtensa_format fmt;
3195 int slot;
e0001a05
NC
3196
3197 if (contents == NULL)
3198 return XTENSA_UNDEFINED;
3199
43cd72b9 3200 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3201 return XTENSA_UNDEFINED;
3202
3203 if (ibuff == NULL)
43cd72b9
BW
3204 {
3205 ibuff = xtensa_insnbuf_alloc (isa);
3206 sbuff = xtensa_insnbuf_alloc (isa);
3207 }
3208
e0001a05 3209 /* Decode the instruction. */
43cd72b9
BW
3210 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3211 sec->size - irel->r_offset);
3212 fmt = xtensa_format_decode (isa, ibuff);
3213 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3214 if (slot == XTENSA_UNDEFINED)
3215 return XTENSA_UNDEFINED;
3216 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3217 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3218}
3219
3220
3221bfd_boolean
7fa3d080
BW
3222is_l32r_relocation (bfd *abfd,
3223 asection *sec,
3224 bfd_byte *contents,
3225 Elf_Internal_Rela *irel)
e0001a05
NC
3226{
3227 xtensa_opcode opcode;
43cd72b9 3228 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3229 return FALSE;
43cd72b9 3230 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3231 return (opcode == get_l32r_opcode ());
3232}
3233
e0001a05 3234
43cd72b9 3235static bfd_size_type
7fa3d080
BW
3236get_asm_simplify_size (bfd_byte *contents,
3237 bfd_size_type content_len,
3238 bfd_size_type offset)
e0001a05 3239{
43cd72b9 3240 bfd_size_type insnlen, size = 0;
e0001a05 3241
43cd72b9
BW
3242 /* Decode the size of the next two instructions. */
3243 insnlen = insn_decode_len (contents, content_len, offset);
3244 if (insnlen == 0)
3245 return 0;
e0001a05 3246
43cd72b9 3247 size += insnlen;
e0001a05 3248
43cd72b9
BW
3249 insnlen = insn_decode_len (contents, content_len, offset + size);
3250 if (insnlen == 0)
3251 return 0;
e0001a05 3252
43cd72b9
BW
3253 size += insnlen;
3254 return size;
3255}
e0001a05 3256
43cd72b9
BW
3257
3258bfd_boolean
7fa3d080 3259is_alt_relocation (int r_type)
43cd72b9
BW
3260{
3261 return (r_type >= R_XTENSA_SLOT0_ALT
3262 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3263}
3264
3265
43cd72b9 3266bfd_boolean
7fa3d080 3267is_operand_relocation (int r_type)
e0001a05 3268{
43cd72b9
BW
3269 switch (r_type)
3270 {
3271 case R_XTENSA_OP0:
3272 case R_XTENSA_OP1:
3273 case R_XTENSA_OP2:
3274 return TRUE;
e0001a05 3275
43cd72b9
BW
3276 default:
3277 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3278 return TRUE;
3279 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3280 return TRUE;
3281 break;
3282 }
e0001a05 3283
43cd72b9 3284 return FALSE;
e0001a05
NC
3285}
3286
43cd72b9
BW
3287
3288#define MIN_INSN_LENGTH 2
e0001a05 3289
43cd72b9
BW
3290/* Return 0 if it fails to decode. */
3291
3292bfd_size_type
7fa3d080
BW
3293insn_decode_len (bfd_byte *contents,
3294 bfd_size_type content_len,
3295 bfd_size_type offset)
e0001a05 3296{
43cd72b9
BW
3297 int insn_len;
3298 xtensa_isa isa = xtensa_default_isa;
3299 xtensa_format fmt;
3300 static xtensa_insnbuf ibuff = NULL;
e0001a05 3301
43cd72b9
BW
3302 if (offset + MIN_INSN_LENGTH > content_len)
3303 return 0;
e0001a05 3304
43cd72b9
BW
3305 if (ibuff == NULL)
3306 ibuff = xtensa_insnbuf_alloc (isa);
3307 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3308 content_len - offset);
3309 fmt = xtensa_format_decode (isa, ibuff);
3310 if (fmt == XTENSA_UNDEFINED)
3311 return 0;
3312 insn_len = xtensa_format_length (isa, fmt);
3313 if (insn_len == XTENSA_UNDEFINED)
3314 return 0;
3315 return insn_len;
e0001a05
NC
3316}
3317
3318
43cd72b9
BW
3319/* Decode the opcode for a single slot instruction.
3320 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3321
43cd72b9 3322xtensa_opcode
7fa3d080
BW
3323insn_decode_opcode (bfd_byte *contents,
3324 bfd_size_type content_len,
3325 bfd_size_type offset,
3326 int slot)
e0001a05 3327{
e0001a05 3328 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3329 xtensa_format fmt;
3330 static xtensa_insnbuf insnbuf = NULL;
3331 static xtensa_insnbuf slotbuf = NULL;
3332
3333 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3334 return XTENSA_UNDEFINED;
3335
3336 if (insnbuf == NULL)
43cd72b9
BW
3337 {
3338 insnbuf = xtensa_insnbuf_alloc (isa);
3339 slotbuf = xtensa_insnbuf_alloc (isa);
3340 }
3341
3342 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3343 content_len - offset);
3344 fmt = xtensa_format_decode (isa, insnbuf);
3345 if (fmt == XTENSA_UNDEFINED)
e0001a05 3346 return XTENSA_UNDEFINED;
43cd72b9
BW
3347
3348 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3349 return XTENSA_UNDEFINED;
e0001a05 3350
43cd72b9
BW
3351 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3352 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3353}
e0001a05 3354
e0001a05 3355
43cd72b9
BW
3356/* The offset is the offset in the contents.
3357 The address is the address of that offset. */
e0001a05 3358
43cd72b9 3359static bfd_boolean
7fa3d080
BW
3360check_branch_target_aligned (bfd_byte *contents,
3361 bfd_size_type content_length,
3362 bfd_vma offset,
3363 bfd_vma address)
43cd72b9
BW
3364{
3365 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3366 if (insn_len == 0)
3367 return FALSE;
3368 return check_branch_target_aligned_address (address, insn_len);
3369}
e0001a05 3370
e0001a05 3371
43cd72b9 3372static bfd_boolean
7fa3d080
BW
3373check_loop_aligned (bfd_byte *contents,
3374 bfd_size_type content_length,
3375 bfd_vma offset,
3376 bfd_vma address)
e0001a05 3377{
43cd72b9 3378 bfd_size_type loop_len, insn_len;
64b607e6 3379 xtensa_opcode opcode;
e0001a05 3380
64b607e6
BW
3381 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3382 if (opcode == XTENSA_UNDEFINED
3383 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3384 {
3385 BFD_ASSERT (FALSE);
3386 return FALSE;
3387 }
3388
43cd72b9 3389 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 3390 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
3391 if (loop_len == 0 || insn_len == 0)
3392 {
3393 BFD_ASSERT (FALSE);
3394 return FALSE;
3395 }
e0001a05 3396
43cd72b9
BW
3397 return check_branch_target_aligned_address (address + loop_len, insn_len);
3398}
e0001a05 3399
e0001a05
NC
3400
3401static bfd_boolean
7fa3d080 3402check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3403{
43cd72b9
BW
3404 if (len == 8)
3405 return (addr % 8 == 0);
3406 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3407}
3408
43cd72b9
BW
3409\f
3410/* Instruction widening and narrowing. */
e0001a05 3411
7fa3d080
BW
3412/* When FLIX is available we need to access certain instructions only
3413 when they are 16-bit or 24-bit instructions. This table caches
3414 information about such instructions by walking through all the
3415 opcodes and finding the smallest single-slot format into which each
3416 can be encoded. */
3417
3418static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3419
3420
7fa3d080
BW
3421static void
3422init_op_single_format_table (void)
e0001a05 3423{
7fa3d080
BW
3424 xtensa_isa isa = xtensa_default_isa;
3425 xtensa_insnbuf ibuf;
3426 xtensa_opcode opcode;
3427 xtensa_format fmt;
3428 int num_opcodes;
3429
3430 if (op_single_fmt_table)
3431 return;
3432
3433 ibuf = xtensa_insnbuf_alloc (isa);
3434 num_opcodes = xtensa_isa_num_opcodes (isa);
3435
3436 op_single_fmt_table = (xtensa_format *)
3437 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3438 for (opcode = 0; opcode < num_opcodes; opcode++)
3439 {
3440 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3441 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3442 {
3443 if (xtensa_format_num_slots (isa, fmt) == 1
3444 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3445 {
3446 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3447 int fmt_length = xtensa_format_length (isa, fmt);
3448 if (old_fmt == XTENSA_UNDEFINED
3449 || fmt_length < xtensa_format_length (isa, old_fmt))
3450 op_single_fmt_table[opcode] = fmt;
3451 }
3452 }
3453 }
3454 xtensa_insnbuf_free (isa, ibuf);
3455}
3456
3457
3458static xtensa_format
3459get_single_format (xtensa_opcode opcode)
3460{
3461 init_op_single_format_table ();
3462 return op_single_fmt_table[opcode];
3463}
e0001a05 3464
e0001a05 3465
43cd72b9
BW
3466/* For the set of narrowable instructions we do NOT include the
3467 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3468 involved during linker relaxation that may require these to
3469 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3470 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3471
7fa3d080
BW
3472struct string_pair
3473{
3474 const char *wide;
3475 const char *narrow;
3476};
3477
43cd72b9 3478struct string_pair narrowable[] =
e0001a05 3479{
43cd72b9
BW
3480 { "add", "add.n" },
3481 { "addi", "addi.n" },
3482 { "addmi", "addi.n" },
3483 { "l32i", "l32i.n" },
3484 { "movi", "movi.n" },
3485 { "ret", "ret.n" },
3486 { "retw", "retw.n" },
3487 { "s32i", "s32i.n" },
3488 { "or", "mov.n" } /* special case only when op1 == op2 */
3489};
e0001a05 3490
43cd72b9 3491struct string_pair widenable[] =
e0001a05 3492{
43cd72b9
BW
3493 { "add", "add.n" },
3494 { "addi", "addi.n" },
3495 { "addmi", "addi.n" },
3496 { "beqz", "beqz.n" },
3497 { "bnez", "bnez.n" },
3498 { "l32i", "l32i.n" },
3499 { "movi", "movi.n" },
3500 { "ret", "ret.n" },
3501 { "retw", "retw.n" },
3502 { "s32i", "s32i.n" },
3503 { "or", "mov.n" } /* special case only when op1 == op2 */
3504};
e0001a05
NC
3505
3506
64b607e6
BW
3507/* Check if an instruction can be "narrowed", i.e., changed from a standard
3508 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3509 return the instruction buffer holding the narrow instruction. Otherwise,
3510 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
3511 but require some special case operand checks in some cases. */
3512
64b607e6
BW
3513static xtensa_insnbuf
3514can_narrow_instruction (xtensa_insnbuf slotbuf,
3515 xtensa_format fmt,
3516 xtensa_opcode opcode)
e0001a05 3517{
43cd72b9 3518 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3519 xtensa_format o_fmt;
3520 unsigned opi;
e0001a05 3521
43cd72b9
BW
3522 static xtensa_insnbuf o_insnbuf = NULL;
3523 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3524
64b607e6 3525 if (o_insnbuf == NULL)
43cd72b9 3526 {
43cd72b9
BW
3527 o_insnbuf = xtensa_insnbuf_alloc (isa);
3528 o_slotbuf = xtensa_insnbuf_alloc (isa);
3529 }
e0001a05 3530
64b607e6 3531 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
3532 {
3533 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3534
43cd72b9
BW
3535 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3536 {
3537 uint32 value, newval;
3538 int i, operand_count, o_operand_count;
3539 xtensa_opcode o_opcode;
e0001a05 3540
43cd72b9
BW
3541 /* Address does not matter in this case. We might need to
3542 fix it to handle branches/jumps. */
3543 bfd_vma self_address = 0;
e0001a05 3544
43cd72b9
BW
3545 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3546 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3547 return 0;
43cd72b9
BW
3548 o_fmt = get_single_format (o_opcode);
3549 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3550 return 0;
e0001a05 3551
43cd72b9
BW
3552 if (xtensa_format_length (isa, fmt) != 3
3553 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 3554 return 0;
e0001a05 3555
43cd72b9
BW
3556 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3557 operand_count = xtensa_opcode_num_operands (isa, opcode);
3558 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3559
43cd72b9 3560 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3561 return 0;
e0001a05 3562
43cd72b9
BW
3563 if (!is_or)
3564 {
3565 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3566 return 0;
43cd72b9
BW
3567 }
3568 else
3569 {
3570 uint32 rawval0, rawval1, rawval2;
e0001a05 3571
64b607e6
BW
3572 if (o_operand_count + 1 != operand_count
3573 || xtensa_operand_get_field (isa, opcode, 0,
3574 fmt, 0, slotbuf, &rawval0) != 0
3575 || xtensa_operand_get_field (isa, opcode, 1,
3576 fmt, 0, slotbuf, &rawval1) != 0
3577 || xtensa_operand_get_field (isa, opcode, 2,
3578 fmt, 0, slotbuf, &rawval2) != 0
3579 || rawval1 != rawval2
3580 || rawval0 == rawval1 /* it is a nop */)
3581 return 0;
43cd72b9 3582 }
e0001a05 3583
43cd72b9
BW
3584 for (i = 0; i < o_operand_count; ++i)
3585 {
3586 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3587 slotbuf, &value)
3588 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 3589 return 0;
e0001a05 3590
43cd72b9
BW
3591 /* PC-relative branches need adjustment, but
3592 the PC-rel operand will always have a relocation. */
3593 newval = value;
3594 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3595 self_address)
3596 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3597 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3598 o_slotbuf, newval))
64b607e6 3599 return 0;
43cd72b9 3600 }
e0001a05 3601
64b607e6
BW
3602 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3603 return 0;
e0001a05 3604
64b607e6 3605 return o_insnbuf;
43cd72b9
BW
3606 }
3607 }
64b607e6 3608 return 0;
43cd72b9 3609}
e0001a05 3610
e0001a05 3611
64b607e6
BW
3612/* Attempt to narrow an instruction. If the narrowing is valid, perform
3613 the action in-place directly into the contents and return TRUE. Otherwise,
3614 the return value is FALSE and the contents are not modified. */
e0001a05 3615
43cd72b9 3616static bfd_boolean
64b607e6
BW
3617narrow_instruction (bfd_byte *contents,
3618 bfd_size_type content_length,
3619 bfd_size_type offset)
e0001a05 3620{
43cd72b9 3621 xtensa_opcode opcode;
64b607e6 3622 bfd_size_type insn_len;
43cd72b9 3623 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3624 xtensa_format fmt;
3625 xtensa_insnbuf o_insnbuf;
e0001a05 3626
43cd72b9
BW
3627 static xtensa_insnbuf insnbuf = NULL;
3628 static xtensa_insnbuf slotbuf = NULL;
e0001a05 3629
43cd72b9
BW
3630 if (insnbuf == NULL)
3631 {
3632 insnbuf = xtensa_insnbuf_alloc (isa);
3633 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 3634 }
e0001a05 3635
43cd72b9 3636 BFD_ASSERT (offset < content_length);
2c8c90bc 3637
43cd72b9 3638 if (content_length < 2)
e0001a05
NC
3639 return FALSE;
3640
64b607e6 3641 /* We will hand-code a few of these for a little while.
43cd72b9
BW
3642 These have all been specified in the assembler aleady. */
3643 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3644 content_length - offset);
3645 fmt = xtensa_format_decode (isa, insnbuf);
3646 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3647 return FALSE;
3648
43cd72b9 3649 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3650 return FALSE;
3651
43cd72b9
BW
3652 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3653 if (opcode == XTENSA_UNDEFINED)
e0001a05 3654 return FALSE;
43cd72b9
BW
3655 insn_len = xtensa_format_length (isa, fmt);
3656 if (insn_len > content_length)
3657 return FALSE;
3658
64b607e6
BW
3659 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3660 if (o_insnbuf)
3661 {
3662 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3663 content_length - offset);
3664 return TRUE;
3665 }
3666
3667 return FALSE;
3668}
3669
3670
3671/* Check if an instruction can be "widened", i.e., changed from a 2-byte
3672 "density" instruction to a standard 3-byte instruction. If it is valid,
3673 return the instruction buffer holding the wide instruction. Otherwise,
3674 return 0. The set of valid widenings are specified by a string table
3675 but require some special case operand checks in some cases. */
3676
3677static xtensa_insnbuf
3678can_widen_instruction (xtensa_insnbuf slotbuf,
3679 xtensa_format fmt,
3680 xtensa_opcode opcode)
3681{
3682 xtensa_isa isa = xtensa_default_isa;
3683 xtensa_format o_fmt;
3684 unsigned opi;
3685
3686 static xtensa_insnbuf o_insnbuf = NULL;
3687 static xtensa_insnbuf o_slotbuf = NULL;
3688
3689 if (o_insnbuf == NULL)
3690 {
3691 o_insnbuf = xtensa_insnbuf_alloc (isa);
3692 o_slotbuf = xtensa_insnbuf_alloc (isa);
3693 }
3694
3695 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 3696 {
43cd72b9
BW
3697 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3698 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3699 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3700
43cd72b9
BW
3701 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3702 {
3703 uint32 value, newval;
3704 int i, operand_count, o_operand_count, check_operand_count;
3705 xtensa_opcode o_opcode;
e0001a05 3706
43cd72b9
BW
3707 /* Address does not matter in this case. We might need to fix it
3708 to handle branches/jumps. */
3709 bfd_vma self_address = 0;
e0001a05 3710
43cd72b9
BW
3711 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3712 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3713 return 0;
43cd72b9
BW
3714 o_fmt = get_single_format (o_opcode);
3715 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3716 return 0;
e0001a05 3717
43cd72b9
BW
3718 if (xtensa_format_length (isa, fmt) != 2
3719 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 3720 return 0;
e0001a05 3721
43cd72b9
BW
3722 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3723 operand_count = xtensa_opcode_num_operands (isa, opcode);
3724 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3725 check_operand_count = o_operand_count;
e0001a05 3726
43cd72b9 3727 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3728 return 0;
e0001a05 3729
43cd72b9
BW
3730 if (!is_or)
3731 {
3732 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3733 return 0;
43cd72b9
BW
3734 }
3735 else
3736 {
3737 uint32 rawval0, rawval1;
3738
64b607e6
BW
3739 if (o_operand_count != operand_count + 1
3740 || xtensa_operand_get_field (isa, opcode, 0,
3741 fmt, 0, slotbuf, &rawval0) != 0
3742 || xtensa_operand_get_field (isa, opcode, 1,
3743 fmt, 0, slotbuf, &rawval1) != 0
3744 || rawval0 == rawval1 /* it is a nop */)
3745 return 0;
43cd72b9
BW
3746 }
3747 if (is_branch)
3748 check_operand_count--;
3749
64b607e6 3750 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
3751 {
3752 int new_i = i;
3753 if (is_or && i == o_operand_count - 1)
3754 new_i = i - 1;
3755 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3756 slotbuf, &value)
3757 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 3758 return 0;
43cd72b9
BW
3759
3760 /* PC-relative branches need adjustment, but
3761 the PC-rel operand will always have a relocation. */
3762 newval = value;
3763 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3764 self_address)
3765 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3766 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3767 o_slotbuf, newval))
64b607e6 3768 return 0;
43cd72b9
BW
3769 }
3770
3771 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 3772 return 0;
43cd72b9 3773
64b607e6 3774 return o_insnbuf;
43cd72b9
BW
3775 }
3776 }
64b607e6
BW
3777 return 0;
3778}
3779
3780
3781/* Attempt to widen an instruction. If the widening is valid, perform
3782 the action in-place directly into the contents and return TRUE. Otherwise,
3783 the return value is FALSE and the contents are not modified. */
3784
3785static bfd_boolean
3786widen_instruction (bfd_byte *contents,
3787 bfd_size_type content_length,
3788 bfd_size_type offset)
3789{
3790 xtensa_opcode opcode;
3791 bfd_size_type insn_len;
3792 xtensa_isa isa = xtensa_default_isa;
3793 xtensa_format fmt;
3794 xtensa_insnbuf o_insnbuf;
3795
3796 static xtensa_insnbuf insnbuf = NULL;
3797 static xtensa_insnbuf slotbuf = NULL;
3798
3799 if (insnbuf == NULL)
3800 {
3801 insnbuf = xtensa_insnbuf_alloc (isa);
3802 slotbuf = xtensa_insnbuf_alloc (isa);
3803 }
3804
3805 BFD_ASSERT (offset < content_length);
3806
3807 if (content_length < 2)
3808 return FALSE;
3809
3810 /* We will hand-code a few of these for a little while.
3811 These have all been specified in the assembler aleady. */
3812 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3813 content_length - offset);
3814 fmt = xtensa_format_decode (isa, insnbuf);
3815 if (xtensa_format_num_slots (isa, fmt) != 1)
3816 return FALSE;
3817
3818 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3819 return FALSE;
3820
3821 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3822 if (opcode == XTENSA_UNDEFINED)
3823 return FALSE;
3824 insn_len = xtensa_format_length (isa, fmt);
3825 if (insn_len > content_length)
3826 return FALSE;
3827
3828 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3829 if (o_insnbuf)
3830 {
3831 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3832 content_length - offset);
3833 return TRUE;
3834 }
43cd72b9 3835 return FALSE;
e0001a05
NC
3836}
3837
43cd72b9
BW
3838\f
3839/* Code for transforming CALLs at link-time. */
e0001a05 3840
43cd72b9 3841static bfd_reloc_status_type
7fa3d080
BW
3842elf_xtensa_do_asm_simplify (bfd_byte *contents,
3843 bfd_vma address,
3844 bfd_vma content_length,
3845 char **error_message)
e0001a05 3846{
43cd72b9
BW
3847 static xtensa_insnbuf insnbuf = NULL;
3848 static xtensa_insnbuf slotbuf = NULL;
3849 xtensa_format core_format = XTENSA_UNDEFINED;
3850 xtensa_opcode opcode;
3851 xtensa_opcode direct_call_opcode;
3852 xtensa_isa isa = xtensa_default_isa;
3853 bfd_byte *chbuf = contents + address;
3854 int opn;
e0001a05 3855
43cd72b9 3856 if (insnbuf == NULL)
e0001a05 3857 {
43cd72b9
BW
3858 insnbuf = xtensa_insnbuf_alloc (isa);
3859 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3860 }
e0001a05 3861
43cd72b9
BW
3862 if (content_length < address)
3863 {
3864 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3865 return bfd_reloc_other;
3866 }
e0001a05 3867
43cd72b9
BW
3868 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3869 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3870 if (direct_call_opcode == XTENSA_UNDEFINED)
3871 {
3872 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3873 return bfd_reloc_other;
3874 }
3875
3876 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3877 core_format = xtensa_format_lookup (isa, "x24");
3878 opcode = xtensa_opcode_lookup (isa, "or");
3879 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3880 for (opn = 0; opn < 3; opn++)
3881 {
3882 uint32 regno = 1;
3883 xtensa_operand_encode (isa, opcode, opn, &regno);
3884 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3885 slotbuf, regno);
3886 }
3887 xtensa_format_encode (isa, core_format, insnbuf);
3888 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3889 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3890
43cd72b9
BW
3891 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3892 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3893 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3894
43cd72b9
BW
3895 xtensa_format_encode (isa, core_format, insnbuf);
3896 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3897 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3898 content_length - address - 3);
e0001a05 3899
43cd72b9
BW
3900 return bfd_reloc_ok;
3901}
e0001a05 3902
e0001a05 3903
43cd72b9 3904static bfd_reloc_status_type
7fa3d080
BW
3905contract_asm_expansion (bfd_byte *contents,
3906 bfd_vma content_length,
3907 Elf_Internal_Rela *irel,
3908 char **error_message)
43cd72b9
BW
3909{
3910 bfd_reloc_status_type retval =
3911 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3912 error_message);
e0001a05 3913
43cd72b9
BW
3914 if (retval != bfd_reloc_ok)
3915 return bfd_reloc_dangerous;
e0001a05 3916
43cd72b9
BW
3917 /* Update the irel->r_offset field so that the right immediate and
3918 the right instruction are modified during the relocation. */
3919 irel->r_offset += 3;
3920 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3921 return bfd_reloc_ok;
3922}
e0001a05 3923
e0001a05 3924
43cd72b9 3925static xtensa_opcode
7fa3d080 3926swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3927{
43cd72b9 3928 init_call_opcodes ();
e0001a05 3929
43cd72b9
BW
3930 if (opcode == callx0_op) return call0_op;
3931 if (opcode == callx4_op) return call4_op;
3932 if (opcode == callx8_op) return call8_op;
3933 if (opcode == callx12_op) return call12_op;
e0001a05 3934
43cd72b9
BW
3935 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3936 return XTENSA_UNDEFINED;
3937}
e0001a05 3938
e0001a05 3939
43cd72b9
BW
3940/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3941 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3942 If not, return XTENSA_UNDEFINED. */
e0001a05 3943
43cd72b9
BW
3944#define L32R_TARGET_REG_OPERAND 0
3945#define CONST16_TARGET_REG_OPERAND 0
3946#define CALLN_SOURCE_OPERAND 0
e0001a05 3947
43cd72b9 3948static xtensa_opcode
7fa3d080 3949get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3950{
43cd72b9
BW
3951 static xtensa_insnbuf insnbuf = NULL;
3952 static xtensa_insnbuf slotbuf = NULL;
3953 xtensa_format fmt;
3954 xtensa_opcode opcode;
3955 xtensa_isa isa = xtensa_default_isa;
3956 uint32 regno, const16_regno, call_regno;
3957 int offset = 0;
e0001a05 3958
43cd72b9 3959 if (insnbuf == NULL)
e0001a05 3960 {
43cd72b9
BW
3961 insnbuf = xtensa_insnbuf_alloc (isa);
3962 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3963 }
43cd72b9
BW
3964
3965 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3966 fmt = xtensa_format_decode (isa, insnbuf);
3967 if (fmt == XTENSA_UNDEFINED
3968 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3969 return XTENSA_UNDEFINED;
3970
3971 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3972 if (opcode == XTENSA_UNDEFINED)
3973 return XTENSA_UNDEFINED;
3974
3975 if (opcode == get_l32r_opcode ())
e0001a05 3976 {
43cd72b9
BW
3977 if (p_uses_l32r)
3978 *p_uses_l32r = TRUE;
3979 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3980 fmt, 0, slotbuf, &regno)
3981 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3982 &regno))
3983 return XTENSA_UNDEFINED;
e0001a05 3984 }
43cd72b9 3985 else if (opcode == get_const16_opcode ())
e0001a05 3986 {
43cd72b9
BW
3987 if (p_uses_l32r)
3988 *p_uses_l32r = FALSE;
3989 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
3990 fmt, 0, slotbuf, &regno)
3991 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
3992 &regno))
3993 return XTENSA_UNDEFINED;
3994
3995 /* Check that the next instruction is also CONST16. */
3996 offset += xtensa_format_length (isa, fmt);
3997 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
3998 fmt = xtensa_format_decode (isa, insnbuf);
3999 if (fmt == XTENSA_UNDEFINED
4000 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4001 return XTENSA_UNDEFINED;
4002 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4003 if (opcode != get_const16_opcode ())
4004 return XTENSA_UNDEFINED;
4005
4006 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4007 fmt, 0, slotbuf, &const16_regno)
4008 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4009 &const16_regno)
4010 || const16_regno != regno)
4011 return XTENSA_UNDEFINED;
e0001a05 4012 }
43cd72b9
BW
4013 else
4014 return XTENSA_UNDEFINED;
e0001a05 4015
43cd72b9
BW
4016 /* Next instruction should be an CALLXn with operand 0 == regno. */
4017 offset += xtensa_format_length (isa, fmt);
4018 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4019 fmt = xtensa_format_decode (isa, insnbuf);
4020 if (fmt == XTENSA_UNDEFINED
4021 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4022 return XTENSA_UNDEFINED;
4023 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4024 if (opcode == XTENSA_UNDEFINED
4025 || !is_indirect_call_opcode (opcode))
4026 return XTENSA_UNDEFINED;
e0001a05 4027
43cd72b9
BW
4028 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4029 fmt, 0, slotbuf, &call_regno)
4030 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4031 &call_regno))
4032 return XTENSA_UNDEFINED;
e0001a05 4033
43cd72b9
BW
4034 if (call_regno != regno)
4035 return XTENSA_UNDEFINED;
e0001a05 4036
43cd72b9
BW
4037 return opcode;
4038}
e0001a05 4039
43cd72b9
BW
4040\f
4041/* Data structures used during relaxation. */
e0001a05 4042
43cd72b9 4043/* r_reloc: relocation values. */
e0001a05 4044
43cd72b9
BW
4045/* Through the relaxation process, we need to keep track of the values
4046 that will result from evaluating relocations. The standard ELF
4047 relocation structure is not sufficient for this purpose because we're
4048 operating on multiple input files at once, so we need to know which
4049 input file a relocation refers to. The r_reloc structure thus
4050 records both the input file (bfd) and ELF relocation.
e0001a05 4051
43cd72b9
BW
4052 For efficiency, an r_reloc also contains a "target_offset" field to
4053 cache the target-section-relative offset value that is represented by
4054 the relocation.
