2008-01-11 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
f0e6fdb2 2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 106static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 107static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 108static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
109static int internal_reloc_compare (const void *, const void *);
110static int internal_reloc_matches (const void *, const void *);
74869ac7 111extern asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 112static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
113
114/* Other functions called directly by the linker. */
115
116typedef void (*deps_callback_t)
7fa3d080 117 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 118extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
120
121
43cd72b9
BW
122/* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
7fa3d080 126
43cd72b9
BW
127int elf32xtensa_size_opt;
128
129
130/* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
e0001a05 133
7fa3d080 134typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 135
43cd72b9 136
43cd72b9
BW
137/* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
140 this information. */
141
142xtensa_isa xtensa_default_isa;
143
144
e0001a05
NC
145/* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
148
149static bfd_boolean relaxing_section = FALSE;
150
43cd72b9
BW
151/* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
153
154int elf32xtensa_no_literal_movement = 1;
155
e0001a05
NC
156\f
157static reloc_howto_type elf_howto_table[] =
158{
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 161 FALSE, 0, 0, FALSE),
e0001a05
NC
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 165
e0001a05
NC
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
173
e0001a05
NC
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 176 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 179 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 182 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
185 FALSE, 0, 0xffffffff, FALSE),
186
e0001a05 187 EMPTY_HOWTO (7),
e5f131d1
BW
188
189 /* Old relocations for backward compatibility. */
e0001a05 190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
196
e0001a05
NC
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
203
e0001a05 204 EMPTY_HOWTO (13),
1bbb5f21
BW
205
206 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
207 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
208 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 209
e0001a05
NC
210 /* GNU extension to record C++ vtable hierarchy. */
211 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
212 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 213 FALSE, 0, 0, FALSE),
e0001a05
NC
214 /* GNU extension to record C++ vtable member usage. */
215 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
216 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 217 FALSE, 0, 0, FALSE),
43cd72b9
BW
218
219 /* Relocations for supporting difference of symbols. */
220 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 221 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 222 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 223 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 224 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 225 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
226
227 /* General immediate operand relocations. */
228 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 229 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 230 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 232 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 233 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 234 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
258
259 /* "Alternate" relocations. The meaning of these is opcode-specific. */
260 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 264 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 266 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
e0001a05
NC
290};
291
43cd72b9 292#if DEBUG_GEN_RELOC
e0001a05
NC
293#define TRACE(str) \
294 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
295#else
296#define TRACE(str)
297#endif
298
299static reloc_howto_type *
7fa3d080
BW
300elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
301 bfd_reloc_code_real_type code)
e0001a05
NC
302{
303 switch (code)
304 {
305 case BFD_RELOC_NONE:
306 TRACE ("BFD_RELOC_NONE");
307 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
308
309 case BFD_RELOC_32:
310 TRACE ("BFD_RELOC_32");
311 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
312
1bbb5f21
BW
313 case BFD_RELOC_32_PCREL:
314 TRACE ("BFD_RELOC_32_PCREL");
315 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
316
43cd72b9
BW
317 case BFD_RELOC_XTENSA_DIFF8:
318 TRACE ("BFD_RELOC_XTENSA_DIFF8");
319 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
320
321 case BFD_RELOC_XTENSA_DIFF16:
322 TRACE ("BFD_RELOC_XTENSA_DIFF16");
323 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
324
325 case BFD_RELOC_XTENSA_DIFF32:
326 TRACE ("BFD_RELOC_XTENSA_DIFF32");
327 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
328
e0001a05
NC
329 case BFD_RELOC_XTENSA_RTLD:
330 TRACE ("BFD_RELOC_XTENSA_RTLD");
331 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
332
333 case BFD_RELOC_XTENSA_GLOB_DAT:
334 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
335 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
336
337 case BFD_RELOC_XTENSA_JMP_SLOT:
338 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
339 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
340
341 case BFD_RELOC_XTENSA_RELATIVE:
342 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
343 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
344
345 case BFD_RELOC_XTENSA_PLT:
346 TRACE ("BFD_RELOC_XTENSA_PLT");
347 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
348
349 case BFD_RELOC_XTENSA_OP0:
350 TRACE ("BFD_RELOC_XTENSA_OP0");
351 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
352
353 case BFD_RELOC_XTENSA_OP1:
354 TRACE ("BFD_RELOC_XTENSA_OP1");
355 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
356
357 case BFD_RELOC_XTENSA_OP2:
358 TRACE ("BFD_RELOC_XTENSA_OP2");
359 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
360
361 case BFD_RELOC_XTENSA_ASM_EXPAND:
362 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
363 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
364
365 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
366 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
367 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
368
369 case BFD_RELOC_VTABLE_INHERIT:
370 TRACE ("BFD_RELOC_VTABLE_INHERIT");
371 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
372
373 case BFD_RELOC_VTABLE_ENTRY:
374 TRACE ("BFD_RELOC_VTABLE_ENTRY");
375 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
376
377 default:
43cd72b9
BW
378 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
379 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
380 {
381 unsigned n = (R_XTENSA_SLOT0_OP +
382 (code - BFD_RELOC_XTENSA_SLOT0_OP));
383 return &elf_howto_table[n];
384 }
385
386 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
387 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
388 {
389 unsigned n = (R_XTENSA_SLOT0_ALT +
390 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
391 return &elf_howto_table[n];
392 }
393
e0001a05
NC
394 break;
395 }
396
397 TRACE ("Unknown");
398 return NULL;
399}
400
157090f7
AM
401static reloc_howto_type *
402elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
403 const char *r_name)
404{
405 unsigned int i;
406
407 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
408 if (elf_howto_table[i].name != NULL
409 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
410 return &elf_howto_table[i];
411
412 return NULL;
413}
414
e0001a05
NC
415
416/* Given an ELF "rela" relocation, find the corresponding howto and record
417 it in the BFD internal arelent representation of the relocation. */
418
419static void
7fa3d080
BW
420elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
421 arelent *cache_ptr,
422 Elf_Internal_Rela *dst)
e0001a05
NC
423{
424 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
425
426 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
427 cache_ptr->howto = &elf_howto_table[r_type];
428}
429
430\f
431/* Functions for the Xtensa ELF linker. */
432
433/* The name of the dynamic interpreter. This is put in the .interp
434 section. */
435
436#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
437
438/* The size in bytes of an entry in the procedure linkage table.
439 (This does _not_ include the space for the literals associated with
440 the PLT entry.) */
441
442#define PLT_ENTRY_SIZE 16
443
444/* For _really_ large PLTs, we may need to alternate between literals
445 and code to keep the literals within the 256K range of the L32R
446 instructions in the code. It's unlikely that anyone would ever need
447 such a big PLT, but an arbitrary limit on the PLT size would be bad.
448 Thus, we split the PLT into chunks. Since there's very little
449 overhead (2 extra literals) for each chunk, the chunk size is kept
450 small so that the code for handling multiple chunks get used and
451 tested regularly. With 254 entries, there are 1K of literals for
452 each chunk, and that seems like a nice round number. */
453
454#define PLT_ENTRIES_PER_CHUNK 254
455
456/* PLT entries are actually used as stub functions for lazy symbol
457 resolution. Once the symbol is resolved, the stub function is never
458 invoked. Note: the 32-byte frame size used here cannot be changed
459 without a corresponding change in the runtime linker. */
460
461static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
462{
463 0x6c, 0x10, 0x04, /* entry sp, 32 */
464 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
465 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
466 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
467 0x0a, 0x80, 0x00, /* jx a8 */
468 0 /* unused */
469};
470
471static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
472{
473 0x36, 0x41, 0x00, /* entry sp, 32 */
474 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
475 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
476 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
477 0xa0, 0x08, 0x00, /* jx a8 */
478 0 /* unused */
479};
480
f0e6fdb2
BW
481/* Xtensa ELF linker hash table. */
482
483struct elf_xtensa_link_hash_table
484{
485 struct elf_link_hash_table elf;
486
487 /* Short-cuts to get to dynamic linker sections. */
488 asection *sgot;
489 asection *sgotplt;
490 asection *srelgot;
491 asection *splt;
492 asection *srelplt;
493 asection *sgotloc;
494 asection *spltlittbl;
495
496 /* Total count of PLT relocations seen during check_relocs.
497 The actual PLT code must be split into multiple sections and all
498 the sections have to be created before size_dynamic_sections,
499 where we figure out the exact number of PLT entries that will be
500 needed. It is OK if this count is an overestimate, e.g., some
501 relocations may be removed by GC. */
502 int plt_reloc_count;
503};
504
505/* Get the Xtensa ELF linker hash table from a link_info structure. */
506
507#define elf_xtensa_hash_table(p) \
508 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
509
510/* Create an Xtensa ELF linker hash table. */
511
512static struct bfd_link_hash_table *
513elf_xtensa_link_hash_table_create (bfd *abfd)
514{
515 struct elf_xtensa_link_hash_table *ret;
516 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
517
518 ret = bfd_malloc (amt);
519 if (ret == NULL)
520 return NULL;
521
522 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
523 _bfd_elf_link_hash_newfunc,
524 sizeof (struct elf_link_hash_entry)))
525 {
526 free (ret);
527 return NULL;
528 }
529
530 ret->sgot = NULL;
531 ret->sgotplt = NULL;
532 ret->srelgot = NULL;
533 ret->splt = NULL;
534 ret->srelplt = NULL;
535 ret->sgotloc = NULL;
536 ret->spltlittbl = NULL;
537
538 ret->plt_reloc_count = 0;
539
540 return &ret->elf.root;
541}
571b5725
BW
542
543static inline bfd_boolean
4608f3d9 544elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 545 struct bfd_link_info *info)
571b5725
BW
546{
547 /* Check if we should do dynamic things to this symbol. The
548 "ignore_protected" argument need not be set, because Xtensa code
549 does not require special handling of STV_PROTECTED to make function
550 pointer comparisons work properly. The PLT addresses are never
551 used for function pointers. */
552
553 return _bfd_elf_dynamic_symbol_p (h, info, 0);
554}
555
e0001a05
NC
556\f
557static int
7fa3d080 558property_table_compare (const void *ap, const void *bp)
e0001a05
NC
559{
560 const property_table_entry *a = (const property_table_entry *) ap;
561 const property_table_entry *b = (const property_table_entry *) bp;
562
43cd72b9
BW
563 if (a->address == b->address)
564 {
43cd72b9
BW
565 if (a->size != b->size)
566 return (a->size - b->size);
567
568 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
569 return ((b->flags & XTENSA_PROP_ALIGN)
570 - (a->flags & XTENSA_PROP_ALIGN));
571
572 if ((a->flags & XTENSA_PROP_ALIGN)
573 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
574 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
575 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
576 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
577
578 if ((a->flags & XTENSA_PROP_UNREACHABLE)
579 != (b->flags & XTENSA_PROP_UNREACHABLE))
580 return ((b->flags & XTENSA_PROP_UNREACHABLE)
581 - (a->flags & XTENSA_PROP_UNREACHABLE));
582
583 return (a->flags - b->flags);
584 }
585
586 return (a->address - b->address);
587}
588
589
590static int
7fa3d080 591property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
592{
593 const property_table_entry *a = (const property_table_entry *) ap;
594 const property_table_entry *b = (const property_table_entry *) bp;
595
596 /* Check if one entry overlaps with the other. */
e0001a05
NC
597 if ((b->address >= a->address && b->address < (a->address + a->size))
598 || (a->address >= b->address && a->address < (b->address + b->size)))
599 return 0;
600
601 return (a->address - b->address);
602}
603
604
43cd72b9
BW
605/* Get the literal table or property table entries for the given
606 section. Sets TABLE_P and returns the number of entries. On
607 error, returns a negative value. */
e0001a05 608
7fa3d080
BW
609static int
610xtensa_read_table_entries (bfd *abfd,
611 asection *section,
612 property_table_entry **table_p,
613 const char *sec_name,
614 bfd_boolean output_addr)
e0001a05
NC
615{
616 asection *table_section;
e0001a05
NC
617 bfd_size_type table_size = 0;
618 bfd_byte *table_data;
619 property_table_entry *blocks;
e4115460 620 int blk, block_count;
e0001a05 621 bfd_size_type num_records;
bcc2cc8e
BW
622 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
623 bfd_vma section_addr, off;
43cd72b9 624 flagword predef_flags;
bcc2cc8e 625 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
626
627 if (!section
628 || !(section->flags & SEC_ALLOC)
629 || (section->flags & SEC_DEBUGGING))
630 {
631 *table_p = NULL;
632 return 0;
633 }
e0001a05 634
74869ac7 635 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 636 if (table_section)
eea6121a 637 table_size = table_section->size;
43cd72b9 638
e0001a05
NC
639 if (table_size == 0)
640 {
641 *table_p = NULL;
642 return 0;
643 }
644
43cd72b9
BW
645 predef_flags = xtensa_get_property_predef_flags (table_section);
646 table_entry_size = 12;
647 if (predef_flags)
648 table_entry_size -= 4;
649
650 num_records = table_size / table_entry_size;
e0001a05
NC
651 table_data = retrieve_contents (abfd, table_section, TRUE);
652 blocks = (property_table_entry *)
653 bfd_malloc (num_records * sizeof (property_table_entry));
654 block_count = 0;
43cd72b9
BW
655
656 if (output_addr)
657 section_addr = section->output_section->vma + section->output_offset;
658 else
659 section_addr = section->vma;
3ba3bc8c 660
e0001a05 661 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 662 if (internal_relocs && !table_section->reloc_done)
e0001a05 663 {
bcc2cc8e
BW
664 qsort (internal_relocs, table_section->reloc_count,
665 sizeof (Elf_Internal_Rela), internal_reloc_compare);
666 irel = internal_relocs;
667 }
668 else
669 irel = NULL;
670
671 section_limit = bfd_get_section_limit (abfd, section);
672 rel_end = internal_relocs + table_section->reloc_count;
673
674 for (off = 0; off < table_size; off += table_entry_size)
675 {
676 bfd_vma address = bfd_get_32 (abfd, table_data + off);
677
678 /* Skip any relocations before the current offset. This should help
679 avoid confusion caused by unexpected relocations for the preceding
680 table entry. */
681 while (irel &&
682 (irel->r_offset < off
683 || (irel->r_offset == off
684 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
685 {
686 irel += 1;
687 if (irel >= rel_end)
688 irel = 0;
689 }
e0001a05 690
bcc2cc8e 691 if (irel && irel->r_offset == off)
e0001a05 692 {
bcc2cc8e
BW
693 bfd_vma sym_off;
694 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
695 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 696
bcc2cc8e 697 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
698 continue;
699
bcc2cc8e
BW
700 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
701 BFD_ASSERT (sym_off == 0);
702 address += (section_addr + sym_off + irel->r_addend);
e0001a05 703 }
bcc2cc8e 704 else
e0001a05 705 {
bcc2cc8e
BW
706 if (address < section_addr
707 || address >= section_addr + section_limit)
708 continue;
e0001a05 709 }
bcc2cc8e
BW
710
711 blocks[block_count].address = address;
712 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
713 if (predef_flags)
714 blocks[block_count].flags = predef_flags;
715 else
716 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
717 block_count++;
e0001a05
NC
718 }
719
720 release_contents (table_section, table_data);
721 release_internal_relocs (table_section, internal_relocs);
722
43cd72b9 723 if (block_count > 0)
e0001a05
NC
724 {
725 /* Now sort them into address order for easy reference. */
726 qsort (blocks, block_count, sizeof (property_table_entry),
727 property_table_compare);
e4115460
BW
728
729 /* Check that the table contents are valid. Problems may occur,
730 for example, if an unrelocated object file is stripped. */
731 for (blk = 1; blk < block_count; blk++)
732 {
733 /* The only circumstance where two entries may legitimately
734 have the same address is when one of them is a zero-size
735 placeholder to mark a place where fill can be inserted.
736 The zero-size entry should come first. */
737 if (blocks[blk - 1].address == blocks[blk].address &&
738 blocks[blk - 1].size != 0)
739 {
740 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
741 abfd, section);
742 bfd_set_error (bfd_error_bad_value);
743 free (blocks);
744 return -1;
745 }
746 }
e0001a05 747 }
43cd72b9 748
e0001a05
NC
749 *table_p = blocks;
750 return block_count;
751}
752
753
7fa3d080
BW
754static property_table_entry *
755elf_xtensa_find_property_entry (property_table_entry *property_table,
756 int property_table_size,
757 bfd_vma addr)
e0001a05
NC
758{
759 property_table_entry entry;
43cd72b9 760 property_table_entry *rv;
e0001a05 761
43cd72b9
BW
762 if (property_table_size == 0)
763 return NULL;
e0001a05
NC
764
765 entry.address = addr;
766 entry.size = 1;
43cd72b9 767 entry.flags = 0;
e0001a05 768
43cd72b9
BW
769 rv = bsearch (&entry, property_table, property_table_size,
770 sizeof (property_table_entry), property_table_matches);
771 return rv;
772}
773
774
775static bfd_boolean
7fa3d080
BW
776elf_xtensa_in_literal_pool (property_table_entry *lit_table,
777 int lit_table_size,
778 bfd_vma addr)
43cd72b9
BW
779{
780 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
781 return TRUE;
782
783 return FALSE;
784}
785
786\f
787/* Look through the relocs for a section during the first phase, and
788 calculate needed space in the dynamic reloc sections. */
789
790static bfd_boolean
7fa3d080
BW
791elf_xtensa_check_relocs (bfd *abfd,
792 struct bfd_link_info *info,
793 asection *sec,
794 const Elf_Internal_Rela *relocs)
e0001a05 795{
f0e6fdb2 796 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
797 Elf_Internal_Shdr *symtab_hdr;
798 struct elf_link_hash_entry **sym_hashes;
799 const Elf_Internal_Rela *rel;
800 const Elf_Internal_Rela *rel_end;
e0001a05 801
1049f94e 802 if (info->relocatable)
e0001a05
NC
803 return TRUE;
804
f0e6fdb2 805 htab = elf_xtensa_hash_table (info);
e0001a05
NC
806 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
807 sym_hashes = elf_sym_hashes (abfd);
808
e0001a05
NC
809 rel_end = relocs + sec->reloc_count;
810 for (rel = relocs; rel < rel_end; rel++)
811 {
812 unsigned int r_type;
813 unsigned long r_symndx;
814 struct elf_link_hash_entry *h;
815
816 r_symndx = ELF32_R_SYM (rel->r_info);
817 r_type = ELF32_R_TYPE (rel->r_info);
818
819 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
820 {
d003868e
AM
821 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
822 abfd, r_symndx);
e0001a05
NC
823 return FALSE;
824 }
825
826 if (r_symndx < symtab_hdr->sh_info)
827 h = NULL;
828 else
829 {
830 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
831 while (h->root.type == bfd_link_hash_indirect
832 || h->root.type == bfd_link_hash_warning)
833 h = (struct elf_link_hash_entry *) h->root.u.i.link;
834 }
835
836 switch (r_type)
837 {
838 case R_XTENSA_32:
839 if (h == NULL)
840 goto local_literal;
841
842 if ((sec->flags & SEC_ALLOC) != 0)
843 {
e0001a05
NC
844 if (h->got.refcount <= 0)
845 h->got.refcount = 1;
846 else
847 h->got.refcount += 1;
848 }
849 break;
850
851 case R_XTENSA_PLT:
852 /* If this relocation is against a local symbol, then it's
853 exactly the same as a normal local GOT entry. */
854 if (h == NULL)
855 goto local_literal;
856
857 if ((sec->flags & SEC_ALLOC) != 0)
858 {
e0001a05
NC
859 if (h->plt.refcount <= 0)
860 {
f5385ebf 861 h->needs_plt = 1;
e0001a05
NC
862 h->plt.refcount = 1;
863 }
864 else
865 h->plt.refcount += 1;
866
867 /* Keep track of the total PLT relocation count even if we
868 don't yet know whether the dynamic sections will be
869 created. */
f0e6fdb2 870 htab->plt_reloc_count += 1;
e0001a05
NC
871
872 if (elf_hash_table (info)->dynamic_sections_created)
873 {
f0e6fdb2 874 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
875 return FALSE;
876 }
877 }
878 break;
879
880 local_literal:
881 if ((sec->flags & SEC_ALLOC) != 0)
882 {
883 bfd_signed_vma *local_got_refcounts;
884
885 /* This is a global offset table entry for a local symbol. */
886 local_got_refcounts = elf_local_got_refcounts (abfd);
887 if (local_got_refcounts == NULL)
888 {
889 bfd_size_type size;
890
891 size = symtab_hdr->sh_info;
892 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
893 local_got_refcounts =
894 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
895 if (local_got_refcounts == NULL)
896 return FALSE;
897 elf_local_got_refcounts (abfd) = local_got_refcounts;
898 }
899 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
900 }
901 break;
902
e0001a05
NC
903 case R_XTENSA_GNU_VTINHERIT:
904 /* This relocation describes the C++ object vtable hierarchy.
905 Reconstruct it for later use during GC. */
c152c796 906 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
907 return FALSE;
908 break;
909
910 case R_XTENSA_GNU_VTENTRY:
911 /* This relocation describes which C++ vtable entries are actually
912 used. Record for later use during GC. */
d17e0c6e
JB
913 BFD_ASSERT (h != NULL);
914 if (h != NULL
915 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
916 return FALSE;
917 break;
918
919 default:
920 break;
921 }
922 }
923
e0001a05
NC
924 return TRUE;
925}
926
927
95147441
BW
928static void
929elf_xtensa_make_sym_local (struct bfd_link_info *info,
930 struct elf_link_hash_entry *h)
931{
932 if (info->shared)
933 {
934 if (h->plt.refcount > 0)
935 {
936 /* For shared objects, there's no need for PLT entries for local
937 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
938 if (h->got.refcount < 0)
939 h->got.refcount = 0;
940 h->got.refcount += h->plt.refcount;
941 h->plt.refcount = 0;
942 }
943 }
944 else
945 {
946 /* Don't need any dynamic relocations at all. */
947 h->plt.refcount = 0;
948 h->got.refcount = 0;
949 }
950}
951
952
953static void
954elf_xtensa_hide_symbol (struct bfd_link_info *info,
955 struct elf_link_hash_entry *h,
956 bfd_boolean force_local)
957{
958 /* For a shared link, move the plt refcount to the got refcount to leave
959 space for RELATIVE relocs. */
960 elf_xtensa_make_sym_local (info, h);
961
962 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
963}
964
965
e0001a05
NC
966/* Return the section that should be marked against GC for a given
967 relocation. */
968
969static asection *
7fa3d080 970elf_xtensa_gc_mark_hook (asection *sec,
07adf181 971 struct bfd_link_info *info,
7fa3d080
BW
972 Elf_Internal_Rela *rel,
973 struct elf_link_hash_entry *h,
974 Elf_Internal_Sym *sym)
e0001a05 975{
e1e5c0b5
BW
976 /* Property sections are marked "KEEP" in the linker scripts, but they
977 should not cause other sections to be marked. (This approach relies
978 on elf_xtensa_discard_info to remove property table entries that
979 describe discarded sections. Alternatively, it might be more
980 efficient to avoid using "KEEP" in the linker scripts and instead use
981 the gc_mark_extra_sections hook to mark only the property sections
982 that describe marked sections. That alternative does not work well
983 with the current property table sections, which do not correspond
984 one-to-one with the sections they describe, but that should be fixed
985 someday.) */
986 if (xtensa_is_property_section (sec))
987 return NULL;
988
07adf181
AM
989 if (h != NULL)
990 switch (ELF32_R_TYPE (rel->r_info))
991 {
992 case R_XTENSA_GNU_VTINHERIT:
993 case R_XTENSA_GNU_VTENTRY:
994 return NULL;
995 }
996
997 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
998}
999
7fa3d080 1000
e0001a05
NC
1001/* Update the GOT & PLT entry reference counts
1002 for the section being removed. */
1003
1004static bfd_boolean
7fa3d080
BW
1005elf_xtensa_gc_sweep_hook (bfd *abfd,
1006 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1007 asection *sec,
1008 const Elf_Internal_Rela *relocs)
e0001a05
NC
1009{
1010 Elf_Internal_Shdr *symtab_hdr;
1011 struct elf_link_hash_entry **sym_hashes;
1012 bfd_signed_vma *local_got_refcounts;
1013 const Elf_Internal_Rela *rel, *relend;
1014
7dda2462
TG
1015 if (info->relocatable)
1016 return TRUE;
1017
e0001a05
NC
1018 if ((sec->flags & SEC_ALLOC) == 0)
1019 return TRUE;
1020
1021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1022 sym_hashes = elf_sym_hashes (abfd);
1023 local_got_refcounts = elf_local_got_refcounts (abfd);
1024
1025 relend = relocs + sec->reloc_count;
1026 for (rel = relocs; rel < relend; rel++)
1027 {
1028 unsigned long r_symndx;
1029 unsigned int r_type;
1030 struct elf_link_hash_entry *h = NULL;
1031
1032 r_symndx = ELF32_R_SYM (rel->r_info);
1033 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1034 {
1035 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1036 while (h->root.type == bfd_link_hash_indirect
1037 || h->root.type == bfd_link_hash_warning)
1038 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1039 }
e0001a05
NC
1040
1041 r_type = ELF32_R_TYPE (rel->r_info);
1042 switch (r_type)
1043 {
1044 case R_XTENSA_32:
1045 if (h == NULL)
1046 goto local_literal;
1047 if (h->got.refcount > 0)
1048 h->got.refcount--;
1049 break;
1050
1051 case R_XTENSA_PLT:
1052 if (h == NULL)
1053 goto local_literal;
1054 if (h->plt.refcount > 0)
1055 h->plt.refcount--;
1056 break;
1057
1058 local_literal:
1059 if (local_got_refcounts[r_symndx] > 0)
1060 local_got_refcounts[r_symndx] -= 1;
1061 break;
1062
1063 default:
1064 break;
1065 }
1066 }
1067
1068 return TRUE;
1069}
1070
1071
1072/* Create all the dynamic sections. */
1073
1074static bfd_boolean
7fa3d080 1075elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1076{
f0e6fdb2 1077 struct elf_xtensa_link_hash_table *htab;
e901de89 1078 flagword flags, noalloc_flags;
f0e6fdb2
BW
1079
1080 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1081
1082 /* First do all the standard stuff. */
1083 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1084 return FALSE;
f0e6fdb2
BW
1085 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1086 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1087 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1088 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
e0001a05
NC
1089
1090 /* Create any extra PLT sections in case check_relocs has already
1091 been called on all the non-dynamic input files. */
f0e6fdb2 1092 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1093 return FALSE;
1094
e901de89
BW
1095 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1096 | SEC_LINKER_CREATED | SEC_READONLY);
1097 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1098
1099 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1100 if (htab->sgotplt == NULL
1101 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1102 return FALSE;
1103
1104 /* Create ".rela.got". */
f0e6fdb2
BW
1105 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1106 if (htab->srelgot == NULL
1107 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
e0001a05
NC
1108 return FALSE;
1109
e901de89 1110 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1111 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1112 if (htab->sgotloc == NULL
1113 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1114 return FALSE;
1115
e0001a05 1116 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1117 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1118 noalloc_flags);
1119 if (htab->spltlittbl == NULL
1120 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1121 return FALSE;
1122
1123 return TRUE;
1124}
1125
1126
1127static bfd_boolean
f0e6fdb2 1128add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1129{
f0e6fdb2 1130 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1131 int chunk;
1132
1133 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1134 ".got.plt" sections. */
1135 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1136 {
1137 char *sname;
1138 flagword flags;
1139 asection *s;
1140
1141 /* Stop when we find a section has already been created. */
f0e6fdb2 1142 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1143 break;
1144
1145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1146 | SEC_LINKER_CREATED | SEC_READONLY);
1147
1148 sname = (char *) bfd_malloc (10);
1149 sprintf (sname, ".plt.%u", chunk);
ba05963f 1150 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1151 if (s == NULL
e0001a05
NC
1152 || ! bfd_set_section_alignment (dynobj, s, 2))
1153 return FALSE;
1154
1155 sname = (char *) bfd_malloc (14);
1156 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1157 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1158 if (s == NULL
e0001a05
NC
1159 || ! bfd_set_section_alignment (dynobj, s, 2))
1160 return FALSE;
1161 }
1162
1163 return TRUE;
1164}
1165
1166
1167/* Adjust a symbol defined by a dynamic object and referenced by a
1168 regular object. The current definition is in some section of the
1169 dynamic object, but we're not including those sections. We have to
1170 change the definition to something the rest of the link can
1171 understand. */
1172
1173static bfd_boolean
7fa3d080
BW
1174elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1175 struct elf_link_hash_entry *h)
e0001a05
NC
1176{
1177 /* If this is a weak symbol, and there is a real definition, the
1178 processor independent code will have arranged for us to see the
1179 real definition first, and we can just use the same value. */
7fa3d080 1180 if (h->u.weakdef)
e0001a05 1181 {
f6e332e6
AM
1182 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1183 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1184 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1185 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1186 return TRUE;
1187 }
1188
1189 /* This is a reference to a symbol defined by a dynamic object. The
1190 reference must go through the GOT, so there's no need for COPY relocs,
1191 .dynbss, etc. */
1192
1193 return TRUE;
1194}
1195
1196
e0001a05 1197static bfd_boolean
f1ab2340 1198elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1199{
f1ab2340
BW
1200 struct bfd_link_info *info;
1201 struct elf_xtensa_link_hash_table *htab;
1202 bfd_boolean is_dynamic;
e0001a05 1203
f1ab2340
BW
1204 if (h->root.type == bfd_link_hash_indirect)
1205 return TRUE;
e0001a05
NC
1206
1207 if (h->root.type == bfd_link_hash_warning)
1208 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1209
f1ab2340
BW
1210 info = (struct bfd_link_info *) arg;
1211 htab = elf_xtensa_hash_table (info);
e0001a05 1212
f1ab2340 1213 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 1214
f1ab2340 1215 if (! is_dynamic)
95147441 1216 elf_xtensa_make_sym_local (info, h);
e0001a05 1217
f1ab2340
BW
1218 if (h->plt.refcount > 0)
1219 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1220
1221 if (h->got.refcount > 0)
f1ab2340 1222 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1223
1224 return TRUE;
1225}
1226
1227
1228static void
f0e6fdb2 1229elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1230{
f0e6fdb2 1231 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1232 bfd *i;
1233
f0e6fdb2
BW
1234 htab = elf_xtensa_hash_table (info);
1235
e0001a05
NC
1236 for (i = info->input_bfds; i; i = i->link_next)
1237 {
1238 bfd_signed_vma *local_got_refcounts;
1239 bfd_size_type j, cnt;
1240 Elf_Internal_Shdr *symtab_hdr;
1241
1242 local_got_refcounts = elf_local_got_refcounts (i);
1243 if (!local_got_refcounts)
1244 continue;
1245
1246 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1247 cnt = symtab_hdr->sh_info;
1248
1249 for (j = 0; j < cnt; ++j)
1250 {
1251 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1252 htab->srelgot->size += (local_got_refcounts[j]
1253 * sizeof (Elf32_External_Rela));
e0001a05
NC
1254 }
1255 }
1256}
1257
1258
1259/* Set the sizes of the dynamic sections. */
1260
1261static bfd_boolean
7fa3d080
BW
1262elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1263 struct bfd_link_info *info)
e0001a05 1264{
f0e6fdb2 1265 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1266 bfd *dynobj, *abfd;
1267 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1268 bfd_boolean relplt, relgot;
1269 int plt_entries, plt_chunks, chunk;
1270
1271 plt_entries = 0;
1272 plt_chunks = 0;
e0001a05 1273
f0e6fdb2 1274 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1275 dynobj = elf_hash_table (info)->dynobj;
1276 if (dynobj == NULL)
1277 abort ();
f0e6fdb2
BW
1278 srelgot = htab->srelgot;
1279 srelplt = htab->srelplt;
e0001a05
NC
1280
1281 if (elf_hash_table (info)->dynamic_sections_created)
1282 {
f0e6fdb2
BW
1283 BFD_ASSERT (htab->srelgot != NULL
1284 && htab->srelplt != NULL
1285 && htab->sgot != NULL
1286 && htab->spltlittbl != NULL
1287 && htab->sgotloc != NULL);
1288
e0001a05 1289 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1290 if (info->executable)
e0001a05
NC
1291 {
1292 s = bfd_get_section_by_name (dynobj, ".interp");
1293 if (s == NULL)
1294 abort ();
eea6121a 1295 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1296 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1297 }
1298
1299 /* Allocate room for one word in ".got". */
f0e6fdb2 1300 htab->sgot->size = 4;
e0001a05 1301
f1ab2340
BW
1302 /* Allocate space in ".rela.got" for literals that reference global
1303 symbols and space in ".rela.plt" for literals that have PLT
1304 entries. */
e0001a05 1305 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1306 elf_xtensa_allocate_dynrelocs,
7fa3d080 1307 (void *) info);
e0001a05 1308
e0001a05
NC
1309 /* If we are generating a shared object, we also need space in
1310 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1311 reference local symbols. */
1312 if (info->shared)
f0e6fdb2 1313 elf_xtensa_allocate_local_got_size (info);
e0001a05 1314
e0001a05
NC
1315 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1316 each PLT entry, we need the PLT code plus a 4-byte literal.
1317 For each chunk of ".plt", we also need two more 4-byte
1318 literals, two corresponding entries in ".rela.got", and an
1319 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1320 spltlittbl = htab->spltlittbl;
eea6121a 1321 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1322 plt_chunks =
1323 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1324
1325 /* Iterate over all the PLT chunks, including any extra sections
1326 created earlier because the initial count of PLT relocations
1327 was an overestimate. */
1328 for (chunk = 0;
f0e6fdb2 1329 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1330 chunk++)
1331 {
1332 int chunk_entries;
1333
f0e6fdb2
BW
1334 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1335 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1336
1337 if (chunk < plt_chunks - 1)
1338 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1339 else if (chunk == plt_chunks - 1)
1340 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1341 else
1342 chunk_entries = 0;
1343
1344 if (chunk_entries != 0)
1345 {
eea6121a
AM
1346 sgotplt->size = 4 * (chunk_entries + 2);
1347 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1348 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1349 spltlittbl->size += 8;
e0001a05
NC
1350 }
1351 else
1352 {
eea6121a
AM
1353 sgotplt->size = 0;
1354 splt->size = 0;
e0001a05
NC
1355 }
1356 }
e901de89
BW
1357
1358 /* Allocate space in ".got.loc" to match the total size of all the
1359 literal tables. */
f0e6fdb2 1360 sgotloc = htab->sgotloc;
eea6121a 1361 sgotloc->size = spltlittbl->size;
e901de89
BW
1362 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1363 {
1364 if (abfd->flags & DYNAMIC)
1365 continue;
1366 for (s = abfd->sections; s != NULL; s = s->next)
1367 {
b536dc1e
BW
1368 if (! elf_discarded_section (s)
1369 && xtensa_is_littable_section (s)
1370 && s != spltlittbl)
eea6121a 1371 sgotloc->size += s->size;
e901de89
BW
1372 }
1373 }
e0001a05
NC
1374 }
1375
1376 /* Allocate memory for dynamic sections. */
1377 relplt = FALSE;
1378 relgot = FALSE;
1379 for (s = dynobj->sections; s != NULL; s = s->next)
1380 {
1381 const char *name;
e0001a05
NC
1382
1383 if ((s->flags & SEC_LINKER_CREATED) == 0)
1384 continue;
1385
1386 /* It's OK to base decisions on the section name, because none
1387 of the dynobj section names depend upon the input files. */
1388 name = bfd_get_section_name (dynobj, s);
1389
0112cd26 1390 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1391 {
c456f082 1392 if (s->size != 0)
e0001a05 1393 {
c456f082
AM
1394 if (strcmp (name, ".rela.plt") == 0)
1395 relplt = TRUE;
1396 else if (strcmp (name, ".rela.got") == 0)
1397 relgot = TRUE;
1398
1399 /* We use the reloc_count field as a counter if we need
1400 to copy relocs into the output file. */
1401 s->reloc_count = 0;
e0001a05
NC
1402 }
1403 }
0112cd26
NC
1404 else if (! CONST_STRNEQ (name, ".plt.")
