2006-05-03 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
3eb128b2 2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
7fa3d080 38static bfd_boolean add_extra_plt_sections (bfd *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
7fa3d080
BW
97static asection *elf_xtensa_get_plt_section (bfd *, int);
98static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
106static bfd_boolean xtensa_is_littable_section (asection *);
107static int internal_reloc_compare (const void *, const void *);
108static int internal_reloc_matches (const void *, const void *);
109extern char *xtensa_get_property_section_name (asection *, const char *);
110static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
111
112/* Other functions called directly by the linker. */
113
114typedef void (*deps_callback_t)
7fa3d080 115 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 116extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
118
119
43cd72b9
BW
120/* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
7fa3d080 124
43cd72b9
BW
125int elf32xtensa_size_opt;
126
127
128/* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
e0001a05 131
7fa3d080 132typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 133
43cd72b9 134
e0001a05
NC
135/* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
b536dc1e 139 needed. It is OK if this count is an overestimate, e.g., some
e0001a05
NC
140 relocations may be removed by GC. */
141
142static int plt_reloc_count = 0;
143
144
43cd72b9
BW
145/* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
149
150xtensa_isa xtensa_default_isa;
151
152
e0001a05
NC
153/* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
156
157static bfd_boolean relaxing_section = FALSE;
158
43cd72b9
BW
159/* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
161
162int elf32xtensa_no_literal_movement = 1;
163
e0001a05
NC
164\f
165static reloc_howto_type elf_howto_table[] =
166{
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
43cd72b9
BW
220 FALSE, 0x00000000, 0x00000000, FALSE),
221
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
279
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
e0001a05
NC
326};
327
43cd72b9 328#if DEBUG_GEN_RELOC
e0001a05
NC
329#define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331#else
332#define TRACE(str)
333#endif
334
335static reloc_howto_type *
7fa3d080
BW
336elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
e0001a05
NC
338{
339 switch (code)
340 {
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
344
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348
43cd72b9
BW
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
352
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
356
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
360
e0001a05
NC
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
364
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
368
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
372
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
376
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
380
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
384
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
388
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
392
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
396
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
400
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
404
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
408
409 default:
43cd72b9
BW
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
412 {
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
416 }
417
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
420 {
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
424 }
425
e0001a05
NC
426 break;
427 }
428
429 TRACE ("Unknown");
430 return NULL;
431}
432
433
434/* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
436
437static void
7fa3d080
BW
438elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
e0001a05
NC
441{
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
446}
447
448\f
449/* Functions for the Xtensa ELF linker. */
450
451/* The name of the dynamic interpreter. This is put in the .interp
452 section. */
453
454#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
455
456/* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
459
460#define PLT_ENTRY_SIZE 16
461
462/* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
471
472#define PLT_ENTRIES_PER_CHUNK 254
473
474/* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
478
479static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
480{
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
487};
488
489static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
490{
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
497};
498
571b5725
BW
499
500static inline bfd_boolean
7fa3d080
BW
501xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
571b5725
BW
503{
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
509
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
511}
512
e0001a05
NC
513\f
514static int
7fa3d080 515property_table_compare (const void *ap, const void *bp)
e0001a05
NC
516{
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
519
43cd72b9
BW
520 if (a->address == b->address)
521 {
43cd72b9
BW
522 if (a->size != b->size)
523 return (a->size - b->size);
524
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
528
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
534
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
539
540 return (a->flags - b->flags);
541 }
542
543 return (a->address - b->address);
544}
545
546
547static int
7fa3d080 548property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
549{
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
552
553 /* Check if one entry overlaps with the other. */
e0001a05
NC
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
557
558 return (a->address - b->address);
559}
560
561
43cd72b9
BW
562/* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
e0001a05 565
7fa3d080
BW
566static int
567xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
e0001a05
NC
572{
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
e4115460 578 int blk, block_count;
e0001a05
NC
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 581 bfd_vma section_addr;
43cd72b9
BW
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
584
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
588 {
589 *table_p = NULL;
590 return 0;
591 }
e0001a05 592
43cd72b9 593 table_section_name = xtensa_get_property_section_name (section, sec_name);
e0001a05 594 table_section = bfd_get_section_by_name (abfd, table_section_name);
b614a702 595 free (table_section_name);
43cd72b9 596 if (table_section)
eea6121a 597 table_size = table_section->size;
43cd72b9 598
e0001a05
NC
599 if (table_size == 0)
600 {
601 *table_p = NULL;
602 return 0;
603 }
604
43cd72b9
BW
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
609
610 num_records = table_size / table_entry_size;
e0001a05
NC
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
43cd72b9
BW
615
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
3ba3bc8c 620
e0001a05
NC
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 624 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
625 {
626 unsigned i;
627
628 for (i = 0; i < table_section->reloc_count; i++)
629 {
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
632
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
635
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
638
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
640 {
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9 642 BFD_ASSERT (sym_off == 0);
e0001a05 643 blocks[block_count].address =
3ba3bc8c 644 (section_addr + sym_off + rel->r_addend
e0001a05
NC
645 + bfd_get_32 (abfd, table_data + rel->r_offset));
646 blocks[block_count].size =
647 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
648 if (predef_flags)
649 blocks[block_count].flags = predef_flags;
650 else
651 blocks[block_count].flags =
652 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
653 block_count++;
654 }
655 }
656 }
657 else
658 {
3ba3bc8c
BW
659 /* The file has already been relocated and the addresses are
660 already in the table. */
e0001a05 661 bfd_vma off;
43cd72b9 662 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 663
43cd72b9 664 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
665 {
666 bfd_vma address = bfd_get_32 (abfd, table_data + off);
667
3ba3bc8c 668 if (address >= section_addr
43cd72b9 669 && address < section_addr + section_limit)
e0001a05
NC
670 {
671 blocks[block_count].address = address;
672 blocks[block_count].size =
673 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
674 if (predef_flags)
675 blocks[block_count].flags = predef_flags;
676 else
677 blocks[block_count].flags =
678 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
679 block_count++;
680 }
681 }
682 }
683
684 release_contents (table_section, table_data);
685 release_internal_relocs (table_section, internal_relocs);
686
43cd72b9 687 if (block_count > 0)
e0001a05
NC
688 {
689 /* Now sort them into address order for easy reference. */
690 qsort (blocks, block_count, sizeof (property_table_entry),
691 property_table_compare);
e4115460
BW
692
693 /* Check that the table contents are valid. Problems may occur,
694 for example, if an unrelocated object file is stripped. */
695 for (blk = 1; blk < block_count; blk++)
696 {
697 /* The only circumstance where two entries may legitimately
698 have the same address is when one of them is a zero-size
699 placeholder to mark a place where fill can be inserted.
700 The zero-size entry should come first. */
701 if (blocks[blk - 1].address == blocks[blk].address &&
702 blocks[blk - 1].size != 0)
703 {
704 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
705 abfd, section);
706 bfd_set_error (bfd_error_bad_value);
707 free (blocks);
708 return -1;
709 }
710 }
e0001a05 711 }
43cd72b9 712
e0001a05
NC
713 *table_p = blocks;
714 return block_count;
715}
716
717
7fa3d080
BW
718static property_table_entry *
719elf_xtensa_find_property_entry (property_table_entry *property_table,
720 int property_table_size,
721 bfd_vma addr)
e0001a05
NC
722{
723 property_table_entry entry;
43cd72b9 724 property_table_entry *rv;
e0001a05 725
43cd72b9
BW
726 if (property_table_size == 0)
727 return NULL;
e0001a05
NC
728
729 entry.address = addr;
730 entry.size = 1;
43cd72b9 731 entry.flags = 0;
e0001a05 732
43cd72b9
BW
733 rv = bsearch (&entry, property_table, property_table_size,
734 sizeof (property_table_entry), property_table_matches);
735 return rv;
736}
737
738
739static bfd_boolean
7fa3d080
BW
740elf_xtensa_in_literal_pool (property_table_entry *lit_table,
741 int lit_table_size,
742 bfd_vma addr)
43cd72b9
BW
743{
744 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
745 return TRUE;
746
747 return FALSE;
748}
749
750\f
751/* Look through the relocs for a section during the first phase, and
752 calculate needed space in the dynamic reloc sections. */
753
754static bfd_boolean
7fa3d080
BW
755elf_xtensa_check_relocs (bfd *abfd,
756 struct bfd_link_info *info,
757 asection *sec,
758 const Elf_Internal_Rela *relocs)
e0001a05
NC
759{
760 Elf_Internal_Shdr *symtab_hdr;
761 struct elf_link_hash_entry **sym_hashes;
762 const Elf_Internal_Rela *rel;
763 const Elf_Internal_Rela *rel_end;
e0001a05 764
1049f94e 765 if (info->relocatable)
e0001a05
NC
766 return TRUE;
767
768 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
769 sym_hashes = elf_sym_hashes (abfd);
770
e0001a05
NC
771 rel_end = relocs + sec->reloc_count;
772 for (rel = relocs; rel < rel_end; rel++)
773 {
774 unsigned int r_type;
775 unsigned long r_symndx;
776 struct elf_link_hash_entry *h;
777
778 r_symndx = ELF32_R_SYM (rel->r_info);
779 r_type = ELF32_R_TYPE (rel->r_info);
780
781 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
782 {
d003868e
AM
783 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
784 abfd, r_symndx);
e0001a05
NC
785 return FALSE;
786 }
787
788 if (r_symndx < symtab_hdr->sh_info)
789 h = NULL;
790 else
791 {
792 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
793 while (h->root.type == bfd_link_hash_indirect
794 || h->root.type == bfd_link_hash_warning)
795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
796 }
797
798 switch (r_type)
799 {
800 case R_XTENSA_32:
801 if (h == NULL)
802 goto local_literal;
803
804 if ((sec->flags & SEC_ALLOC) != 0)
805 {
e0001a05
NC
806 if (h->got.refcount <= 0)
807 h->got.refcount = 1;
808 else
809 h->got.refcount += 1;
810 }
811 break;
812
813 case R_XTENSA_PLT:
814 /* If this relocation is against a local symbol, then it's
815 exactly the same as a normal local GOT entry. */
816 if (h == NULL)
817 goto local_literal;
818
819 if ((sec->flags & SEC_ALLOC) != 0)
820 {
e0001a05
NC
821 if (h->plt.refcount <= 0)
822 {
f5385ebf 823 h->needs_plt = 1;
e0001a05
NC
824 h->plt.refcount = 1;
825 }
826 else
827 h->plt.refcount += 1;
828
829 /* Keep track of the total PLT relocation count even if we
830 don't yet know whether the dynamic sections will be
831 created. */
832 plt_reloc_count += 1;
833
834 if (elf_hash_table (info)->dynamic_sections_created)
835 {
836 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
837 plt_reloc_count))
838 return FALSE;
839 }
840 }
841 break;
842
843 local_literal:
844 if ((sec->flags & SEC_ALLOC) != 0)
845 {
846 bfd_signed_vma *local_got_refcounts;
847
848 /* This is a global offset table entry for a local symbol. */
849 local_got_refcounts = elf_local_got_refcounts (abfd);
850 if (local_got_refcounts == NULL)
851 {
852 bfd_size_type size;
853
854 size = symtab_hdr->sh_info;
855 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
856 local_got_refcounts =
857 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
858 if (local_got_refcounts == NULL)
859 return FALSE;
860 elf_local_got_refcounts (abfd) = local_got_refcounts;
861 }
862 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
863 }
864 break;
865
866 case R_XTENSA_OP0:
867 case R_XTENSA_OP1:
868 case R_XTENSA_OP2:
43cd72b9
BW
869 case R_XTENSA_SLOT0_OP:
870 case R_XTENSA_SLOT1_OP:
871 case R_XTENSA_SLOT2_OP:
872 case R_XTENSA_SLOT3_OP:
873 case R_XTENSA_SLOT4_OP:
874 case R_XTENSA_SLOT5_OP:
875 case R_XTENSA_SLOT6_OP:
876 case R_XTENSA_SLOT7_OP:
877 case R_XTENSA_SLOT8_OP:
878 case R_XTENSA_SLOT9_OP:
879 case R_XTENSA_SLOT10_OP:
880 case R_XTENSA_SLOT11_OP:
881 case R_XTENSA_SLOT12_OP:
882 case R_XTENSA_SLOT13_OP:
883 case R_XTENSA_SLOT14_OP:
884 case R_XTENSA_SLOT0_ALT:
885 case R_XTENSA_SLOT1_ALT:
886 case R_XTENSA_SLOT2_ALT:
887 case R_XTENSA_SLOT3_ALT:
888 case R_XTENSA_SLOT4_ALT:
889 case R_XTENSA_SLOT5_ALT:
890 case R_XTENSA_SLOT6_ALT:
891 case R_XTENSA_SLOT7_ALT:
892 case R_XTENSA_SLOT8_ALT:
893 case R_XTENSA_SLOT9_ALT:
894 case R_XTENSA_SLOT10_ALT:
895 case R_XTENSA_SLOT11_ALT:
896 case R_XTENSA_SLOT12_ALT:
897 case R_XTENSA_SLOT13_ALT:
898 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
899 case R_XTENSA_ASM_EXPAND:
900 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
901 case R_XTENSA_DIFF8:
902 case R_XTENSA_DIFF16:
903 case R_XTENSA_DIFF32:
e0001a05
NC
904 /* Nothing to do for these. */
905 break;
906
907 case R_XTENSA_GNU_VTINHERIT:
908 /* This relocation describes the C++ object vtable hierarchy.
909 Reconstruct it for later use during GC. */
c152c796 910 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
911 return FALSE;
912 break;
913
914 case R_XTENSA_GNU_VTENTRY:
915 /* This relocation describes which C++ vtable entries are actually
916 used. Record for later use during GC. */
c152c796 917 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
918 return FALSE;
919 break;
920
921 default:
922 break;
923 }
924 }
925
e0001a05
NC
926 return TRUE;
927}
928
929
930static void
7fa3d080
BW
931elf_xtensa_make_sym_local (struct bfd_link_info *info,
932 struct elf_link_hash_entry *h)
933{
934 if (info->shared)
935 {
936 if (h->plt.refcount > 0)
937 {
938 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
939 if (h->got.refcount < 0)
940 h->got.refcount = 0;
941 h->got.refcount += h->plt.refcount;
942 h->plt.refcount = 0;
943 }
944 }
945 else
946 {
947 /* Don't need any dynamic relocations at all. */
948 h->plt.refcount = 0;
949 h->got.refcount = 0;
950 }
951}
952
953
954static void
955elf_xtensa_hide_symbol (struct bfd_link_info *info,
956 struct elf_link_hash_entry *h,
957 bfd_boolean force_local)
e0001a05
NC
958{
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info, h);
962
963 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
964}
965
966
e0001a05
NC
967/* Return the section that should be marked against GC for a given
968 relocation. */
969
970static asection *
7fa3d080
BW
971elf_xtensa_gc_mark_hook (asection *sec,
972 struct bfd_link_info *info ATTRIBUTE_UNUSED,
973 Elf_Internal_Rela *rel,
974 struct elf_link_hash_entry *h,
975 Elf_Internal_Sym *sym)
e0001a05 976{
7fa3d080 977 if (h)
e0001a05
NC
978 {
979 switch (ELF32_R_TYPE (rel->r_info))
980 {
981 case R_XTENSA_GNU_VTINHERIT:
982 case R_XTENSA_GNU_VTENTRY:
983 break;
984
985 default:
986 switch (h->root.type)
987 {
988 case bfd_link_hash_defined:
989 case bfd_link_hash_defweak:
990 return h->root.u.def.section;
991
992 case bfd_link_hash_common:
993 return h->root.u.c.p->section;
994
995 default:
996 break;
997 }
998 }
999 }
1000 else
1001 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1002
1003 return NULL;
1004}
1005
7fa3d080 1006
e0001a05
NC
1007/* Update the GOT & PLT entry reference counts
1008 for the section being removed. */
1009
1010static bfd_boolean
7fa3d080
BW
1011elf_xtensa_gc_sweep_hook (bfd *abfd,
1012 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1013 asection *sec,
1014 const Elf_Internal_Rela *relocs)
e0001a05
NC
1015{
1016 Elf_Internal_Shdr *symtab_hdr;
1017 struct elf_link_hash_entry **sym_hashes;
1018 bfd_signed_vma *local_got_refcounts;
1019 const Elf_Internal_Rela *rel, *relend;
1020
1021 if ((sec->flags & SEC_ALLOC) == 0)
1022 return TRUE;
1023
1024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1025 sym_hashes = elf_sym_hashes (abfd);
1026 local_got_refcounts = elf_local_got_refcounts (abfd);
1027
1028 relend = relocs + sec->reloc_count;
1029 for (rel = relocs; rel < relend; rel++)
1030 {
1031 unsigned long r_symndx;
1032 unsigned int r_type;
1033 struct elf_link_hash_entry *h = NULL;
1034
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1037 {
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1042 }
e0001a05
NC
1043
1044 r_type = ELF32_R_TYPE (rel->r_info);
1045 switch (r_type)
1046 {
1047 case R_XTENSA_32:
1048 if (h == NULL)
1049 goto local_literal;
1050 if (h->got.refcount > 0)
1051 h->got.refcount--;
1052 break;
1053
1054 case R_XTENSA_PLT:
1055 if (h == NULL)
1056 goto local_literal;
1057 if (h->plt.refcount > 0)
1058 h->plt.refcount--;
1059 break;
1060
1061 local_literal:
1062 if (local_got_refcounts[r_symndx] > 0)
1063 local_got_refcounts[r_symndx] -= 1;
1064 break;
1065
1066 default:
1067 break;
1068 }
1069 }
1070
1071 return TRUE;
1072}
1073
1074
1075/* Create all the dynamic sections. */
1076
1077static bfd_boolean
7fa3d080 1078elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1079{
e901de89 1080 flagword flags, noalloc_flags;
e0001a05
NC
1081 asection *s;
1082
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 return FALSE;
1086
1087 /* Create any extra PLT sections in case check_relocs has already
1088 been called on all the non-dynamic input files. */
1089 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1090 return FALSE;
1091
e901de89
BW
1092 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1093 | SEC_LINKER_CREATED | SEC_READONLY);
1094 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1095
1096 /* Mark the ".got.plt" section READONLY. */
1097 s = bfd_get_section_by_name (dynobj, ".got.plt");
1098 if (s == NULL
1099 || ! bfd_set_section_flags (dynobj, s, flags))
1100 return FALSE;
1101
1102 /* Create ".rela.got". */
3496cb2a 1103 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
e0001a05 1104 if (s == NULL
e0001a05
NC
1105 || ! bfd_set_section_alignment (dynobj, s, 2))
1106 return FALSE;
1107
e901de89 1108 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3496cb2a 1109 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
e901de89 1110 if (s == NULL
e901de89
BW
1111 || ! bfd_set_section_alignment (dynobj, s, 2))
1112 return FALSE;
1113
e0001a05 1114 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3496cb2a
L
1115 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1116 noalloc_flags);
e0001a05 1117 if (s == NULL
e0001a05
NC
1118 || ! bfd_set_section_alignment (dynobj, s, 2))
1119 return FALSE;
1120
1121 return TRUE;
1122}
1123
1124
1125static bfd_boolean
7fa3d080 1126add_extra_plt_sections (bfd *dynobj, int count)
e0001a05
NC
1127{
1128 int chunk;
1129
1130 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1131 ".got.plt" sections. */
1132 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1133 {
1134 char *sname;
1135 flagword flags;
1136 asection *s;
1137
1138 /* Stop when we find a section has already been created. */
1139 if (elf_xtensa_get_plt_section (dynobj, chunk))
1140 break;
1141
1142 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1143 | SEC_LINKER_CREATED | SEC_READONLY);
1144
1145 sname = (char *) bfd_malloc (10);
1146 sprintf (sname, ".plt.%u", chunk);
3496cb2a
L
1147 s = bfd_make_section_with_flags (dynobj, sname,
1148 flags | SEC_CODE);
e0001a05 1149 if (s == NULL
e0001a05
NC
1150 || ! bfd_set_section_alignment (dynobj, s, 2))
1151 return FALSE;
1152
1153 sname = (char *) bfd_malloc (14);
1154 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1155 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1156 if (s == NULL
e0001a05
NC
1157 || ! bfd_set_section_alignment (dynobj, s, 2))
1158 return FALSE;
1159 }
1160
1161 return TRUE;
1162}
1163
1164
1165/* Adjust a symbol defined by a dynamic object and referenced by a
1166 regular object. The current definition is in some section of the
1167 dynamic object, but we're not including those sections. We have to
1168 change the definition to something the rest of the link can
1169 understand. */
1170
1171static bfd_boolean
7fa3d080
BW
1172elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1173 struct elf_link_hash_entry *h)
e0001a05
NC
1174{
1175 /* If this is a weak symbol, and there is a real definition, the
1176 processor independent code will have arranged for us to see the
1177 real definition first, and we can just use the same value. */
7fa3d080 1178 if (h->u.weakdef)
e0001a05 1179 {
f6e332e6
AM
1180 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1181 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1182 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1183 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1184 return TRUE;
1185 }
1186
1187 /* This is a reference to a symbol defined by a dynamic object. The
1188 reference must go through the GOT, so there's no need for COPY relocs,
1189 .dynbss, etc. */
1190
1191 return TRUE;
1192}
1193
1194
e0001a05 1195static bfd_boolean
7fa3d080 1196elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1197{
1198 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1199
1200 if (h->root.type == bfd_link_hash_warning)
1201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1202
571b5725 1203 if (! xtensa_elf_dynamic_symbol_p (h, info))
e0001a05
NC
1204 elf_xtensa_make_sym_local (info, h);
1205
e0001a05
NC
1206 return TRUE;
1207}
1208
1209
1210static bfd_boolean
7fa3d080 1211elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1212{
1213 asection *srelplt = (asection *) arg;
1214
1215 if (h->root.type == bfd_link_hash_warning)
1216 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1217
1218 if (h->plt.refcount > 0)
eea6121a 1219 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1220
1221 return TRUE;
1222}
1223
1224
1225static bfd_boolean
7fa3d080 1226elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1227{
1228 asection *srelgot = (asection *) arg;
1229
1230 if (h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232
1233 if (h->got.refcount > 0)
eea6121a 1234 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1235
1236 return TRUE;
1237}
1238
1239
1240static void
7fa3d080
BW
1241elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1242 asection *srelgot)
e0001a05
NC
1243{
1244 bfd *i;
1245
1246 for (i = info->input_bfds; i; i = i->link_next)
1247 {
1248 bfd_signed_vma *local_got_refcounts;
1249 bfd_size_type j, cnt;
1250 Elf_Internal_Shdr *symtab_hdr;
1251
1252 local_got_refcounts = elf_local_got_refcounts (i);
1253 if (!local_got_refcounts)
1254 continue;
1255
1256 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1257 cnt = symtab_hdr->sh_info;
1258
1259 for (j = 0; j < cnt; ++j)
1260 {
1261 if (local_got_refcounts[j] > 0)
eea6121a
AM
1262 srelgot->size += (local_got_refcounts[j]
1263 * sizeof (Elf32_External_Rela));
e0001a05
NC
1264 }
1265 }
1266}
1267
1268
1269/* Set the sizes of the dynamic sections. */
1270
1271static bfd_boolean
7fa3d080
BW
1272elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1273 struct bfd_link_info *info)
e0001a05 1274{
e901de89
BW
1275 bfd *dynobj, *abfd;
1276 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1277 bfd_boolean relplt, relgot;
1278 int plt_entries, plt_chunks, chunk;
1279
1280 plt_entries = 0;
1281 plt_chunks = 0;
1282 srelgot = 0;
1283
1284 dynobj = elf_hash_table (info)->dynobj;
1285 if (dynobj == NULL)
1286 abort ();
1287
1288 if (elf_hash_table (info)->dynamic_sections_created)
1289 {
1290 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1291 if (info->executable)
e0001a05
NC
1292 {
1293 s = bfd_get_section_by_name (dynobj, ".interp");
1294 if (s == NULL)
1295 abort ();
eea6121a 1296 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1297 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1298 }
1299
1300 /* Allocate room for one word in ".got". */
1301 s = bfd_get_section_by_name (dynobj, ".got");
1302 if (s == NULL)
1303 abort ();
eea6121a 1304 s->size = 4;
e0001a05
NC
1305
1306 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1307 elf_link_hash_traverse (elf_hash_table (info),
1308 elf_xtensa_fix_refcounts,
7fa3d080 1309 (void *) info);
e0001a05
NC
1310
1311 /* Allocate space in ".rela.got" for literals that reference
1312 global symbols. */
1313 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1314 if (srelgot == NULL)
1315 abort ();
1316 elf_link_hash_traverse (elf_hash_table (info),
1317 elf_xtensa_allocate_got_size,
7fa3d080 1318 (void *) srelgot);
e0001a05
NC
1319
1320 /* If we are generating a shared object, we also need space in
1321 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1322 reference local symbols. */
1323 if (info->shared)
1324 elf_xtensa_allocate_local_got_size (info, srelgot);
1325
1326 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1327 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1328 if (srelplt == NULL)
1329 abort ();
1330 elf_link_hash_traverse (elf_hash_table (info),
1331 elf_xtensa_allocate_plt_size,
7fa3d080 1332 (void *) srelplt);
e0001a05
NC
1333
1334 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1335 each PLT entry, we need the PLT code plus a 4-byte literal.