4055
4056 The r_reloc also contains a virtual offset that allows multiple
4057 inserted literals to be placed at the same "address" with
4058 different offsets. */
e0001a05 4059
43cd72b9 4060typedef struct r_reloc_struct r_reloc;
e0001a05 4061
43cd72b9 4062struct r_reloc_struct
e0001a05 4063{
43cd72b9
BW
4064 bfd *abfd;
4065 Elf_Internal_Rela rela;
e0001a05 4066 bfd_vma target_offset;
43cd72b9 4067 bfd_vma virtual_offset;
e0001a05
NC
4068};
4069
e0001a05 4070
43cd72b9
BW
4071/* The r_reloc structure is included by value in literal_value, but not
4072 every literal_value has an associated relocation -- some are simple
4073 constants. In such cases, we set all the fields in the r_reloc
4074 struct to zero. The r_reloc_is_const function should be used to
4075 detect this case. */
e0001a05 4076
43cd72b9 4077static bfd_boolean
7fa3d080 4078r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4079{
43cd72b9 4080 return (r_rel->abfd == NULL);
e0001a05
NC
4081}
4082
4083
43cd72b9 4084static bfd_vma
7fa3d080 4085r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4086{
43cd72b9
BW
4087 bfd_vma target_offset;
4088 unsigned long r_symndx;
e0001a05 4089
43cd72b9
BW
4090 BFD_ASSERT (!r_reloc_is_const (r_rel));
4091 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4092 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4093 return (target_offset + r_rel->rela.r_addend);
4094}
e0001a05 4095
e0001a05 4096
43cd72b9 4097static struct elf_link_hash_entry *
7fa3d080 4098r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4099{
43cd72b9
BW
4100 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4101 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4102}
e0001a05 4103
43cd72b9
BW
4104
4105static asection *
7fa3d080 4106r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4107{
4108 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4109 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4110}
e0001a05
NC
4111
4112
4113static bfd_boolean
7fa3d080 4114r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4115{
43cd72b9
BW
4116 asection *sec;
4117 if (r_rel == NULL)
e0001a05 4118 return FALSE;
e0001a05 4119
43cd72b9
BW
4120 sec = r_reloc_get_section (r_rel);
4121 if (sec == bfd_abs_section_ptr
4122 || sec == bfd_com_section_ptr
4123 || sec == bfd_und_section_ptr)
4124 return FALSE;
4125 return TRUE;
e0001a05
NC
4126}
4127
4128
7fa3d080
BW
4129static void
4130r_reloc_init (r_reloc *r_rel,
4131 bfd *abfd,
4132 Elf_Internal_Rela *irel,
4133 bfd_byte *contents,
4134 bfd_size_type content_length)
4135{
4136 int r_type;
4137 reloc_howto_type *howto;
4138
4139 if (irel)
4140 {
4141 r_rel->rela = *irel;
4142 r_rel->abfd = abfd;
4143 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4144 r_rel->virtual_offset = 0;
4145 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4146 howto = &elf_howto_table[r_type];
4147 if (howto->partial_inplace)
4148 {
4149 bfd_vma inplace_val;
4150 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4151
4152 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4153 r_rel->target_offset += inplace_val;
4154 }
4155 }
4156 else
4157 memset (r_rel, 0, sizeof (r_reloc));
4158}
4159
4160
43cd72b9
BW
4161#if DEBUG
4162
e0001a05 4163static void
7fa3d080 4164print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4165{
43cd72b9
BW
4166 if (r_reloc_is_defined (r_rel))
4167 {
4168 asection *sec = r_reloc_get_section (r_rel);
4169 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4170 }
4171 else if (r_reloc_get_hash_entry (r_rel))
4172 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4173 else
4174 fprintf (fp, " ?? + ");
e0001a05 4175
43cd72b9
BW
4176 fprintf_vma (fp, r_rel->target_offset);
4177 if (r_rel->virtual_offset)
4178 {
4179 fprintf (fp, " + ");
4180 fprintf_vma (fp, r_rel->virtual_offset);
4181 }
4182
4183 fprintf (fp, ")");
4184}
e0001a05 4185
43cd72b9 4186#endif /* DEBUG */
e0001a05 4187
43cd72b9
BW
4188\f
4189/* source_reloc: relocations that reference literals. */
e0001a05 4190
43cd72b9
BW
4191/* To determine whether literals can be coalesced, we need to first
4192 record all the relocations that reference the literals. The
4193 source_reloc structure below is used for this purpose. The
4194 source_reloc entries are kept in a per-literal-section array, sorted
4195 by offset within the literal section (i.e., target offset).
e0001a05 4196
43cd72b9
BW
4197 The source_sec and r_rel.rela.r_offset fields identify the source of
4198 the relocation. The r_rel field records the relocation value, i.e.,
4199 the offset of the literal being referenced. The opnd field is needed
4200 to determine the range of the immediate field to which the relocation
4201 applies, so we can determine whether another literal with the same
4202 value is within range. The is_null field is true when the relocation
4203 is being removed (e.g., when an L32R is being removed due to a CALLX
4204 that is converted to a direct CALL). */
e0001a05 4205
43cd72b9
BW
4206typedef struct source_reloc_struct source_reloc;
4207
4208struct source_reloc_struct
e0001a05 4209{
43cd72b9
BW
4210 asection *source_sec;
4211 r_reloc r_rel;
4212 xtensa_opcode opcode;
4213 int opnd;
4214 bfd_boolean is_null;
4215 bfd_boolean is_abs_literal;
4216};
e0001a05 4217
e0001a05 4218
e0001a05 4219static void
7fa3d080
BW
4220init_source_reloc (source_reloc *reloc,
4221 asection *source_sec,
4222 const r_reloc *r_rel,
4223 xtensa_opcode opcode,
4224 int opnd,
4225 bfd_boolean is_abs_literal)
e0001a05 4226{
43cd72b9
BW
4227 reloc->source_sec = source_sec;
4228 reloc->r_rel = *r_rel;
4229 reloc->opcode = opcode;
4230 reloc->opnd = opnd;
4231 reloc->is_null = FALSE;
4232 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4233}
4234
e0001a05 4235
43cd72b9
BW
4236/* Find the source_reloc for a particular source offset and relocation
4237 type. Note that the array is sorted by _target_ offset, so this is
4238 just a linear search. */
e0001a05 4239
43cd72b9 4240static source_reloc *
7fa3d080
BW
4241find_source_reloc (source_reloc *src_relocs,
4242 int src_count,
4243 asection *sec,
4244 Elf_Internal_Rela *irel)
e0001a05 4245{
43cd72b9 4246 int i;
e0001a05 4247
43cd72b9
BW
4248 for (i = 0; i < src_count; i++)
4249 {
4250 if (src_relocs[i].source_sec == sec
4251 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4252 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4253 == ELF32_R_TYPE (irel->r_info)))
4254 return &src_relocs[i];
4255 }
e0001a05 4256
43cd72b9 4257 return NULL;
e0001a05
NC
4258}
4259
4260
43cd72b9 4261static int
7fa3d080 4262source_reloc_compare (const void *ap, const void *bp)
e0001a05 4263{
43cd72b9
BW
4264 const source_reloc *a = (const source_reloc *) ap;
4265 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4266
43cd72b9
BW
4267 if (a->r_rel.target_offset != b->r_rel.target_offset)
4268 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4269
43cd72b9
BW
4270 /* We don't need to sort on these criteria for correctness,
4271 but enforcing a more strict ordering prevents unstable qsort
4272 from behaving differently with different implementations.
4273 Without the code below we get correct but different results
4274 on Solaris 2.7 and 2.8. We would like to always produce the
4275 same results no matter the host. */
4276
4277 if ((!a->is_null) - (!b->is_null))
4278 return ((!a->is_null) - (!b->is_null));
4279 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4280}
4281
43cd72b9
BW
4282\f
4283/* Literal values and value hash tables. */
e0001a05 4284
43cd72b9
BW
4285/* Literals with the same value can be coalesced. The literal_value
4286 structure records the value of a literal: the "r_rel" field holds the
4287 information from the relocation on the literal (if there is one) and
4288 the "value" field holds the contents of the literal word itself.
e0001a05 4289
43cd72b9
BW
4290 The value_map structure records a literal value along with the
4291 location of a literal holding that value. The value_map hash table
4292 is indexed by the literal value, so that we can quickly check if a
4293 particular literal value has been seen before and is thus a candidate
4294 for coalescing. */
e0001a05 4295
43cd72b9
BW
4296typedef struct literal_value_struct literal_value;
4297typedef struct value_map_struct value_map;
4298typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4299
43cd72b9 4300struct literal_value_struct
e0001a05 4301{
43cd72b9
BW
4302 r_reloc r_rel;
4303 unsigned long value;
4304 bfd_boolean is_abs_literal;
4305};
4306
4307struct value_map_struct
4308{
4309 literal_value val; /* The literal value. */
4310 r_reloc loc; /* Location of the literal. */
4311 value_map *next;
4312};
4313
4314struct value_map_hash_table_struct
4315{
4316 unsigned bucket_count;
4317 value_map **buckets;
4318 unsigned count;
4319 bfd_boolean has_last_loc;
4320 r_reloc last_loc;
4321};
4322
4323
e0001a05 4324static void
7fa3d080
BW
4325init_literal_value (literal_value *lit,
4326 const r_reloc *r_rel,
4327 unsigned long value,
4328 bfd_boolean is_abs_literal)
e0001a05 4329{
43cd72b9
BW
4330 lit->r_rel = *r_rel;
4331 lit->value = value;
4332 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4333}
4334
4335
43cd72b9 4336static bfd_boolean
7fa3d080
BW
4337literal_value_equal (const literal_value *src1,
4338 const literal_value *src2,
4339 bfd_boolean final_static_link)
e0001a05 4340{
43cd72b9 4341 struct elf_link_hash_entry *h1, *h2;
e0001a05 4342
43cd72b9
BW
4343 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4344 return FALSE;
e0001a05 4345
43cd72b9
BW
4346 if (r_reloc_is_const (&src1->r_rel))
4347 return (src1->value == src2->value);
e0001a05 4348
43cd72b9
BW
4349 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4350 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4351 return FALSE;
e0001a05 4352
43cd72b9
BW
4353 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4354 return FALSE;
4355
4356 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4357 return FALSE;
4358
4359 if (src1->value != src2->value)
4360 return FALSE;
4361
4362 /* Now check for the same section (if defined) or the same elf_hash
4363 (if undefined or weak). */
4364 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4365 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4366 if (r_reloc_is_defined (&src1->r_rel)
4367 && (final_static_link
4368 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4369 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4370 {
4371 if (r_reloc_get_section (&src1->r_rel)
4372 != r_reloc_get_section (&src2->r_rel))
4373 return FALSE;
4374 }
4375 else
4376 {
4377 /* Require that the hash entries (i.e., symbols) be identical. */
4378 if (h1 != h2 || h1 == 0)
4379 return FALSE;
4380 }
4381
4382 if (src1->is_abs_literal != src2->is_abs_literal)
4383 return FALSE;
4384
4385 return TRUE;
e0001a05
NC
4386}
4387
e0001a05 4388
43cd72b9
BW
4389/* Must be power of 2. */
4390#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4391
43cd72b9 4392static value_map_hash_table *
7fa3d080 4393value_map_hash_table_init (void)
43cd72b9
BW
4394{
4395 value_map_hash_table *values;
e0001a05 4396
43cd72b9
BW
4397 values = (value_map_hash_table *)
4398 bfd_zmalloc (sizeof (value_map_hash_table));
4399 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4400 values->count = 0;
4401 values->buckets = (value_map **)
4402 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4403 if (values->buckets == NULL)
4404 {
4405 free (values);
4406 return NULL;
4407 }
4408 values->has_last_loc = FALSE;
4409
4410 return values;
4411}
4412
4413
4414static void
7fa3d080 4415value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4416{
43cd72b9
BW
4417 free (table->buckets);
4418 free (table);
4419}
4420
4421
4422static unsigned
7fa3d080 4423hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4424{
4425 return (val >> 2) + (val >> 10);
4426}
4427
4428
4429static unsigned
7fa3d080 4430literal_value_hash (const literal_value *src)
43cd72b9
BW
4431{
4432 unsigned hash_val;
e0001a05 4433
43cd72b9
BW
4434 hash_val = hash_bfd_vma (src->value);
4435 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4436 {
43cd72b9
BW
4437 void *sec_or_hash;
4438
4439 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4440 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4441 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4442
4443 /* Now check for the same section and the same elf_hash. */
4444 if (r_reloc_is_defined (&src->r_rel))
4445 sec_or_hash = r_reloc_get_section (&src->r_rel);
4446 else
4447 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4448 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4449 }
43cd72b9
BW
4450 return hash_val;
4451}
e0001a05 4452
e0001a05 4453
43cd72b9 4454/* Check if the specified literal_value has been seen before. */
e0001a05 4455
43cd72b9 4456static value_map *
7fa3d080
BW
4457value_map_get_cached_value (value_map_hash_table *map,
4458 const literal_value *val,
4459 bfd_boolean final_static_link)
43cd72b9
BW
4460{
4461 value_map *map_e;
4462 value_map *bucket;
4463 unsigned idx;
4464
4465 idx = literal_value_hash (val);
4466 idx = idx & (map->bucket_count - 1);
4467 bucket = map->buckets[idx];
4468 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4469 {
43cd72b9
BW
4470 if (literal_value_equal (&map_e->val, val, final_static_link))
4471 return map_e;
4472 }
4473 return NULL;
4474}
e0001a05 4475
e0001a05 4476
43cd72b9
BW
4477/* Record a new literal value. It is illegal to call this if VALUE
4478 already has an entry here. */
4479
4480static value_map *
7fa3d080
BW
4481add_value_map (value_map_hash_table *map,
4482 const literal_value *val,
4483 const r_reloc *loc,
4484 bfd_boolean final_static_link)
43cd72b9
BW
4485{
4486 value_map **bucket_p;
4487 unsigned idx;
4488
4489 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4490 if (val_e == NULL)
4491 {
4492 bfd_set_error (bfd_error_no_memory);
4493 return NULL;
e0001a05
NC
4494 }
4495
43cd72b9
BW
4496 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4497 val_e->val = *val;
4498 val_e->loc = *loc;
4499
4500 idx = literal_value_hash (val);
4501 idx = idx & (map->bucket_count - 1);
4502 bucket_p = &map->buckets[idx];
4503
4504 val_e->next = *bucket_p;
4505 *bucket_p = val_e;
4506 map->count++;
4507 /* FIXME: Consider resizing the hash table if we get too many entries. */
4508
4509 return val_e;
e0001a05
NC
4510}
4511
43cd72b9
BW
4512\f
4513/* Lists of text actions (ta_) for narrowing, widening, longcall
4514 conversion, space fill, code & literal removal, etc. */
4515
4516/* The following text actions are generated:
4517
4518 "ta_remove_insn" remove an instruction or instructions
4519 "ta_remove_longcall" convert longcall to call
4520 "ta_convert_longcall" convert longcall to nop/call
4521 "ta_narrow_insn" narrow a wide instruction
4522 "ta_widen" widen a narrow instruction
4523 "ta_fill" add fill or remove fill
4524 removed < 0 is a fill; branches to the fill address will be
4525 changed to address + fill size (e.g., address - removed)
4526 removed >= 0 branches to the fill address will stay unchanged
4527 "ta_remove_literal" remove a literal; this action is
4528 indicated when a literal is removed
4529 or replaced.
4530 "ta_add_literal" insert a new literal; this action is
4531 indicated when a literal has been moved.
4532 It may use a virtual_offset because
4533 multiple literals can be placed at the
4534 same location.
4535
4536 For each of these text actions, we also record the number of bytes
4537 removed by performing the text action. In the case of a "ta_widen"
4538 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4539
4540typedef struct text_action_struct text_action;
4541typedef struct text_action_list_struct text_action_list;
4542typedef enum text_action_enum_t text_action_t;
4543
4544enum text_action_enum_t
4545{
4546 ta_none,
4547 ta_remove_insn, /* removed = -size */
4548 ta_remove_longcall, /* removed = -size */
4549 ta_convert_longcall, /* removed = 0 */
4550 ta_narrow_insn, /* removed = -1 */
4551 ta_widen_insn, /* removed = +1 */
4552 ta_fill, /* removed = +size */
4553 ta_remove_literal,
4554 ta_add_literal
4555};
e0001a05 4556
e0001a05 4557
43cd72b9
BW
4558/* Structure for a text action record. */
4559struct text_action_struct
e0001a05 4560{
43cd72b9
BW
4561 text_action_t action;
4562 asection *sec; /* Optional */
4563 bfd_vma offset;
4564 bfd_vma virtual_offset; /* Zero except for adding literals. */
4565 int removed_bytes;
4566 literal_value value; /* Only valid when adding literals. */
e0001a05 4567
43cd72b9
BW
4568 text_action *next;
4569};
e0001a05 4570
e0001a05 4571
43cd72b9
BW
4572/* List of all of the actions taken on a text section. */
4573struct text_action_list_struct
4574{
4575 text_action *head;
4576};
e0001a05 4577
e0001a05 4578
7fa3d080
BW
4579static text_action *
4580find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4581{
4582 text_action **m_p;
4583
4584 /* It is not necessary to fill at the end of a section. */
4585 if (sec->size == offset)
4586 return NULL;
4587
7fa3d080 4588 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4589 {
4590 text_action *t = *m_p;
4591 /* When the action is another fill at the same address,
4592 just increase the size. */
4593 if (t->offset == offset && t->action == ta_fill)
4594 return t;
4595 }
4596 return NULL;
4597}
4598
4599
4600static int
7fa3d080
BW
4601compute_removed_action_diff (const text_action *ta,
4602 asection *sec,
4603 bfd_vma offset,
4604 int removed,
4605 int removable_space)
43cd72b9
BW
4606{
4607 int new_removed;
4608 int current_removed = 0;
4609
7fa3d080 4610 if (ta)
43cd72b9
BW
4611 current_removed = ta->removed_bytes;
4612
4613 BFD_ASSERT (ta == NULL || ta->offset == offset);
4614 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4615
4616 /* It is not necessary to fill at the end of a section. Clean this up. */
4617 if (sec->size == offset)
4618 new_removed = removable_space - 0;
4619 else
4620 {
4621 int space;
4622 int added = -removed - current_removed;
4623 /* Ignore multiples of the section alignment. */
4624 added = ((1 << sec->alignment_power) - 1) & added;
4625 new_removed = (-added);
4626
4627 /* Modify for removable. */
4628 space = removable_space - new_removed;
4629 new_removed = (removable_space
4630 - (((1 << sec->alignment_power) - 1) & space));
4631 }
4632 return (new_removed - current_removed);
4633}
4634
4635
7fa3d080
BW
4636static void
4637adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4638{
4639 ta->removed_bytes += fill_diff;
4640}
4641
4642
4643/* Add a modification action to the text. For the case of adding or
4644 removing space, modify any current fill and assume that
4645 "unreachable_space" bytes can be freely contracted. Note that a
4646 negative removed value is a fill. */
4647
4648static void
7fa3d080
BW
4649text_action_add (text_action_list *l,
4650 text_action_t action,
4651 asection *sec,
4652 bfd_vma offset,
4653 int removed)
43cd72b9
BW
4654{
4655 text_action **m_p;
4656 text_action *ta;
4657
4658 /* It is not necessary to fill at the end of a section. */
4659 if (action == ta_fill && sec->size == offset)
4660 return;
4661
4662 /* It is not necessary to fill 0 bytes. */
4663 if (action == ta_fill && removed == 0)
4664 return;
4665
7fa3d080 4666 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4667 {
4668 text_action *t = *m_p;
4669 /* When the action is another fill at the same address,
4670 just increase the size. */
4671 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4672 {
4673 t->removed_bytes += removed;
4674 return;
4675 }
4676 }
4677
4678 /* Create a new record and fill it up. */
4679 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4680 ta->action = action;
4681 ta->sec = sec;
4682 ta->offset = offset;
4683 ta->removed_bytes = removed;
4684 ta->next = (*m_p);
4685 *m_p = ta;
4686}
4687
4688
4689static void
7fa3d080
BW
4690text_action_add_literal (text_action_list *l,
4691 text_action_t action,
4692 const r_reloc *loc,
4693 const literal_value *value,
4694 int removed)
43cd72b9
BW
4695{
4696 text_action **m_p;
4697 text_action *ta;
4698 asection *sec = r_reloc_get_section (loc);
4699 bfd_vma offset = loc->target_offset;
4700 bfd_vma virtual_offset = loc->virtual_offset;
4701
4702 BFD_ASSERT (action == ta_add_literal);
4703
4704 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4705 {
4706 if ((*m_p)->offset > offset
4707 && ((*m_p)->offset != offset
4708 || (*m_p)->virtual_offset > virtual_offset))
4709 break;
4710 }
4711
4712 /* Create a new record and fill it up. */
4713 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4714 ta->action = action;
4715 ta->sec = sec;
4716 ta->offset = offset;
4717 ta->virtual_offset = virtual_offset;
4718 ta->value = *value;
4719 ta->removed_bytes = removed;
4720 ta->next = (*m_p);
4721 *m_p = ta;
4722}
4723
4724
7fa3d080
BW
4725static bfd_vma
4726offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4727{
4728 text_action *r;
4729 int removed = 0;
4730
4731 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4732 {
4733 if (r->offset < offset
4734 || (r->action == ta_fill && r->removed_bytes < 0))
4735 removed += r->removed_bytes;
4736 }
4737
4738 return (offset - removed);
4739}
4740
4741
03e94c08
BW
4742static unsigned
4743action_list_count (text_action_list *action_list)
4744{
4745 text_action *r = action_list->head;
4746 unsigned count = 0;
4747 for (r = action_list->head; r != NULL; r = r->next)
4748 {
4749 count++;
4750 }
4751 return count;
4752}
4753
4754
7fa3d080
BW
4755static bfd_vma
4756offset_with_removed_text_before_fill (text_action_list *action_list,
4757 bfd_vma offset)
43cd72b9
BW
4758{
4759 text_action *r;
4760 int removed = 0;
4761
4762 for (r = action_list->head; r && r->offset < offset; r = r->next)
4763 removed += r->removed_bytes;
4764
4765 return (offset - removed);
4766}
4767
4768
4769/* The find_insn_action routine will only find non-fill actions. */
4770
7fa3d080
BW
4771static text_action *
4772find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4773{
4774 text_action *t;
4775 for (t = action_list->head; t; t = t->next)
4776 {
4777 if (t->offset == offset)
4778 {
4779 switch (t->action)
4780 {
4781 case ta_none:
4782 case ta_fill:
4783 break;
4784 case ta_remove_insn:
4785 case ta_remove_longcall:
4786 case ta_convert_longcall:
4787 case ta_narrow_insn:
4788 case ta_widen_insn:
4789 return t;
4790 case ta_remove_literal:
4791 case ta_add_literal:
4792 BFD_ASSERT (0);
4793 break;
4794 }
4795 }
4796 }
4797 return NULL;
4798}
4799
4800
4801#if DEBUG
4802
4803static void
7fa3d080 4804print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4805{
4806 text_action *r;
4807
4808 fprintf (fp, "Text Action\n");
4809 for (r = action_list->head; r != NULL; r = r->next)
4810 {
4811 const char *t = "unknown";
4812 switch (r->action)
4813 {
4814 case ta_remove_insn:
4815 t = "remove_insn"; break;
4816 case ta_remove_longcall:
4817 t = "remove_longcall"; break;
4818 case ta_convert_longcall:
4819 t = "remove_longcall"; break;
4820 case ta_narrow_insn:
4821 t = "narrow_insn"; break;
4822 case ta_widen_insn:
4823 t = "widen_insn"; break;
4824 case ta_fill:
4825 t = "fill"; break;
4826 case ta_none:
4827 t = "none"; break;
4828 case ta_remove_literal:
4829 t = "remove_literal"; break;
4830 case ta_add_literal:
4831 t = "add_literal"; break;
4832 }
4833
4834 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4835 r->sec->owner->filename,
4836 r->sec->name, r->offset, t, r->removed_bytes);
4837 }
4838}
4839
4840#endif /* DEBUG */
4841
4842\f
4843/* Lists of literals being coalesced or removed. */
4844
4845/* In the usual case, the literal identified by "from" is being
4846 coalesced with another literal identified by "to". If the literal is
4847 unused and is being removed altogether, "to.abfd" will be NULL.