1405 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1406 && strcmp (name, ".got") != 0
e0001a05
NC
1407 && strcmp (name, ".plt") != 0
1408 && strcmp (name, ".got.plt") != 0
e901de89
BW
1409 && strcmp (name, ".xt.lit.plt") != 0
1410 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1411 {
1412 /* It's not one of our sections, so don't allocate space. */
1413 continue;
1414 }
1415
c456f082
AM
1416 if (s->size == 0)
1417 {
1418 /* If we don't need this section, strip it from the output
1419 file. We must create the ".plt*" and ".got.plt*"
1420 sections in create_dynamic_sections and/or check_relocs
1421 based on a conservative estimate of the PLT relocation
1422 count, because the sections must be created before the
1423 linker maps input sections to output sections. The
1424 linker does that before size_dynamic_sections, where we
1425 compute the exact size of the PLT, so there may be more
1426 of these sections than are actually needed. */
1427 s->flags |= SEC_EXCLUDE;
1428 }
1429 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1430 {
1431 /* Allocate memory for the section contents. */
eea6121a 1432 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1433 if (s->contents == NULL)
e0001a05
NC
1434 return FALSE;
1435 }
1436 }
1437
1438 if (elf_hash_table (info)->dynamic_sections_created)
1439 {
1440 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1441 known until finish_dynamic_sections, but we need to get the relocs
1442 in place before they are sorted. */
e0001a05
NC
1443 for (chunk = 0; chunk < plt_chunks; chunk++)
1444 {
1445 Elf_Internal_Rela irela;
1446 bfd_byte *loc;
1447
1448 irela.r_offset = 0;
1449 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1450 irela.r_addend = 0;
1451
1452 loc = (srelgot->contents
1453 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1454 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1455 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1456 loc + sizeof (Elf32_External_Rela));
1457 srelgot->reloc_count += 2;
1458 }
1459
1460 /* Add some entries to the .dynamic section. We fill in the
1461 values later, in elf_xtensa_finish_dynamic_sections, but we
1462 must add the entries now so that we get the correct size for
1463 the .dynamic section. The DT_DEBUG entry is filled in by the
1464 dynamic linker and used by the debugger. */
1465#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1466 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1467
ba05963f 1468 if (info->executable)
e0001a05
NC
1469 {
1470 if (!add_dynamic_entry (DT_DEBUG, 0))
1471 return FALSE;
1472 }
1473
1474 if (relplt)
1475 {
c243ad3b 1476 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1477 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1478 || !add_dynamic_entry (DT_JMPREL, 0))
1479 return FALSE;
1480 }
1481
1482 if (relgot)
1483 {
1484 if (!add_dynamic_entry (DT_RELA, 0)
1485 || !add_dynamic_entry (DT_RELASZ, 0)
1486 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1487 return FALSE;
1488 }
1489
c243ad3b
BW
1490 if (!add_dynamic_entry (DT_PLTGOT, 0)
1491 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1492 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1493 return FALSE;
1494 }
1495#undef add_dynamic_entry
1496
1497 return TRUE;
1498}
1499
e0001a05
NC
1500\f
1501/* Perform the specified relocation. The instruction at (contents + address)
1502 is modified to set one operand to represent the value in "relocation". The
1503 operand position is determined by the relocation type recorded in the
1504 howto. */
1505
1506#define CALL_SEGMENT_BITS (30)
7fa3d080 1507#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1508
1509static bfd_reloc_status_type
7fa3d080
BW
1510elf_xtensa_do_reloc (reloc_howto_type *howto,
1511 bfd *abfd,
1512 asection *input_section,
1513 bfd_vma relocation,
1514 bfd_byte *contents,
1515 bfd_vma address,
1516 bfd_boolean is_weak_undef,
1517 char **error_message)
e0001a05 1518{
43cd72b9 1519 xtensa_format fmt;
e0001a05 1520 xtensa_opcode opcode;
e0001a05 1521 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1522 static xtensa_insnbuf ibuff = NULL;
1523 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1524 bfd_vma self_address;
43cd72b9
BW
1525 bfd_size_type input_size;
1526 int opnd, slot;
e0001a05
NC
1527 uint32 newval;
1528
43cd72b9
BW
1529 if (!ibuff)
1530 {
1531 ibuff = xtensa_insnbuf_alloc (isa);
1532 sbuff = xtensa_insnbuf_alloc (isa);
1533 }
1534
1535 input_size = bfd_get_section_limit (abfd, input_section);
1536
1bbb5f21
BW
1537 /* Calculate the PC address for this instruction. */
1538 self_address = (input_section->output_section->vma
1539 + input_section->output_offset
1540 + address);
1541
e0001a05
NC
1542 switch (howto->type)
1543 {
1544 case R_XTENSA_NONE:
43cd72b9
BW
1545 case R_XTENSA_DIFF8:
1546 case R_XTENSA_DIFF16:
1547 case R_XTENSA_DIFF32:
e0001a05
NC
1548 return bfd_reloc_ok;
1549
1550 case R_XTENSA_ASM_EXPAND:
1551 if (!is_weak_undef)
1552 {
1553 /* Check for windowed CALL across a 1GB boundary. */
1554 xtensa_opcode opcode =
1555 get_expanded_call_opcode (contents + address,
43cd72b9 1556 input_size - address, 0);
e0001a05
NC
1557 if (is_windowed_call_opcode (opcode))
1558 {
43cd72b9
BW
1559 if ((self_address >> CALL_SEGMENT_BITS)
1560 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1561 {
1562 *error_message = "windowed longcall crosses 1GB boundary; "
1563 "return may fail";
1564 return bfd_reloc_dangerous;
1565 }
1566 }
1567 }
1568 return bfd_reloc_ok;
1569
1570 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1571 {
e0001a05 1572 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1573 bfd_reloc_status_type retval =
1574 elf_xtensa_do_asm_simplify (contents, address, input_size,
1575 error_message);
e0001a05 1576 if (retval != bfd_reloc_ok)
43cd72b9 1577 return bfd_reloc_dangerous;
e0001a05
NC
1578
1579 /* The CALL needs to be relocated. Continue below for that part. */
1580 address += 3;
c46082c8 1581 self_address += 3;
43cd72b9 1582 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1583 }
1584 break;
1585
1586 case R_XTENSA_32:
1587 case R_XTENSA_PLT:
1588 {
1589 bfd_vma x;
1590 x = bfd_get_32 (abfd, contents + address);
1591 x = x + relocation;
1592 bfd_put_32 (abfd, x, contents + address);
1593 }
1594 return bfd_reloc_ok;
1bbb5f21
BW
1595
1596 case R_XTENSA_32_PCREL:
1597 bfd_put_32 (abfd, relocation - self_address, contents + address);
1598 return bfd_reloc_ok;
e0001a05
NC
1599 }
1600
43cd72b9
BW
1601 /* Only instruction slot-specific relocations handled below.... */
1602 slot = get_relocation_slot (howto->type);
1603 if (slot == XTENSA_UNDEFINED)
e0001a05 1604 {
43cd72b9 1605 *error_message = "unexpected relocation";
e0001a05
NC
1606 return bfd_reloc_dangerous;
1607 }
1608
43cd72b9
BW
1609 /* Read the instruction into a buffer and decode the opcode. */
1610 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1611 input_size - address);
1612 fmt = xtensa_format_decode (isa, ibuff);
1613 if (fmt == XTENSA_UNDEFINED)
e0001a05 1614 {
43cd72b9 1615 *error_message = "cannot decode instruction format";
e0001a05
NC
1616 return bfd_reloc_dangerous;
1617 }
1618
43cd72b9 1619 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1620
43cd72b9
BW
1621 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1622 if (opcode == XTENSA_UNDEFINED)
e0001a05 1623 {
43cd72b9 1624 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1625 return bfd_reloc_dangerous;
1626 }
1627
43cd72b9
BW
1628 /* Check for opcode-specific "alternate" relocations. */
1629 if (is_alt_relocation (howto->type))
1630 {
1631 if (opcode == get_l32r_opcode ())
1632 {
1633 /* Handle the special-case of non-PC-relative L32R instructions. */
1634 bfd *output_bfd = input_section->output_section->owner;
1635 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1636 if (!lit4_sec)
1637 {
1638 *error_message = "relocation references missing .lit4 section";
1639 return bfd_reloc_dangerous;
1640 }
1641 self_address = ((lit4_sec->vma & ~0xfff)
1642 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1643 newval = relocation;
1644 opnd = 1;
1645 }
1646 else if (opcode == get_const16_opcode ())
1647 {
1648 /* ALT used for high 16 bits. */
1649 newval = relocation >> 16;
1650 opnd = 1;
1651 }
1652 else
1653 {
1654 /* No other "alternate" relocations currently defined. */
1655 *error_message = "unexpected relocation";
1656 return bfd_reloc_dangerous;
1657 }
1658 }
1659 else /* Not an "alternate" relocation.... */
1660 {
1661 if (opcode == get_const16_opcode ())
1662 {
1663 newval = relocation & 0xffff;
1664 opnd = 1;
1665 }
1666 else
1667 {
1668 /* ...normal PC-relative relocation.... */
1669
1670 /* Determine which operand is being relocated. */
1671 opnd = get_relocation_opnd (opcode, howto->type);
1672 if (opnd == XTENSA_UNDEFINED)
1673 {
1674 *error_message = "unexpected relocation";
1675 return bfd_reloc_dangerous;
1676 }
1677
1678 if (!howto->pc_relative)
1679 {
1680 *error_message = "expected PC-relative relocation";
1681 return bfd_reloc_dangerous;
1682 }
e0001a05 1683
43cd72b9
BW
1684 newval = relocation;
1685 }
1686 }
e0001a05 1687
43cd72b9
BW
1688 /* Apply the relocation. */
1689 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1690 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1691 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1692 sbuff, newval))
e0001a05 1693 {
2db662be
BW
1694 const char *opname = xtensa_opcode_name (isa, opcode);
1695 const char *msg;
1696
1697 msg = "cannot encode";
1698 if (is_direct_call_opcode (opcode))
1699 {
1700 if ((relocation & 0x3) != 0)
1701 msg = "misaligned call target";
1702 else
1703 msg = "call target out of range";
1704 }
1705 else if (opcode == get_l32r_opcode ())
1706 {
1707 if ((relocation & 0x3) != 0)
1708 msg = "misaligned literal target";
1709 else if (is_alt_relocation (howto->type))
1710 msg = "literal target out of range (too many literals)";
1711 else if (self_address > relocation)
1712 msg = "literal target out of range (try using text-section-literals)";
1713 else
1714 msg = "literal placed after use";
1715 }
1716
1717 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1718 return bfd_reloc_dangerous;
1719 }
1720
43cd72b9 1721 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1722 if (is_direct_call_opcode (opcode)
1723 && is_windowed_call_opcode (opcode))
1724 {
43cd72b9
BW
1725 if ((self_address >> CALL_SEGMENT_BITS)
1726 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1727 {
43cd72b9
BW
1728 *error_message =
1729 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1730 return bfd_reloc_dangerous;
1731 }
1732 }
1733
43cd72b9
BW
1734 /* Write the modified instruction back out of the buffer. */
1735 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1736 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1737 input_size - address);
e0001a05
NC
1738 return bfd_reloc_ok;
1739}
1740
1741
2db662be 1742static char *
7fa3d080 1743vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1744{
1745 /* To reduce the size of the memory leak,
1746 we only use a single message buffer. */
1747 static bfd_size_type alloc_size = 0;
1748 static char *message = NULL;
1749 bfd_size_type orig_len, len = 0;
1750 bfd_boolean is_append;
1751
1752 VA_OPEN (ap, arglen);
1753 VA_FIXEDARG (ap, const char *, origmsg);
1754
1755 is_append = (origmsg == message);
1756
1757 orig_len = strlen (origmsg);
1758 len = orig_len + strlen (fmt) + arglen + 20;
1759 if (len > alloc_size)
1760 {
1761 message = (char *) bfd_realloc (message, len);
1762 alloc_size = len;
1763 }
1764 if (!is_append)
1765 memcpy (message, origmsg, orig_len);
1766 vsprintf (message + orig_len, fmt, ap);
1767 VA_CLOSE (ap);
1768 return message;
1769}
1770
1771
e0001a05
NC
1772/* This function is registered as the "special_function" in the
1773 Xtensa howto for handling simplify operations.
1774 bfd_perform_relocation / bfd_install_relocation use it to
1775 perform (install) the specified relocation. Since this replaces the code
1776 in bfd_perform_relocation, it is basically an Xtensa-specific,
1777 stripped-down version of bfd_perform_relocation. */
1778
1779static bfd_reloc_status_type
7fa3d080
BW
1780bfd_elf_xtensa_reloc (bfd *abfd,
1781 arelent *reloc_entry,
1782 asymbol *symbol,
1783 void *data,
1784 asection *input_section,
1785 bfd *output_bfd,
1786 char **error_message)
e0001a05
NC
1787{
1788 bfd_vma relocation;
1789 bfd_reloc_status_type flag;
1790 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1791 bfd_vma output_base = 0;
1792 reloc_howto_type *howto = reloc_entry->howto;
1793 asection *reloc_target_output_section;
1794 bfd_boolean is_weak_undef;
1795
dd1a320b
BW
1796 if (!xtensa_default_isa)
1797 xtensa_default_isa = xtensa_isa_init (0, 0);
1798
1049f94e 1799 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1800 output, and the reloc is against an external symbol, the resulting
1801 reloc will also be against the same symbol. In such a case, we
1802 don't want to change anything about the way the reloc is handled,
1803 since it will all be done at final link time. This test is similar
1804 to what bfd_elf_generic_reloc does except that it lets relocs with
1805 howto->partial_inplace go through even if the addend is non-zero.
1806 (The real problem is that partial_inplace is set for XTENSA_32
1807 relocs to begin with, but that's a long story and there's little we
1808 can do about it now....) */
1809
7fa3d080 1810 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1811 {
1812 reloc_entry->address += input_section->output_offset;
1813 return bfd_reloc_ok;
1814 }
1815
1816 /* Is the address of the relocation really within the section? */
07515404 1817 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1818 return bfd_reloc_outofrange;
1819
4cc11e76 1820 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1821 initial relocation command value. */
1822
1823 /* Get symbol value. (Common symbols are special.) */
1824 if (bfd_is_com_section (symbol->section))
1825 relocation = 0;
1826 else
1827 relocation = symbol->value;
1828
1829 reloc_target_output_section = symbol->section->output_section;
1830
1831 /* Convert input-section-relative symbol value to absolute. */
1832 if ((output_bfd && !howto->partial_inplace)
1833 || reloc_target_output_section == NULL)
1834 output_base = 0;
1835 else
1836 output_base = reloc_target_output_section->vma;
1837
1838 relocation += output_base + symbol->section->output_offset;
1839
1840 /* Add in supplied addend. */
1841 relocation += reloc_entry->addend;
1842
1843 /* Here the variable relocation holds the final address of the
1844 symbol we are relocating against, plus any addend. */
1845 if (output_bfd)
1846 {
1847 if (!howto->partial_inplace)
1848 {
1849 /* This is a partial relocation, and we want to apply the relocation
1850 to the reloc entry rather than the raw data. Everything except
1851 relocations against section symbols has already been handled
1852 above. */
43cd72b9 1853
e0001a05
NC
1854 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1855 reloc_entry->addend = relocation;
1856 reloc_entry->address += input_section->output_offset;
1857 return bfd_reloc_ok;
1858 }
1859 else
1860 {
1861 reloc_entry->address += input_section->output_offset;
1862 reloc_entry->addend = 0;
1863 }
1864 }
1865
1866 is_weak_undef = (bfd_is_und_section (symbol->section)
1867 && (symbol->flags & BSF_WEAK) != 0);
1868 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1869 (bfd_byte *) data, (bfd_vma) octets,
1870 is_weak_undef, error_message);
1871
1872 if (flag == bfd_reloc_dangerous)
1873 {
1874 /* Add the symbol name to the error message. */
1875 if (! *error_message)
1876 *error_message = "";
1877 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1878 strlen (symbol->name) + 17,
70961b9d
AM
1879 symbol->name,
1880 (unsigned long) reloc_entry->addend);
e0001a05
NC
1881 }
1882
1883 return flag;
1884}
1885
1886
1887/* Set up an entry in the procedure linkage table. */
1888
1889static bfd_vma
f0e6fdb2 1890elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
1891 bfd *output_bfd,
1892 unsigned reloc_index)
e0001a05
NC
1893{
1894 asection *splt, *sgotplt;
1895 bfd_vma plt_base, got_base;
1896 bfd_vma code_offset, lit_offset;
1897 int chunk;
1898
1899 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
1900 splt = elf_xtensa_get_plt_section (info, chunk);
1901 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
1902 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1903
1904 plt_base = splt->output_section->vma + splt->output_offset;
1905 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1906
1907 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1908 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1909
1910 /* Fill in the literal entry. This is the offset of the dynamic
1911 relocation entry. */
1912 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1913 sgotplt->contents + lit_offset);
1914
1915 /* Fill in the entry in the procedure linkage table. */
1916 memcpy (splt->contents + code_offset,
1917 (bfd_big_endian (output_bfd)
1918 ? elf_xtensa_be_plt_entry
1919 : elf_xtensa_le_plt_entry),
1920 PLT_ENTRY_SIZE);
1921 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1922 plt_base + code_offset + 3),
1923 splt->contents + code_offset + 4);
1924 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1925 plt_base + code_offset + 6),
1926 splt->contents + code_offset + 7);
1927 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1928 plt_base + code_offset + 9),
1929 splt->contents + code_offset + 10);
1930
1931 return plt_base + code_offset;
1932}
1933
1934
e0001a05 1935/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1936 both relocatable and final links. */
e0001a05
NC
1937
1938static bfd_boolean
7fa3d080
BW
1939elf_xtensa_relocate_section (bfd *output_bfd,
1940 struct bfd_link_info *info,
1941 bfd *input_bfd,
1942 asection *input_section,
1943 bfd_byte *contents,
1944 Elf_Internal_Rela *relocs,
1945 Elf_Internal_Sym *local_syms,
1946 asection **local_sections)
e0001a05 1947{
f0e6fdb2 1948 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1949 Elf_Internal_Shdr *symtab_hdr;
1950 Elf_Internal_Rela *rel;
1951 Elf_Internal_Rela *relend;
1952 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
1953 property_table_entry *lit_table = 0;
1954 int ltblsize = 0;
e0001a05 1955 char *error_message = NULL;
43cd72b9 1956 bfd_size_type input_size;
e0001a05 1957
43cd72b9
BW
1958 if (!xtensa_default_isa)
1959 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 1960
f0e6fdb2 1961 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1962 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1963 sym_hashes = elf_sym_hashes (input_bfd);
1964
88d65ad6
BW
1965 if (elf_hash_table (info)->dynamic_sections_created)
1966 {
1967 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
1968 &lit_table, XTENSA_LIT_SEC_NAME,
1969 TRUE);
88d65ad6
BW
1970 if (ltblsize < 0)
1971 return FALSE;
1972 }
1973
43cd72b9
BW
1974 input_size = bfd_get_section_limit (input_bfd, input_section);
1975
e0001a05
NC
1976 rel = relocs;
1977 relend = relocs + input_section->reloc_count;
1978 for (; rel < relend; rel++)
1979 {
1980 int r_type;
1981 reloc_howto_type *howto;
1982 unsigned long r_symndx;
1983 struct elf_link_hash_entry *h;
1984 Elf_Internal_Sym *sym;
1985 asection *sec;
1986 bfd_vma relocation;
1987 bfd_reloc_status_type r;
1988 bfd_boolean is_weak_undef;
1989 bfd_boolean unresolved_reloc;
9b8c98a4 1990 bfd_boolean warned;
e0001a05
NC
1991
1992 r_type = ELF32_R_TYPE (rel->r_info);
1993 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
1994 || r_type == (int) R_XTENSA_GNU_VTENTRY)
1995 continue;
1996
1997 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
1998 {
1999 bfd_set_error (bfd_error_bad_value);
2000 return FALSE;
2001 }
2002 howto = &elf_howto_table[r_type];
2003
2004 r_symndx = ELF32_R_SYM (rel->r_info);
2005
ab96bf03
AM
2006 h = NULL;
2007 sym = NULL;
2008 sec = NULL;
2009 is_weak_undef = FALSE;
2010 unresolved_reloc = FALSE;
2011 warned = FALSE;
2012
2013 if (howto->partial_inplace && !info->relocatable)
2014 {
2015 /* Because R_XTENSA_32 was made partial_inplace to fix some
2016 problems with DWARF info in partial links, there may be
2017 an addend stored in the contents. Take it out of there
2018 and move it back into the addend field of the reloc. */
2019 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2020 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2021 }
2022
2023 if (r_symndx < symtab_hdr->sh_info)
2024 {
2025 sym = local_syms + r_symndx;
2026 sec = local_sections[r_symndx];
2027 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2028 }
2029 else
2030 {
2031 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2032 r_symndx, symtab_hdr, sym_hashes,
2033 h, sec, relocation,
2034 unresolved_reloc, warned);
2035
2036 if (relocation == 0
2037 && !unresolved_reloc
2038 && h->root.type == bfd_link_hash_undefweak)
2039 is_weak_undef = TRUE;
2040 }
2041
2042 if (sec != NULL && elf_discarded_section (sec))
2043 {
2044 /* For relocs against symbols from removed linkonce sections,
2045 or sections discarded by a linker script, we just want the
2046 section contents zeroed. Avoid any special processing. */
2047 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2048 rel->r_info = 0;
2049 rel->r_addend = 0;
2050 continue;
2051 }
2052
1049f94e 2053 if (info->relocatable)
e0001a05 2054 {
43cd72b9 2055 /* This is a relocatable link.
e0001a05
NC
2056 1) If the reloc is against a section symbol, adjust
2057 according to the output section.
2058 2) If there is a new target for this relocation,
2059 the new target will be in the same output section.
2060 We adjust the relocation by the output section
2061 difference. */
2062
2063 if (relaxing_section)
2064 {
2065 /* Check if this references a section in another input file. */
43cd72b9
BW
2066 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2067 contents))
2068 return FALSE;
e0001a05
NC
2069 }
2070
43cd72b9 2071 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2072 {
43cd72b9 2073 char *error_message = NULL;
e0001a05
NC
2074 /* Convert ASM_SIMPLIFY into the simpler relocation
2075 so that they never escape a relaxing link. */
43cd72b9
BW
2076 r = contract_asm_expansion (contents, input_size, rel,
2077 &error_message);
2078 if (r != bfd_reloc_ok)
2079 {
2080 if (!((*info->callbacks->reloc_dangerous)
2081 (info, error_message, input_bfd, input_section,
2082 rel->r_offset)))
2083 return FALSE;
2084 }
e0001a05
NC
2085 r_type = ELF32_R_TYPE (rel->r_info);
2086 }
2087
1049f94e 2088 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2089 anything unless the reloc is against a section symbol,
2090 in which case we have to adjust according to where the
2091 section symbol winds up in the output section. */
2092 if (r_symndx < symtab_hdr->sh_info)
2093 {
2094 sym = local_syms + r_symndx;
2095 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2096 {
2097 sec = local_sections[r_symndx];
2098 rel->r_addend += sec->output_offset + sym->st_value;
2099 }
2100 }
2101
2102 /* If there is an addend with a partial_inplace howto,
2103 then move the addend to the contents. This is a hack
1049f94e 2104 to work around problems with DWARF in relocatable links
e0001a05
NC
2105 with some previous version of BFD. Now we can't easily get
2106 rid of the hack without breaking backward compatibility.... */
2107 if (rel->r_addend)
2108 {
2109 howto = &elf_howto_table[r_type];
2110 if (howto->partial_inplace)
2111 {
2112 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2113 rel->r_addend, contents,
2114 rel->r_offset, FALSE,
2115 &error_message);
2116 if (r != bfd_reloc_ok)
2117 {
2118 if (!((*info->callbacks->reloc_dangerous)
2119 (info, error_message, input_bfd, input_section,
2120 rel->r_offset)))
2121 return FALSE;
2122 }
2123 rel->r_addend = 0;
2124 }
2125 }
2126
1049f94e 2127 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2128 continue;
2129 }
2130
2131 /* This is a final link. */
2132
e0001a05
NC
2133 if (relaxing_section)
2134 {
2135 /* Check if this references a section in another input file. */
43cd72b9
BW
2136 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2137 &relocation);
e0001a05
NC
2138 }
2139
2140 /* Sanity check the address. */
43cd72b9 2141 if (rel->r_offset >= input_size
e0001a05
NC
2142 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2143 {
43cd72b9
BW
2144 (*_bfd_error_handler)
2145 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2146 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2147 bfd_set_error (bfd_error_bad_value);
2148 return FALSE;
2149 }
2150
2151 /* Generate dynamic relocations. */
2152 if (elf_hash_table (info)->dynamic_sections_created)
2153 {
4608f3d9 2154 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 2155
1bbb5f21
BW
2156 if (dynamic_symbol && (is_operand_relocation (r_type)
2157 || r_type == R_XTENSA_32_PCREL))
e0001a05 2158 {
e0001a05 2159 const char *name = h->root.root.string;
1bbb5f21
BW
2160 error_message =
2161 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2162 strlen (name) + 2, name);
e0001a05
NC
2163 if (!((*info->callbacks->reloc_dangerous)
2164 (info, error_message, input_bfd, input_section,
2165 rel->r_offset)))
2166 return FALSE;
2167 }
2168 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2169 && (input_section->flags & SEC_ALLOC) != 0
2170 && (dynamic_symbol || info->shared))
2171 {
2172 Elf_Internal_Rela outrel;
2173 bfd_byte *loc;
2174 asection *srel;
2175
2176 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2177 srel = htab->srelplt;
e0001a05 2178 else
f0e6fdb2 2179 srel = htab->srelgot;
e0001a05
NC
2180
2181 BFD_ASSERT (srel != NULL);
2182
2183 outrel.r_offset =
2184 _bfd_elf_section_offset (output_bfd, info,
2185 input_section, rel->r_offset);
2186
2187 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2188 memset (&outrel, 0, sizeof outrel);
2189 else
2190 {
f0578e28
BW
2191 outrel.r_offset += (input_section->output_section->vma
2192 + input_section->output_offset);
e0001a05 2193
88d65ad6
BW
2194 /* Complain if the relocation is in a read-only section
2195 and not in a literal pool. */
2196 if ((input_section->flags & SEC_READONLY) != 0
2197 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2198 outrel.r_offset))
88d65ad6
BW
2199 {
2200 error_message =
2201 _("dynamic relocation in read-only section");
2202 if (!((*info->callbacks->reloc_dangerous)
2203 (info, error_message, input_bfd, input_section,
2204 rel->r_offset)))
2205 return FALSE;
2206 }
2207
e0001a05
NC
2208 if (dynamic_symbol)
2209 {
2210 outrel.r_addend = rel->r_addend;
2211 rel->r_addend = 0;
2212
2213 if (r_type == R_XTENSA_32)
2214 {
2215 outrel.r_info =
2216 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2217 relocation = 0;
2218 }
2219 else /* r_type == R_XTENSA_PLT */
2220 {
2221 outrel.r_info =
2222 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2223
2224 /* Create the PLT entry and set the initial
2225 contents of the literal entry to the address of
2226 the PLT entry. */
43cd72b9 2227 relocation =
f0e6fdb2 2228 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2229 srel->reloc_count);
2230 }
2231 unresolved_reloc = FALSE;
2232 }
2233 else
2234 {
2235 /* Generate a RELATIVE relocation. */
2236 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2237 outrel.r_addend = 0;
2238 }
2239 }
2240
2241 loc = (srel->contents
2242 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2243 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2244 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2245 <= srel->size);
e0001a05
NC
2246 }
2247 }
2248
2249 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2250 because such sections are not SEC_ALLOC and thus ld.so will
2251 not process them. */
2252 if (unresolved_reloc
2253 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2254 && h->def_dynamic))
bf1747de
BW
2255 {
2256 (*_bfd_error_handler)
2257 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2258 input_bfd,
2259 input_section,
2260 (long) rel->r_offset,
2261 howto->name,
2262 h->root.root.string);
2263 return FALSE;
2264 }
e0001a05
NC
2265
2266 /* There's no point in calling bfd_perform_relocation here.
2267 Just go directly to our "special function". */
2268 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2269 relocation + rel->r_addend,
2270 contents, rel->r_offset, is_weak_undef,
2271 &error_message);
43cd72b9 2272
9b8c98a4 2273 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2274 {
2275 const char *name;
2276
43cd72b9 2277 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2278 BFD_ASSERT (error_message != NULL);
e0001a05 2279
7fa3d080 2280 if (h)
e0001a05
NC
2281 name = h->root.root.string;
2282 else
2283 {
2284 name = bfd_elf_string_from_elf_section
2285 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2286 if (name && *name == '\0')
2287 name = bfd_section_name (input_bfd, sec);
2288 }
2289 if (name)
43cd72b9
BW
2290 {
2291 if (rel->r_addend == 0)
2292 error_message = vsprint_msg (error_message, ": %s",
2293 strlen (name) + 2, name);
2294 else
2295 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2296 strlen (name) + 22,
0fd3a477 2297 name, (int)rel->r_addend);
43cd72b9
BW
2298 }
2299
e0001a05
NC
2300 if (!((*info->callbacks->reloc_dangerous)
2301 (info, error_message, input_bfd, input_section,
2302 rel->r_offset)))
2303 return FALSE;
2304 }
2305 }
2306
88d65ad6
BW
2307 if (lit_table)
2308 free (lit_table);
2309
3ba3bc8c
BW
2310 input_section->reloc_done = TRUE;
2311
e0001a05
NC
2312 return TRUE;
2313}
2314
2315
2316/* Finish up dynamic symbol handling. There's not much to do here since
2317 the PLT and GOT entries are all set up by relocate_section. */
2318
2319static bfd_boolean
7fa3d080
BW
2320elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2321 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2322 struct elf_link_hash_entry *h,
2323 Elf_Internal_Sym *sym)
e0001a05 2324{
bf1747de 2325 if (h->needs_plt && !h->def_regular)
e0001a05
NC
2326 {
2327 /* Mark the symbol as undefined, rather than as defined in
2328 the .plt section. Leave the value alone. */
2329 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
2330 /* If the symbol is weak, we do need to clear the value.
2331 Otherwise, the PLT entry would provide a definition for
2332 the symbol even if the symbol wasn't defined anywhere,
2333 and so the symbol would never be NULL. */
2334 if (!h->ref_regular_nonweak)
2335 sym->st_value = 0;
e0001a05
NC
2336 }
2337
2338 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2339 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2340 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2341 sym->st_shndx = SHN_ABS;
2342
2343 return TRUE;
2344}
2345
2346
2347/* Combine adjacent literal table entries in the output. Adjacent
2348 entries within each input section may have been removed during
2349 relaxation, but we repeat the process here, even though it's too late
2350 to shrink the output section, because it's important to minimize the
2351 number of literal table entries to reduce the start-up work for the
2352 runtime linker. Returns the number of remaining table entries or -1
2353 on error. */
2354
2355static int
7fa3d080
BW
2356elf_xtensa_combine_prop_entries (bfd *output_bfd,
2357 asection *sxtlit,
2358 asection *sgotloc)
e0001a05 2359{
e0001a05
NC
2360 bfd_byte *contents;
2361 property_table_entry *table;
e901de89 2362 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2363 bfd_vma offset;
2364 int n, m, num;
2365
eea6121a 2366 section_size = sxtlit->size;
e0001a05
NC
2367 BFD_ASSERT (section_size % 8 == 0);
2368 num = section_size / 8;
2369
eea6121a 2370 sgotloc_size = sgotloc->size;
e901de89 2371 if (sgotloc_size != section_size)
b536dc1e
BW
2372 {
2373 (*_bfd_error_handler)
43cd72b9 2374 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2375 return -1;
2376 }
e901de89 2377
eea6121a
AM
2378 table = bfd_malloc (num * sizeof (property_table_entry));
2379 if (table == 0)
e0001a05
NC
2380 return -1;
2381
2382 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2383 propagates to the output section, where it doesn't really apply and
eea6121a 2384 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2385 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2386
eea6121a
AM
2387 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2388 {
2389 if (contents != 0)
2390 free (contents);
2391 free (table);
2392 return -1;
2393 }
e0001a05
NC
2394
2395 /* There should never be any relocations left at this point, so this
2396 is quite a bit easier than what is done during relaxation. */
2397
2398 /* Copy the raw contents into a property table array and sort it. */
2399 offset = 0;
2400 for (n = 0; n < num; n++)
2401 {
2402 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2403 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2404 offset += 8;
2405 }
2406 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2407
2408 for (n = 0; n < num; n++)
2409 {
2410 bfd_boolean remove = FALSE;
2411
2412 if (table[n].size == 0)
2413 remove = TRUE;
2414 else if (n > 0 &&
2415 (table[n-1].address + table[n-1].size == table[n].address))
2416 {
2417 table[n-1].size += table[n].size;
2418 remove = TRUE;
2419 }
2420
2421 if (remove)
2422 {
2423 for (m = n; m < num - 1; m++)
2424 {
2425 table[m].address = table[m+1].address;
2426 table[m].size = table[m+1].size;
2427 }
2428
2429 n--;
2430 num--;
2431 }
2432 }
2433
2434 /* Copy the data back to the raw contents. */
2435 offset = 0;
2436 for (n = 0; n < num; n++)
2437 {
2438 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2439 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2440 offset += 8;
2441 }
2442
2443 /* Clear the removed bytes. */
2444 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2445 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2446
e901de89
BW
2447 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2448 section_size))
e0001a05
NC
2449 return -1;
2450
e901de89
BW
2451 /* Copy the contents to ".got.loc". */
2452 memcpy (sgotloc->contents, contents, section_size);
2453
e0001a05 2454 free (contents);
b614a702 2455 free (table);
e0001a05
NC
2456 return num;
2457}
2458
2459
2460/* Finish up the dynamic sections. */
2461
2462static bfd_boolean
7fa3d080
BW
2463elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2464 struct bfd_link_info *info)
e0001a05 2465{
f0e6fdb2 2466 struct elf_xtensa_link_hash_table *htab;
e0001a05 2467 bfd *dynobj;
e901de89 2468 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2469 Elf32_External_Dyn *dyncon, *dynconend;
2470 int num_xtlit_entries;
2471
2472 if (! elf_hash_table (info)->dynamic_sections_created)
2473 return TRUE;
2474
f0e6fdb2 2475 htab = elf_xtensa_hash_table (info);
e0001a05
NC
2476 dynobj = elf_hash_table (info)->dynobj;
2477 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2478 BFD_ASSERT (sdyn != NULL);
2479
2480 /* Set the first entry in the global offset table to the address of
2481 the dynamic section. */
f0e6fdb2 2482 sgot = htab->sgot;
e0001a05
NC
2483 if (sgot)
2484 {
eea6121a 2485 BFD_ASSERT (sgot->size == 4);
e0001a05 2486 if (sdyn == NULL)
7fa3d080 2487 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2488 else
2489 bfd_put_32 (output_bfd,
2490 sdyn->output_section->vma + sdyn->output_offset,
2491 sgot->contents);
2492 }
2493
f0e6fdb2 2494 srelplt = htab->srelplt;
7fa3d080 2495 if (srelplt && srelplt->size != 0)
e0001a05
NC
2496 {
2497 asection *sgotplt, *srelgot, *spltlittbl;
2498 int chunk, plt_chunks, plt_entries;
2499 Elf_Internal_Rela irela;
2500 bfd_byte *loc;
2501 unsigned rtld_reloc;
2502
f0e6fdb2
BW
2503 srelgot = htab->srelgot;
2504 spltlittbl = htab->spltlittbl;
2505 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
2506
2507 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2508 of them follow immediately after.... */
2509 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2510 {
2511 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2512 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2513 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2514 break;
2515 }
2516 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2517
eea6121a 2518 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2519 plt_chunks =
2520 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2521
2522 for (chunk = 0; chunk < plt_chunks; chunk++)
2523 {
2524 int chunk_entries = 0;
2525
f0e6fdb2 2526 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2527 BFD_ASSERT (sgotplt != NULL);
2528
2529 /* Emit special RTLD relocations for the first two entries in
2530 each chunk of the .got.plt section. */
2531
2532 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2533 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2534 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2535 irela.r_offset = (sgotplt->output_section->vma
2536 + sgotplt->output_offset);
2537 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2538 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2539 rtld_reloc += 1;
2540 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2541
2542 /* Next literal immediately follows the first. */
2543 loc += sizeof (Elf32_External_Rela);
2544 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2545 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2546 irela.r_offset = (sgotplt->output_section->vma
2547 + sgotplt->output_offset + 4);
2548 /* Tell rtld to set value to object's link map. */
2549 irela.r_addend = 2;
2550 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2551 rtld_reloc += 1;
2552 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2553
2554 /* Fill in the literal table. */
2555 if (chunk < plt_chunks - 1)
2556 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2557 else
2558 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2559
eea6121a 2560 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2561 bfd_put_32 (output_bfd,
2562 sgotplt->output_section->vma + sgotplt->output_offset,
2563 spltlittbl->contents + (chunk * 8) + 0);
2564 bfd_put_32 (output_bfd,
2565 8 + (chunk_entries * 4),
2566 spltlittbl->contents + (chunk * 8) + 4);
2567 }
2568
2569 /* All the dynamic relocations have been emitted at this point.