1336 For each chunk of ".plt", we also need two more 4-byte
1337 literals, two corresponding entries in ".rela.got", and an
1338 8-byte entry in ".xt.lit.plt". */
1339 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1340 if (spltlittbl == NULL)
1341 abort ();
1342
eea6121a 1343 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1344 plt_chunks =
1345 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1346
1347 /* Iterate over all the PLT chunks, including any extra sections
1348 created earlier because the initial count of PLT relocations
1349 was an overestimate. */
1350 for (chunk = 0;
1351 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1352 chunk++)
1353 {
1354 int chunk_entries;
1355
1356 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1357 if (sgotplt == NULL)
1358 abort ();
1359
1360 if (chunk < plt_chunks - 1)
1361 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1362 else if (chunk == plt_chunks - 1)
1363 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1364 else
1365 chunk_entries = 0;
1366
1367 if (chunk_entries != 0)
1368 {
eea6121a
AM
1369 sgotplt->size = 4 * (chunk_entries + 2);
1370 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1371 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1372 spltlittbl->size += 8;
e0001a05
NC
1373 }
1374 else
1375 {
eea6121a
AM
1376 sgotplt->size = 0;
1377 splt->size = 0;
e0001a05
NC
1378 }
1379 }
e901de89
BW
1380
1381 /* Allocate space in ".got.loc" to match the total size of all the
1382 literal tables. */
1383 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1384 if (sgotloc == NULL)
1385 abort ();
eea6121a 1386 sgotloc->size = spltlittbl->size;
e901de89
BW
1387 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1388 {
1389 if (abfd->flags & DYNAMIC)
1390 continue;
1391 for (s = abfd->sections; s != NULL; s = s->next)
1392 {
b536dc1e
BW
1393 if (! elf_discarded_section (s)
1394 && xtensa_is_littable_section (s)
1395 && s != spltlittbl)
eea6121a 1396 sgotloc->size += s->size;
e901de89
BW
1397 }
1398 }
e0001a05
NC
1399 }
1400
1401 /* Allocate memory for dynamic sections. */
1402 relplt = FALSE;
1403 relgot = FALSE;
1404 for (s = dynobj->sections; s != NULL; s = s->next)
1405 {
1406 const char *name;
e0001a05
NC
1407
1408 if ((s->flags & SEC_LINKER_CREATED) == 0)
1409 continue;
1410
1411 /* It's OK to base decisions on the section name, because none
1412 of the dynobj section names depend upon the input files. */
1413 name = bfd_get_section_name (dynobj, s);
1414
e0001a05
NC
1415 if (strncmp (name, ".rela", 5) == 0)
1416 {
c456f082 1417 if (s->size != 0)
e0001a05 1418 {
c456f082
AM
1419 if (strcmp (name, ".rela.plt") == 0)
1420 relplt = TRUE;
1421 else if (strcmp (name, ".rela.got") == 0)
1422 relgot = TRUE;
1423
1424 /* We use the reloc_count field as a counter if we need
1425 to copy relocs into the output file. */
1426 s->reloc_count = 0;
e0001a05
NC
1427 }
1428 }
c456f082
AM
1429 else if (strncmp (name, ".plt.", 5) != 0
1430 && strncmp (name, ".got.plt.", 9) != 0
1431 && strcmp (name, ".got") != 0
e0001a05
NC
1432 && strcmp (name, ".plt") != 0
1433 && strcmp (name, ".got.plt") != 0
e901de89
BW
1434 && strcmp (name, ".xt.lit.plt") != 0
1435 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1436 {
1437 /* It's not one of our sections, so don't allocate space. */
1438 continue;
1439 }
1440
c456f082
AM
1441 if (s->size == 0)
1442 {
1443 /* If we don't need this section, strip it from the output
1444 file. We must create the ".plt*" and ".got.plt*"
1445 sections in create_dynamic_sections and/or check_relocs
1446 based on a conservative estimate of the PLT relocation
1447 count, because the sections must be created before the
1448 linker maps input sections to output sections. The
1449 linker does that before size_dynamic_sections, where we
1450 compute the exact size of the PLT, so there may be more
1451 of these sections than are actually needed. */
1452 s->flags |= SEC_EXCLUDE;
1453 }
1454 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1455 {
1456 /* Allocate memory for the section contents. */
eea6121a 1457 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1458 if (s->contents == NULL)
e0001a05
NC
1459 return FALSE;
1460 }
1461 }
1462
1463 if (elf_hash_table (info)->dynamic_sections_created)
1464 {
1465 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1466 known until finish_dynamic_sections, but we need to get the relocs
1467 in place before they are sorted. */
1468 if (srelgot == NULL)
1469 abort ();
1470 for (chunk = 0; chunk < plt_chunks; chunk++)
1471 {
1472 Elf_Internal_Rela irela;
1473 bfd_byte *loc;
1474
1475 irela.r_offset = 0;
1476 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1477 irela.r_addend = 0;
1478
1479 loc = (srelgot->contents
1480 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1481 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1483 loc + sizeof (Elf32_External_Rela));
1484 srelgot->reloc_count += 2;
1485 }
1486
1487 /* Add some entries to the .dynamic section. We fill in the
1488 values later, in elf_xtensa_finish_dynamic_sections, but we
1489 must add the entries now so that we get the correct size for
1490 the .dynamic section. The DT_DEBUG entry is filled in by the
1491 dynamic linker and used by the debugger. */
1492#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1493 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05
NC
1494
1495 if (! info->shared)
1496 {
1497 if (!add_dynamic_entry (DT_DEBUG, 0))
1498 return FALSE;
1499 }
1500
1501 if (relplt)
1502 {
1503 if (!add_dynamic_entry (DT_PLTGOT, 0)
1504 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1505 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1506 || !add_dynamic_entry (DT_JMPREL, 0))
1507 return FALSE;
1508 }
1509
1510 if (relgot)
1511 {
1512 if (!add_dynamic_entry (DT_RELA, 0)
1513 || !add_dynamic_entry (DT_RELASZ, 0)
1514 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1515 return FALSE;
1516 }
1517
e0001a05
NC
1518 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1519 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1520 return FALSE;
1521 }
1522#undef add_dynamic_entry
1523
1524 return TRUE;
1525}
1526
1527\f
1528/* Remove any PT_LOAD segments with no allocated sections. Prior to
1529 binutils 2.13, this function used to remove the non-SEC_ALLOC
1530 sections from PT_LOAD segments, but that task has now been moved
1531 into elf.c. We still need this function to remove any empty
1532 segments that result, but there's nothing Xtensa-specific about
1533 this and it probably ought to be moved into elf.c as well. */
1534
1535static bfd_boolean
7fa3d080
BW
1536elf_xtensa_modify_segment_map (bfd *abfd,
1537 struct bfd_link_info *info ATTRIBUTE_UNUSED)
e0001a05
NC
1538{
1539 struct elf_segment_map **m_p;
1540
1541 m_p = &elf_tdata (abfd)->segment_map;
7fa3d080 1542 while (*m_p)
e0001a05
NC
1543 {
1544 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1545 *m_p = (*m_p)->next;
1546 else
1547 m_p = &(*m_p)->next;
1548 }
1549 return TRUE;
1550}
1551
1552\f
1553/* Perform the specified relocation. The instruction at (contents + address)
1554 is modified to set one operand to represent the value in "relocation". The
1555 operand position is determined by the relocation type recorded in the
1556 howto. */
1557
1558#define CALL_SEGMENT_BITS (30)
7fa3d080 1559#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1560
1561static bfd_reloc_status_type
7fa3d080
BW
1562elf_xtensa_do_reloc (reloc_howto_type *howto,
1563 bfd *abfd,
1564 asection *input_section,
1565 bfd_vma relocation,
1566 bfd_byte *contents,
1567 bfd_vma address,
1568 bfd_boolean is_weak_undef,
1569 char **error_message)
e0001a05 1570{
43cd72b9 1571 xtensa_format fmt;
e0001a05 1572 xtensa_opcode opcode;
e0001a05 1573 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1574 static xtensa_insnbuf ibuff = NULL;
1575 static xtensa_insnbuf sbuff = NULL;
1576 bfd_vma self_address = 0;
1577 bfd_size_type input_size;
1578 int opnd, slot;
e0001a05
NC
1579 uint32 newval;
1580
43cd72b9
BW
1581 if (!ibuff)
1582 {
1583 ibuff = xtensa_insnbuf_alloc (isa);
1584 sbuff = xtensa_insnbuf_alloc (isa);
1585 }
1586
1587 input_size = bfd_get_section_limit (abfd, input_section);
1588
e0001a05
NC
1589 switch (howto->type)
1590 {
1591 case R_XTENSA_NONE:
43cd72b9
BW
1592 case R_XTENSA_DIFF8:
1593 case R_XTENSA_DIFF16:
1594 case R_XTENSA_DIFF32:
e0001a05
NC
1595 return bfd_reloc_ok;
1596
1597 case R_XTENSA_ASM_EXPAND:
1598 if (!is_weak_undef)
1599 {
1600 /* Check for windowed CALL across a 1GB boundary. */
1601 xtensa_opcode opcode =
1602 get_expanded_call_opcode (contents + address,
43cd72b9 1603 input_size - address, 0);
e0001a05
NC
1604 if (is_windowed_call_opcode (opcode))
1605 {
1606 self_address = (input_section->output_section->vma
1607 + input_section->output_offset
1608 + address);
43cd72b9
BW
1609 if ((self_address >> CALL_SEGMENT_BITS)
1610 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1611 {
1612 *error_message = "windowed longcall crosses 1GB boundary; "
1613 "return may fail";
1614 return bfd_reloc_dangerous;
1615 }
1616 }
1617 }
1618 return bfd_reloc_ok;
1619
1620 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1621 {
e0001a05 1622 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1623 bfd_reloc_status_type retval =
1624 elf_xtensa_do_asm_simplify (contents, address, input_size,
1625 error_message);
e0001a05 1626 if (retval != bfd_reloc_ok)
43cd72b9 1627 return bfd_reloc_dangerous;
e0001a05
NC
1628
1629 /* The CALL needs to be relocated. Continue below for that part. */
1630 address += 3;
43cd72b9 1631 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1632 }
1633 break;
1634
1635 case R_XTENSA_32:
1636 case R_XTENSA_PLT:
1637 {
1638 bfd_vma x;
1639 x = bfd_get_32 (abfd, contents + address);
1640 x = x + relocation;
1641 bfd_put_32 (abfd, x, contents + address);
1642 }
1643 return bfd_reloc_ok;
1644 }
1645
43cd72b9
BW
1646 /* Only instruction slot-specific relocations handled below.... */
1647 slot = get_relocation_slot (howto->type);
1648 if (slot == XTENSA_UNDEFINED)
e0001a05 1649 {
43cd72b9 1650 *error_message = "unexpected relocation";
e0001a05
NC
1651 return bfd_reloc_dangerous;
1652 }
1653
43cd72b9
BW
1654 /* Read the instruction into a buffer and decode the opcode. */
1655 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1656 input_size - address);
1657 fmt = xtensa_format_decode (isa, ibuff);
1658 if (fmt == XTENSA_UNDEFINED)
e0001a05 1659 {
43cd72b9 1660 *error_message = "cannot decode instruction format";
e0001a05
NC
1661 return bfd_reloc_dangerous;
1662 }
1663
43cd72b9 1664 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1665
43cd72b9
BW
1666 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1667 if (opcode == XTENSA_UNDEFINED)
e0001a05 1668 {
43cd72b9 1669 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1670 return bfd_reloc_dangerous;
1671 }
1672
43cd72b9
BW
1673 /* Check for opcode-specific "alternate" relocations. */
1674 if (is_alt_relocation (howto->type))
1675 {
1676 if (opcode == get_l32r_opcode ())
1677 {
1678 /* Handle the special-case of non-PC-relative L32R instructions. */
1679 bfd *output_bfd = input_section->output_section->owner;
1680 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1681 if (!lit4_sec)
1682 {
1683 *error_message = "relocation references missing .lit4 section";
1684 return bfd_reloc_dangerous;
1685 }
1686 self_address = ((lit4_sec->vma & ~0xfff)
1687 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1688 newval = relocation;
1689 opnd = 1;
1690 }
1691 else if (opcode == get_const16_opcode ())
1692 {
1693 /* ALT used for high 16 bits. */
1694 newval = relocation >> 16;
1695 opnd = 1;
1696 }
1697 else
1698 {
1699 /* No other "alternate" relocations currently defined. */
1700 *error_message = "unexpected relocation";
1701 return bfd_reloc_dangerous;
1702 }
1703 }
1704 else /* Not an "alternate" relocation.... */
1705 {
1706 if (opcode == get_const16_opcode ())
1707 {
1708 newval = relocation & 0xffff;
1709 opnd = 1;
1710 }
1711 else
1712 {
1713 /* ...normal PC-relative relocation.... */
1714
1715 /* Determine which operand is being relocated. */
1716 opnd = get_relocation_opnd (opcode, howto->type);
1717 if (opnd == XTENSA_UNDEFINED)
1718 {
1719 *error_message = "unexpected relocation";
1720 return bfd_reloc_dangerous;
1721 }
1722
1723 if (!howto->pc_relative)
1724 {
1725 *error_message = "expected PC-relative relocation";
1726 return bfd_reloc_dangerous;
1727 }
e0001a05 1728
43cd72b9
BW
1729 /* Calculate the PC address for this instruction. */
1730 self_address = (input_section->output_section->vma
1731 + input_section->output_offset
1732 + address);
e0001a05 1733
43cd72b9
BW
1734 newval = relocation;
1735 }
1736 }
e0001a05 1737
43cd72b9
BW
1738 /* Apply the relocation. */
1739 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1740 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1741 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1742 sbuff, newval))
e0001a05 1743 {
2db662be
BW
1744 const char *opname = xtensa_opcode_name (isa, opcode);
1745 const char *msg;
1746
1747 msg = "cannot encode";
1748 if (is_direct_call_opcode (opcode))
1749 {
1750 if ((relocation & 0x3) != 0)
1751 msg = "misaligned call target";
1752 else
1753 msg = "call target out of range";
1754 }
1755 else if (opcode == get_l32r_opcode ())
1756 {
1757 if ((relocation & 0x3) != 0)
1758 msg = "misaligned literal target";
1759 else if (is_alt_relocation (howto->type))
1760 msg = "literal target out of range (too many literals)";
1761 else if (self_address > relocation)
1762 msg = "literal target out of range (try using text-section-literals)";
1763 else
1764 msg = "literal placed after use";
1765 }
1766
1767 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1768 return bfd_reloc_dangerous;
1769 }
1770
43cd72b9 1771 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1772 if (is_direct_call_opcode (opcode)
1773 && is_windowed_call_opcode (opcode))
1774 {
43cd72b9
BW
1775 if ((self_address >> CALL_SEGMENT_BITS)
1776 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1777 {
43cd72b9
BW
1778 *error_message =
1779 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1780 return bfd_reloc_dangerous;
1781 }
1782 }
1783
43cd72b9
BW
1784 /* Write the modified instruction back out of the buffer. */
1785 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1786 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1787 input_size - address);
e0001a05
NC
1788 return bfd_reloc_ok;
1789}
1790
1791
2db662be 1792static char *
7fa3d080 1793vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1794{
1795 /* To reduce the size of the memory leak,
1796 we only use a single message buffer. */
1797 static bfd_size_type alloc_size = 0;
1798 static char *message = NULL;
1799 bfd_size_type orig_len, len = 0;
1800 bfd_boolean is_append;
1801
1802 VA_OPEN (ap, arglen);
1803 VA_FIXEDARG (ap, const char *, origmsg);
1804
1805 is_append = (origmsg == message);
1806
1807 orig_len = strlen (origmsg);
1808 len = orig_len + strlen (fmt) + arglen + 20;
1809 if (len > alloc_size)
1810 {
1811 message = (char *) bfd_realloc (message, len);
1812 alloc_size = len;
1813 }
1814 if (!is_append)
1815 memcpy (message, origmsg, orig_len);
1816 vsprintf (message + orig_len, fmt, ap);
1817 VA_CLOSE (ap);
1818 return message;
1819}
1820
1821
e0001a05
NC
1822/* This function is registered as the "special_function" in the
1823 Xtensa howto for handling simplify operations.
1824 bfd_perform_relocation / bfd_install_relocation use it to
1825 perform (install) the specified relocation. Since this replaces the code
1826 in bfd_perform_relocation, it is basically an Xtensa-specific,
1827 stripped-down version of bfd_perform_relocation. */
1828
1829static bfd_reloc_status_type
7fa3d080
BW
1830bfd_elf_xtensa_reloc (bfd *abfd,
1831 arelent *reloc_entry,
1832 asymbol *symbol,
1833 void *data,
1834 asection *input_section,
1835 bfd *output_bfd,
1836 char **error_message)
e0001a05
NC
1837{
1838 bfd_vma relocation;
1839 bfd_reloc_status_type flag;
1840 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1841 bfd_vma output_base = 0;
1842 reloc_howto_type *howto = reloc_entry->howto;
1843 asection *reloc_target_output_section;
1844 bfd_boolean is_weak_undef;
1845
dd1a320b
BW
1846 if (!xtensa_default_isa)
1847 xtensa_default_isa = xtensa_isa_init (0, 0);
1848
1049f94e 1849 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1850 output, and the reloc is against an external symbol, the resulting
1851 reloc will also be against the same symbol. In such a case, we
1852 don't want to change anything about the way the reloc is handled,
1853 since it will all be done at final link time. This test is similar
1854 to what bfd_elf_generic_reloc does except that it lets relocs with
1855 howto->partial_inplace go through even if the addend is non-zero.