4848 The removed_literal entries are kept on a per-section list, sorted
4849 by the "from" offset field. */
4850
4851typedef struct removed_literal_struct removed_literal;
4852typedef struct removed_literal_list_struct removed_literal_list;
4853
4854struct removed_literal_struct
4855{
4856 r_reloc from;
4857 r_reloc to;
4858 removed_literal *next;
4859};
4860
4861struct removed_literal_list_struct
4862{
4863 removed_literal *head;
4864 removed_literal *tail;
4865};
4866
4867
43cd72b9
BW
4868/* Record that the literal at "from" is being removed. If "to" is not
4869 NULL, the "from" literal is being coalesced with the "to" literal. */
4870
4871static void
7fa3d080
BW
4872add_removed_literal (removed_literal_list *removed_list,
4873 const r_reloc *from,
4874 const r_reloc *to)
43cd72b9
BW
4875{
4876 removed_literal *r, *new_r, *next_r;
4877
4878 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4879
4880 new_r->from = *from;
4881 if (to)
4882 new_r->to = *to;
4883 else
4884 new_r->to.abfd = NULL;
4885 new_r->next = NULL;
4886
4887 r = removed_list->head;
4888 if (r == NULL)
4889 {
4890 removed_list->head = new_r;
4891 removed_list->tail = new_r;
4892 }
4893 /* Special check for common case of append. */
4894 else if (removed_list->tail->from.target_offset < from->target_offset)
4895 {
4896 removed_list->tail->next = new_r;
4897 removed_list->tail = new_r;
4898 }
4899 else
4900 {
7fa3d080 4901 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4902 {
4903 r = r->next;
4904 }
4905 next_r = r->next;
4906 r->next = new_r;
4907 new_r->next = next_r;
4908 if (next_r == NULL)
4909 removed_list->tail = new_r;
4910 }
4911}
4912
4913
4914/* Check if the list of removed literals contains an entry for the
4915 given address. Return the entry if found. */
4916
4917static removed_literal *
7fa3d080 4918find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4919{
4920 removed_literal *r = removed_list->head;
4921 while (r && r->from.target_offset < addr)
4922 r = r->next;
4923 if (r && r->from.target_offset == addr)
4924 return r;
4925 return NULL;
4926}
4927
4928
4929#if DEBUG
4930
4931static void
7fa3d080 4932print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4933{
4934 removed_literal *r;
4935 r = removed_list->head;
4936 if (r)
4937 fprintf (fp, "Removed Literals\n");
4938 for (; r != NULL; r = r->next)
4939 {
4940 print_r_reloc (fp, &r->from);
4941 fprintf (fp, " => ");
4942 if (r->to.abfd == NULL)
4943 fprintf (fp, "REMOVED");
4944 else
4945 print_r_reloc (fp, &r->to);
4946 fprintf (fp, "\n");
4947 }
4948}
4949
4950#endif /* DEBUG */
4951
4952\f
4953/* Per-section data for relaxation. */
4954
4955typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4956
4957struct xtensa_relax_info_struct
4958{
4959 bfd_boolean is_relaxable_literal_section;
4960 bfd_boolean is_relaxable_asm_section;
4961 int visited; /* Number of times visited. */
4962
4963 source_reloc *src_relocs; /* Array[src_count]. */
4964 int src_count;
4965 int src_next; /* Next src_relocs entry to assign. */
4966
4967 removed_literal_list removed_list;
4968 text_action_list action_list;
4969
4970 reloc_bfd_fix *fix_list;
4971 reloc_bfd_fix *fix_array;
4972 unsigned fix_array_count;
4973
4974 /* Support for expanding the reloc array that is stored
4975 in the section structure. If the relocations have been
4976 reallocated, the newly allocated relocations will be referenced
4977 here along with the actual size allocated. The relocation
4978 count will always be found in the section structure. */
4979 Elf_Internal_Rela *allocated_relocs;
4980 unsigned relocs_count;
4981 unsigned allocated_relocs_count;
4982};
4983
4984struct elf_xtensa_section_data
4985{
4986 struct bfd_elf_section_data elf;
4987 xtensa_relax_info relax_info;
4988};
4989
43cd72b9
BW
4990
4991static bfd_boolean
7fa3d080 4992elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 4993{
f592407e
AM
4994 if (!sec->used_by_bfd)
4995 {
4996 struct elf_xtensa_section_data *sdata;
4997 bfd_size_type amt = sizeof (*sdata);
43cd72b9 4998
f592407e
AM
4999 sdata = bfd_zalloc (abfd, amt);
5000 if (sdata == NULL)
5001 return FALSE;
5002 sec->used_by_bfd = sdata;
5003 }
43cd72b9
BW
5004
5005 return _bfd_elf_new_section_hook (abfd, sec);
5006}
5007
5008
7fa3d080
BW
5009static xtensa_relax_info *
5010get_xtensa_relax_info (asection *sec)
5011{
5012 struct elf_xtensa_section_data *section_data;
5013
5014 /* No info available if no section or if it is an output section. */
5015 if (!sec || sec == sec->output_section)
5016 return NULL;
5017
5018 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5019 return &section_data->relax_info;
5020}
5021
5022
43cd72b9 5023static void
7fa3d080 5024init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5025{
5026 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5027
5028 relax_info->is_relaxable_literal_section = FALSE;
5029 relax_info->is_relaxable_asm_section = FALSE;
5030 relax_info->visited = 0;
5031
5032 relax_info->src_relocs = NULL;
5033 relax_info->src_count = 0;
5034 relax_info->src_next = 0;
5035
5036 relax_info->removed_list.head = NULL;
5037 relax_info->removed_list.tail = NULL;
5038
5039 relax_info->action_list.head = NULL;
5040
5041 relax_info->fix_list = NULL;
5042 relax_info->fix_array = NULL;
5043 relax_info->fix_array_count = 0;
5044
5045 relax_info->allocated_relocs = NULL;
5046 relax_info->relocs_count = 0;
5047 relax_info->allocated_relocs_count = 0;
5048}
5049
43cd72b9
BW
5050\f
5051/* Coalescing literals may require a relocation to refer to a section in
5052 a different input file, but the standard relocation information
5053 cannot express that. Instead, the reloc_bfd_fix structures are used
5054 to "fix" the relocations that refer to sections in other input files.
5055 These structures are kept on per-section lists. The "src_type" field
5056 records the relocation type in case there are multiple relocations on
5057 the same location. FIXME: This is ugly; an alternative might be to
5058 add new symbols with the "owner" field to some other input file. */
5059
5060struct reloc_bfd_fix_struct
5061{
5062 asection *src_sec;
5063 bfd_vma src_offset;
5064 unsigned src_type; /* Relocation type. */
5065
5066 bfd *target_abfd;
5067 asection *target_sec;
5068 bfd_vma target_offset;
5069 bfd_boolean translated;
5070
5071 reloc_bfd_fix *next;
5072};
5073
5074
43cd72b9 5075static reloc_bfd_fix *
7fa3d080
BW
5076reloc_bfd_fix_init (asection *src_sec,
5077 bfd_vma src_offset,
5078 unsigned src_type,
5079 bfd *target_abfd,
5080 asection *target_sec,
5081 bfd_vma target_offset,
5082 bfd_boolean translated)
43cd72b9
BW
5083{
5084 reloc_bfd_fix *fix;
5085
5086 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5087 fix->src_sec = src_sec;
5088 fix->src_offset = src_offset;
5089 fix->src_type = src_type;
5090 fix->target_abfd = target_abfd;
5091 fix->target_sec = target_sec;
5092 fix->target_offset = target_offset;
5093 fix->translated = translated;
5094
5095 return fix;
5096}
5097
5098
5099static void
7fa3d080 5100add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5101{
5102 xtensa_relax_info *relax_info;
5103
5104 relax_info = get_xtensa_relax_info (src_sec);
5105 fix->next = relax_info->fix_list;
5106 relax_info->fix_list = fix;
5107}
5108
5109
5110static int
7fa3d080 5111fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5112{
5113 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5114 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5115
5116 if (a->src_offset != b->src_offset)
5117 return (a->src_offset - b->src_offset);
5118 return (a->src_type - b->src_type);
5119}
5120
5121
5122static void
7fa3d080 5123cache_fix_array (asection *sec)
43cd72b9
BW
5124{
5125 unsigned i, count = 0;
5126 reloc_bfd_fix *r;
5127 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5128
5129 if (relax_info == NULL)
5130 return;
5131 if (relax_info->fix_list == NULL)
5132 return;
5133
5134 for (r = relax_info->fix_list; r != NULL; r = r->next)
5135 count++;
5136
5137 relax_info->fix_array =
5138 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5139 relax_info->fix_array_count = count;
5140
5141 r = relax_info->fix_list;
5142 for (i = 0; i < count; i++, r = r->next)
5143 {
5144 relax_info->fix_array[count - 1 - i] = *r;
5145 relax_info->fix_array[count - 1 - i].next = NULL;
5146 }
5147
5148 qsort (relax_info->fix_array, relax_info->fix_array_count,
5149 sizeof (reloc_bfd_fix), fix_compare);
5150}
5151
5152
5153static reloc_bfd_fix *
7fa3d080 5154get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5155{
5156 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5157 reloc_bfd_fix *rv;
5158 reloc_bfd_fix key;
5159
5160 if (relax_info == NULL)
5161 return NULL;
5162 if (relax_info->fix_list == NULL)
5163 return NULL;
5164
5165 if (relax_info->fix_array == NULL)
5166 cache_fix_array (sec);
5167
5168 key.src_offset = offset;
5169 key.src_type = type;
5170 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5171 sizeof (reloc_bfd_fix), fix_compare);
5172 return rv;
5173}
5174
5175\f
5176/* Section caching. */
5177
5178typedef struct section_cache_struct section_cache_t;
5179
5180struct section_cache_struct
5181{
5182 asection *sec;
5183
5184 bfd_byte *contents; /* Cache of the section contents. */
5185 bfd_size_type content_length;
5186
5187 property_table_entry *ptbl; /* Cache of the section property table. */
5188 unsigned pte_count;
5189
5190 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5191 unsigned reloc_count;
5192};
5193
5194
7fa3d080
BW
5195static void
5196init_section_cache (section_cache_t *sec_cache)
5197{
5198 memset (sec_cache, 0, sizeof (*sec_cache));
5199}
43cd72b9
BW
5200
5201
5202static void
7fa3d080 5203clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5204{
7fa3d080
BW
5205 if (sec_cache->sec)
5206 {
5207 release_contents (sec_cache->sec, sec_cache->contents);
5208 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5209 if (sec_cache->ptbl)
5210 free (sec_cache->ptbl);
5211 memset (sec_cache, 0, sizeof (sec_cache));
5212 }
43cd72b9
BW
5213}
5214
5215
5216static bfd_boolean
7fa3d080
BW
5217section_cache_section (section_cache_t *sec_cache,
5218 asection *sec,
5219 struct bfd_link_info *link_info)
43cd72b9
BW
5220{
5221 bfd *abfd;
5222 property_table_entry *prop_table = NULL;
5223 int ptblsize = 0;
5224 bfd_byte *contents = NULL;
5225 Elf_Internal_Rela *internal_relocs = NULL;
5226 bfd_size_type sec_size;
5227
5228 if (sec == NULL)
5229 return FALSE;
5230 if (sec == sec_cache->sec)
5231 return TRUE;
5232
5233 abfd = sec->owner;
5234 sec_size = bfd_get_section_limit (abfd, sec);
5235
5236 /* Get the contents. */
5237 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5238 if (contents == NULL && sec_size != 0)
5239 goto err;
5240
5241 /* Get the relocations. */
5242 internal_relocs = retrieve_internal_relocs (abfd, sec,
5243 link_info->keep_memory);
5244
5245 /* Get the entry table. */
5246 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5247 XTENSA_PROP_SEC_NAME, FALSE);
5248 if (ptblsize < 0)
5249 goto err;
5250
5251 /* Fill in the new section cache. */
5252 clear_section_cache (sec_cache);
5253 memset (sec_cache, 0, sizeof (sec_cache));
5254
5255 sec_cache->sec = sec;
5256 sec_cache->contents = contents;
5257 sec_cache->content_length = sec_size;
5258 sec_cache->relocs = internal_relocs;
5259 sec_cache->reloc_count = sec->reloc_count;
5260 sec_cache->pte_count = ptblsize;
5261 sec_cache->ptbl = prop_table;
5262
5263 return TRUE;
5264
5265 err:
5266 release_contents (sec, contents);
5267 release_internal_relocs (sec, internal_relocs);
5268 if (prop_table)
5269 free (prop_table);
5270 return FALSE;
5271}
5272
43cd72b9
BW
5273\f
5274/* Extended basic blocks. */
5275
5276/* An ebb_struct represents an Extended Basic Block. Within this
5277 range, we guarantee that all instructions are decodable, the
5278 property table entries are contiguous, and no property table
5279 specifies a segment that cannot have instructions moved. This
5280 structure contains caches of the contents, property table and
5281 relocations for the specified section for easy use. The range is
5282 specified by ranges of indices for the byte offset, property table
5283 offsets and relocation offsets. These must be consistent. */
5284
5285typedef struct ebb_struct ebb_t;
5286
5287struct ebb_struct
5288{
5289 asection *sec;
5290
5291 bfd_byte *contents; /* Cache of the section contents. */
5292 bfd_size_type content_length;
5293
5294 property_table_entry *ptbl; /* Cache of the section property table. */
5295 unsigned pte_count;
5296
5297 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5298 unsigned reloc_count;
5299
5300 bfd_vma start_offset; /* Offset in section. */
5301 unsigned start_ptbl_idx; /* Offset in the property table. */
5302 unsigned start_reloc_idx; /* Offset in the relocations. */
5303
5304 bfd_vma end_offset;
5305 unsigned end_ptbl_idx;
5306 unsigned end_reloc_idx;
5307
5308 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5309
5310 /* The unreachable property table at the end of this set of blocks;
5311 NULL if the end is not an unreachable block. */
5312 property_table_entry *ends_unreachable;
5313};
5314
5315
5316enum ebb_target_enum
5317{
5318 EBB_NO_ALIGN = 0,
5319 EBB_DESIRE_TGT_ALIGN,
5320 EBB_REQUIRE_TGT_ALIGN,
5321 EBB_REQUIRE_LOOP_ALIGN,
5322 EBB_REQUIRE_ALIGN
5323};
5324
5325
5326/* proposed_action_struct is similar to the text_action_struct except
5327 that is represents a potential transformation, not one that will
5328 occur. We build a list of these for an extended basic block
5329 and use them to compute the actual actions desired. We must be
5330 careful that the entire set of actual actions we perform do not
5331 break any relocations that would fit if the actions were not
5332 performed. */
5333
5334typedef struct proposed_action_struct proposed_action;
5335
5336struct proposed_action_struct
5337{
5338 enum ebb_target_enum align_type; /* for the target alignment */
5339 bfd_vma alignment_pow;
5340 text_action_t action;
5341 bfd_vma offset;
5342 int removed_bytes;
5343 bfd_boolean do_action; /* If false, then we will not perform the action. */
5344};
5345
5346
5347/* The ebb_constraint_struct keeps a set of proposed actions for an
5348 extended basic block. */
5349
5350typedef struct ebb_constraint_struct ebb_constraint;
5351
5352struct ebb_constraint_struct
5353{
5354 ebb_t ebb;
5355 bfd_boolean start_movable;
5356
5357 /* Bytes of extra space at the beginning if movable. */
5358 int start_extra_space;
5359
5360 enum ebb_target_enum start_align;
5361
5362 bfd_boolean end_movable;
5363
5364 /* Bytes of extra space at the end if movable. */
5365 int end_extra_space;
5366
5367 unsigned action_count;
5368 unsigned action_allocated;
5369
5370 /* Array of proposed actions. */
5371 proposed_action *actions;
5372
5373 /* Action alignments -- one for each proposed action. */
5374 enum ebb_target_enum *action_aligns;
5375};
5376
5377
43cd72b9 5378static void
7fa3d080 5379init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5380{
5381 memset (c, 0, sizeof (ebb_constraint));
5382}
5383
5384
5385static void
7fa3d080 5386free_ebb_constraint (ebb_constraint *c)
43cd72b9 5387{
7fa3d080 5388 if (c->actions)
43cd72b9
BW
5389 free (c->actions);
5390}
5391
5392
5393static void
7fa3d080
BW
5394init_ebb (ebb_t *ebb,
5395 asection *sec,
5396 bfd_byte *contents,
5397 bfd_size_type content_length,
5398 property_table_entry *prop_table,
5399 unsigned ptblsize,
5400 Elf_Internal_Rela *internal_relocs,
5401 unsigned reloc_count)
43cd72b9
BW
5402{
5403 memset (ebb, 0, sizeof (ebb_t));
5404 ebb->sec = sec;
5405 ebb->contents = contents;
5406 ebb->content_length = content_length;
5407 ebb->ptbl = prop_table;
5408 ebb->pte_count = ptblsize;
5409 ebb->relocs = internal_relocs;
5410 ebb->reloc_count = reloc_count;
5411 ebb->start_offset = 0;
5412 ebb->end_offset = ebb->content_length - 1;
5413 ebb->start_ptbl_idx = 0;
5414 ebb->end_ptbl_idx = ptblsize;
5415 ebb->start_reloc_idx = 0;
5416 ebb->end_reloc_idx = reloc_count;
5417}
5418
5419
5420/* Extend the ebb to all decodable contiguous sections. The algorithm
5421 for building a basic block around an instruction is to push it
5422 forward until we hit the end of a section, an unreachable block or
5423 a block that cannot be transformed. Then we push it backwards
5424 searching for similar conditions. */
5425
7fa3d080
BW
5426static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5427static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5428static bfd_size_type insn_block_decodable_len
5429 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5430
43cd72b9 5431static bfd_boolean
7fa3d080 5432extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5433{
5434 if (!extend_ebb_bounds_forward (ebb))
5435 return FALSE;
5436 if (!extend_ebb_bounds_backward (ebb))
5437 return FALSE;
5438 return TRUE;
5439}
5440
5441
5442static bfd_boolean
7fa3d080 5443extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5444{
5445 property_table_entry *the_entry, *new_entry;
5446
5447 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5448
5449 /* Stop when (1) we cannot decode an instruction, (2) we are at
5450 the end of the property tables, (3) we hit a non-contiguous property
5451 table entry, (4) we hit a NO_TRANSFORM region. */
5452
5453 while (1)
5454 {
5455 bfd_vma entry_end;
5456 bfd_size_type insn_block_len;
5457
5458 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5459 insn_block_len =
5460 insn_block_decodable_len (ebb->contents, ebb->content_length,
5461 ebb->end_offset,
5462 entry_end - ebb->end_offset);
5463 if (insn_block_len != (entry_end - ebb->end_offset))
5464 {
5465 (*_bfd_error_handler)
5466 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5467 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5468 return FALSE;
5469 }
5470 ebb->end_offset += insn_block_len;
5471
5472 if (ebb->end_offset == ebb->sec->size)
5473 ebb->ends_section = TRUE;
5474
5475 /* Update the reloc counter. */
5476 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5477 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5478 < ebb->end_offset))
5479 {
5480 ebb->end_reloc_idx++;
5481 }
5482
5483 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5484 return TRUE;
5485
5486 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5487 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5488 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5489 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5490 break;
5491
5492 if (the_entry->address + the_entry->size != new_entry->address)
5493 break;
5494
5495 the_entry = new_entry;
5496 ebb->end_ptbl_idx++;
5497 }
5498
5499 /* Quick check for an unreachable or end of file just at the end. */
5500 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5501 {
5502 if (ebb->end_offset == ebb->content_length)
5503 ebb->ends_section = TRUE;
5504 }
5505 else
5506 {
5507 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5508 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5509 && the_entry->address + the_entry->size == new_entry->address)
5510 ebb->ends_unreachable = new_entry;
5511 }
5512
5513 /* Any other ending requires exact alignment. */
5514 return TRUE;
5515}
5516
5517
5518static bfd_boolean
7fa3d080 5519extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5520{
5521 property_table_entry *the_entry, *new_entry;
5522
5523 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5524
5525 /* Stop when (1) we cannot decode the instructions in the current entry.