2570 Make sure the relocation sections are the correct size. */
eea6121a
AM
2571 if (srelgot->size != (sizeof (Elf32_External_Rela)
2572 * srelgot->reloc_count)
2573 || srelplt->size != (sizeof (Elf32_External_Rela)
2574 * srelplt->reloc_count))
e0001a05
NC
2575 abort ();
2576
2577 /* The .xt.lit.plt section has just been modified. This must
2578 happen before the code below which combines adjacent literal
2579 table entries, and the .xt.lit.plt contents have to be forced to
2580 the output here. */
2581 if (! bfd_set_section_contents (output_bfd,
2582 spltlittbl->output_section,
2583 spltlittbl->contents,
2584 spltlittbl->output_offset,
eea6121a 2585 spltlittbl->size))
e0001a05
NC
2586 return FALSE;
2587 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2588 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2589 }
2590
2591 /* Combine adjacent literal table entries. */
1049f94e 2592 BFD_ASSERT (! info->relocatable);
e901de89 2593 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 2594 sgotloc = htab->sgotloc;
b536dc1e 2595 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2596 num_xtlit_entries =
2597 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2598 if (num_xtlit_entries < 0)
2599 return FALSE;
2600
2601 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2602 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2603 for (; dyncon < dynconend; dyncon++)
2604 {
2605 Elf_Internal_Dyn dyn;
e0001a05
NC
2606
2607 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2608
2609 switch (dyn.d_tag)
2610 {
2611 default:
2612 break;
2613
2614 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2615 dyn.d_un.d_val = num_xtlit_entries;
2616 break;
2617
2618 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 2619 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
2620 break;
2621
e0001a05 2622 case DT_PLTGOT:
e29297b7 2623 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
2624 break;
2625
e0001a05 2626 case DT_JMPREL:
e29297b7 2627 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
2628 break;
2629
2630 case DT_PLTRELSZ:
e29297b7 2631 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
2632 break;
2633
2634 case DT_RELASZ:
2635 /* Adjust RELASZ to not include JMPREL. This matches what
2636 glibc expects and what is done for several other ELF
2637 targets (e.g., i386, alpha), but the "correct" behavior
2638 seems to be unresolved. Since the linker script arranges
2639 for .rela.plt to follow all other relocation sections, we
2640 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 2641 if (htab->srelplt)
e29297b7 2642 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
2643 break;
2644 }
2645
2646 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2647 }
2648
2649 return TRUE;
2650}
2651
2652\f
2653/* Functions for dealing with the e_flags field. */
2654
2655/* Merge backend specific data from an object file to the output
2656 object file when linking. */
2657
2658static bfd_boolean
7fa3d080 2659elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2660{
2661 unsigned out_mach, in_mach;
2662 flagword out_flag, in_flag;
2663
2664 /* Check if we have the same endianess. */
2665 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2666 return FALSE;
2667
2668 /* Don't even pretend to support mixed-format linking. */
2669 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2670 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2671 return FALSE;
2672
2673 out_flag = elf_elfheader (obfd)->e_flags;
2674 in_flag = elf_elfheader (ibfd)->e_flags;
2675
2676 out_mach = out_flag & EF_XTENSA_MACH;
2677 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2678 if (out_mach != in_mach)
e0001a05
NC
2679 {
2680 (*_bfd_error_handler)
43cd72b9 2681 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2682 ibfd, out_mach, in_mach);
e0001a05
NC
2683 bfd_set_error (bfd_error_wrong_format);
2684 return FALSE;
2685 }
2686
2687 if (! elf_flags_init (obfd))
2688 {
2689 elf_flags_init (obfd) = TRUE;
2690 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2691
e0001a05
NC
2692 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2693 && bfd_get_arch_info (obfd)->the_default)
2694 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2695 bfd_get_mach (ibfd));
43cd72b9 2696
e0001a05
NC
2697 return TRUE;
2698 }
2699
43cd72b9
BW
2700 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2701 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2702
43cd72b9
BW
2703 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2704 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2705
2706 return TRUE;
2707}
2708
2709
2710static bfd_boolean
7fa3d080 2711elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2712{
2713 BFD_ASSERT (!elf_flags_init (abfd)
2714 || elf_elfheader (abfd)->e_flags == flags);
2715
2716 elf_elfheader (abfd)->e_flags |= flags;
2717 elf_flags_init (abfd) = TRUE;
2718
2719 return TRUE;
2720}
2721
2722
e0001a05 2723static bfd_boolean
7fa3d080 2724elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2725{
2726 FILE *f = (FILE *) farg;
2727 flagword e_flags = elf_elfheader (abfd)->e_flags;
2728
2729 fprintf (f, "\nXtensa header:\n");
43cd72b9 2730 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2731 fprintf (f, "\nMachine = Base\n");
2732 else
2733 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2734
2735 fprintf (f, "Insn tables = %s\n",
2736 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2737
2738 fprintf (f, "Literal tables = %s\n",
2739 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2740
2741 return _bfd_elf_print_private_bfd_data (abfd, farg);
2742}
2743
2744
2745/* Set the right machine number for an Xtensa ELF file. */
2746
2747static bfd_boolean
7fa3d080 2748elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2749{
2750 int mach;
2751 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2752
2753 switch (arch)
2754 {
2755 case E_XTENSA_MACH:
2756 mach = bfd_mach_xtensa;
2757 break;
2758 default:
2759 return FALSE;
2760 }
2761
2762 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2763 return TRUE;
2764}
2765
2766
2767/* The final processing done just before writing out an Xtensa ELF object
2768 file. This gets the Xtensa architecture right based on the machine
2769 number. */
2770
2771static void
7fa3d080
BW
2772elf_xtensa_final_write_processing (bfd *abfd,
2773 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2774{
2775 int mach;
2776 unsigned long val;
2777
2778 switch (mach = bfd_get_mach (abfd))
2779 {
2780 case bfd_mach_xtensa:
2781 val = E_XTENSA_MACH;
2782 break;
2783 default:
2784 return;
2785 }
2786
2787 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2788 elf_elfheader (abfd)->e_flags |= val;
2789}
2790
2791
2792static enum elf_reloc_type_class
7fa3d080 2793elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2794{
2795 switch ((int) ELF32_R_TYPE (rela->r_info))
2796 {
2797 case R_XTENSA_RELATIVE:
2798 return reloc_class_relative;
2799 case R_XTENSA_JMP_SLOT:
2800 return reloc_class_plt;
2801 default:
2802 return reloc_class_normal;
2803 }
2804}
2805
2806\f
2807static bfd_boolean
7fa3d080
BW
2808elf_xtensa_discard_info_for_section (bfd *abfd,
2809 struct elf_reloc_cookie *cookie,
2810 struct bfd_link_info *info,
2811 asection *sec)
e0001a05
NC
2812{
2813 bfd_byte *contents;
e0001a05 2814 bfd_vma offset, actual_offset;
1d25768e
BW
2815 bfd_size_type removed_bytes = 0;
2816 bfd_size_type entry_size;
e0001a05
NC
2817
2818 if (sec->output_section
2819 && bfd_is_abs_section (sec->output_section))
2820 return FALSE;
2821
1d25768e
BW
2822 if (xtensa_is_proptable_section (sec))
2823 entry_size = 12;
2824 else
2825 entry_size = 8;
2826
a3ef2d63 2827 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
2828 return FALSE;
2829
e0001a05
NC
2830 contents = retrieve_contents (abfd, sec, info->keep_memory);
2831 if (!contents)
2832 return FALSE;
2833
2834 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2835 if (!cookie->rels)
2836 {
2837 release_contents (sec, contents);
2838 return FALSE;
2839 }
2840
1d25768e
BW
2841 /* Sort the relocations. They should already be in order when
2842 relaxation is enabled, but it might not be. */
2843 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2844 internal_reloc_compare);
2845
e0001a05
NC
2846 cookie->rel = cookie->rels;
2847 cookie->relend = cookie->rels + sec->reloc_count;
2848
a3ef2d63 2849 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
2850 {
2851 actual_offset = offset - removed_bytes;
2852
2853 /* The ...symbol_deleted_p function will skip over relocs but it
2854 won't adjust their offsets, so do that here. */
2855 while (cookie->rel < cookie->relend
2856 && cookie->rel->r_offset < offset)
2857 {
2858 cookie->rel->r_offset -= removed_bytes;
2859 cookie->rel++;
2860 }
2861
2862 while (cookie->rel < cookie->relend
2863 && cookie->rel->r_offset == offset)
2864 {
c152c796 2865 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2866 {
2867 /* Remove the table entry. (If the reloc type is NONE, then
2868 the entry has already been merged with another and deleted
2869 during relaxation.) */
2870 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2871 {
2872 /* Shift the contents up. */
a3ef2d63 2873 if (offset + entry_size < sec->size)
e0001a05 2874 memmove (&contents[actual_offset],
1d25768e 2875 &contents[actual_offset + entry_size],
a3ef2d63 2876 sec->size - offset - entry_size);
1d25768e 2877 removed_bytes += entry_size;
e0001a05
NC
2878 }
2879
2880 /* Remove this relocation. */
2881 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2882 }
2883
2884 /* Adjust the relocation offset for previous removals. This
2885 should not be done before calling ...symbol_deleted_p
2886 because it might mess up the offset comparisons there.
2887 Make sure the offset doesn't underflow in the case where
2888 the first entry is removed. */
2889 if (cookie->rel->r_offset >= removed_bytes)
2890 cookie->rel->r_offset -= removed_bytes;
2891 else
2892 cookie->rel->r_offset = 0;
2893
2894 cookie->rel++;
2895 }
2896 }
2897
2898 if (removed_bytes != 0)
2899 {
2900 /* Adjust any remaining relocs (shouldn't be any). */
2901 for (; cookie->rel < cookie->relend; cookie->rel++)
2902 {
2903 if (cookie->rel->r_offset >= removed_bytes)
2904 cookie->rel->r_offset -= removed_bytes;
2905 else
2906 cookie->rel->r_offset = 0;
2907 }
2908
2909 /* Clear the removed bytes. */
a3ef2d63 2910 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
2911
2912 pin_contents (sec, contents);
2913 pin_internal_relocs (sec, cookie->rels);
2914
eea6121a 2915 /* Shrink size. */
a3ef2d63
BW
2916 if (sec->rawsize == 0)
2917 sec->rawsize = sec->size;
2918 sec->size -= removed_bytes;
b536dc1e
BW
2919
2920 if (xtensa_is_littable_section (sec))
2921 {
f0e6fdb2
BW
2922 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2923 if (sgotloc)
2924 sgotloc->size -= removed_bytes;
b536dc1e 2925 }
e0001a05
NC
2926 }
2927 else
2928 {
2929 release_contents (sec, contents);
2930 release_internal_relocs (sec, cookie->rels);
2931 }
2932
2933 return (removed_bytes != 0);
2934}
2935
2936
2937static bfd_boolean
7fa3d080
BW
2938elf_xtensa_discard_info (bfd *abfd,
2939 struct elf_reloc_cookie *cookie,
2940 struct bfd_link_info *info)
e0001a05
NC
2941{
2942 asection *sec;
2943 bfd_boolean changed = FALSE;
2944
2945 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2946 {
2947 if (xtensa_is_property_section (sec))
2948 {
2949 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2950 changed = TRUE;
2951 }
2952 }
2953
2954 return changed;
2955}
2956
2957
2958static bfd_boolean
7fa3d080 2959elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
2960{
2961 return xtensa_is_property_section (sec);
2962}
2963
a77dc2cc
BW
2964
2965static unsigned int
2966elf_xtensa_action_discarded (asection *sec)
2967{
2968 if (strcmp (".xt_except_table", sec->name) == 0)
2969 return 0;
2970
2971 if (strcmp (".xt_except_desc", sec->name) == 0)
2972 return 0;
2973
2974 return _bfd_elf_default_action_discarded (sec);
2975}
2976
e0001a05
NC
2977\f
2978/* Support for core dump NOTE sections. */
2979
2980static bfd_boolean
7fa3d080 2981elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2982{
2983 int offset;
eea6121a 2984 unsigned int size;
e0001a05
NC
2985
2986 /* The size for Xtensa is variable, so don't try to recognize the format
2987 based on the size. Just assume this is GNU/Linux. */
2988
2989 /* pr_cursig */
2990 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2991
2992 /* pr_pid */
2993 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2994
2995 /* pr_reg */
2996 offset = 72;
eea6121a 2997 size = note->descsz - offset - 4;
e0001a05
NC
2998
2999 /* Make a ".reg/999" section. */
3000 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3001 size, note->descpos + offset);
e0001a05
NC
3002}
3003
3004
3005static bfd_boolean
7fa3d080 3006elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3007{
3008 switch (note->descsz)
3009 {
3010 default:
3011 return FALSE;
3012
3013 case 128: /* GNU/Linux elf_prpsinfo */
3014 elf_tdata (abfd)->core_program
3015 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3016 elf_tdata (abfd)->core_command
3017 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3018 }
3019
3020 /* Note that for some reason, a spurious space is tacked
3021 onto the end of the args in some (at least one anyway)
3022 implementations, so strip it off if it exists. */
3023
3024 {
3025 char *command = elf_tdata (abfd)->core_command;
3026 int n = strlen (command);
3027
3028 if (0 < n && command[n - 1] == ' ')
3029 command[n - 1] = '\0';
3030 }
3031
3032 return TRUE;
3033}
3034
3035\f
3036/* Generic Xtensa configurability stuff. */
3037
3038static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3039static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3040static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3041static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3042static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3043static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3044static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3045static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3046
3047static void
7fa3d080 3048init_call_opcodes (void)
e0001a05
NC
3049{
3050 if (callx0_op == XTENSA_UNDEFINED)
3051 {
3052 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3053 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3054 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3055 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3056 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3057 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3058 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3059 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3060 }
3061}
3062
3063
3064static bfd_boolean
7fa3d080 3065is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3066{
3067 init_call_opcodes ();
3068 return (opcode == callx0_op
3069 || opcode == callx4_op
3070 || opcode == callx8_op
3071 || opcode == callx12_op);
3072}
3073
3074
3075static bfd_boolean
7fa3d080 3076is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3077{
3078 init_call_opcodes ();
3079 return (opcode == call0_op
3080 || opcode == call4_op
3081 || opcode == call8_op
3082 || opcode == call12_op);
3083}
3084
3085
3086static bfd_boolean
7fa3d080 3087is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3088{
3089 init_call_opcodes ();
3090 return (opcode == call4_op
3091 || opcode == call8_op
3092 || opcode == call12_op
3093 || opcode == callx4_op
3094 || opcode == callx8_op
3095 || opcode == callx12_op);
3096}
3097
3098
43cd72b9
BW
3099static xtensa_opcode
3100get_const16_opcode (void)
3101{
3102 static bfd_boolean done_lookup = FALSE;
3103 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3104 if (!done_lookup)
3105 {
3106 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3107 done_lookup = TRUE;
3108 }
3109 return const16_opcode;
3110}
3111
3112
e0001a05
NC
3113static xtensa_opcode
3114get_l32r_opcode (void)
3115{
3116 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3117 static bfd_boolean done_lookup = FALSE;
3118
3119 if (!done_lookup)
e0001a05
NC
3120 {
3121 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3122 done_lookup = TRUE;
e0001a05
NC
3123 }
3124 return l32r_opcode;
3125}
3126
3127
3128static bfd_vma
7fa3d080 3129l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3130{
3131 bfd_vma offset;
3132
3133 offset = addr - ((pc+3) & -4);
3134 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3135 offset = (signed int) offset >> 2;
3136 BFD_ASSERT ((signed int) offset >> 16 == -1);
3137 return offset;
3138}
3139
3140
e0001a05 3141static int
7fa3d080 3142get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3143{
43cd72b9
BW
3144 xtensa_isa isa = xtensa_default_isa;
3145 int last_immed, last_opnd, opi;
3146
3147 if (opcode == XTENSA_UNDEFINED)
3148 return XTENSA_UNDEFINED;
3149
3150 /* Find the last visible PC-relative immediate operand for the opcode.
3151 If there are no PC-relative immediates, then choose the last visible
3152 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3153 last_immed = XTENSA_UNDEFINED;
3154 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3155 for (opi = last_opnd - 1; opi >= 0; opi--)
3156 {
3157 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3158 continue;
3159 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3160 {
3161 last_immed = opi;
3162 break;
3163 }
3164 if (last_immed == XTENSA_UNDEFINED
3165 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3166 last_immed = opi;
3167 }
3168 if (last_immed < 0)
3169 return XTENSA_UNDEFINED;
3170
3171 /* If the operand number was specified in an old-style relocation,
3172 check for consistency with the operand computed above. */
3173 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3174 {
3175 int reloc_opnd = r_type - R_XTENSA_OP0;
3176 if (reloc_opnd != last_immed)
3177 return XTENSA_UNDEFINED;
3178 }
3179
3180 return last_immed;
3181}
3182
3183
3184int
7fa3d080 3185get_relocation_slot (int r_type)
43cd72b9
BW
3186{
3187 switch (r_type)
3188 {
3189 case R_XTENSA_OP0:
3190 case R_XTENSA_OP1:
3191 case R_XTENSA_OP2:
3192 return 0;
3193
3194 default:
3195 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3196 return r_type - R_XTENSA_SLOT0_OP;
3197 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3198 return r_type - R_XTENSA_SLOT0_ALT;
3199 break;
3200 }
3201
3202 return XTENSA_UNDEFINED;
e0001a05
NC
3203}
3204
3205
3206/* Get the opcode for a relocation. */
3207
3208static xtensa_opcode
7fa3d080
BW
3209get_relocation_opcode (bfd *abfd,
3210 asection *sec,
3211 bfd_byte *contents,
3212 Elf_Internal_Rela *irel)
e0001a05
NC
3213{
3214 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3215 static xtensa_insnbuf sbuff = NULL;
e0001a05 3216 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3217 xtensa_format fmt;
3218 int slot;
e0001a05
NC
3219
3220 if (contents == NULL)
3221 return XTENSA_UNDEFINED;
3222
43cd72b9 3223 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3224 return XTENSA_UNDEFINED;
3225
3226 if (ibuff == NULL)
43cd72b9
BW
3227 {
3228 ibuff = xtensa_insnbuf_alloc (isa);
3229 sbuff = xtensa_insnbuf_alloc (isa);
3230 }
3231
e0001a05 3232 /* Decode the instruction. */
43cd72b9
BW
3233 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3234 sec->size - irel->r_offset);
3235 fmt = xtensa_format_decode (isa, ibuff);
3236 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3237 if (slot == XTENSA_UNDEFINED)
3238 return XTENSA_UNDEFINED;
3239 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3240 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3241}
3242
3243
3244bfd_boolean
7fa3d080
BW
3245is_l32r_relocation (bfd *abfd,
3246 asection *sec,
3247 bfd_byte *contents,
3248 Elf_Internal_Rela *irel)
e0001a05
NC
3249{
3250 xtensa_opcode opcode;
43cd72b9 3251 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3252 return FALSE;
43cd72b9 3253 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3254 return (opcode == get_l32r_opcode ());
3255}
3256
e0001a05 3257
43cd72b9 3258static bfd_size_type
7fa3d080
BW
3259get_asm_simplify_size (bfd_byte *contents,
3260 bfd_size_type content_len,
3261 bfd_size_type offset)
e0001a05 3262{
43cd72b9 3263 bfd_size_type insnlen, size = 0;
e0001a05 3264
43cd72b9
BW
3265 /* Decode the size of the next two instructions. */
3266 insnlen = insn_decode_len (contents, content_len, offset);
3267 if (insnlen == 0)
3268 return 0;
e0001a05 3269
43cd72b9 3270 size += insnlen;
e0001a05 3271
43cd72b9
BW
3272 insnlen = insn_decode_len (contents, content_len, offset + size);
3273 if (insnlen == 0)
3274 return 0;
e0001a05 3275
43cd72b9
BW
3276 size += insnlen;
3277 return size;
3278}
e0001a05 3279
43cd72b9
BW
3280
3281bfd_boolean
7fa3d080 3282is_alt_relocation (int r_type)
43cd72b9
BW
3283{
3284 return (r_type >= R_XTENSA_SLOT0_ALT
3285 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3286}
3287
3288
43cd72b9 3289bfd_boolean
7fa3d080 3290is_operand_relocation (int r_type)
e0001a05 3291{
43cd72b9
BW
3292 switch (r_type)
3293 {
3294 case R_XTENSA_OP0:
3295 case R_XTENSA_OP1:
3296 case R_XTENSA_OP2:
3297 return TRUE;
e0001a05 3298
43cd72b9
BW
3299 default:
3300 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3301 return TRUE;
3302 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3303 return TRUE;
3304 break;
3305 }
e0001a05 3306
43cd72b9 3307 return FALSE;
e0001a05
NC
3308}
3309
43cd72b9
BW
3310
3311#define MIN_INSN_LENGTH 2
e0001a05 3312
43cd72b9
BW
3313/* Return 0 if it fails to decode. */
3314
3315bfd_size_type
7fa3d080
BW
3316insn_decode_len (bfd_byte *contents,
3317 bfd_size_type content_len,
3318 bfd_size_type offset)
e0001a05 3319{
43cd72b9
BW
3320 int insn_len;
3321 xtensa_isa isa = xtensa_default_isa;
3322 xtensa_format fmt;
3323 static xtensa_insnbuf ibuff = NULL;
e0001a05 3324
43cd72b9
BW
3325 if (offset + MIN_INSN_LENGTH > content_len)
3326 return 0;
e0001a05 3327
43cd72b9
BW
3328 if (ibuff == NULL)
3329 ibuff = xtensa_insnbuf_alloc (isa);
3330 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3331 content_len - offset);
3332 fmt = xtensa_format_decode (isa, ibuff);
3333 if (fmt == XTENSA_UNDEFINED)
3334 return 0;
3335 insn_len = xtensa_format_length (isa, fmt);
3336 if (insn_len == XTENSA_UNDEFINED)
3337 return 0;
3338 return insn_len;
e0001a05
NC
3339}
3340
3341
43cd72b9
BW
3342/* Decode the opcode for a single slot instruction.
3343 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3344
43cd72b9 3345xtensa_opcode
7fa3d080
BW
3346insn_decode_opcode (bfd_byte *contents,
3347 bfd_size_type content_len,
3348 bfd_size_type offset,
3349 int slot)
e0001a05 3350{
e0001a05 3351 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3352 xtensa_format fmt;
3353 static xtensa_insnbuf insnbuf = NULL;
3354 static xtensa_insnbuf slotbuf = NULL;
3355
3356 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3357 return XTENSA_UNDEFINED;
3358
3359 if (insnbuf == NULL)
43cd72b9
BW
3360 {
3361 insnbuf = xtensa_insnbuf_alloc (isa);
3362 slotbuf = xtensa_insnbuf_alloc (isa);
3363 }
3364
3365 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3366 content_len - offset);
3367 fmt = xtensa_format_decode (isa, insnbuf);
3368 if (fmt == XTENSA_UNDEFINED)
e0001a05 3369 return XTENSA_UNDEFINED;
43cd72b9
BW
3370
3371 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3372 return XTENSA_UNDEFINED;
e0001a05 3373
43cd72b9
BW
3374 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3375 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3376}
e0001a05 3377
e0001a05 3378
43cd72b9
BW
3379/* The offset is the offset in the contents.
3380 The address is the address of that offset. */
e0001a05 3381
43cd72b9 3382static bfd_boolean
7fa3d080
BW
3383check_branch_target_aligned (bfd_byte *contents,
3384 bfd_size_type content_length,
3385 bfd_vma offset,
3386 bfd_vma address)
43cd72b9
BW
3387{
3388 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3389 if (insn_len == 0)
3390 return FALSE;
3391 return check_branch_target_aligned_address (address, insn_len);
3392}
e0001a05 3393
e0001a05 3394
43cd72b9 3395static bfd_boolean
7fa3d080
BW
3396check_loop_aligned (bfd_byte *contents,
3397 bfd_size_type content_length,
3398 bfd_vma offset,
3399 bfd_vma address)
e0001a05 3400{
43cd72b9 3401 bfd_size_type loop_len, insn_len;
64b607e6 3402 xtensa_opcode opcode;
e0001a05 3403
64b607e6
BW
3404 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3405 if (opcode == XTENSA_UNDEFINED
3406 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3407 {
3408 BFD_ASSERT (FALSE);
3409 return FALSE;
3410 }
3411
43cd72b9 3412 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 3413 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
3414 if (loop_len == 0 || insn_len == 0)
3415 {
3416 BFD_ASSERT (FALSE);
3417 return FALSE;
3418 }
e0001a05 3419
43cd72b9
BW
3420 return check_branch_target_aligned_address (address + loop_len, insn_len);
3421}
e0001a05 3422
e0001a05
NC
3423
3424static bfd_boolean
7fa3d080 3425check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3426{
43cd72b9
BW
3427 if (len == 8)
3428 return (addr % 8 == 0);
3429 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3430}
3431
43cd72b9
BW
3432\f
3433/* Instruction widening and narrowing. */
e0001a05 3434
7fa3d080
BW
3435/* When FLIX is available we need to access certain instructions only
3436 when they are 16-bit or 24-bit instructions. This table caches
3437 information about such instructions by walking through all the
3438 opcodes and finding the smallest single-slot format into which each
3439 can be encoded. */
3440
3441static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3442
3443
7fa3d080
BW
3444static void
3445init_op_single_format_table (void)
e0001a05 3446{
7fa3d080
BW
3447 xtensa_isa isa = xtensa_default_isa;
3448 xtensa_insnbuf ibuf;
3449 xtensa_opcode opcode;
3450 xtensa_format fmt;
3451 int num_opcodes;
3452
3453 if (op_single_fmt_table)
3454 return;
3455
3456 ibuf = xtensa_insnbuf_alloc (isa);
3457 num_opcodes = xtensa_isa_num_opcodes (isa);
3458
3459 op_single_fmt_table = (xtensa_format *)
3460 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3461 for (opcode = 0; opcode < num_opcodes; opcode++)
3462 {
3463 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3464 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3465 {
3466 if (xtensa_format_num_slots (isa, fmt) == 1
3467 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3468 {
3469 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3470 int fmt_length = xtensa_format_length (isa, fmt);
3471 if (old_fmt == XTENSA_UNDEFINED
3472 || fmt_length < xtensa_format_length (isa, old_fmt))
3473 op_single_fmt_table[opcode] = fmt;
3474 }
3475 }
3476 }
3477 xtensa_insnbuf_free (isa, ibuf);
3478}
3479
3480
3481static xtensa_format
3482get_single_format (xtensa_opcode opcode)
3483{
3484 init_op_single_format_table ();
3485 return op_single_fmt_table[opcode];
3486}
e0001a05 3487
e0001a05 3488
43cd72b9
BW
3489/* For the set of narrowable instructions we do NOT include the
3490 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3491 involved during linker relaxation that may require these to
3492 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3493 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3494
7fa3d080
BW
3495struct string_pair
3496{
3497 const char *wide;
3498 const char *narrow;
3499};
3500
43cd72b9 3501struct string_pair narrowable[] =
e0001a05 3502{
43cd72b9
BW
3503 { "add", "add.n" },
3504 { "addi", "addi.n" },
3505 { "addmi", "addi.n" },
3506 { "l32i", "l32i.n" },
3507 { "movi", "movi.n" },
3508 { "ret", "ret.n" },
3509 { "retw", "retw.n" },
3510 { "s32i", "s32i.n" },
3511 { "or", "mov.n" } /* special case only when op1 == op2 */
3512};
e0001a05 3513
43cd72b9 3514struct string_pair widenable[] =
e0001a05 3515{
43cd72b9
BW
3516 { "add", "add.n" },
3517 { "addi", "addi.n" },
3518 { "addmi", "addi.n" },
3519 { "beqz", "beqz.n" },
3520 { "bnez", "bnez.n" },
3521 { "l32i", "l32i.n" },
3522 { "movi", "movi.n" },
3523 { "ret", "ret.n" },
3524 { "retw", "retw.n" },
3525 { "s32i", "s32i.n" },
3526 { "or", "mov.n" } /* special case only when op1 == op2 */
3527};
e0001a05
NC
3528
3529
64b607e6
BW
3530/* Check if an instruction can be "narrowed", i.e., changed from a standard
3531 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3532 return the instruction buffer holding the narrow instruction. Otherwise,
3533 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
3534 but require some special case operand checks in some cases. */
3535
64b607e6
BW
3536static xtensa_insnbuf
3537can_narrow_instruction (xtensa_insnbuf slotbuf,
3538 xtensa_format fmt,
3539 xtensa_opcode opcode)
e0001a05 3540{
43cd72b9 3541 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3542 xtensa_format o_fmt;
3543 unsigned opi;
e0001a05 3544
43cd72b9
BW
3545 static xtensa_insnbuf o_insnbuf = NULL;
3546 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3547
64b607e6 3548 if (o_insnbuf == NULL)
43cd72b9 3549 {
43cd72b9
BW
3550 o_insnbuf = xtensa_insnbuf_alloc (isa);
3551 o_slotbuf = xtensa_insnbuf_alloc (isa);
3552 }
e0001a05 3553
64b607e6 3554 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
3555 {
3556 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3557
43cd72b9
BW
3558 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3559 {
3560 uint32 value, newval;
3561 int i, operand_count, o_operand_count;
3562 xtensa_opcode o_opcode;
e0001a05 3563
43cd72b9
BW
3564 /* Address does not matter in this case. We might need to
3565 fix it to handle branches/jumps. */
3566 bfd_vma self_address = 0;
e0001a05 3567
43cd72b9
BW
3568 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3569 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3570 return 0;
43cd72b9
BW
3571 o_fmt = get_single_format (o_opcode);
3572 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3573 return 0;
e0001a05 3574
43cd72b9
BW
3575 if (xtensa_format_length (isa, fmt) != 3
3576 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 3577 return 0;
e0001a05 3578
43cd72b9
BW
3579 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3580 operand_count = xtensa_opcode_num_operands (isa, opcode);
3581 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3582
43cd72b9 3583 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3584 return 0;
e0001a05 3585
43cd72b9
BW
3586 if (!is_or)
3587 {
3588 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3589 return 0;
43cd72b9
BW
3590 }
3591 else
3592 {
3593 uint32 rawval0, rawval1, rawval2;
e0001a05 3594
64b607e6
BW
3595 if (o_operand_count + 1 != operand_count
3596 || xtensa_operand_get_field (isa, opcode, 0,
3597 fmt, 0, slotbuf, &rawval0) != 0
3598 || xtensa_operand_get_field (isa, opcode, 1,
3599 fmt, 0, slotbuf, &rawval1) != 0
3600 || xtensa_operand_get_field (isa, opcode, 2,
3601 fmt, 0, slotbuf, &rawval2) != 0
3602 || rawval1 != rawval2
3603 || rawval0 == rawval1 /* it is a nop */)
3604 return 0;
43cd72b9 3605 }
e0001a05 3606
43cd72b9
BW
3607 for (i = 0; i < o_operand_count; ++i)
3608 {
3609 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3610 slotbuf, &value)
3611 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 3612 return 0;
e0001a05 3613
43cd72b9
BW
3614 /* PC-relative branches need adjustment, but
3615 the PC-rel operand will always have a relocation. */
3616 newval = value;
3617 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3618 self_address)
3619 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3620 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3621 o_slotbuf, newval))
64b607e6 3622 return 0;
43cd72b9 3623 }
e0001a05 3624
64b607e6
BW
3625 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3626 return 0;
e0001a05 3627
64b607e6 3628 return o_insnbuf;
43cd72b9
BW
3629 }
3630 }
64b607e6 3631 return 0;
43cd72b9 3632}
e0001a05 3633
e0001a05 3634
64b607e6
BW
3635/* Attempt to narrow an instruction. If the narrowing is valid, perform
3636 the action in-place directly into the contents and return TRUE. Otherwise,
3637 the return value is FALSE and the contents are not modified. */
e0001a05 3638
43cd72b9 3639static bfd_boolean
64b607e6
BW
3640narrow_instruction (bfd_byte *contents,
3641 bfd_size_type content_length,
3642 bfd_size_type offset)
e0001a05 3643{
43cd72b9 3644 xtensa_opcode opcode;
64b607e6 3645 bfd_size_type insn_len;
43cd72b9 3646 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3647 xtensa_format fmt;
3648 xtensa_insnbuf o_insnbuf;
e0001a05 3649
43cd72b9
BW
3650 static xtensa_insnbuf insnbuf = NULL;
3651 static xtensa_insnbuf slotbuf = NULL;
e0001a05 3652
43cd72b9
BW
3653 if (insnbuf == NULL)
3654 {
3655 insnbuf = xtensa_insnbuf_alloc (isa);
3656 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 3657 }
e0001a05 3658
43cd72b9 3659 BFD_ASSERT (offset < content_length);
2c8c90bc 3660
43cd72b9 3661 if (content_length < 2)
e0001a05
NC
3662 return FALSE;
3663
64b607e6 3664 /* We will hand-code a few of these for a little while.
43cd72b9
BW
3665 These have all been specified in the assembler aleady. */
3666 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3667 content_length - offset);
3668 fmt = xtensa_format_decode (isa, insnbuf);
3669 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3670 return FALSE;
3671
43cd72b9 3672 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3673 return FALSE;
3674
43cd72b9
BW
3675 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3676 if (opcode == XTENSA_UNDEFINED)
e0001a05 3677 return FALSE;
43cd72b9
BW
3678 insn_len = xtensa_format_length (isa, fmt);
3679 if (insn_len > content_length)
3680 return FALSE;
3681
64b607e6
BW
3682 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3683 if (o_insnbuf)
3684 {
3685 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3686 content_length - offset);
3687 return TRUE;
3688 }
3689
3690 return FALSE;
3691}
3692
3693
3694/* Check if an instruction can be "widened", i.e., changed from a 2-byte
3695 "density" instruction to a standard 3-byte instruction. If it is valid,
3696 return the instruction buffer holding the wide instruction. Otherwise,
3697 return 0. The set of valid widenings are specified by a string table
3698 but require some special case operand checks in some cases. */
3699
3700static xtensa_insnbuf
3701can_widen_instruction (xtensa_insnbuf slotbuf,
3702 xtensa_format fmt,
3703 xtensa_opcode opcode)
3704{
3705 xtensa_isa isa = xtensa_default_isa;
3706 xtensa_format o_fmt;
3707 unsigned opi;
3708
3709 static xtensa_insnbuf o_insnbuf = NULL;
3710 static xtensa_insnbuf o_slotbuf = NULL;
3711
3712 if (o_insnbuf == NULL)
3713 {
3714 o_insnbuf = xtensa_insnbuf_alloc (isa);
3715 o_slotbuf = xtensa_insnbuf_alloc (isa);
3716 }
3717
3718 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 3719 {
43cd72b9
BW
3720 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3721 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3722 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3723
43cd72b9
BW
3724 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3725 {
3726 uint32 value, newval;
3727 int i, operand_count, o_operand_count, check_operand_count;
3728 xtensa_opcode o_opcode;
e0001a05 3729
43cd72b9
BW
3730 /* Address does not matter in this case. We might need to fix it
3731 to handle branches/jumps. */
3732 bfd_vma self_address = 0;
e0001a05 3733
43cd72b9
BW
3734 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3735 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3736 return 0;
43cd72b9
BW
3737 o_fmt = get_single_format (o_opcode);
3738 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3739 return 0;
e0001a05 3740
43cd72b9
BW
3741 if (xtensa_format_length (isa, fmt) != 2
3742 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 3743 return 0;
e0001a05 3744
43cd72b9
BW
3745 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3746 operand_count = xtensa_opcode_num_operands (isa, opcode);
3747 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3748 check_operand_count = o_operand_count;
e0001a05 3749
43cd72b9 3750 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3751 return 0;
e0001a05 3752
43cd72b9
BW
3753 if (!is_or)
3754 {
3755 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3756 return 0;
43cd72b9
BW
3757 }
3758 else
3759 {
3760 uint32 rawval0, rawval1;
3761
64b607e6
BW
3762 if (o_operand_count != operand_count + 1
3763 || xtensa_operand_get_field (isa, opcode, 0,
3764 fmt, 0, slotbuf, &rawval0) != 0
3765 || xtensa_operand_get_field (isa, opcode, 1,
3766 fmt, 0, slotbuf, &rawval1) != 0
3767 || rawval0 == rawval1 /* it is a nop */)
3768 return 0;
43cd72b9
BW
3769 }
3770 if (is_branch)
3771 check_operand_count--;
3772
64b607e6 3773 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
3774 {
3775 int new_i = i;
3776 if (is_or && i == o_operand_count - 1)
3777 new_i = i - 1;
3778 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3779 slotbuf, &value)
3780 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 3781 return 0;
43cd72b9
BW
3782
3783 /* PC-relative branches need adjustment, but
3784 the PC-rel operand will always have a relocation. */
3785 newval = value;
3786 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3787 self_address)
3788 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3789 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3790 o_slotbuf, newval))
64b607e6 3791 return 0;
43cd72b9
BW
3792 }
3793
3794 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 3795 return 0;
43cd72b9 3796
64b607e6 3797 return o_insnbuf;
43cd72b9
BW
3798 }
3799 }
64b607e6
BW
3800 return 0;
3801}
3802
3803
3804/* Attempt to widen an instruction. If the widening is valid, perform
3805 the action in-place directly into the contents and return TRUE. Otherwise,
3806 the return value is FALSE and the contents are not modified. */
3807
3808static bfd_boolean
3809widen_instruction (bfd_byte *contents,
3810 bfd_size_type content_length,
3811 bfd_size_type offset)
3812{
3813 xtensa_opcode opcode;
3814 bfd_size_type insn_len;
3815 xtensa_isa isa = xtensa_default_isa;
3816 xtensa_format fmt;
3817 xtensa_insnbuf o_insnbuf;
3818
3819 static xtensa_insnbuf insnbuf = NULL;
3820 static xtensa_insnbuf slotbuf = NULL;
3821
3822 if (insnbuf == NULL)
3823 {
3824 insnbuf = xtensa_insnbuf_alloc (isa);
3825 slotbuf = xtensa_insnbuf_alloc (isa);
3826 }
3827
3828 BFD_ASSERT (offset < content_length);
3829
3830 if (content_length < 2)
3831 return FALSE;
3832
3833 /* We will hand-code a few of these for a little while.