1856 (The real problem is that partial_inplace is set for XTENSA_32
1857 relocs to begin with, but that's a long story and there's little we
1858 can do about it now....) */
1859
7fa3d080 1860 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1861 {
1862 reloc_entry->address += input_section->output_offset;
1863 return bfd_reloc_ok;
1864 }
1865
1866 /* Is the address of the relocation really within the section? */
07515404 1867 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1868 return bfd_reloc_outofrange;
1869
4cc11e76 1870 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1871 initial relocation command value. */
1872
1873 /* Get symbol value. (Common symbols are special.) */
1874 if (bfd_is_com_section (symbol->section))
1875 relocation = 0;
1876 else
1877 relocation = symbol->value;
1878
1879 reloc_target_output_section = symbol->section->output_section;
1880
1881 /* Convert input-section-relative symbol value to absolute. */
1882 if ((output_bfd && !howto->partial_inplace)
1883 || reloc_target_output_section == NULL)
1884 output_base = 0;
1885 else
1886 output_base = reloc_target_output_section->vma;
1887
1888 relocation += output_base + symbol->section->output_offset;
1889
1890 /* Add in supplied addend. */
1891 relocation += reloc_entry->addend;
1892
1893 /* Here the variable relocation holds the final address of the
1894 symbol we are relocating against, plus any addend. */
1895 if (output_bfd)
1896 {
1897 if (!howto->partial_inplace)
1898 {
1899 /* This is a partial relocation, and we want to apply the relocation
1900 to the reloc entry rather than the raw data. Everything except
1901 relocations against section symbols has already been handled
1902 above. */
43cd72b9 1903
e0001a05
NC
1904 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1905 reloc_entry->addend = relocation;
1906 reloc_entry->address += input_section->output_offset;
1907 return bfd_reloc_ok;
1908 }
1909 else
1910 {
1911 reloc_entry->address += input_section->output_offset;
1912 reloc_entry->addend = 0;
1913 }
1914 }
1915
1916 is_weak_undef = (bfd_is_und_section (symbol->section)
1917 && (symbol->flags & BSF_WEAK) != 0);
1918 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1919 (bfd_byte *) data, (bfd_vma) octets,
1920 is_weak_undef, error_message);
1921
1922 if (flag == bfd_reloc_dangerous)
1923 {
1924 /* Add the symbol name to the error message. */
1925 if (! *error_message)
1926 *error_message = "";
1927 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1928 strlen (symbol->name) + 17,
70961b9d
AM
1929 symbol->name,
1930 (unsigned long) reloc_entry->addend);
e0001a05
NC
1931 }
1932
1933 return flag;
1934}
1935
1936
1937/* Set up an entry in the procedure linkage table. */
1938
1939static bfd_vma
7fa3d080
BW
1940elf_xtensa_create_plt_entry (bfd *dynobj,
1941 bfd *output_bfd,
1942 unsigned reloc_index)
e0001a05
NC
1943{
1944 asection *splt, *sgotplt;
1945 bfd_vma plt_base, got_base;
1946 bfd_vma code_offset, lit_offset;
1947 int chunk;
1948
1949 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1950 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1951 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1952 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1953
1954 plt_base = splt->output_section->vma + splt->output_offset;
1955 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1956
1957 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1958 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1959
1960 /* Fill in the literal entry. This is the offset of the dynamic
1961 relocation entry. */
1962 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1963 sgotplt->contents + lit_offset);
1964
1965 /* Fill in the entry in the procedure linkage table. */
1966 memcpy (splt->contents + code_offset,
1967 (bfd_big_endian (output_bfd)
1968 ? elf_xtensa_be_plt_entry
1969 : elf_xtensa_le_plt_entry),
1970 PLT_ENTRY_SIZE);
1971 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1972 plt_base + code_offset + 3),
1973 splt->contents + code_offset + 4);
1974 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1975 plt_base + code_offset + 6),
1976 splt->contents + code_offset + 7);
1977 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1978 plt_base + code_offset + 9),
1979 splt->contents + code_offset + 10);
1980
1981 return plt_base + code_offset;
1982}
1983
1984
e0001a05 1985/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1986 both relocatable and final links. */
e0001a05
NC
1987
1988static bfd_boolean
7fa3d080
BW
1989elf_xtensa_relocate_section (bfd *output_bfd,
1990 struct bfd_link_info *info,
1991 bfd *input_bfd,
1992 asection *input_section,
1993 bfd_byte *contents,
1994 Elf_Internal_Rela *relocs,
1995 Elf_Internal_Sym *local_syms,
1996 asection **local_sections)
e0001a05
NC
1997{
1998 Elf_Internal_Shdr *symtab_hdr;
1999 Elf_Internal_Rela *rel;
2000 Elf_Internal_Rela *relend;
2001 struct elf_link_hash_entry **sym_hashes;
2002 asection *srelgot, *srelplt;
2003 bfd *dynobj;
88d65ad6
BW
2004 property_table_entry *lit_table = 0;
2005 int ltblsize = 0;
e0001a05 2006 char *error_message = NULL;
43cd72b9 2007 bfd_size_type input_size;
e0001a05 2008
43cd72b9
BW
2009 if (!xtensa_default_isa)
2010 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05
NC
2011
2012 dynobj = elf_hash_table (info)->dynobj;
2013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2014 sym_hashes = elf_sym_hashes (input_bfd);
2015
2016 srelgot = NULL;
2017 srelplt = NULL;
7fa3d080 2018 if (dynobj)
e0001a05
NC
2019 {
2020 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2021 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2022 }
2023
88d65ad6
BW
2024 if (elf_hash_table (info)->dynamic_sections_created)
2025 {
2026 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2027 &lit_table, XTENSA_LIT_SEC_NAME,
2028 TRUE);
88d65ad6
BW
2029 if (ltblsize < 0)
2030 return FALSE;
2031 }
2032
43cd72b9
BW
2033 input_size = bfd_get_section_limit (input_bfd, input_section);
2034
e0001a05
NC
2035 rel = relocs;
2036 relend = relocs + input_section->reloc_count;
2037 for (; rel < relend; rel++)
2038 {
2039 int r_type;
2040 reloc_howto_type *howto;
2041 unsigned long r_symndx;
2042 struct elf_link_hash_entry *h;
2043 Elf_Internal_Sym *sym;
2044 asection *sec;
2045 bfd_vma relocation;
2046 bfd_reloc_status_type r;
2047 bfd_boolean is_weak_undef;
2048 bfd_boolean unresolved_reloc;
9b8c98a4 2049 bfd_boolean warned;
e0001a05
NC
2050
2051 r_type = ELF32_R_TYPE (rel->r_info);
2052 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2053 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2054 continue;
2055
2056 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2057 {
2058 bfd_set_error (bfd_error_bad_value);
2059 return FALSE;
2060 }
2061 howto = &elf_howto_table[r_type];
2062
2063 r_symndx = ELF32_R_SYM (rel->r_info);
2064
1049f94e 2065 if (info->relocatable)
e0001a05 2066 {
43cd72b9 2067 /* This is a relocatable link.
e0001a05
NC
2068 1) If the reloc is against a section symbol, adjust
2069 according to the output section.
2070 2) If there is a new target for this relocation,
2071 the new target will be in the same output section.
2072 We adjust the relocation by the output section
2073 difference. */
2074
2075 if (relaxing_section)
2076 {
2077 /* Check if this references a section in another input file. */
43cd72b9
BW
2078 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2079 contents))
2080 return FALSE;
e0001a05
NC
2081 r_type = ELF32_R_TYPE (rel->r_info);
2082 }
2083
43cd72b9 2084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2085 {
43cd72b9 2086 char *error_message = NULL;
e0001a05
NC
2087 /* Convert ASM_SIMPLIFY into the simpler relocation
2088 so that they never escape a relaxing link. */
43cd72b9
BW
2089 r = contract_asm_expansion (contents, input_size, rel,
2090 &error_message);
2091 if (r != bfd_reloc_ok)
2092 {
2093 if (!((*info->callbacks->reloc_dangerous)
2094 (info, error_message, input_bfd, input_section,
2095 rel->r_offset)))
2096 return FALSE;
2097 }
e0001a05
NC
2098 r_type = ELF32_R_TYPE (rel->r_info);
2099 }
2100
1049f94e 2101 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2102 anything unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx < symtab_hdr->sh_info)
2106 {
2107 sym = local_syms + r_symndx;
2108 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2109 {
2110 sec = local_sections[r_symndx];
2111 rel->r_addend += sec->output_offset + sym->st_value;
2112 }
2113 }
2114
2115 /* If there is an addend with a partial_inplace howto,
2116 then move the addend to the contents. This is a hack
1049f94e 2117 to work around problems with DWARF in relocatable links
e0001a05
NC
2118 with some previous version of BFD. Now we can't easily get
2119 rid of the hack without breaking backward compatibility.... */
2120 if (rel->r_addend)
2121 {
2122 howto = &elf_howto_table[r_type];
2123 if (howto->partial_inplace)
2124 {
2125 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2126 rel->r_addend, contents,
2127 rel->r_offset, FALSE,
2128 &error_message);
2129 if (r != bfd_reloc_ok)
2130 {
2131 if (!((*info->callbacks->reloc_dangerous)
2132 (info, error_message, input_bfd, input_section,
2133 rel->r_offset)))
2134 return FALSE;
2135 }
2136 rel->r_addend = 0;
2137 }
2138 }
2139
1049f94e 2140 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2141 continue;
2142 }
2143
2144 /* This is a final link. */
2145
2146 h = NULL;
2147 sym = NULL;
2148 sec = NULL;
2149 is_weak_undef = FALSE;
2150 unresolved_reloc = FALSE;
9b8c98a4 2151 warned = FALSE;
e0001a05
NC
2152
2153 if (howto->partial_inplace)
2154 {
2155 /* Because R_XTENSA_32 was made partial_inplace to fix some
2156 problems with DWARF info in partial links, there may be
2157 an addend stored in the contents. Take it out of there
2158 and move it back into the addend field of the reloc. */
2159 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2160 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2161 }
2162
2163 if (r_symndx < symtab_hdr->sh_info)
2164 {
2165 sym = local_syms + r_symndx;
2166 sec = local_sections[r_symndx];
8517fae7 2167 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
e0001a05
NC
2168 }
2169 else
2170 {
b2a8e766
AM
2171 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2172 r_symndx, symtab_hdr, sym_hashes,
2173 h, sec, relocation,
2174 unresolved_reloc, warned);
560e09e9
NC
2175
2176 if (relocation == 0
2177 && !unresolved_reloc
2178 && h->root.type == bfd_link_hash_undefweak)
e0001a05 2179 is_weak_undef = TRUE;
e0001a05
NC
2180 }
2181
2182 if (relaxing_section)
2183 {
2184 /* Check if this references a section in another input file. */
43cd72b9
BW
2185 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2186 &relocation);
e0001a05
NC
2187
2188 /* Update some already cached values. */
2189 r_type = ELF32_R_TYPE (rel->r_info);
2190 howto = &elf_howto_table[r_type];
2191 }
2192
2193 /* Sanity check the address. */
43cd72b9 2194 if (rel->r_offset >= input_size
e0001a05
NC
2195 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2196 {
43cd72b9
BW
2197 (*_bfd_error_handler)
2198 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2199 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2200 bfd_set_error (bfd_error_bad_value);
2201 return FALSE;
2202 }
2203
2204 /* Generate dynamic relocations. */
2205 if (elf_hash_table (info)->dynamic_sections_created)
2206 {
571b5725 2207 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05 2208
43cd72b9 2209 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2210 {
2211 /* This is an error. The symbol's real value won't be known
2212 until runtime and it's likely to be out of range anyway. */
2213 const char *name = h->root.root.string;
2214 error_message = vsprint_msg ("invalid relocation for dynamic "
2215 "symbol", ": %s",
2216 strlen (name) + 2, name);
2217 if (!((*info->callbacks->reloc_dangerous)
2218 (info, error_message, input_bfd, input_section,
2219 rel->r_offset)))
2220 return FALSE;
2221 }
2222 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2223 && (input_section->flags & SEC_ALLOC) != 0
2224 && (dynamic_symbol || info->shared))
2225 {
2226 Elf_Internal_Rela outrel;
2227 bfd_byte *loc;
2228 asection *srel;
2229
2230 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2231 srel = srelplt;
2232 else
2233 srel = srelgot;
2234
2235 BFD_ASSERT (srel != NULL);
2236
2237 outrel.r_offset =
2238 _bfd_elf_section_offset (output_bfd, info,
2239 input_section, rel->r_offset);
2240
2241 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2242 memset (&outrel, 0, sizeof outrel);
2243 else
2244 {
f0578e28
BW
2245 outrel.r_offset += (input_section->output_section->vma
2246 + input_section->output_offset);
e0001a05 2247
88d65ad6
BW
2248 /* Complain if the relocation is in a read-only section
2249 and not in a literal pool. */
2250 if ((input_section->flags & SEC_READONLY) != 0
2251 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2252 outrel.r_offset))
88d65ad6
BW
2253 {
2254 error_message =
2255 _("dynamic relocation in read-only section");
2256 if (!((*info->callbacks->reloc_dangerous)
2257 (info, error_message, input_bfd, input_section,
2258 rel->r_offset)))
2259 return FALSE;
2260 }
2261
e0001a05
NC
2262 if (dynamic_symbol)
2263 {
2264 outrel.r_addend = rel->r_addend;
2265 rel->r_addend = 0;
2266
2267 if (r_type == R_XTENSA_32)
2268 {
2269 outrel.r_info =
2270 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2271 relocation = 0;
2272 }
2273 else /* r_type == R_XTENSA_PLT */
2274 {
2275 outrel.r_info =
2276 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2277
2278 /* Create the PLT entry and set the initial
2279 contents of the literal entry to the address of
2280 the PLT entry. */
43cd72b9 2281 relocation =
e0001a05
NC
2282 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2283 srel->reloc_count);
2284 }
2285 unresolved_reloc = FALSE;
2286 }
2287 else
2288 {
2289 /* Generate a RELATIVE relocation. */
2290 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2291 outrel.r_addend = 0;
2292 }
2293 }
2294
2295 loc = (srel->contents
2296 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2297 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2298 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2299 <= srel->size);
e0001a05
NC
2300 }
2301 }
2302
2303 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2304 because such sections are not SEC_ALLOC and thus ld.so will
2305 not process them. */
2306 if (unresolved_reloc
2307 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2308 && h->def_dynamic))
e0001a05 2309 (*_bfd_error_handler)
843fe662 2310 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
d003868e
AM
2311 input_bfd,
2312 input_section,
e0001a05 2313 (long) rel->r_offset,
843fe662 2314 howto->name,
e0001a05
NC
2315 h->root.root.string);
2316
2317 /* There's no point in calling bfd_perform_relocation here.
2318 Just go directly to our "special function". */
2319 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2320 relocation + rel->r_addend,
2321 contents, rel->r_offset, is_weak_undef,
2322 &error_message);
43cd72b9 2323
9b8c98a4 2324 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2325 {
2326 const char *name;
2327
43cd72b9 2328 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2329 BFD_ASSERT (error_message != NULL);
e0001a05 2330
7fa3d080 2331 if (h)
e0001a05
NC
2332 name = h->root.root.string;
2333 else
2334 {
2335 name = bfd_elf_string_from_elf_section
2336 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2337 if (name && *name == '\0')
2338 name = bfd_section_name (input_bfd, sec);
2339 }
2340 if (name)
43cd72b9
BW
2341 {
2342 if (rel->r_addend == 0)
2343 error_message = vsprint_msg (error_message, ": %s",
2344 strlen (name) + 2, name);
2345 else
2346 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2347 strlen (name) + 22,
0fd3a477 2348 name, (int)rel->r_addend);
43cd72b9
BW
2349 }
2350
e0001a05
NC
2351 if (!((*info->callbacks->reloc_dangerous)
2352 (info, error_message, input_bfd, input_section,
2353 rel->r_offset)))
2354 return FALSE;
2355 }
2356 }
2357
88d65ad6
BW
2358 if (lit_table)
2359 free (lit_table);
2360
3ba3bc8c
BW
2361 input_section->reloc_done = TRUE;
2362
e0001a05
NC
2363 return TRUE;
2364}
2365
2366
2367/* Finish up dynamic symbol handling. There's not much to do here since
2368 the PLT and GOT entries are all set up by relocate_section. */
2369
2370static bfd_boolean
7fa3d080
BW
2371elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2372 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2373 struct elf_link_hash_entry *h,
2374 Elf_Internal_Sym *sym)
e0001a05 2375{
f5385ebf
AM
2376 if (h->needs_plt
2377 && !h->def_regular)
e0001a05
NC
2378 {
2379 /* Mark the symbol as undefined, rather than as defined in
2380 the .plt section. Leave the value alone. */
2381 sym->st_shndx = SHN_UNDEF;
2382 }
2383
2384 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2385 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2386 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2387 sym->st_shndx = SHN_ABS;
2388
2389 return TRUE;
2390}
2391
2392
2393/* Combine adjacent literal table entries in the output. Adjacent
2394 entries within each input section may have been removed during
2395 relaxation, but we repeat the process here, even though it's too late
2396 to shrink the output section, because it's important to minimize the
2397 number of literal table entries to reduce the start-up work for the
2398 runtime linker. Returns the number of remaining table entries or -1
2399 on error. */
2400
2401static int
7fa3d080
BW
2402elf_xtensa_combine_prop_entries (bfd *output_bfd,
2403 asection *sxtlit,
2404 asection *sgotloc)
e0001a05 2405{
e0001a05
NC
2406 bfd_byte *contents;
2407 property_table_entry *table;
e901de89 2408 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2409 bfd_vma offset;
2410 int n, m, num;
2411
eea6121a 2412 section_size = sxtlit->size;
e0001a05
NC
2413 BFD_ASSERT (section_size % 8 == 0);
2414 num = section_size / 8;
2415
eea6121a 2416 sgotloc_size = sgotloc->size;
e901de89 2417 if (sgotloc_size != section_size)
b536dc1e
BW
2418 {
2419 (*_bfd_error_handler)
43cd72b9 2420 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2421 return -1;
2422 }
e901de89 2423
eea6121a
AM
2424 table = bfd_malloc (num * sizeof (property_table_entry));
2425 if (table == 0)
e0001a05
NC
2426 return -1;
2427
2428 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2429 propagates to the output section, where it doesn't really apply and
eea6121a 2430 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2431 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2432
eea6121a
AM
2433 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2434 {
2435 if (contents != 0)
2436 free (contents);
2437 free (table);
2438 return -1;
2439 }
e0001a05
NC
2440
2441 /* There should never be any relocations left at this point, so this
2442 is quite a bit easier than what is done during relaxation. */
2443
2444 /* Copy the raw contents into a property table array and sort it. */
2445 offset = 0;
2446 for (n = 0; n < num; n++)
2447 {
2448 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2449 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2450 offset += 8;
2451 }
2452 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2453
2454 for (n = 0; n < num; n++)
2455 {
2456 bfd_boolean remove = FALSE;
2457
2458 if (table[n].size == 0)
2459 remove = TRUE;
2460 else if (n > 0 &&
2461 (table[n-1].address + table[n-1].size == table[n].address))
2462 {
2463 table[n-1].size += table[n].size;
2464 remove = TRUE;
2465 }
2466
2467 if (remove)
2468 {
2469 for (m = n; m < num - 1; m++)
2470 {
2471 table[m].address = table[m+1].address;
2472 table[m].size = table[m+1].size;
2473 }
2474
2475 n--;
2476 num--;
2477 }
2478 }
2479
2480 /* Copy the data back to the raw contents. */
2481 offset = 0;
2482 for (n = 0; n < num; n++)
2483 {
2484 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2485 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2486 offset += 8;
2487 }
2488
2489 /* Clear the removed bytes. */
2490 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2491 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2492
e901de89
BW
2493 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2494 section_size))
e0001a05
NC
2495 return -1;
2496
e901de89
BW
2497 /* Copy the contents to ".got.loc". */
2498 memcpy (sgotloc->contents, contents, section_size);
2499
e0001a05 2500 free (contents);
b614a702 2501 free (table);
e0001a05
NC
2502 return num;
2503}
2504
2505
2506/* Finish up the dynamic sections. */
2507
2508static bfd_boolean
7fa3d080
BW
2509elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2510 struct bfd_link_info *info)
e0001a05
NC
2511{
2512 bfd *dynobj;
e901de89 2513 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2514 Elf32_External_Dyn *dyncon, *dynconend;
2515 int num_xtlit_entries;
2516
2517 if (! elf_hash_table (info)->dynamic_sections_created)
2518 return TRUE;
2519
2520 dynobj = elf_hash_table (info)->dynobj;
2521 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2522 BFD_ASSERT (sdyn != NULL);
2523
2524 /* Set the first entry in the global offset table to the address of
2525 the dynamic section. */
2526 sgot = bfd_get_section_by_name (dynobj, ".got");
2527 if (sgot)
2528 {
eea6121a 2529 BFD_ASSERT (sgot->size == 4);
e0001a05 2530 if (sdyn == NULL)
7fa3d080 2531 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2532 else
2533 bfd_put_32 (output_bfd,
2534 sdyn->output_section->vma + sdyn->output_offset,
2535 sgot->contents);
2536 }
2537
2538 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
7fa3d080 2539 if (srelplt && srelplt->size != 0)
e0001a05
NC
2540 {
2541 asection *sgotplt, *srelgot, *spltlittbl;
2542 int chunk, plt_chunks, plt_entries;
2543 Elf_Internal_Rela irela;
2544 bfd_byte *loc;
2545 unsigned rtld_reloc;
2546
2547 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2548 BFD_ASSERT (srelgot != NULL);
2549
2550 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2551 BFD_ASSERT (spltlittbl != NULL);
2552
2553 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2554 of them follow immediately after.... */
2555 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2556 {
2557 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2558 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2559 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2560 break;
2561 }
2562 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2563
eea6121a 2564 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2565 plt_chunks =
2566 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2567
2568 for (chunk = 0; chunk < plt_chunks; chunk++)
2569 {
2570 int chunk_entries = 0;
2571
2572 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2573 BFD_ASSERT (sgotplt != NULL);
2574
2575 /* Emit special RTLD relocations for the first two entries in
2576 each chunk of the .got.plt section. */
2577
2578 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset);
2583 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2584 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2585 rtld_reloc += 1;
2586 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2587
2588 /* Next literal immediately follows the first. */
2589 loc += sizeof (Elf32_External_Rela);
2590 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2591 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2592 irela.r_offset = (sgotplt->output_section->vma
2593 + sgotplt->output_offset + 4);
2594 /* Tell rtld to set value to object's link map. */
2595 irela.r_addend = 2;
2596 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2597 rtld_reloc += 1;
2598 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2599
2600 /* Fill in the literal table. */
2601 if (chunk < plt_chunks - 1)
2602 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2603 else
2604 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2605
eea6121a 2606 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2607 bfd_put_32 (output_bfd,
2608 sgotplt->output_section->vma + sgotplt->output_offset,
2609 spltlittbl->contents + (chunk * 8) + 0);
2610 bfd_put_32 (output_bfd,
2611 8 + (chunk_entries * 4),
2612 spltlittbl->contents + (chunk * 8) + 4);
2613 }
2614
2615 /* All the dynamic relocations have been emitted at this point.