5526 (2) we are at the beginning of the property tables, (3) we hit a
5527 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5528
5529 while (1)
5530 {
5531 bfd_vma block_begin;
5532 bfd_size_type insn_block_len;
5533
5534 block_begin = the_entry->address - ebb->sec->vma;
5535 insn_block_len =
5536 insn_block_decodable_len (ebb->contents, ebb->content_length,
5537 block_begin,
5538 ebb->start_offset - block_begin);
5539 if (insn_block_len != ebb->start_offset - block_begin)
5540 {
5541 (*_bfd_error_handler)
5542 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5543 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5544 return FALSE;
5545 }
5546 ebb->start_offset -= insn_block_len;
5547
5548 /* Update the reloc counter. */
5549 while (ebb->start_reloc_idx > 0
5550 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5551 >= ebb->start_offset))
5552 {
5553 ebb->start_reloc_idx--;
5554 }
5555
5556 if (ebb->start_ptbl_idx == 0)
5557 return TRUE;
5558
5559 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5560 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5561 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5562 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5563 return TRUE;
5564 if (new_entry->address + new_entry->size != the_entry->address)
5565 return TRUE;
5566
5567 the_entry = new_entry;
5568 ebb->start_ptbl_idx--;
5569 }
5570 return TRUE;
5571}
5572
5573
5574static bfd_size_type
7fa3d080
BW
5575insn_block_decodable_len (bfd_byte *contents,
5576 bfd_size_type content_len,
5577 bfd_vma block_offset,
5578 bfd_size_type block_len)
43cd72b9
BW
5579{
5580 bfd_vma offset = block_offset;
5581
5582 while (offset < block_offset + block_len)
5583 {
5584 bfd_size_type insn_len = 0;
5585
5586 insn_len = insn_decode_len (contents, content_len, offset);
5587 if (insn_len == 0)
5588 return (offset - block_offset);
5589 offset += insn_len;
5590 }
5591 return (offset - block_offset);
5592}
5593
5594
5595static void
7fa3d080 5596ebb_propose_action (ebb_constraint *c,
7fa3d080 5597 enum ebb_target_enum align_type,
288f74fa 5598 bfd_vma alignment_pow,
7fa3d080
BW
5599 text_action_t action,
5600 bfd_vma offset,
5601 int removed_bytes,
5602 bfd_boolean do_action)
43cd72b9 5603{
b08b5071 5604 proposed_action *act;
43cd72b9 5605
43cd72b9
BW
5606 if (c->action_allocated <= c->action_count)
5607 {
b08b5071 5608 unsigned new_allocated, i;
823fc61f 5609 proposed_action *new_actions;
b08b5071
BW
5610
5611 new_allocated = (c->action_count + 2) * 2;
823fc61f 5612 new_actions = (proposed_action *)
43cd72b9
BW
5613 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5614
5615 for (i = 0; i < c->action_count; i++)
5616 new_actions[i] = c->actions[i];
7fa3d080 5617 if (c->actions)
43cd72b9
BW
5618 free (c->actions);
5619 c->actions = new_actions;
5620 c->action_allocated = new_allocated;
5621 }
b08b5071
BW
5622
5623 act = &c->actions[c->action_count];
5624 act->align_type = align_type;
5625 act->alignment_pow = alignment_pow;
5626 act->action = action;
5627 act->offset = offset;
5628 act->removed_bytes = removed_bytes;
5629 act->do_action = do_action;
5630
43cd72b9
BW
5631 c->action_count++;
5632}
5633
5634\f
5635/* Access to internal relocations, section contents and symbols. */
5636
5637/* During relaxation, we need to modify relocations, section contents,
5638 and symbol definitions, and we need to keep the original values from
5639 being reloaded from the input files, i.e., we need to "pin" the
5640 modified values in memory. We also want to continue to observe the
5641 setting of the "keep-memory" flag. The following functions wrap the
5642 standard BFD functions to take care of this for us. */
5643
5644static Elf_Internal_Rela *
7fa3d080 5645retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5646{
5647 Elf_Internal_Rela *internal_relocs;
5648
5649 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5650 return NULL;
5651
5652 internal_relocs = elf_section_data (sec)->relocs;
5653 if (internal_relocs == NULL)
5654 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5655 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5656 return internal_relocs;
5657}
5658
5659
5660static void
7fa3d080 5661pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5662{
5663 elf_section_data (sec)->relocs = internal_relocs;
5664}
5665
5666
5667static void
7fa3d080 5668release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5669{
5670 if (internal_relocs
5671 && elf_section_data (sec)->relocs != internal_relocs)
5672 free (internal_relocs);
5673}
5674
5675
5676static bfd_byte *
7fa3d080 5677retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5678{
5679 bfd_byte *contents;
5680 bfd_size_type sec_size;
5681
5682 sec_size = bfd_get_section_limit (abfd, sec);
5683 contents = elf_section_data (sec)->this_hdr.contents;
5684
5685 if (contents == NULL && sec_size != 0)
5686 {
5687 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5688 {
7fa3d080 5689 if (contents)
43cd72b9
BW
5690 free (contents);
5691 return NULL;
5692 }
5693 if (keep_memory)
5694 elf_section_data (sec)->this_hdr.contents = contents;
5695 }
5696 return contents;
5697}
5698
5699
5700static void
7fa3d080 5701pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5702{
5703 elf_section_data (sec)->this_hdr.contents = contents;
5704}
5705
5706
5707static void
7fa3d080 5708release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5709{
5710 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5711 free (contents);
5712}
5713
5714
5715static Elf_Internal_Sym *
7fa3d080 5716retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5717{
5718 Elf_Internal_Shdr *symtab_hdr;
5719 Elf_Internal_Sym *isymbuf;
5720 size_t locsymcount;
5721
5722 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5723 locsymcount = symtab_hdr->sh_info;
5724
5725 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5726 if (isymbuf == NULL && locsymcount != 0)
5727 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5728 NULL, NULL, NULL);
5729
5730 /* Save the symbols for this input file so they won't be read again. */
5731 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5732 symtab_hdr->contents = (unsigned char *) isymbuf;
5733
5734 return isymbuf;
5735}
5736
5737\f
5738/* Code for link-time relaxation. */
5739
5740/* Initialization for relaxation: */
7fa3d080 5741static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5742static bfd_boolean find_relaxable_sections
7fa3d080 5743 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5744static bfd_boolean collect_source_relocs
7fa3d080 5745 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5746static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5747 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5748 bfd_boolean *);
43cd72b9 5749static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5750 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5751static bfd_boolean compute_text_actions
7fa3d080
BW
5752 (bfd *, asection *, struct bfd_link_info *);
5753static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5754static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5755static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5756 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5757 const xtensa_opcode *);
7fa3d080 5758static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5759static void text_action_add_proposed
7fa3d080
BW
5760 (text_action_list *, const ebb_constraint *, asection *);
5761static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5762
5763/* First pass: */
5764static bfd_boolean compute_removed_literals
7fa3d080 5765 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5766static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5767 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5768static bfd_boolean is_removable_literal
7fa3d080 5769 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5770static bfd_boolean remove_dead_literal
7fa3d080
BW
5771 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5772 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5773static bfd_boolean identify_literal_placement
5774 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5775 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5776 source_reloc *, property_table_entry *, int, section_cache_t *,
5777 bfd_boolean);
5778static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5779static bfd_boolean coalesce_shared_literal
7fa3d080 5780 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5781static bfd_boolean move_shared_literal
7fa3d080
BW
5782 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5783 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5784
5785/* Second pass: */
7fa3d080
BW
5786static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5787static bfd_boolean translate_section_fixes (asection *);
5788static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5789static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5790static void shrink_dynamic_reloc_sections
7fa3d080 5791 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5792static bfd_boolean move_literal
7fa3d080
BW
5793 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5794 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5795static bfd_boolean relax_property_section
7fa3d080 5796 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5797
5798/* Third pass: */
7fa3d080 5799static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5800
5801
5802static bfd_boolean
7fa3d080
BW
5803elf_xtensa_relax_section (bfd *abfd,
5804 asection *sec,
5805 struct bfd_link_info *link_info,
5806 bfd_boolean *again)
43cd72b9
BW
5807{
5808 static value_map_hash_table *values = NULL;
5809 static bfd_boolean relocations_analyzed = FALSE;
5810 xtensa_relax_info *relax_info;
5811
5812 if (!relocations_analyzed)
5813 {
5814 /* Do some overall initialization for relaxation. */
5815 values = value_map_hash_table_init ();
5816 if (values == NULL)
5817 return FALSE;
5818 relaxing_section = TRUE;
5819 if (!analyze_relocations (link_info))
5820 return FALSE;
5821 relocations_analyzed = TRUE;
5822 }
5823 *again = FALSE;
5824
5825 /* Don't mess with linker-created sections. */
5826 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5827 return TRUE;
5828
5829 relax_info = get_xtensa_relax_info (sec);
5830 BFD_ASSERT (relax_info != NULL);
5831
5832 switch (relax_info->visited)
5833 {
5834 case 0:
5835 /* Note: It would be nice to fold this pass into
5836 analyze_relocations, but it is important for this step that the
5837 sections be examined in link order. */
5838 if (!compute_removed_literals (abfd, sec, link_info, values))
5839 return FALSE;
5840 *again = TRUE;
5841 break;
5842
5843 case 1:
5844 if (values)
5845 value_map_hash_table_delete (values);
5846 values = NULL;
5847 if (!relax_section (abfd, sec, link_info))
5848 return FALSE;
5849 *again = TRUE;
5850 break;
5851
5852 case 2:
5853 if (!relax_section_symbols (abfd, sec))
5854 return FALSE;
5855 break;
5856 }
5857
5858 relax_info->visited++;
5859 return TRUE;
5860}
5861
5862\f
5863/* Initialization for relaxation. */
5864
5865/* This function is called once at the start of relaxation. It scans
5866 all the input sections and marks the ones that are relaxable (i.e.,
5867 literal sections with L32R relocations against them), and then
5868 collects source_reloc information for all the relocations against
5869 those relaxable sections. During this process, it also detects
5870 longcalls, i.e., calls relaxed by the assembler into indirect
5871 calls, that can be optimized back into direct calls. Within each
5872 extended basic block (ebb) containing an optimized longcall, it
5873 computes a set of "text actions" that can be performed to remove
5874 the L32R associated with the longcall while optionally preserving
5875 branch target alignments. */
5876
5877static bfd_boolean
7fa3d080 5878analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5879{
5880 bfd *abfd;
5881 asection *sec;
5882 bfd_boolean is_relaxable = FALSE;
5883
5884 /* Initialize the per-section relaxation info. */
5885 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5886 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5887 {
5888 init_xtensa_relax_info (sec);
5889 }
5890
5891 /* Mark relaxable sections (and count relocations against each one). */
5892 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5893 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5894 {
5895 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5896 return FALSE;
5897 }
5898
5899 /* Bail out if there are no relaxable sections. */
5900 if (!is_relaxable)
5901 return TRUE;
5902
5903 /* Allocate space for source_relocs. */
5904 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5905 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5906 {
5907 xtensa_relax_info *relax_info;
5908
5909 relax_info = get_xtensa_relax_info (sec);
5910 if (relax_info->is_relaxable_literal_section
5911 || relax_info->is_relaxable_asm_section)
5912 {
5913 relax_info->src_relocs = (source_reloc *)
5914 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5915 }
5916 }
5917
5918 /* Collect info on relocations against each relaxable section. */
5919 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5920 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5921 {
5922 if (!collect_source_relocs (abfd, sec, link_info))
5923 return FALSE;
5924 }
5925
5926 /* Compute the text actions. */
5927 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5928 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5929 {
5930 if (!compute_text_actions (abfd, sec, link_info))
5931 return FALSE;
5932 }
5933
5934 return TRUE;
5935}
5936
5937
5938/* Find all the sections that might be relaxed. The motivation for
5939 this pass is that collect_source_relocs() needs to record _all_ the
5940 relocations that target each relaxable section. That is expensive
5941 and unnecessary unless the target section is actually going to be
5942 relaxed. This pass identifies all such sections by checking if
5943 they have L32Rs pointing to them. In the process, the total number
5944 of relocations targeting each section is also counted so that we
5945 know how much space to allocate for source_relocs against each
5946 relaxable literal section. */
5947
5948static bfd_boolean
7fa3d080
BW
5949find_relaxable_sections (bfd *abfd,
5950 asection *sec,
5951 struct bfd_link_info *link_info,
5952 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5953{
5954 Elf_Internal_Rela *internal_relocs;
5955 bfd_byte *contents;
5956 bfd_boolean ok = TRUE;
5957 unsigned i;
5958 xtensa_relax_info *source_relax_info;
5959
5960 internal_relocs = retrieve_internal_relocs (abfd, sec,
5961 link_info->keep_memory);
5962 if (internal_relocs == NULL)
5963 return ok;
5964
5965 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5966 if (contents == NULL && sec->size != 0)
5967 {
5968 ok = FALSE;
5969 goto error_return;
5970 }
5971
5972 source_relax_info = get_xtensa_relax_info (sec);
5973 for (i = 0; i < sec->reloc_count; i++)
5974 {
5975 Elf_Internal_Rela *irel = &internal_relocs[i];
5976 r_reloc r_rel;
5977 asection *target_sec;
5978 xtensa_relax_info *target_relax_info;
5979
5980 /* If this section has not already been marked as "relaxable", and
5981 if it contains any ASM_EXPAND relocations (marking expanded
5982 longcalls) that can be optimized into direct calls, then mark
5983 the section as "relaxable". */
5984 if (source_relax_info
5985 && !source_relax_info->is_relaxable_asm_section
5986 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
5987 {
5988 bfd_boolean is_reachable = FALSE;
5989 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
5990 link_info, &is_reachable)
5991 && is_reachable)
5992 {
5993 source_relax_info->is_relaxable_asm_section = TRUE;
5994 *is_relaxable_p = TRUE;
5995 }
5996 }
5997
5998 r_reloc_init (&r_rel, abfd, irel, contents,
5999 bfd_get_section_limit (abfd, sec));
6000
6001 target_sec = r_reloc_get_section (&r_rel);
6002 target_relax_info = get_xtensa_relax_info (target_sec);
6003 if (!target_relax_info)
6004 continue;
6005
6006 /* Count PC-relative operand relocations against the target section.
6007 Note: The conditions tested here must match the conditions under
6008 which init_source_reloc is called in collect_source_relocs(). */
6009 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6010 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6011 || is_l32r_relocation (abfd, sec, contents, irel)))
6012 target_relax_info->src_count++;
6013
6014 if (is_l32r_relocation (abfd, sec, contents, irel)
6015 && r_reloc_is_defined (&r_rel))
6016 {
6017 /* Mark the target section as relaxable. */
6018 target_relax_info->is_relaxable_literal_section = TRUE;
6019 *is_relaxable_p = TRUE;
6020 }
6021 }
6022
6023 error_return:
6024 release_contents (sec, contents);
6025 release_internal_relocs (sec, internal_relocs);
6026 return ok;
6027}
6028
6029
6030/* Record _all_ the relocations that point to relaxable sections, and
6031 get rid of ASM_EXPAND relocs by either converting them to
6032 ASM_SIMPLIFY or by removing them. */
6033
6034static bfd_boolean
7fa3d080
BW
6035collect_source_relocs (bfd *abfd,
6036 asection *sec,
6037 struct bfd_link_info *link_info)
43cd72b9
BW
6038{
6039 Elf_Internal_Rela *internal_relocs;
6040 bfd_byte *contents;
6041 bfd_boolean ok = TRUE;
6042 unsigned i;
6043 bfd_size_type sec_size;
6044
6045 internal_relocs = retrieve_internal_relocs (abfd, sec,
6046 link_info->keep_memory);
6047 if (internal_relocs == NULL)
6048 return ok;
6049
6050 sec_size = bfd_get_section_limit (abfd, sec);
6051 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6052 if (contents == NULL && sec_size != 0)
6053 {
6054 ok = FALSE;
6055 goto error_return;
6056 }
6057
6058 /* Record relocations against relaxable literal sections. */
6059 for (i = 0; i < sec->reloc_count; i++)
6060 {
6061 Elf_Internal_Rela *irel = &internal_relocs[i];
6062 r_reloc r_rel;
6063 asection *target_sec;
6064 xtensa_relax_info *target_relax_info;
6065
6066 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6067
6068 target_sec = r_reloc_get_section (&r_rel);
6069 target_relax_info = get_xtensa_relax_info (target_sec);
6070
6071 if (target_relax_info
6072 && (target_relax_info->is_relaxable_literal_section
6073 || target_relax_info->is_relaxable_asm_section))
6074 {
6075 xtensa_opcode opcode = XTENSA_UNDEFINED;
6076 int opnd = -1;
6077 bfd_boolean is_abs_literal = FALSE;
6078
6079 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6080 {
6081 /* None of the current alternate relocs are PC-relative,
6082 and only PC-relative relocs matter here. However, we
6083 still need to record the opcode for literal
6084 coalescing. */
6085 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6086 if (opcode == get_l32r_opcode ())
6087 {
6088 is_abs_literal = TRUE;
6089 opnd = 1;
6090 }
6091 else
6092 opcode = XTENSA_UNDEFINED;
6093 }
6094 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6095 {
6096 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6097 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6098 }
6099
6100 if (opcode != XTENSA_UNDEFINED)
6101 {
6102 int src_next = target_relax_info->src_next++;
6103 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6104
6105 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6106 is_abs_literal);
6107 }
6108 }
6109 }
6110
6111 /* Now get rid of ASM_EXPAND relocations. At this point, the
6112 src_relocs array for the target literal section may still be
6113 incomplete, but it must at least contain the entries for the L32R
6114 relocations associated with ASM_EXPANDs because they were just
6115 added in the preceding loop over the relocations. */
6116
6117 for (i = 0; i < sec->reloc_count; i++)
6118 {
6119 Elf_Internal_Rela *irel = &internal_relocs[i];
6120 bfd_boolean is_reachable;
6121
6122 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6123 &is_reachable))
6124 continue;
6125
6126 if (is_reachable)
6127 {
6128 Elf_Internal_Rela *l32r_irel;
6129 r_reloc r_rel;
6130 asection *target_sec;
6131 xtensa_relax_info *target_relax_info;
6132
6133 /* Mark the source_reloc for the L32R so that it will be
6134 removed in compute_removed_literals(), along with the
6135 associated literal. */
6136 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6137 irel, internal_relocs);
6138 if (l32r_irel == NULL)
6139 continue;
6140
6141 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6142
6143 target_sec = r_reloc_get_section (&r_rel);
6144 target_relax_info = get_xtensa_relax_info (target_sec);
6145
6146 if (target_relax_info
6147 && (target_relax_info->is_relaxable_literal_section
6148 || target_relax_info->is_relaxable_asm_section))
6149 {
6150 source_reloc *s_reloc;
6151
6152 /* Search the source_relocs for the entry corresponding to
6153 the l32r_irel. Note: The src_relocs array is not yet
6154 sorted, but it wouldn't matter anyway because we're
6155 searching by source offset instead of target offset. */
6156 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6157 target_relax_info->src_next,
6158 sec, l32r_irel);
6159 BFD_ASSERT (s_reloc);
6160 s_reloc->is_null = TRUE;
6161 }
6162
6163 /* Convert this reloc to ASM_SIMPLIFY. */
6164 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6165 R_XTENSA_ASM_SIMPLIFY);
6166 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6167
6168 pin_internal_relocs (sec, internal_relocs);
6169 }
6170 else
6171 {
6172 /* It is resolvable but doesn't reach. We resolve now
6173 by eliminating the relocation -- the call will remain
6174 expanded into L32R/CALLX. */
6175 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6176 pin_internal_relocs (sec, internal_relocs);
6177 }
6178 }
6179
6180 error_return:
6181 release_contents (sec, contents);
6182 release_internal_relocs (sec, internal_relocs);
6183 return ok;
6184}
6185
6186
6187/* Return TRUE if the asm expansion can be resolved. Generally it can
6188 be resolved on a final link or when a partial link locates it in the
6189 same section as the target. Set "is_reachable" flag if the target of
6190 the call is within the range of a direct call, given the current VMA
6191 for this section and the target section. */
6192
6193bfd_boolean
7fa3d080
BW
6194is_resolvable_asm_expansion (bfd *abfd,
6195 asection *sec,
6196 bfd_byte *contents,
6197 Elf_Internal_Rela *irel,
6198 struct bfd_link_info *link_info,
6199 bfd_boolean *is_reachable_p)
43cd72b9
BW
6200{
6201 asection *target_sec;
6202 bfd_vma target_offset;
6203 r_reloc r_rel;
6204 xtensa_opcode opcode, direct_call_opcode;
6205 bfd_vma self_address;
6206 bfd_vma dest_address;
6207 bfd_boolean uses_l32r;
6208 bfd_size_type sec_size;
6209
6210 *is_reachable_p = FALSE;
6211
6212 if (contents == NULL)
6213 return FALSE;
6214
6215 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6216 return FALSE;
6217
6218 sec_size = bfd_get_section_limit (abfd, sec);
6219 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6220 sec_size - irel->r_offset, &uses_l32r);
6221 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6222 if (!uses_l32r)
6223 return FALSE;
6224
6225 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6226 if (direct_call_opcode == XTENSA_UNDEFINED)
6227 return FALSE;
6228
6229 /* Check and see that the target resolves. */
6230 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6231 if (!r_reloc_is_defined (&r_rel))
6232 return FALSE;
6233
6234 target_sec = r_reloc_get_section (&r_rel);
6235 target_offset = r_rel.target_offset;
6236
6237 /* If the target is in a shared library, then it doesn't reach. This
6238 isn't supposed to come up because the compiler should never generate
6239 non-PIC calls on systems that use shared libraries, but the linker
6240 shouldn't crash regardless. */
6241 if (!target_sec->output_section)
6242 return FALSE;
6243
6244 /* For relocatable sections, we can only simplify when the output
6245 section of the target is the same as the output section of the
6246 source. */
6247 if (link_info->relocatable
6248 && (target_sec->output_section != sec->output_section
6249 || is_reloc_sym_weak (abfd, irel)))
6250 return FALSE;
6251
6252 self_address = (sec->output_section->vma
6253 + sec->output_offset + irel->r_offset + 3);
6254 dest_address = (target_sec->output_section->vma
6255 + target_sec->output_offset + target_offset);
6256
6257 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6258 self_address, dest_address);
6259
6260 if ((self_address >> CALL_SEGMENT_BITS) !=
6261 (dest_address >> CALL_SEGMENT_BITS))
6262 return FALSE;
6263
6264 return TRUE;
6265}
6266
6267
6268static Elf_Internal_Rela *
7fa3d080
BW
6269find_associated_l32r_irel (bfd *abfd,
6270 asection *sec,
6271 bfd_byte *contents,
6272 Elf_Internal_Rela *other_irel,
6273 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6274{
6275 unsigned i;
e0001a05 6276
43cd72b9
BW
6277 for (i = 0; i < sec->reloc_count; i++)
6278 {
6279 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6280
43cd72b9
BW
6281 if (irel == other_irel)
6282 continue;
6283 if (irel->r_offset != other_irel->r_offset)
6284 continue;
6285 if (is_l32r_relocation (abfd, sec, contents, irel))
6286 return irel;
6287 }
6288
6289 return NULL;
e0001a05
NC
6290}
6291
6292
cb337148
BW
6293static xtensa_opcode *
6294build_reloc_opcodes (bfd *abfd,
6295 asection *sec,
6296 bfd_byte *contents,
6297 Elf_Internal_Rela *internal_relocs)
6298{
6299 unsigned i;
6300 xtensa_opcode *reloc_opcodes =
6301 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6302 for (i = 0; i < sec->reloc_count; i++)
6303 {
6304 Elf_Internal_Rela *irel = &internal_relocs[i];
6305 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6306 }
6307 return reloc_opcodes;
6308}
6309
6310
43cd72b9
BW
6311/* The compute_text_actions function will build a list of potential
6312 transformation actions for code in the extended basic block of each
6313 longcall that is optimized to a direct call. From this list we
6314 generate a set of actions to actually perform that optimizes for
6315 space and, if not using size_opt, maintains branch target
6316 alignments.
e0001a05 6317
43cd72b9
BW
6318 These actions to be performed are placed on a per-section list.
6319 The actual changes are performed by relax_section() in the second
6320 pass. */
6321
6322bfd_boolean
7fa3d080
BW
6323compute_text_actions (bfd *abfd,
6324 asection *sec,
6325 struct bfd_link_info *link_info)
e0001a05 6326{
cb337148 6327 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6328 xtensa_relax_info *relax_info;
e0001a05 6329 bfd_byte *contents;
43cd72b9 6330 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6331 bfd_boolean ok = TRUE;
6332 unsigned i;
43cd72b9
BW
6333 property_table_entry *prop_table = 0;
6334 int ptblsize = 0;
6335 bfd_size_type sec_size;
6336 static bfd_boolean no_insn_move = FALSE;
6337
6338 if (no_insn_move)
6339 return ok;
6340
6341 /* Do nothing if the section contains no optimized longcalls. */
6342 relax_info = get_xtensa_relax_info (sec);
6343 BFD_ASSERT (relax_info);
6344 if (!relax_info->is_relaxable_asm_section)
6345 return ok;
e0001a05
NC
6346
6347 internal_relocs = retrieve_internal_relocs (abfd, sec,
6348 link_info->keep_memory);
e0001a05 6349
43cd72b9
BW
6350 if (internal_relocs)
6351 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6352 internal_reloc_compare);
6353
6354 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6355 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6356 if (contents == NULL && sec_size != 0)
e0001a05
NC
6357 {
6358 ok = FALSE;
6359 goto error_return;
6360 }
6361
43cd72b9
BW
6362 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6363 XTENSA_PROP_SEC_NAME, FALSE);
6364 if (ptblsize < 0)
6365 {
6366 ok = FALSE;
6367 goto error_return;
6368 }
6369
6370 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6371 {
6372 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6373 bfd_vma r_offset;
6374 property_table_entry *the_entry;
6375 int ptbl_idx;
6376 ebb_t *ebb;
6377 ebb_constraint ebb_table;
6378 bfd_size_type simplify_size;
6379
6380 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6381 continue;
6382 r_offset = irel->r_offset;
e0001a05 6383
43cd72b9
BW
6384 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6385 if (simplify_size == 0)
6386 {
6387 (*_bfd_error_handler)
6388 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6389 sec->owner, sec, r_offset);
6390 continue;
6391 }
e0001a05 6392
43cd72b9
BW
6393 /* If the instruction table is not around, then don't do this
6394 relaxation. */
6395 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6396 sec->vma + irel->r_offset);
6397 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6398 {
6399 text_action_add (&relax_info->action_list,
6400 ta_convert_longcall, sec, r_offset,
6401 0);
6402 continue;
6403 }
6404
6405 /* If the next longcall happens to be at the same address as an
6406 unreachable section of size 0, then skip forward. */
6407 ptbl_idx = the_entry - prop_table;
6408 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6409 && the_entry->size == 0
6410 && ptbl_idx + 1 < ptblsize
6411 && (prop_table[ptbl_idx + 1].address
6412 == prop_table[ptbl_idx].address))
6413 {
6414 ptbl_idx++;
6415 the_entry++;
6416 }
e0001a05 6417
43cd72b9
BW
6418 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6419 /* NO_REORDER is OK */
6420 continue;
e0001a05 6421
43cd72b9
BW
6422 init_ebb_constraint (&ebb_table);
6423 ebb = &ebb_table.ebb;
6424 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6425 internal_relocs, sec->reloc_count);
6426 ebb->start_offset = r_offset + simplify_size;
6427 ebb->end_offset = r_offset + simplify_size;
6428 ebb->start_ptbl_idx = ptbl_idx;
6429 ebb->end_ptbl_idx = ptbl_idx;
6430 ebb->start_reloc_idx = i;
6431 ebb->end_reloc_idx = i;
6432
cb337148
BW
6433 /* Precompute the opcode for each relocation. */
6434 if (reloc_opcodes == NULL)
6435 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6436 internal_relocs);
6437
43cd72b9
BW
6438 if (!extend_ebb_bounds (ebb)
6439 || !compute_ebb_proposed_actions (&ebb_table)
6440 || !compute_ebb_actions (&ebb_table)
6441 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6442 internal_relocs, &ebb_table,
6443 reloc_opcodes)
43cd72b9 6444 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6445 {
43cd72b9
BW
6446 /* If anything goes wrong or we get unlucky and something does
6447 not fit, with our plan because of expansion between
6448 critical branches, just convert to a NOP. */
6449
6450 text_action_add (&relax_info->action_list,
6451 ta_convert_longcall, sec, r_offset, 0);
6452 i = ebb_table.ebb.end_reloc_idx;
6453 free_ebb_constraint (&ebb_table);
6454 continue;
e0001a05 6455 }
43cd72b9
BW
6456
6457 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6458
6459 /* Update the index so we do not go looking at the relocations
6460 we have already processed. */
6461 i = ebb_table.ebb.end_reloc_idx;
6462 free_ebb_constraint (&ebb_table);
e0001a05
NC
6463 }
6464
43cd72b9 6465#if DEBUG
7fa3d080 6466 if (relax_info->action_list.head)
43cd72b9
BW
6467 print_action_list (stderr, &relax_info->action_list);
6468#endif
6469
6470error_return:
e0001a05
NC
6471 release_contents (sec, contents);
6472 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6473 if (prop_table)
6474 free (prop_table);
cb337148
BW
6475 if (reloc_opcodes)
6476 free (reloc_opcodes);
43cd72b9 6477
e0001a05
NC
6478 return ok;
6479}
6480
6481
64b607e6
BW
6482/* Do not widen an instruction if it is preceeded by a
6483 loop opcode. It might cause misalignment. */
6484
6485static bfd_boolean
6486prev_instr_is_a_loop (bfd_byte *contents,
6487 bfd_size_type content_length,
6488 bfd_size_type offset)
6489{
6490 xtensa_opcode prev_opcode;
6491
6492 if (offset < 3)
6493 return FALSE;
6494 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6495 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6496}
6497
6498
43cd72b9 6499/* Find all of the possible actions for an extended basic block. */
e0001a05 6500
43cd72b9 6501bfd_boolean
7fa3d080 6502compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6503{
43cd72b9
BW
6504 const ebb_t *ebb = &ebb_table->ebb;
6505 unsigned rel_idx = ebb->start_reloc_idx;
6506 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
6507 bfd_vma offset = 0;
6508 xtensa_isa isa = xtensa_default_isa;
6509 xtensa_format fmt;
6510 static xtensa_insnbuf insnbuf = NULL;
6511 static xtensa_insnbuf slotbuf = NULL;
6512
6513 if (insnbuf == NULL)
6514 {
6515 insnbuf = xtensa_insnbuf_alloc (isa);
6516 slotbuf = xtensa_insnbuf_alloc (isa);
6517 }
e0001a05 6518
43cd72b9
BW
6519 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6520 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6521
43cd72b9 6522 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6523 {
64b607e6 6524 bfd_vma start_offset, end_offset;
43cd72b9 6525 bfd_size_type insn_len;
e0001a05 6526
43cd72b9
BW
6527 start_offset = entry->address - ebb->sec->vma;
6528 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6529
43cd72b9
BW
6530 if (entry == start_entry)
6531 start_offset = ebb->start_offset;
6532 if (entry == end_entry)
6533 end_offset = ebb->end_offset;
6534 offset = start_offset;
e0001a05 6535
43cd72b9
BW
6536 if (offset == entry->address - ebb->sec->vma
6537 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6538 {
6539 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6540 BFD_ASSERT (offset != end_offset);
6541 if (offset == end_offset)
6542 return FALSE;
e0001a05 6543
43cd72b9
BW
6544 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6545 offset);
43cd72b9 6546 if (insn_len == 0)
64b607e6
BW
6547 goto decode_error;
6548
43cd72b9
BW
6549 if (check_branch_target_aligned_address (offset, insn_len))
6550 align_type = EBB_REQUIRE_TGT_ALIGN;
6551
6552 ebb_propose_action (ebb_table, align_type, 0,
6553 ta_none, offset, 0, TRUE);
6554 }
6555
6556 while (offset != end_offset)
e0001a05 6557 {
43cd72b9 6558 Elf_Internal_Rela *irel;
e0001a05 6559 xtensa_opcode opcode;
e0001a05 6560
43cd72b9
BW
6561 while (rel_idx < ebb->end_reloc_idx
6562 && (ebb->relocs[rel_idx].r_offset < offset
6563 || (ebb->relocs[rel_idx].r_offset == offset
6564 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6565 != R_XTENSA_ASM_SIMPLIFY))))
6566 rel_idx++;
6567
6568 /* Check for longcall. */
6569 irel = &ebb->relocs[rel_idx];
6570 if (irel->r_offset == offset
6571 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6572 {
6573 bfd_size_type simplify_size;
e0001a05 6574
43cd72b9
BW
6575 simplify_size = get_asm_simplify_size (ebb->contents,
6576 ebb->content_length,
6577 irel->r_offset);
6578 if (simplify_size == 0)
64b607e6 6579 goto decode_error;
43cd72b9
BW
6580
6581 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6582 ta_convert_longcall, offset, 0, TRUE);
6583
6584 offset += simplify_size;
6585 continue;
6586 }
e0001a05 6587
64b607e6
BW
6588 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6589 goto decode_error;
6590 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6591 ebb->content_length - offset);
6592 fmt = xtensa_format_decode (isa, insnbuf);
6593 if (fmt == XTENSA_UNDEFINED)
6594 goto decode_error;
6595 insn_len = xtensa_format_length (isa, fmt);
6596 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6597 goto decode_error;
6598
6599 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 6600 {
64b607e6
BW
6601 offset += insn_len;
6602 continue;
43cd72b9 6603 }
64b607e6
BW
6604
6605 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6606 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6607 if (opcode == XTENSA_UNDEFINED)
6608 goto decode_error;
6609
43cd72b9
BW
6610 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6611 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
64b607e6 6612 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
6613 {
6614 /* Add an instruction narrow action. */
6615 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6616 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 6617 }
64b607e6
BW
6618 else if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6619 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6620 && ! prev_instr_is_a_loop (ebb->contents,
6621 ebb->content_length, offset))
43cd72b9
BW
6622 {
6623 /* Add an instruction widen action. */
6624 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6625 ta_widen_insn, offset, 0, FALSE);
43cd72b9 6626 }
64b607e6 6627 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
6628 {
6629 /* Check for branch targets. */
6630 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6631 ta_none, offset, 0, TRUE);
43cd72b9
BW
6632 }
6633
6634 offset += insn_len;
e0001a05
NC
6635 }
6636 }
6637
43cd72b9
BW
6638 if (ebb->ends_unreachable)
6639 {
6640 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6641 ta_fill, ebb->end_offset, 0, TRUE);
6642 }
e0001a05 6643
43cd72b9 6644 return TRUE;
64b607e6
BW
6645
6646 decode_error:
6647 (*_bfd_error_handler)
6648 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6649 ebb->sec->owner, ebb->sec, offset);
6650 return FALSE;
43cd72b9
BW
6651}
6652
6653
6654/* After all of the information has collected about the
6655 transformations possible in an EBB, compute the appropriate actions
6656 here in compute_ebb_actions. We still must check later to make
6657 sure that the actions do not break any relocations. The algorithm
6658 used here is pretty greedy. Basically, it removes as many no-ops
6659 as possible so that the end of the EBB has the same alignment
6660 characteristics as the original. First, it uses narrowing, then
6661 fill space at the end of the EBB, and finally widenings. If that
6662 does not work, it tries again with one fewer no-op removed. The
6663 optimization will only be performed if all of the branch targets
6664 that were aligned before transformation are also aligned after the
6665 transformation.