3834 These have all been specified in the assembler aleady. */
3835 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3836 content_length - offset);
3837 fmt = xtensa_format_decode (isa, insnbuf);
3838 if (xtensa_format_num_slots (isa, fmt) != 1)
3839 return FALSE;
3840
3841 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3842 return FALSE;
3843
3844 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3845 if (opcode == XTENSA_UNDEFINED)
3846 return FALSE;
3847 insn_len = xtensa_format_length (isa, fmt);
3848 if (insn_len > content_length)
3849 return FALSE;
3850
3851 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3852 if (o_insnbuf)
3853 {
3854 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3855 content_length - offset);
3856 return TRUE;
3857 }
43cd72b9 3858 return FALSE;
e0001a05
NC
3859}
3860
43cd72b9
BW
3861\f
3862/* Code for transforming CALLs at link-time. */
e0001a05 3863
43cd72b9 3864static bfd_reloc_status_type
7fa3d080
BW
3865elf_xtensa_do_asm_simplify (bfd_byte *contents,
3866 bfd_vma address,
3867 bfd_vma content_length,
3868 char **error_message)
e0001a05 3869{
43cd72b9
BW
3870 static xtensa_insnbuf insnbuf = NULL;
3871 static xtensa_insnbuf slotbuf = NULL;
3872 xtensa_format core_format = XTENSA_UNDEFINED;
3873 xtensa_opcode opcode;
3874 xtensa_opcode direct_call_opcode;
3875 xtensa_isa isa = xtensa_default_isa;
3876 bfd_byte *chbuf = contents + address;
3877 int opn;
e0001a05 3878
43cd72b9 3879 if (insnbuf == NULL)
e0001a05 3880 {
43cd72b9
BW
3881 insnbuf = xtensa_insnbuf_alloc (isa);
3882 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3883 }
e0001a05 3884
43cd72b9
BW
3885 if (content_length < address)
3886 {
3887 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3888 return bfd_reloc_other;
3889 }
e0001a05 3890
43cd72b9
BW
3891 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3892 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3893 if (direct_call_opcode == XTENSA_UNDEFINED)
3894 {
3895 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3896 return bfd_reloc_other;
3897 }
3898
3899 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3900 core_format = xtensa_format_lookup (isa, "x24");
3901 opcode = xtensa_opcode_lookup (isa, "or");
3902 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3903 for (opn = 0; opn < 3; opn++)
3904 {
3905 uint32 regno = 1;
3906 xtensa_operand_encode (isa, opcode, opn, &regno);
3907 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3908 slotbuf, regno);
3909 }
3910 xtensa_format_encode (isa, core_format, insnbuf);
3911 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3912 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3913
43cd72b9
BW
3914 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3915 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3916 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3917
43cd72b9
BW
3918 xtensa_format_encode (isa, core_format, insnbuf);
3919 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3920 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3921 content_length - address - 3);
e0001a05 3922
43cd72b9
BW
3923 return bfd_reloc_ok;
3924}
e0001a05 3925
e0001a05 3926
43cd72b9 3927static bfd_reloc_status_type
7fa3d080
BW
3928contract_asm_expansion (bfd_byte *contents,
3929 bfd_vma content_length,
3930 Elf_Internal_Rela *irel,
3931 char **error_message)
43cd72b9
BW
3932{
3933 bfd_reloc_status_type retval =
3934 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3935 error_message);
e0001a05 3936
43cd72b9
BW
3937 if (retval != bfd_reloc_ok)
3938 return bfd_reloc_dangerous;
e0001a05 3939
43cd72b9
BW
3940 /* Update the irel->r_offset field so that the right immediate and
3941 the right instruction are modified during the relocation. */
3942 irel->r_offset += 3;
3943 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3944 return bfd_reloc_ok;
3945}
e0001a05 3946
e0001a05 3947
43cd72b9 3948static xtensa_opcode
7fa3d080 3949swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3950{
43cd72b9 3951 init_call_opcodes ();
e0001a05 3952
43cd72b9
BW
3953 if (opcode == callx0_op) return call0_op;
3954 if (opcode == callx4_op) return call4_op;
3955 if (opcode == callx8_op) return call8_op;
3956 if (opcode == callx12_op) return call12_op;
e0001a05 3957
43cd72b9
BW
3958 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3959 return XTENSA_UNDEFINED;
3960}
e0001a05 3961
e0001a05 3962
43cd72b9
BW
3963/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3964 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3965 If not, return XTENSA_UNDEFINED. */
e0001a05 3966
43cd72b9
BW
3967#define L32R_TARGET_REG_OPERAND 0
3968#define CONST16_TARGET_REG_OPERAND 0
3969#define CALLN_SOURCE_OPERAND 0
e0001a05 3970
43cd72b9 3971static xtensa_opcode
7fa3d080 3972get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3973{
43cd72b9
BW
3974 static xtensa_insnbuf insnbuf = NULL;
3975 static xtensa_insnbuf slotbuf = NULL;
3976 xtensa_format fmt;
3977 xtensa_opcode opcode;
3978 xtensa_isa isa = xtensa_default_isa;
3979 uint32 regno, const16_regno, call_regno;
3980 int offset = 0;
e0001a05 3981
43cd72b9 3982 if (insnbuf == NULL)
e0001a05 3983 {
43cd72b9
BW
3984 insnbuf = xtensa_insnbuf_alloc (isa);
3985 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3986 }
43cd72b9
BW
3987
3988 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3989 fmt = xtensa_format_decode (isa, insnbuf);
3990 if (fmt == XTENSA_UNDEFINED
3991 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3992 return XTENSA_UNDEFINED;
3993
3994 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3995 if (opcode == XTENSA_UNDEFINED)
3996 return XTENSA_UNDEFINED;
3997
3998 if (opcode == get_l32r_opcode ())
e0001a05 3999 {
43cd72b9
BW
4000 if (p_uses_l32r)
4001 *p_uses_l32r = TRUE;
4002 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4003 fmt, 0, slotbuf, &regno)
4004 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4005 &regno))
4006 return XTENSA_UNDEFINED;
e0001a05 4007 }
43cd72b9 4008 else if (opcode == get_const16_opcode ())
e0001a05 4009 {
43cd72b9
BW
4010 if (p_uses_l32r)
4011 *p_uses_l32r = FALSE;
4012 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4013 fmt, 0, slotbuf, &regno)
4014 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4015 &regno))
4016 return XTENSA_UNDEFINED;
4017
4018 /* Check that the next instruction is also CONST16. */
4019 offset += xtensa_format_length (isa, fmt);
4020 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4021 fmt = xtensa_format_decode (isa, insnbuf);
4022 if (fmt == XTENSA_UNDEFINED
4023 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4024 return XTENSA_UNDEFINED;
4025 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4026 if (opcode != get_const16_opcode ())
4027 return XTENSA_UNDEFINED;
4028
4029 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4030 fmt, 0, slotbuf, &const16_regno)
4031 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4032 &const16_regno)
4033 || const16_regno != regno)
4034 return XTENSA_UNDEFINED;
e0001a05 4035 }
43cd72b9
BW
4036 else
4037 return XTENSA_UNDEFINED;
e0001a05 4038
43cd72b9
BW
4039 /* Next instruction should be an CALLXn with operand 0 == regno. */
4040 offset += xtensa_format_length (isa, fmt);
4041 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4042 fmt = xtensa_format_decode (isa, insnbuf);
4043 if (fmt == XTENSA_UNDEFINED
4044 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4045 return XTENSA_UNDEFINED;
4046 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4047 if (opcode == XTENSA_UNDEFINED
4048 || !is_indirect_call_opcode (opcode))
4049 return XTENSA_UNDEFINED;
e0001a05 4050
43cd72b9
BW
4051 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4052 fmt, 0, slotbuf, &call_regno)
4053 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4054 &call_regno))
4055 return XTENSA_UNDEFINED;
e0001a05 4056
43cd72b9
BW
4057 if (call_regno != regno)
4058 return XTENSA_UNDEFINED;
e0001a05 4059
43cd72b9
BW
4060 return opcode;
4061}
e0001a05 4062
43cd72b9
BW
4063\f
4064/* Data structures used during relaxation. */
e0001a05 4065
43cd72b9 4066/* r_reloc: relocation values. */
e0001a05 4067
43cd72b9
BW
4068/* Through the relaxation process, we need to keep track of the values
4069 that will result from evaluating relocations. The standard ELF
4070 relocation structure is not sufficient for this purpose because we're
4071 operating on multiple input files at once, so we need to know which
4072 input file a relocation refers to. The r_reloc structure thus
4073 records both the input file (bfd) and ELF relocation.
e0001a05 4074
43cd72b9
BW
4075 For efficiency, an r_reloc also contains a "target_offset" field to
4076 cache the target-section-relative offset value that is represented by
4077 the relocation.
4078
4079 The r_reloc also contains a virtual offset that allows multiple
4080 inserted literals to be placed at the same "address" with
4081 different offsets. */
e0001a05 4082
43cd72b9 4083typedef struct r_reloc_struct r_reloc;
e0001a05 4084
43cd72b9 4085struct r_reloc_struct
e0001a05 4086{
43cd72b9
BW
4087 bfd *abfd;
4088 Elf_Internal_Rela rela;
e0001a05 4089 bfd_vma target_offset;
43cd72b9 4090 bfd_vma virtual_offset;
e0001a05
NC
4091};
4092
e0001a05 4093
43cd72b9
BW
4094/* The r_reloc structure is included by value in literal_value, but not
4095 every literal_value has an associated relocation -- some are simple
4096 constants. In such cases, we set all the fields in the r_reloc
4097 struct to zero. The r_reloc_is_const function should be used to
4098 detect this case. */
e0001a05 4099
43cd72b9 4100static bfd_boolean
7fa3d080 4101r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4102{
43cd72b9 4103 return (r_rel->abfd == NULL);
e0001a05
NC
4104}
4105
4106
43cd72b9 4107static bfd_vma
7fa3d080 4108r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4109{
43cd72b9
BW
4110 bfd_vma target_offset;
4111 unsigned long r_symndx;
e0001a05 4112
43cd72b9
BW
4113 BFD_ASSERT (!r_reloc_is_const (r_rel));
4114 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4115 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4116 return (target_offset + r_rel->rela.r_addend);
4117}
e0001a05 4118
e0001a05 4119
43cd72b9 4120static struct elf_link_hash_entry *
7fa3d080 4121r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4122{
43cd72b9
BW
4123 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4124 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4125}
e0001a05 4126
43cd72b9
BW
4127
4128static asection *
7fa3d080 4129r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4130{
4131 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4132 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4133}
e0001a05
NC
4134
4135
4136static bfd_boolean
7fa3d080 4137r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4138{
43cd72b9
BW
4139 asection *sec;
4140 if (r_rel == NULL)
e0001a05 4141 return FALSE;
e0001a05 4142
43cd72b9
BW
4143 sec = r_reloc_get_section (r_rel);
4144 if (sec == bfd_abs_section_ptr
4145 || sec == bfd_com_section_ptr
4146 || sec == bfd_und_section_ptr)
4147 return FALSE;
4148 return TRUE;
e0001a05
NC
4149}
4150
4151
7fa3d080
BW
4152static void
4153r_reloc_init (r_reloc *r_rel,
4154 bfd *abfd,
4155 Elf_Internal_Rela *irel,
4156 bfd_byte *contents,
4157 bfd_size_type content_length)
4158{
4159 int r_type;
4160 reloc_howto_type *howto;
4161
4162 if (irel)
4163 {
4164 r_rel->rela = *irel;
4165 r_rel->abfd = abfd;
4166 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4167 r_rel->virtual_offset = 0;
4168 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4169 howto = &elf_howto_table[r_type];
4170 if (howto->partial_inplace)
4171 {
4172 bfd_vma inplace_val;
4173 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4174
4175 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4176 r_rel->target_offset += inplace_val;
4177 }
4178 }
4179 else
4180 memset (r_rel, 0, sizeof (r_reloc));
4181}
4182
4183
43cd72b9
BW
4184#if DEBUG
4185
e0001a05 4186static void
7fa3d080 4187print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4188{
43cd72b9
BW
4189 if (r_reloc_is_defined (r_rel))
4190 {
4191 asection *sec = r_reloc_get_section (r_rel);
4192 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4193 }
4194 else if (r_reloc_get_hash_entry (r_rel))
4195 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4196 else
4197 fprintf (fp, " ?? + ");
e0001a05 4198
43cd72b9
BW
4199 fprintf_vma (fp, r_rel->target_offset);
4200 if (r_rel->virtual_offset)
4201 {
4202 fprintf (fp, " + ");
4203 fprintf_vma (fp, r_rel->virtual_offset);
4204 }
4205
4206 fprintf (fp, ")");
4207}
e0001a05 4208
43cd72b9 4209#endif /* DEBUG */
e0001a05 4210
43cd72b9
BW
4211\f
4212/* source_reloc: relocations that reference literals. */
e0001a05 4213
43cd72b9
BW
4214/* To determine whether literals can be coalesced, we need to first
4215 record all the relocations that reference the literals. The
4216 source_reloc structure below is used for this purpose. The
4217 source_reloc entries are kept in a per-literal-section array, sorted
4218 by offset within the literal section (i.e., target offset).
e0001a05 4219
43cd72b9
BW
4220 The source_sec and r_rel.rela.r_offset fields identify the source of
4221 the relocation. The r_rel field records the relocation value, i.e.,
4222 the offset of the literal being referenced. The opnd field is needed
4223 to determine the range of the immediate field to which the relocation
4224 applies, so we can determine whether another literal with the same
4225 value is within range. The is_null field is true when the relocation
4226 is being removed (e.g., when an L32R is being removed due to a CALLX
4227 that is converted to a direct CALL). */
e0001a05 4228
43cd72b9
BW
4229typedef struct source_reloc_struct source_reloc;
4230
4231struct source_reloc_struct
e0001a05 4232{
43cd72b9
BW
4233 asection *source_sec;
4234 r_reloc r_rel;
4235 xtensa_opcode opcode;
4236 int opnd;
4237 bfd_boolean is_null;
4238 bfd_boolean is_abs_literal;
4239};
e0001a05 4240
e0001a05 4241
e0001a05 4242static void
7fa3d080
BW
4243init_source_reloc (source_reloc *reloc,
4244 asection *source_sec,
4245 const r_reloc *r_rel,
4246 xtensa_opcode opcode,
4247 int opnd,
4248 bfd_boolean is_abs_literal)
e0001a05 4249{
43cd72b9
BW
4250 reloc->source_sec = source_sec;
4251 reloc->r_rel = *r_rel;
4252 reloc->opcode = opcode;
4253 reloc->opnd = opnd;
4254 reloc->is_null = FALSE;
4255 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4256}
4257
e0001a05 4258
43cd72b9
BW
4259/* Find the source_reloc for a particular source offset and relocation
4260 type. Note that the array is sorted by _target_ offset, so this is
4261 just a linear search. */
e0001a05 4262
43cd72b9 4263static source_reloc *
7fa3d080
BW
4264find_source_reloc (source_reloc *src_relocs,
4265 int src_count,
4266 asection *sec,
4267 Elf_Internal_Rela *irel)
e0001a05 4268{
43cd72b9 4269 int i;
e0001a05 4270
43cd72b9
BW
4271 for (i = 0; i < src_count; i++)
4272 {
4273 if (src_relocs[i].source_sec == sec
4274 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4275 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4276 == ELF32_R_TYPE (irel->r_info)))
4277 return &src_relocs[i];
4278 }
e0001a05 4279
43cd72b9 4280 return NULL;
e0001a05
NC
4281}
4282
4283
43cd72b9 4284static int
7fa3d080 4285source_reloc_compare (const void *ap, const void *bp)
e0001a05 4286{
43cd72b9
BW
4287 const source_reloc *a = (const source_reloc *) ap;
4288 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4289
43cd72b9
BW
4290 if (a->r_rel.target_offset != b->r_rel.target_offset)
4291 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4292
43cd72b9
BW
4293 /* We don't need to sort on these criteria for correctness,
4294 but enforcing a more strict ordering prevents unstable qsort
4295 from behaving differently with different implementations.
4296 Without the code below we get correct but different results
4297 on Solaris 2.7 and 2.8. We would like to always produce the
4298 same results no matter the host. */
4299
4300 if ((!a->is_null) - (!b->is_null))
4301 return ((!a->is_null) - (!b->is_null));
4302 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4303}
4304
43cd72b9
BW
4305\f
4306/* Literal values and value hash tables. */
e0001a05 4307
43cd72b9
BW
4308/* Literals with the same value can be coalesced. The literal_value
4309 structure records the value of a literal: the "r_rel" field holds the
4310 information from the relocation on the literal (if there is one) and
4311 the "value" field holds the contents of the literal word itself.
e0001a05 4312
43cd72b9
BW
4313 The value_map structure records a literal value along with the
4314 location of a literal holding that value. The value_map hash table
4315 is indexed by the literal value, so that we can quickly check if a
4316 particular literal value has been seen before and is thus a candidate
4317 for coalescing. */
e0001a05 4318
43cd72b9
BW
4319typedef struct literal_value_struct literal_value;
4320typedef struct value_map_struct value_map;
4321typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4322
43cd72b9 4323struct literal_value_struct
e0001a05 4324{
43cd72b9
BW
4325 r_reloc r_rel;
4326 unsigned long value;
4327 bfd_boolean is_abs_literal;
4328};
4329
4330struct value_map_struct
4331{
4332 literal_value val; /* The literal value. */
4333 r_reloc loc; /* Location of the literal. */
4334 value_map *next;
4335};
4336
4337struct value_map_hash_table_struct
4338{
4339 unsigned bucket_count;
4340 value_map **buckets;
4341 unsigned count;
4342 bfd_boolean has_last_loc;
4343 r_reloc last_loc;
4344};
4345
4346
e0001a05 4347static void
7fa3d080
BW
4348init_literal_value (literal_value *lit,
4349 const r_reloc *r_rel,
4350 unsigned long value,
4351 bfd_boolean is_abs_literal)
e0001a05 4352{
43cd72b9
BW
4353 lit->r_rel = *r_rel;
4354 lit->value = value;
4355 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4356}
4357
4358
43cd72b9 4359static bfd_boolean
7fa3d080
BW
4360literal_value_equal (const literal_value *src1,
4361 const literal_value *src2,
4362 bfd_boolean final_static_link)
e0001a05 4363{
43cd72b9 4364 struct elf_link_hash_entry *h1, *h2;
e0001a05 4365
43cd72b9
BW
4366 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4367 return FALSE;
e0001a05 4368
43cd72b9
BW
4369 if (r_reloc_is_const (&src1->r_rel))
4370 return (src1->value == src2->value);
e0001a05 4371
43cd72b9
BW
4372 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4373 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4374 return FALSE;
e0001a05 4375
43cd72b9
BW
4376 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4377 return FALSE;
4378
4379 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4380 return FALSE;
4381
4382 if (src1->value != src2->value)
4383 return FALSE;
4384
4385 /* Now check for the same section (if defined) or the same elf_hash
4386 (if undefined or weak). */
4387 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4388 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4389 if (r_reloc_is_defined (&src1->r_rel)
4390 && (final_static_link
4391 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4392 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4393 {
4394 if (r_reloc_get_section (&src1->r_rel)
4395 != r_reloc_get_section (&src2->r_rel))
4396 return FALSE;
4397 }
4398 else
4399 {
4400 /* Require that the hash entries (i.e., symbols) be identical. */
4401 if (h1 != h2 || h1 == 0)
4402 return FALSE;
4403 }
4404
4405 if (src1->is_abs_literal != src2->is_abs_literal)
4406 return FALSE;
4407
4408 return TRUE;
e0001a05
NC
4409}
4410
e0001a05 4411
43cd72b9
BW
4412/* Must be power of 2. */
4413#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4414
43cd72b9 4415static value_map_hash_table *
7fa3d080 4416value_map_hash_table_init (void)
43cd72b9
BW
4417{
4418 value_map_hash_table *values;
e0001a05 4419
43cd72b9
BW
4420 values = (value_map_hash_table *)
4421 bfd_zmalloc (sizeof (value_map_hash_table));
4422 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4423 values->count = 0;
4424 values->buckets = (value_map **)
4425 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4426 if (values->buckets == NULL)
4427 {
4428 free (values);
4429 return NULL;
4430 }
4431 values->has_last_loc = FALSE;
4432
4433 return values;
4434}
4435
4436
4437static void
7fa3d080 4438value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4439{
43cd72b9
BW
4440 free (table->buckets);
4441 free (table);
4442}
4443
4444
4445static unsigned
7fa3d080 4446hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4447{
4448 return (val >> 2) + (val >> 10);
4449}
4450
4451
4452static unsigned
7fa3d080 4453literal_value_hash (const literal_value *src)
43cd72b9
BW
4454{
4455 unsigned hash_val;
e0001a05 4456
43cd72b9
BW
4457 hash_val = hash_bfd_vma (src->value);
4458 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4459 {
43cd72b9
BW
4460 void *sec_or_hash;
4461
4462 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4463 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4464 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4465
4466 /* Now check for the same section and the same elf_hash. */
4467 if (r_reloc_is_defined (&src->r_rel))
4468 sec_or_hash = r_reloc_get_section (&src->r_rel);
4469 else
4470 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4471 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4472 }
43cd72b9
BW
4473 return hash_val;
4474}
e0001a05 4475
e0001a05 4476
43cd72b9 4477/* Check if the specified literal_value has been seen before. */
e0001a05 4478
43cd72b9 4479static value_map *
7fa3d080
BW
4480value_map_get_cached_value (value_map_hash_table *map,
4481 const literal_value *val,
4482 bfd_boolean final_static_link)
43cd72b9
BW
4483{
4484 value_map *map_e;
4485 value_map *bucket;
4486 unsigned idx;
4487
4488 idx = literal_value_hash (val);
4489 idx = idx & (map->bucket_count - 1);
4490 bucket = map->buckets[idx];
4491 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4492 {
43cd72b9
BW
4493 if (literal_value_equal (&map_e->val, val, final_static_link))
4494 return map_e;
4495 }
4496 return NULL;
4497}
e0001a05 4498
e0001a05 4499
43cd72b9
BW
4500/* Record a new literal value. It is illegal to call this if VALUE
4501 already has an entry here. */
4502
4503static value_map *
7fa3d080
BW
4504add_value_map (value_map_hash_table *map,
4505 const literal_value *val,
4506 const r_reloc *loc,
4507 bfd_boolean final_static_link)
43cd72b9
BW
4508{
4509 value_map **bucket_p;
4510 unsigned idx;
4511
4512 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4513 if (val_e == NULL)
4514 {
4515 bfd_set_error (bfd_error_no_memory);
4516 return NULL;
e0001a05
NC
4517 }
4518
43cd72b9
BW
4519 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4520 val_e->val = *val;
4521 val_e->loc = *loc;
4522
4523 idx = literal_value_hash (val);
4524 idx = idx & (map->bucket_count - 1);
4525 bucket_p = &map->buckets[idx];
4526
4527 val_e->next = *bucket_p;
4528 *bucket_p = val_e;
4529 map->count++;
4530 /* FIXME: Consider resizing the hash table if we get too many entries. */
4531
4532 return val_e;
e0001a05
NC
4533}
4534
43cd72b9
BW
4535\f
4536/* Lists of text actions (ta_) for narrowing, widening, longcall
4537 conversion, space fill, code & literal removal, etc. */
4538
4539/* The following text actions are generated:
4540
4541 "ta_remove_insn" remove an instruction or instructions
4542 "ta_remove_longcall" convert longcall to call
4543 "ta_convert_longcall" convert longcall to nop/call
4544 "ta_narrow_insn" narrow a wide instruction
4545 "ta_widen" widen a narrow instruction
4546 "ta_fill" add fill or remove fill
4547 removed < 0 is a fill; branches to the fill address will be
4548 changed to address + fill size (e.g., address - removed)
4549 removed >= 0 branches to the fill address will stay unchanged
4550 "ta_remove_literal" remove a literal; this action is
4551 indicated when a literal is removed
4552 or replaced.
4553 "ta_add_literal" insert a new literal; this action is
4554 indicated when a literal has been moved.
4555 It may use a virtual_offset because
4556 multiple literals can be placed at the
4557 same location.
4558
4559 For each of these text actions, we also record the number of bytes
4560 removed by performing the text action. In the case of a "ta_widen"
4561 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4562
4563typedef struct text_action_struct text_action;
4564typedef struct text_action_list_struct text_action_list;
4565typedef enum text_action_enum_t text_action_t;
4566
4567enum text_action_enum_t
4568{
4569 ta_none,
4570 ta_remove_insn, /* removed = -size */
4571 ta_remove_longcall, /* removed = -size */
4572 ta_convert_longcall, /* removed = 0 */
4573 ta_narrow_insn, /* removed = -1 */
4574 ta_widen_insn, /* removed = +1 */
4575 ta_fill, /* removed = +size */
4576 ta_remove_literal,
4577 ta_add_literal
4578};
e0001a05 4579
e0001a05 4580
43cd72b9
BW
4581/* Structure for a text action record. */
4582struct text_action_struct
e0001a05 4583{
43cd72b9
BW
4584 text_action_t action;
4585 asection *sec; /* Optional */
4586 bfd_vma offset;
4587 bfd_vma virtual_offset; /* Zero except for adding literals. */
4588 int removed_bytes;
4589 literal_value value; /* Only valid when adding literals. */
e0001a05 4590
43cd72b9
BW
4591 text_action *next;
4592};
e0001a05 4593
e0001a05 4594
43cd72b9
BW
4595/* List of all of the actions taken on a text section. */
4596struct text_action_list_struct
4597{
4598 text_action *head;
4599};
e0001a05 4600
e0001a05 4601
7fa3d080
BW
4602static text_action *
4603find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4604{
4605 text_action **m_p;
4606
4607 /* It is not necessary to fill at the end of a section. */
4608 if (sec->size == offset)
4609 return NULL;
4610
7fa3d080 4611 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4612 {
4613 text_action *t = *m_p;
4614 /* When the action is another fill at the same address,
4615 just increase the size. */
4616 if (t->offset == offset && t->action == ta_fill)
4617 return t;
4618 }
4619 return NULL;
4620}
4621
4622
4623static int
7fa3d080
BW
4624compute_removed_action_diff (const text_action *ta,
4625 asection *sec,
4626 bfd_vma offset,
4627 int removed,
4628 int removable_space)
43cd72b9
BW
4629{
4630 int new_removed;
4631 int current_removed = 0;
4632
7fa3d080 4633 if (ta)
43cd72b9
BW
4634 current_removed = ta->removed_bytes;
4635
4636 BFD_ASSERT (ta == NULL || ta->offset == offset);
4637 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4638
4639 /* It is not necessary to fill at the end of a section. Clean this up. */
4640 if (sec->size == offset)
4641 new_removed = removable_space - 0;
4642 else
4643 {
4644 int space;
4645 int added = -removed - current_removed;
4646 /* Ignore multiples of the section alignment. */
4647 added = ((1 << sec->alignment_power) - 1) & added;
4648 new_removed = (-added);
4649
4650 /* Modify for removable. */
4651 space = removable_space - new_removed;
4652 new_removed = (removable_space
4653 - (((1 << sec->alignment_power) - 1) & space));
4654 }
4655 return (new_removed - current_removed);
4656}
4657
4658
7fa3d080
BW
4659static void
4660adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4661{
4662 ta->removed_bytes += fill_diff;
4663}
4664
4665
4666/* Add a modification action to the text. For the case of adding or
4667 removing space, modify any current fill and assume that
4668 "unreachable_space" bytes can be freely contracted. Note that a
4669 negative removed value is a fill. */
4670
4671static void
7fa3d080
BW
4672text_action_add (text_action_list *l,
4673 text_action_t action,
4674 asection *sec,
4675 bfd_vma offset,
4676 int removed)
43cd72b9
BW
4677{
4678 text_action **m_p;
4679 text_action *ta;
4680
4681 /* It is not necessary to fill at the end of a section. */
4682 if (action == ta_fill && sec->size == offset)
4683 return;
4684
4685 /* It is not necessary to fill 0 bytes. */
4686 if (action == ta_fill && removed == 0)
4687 return;
4688
7fa3d080 4689 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4690 {
4691 text_action *t = *m_p;
4692 /* When the action is another fill at the same address,
4693 just increase the size. */
4694 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4695 {
4696 t->removed_bytes += removed;
4697 return;
4698 }
4699 }
4700
4701 /* Create a new record and fill it up. */
4702 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4703 ta->action = action;
4704 ta->sec = sec;
4705 ta->offset = offset;
4706 ta->removed_bytes = removed;
4707 ta->next = (*m_p);
4708 *m_p = ta;
4709}
4710
4711
4712static void
7fa3d080
BW
4713text_action_add_literal (text_action_list *l,
4714 text_action_t action,
4715 const r_reloc *loc,
4716 const literal_value *value,
4717 int removed)
43cd72b9
BW
4718{
4719 text_action **m_p;
4720 text_action *ta;
4721 asection *sec = r_reloc_get_section (loc);
4722 bfd_vma offset = loc->target_offset;
4723 bfd_vma virtual_offset = loc->virtual_offset;
4724
4725 BFD_ASSERT (action == ta_add_literal);
4726
4727 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4728 {
4729 if ((*m_p)->offset > offset
4730 && ((*m_p)->offset != offset
4731 || (*m_p)->virtual_offset > virtual_offset))
4732 break;
4733 }
4734
4735 /* Create a new record and fill it up. */
4736 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4737 ta->action = action;
4738 ta->sec = sec;
4739 ta->offset = offset;
4740 ta->virtual_offset = virtual_offset;
4741 ta->value = *value;
4742 ta->removed_bytes = removed;
4743 ta->next = (*m_p);
4744 *m_p = ta;
4745}
4746
4747
03669f1c
BW
4748/* Find the total offset adjustment for the relaxations specified by
4749 text_actions, beginning from a particular starting action. This is
4750 typically used from offset_with_removed_text to search an entire list of
4751 actions, but it may also be called directly when adjusting adjacent offsets
4752 so that each search may begin where the previous one left off. */
4753
4754static int
4755removed_by_actions (text_action **p_start_action,
4756 bfd_vma offset,
4757 bfd_boolean before_fill)
43cd72b9
BW
4758{
4759 text_action *r;
4760 int removed = 0;
4761
03669f1c
BW
4762 r = *p_start_action;
4763 while (r)
43cd72b9 4764 {
03669f1c
BW
4765 if (r->offset > offset)
4766 break;
4767
4768 if (r->offset == offset
4769 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
4770 break;
4771
4772 removed += r->removed_bytes;
4773
4774 r = r->next;
43cd72b9
BW
4775 }
4776
03669f1c
BW
4777 *p_start_action = r;
4778 return removed;
4779}
4780
4781
4782static bfd_vma
4783offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4784{
4785 text_action *r = action_list->head;
4786 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
4787}
4788
4789
03e94c08
BW
4790static unsigned
4791action_list_count (text_action_list *action_list)
4792{
4793 text_action *r = action_list->head;
4794 unsigned count = 0;
4795 for (r = action_list->head; r != NULL; r = r->next)
4796 {
4797 count++;
4798 }
4799 return count;
4800}
4801
4802
43cd72b9
BW
4803/* The find_insn_action routine will only find non-fill actions. */
4804
7fa3d080
BW
4805static text_action *
4806find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4807{
4808 text_action *t;
4809 for (t = action_list->head; t; t = t->next)
4810 {
4811 if (t->offset == offset)
4812 {
4813 switch (t->action)
4814 {
4815 case ta_none:
4816 case ta_fill:
4817 break;
4818 case ta_remove_insn:
4819 case ta_remove_longcall:
4820 case ta_convert_longcall:
4821 case ta_narrow_insn:
4822 case ta_widen_insn:
4823 return t;
4824 case ta_remove_literal:
4825 case ta_add_literal:
4826 BFD_ASSERT (0);
4827 break;
4828 }
4829 }
4830 }
4831 return NULL;
4832}
4833
4834
4835#if DEBUG
4836
4837static void
7fa3d080 4838print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4839{
4840 text_action *r;
4841
4842 fprintf (fp, "Text Action\n");
4843 for (r = action_list->head; r != NULL; r = r->next)
4844 {
4845 const char *t = "unknown";
4846 switch (r->action)
4847 {
4848 case ta_remove_insn:
4849 t = "remove_insn"; break;
4850 case ta_remove_longcall:
4851 t = "remove_longcall"; break;
4852 case ta_convert_longcall:
c46082c8 4853 t = "convert_longcall"; break;
43cd72b9
BW
4854 case ta_narrow_insn:
4855 t = "narrow_insn"; break;
4856 case ta_widen_insn:
4857 t = "widen_insn"; break;
4858 case ta_fill:
4859 t = "fill"; break;
4860 case ta_none:
4861 t = "none"; break;
4862 case ta_remove_literal:
4863 t = "remove_literal"; break;
4864 case ta_add_literal:
4865 t = "add_literal"; break;
4866 }
4867
4868 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4869 r->sec->owner->filename,
4870 r->sec->name, r->offset, t, r->removed_bytes);
4871 }
4872}
4873
4874#endif /* DEBUG */
4875
4876\f
4877/* Lists of literals being coalesced or removed. */
4878
4879/* In the usual case, the literal identified by "from" is being
4880 coalesced with another literal identified by "to". If the literal is
4881 unused and is being removed altogether, "to.abfd" will be NULL.
4882 The removed_literal entries are kept on a per-section list, sorted
4883 by the "from" offset field. */
4884
4885typedef struct removed_literal_struct removed_literal;
4886typedef struct removed_literal_list_struct removed_literal_list;
4887
4888struct removed_literal_struct
4889{
4890 r_reloc from;
4891 r_reloc to;
4892 removed_literal *next;
4893};
4894
4895struct removed_literal_list_struct
4896{
4897 removed_literal *head;
4898 removed_literal *tail;
4899};
4900
4901
43cd72b9
BW
4902/* Record that the literal at "from" is being removed. If "to" is not
4903 NULL, the "from" literal is being coalesced with the "to" literal. */
4904
4905static void
7fa3d080
BW
4906add_removed_literal (removed_literal_list *removed_list,
4907 const r_reloc *from,
4908 const r_reloc *to)
43cd72b9
BW
4909{
4910 removed_literal *r, *new_r, *next_r;
4911
4912 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4913
4914 new_r->from = *from;
4915 if (to)
4916 new_r->to = *to;
4917 else
4918 new_r->to.abfd = NULL;
4919 new_r->next = NULL;
4920
4921 r = removed_list->head;
4922 if (r == NULL)
4923 {
4924 removed_list->head = new_r;
4925 removed_list->tail = new_r;
4926 }
4927 /* Special check for common case of append. */
4928 else if (removed_list->tail->from.target_offset < from->target_offset)
4929 {
4930 removed_list->tail->next = new_r;
4931 removed_list->tail = new_r;
4932 }
4933 else
4934 {
7fa3d080 4935 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4936 {
4937 r = r->next;
4938 }
4939 next_r = r->next;
4940 r->next = new_r;
4941 new_r->next = next_r;
4942 if (next_r == NULL)
4943 removed_list->tail = new_r;
4944 }
4945}
4946
4947
4948/* Check if the list of removed literals contains an entry for the
4949 given address. Return the entry if found. */
4950
4951static removed_literal *
7fa3d080 4952find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4953{
4954 removed_literal *r = removed_list->head;
4955 while (r && r->from.target_offset < addr)
4956 r = r->next;
4957 if (r && r->from.target_offset == addr)
4958 return r;
4959 return NULL;
4960}
4961
4962
4963#if DEBUG
4964
4965static void
7fa3d080 4966print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4967{
4968 removed_literal *r;
4969 r = removed_list->head;
4970 if (r)
4971 fprintf (fp, "Removed Literals\n");
4972 for (; r != NULL; r = r->next)
4973 {
4974 print_r_reloc (fp, &r->from);
4975 fprintf (fp, " => ");
4976 if (r->to.abfd == NULL)
4977 fprintf (fp, "REMOVED");
4978 else
4979 print_r_reloc (fp, &r->to);
4980 fprintf (fp, "\n");
4981 }
4982}
4983
4984#endif /* DEBUG */
4985
4986\f
4987/* Per-section data for relaxation. */
4988
4989typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4990
4991struct xtensa_relax_info_struct
4992{
4993 bfd_boolean is_relaxable_literal_section;
4994 bfd_boolean is_relaxable_asm_section;
4995 int visited; /* Number of times visited. */
4996
4997 source_reloc *src_relocs; /* Array[src_count]. */
4998 int src_count;
4999 int src_next; /* Next src_relocs entry to assign. */
5000
5001 removed_literal_list removed_list;
5002 text_action_list action_list;
5003
5004 reloc_bfd_fix *fix_list;
5005 reloc_bfd_fix *fix_array;
5006 unsigned fix_array_count;
5007
5008 /* Support for expanding the reloc array that is stored
5009 in the section structure. If the relocations have been
5010 reallocated, the newly allocated relocations will be referenced
5011 here along with the actual size allocated. The relocation
5012 count will always be found in the section structure. */
5013 Elf_Internal_Rela *allocated_relocs;
5014 unsigned relocs_count;
5015 unsigned allocated_relocs_count;
5016};
5017
5018struct elf_xtensa_section_data
5019{
5020 struct bfd_elf_section_data elf;
5021 xtensa_relax_info relax_info;
5022};
5023
43cd72b9
BW
5024
5025static bfd_boolean
7fa3d080 5026elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5027{
f592407e
AM
5028 if (!sec->used_by_bfd)
5029 {
5030 struct elf_xtensa_section_data *sdata;
5031 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5032
f592407e
AM
5033 sdata = bfd_zalloc (abfd, amt);
5034 if (sdata == NULL)
5035 return FALSE;
5036 sec->used_by_bfd = sdata;
5037 }
43cd72b9
BW
5038
5039 return _bfd_elf_new_section_hook (abfd, sec);
5040}
5041
5042
7fa3d080
BW
5043static xtensa_relax_info *
5044get_xtensa_relax_info (asection *sec)
5045{
5046 struct elf_xtensa_section_data *section_data;
5047
5048 /* No info available if no section or if it is an output section. */
5049 if (!sec || sec == sec->output_section)
5050 return NULL;
5051
5052 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5053 return &section_data->relax_info;
5054}
5055
5056
43cd72b9 5057static void
7fa3d080 5058init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5059{
5060 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5061
5062 relax_info->is_relaxable_literal_section = FALSE;
5063 relax_info->is_relaxable_asm_section = FALSE;
5064 relax_info->visited = 0;
5065
5066 relax_info->src_relocs = NULL;
5067 relax_info->src_count = 0;
5068 relax_info->src_next = 0;
5069
5070 relax_info->removed_list.head = NULL;
5071 relax_info->removed_list.tail = NULL;
5072
5073 relax_info->action_list.head = NULL;
5074
5075 relax_info->fix_list = NULL;
5076 relax_info->fix_array = NULL;
5077 relax_info->fix_array_count = 0;
5078
5079 relax_info->allocated_relocs = NULL;
5080 relax_info->relocs_count = 0;
5081 relax_info->allocated_relocs_count = 0;
5082}
5083
43cd72b9
BW
5084\f
5085/* Coalescing literals may require a relocation to refer to a section in
5086 a different input file, but the standard relocation information
5087 cannot express that. Instead, the reloc_bfd_fix structures are used
5088 to "fix" the relocations that refer to sections in other input files.