2616 Make sure the relocation sections are the correct size. */
eea6121a
AM
2617 if (srelgot->size != (sizeof (Elf32_External_Rela)
2618 * srelgot->reloc_count)
2619 || srelplt->size != (sizeof (Elf32_External_Rela)
2620 * srelplt->reloc_count))
e0001a05
NC
2621 abort ();
2622
2623 /* The .xt.lit.plt section has just been modified. This must
2624 happen before the code below which combines adjacent literal
2625 table entries, and the .xt.lit.plt contents have to be forced to
2626 the output here. */
2627 if (! bfd_set_section_contents (output_bfd,
2628 spltlittbl->output_section,
2629 spltlittbl->contents,
2630 spltlittbl->output_offset,
eea6121a 2631 spltlittbl->size))
e0001a05
NC
2632 return FALSE;
2633 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2634 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2635 }
2636
2637 /* Combine adjacent literal table entries. */
1049f94e 2638 BFD_ASSERT (! info->relocatable);
e901de89
BW
2639 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2640 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
b536dc1e 2641 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2642 num_xtlit_entries =
2643 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2644 if (num_xtlit_entries < 0)
2645 return FALSE;
2646
2647 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2648 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2649 for (; dyncon < dynconend; dyncon++)
2650 {
2651 Elf_Internal_Dyn dyn;
2652 const char *name;
2653 asection *s;
2654
2655 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2656
2657 switch (dyn.d_tag)
2658 {
2659 default:
2660 break;
2661
2662 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2663 dyn.d_un.d_val = num_xtlit_entries;
2664 break;
2665
2666 case DT_XTENSA_GOT_LOC_OFF:
e901de89 2667 name = ".got.loc";
e0001a05
NC
2668 goto get_vma;
2669 case DT_PLTGOT:
2670 name = ".got";
2671 goto get_vma;
2672 case DT_JMPREL:
2673 name = ".rela.plt";
2674 get_vma:
2675 s = bfd_get_section_by_name (output_bfd, name);
2676 BFD_ASSERT (s);
2677 dyn.d_un.d_ptr = s->vma;
2678 break;
2679
2680 case DT_PLTRELSZ:
2681 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2682 BFD_ASSERT (s);
eea6121a 2683 dyn.d_un.d_val = s->size;
e0001a05
NC
2684 break;
2685
2686 case DT_RELASZ:
2687 /* Adjust RELASZ to not include JMPREL. This matches what
2688 glibc expects and what is done for several other ELF
2689 targets (e.g., i386, alpha), but the "correct" behavior
2690 seems to be unresolved. Since the linker script arranges
2691 for .rela.plt to follow all other relocation sections, we
2692 don't have to worry about changing the DT_RELA entry. */
2693 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2694 if (s)
eea6121a 2695 dyn.d_un.d_val -= s->size;
e0001a05
NC
2696 break;
2697 }
2698
2699 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2700 }
2701
2702 return TRUE;
2703}
2704
2705\f
2706/* Functions for dealing with the e_flags field. */
2707
2708/* Merge backend specific data from an object file to the output
2709 object file when linking. */
2710
2711static bfd_boolean
7fa3d080 2712elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2713{
2714 unsigned out_mach, in_mach;
2715 flagword out_flag, in_flag;
2716
2717 /* Check if we have the same endianess. */
2718 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2719 return FALSE;
2720
2721 /* Don't even pretend to support mixed-format linking. */
2722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2724 return FALSE;
2725
2726 out_flag = elf_elfheader (obfd)->e_flags;
2727 in_flag = elf_elfheader (ibfd)->e_flags;
2728
2729 out_mach = out_flag & EF_XTENSA_MACH;
2730 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2731 if (out_mach != in_mach)
e0001a05
NC
2732 {
2733 (*_bfd_error_handler)
43cd72b9 2734 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2735 ibfd, out_mach, in_mach);
e0001a05
NC
2736 bfd_set_error (bfd_error_wrong_format);
2737 return FALSE;
2738 }
2739
2740 if (! elf_flags_init (obfd))
2741 {
2742 elf_flags_init (obfd) = TRUE;
2743 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2744
e0001a05
NC
2745 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2746 && bfd_get_arch_info (obfd)->the_default)
2747 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2748 bfd_get_mach (ibfd));
43cd72b9 2749
e0001a05
NC
2750 return TRUE;
2751 }
2752
43cd72b9
BW
2753 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2754 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2755
43cd72b9
BW
2756 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2757 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2758
2759 return TRUE;
2760}
2761
2762
2763static bfd_boolean
7fa3d080 2764elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2765{
2766 BFD_ASSERT (!elf_flags_init (abfd)
2767 || elf_elfheader (abfd)->e_flags == flags);
2768
2769 elf_elfheader (abfd)->e_flags |= flags;
2770 elf_flags_init (abfd) = TRUE;
2771
2772 return TRUE;
2773}
2774
2775
e0001a05 2776static bfd_boolean
7fa3d080 2777elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2778{
2779 FILE *f = (FILE *) farg;
2780 flagword e_flags = elf_elfheader (abfd)->e_flags;
2781
2782 fprintf (f, "\nXtensa header:\n");
43cd72b9 2783 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2784 fprintf (f, "\nMachine = Base\n");
2785 else
2786 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2787
2788 fprintf (f, "Insn tables = %s\n",
2789 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2790
2791 fprintf (f, "Literal tables = %s\n",
2792 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2793
2794 return _bfd_elf_print_private_bfd_data (abfd, farg);
2795}
2796
2797
2798/* Set the right machine number for an Xtensa ELF file. */
2799
2800static bfd_boolean
7fa3d080 2801elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2802{
2803 int mach;
2804 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2805
2806 switch (arch)
2807 {
2808 case E_XTENSA_MACH:
2809 mach = bfd_mach_xtensa;
2810 break;
2811 default:
2812 return FALSE;
2813 }
2814
2815 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2816 return TRUE;
2817}
2818
2819
2820/* The final processing done just before writing out an Xtensa ELF object
2821 file. This gets the Xtensa architecture right based on the machine
2822 number. */
2823
2824static void
7fa3d080
BW
2825elf_xtensa_final_write_processing (bfd *abfd,
2826 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2827{
2828 int mach;
2829 unsigned long val;
2830
2831 switch (mach = bfd_get_mach (abfd))
2832 {
2833 case bfd_mach_xtensa:
2834 val = E_XTENSA_MACH;
2835 break;
2836 default:
2837 return;
2838 }
2839
2840 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2841 elf_elfheader (abfd)->e_flags |= val;
2842}
2843
2844
2845static enum elf_reloc_type_class
7fa3d080 2846elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2847{
2848 switch ((int) ELF32_R_TYPE (rela->r_info))
2849 {
2850 case R_XTENSA_RELATIVE:
2851 return reloc_class_relative;
2852 case R_XTENSA_JMP_SLOT:
2853 return reloc_class_plt;
2854 default:
2855 return reloc_class_normal;
2856 }
2857}
2858
2859\f
2860static bfd_boolean
7fa3d080
BW
2861elf_xtensa_discard_info_for_section (bfd *abfd,
2862 struct elf_reloc_cookie *cookie,
2863 struct bfd_link_info *info,
2864 asection *sec)
e0001a05
NC
2865{
2866 bfd_byte *contents;
2867 bfd_vma section_size;
2868 bfd_vma offset, actual_offset;
2869 size_t removed_bytes = 0;
2870
eea6121a 2871 section_size = sec->size;
e0001a05
NC
2872 if (section_size == 0 || section_size % 8 != 0)
2873 return FALSE;
2874
2875 if (sec->output_section
2876 && bfd_is_abs_section (sec->output_section))
2877 return FALSE;
2878
2879 contents = retrieve_contents (abfd, sec, info->keep_memory);
2880 if (!contents)
2881 return FALSE;
2882
2883 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2884 if (!cookie->rels)
2885 {
2886 release_contents (sec, contents);
2887 return FALSE;
2888 }
2889
2890 cookie->rel = cookie->rels;
2891 cookie->relend = cookie->rels + sec->reloc_count;
2892
2893 for (offset = 0; offset < section_size; offset += 8)
2894 {
2895 actual_offset = offset - removed_bytes;
2896
2897 /* The ...symbol_deleted_p function will skip over relocs but it
2898 won't adjust their offsets, so do that here. */
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset < offset)
2901 {
2902 cookie->rel->r_offset -= removed_bytes;
2903 cookie->rel++;
2904 }
2905
2906 while (cookie->rel < cookie->relend
2907 && cookie->rel->r_offset == offset)
2908 {
c152c796 2909 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2910 {
2911 /* Remove the table entry. (If the reloc type is NONE, then
2912 the entry has already been merged with another and deleted
2913 during relaxation.) */
2914 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2915 {
2916 /* Shift the contents up. */
2917 if (offset + 8 < section_size)
2918 memmove (&contents[actual_offset],
2919 &contents[actual_offset+8],
2920 section_size - offset - 8);
2921 removed_bytes += 8;
2922 }
2923
2924 /* Remove this relocation. */
2925 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2926 }
2927
2928 /* Adjust the relocation offset for previous removals. This
2929 should not be done before calling ...symbol_deleted_p
2930 because it might mess up the offset comparisons there.
2931 Make sure the offset doesn't underflow in the case where
2932 the first entry is removed. */
2933 if (cookie->rel->r_offset >= removed_bytes)
2934 cookie->rel->r_offset -= removed_bytes;
2935 else
2936 cookie->rel->r_offset = 0;
2937
2938 cookie->rel++;
2939 }
2940 }
2941
2942 if (removed_bytes != 0)
2943 {
2944 /* Adjust any remaining relocs (shouldn't be any). */
2945 for (; cookie->rel < cookie->relend; cookie->rel++)
2946 {
2947 if (cookie->rel->r_offset >= removed_bytes)
2948 cookie->rel->r_offset -= removed_bytes;
2949 else
2950 cookie->rel->r_offset = 0;
2951 }
2952
2953 /* Clear the removed bytes. */
2954 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2955
2956 pin_contents (sec, contents);
2957 pin_internal_relocs (sec, cookie->rels);
2958
eea6121a
AM
2959 /* Shrink size. */
2960 sec->size = section_size - removed_bytes;
b536dc1e
BW
2961
2962 if (xtensa_is_littable_section (sec))
2963 {
2964 bfd *dynobj = elf_hash_table (info)->dynobj;
2965 if (dynobj)
2966 {
2967 asection *sgotloc =
2968 bfd_get_section_by_name (dynobj, ".got.loc");
2969 if (sgotloc)
eea6121a 2970 sgotloc->size -= removed_bytes;
b536dc1e
BW
2971 }
2972 }
e0001a05
NC
2973 }
2974 else
2975 {
2976 release_contents (sec, contents);
2977 release_internal_relocs (sec, cookie->rels);
2978 }
2979
2980 return (removed_bytes != 0);
2981}
2982
2983
2984static bfd_boolean
7fa3d080
BW
2985elf_xtensa_discard_info (bfd *abfd,
2986 struct elf_reloc_cookie *cookie,
2987 struct bfd_link_info *info)
e0001a05
NC
2988{
2989 asection *sec;
2990 bfd_boolean changed = FALSE;
2991
2992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2993 {
2994 if (xtensa_is_property_section (sec))
2995 {
2996 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2997 changed = TRUE;
2998 }
2999 }
3000
3001 return changed;
3002}
3003
3004
3005static bfd_boolean
7fa3d080 3006elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3007{
3008 return xtensa_is_property_section (sec);
3009}
3010
3011\f
3012/* Support for core dump NOTE sections. */
3013
3014static bfd_boolean
7fa3d080 3015elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3016{
3017 int offset;
eea6121a 3018 unsigned int size;
e0001a05
NC
3019
3020 /* The size for Xtensa is variable, so don't try to recognize the format
3021 based on the size. Just assume this is GNU/Linux. */
3022
3023 /* pr_cursig */
3024 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3025
3026 /* pr_pid */
3027 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3028
3029 /* pr_reg */
3030 offset = 72;
eea6121a 3031 size = note->descsz - offset - 4;
e0001a05
NC
3032
3033 /* Make a ".reg/999" section. */
3034 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3035 size, note->descpos + offset);
e0001a05
NC
3036}
3037
3038
3039static bfd_boolean
7fa3d080 3040elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3041{
3042 switch (note->descsz)
3043 {
3044 default:
3045 return FALSE;
3046
3047 case 128: /* GNU/Linux elf_prpsinfo */
3048 elf_tdata (abfd)->core_program
3049 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3050 elf_tdata (abfd)->core_command
3051 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3052 }
3053
3054 /* Note that for some reason, a spurious space is tacked
3055 onto the end of the args in some (at least one anyway)
3056 implementations, so strip it off if it exists. */
3057
3058 {
3059 char *command = elf_tdata (abfd)->core_command;
3060 int n = strlen (command);
3061
3062 if (0 < n && command[n - 1] == ' ')
3063 command[n - 1] = '\0';
3064 }
3065
3066 return TRUE;
3067}
3068
3069\f
3070/* Generic Xtensa configurability stuff. */
3071
3072static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3073static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3074static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3075static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3076static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3077static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3078static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3079static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3080
3081static void
7fa3d080 3082init_call_opcodes (void)
e0001a05
NC
3083{
3084 if (callx0_op == XTENSA_UNDEFINED)
3085 {
3086 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3087 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3088 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3089 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3090 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3091 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3092 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3093 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3094 }
3095}
3096
3097
3098static bfd_boolean
7fa3d080 3099is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3100{
3101 init_call_opcodes ();
3102 return (opcode == callx0_op
3103 || opcode == callx4_op
3104 || opcode == callx8_op
3105 || opcode == callx12_op);
3106}
3107
3108
3109static bfd_boolean
7fa3d080 3110is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3111{
3112 init_call_opcodes ();
3113 return (opcode == call0_op
3114 || opcode == call4_op
3115 || opcode == call8_op
3116 || opcode == call12_op);
3117}
3118
3119
3120static bfd_boolean
7fa3d080 3121is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3122{
3123 init_call_opcodes ();
3124 return (opcode == call4_op
3125 || opcode == call8_op
3126 || opcode == call12_op
3127 || opcode == callx4_op
3128 || opcode == callx8_op
3129 || opcode == callx12_op);
3130}
3131
3132
43cd72b9
BW
3133static xtensa_opcode
3134get_const16_opcode (void)
3135{
3136 static bfd_boolean done_lookup = FALSE;
3137 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3138 if (!done_lookup)
3139 {
3140 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3141 done_lookup = TRUE;
3142 }
3143 return const16_opcode;
3144}
3145
3146
e0001a05
NC
3147static xtensa_opcode
3148get_l32r_opcode (void)
3149{
3150 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3151 static bfd_boolean done_lookup = FALSE;
3152
3153 if (!done_lookup)
e0001a05
NC
3154 {
3155 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3156 done_lookup = TRUE;
e0001a05
NC
3157 }
3158 return l32r_opcode;
3159}
3160
3161
3162static bfd_vma
7fa3d080 3163l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3164{
3165 bfd_vma offset;
3166
3167 offset = addr - ((pc+3) & -4);
3168 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3169 offset = (signed int) offset >> 2;
3170 BFD_ASSERT ((signed int) offset >> 16 == -1);
3171 return offset;
3172}
3173
3174
e0001a05 3175static int
7fa3d080 3176get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3177{
43cd72b9
BW
3178 xtensa_isa isa = xtensa_default_isa;
3179 int last_immed, last_opnd, opi;
3180
3181 if (opcode == XTENSA_UNDEFINED)
3182 return XTENSA_UNDEFINED;
3183
3184 /* Find the last visible PC-relative immediate operand for the opcode.
3185 If there are no PC-relative immediates, then choose the last visible
3186 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3187 last_immed = XTENSA_UNDEFINED;
3188 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3189 for (opi = last_opnd - 1; opi >= 0; opi--)
3190 {
3191 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3192 continue;
3193 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3194 {
3195 last_immed = opi;
3196 break;
3197 }
3198 if (last_immed == XTENSA_UNDEFINED
3199 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3200 last_immed = opi;
3201 }
3202 if (last_immed < 0)
3203 return XTENSA_UNDEFINED;
3204
3205 /* If the operand number was specified in an old-style relocation,
3206 check for consistency with the operand computed above. */
3207 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3208 {
3209 int reloc_opnd = r_type - R_XTENSA_OP0;
3210 if (reloc_opnd != last_immed)
3211 return XTENSA_UNDEFINED;
3212 }
3213
3214 return last_immed;
3215}
3216
3217
3218int
7fa3d080 3219get_relocation_slot (int r_type)
43cd72b9
BW
3220{
3221 switch (r_type)
3222 {
3223 case R_XTENSA_OP0:
3224 case R_XTENSA_OP1:
3225 case R_XTENSA_OP2:
3226 return 0;
3227
3228 default:
3229 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3230 return r_type - R_XTENSA_SLOT0_OP;
3231 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3232 return r_type - R_XTENSA_SLOT0_ALT;
3233 break;
3234 }
3235
3236 return XTENSA_UNDEFINED;
e0001a05
NC
3237}
3238
3239
3240/* Get the opcode for a relocation. */
3241
3242static xtensa_opcode
7fa3d080
BW
3243get_relocation_opcode (bfd *abfd,
3244 asection *sec,
3245 bfd_byte *contents,
3246 Elf_Internal_Rela *irel)
e0001a05
NC
3247{
3248 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3249 static xtensa_insnbuf sbuff = NULL;
e0001a05 3250 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3251 xtensa_format fmt;
3252 int slot;
e0001a05
NC
3253
3254 if (contents == NULL)
3255 return XTENSA_UNDEFINED;
3256
43cd72b9 3257 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3258 return XTENSA_UNDEFINED;
3259
3260 if (ibuff == NULL)
43cd72b9
BW
3261 {
3262 ibuff = xtensa_insnbuf_alloc (isa);
3263 sbuff = xtensa_insnbuf_alloc (isa);
3264 }
3265
e0001a05 3266 /* Decode the instruction. */
43cd72b9
BW
3267 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3268 sec->size - irel->r_offset);
3269 fmt = xtensa_format_decode (isa, ibuff);
3270 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3271 if (slot == XTENSA_UNDEFINED)
3272 return XTENSA_UNDEFINED;
3273 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3274 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3275}
3276
3277
3278bfd_boolean
7fa3d080
BW
3279is_l32r_relocation (bfd *abfd,
3280 asection *sec,
3281 bfd_byte *contents,
3282 Elf_Internal_Rela *irel)
e0001a05
NC
3283{
3284 xtensa_opcode opcode;
43cd72b9 3285 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3286 return FALSE;
43cd72b9 3287 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3288 return (opcode == get_l32r_opcode ());
3289}
3290
e0001a05 3291
43cd72b9 3292static bfd_size_type
7fa3d080
BW
3293get_asm_simplify_size (bfd_byte *contents,
3294 bfd_size_type content_len,
3295 bfd_size_type offset)
e0001a05 3296{
43cd72b9 3297 bfd_size_type insnlen, size = 0;
e0001a05 3298
43cd72b9
BW
3299 /* Decode the size of the next two instructions. */
3300 insnlen = insn_decode_len (contents, content_len, offset);
3301 if (insnlen == 0)
3302 return 0;
e0001a05 3303
43cd72b9 3304 size += insnlen;
e0001a05 3305
43cd72b9
BW
3306 insnlen = insn_decode_len (contents, content_len, offset + size);
3307 if (insnlen == 0)
3308 return 0;
e0001a05 3309
43cd72b9
BW
3310 size += insnlen;
3311 return size;
3312}
e0001a05 3313
43cd72b9
BW
3314
3315bfd_boolean
7fa3d080 3316is_alt_relocation (int r_type)
43cd72b9
BW
3317{
3318 return (r_type >= R_XTENSA_SLOT0_ALT
3319 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3320}
3321
3322
43cd72b9 3323bfd_boolean
7fa3d080 3324is_operand_relocation (int r_type)
e0001a05 3325{
43cd72b9
BW
3326 switch (r_type)
3327 {
3328 case R_XTENSA_OP0:
3329 case R_XTENSA_OP1:
3330 case R_XTENSA_OP2:
3331 return TRUE;
e0001a05 3332
43cd72b9
BW
3333 default:
3334 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3335 return TRUE;
3336 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3337 return TRUE;
3338 break;
3339 }
e0001a05 3340
43cd72b9 3341 return FALSE;
e0001a05
NC
3342}
3343
43cd72b9
BW
3344
3345#define MIN_INSN_LENGTH 2
e0001a05 3346
43cd72b9
BW
3347/* Return 0 if it fails to decode. */
3348
3349bfd_size_type
7fa3d080
BW
3350insn_decode_len (bfd_byte *contents,
3351 bfd_size_type content_len,
3352 bfd_size_type offset)
e0001a05 3353{
43cd72b9
BW
3354 int insn_len;
3355 xtensa_isa isa = xtensa_default_isa;
3356 xtensa_format fmt;
3357 static xtensa_insnbuf ibuff = NULL;
e0001a05 3358
43cd72b9
BW
3359 if (offset + MIN_INSN_LENGTH > content_len)
3360 return 0;
e0001a05 3361
43cd72b9
BW
3362 if (ibuff == NULL)
3363 ibuff = xtensa_insnbuf_alloc (isa);
3364 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3365 content_len - offset);
3366 fmt = xtensa_format_decode (isa, ibuff);
3367 if (fmt == XTENSA_UNDEFINED)
3368 return 0;
3369 insn_len = xtensa_format_length (isa, fmt);
3370 if (insn_len == XTENSA_UNDEFINED)
3371 return 0;
3372 return insn_len;
e0001a05
NC
3373}
3374
3375
43cd72b9
BW
3376/* Decode the opcode for a single slot instruction.
3377 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3378
43cd72b9 3379xtensa_opcode
7fa3d080
BW
3380insn_decode_opcode (bfd_byte *contents,
3381 bfd_size_type content_len,
3382 bfd_size_type offset,
3383 int slot)
e0001a05 3384{
e0001a05 3385 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3386 xtensa_format fmt;
3387 static xtensa_insnbuf insnbuf = NULL;
3388 static xtensa_insnbuf slotbuf = NULL;
3389
3390 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3391 return XTENSA_UNDEFINED;
3392
3393 if (insnbuf == NULL)
43cd72b9
BW
3394 {
3395 insnbuf = xtensa_insnbuf_alloc (isa);
3396 slotbuf = xtensa_insnbuf_alloc (isa);
3397 }
3398
3399 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3400 content_len - offset);
3401 fmt = xtensa_format_decode (isa, insnbuf);
3402 if (fmt == XTENSA_UNDEFINED)
e0001a05 3403 return XTENSA_UNDEFINED;
43cd72b9
BW
3404
3405 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3406 return XTENSA_UNDEFINED;
e0001a05 3407
43cd72b9
BW
3408 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3409 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3410}
e0001a05 3411
e0001a05 3412
43cd72b9
BW
3413/* The offset is the offset in the contents.