6666
6667 When the size_opt flag is set, ignore the branch target alignments,
6668 narrow all wide instructions, and remove all no-ops unless the end
6669 of the EBB prevents it. */
6670
6671bfd_boolean
7fa3d080 6672compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6673{
6674 unsigned i = 0;
6675 unsigned j;
6676 int removed_bytes = 0;
6677 ebb_t *ebb = &ebb_table->ebb;
6678 unsigned seg_idx_start = 0;
6679 unsigned seg_idx_end = 0;
6680
6681 /* We perform this like the assembler relaxation algorithm: Start by
6682 assuming all instructions are narrow and all no-ops removed; then
6683 walk through.... */
6684
6685 /* For each segment of this that has a solid constraint, check to
6686 see if there are any combinations that will keep the constraint.
6687 If so, use it. */
6688 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6689 {
43cd72b9
BW
6690 bfd_boolean requires_text_end_align = FALSE;
6691 unsigned longcall_count = 0;
6692 unsigned longcall_convert_count = 0;
6693 unsigned narrowable_count = 0;
6694 unsigned narrowable_convert_count = 0;
6695 unsigned widenable_count = 0;
6696 unsigned widenable_convert_count = 0;
e0001a05 6697
43cd72b9
BW
6698 proposed_action *action = NULL;
6699 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6700
43cd72b9 6701 seg_idx_start = seg_idx_end;
e0001a05 6702
43cd72b9
BW
6703 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6704 {
6705 action = &ebb_table->actions[i];
6706 if (action->action == ta_convert_longcall)
6707 longcall_count++;
6708 if (action->action == ta_narrow_insn)
6709 narrowable_count++;
6710 if (action->action == ta_widen_insn)
6711 widenable_count++;
6712 if (action->action == ta_fill)
6713 break;
6714 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6715 break;
6716 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6717 && !elf32xtensa_size_opt)
6718 break;
6719 }
6720 seg_idx_end = i;
e0001a05 6721
43cd72b9
BW
6722 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6723 requires_text_end_align = TRUE;
e0001a05 6724
43cd72b9
BW
6725 if (elf32xtensa_size_opt && !requires_text_end_align
6726 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6727 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6728 {
6729 longcall_convert_count = longcall_count;
6730 narrowable_convert_count = narrowable_count;
6731 widenable_convert_count = 0;
6732 }
6733 else
6734 {
6735 /* There is a constraint. Convert the max number of longcalls. */
6736 narrowable_convert_count = 0;
6737 longcall_convert_count = 0;
6738 widenable_convert_count = 0;
e0001a05 6739
43cd72b9 6740 for (j = 0; j < longcall_count; j++)
e0001a05 6741 {
43cd72b9
BW
6742 int removed = (longcall_count - j) * 3 & (align - 1);
6743 unsigned desire_narrow = (align - removed) & (align - 1);
6744 unsigned desire_widen = removed;
6745 if (desire_narrow <= narrowable_count)
6746 {
6747 narrowable_convert_count = desire_narrow;
6748 narrowable_convert_count +=
6749 (align * ((narrowable_count - narrowable_convert_count)
6750 / align));
6751 longcall_convert_count = (longcall_count - j);
6752 widenable_convert_count = 0;
6753 break;
6754 }
6755 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6756 {
6757 narrowable_convert_count = 0;
6758 longcall_convert_count = longcall_count - j;
6759 widenable_convert_count = desire_widen;
6760 break;
6761 }
6762 }
6763 }
e0001a05 6764
43cd72b9
BW
6765 /* Now the number of conversions are saved. Do them. */
6766 for (i = seg_idx_start; i < seg_idx_end; i++)
6767 {
6768 action = &ebb_table->actions[i];
6769 switch (action->action)
6770 {
6771 case ta_convert_longcall:
6772 if (longcall_convert_count != 0)
6773 {
6774 action->action = ta_remove_longcall;
6775 action->do_action = TRUE;
6776 action->removed_bytes += 3;
6777 longcall_convert_count--;
6778 }
6779 break;
6780 case ta_narrow_insn:
6781 if (narrowable_convert_count != 0)
6782 {
6783 action->do_action = TRUE;
6784 action->removed_bytes += 1;
6785 narrowable_convert_count--;
6786 }
6787 break;
6788 case ta_widen_insn:
6789 if (widenable_convert_count != 0)
6790 {
6791 action->do_action = TRUE;
6792 action->removed_bytes -= 1;
6793 widenable_convert_count--;
6794 }
6795 break;
6796 default:
6797 break;
e0001a05 6798 }
43cd72b9
BW
6799 }
6800 }
e0001a05 6801
43cd72b9
BW
6802 /* Now we move on to some local opts. Try to remove each of the
6803 remaining longcalls. */
e0001a05 6804
43cd72b9
BW
6805 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6806 {
6807 removed_bytes = 0;
6808 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6809 {
43cd72b9
BW
6810 int old_removed_bytes = removed_bytes;
6811 proposed_action *action = &ebb_table->actions[i];
6812
6813 if (action->do_action && action->action == ta_convert_longcall)
6814 {
6815 bfd_boolean bad_alignment = FALSE;
6816 removed_bytes += 3;
6817 for (j = i + 1; j < ebb_table->action_count; j++)
6818 {
6819 proposed_action *new_action = &ebb_table->actions[j];
6820 bfd_vma offset = new_action->offset;
6821 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6822 {
6823 if (!check_branch_target_aligned
6824 (ebb_table->ebb.contents,
6825 ebb_table->ebb.content_length,
6826 offset, offset - removed_bytes))
6827 {
6828 bad_alignment = TRUE;
6829 break;
6830 }
6831 }
6832 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6833 {
6834 if (!check_loop_aligned (ebb_table->ebb.contents,
6835 ebb_table->ebb.content_length,
6836 offset,
6837 offset - removed_bytes))
6838 {
6839 bad_alignment = TRUE;
6840 break;
6841 }
6842 }
6843 if (new_action->action == ta_narrow_insn
6844 && !new_action->do_action
6845 && ebb_table->ebb.sec->alignment_power == 2)
6846 {
6847 /* Narrow an instruction and we are done. */
6848 new_action->do_action = TRUE;
6849 new_action->removed_bytes += 1;
6850 bad_alignment = FALSE;
6851 break;
6852 }
6853 if (new_action->action == ta_widen_insn
6854 && new_action->do_action
6855 && ebb_table->ebb.sec->alignment_power == 2)
6856 {
6857 /* Narrow an instruction and we are done. */
6858 new_action->do_action = FALSE;
6859 new_action->removed_bytes += 1;
6860 bad_alignment = FALSE;
6861 break;
6862 }
6863 }
6864 if (!bad_alignment)
6865 {
6866 action->removed_bytes += 3;
6867 action->action = ta_remove_longcall;
6868 action->do_action = TRUE;
6869 }
6870 }
6871 removed_bytes = old_removed_bytes;
6872 if (action->do_action)
6873 removed_bytes += action->removed_bytes;
e0001a05
NC
6874 }
6875 }
6876
43cd72b9
BW
6877 removed_bytes = 0;
6878 for (i = 0; i < ebb_table->action_count; ++i)
6879 {
6880 proposed_action *action = &ebb_table->actions[i];
6881 if (action->do_action)
6882 removed_bytes += action->removed_bytes;
6883 }
6884
6885 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6886 && ebb->ends_unreachable)
6887 {
6888 proposed_action *action;
6889 int br;
6890 int extra_space;
6891
6892 BFD_ASSERT (ebb_table->action_count != 0);
6893 action = &ebb_table->actions[ebb_table->action_count - 1];
6894 BFD_ASSERT (action->action == ta_fill);
6895 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6896
6897 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6898 br = action->removed_bytes + removed_bytes + extra_space;
6899 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6900
6901 action->removed_bytes = extra_space - br;
6902 }
6903 return TRUE;
e0001a05
NC
6904}
6905
6906
03e94c08
BW
6907/* The xlate_map is a sorted array of address mappings designed to
6908 answer the offset_with_removed_text() query with a binary search instead
6909 of a linear search through the section's action_list. */
6910
6911typedef struct xlate_map_entry xlate_map_entry_t;
6912typedef struct xlate_map xlate_map_t;
6913
6914struct xlate_map_entry
6915{
6916 unsigned orig_address;
6917 unsigned new_address;
6918 unsigned size;
6919};
6920
6921struct xlate_map
6922{
6923 unsigned entry_count;
6924 xlate_map_entry_t *entry;
6925};
6926
6927
6928static int
6929xlate_compare (const void *a_v, const void *b_v)
6930{
6931 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6932 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6933 if (a->orig_address < b->orig_address)
6934 return -1;
6935 if (a->orig_address > (b->orig_address + b->size - 1))
6936 return 1;
6937 return 0;
6938}
6939
6940
6941static bfd_vma
6942xlate_offset_with_removed_text (const xlate_map_t *map,
6943 text_action_list *action_list,
6944 bfd_vma offset)
6945{
6946 xlate_map_entry_t tmp;
6947 void *r;
6948 xlate_map_entry_t *e;
6949
6950 if (map == NULL)
6951 return offset_with_removed_text (action_list, offset);
6952
6953 if (map->entry_count == 0)
6954 return offset;
6955
6956 tmp.orig_address = offset;
6957 tmp.new_address = offset;
6958 tmp.size = 1;
6959
6960 r = bsearch (&offset, map->entry, map->entry_count,
6961 sizeof (xlate_map_entry_t), &xlate_compare);
6962 e = (xlate_map_entry_t *) r;
6963
6964 BFD_ASSERT (e != NULL);
6965 if (e == NULL)
6966 return offset;
6967 return e->new_address - e->orig_address + offset;
6968}
6969
6970
6971/* Build a binary searchable offset translation map from a section's
6972 action list. */
6973
6974static xlate_map_t *
6975build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
6976{
6977 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
6978 text_action_list *action_list = &relax_info->action_list;
6979 unsigned num_actions = 0;
6980 text_action *r;
6981 int removed;
6982 xlate_map_entry_t *current_entry;
6983
6984 if (map == NULL)
6985 return NULL;
6986
6987 num_actions = action_list_count (action_list);
6988 map->entry = (xlate_map_entry_t *)
6989 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
6990 if (map->entry == NULL)
6991 {
6992 free (map);
6993 return NULL;
6994 }
6995 map->entry_count = 0;
6996
6997 removed = 0;
6998 current_entry = &map->entry[0];
6999
7000 current_entry->orig_address = 0;
7001 current_entry->new_address = 0;
7002 current_entry->size = 0;
7003
7004 for (r = action_list->head; r != NULL; r = r->next)
7005 {
7006 unsigned orig_size = 0;
7007 switch (r->action)
7008 {
7009 case ta_none:
7010 case ta_remove_insn:
7011 case ta_convert_longcall:
7012 case ta_remove_literal:
7013 case ta_add_literal:
7014 break;
7015 case ta_remove_longcall:
7016 orig_size = 6;
7017 break;
7018 case ta_narrow_insn:
7019 orig_size = 3;
7020 break;
7021 case ta_widen_insn:
7022 orig_size = 2;
7023 break;
7024 case ta_fill:
7025 break;
7026 }
7027 current_entry->size =
7028 r->offset + orig_size - current_entry->orig_address;
7029 if (current_entry->size != 0)
7030 {
7031 current_entry++;
7032 map->entry_count++;
7033 }
7034 current_entry->orig_address = r->offset + orig_size;
7035 removed += r->removed_bytes;
7036 current_entry->new_address = r->offset + orig_size - removed;
7037 current_entry->size = 0;
7038 }
7039
7040 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7041 - current_entry->orig_address);
7042 if (current_entry->size != 0)
7043 map->entry_count++;
7044
7045 return map;
7046}
7047
7048
7049/* Free an offset translation map. */
7050
7051static void
7052free_xlate_map (xlate_map_t *map)
7053{
7054 if (map && map->entry)
7055 free (map->entry);
7056 if (map)
7057 free (map);
7058}
7059
7060
43cd72b9
BW
7061/* Use check_section_ebb_pcrels_fit to make sure that all of the
7062 relocations in a section will fit if a proposed set of actions
7063 are performed. */
e0001a05 7064
43cd72b9 7065static bfd_boolean
7fa3d080
BW
7066check_section_ebb_pcrels_fit (bfd *abfd,
7067 asection *sec,
7068 bfd_byte *contents,
7069 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7070 const ebb_constraint *constraint,
7071 const xtensa_opcode *reloc_opcodes)
e0001a05 7072{
43cd72b9
BW
7073 unsigned i, j;
7074 Elf_Internal_Rela *irel;
03e94c08
BW
7075 xlate_map_t *xmap = NULL;
7076 bfd_boolean ok = TRUE;
43cd72b9 7077 xtensa_relax_info *relax_info;
e0001a05 7078
43cd72b9 7079 relax_info = get_xtensa_relax_info (sec);
e0001a05 7080
03e94c08
BW
7081 if (relax_info && sec->reloc_count > 100)
7082 {
7083 xmap = build_xlate_map (sec, relax_info);
7084 /* NULL indicates out of memory, but the slow version
7085 can still be used. */
7086 }
7087
43cd72b9
BW
7088 for (i = 0; i < sec->reloc_count; i++)
7089 {
7090 r_reloc r_rel;
7091 bfd_vma orig_self_offset, orig_target_offset;
7092 bfd_vma self_offset, target_offset;
7093 int r_type;
7094 reloc_howto_type *howto;
7095 int self_removed_bytes, target_removed_bytes;
e0001a05 7096
43cd72b9
BW
7097 irel = &internal_relocs[i];
7098 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7099
43cd72b9
BW
7100 howto = &elf_howto_table[r_type];
7101 /* We maintain the required invariant: PC-relative relocations
7102 that fit before linking must fit after linking. Thus we only
7103 need to deal with relocations to the same section that are
7104 PC-relative. */
7105 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7106 || !howto->pc_relative)
7107 continue;
e0001a05 7108
43cd72b9
BW
7109 r_reloc_init (&r_rel, abfd, irel, contents,
7110 bfd_get_section_limit (abfd, sec));
e0001a05 7111
43cd72b9
BW
7112 if (r_reloc_get_section (&r_rel) != sec)
7113 continue;
e0001a05 7114
43cd72b9
BW
7115 orig_self_offset = irel->r_offset;
7116 orig_target_offset = r_rel.target_offset;
e0001a05 7117
43cd72b9
BW
7118 self_offset = orig_self_offset;
7119 target_offset = orig_target_offset;
7120
7121 if (relax_info)
7122 {
03e94c08
BW
7123 self_offset =
7124 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7125 orig_self_offset);
7126 target_offset =
7127 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7128 orig_target_offset);
43cd72b9
BW
7129 }
7130
7131 self_removed_bytes = 0;
7132 target_removed_bytes = 0;
7133
7134 for (j = 0; j < constraint->action_count; ++j)
7135 {
7136 proposed_action *action = &constraint->actions[j];
7137 bfd_vma offset = action->offset;
7138 int removed_bytes = action->removed_bytes;
7139 if (offset < orig_self_offset
7140 || (offset == orig_self_offset && action->action == ta_fill
7141 && action->removed_bytes < 0))
7142 self_removed_bytes += removed_bytes;
7143 if (offset < orig_target_offset
7144 || (offset == orig_target_offset && action->action == ta_fill
7145 && action->removed_bytes < 0))
7146 target_removed_bytes += removed_bytes;
7147 }
7148 self_offset -= self_removed_bytes;
7149 target_offset -= target_removed_bytes;
7150
7151 /* Try to encode it. Get the operand and check. */
7152 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7153 {
7154 /* None of the current alternate relocs are PC-relative,
7155 and only PC-relative relocs matter here. */
7156 }
7157 else
7158 {
7159 xtensa_opcode opcode;
7160 int opnum;
7161
cb337148
BW
7162 if (reloc_opcodes)
7163 opcode = reloc_opcodes[i];
7164 else
7165 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7166 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7167 {
7168 ok = FALSE;
7169 break;
7170 }
43cd72b9
BW
7171
7172 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7173 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7174 {
7175 ok = FALSE;
7176 break;
7177 }
43cd72b9
BW
7178
7179 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7180 {
7181 ok = FALSE;
7182 break;
7183 }
43cd72b9
BW
7184 }
7185 }
7186
03e94c08
BW
7187 if (xmap)
7188 free_xlate_map (xmap);
7189
7190 return ok;
43cd72b9
BW
7191}
7192
7193
7194static bfd_boolean
7fa3d080 7195check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7196{
7197 int removed = 0;
7198 unsigned i;
7199
7200 for (i = 0; i < constraint->action_count; i++)
7201 {
7202 const proposed_action *action = &constraint->actions[i];
7203 if (action->do_action)
7204 removed += action->removed_bytes;
7205 }
7206 if (removed < 0)
e0001a05
NC
7207 return FALSE;
7208
7209 return TRUE;
7210}
7211
7212
43cd72b9 7213void
7fa3d080
BW
7214text_action_add_proposed (text_action_list *l,
7215 const ebb_constraint *ebb_table,
7216 asection *sec)
e0001a05
NC
7217{
7218 unsigned i;
7219
43cd72b9 7220 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7221 {
43cd72b9 7222 proposed_action *action = &ebb_table->actions[i];
e0001a05 7223
43cd72b9 7224 if (!action->do_action)
e0001a05 7225 continue;
43cd72b9
BW
7226 switch (action->action)
7227 {
7228 case ta_remove_insn:
7229 case ta_remove_longcall:
7230 case ta_convert_longcall:
7231 case ta_narrow_insn:
7232 case ta_widen_insn:
7233 case ta_fill:
7234 case ta_remove_literal:
7235 text_action_add (l, action->action, sec, action->offset,
7236 action->removed_bytes);
7237 break;
7238 case ta_none:
7239 break;
7240 default:
7241 BFD_ASSERT (0);
7242 break;
7243 }
e0001a05 7244 }
43cd72b9 7245}
e0001a05 7246
43cd72b9
BW
7247
7248int
7fa3d080 7249compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7250{
7251 int fill_extra_space;
7252
7253 if (!entry)
7254 return 0;
7255
7256 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7257 return 0;
7258
7259 fill_extra_space = entry->size;
7260 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7261 {
7262 /* Fill bytes for alignment:
7263 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7264 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7265 int nsm = (1 << pow) - 1;
7266 bfd_vma addr = entry->address + entry->size;
7267 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7268 fill_extra_space += align_fill;
7269 }
7270 return fill_extra_space;
e0001a05
NC
7271}
7272
43cd72b9 7273\f
e0001a05
NC
7274/* First relaxation pass. */
7275
43cd72b9
BW
7276/* If the section contains relaxable literals, check each literal to
7277 see if it has the same value as another literal that has already
7278 been seen, either in the current section or a previous one. If so,
7279 add an entry to the per-section list of removed literals. The
e0001a05
NC
7280 actual changes are deferred until the next pass. */
7281
7282static bfd_boolean
7fa3d080
BW
7283compute_removed_literals (bfd *abfd,
7284 asection *sec,
7285 struct bfd_link_info *link_info,
7286 value_map_hash_table *values)
e0001a05
NC
7287{
7288 xtensa_relax_info *relax_info;
7289 bfd_byte *contents;
7290 Elf_Internal_Rela *internal_relocs;
43cd72b9 7291 source_reloc *src_relocs, *rel;
e0001a05 7292 bfd_boolean ok = TRUE;
43cd72b9
BW
7293 property_table_entry *prop_table = NULL;
7294 int ptblsize;
7295 int i, prev_i;
7296 bfd_boolean last_loc_is_prev = FALSE;
7297 bfd_vma last_target_offset = 0;
7298 section_cache_t target_sec_cache;
7299 bfd_size_type sec_size;
7300
7301 init_section_cache (&target_sec_cache);
e0001a05
NC
7302
7303 /* Do nothing if it is not a relaxable literal section. */
7304 relax_info = get_xtensa_relax_info (sec);
7305 BFD_ASSERT (relax_info);
e0001a05
NC
7306 if (!relax_info->is_relaxable_literal_section)
7307 return ok;
7308
7309 internal_relocs = retrieve_internal_relocs (abfd, sec,
7310 link_info->keep_memory);
7311
43cd72b9 7312 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7313 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7314 if (contents == NULL && sec_size != 0)
e0001a05
NC
7315 {
7316 ok = FALSE;
7317 goto error_return;
7318 }
7319
7320 /* Sort the source_relocs by target offset. */
7321 src_relocs = relax_info->src_relocs;
7322 qsort (src_relocs, relax_info->src_count,
7323 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7324 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7325 internal_reloc_compare);
e0001a05 7326
43cd72b9
BW
7327 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7328 XTENSA_PROP_SEC_NAME, FALSE);
7329 if (ptblsize < 0)
7330 {
7331 ok = FALSE;
7332 goto error_return;
7333 }
7334
7335 prev_i = -1;
e0001a05
NC
7336 for (i = 0; i < relax_info->src_count; i++)
7337 {
e0001a05 7338 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7339
7340 rel = &src_relocs[i];
43cd72b9
BW
7341 if (get_l32r_opcode () != rel->opcode)
7342 continue;
e0001a05
NC
7343 irel = get_irel_at_offset (sec, internal_relocs,
7344 rel->r_rel.target_offset);
7345
43cd72b9
BW
7346 /* If the relocation on this is not a simple R_XTENSA_32 or
7347 R_XTENSA_PLT then do not consider it. This may happen when
7348 the difference of two symbols is used in a literal. */
7349 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7350 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7351 continue;
7352
e0001a05
NC
7353 /* If the target_offset for this relocation is the same as the
7354 previous relocation, then we've already considered whether the
7355 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7356 if (i != 0 && prev_i != -1
7357 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7358 continue;
43cd72b9
BW
7359 prev_i = i;
7360
7361 if (last_loc_is_prev &&
7362 last_target_offset + 4 != rel->r_rel.target_offset)
7363 last_loc_is_prev = FALSE;
e0001a05
NC
7364
7365 /* Check if the relocation was from an L32R that is being removed
7366 because a CALLX was converted to a direct CALL, and check if
7367 there are no other relocations to the literal. */
43cd72b9 7368 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7369 {
43cd72b9
BW
7370 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7371 irel, rel, prop_table, ptblsize))
e0001a05 7372 {
43cd72b9
BW
7373 ok = FALSE;
7374 goto error_return;
e0001a05 7375 }
43cd72b9 7376 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7377 continue;
7378 }
7379
43cd72b9
BW
7380 if (!identify_literal_placement (abfd, sec, contents, link_info,
7381 values,
7382 &last_loc_is_prev, irel,
7383 relax_info->src_count - i, rel,
7384 prop_table, ptblsize,
7385 &target_sec_cache, rel->is_abs_literal))
e0001a05 7386 {
43cd72b9
BW
7387 ok = FALSE;
7388 goto error_return;
7389 }
7390 last_target_offset = rel->r_rel.target_offset;
7391 }
e0001a05 7392
43cd72b9
BW
7393#if DEBUG
7394 print_removed_literals (stderr, &relax_info->removed_list);
7395 print_action_list (stderr, &relax_info->action_list);
7396#endif /* DEBUG */
7397
7398error_return:
7399 if (prop_table) free (prop_table);
7400 clear_section_cache (&target_sec_cache);
7401
7402 release_contents (sec, contents);
7403 release_internal_relocs (sec, internal_relocs);
7404 return ok;
7405}
7406
7407
7408static Elf_Internal_Rela *
7fa3d080
BW
7409get_irel_at_offset (asection *sec,
7410 Elf_Internal_Rela *internal_relocs,
7411 bfd_vma offset)
43cd72b9
BW
7412{
7413 unsigned i;
7414 Elf_Internal_Rela *irel;
7415 unsigned r_type;
7416 Elf_Internal_Rela key;
7417
7418 if (!internal_relocs)
7419 return NULL;
7420
7421 key.r_offset = offset;
7422 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7423 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7424 if (!irel)
7425 return NULL;
7426
7427 /* bsearch does not guarantee which will be returned if there are
7428 multiple matches. We need the first that is not an alignment. */
7429 i = irel - internal_relocs;
7430 while (i > 0)
7431 {
7432 if (internal_relocs[i-1].r_offset != offset)
7433 break;
7434 i--;
7435 }
7436 for ( ; i < sec->reloc_count; i++)
7437 {
7438 irel = &internal_relocs[i];
7439 r_type = ELF32_R_TYPE (irel->r_info);
7440 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7441 return irel;
7442 }
7443
7444 return NULL;
7445}
7446
7447
7448bfd_boolean
7fa3d080
BW
7449is_removable_literal (const source_reloc *rel,
7450 int i,
7451 const source_reloc *src_relocs,
7452 int src_count)
43cd72b9
BW
7453{
7454 const source_reloc *curr_rel;
7455 if (!rel->is_null)
7456 return FALSE;
7457
7458 for (++i; i < src_count; ++i)
7459 {
7460 curr_rel = &src_relocs[i];
7461 /* If all others have the same target offset.... */
7462 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7463 return TRUE;
7464
7465 if (!curr_rel->is_null
7466 && !xtensa_is_property_section (curr_rel->source_sec)
7467 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7468 return FALSE;
7469 }
7470 return TRUE;
7471}
7472
7473
7474bfd_boolean
7fa3d080
BW
7475remove_dead_literal (bfd *abfd,
7476 asection *sec,
7477 struct bfd_link_info *link_info,
7478 Elf_Internal_Rela *internal_relocs,
7479 Elf_Internal_Rela *irel,
7480 source_reloc *rel,
7481 property_table_entry *prop_table,
7482 int ptblsize)
43cd72b9
BW
7483{
7484 property_table_entry *entry;
7485 xtensa_relax_info *relax_info;
7486
7487 relax_info = get_xtensa_relax_info (sec);
7488 if (!relax_info)
7489 return FALSE;
7490
7491 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7492 sec->vma + rel->r_rel.target_offset);
7493
7494 /* Mark the unused literal so that it will be removed. */
7495 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7496
7497 text_action_add (&relax_info->action_list,
7498 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7499
7500 /* If the section is 4-byte aligned, do not add fill. */
7501 if (sec->alignment_power > 2)
7502 {
7503 int fill_extra_space;
7504 bfd_vma entry_sec_offset;
7505 text_action *fa;
7506 property_table_entry *the_add_entry;
7507 int removed_diff;
7508
7509 if (entry)
7510 entry_sec_offset = entry->address - sec->vma + entry->size;
7511 else
7512 entry_sec_offset = rel->r_rel.target_offset + 4;
7513
7514 /* If the literal range is at the end of the section,
7515 do not add fill. */
7516 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7517 entry_sec_offset);
7518 fill_extra_space = compute_fill_extra_space (the_add_entry);
7519
7520 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7521 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7522 -4, fill_extra_space);
7523 if (fa)
7524 adjust_fill_action (fa, removed_diff);
7525 else
7526 text_action_add (&relax_info->action_list,
7527 ta_fill, sec, entry_sec_offset, removed_diff);
7528 }
7529
7530 /* Zero out the relocation on this literal location. */
7531 if (irel)
7532 {
7533 if (elf_hash_table (link_info)->dynamic_sections_created)
7534 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7535
7536 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7537 pin_internal_relocs (sec, internal_relocs);
7538 }
7539
7540 /* Do not modify "last_loc_is_prev". */
7541 return TRUE;
7542}
7543
7544
7545bfd_boolean
7fa3d080
BW
7546identify_literal_placement (bfd *abfd,
7547 asection *sec,
7548 bfd_byte *contents,
7549 struct bfd_link_info *link_info,
7550 value_map_hash_table *values,
7551 bfd_boolean *last_loc_is_prev_p,
7552 Elf_Internal_Rela *irel,
7553 int remaining_src_rels,
7554 source_reloc *rel,
7555 property_table_entry *prop_table,
7556 int ptblsize,
7557 section_cache_t *target_sec_cache,
7558 bfd_boolean is_abs_literal)
43cd72b9
BW
7559{
7560 literal_value val;
7561 value_map *val_map;
7562 xtensa_relax_info *relax_info;
7563 bfd_boolean literal_placed = FALSE;
7564 r_reloc r_rel;
7565 unsigned long value;
7566 bfd_boolean final_static_link;
7567 bfd_size_type sec_size;
7568
7569 relax_info = get_xtensa_relax_info (sec);
7570 if (!relax_info)
7571 return FALSE;
7572
7573 sec_size = bfd_get_section_limit (abfd, sec);
7574
7575 final_static_link =
7576 (!link_info->relocatable
7577 && !elf_hash_table (link_info)->dynamic_sections_created);
7578
7579 /* The placement algorithm first checks to see if the literal is
7580 already in the value map. If so and the value map is reachable
7581 from all uses, then the literal is moved to that location. If
7582 not, then we identify the last location where a fresh literal was
7583 placed. If the literal can be safely moved there, then we do so.