5089 These structures are kept on per-section lists. The "src_type" field
5090 records the relocation type in case there are multiple relocations on
5091 the same location. FIXME: This is ugly; an alternative might be to
5092 add new symbols with the "owner" field to some other input file. */
5093
5094struct reloc_bfd_fix_struct
5095{
5096 asection *src_sec;
5097 bfd_vma src_offset;
5098 unsigned src_type; /* Relocation type. */
5099
43cd72b9
BW
5100 asection *target_sec;
5101 bfd_vma target_offset;
5102 bfd_boolean translated;
5103
5104 reloc_bfd_fix *next;
5105};
5106
5107
43cd72b9 5108static reloc_bfd_fix *
7fa3d080
BW
5109reloc_bfd_fix_init (asection *src_sec,
5110 bfd_vma src_offset,
5111 unsigned src_type,
7fa3d080
BW
5112 asection *target_sec,
5113 bfd_vma target_offset,
5114 bfd_boolean translated)
43cd72b9
BW
5115{
5116 reloc_bfd_fix *fix;
5117
5118 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5119 fix->src_sec = src_sec;
5120 fix->src_offset = src_offset;
5121 fix->src_type = src_type;
43cd72b9
BW
5122 fix->target_sec = target_sec;
5123 fix->target_offset = target_offset;
5124 fix->translated = translated;
5125
5126 return fix;
5127}
5128
5129
5130static void
7fa3d080 5131add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5132{
5133 xtensa_relax_info *relax_info;
5134
5135 relax_info = get_xtensa_relax_info (src_sec);
5136 fix->next = relax_info->fix_list;
5137 relax_info->fix_list = fix;
5138}
5139
5140
5141static int
7fa3d080 5142fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5143{
5144 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5145 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5146
5147 if (a->src_offset != b->src_offset)
5148 return (a->src_offset - b->src_offset);
5149 return (a->src_type - b->src_type);
5150}
5151
5152
5153static void
7fa3d080 5154cache_fix_array (asection *sec)
43cd72b9
BW
5155{
5156 unsigned i, count = 0;
5157 reloc_bfd_fix *r;
5158 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5159
5160 if (relax_info == NULL)
5161 return;
5162 if (relax_info->fix_list == NULL)
5163 return;
5164
5165 for (r = relax_info->fix_list; r != NULL; r = r->next)
5166 count++;
5167
5168 relax_info->fix_array =
5169 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5170 relax_info->fix_array_count = count;
5171
5172 r = relax_info->fix_list;
5173 for (i = 0; i < count; i++, r = r->next)
5174 {
5175 relax_info->fix_array[count - 1 - i] = *r;
5176 relax_info->fix_array[count - 1 - i].next = NULL;
5177 }
5178
5179 qsort (relax_info->fix_array, relax_info->fix_array_count,
5180 sizeof (reloc_bfd_fix), fix_compare);
5181}
5182
5183
5184static reloc_bfd_fix *
7fa3d080 5185get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5186{
5187 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5188 reloc_bfd_fix *rv;
5189 reloc_bfd_fix key;
5190
5191 if (relax_info == NULL)
5192 return NULL;
5193 if (relax_info->fix_list == NULL)
5194 return NULL;
5195
5196 if (relax_info->fix_array == NULL)
5197 cache_fix_array (sec);
5198
5199 key.src_offset = offset;
5200 key.src_type = type;
5201 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5202 sizeof (reloc_bfd_fix), fix_compare);
5203 return rv;
5204}
5205
5206\f
5207/* Section caching. */
5208
5209typedef struct section_cache_struct section_cache_t;
5210
5211struct section_cache_struct
5212{
5213 asection *sec;
5214
5215 bfd_byte *contents; /* Cache of the section contents. */
5216 bfd_size_type content_length;
5217
5218 property_table_entry *ptbl; /* Cache of the section property table. */
5219 unsigned pte_count;
5220
5221 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5222 unsigned reloc_count;
5223};
5224
5225
7fa3d080
BW
5226static void
5227init_section_cache (section_cache_t *sec_cache)
5228{
5229 memset (sec_cache, 0, sizeof (*sec_cache));
5230}
43cd72b9
BW
5231
5232
5233static void
7fa3d080 5234clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5235{
7fa3d080
BW
5236 if (sec_cache->sec)
5237 {
5238 release_contents (sec_cache->sec, sec_cache->contents);
5239 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5240 if (sec_cache->ptbl)
5241 free (sec_cache->ptbl);
5242 memset (sec_cache, 0, sizeof (sec_cache));
5243 }
43cd72b9
BW
5244}
5245
5246
5247static bfd_boolean
7fa3d080
BW
5248section_cache_section (section_cache_t *sec_cache,
5249 asection *sec,
5250 struct bfd_link_info *link_info)
43cd72b9
BW
5251{
5252 bfd *abfd;
5253 property_table_entry *prop_table = NULL;
5254 int ptblsize = 0;
5255 bfd_byte *contents = NULL;
5256 Elf_Internal_Rela *internal_relocs = NULL;
5257 bfd_size_type sec_size;
5258
5259 if (sec == NULL)
5260 return FALSE;
5261 if (sec == sec_cache->sec)
5262 return TRUE;
5263
5264 abfd = sec->owner;
5265 sec_size = bfd_get_section_limit (abfd, sec);
5266
5267 /* Get the contents. */
5268 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5269 if (contents == NULL && sec_size != 0)
5270 goto err;
5271
5272 /* Get the relocations. */
5273 internal_relocs = retrieve_internal_relocs (abfd, sec,
5274 link_info->keep_memory);
5275
5276 /* Get the entry table. */
5277 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5278 XTENSA_PROP_SEC_NAME, FALSE);
5279 if (ptblsize < 0)
5280 goto err;
5281
5282 /* Fill in the new section cache. */
5283 clear_section_cache (sec_cache);
5284 memset (sec_cache, 0, sizeof (sec_cache));
5285
5286 sec_cache->sec = sec;
5287 sec_cache->contents = contents;
5288 sec_cache->content_length = sec_size;
5289 sec_cache->relocs = internal_relocs;
5290 sec_cache->reloc_count = sec->reloc_count;
5291 sec_cache->pte_count = ptblsize;
5292 sec_cache->ptbl = prop_table;
5293
5294 return TRUE;
5295
5296 err:
5297 release_contents (sec, contents);
5298 release_internal_relocs (sec, internal_relocs);
5299 if (prop_table)
5300 free (prop_table);
5301 return FALSE;
5302}
5303
43cd72b9
BW
5304\f
5305/* Extended basic blocks. */
5306
5307/* An ebb_struct represents an Extended Basic Block. Within this
5308 range, we guarantee that all instructions are decodable, the
5309 property table entries are contiguous, and no property table
5310 specifies a segment that cannot have instructions moved. This
5311 structure contains caches of the contents, property table and
5312 relocations for the specified section for easy use. The range is
5313 specified by ranges of indices for the byte offset, property table
5314 offsets and relocation offsets. These must be consistent. */
5315
5316typedef struct ebb_struct ebb_t;
5317
5318struct ebb_struct
5319{
5320 asection *sec;
5321
5322 bfd_byte *contents; /* Cache of the section contents. */
5323 bfd_size_type content_length;
5324
5325 property_table_entry *ptbl; /* Cache of the section property table. */
5326 unsigned pte_count;
5327
5328 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5329 unsigned reloc_count;
5330
5331 bfd_vma start_offset; /* Offset in section. */
5332 unsigned start_ptbl_idx; /* Offset in the property table. */
5333 unsigned start_reloc_idx; /* Offset in the relocations. */
5334
5335 bfd_vma end_offset;
5336 unsigned end_ptbl_idx;
5337 unsigned end_reloc_idx;
5338
5339 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5340
5341 /* The unreachable property table at the end of this set of blocks;
5342 NULL if the end is not an unreachable block. */
5343 property_table_entry *ends_unreachable;
5344};
5345
5346
5347enum ebb_target_enum
5348{
5349 EBB_NO_ALIGN = 0,
5350 EBB_DESIRE_TGT_ALIGN,
5351 EBB_REQUIRE_TGT_ALIGN,
5352 EBB_REQUIRE_LOOP_ALIGN,
5353 EBB_REQUIRE_ALIGN
5354};
5355
5356
5357/* proposed_action_struct is similar to the text_action_struct except
5358 that is represents a potential transformation, not one that will
5359 occur. We build a list of these for an extended basic block
5360 and use them to compute the actual actions desired. We must be
5361 careful that the entire set of actual actions we perform do not
5362 break any relocations that would fit if the actions were not
5363 performed. */
5364
5365typedef struct proposed_action_struct proposed_action;
5366
5367struct proposed_action_struct
5368{
5369 enum ebb_target_enum align_type; /* for the target alignment */
5370 bfd_vma alignment_pow;
5371 text_action_t action;
5372 bfd_vma offset;
5373 int removed_bytes;
5374 bfd_boolean do_action; /* If false, then we will not perform the action. */
5375};
5376
5377
5378/* The ebb_constraint_struct keeps a set of proposed actions for an
5379 extended basic block. */
5380
5381typedef struct ebb_constraint_struct ebb_constraint;
5382
5383struct ebb_constraint_struct
5384{
5385 ebb_t ebb;
5386 bfd_boolean start_movable;
5387
5388 /* Bytes of extra space at the beginning if movable. */
5389 int start_extra_space;
5390
5391 enum ebb_target_enum start_align;
5392
5393 bfd_boolean end_movable;
5394
5395 /* Bytes of extra space at the end if movable. */
5396 int end_extra_space;
5397
5398 unsigned action_count;
5399 unsigned action_allocated;
5400
5401 /* Array of proposed actions. */
5402 proposed_action *actions;
5403
5404 /* Action alignments -- one for each proposed action. */
5405 enum ebb_target_enum *action_aligns;
5406};
5407
5408
43cd72b9 5409static void
7fa3d080 5410init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5411{
5412 memset (c, 0, sizeof (ebb_constraint));
5413}
5414
5415
5416static void
7fa3d080 5417free_ebb_constraint (ebb_constraint *c)
43cd72b9 5418{
7fa3d080 5419 if (c->actions)
43cd72b9
BW
5420 free (c->actions);
5421}
5422
5423
5424static void
7fa3d080
BW
5425init_ebb (ebb_t *ebb,
5426 asection *sec,
5427 bfd_byte *contents,
5428 bfd_size_type content_length,
5429 property_table_entry *prop_table,
5430 unsigned ptblsize,
5431 Elf_Internal_Rela *internal_relocs,
5432 unsigned reloc_count)
43cd72b9
BW
5433{
5434 memset (ebb, 0, sizeof (ebb_t));
5435 ebb->sec = sec;
5436 ebb->contents = contents;
5437 ebb->content_length = content_length;
5438 ebb->ptbl = prop_table;
5439 ebb->pte_count = ptblsize;
5440 ebb->relocs = internal_relocs;
5441 ebb->reloc_count = reloc_count;
5442 ebb->start_offset = 0;
5443 ebb->end_offset = ebb->content_length - 1;
5444 ebb->start_ptbl_idx = 0;
5445 ebb->end_ptbl_idx = ptblsize;
5446 ebb->start_reloc_idx = 0;
5447 ebb->end_reloc_idx = reloc_count;
5448}
5449
5450
5451/* Extend the ebb to all decodable contiguous sections. The algorithm
5452 for building a basic block around an instruction is to push it
5453 forward until we hit the end of a section, an unreachable block or
5454 a block that cannot be transformed. Then we push it backwards
5455 searching for similar conditions. */
5456
7fa3d080
BW
5457static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5458static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5459static bfd_size_type insn_block_decodable_len
5460 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5461
43cd72b9 5462static bfd_boolean
7fa3d080 5463extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5464{
5465 if (!extend_ebb_bounds_forward (ebb))
5466 return FALSE;
5467 if (!extend_ebb_bounds_backward (ebb))
5468 return FALSE;
5469 return TRUE;
5470}
5471
5472
5473static bfd_boolean
7fa3d080 5474extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5475{
5476 property_table_entry *the_entry, *new_entry;
5477
5478 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5479
5480 /* Stop when (1) we cannot decode an instruction, (2) we are at
5481 the end of the property tables, (3) we hit a non-contiguous property
5482 table entry, (4) we hit a NO_TRANSFORM region. */
5483
5484 while (1)
5485 {
5486 bfd_vma entry_end;
5487 bfd_size_type insn_block_len;
5488
5489 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5490 insn_block_len =
5491 insn_block_decodable_len (ebb->contents, ebb->content_length,
5492 ebb->end_offset,
5493 entry_end - ebb->end_offset);
5494 if (insn_block_len != (entry_end - ebb->end_offset))
5495 {
5496 (*_bfd_error_handler)
5497 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5498 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5499 return FALSE;
5500 }
5501 ebb->end_offset += insn_block_len;
5502
5503 if (ebb->end_offset == ebb->sec->size)
5504 ebb->ends_section = TRUE;
5505
5506 /* Update the reloc counter. */
5507 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5508 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5509 < ebb->end_offset))
5510 {
5511 ebb->end_reloc_idx++;
5512 }
5513
5514 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5515 return TRUE;
5516
5517 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5518 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 5519 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5520 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5521 break;
5522
5523 if (the_entry->address + the_entry->size != new_entry->address)
5524 break;
5525
5526 the_entry = new_entry;
5527 ebb->end_ptbl_idx++;
5528 }
5529
5530 /* Quick check for an unreachable or end of file just at the end. */
5531 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5532 {
5533 if (ebb->end_offset == ebb->content_length)
5534 ebb->ends_section = TRUE;
5535 }
5536 else
5537 {
5538 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5539 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5540 && the_entry->address + the_entry->size == new_entry->address)
5541 ebb->ends_unreachable = new_entry;
5542 }
5543
5544 /* Any other ending requires exact alignment. */
5545 return TRUE;
5546}
5547
5548
5549static bfd_boolean
7fa3d080 5550extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5551{
5552 property_table_entry *the_entry, *new_entry;
5553
5554 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5555
5556 /* Stop when (1) we cannot decode the instructions in the current entry.
5557 (2) we are at the beginning of the property tables, (3) we hit a
5558 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5559
5560 while (1)
5561 {
5562 bfd_vma block_begin;
5563 bfd_size_type insn_block_len;
5564
5565 block_begin = the_entry->address - ebb->sec->vma;
5566 insn_block_len =
5567 insn_block_decodable_len (ebb->contents, ebb->content_length,
5568 block_begin,
5569 ebb->start_offset - block_begin);
5570 if (insn_block_len != ebb->start_offset - block_begin)
5571 {
5572 (*_bfd_error_handler)
5573 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5574 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5575 return FALSE;
5576 }
5577 ebb->start_offset -= insn_block_len;
5578
5579 /* Update the reloc counter. */
5580 while (ebb->start_reloc_idx > 0
5581 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5582 >= ebb->start_offset))
5583 {
5584 ebb->start_reloc_idx--;
5585 }
5586
5587 if (ebb->start_ptbl_idx == 0)
5588 return TRUE;
5589
5590 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5591 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 5592 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5593 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5594 return TRUE;
5595 if (new_entry->address + new_entry->size != the_entry->address)
5596 return TRUE;
5597
5598 the_entry = new_entry;
5599 ebb->start_ptbl_idx--;
5600 }
5601 return TRUE;
5602}
5603
5604
5605static bfd_size_type
7fa3d080
BW
5606insn_block_decodable_len (bfd_byte *contents,
5607 bfd_size_type content_len,
5608 bfd_vma block_offset,
5609 bfd_size_type block_len)
43cd72b9
BW
5610{
5611 bfd_vma offset = block_offset;
5612
5613 while (offset < block_offset + block_len)
5614 {
5615 bfd_size_type insn_len = 0;
5616
5617 insn_len = insn_decode_len (contents, content_len, offset);
5618 if (insn_len == 0)
5619 return (offset - block_offset);
5620 offset += insn_len;
5621 }
5622 return (offset - block_offset);
5623}
5624
5625
5626static void
7fa3d080 5627ebb_propose_action (ebb_constraint *c,
7fa3d080 5628 enum ebb_target_enum align_type,
288f74fa 5629 bfd_vma alignment_pow,
7fa3d080
BW
5630 text_action_t action,
5631 bfd_vma offset,
5632 int removed_bytes,
5633 bfd_boolean do_action)
43cd72b9 5634{
b08b5071 5635 proposed_action *act;
43cd72b9 5636
43cd72b9
BW
5637 if (c->action_allocated <= c->action_count)
5638 {
b08b5071 5639 unsigned new_allocated, i;
823fc61f 5640 proposed_action *new_actions;
b08b5071
BW
5641
5642 new_allocated = (c->action_count + 2) * 2;
823fc61f 5643 new_actions = (proposed_action *)
43cd72b9
BW
5644 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5645
5646 for (i = 0; i < c->action_count; i++)
5647 new_actions[i] = c->actions[i];
7fa3d080 5648 if (c->actions)
43cd72b9
BW
5649 free (c->actions);
5650 c->actions = new_actions;
5651 c->action_allocated = new_allocated;
5652 }
b08b5071
BW
5653
5654 act = &c->actions[c->action_count];
5655 act->align_type = align_type;
5656 act->alignment_pow = alignment_pow;
5657 act->action = action;
5658 act->offset = offset;
5659 act->removed_bytes = removed_bytes;
5660 act->do_action = do_action;
5661
43cd72b9
BW
5662 c->action_count++;
5663}
5664
5665\f
5666/* Access to internal relocations, section contents and symbols. */
5667
5668/* During relaxation, we need to modify relocations, section contents,
5669 and symbol definitions, and we need to keep the original values from
5670 being reloaded from the input files, i.e., we need to "pin" the
5671 modified values in memory. We also want to continue to observe the
5672 setting of the "keep-memory" flag. The following functions wrap the
5673 standard BFD functions to take care of this for us. */
5674
5675static Elf_Internal_Rela *
7fa3d080 5676retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5677{
5678 Elf_Internal_Rela *internal_relocs;
5679
5680 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5681 return NULL;
5682
5683 internal_relocs = elf_section_data (sec)->relocs;
5684 if (internal_relocs == NULL)
5685 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5686 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5687 return internal_relocs;
5688}
5689
5690
5691static void
7fa3d080 5692pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5693{
5694 elf_section_data (sec)->relocs = internal_relocs;
5695}
5696
5697
5698static void
7fa3d080 5699release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5700{
5701 if (internal_relocs
5702 && elf_section_data (sec)->relocs != internal_relocs)
5703 free (internal_relocs);
5704}
5705
5706
5707static bfd_byte *
7fa3d080 5708retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5709{
5710 bfd_byte *contents;
5711 bfd_size_type sec_size;
5712
5713 sec_size = bfd_get_section_limit (abfd, sec);
5714 contents = elf_section_data (sec)->this_hdr.contents;
5715
5716 if (contents == NULL && sec_size != 0)
5717 {
5718 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5719 {
7fa3d080 5720 if (contents)
43cd72b9
BW
5721 free (contents);
5722 return NULL;
5723 }
5724 if (keep_memory)
5725 elf_section_data (sec)->this_hdr.contents = contents;
5726 }
5727 return contents;
5728}
5729
5730
5731static void
7fa3d080 5732pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5733{
5734 elf_section_data (sec)->this_hdr.contents = contents;
5735}
5736
5737
5738static void
7fa3d080 5739release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5740{
5741 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5742 free (contents);
5743}
5744
5745
5746static Elf_Internal_Sym *
7fa3d080 5747retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5748{
5749 Elf_Internal_Shdr *symtab_hdr;
5750 Elf_Internal_Sym *isymbuf;
5751 size_t locsymcount;
5752
5753 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5754 locsymcount = symtab_hdr->sh_info;
5755
5756 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5757 if (isymbuf == NULL && locsymcount != 0)
5758 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5759 NULL, NULL, NULL);
5760
5761 /* Save the symbols for this input file so they won't be read again. */
5762 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5763 symtab_hdr->contents = (unsigned char *) isymbuf;
5764
5765 return isymbuf;
5766}
5767
5768\f
5769/* Code for link-time relaxation. */
5770
5771/* Initialization for relaxation: */
7fa3d080 5772static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5773static bfd_boolean find_relaxable_sections
7fa3d080 5774 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5775static bfd_boolean collect_source_relocs
7fa3d080 5776 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5777static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5778 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5779 bfd_boolean *);
43cd72b9 5780static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5781 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5782static bfd_boolean compute_text_actions
7fa3d080
BW
5783 (bfd *, asection *, struct bfd_link_info *);
5784static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5785static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5786static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5787 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5788 const xtensa_opcode *);
7fa3d080 5789static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5790static void text_action_add_proposed
7fa3d080
BW
5791 (text_action_list *, const ebb_constraint *, asection *);
5792static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5793
5794/* First pass: */
5795static bfd_boolean compute_removed_literals
7fa3d080 5796 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5797static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5798 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5799static bfd_boolean is_removable_literal
99ded152
BW
5800 (const source_reloc *, int, const source_reloc *, int, asection *,
5801 property_table_entry *, int);
43cd72b9 5802static bfd_boolean remove_dead_literal
7fa3d080
BW
5803 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5804 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5805static bfd_boolean identify_literal_placement
5806 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5807 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5808 source_reloc *, property_table_entry *, int, section_cache_t *,
5809 bfd_boolean);
5810static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5811static bfd_boolean coalesce_shared_literal
7fa3d080 5812 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5813static bfd_boolean move_shared_literal
7fa3d080
BW
5814 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5815 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5816
5817/* Second pass: */
7fa3d080
BW
5818static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5819static bfd_boolean translate_section_fixes (asection *);
5820static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 5821static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 5822static void shrink_dynamic_reloc_sections
7fa3d080 5823 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5824static bfd_boolean move_literal
7fa3d080
BW
5825 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5826 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5827static bfd_boolean relax_property_section
7fa3d080 5828 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5829
5830/* Third pass: */
7fa3d080 5831static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5832
5833
5834static bfd_boolean
7fa3d080
BW
5835elf_xtensa_relax_section (bfd *abfd,
5836 asection *sec,
5837 struct bfd_link_info *link_info,
5838 bfd_boolean *again)
43cd72b9
BW
5839{
5840 static value_map_hash_table *values = NULL;
5841 static bfd_boolean relocations_analyzed = FALSE;
5842 xtensa_relax_info *relax_info;
5843
5844 if (!relocations_analyzed)
5845 {
5846 /* Do some overall initialization for relaxation. */
5847 values = value_map_hash_table_init ();
5848 if (values == NULL)
5849 return FALSE;
5850 relaxing_section = TRUE;
5851 if (!analyze_relocations (link_info))
5852 return FALSE;
5853 relocations_analyzed = TRUE;
5854 }
5855 *again = FALSE;
5856
5857 /* Don't mess with linker-created sections. */
5858 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5859 return TRUE;
5860
5861 relax_info = get_xtensa_relax_info (sec);
5862 BFD_ASSERT (relax_info != NULL);
5863
5864 switch (relax_info->visited)
5865 {
5866 case 0:
5867 /* Note: It would be nice to fold this pass into
5868 analyze_relocations, but it is important for this step that the
5869 sections be examined in link order. */
5870 if (!compute_removed_literals (abfd, sec, link_info, values))
5871 return FALSE;
5872 *again = TRUE;
5873 break;
5874
5875 case 1:
5876 if (values)
5877 value_map_hash_table_delete (values);
5878 values = NULL;
5879 if (!relax_section (abfd, sec, link_info))
5880 return FALSE;
5881 *again = TRUE;
5882 break;
5883
5884 case 2:
5885 if (!relax_section_symbols (abfd, sec))
5886 return FALSE;
5887 break;
5888 }
5889
5890 relax_info->visited++;
5891 return TRUE;
5892}
5893
5894\f
5895/* Initialization for relaxation. */
5896
5897/* This function is called once at the start of relaxation. It scans
5898 all the input sections and marks the ones that are relaxable (i.e.,
5899 literal sections with L32R relocations against them), and then
5900 collects source_reloc information for all the relocations against
5901 those relaxable sections. During this process, it also detects
5902 longcalls, i.e., calls relaxed by the assembler into indirect
5903 calls, that can be optimized back into direct calls. Within each
5904 extended basic block (ebb) containing an optimized longcall, it
5905 computes a set of "text actions" that can be performed to remove
5906 the L32R associated with the longcall while optionally preserving
5907 branch target alignments. */
5908
5909static bfd_boolean
7fa3d080 5910analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5911{
5912 bfd *abfd;
5913 asection *sec;
5914 bfd_boolean is_relaxable = FALSE;
5915
5916 /* Initialize the per-section relaxation info. */
5917 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5918 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5919 {
5920 init_xtensa_relax_info (sec);
5921 }
5922
5923 /* Mark relaxable sections (and count relocations against each one). */
5924 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5925 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5926 {
5927 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5928 return FALSE;
5929 }
5930
5931 /* Bail out if there are no relaxable sections. */
5932 if (!is_relaxable)
5933 return TRUE;
5934
5935 /* Allocate space for source_relocs. */
5936 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5937 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5938 {
5939 xtensa_relax_info *relax_info;
5940
5941 relax_info = get_xtensa_relax_info (sec);
5942 if (relax_info->is_relaxable_literal_section
5943 || relax_info->is_relaxable_asm_section)
5944 {
5945 relax_info->src_relocs = (source_reloc *)
5946 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5947 }
25c6282a
BW
5948 else
5949 relax_info->src_count = 0;
43cd72b9
BW
5950 }
5951
5952 /* Collect info on relocations against each relaxable section. */
5953 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5954 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5955 {
5956 if (!collect_source_relocs (abfd, sec, link_info))
5957 return FALSE;
5958 }
5959
5960 /* Compute the text actions. */
5961 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5962 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5963 {
5964 if (!compute_text_actions (abfd, sec, link_info))
5965 return FALSE;
5966 }
5967
5968 return TRUE;
5969}
5970
5971
5972/* Find all the sections that might be relaxed. The motivation for
5973 this pass is that collect_source_relocs() needs to record _all_ the
5974 relocations that target each relaxable section. That is expensive
5975 and unnecessary unless the target section is actually going to be
5976 relaxed. This pass identifies all such sections by checking if
5977 they have L32Rs pointing to them. In the process, the total number
5978 of relocations targeting each section is also counted so that we
5979 know how much space to allocate for source_relocs against each
5980 relaxable literal section. */
5981
5982static bfd_boolean
7fa3d080
BW
5983find_relaxable_sections (bfd *abfd,
5984 asection *sec,
5985 struct bfd_link_info *link_info,
5986 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5987{
5988 Elf_Internal_Rela *internal_relocs;
5989 bfd_byte *contents;
5990 bfd_boolean ok = TRUE;
5991 unsigned i;
5992 xtensa_relax_info *source_relax_info;
25c6282a 5993 bfd_boolean is_l32r_reloc;
43cd72b9
BW
5994
5995 internal_relocs = retrieve_internal_relocs (abfd, sec,
5996 link_info->keep_memory);
5997 if (internal_relocs == NULL)
5998 return ok;
5999
6000 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6001 if (contents == NULL && sec->size != 0)
6002 {
6003 ok = FALSE;
6004 goto error_return;
6005 }
6006
6007 source_relax_info = get_xtensa_relax_info (sec);
6008 for (i = 0; i < sec->reloc_count; i++)
6009 {
6010 Elf_Internal_Rela *irel = &internal_relocs[i];
6011 r_reloc r_rel;
6012 asection *target_sec;
6013 xtensa_relax_info *target_relax_info;
6014
6015 /* If this section has not already been marked as "relaxable", and
6016 if it contains any ASM_EXPAND relocations (marking expanded
6017 longcalls) that can be optimized into direct calls, then mark
6018 the section as "relaxable". */
6019 if (source_relax_info
6020 && !source_relax_info->is_relaxable_asm_section
6021 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6022 {
6023 bfd_boolean is_reachable = FALSE;
6024 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6025 link_info, &is_reachable)
6026 && is_reachable)
6027 {
6028 source_relax_info->is_relaxable_asm_section = TRUE;
6029 *is_relaxable_p = TRUE;
6030 }
6031 }
6032
6033 r_reloc_init (&r_rel, abfd, irel, contents,
6034 bfd_get_section_limit (abfd, sec));
6035
6036 target_sec = r_reloc_get_section (&r_rel);
6037 target_relax_info = get_xtensa_relax_info (target_sec);
6038 if (!target_relax_info)
6039 continue;
6040
6041 /* Count PC-relative operand relocations against the target section.
6042 Note: The conditions tested here must match the conditions under
6043 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6044 is_l32r_reloc = FALSE;
6045 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6046 {
6047 xtensa_opcode opcode =
6048 get_relocation_opcode (abfd, sec, contents, irel);
6049 if (opcode != XTENSA_UNDEFINED)
6050 {
6051 is_l32r_reloc = (opcode == get_l32r_opcode ());
6052 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6053 || is_l32r_reloc)
6054 target_relax_info->src_count++;
6055 }
6056 }
43cd72b9 6057
25c6282a 6058 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6059 {
6060 /* Mark the target section as relaxable. */
6061 target_relax_info->is_relaxable_literal_section = TRUE;
6062 *is_relaxable_p = TRUE;
6063 }
6064 }
6065
6066 error_return:
6067 release_contents (sec, contents);
6068 release_internal_relocs (sec, internal_relocs);
6069 return ok;
6070}
6071
6072
6073/* Record _all_ the relocations that point to relaxable sections, and
6074 get rid of ASM_EXPAND relocs by either converting them to
6075 ASM_SIMPLIFY or by removing them. */
6076
6077static bfd_boolean
7fa3d080
BW
6078collect_source_relocs (bfd *abfd,
6079 asection *sec,
6080 struct bfd_link_info *link_info)
43cd72b9
BW
6081{
6082 Elf_Internal_Rela *internal_relocs;
6083 bfd_byte *contents;
6084 bfd_boolean ok = TRUE;
6085 unsigned i;
6086 bfd_size_type sec_size;
6087
6088 internal_relocs = retrieve_internal_relocs (abfd, sec,
6089 link_info->keep_memory);
6090 if (internal_relocs == NULL)
6091 return ok;
6092
6093 sec_size = bfd_get_section_limit (abfd, sec);
6094 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6095 if (contents == NULL && sec_size != 0)
6096 {
6097 ok = FALSE;
6098 goto error_return;
6099 }
6100
6101 /* Record relocations against relaxable literal sections. */
6102 for (i = 0; i < sec->reloc_count; i++)
6103 {
6104 Elf_Internal_Rela *irel = &internal_relocs[i];
6105 r_reloc r_rel;
6106 asection *target_sec;
6107 xtensa_relax_info *target_relax_info;
6108
6109 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6110
6111 target_sec = r_reloc_get_section (&r_rel);
6112 target_relax_info = get_xtensa_relax_info (target_sec);
6113
6114 if (target_relax_info
6115 && (target_relax_info->is_relaxable_literal_section
6116 || target_relax_info->is_relaxable_asm_section))
6117 {
6118 xtensa_opcode opcode = XTENSA_UNDEFINED;
6119 int opnd = -1;
6120 bfd_boolean is_abs_literal = FALSE;
6121
6122 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6123 {
6124 /* None of the current alternate relocs are PC-relative,
6125 and only PC-relative relocs matter here. However, we
6126 still need to record the opcode for literal
6127 coalescing. */
6128 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6129 if (opcode == get_l32r_opcode ())
6130 {
6131 is_abs_literal = TRUE;
6132 opnd = 1;
6133 }
6134 else
6135 opcode = XTENSA_UNDEFINED;
6136 }
6137 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6138 {
6139 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6140 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6141 }
6142
6143 if (opcode != XTENSA_UNDEFINED)
6144 {
6145 int src_next = target_relax_info->src_next++;
6146 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6147
6148 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6149 is_abs_literal);
6150 }
6151 }
6152 }
6153
6154 /* Now get rid of ASM_EXPAND relocations. At this point, the
6155 src_relocs array for the target literal section may still be
6156 incomplete, but it must at least contain the entries for the L32R
6157 relocations associated with ASM_EXPANDs because they were just
6158 added in the preceding loop over the relocations. */
6159
6160 for (i = 0; i < sec->reloc_count; i++)
6161 {
6162 Elf_Internal_Rela *irel = &internal_relocs[i];
6163 bfd_boolean is_reachable;
6164
6165 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6166 &is_reachable))
6167 continue;
6168
6169 if (is_reachable)
6170 {
6171 Elf_Internal_Rela *l32r_irel;
6172 r_reloc r_rel;
6173 asection *target_sec;
6174 xtensa_relax_info *target_relax_info;
6175
6176 /* Mark the source_reloc for the L32R so that it will be
6177 removed in compute_removed_literals(), along with the
6178 associated literal. */
6179 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6180 irel, internal_relocs);
6181 if (l32r_irel == NULL)
6182 continue;
6183
6184 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6185
6186 target_sec = r_reloc_get_section (&r_rel);
6187 target_relax_info = get_xtensa_relax_info (target_sec);
6188
6189 if (target_relax_info
6190 && (target_relax_info->is_relaxable_literal_section
6191 || target_relax_info->is_relaxable_asm_section))
6192 {
6193 source_reloc *s_reloc;
6194
6195 /* Search the source_relocs for the entry corresponding to
6196 the l32r_irel. Note: The src_relocs array is not yet
6197 sorted, but it wouldn't matter anyway because we're
6198 searching by source offset instead of target offset. */
6199 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6200 target_relax_info->src_next,
6201 sec, l32r_irel);
6202 BFD_ASSERT (s_reloc);
6203 s_reloc->is_null = TRUE;
6204 }
6205
6206 /* Convert this reloc to ASM_SIMPLIFY. */
6207 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6208 R_XTENSA_ASM_SIMPLIFY);
6209 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6210
6211 pin_internal_relocs (sec, internal_relocs);
6212 }
6213 else
6214 {
6215 /* It is resolvable but doesn't reach. We resolve now
6216 by eliminating the relocation -- the call will remain
6217 expanded into L32R/CALLX. */
6218 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6219 pin_internal_relocs (sec, internal_relocs);
6220 }
6221 }
6222
6223 error_return:
6224 release_contents (sec, contents);
6225 release_internal_relocs (sec, internal_relocs);
6226 return ok;
6227}
6228
6229
6230/* Return TRUE if the asm expansion can be resolved. Generally it can
6231 be resolved on a final link or when a partial link locates it in the
6232 same section as the target. Set "is_reachable" flag if the target of
6233 the call is within the range of a direct call, given the current VMA
6234 for this section and the target section. */
6235
6236bfd_boolean
7fa3d080
BW
6237is_resolvable_asm_expansion (bfd *abfd,
6238 asection *sec,
6239 bfd_byte *contents,
6240 Elf_Internal_Rela *irel,
6241 struct bfd_link_info *link_info,
6242 bfd_boolean *is_reachable_p)
43cd72b9
BW
6243{
6244 asection *target_sec;
6245 bfd_vma target_offset;
6246 r_reloc r_rel;
6247 xtensa_opcode opcode, direct_call_opcode;
6248 bfd_vma self_address;
6249 bfd_vma dest_address;
6250 bfd_boolean uses_l32r;
6251 bfd_size_type sec_size;
6252
6253 *is_reachable_p = FALSE;
6254
6255 if (contents == NULL)
6256 return FALSE;
6257
6258 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6259 return FALSE;
6260
6261 sec_size = bfd_get_section_limit (abfd, sec);
6262 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6263 sec_size - irel->r_offset, &uses_l32r);
6264 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6265 if (!uses_l32r)
6266 return FALSE;
6267
6268 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6269 if (direct_call_opcode == XTENSA_UNDEFINED)
6270 return FALSE;
6271
6272 /* Check and see that the target resolves. */
6273 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6274 if (!r_reloc_is_defined (&r_rel))
6275 return FALSE;
6276
6277 target_sec = r_reloc_get_section (&r_rel);
6278 target_offset = r_rel.target_offset;
6279
6280 /* If the target is in a shared library, then it doesn't reach. This
6281 isn't supposed to come up because the compiler should never generate
6282 non-PIC calls on systems that use shared libraries, but the linker
6283 shouldn't crash regardless. */
6284 if (!target_sec->output_section)
6285 return FALSE;
6286
6287 /* For relocatable sections, we can only simplify when the output
6288 section of the target is the same as the output section of the
6289 source. */
6290 if (link_info->relocatable
6291 && (target_sec->output_section != sec->output_section
6292 || is_reloc_sym_weak (abfd, irel)))
6293 return FALSE;
6294
6295 self_address = (sec->output_section->vma
6296 + sec->output_offset + irel->r_offset + 3);
6297 dest_address = (target_sec->output_section->vma
6298 + target_sec->output_offset + target_offset);
6299
6300 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6301 self_address, dest_address);
6302
6303 if ((self_address >> CALL_SEGMENT_BITS) !=
6304 (dest_address >> CALL_SEGMENT_BITS))
6305 return FALSE;
6306
6307 return TRUE;
6308}
6309
6310
6311static Elf_Internal_Rela *
7fa3d080
BW
6312find_associated_l32r_irel (bfd *abfd,
6313 asection *sec,
6314 bfd_byte *contents,
6315 Elf_Internal_Rela *other_irel,
6316 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6317{
6318 unsigned i;
e0001a05 6319
43cd72b9
BW
6320 for (i = 0; i < sec->reloc_count; i++)
6321 {
6322 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6323
43cd72b9
BW
6324 if (irel == other_irel)
6325 continue;
6326 if (irel->r_offset != other_irel->r_offset)
6327 continue;
6328 if (is_l32r_relocation (abfd, sec, contents, irel))
6329 return irel;
6330 }
6331
6332 return NULL;
e0001a05
NC
6333}
6334
6335
cb337148
BW
6336static xtensa_opcode *
6337build_reloc_opcodes (bfd *abfd,
6338 asection *sec,
6339 bfd_byte *contents,
6340 Elf_Internal_Rela *internal_relocs)
6341{
6342 unsigned i;
6343 xtensa_opcode *reloc_opcodes =
6344 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6345 for (i = 0; i < sec->reloc_count; i++)
6346 {
6347 Elf_Internal_Rela *irel = &internal_relocs[i];
6348 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6349 }
6350 return reloc_opcodes;
6351}
6352
6353
43cd72b9
BW
6354/* The compute_text_actions function will build a list of potential
6355 transformation actions for code in the extended basic block of each
6356 longcall that is optimized to a direct call. From this list we
6357 generate a set of actions to actually perform that optimizes for
6358 space and, if not using size_opt, maintains branch target
6359 alignments.