3414 The address is the address of that offset. */
e0001a05 3415
43cd72b9 3416static bfd_boolean
7fa3d080
BW
3417check_branch_target_aligned (bfd_byte *contents,
3418 bfd_size_type content_length,
3419 bfd_vma offset,
3420 bfd_vma address)
43cd72b9
BW
3421{
3422 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3423 if (insn_len == 0)
3424 return FALSE;
3425 return check_branch_target_aligned_address (address, insn_len);
3426}
e0001a05 3427
e0001a05 3428
43cd72b9 3429static bfd_boolean
7fa3d080
BW
3430check_loop_aligned (bfd_byte *contents,
3431 bfd_size_type content_length,
3432 bfd_vma offset,
3433 bfd_vma address)
e0001a05 3434{
43cd72b9
BW
3435 bfd_size_type loop_len, insn_len;
3436 xtensa_opcode opcode =
3437 insn_decode_opcode (contents, content_length, offset, 0);
3438 BFD_ASSERT (opcode != XTENSA_UNDEFINED);
3439 if (opcode != XTENSA_UNDEFINED)
3440 return FALSE;
3441 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode));
3442 if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode))
3443 return FALSE;
e0001a05 3444
43cd72b9
BW
3445 loop_len = insn_decode_len (contents, content_length, offset);
3446 BFD_ASSERT (loop_len != 0);
3447 if (loop_len == 0)
3448 return FALSE;
3449
3450 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3451 BFD_ASSERT (insn_len != 0);
3452 if (insn_len == 0)
3453 return FALSE;
e0001a05 3454
43cd72b9
BW
3455 return check_branch_target_aligned_address (address + loop_len, insn_len);
3456}
e0001a05 3457
e0001a05
NC
3458
3459static bfd_boolean
7fa3d080 3460check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3461{
43cd72b9
BW
3462 if (len == 8)
3463 return (addr % 8 == 0);
3464 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3465}
3466
43cd72b9
BW
3467\f
3468/* Instruction widening and narrowing. */
e0001a05 3469
7fa3d080
BW
3470/* When FLIX is available we need to access certain instructions only
3471 when they are 16-bit or 24-bit instructions. This table caches
3472 information about such instructions by walking through all the
3473 opcodes and finding the smallest single-slot format into which each
3474 can be encoded. */
3475
3476static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3477
3478
7fa3d080
BW
3479static void
3480init_op_single_format_table (void)
e0001a05 3481{
7fa3d080
BW
3482 xtensa_isa isa = xtensa_default_isa;
3483 xtensa_insnbuf ibuf;
3484 xtensa_opcode opcode;
3485 xtensa_format fmt;
3486 int num_opcodes;
3487
3488 if (op_single_fmt_table)
3489 return;
3490
3491 ibuf = xtensa_insnbuf_alloc (isa);
3492 num_opcodes = xtensa_isa_num_opcodes (isa);
3493
3494 op_single_fmt_table = (xtensa_format *)
3495 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3496 for (opcode = 0; opcode < num_opcodes; opcode++)
3497 {
3498 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3499 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3500 {
3501 if (xtensa_format_num_slots (isa, fmt) == 1
3502 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3503 {
3504 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3505 int fmt_length = xtensa_format_length (isa, fmt);
3506 if (old_fmt == XTENSA_UNDEFINED
3507 || fmt_length < xtensa_format_length (isa, old_fmt))
3508 op_single_fmt_table[opcode] = fmt;
3509 }
3510 }
3511 }
3512 xtensa_insnbuf_free (isa, ibuf);
3513}
3514
3515
3516static xtensa_format
3517get_single_format (xtensa_opcode opcode)
3518{
3519 init_op_single_format_table ();
3520 return op_single_fmt_table[opcode];
3521}
e0001a05 3522
e0001a05 3523
43cd72b9
BW
3524/* For the set of narrowable instructions we do NOT include the
3525 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3526 involved during linker relaxation that may require these to
3527 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3528 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3529
7fa3d080
BW
3530struct string_pair
3531{
3532 const char *wide;
3533 const char *narrow;
3534};
3535
43cd72b9 3536struct string_pair narrowable[] =
e0001a05 3537{
43cd72b9
BW
3538 { "add", "add.n" },
3539 { "addi", "addi.n" },
3540 { "addmi", "addi.n" },
3541 { "l32i", "l32i.n" },
3542 { "movi", "movi.n" },
3543 { "ret", "ret.n" },
3544 { "retw", "retw.n" },
3545 { "s32i", "s32i.n" },
3546 { "or", "mov.n" } /* special case only when op1 == op2 */
3547};
e0001a05 3548
43cd72b9 3549struct string_pair widenable[] =
e0001a05 3550{
43cd72b9
BW
3551 { "add", "add.n" },
3552 { "addi", "addi.n" },
3553 { "addmi", "addi.n" },
3554 { "beqz", "beqz.n" },
3555 { "bnez", "bnez.n" },
3556 { "l32i", "l32i.n" },
3557 { "movi", "movi.n" },
3558 { "ret", "ret.n" },
3559 { "retw", "retw.n" },
3560 { "s32i", "s32i.n" },
3561 { "or", "mov.n" } /* special case only when op1 == op2 */
3562};
e0001a05
NC
3563
3564
43cd72b9
BW
3565/* Attempt to narrow an instruction. Return true if the narrowing is
3566 valid. If the do_it parameter is non-zero, then perform the action
3567 in-place directly into the contents. Otherwise, do not modify the
3568 contents. The set of valid narrowing are specified by a string table
3569 but require some special case operand checks in some cases. */
3570
e0001a05 3571static bfd_boolean
7fa3d080
BW
3572narrow_instruction (bfd_byte *contents,
3573 bfd_size_type content_length,
3574 bfd_size_type offset,
3575 bfd_boolean do_it)
e0001a05 3576{
43cd72b9
BW
3577 xtensa_opcode opcode;
3578 bfd_size_type insn_len, opi;
3579 xtensa_isa isa = xtensa_default_isa;
3580 xtensa_format fmt, o_fmt;
e0001a05 3581
43cd72b9
BW
3582 static xtensa_insnbuf insnbuf = NULL;
3583 static xtensa_insnbuf slotbuf = NULL;
3584 static xtensa_insnbuf o_insnbuf = NULL;
3585 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3586
43cd72b9
BW
3587 if (insnbuf == NULL)
3588 {
3589 insnbuf = xtensa_insnbuf_alloc (isa);
3590 slotbuf = xtensa_insnbuf_alloc (isa);
3591 o_insnbuf = xtensa_insnbuf_alloc (isa);
3592 o_slotbuf = xtensa_insnbuf_alloc (isa);
3593 }
e0001a05 3594
43cd72b9 3595 BFD_ASSERT (offset < content_length);
e0001a05 3596
43cd72b9
BW
3597 if (content_length < 2)
3598 return FALSE;
e0001a05 3599
43cd72b9
BW
3600 /* We will hand-code a few of these for a little while.
3601 These have all been specified in the assembler aleady. */
3602 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3603 content_length - offset);
3604 fmt = xtensa_format_decode (isa, insnbuf);
3605 if (xtensa_format_num_slots (isa, fmt) != 1)
3606 return FALSE;
e0001a05 3607
43cd72b9
BW
3608 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3609 return FALSE;
e0001a05 3610
43cd72b9
BW
3611 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3612 if (opcode == XTENSA_UNDEFINED)
3613 return FALSE;
3614 insn_len = xtensa_format_length (isa, fmt);
3615 if (insn_len > content_length)
3616 return FALSE;
e0001a05 3617
43cd72b9
BW
3618 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi)
3619 {
3620 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3621
43cd72b9
BW
3622 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3623 {
3624 uint32 value, newval;
3625 int i, operand_count, o_operand_count;
3626 xtensa_opcode o_opcode;
e0001a05 3627
43cd72b9
BW
3628 /* Address does not matter in this case. We might need to
3629 fix it to handle branches/jumps. */
3630 bfd_vma self_address = 0;
e0001a05 3631
43cd72b9
BW
3632 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3633 if (o_opcode == XTENSA_UNDEFINED)
3634 return FALSE;
3635 o_fmt = get_single_format (o_opcode);
3636 if (o_fmt == XTENSA_UNDEFINED)
3637 return FALSE;
e0001a05 3638
43cd72b9
BW
3639 if (xtensa_format_length (isa, fmt) != 3
3640 || xtensa_format_length (isa, o_fmt) != 2)
3641 return FALSE;
e0001a05 3642
43cd72b9
BW
3643 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3644 operand_count = xtensa_opcode_num_operands (isa, opcode);
3645 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3646
43cd72b9
BW
3647 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3648 return FALSE;
e0001a05 3649
43cd72b9
BW
3650 if (!is_or)
3651 {
3652 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3653 return FALSE;
3654 }
3655 else
3656 {
3657 uint32 rawval0, rawval1, rawval2;
e0001a05 3658
43cd72b9
BW
3659 if (o_operand_count + 1 != operand_count)
3660 return FALSE;
3661 if (xtensa_operand_get_field (isa, opcode, 0,
3662 fmt, 0, slotbuf, &rawval0) != 0)
3663 return FALSE;
3664 if (xtensa_operand_get_field (isa, opcode, 1,
3665 fmt, 0, slotbuf, &rawval1) != 0)
3666 return FALSE;
3667 if (xtensa_operand_get_field (isa, opcode, 2,
3668 fmt, 0, slotbuf, &rawval2) != 0)
3669 return FALSE;
e0001a05 3670
43cd72b9
BW
3671 if (rawval1 != rawval2)
3672 return FALSE;
3673 if (rawval0 == rawval1) /* it is a nop */
3674 return FALSE;
3675 }
e0001a05 3676
43cd72b9
BW
3677 for (i = 0; i < o_operand_count; ++i)
3678 {
3679 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3680 slotbuf, &value)
3681 || xtensa_operand_decode (isa, opcode, i, &value))
3682 return FALSE;
e0001a05 3683
43cd72b9
BW
3684 /* PC-relative branches need adjustment, but
3685 the PC-rel operand will always have a relocation. */
3686 newval = value;
3687 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3688 self_address)
3689 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3690 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3691 o_slotbuf, newval))
3692 return FALSE;
3693 }
e0001a05 3694
43cd72b9
BW
3695 if (xtensa_format_set_slot (isa, o_fmt, 0,
3696 o_insnbuf, o_slotbuf) != 0)
3697 return FALSE;
e0001a05 3698
43cd72b9
BW
3699 if (do_it)
3700 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3701 content_length - offset);
3702 return TRUE;
3703 }
3704 }
3705 return FALSE;
3706}
e0001a05 3707
e0001a05 3708
43cd72b9
BW
3709/* Attempt to widen an instruction. Return true if the widening is
3710 valid. If the do_it parameter is non-zero, then the action should
3711 be performed inplace into the contents. Otherwise, do not modify
3712 the contents. The set of valid widenings are specified by a string
3713 table but require some special case operand checks in some
3714 cases. */
e0001a05 3715
43cd72b9 3716static bfd_boolean
7fa3d080
BW
3717widen_instruction (bfd_byte *contents,
3718 bfd_size_type content_length,
3719 bfd_size_type offset,
3720 bfd_boolean do_it)
e0001a05 3721{
43cd72b9
BW
3722 xtensa_opcode opcode;
3723 bfd_size_type insn_len, opi;
3724 xtensa_isa isa = xtensa_default_isa;
3725 xtensa_format fmt, o_fmt;
e0001a05 3726
43cd72b9
BW
3727 static xtensa_insnbuf insnbuf = NULL;
3728 static xtensa_insnbuf slotbuf = NULL;
3729 static xtensa_insnbuf o_insnbuf = NULL;
3730 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3731
43cd72b9
BW
3732 if (insnbuf == NULL)
3733 {
3734 insnbuf = xtensa_insnbuf_alloc (isa);
3735 slotbuf = xtensa_insnbuf_alloc (isa);
3736 o_insnbuf = xtensa_insnbuf_alloc (isa);
3737 o_slotbuf = xtensa_insnbuf_alloc (isa);
3738 }
e0001a05 3739
43cd72b9 3740 BFD_ASSERT (offset < content_length);
2c8c90bc 3741
43cd72b9 3742 if (content_length < 2)
e0001a05
NC
3743 return FALSE;
3744
43cd72b9
BW
3745 /* We will hand code a few of these for a little while.
3746 These have all been specified in the assembler aleady. */
3747 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3748 content_length - offset);
3749 fmt = xtensa_format_decode (isa, insnbuf);
3750 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3751 return FALSE;
3752
43cd72b9 3753 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3754 return FALSE;
3755
43cd72b9
BW
3756 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3757 if (opcode == XTENSA_UNDEFINED)
e0001a05 3758 return FALSE;
43cd72b9
BW
3759 insn_len = xtensa_format_length (isa, fmt);
3760 if (insn_len > content_length)
3761 return FALSE;
3762
3763 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi)
e0001a05 3764 {
43cd72b9
BW
3765 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3766 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3767 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3768
43cd72b9
BW
3769 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3770 {
3771 uint32 value, newval;
3772 int i, operand_count, o_operand_count, check_operand_count;
3773 xtensa_opcode o_opcode;
e0001a05 3774
43cd72b9
BW
3775 /* Address does not matter in this case. We might need to fix it
3776 to handle branches/jumps. */
3777 bfd_vma self_address = 0;
e0001a05 3778
43cd72b9
BW
3779 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3780 if (o_opcode == XTENSA_UNDEFINED)
3781 return FALSE;
3782 o_fmt = get_single_format (o_opcode);
3783 if (o_fmt == XTENSA_UNDEFINED)
3784 return FALSE;
e0001a05 3785
43cd72b9
BW
3786 if (xtensa_format_length (isa, fmt) != 2
3787 || xtensa_format_length (isa, o_fmt) != 3)
3788 return FALSE;
e0001a05 3789
43cd72b9
BW
3790 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3791 operand_count = xtensa_opcode_num_operands (isa, opcode);
3792 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3793 check_operand_count = o_operand_count;
e0001a05 3794
43cd72b9
BW
3795 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3796 return FALSE;
e0001a05 3797
43cd72b9
BW
3798 if (!is_or)
3799 {
3800 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3801 return FALSE;
3802 }
3803 else
3804 {
3805 uint32 rawval0, rawval1;
3806
3807 if (o_operand_count != operand_count + 1)
3808 return FALSE;
3809 if (xtensa_operand_get_field (isa, opcode, 0,
3810 fmt, 0, slotbuf, &rawval0) != 0)
3811 return FALSE;
3812 if (xtensa_operand_get_field (isa, opcode, 1,
3813 fmt, 0, slotbuf, &rawval1) != 0)
3814 return FALSE;
3815 if (rawval0 == rawval1) /* it is a nop */
3816 return FALSE;
3817 }
3818 if (is_branch)
3819 check_operand_count--;
3820
3821 for (i = 0; i < check_operand_count; ++i)
3822 {
3823 int new_i = i;
3824 if (is_or && i == o_operand_count - 1)
3825 new_i = i - 1;
3826 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3827 slotbuf, &value)
3828 || xtensa_operand_decode (isa, opcode, new_i, &value))
3829 return FALSE;
3830
3831 /* PC-relative branches need adjustment, but
3832 the PC-rel operand will always have a relocation. */
3833 newval = value;
3834 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3835 self_address)
3836 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3837 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3838 o_slotbuf, newval))
3839 return FALSE;
3840 }
3841
3842 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3843 return FALSE;
3844
3845 if (do_it)
3846 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3847 content_length - offset);
3848 return TRUE;
3849 }
3850 }
3851 return FALSE;
e0001a05
NC
3852}
3853
43cd72b9
BW
3854\f
3855/* Code for transforming CALLs at link-time. */
e0001a05 3856
43cd72b9 3857static bfd_reloc_status_type
7fa3d080
BW
3858elf_xtensa_do_asm_simplify (bfd_byte *contents,
3859 bfd_vma address,
3860 bfd_vma content_length,
3861 char **error_message)
e0001a05 3862{
43cd72b9
BW
3863 static xtensa_insnbuf insnbuf = NULL;
3864 static xtensa_insnbuf slotbuf = NULL;
3865 xtensa_format core_format = XTENSA_UNDEFINED;
3866 xtensa_opcode opcode;
3867 xtensa_opcode direct_call_opcode;
3868 xtensa_isa isa = xtensa_default_isa;
3869 bfd_byte *chbuf = contents + address;
3870 int opn;
e0001a05 3871
43cd72b9 3872 if (insnbuf == NULL)
e0001a05 3873 {
43cd72b9
BW
3874 insnbuf = xtensa_insnbuf_alloc (isa);
3875 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3876 }
e0001a05 3877
43cd72b9
BW
3878 if (content_length < address)
3879 {
3880 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3881 return bfd_reloc_other;
3882 }
e0001a05 3883
43cd72b9
BW
3884 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3885 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3886 if (direct_call_opcode == XTENSA_UNDEFINED)
3887 {
3888 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3889 return bfd_reloc_other;
3890 }
3891
3892 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3893 core_format = xtensa_format_lookup (isa, "x24");
3894 opcode = xtensa_opcode_lookup (isa, "or");
3895 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3896 for (opn = 0; opn < 3; opn++)
3897 {
3898 uint32 regno = 1;
3899 xtensa_operand_encode (isa, opcode, opn, &regno);
3900 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3901 slotbuf, regno);
3902 }
3903 xtensa_format_encode (isa, core_format, insnbuf);
3904 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3905 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3906
43cd72b9
BW
3907 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3908 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3909 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3910
43cd72b9
BW
3911 xtensa_format_encode (isa, core_format, insnbuf);
3912 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3913 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3914 content_length - address - 3);
e0001a05 3915
43cd72b9
BW
3916 return bfd_reloc_ok;
3917}
e0001a05 3918
e0001a05 3919
43cd72b9 3920static bfd_reloc_status_type
7fa3d080
BW
3921contract_asm_expansion (bfd_byte *contents,
3922 bfd_vma content_length,
3923 Elf_Internal_Rela *irel,
3924 char **error_message)
43cd72b9
BW
3925{
3926 bfd_reloc_status_type retval =
3927 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3928 error_message);
e0001a05 3929
43cd72b9
BW
3930 if (retval != bfd_reloc_ok)
3931 return bfd_reloc_dangerous;
e0001a05 3932
43cd72b9
BW
3933 /* Update the irel->r_offset field so that the right immediate and
3934 the right instruction are modified during the relocation. */
3935 irel->r_offset += 3;
3936 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3937 return bfd_reloc_ok;
3938}
e0001a05 3939
e0001a05 3940
43cd72b9 3941static xtensa_opcode
7fa3d080 3942swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3943{
43cd72b9 3944 init_call_opcodes ();
e0001a05 3945
43cd72b9
BW
3946 if (opcode == callx0_op) return call0_op;
3947 if (opcode == callx4_op) return call4_op;
3948 if (opcode == callx8_op) return call8_op;
3949 if (opcode == callx12_op) return call12_op;
e0001a05 3950
43cd72b9
BW
3951 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3952 return XTENSA_UNDEFINED;
3953}
e0001a05 3954
e0001a05 3955
43cd72b9
BW
3956/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3957 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3958 If not, return XTENSA_UNDEFINED. */
e0001a05 3959
43cd72b9
BW
3960#define L32R_TARGET_REG_OPERAND 0
3961#define CONST16_TARGET_REG_OPERAND 0
3962#define CALLN_SOURCE_OPERAND 0
e0001a05 3963
43cd72b9 3964static xtensa_opcode
7fa3d080 3965get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3966{
43cd72b9
BW
3967 static xtensa_insnbuf insnbuf = NULL;
3968 static xtensa_insnbuf slotbuf = NULL;
3969 xtensa_format fmt;
3970 xtensa_opcode opcode;
3971 xtensa_isa isa = xtensa_default_isa;
3972 uint32 regno, const16_regno, call_regno;
3973 int offset = 0;
e0001a05 3974
43cd72b9 3975 if (insnbuf == NULL)
e0001a05 3976 {
43cd72b9
BW
3977 insnbuf = xtensa_insnbuf_alloc (isa);
3978 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3979 }
43cd72b9
BW
3980
3981 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3982 fmt = xtensa_format_decode (isa, insnbuf);
3983 if (fmt == XTENSA_UNDEFINED
3984 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3985 return XTENSA_UNDEFINED;
3986
3987 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3988 if (opcode == XTENSA_UNDEFINED)
3989 return XTENSA_UNDEFINED;
3990
3991 if (opcode == get_l32r_opcode ())
e0001a05 3992 {
43cd72b9
BW
3993 if (p_uses_l32r)
3994 *p_uses_l32r = TRUE;
3995 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3996 fmt, 0, slotbuf, &regno)
3997 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3998 &regno))
3999 return XTENSA_UNDEFINED;
e0001a05 4000 }
43cd72b9 4001 else if (opcode == get_const16_opcode ())
e0001a05 4002 {
43cd72b9
BW
4003 if (p_uses_l32r)
4004 *p_uses_l32r = FALSE;
4005 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4006 fmt, 0, slotbuf, &regno)
4007 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4008 &regno))
4009 return XTENSA_UNDEFINED;
4010
4011 /* Check that the next instruction is also CONST16. */
4012 offset += xtensa_format_length (isa, fmt);
4013 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4014 fmt = xtensa_format_decode (isa, insnbuf);
4015 if (fmt == XTENSA_UNDEFINED
4016 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4017 return XTENSA_UNDEFINED;
4018 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4019 if (opcode != get_const16_opcode ())
4020 return XTENSA_UNDEFINED;
4021
4022 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4023 fmt, 0, slotbuf, &const16_regno)
4024 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4025 &const16_regno)
4026 || const16_regno != regno)
4027 return XTENSA_UNDEFINED;
e0001a05 4028 }
43cd72b9
BW
4029 else
4030 return XTENSA_UNDEFINED;
e0001a05 4031
43cd72b9
BW
4032 /* Next instruction should be an CALLXn with operand 0 == regno. */
4033 offset += xtensa_format_length (isa, fmt);
4034 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4035 fmt = xtensa_format_decode (isa, insnbuf);
4036 if (fmt == XTENSA_UNDEFINED
4037 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4038 return XTENSA_UNDEFINED;
4039 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4040 if (opcode == XTENSA_UNDEFINED
4041 || !is_indirect_call_opcode (opcode))
4042 return XTENSA_UNDEFINED;
e0001a05 4043
43cd72b9
BW
4044 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4045 fmt, 0, slotbuf, &call_regno)
4046 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4047 &call_regno))
4048 return XTENSA_UNDEFINED;
e0001a05 4049
43cd72b9
BW
4050 if (call_regno != regno)
4051 return XTENSA_UNDEFINED;
e0001a05 4052
43cd72b9
BW
4053 return opcode;
4054}
e0001a05 4055
43cd72b9
BW
4056\f
4057/* Data structures used during relaxation. */
e0001a05 4058
43cd72b9 4059/* r_reloc: relocation values. */
e0001a05 4060
43cd72b9
BW
4061/* Through the relaxation process, we need to keep track of the values
4062 that will result from evaluating relocations. The standard ELF
4063 relocation structure is not sufficient for this purpose because we're
4064 operating on multiple input files at once, so we need to know which
4065 input file a relocation refers to. The r_reloc structure thus
4066 records both the input file (bfd) and ELF relocation.
e0001a05 4067
43cd72b9
BW
4068 For efficiency, an r_reloc also contains a "target_offset" field to
4069 cache the target-section-relative offset value that is represented by
4070 the relocation.