7584 If not, then we assume that the literal is not to move and leave
7585 the literal where it is, marking it as the last literal
7586 location. */
7587
7588 /* Find the literal value. */
7589 value = 0;
7590 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7591 if (!irel)
7592 {
7593 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7594 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7595 }
7596 init_literal_value (&val, &r_rel, value, is_abs_literal);
7597
7598 /* Check if we've seen another literal with the same value that
7599 is in the same output section. */
7600 val_map = value_map_get_cached_value (values, &val, final_static_link);
7601
7602 if (val_map
7603 && (r_reloc_get_section (&val_map->loc)->output_section
7604 == sec->output_section)
7605 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7606 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7607 {
7608 /* No change to last_loc_is_prev. */
7609 literal_placed = TRUE;
7610 }
7611
7612 /* For relocatable links, do not try to move literals. To do it
7613 correctly might increase the number of relocations in an input
7614 section making the default relocatable linking fail. */
7615 if (!link_info->relocatable && !literal_placed
7616 && values->has_last_loc && !(*last_loc_is_prev_p))
7617 {
7618 asection *target_sec = r_reloc_get_section (&values->last_loc);
7619 if (target_sec && target_sec->output_section == sec->output_section)
7620 {
7621 /* Increment the virtual offset. */
7622 r_reloc try_loc = values->last_loc;
7623 try_loc.virtual_offset += 4;
7624
7625 /* There is a last loc that was in the same output section. */
7626 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7627 && move_shared_literal (sec, link_info, rel,
7628 prop_table, ptblsize,
7629 &try_loc, &val, target_sec_cache))
e0001a05 7630 {
43cd72b9
BW
7631 values->last_loc.virtual_offset += 4;
7632 literal_placed = TRUE;
7633 if (!val_map)
7634 val_map = add_value_map (values, &val, &try_loc,
7635 final_static_link);
7636 else
7637 val_map->loc = try_loc;
e0001a05
NC
7638 }
7639 }
43cd72b9
BW
7640 }
7641
7642 if (!literal_placed)
7643 {
7644 /* Nothing worked, leave the literal alone but update the last loc. */
7645 values->has_last_loc = TRUE;
7646 values->last_loc = rel->r_rel;
7647 if (!val_map)
7648 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7649 else
43cd72b9
BW
7650 val_map->loc = rel->r_rel;
7651 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7652 }
7653
43cd72b9 7654 return TRUE;
e0001a05
NC
7655}
7656
7657
7658/* Check if the original relocations (presumably on L32R instructions)
7659 identified by reloc[0..N] can be changed to reference the literal
7660 identified by r_rel. If r_rel is out of range for any of the
7661 original relocations, then we don't want to coalesce the original
7662 literal with the one at r_rel. We only check reloc[0..N], where the
7663 offsets are all the same as for reloc[0] (i.e., they're all
7664 referencing the same literal) and where N is also bounded by the
7665 number of remaining entries in the "reloc" array. The "reloc" array
7666 is sorted by target offset so we know all the entries for the same
7667 literal will be contiguous. */
7668
7669static bfd_boolean
7fa3d080
BW
7670relocations_reach (source_reloc *reloc,
7671 int remaining_relocs,
7672 const r_reloc *r_rel)
e0001a05
NC
7673{
7674 bfd_vma from_offset, source_address, dest_address;
7675 asection *sec;
7676 int i;
7677
7678 if (!r_reloc_is_defined (r_rel))
7679 return FALSE;
7680
7681 sec = r_reloc_get_section (r_rel);
7682 from_offset = reloc[0].r_rel.target_offset;
7683
7684 for (i = 0; i < remaining_relocs; i++)
7685 {
7686 if (reloc[i].r_rel.target_offset != from_offset)
7687 break;
7688
7689 /* Ignore relocations that have been removed. */
7690 if (reloc[i].is_null)
7691 continue;
7692
7693 /* The original and new output section for these must be the same
7694 in order to coalesce. */
7695 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7696 != sec->output_section)
7697 return FALSE;
7698
d638e0ac
BW
7699 /* Absolute literals in the same output section can always be
7700 combined. */
7701 if (reloc[i].is_abs_literal)
7702 continue;
7703
43cd72b9
BW
7704 /* A literal with no PC-relative relocations can be moved anywhere. */
7705 if (reloc[i].opnd != -1)
e0001a05
NC
7706 {
7707 /* Otherwise, check to see that it fits. */
7708 source_address = (reloc[i].source_sec->output_section->vma
7709 + reloc[i].source_sec->output_offset
7710 + reloc[i].r_rel.rela.r_offset);
7711 dest_address = (sec->output_section->vma
7712 + sec->output_offset
7713 + r_rel->target_offset);
7714
43cd72b9
BW
7715 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7716 source_address, dest_address))
e0001a05
NC
7717 return FALSE;
7718 }
7719 }
7720
7721 return TRUE;
7722}
7723
7724
43cd72b9
BW
7725/* Move a literal to another literal location because it is
7726 the same as the other literal value. */
e0001a05 7727
43cd72b9 7728static bfd_boolean
7fa3d080
BW
7729coalesce_shared_literal (asection *sec,
7730 source_reloc *rel,
7731 property_table_entry *prop_table,
7732 int ptblsize,
7733 value_map *val_map)
e0001a05 7734{
43cd72b9
BW
7735 property_table_entry *entry;
7736 text_action *fa;
7737 property_table_entry *the_add_entry;
7738 int removed_diff;
7739 xtensa_relax_info *relax_info;
7740
7741 relax_info = get_xtensa_relax_info (sec);
7742 if (!relax_info)
7743 return FALSE;
7744
7745 entry = elf_xtensa_find_property_entry
7746 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7747 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7748 return TRUE;
7749
7750 /* Mark that the literal will be coalesced. */
7751 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7752
7753 text_action_add (&relax_info->action_list,
7754 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7755
7756 /* If the section is 4-byte aligned, do not add fill. */
7757 if (sec->alignment_power > 2)
e0001a05 7758 {
43cd72b9
BW
7759 int fill_extra_space;
7760 bfd_vma entry_sec_offset;
7761
7762 if (entry)
7763 entry_sec_offset = entry->address - sec->vma + entry->size;
7764 else
7765 entry_sec_offset = rel->r_rel.target_offset + 4;
7766
7767 /* If the literal range is at the end of the section,
7768 do not add fill. */
7769 fill_extra_space = 0;
7770 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7771 entry_sec_offset);
7772 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7773 fill_extra_space = the_add_entry->size;
7774
7775 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7776 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7777 -4, fill_extra_space);
7778 if (fa)
7779 adjust_fill_action (fa, removed_diff);
7780 else
7781 text_action_add (&relax_info->action_list,
7782 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7783 }
43cd72b9
BW
7784
7785 return TRUE;
7786}
7787
7788
7789/* Move a literal to another location. This may actually increase the
7790 total amount of space used because of alignments so we need to do
7791 this carefully. Also, it may make a branch go out of range. */
7792
7793static bfd_boolean
7fa3d080
BW
7794move_shared_literal (asection *sec,
7795 struct bfd_link_info *link_info,
7796 source_reloc *rel,
7797 property_table_entry *prop_table,
7798 int ptblsize,
7799 const r_reloc *target_loc,
7800 const literal_value *lit_value,
7801 section_cache_t *target_sec_cache)
43cd72b9
BW
7802{
7803 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7804 text_action *fa, *target_fa;
7805 int removed_diff;
7806 xtensa_relax_info *relax_info, *target_relax_info;
7807 asection *target_sec;
7808 ebb_t *ebb;
7809 ebb_constraint ebb_table;
7810 bfd_boolean relocs_fit;
7811
7812 /* If this routine always returns FALSE, the literals that cannot be
7813 coalesced will not be moved. */
7814 if (elf32xtensa_no_literal_movement)
7815 return FALSE;
7816
7817 relax_info = get_xtensa_relax_info (sec);
7818 if (!relax_info)
7819 return FALSE;
7820
7821 target_sec = r_reloc_get_section (target_loc);
7822 target_relax_info = get_xtensa_relax_info (target_sec);
7823
7824 /* Literals to undefined sections may not be moved because they
7825 must report an error. */
7826 if (bfd_is_und_section (target_sec))
7827 return FALSE;
7828
7829 src_entry = elf_xtensa_find_property_entry
7830 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7831
7832 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7833 return FALSE;
7834
7835 target_entry = elf_xtensa_find_property_entry
7836 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7837 target_sec->vma + target_loc->target_offset);
7838
7839 if (!target_entry)
7840 return FALSE;
7841
7842 /* Make sure that we have not broken any branches. */
7843 relocs_fit = FALSE;
7844
7845 init_ebb_constraint (&ebb_table);
7846 ebb = &ebb_table.ebb;
7847 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7848 target_sec_cache->content_length,
7849 target_sec_cache->ptbl, target_sec_cache->pte_count,
7850 target_sec_cache->relocs, target_sec_cache->reloc_count);
7851
7852 /* Propose to add 4 bytes + worst-case alignment size increase to
7853 destination. */
7854 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7855 ta_fill, target_loc->target_offset,
7856 -4 - (1 << target_sec->alignment_power), TRUE);
7857
7858 /* Check all of the PC-relative relocations to make sure they still fit. */
7859 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7860 target_sec_cache->contents,
7861 target_sec_cache->relocs,
cb337148 7862 &ebb_table, NULL);
43cd72b9
BW
7863
7864 if (!relocs_fit)
7865 return FALSE;
7866
7867 text_action_add_literal (&target_relax_info->action_list,
7868 ta_add_literal, target_loc, lit_value, -4);
7869
7870 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7871 {
7872 /* May need to add or remove some fill to maintain alignment. */
7873 int fill_extra_space;
7874 bfd_vma entry_sec_offset;
7875
7876 entry_sec_offset =
7877 target_entry->address - target_sec->vma + target_entry->size;
7878
7879 /* If the literal range is at the end of the section,
7880 do not add fill. */
7881 fill_extra_space = 0;
7882 the_add_entry =
7883 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7884 target_sec_cache->pte_count,
7885 entry_sec_offset);
7886 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7887 fill_extra_space = the_add_entry->size;
7888
7889 target_fa = find_fill_action (&target_relax_info->action_list,
7890 target_sec, entry_sec_offset);
7891 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7892 entry_sec_offset, 4,
7893 fill_extra_space);
7894 if (target_fa)
7895 adjust_fill_action (target_fa, removed_diff);
7896 else
7897 text_action_add (&target_relax_info->action_list,
7898 ta_fill, target_sec, entry_sec_offset, removed_diff);
7899 }
7900
7901 /* Mark that the literal will be moved to the new location. */
7902 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7903
7904 /* Remove the literal. */
7905 text_action_add (&relax_info->action_list,
7906 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7907
7908 /* If the section is 4-byte aligned, do not add fill. */
7909 if (sec->alignment_power > 2 && target_entry != src_entry)
7910 {
7911 int fill_extra_space;
7912 bfd_vma entry_sec_offset;
7913
7914 if (src_entry)
7915 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7916 else
7917 entry_sec_offset = rel->r_rel.target_offset+4;
7918
7919 /* If the literal range is at the end of the section,
7920 do not add fill. */
7921 fill_extra_space = 0;
7922 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7923 entry_sec_offset);
7924 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7925 fill_extra_space = the_add_entry->size;
7926
7927 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7928 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7929 -4, fill_extra_space);
7930 if (fa)
7931 adjust_fill_action (fa, removed_diff);
7932 else
7933 text_action_add (&relax_info->action_list,
7934 ta_fill, sec, entry_sec_offset, removed_diff);
7935 }
7936
7937 return TRUE;
e0001a05
NC
7938}
7939
7940\f
7941/* Second relaxation pass. */
7942
7943/* Modify all of the relocations to point to the right spot, and if this
7944 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 7945 section size. */
e0001a05 7946
43cd72b9 7947bfd_boolean
7fa3d080 7948relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
7949{
7950 Elf_Internal_Rela *internal_relocs;
7951 xtensa_relax_info *relax_info;
7952 bfd_byte *contents;
7953 bfd_boolean ok = TRUE;
7954 unsigned i;
43cd72b9
BW
7955 bfd_boolean rv = FALSE;
7956 bfd_boolean virtual_action;
7957 bfd_size_type sec_size;
e0001a05 7958
43cd72b9 7959 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
7960 relax_info = get_xtensa_relax_info (sec);
7961 BFD_ASSERT (relax_info);
7962
43cd72b9
BW
7963 /* First translate any of the fixes that have been added already. */
7964 translate_section_fixes (sec);
7965
e0001a05
NC
7966 /* Handle property sections (e.g., literal tables) specially. */
7967 if (xtensa_is_property_section (sec))
7968 {
7969 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7970 return relax_property_section (abfd, sec, link_info);
7971 }
7972
43cd72b9
BW
7973 internal_relocs = retrieve_internal_relocs (abfd, sec,
7974 link_info->keep_memory);
7975 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7976 if (contents == NULL && sec_size != 0)
7977 {
7978 ok = FALSE;
7979 goto error_return;
7980 }
7981
7982 if (internal_relocs)
7983 {
7984 for (i = 0; i < sec->reloc_count; i++)
7985 {
7986 Elf_Internal_Rela *irel;
7987 xtensa_relax_info *target_relax_info;
7988 bfd_vma source_offset, old_source_offset;
7989 r_reloc r_rel;
7990 unsigned r_type;
7991 asection *target_sec;
7992
7993 /* Locally change the source address.