e0001a05 6360
43cd72b9
BW
6361 These actions to be performed are placed on a per-section list.
6362 The actual changes are performed by relax_section() in the second
6363 pass. */
6364
6365bfd_boolean
7fa3d080
BW
6366compute_text_actions (bfd *abfd,
6367 asection *sec,
6368 struct bfd_link_info *link_info)
e0001a05 6369{
cb337148 6370 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6371 xtensa_relax_info *relax_info;
e0001a05 6372 bfd_byte *contents;
43cd72b9 6373 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6374 bfd_boolean ok = TRUE;
6375 unsigned i;
43cd72b9
BW
6376 property_table_entry *prop_table = 0;
6377 int ptblsize = 0;
6378 bfd_size_type sec_size;
43cd72b9 6379
43cd72b9
BW
6380 relax_info = get_xtensa_relax_info (sec);
6381 BFD_ASSERT (relax_info);
25c6282a
BW
6382 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6383
6384 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
6385 if (!relax_info->is_relaxable_asm_section)
6386 return ok;
e0001a05
NC
6387
6388 internal_relocs = retrieve_internal_relocs (abfd, sec,
6389 link_info->keep_memory);
e0001a05 6390
43cd72b9
BW
6391 if (internal_relocs)
6392 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6393 internal_reloc_compare);
6394
6395 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6396 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6397 if (contents == NULL && sec_size != 0)
e0001a05
NC
6398 {
6399 ok = FALSE;
6400 goto error_return;
6401 }
6402
43cd72b9
BW
6403 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6404 XTENSA_PROP_SEC_NAME, FALSE);
6405 if (ptblsize < 0)
6406 {
6407 ok = FALSE;
6408 goto error_return;
6409 }
6410
6411 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6412 {
6413 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6414 bfd_vma r_offset;
6415 property_table_entry *the_entry;
6416 int ptbl_idx;
6417 ebb_t *ebb;
6418 ebb_constraint ebb_table;
6419 bfd_size_type simplify_size;
6420
6421 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6422 continue;
6423 r_offset = irel->r_offset;
e0001a05 6424
43cd72b9
BW
6425 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6426 if (simplify_size == 0)
6427 {
6428 (*_bfd_error_handler)
6429 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6430 sec->owner, sec, r_offset);
6431 continue;
6432 }
e0001a05 6433
43cd72b9
BW
6434 /* If the instruction table is not around, then don't do this
6435 relaxation. */
6436 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6437 sec->vma + irel->r_offset);
6438 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6439 {
6440 text_action_add (&relax_info->action_list,
6441 ta_convert_longcall, sec, r_offset,
6442 0);
6443 continue;
6444 }
6445
6446 /* If the next longcall happens to be at the same address as an
6447 unreachable section of size 0, then skip forward. */
6448 ptbl_idx = the_entry - prop_table;
6449 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6450 && the_entry->size == 0
6451 && ptbl_idx + 1 < ptblsize
6452 && (prop_table[ptbl_idx + 1].address
6453 == prop_table[ptbl_idx].address))
6454 {
6455 ptbl_idx++;
6456 the_entry++;
6457 }
e0001a05 6458
99ded152 6459 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
6460 /* NO_REORDER is OK */
6461 continue;
e0001a05 6462
43cd72b9
BW
6463 init_ebb_constraint (&ebb_table);
6464 ebb = &ebb_table.ebb;
6465 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6466 internal_relocs, sec->reloc_count);
6467 ebb->start_offset = r_offset + simplify_size;
6468 ebb->end_offset = r_offset + simplify_size;
6469 ebb->start_ptbl_idx = ptbl_idx;
6470 ebb->end_ptbl_idx = ptbl_idx;
6471 ebb->start_reloc_idx = i;
6472 ebb->end_reloc_idx = i;
6473
cb337148
BW
6474 /* Precompute the opcode for each relocation. */
6475 if (reloc_opcodes == NULL)
6476 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6477 internal_relocs);
6478
43cd72b9
BW
6479 if (!extend_ebb_bounds (ebb)
6480 || !compute_ebb_proposed_actions (&ebb_table)
6481 || !compute_ebb_actions (&ebb_table)
6482 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6483 internal_relocs, &ebb_table,
6484 reloc_opcodes)
43cd72b9 6485 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6486 {
43cd72b9
BW
6487 /* If anything goes wrong or we get unlucky and something does
6488 not fit, with our plan because of expansion between
6489 critical branches, just convert to a NOP. */
6490
6491 text_action_add (&relax_info->action_list,
6492 ta_convert_longcall, sec, r_offset, 0);
6493 i = ebb_table.ebb.end_reloc_idx;
6494 free_ebb_constraint (&ebb_table);
6495 continue;
e0001a05 6496 }
43cd72b9
BW
6497
6498 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6499
6500 /* Update the index so we do not go looking at the relocations
6501 we have already processed. */
6502 i = ebb_table.ebb.end_reloc_idx;
6503 free_ebb_constraint (&ebb_table);
e0001a05
NC
6504 }
6505
43cd72b9 6506#if DEBUG
7fa3d080 6507 if (relax_info->action_list.head)
43cd72b9
BW
6508 print_action_list (stderr, &relax_info->action_list);
6509#endif
6510
6511error_return:
e0001a05
NC
6512 release_contents (sec, contents);
6513 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6514 if (prop_table)
6515 free (prop_table);
cb337148
BW
6516 if (reloc_opcodes)
6517 free (reloc_opcodes);
43cd72b9 6518
e0001a05
NC
6519 return ok;
6520}
6521
6522
64b607e6
BW
6523/* Do not widen an instruction if it is preceeded by a
6524 loop opcode. It might cause misalignment. */
6525
6526static bfd_boolean
6527prev_instr_is_a_loop (bfd_byte *contents,
6528 bfd_size_type content_length,
6529 bfd_size_type offset)
6530{
6531 xtensa_opcode prev_opcode;
6532
6533 if (offset < 3)
6534 return FALSE;
6535 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6536 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6537}
6538
6539
43cd72b9 6540/* Find all of the possible actions for an extended basic block. */
e0001a05 6541
43cd72b9 6542bfd_boolean
7fa3d080 6543compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6544{
43cd72b9
BW
6545 const ebb_t *ebb = &ebb_table->ebb;
6546 unsigned rel_idx = ebb->start_reloc_idx;
6547 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
6548 bfd_vma offset = 0;
6549 xtensa_isa isa = xtensa_default_isa;
6550 xtensa_format fmt;
6551 static xtensa_insnbuf insnbuf = NULL;
6552 static xtensa_insnbuf slotbuf = NULL;
6553
6554 if (insnbuf == NULL)
6555 {
6556 insnbuf = xtensa_insnbuf_alloc (isa);
6557 slotbuf = xtensa_insnbuf_alloc (isa);
6558 }
e0001a05 6559
43cd72b9
BW
6560 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6561 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6562
43cd72b9 6563 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6564 {
64b607e6 6565 bfd_vma start_offset, end_offset;
43cd72b9 6566 bfd_size_type insn_len;
e0001a05 6567
43cd72b9
BW
6568 start_offset = entry->address - ebb->sec->vma;
6569 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6570
43cd72b9
BW
6571 if (entry == start_entry)
6572 start_offset = ebb->start_offset;
6573 if (entry == end_entry)
6574 end_offset = ebb->end_offset;
6575 offset = start_offset;
e0001a05 6576
43cd72b9
BW
6577 if (offset == entry->address - ebb->sec->vma
6578 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6579 {
6580 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6581 BFD_ASSERT (offset != end_offset);
6582 if (offset == end_offset)
6583 return FALSE;
e0001a05 6584
43cd72b9
BW
6585 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6586 offset);
43cd72b9 6587 if (insn_len == 0)
64b607e6
BW
6588 goto decode_error;
6589
43cd72b9
BW
6590 if (check_branch_target_aligned_address (offset, insn_len))
6591 align_type = EBB_REQUIRE_TGT_ALIGN;
6592
6593 ebb_propose_action (ebb_table, align_type, 0,
6594 ta_none, offset, 0, TRUE);
6595 }
6596
6597 while (offset != end_offset)
e0001a05 6598 {
43cd72b9 6599 Elf_Internal_Rela *irel;
e0001a05 6600 xtensa_opcode opcode;
e0001a05 6601
43cd72b9
BW
6602 while (rel_idx < ebb->end_reloc_idx
6603 && (ebb->relocs[rel_idx].r_offset < offset
6604 || (ebb->relocs[rel_idx].r_offset == offset
6605 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6606 != R_XTENSA_ASM_SIMPLIFY))))
6607 rel_idx++;
6608
6609 /* Check for longcall. */
6610 irel = &ebb->relocs[rel_idx];
6611 if (irel->r_offset == offset
6612 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6613 {
6614 bfd_size_type simplify_size;
e0001a05 6615
43cd72b9
BW
6616 simplify_size = get_asm_simplify_size (ebb->contents,
6617 ebb->content_length,
6618 irel->r_offset);
6619 if (simplify_size == 0)
64b607e6 6620 goto decode_error;
43cd72b9
BW
6621
6622 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6623 ta_convert_longcall, offset, 0, TRUE);
6624
6625 offset += simplify_size;
6626 continue;
6627 }
e0001a05 6628
64b607e6
BW
6629 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6630 goto decode_error;
6631 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6632 ebb->content_length - offset);
6633 fmt = xtensa_format_decode (isa, insnbuf);
6634 if (fmt == XTENSA_UNDEFINED)
6635 goto decode_error;
6636 insn_len = xtensa_format_length (isa, fmt);
6637 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6638 goto decode_error;
6639
6640 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 6641 {
64b607e6
BW
6642 offset += insn_len;
6643 continue;
43cd72b9 6644 }
64b607e6
BW
6645
6646 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6647 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6648 if (opcode == XTENSA_UNDEFINED)
6649 goto decode_error;
6650
43cd72b9 6651 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 6652 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 6653 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
6654 {
6655 /* Add an instruction narrow action. */
6656 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6657 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 6658 }
99ded152 6659 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
6660 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6661 && ! prev_instr_is_a_loop (ebb->contents,
6662 ebb->content_length, offset))
43cd72b9
BW
6663 {
6664 /* Add an instruction widen action. */
6665 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6666 ta_widen_insn, offset, 0, FALSE);
43cd72b9 6667 }
64b607e6 6668 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
6669 {
6670 /* Check for branch targets. */
6671 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6672 ta_none, offset, 0, TRUE);
43cd72b9
BW
6673 }
6674
6675 offset += insn_len;
e0001a05
NC
6676 }
6677 }
6678
43cd72b9
BW
6679 if (ebb->ends_unreachable)
6680 {
6681 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6682 ta_fill, ebb->end_offset, 0, TRUE);
6683 }
e0001a05 6684
43cd72b9 6685 return TRUE;
64b607e6
BW
6686
6687 decode_error:
6688 (*_bfd_error_handler)
6689 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6690 ebb->sec->owner, ebb->sec, offset);
6691 return FALSE;
43cd72b9
BW
6692}
6693
6694
6695/* After all of the information has collected about the
6696 transformations possible in an EBB, compute the appropriate actions
6697 here in compute_ebb_actions. We still must check later to make
6698 sure that the actions do not break any relocations. The algorithm
6699 used here is pretty greedy. Basically, it removes as many no-ops
6700 as possible so that the end of the EBB has the same alignment
6701 characteristics as the original. First, it uses narrowing, then
6702 fill space at the end of the EBB, and finally widenings. If that
6703 does not work, it tries again with one fewer no-op removed. The
6704 optimization will only be performed if all of the branch targets
6705 that were aligned before transformation are also aligned after the
6706 transformation.
6707
6708 When the size_opt flag is set, ignore the branch target alignments,
6709 narrow all wide instructions, and remove all no-ops unless the end
6710 of the EBB prevents it. */
6711
6712bfd_boolean
7fa3d080 6713compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6714{
6715 unsigned i = 0;
6716 unsigned j;
6717 int removed_bytes = 0;
6718 ebb_t *ebb = &ebb_table->ebb;
6719 unsigned seg_idx_start = 0;
6720 unsigned seg_idx_end = 0;
6721
6722 /* We perform this like the assembler relaxation algorithm: Start by
6723 assuming all instructions are narrow and all no-ops removed; then
6724 walk through.... */
6725
6726 /* For each segment of this that has a solid constraint, check to
6727 see if there are any combinations that will keep the constraint.
6728 If so, use it. */
6729 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6730 {
43cd72b9
BW
6731 bfd_boolean requires_text_end_align = FALSE;
6732 unsigned longcall_count = 0;
6733 unsigned longcall_convert_count = 0;
6734 unsigned narrowable_count = 0;
6735 unsigned narrowable_convert_count = 0;
6736 unsigned widenable_count = 0;
6737 unsigned widenable_convert_count = 0;
e0001a05 6738
43cd72b9
BW
6739 proposed_action *action = NULL;
6740 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6741
43cd72b9 6742 seg_idx_start = seg_idx_end;
e0001a05 6743
43cd72b9
BW
6744 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6745 {
6746 action = &ebb_table->actions[i];
6747 if (action->action == ta_convert_longcall)
6748 longcall_count++;
6749 if (action->action == ta_narrow_insn)
6750 narrowable_count++;
6751 if (action->action == ta_widen_insn)
6752 widenable_count++;
6753 if (action->action == ta_fill)
6754 break;
6755 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6756 break;
6757 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6758 && !elf32xtensa_size_opt)
6759 break;
6760 }
6761 seg_idx_end = i;
e0001a05 6762
43cd72b9
BW
6763 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6764 requires_text_end_align = TRUE;
e0001a05 6765
43cd72b9
BW
6766 if (elf32xtensa_size_opt && !requires_text_end_align
6767 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6768 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6769 {
6770 longcall_convert_count = longcall_count;
6771 narrowable_convert_count = narrowable_count;
6772 widenable_convert_count = 0;
6773 }
6774 else
6775 {
6776 /* There is a constraint. Convert the max number of longcalls. */
6777 narrowable_convert_count = 0;
6778 longcall_convert_count = 0;
6779 widenable_convert_count = 0;
e0001a05 6780
43cd72b9 6781 for (j = 0; j < longcall_count; j++)
e0001a05 6782 {
43cd72b9
BW
6783 int removed = (longcall_count - j) * 3 & (align - 1);
6784 unsigned desire_narrow = (align - removed) & (align - 1);
6785 unsigned desire_widen = removed;
6786 if (desire_narrow <= narrowable_count)
6787 {
6788 narrowable_convert_count = desire_narrow;
6789 narrowable_convert_count +=
6790 (align * ((narrowable_count - narrowable_convert_count)
6791 / align));
6792 longcall_convert_count = (longcall_count - j);
6793 widenable_convert_count = 0;
6794 break;
6795 }
6796 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6797 {
6798 narrowable_convert_count = 0;
6799 longcall_convert_count = longcall_count - j;
6800 widenable_convert_count = desire_widen;
6801 break;
6802 }
6803 }
6804 }
e0001a05 6805
43cd72b9
BW
6806 /* Now the number of conversions are saved. Do them. */
6807 for (i = seg_idx_start; i < seg_idx_end; i++)
6808 {
6809 action = &ebb_table->actions[i];
6810 switch (action->action)
6811 {
6812 case ta_convert_longcall:
6813 if (longcall_convert_count != 0)
6814 {
6815 action->action = ta_remove_longcall;
6816 action->do_action = TRUE;
6817 action->removed_bytes += 3;
6818 longcall_convert_count--;
6819 }
6820 break;
6821 case ta_narrow_insn:
6822 if (narrowable_convert_count != 0)
6823 {
6824 action->do_action = TRUE;
6825 action->removed_bytes += 1;
6826 narrowable_convert_count--;
6827 }
6828 break;
6829 case ta_widen_insn:
6830 if (widenable_convert_count != 0)
6831 {
6832 action->do_action = TRUE;
6833 action->removed_bytes -= 1;
6834 widenable_convert_count--;
6835 }
6836 break;
6837 default:
6838 break;
e0001a05 6839 }
43cd72b9
BW
6840 }
6841 }
e0001a05 6842
43cd72b9
BW
6843 /* Now we move on to some local opts. Try to remove each of the
6844 remaining longcalls. */
e0001a05 6845
43cd72b9
BW
6846 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6847 {
6848 removed_bytes = 0;
6849 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6850 {
43cd72b9
BW
6851 int old_removed_bytes = removed_bytes;
6852 proposed_action *action = &ebb_table->actions[i];
6853
6854 if (action->do_action && action->action == ta_convert_longcall)
6855 {
6856 bfd_boolean bad_alignment = FALSE;
6857 removed_bytes += 3;
6858 for (j = i + 1; j < ebb_table->action_count; j++)
6859 {
6860 proposed_action *new_action = &ebb_table->actions[j];
6861 bfd_vma offset = new_action->offset;
6862 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6863 {
6864 if (!check_branch_target_aligned
6865 (ebb_table->ebb.contents,
6866 ebb_table->ebb.content_length,
6867 offset, offset - removed_bytes))
6868 {
6869 bad_alignment = TRUE;
6870 break;
6871 }
6872 }
6873 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6874 {
6875 if (!check_loop_aligned (ebb_table->ebb.contents,
6876 ebb_table->ebb.content_length,
6877 offset,
6878 offset - removed_bytes))
6879 {
6880 bad_alignment = TRUE;
6881 break;
6882 }
6883 }
6884 if (new_action->action == ta_narrow_insn
6885 && !new_action->do_action
6886 && ebb_table->ebb.sec->alignment_power == 2)
6887 {
6888 /* Narrow an instruction and we are done. */
6889 new_action->do_action = TRUE;
6890 new_action->removed_bytes += 1;
6891 bad_alignment = FALSE;
6892 break;
6893 }
6894 if (new_action->action == ta_widen_insn
6895 && new_action->do_action
6896 && ebb_table->ebb.sec->alignment_power == 2)
6897 {
6898 /* Narrow an instruction and we are done. */
6899 new_action->do_action = FALSE;
6900 new_action->removed_bytes += 1;
6901 bad_alignment = FALSE;
6902 break;
6903 }
5c5d6806
BW
6904 if (new_action->do_action)
6905 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
6906 }
6907 if (!bad_alignment)
6908 {
6909 action->removed_bytes += 3;
6910 action->action = ta_remove_longcall;
6911 action->do_action = TRUE;
6912 }
6913 }
6914 removed_bytes = old_removed_bytes;
6915 if (action->do_action)
6916 removed_bytes += action->removed_bytes;
e0001a05
NC
6917 }
6918 }
6919
43cd72b9
BW
6920 removed_bytes = 0;
6921 for (i = 0; i < ebb_table->action_count; ++i)
6922 {
6923 proposed_action *action = &ebb_table->actions[i];
6924 if (action->do_action)
6925 removed_bytes += action->removed_bytes;
6926 }
6927
6928 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6929 && ebb->ends_unreachable)
6930 {
6931 proposed_action *action;
6932 int br;
6933 int extra_space;
6934
6935 BFD_ASSERT (ebb_table->action_count != 0);
6936 action = &ebb_table->actions[ebb_table->action_count - 1];
6937 BFD_ASSERT (action->action == ta_fill);
6938 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6939
6940 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6941 br = action->removed_bytes + removed_bytes + extra_space;
6942 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6943
6944 action->removed_bytes = extra_space - br;
6945 }
6946 return TRUE;
e0001a05
NC
6947}
6948
6949
03e94c08
BW
6950/* The xlate_map is a sorted array of address mappings designed to
6951 answer the offset_with_removed_text() query with a binary search instead
6952 of a linear search through the section's action_list. */
6953
6954typedef struct xlate_map_entry xlate_map_entry_t;
6955typedef struct xlate_map xlate_map_t;
6956
6957struct xlate_map_entry
6958{
6959 unsigned orig_address;
6960 unsigned new_address;
6961 unsigned size;
6962};
6963
6964struct xlate_map
6965{
6966 unsigned entry_count;
6967 xlate_map_entry_t *entry;
6968};
6969
6970
6971static int
6972xlate_compare (const void *a_v, const void *b_v)
6973{
6974 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6975 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6976 if (a->orig_address < b->orig_address)
6977 return -1;
6978 if (a->orig_address > (b->orig_address + b->size - 1))
6979 return 1;
6980 return 0;
6981}
6982
6983
6984static bfd_vma
6985xlate_offset_with_removed_text (const xlate_map_t *map,
6986 text_action_list *action_list,
6987 bfd_vma offset)
6988{
6989 xlate_map_entry_t tmp;
6990 void *r;
6991 xlate_map_entry_t *e;
6992
6993 if (map == NULL)
6994 return offset_with_removed_text (action_list, offset);
6995
6996 if (map->entry_count == 0)
6997 return offset;
6998
6999 tmp.orig_address = offset;
7000 tmp.new_address = offset;
7001 tmp.size = 1;
7002
7003 r = bsearch (&offset, map->entry, map->entry_count,
7004 sizeof (xlate_map_entry_t), &xlate_compare);
7005 e = (xlate_map_entry_t *) r;
7006
7007 BFD_ASSERT (e != NULL);
7008 if (e == NULL)
7009 return offset;
7010 return e->new_address - e->orig_address + offset;
7011}
7012
7013
7014/* Build a binary searchable offset translation map from a section's
7015 action list. */
7016
7017static xlate_map_t *
7018build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7019{
7020 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7021 text_action_list *action_list = &relax_info->action_list;
7022 unsigned num_actions = 0;
7023 text_action *r;
7024 int removed;
7025 xlate_map_entry_t *current_entry;
7026
7027 if (map == NULL)
7028 return NULL;
7029
7030 num_actions = action_list_count (action_list);
7031 map->entry = (xlate_map_entry_t *)
7032 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7033 if (map->entry == NULL)
7034 {
7035 free (map);
7036 return NULL;
7037 }
7038 map->entry_count = 0;
7039
7040 removed = 0;
7041 current_entry = &map->entry[0];
7042
7043 current_entry->orig_address = 0;
7044 current_entry->new_address = 0;
7045 current_entry->size = 0;
7046
7047 for (r = action_list->head; r != NULL; r = r->next)
7048 {
7049 unsigned orig_size = 0;
7050 switch (r->action)
7051 {
7052 case ta_none:
7053 case ta_remove_insn:
7054 case ta_convert_longcall:
7055 case ta_remove_literal:
7056 case ta_add_literal:
7057 break;
7058 case ta_remove_longcall:
7059 orig_size = 6;
7060 break;
7061 case ta_narrow_insn:
7062 orig_size = 3;
7063 break;
7064 case ta_widen_insn:
7065 orig_size = 2;
7066 break;
7067 case ta_fill:
7068 break;
7069 }
7070 current_entry->size =
7071 r->offset + orig_size - current_entry->orig_address;
7072 if (current_entry->size != 0)
7073 {
7074 current_entry++;
7075 map->entry_count++;
7076 }
7077 current_entry->orig_address = r->offset + orig_size;
7078 removed += r->removed_bytes;
7079 current_entry->new_address = r->offset + orig_size - removed;
7080 current_entry->size = 0;
7081 }
7082
7083 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7084 - current_entry->orig_address);
7085 if (current_entry->size != 0)
7086 map->entry_count++;
7087
7088 return map;
7089}
7090
7091
7092/* Free an offset translation map. */
7093
7094static void
7095free_xlate_map (xlate_map_t *map)
7096{
7097 if (map && map->entry)
7098 free (map->entry);
7099 if (map)
7100 free (map);
7101}
7102
7103
43cd72b9
BW
7104/* Use check_section_ebb_pcrels_fit to make sure that all of the
7105 relocations in a section will fit if a proposed set of actions
7106 are performed. */
e0001a05 7107
43cd72b9 7108static bfd_boolean
7fa3d080
BW
7109check_section_ebb_pcrels_fit (bfd *abfd,
7110 asection *sec,
7111 bfd_byte *contents,
7112 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7113 const ebb_constraint *constraint,
7114 const xtensa_opcode *reloc_opcodes)
e0001a05 7115{
43cd72b9
BW
7116 unsigned i, j;
7117 Elf_Internal_Rela *irel;
03e94c08
BW
7118 xlate_map_t *xmap = NULL;
7119 bfd_boolean ok = TRUE;
43cd72b9 7120 xtensa_relax_info *relax_info;
e0001a05 7121
43cd72b9 7122 relax_info = get_xtensa_relax_info (sec);
e0001a05 7123
03e94c08
BW
7124 if (relax_info && sec->reloc_count > 100)
7125 {
7126 xmap = build_xlate_map (sec, relax_info);
7127 /* NULL indicates out of memory, but the slow version
7128 can still be used. */
7129 }
7130
43cd72b9
BW
7131 for (i = 0; i < sec->reloc_count; i++)
7132 {
7133 r_reloc r_rel;
7134 bfd_vma orig_self_offset, orig_target_offset;
7135 bfd_vma self_offset, target_offset;
7136 int r_type;
7137 reloc_howto_type *howto;
7138 int self_removed_bytes, target_removed_bytes;
e0001a05 7139
43cd72b9
BW
7140 irel = &internal_relocs[i];
7141 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7142
43cd72b9
BW
7143 howto = &elf_howto_table[r_type];
7144 /* We maintain the required invariant: PC-relative relocations
7145 that fit before linking must fit after linking. Thus we only
7146 need to deal with relocations to the same section that are
7147 PC-relative. */
1bbb5f21
BW
7148 if (r_type == R_XTENSA_ASM_SIMPLIFY
7149 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7150 || !howto->pc_relative)
7151 continue;
e0001a05 7152
43cd72b9
BW
7153 r_reloc_init (&r_rel, abfd, irel, contents,
7154 bfd_get_section_limit (abfd, sec));
e0001a05 7155
43cd72b9
BW
7156 if (r_reloc_get_section (&r_rel) != sec)
7157 continue;
e0001a05 7158
43cd72b9
BW
7159 orig_self_offset = irel->r_offset;
7160 orig_target_offset = r_rel.target_offset;
e0001a05 7161
43cd72b9
BW
7162 self_offset = orig_self_offset;
7163 target_offset = orig_target_offset;
7164
7165 if (relax_info)
7166 {
03e94c08
BW
7167 self_offset =
7168 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7169 orig_self_offset);
7170 target_offset =
7171 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7172 orig_target_offset);
43cd72b9
BW
7173 }
7174
7175 self_removed_bytes = 0;
7176 target_removed_bytes = 0;
7177
7178 for (j = 0; j < constraint->action_count; ++j)
7179 {
7180 proposed_action *action = &constraint->actions[j];
7181 bfd_vma offset = action->offset;
7182 int removed_bytes = action->removed_bytes;
7183 if (offset < orig_self_offset
7184 || (offset == orig_self_offset && action->action == ta_fill
7185 && action->removed_bytes < 0))
7186 self_removed_bytes += removed_bytes;
7187 if (offset < orig_target_offset
7188 || (offset == orig_target_offset && action->action == ta_fill
7189 && action->removed_bytes < 0))
7190 target_removed_bytes += removed_bytes;
7191 }
7192 self_offset -= self_removed_bytes;
7193 target_offset -= target_removed_bytes;
7194
7195 /* Try to encode it. Get the operand and check. */
7196 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7197 {
7198 /* None of the current alternate relocs are PC-relative,
7199 and only PC-relative relocs matter here. */
7200 }
7201 else
7202 {
7203 xtensa_opcode opcode;
7204 int opnum;
7205
cb337148
BW
7206 if (reloc_opcodes)
7207 opcode = reloc_opcodes[i];
7208 else
7209 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7210 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7211 {
7212 ok = FALSE;
7213 break;
7214 }
43cd72b9
BW
7215
7216 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7217 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7218 {
7219 ok = FALSE;
7220 break;
7221 }
43cd72b9
BW
7222
7223 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7224 {
7225 ok = FALSE;
7226 break;
7227 }
43cd72b9
BW
7228 }
7229 }
7230
03e94c08
BW
7231 if (xmap)
7232 free_xlate_map (xmap);
7233
7234 return ok;
43cd72b9
BW
7235}
7236
7237
7238static bfd_boolean
7fa3d080 7239check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7240{
7241 int removed = 0;
7242 unsigned i;
7243
7244 for (i = 0; i < constraint->action_count; i++)
7245 {
7246 const proposed_action *action = &constraint->actions[i];
7247 if (action->do_action)
7248 removed += action->removed_bytes;
7249 }
7250 if (removed < 0)
e0001a05
NC
7251 return FALSE;
7252
7253 return TRUE;
7254}
7255
7256
43cd72b9 7257void
7fa3d080
BW
7258text_action_add_proposed (text_action_list *l,
7259 const ebb_constraint *ebb_table,
7260 asection *sec)
e0001a05
NC
7261{
7262 unsigned i;
7263
43cd72b9 7264 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7265 {
43cd72b9 7266 proposed_action *action = &ebb_table->actions[i];
e0001a05 7267
43cd72b9 7268 if (!action->do_action)
e0001a05 7269 continue;
43cd72b9
BW
7270 switch (action->action)
7271 {
7272 case ta_remove_insn:
7273 case ta_remove_longcall:
7274 case ta_convert_longcall:
7275 case ta_narrow_insn:
7276 case ta_widen_insn:
7277 case ta_fill:
7278 case ta_remove_literal:
7279 text_action_add (l, action->action, sec, action->offset,
7280 action->removed_bytes);
7281 break;
7282 case ta_none:
7283 break;
7284 default:
7285 BFD_ASSERT (0);
7286 break;
7287 }
e0001a05 7288 }
43cd72b9 7289}
e0001a05 7290
43cd72b9
BW
7291
7292int
7fa3d080 7293compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7294{
7295 int fill_extra_space;
7296
7297 if (!entry)
7298 return 0;
7299
7300 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7301 return 0;
7302
7303 fill_extra_space = entry->size;
7304 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7305 {
7306 /* Fill bytes for alignment:
7307 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7308 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7309 int nsm = (1 << pow) - 1;
7310 bfd_vma addr = entry->address + entry->size;
7311 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7312 fill_extra_space += align_fill;
7313 }
7314 return fill_extra_space;
e0001a05
NC
7315}
7316
43cd72b9 7317\f
e0001a05
NC
7318/* First relaxation pass. */
7319
43cd72b9
BW
7320/* If the section contains relaxable literals, check each literal to
7321 see if it has the same value as another literal that has already
7322 been seen, either in the current section or a previous one. If so,
7323 add an entry to the per-section list of removed literals. The
e0001a05
NC
7324 actual changes are deferred until the next pass. */
7325
7326static bfd_boolean
7fa3d080
BW
7327compute_removed_literals (bfd *abfd,
7328 asection *sec,
7329 struct bfd_link_info *link_info,
7330 value_map_hash_table *values)
e0001a05
NC
7331{
7332 xtensa_relax_info *relax_info;
7333 bfd_byte *contents;
7334 Elf_Internal_Rela *internal_relocs;
43cd72b9 7335 source_reloc *src_relocs, *rel;
e0001a05 7336 bfd_boolean ok = TRUE;
43cd72b9
BW
7337 property_table_entry *prop_table = NULL;
7338 int ptblsize;
7339 int i, prev_i;
7340 bfd_boolean last_loc_is_prev = FALSE;
7341 bfd_vma last_target_offset = 0;
7342 section_cache_t target_sec_cache;
7343 bfd_size_type sec_size;
7344
7345 init_section_cache (&target_sec_cache);
e0001a05
NC
7346
7347 /* Do nothing if it is not a relaxable literal section. */
7348 relax_info = get_xtensa_relax_info (sec);
7349 BFD_ASSERT (relax_info);
e0001a05
NC
7350 if (!relax_info->is_relaxable_literal_section)
7351 return ok;
7352
7353 internal_relocs = retrieve_internal_relocs (abfd, sec,
7354 link_info->keep_memory);
7355
43cd72b9 7356 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7357 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7358 if (contents == NULL && sec_size != 0)
e0001a05
NC
7359 {
7360 ok = FALSE;
7361 goto error_return;
7362 }
7363
7364 /* Sort the source_relocs by target offset. */
7365 src_relocs = relax_info->src_relocs;
7366 qsort (src_relocs, relax_info->src_count,
7367 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7368 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7369 internal_reloc_compare);
e0001a05 7370
43cd72b9
BW
7371 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7372 XTENSA_PROP_SEC_NAME, FALSE);
7373 if (ptblsize < 0)
7374 {
7375 ok = FALSE;
7376 goto error_return;
7377 }
7378
7379 prev_i = -1;
e0001a05
NC
7380 for (i = 0; i < relax_info->src_count; i++)
7381 {
e0001a05 7382 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7383
7384 rel = &src_relocs[i];
43cd72b9
BW
7385 if (get_l32r_opcode () != rel->opcode)
7386 continue;
e0001a05
NC
7387 irel = get_irel_at_offset (sec, internal_relocs,
7388 rel->r_rel.target_offset);
7389
43cd72b9
BW
7390 /* If the relocation on this is not a simple R_XTENSA_32 or
7391 R_XTENSA_PLT then do not consider it. This may happen when
7392 the difference of two symbols is used in a literal. */
7393 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7394 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7395 continue;
7396
e0001a05
NC
7397 /* If the target_offset for this relocation is the same as the
7398 previous relocation, then we've already considered whether the
7399 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7400 if (i != 0 && prev_i != -1
7401 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7402 continue;
43cd72b9
BW
7403 prev_i = i;
7404
7405 if (last_loc_is_prev &&
7406 last_target_offset + 4 != rel->r_rel.target_offset)
7407 last_loc_is_prev = FALSE;
e0001a05
NC
7408
7409 /* Check if the relocation was from an L32R that is being removed
7410 because a CALLX was converted to a direct CALL, and check if
7411 there are no other relocations to the literal. */
99ded152
BW
7412 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7413 sec, prop_table, ptblsize))
e0001a05 7414 {
43cd72b9
BW
7415 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7416 irel, rel, prop_table, ptblsize))
e0001a05 7417 {
43cd72b9
BW
7418 ok = FALSE;
7419 goto error_return;
e0001a05 7420 }
43cd72b9 7421 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7422 continue;
7423 }
7424
43cd72b9
BW
7425 if (!identify_literal_placement (abfd, sec, contents, link_info,
7426 values,
7427 &last_loc_is_prev, irel,
7428 relax_info->src_count - i, rel,
7429 prop_table, ptblsize,
7430 &target_sec_cache, rel->is_abs_literal))
e0001a05 7431 {
43cd72b9
BW
7432 ok = FALSE;
7433 goto error_return;
7434 }
7435 last_target_offset = rel->r_rel.target_offset;
7436 }
e0001a05 7437
43cd72b9
BW
7438#if DEBUG
7439 print_removed_literals (stderr, &relax_info->removed_list);
7440 print_action_list (stderr, &relax_info->action_list);
7441#endif /* DEBUG */
7442
7443error_return:
7444 if (prop_table) free (prop_table);
7445 clear_section_cache (&target_sec_cache);
7446
7447 release_contents (sec, contents);
7448 release_internal_relocs (sec, internal_relocs);
7449 return ok;
7450}
7451
7452
7453static Elf_Internal_Rela *
7fa3d080
BW
7454get_irel_at_offset (asection *sec,
7455 Elf_Internal_Rela *internal_relocs,
7456 bfd_vma offset)
43cd72b9
BW
7457{
7458 unsigned i;
7459 Elf_Internal_Rela *irel;
7460 unsigned r_type;
7461 Elf_Internal_Rela key;
7462
7463 if (!internal_relocs)
7464 return NULL;
7465
7466 key.r_offset = offset;
7467 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7468 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7469 if (!irel)
7470 return NULL;
7471
7472 /* bsearch does not guarantee which will be returned if there are
7473 multiple matches. We need the first that is not an alignment. */
7474 i = irel - internal_relocs;
7475 while (i > 0)
7476 {
7477 if (internal_relocs[i-1].r_offset != offset)
7478 break;
7479 i--;
7480 }
7481 for ( ; i < sec->reloc_count; i++)
7482 {
7483 irel = &internal_relocs[i];
7484 r_type = ELF32_R_TYPE (irel->r_info);
7485 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7486 return irel;
7487 }
7488
7489 return NULL;
7490}
7491
7492
7493bfd_boolean
7fa3d080
BW
7494is_removable_literal (const source_reloc *rel,
7495 int i,
7496 const source_reloc *src_relocs,
99ded152
BW
7497 int src_count,
7498 asection *sec,
7499 property_table_entry *prop_table,
7500 int ptblsize)
43cd72b9
BW
7501{
7502 const source_reloc *curr_rel;
99ded152
BW
7503 property_table_entry *entry;
7504
43cd72b9
BW
7505 if (!rel->is_null)
7506 return FALSE;
7507
99ded152
BW
7508 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7509 sec->vma + rel->r_rel.target_offset);
7510 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7511 return FALSE;
7512
43cd72b9
BW
7513 for (++i; i < src_count; ++i)
7514 {
7515 curr_rel = &src_relocs[i];
7516 /* If all others have the same target offset.... */
7517 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7518 return TRUE;
7519
7520 if (!curr_rel->is_null
7521 && !xtensa_is_property_section (curr_rel->source_sec)
7522 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7523 return FALSE;
7524 }
7525 return TRUE;
7526}
7527
7528
7529bfd_boolean
7fa3d080
BW
7530remove_dead_literal (bfd *abfd,
7531 asection *sec,
7532 struct bfd_link_info *link_info,
7533 Elf_Internal_Rela *internal_relocs,
7534 Elf_Internal_Rela *irel,
7535 source_reloc *rel,
7536 property_table_entry *prop_table,
7537 int ptblsize)
43cd72b9
BW
7538{
7539 property_table_entry *entry;
7540 xtensa_relax_info *relax_info;
7541
7542 relax_info = get_xtensa_relax_info (sec);
7543 if (!relax_info)
7544 return FALSE;
7545
7546 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7547 sec->vma + rel->r_rel.target_offset);
7548
7549 /* Mark the unused literal so that it will be removed. */
7550 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7551
7552 text_action_add (&relax_info->action_list,
7553 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7554
7555 /* If the section is 4-byte aligned, do not add fill. */
7556 if (sec->alignment_power > 2)
7557 {
7558 int fill_extra_space;
7559 bfd_vma entry_sec_offset;
7560 text_action *fa;
7561 property_table_entry *the_add_entry;
7562 int removed_diff;
7563
7564 if (entry)
7565 entry_sec_offset = entry->address - sec->vma + entry->size;
7566 else
7567 entry_sec_offset = rel->r_rel.target_offset + 4;
7568
7569 /* If the literal range is at the end of the section,
7570 do not add fill. */
7571 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7572 entry_sec_offset);
7573 fill_extra_space = compute_fill_extra_space (the_add_entry);
7574
7575 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7576 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7577 -4, fill_extra_space);
7578 if (fa)
7579 adjust_fill_action (fa, removed_diff);
7580 else
7581 text_action_add (&relax_info->action_list,
7582 ta_fill, sec, entry_sec_offset, removed_diff);
7583 }
7584
7585 /* Zero out the relocation on this literal location. */
7586 if (irel)
7587 {
7588 if (elf_hash_table (link_info)->dynamic_sections_created)
7589 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7590
7591 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7592 pin_internal_relocs (sec, internal_relocs);
7593 }
7594
7595 /* Do not modify "last_loc_is_prev". */
7596 return TRUE;
7597}
7598
7599
7600bfd_boolean
7fa3d080
BW
7601identify_literal_placement (bfd *abfd,
7602 asection *sec,
7603 bfd_byte *contents,
7604 struct bfd_link_info *link_info,
7605 value_map_hash_table *values,
7606 bfd_boolean *last_loc_is_prev_p,
7607 Elf_Internal_Rela *irel,
7608 int remaining_src_rels,
7609 source_reloc *rel,
7610 property_table_entry *prop_table,
7611 int ptblsize,
7612 section_cache_t *target_sec_cache,
7613 bfd_boolean is_abs_literal)
43cd72b9
BW
7614{
7615 literal_value val;
7616 value_map *val_map;
7617 xtensa_relax_info *relax_info;
7618 bfd_boolean literal_placed = FALSE;
7619 r_reloc r_rel;
7620 unsigned long value;
7621 bfd_boolean final_static_link;
7622 bfd_size_type sec_size;
7623
7624 relax_info = get_xtensa_relax_info (sec);
7625 if (!relax_info)
7626 return FALSE;
7627
7628 sec_size = bfd_get_section_limit (abfd, sec);
7629
7630 final_static_link =
7631 (!link_info->relocatable
7632 && !elf_hash_table (link_info)->dynamic_sections_created);
7633
7634 /* The placement algorithm first checks to see if the literal is
7635 already in the value map. If so and the value map is reachable
7636 from all uses, then the literal is moved to that location. If
7637 not, then we identify the last location where a fresh literal was
7638 placed. If the literal can be safely moved there, then we do so.