4071
4072 The r_reloc also contains a virtual offset that allows multiple
4073 inserted literals to be placed at the same "address" with
4074 different offsets. */
e0001a05 4075
43cd72b9 4076typedef struct r_reloc_struct r_reloc;
e0001a05 4077
43cd72b9 4078struct r_reloc_struct
e0001a05 4079{
43cd72b9
BW
4080 bfd *abfd;
4081 Elf_Internal_Rela rela;
e0001a05 4082 bfd_vma target_offset;
43cd72b9 4083 bfd_vma virtual_offset;
e0001a05
NC
4084};
4085
e0001a05 4086
43cd72b9
BW
4087/* The r_reloc structure is included by value in literal_value, but not
4088 every literal_value has an associated relocation -- some are simple
4089 constants. In such cases, we set all the fields in the r_reloc
4090 struct to zero. The r_reloc_is_const function should be used to
4091 detect this case. */
e0001a05 4092
43cd72b9 4093static bfd_boolean
7fa3d080 4094r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4095{
43cd72b9 4096 return (r_rel->abfd == NULL);
e0001a05
NC
4097}
4098
4099
43cd72b9 4100static bfd_vma
7fa3d080 4101r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4102{
43cd72b9
BW
4103 bfd_vma target_offset;
4104 unsigned long r_symndx;
e0001a05 4105
43cd72b9
BW
4106 BFD_ASSERT (!r_reloc_is_const (r_rel));
4107 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4108 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4109 return (target_offset + r_rel->rela.r_addend);
4110}
e0001a05 4111
e0001a05 4112
43cd72b9 4113static struct elf_link_hash_entry *
7fa3d080 4114r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4115{
43cd72b9
BW
4116 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4117 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4118}
e0001a05 4119
43cd72b9
BW
4120
4121static asection *
7fa3d080 4122r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4123{
4124 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4125 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4126}
e0001a05
NC
4127
4128
4129static bfd_boolean
7fa3d080 4130r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4131{
43cd72b9
BW
4132 asection *sec;
4133 if (r_rel == NULL)
e0001a05 4134 return FALSE;
e0001a05 4135
43cd72b9
BW
4136 sec = r_reloc_get_section (r_rel);
4137 if (sec == bfd_abs_section_ptr
4138 || sec == bfd_com_section_ptr
4139 || sec == bfd_und_section_ptr)
4140 return FALSE;
4141 return TRUE;
e0001a05
NC
4142}
4143
4144
7fa3d080
BW
4145static void
4146r_reloc_init (r_reloc *r_rel,
4147 bfd *abfd,
4148 Elf_Internal_Rela *irel,
4149 bfd_byte *contents,
4150 bfd_size_type content_length)
4151{
4152 int r_type;
4153 reloc_howto_type *howto;
4154
4155 if (irel)
4156 {
4157 r_rel->rela = *irel;
4158 r_rel->abfd = abfd;
4159 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4160 r_rel->virtual_offset = 0;
4161 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4162 howto = &elf_howto_table[r_type];
4163 if (howto->partial_inplace)
4164 {
4165 bfd_vma inplace_val;
4166 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4167
4168 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4169 r_rel->target_offset += inplace_val;
4170 }
4171 }
4172 else
4173 memset (r_rel, 0, sizeof (r_reloc));
4174}
4175
4176
43cd72b9
BW
4177#if DEBUG
4178
e0001a05 4179static void
7fa3d080 4180print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4181{
43cd72b9
BW
4182 if (r_reloc_is_defined (r_rel))
4183 {
4184 asection *sec = r_reloc_get_section (r_rel);
4185 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4186 }
4187 else if (r_reloc_get_hash_entry (r_rel))
4188 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4189 else
4190 fprintf (fp, " ?? + ");
e0001a05 4191
43cd72b9
BW
4192 fprintf_vma (fp, r_rel->target_offset);
4193 if (r_rel->virtual_offset)
4194 {
4195 fprintf (fp, " + ");
4196 fprintf_vma (fp, r_rel->virtual_offset);
4197 }
4198
4199 fprintf (fp, ")");
4200}
e0001a05 4201
43cd72b9 4202#endif /* DEBUG */
e0001a05 4203
43cd72b9
BW
4204\f
4205/* source_reloc: relocations that reference literals. */
e0001a05 4206
43cd72b9
BW
4207/* To determine whether literals can be coalesced, we need to first
4208 record all the relocations that reference the literals. The
4209 source_reloc structure below is used for this purpose. The
4210 source_reloc entries are kept in a per-literal-section array, sorted
4211 by offset within the literal section (i.e., target offset).
e0001a05 4212
43cd72b9
BW
4213 The source_sec and r_rel.rela.r_offset fields identify the source of
4214 the relocation. The r_rel field records the relocation value, i.e.,
4215 the offset of the literal being referenced. The opnd field is needed
4216 to determine the range of the immediate field to which the relocation
4217 applies, so we can determine whether another literal with the same
4218 value is within range. The is_null field is true when the relocation
4219 is being removed (e.g., when an L32R is being removed due to a CALLX
4220 that is converted to a direct CALL). */
e0001a05 4221
43cd72b9
BW
4222typedef struct source_reloc_struct source_reloc;
4223
4224struct source_reloc_struct
e0001a05 4225{
43cd72b9
BW
4226 asection *source_sec;
4227 r_reloc r_rel;
4228 xtensa_opcode opcode;
4229 int opnd;
4230 bfd_boolean is_null;
4231 bfd_boolean is_abs_literal;
4232};
e0001a05 4233
e0001a05 4234
e0001a05 4235static void
7fa3d080
BW
4236init_source_reloc (source_reloc *reloc,
4237 asection *source_sec,
4238 const r_reloc *r_rel,
4239 xtensa_opcode opcode,
4240 int opnd,
4241 bfd_boolean is_abs_literal)
e0001a05 4242{
43cd72b9
BW
4243 reloc->source_sec = source_sec;
4244 reloc->r_rel = *r_rel;
4245 reloc->opcode = opcode;
4246 reloc->opnd = opnd;
4247 reloc->is_null = FALSE;
4248 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4249}
4250
e0001a05 4251
43cd72b9
BW
4252/* Find the source_reloc for a particular source offset and relocation
4253 type. Note that the array is sorted by _target_ offset, so this is
4254 just a linear search. */
e0001a05 4255
43cd72b9 4256static source_reloc *
7fa3d080
BW
4257find_source_reloc (source_reloc *src_relocs,
4258 int src_count,
4259 asection *sec,
4260 Elf_Internal_Rela *irel)
e0001a05 4261{
43cd72b9 4262 int i;
e0001a05 4263
43cd72b9
BW
4264 for (i = 0; i < src_count; i++)
4265 {
4266 if (src_relocs[i].source_sec == sec
4267 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4268 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4269 == ELF32_R_TYPE (irel->r_info)))
4270 return &src_relocs[i];
4271 }
e0001a05 4272
43cd72b9 4273 return NULL;
e0001a05
NC
4274}
4275
4276
43cd72b9 4277static int
7fa3d080 4278source_reloc_compare (const void *ap, const void *bp)
e0001a05 4279{
43cd72b9
BW
4280 const source_reloc *a = (const source_reloc *) ap;
4281 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4282
43cd72b9
BW
4283 if (a->r_rel.target_offset != b->r_rel.target_offset)
4284 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4285
43cd72b9
BW
4286 /* We don't need to sort on these criteria for correctness,
4287 but enforcing a more strict ordering prevents unstable qsort
4288 from behaving differently with different implementations.
4289 Without the code below we get correct but different results
4290 on Solaris 2.7 and 2.8. We would like to always produce the
4291 same results no matter the host. */
4292
4293 if ((!a->is_null) - (!b->is_null))
4294 return ((!a->is_null) - (!b->is_null));
4295 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4296}
4297
43cd72b9
BW
4298\f
4299/* Literal values and value hash tables. */
e0001a05 4300
43cd72b9
BW
4301/* Literals with the same value can be coalesced. The literal_value
4302 structure records the value of a literal: the "r_rel" field holds the
4303 information from the relocation on the literal (if there is one) and
4304 the "value" field holds the contents of the literal word itself.
e0001a05 4305
43cd72b9
BW
4306 The value_map structure records a literal value along with the
4307 location of a literal holding that value. The value_map hash table
4308 is indexed by the literal value, so that we can quickly check if a
4309 particular literal value has been seen before and is thus a candidate
4310 for coalescing. */
e0001a05 4311
43cd72b9
BW
4312typedef struct literal_value_struct literal_value;
4313typedef struct value_map_struct value_map;
4314typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4315
43cd72b9 4316struct literal_value_struct
e0001a05 4317{
43cd72b9
BW
4318 r_reloc r_rel;
4319 unsigned long value;
4320 bfd_boolean is_abs_literal;
4321};
4322
4323struct value_map_struct
4324{
4325 literal_value val; /* The literal value. */
4326 r_reloc loc; /* Location of the literal. */
4327 value_map *next;
4328};
4329
4330struct value_map_hash_table_struct
4331{
4332 unsigned bucket_count;
4333 value_map **buckets;
4334 unsigned count;
4335 bfd_boolean has_last_loc;
4336 r_reloc last_loc;
4337};
4338
4339
e0001a05 4340static void
7fa3d080
BW
4341init_literal_value (literal_value *lit,
4342 const r_reloc *r_rel,
4343 unsigned long value,
4344 bfd_boolean is_abs_literal)
e0001a05 4345{
43cd72b9
BW
4346 lit->r_rel = *r_rel;
4347 lit->value = value;
4348 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4349}
4350
4351
43cd72b9 4352static bfd_boolean
7fa3d080
BW
4353literal_value_equal (const literal_value *src1,
4354 const literal_value *src2,
4355 bfd_boolean final_static_link)
e0001a05 4356{
43cd72b9 4357 struct elf_link_hash_entry *h1, *h2;
e0001a05 4358
43cd72b9
BW
4359 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4360 return FALSE;
e0001a05 4361
43cd72b9
BW
4362 if (r_reloc_is_const (&src1->r_rel))
4363 return (src1->value == src2->value);
e0001a05 4364
43cd72b9
BW
4365 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4366 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4367 return FALSE;
e0001a05 4368
43cd72b9
BW
4369 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4370 return FALSE;
4371
4372 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4373 return FALSE;
4374
4375 if (src1->value != src2->value)
4376 return FALSE;
4377
4378 /* Now check for the same section (if defined) or the same elf_hash
4379 (if undefined or weak). */
4380 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4381 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4382 if (r_reloc_is_defined (&src1->r_rel)
4383 && (final_static_link
4384 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4385 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4386 {
4387 if (r_reloc_get_section (&src1->r_rel)
4388 != r_reloc_get_section (&src2->r_rel))
4389 return FALSE;
4390 }
4391 else
4392 {
4393 /* Require that the hash entries (i.e., symbols) be identical. */
4394 if (h1 != h2 || h1 == 0)
4395 return FALSE;
4396 }
4397
4398 if (src1->is_abs_literal != src2->is_abs_literal)
4399 return FALSE;
4400
4401 return TRUE;
e0001a05
NC
4402}
4403
e0001a05 4404
43cd72b9
BW
4405/* Must be power of 2. */
4406#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4407
43cd72b9 4408static value_map_hash_table *
7fa3d080 4409value_map_hash_table_init (void)
43cd72b9
BW
4410{
4411 value_map_hash_table *values;
e0001a05 4412
43cd72b9
BW
4413 values = (value_map_hash_table *)
4414 bfd_zmalloc (sizeof (value_map_hash_table));
4415 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4416 values->count = 0;
4417 values->buckets = (value_map **)
4418 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4419 if (values->buckets == NULL)
4420 {
4421 free (values);
4422 return NULL;
4423 }
4424 values->has_last_loc = FALSE;
4425
4426 return values;
4427}
4428
4429
4430static void
7fa3d080 4431value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4432{
43cd72b9
BW
4433 free (table->buckets);
4434 free (table);
4435}
4436
4437
4438static unsigned
7fa3d080 4439hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4440{
4441 return (val >> 2) + (val >> 10);
4442}
4443
4444
4445static unsigned
7fa3d080 4446literal_value_hash (const literal_value *src)
43cd72b9
BW
4447{
4448 unsigned hash_val;
e0001a05 4449
43cd72b9
BW
4450 hash_val = hash_bfd_vma (src->value);
4451 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4452 {
43cd72b9
BW
4453 void *sec_or_hash;
4454
4455 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4456 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4457 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4458
4459 /* Now check for the same section and the same elf_hash. */
4460 if (r_reloc_is_defined (&src->r_rel))
4461 sec_or_hash = r_reloc_get_section (&src->r_rel);
4462 else
4463 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4464 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4465 }
43cd72b9
BW
4466 return hash_val;
4467}
e0001a05 4468
e0001a05 4469
43cd72b9 4470/* Check if the specified literal_value has been seen before. */
e0001a05 4471
43cd72b9 4472static value_map *
7fa3d080
BW
4473value_map_get_cached_value (value_map_hash_table *map,
4474 const literal_value *val,
4475 bfd_boolean final_static_link)
43cd72b9
BW
4476{
4477 value_map *map_e;
4478 value_map *bucket;
4479 unsigned idx;
4480
4481 idx = literal_value_hash (val);
4482 idx = idx & (map->bucket_count - 1);
4483 bucket = map->buckets[idx];
4484 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4485 {
43cd72b9
BW
4486 if (literal_value_equal (&map_e->val, val, final_static_link))
4487 return map_e;
4488 }
4489 return NULL;
4490}
e0001a05 4491
e0001a05 4492
43cd72b9
BW
4493/* Record a new literal value. It is illegal to call this if VALUE
4494 already has an entry here. */
4495
4496static value_map *
7fa3d080
BW
4497add_value_map (value_map_hash_table *map,
4498 const literal_value *val,
4499 const r_reloc *loc,
4500 bfd_boolean final_static_link)
43cd72b9
BW
4501{
4502 value_map **bucket_p;
4503 unsigned idx;
4504
4505 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4506 if (val_e == NULL)
4507 {
4508 bfd_set_error (bfd_error_no_memory);
4509 return NULL;
e0001a05
NC
4510 }
4511
43cd72b9
BW
4512 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4513 val_e->val = *val;
4514 val_e->loc = *loc;
4515
4516 idx = literal_value_hash (val);
4517 idx = idx & (map->bucket_count - 1);
4518 bucket_p = &map->buckets[idx];
4519
4520 val_e->next = *bucket_p;
4521 *bucket_p = val_e;
4522 map->count++;
4523 /* FIXME: Consider resizing the hash table if we get too many entries. */
4524
4525 return val_e;
e0001a05
NC
4526}
4527
43cd72b9
BW
4528\f
4529/* Lists of text actions (ta_) for narrowing, widening, longcall
4530 conversion, space fill, code & literal removal, etc. */
4531
4532/* The following text actions are generated:
4533
4534 "ta_remove_insn" remove an instruction or instructions
4535 "ta_remove_longcall" convert longcall to call
4536 "ta_convert_longcall" convert longcall to nop/call
4537 "ta_narrow_insn" narrow a wide instruction
4538 "ta_widen" widen a narrow instruction
4539 "ta_fill" add fill or remove fill
4540 removed < 0 is a fill; branches to the fill address will be
4541 changed to address + fill size (e.g., address - removed)
4542 removed >= 0 branches to the fill address will stay unchanged
4543 "ta_remove_literal" remove a literal; this action is
4544 indicated when a literal is removed
4545 or replaced.
4546 "ta_add_literal" insert a new literal; this action is
4547 indicated when a literal has been moved.
4548 It may use a virtual_offset because
4549 multiple literals can be placed at the
4550 same location.
4551
4552 For each of these text actions, we also record the number of bytes
4553 removed by performing the text action. In the case of a "ta_widen"
4554 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4555
4556typedef struct text_action_struct text_action;
4557typedef struct text_action_list_struct text_action_list;
4558typedef enum text_action_enum_t text_action_t;
4559
4560enum text_action_enum_t
4561{
4562 ta_none,
4563 ta_remove_insn, /* removed = -size */
4564 ta_remove_longcall, /* removed = -size */
4565 ta_convert_longcall, /* removed = 0 */
4566 ta_narrow_insn, /* removed = -1 */
4567 ta_widen_insn, /* removed = +1 */
4568 ta_fill, /* removed = +size */
4569 ta_remove_literal,
4570 ta_add_literal
4571};
e0001a05 4572
e0001a05 4573
43cd72b9
BW
4574/* Structure for a text action record. */
4575struct text_action_struct
e0001a05 4576{
43cd72b9
BW
4577 text_action_t action;
4578 asection *sec; /* Optional */
4579 bfd_vma offset;
4580 bfd_vma virtual_offset; /* Zero except for adding literals. */
4581 int removed_bytes;
4582 literal_value value; /* Only valid when adding literals. */
e0001a05 4583
43cd72b9
BW
4584 text_action *next;
4585};
e0001a05 4586
e0001a05 4587
43cd72b9
BW
4588/* List of all of the actions taken on a text section. */
4589struct text_action_list_struct
4590{
4591 text_action *head;
4592};
e0001a05 4593
e0001a05 4594
7fa3d080
BW
4595static text_action *
4596find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4597{
4598 text_action **m_p;
4599
4600 /* It is not necessary to fill at the end of a section. */
4601 if (sec->size == offset)
4602 return NULL;
4603
7fa3d080 4604 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4605 {
4606 text_action *t = *m_p;
4607 /* When the action is another fill at the same address,
4608 just increase the size. */
4609 if (t->offset == offset && t->action == ta_fill)
4610 return t;
4611 }
4612 return NULL;
4613}
4614
4615
4616static int
7fa3d080
BW
4617compute_removed_action_diff (const text_action *ta,
4618 asection *sec,
4619 bfd_vma offset,
4620 int removed,
4621 int removable_space)
43cd72b9
BW
4622{
4623 int new_removed;
4624 int current_removed = 0;
4625
7fa3d080 4626 if (ta)
43cd72b9
BW
4627 current_removed = ta->removed_bytes;
4628
4629 BFD_ASSERT (ta == NULL || ta->offset == offset);
4630 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4631
4632 /* It is not necessary to fill at the end of a section. Clean this up. */
4633 if (sec->size == offset)
4634 new_removed = removable_space - 0;
4635 else
4636 {
4637 int space;
4638 int added = -removed - current_removed;
4639 /* Ignore multiples of the section alignment. */
4640 added = ((1 << sec->alignment_power) - 1) & added;
4641 new_removed = (-added);
4642
4643 /* Modify for removable. */
4644 space = removable_space - new_removed;
4645 new_removed = (removable_space
4646 - (((1 << sec->alignment_power) - 1) & space));
4647 }
4648 return (new_removed - current_removed);
4649}
4650
4651
7fa3d080
BW
4652static void
4653adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4654{
4655 ta->removed_bytes += fill_diff;
4656}
4657
4658
4659/* Add a modification action to the text. For the case of adding or
4660 removing space, modify any current fill and assume that
4661 "unreachable_space" bytes can be freely contracted. Note that a
4662 negative removed value is a fill. */
4663
4664static void
7fa3d080
BW
4665text_action_add (text_action_list *l,
4666 text_action_t action,
4667 asection *sec,
4668 bfd_vma offset,
4669 int removed)
43cd72b9
BW
4670{
4671 text_action **m_p;
4672 text_action *ta;
4673
4674 /* It is not necessary to fill at the end of a section. */
4675 if (action == ta_fill && sec->size == offset)
4676 return;
4677
4678 /* It is not necessary to fill 0 bytes. */
4679 if (action == ta_fill && removed == 0)
4680 return;
4681
7fa3d080 4682 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4683 {
4684 text_action *t = *m_p;
4685 /* When the action is another fill at the same address,
4686 just increase the size. */
4687 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4688 {
4689 t->removed_bytes += removed;
4690 return;
4691 }
4692 }
4693
4694 /* Create a new record and fill it up. */
4695 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4696 ta->action = action;
4697 ta->sec = sec;
4698 ta->offset = offset;
4699 ta->removed_bytes = removed;
4700 ta->next = (*m_p);
4701 *m_p = ta;
4702}
4703
4704
4705static void
7fa3d080
BW
4706text_action_add_literal (text_action_list *l,
4707 text_action_t action,
4708 const r_reloc *loc,
4709 const literal_value *value,
4710 int removed)
43cd72b9
BW
4711{
4712 text_action **m_p;
4713 text_action *ta;
4714 asection *sec = r_reloc_get_section (loc);
4715 bfd_vma offset = loc->target_offset;
4716 bfd_vma virtual_offset = loc->virtual_offset;
4717
4718 BFD_ASSERT (action == ta_add_literal);
4719
4720 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4721 {
4722 if ((*m_p)->offset > offset
4723 && ((*m_p)->offset != offset
4724 || (*m_p)->virtual_offset > virtual_offset))
4725 break;
4726 }
4727
4728 /* Create a new record and fill it up. */
4729 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4730 ta->action = action;
4731 ta->sec = sec;
4732 ta->offset = offset;
4733 ta->virtual_offset = virtual_offset;
4734 ta->value = *value;
4735 ta->removed_bytes = removed;
4736 ta->next = (*m_p);
4737 *m_p = ta;
4738}
4739
4740
7fa3d080
BW
4741static bfd_vma
4742offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4743{
4744 text_action *r;
4745 int removed = 0;
4746
4747 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4748 {
4749 if (r->offset < offset
4750 || (r->action == ta_fill && r->removed_bytes < 0))
4751 removed += r->removed_bytes;
4752 }
4753
4754 return (offset - removed);
4755}
4756
4757
03e94c08
BW
4758static unsigned
4759action_list_count (text_action_list *action_list)
4760{
4761 text_action *r = action_list->head;
4762 unsigned count = 0;
4763 for (r = action_list->head; r != NULL; r = r->next)
4764 {
4765 count++;
4766 }
4767 return count;
4768}
4769
4770
7fa3d080
BW
4771static bfd_vma
4772offset_with_removed_text_before_fill (text_action_list *action_list,
4773 bfd_vma offset)
43cd72b9
BW
4774{
4775 text_action *r;
4776 int removed = 0;
4777
4778 for (r = action_list->head; r && r->offset < offset; r = r->next)
4779 removed += r->removed_bytes;
4780
4781 return (offset - removed);
4782}
4783
4784
4785/* The find_insn_action routine will only find non-fill actions. */
4786
7fa3d080
BW
4787static text_action *
4788find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4789{
4790 text_action *t;
4791 for (t = action_list->head; t; t = t->next)
4792 {
4793 if (t->offset == offset)
4794 {
4795 switch (t->action)
4796 {
4797 case ta_none:
4798 case ta_fill:
4799 break;
4800 case ta_remove_insn:
4801 case ta_remove_longcall:
4802 case ta_convert_longcall:
4803 case ta_narrow_insn:
4804 case ta_widen_insn:
4805 return t;
4806 case ta_remove_literal:
4807 case ta_add_literal:
4808 BFD_ASSERT (0);
4809 break;
4810 }
4811 }
4812 }
4813 return NULL;
4814}
4815
4816
4817#if DEBUG
4818
4819static void
7fa3d080 4820print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4821{
4822 text_action *r;
4823
4824 fprintf (fp, "Text Action\n");
4825 for (r = action_list->head; r != NULL; r = r->next)
4826 {
4827 const char *t = "unknown";
4828 switch (r->action)
4829 {
4830 case ta_remove_insn:
4831 t = "remove_insn"; break;
4832 case ta_remove_longcall:
4833 t = "remove_longcall"; break;
4834 case ta_convert_longcall:
4835 t = "remove_longcall"; break;
4836 case ta_narrow_insn:
4837 t = "narrow_insn"; break;
4838 case ta_widen_insn:
4839 t = "widen_insn"; break;
4840 case ta_fill:
4841 t = "fill"; break;
4842 case ta_none:
4843 t = "none"; break;
4844 case ta_remove_literal:
4845 t = "remove_literal"; break;
4846 case ta_add_literal:
4847 t = "add_literal"; break;
4848 }
4849
4850 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4851 r->sec->owner->filename,
4852 r->sec->name, r->offset, t, r->removed_bytes);
4853 }
4854}
4855
4856#endif /* DEBUG */
4857
4858\f
4859/* Lists of literals being coalesced or removed. */
4860
4861/* In the usual case, the literal identified by "from" is being
4862 coalesced with another literal identified by "to". If the literal is
4863 unused and is being removed altogether, "to.abfd" will be NULL.