7994 Translate the target to the new target address.
7995 If it points to this section and has been removed,
7996 NULLify it.
7997 Write it back. */
7998
7999 irel = &internal_relocs[i];
8000 source_offset = irel->r_offset;
8001 old_source_offset = source_offset;
8002
8003 r_type = ELF32_R_TYPE (irel->r_info);
8004 r_reloc_init (&r_rel, abfd, irel, contents,
8005 bfd_get_section_limit (abfd, sec));
8006
8007 /* If this section could have changed then we may need to
8008 change the relocation's offset. */
8009
8010 if (relax_info->is_relaxable_literal_section
8011 || relax_info->is_relaxable_asm_section)
8012 {
8013 if (r_type != R_XTENSA_NONE
8014 && find_removed_literal (&relax_info->removed_list,
8015 irel->r_offset))
8016 {
8017 /* Remove this relocation. */
8018 if (elf_hash_table (link_info)->dynamic_sections_created)
8019 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8020 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8021 irel->r_offset = offset_with_removed_text
8022 (&relax_info->action_list, irel->r_offset);
8023 pin_internal_relocs (sec, internal_relocs);
8024 continue;
8025 }
8026
8027 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8028 {
8029 text_action *action =
8030 find_insn_action (&relax_info->action_list,
8031 irel->r_offset);
8032 if (action && (action->action == ta_convert_longcall
8033 || action->action == ta_remove_longcall))
8034 {
8035 bfd_reloc_status_type retval;
8036 char *error_message = NULL;
8037
8038 retval = contract_asm_expansion (contents, sec_size,
8039 irel, &error_message);
8040 if (retval != bfd_reloc_ok)
8041 {
8042 (*link_info->callbacks->reloc_dangerous)
8043 (link_info, error_message, abfd, sec,
8044 irel->r_offset);
8045 goto error_return;
8046 }
8047 /* Update the action so that the code that moves
8048 the contents will do the right thing. */
8049 if (action->action == ta_remove_longcall)
8050 action->action = ta_remove_insn;
8051 else
8052 action->action = ta_none;
8053 /* Refresh the info in the r_rel. */
8054 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8055 r_type = ELF32_R_TYPE (irel->r_info);
8056 }
8057 }
8058
8059 source_offset = offset_with_removed_text
8060 (&relax_info->action_list, irel->r_offset);
8061 irel->r_offset = source_offset;
8062 }
8063
8064 /* If the target section could have changed then
8065 we may need to change the relocation's target offset. */
8066
8067 target_sec = r_reloc_get_section (&r_rel);
8068 target_relax_info = get_xtensa_relax_info (target_sec);
8069
8070 if (target_relax_info
8071 && (target_relax_info->is_relaxable_literal_section
8072 || target_relax_info->is_relaxable_asm_section))
8073 {
8074 r_reloc new_reloc;
8075 reloc_bfd_fix *fix;
8076 bfd_vma addend_displacement;
8077
8078 translate_reloc (&r_rel, &new_reloc);
8079
8080 if (r_type == R_XTENSA_DIFF8
8081 || r_type == R_XTENSA_DIFF16
8082 || r_type == R_XTENSA_DIFF32)
8083 {
8084 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8085
8086 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8087 {
8088 (*link_info->callbacks->reloc_dangerous)
8089 (link_info, _("invalid relocation address"),
8090 abfd, sec, old_source_offset);
8091 goto error_return;
8092 }
8093
8094 switch (r_type)
8095 {
8096 case R_XTENSA_DIFF8:
8097 diff_value =
8098 bfd_get_8 (abfd, &contents[old_source_offset]);
8099 break;
8100 case R_XTENSA_DIFF16:
8101 diff_value =
8102 bfd_get_16 (abfd, &contents[old_source_offset]);
8103 break;
8104 case R_XTENSA_DIFF32:
8105 diff_value =
8106 bfd_get_32 (abfd, &contents[old_source_offset]);
8107 break;
8108 }
8109
8110 new_end_offset = offset_with_removed_text
8111 (&target_relax_info->action_list,
8112 r_rel.target_offset + diff_value);
8113 diff_value = new_end_offset - new_reloc.target_offset;
8114
8115 switch (r_type)
8116 {
8117 case R_XTENSA_DIFF8:
8118 diff_mask = 0xff;
8119 bfd_put_8 (abfd, diff_value,
8120 &contents[old_source_offset]);
8121 break;
8122 case R_XTENSA_DIFF16:
8123 diff_mask = 0xffff;
8124 bfd_put_16 (abfd, diff_value,
8125 &contents[old_source_offset]);
8126 break;
8127 case R_XTENSA_DIFF32:
8128 diff_mask = 0xffffffff;
8129 bfd_put_32 (abfd, diff_value,
8130 &contents[old_source_offset]);
8131 break;
8132 }
8133
8134 /* Check for overflow. */
8135 if ((diff_value & ~diff_mask) != 0)
8136 {
8137 (*link_info->callbacks->reloc_dangerous)
8138 (link_info, _("overflow after relaxation"),
8139 abfd, sec, old_source_offset);
8140 goto error_return;
8141 }
8142
8143 pin_contents (sec, contents);
8144 }
8145
8146 /* FIXME: If the relocation still references a section in
8147 the same input file, the relocation should be modified
8148 directly instead of adding a "fix" record. */
8149
8150 addend_displacement =
8151 new_reloc.target_offset + new_reloc.virtual_offset;
8152
8153 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8154 r_reloc_get_section (&new_reloc),
8155 addend_displacement, TRUE);
8156 add_fix (sec, fix);
8157 }
8158
8159 pin_internal_relocs (sec, internal_relocs);
8160 }
8161 }
8162
8163 if ((relax_info->is_relaxable_literal_section
8164 || relax_info->is_relaxable_asm_section)
8165 && relax_info->action_list.head)
8166 {
8167 /* Walk through the planned actions and build up a table
8168 of move, copy and fill records. Use the move, copy and
8169 fill records to perform the actions once. */
8170
8171 bfd_size_type size = sec->size;
8172 int removed = 0;
8173 bfd_size_type final_size, copy_size, orig_insn_size;
8174 bfd_byte *scratch = NULL;
8175 bfd_byte *dup_contents = NULL;
8176 bfd_size_type orig_size = size;
8177 bfd_vma orig_dot = 0;
8178 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8179 orig dot in physical memory. */
8180 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8181 bfd_vma dup_dot = 0;
8182
8183 text_action *action = relax_info->action_list.head;
8184
8185 final_size = sec->size;
8186 for (action = relax_info->action_list.head; action;
8187 action = action->next)
8188 {
8189 final_size -= action->removed_bytes;
8190 }
8191
8192 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8193 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8194
8195 /* The dot is the current fill location. */
8196#if DEBUG
8197 print_action_list (stderr, &relax_info->action_list);
8198#endif
8199
8200 for (action = relax_info->action_list.head; action;
8201 action = action->next)
8202 {
8203 virtual_action = FALSE;
8204 if (action->offset > orig_dot)
8205 {
8206 orig_dot += orig_dot_copied;
8207 orig_dot_copied = 0;
8208 orig_dot_vo = 0;
8209 /* Out of the virtual world. */
8210 }
8211
8212 if (action->offset > orig_dot)
8213 {
8214 copy_size = action->offset - orig_dot;
8215 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8216 orig_dot += copy_size;
8217 dup_dot += copy_size;
8218 BFD_ASSERT (action->offset == orig_dot);
8219 }
8220 else if (action->offset < orig_dot)
8221 {
8222 if (action->action == ta_fill
8223 && action->offset - action->removed_bytes == orig_dot)
8224 {
8225 /* This is OK because the fill only effects the dup_dot. */
8226 }
8227 else if (action->action == ta_add_literal)
8228 {
8229 /* TBD. Might need to handle this. */
8230 }
8231 }
8232 if (action->offset == orig_dot)
8233 {
8234 if (action->virtual_offset > orig_dot_vo)
8235 {
8236 if (orig_dot_vo == 0)
8237 {
8238 /* Need to copy virtual_offset bytes. Probably four. */
8239 copy_size = action->virtual_offset - orig_dot_vo;
8240 memmove (&dup_contents[dup_dot],
8241 &contents[orig_dot], copy_size);
8242 orig_dot_copied = copy_size;
8243 dup_dot += copy_size;
8244 }
8245 virtual_action = TRUE;
8246 }
8247 else
8248 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8249 }
8250 switch (action->action)
8251 {
8252 case ta_remove_literal:
8253 case ta_remove_insn:
8254 BFD_ASSERT (action->removed_bytes >= 0);
8255 orig_dot += action->removed_bytes;
8256 break;
8257
8258 case ta_narrow_insn:
8259 orig_insn_size = 3;
8260 copy_size = 2;
8261 memmove (scratch, &contents[orig_dot], orig_insn_size);
8262 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 8263 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
8264 BFD_ASSERT (rv);
8265 memmove (&dup_contents[dup_dot], scratch, copy_size);
8266 orig_dot += orig_insn_size;
8267 dup_dot += copy_size;
8268 break;
8269
8270 case ta_fill:
8271 if (action->removed_bytes >= 0)
8272 orig_dot += action->removed_bytes;
8273 else
8274 {
8275 /* Already zeroed in dup_contents. Just bump the
8276 counters. */
8277 dup_dot += (-action->removed_bytes);
8278 }
8279 break;
8280
8281 case ta_none:
8282 BFD_ASSERT (action->removed_bytes == 0);
8283 break;
8284
8285 case ta_convert_longcall:
8286 case ta_remove_longcall:
8287 /* These will be removed or converted before we get here. */
8288 BFD_ASSERT (0);
8289 break;
8290
8291 case ta_widen_insn:
8292 orig_insn_size = 2;
8293 copy_size = 3;
8294 memmove (scratch, &contents[orig_dot], orig_insn_size);
8295 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 8296 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
8297 BFD_ASSERT (rv);
8298 memmove (&dup_contents[dup_dot], scratch, copy_size);
8299 orig_dot += orig_insn_size;
8300 dup_dot += copy_size;
8301 break;
8302
8303 case ta_add_literal:
8304 orig_insn_size = 0;
8305 copy_size = 4;
8306 BFD_ASSERT (action->removed_bytes == -4);
8307 /* TBD -- place the literal value here and insert
8308 into the table. */
8309 memset (&dup_contents[dup_dot], 0, 4);
8310 pin_internal_relocs (sec, internal_relocs);
8311 pin_contents (sec, contents);
8312
8313 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8314 relax_info, &internal_relocs, &action->value))
8315 goto error_return;
8316
8317 if (virtual_action)
8318 orig_dot_vo += copy_size;
8319
8320 orig_dot += orig_insn_size;
8321 dup_dot += copy_size;
8322 break;
8323
8324 default:
8325 /* Not implemented yet. */
8326 BFD_ASSERT (0);
8327 break;
8328 }
8329
8330 size -= action->removed_bytes;
8331 removed += action->removed_bytes;
8332 BFD_ASSERT (dup_dot <= final_size);
8333 BFD_ASSERT (orig_dot <= orig_size);
8334 }
8335
8336 orig_dot += orig_dot_copied;
8337 orig_dot_copied = 0;
8338
8339 if (orig_dot != orig_size)
8340 {
8341 copy_size = orig_size - orig_dot;
8342 BFD_ASSERT (orig_size > orig_dot);
8343 BFD_ASSERT (dup_dot + copy_size == final_size);
8344 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8345 orig_dot += copy_size;
8346 dup_dot += copy_size;
8347 }
8348 BFD_ASSERT (orig_size == orig_dot);
8349 BFD_ASSERT (final_size == dup_dot);
8350
8351 /* Move the dup_contents back. */
8352 if (final_size > orig_size)
8353 {
8354 /* Contents need to be reallocated. Swap the dup_contents into
8355 contents. */
8356 sec->contents = dup_contents;
8357 free (contents);
8358 contents = dup_contents;
8359 pin_contents (sec, contents);
8360 }
8361 else
8362 {
8363 BFD_ASSERT (final_size <= orig_size);
8364 memset (contents, 0, orig_size);
8365 memcpy (contents, dup_contents, final_size);
8366 free (dup_contents);
8367 }
8368 free (scratch);
8369 pin_contents (sec, contents);
8370
8371 sec->size = final_size;
8372 }
8373
8374 error_return:
8375 release_internal_relocs (sec, internal_relocs);
8376 release_contents (sec, contents);
8377 return ok;
8378}
8379
8380
8381static bfd_boolean
7fa3d080 8382translate_section_fixes (asection *sec)
43cd72b9
BW
8383{
8384 xtensa_relax_info *relax_info;
8385 reloc_bfd_fix *r;
8386
8387 relax_info = get_xtensa_relax_info (sec);
8388 if (!relax_info)
8389 return TRUE;
8390
8391 for (r = relax_info->fix_list; r != NULL; r = r->next)
8392 if (!translate_reloc_bfd_fix (r))
8393 return FALSE;
e0001a05 8394
43cd72b9
BW
8395 return TRUE;
8396}
e0001a05 8397
e0001a05 8398
43cd72b9
BW
8399/* Translate a fix given the mapping in the relax info for the target
8400 section. If it has already been translated, no work is required. */
e0001a05 8401
43cd72b9 8402static bfd_boolean
7fa3d080 8403translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8404{
8405 reloc_bfd_fix new_fix;
8406 asection *sec;
8407 xtensa_relax_info *relax_info;
8408 removed_literal *removed;
8409 bfd_vma new_offset, target_offset;
e0001a05 8410
43cd72b9
BW
8411 if (fix->translated)
8412 return TRUE;
e0001a05 8413
43cd72b9
BW
8414 sec = fix->target_sec;
8415 target_offset = fix->target_offset;
e0001a05 8416
43cd72b9
BW
8417 relax_info = get_xtensa_relax_info (sec);
8418 if (!relax_info)
8419 {
8420 fix->translated = TRUE;
8421 return TRUE;
8422 }
e0001a05 8423
43cd72b9 8424 new_fix = *fix;
e0001a05 8425
43cd72b9
BW
8426 /* The fix does not need to be translated if the section cannot change. */
8427 if (!relax_info->is_relaxable_literal_section
8428 && !relax_info->is_relaxable_asm_section)
8429 {
8430 fix->translated = TRUE;
8431 return TRUE;
8432 }
e0001a05 8433
43cd72b9
BW
8434 /* If the literal has been moved and this relocation was on an
8435 opcode, then the relocation should move to the new literal
8436 location. Otherwise, the relocation should move within the
8437 section. */
8438
8439 removed = FALSE;
8440 if (is_operand_relocation (fix->src_type))
8441 {
8442 /* Check if the original relocation is against a literal being
8443 removed. */
8444 removed = find_removed_literal (&relax_info->removed_list,
8445 target_offset);
e0001a05
NC
8446 }
8447
43cd72b9 8448 if (removed)
e0001a05 8449 {
43cd72b9 8450 asection *new_sec;
e0001a05 8451
43cd72b9
BW
8452 /* The fact that there is still a relocation to this literal indicates
8453 that the literal is being coalesced, not simply removed. */
8454 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8455
43cd72b9
BW
8456 /* This was moved to some other address (possibly another section). */
8457 new_sec = r_reloc_get_section (&removed->to);
8458 if (new_sec != sec)
e0001a05 8459 {
43cd72b9
BW
8460 sec = new_sec;
8461 relax_info = get_xtensa_relax_info (sec);
8462 if (!relax_info ||
8463 (!relax_info->is_relaxable_literal_section
8464 && !relax_info->is_relaxable_asm_section))
e0001a05 8465 {
43cd72b9
BW
8466 target_offset = removed->to.target_offset;
8467 new_fix.target_sec = new_sec;
8468 new_fix.target_offset = target_offset;
8469 new_fix.translated = TRUE;
8470 *fix = new_fix;
8471 return TRUE;
e0001a05 8472 }
e0001a05 8473 }
43cd72b9
BW
8474 target_offset = removed->to.target_offset;
8475 new_fix.target_sec = new_sec;
e0001a05 8476 }
43cd72b9
BW
8477
8478 /* The target address may have been moved within its section. */
8479 new_offset = offset_with_removed_text (&relax_info->action_list,
8480 target_offset);
8481
8482 new_fix.target_offset = new_offset;
8483 new_fix.target_offset = new_offset;
8484 new_fix.translated = TRUE;
8485 *fix = new_fix;
8486 return TRUE;
e0001a05
NC
8487}
8488
8489
8490/* Fix up a relocation to take account of removed literals. */
8491
8492static void
7fa3d080 8493translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8494{
8495 asection *sec;
8496 xtensa_relax_info *relax_info;
8497 removed_literal *removed;
43cd72b9 8498 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8499
8500 *new_rel = *orig_rel;
8501
8502 if (!r_reloc_is_defined (orig_rel))
8503 return;
8504 sec = r_reloc_get_section (orig_rel);
8505
8506 relax_info = get_xtensa_relax_info (sec);
8507 BFD_ASSERT (relax_info);
8508
43cd72b9
BW
8509 if (!relax_info->is_relaxable_literal_section
8510 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8511 return;
8512
43cd72b9
BW
8513 target_offset = orig_rel->target_offset;
8514
8515 removed = FALSE;
8516 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8517 {
8518 /* Check if the original relocation is against a literal being
8519 removed. */
8520 removed = find_removed_literal (&relax_info->removed_list,
8521 target_offset);
8522 }
8523 if (removed && removed->to.abfd)
e0001a05
NC
8524 {
8525 asection *new_sec;
8526
8527 /* The fact that there is still a relocation to this literal indicates
8528 that the literal is being coalesced, not simply removed. */
8529 BFD_ASSERT (removed->to.abfd != NULL);
8530
43cd72b9
BW
8531 /* This was moved to some other address
8532 (possibly in another section). */
e0001a05
NC
8533 *new_rel = removed->to;
8534 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8535 if (new_sec != sec)
e0001a05
NC
8536 {
8537 sec = new_sec;
8538 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8539 if (!relax_info
8540 || (!relax_info->is_relaxable_literal_section
8541 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8542 return;
8543 }
43cd72b9 8544 target_offset = new_rel->target_offset;
e0001a05
NC
8545 }
8546
8547 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8548 new_offset = offset_with_removed_text (&relax_info->action_list,
8549 target_offset);
e0001a05
NC
8550
8551 /* Modify the offset and addend. */
43cd72b9 8552 removed_bytes = target_offset - new_offset;
e0001a05 8553 new_rel->target_offset = new_offset;
43cd72b9 8554 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8555}
8556
8557
8558/* For dynamic links, there may be a dynamic relocation for each
8559 literal. The number of dynamic relocations must be computed in
8560 size_dynamic_sections, which occurs before relaxation. When a
8561 literal is removed, this function checks if there is a corresponding
8562 dynamic relocation and shrinks the size of the appropriate dynamic
8563 relocation section accordingly. At this point, the contents of the
8564 dynamic relocation sections have not yet been filled in, so there's
8565 nothing else that needs to be done. */
8566
8567static void
7fa3d080
BW
8568shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8569 bfd *abfd,
8570 asection *input_section,
8571 Elf_Internal_Rela *rel)
e0001a05 8572{
f0e6fdb2 8573 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
8574 Elf_Internal_Shdr *symtab_hdr;
8575 struct elf_link_hash_entry **sym_hashes;
8576 unsigned long r_symndx;
8577 int r_type;
8578 struct elf_link_hash_entry *h;
8579 bfd_boolean dynamic_symbol;
8580
f0e6fdb2 8581 htab = elf_xtensa_hash_table (info);
e0001a05
NC
8582 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8583 sym_hashes = elf_sym_hashes (abfd);
8584
8585 r_type = ELF32_R_TYPE (rel->r_info);
8586 r_symndx = ELF32_R_SYM (rel->r_info);
8587
8588 if (r_symndx < symtab_hdr->sh_info)
8589 h = NULL;
8590 else
8591 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8592
4608f3d9 8593 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
8594
8595 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8596 && (input_section->flags & SEC_ALLOC) != 0
8597 && (dynamic_symbol || info->shared))
8598 {
e0001a05
NC
8599 asection *srel;
8600 bfd_boolean is_plt = FALSE;
8601
e0001a05
NC
8602 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8603 {
f0e6fdb2 8604 srel = htab->srelplt;
e0001a05
NC
8605 is_plt = TRUE;
8606 }
8607 else
f0e6fdb2 8608 srel = htab->srelgot;
e0001a05
NC
8609
8610 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 8611 BFD_ASSERT (srel != NULL);
eea6121a
AM
8612 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8613 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8614
8615 if (is_plt)
8616 {
8617 asection *splt, *sgotplt, *srelgot;
8618 int reloc_index, chunk;
8619
8620 /* Find the PLT reloc index of the entry being removed. This
8621 is computed from the size of ".rela.plt". It is needed to
8622 figure out which PLT chunk to resize. Usually "last index
8623 = size - 1" since the index starts at zero, but in this
8624 context, the size has just been decremented so there's no
8625 need to subtract one. */
eea6121a 8626 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8627
8628 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
8629 splt = elf_xtensa_get_plt_section (info, chunk);
8630 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
8631 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8632
8633 /* Check if an entire PLT chunk has just been eliminated. */
8634 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8635 {
8636 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 8637 srelgot = htab->srelgot;
e0001a05
NC
8638 BFD_ASSERT (srelgot != NULL);
8639 srelgot->reloc_count -= 2;
eea6121a
AM
8640 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8641 sgotplt->size -= 8;
e0001a05
NC
8642
8643 /* There should be only one entry left (and it will be
8644 removed below). */
eea6121a
AM
8645 BFD_ASSERT (sgotplt->size == 4);
8646 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8647 }
8648
eea6121a
AM
8649 BFD_ASSERT (sgotplt->size >= 4);
8650 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8651
eea6121a
AM
8652 sgotplt->size -= 4;
8653 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8654 }
8655 }
8656}
8657
8658
43cd72b9
BW
8659/* Take an r_rel and move it to another section. This usually
8660 requires extending the interal_relocation array and pinning it. If
8661 the original r_rel is from the same BFD, we can complete this here.
8662 Otherwise, we add a fix record to let the final link fix the
8663 appropriate address. Contents and internal relocations for the
8664 section must be pinned after calling this routine. */
8665
8666static bfd_boolean
7fa3d080
BW
8667move_literal (bfd *abfd,
8668 struct bfd_link_info *link_info,
8669 asection *sec,
8670 bfd_vma offset,
8671 bfd_byte *contents,
8672 xtensa_relax_info *relax_info,
8673 Elf_Internal_Rela **internal_relocs_p,
8674 const literal_value *lit)
43cd72b9
BW
8675{
8676 Elf_Internal_Rela *new_relocs = NULL;
8677 size_t new_relocs_count = 0;
8678 Elf_Internal_Rela this_rela;
8679 const r_reloc *r_rel;
8680
8681 r_rel = &lit->r_rel;
8682 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8683
8684 if (r_reloc_is_const (r_rel))
8685 bfd_put_32 (abfd, lit->value, contents + offset);
8686 else
8687 {
8688 int r_type;
8689 unsigned i;
8690 asection *target_sec;
8691 reloc_bfd_fix *fix;
8692 unsigned insert_at;
8693
8694 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8695 target_sec = r_reloc_get_section (r_rel);
8696
8697 /* This is the difficult case. We have to create a fix up. */
8698 this_rela.r_offset = offset;
8699 this_rela.r_info = ELF32_R_INFO (0, r_type);
8700 this_rela.r_addend =
8701 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8702 bfd_put_32 (abfd, lit->value, contents + offset);
8703
8704 /* Currently, we cannot move relocations during a relocatable link. */
8705 BFD_ASSERT (!link_info->relocatable);
8706 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8707 r_reloc_get_section (r_rel),
8708 r_rel->target_offset + r_rel->virtual_offset,
8709 FALSE);
8710 /* We also need to mark that relocations are needed here. */
8711 sec->flags |= SEC_RELOC;
8712
8713 translate_reloc_bfd_fix (fix);
8714 /* This fix has not yet been translated. */
8715 add_fix (sec, fix);
8716
8717 /* Add the relocation. If we have already allocated our own
8718 space for the relocations and we have room for more, then use
8719 it. Otherwise, allocate new space and move the literals. */
8720 insert_at = sec->reloc_count;
8721 for (i = 0; i < sec->reloc_count; ++i)
8722 {
8723 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8724 {
8725 insert_at = i;
8726 break;
8727 }
8728 }
8729
8730 if (*internal_relocs_p != relax_info->allocated_relocs
8731 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8732 {
8733 BFD_ASSERT (relax_info->allocated_relocs == NULL
8734 || sec->reloc_count == relax_info->relocs_count);
8735
8736 if (relax_info->allocated_relocs_count == 0)
8737 new_relocs_count = (sec->reloc_count + 2) * 2;
8738 else
8739 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8740
8741 new_relocs = (Elf_Internal_Rela *)
8742 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8743 if (!new_relocs)
8744 return FALSE;
8745
8746 /* We could handle this more quickly by finding the split point. */
8747 if (insert_at != 0)
8748 memcpy (new_relocs, *internal_relocs_p,
8749 insert_at * sizeof (Elf_Internal_Rela));
8750
8751 new_relocs[insert_at] = this_rela;
8752
8753 if (insert_at != sec->reloc_count)
8754 memcpy (new_relocs + insert_at + 1,
8755 (*internal_relocs_p) + insert_at,
8756 (sec->reloc_count - insert_at)
8757 * sizeof (Elf_Internal_Rela));
8758
8759 if (*internal_relocs_p != relax_info->allocated_relocs)
8760 {
8761 /* The first time we re-allocate, we can only free the
8762 old relocs if they were allocated with bfd_malloc.
8763 This is not true when keep_memory is in effect. */
8764 if (!link_info->keep_memory)
8765 free (*internal_relocs_p);
8766 }
8767 else
8768 free (*internal_relocs_p);
8769 relax_info->allocated_relocs = new_relocs;
8770 relax_info->allocated_relocs_count = new_relocs_count;
8771 elf_section_data (sec)->relocs = new_relocs;
8772 sec->reloc_count++;
8773 relax_info->relocs_count = sec->reloc_count;
8774 *internal_relocs_p = new_relocs;
8775 }
8776 else
8777 {
8778 if (insert_at != sec->reloc_count)
8779 {
8780 unsigned idx;
8781 for (idx = sec->reloc_count; idx > insert_at; idx--)
8782 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8783 }
8784 (*internal_relocs_p)[insert_at] = this_rela;
8785 sec->reloc_count++;
8786 if (relax_info->allocated_relocs)
8787 relax_info->relocs_count = sec->reloc_count;
8788 }
8789 }
8790 return TRUE;
8791}
8792
8793
e0001a05
NC
8794/* This is similar to relax_section except that when a target is moved,
8795 we shift addresses up. We also need to modify the size. This
8796 algorithm does NOT allow for relocations into the middle of the
8797 property sections. */
8798
43cd72b9 8799static bfd_boolean
7fa3d080
BW
8800relax_property_section (bfd *abfd,
8801 asection *sec,
8802 struct bfd_link_info *link_info)
e0001a05
NC
8803{
8804 Elf_Internal_Rela *internal_relocs;
8805 bfd_byte *contents;
8806 unsigned i, nexti;
8807 bfd_boolean ok = TRUE;
43cd72b9
BW
8808 bfd_boolean is_full_prop_section;
8809 size_t last_zfill_target_offset = 0;
8810 asection *last_zfill_target_sec = NULL;
8811 bfd_size_type sec_size;
e0001a05 8812
43cd72b9 8813 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8814 internal_relocs = retrieve_internal_relocs (abfd, sec,
8815 link_info->keep_memory);
8816 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8817 if (contents == NULL && sec_size != 0)
e0001a05
NC
8818 {
8819 ok = FALSE;
8820 goto error_return;
8821 }
8822
43cd72b9 8823 is_full_prop_section =
0112cd26
NC
8824 ( CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
8825 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."));
43cd72b9
BW
8826
8827 if (internal_relocs)
e0001a05 8828 {
43cd72b9 8829 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8830 {
8831 Elf_Internal_Rela *irel;
8832 xtensa_relax_info *target_relax_info;
e0001a05
NC
8833 unsigned r_type;
8834 asection *target_sec;
43cd72b9
BW
8835 literal_value val;
8836 bfd_byte *size_p, *flags_p;
e0001a05
NC
8837
8838 /* Locally change the source address.
8839 Translate the target to the new target address.
8840 If it points to this section and has been removed, MOVE IT.
8841 Also, don't forget to modify the associated SIZE at
8842 (offset + 4). */
8843
8844 irel = &internal_relocs[i];
8845 r_type = ELF32_R_TYPE (irel->r_info);
8846 if (r_type == R_XTENSA_NONE)
8847 continue;
8848
43cd72b9
BW
8849 /* Find the literal value. */
8850 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8851 size_p = &contents[irel->r_offset + 4];
8852 flags_p = NULL;
8853 if (is_full_prop_section)
8854 {
8855 flags_p = &contents[irel->r_offset + 8];
8856 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8857 }
8858 else
8859 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8860
43cd72b9 8861 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8862 target_relax_info = get_xtensa_relax_info (target_sec);
8863
8864 if (target_relax_info
43cd72b9
BW
8865 && (target_relax_info->is_relaxable_literal_section
8866 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8867 {
8868 /* Translate the relocation's destination. */
43cd72b9 8869 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8870 long old_size, new_size;
8871
43cd72b9
BW
8872 new_offset = offset_with_removed_text
8873 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8874
8875 /* Assert that we are not out of bounds. */
43cd72b9
BW
8876 old_size = bfd_get_32 (abfd, size_p);
8877
8878 if (old_size == 0)
8879 {
8880 /* Only the first zero-sized unreachable entry is
8881 allowed to expand. In this case the new offset
8882 should be the offset before the fill and the new
8883 size is the expansion size. For other zero-sized
8884 entries the resulting size should be zero with an
8885 offset before or after the fill address depending
8886 on whether the expanding unreachable entry
8887 preceeds it. */
8888 if (last_zfill_target_sec
8889 && last_zfill_target_sec == target_sec
8890 && last_zfill_target_offset == val.r_rel.target_offset)
8891 new_end_offset = new_offset;
8892 else
8893 {
8894 new_end_offset = new_offset;
8895 new_offset = offset_with_removed_text_before_fill
8896 (&target_relax_info->action_list,
8897 val.r_rel.target_offset);
8898
8899 /* If it is not unreachable and we have not yet
8900 seen an unreachable at this address, place it
8901 before the fill address. */
8902 if (!flags_p
8903 || (bfd_get_32 (abfd, flags_p)
8904 & XTENSA_PROP_UNREACHABLE) == 0)
8905 new_end_offset = new_offset;
8906 else
8907 {
8908 last_zfill_target_sec = target_sec;
8909 last_zfill_target_offset = val.r_rel.target_offset;
8910 }
8911 }
8912 }
8913 else
8914 {
8915 new_end_offset = offset_with_removed_text_before_fill
8916 (&target_relax_info->action_list,
8917 val.r_rel.target_offset + old_size);
8918 }
e0001a05 8919
e0001a05 8920 new_size = new_end_offset - new_offset;
43cd72b9 8921
e0001a05
NC
8922 if (new_size != old_size)
8923 {
8924 bfd_put_32 (abfd, new_size, size_p);
8925 pin_contents (sec, contents);
8926 }
43cd72b9
BW
8927
8928 if (new_offset != val.r_rel.target_offset)
e0001a05 8929 {
43cd72b9 8930 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8931 irel->r_addend += diff;
8932 pin_internal_relocs (sec, internal_relocs);
8933 }
8934 }
8935 }
8936 }
8937
8938 /* Combine adjacent property table entries. This is also done in
8939 finish_dynamic_sections() but at that point it's too late to
8940 reclaim the space in the output section, so we do this twice. */
8941
43cd72b9
BW
8942 if (internal_relocs && (!link_info->relocatable
8943 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
8944 {
8945 Elf_Internal_Rela *last_irel = NULL;
8946 int removed_bytes = 0;
8947 bfd_vma offset, last_irel_offset;
8948 bfd_vma section_size;
43cd72b9
BW
8949 bfd_size_type entry_size;
8950 flagword predef_flags;
8951
8952 if (is_full_prop_section)
8953 entry_size = 12;
8954 else
8955 entry_size = 8;
8956
8957 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
8958
8959 /* Walk over memory and irels at the same time.