7639 If not, then we assume that the literal is not to move and leave
7640 the literal where it is, marking it as the last literal
7641 location. */
7642
7643 /* Find the literal value. */
7644 value = 0;
7645 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7646 if (!irel)
7647 {
7648 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7649 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7650 }
7651 init_literal_value (&val, &r_rel, value, is_abs_literal);
7652
7653 /* Check if we've seen another literal with the same value that
7654 is in the same output section. */
7655 val_map = value_map_get_cached_value (values, &val, final_static_link);
7656
7657 if (val_map
7658 && (r_reloc_get_section (&val_map->loc)->output_section
7659 == sec->output_section)
7660 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7661 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7662 {
7663 /* No change to last_loc_is_prev. */
7664 literal_placed = TRUE;
7665 }
7666
7667 /* For relocatable links, do not try to move literals. To do it
7668 correctly might increase the number of relocations in an input
7669 section making the default relocatable linking fail. */
7670 if (!link_info->relocatable && !literal_placed
7671 && values->has_last_loc && !(*last_loc_is_prev_p))
7672 {
7673 asection *target_sec = r_reloc_get_section (&values->last_loc);
7674 if (target_sec && target_sec->output_section == sec->output_section)
7675 {
7676 /* Increment the virtual offset. */
7677 r_reloc try_loc = values->last_loc;
7678 try_loc.virtual_offset += 4;
7679
7680 /* There is a last loc that was in the same output section. */
7681 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7682 && move_shared_literal (sec, link_info, rel,
7683 prop_table, ptblsize,
7684 &try_loc, &val, target_sec_cache))
e0001a05 7685 {
43cd72b9
BW
7686 values->last_loc.virtual_offset += 4;
7687 literal_placed = TRUE;
7688 if (!val_map)
7689 val_map = add_value_map (values, &val, &try_loc,
7690 final_static_link);
7691 else
7692 val_map->loc = try_loc;
e0001a05
NC
7693 }
7694 }
43cd72b9
BW
7695 }
7696
7697 if (!literal_placed)
7698 {
7699 /* Nothing worked, leave the literal alone but update the last loc. */
7700 values->has_last_loc = TRUE;
7701 values->last_loc = rel->r_rel;
7702 if (!val_map)
7703 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7704 else
43cd72b9
BW
7705 val_map->loc = rel->r_rel;
7706 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7707 }
7708
43cd72b9 7709 return TRUE;
e0001a05
NC
7710}
7711
7712
7713/* Check if the original relocations (presumably on L32R instructions)
7714 identified by reloc[0..N] can be changed to reference the literal
7715 identified by r_rel. If r_rel is out of range for any of the
7716 original relocations, then we don't want to coalesce the original
7717 literal with the one at r_rel. We only check reloc[0..N], where the
7718 offsets are all the same as for reloc[0] (i.e., they're all
7719 referencing the same literal) and where N is also bounded by the
7720 number of remaining entries in the "reloc" array. The "reloc" array
7721 is sorted by target offset so we know all the entries for the same
7722 literal will be contiguous. */
7723
7724static bfd_boolean
7fa3d080
BW
7725relocations_reach (source_reloc *reloc,
7726 int remaining_relocs,
7727 const r_reloc *r_rel)
e0001a05
NC
7728{
7729 bfd_vma from_offset, source_address, dest_address;
7730 asection *sec;
7731 int i;
7732
7733 if (!r_reloc_is_defined (r_rel))
7734 return FALSE;
7735
7736 sec = r_reloc_get_section (r_rel);
7737 from_offset = reloc[0].r_rel.target_offset;
7738
7739 for (i = 0; i < remaining_relocs; i++)
7740 {
7741 if (reloc[i].r_rel.target_offset != from_offset)
7742 break;
7743
7744 /* Ignore relocations that have been removed. */
7745 if (reloc[i].is_null)
7746 continue;
7747
7748 /* The original and new output section for these must be the same
7749 in order to coalesce. */
7750 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7751 != sec->output_section)
7752 return FALSE;
7753
d638e0ac
BW
7754 /* Absolute literals in the same output section can always be
7755 combined. */
7756 if (reloc[i].is_abs_literal)
7757 continue;
7758
43cd72b9
BW
7759 /* A literal with no PC-relative relocations can be moved anywhere. */
7760 if (reloc[i].opnd != -1)
e0001a05
NC
7761 {
7762 /* Otherwise, check to see that it fits. */
7763 source_address = (reloc[i].source_sec->output_section->vma
7764 + reloc[i].source_sec->output_offset
7765 + reloc[i].r_rel.rela.r_offset);
7766 dest_address = (sec->output_section->vma
7767 + sec->output_offset
7768 + r_rel->target_offset);
7769
43cd72b9
BW
7770 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7771 source_address, dest_address))
e0001a05
NC
7772 return FALSE;
7773 }
7774 }
7775
7776 return TRUE;
7777}
7778
7779
43cd72b9
BW
7780/* Move a literal to another literal location because it is
7781 the same as the other literal value. */
e0001a05 7782
43cd72b9 7783static bfd_boolean
7fa3d080
BW
7784coalesce_shared_literal (asection *sec,
7785 source_reloc *rel,
7786 property_table_entry *prop_table,
7787 int ptblsize,
7788 value_map *val_map)
e0001a05 7789{
43cd72b9
BW
7790 property_table_entry *entry;
7791 text_action *fa;
7792 property_table_entry *the_add_entry;
7793 int removed_diff;
7794 xtensa_relax_info *relax_info;
7795
7796 relax_info = get_xtensa_relax_info (sec);
7797 if (!relax_info)
7798 return FALSE;
7799
7800 entry = elf_xtensa_find_property_entry
7801 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 7802 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
7803 return TRUE;
7804
7805 /* Mark that the literal will be coalesced. */
7806 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7807
7808 text_action_add (&relax_info->action_list,
7809 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7810
7811 /* If the section is 4-byte aligned, do not add fill. */
7812 if (sec->alignment_power > 2)
e0001a05 7813 {
43cd72b9
BW
7814 int fill_extra_space;
7815 bfd_vma entry_sec_offset;
7816
7817 if (entry)
7818 entry_sec_offset = entry->address - sec->vma + entry->size;
7819 else
7820 entry_sec_offset = rel->r_rel.target_offset + 4;
7821
7822 /* If the literal range is at the end of the section,
7823 do not add fill. */
7824 fill_extra_space = 0;
7825 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7826 entry_sec_offset);
7827 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7828 fill_extra_space = the_add_entry->size;
7829
7830 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7831 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7832 -4, fill_extra_space);
7833 if (fa)
7834 adjust_fill_action (fa, removed_diff);
7835 else
7836 text_action_add (&relax_info->action_list,
7837 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7838 }
43cd72b9
BW
7839
7840 return TRUE;
7841}
7842
7843
7844/* Move a literal to another location. This may actually increase the
7845 total amount of space used because of alignments so we need to do
7846 this carefully. Also, it may make a branch go out of range. */
7847
7848static bfd_boolean
7fa3d080
BW
7849move_shared_literal (asection *sec,
7850 struct bfd_link_info *link_info,
7851 source_reloc *rel,
7852 property_table_entry *prop_table,
7853 int ptblsize,
7854 const r_reloc *target_loc,
7855 const literal_value *lit_value,
7856 section_cache_t *target_sec_cache)
43cd72b9
BW
7857{
7858 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7859 text_action *fa, *target_fa;
7860 int removed_diff;
7861 xtensa_relax_info *relax_info, *target_relax_info;
7862 asection *target_sec;
7863 ebb_t *ebb;
7864 ebb_constraint ebb_table;
7865 bfd_boolean relocs_fit;
7866
7867 /* If this routine always returns FALSE, the literals that cannot be
7868 coalesced will not be moved. */
7869 if (elf32xtensa_no_literal_movement)
7870 return FALSE;
7871
7872 relax_info = get_xtensa_relax_info (sec);
7873 if (!relax_info)
7874 return FALSE;
7875
7876 target_sec = r_reloc_get_section (target_loc);
7877 target_relax_info = get_xtensa_relax_info (target_sec);
7878
7879 /* Literals to undefined sections may not be moved because they
7880 must report an error. */
7881 if (bfd_is_und_section (target_sec))
7882 return FALSE;
7883
7884 src_entry = elf_xtensa_find_property_entry
7885 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7886
7887 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7888 return FALSE;
7889
7890 target_entry = elf_xtensa_find_property_entry
7891 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7892 target_sec->vma + target_loc->target_offset);
7893
7894 if (!target_entry)
7895 return FALSE;
7896
7897 /* Make sure that we have not broken any branches. */
7898 relocs_fit = FALSE;
7899
7900 init_ebb_constraint (&ebb_table);
7901 ebb = &ebb_table.ebb;
7902 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7903 target_sec_cache->content_length,
7904 target_sec_cache->ptbl, target_sec_cache->pte_count,
7905 target_sec_cache->relocs, target_sec_cache->reloc_count);
7906
7907 /* Propose to add 4 bytes + worst-case alignment size increase to
7908 destination. */
7909 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7910 ta_fill, target_loc->target_offset,
7911 -4 - (1 << target_sec->alignment_power), TRUE);
7912
7913 /* Check all of the PC-relative relocations to make sure they still fit. */
7914 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7915 target_sec_cache->contents,
7916 target_sec_cache->relocs,
cb337148 7917 &ebb_table, NULL);
43cd72b9
BW
7918
7919 if (!relocs_fit)
7920 return FALSE;
7921
7922 text_action_add_literal (&target_relax_info->action_list,
7923 ta_add_literal, target_loc, lit_value, -4);
7924
7925 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7926 {
7927 /* May need to add or remove some fill to maintain alignment. */
7928 int fill_extra_space;
7929 bfd_vma entry_sec_offset;
7930
7931 entry_sec_offset =
7932 target_entry->address - target_sec->vma + target_entry->size;
7933
7934 /* If the literal range is at the end of the section,
7935 do not add fill. */
7936 fill_extra_space = 0;
7937 the_add_entry =
7938 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7939 target_sec_cache->pte_count,
7940 entry_sec_offset);
7941 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7942 fill_extra_space = the_add_entry->size;
7943
7944 target_fa = find_fill_action (&target_relax_info->action_list,
7945 target_sec, entry_sec_offset);
7946 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7947 entry_sec_offset, 4,
7948 fill_extra_space);
7949 if (target_fa)
7950 adjust_fill_action (target_fa, removed_diff);
7951 else
7952 text_action_add (&target_relax_info->action_list,
7953 ta_fill, target_sec, entry_sec_offset, removed_diff);
7954 }
7955
7956 /* Mark that the literal will be moved to the new location. */
7957 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7958
7959 /* Remove the literal. */
7960 text_action_add (&relax_info->action_list,
7961 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7962
7963 /* If the section is 4-byte aligned, do not add fill. */
7964 if (sec->alignment_power > 2 && target_entry != src_entry)
7965 {
7966 int fill_extra_space;
7967 bfd_vma entry_sec_offset;
7968
7969 if (src_entry)
7970 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7971 else
7972 entry_sec_offset = rel->r_rel.target_offset+4;
7973
7974 /* If the literal range is at the end of the section,
7975 do not add fill. */
7976 fill_extra_space = 0;
7977 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7978 entry_sec_offset);
7979 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7980 fill_extra_space = the_add_entry->size;
7981
7982 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7983 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7984 -4, fill_extra_space);
7985 if (fa)
7986 adjust_fill_action (fa, removed_diff);
7987 else
7988 text_action_add (&relax_info->action_list,
7989 ta_fill, sec, entry_sec_offset, removed_diff);
7990 }
7991
7992 return TRUE;
e0001a05
NC
7993}
7994
7995\f
7996/* Second relaxation pass. */
7997
7998/* Modify all of the relocations to point to the right spot, and if this
7999 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8000 section size. */
e0001a05 8001
43cd72b9 8002bfd_boolean
7fa3d080 8003relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8004{
8005 Elf_Internal_Rela *internal_relocs;
8006 xtensa_relax_info *relax_info;
8007 bfd_byte *contents;
8008 bfd_boolean ok = TRUE;
8009 unsigned i;
43cd72b9
BW
8010 bfd_boolean rv = FALSE;
8011 bfd_boolean virtual_action;
8012 bfd_size_type sec_size;
e0001a05 8013
43cd72b9 8014 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8015 relax_info = get_xtensa_relax_info (sec);
8016 BFD_ASSERT (relax_info);
8017
43cd72b9
BW
8018 /* First translate any of the fixes that have been added already. */
8019 translate_section_fixes (sec);
8020
e0001a05
NC
8021 /* Handle property sections (e.g., literal tables) specially. */
8022 if (xtensa_is_property_section (sec))
8023 {
8024 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8025 return relax_property_section (abfd, sec, link_info);
8026 }
8027
43cd72b9
BW
8028 internal_relocs = retrieve_internal_relocs (abfd, sec,
8029 link_info->keep_memory);
8030 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8031 if (contents == NULL && sec_size != 0)
8032 {
8033 ok = FALSE;
8034 goto error_return;
8035 }
8036
8037 if (internal_relocs)
8038 {
8039 for (i = 0; i < sec->reloc_count; i++)
8040 {
8041 Elf_Internal_Rela *irel;
8042 xtensa_relax_info *target_relax_info;
8043 bfd_vma source_offset, old_source_offset;
8044 r_reloc r_rel;
8045 unsigned r_type;
8046 asection *target_sec;
8047
8048 /* Locally change the source address.
8049 Translate the target to the new target address.
8050 If it points to this section and has been removed,
8051 NULLify it.
8052 Write it back. */
8053
8054 irel = &internal_relocs[i];
8055 source_offset = irel->r_offset;
8056 old_source_offset = source_offset;
8057
8058 r_type = ELF32_R_TYPE (irel->r_info);
8059 r_reloc_init (&r_rel, abfd, irel, contents,
8060 bfd_get_section_limit (abfd, sec));
8061
8062 /* If this section could have changed then we may need to
8063 change the relocation's offset. */
8064
8065 if (relax_info->is_relaxable_literal_section
8066 || relax_info->is_relaxable_asm_section)
8067 {
9b7f5d20
BW
8068 pin_internal_relocs (sec, internal_relocs);
8069
43cd72b9
BW
8070 if (r_type != R_XTENSA_NONE
8071 && find_removed_literal (&relax_info->removed_list,
8072 irel->r_offset))
8073 {
8074 /* Remove this relocation. */
8075 if (elf_hash_table (link_info)->dynamic_sections_created)
8076 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8077 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8078 irel->r_offset = offset_with_removed_text
8079 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8080 continue;
8081 }
8082
8083 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8084 {
8085 text_action *action =
8086 find_insn_action (&relax_info->action_list,
8087 irel->r_offset);
8088 if (action && (action->action == ta_convert_longcall
8089 || action->action == ta_remove_longcall))
8090 {
8091 bfd_reloc_status_type retval;
8092 char *error_message = NULL;
8093
8094 retval = contract_asm_expansion (contents, sec_size,
8095 irel, &error_message);
8096 if (retval != bfd_reloc_ok)
8097 {
8098 (*link_info->callbacks->reloc_dangerous)
8099 (link_info, error_message, abfd, sec,
8100 irel->r_offset);
8101 goto error_return;
8102 }
8103 /* Update the action so that the code that moves
8104 the contents will do the right thing. */
8105 if (action->action == ta_remove_longcall)
8106 action->action = ta_remove_insn;
8107 else
8108 action->action = ta_none;
8109 /* Refresh the info in the r_rel. */
8110 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8111 r_type = ELF32_R_TYPE (irel->r_info);
8112 }
8113 }
8114
8115 source_offset = offset_with_removed_text
8116 (&relax_info->action_list, irel->r_offset);
8117 irel->r_offset = source_offset;
8118 }
8119
8120 /* If the target section could have changed then
8121 we may need to change the relocation's target offset. */
8122
8123 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8124
ae326da8
BW
8125 /* For a reference to a discarded section from a DWARF section,
8126 i.e., where action_discarded is PRETEND, the symbol will
8127 eventually be modified to refer to the kept section (at least if
8128 the kept and discarded sections are the same size). Anticipate
8129 that here and adjust things accordingly. */
8130 if (! elf_xtensa_ignore_discarded_relocs (sec)
8131 && elf_xtensa_action_discarded (sec) == PRETEND
8132 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8133 && target_sec != NULL
8134 && elf_discarded_section (target_sec))
8135 {
8136 /* It would be natural to call _bfd_elf_check_kept_section
8137 here, but it's not exported from elflink.c. It's also a
8138 fairly expensive check. Adjusting the relocations to the
8139 discarded section is fairly harmless; it will only adjust
8140 some addends and difference values. If it turns out that
8141 _bfd_elf_check_kept_section fails later, it won't matter,
8142 so just compare the section names to find the right group
8143 member. */
8144 asection *kept = target_sec->kept_section;
8145 if (kept != NULL)
8146 {
8147 if ((kept->flags & SEC_GROUP) != 0)
8148 {
8149 asection *first = elf_next_in_group (kept);
8150 asection *s = first;
8151
8152 kept = NULL;
8153 while (s != NULL)
8154 {
8155 if (strcmp (s->name, target_sec->name) == 0)
8156 {
8157 kept = s;
8158 break;
8159 }
8160 s = elf_next_in_group (s);
8161 if (s == first)
8162 break;
8163 }
8164 }
8165 }
8166 if (kept != NULL
8167 && ((target_sec->rawsize != 0
8168 ? target_sec->rawsize : target_sec->size)
8169 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8170 target_sec = kept;
8171 }
8172
8173 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
8174 if (target_relax_info
8175 && (target_relax_info->is_relaxable_literal_section
8176 || target_relax_info->is_relaxable_asm_section))
8177 {
8178 r_reloc new_reloc;
9b7f5d20 8179 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
8180
8181 if (r_type == R_XTENSA_DIFF8
8182 || r_type == R_XTENSA_DIFF16
8183 || r_type == R_XTENSA_DIFF32)
8184 {
8185 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8186
8187 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8188 {
8189 (*link_info->callbacks->reloc_dangerous)
8190 (link_info, _("invalid relocation address"),
8191 abfd, sec, old_source_offset);
8192 goto error_return;
8193 }
8194
8195 switch (r_type)
8196 {
8197 case R_XTENSA_DIFF8:
8198 diff_value =
8199 bfd_get_8 (abfd, &contents[old_source_offset]);
8200 break;
8201 case R_XTENSA_DIFF16:
8202 diff_value =
8203 bfd_get_16 (abfd, &contents[old_source_offset]);
8204 break;
8205 case R_XTENSA_DIFF32:
8206 diff_value =
8207 bfd_get_32 (abfd, &contents[old_source_offset]);
8208 break;
8209 }
8210
8211 new_end_offset = offset_with_removed_text
8212 (&target_relax_info->action_list,
8213 r_rel.target_offset + diff_value);
8214 diff_value = new_end_offset - new_reloc.target_offset;
8215
8216 switch (r_type)
8217 {
8218 case R_XTENSA_DIFF8:
8219 diff_mask = 0xff;
8220 bfd_put_8 (abfd, diff_value,
8221 &contents[old_source_offset]);
8222 break;
8223 case R_XTENSA_DIFF16:
8224 diff_mask = 0xffff;
8225 bfd_put_16 (abfd, diff_value,
8226 &contents[old_source_offset]);
8227 break;
8228 case R_XTENSA_DIFF32:
8229 diff_mask = 0xffffffff;
8230 bfd_put_32 (abfd, diff_value,
8231 &contents[old_source_offset]);
8232 break;
8233 }
8234
8235 /* Check for overflow. */
8236 if ((diff_value & ~diff_mask) != 0)
8237 {
8238 (*link_info->callbacks->reloc_dangerous)
8239 (link_info, _("overflow after relaxation"),
8240 abfd, sec, old_source_offset);
8241 goto error_return;
8242 }
8243
8244 pin_contents (sec, contents);
8245 }
dc96b90a
BW
8246
8247 /* If the relocation still references a section in the same
8248 input file, modify the relocation directly instead of
8249 adding a "fix" record. */
8250 if (target_sec->owner == abfd)
8251 {
8252 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
8253 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
8254 irel->r_addend = new_reloc.rela.r_addend;
8255 pin_internal_relocs (sec, internal_relocs);
8256 }
9b7f5d20
BW
8257 else
8258 {
dc96b90a
BW
8259 bfd_vma addend_displacement;
8260 reloc_bfd_fix *fix;
8261
8262 addend_displacement =
8263 new_reloc.target_offset + new_reloc.virtual_offset;
8264 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
8265 target_sec,
8266 addend_displacement, TRUE);
8267 add_fix (sec, fix);
9b7f5d20 8268 }
43cd72b9 8269 }
43cd72b9
BW
8270 }
8271 }
8272
8273 if ((relax_info->is_relaxable_literal_section
8274 || relax_info->is_relaxable_asm_section)
8275 && relax_info->action_list.head)
8276 {
8277 /* Walk through the planned actions and build up a table
8278 of move, copy and fill records. Use the move, copy and
8279 fill records to perform the actions once. */
8280
43cd72b9
BW
8281 int removed = 0;
8282 bfd_size_type final_size, copy_size, orig_insn_size;
8283 bfd_byte *scratch = NULL;
8284 bfd_byte *dup_contents = NULL;
a3ef2d63 8285 bfd_size_type orig_size = sec->size;
43cd72b9
BW
8286 bfd_vma orig_dot = 0;
8287 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8288 orig dot in physical memory. */
8289 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8290 bfd_vma dup_dot = 0;
8291
8292 text_action *action = relax_info->action_list.head;
8293
8294 final_size = sec->size;
8295 for (action = relax_info->action_list.head; action;
8296 action = action->next)
8297 {
8298 final_size -= action->removed_bytes;
8299 }
8300
8301 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8302 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8303
8304 /* The dot is the current fill location. */
8305#if DEBUG
8306 print_action_list (stderr, &relax_info->action_list);
8307#endif
8308
8309 for (action = relax_info->action_list.head; action;
8310 action = action->next)
8311 {
8312 virtual_action = FALSE;
8313 if (action->offset > orig_dot)
8314 {
8315 orig_dot += orig_dot_copied;
8316 orig_dot_copied = 0;
8317 orig_dot_vo = 0;
8318 /* Out of the virtual world. */
8319 }
8320
8321 if (action->offset > orig_dot)
8322 {
8323 copy_size = action->offset - orig_dot;
8324 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8325 orig_dot += copy_size;
8326 dup_dot += copy_size;
8327 BFD_ASSERT (action->offset == orig_dot);
8328 }
8329 else if (action->offset < orig_dot)
8330 {
8331 if (action->action == ta_fill
8332 && action->offset - action->removed_bytes == orig_dot)
8333 {
8334 /* This is OK because the fill only effects the dup_dot. */
8335 }
8336 else if (action->action == ta_add_literal)
8337 {
8338 /* TBD. Might need to handle this. */
8339 }
8340 }
8341 if (action->offset == orig_dot)
8342 {
8343 if (action->virtual_offset > orig_dot_vo)
8344 {
8345 if (orig_dot_vo == 0)
8346 {
8347 /* Need to copy virtual_offset bytes. Probably four. */
8348 copy_size = action->virtual_offset - orig_dot_vo;
8349 memmove (&dup_contents[dup_dot],
8350 &contents[orig_dot], copy_size);
8351 orig_dot_copied = copy_size;
8352 dup_dot += copy_size;
8353 }
8354 virtual_action = TRUE;
8355 }
8356 else
8357 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8358 }
8359 switch (action->action)
8360 {
8361 case ta_remove_literal:
8362 case ta_remove_insn:
8363 BFD_ASSERT (action->removed_bytes >= 0);
8364 orig_dot += action->removed_bytes;
8365 break;
8366
8367 case ta_narrow_insn:
8368 orig_insn_size = 3;
8369 copy_size = 2;
8370 memmove (scratch, &contents[orig_dot], orig_insn_size);
8371 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 8372 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
8373 BFD_ASSERT (rv);
8374 memmove (&dup_contents[dup_dot], scratch, copy_size);
8375 orig_dot += orig_insn_size;
8376 dup_dot += copy_size;
8377 break;
8378
8379 case ta_fill:
8380 if (action->removed_bytes >= 0)
8381 orig_dot += action->removed_bytes;
8382 else
8383 {
8384 /* Already zeroed in dup_contents. Just bump the
8385 counters. */
8386 dup_dot += (-action->removed_bytes);
8387 }
8388 break;
8389
8390 case ta_none:
8391 BFD_ASSERT (action->removed_bytes == 0);
8392 break;
8393
8394 case ta_convert_longcall:
8395 case ta_remove_longcall:
8396 /* These will be removed or converted before we get here. */
8397 BFD_ASSERT (0);
8398 break;
8399
8400 case ta_widen_insn:
8401 orig_insn_size = 2;
8402 copy_size = 3;
8403 memmove (scratch, &contents[orig_dot], orig_insn_size);
8404 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 8405 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
8406 BFD_ASSERT (rv);
8407 memmove (&dup_contents[dup_dot], scratch, copy_size);
8408 orig_dot += orig_insn_size;
8409 dup_dot += copy_size;
8410 break;
8411
8412 case ta_add_literal:
8413 orig_insn_size = 0;
8414 copy_size = 4;
8415 BFD_ASSERT (action->removed_bytes == -4);
8416 /* TBD -- place the literal value here and insert
8417 into the table. */
8418 memset (&dup_contents[dup_dot], 0, 4);
8419 pin_internal_relocs (sec, internal_relocs);
8420 pin_contents (sec, contents);
8421
8422 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8423 relax_info, &internal_relocs, &action->value))
8424 goto error_return;
8425
8426 if (virtual_action)
8427 orig_dot_vo += copy_size;
8428
8429 orig_dot += orig_insn_size;
8430 dup_dot += copy_size;
8431 break;
8432
8433 default:
8434 /* Not implemented yet. */
8435 BFD_ASSERT (0);
8436 break;
8437 }
8438
43cd72b9
BW
8439 removed += action->removed_bytes;
8440 BFD_ASSERT (dup_dot <= final_size);
8441 BFD_ASSERT (orig_dot <= orig_size);
8442 }
8443
8444 orig_dot += orig_dot_copied;
8445 orig_dot_copied = 0;
8446
8447 if (orig_dot != orig_size)
8448 {
8449 copy_size = orig_size - orig_dot;
8450 BFD_ASSERT (orig_size > orig_dot);
8451 BFD_ASSERT (dup_dot + copy_size == final_size);
8452 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8453 orig_dot += copy_size;
8454 dup_dot += copy_size;
8455 }
8456 BFD_ASSERT (orig_size == orig_dot);
8457 BFD_ASSERT (final_size == dup_dot);
8458
8459 /* Move the dup_contents back. */
8460 if (final_size > orig_size)
8461 {
8462 /* Contents need to be reallocated. Swap the dup_contents into
8463 contents. */
8464 sec->contents = dup_contents;
8465 free (contents);
8466 contents = dup_contents;
8467 pin_contents (sec, contents);
8468 }
8469 else
8470 {
8471 BFD_ASSERT (final_size <= orig_size);
8472 memset (contents, 0, orig_size);
8473 memcpy (contents, dup_contents, final_size);
8474 free (dup_contents);
8475 }
8476 free (scratch);
8477 pin_contents (sec, contents);
8478
a3ef2d63
BW
8479 if (sec->rawsize == 0)
8480 sec->rawsize = sec->size;
43cd72b9
BW
8481 sec->size = final_size;
8482 }
8483
8484 error_return:
8485 release_internal_relocs (sec, internal_relocs);
8486 release_contents (sec, contents);
8487 return ok;
8488}
8489
8490
8491static bfd_boolean
7fa3d080 8492translate_section_fixes (asection *sec)
43cd72b9
BW
8493{
8494 xtensa_relax_info *relax_info;
8495 reloc_bfd_fix *r;
8496
8497 relax_info = get_xtensa_relax_info (sec);
8498 if (!relax_info)
8499 return TRUE;
8500
8501 for (r = relax_info->fix_list; r != NULL; r = r->next)
8502 if (!translate_reloc_bfd_fix (r))
8503 return FALSE;
e0001a05 8504
43cd72b9
BW
8505 return TRUE;
8506}
e0001a05 8507
e0001a05 8508
43cd72b9
BW
8509/* Translate a fix given the mapping in the relax info for the target
8510 section. If it has already been translated, no work is required. */
e0001a05 8511
43cd72b9 8512static bfd_boolean
7fa3d080 8513translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8514{
8515 reloc_bfd_fix new_fix;
8516 asection *sec;
8517 xtensa_relax_info *relax_info;
8518 removed_literal *removed;
8519 bfd_vma new_offset, target_offset;
e0001a05 8520
43cd72b9
BW
8521 if (fix->translated)
8522 return TRUE;
e0001a05 8523
43cd72b9
BW
8524 sec = fix->target_sec;
8525 target_offset = fix->target_offset;
e0001a05 8526
43cd72b9
BW
8527 relax_info = get_xtensa_relax_info (sec);
8528 if (!relax_info)
8529 {
8530 fix->translated = TRUE;
8531 return TRUE;
8532 }
e0001a05 8533
43cd72b9 8534 new_fix = *fix;
e0001a05 8535
43cd72b9
BW
8536 /* The fix does not need to be translated if the section cannot change. */
8537 if (!relax_info->is_relaxable_literal_section
8538 && !relax_info->is_relaxable_asm_section)
8539 {
8540 fix->translated = TRUE;
8541 return TRUE;
8542 }
e0001a05 8543
43cd72b9
BW
8544 /* If the literal has been moved and this relocation was on an
8545 opcode, then the relocation should move to the new literal
8546 location. Otherwise, the relocation should move within the
8547 section. */
8548
8549 removed = FALSE;
8550 if (is_operand_relocation (fix->src_type))
8551 {
8552 /* Check if the original relocation is against a literal being
8553 removed. */
8554 removed = find_removed_literal (&relax_info->removed_list,
8555 target_offset);
e0001a05
NC
8556 }
8557
43cd72b9 8558 if (removed)
e0001a05 8559 {
43cd72b9 8560 asection *new_sec;
e0001a05 8561
43cd72b9
BW
8562 /* The fact that there is still a relocation to this literal indicates
8563 that the literal is being coalesced, not simply removed. */
8564 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8565
43cd72b9
BW
8566 /* This was moved to some other address (possibly another section). */
8567 new_sec = r_reloc_get_section (&removed->to);
8568 if (new_sec != sec)
e0001a05 8569 {
43cd72b9
BW
8570 sec = new_sec;
8571 relax_info = get_xtensa_relax_info (sec);
8572 if (!relax_info ||
8573 (!relax_info->is_relaxable_literal_section
8574 && !relax_info->is_relaxable_asm_section))
e0001a05 8575 {
43cd72b9
BW
8576 target_offset = removed->to.target_offset;
8577 new_fix.target_sec = new_sec;
8578 new_fix.target_offset = target_offset;
8579 new_fix.translated = TRUE;
8580 *fix = new_fix;
8581 return TRUE;
e0001a05 8582 }
e0001a05 8583 }
43cd72b9
BW
8584 target_offset = removed->to.target_offset;
8585 new_fix.target_sec = new_sec;
e0001a05 8586 }
43cd72b9
BW
8587
8588 /* The target address may have been moved within its section. */
8589 new_offset = offset_with_removed_text (&relax_info->action_list,
8590 target_offset);
8591
8592 new_fix.target_offset = new_offset;
8593 new_fix.target_offset = new_offset;
8594 new_fix.translated = TRUE;
8595 *fix = new_fix;
8596 return TRUE;
e0001a05
NC
8597}
8598
8599
8600/* Fix up a relocation to take account of removed literals. */
8601
9b7f5d20
BW
8602static asection *
8603translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 8604{
e0001a05
NC
8605 xtensa_relax_info *relax_info;
8606 removed_literal *removed;
9b7f5d20
BW
8607 bfd_vma target_offset, base_offset;
8608 text_action *act;
e0001a05
NC
8609
8610 *new_rel = *orig_rel;
8611
8612 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 8613 return sec ;
e0001a05
NC
8614
8615 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
8616 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
8617 || relax_info->is_relaxable_asm_section));
e0001a05 8618
43cd72b9
BW
8619 target_offset = orig_rel->target_offset;
8620
8621 removed = FALSE;
8622 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8623 {
8624 /* Check if the original relocation is against a literal being
8625 removed. */
8626 removed = find_removed_literal (&relax_info->removed_list,
8627 target_offset);
8628 }
8629 if (removed && removed->to.abfd)
e0001a05
NC
8630 {
8631 asection *new_sec;
8632
8633 /* The fact that there is still a relocation to this literal indicates
8634 that the literal is being coalesced, not simply removed. */
8635 BFD_ASSERT (removed->to.abfd != NULL);
8636
43cd72b9
BW
8637 /* This was moved to some other address
8638 (possibly in another section). */
e0001a05
NC
8639 *new_rel = removed->to;
8640 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8641 if (new_sec != sec)
e0001a05
NC
8642 {
8643 sec = new_sec;
8644 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8645 if (!relax_info
8646 || (!relax_info->is_relaxable_literal_section
8647 && !relax_info->is_relaxable_asm_section))
9b7f5d20 8648 return sec;
e0001a05 8649 }
43cd72b9 8650 target_offset = new_rel->target_offset;
e0001a05
NC
8651 }
8652
9b7f5d20
BW
8653 /* Find the base offset of the reloc symbol, excluding any addend from the
8654 reloc or from the section contents (for a partial_inplace reloc). Then
8655 find the adjusted values of the offsets due to relaxation. The base
8656 offset is needed to determine the change to the reloc's addend; the reloc
8657 addend should not be adjusted due to relaxations located before the base
8658 offset. */
8659
8660 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
8661 act = relax_info->action_list.head;
8662 if (base_offset <= target_offset)
8663 {
8664 int base_removed = removed_by_actions (&act, base_offset, FALSE);
8665 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
8666 new_rel->target_offset = target_offset - base_removed - addend_removed;
8667 new_rel->rela.r_addend -= addend_removed;
8668 }
8669 else
8670 {
8671 /* Handle a negative addend. The base offset comes first. */
8672 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
8673 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
8674 new_rel->target_offset = target_offset - tgt_removed;
8675 new_rel->rela.r_addend += addend_removed;
8676 }
e0001a05 8677
9b7f5d20 8678 return sec;
e0001a05
NC
8679}
8680
8681
8682/* For dynamic links, there may be a dynamic relocation for each
8683 literal. The number of dynamic relocations must be computed in
8684 size_dynamic_sections, which occurs before relaxation. When a
8685 literal is removed, this function checks if there is a corresponding
8686 dynamic relocation and shrinks the size of the appropriate dynamic
8687 relocation section accordingly. At this point, the contents of the
8688 dynamic relocation sections have not yet been filled in, so there's
8689 nothing else that needs to be done. */
8690
8691static void
7fa3d080
BW
8692shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8693 bfd *abfd,
8694 asection *input_section,
8695 Elf_Internal_Rela *rel)
e0001a05 8696{
f0e6fdb2 8697 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
8698 Elf_Internal_Shdr *symtab_hdr;
8699 struct elf_link_hash_entry **sym_hashes;
8700 unsigned long r_symndx;
8701 int r_type;
8702 struct elf_link_hash_entry *h;
8703 bfd_boolean dynamic_symbol;
8704
f0e6fdb2 8705 htab = elf_xtensa_hash_table (info);
e0001a05
NC
8706 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8707 sym_hashes = elf_sym_hashes (abfd);
8708
8709 r_type = ELF32_R_TYPE (rel->r_info);
8710 r_symndx = ELF32_R_SYM (rel->r_info);
8711
8712 if (r_symndx < symtab_hdr->sh_info)
8713 h = NULL;
8714 else
8715 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8716
4608f3d9 8717 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
8718
8719 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8720 && (input_section->flags & SEC_ALLOC) != 0
8721 && (dynamic_symbol || info->shared))
8722 {
e0001a05
NC
8723 asection *srel;
8724 bfd_boolean is_plt = FALSE;
8725
e0001a05
NC
8726 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8727 {
f0e6fdb2 8728 srel = htab->srelplt;
e0001a05
NC
8729 is_plt = TRUE;
8730 }
8731 else
f0e6fdb2 8732 srel = htab->srelgot;
e0001a05
NC
8733
8734 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 8735 BFD_ASSERT (srel != NULL);
eea6121a
AM
8736 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8737 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8738
8739 if (is_plt)
8740 {
8741 asection *splt, *sgotplt, *srelgot;
8742 int reloc_index, chunk;
8743
8744 /* Find the PLT reloc index of the entry being removed. This
8745 is computed from the size of ".rela.plt". It is needed to
8746 figure out which PLT chunk to resize. Usually "last index
8747 = size - 1" since the index starts at zero, but in this
8748 context, the size has just been decremented so there's no
8749 need to subtract one. */
eea6121a 8750 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8751
8752 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
8753 splt = elf_xtensa_get_plt_section (info, chunk);
8754 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
8755 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8756
8757 /* Check if an entire PLT chunk has just been eliminated. */
8758 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8759 {
8760 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 8761 srelgot = htab->srelgot;
e0001a05
NC
8762 BFD_ASSERT (srelgot != NULL);
8763 srelgot->reloc_count -= 2;
eea6121a
AM
8764 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8765 sgotplt->size -= 8;
e0001a05
NC
8766
8767 /* There should be only one entry left (and it will be
8768 removed below). */
eea6121a
AM
8769 BFD_ASSERT (sgotplt->size == 4);
8770 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8771 }
8772
eea6121a
AM
8773 BFD_ASSERT (sgotplt->size >= 4);
8774 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8775
eea6121a
AM
8776 sgotplt->size -= 4;
8777 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8778 }
8779 }
8780}
8781
8782
43cd72b9
BW
8783/* Take an r_rel and move it to another section. This usually
8784 requires extending the interal_relocation array and pinning it. If
8785 the original r_rel is from the same BFD, we can complete this here.