4864 The removed_literal entries are kept on a per-section list, sorted
4865 by the "from" offset field. */
4866
4867typedef struct removed_literal_struct removed_literal;
4868typedef struct removed_literal_list_struct removed_literal_list;
4869
4870struct removed_literal_struct
4871{
4872 r_reloc from;
4873 r_reloc to;
4874 removed_literal *next;
4875};
4876
4877struct removed_literal_list_struct
4878{
4879 removed_literal *head;
4880 removed_literal *tail;
4881};
4882
4883
43cd72b9
BW
4884/* Record that the literal at "from" is being removed. If "to" is not
4885 NULL, the "from" literal is being coalesced with the "to" literal. */
4886
4887static void
7fa3d080
BW
4888add_removed_literal (removed_literal_list *removed_list,
4889 const r_reloc *from,
4890 const r_reloc *to)
43cd72b9
BW
4891{
4892 removed_literal *r, *new_r, *next_r;
4893
4894 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4895
4896 new_r->from = *from;
4897 if (to)
4898 new_r->to = *to;
4899 else
4900 new_r->to.abfd = NULL;
4901 new_r->next = NULL;
4902
4903 r = removed_list->head;
4904 if (r == NULL)
4905 {
4906 removed_list->head = new_r;
4907 removed_list->tail = new_r;
4908 }
4909 /* Special check for common case of append. */
4910 else if (removed_list->tail->from.target_offset < from->target_offset)
4911 {
4912 removed_list->tail->next = new_r;
4913 removed_list->tail = new_r;
4914 }
4915 else
4916 {
7fa3d080 4917 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4918 {
4919 r = r->next;
4920 }
4921 next_r = r->next;
4922 r->next = new_r;
4923 new_r->next = next_r;
4924 if (next_r == NULL)
4925 removed_list->tail = new_r;
4926 }
4927}
4928
4929
4930/* Check if the list of removed literals contains an entry for the
4931 given address. Return the entry if found. */
4932
4933static removed_literal *
7fa3d080 4934find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4935{
4936 removed_literal *r = removed_list->head;
4937 while (r && r->from.target_offset < addr)
4938 r = r->next;
4939 if (r && r->from.target_offset == addr)
4940 return r;
4941 return NULL;
4942}
4943
4944
4945#if DEBUG
4946
4947static void
7fa3d080 4948print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4949{
4950 removed_literal *r;
4951 r = removed_list->head;
4952 if (r)
4953 fprintf (fp, "Removed Literals\n");
4954 for (; r != NULL; r = r->next)
4955 {
4956 print_r_reloc (fp, &r->from);
4957 fprintf (fp, " => ");
4958 if (r->to.abfd == NULL)
4959 fprintf (fp, "REMOVED");
4960 else
4961 print_r_reloc (fp, &r->to);
4962 fprintf (fp, "\n");
4963 }
4964}
4965
4966#endif /* DEBUG */
4967
4968\f
4969/* Per-section data for relaxation. */
4970
4971typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4972
4973struct xtensa_relax_info_struct
4974{
4975 bfd_boolean is_relaxable_literal_section;
4976 bfd_boolean is_relaxable_asm_section;
4977 int visited; /* Number of times visited. */
4978
4979 source_reloc *src_relocs; /* Array[src_count]. */
4980 int src_count;
4981 int src_next; /* Next src_relocs entry to assign. */
4982
4983 removed_literal_list removed_list;
4984 text_action_list action_list;
4985
4986 reloc_bfd_fix *fix_list;
4987 reloc_bfd_fix *fix_array;
4988 unsigned fix_array_count;
4989
4990 /* Support for expanding the reloc array that is stored
4991 in the section structure. If the relocations have been
4992 reallocated, the newly allocated relocations will be referenced
4993 here along with the actual size allocated. The relocation
4994 count will always be found in the section structure. */
4995 Elf_Internal_Rela *allocated_relocs;
4996 unsigned relocs_count;
4997 unsigned allocated_relocs_count;
4998};
4999
5000struct elf_xtensa_section_data
5001{
5002 struct bfd_elf_section_data elf;
5003 xtensa_relax_info relax_info;
5004};
5005
43cd72b9
BW
5006
5007static bfd_boolean
7fa3d080 5008elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9
BW
5009{
5010 struct elf_xtensa_section_data *sdata;
5011 bfd_size_type amt = sizeof (*sdata);
5012
5013 sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt);
5014 if (sdata == NULL)
5015 return FALSE;
7fa3d080 5016 sec->used_by_bfd = (void *) sdata;
43cd72b9
BW
5017
5018 return _bfd_elf_new_section_hook (abfd, sec);
5019}
5020
5021
7fa3d080
BW
5022static xtensa_relax_info *
5023get_xtensa_relax_info (asection *sec)
5024{
5025 struct elf_xtensa_section_data *section_data;
5026
5027 /* No info available if no section or if it is an output section. */
5028 if (!sec || sec == sec->output_section)
5029 return NULL;
5030
5031 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5032 return &section_data->relax_info;
5033}
5034
5035
43cd72b9 5036static void
7fa3d080 5037init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5038{
5039 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5040
5041 relax_info->is_relaxable_literal_section = FALSE;
5042 relax_info->is_relaxable_asm_section = FALSE;
5043 relax_info->visited = 0;
5044
5045 relax_info->src_relocs = NULL;
5046 relax_info->src_count = 0;
5047 relax_info->src_next = 0;
5048
5049 relax_info->removed_list.head = NULL;
5050 relax_info->removed_list.tail = NULL;
5051
5052 relax_info->action_list.head = NULL;
5053
5054 relax_info->fix_list = NULL;
5055 relax_info->fix_array = NULL;
5056 relax_info->fix_array_count = 0;
5057
5058 relax_info->allocated_relocs = NULL;
5059 relax_info->relocs_count = 0;
5060 relax_info->allocated_relocs_count = 0;
5061}
5062
43cd72b9
BW
5063\f
5064/* Coalescing literals may require a relocation to refer to a section in
5065 a different input file, but the standard relocation information
5066 cannot express that. Instead, the reloc_bfd_fix structures are used
5067 to "fix" the relocations that refer to sections in other input files.
5068 These structures are kept on per-section lists. The "src_type" field
5069 records the relocation type in case there are multiple relocations on
5070 the same location. FIXME: This is ugly; an alternative might be to
5071 add new symbols with the "owner" field to some other input file. */
5072
5073struct reloc_bfd_fix_struct
5074{
5075 asection *src_sec;
5076 bfd_vma src_offset;
5077 unsigned src_type; /* Relocation type. */
5078
5079 bfd *target_abfd;
5080 asection *target_sec;
5081 bfd_vma target_offset;
5082 bfd_boolean translated;
5083
5084 reloc_bfd_fix *next;
5085};
5086
5087
43cd72b9 5088static reloc_bfd_fix *
7fa3d080
BW
5089reloc_bfd_fix_init (asection *src_sec,
5090 bfd_vma src_offset,
5091 unsigned src_type,
5092 bfd *target_abfd,
5093 asection *target_sec,
5094 bfd_vma target_offset,
5095 bfd_boolean translated)
43cd72b9
BW
5096{
5097 reloc_bfd_fix *fix;
5098
5099 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5100 fix->src_sec = src_sec;
5101 fix->src_offset = src_offset;
5102 fix->src_type = src_type;
5103 fix->target_abfd = target_abfd;
5104 fix->target_sec = target_sec;
5105 fix->target_offset = target_offset;
5106 fix->translated = translated;
5107
5108 return fix;
5109}
5110
5111
5112static void
7fa3d080 5113add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5114{
5115 xtensa_relax_info *relax_info;
5116
5117 relax_info = get_xtensa_relax_info (src_sec);
5118 fix->next = relax_info->fix_list;
5119 relax_info->fix_list = fix;
5120}
5121
5122
5123static int
7fa3d080 5124fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5125{
5126 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5127 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5128
5129 if (a->src_offset != b->src_offset)
5130 return (a->src_offset - b->src_offset);
5131 return (a->src_type - b->src_type);
5132}
5133
5134
5135static void
7fa3d080 5136cache_fix_array (asection *sec)
43cd72b9
BW
5137{
5138 unsigned i, count = 0;
5139 reloc_bfd_fix *r;
5140 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5141
5142 if (relax_info == NULL)
5143 return;
5144 if (relax_info->fix_list == NULL)
5145 return;
5146
5147 for (r = relax_info->fix_list; r != NULL; r = r->next)
5148 count++;
5149
5150 relax_info->fix_array =
5151 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5152 relax_info->fix_array_count = count;
5153
5154 r = relax_info->fix_list;
5155 for (i = 0; i < count; i++, r = r->next)
5156 {
5157 relax_info->fix_array[count - 1 - i] = *r;
5158 relax_info->fix_array[count - 1 - i].next = NULL;
5159 }
5160
5161 qsort (relax_info->fix_array, relax_info->fix_array_count,
5162 sizeof (reloc_bfd_fix), fix_compare);
5163}
5164
5165
5166static reloc_bfd_fix *
7fa3d080 5167get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5168{
5169 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5170 reloc_bfd_fix *rv;
5171 reloc_bfd_fix key;
5172
5173 if (relax_info == NULL)
5174 return NULL;
5175 if (relax_info->fix_list == NULL)
5176 return NULL;
5177
5178 if (relax_info->fix_array == NULL)
5179 cache_fix_array (sec);
5180
5181 key.src_offset = offset;
5182 key.src_type = type;
5183 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5184 sizeof (reloc_bfd_fix), fix_compare);
5185 return rv;
5186}
5187
5188\f
5189/* Section caching. */
5190
5191typedef struct section_cache_struct section_cache_t;
5192
5193struct section_cache_struct
5194{
5195 asection *sec;
5196
5197 bfd_byte *contents; /* Cache of the section contents. */
5198 bfd_size_type content_length;
5199
5200 property_table_entry *ptbl; /* Cache of the section property table. */
5201 unsigned pte_count;
5202
5203 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5204 unsigned reloc_count;
5205};
5206
5207
7fa3d080
BW
5208static void
5209init_section_cache (section_cache_t *sec_cache)
5210{
5211 memset (sec_cache, 0, sizeof (*sec_cache));
5212}
43cd72b9
BW
5213
5214
5215static void
7fa3d080 5216clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5217{
7fa3d080
BW
5218 if (sec_cache->sec)
5219 {
5220 release_contents (sec_cache->sec, sec_cache->contents);
5221 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5222 if (sec_cache->ptbl)
5223 free (sec_cache->ptbl);
5224 memset (sec_cache, 0, sizeof (sec_cache));
5225 }
43cd72b9
BW
5226}
5227
5228
5229static bfd_boolean
7fa3d080
BW
5230section_cache_section (section_cache_t *sec_cache,
5231 asection *sec,
5232 struct bfd_link_info *link_info)
43cd72b9
BW
5233{
5234 bfd *abfd;
5235 property_table_entry *prop_table = NULL;
5236 int ptblsize = 0;
5237 bfd_byte *contents = NULL;
5238 Elf_Internal_Rela *internal_relocs = NULL;
5239 bfd_size_type sec_size;
5240
5241 if (sec == NULL)
5242 return FALSE;
5243 if (sec == sec_cache->sec)
5244 return TRUE;
5245
5246 abfd = sec->owner;
5247 sec_size = bfd_get_section_limit (abfd, sec);
5248
5249 /* Get the contents. */
5250 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5251 if (contents == NULL && sec_size != 0)
5252 goto err;
5253
5254 /* Get the relocations. */
5255 internal_relocs = retrieve_internal_relocs (abfd, sec,
5256 link_info->keep_memory);
5257
5258 /* Get the entry table. */
5259 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5260 XTENSA_PROP_SEC_NAME, FALSE);
5261 if (ptblsize < 0)
5262 goto err;
5263
5264 /* Fill in the new section cache. */
5265 clear_section_cache (sec_cache);
5266 memset (sec_cache, 0, sizeof (sec_cache));
5267
5268 sec_cache->sec = sec;
5269 sec_cache->contents = contents;
5270 sec_cache->content_length = sec_size;
5271 sec_cache->relocs = internal_relocs;
5272 sec_cache->reloc_count = sec->reloc_count;
5273 sec_cache->pte_count = ptblsize;
5274 sec_cache->ptbl = prop_table;
5275
5276 return TRUE;
5277
5278 err:
5279 release_contents (sec, contents);
5280 release_internal_relocs (sec, internal_relocs);
5281 if (prop_table)
5282 free (prop_table);
5283 return FALSE;
5284}
5285
43cd72b9
BW
5286\f
5287/* Extended basic blocks. */
5288
5289/* An ebb_struct represents an Extended Basic Block. Within this
5290 range, we guarantee that all instructions are decodable, the
5291 property table entries are contiguous, and no property table
5292 specifies a segment that cannot have instructions moved. This
5293 structure contains caches of the contents, property table and
5294 relocations for the specified section for easy use. The range is
5295 specified by ranges of indices for the byte offset, property table
5296 offsets and relocation offsets. These must be consistent. */
5297
5298typedef struct ebb_struct ebb_t;
5299
5300struct ebb_struct
5301{
5302 asection *sec;
5303
5304 bfd_byte *contents; /* Cache of the section contents. */
5305 bfd_size_type content_length;
5306
5307 property_table_entry *ptbl; /* Cache of the section property table. */
5308 unsigned pte_count;
5309
5310 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5311 unsigned reloc_count;
5312
5313 bfd_vma start_offset; /* Offset in section. */
5314 unsigned start_ptbl_idx; /* Offset in the property table. */
5315 unsigned start_reloc_idx; /* Offset in the relocations. */
5316
5317 bfd_vma end_offset;
5318 unsigned end_ptbl_idx;
5319 unsigned end_reloc_idx;
5320
5321 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5322
5323 /* The unreachable property table at the end of this set of blocks;
5324 NULL if the end is not an unreachable block. */
5325 property_table_entry *ends_unreachable;
5326};
5327
5328
5329enum ebb_target_enum
5330{
5331 EBB_NO_ALIGN = 0,
5332 EBB_DESIRE_TGT_ALIGN,
5333 EBB_REQUIRE_TGT_ALIGN,
5334 EBB_REQUIRE_LOOP_ALIGN,
5335 EBB_REQUIRE_ALIGN
5336};
5337
5338
5339/* proposed_action_struct is similar to the text_action_struct except
5340 that is represents a potential transformation, not one that will
5341 occur. We build a list of these for an extended basic block
5342 and use them to compute the actual actions desired. We must be
5343 careful that the entire set of actual actions we perform do not
5344 break any relocations that would fit if the actions were not
5345 performed. */
5346
5347typedef struct proposed_action_struct proposed_action;
5348
5349struct proposed_action_struct
5350{
5351 enum ebb_target_enum align_type; /* for the target alignment */
5352 bfd_vma alignment_pow;
5353 text_action_t action;
5354 bfd_vma offset;
5355 int removed_bytes;
5356 bfd_boolean do_action; /* If false, then we will not perform the action. */
5357};
5358
5359
5360/* The ebb_constraint_struct keeps a set of proposed actions for an
5361 extended basic block. */
5362
5363typedef struct ebb_constraint_struct ebb_constraint;
5364
5365struct ebb_constraint_struct
5366{
5367 ebb_t ebb;
5368 bfd_boolean start_movable;
5369
5370 /* Bytes of extra space at the beginning if movable. */
5371 int start_extra_space;
5372
5373 enum ebb_target_enum start_align;
5374
5375 bfd_boolean end_movable;
5376
5377 /* Bytes of extra space at the end if movable. */
5378 int end_extra_space;
5379
5380 unsigned action_count;
5381 unsigned action_allocated;
5382
5383 /* Array of proposed actions. */
5384 proposed_action *actions;
5385
5386 /* Action alignments -- one for each proposed action. */
5387 enum ebb_target_enum *action_aligns;
5388};
5389
5390
43cd72b9 5391static void
7fa3d080 5392init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5393{
5394 memset (c, 0, sizeof (ebb_constraint));
5395}
5396
5397
5398static void
7fa3d080 5399free_ebb_constraint (ebb_constraint *c)
43cd72b9 5400{
7fa3d080 5401 if (c->actions)
43cd72b9
BW
5402 free (c->actions);
5403}
5404
5405
5406static void
7fa3d080
BW
5407init_ebb (ebb_t *ebb,
5408 asection *sec,
5409 bfd_byte *contents,
5410 bfd_size_type content_length,
5411 property_table_entry *prop_table,
5412 unsigned ptblsize,
5413 Elf_Internal_Rela *internal_relocs,
5414 unsigned reloc_count)
43cd72b9
BW
5415{
5416 memset (ebb, 0, sizeof (ebb_t));
5417 ebb->sec = sec;
5418 ebb->contents = contents;
5419 ebb->content_length = content_length;
5420 ebb->ptbl = prop_table;
5421 ebb->pte_count = ptblsize;
5422 ebb->relocs = internal_relocs;
5423 ebb->reloc_count = reloc_count;
5424 ebb->start_offset = 0;
5425 ebb->end_offset = ebb->content_length - 1;
5426 ebb->start_ptbl_idx = 0;
5427 ebb->end_ptbl_idx = ptblsize;
5428 ebb->start_reloc_idx = 0;
5429 ebb->end_reloc_idx = reloc_count;
5430}
5431
5432
5433/* Extend the ebb to all decodable contiguous sections. The algorithm
5434 for building a basic block around an instruction is to push it
5435 forward until we hit the end of a section, an unreachable block or
5436 a block that cannot be transformed. Then we push it backwards
5437 searching for similar conditions. */
5438
7fa3d080
BW
5439static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5440static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5441static bfd_size_type insn_block_decodable_len
5442 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5443
43cd72b9 5444static bfd_boolean
7fa3d080 5445extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5446{
5447 if (!extend_ebb_bounds_forward (ebb))
5448 return FALSE;
5449 if (!extend_ebb_bounds_backward (ebb))
5450 return FALSE;
5451 return TRUE;
5452}
5453
5454
5455static bfd_boolean
7fa3d080 5456extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5457{
5458 property_table_entry *the_entry, *new_entry;
5459
5460 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5461
5462 /* Stop when (1) we cannot decode an instruction, (2) we are at
5463 the end of the property tables, (3) we hit a non-contiguous property
5464 table entry, (4) we hit a NO_TRANSFORM region. */
5465
5466 while (1)
5467 {
5468 bfd_vma entry_end;
5469 bfd_size_type insn_block_len;
5470
5471 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5472 insn_block_len =
5473 insn_block_decodable_len (ebb->contents, ebb->content_length,
5474 ebb->end_offset,
5475 entry_end - ebb->end_offset);
5476 if (insn_block_len != (entry_end - ebb->end_offset))
5477 {
5478 (*_bfd_error_handler)
5479 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5480 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5481 return FALSE;
5482 }
5483 ebb->end_offset += insn_block_len;
5484
5485 if (ebb->end_offset == ebb->sec->size)
5486 ebb->ends_section = TRUE;
5487
5488 /* Update the reloc counter. */
5489 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5490 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5491 < ebb->end_offset))
5492 {
5493 ebb->end_reloc_idx++;
5494 }
5495
5496 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5497 return TRUE;
5498
5499 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5500 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5501 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5502 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5503 break;
5504
5505 if (the_entry->address + the_entry->size != new_entry->address)
5506 break;
5507
5508 the_entry = new_entry;
5509 ebb->end_ptbl_idx++;
5510 }
5511
5512 /* Quick check for an unreachable or end of file just at the end. */
5513 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5514 {
5515 if (ebb->end_offset == ebb->content_length)
5516 ebb->ends_section = TRUE;
5517 }
5518 else
5519 {
5520 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5521 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5522 && the_entry->address + the_entry->size == new_entry->address)
5523 ebb->ends_unreachable = new_entry;
5524 }
5525
5526 /* Any other ending requires exact alignment. */
5527 return TRUE;
5528}
5529
5530
5531static bfd_boolean
7fa3d080 5532extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5533{
5534 property_table_entry *the_entry, *new_entry;
5535
5536 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5537
5538 /* Stop when (1) we cannot decode the instructions in the current entry.