8960 This REQUIRES that the internal_relocs be sorted by offset. */
8961 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8962 internal_reloc_compare);
8963 nexti = 0; /* Index into internal_relocs. */
8964
8965 pin_internal_relocs (sec, internal_relocs);
8966 pin_contents (sec, contents);
8967
8968 last_irel_offset = (bfd_vma) -1;
eea6121a 8969 section_size = sec->size;
43cd72b9 8970 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 8971
43cd72b9 8972 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
8973 {
8974 Elf_Internal_Rela *irel, *next_irel;
8975 bfd_vma bytes_to_remove, size, actual_offset;
8976 bfd_boolean remove_this_irel;
43cd72b9 8977 flagword flags;
e0001a05
NC
8978
8979 irel = NULL;
8980 next_irel = NULL;
8981
8982 /* Find the next two relocations (if there are that many left),
8983 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8984 the starting reloc index. After these two loops, "i"
8985 is the index of the first non-NONE reloc past that starting
8986 index, and "nexti" is the index for the next non-NONE reloc
8987 after "i". */
8988
8989 for (i = nexti; i < sec->reloc_count; i++)
8990 {
8991 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8992 {
8993 irel = &internal_relocs[i];
8994 break;
8995 }
8996 internal_relocs[i].r_offset -= removed_bytes;
8997 }
8998
8999 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
9000 {
9001 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
9002 != R_XTENSA_NONE)
9003 {
9004 next_irel = &internal_relocs[nexti];
9005 break;
9006 }
9007 internal_relocs[nexti].r_offset -= removed_bytes;
9008 }
9009
9010 remove_this_irel = FALSE;
9011 bytes_to_remove = 0;
9012 actual_offset = offset - removed_bytes;
9013 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9014
43cd72b9
BW
9015 if (is_full_prop_section)
9016 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9017 else
9018 flags = predef_flags;
9019
e0001a05
NC
9020 /* Check that the irels are sorted by offset,
9021 with only one per address. */
9022 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
9023 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
9024
43cd72b9
BW
9025 /* Make sure there aren't relocs on the size or flag fields. */
9026 if ((irel && irel->r_offset == offset + 4)
9027 || (is_full_prop_section
9028 && irel && irel->r_offset == offset + 8))
e0001a05
NC
9029 {
9030 irel->r_offset -= removed_bytes;
9031 last_irel_offset = irel->r_offset;
9032 }
43cd72b9
BW
9033 else if (next_irel && (next_irel->r_offset == offset + 4
9034 || (is_full_prop_section
9035 && next_irel->r_offset == offset + 8)))
e0001a05
NC
9036 {
9037 nexti += 1;
9038 irel->r_offset -= removed_bytes;
9039 next_irel->r_offset -= removed_bytes;
9040 last_irel_offset = next_irel->r_offset;
9041 }
43cd72b9
BW
9042 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9043 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9044 {
43cd72b9
BW
9045 /* Always remove entries with zero size and no alignment. */
9046 bytes_to_remove = entry_size;
e0001a05
NC
9047 if (irel && irel->r_offset == offset)
9048 {
9049 remove_this_irel = TRUE;
9050
9051 irel->r_offset -= removed_bytes;
9052 last_irel_offset = irel->r_offset;
9053 }
9054 }
9055 else if (irel && irel->r_offset == offset)
9056 {
9057 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9058 {
9059 if (last_irel)
9060 {
43cd72b9
BW
9061 flagword old_flags;
9062 bfd_vma old_size =
e0001a05 9063 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
9064 bfd_vma old_address =
9065 (last_irel->r_addend
e0001a05 9066 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
9067 bfd_vma new_address =
9068 (irel->r_addend
e0001a05 9069 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
9070 if (is_full_prop_section)
9071 old_flags = bfd_get_32
9072 (abfd, &contents[last_irel->r_offset + 8]);
9073 else
9074 old_flags = predef_flags;
9075
9076 if ((ELF32_R_SYM (irel->r_info)
9077 == ELF32_R_SYM (last_irel->r_info))
9078 && old_address + old_size == new_address
9079 && old_flags == flags
9080 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9081 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9082 {
43cd72b9 9083 /* Fix the old size. */
e0001a05
NC
9084 bfd_put_32 (abfd, old_size + size,
9085 &contents[last_irel->r_offset + 4]);
43cd72b9 9086 bytes_to_remove = entry_size;
e0001a05
NC
9087 remove_this_irel = TRUE;
9088 }
9089 else
9090 last_irel = irel;
9091 }
9092 else
9093 last_irel = irel;
9094 }
9095
9096 irel->r_offset -= removed_bytes;
9097 last_irel_offset = irel->r_offset;
9098 }
9099
9100 if (remove_this_irel)
9101 {
9102 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9103 irel->r_offset -= bytes_to_remove;
9104 }
9105
9106 if (bytes_to_remove != 0)
9107 {
9108 removed_bytes += bytes_to_remove;
43cd72b9 9109 if (offset + bytes_to_remove < section_size)
e0001a05 9110 memmove (&contents[actual_offset],
43cd72b9
BW
9111 &contents[actual_offset + bytes_to_remove],
9112 section_size - offset - bytes_to_remove);
e0001a05
NC
9113 }
9114 }
9115
43cd72b9 9116 if (removed_bytes)
e0001a05
NC
9117 {
9118 /* Clear the removed bytes. */
9119 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9120
eea6121a 9121 sec->size = section_size - removed_bytes;
e901de89
BW
9122
9123 if (xtensa_is_littable_section (sec))
9124 {
f0e6fdb2
BW
9125 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9126 if (sgotloc)
9127 sgotloc->size -= removed_bytes;
e901de89 9128 }
e0001a05
NC
9129 }
9130 }
e901de89 9131
e0001a05
NC
9132 error_return:
9133 release_internal_relocs (sec, internal_relocs);
9134 release_contents (sec, contents);
9135 return ok;
9136}
9137
9138\f
9139/* Third relaxation pass. */
9140
9141/* Change symbol values to account for removed literals. */
9142
43cd72b9 9143bfd_boolean
7fa3d080 9144relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9145{
9146 xtensa_relax_info *relax_info;
9147 unsigned int sec_shndx;
9148 Elf_Internal_Shdr *symtab_hdr;
9149 Elf_Internal_Sym *isymbuf;
9150 unsigned i, num_syms, num_locals;
9151
9152 relax_info = get_xtensa_relax_info (sec);
9153 BFD_ASSERT (relax_info);
9154
43cd72b9
BW
9155 if (!relax_info->is_relaxable_literal_section
9156 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9157 return TRUE;
9158
9159 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9160
9161 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9162 isymbuf = retrieve_local_syms (abfd);
9163
9164 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9165 num_locals = symtab_hdr->sh_info;
9166
9167 /* Adjust the local symbols defined in this section. */
9168 for (i = 0; i < num_locals; i++)
9169 {
9170 Elf_Internal_Sym *isym = &isymbuf[i];
9171
9172 if (isym->st_shndx == sec_shndx)
9173 {
43cd72b9
BW
9174 bfd_vma new_address = offset_with_removed_text
9175 (&relax_info->action_list, isym->st_value);
9176 bfd_vma new_size = isym->st_size;
9177
9178 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9179 {
9180 bfd_vma new_end = offset_with_removed_text
9181 (&relax_info->action_list, isym->st_value + isym->st_size);
9182 new_size = new_end - new_address;
9183 }
9184
9185 isym->st_value = new_address;
9186 isym->st_size = new_size;
e0001a05
NC
9187 }
9188 }
9189
9190 /* Now adjust the global symbols defined in this section. */
9191 for (i = 0; i < (num_syms - num_locals); i++)
9192 {
9193 struct elf_link_hash_entry *sym_hash;
9194
9195 sym_hash = elf_sym_hashes (abfd)[i];
9196
9197 if (sym_hash->root.type == bfd_link_hash_warning)
9198 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9199
9200 if ((sym_hash->root.type == bfd_link_hash_defined
9201 || sym_hash->root.type == bfd_link_hash_defweak)
9202 && sym_hash->root.u.def.section == sec)
9203 {
43cd72b9
BW
9204 bfd_vma new_address = offset_with_removed_text
9205 (&relax_info->action_list, sym_hash->root.u.def.value);
9206 bfd_vma new_size = sym_hash->size;
9207
9208 if (sym_hash->type == STT_FUNC)
9209 {
9210 bfd_vma new_end = offset_with_removed_text
9211 (&relax_info->action_list,
9212 sym_hash->root.u.def.value + sym_hash->size);
9213 new_size = new_end - new_address;
9214 }
9215
9216 sym_hash->root.u.def.value = new_address;
9217 sym_hash->size = new_size;
e0001a05
NC
9218 }
9219 }
9220
9221 return TRUE;
9222}
9223
9224\f
9225/* "Fix" handling functions, called while performing relocations. */
9226
43cd72b9 9227static bfd_boolean
7fa3d080
BW
9228do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9229 bfd *input_bfd,
9230 asection *input_section,
9231 bfd_byte *contents)
e0001a05
NC
9232{
9233 r_reloc r_rel;
9234 asection *sec, *old_sec;
9235 bfd_vma old_offset;
9236 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9237 reloc_bfd_fix *fix;
9238
9239 if (r_type == R_XTENSA_NONE)
43cd72b9 9240 return TRUE;
e0001a05 9241
43cd72b9
BW
9242 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9243 if (!fix)
9244 return TRUE;
e0001a05 9245
43cd72b9
BW
9246 r_reloc_init (&r_rel, input_bfd, rel, contents,
9247 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9248 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9249 old_offset = r_rel.target_offset;
9250
9251 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9252 {
43cd72b9
BW
9253 if (r_type != R_XTENSA_ASM_EXPAND)
9254 {
9255 (*_bfd_error_handler)
9256 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9257 input_bfd, input_section, rel->r_offset,
9258 elf_howto_table[r_type].name);
9259 return FALSE;
9260 }
e0001a05
NC
9261 /* Leave it be. Resolution will happen in a later stage. */
9262 }
9263 else
9264 {
9265 sec = fix->target_sec;
9266 rel->r_addend += ((sec->output_offset + fix->target_offset)
9267 - (old_sec->output_offset + old_offset));
9268 }
43cd72b9 9269 return TRUE;
e0001a05
NC
9270}
9271
9272
9273static void
7fa3d080
BW
9274do_fix_for_final_link (Elf_Internal_Rela *rel,
9275 bfd *input_bfd,
9276 asection *input_section,
9277 bfd_byte *contents,
9278 bfd_vma *relocationp)
e0001a05
NC
9279{
9280 asection *sec;
9281 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9282 reloc_bfd_fix *fix;
43cd72b9 9283 bfd_vma fixup_diff;
e0001a05
NC
9284
9285 if (r_type == R_XTENSA_NONE)
9286 return;
9287
43cd72b9
BW
9288 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9289 if (!fix)
e0001a05
NC
9290 return;
9291
9292 sec = fix->target_sec;
43cd72b9
BW
9293
9294 fixup_diff = rel->r_addend;
9295 if (elf_howto_table[fix->src_type].partial_inplace)
9296 {
9297 bfd_vma inplace_val;
9298 BFD_ASSERT (fix->src_offset
9299 < bfd_get_section_limit (input_bfd, input_section));
9300 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9301 fixup_diff += inplace_val;
9302 }
9303
e0001a05
NC
9304 *relocationp = (sec->output_section->vma
9305 + sec->output_offset
43cd72b9 9306 + fix->target_offset - fixup_diff);
e0001a05
NC
9307}
9308
9309\f
9310/* Miscellaneous utility functions.... */
9311
9312static asection *
f0e6fdb2 9313elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 9314{
f0e6fdb2
BW
9315 struct elf_xtensa_link_hash_table *htab;
9316 bfd *dynobj;
e0001a05
NC
9317 char plt_name[10];
9318
9319 if (chunk == 0)
f0e6fdb2
BW
9320 {
9321 htab = elf_xtensa_hash_table (info);
9322 return htab->splt;
9323 }
e0001a05 9324
f0e6fdb2 9325 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9326 sprintf (plt_name, ".plt.%u", chunk);
9327 return bfd_get_section_by_name (dynobj, plt_name);
9328}
9329
9330
9331static asection *
f0e6fdb2 9332elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 9333{
f0e6fdb2
BW
9334 struct elf_xtensa_link_hash_table *htab;
9335 bfd *dynobj;
e0001a05
NC
9336 char got_name[14];
9337
9338 if (chunk == 0)
f0e6fdb2
BW
9339 {
9340 htab = elf_xtensa_hash_table (info);
9341 return htab->sgotplt;
9342 }
e0001a05 9343
f0e6fdb2 9344 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9345 sprintf (got_name, ".got.plt.%u", chunk);
9346 return bfd_get_section_by_name (dynobj, got_name);
9347}
9348
9349
9350/* Get the input section for a given symbol index.
9351 If the symbol is:
9352 . a section symbol, return the section;
9353 . a common symbol, return the common section;
9354 . an undefined symbol, return the undefined section;
9355 . an indirect symbol, follow the links;
9356 . an absolute value, return the absolute section. */
9357
9358static asection *
7fa3d080 9359get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9360{
9361 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9362 asection *target_sec = NULL;
43cd72b9 9363 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9364 {
9365 Elf_Internal_Sym *isymbuf;
9366 unsigned int section_index;
9367
9368 isymbuf = retrieve_local_syms (abfd);
9369 section_index = isymbuf[r_symndx].st_shndx;
9370
9371 if (section_index == SHN_UNDEF)
9372 target_sec = bfd_und_section_ptr;
9373 else if (section_index > 0 && section_index < SHN_LORESERVE)
9374 target_sec = bfd_section_from_elf_index (abfd, section_index);
9375 else if (section_index == SHN_ABS)
9376 target_sec = bfd_abs_section_ptr;
9377 else if (section_index == SHN_COMMON)
9378 target_sec = bfd_com_section_ptr;
43cd72b9 9379 else
e0001a05
NC
9380 /* Who knows? */
9381 target_sec = NULL;
9382 }
9383 else
9384 {
9385 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9386 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9387
9388 while (h->root.type == bfd_link_hash_indirect
9389 || h->root.type == bfd_link_hash_warning)
9390 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9391
9392 switch (h->root.type)
9393 {
9394 case bfd_link_hash_defined:
9395 case bfd_link_hash_defweak:
9396 target_sec = h->root.u.def.section;
9397 break;
9398 case bfd_link_hash_common:
9399 target_sec = bfd_com_section_ptr;
9400 break;
9401 case bfd_link_hash_undefined:
9402 case bfd_link_hash_undefweak:
9403 target_sec = bfd_und_section_ptr;
9404 break;
9405 default: /* New indirect warning. */
9406 target_sec = bfd_und_section_ptr;
9407 break;
9408 }
9409 }
9410 return target_sec;
9411}
9412
9413
9414static struct elf_link_hash_entry *
7fa3d080 9415get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9416{
9417 unsigned long indx;
9418 struct elf_link_hash_entry *h;
9419 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9420
9421 if (r_symndx < symtab_hdr->sh_info)
9422 return NULL;
43cd72b9 9423
e0001a05
NC
9424 indx = r_symndx - symtab_hdr->sh_info;
9425 h = elf_sym_hashes (abfd)[indx];
9426 while (h->root.type == bfd_link_hash_indirect
9427 || h->root.type == bfd_link_hash_warning)
9428 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9429 return h;
9430}
9431
9432
9433/* Get the section-relative offset for a symbol number. */
9434
9435static bfd_vma
7fa3d080 9436get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9437{
9438 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9439 bfd_vma offset = 0;
9440
43cd72b9 9441 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9442 {
9443 Elf_Internal_Sym *isymbuf;
9444 isymbuf = retrieve_local_syms (abfd);
9445 offset = isymbuf[r_symndx].st_value;
9446 }
9447 else
9448 {
9449 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9450 struct elf_link_hash_entry *h =
9451 elf_sym_hashes (abfd)[indx];
9452
9453 while (h->root.type == bfd_link_hash_indirect
9454 || h->root.type == bfd_link_hash_warning)
9455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9456 if (h->root.type == bfd_link_hash_defined
9457 || h->root.type == bfd_link_hash_defweak)
9458 offset = h->root.u.def.value;
9459 }
9460 return offset;
9461}
9462
9463
9464static bfd_boolean
7fa3d080 9465is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9466{
9467 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9468 struct elf_link_hash_entry *h;
9469
9470 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9471 if (h && h->root.type == bfd_link_hash_defweak)
9472 return TRUE;
9473 return FALSE;
9474}
9475
9476
9477static bfd_boolean
7fa3d080
BW
9478pcrel_reloc_fits (xtensa_opcode opc,
9479 int opnd,
9480 bfd_vma self_address,
9481 bfd_vma dest_address)
e0001a05 9482{
43cd72b9
BW
9483 xtensa_isa isa = xtensa_default_isa;
9484 uint32 valp = dest_address;
9485 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9486 || xtensa_operand_encode (isa, opc, opnd, &valp))
9487 return FALSE;
9488 return TRUE;
e0001a05
NC
9489}
9490
9491
b614a702 9492static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
b614a702 9493
e0001a05 9494static bfd_boolean
7fa3d080 9495xtensa_is_property_section (asection *sec)
e0001a05 9496{
0112cd26
NC
9497 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9498 || CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9499 || CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME))
b614a702 9500 return TRUE;
e901de89 9501
b614a702 9502 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
0112cd26
NC
9503 && (CONST_STRNEQ (&sec->name[linkonce_len], "x.")
9504 || CONST_STRNEQ (&sec->name[linkonce_len], "p.")
9505 || CONST_STRNEQ (&sec->name[linkonce_len], "prop.")))
e901de89
BW
9506 return TRUE;
9507
e901de89
BW
9508 return FALSE;
9509}
9510
9511
9512static bfd_boolean
7fa3d080 9513xtensa_is_littable_section (asection *sec)
e901de89 9514{
0112cd26 9515 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME))
b614a702 9516 return TRUE;
e901de89 9517
b614a702
BW
9518 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9519 && sec->name[linkonce_len] == 'p'
9520 && sec->name[linkonce_len + 1] == '.')
e901de89 9521 return TRUE;
e0001a05 9522
e901de89 9523 return FALSE;
e0001a05
NC
9524}
9525
9526
43cd72b9 9527static int
7fa3d080 9528internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9529{
43cd72b9
BW
9530 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9531 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9532
9533 if (a->r_offset != b->r_offset)
9534 return (a->r_offset - b->r_offset);
9535
9536 /* We don't need to sort on these criteria for correctness,
9537 but enforcing a more strict ordering prevents unstable qsort
9538 from behaving differently with different implementations.
9539 Without the code below we get correct but different results
9540 on Solaris 2.7 and 2.8. We would like to always produce the
9541 same results no matter the host. */
9542
9543 if (a->r_info != b->r_info)
9544 return (a->r_info - b->r_info);
9545
9546 return (a->r_addend - b->r_addend);
e0001a05
NC
9547}
9548
9549
9550static int
7fa3d080 9551internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9552{
9553 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9554 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9555
43cd72b9
BW
9556 /* Check if one entry overlaps with the other; this shouldn't happen
9557 except when searching for a match. */
e0001a05
NC
9558 return (a->r_offset - b->r_offset);
9559}
9560
9561
74869ac7
BW
9562/* Predicate function used to look up a section in a particular group. */
9563
9564static bfd_boolean
9565match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9566{
9567 const char *gname = inf;
9568 const char *group_name = elf_group_name (sec);
9569
9570 return (group_name == gname
9571 || (group_name != NULL
9572 && gname != NULL
9573 && strcmp (group_name, gname) == 0));
9574}
9575
9576
9577asection *
9578xtensa_get_property_section (asection *sec, const char *base_name)
e0001a05 9579{
74869ac7
BW
9580 const char *suffix, *group_name;
9581 char *prop_sec_name;
9582 asection *prop_sec;
9583
9584 group_name = elf_group_name (sec);
9585 if (group_name)
9586 {
9587 suffix = strrchr (sec->name, '.');
9588 if (suffix == sec->name)
9589 suffix = 0;
9590 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9591 + (suffix ? strlen (suffix) : 0));
9592 strcpy (prop_sec_name, base_name);
9593 if (suffix)
9594 strcat (prop_sec_name, suffix);
9595 }
9596 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9597 {
43cd72b9 9598 char *linkonce_kind = 0;
b614a702
BW
9599
9600 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9601 linkonce_kind = "x.";
b614a702 9602 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9603 linkonce_kind = "p.";
43cd72b9
BW
9604 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9605 linkonce_kind = "prop.";
e0001a05 9606 else
b614a702
BW
9607 abort ();
9608
43cd72b9
BW
9609 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9610 + strlen (linkonce_kind) + 1);
b614a702 9611 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9612 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9613
9614 suffix = sec->name + linkonce_len;
096c35a7 9615 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 9616 the new linkonce_kind (but not for "prop" sections). */
0112cd26 9617 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
9618 suffix += 2;
9619 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
9620 }
9621 else
9622 prop_sec_name = strdup (base_name);
9623
9624 /* Check if the section already exists. */
9625 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9626 match_section_group,
9627 (void *) group_name);
9628 /* If not, create it. */
9629 if (! prop_sec)
9630 {
9631 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9632 flags |= (bfd_get_section_flags (sec->owner, sec)
9633 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9634
9635 prop_sec = bfd_make_section_anyway_with_flags
9636 (sec->owner, strdup (prop_sec_name), flags);
9637 if (! prop_sec)
9638 return 0;
b614a702 9639
74869ac7 9640 elf_group_name (prop_sec) = group_name;
e0001a05
NC
9641 }
9642
74869ac7
BW
9643 free (prop_sec_name);
9644 return prop_sec;
e0001a05
NC
9645}
9646
43cd72b9
BW
9647
9648flagword
7fa3d080 9649xtensa_get_property_predef_flags (asection *sec)
43cd72b9 9650{
0112cd26
NC
9651 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9652 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
43cd72b9
BW
9653 return (XTENSA_PROP_INSN
9654 | XTENSA_PROP_INSN_NO_TRANSFORM
9655 | XTENSA_PROP_INSN_NO_REORDER);
9656
9657 if (xtensa_is_littable_section (sec))
9658 return (XTENSA_PROP_LITERAL
9659 | XTENSA_PROP_INSN_NO_TRANSFORM
9660 | XTENSA_PROP_INSN_NO_REORDER);
9661
9662 return 0;
9663}
9664
e0001a05
NC
9665\f
9666/* Other functions called directly by the linker. */
9667
9668bfd_boolean
7fa3d080
BW
9669xtensa_callback_required_dependence (bfd *abfd,
9670 asection *sec,
9671 struct bfd_link_info *link_info,
9672 deps_callback_t callback,
9673 void *closure)
e0001a05
NC
9674{
9675 Elf_Internal_Rela *internal_relocs;
9676 bfd_byte *contents;
9677 unsigned i;
9678 bfd_boolean ok = TRUE;
43cd72b9
BW
9679 bfd_size_type sec_size;
9680
9681 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9682
9683 /* ".plt*" sections have no explicit relocations but they contain L32R
9684 instructions that reference the corresponding ".got.plt*" sections. */
9685 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 9686 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
9687 {
9688 asection *sgotplt;
9689
9690 /* Find the corresponding ".got.plt*" section. */
9691 if (sec->name[4] == '\0')
9692 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9693 else
9694 {
9695 char got_name[14];
9696 int chunk = 0;
9697
9698 BFD_ASSERT (sec->name[4] == '.');
9699 chunk = strtol (&sec->name[5], NULL, 10);
9700
9701 sprintf (got_name, ".got.plt.%u", chunk);
9702 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9703 }
9704 BFD_ASSERT (sgotplt);
9705
9706 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9707 section referencing a literal at the very beginning of
9708 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9709 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9710 }
9711
9712 internal_relocs = retrieve_internal_relocs (abfd, sec,
9713 link_info->keep_memory);
9714 if (internal_relocs == NULL
43cd72b9 9715 || sec->reloc_count == 0)
e0001a05
NC
9716 return ok;
9717
9718 /* Cache the contents for the duration of this scan. */
9719 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9720 if (contents == NULL && sec_size != 0)
e0001a05
NC
9721 {
9722 ok = FALSE;
9723 goto error_return;
9724 }
9725
43cd72b9
BW
9726 if (!xtensa_default_isa)
9727 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9728
43cd72b9 9729 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9730 {
9731 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9732 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9733 {
9734 r_reloc l32r_rel;
9735 asection *target_sec;
9736 bfd_vma target_offset;
43cd72b9
BW
9737
9738 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9739 target_sec = NULL;
9740 target_offset = 0;
9741 /* L32Rs must be local to the input file. */
9742 if (r_reloc_is_defined (&l32r_rel))
9743 {
9744 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9745 target_offset = l32r_rel.target_offset;
e0001a05
NC
9746 }
9747 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9748 closure);
9749 }
9750 }
9751
9752 error_return:
9753 release_internal_relocs (sec, internal_relocs);
9754 release_contents (sec, contents);
9755 return ok;
9756}
9757
2f89ff8d
L
9758/* The default literal sections should always be marked as "code" (i.e.,
9759 SHF_EXECINSTR). This is particularly important for the Linux kernel
9760 module loader so that the literals are not placed after the text. */
b35d266b 9761static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9762{
0112cd26
NC
9763 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9764 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9765 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 9766 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 9767 { NULL, 0, 0, 0, 0 }
7f4d3958 9768};
e0001a05
NC
9769\f
9770#ifndef ELF_ARCH
9771#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9772#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9773#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9774#define TARGET_BIG_NAME "elf32-xtensa-be"
9775#define ELF_ARCH bfd_arch_xtensa
9776
4af0a1d8
BW
9777#define ELF_MACHINE_CODE EM_XTENSA
9778#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9779
9780#if XCHAL_HAVE_MMU
9781#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9782#else /* !XCHAL_HAVE_MMU */
9783#define ELF_MAXPAGESIZE 1
9784#endif /* !XCHAL_HAVE_MMU */
9785#endif /* ELF_ARCH */
9786
9787#define elf_backend_can_gc_sections 1
9788#define elf_backend_can_refcount 1
9789#define elf_backend_plt_readonly 1
9790#define elf_backend_got_header_size 4
9791#define elf_backend_want_dynbss 0
9792#define elf_backend_want_got_plt 1
9793
9794#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9795
e0001a05
NC
9796#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9797#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9798#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9799#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9800#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9801#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 9802#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
9803
9804#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9805#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9806#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9807#define elf_backend_discard_info elf_xtensa_discard_info
9808#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9809#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9810#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9811#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9812#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9813#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9814#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9815#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
e0001a05
NC
9816#define elf_backend_object_p elf_xtensa_object_p
9817#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9818#define elf_backend_relocate_section elf_xtensa_relocate_section
9819#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
74541ad4
AM
9820#define elf_backend_omit_section_dynsym \
9821 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 9822#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 9823#define elf_backend_action_discarded elf_xtensa_action_discarded
e0001a05
NC
9824
9825#include "elf32-target.h"
This page took 1.028291 seconds and 4 git commands to generate.