8786 Otherwise, we add a fix record to let the final link fix the
8787 appropriate address. Contents and internal relocations for the
8788 section must be pinned after calling this routine. */
8789
8790static bfd_boolean
7fa3d080
BW
8791move_literal (bfd *abfd,
8792 struct bfd_link_info *link_info,
8793 asection *sec,
8794 bfd_vma offset,
8795 bfd_byte *contents,
8796 xtensa_relax_info *relax_info,
8797 Elf_Internal_Rela **internal_relocs_p,
8798 const literal_value *lit)
43cd72b9
BW
8799{
8800 Elf_Internal_Rela *new_relocs = NULL;
8801 size_t new_relocs_count = 0;
8802 Elf_Internal_Rela this_rela;
8803 const r_reloc *r_rel;
8804
8805 r_rel = &lit->r_rel;
8806 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8807
8808 if (r_reloc_is_const (r_rel))
8809 bfd_put_32 (abfd, lit->value, contents + offset);
8810 else
8811 {
8812 int r_type;
8813 unsigned i;
8814 asection *target_sec;
8815 reloc_bfd_fix *fix;
8816 unsigned insert_at;
8817
8818 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8819 target_sec = r_reloc_get_section (r_rel);
8820
8821 /* This is the difficult case. We have to create a fix up. */
8822 this_rela.r_offset = offset;
8823 this_rela.r_info = ELF32_R_INFO (0, r_type);
8824 this_rela.r_addend =
8825 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8826 bfd_put_32 (abfd, lit->value, contents + offset);
8827
8828 /* Currently, we cannot move relocations during a relocatable link. */
8829 BFD_ASSERT (!link_info->relocatable);
0f5f1638 8830 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
8831 r_reloc_get_section (r_rel),
8832 r_rel->target_offset + r_rel->virtual_offset,
8833 FALSE);
8834 /* We also need to mark that relocations are needed here. */
8835 sec->flags |= SEC_RELOC;
8836
8837 translate_reloc_bfd_fix (fix);
8838 /* This fix has not yet been translated. */
8839 add_fix (sec, fix);
8840
8841 /* Add the relocation. If we have already allocated our own
8842 space for the relocations and we have room for more, then use
8843 it. Otherwise, allocate new space and move the literals. */
8844 insert_at = sec->reloc_count;
8845 for (i = 0; i < sec->reloc_count; ++i)
8846 {
8847 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8848 {
8849 insert_at = i;
8850 break;
8851 }
8852 }
8853
8854 if (*internal_relocs_p != relax_info->allocated_relocs
8855 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8856 {
8857 BFD_ASSERT (relax_info->allocated_relocs == NULL
8858 || sec->reloc_count == relax_info->relocs_count);
8859
8860 if (relax_info->allocated_relocs_count == 0)
8861 new_relocs_count = (sec->reloc_count + 2) * 2;
8862 else
8863 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8864
8865 new_relocs = (Elf_Internal_Rela *)
8866 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8867 if (!new_relocs)
8868 return FALSE;
8869
8870 /* We could handle this more quickly by finding the split point. */
8871 if (insert_at != 0)
8872 memcpy (new_relocs, *internal_relocs_p,
8873 insert_at * sizeof (Elf_Internal_Rela));
8874
8875 new_relocs[insert_at] = this_rela;
8876
8877 if (insert_at != sec->reloc_count)
8878 memcpy (new_relocs + insert_at + 1,
8879 (*internal_relocs_p) + insert_at,
8880 (sec->reloc_count - insert_at)
8881 * sizeof (Elf_Internal_Rela));
8882
8883 if (*internal_relocs_p != relax_info->allocated_relocs)
8884 {
8885 /* The first time we re-allocate, we can only free the
8886 old relocs if they were allocated with bfd_malloc.
8887 This is not true when keep_memory is in effect. */
8888 if (!link_info->keep_memory)
8889 free (*internal_relocs_p);
8890 }
8891 else
8892 free (*internal_relocs_p);
8893 relax_info->allocated_relocs = new_relocs;
8894 relax_info->allocated_relocs_count = new_relocs_count;
8895 elf_section_data (sec)->relocs = new_relocs;
8896 sec->reloc_count++;
8897 relax_info->relocs_count = sec->reloc_count;
8898 *internal_relocs_p = new_relocs;
8899 }
8900 else
8901 {
8902 if (insert_at != sec->reloc_count)
8903 {
8904 unsigned idx;
8905 for (idx = sec->reloc_count; idx > insert_at; idx--)
8906 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8907 }
8908 (*internal_relocs_p)[insert_at] = this_rela;
8909 sec->reloc_count++;
8910 if (relax_info->allocated_relocs)
8911 relax_info->relocs_count = sec->reloc_count;
8912 }
8913 }
8914 return TRUE;
8915}
8916
8917
e0001a05
NC
8918/* This is similar to relax_section except that when a target is moved,
8919 we shift addresses up. We also need to modify the size. This
8920 algorithm does NOT allow for relocations into the middle of the
8921 property sections. */
8922
43cd72b9 8923static bfd_boolean
7fa3d080
BW
8924relax_property_section (bfd *abfd,
8925 asection *sec,
8926 struct bfd_link_info *link_info)
e0001a05
NC
8927{
8928 Elf_Internal_Rela *internal_relocs;
8929 bfd_byte *contents;
1d25768e 8930 unsigned i;
e0001a05 8931 bfd_boolean ok = TRUE;
43cd72b9
BW
8932 bfd_boolean is_full_prop_section;
8933 size_t last_zfill_target_offset = 0;
8934 asection *last_zfill_target_sec = NULL;
8935 bfd_size_type sec_size;
1d25768e 8936 bfd_size_type entry_size;
e0001a05 8937
43cd72b9 8938 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8939 internal_relocs = retrieve_internal_relocs (abfd, sec,
8940 link_info->keep_memory);
8941 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8942 if (contents == NULL && sec_size != 0)
e0001a05
NC
8943 {
8944 ok = FALSE;
8945 goto error_return;
8946 }
8947
1d25768e
BW
8948 is_full_prop_section = xtensa_is_proptable_section (sec);
8949 if (is_full_prop_section)
8950 entry_size = 12;
8951 else
8952 entry_size = 8;
43cd72b9
BW
8953
8954 if (internal_relocs)
e0001a05 8955 {
43cd72b9 8956 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8957 {
8958 Elf_Internal_Rela *irel;
8959 xtensa_relax_info *target_relax_info;
e0001a05
NC
8960 unsigned r_type;
8961 asection *target_sec;
43cd72b9
BW
8962 literal_value val;
8963 bfd_byte *size_p, *flags_p;
e0001a05
NC
8964
8965 /* Locally change the source address.
8966 Translate the target to the new target address.
8967 If it points to this section and has been removed, MOVE IT.
8968 Also, don't forget to modify the associated SIZE at
8969 (offset + 4). */
8970
8971 irel = &internal_relocs[i];
8972 r_type = ELF32_R_TYPE (irel->r_info);
8973 if (r_type == R_XTENSA_NONE)
8974 continue;
8975
43cd72b9
BW
8976 /* Find the literal value. */
8977 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8978 size_p = &contents[irel->r_offset + 4];
8979 flags_p = NULL;
8980 if (is_full_prop_section)
1d25768e
BW
8981 flags_p = &contents[irel->r_offset + 8];
8982 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 8983
43cd72b9 8984 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8985 target_relax_info = get_xtensa_relax_info (target_sec);
8986
8987 if (target_relax_info
43cd72b9
BW
8988 && (target_relax_info->is_relaxable_literal_section
8989 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8990 {
8991 /* Translate the relocation's destination. */
03669f1c
BW
8992 bfd_vma old_offset = val.r_rel.target_offset;
8993 bfd_vma new_offset;
e0001a05 8994 long old_size, new_size;
03669f1c
BW
8995 text_action *act = target_relax_info->action_list.head;
8996 new_offset = old_offset -
8997 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
8998
8999 /* Assert that we are not out of bounds. */
43cd72b9 9000 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9001 new_size = old_size;
43cd72b9
BW
9002
9003 if (old_size == 0)
9004 {
9005 /* Only the first zero-sized unreachable entry is
9006 allowed to expand. In this case the new offset
9007 should be the offset before the fill and the new
9008 size is the expansion size. For other zero-sized
9009 entries the resulting size should be zero with an
9010 offset before or after the fill address depending
9011 on whether the expanding unreachable entry
9012 preceeds it. */
03669f1c
BW
9013 if (last_zfill_target_sec == 0
9014 || last_zfill_target_sec != target_sec
9015 || last_zfill_target_offset != old_offset)
43cd72b9 9016 {
03669f1c
BW
9017 bfd_vma new_end_offset = new_offset;
9018
9019 /* Recompute the new_offset, but this time don't
9020 include any fill inserted by relaxation. */
9021 act = target_relax_info->action_list.head;
9022 new_offset = old_offset -
9023 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9024
9025 /* If it is not unreachable and we have not yet
9026 seen an unreachable at this address, place it
9027 before the fill address. */
03669f1c
BW
9028 if (flags_p && (bfd_get_32 (abfd, flags_p)
9029 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9030 {
03669f1c
BW
9031 new_size = new_end_offset - new_offset;
9032
43cd72b9 9033 last_zfill_target_sec = target_sec;
03669f1c 9034 last_zfill_target_offset = old_offset;
43cd72b9
BW
9035 }
9036 }
9037 }
9038 else
03669f1c
BW
9039 new_size -=
9040 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9041
e0001a05
NC
9042 if (new_size != old_size)
9043 {
9044 bfd_put_32 (abfd, new_size, size_p);
9045 pin_contents (sec, contents);
9046 }
43cd72b9 9047
03669f1c 9048 if (new_offset != old_offset)
e0001a05 9049 {
03669f1c 9050 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9051 irel->r_addend += diff;
9052 pin_internal_relocs (sec, internal_relocs);
9053 }
9054 }
9055 }
9056 }
9057
9058 /* Combine adjacent property table entries. This is also done in
9059 finish_dynamic_sections() but at that point it's too late to
9060 reclaim the space in the output section, so we do this twice. */
9061
43cd72b9 9062 if (internal_relocs && (!link_info->relocatable
1d25768e 9063 || xtensa_is_littable_section (sec)))
e0001a05
NC
9064 {
9065 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9066 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9067 int removed_bytes = 0;
1d25768e 9068 bfd_vma offset;
43cd72b9
BW
9069 flagword predef_flags;
9070
43cd72b9 9071 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9072
1d25768e 9073 /* Walk over memory and relocations at the same time.
e0001a05
NC
9074 This REQUIRES that the internal_relocs be sorted by offset. */
9075 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9076 internal_reloc_compare);
e0001a05
NC
9077
9078 pin_internal_relocs (sec, internal_relocs);
9079 pin_contents (sec, contents);
9080
1d25768e
BW
9081 next_rel = internal_relocs;
9082 rel_end = internal_relocs + sec->reloc_count;
9083
a3ef2d63 9084 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9085
a3ef2d63 9086 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9087 {
1d25768e 9088 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9089 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9090 bfd_boolean remove_this_rel;
43cd72b9 9091 flagword flags;
e0001a05 9092
1d25768e
BW
9093 /* Find the first relocation for the entry at the current offset.
9094 Adjust the offsets of any extra relocations for the previous
9095 entry. */
9096 offset_rel = NULL;
9097 if (next_rel)
9098 {
9099 for (irel = next_rel; irel < rel_end; irel++)
9100 {
9101 if ((irel->r_offset == offset
9102 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9103 || irel->r_offset > offset)
9104 {
9105 offset_rel = irel;
9106 break;
9107 }
9108 irel->r_offset -= removed_bytes;
1d25768e
BW
9109 }
9110 }
e0001a05 9111
1d25768e
BW
9112 /* Find the next relocation (if there are any left). */
9113 extra_rel = NULL;
9114 if (offset_rel)
e0001a05 9115 {
1d25768e 9116 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9117 {
1d25768e
BW
9118 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9119 {
9120 extra_rel = irel;
9121 break;
9122 }
e0001a05 9123 }
e0001a05
NC
9124 }
9125
1d25768e
BW
9126 /* Check if there are relocations on the current entry. There
9127 should usually be a relocation on the offset field. If there
9128 are relocations on the size or flags, then we can't optimize
9129 this entry. Also, find the next relocation to examine on the
9130 next iteration. */
9131 if (offset_rel)
e0001a05 9132 {
1d25768e 9133 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9134 {
1d25768e
BW
9135 next_rel = offset_rel;
9136 /* There are no relocations on the current entry, but we
9137 might still be able to remove it if the size is zero. */
9138 offset_rel = NULL;
9139 }
9140 else if (offset_rel->r_offset > offset
9141 || (extra_rel
9142 && extra_rel->r_offset < offset + entry_size))
9143 {
9144 /* There is a relocation on the size or flags, so we can't
9145 do anything with this entry. Continue with the next. */
9146 next_rel = offset_rel;
9147 continue;
9148 }
9149 else
9150 {
9151 BFD_ASSERT (offset_rel->r_offset == offset);
9152 offset_rel->r_offset -= removed_bytes;
9153 next_rel = offset_rel + 1;
e0001a05 9154 }
e0001a05 9155 }
1d25768e
BW
9156 else
9157 next_rel = NULL;
e0001a05 9158
1d25768e 9159 remove_this_rel = FALSE;
e0001a05
NC
9160 bytes_to_remove = 0;
9161 actual_offset = offset - removed_bytes;
9162 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9163
43cd72b9
BW
9164 if (is_full_prop_section)
9165 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9166 else
9167 flags = predef_flags;
9168
1d25768e
BW
9169 if (size == 0
9170 && (flags & XTENSA_PROP_ALIGN) == 0
9171 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9172 {
43cd72b9
BW
9173 /* Always remove entries with zero size and no alignment. */
9174 bytes_to_remove = entry_size;
1d25768e
BW
9175 if (offset_rel)
9176 remove_this_rel = TRUE;
e0001a05 9177 }
1d25768e
BW
9178 else if (offset_rel
9179 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 9180 {
1d25768e 9181 if (last_irel)
e0001a05 9182 {
1d25768e
BW
9183 flagword old_flags;
9184 bfd_vma old_size =
9185 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9186 bfd_vma old_address =
9187 (last_irel->r_addend
9188 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9189 bfd_vma new_address =
9190 (offset_rel->r_addend
9191 + bfd_get_32 (abfd, &contents[actual_offset]));
9192 if (is_full_prop_section)
9193 old_flags = bfd_get_32
9194 (abfd, &contents[last_irel->r_offset + 8]);
9195 else
9196 old_flags = predef_flags;
9197
9198 if ((ELF32_R_SYM (offset_rel->r_info)
9199 == ELF32_R_SYM (last_irel->r_info))
9200 && old_address + old_size == new_address
9201 && old_flags == flags
9202 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9203 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9204 {
1d25768e
BW
9205 /* Fix the old size. */
9206 bfd_put_32 (abfd, old_size + size,
9207 &contents[last_irel->r_offset + 4]);
9208 bytes_to_remove = entry_size;
9209 remove_this_rel = TRUE;
e0001a05
NC
9210 }
9211 else
1d25768e 9212 last_irel = offset_rel;
e0001a05 9213 }
1d25768e
BW
9214 else
9215 last_irel = offset_rel;
e0001a05
NC
9216 }
9217
1d25768e 9218 if (remove_this_rel)
e0001a05 9219 {
1d25768e
BW
9220 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9221 /* In case this is the last entry, move the relocation offset
9222 to the previous entry, if there is one. */
9223 if (offset_rel->r_offset >= bytes_to_remove)
9224 offset_rel->r_offset -= bytes_to_remove;
9225 else
9226 offset_rel->r_offset = 0;
e0001a05
NC
9227 }
9228
9229 if (bytes_to_remove != 0)
9230 {
9231 removed_bytes += bytes_to_remove;
a3ef2d63 9232 if (offset + bytes_to_remove < sec->size)
e0001a05 9233 memmove (&contents[actual_offset],
43cd72b9 9234 &contents[actual_offset + bytes_to_remove],
a3ef2d63 9235 sec->size - offset - bytes_to_remove);
e0001a05
NC
9236 }
9237 }
9238
43cd72b9 9239 if (removed_bytes)
e0001a05 9240 {
1d25768e
BW
9241 /* Fix up any extra relocations on the last entry. */
9242 for (irel = next_rel; irel < rel_end; irel++)
9243 irel->r_offset -= removed_bytes;
9244
e0001a05 9245 /* Clear the removed bytes. */
a3ef2d63 9246 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 9247
a3ef2d63
BW
9248 if (sec->rawsize == 0)
9249 sec->rawsize = sec->size;
9250 sec->size -= removed_bytes;
e901de89
BW
9251
9252 if (xtensa_is_littable_section (sec))
9253 {
f0e6fdb2
BW
9254 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9255 if (sgotloc)
9256 sgotloc->size -= removed_bytes;
e901de89 9257 }
e0001a05
NC
9258 }
9259 }
e901de89 9260
e0001a05
NC
9261 error_return:
9262 release_internal_relocs (sec, internal_relocs);
9263 release_contents (sec, contents);
9264 return ok;
9265}
9266
9267\f
9268/* Third relaxation pass. */
9269
9270/* Change symbol values to account for removed literals. */
9271
43cd72b9 9272bfd_boolean
7fa3d080 9273relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9274{
9275 xtensa_relax_info *relax_info;
9276 unsigned int sec_shndx;
9277 Elf_Internal_Shdr *symtab_hdr;
9278 Elf_Internal_Sym *isymbuf;
9279 unsigned i, num_syms, num_locals;
9280
9281 relax_info = get_xtensa_relax_info (sec);
9282 BFD_ASSERT (relax_info);
9283
43cd72b9
BW
9284 if (!relax_info->is_relaxable_literal_section
9285 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9286 return TRUE;
9287
9288 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9289
9290 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9291 isymbuf = retrieve_local_syms (abfd);
9292
9293 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9294 num_locals = symtab_hdr->sh_info;
9295
9296 /* Adjust the local symbols defined in this section. */
9297 for (i = 0; i < num_locals; i++)
9298 {
9299 Elf_Internal_Sym *isym = &isymbuf[i];
9300
9301 if (isym->st_shndx == sec_shndx)
9302 {
03669f1c
BW
9303 text_action *act = relax_info->action_list.head;
9304 bfd_vma orig_addr = isym->st_value;
43cd72b9 9305
03669f1c 9306 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 9307
03669f1c
BW
9308 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9309 isym->st_size -=
9310 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
9311 }
9312 }
9313
9314 /* Now adjust the global symbols defined in this section. */
9315 for (i = 0; i < (num_syms - num_locals); i++)
9316 {
9317 struct elf_link_hash_entry *sym_hash;
9318
9319 sym_hash = elf_sym_hashes (abfd)[i];
9320
9321 if (sym_hash->root.type == bfd_link_hash_warning)
9322 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9323
9324 if ((sym_hash->root.type == bfd_link_hash_defined
9325 || sym_hash->root.type == bfd_link_hash_defweak)
9326 && sym_hash->root.u.def.section == sec)
9327 {
03669f1c
BW
9328 text_action *act = relax_info->action_list.head;
9329 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 9330
03669f1c
BW
9331 sym_hash->root.u.def.value -=
9332 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 9333
03669f1c
BW
9334 if (sym_hash->type == STT_FUNC)
9335 sym_hash->size -=
9336 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
9337 }
9338 }
9339
9340 return TRUE;
9341}
9342
9343\f
9344/* "Fix" handling functions, called while performing relocations. */
9345
43cd72b9 9346static bfd_boolean
7fa3d080
BW
9347do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9348 bfd *input_bfd,
9349 asection *input_section,
9350 bfd_byte *contents)
e0001a05
NC
9351{
9352 r_reloc r_rel;
9353 asection *sec, *old_sec;
9354 bfd_vma old_offset;
9355 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9356 reloc_bfd_fix *fix;
9357
9358 if (r_type == R_XTENSA_NONE)
43cd72b9 9359 return TRUE;
e0001a05 9360
43cd72b9
BW
9361 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9362 if (!fix)
9363 return TRUE;
e0001a05 9364
43cd72b9
BW
9365 r_reloc_init (&r_rel, input_bfd, rel, contents,
9366 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9367 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9368 old_offset = r_rel.target_offset;
9369
9370 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9371 {
43cd72b9
BW
9372 if (r_type != R_XTENSA_ASM_EXPAND)
9373 {
9374 (*_bfd_error_handler)
9375 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9376 input_bfd, input_section, rel->r_offset,
9377 elf_howto_table[r_type].name);
9378 return FALSE;
9379 }
e0001a05
NC
9380 /* Leave it be. Resolution will happen in a later stage. */
9381 }
9382 else
9383 {
9384 sec = fix->target_sec;
9385 rel->r_addend += ((sec->output_offset + fix->target_offset)
9386 - (old_sec->output_offset + old_offset));
9387 }
43cd72b9 9388 return TRUE;
e0001a05
NC
9389}
9390
9391
9392static void
7fa3d080
BW
9393do_fix_for_final_link (Elf_Internal_Rela *rel,
9394 bfd *input_bfd,
9395 asection *input_section,
9396 bfd_byte *contents,
9397 bfd_vma *relocationp)
e0001a05
NC
9398{
9399 asection *sec;
9400 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9401 reloc_bfd_fix *fix;
43cd72b9 9402 bfd_vma fixup_diff;
e0001a05
NC
9403
9404 if (r_type == R_XTENSA_NONE)
9405 return;
9406
43cd72b9
BW
9407 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9408 if (!fix)
e0001a05
NC
9409 return;
9410
9411 sec = fix->target_sec;
43cd72b9
BW
9412
9413 fixup_diff = rel->r_addend;
9414 if (elf_howto_table[fix->src_type].partial_inplace)
9415 {
9416 bfd_vma inplace_val;
9417 BFD_ASSERT (fix->src_offset
9418 < bfd_get_section_limit (input_bfd, input_section));
9419 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9420 fixup_diff += inplace_val;
9421 }
9422
e0001a05
NC
9423 *relocationp = (sec->output_section->vma
9424 + sec->output_offset
43cd72b9 9425 + fix->target_offset - fixup_diff);
e0001a05
NC
9426}
9427
9428\f
9429/* Miscellaneous utility functions.... */
9430
9431static asection *
f0e6fdb2 9432elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 9433{
f0e6fdb2
BW
9434 struct elf_xtensa_link_hash_table *htab;
9435 bfd *dynobj;
e0001a05
NC
9436 char plt_name[10];
9437
9438 if (chunk == 0)
f0e6fdb2
BW
9439 {
9440 htab = elf_xtensa_hash_table (info);
9441 return htab->splt;
9442 }
e0001a05 9443
f0e6fdb2 9444 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9445 sprintf (plt_name, ".plt.%u", chunk);
9446 return bfd_get_section_by_name (dynobj, plt_name);
9447}
9448
9449
9450static asection *
f0e6fdb2 9451elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 9452{
f0e6fdb2
BW
9453 struct elf_xtensa_link_hash_table *htab;
9454 bfd *dynobj;
e0001a05
NC
9455 char got_name[14];
9456
9457 if (chunk == 0)
f0e6fdb2
BW
9458 {
9459 htab = elf_xtensa_hash_table (info);
9460 return htab->sgotplt;
9461 }
e0001a05 9462
f0e6fdb2 9463 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9464 sprintf (got_name, ".got.plt.%u", chunk);
9465 return bfd_get_section_by_name (dynobj, got_name);
9466}
9467
9468
9469/* Get the input section for a given symbol index.
9470 If the symbol is:
9471 . a section symbol, return the section;
9472 . a common symbol, return the common section;
9473 . an undefined symbol, return the undefined section;
9474 . an indirect symbol, follow the links;
9475 . an absolute value, return the absolute section. */
9476
9477static asection *
7fa3d080 9478get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9479{
9480 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9481 asection *target_sec = NULL;
43cd72b9 9482 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9483 {
9484 Elf_Internal_Sym *isymbuf;
9485 unsigned int section_index;
9486
9487 isymbuf = retrieve_local_syms (abfd);
9488 section_index = isymbuf[r_symndx].st_shndx;
9489
9490 if (section_index == SHN_UNDEF)
9491 target_sec = bfd_und_section_ptr;
9492 else if (section_index > 0 && section_index < SHN_LORESERVE)
9493 target_sec = bfd_section_from_elf_index (abfd, section_index);
9494 else if (section_index == SHN_ABS)
9495 target_sec = bfd_abs_section_ptr;
9496 else if (section_index == SHN_COMMON)
9497 target_sec = bfd_com_section_ptr;
43cd72b9 9498 else
e0001a05
NC
9499 /* Who knows? */
9500 target_sec = NULL;
9501 }
9502 else
9503 {
9504 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9505 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9506
9507 while (h->root.type == bfd_link_hash_indirect
9508 || h->root.type == bfd_link_hash_warning)
9509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9510
9511 switch (h->root.type)
9512 {
9513 case bfd_link_hash_defined:
9514 case bfd_link_hash_defweak:
9515 target_sec = h->root.u.def.section;
9516 break;
9517 case bfd_link_hash_common:
9518 target_sec = bfd_com_section_ptr;
9519 break;
9520 case bfd_link_hash_undefined:
9521 case bfd_link_hash_undefweak:
9522 target_sec = bfd_und_section_ptr;
9523 break;
9524 default: /* New indirect warning. */
9525 target_sec = bfd_und_section_ptr;
9526 break;
9527 }
9528 }
9529 return target_sec;
9530}
9531
9532
9533static struct elf_link_hash_entry *
7fa3d080 9534get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9535{
9536 unsigned long indx;
9537 struct elf_link_hash_entry *h;
9538 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9539
9540 if (r_symndx < symtab_hdr->sh_info)
9541 return NULL;
43cd72b9 9542
e0001a05
NC
9543 indx = r_symndx - symtab_hdr->sh_info;
9544 h = elf_sym_hashes (abfd)[indx];
9545 while (h->root.type == bfd_link_hash_indirect
9546 || h->root.type == bfd_link_hash_warning)
9547 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9548 return h;
9549}
9550
9551
9552/* Get the section-relative offset for a symbol number. */
9553
9554static bfd_vma
7fa3d080 9555get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9556{
9557 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9558 bfd_vma offset = 0;
9559
43cd72b9 9560 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9561 {
9562 Elf_Internal_Sym *isymbuf;
9563 isymbuf = retrieve_local_syms (abfd);
9564 offset = isymbuf[r_symndx].st_value;
9565 }
9566 else
9567 {
9568 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9569 struct elf_link_hash_entry *h =
9570 elf_sym_hashes (abfd)[indx];
9571
9572 while (h->root.type == bfd_link_hash_indirect
9573 || h->root.type == bfd_link_hash_warning)
9574 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9575 if (h->root.type == bfd_link_hash_defined
9576 || h->root.type == bfd_link_hash_defweak)
9577 offset = h->root.u.def.value;
9578 }
9579 return offset;
9580}
9581
9582
9583static bfd_boolean
7fa3d080 9584is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9585{
9586 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9587 struct elf_link_hash_entry *h;
9588
9589 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9590 if (h && h->root.type == bfd_link_hash_defweak)
9591 return TRUE;
9592 return FALSE;
9593}
9594
9595
9596static bfd_boolean
7fa3d080
BW
9597pcrel_reloc_fits (xtensa_opcode opc,
9598 int opnd,
9599 bfd_vma self_address,
9600 bfd_vma dest_address)
e0001a05 9601{
43cd72b9
BW
9602 xtensa_isa isa = xtensa_default_isa;
9603 uint32 valp = dest_address;
9604 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9605 || xtensa_operand_encode (isa, opc, opnd, &valp))
9606 return FALSE;
9607 return TRUE;
e0001a05
NC
9608}
9609
9610
9611static bfd_boolean
7fa3d080 9612xtensa_is_property_section (asection *sec)
e0001a05 9613{
1d25768e
BW
9614 if (xtensa_is_insntable_section (sec)
9615 || xtensa_is_littable_section (sec)
9616 || xtensa_is_proptable_section (sec))
b614a702 9617 return TRUE;
e901de89 9618
1d25768e
BW
9619 return FALSE;
9620}
9621
9622
9623static bfd_boolean
9624xtensa_is_insntable_section (asection *sec)
9625{
9626 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9627 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
9628 return TRUE;
9629
e901de89
BW
9630 return FALSE;
9631}
9632
9633
9634static bfd_boolean
7fa3d080 9635xtensa_is_littable_section (asection *sec)
e901de89 9636{
1d25768e
BW
9637 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9638 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 9639 return TRUE;
e901de89 9640
1d25768e
BW
9641 return FALSE;
9642}
9643
9644
9645static bfd_boolean
9646xtensa_is_proptable_section (asection *sec)
9647{
9648 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9649 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 9650 return TRUE;
e0001a05 9651
e901de89 9652 return FALSE;
e0001a05
NC
9653}
9654
9655
43cd72b9 9656static int
7fa3d080 9657internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9658{
43cd72b9
BW
9659 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9660 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9661
9662 if (a->r_offset != b->r_offset)
9663 return (a->r_offset - b->r_offset);
9664
9665 /* We don't need to sort on these criteria for correctness,
9666 but enforcing a more strict ordering prevents unstable qsort
9667 from behaving differently with different implementations.
9668 Without the code below we get correct but different results
9669 on Solaris 2.7 and 2.8. We would like to always produce the
9670 same results no matter the host. */
9671
9672 if (a->r_info != b->r_info)
9673 return (a->r_info - b->r_info);
9674
9675 return (a->r_addend - b->r_addend);
e0001a05
NC
9676}
9677
9678
9679static int
7fa3d080 9680internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9681{
9682 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9683 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9684
43cd72b9
BW
9685 /* Check if one entry overlaps with the other; this shouldn't happen
9686 except when searching for a match. */
e0001a05
NC
9687 return (a->r_offset - b->r_offset);
9688}
9689
9690
74869ac7
BW
9691/* Predicate function used to look up a section in a particular group. */
9692
9693static bfd_boolean
9694match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9695{
9696 const char *gname = inf;
9697 const char *group_name = elf_group_name (sec);
9698
9699 return (group_name == gname
9700 || (group_name != NULL
9701 && gname != NULL
9702 && strcmp (group_name, gname) == 0));
9703}
9704
9705
1d25768e
BW
9706static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9707
74869ac7
BW
9708asection *
9709xtensa_get_property_section (asection *sec, const char *base_name)
e0001a05 9710{
74869ac7
BW
9711 const char *suffix, *group_name;
9712 char *prop_sec_name;
9713 asection *prop_sec;
9714
9715 group_name = elf_group_name (sec);
9716 if (group_name)
9717 {
9718 suffix = strrchr (sec->name, '.');
9719 if (suffix == sec->name)
9720 suffix = 0;
9721 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9722 + (suffix ? strlen (suffix) : 0));
9723 strcpy (prop_sec_name, base_name);
9724 if (suffix)
9725 strcat (prop_sec_name, suffix);
9726 }
9727 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9728 {
43cd72b9 9729 char *linkonce_kind = 0;
b614a702
BW
9730
9731 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9732 linkonce_kind = "x.";
b614a702 9733 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9734 linkonce_kind = "p.";
43cd72b9
BW
9735 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9736 linkonce_kind = "prop.";
e0001a05 9737 else
b614a702
BW
9738 abort ();
9739
43cd72b9
BW
9740 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9741 + strlen (linkonce_kind) + 1);
b614a702 9742 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9743 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9744
9745 suffix = sec->name + linkonce_len;
096c35a7 9746 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 9747 the new linkonce_kind (but not for "prop" sections). */
0112cd26 9748 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
9749 suffix += 2;
9750 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
9751 }
9752 else
9753 prop_sec_name = strdup (base_name);
9754
9755 /* Check if the section already exists. */
9756 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9757 match_section_group,
9758 (void *) group_name);
9759 /* If not, create it. */
9760 if (! prop_sec)
9761 {
9762 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9763 flags |= (bfd_get_section_flags (sec->owner, sec)
9764 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9765
9766 prop_sec = bfd_make_section_anyway_with_flags
9767 (sec->owner, strdup (prop_sec_name), flags);
9768 if (! prop_sec)
9769 return 0;
b614a702 9770
74869ac7 9771 elf_group_name (prop_sec) = group_name;
e0001a05
NC
9772 }
9773
74869ac7
BW
9774 free (prop_sec_name);
9775 return prop_sec;
e0001a05
NC
9776}
9777
43cd72b9
BW
9778
9779flagword
7fa3d080 9780xtensa_get_property_predef_flags (asection *sec)
43cd72b9 9781{
1d25768e 9782 if (xtensa_is_insntable_section (sec))
43cd72b9 9783 return (XTENSA_PROP_INSN
99ded152 9784 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9785 | XTENSA_PROP_INSN_NO_REORDER);
9786
9787 if (xtensa_is_littable_section (sec))
9788 return (XTENSA_PROP_LITERAL
99ded152 9789 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9790 | XTENSA_PROP_INSN_NO_REORDER);
9791
9792 return 0;
9793}
9794
e0001a05
NC
9795\f
9796/* Other functions called directly by the linker. */
9797
9798bfd_boolean
7fa3d080
BW
9799xtensa_callback_required_dependence (bfd *abfd,
9800 asection *sec,
9801 struct bfd_link_info *link_info,
9802 deps_callback_t callback,
9803 void *closure)
e0001a05
NC
9804{
9805 Elf_Internal_Rela *internal_relocs;
9806 bfd_byte *contents;
9807 unsigned i;
9808 bfd_boolean ok = TRUE;
43cd72b9
BW
9809 bfd_size_type sec_size;
9810
9811 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9812
9813 /* ".plt*" sections have no explicit relocations but they contain L32R
9814 instructions that reference the corresponding ".got.plt*" sections. */
9815 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 9816 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
9817 {
9818 asection *sgotplt;
9819
9820 /* Find the corresponding ".got.plt*" section. */
9821 if (sec->name[4] == '\0')
9822 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9823 else
9824 {
9825 char got_name[14];
9826 int chunk = 0;
9827
9828 BFD_ASSERT (sec->name[4] == '.');
9829 chunk = strtol (&sec->name[5], NULL, 10);
9830
9831 sprintf (got_name, ".got.plt.%u", chunk);
9832 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9833 }
9834 BFD_ASSERT (sgotplt);
9835
9836 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9837 section referencing a literal at the very beginning of
9838 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9839 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9840 }
9841
13161072
BW
9842 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9843 when building uclibc, which runs "ld -b binary /dev/null". */
9844 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9845 return ok;
9846
e0001a05
NC
9847 internal_relocs = retrieve_internal_relocs (abfd, sec,
9848 link_info->keep_memory);
9849 if (internal_relocs == NULL
43cd72b9 9850 || sec->reloc_count == 0)
e0001a05
NC
9851 return ok;
9852
9853 /* Cache the contents for the duration of this scan. */
9854 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9855 if (contents == NULL && sec_size != 0)
e0001a05
NC
9856 {
9857 ok = FALSE;
9858 goto error_return;
9859 }
9860
43cd72b9
BW
9861 if (!xtensa_default_isa)
9862 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9863
43cd72b9 9864 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9865 {
9866 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9867 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9868 {
9869 r_reloc l32r_rel;
9870 asection *target_sec;
9871 bfd_vma target_offset;
43cd72b9
BW
9872
9873 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9874 target_sec = NULL;
9875 target_offset = 0;
9876 /* L32Rs must be local to the input file. */
9877 if (r_reloc_is_defined (&l32r_rel))
9878 {
9879 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9880 target_offset = l32r_rel.target_offset;
e0001a05
NC
9881 }
9882 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9883 closure);
9884 }
9885 }
9886
9887 error_return:
9888 release_internal_relocs (sec, internal_relocs);
9889 release_contents (sec, contents);
9890 return ok;
9891}
9892
2f89ff8d
L
9893/* The default literal sections should always be marked as "code" (i.e.,
9894 SHF_EXECINSTR). This is particularly important for the Linux kernel
9895 module loader so that the literals are not placed after the text. */
b35d266b 9896static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9897{
0112cd26
NC
9898 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9899 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9900 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 9901 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 9902 { NULL, 0, 0, 0, 0 }
7f4d3958 9903};
e0001a05
NC
9904\f
9905#ifndef ELF_ARCH
9906#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9907#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9908#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9909#define TARGET_BIG_NAME "elf32-xtensa-be"
9910#define ELF_ARCH bfd_arch_xtensa
9911
4af0a1d8
BW
9912#define ELF_MACHINE_CODE EM_XTENSA
9913#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9914
9915#if XCHAL_HAVE_MMU
9916#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9917#else /* !XCHAL_HAVE_MMU */
9918#define ELF_MAXPAGESIZE 1
9919#endif /* !XCHAL_HAVE_MMU */
9920#endif /* ELF_ARCH */
9921
9922#define elf_backend_can_gc_sections 1
9923#define elf_backend_can_refcount 1
9924#define elf_backend_plt_readonly 1
9925#define elf_backend_got_header_size 4
9926#define elf_backend_want_dynbss 0
9927#define elf_backend_want_got_plt 1
9928
9929#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9930
e0001a05
NC
9931#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9932#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9933#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9934#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9935#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
9936#define bfd_elf32_bfd_reloc_name_lookup \
9937 elf_xtensa_reloc_name_lookup
e0001a05 9938#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 9939#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
9940
9941#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9942#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9943#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9944#define elf_backend_discard_info elf_xtensa_discard_info
9945#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9946#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9947#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9948#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9949#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9950#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9951#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9952#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 9953#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
9954#define elf_backend_object_p elf_xtensa_object_p
9955#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9956#define elf_backend_relocate_section elf_xtensa_relocate_section
9957#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
74541ad4
AM
9958#define elf_backend_omit_section_dynsym \
9959 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 9960#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 9961#define elf_backend_action_discarded elf_xtensa_action_discarded
e0001a05
NC
9962
9963#include "elf32-target.h"
This page took 0.972876 seconds and 4 git commands to generate.