5539 (2) we are at the beginning of the property tables, (3) we hit a
5540 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5541
5542 while (1)
5543 {
5544 bfd_vma block_begin;
5545 bfd_size_type insn_block_len;
5546
5547 block_begin = the_entry->address - ebb->sec->vma;
5548 insn_block_len =
5549 insn_block_decodable_len (ebb->contents, ebb->content_length,
5550 block_begin,
5551 ebb->start_offset - block_begin);
5552 if (insn_block_len != ebb->start_offset - block_begin)
5553 {
5554 (*_bfd_error_handler)
5555 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5556 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5557 return FALSE;
5558 }
5559 ebb->start_offset -= insn_block_len;
5560
5561 /* Update the reloc counter. */
5562 while (ebb->start_reloc_idx > 0
5563 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5564 >= ebb->start_offset))
5565 {
5566 ebb->start_reloc_idx--;
5567 }
5568
5569 if (ebb->start_ptbl_idx == 0)
5570 return TRUE;
5571
5572 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5573 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5574 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5575 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5576 return TRUE;
5577 if (new_entry->address + new_entry->size != the_entry->address)
5578 return TRUE;
5579
5580 the_entry = new_entry;
5581 ebb->start_ptbl_idx--;
5582 }
5583 return TRUE;
5584}
5585
5586
5587static bfd_size_type
7fa3d080
BW
5588insn_block_decodable_len (bfd_byte *contents,
5589 bfd_size_type content_len,
5590 bfd_vma block_offset,
5591 bfd_size_type block_len)
43cd72b9
BW
5592{
5593 bfd_vma offset = block_offset;
5594
5595 while (offset < block_offset + block_len)
5596 {
5597 bfd_size_type insn_len = 0;
5598
5599 insn_len = insn_decode_len (contents, content_len, offset);
5600 if (insn_len == 0)
5601 return (offset - block_offset);
5602 offset += insn_len;
5603 }
5604 return (offset - block_offset);
5605}
5606
5607
5608static void
7fa3d080 5609ebb_propose_action (ebb_constraint *c,
7fa3d080 5610 enum ebb_target_enum align_type,
288f74fa 5611 bfd_vma alignment_pow,
7fa3d080
BW
5612 text_action_t action,
5613 bfd_vma offset,
5614 int removed_bytes,
5615 bfd_boolean do_action)
43cd72b9 5616{
b08b5071 5617 proposed_action *act;
43cd72b9 5618
43cd72b9
BW
5619 if (c->action_allocated <= c->action_count)
5620 {
b08b5071 5621 unsigned new_allocated, i;
823fc61f 5622 proposed_action *new_actions;
b08b5071
BW
5623
5624 new_allocated = (c->action_count + 2) * 2;
823fc61f 5625 new_actions = (proposed_action *)
43cd72b9
BW
5626 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5627
5628 for (i = 0; i < c->action_count; i++)
5629 new_actions[i] = c->actions[i];
7fa3d080 5630 if (c->actions)
43cd72b9
BW
5631 free (c->actions);
5632 c->actions = new_actions;
5633 c->action_allocated = new_allocated;
5634 }
b08b5071
BW
5635
5636 act = &c->actions[c->action_count];
5637 act->align_type = align_type;
5638 act->alignment_pow = alignment_pow;
5639 act->action = action;
5640 act->offset = offset;
5641 act->removed_bytes = removed_bytes;
5642 act->do_action = do_action;
5643
43cd72b9
BW
5644 c->action_count++;
5645}
5646
5647\f
5648/* Access to internal relocations, section contents and symbols. */
5649
5650/* During relaxation, we need to modify relocations, section contents,
5651 and symbol definitions, and we need to keep the original values from
5652 being reloaded from the input files, i.e., we need to "pin" the
5653 modified values in memory. We also want to continue to observe the
5654 setting of the "keep-memory" flag. The following functions wrap the
5655 standard BFD functions to take care of this for us. */
5656
5657static Elf_Internal_Rela *
7fa3d080 5658retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5659{
5660 Elf_Internal_Rela *internal_relocs;
5661
5662 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5663 return NULL;
5664
5665 internal_relocs = elf_section_data (sec)->relocs;
5666 if (internal_relocs == NULL)
5667 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5668 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5669 return internal_relocs;
5670}
5671
5672
5673static void
7fa3d080 5674pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5675{
5676 elf_section_data (sec)->relocs = internal_relocs;
5677}
5678
5679
5680static void
7fa3d080 5681release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5682{
5683 if (internal_relocs
5684 && elf_section_data (sec)->relocs != internal_relocs)
5685 free (internal_relocs);
5686}
5687
5688
5689static bfd_byte *
7fa3d080 5690retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5691{
5692 bfd_byte *contents;
5693 bfd_size_type sec_size;
5694
5695 sec_size = bfd_get_section_limit (abfd, sec);
5696 contents = elf_section_data (sec)->this_hdr.contents;
5697
5698 if (contents == NULL && sec_size != 0)
5699 {
5700 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5701 {
7fa3d080 5702 if (contents)
43cd72b9
BW
5703 free (contents);
5704 return NULL;
5705 }
5706 if (keep_memory)
5707 elf_section_data (sec)->this_hdr.contents = contents;
5708 }
5709 return contents;
5710}
5711
5712
5713static void
7fa3d080 5714pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5715{
5716 elf_section_data (sec)->this_hdr.contents = contents;
5717}
5718
5719
5720static void
7fa3d080 5721release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5722{
5723 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5724 free (contents);
5725}
5726
5727
5728static Elf_Internal_Sym *
7fa3d080 5729retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5730{
5731 Elf_Internal_Shdr *symtab_hdr;
5732 Elf_Internal_Sym *isymbuf;
5733 size_t locsymcount;
5734
5735 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5736 locsymcount = symtab_hdr->sh_info;
5737
5738 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5739 if (isymbuf == NULL && locsymcount != 0)
5740 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5741 NULL, NULL, NULL);
5742
5743 /* Save the symbols for this input file so they won't be read again. */
5744 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5745 symtab_hdr->contents = (unsigned char *) isymbuf;
5746
5747 return isymbuf;
5748}
5749
5750\f
5751/* Code for link-time relaxation. */
5752
5753/* Initialization for relaxation: */
7fa3d080 5754static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5755static bfd_boolean find_relaxable_sections
7fa3d080 5756 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5757static bfd_boolean collect_source_relocs
7fa3d080 5758 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5759static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5760 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5761 bfd_boolean *);
43cd72b9 5762static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5763 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5764static bfd_boolean compute_text_actions
7fa3d080
BW
5765 (bfd *, asection *, struct bfd_link_info *);
5766static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5767static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5768static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5769 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5770 const xtensa_opcode *);
7fa3d080 5771static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5772static void text_action_add_proposed
7fa3d080
BW
5773 (text_action_list *, const ebb_constraint *, asection *);
5774static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5775
5776/* First pass: */
5777static bfd_boolean compute_removed_literals
7fa3d080 5778 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5779static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5780 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5781static bfd_boolean is_removable_literal
7fa3d080 5782 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5783static bfd_boolean remove_dead_literal
7fa3d080
BW
5784 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5785 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5786static bfd_boolean identify_literal_placement
5787 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5788 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5789 source_reloc *, property_table_entry *, int, section_cache_t *,
5790 bfd_boolean);
5791static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5792static bfd_boolean coalesce_shared_literal
7fa3d080 5793 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5794static bfd_boolean move_shared_literal
7fa3d080
BW
5795 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5796 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5797
5798/* Second pass: */
7fa3d080
BW
5799static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5800static bfd_boolean translate_section_fixes (asection *);
5801static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5802static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5803static void shrink_dynamic_reloc_sections
7fa3d080 5804 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5805static bfd_boolean move_literal
7fa3d080
BW
5806 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5807 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5808static bfd_boolean relax_property_section
7fa3d080 5809 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5810
5811/* Third pass: */
7fa3d080 5812static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5813
5814
5815static bfd_boolean
7fa3d080
BW
5816elf_xtensa_relax_section (bfd *abfd,
5817 asection *sec,
5818 struct bfd_link_info *link_info,
5819 bfd_boolean *again)
43cd72b9
BW
5820{
5821 static value_map_hash_table *values = NULL;
5822 static bfd_boolean relocations_analyzed = FALSE;
5823 xtensa_relax_info *relax_info;
5824
5825 if (!relocations_analyzed)
5826 {
5827 /* Do some overall initialization for relaxation. */
5828 values = value_map_hash_table_init ();
5829 if (values == NULL)
5830 return FALSE;
5831 relaxing_section = TRUE;
5832 if (!analyze_relocations (link_info))
5833 return FALSE;
5834 relocations_analyzed = TRUE;
5835 }
5836 *again = FALSE;
5837
5838 /* Don't mess with linker-created sections. */
5839 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5840 return TRUE;
5841
5842 relax_info = get_xtensa_relax_info (sec);
5843 BFD_ASSERT (relax_info != NULL);
5844
5845 switch (relax_info->visited)
5846 {
5847 case 0:
5848 /* Note: It would be nice to fold this pass into
5849 analyze_relocations, but it is important for this step that the
5850 sections be examined in link order. */
5851 if (!compute_removed_literals (abfd, sec, link_info, values))
5852 return FALSE;
5853 *again = TRUE;
5854 break;
5855
5856 case 1:
5857 if (values)
5858 value_map_hash_table_delete (values);
5859 values = NULL;
5860 if (!relax_section (abfd, sec, link_info))
5861 return FALSE;
5862 *again = TRUE;
5863 break;
5864
5865 case 2:
5866 if (!relax_section_symbols (abfd, sec))
5867 return FALSE;
5868 break;
5869 }
5870
5871 relax_info->visited++;
5872 return TRUE;
5873}
5874
5875\f
5876/* Initialization for relaxation. */
5877
5878/* This function is called once at the start of relaxation. It scans
5879 all the input sections and marks the ones that are relaxable (i.e.,
5880 literal sections with L32R relocations against them), and then
5881 collects source_reloc information for all the relocations against
5882 those relaxable sections. During this process, it also detects
5883 longcalls, i.e., calls relaxed by the assembler into indirect
5884 calls, that can be optimized back into direct calls. Within each
5885 extended basic block (ebb) containing an optimized longcall, it
5886 computes a set of "text actions" that can be performed to remove
5887 the L32R associated with the longcall while optionally preserving
5888 branch target alignments. */
5889
5890static bfd_boolean
7fa3d080 5891analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5892{
5893 bfd *abfd;
5894 asection *sec;
5895 bfd_boolean is_relaxable = FALSE;
5896
5897 /* Initialize the per-section relaxation info. */
5898 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5899 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5900 {
5901 init_xtensa_relax_info (sec);
5902 }
5903
5904 /* Mark relaxable sections (and count relocations against each one). */
5905 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5906 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5907 {
5908 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5909 return FALSE;
5910 }
5911
5912 /* Bail out if there are no relaxable sections. */
5913 if (!is_relaxable)
5914 return TRUE;
5915
5916 /* Allocate space for source_relocs. */
5917 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5918 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5919 {
5920 xtensa_relax_info *relax_info;
5921
5922 relax_info = get_xtensa_relax_info (sec);
5923 if (relax_info->is_relaxable_literal_section
5924 || relax_info->is_relaxable_asm_section)
5925 {
5926 relax_info->src_relocs = (source_reloc *)
5927 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5928 }
5929 }
5930
5931 /* Collect info on relocations against each relaxable section. */
5932 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5934 {
5935 if (!collect_source_relocs (abfd, sec, link_info))
5936 return FALSE;
5937 }
5938
5939 /* Compute the text actions. */
5940 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5941 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5942 {
5943 if (!compute_text_actions (abfd, sec, link_info))
5944 return FALSE;
5945 }
5946
5947 return TRUE;
5948}
5949
5950
5951/* Find all the sections that might be relaxed. The motivation for
5952 this pass is that collect_source_relocs() needs to record _all_ the
5953 relocations that target each relaxable section. That is expensive
5954 and unnecessary unless the target section is actually going to be
5955 relaxed. This pass identifies all such sections by checking if
5956 they have L32Rs pointing to them. In the process, the total number
5957 of relocations targeting each section is also counted so that we
5958 know how much space to allocate for source_relocs against each
5959 relaxable literal section. */
5960
5961static bfd_boolean
7fa3d080
BW
5962find_relaxable_sections (bfd *abfd,
5963 asection *sec,
5964 struct bfd_link_info *link_info,
5965 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5966{
5967 Elf_Internal_Rela *internal_relocs;
5968 bfd_byte *contents;
5969 bfd_boolean ok = TRUE;
5970 unsigned i;
5971 xtensa_relax_info *source_relax_info;
5972
5973 internal_relocs = retrieve_internal_relocs (abfd, sec,
5974 link_info->keep_memory);
5975 if (internal_relocs == NULL)
5976 return ok;
5977
5978 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5979 if (contents == NULL && sec->size != 0)
5980 {
5981 ok = FALSE;
5982 goto error_return;
5983 }
5984
5985 source_relax_info = get_xtensa_relax_info (sec);
5986 for (i = 0; i < sec->reloc_count; i++)
5987 {
5988 Elf_Internal_Rela *irel = &internal_relocs[i];
5989 r_reloc r_rel;
5990 asection *target_sec;
5991 xtensa_relax_info *target_relax_info;
5992
5993 /* If this section has not already been marked as "relaxable", and
5994 if it contains any ASM_EXPAND relocations (marking expanded
5995 longcalls) that can be optimized into direct calls, then mark
5996 the section as "relaxable". */
5997 if (source_relax_info
5998 && !source_relax_info->is_relaxable_asm_section
5999 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6000 {
6001 bfd_boolean is_reachable = FALSE;
6002 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6003 link_info, &is_reachable)
6004 && is_reachable)
6005 {
6006 source_relax_info->is_relaxable_asm_section = TRUE;
6007 *is_relaxable_p = TRUE;
6008 }
6009 }
6010
6011 r_reloc_init (&r_rel, abfd, irel, contents,
6012 bfd_get_section_limit (abfd, sec));
6013
6014 target_sec = r_reloc_get_section (&r_rel);
6015 target_relax_info = get_xtensa_relax_info (target_sec);
6016 if (!target_relax_info)
6017 continue;
6018
6019 /* Count PC-relative operand relocations against the target section.
6020 Note: The conditions tested here must match the conditions under
6021 which init_source_reloc is called in collect_source_relocs(). */
6022 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6023 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6024 || is_l32r_relocation (abfd, sec, contents, irel)))
6025 target_relax_info->src_count++;
6026
6027 if (is_l32r_relocation (abfd, sec, contents, irel)
6028 && r_reloc_is_defined (&r_rel))
6029 {
6030 /* Mark the target section as relaxable. */
6031 target_relax_info->is_relaxable_literal_section = TRUE;
6032 *is_relaxable_p = TRUE;
6033 }
6034 }
6035
6036 error_return:
6037 release_contents (sec, contents);
6038 release_internal_relocs (sec, internal_relocs);
6039 return ok;
6040}
6041
6042
6043/* Record _all_ the relocations that point to relaxable sections, and
6044 get rid of ASM_EXPAND relocs by either converting them to
6045 ASM_SIMPLIFY or by removing them. */
6046
6047static bfd_boolean
7fa3d080
BW
6048collect_source_relocs (bfd *abfd,
6049 asection *sec,
6050 struct bfd_link_info *link_info)
43cd72b9
BW
6051{
6052 Elf_Internal_Rela *internal_relocs;
6053 bfd_byte *contents;
6054 bfd_boolean ok = TRUE;
6055 unsigned i;
6056 bfd_size_type sec_size;
6057
6058 internal_relocs = retrieve_internal_relocs (abfd, sec,
6059 link_info->keep_memory);
6060 if (internal_relocs == NULL)
6061 return ok;
6062
6063 sec_size = bfd_get_section_limit (abfd, sec);
6064 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6065 if (contents == NULL && sec_size != 0)
6066 {
6067 ok = FALSE;
6068 goto error_return;
6069 }
6070
6071 /* Record relocations against relaxable literal sections. */
6072 for (i = 0; i < sec->reloc_count; i++)
6073 {
6074 Elf_Internal_Rela *irel = &internal_relocs[i];
6075 r_reloc r_rel;
6076 asection *target_sec;
6077 xtensa_relax_info *target_relax_info;
6078
6079 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6080
6081 target_sec = r_reloc_get_section (&r_rel);
6082 target_relax_info = get_xtensa_relax_info (target_sec);
6083
6084 if (target_relax_info
6085 && (target_relax_info->is_relaxable_literal_section
6086 || target_relax_info->is_relaxable_asm_section))
6087 {
6088 xtensa_opcode opcode = XTENSA_UNDEFINED;
6089 int opnd = -1;
6090 bfd_boolean is_abs_literal = FALSE;
6091
6092 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6093 {
6094 /* None of the current alternate relocs are PC-relative,
6095 and only PC-relative relocs matter here. However, we
6096 still need to record the opcode for literal
6097 coalescing. */
6098 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6099 if (opcode == get_l32r_opcode ())
6100 {
6101 is_abs_literal = TRUE;
6102 opnd = 1;
6103 }
6104 else
6105 opcode = XTENSA_UNDEFINED;
6106 }
6107 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6108 {
6109 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6110 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6111 }
6112
6113 if (opcode != XTENSA_UNDEFINED)
6114 {
6115 int src_next = target_relax_info->src_next++;
6116 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6117
6118 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6119 is_abs_literal);
6120 }
6121 }
6122 }
6123
6124 /* Now get rid of ASM_EXPAND relocations. At this point, the
6125 src_relocs array for the target literal section may still be
6126 incomplete, but it must at least contain the entries for the L32R
6127 relocations associated with ASM_EXPANDs because they were just
6128 added in the preceding loop over the relocations. */
6129
6130 for (i = 0; i < sec->reloc_count; i++)
6131 {
6132 Elf_Internal_Rela *irel = &internal_relocs[i];
6133 bfd_boolean is_reachable;
6134
6135 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6136 &is_reachable))
6137 continue;
6138
6139 if (is_reachable)
6140 {
6141 Elf_Internal_Rela *l32r_irel;
6142 r_reloc r_rel;
6143 asection *target_sec;
6144 xtensa_relax_info *target_relax_info;
6145
6146 /* Mark the source_reloc for the L32R so that it will be
6147 removed in compute_removed_literals(), along with the
6148 associated literal. */
6149 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6150 irel, internal_relocs);
6151 if (l32r_irel == NULL)
6152 continue;
6153
6154 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6155
6156 target_sec = r_reloc_get_section (&r_rel);
6157 target_relax_info = get_xtensa_relax_info (target_sec);
6158
6159 if (target_relax_info
6160 && (target_relax_info->is_relaxable_literal_section
6161 || target_relax_info->is_relaxable_asm_section))
6162 {
6163 source_reloc *s_reloc;
6164
6165 /* Search the source_relocs for the entry corresponding to
6166 the l32r_irel. Note: The src_relocs array is not yet
6167 sorted, but it wouldn't matter anyway because we're
6168 searching by source offset instead of target offset. */
6169 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6170 target_relax_info->src_next,
6171 sec, l32r_irel);
6172 BFD_ASSERT (s_reloc);
6173 s_reloc->is_null = TRUE;
6174 }
6175
6176 /* Convert this reloc to ASM_SIMPLIFY. */
6177 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6178 R_XTENSA_ASM_SIMPLIFY);
6179 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6180
6181 pin_internal_relocs (sec, internal_relocs);
6182 }
6183 else
6184 {
6185 /* It is resolvable but doesn't reach. We resolve now
6186 by eliminating the relocation -- the call will remain
6187 expanded into L32R/CALLX. */
6188 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6189 pin_internal_relocs (sec, internal_relocs);
6190 }
6191 }
6192
6193 error_return:
6194 release_contents (sec, contents);
6195 release_internal_relocs (sec, internal_relocs);
6196 return ok;
6197}
6198
6199
6200/* Return TRUE if the asm expansion can be resolved. Generally it can
6201 be resolved on a final link or when a partial link locates it in the
6202 same section as the target. Set "is_reachable" flag if the target of
6203 the call is within the range of a direct call, given the current VMA
6204 for this section and the target section. */
6205
6206bfd_boolean
7fa3d080
BW
6207is_resolvable_asm_expansion (bfd *abfd,
6208 asection *sec,
6209 bfd_byte *contents,
6210 Elf_Internal_Rela *irel,
6211 struct bfd_link_info *link_info,
6212 bfd_boolean *is_reachable_p)
43cd72b9
BW
6213{
6214 asection *target_sec;
6215 bfd_vma target_offset;
6216 r_reloc r_rel;
6217 xtensa_opcode opcode, direct_call_opcode;
6218 bfd_vma self_address;
6219 bfd_vma dest_address;
6220 bfd_boolean uses_l32r;
6221 bfd_size_type sec_size;
6222
6223 *is_reachable_p = FALSE;
6224
6225 if (contents == NULL)
6226 return FALSE;
6227
6228 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6229 return FALSE;
6230
6231 sec_size = bfd_get_section_limit (abfd, sec);
6232 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6233 sec_size - irel->r_offset, &uses_l32r);
6234 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6235 if (!uses_l32r)
6236 return FALSE;
6237
6238 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6239 if (direct_call_opcode == XTENSA_UNDEFINED)
6240 return FALSE;
6241
6242 /* Check and see that the target resolves. */
6243 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6244 if (!r_reloc_is_defined (&r_rel))
6245 return FALSE;
6246
6247 target_sec = r_reloc_get_section (&r_rel);
6248 target_offset = r_rel.target_offset;
6249
6250 /* If the target is in a shared library, then it doesn't reach. This
6251 isn't supposed to come up because the compiler should never generate
6252 non-PIC calls on systems that use shared libraries, but the linker
6253 shouldn't crash regardless. */
6254 if (!target_sec->output_section)
6255 return FALSE;
6256
6257 /* For relocatable sections, we can only simplify when the output
6258 section of the target is the same as the output section of the
6259 source. */
6260 if (link_info->relocatable
6261 && (target_sec->output_section != sec->output_section
6262 || is_reloc_sym_weak (abfd, irel)))
6263 return FALSE;
6264
6265 self_address = (sec->output_section->vma
6266 + sec->output_offset + irel->r_offset + 3);
6267 dest_address = (target_sec->output_section->vma
6268 + target_sec->output_offset + target_offset);
6269
6270 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6271 self_address, dest_address);
6272
6273 if ((self_address >> CALL_SEGMENT_BITS) !=
6274 (dest_address >> CALL_SEGMENT_BITS))
6275 return FALSE;
6276
6277 return TRUE;
6278}
6279
6280
6281static Elf_Internal_Rela *
7fa3d080
BW
6282find_associated_l32r_irel (bfd *abfd,
6283 asection *sec,
6284 bfd_byte *contents,
6285 Elf_Internal_Rela *other_irel,
6286 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6287{
6288 unsigned i;
e0001a05 6289
43cd72b9
BW
6290 for (i = 0; i < sec->reloc_count; i++)
6291 {
6292 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6293
43cd72b9
BW
6294 if (irel == other_irel)
6295 continue;
6296 if (irel->r_offset != other_irel->r_offset)
6297 continue;
6298 if (is_l32r_relocation (abfd, sec, contents, irel))
6299 return irel;
6300 }
6301
6302 return NULL;
e0001a05
NC
6303}
6304
6305
cb337148
BW
6306static xtensa_opcode *
6307build_reloc_opcodes (bfd *abfd,
6308 asection *sec,
6309 bfd_byte *contents,
6310 Elf_Internal_Rela *internal_relocs)
6311{
6312 unsigned i;
6313 xtensa_opcode *reloc_opcodes =
6314 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6315 for (i = 0; i < sec->reloc_count; i++)
6316 {
6317 Elf_Internal_Rela *irel = &internal_relocs[i];
6318 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6319 }
6320 return reloc_opcodes;
6321}
6322
6323
43cd72b9
BW
6324/* The compute_text_actions function will build a list of potential
6325 transformation actions for code in the extended basic block of each
6326 longcall that is optimized to a direct call. From this list we
6327 generate a set of actions to actually perform that optimizes for
6328 space and, if not using size_opt, maintains branch target
6329 alignments.
e0001a05 6330
43cd72b9
BW
6331 These actions to be performed are placed on a per-section list.
6332 The actual changes are performed by relax_section() in the second
6333 pass. */
6334
6335bfd_boolean
7fa3d080
BW
6336compute_text_actions (bfd *abfd,
6337 asection *sec,
6338 struct bfd_link_info *link_info)
e0001a05 6339{
cb337148 6340 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6341 xtensa_relax_info *relax_info;
e0001a05 6342 bfd_byte *contents;
43cd72b9 6343 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6344 bfd_boolean ok = TRUE;
6345 unsigned i;
43cd72b9
BW
6346 property_table_entry *prop_table = 0;
6347 int ptblsize = 0;
6348 bfd_size_type sec_size;
6349 static bfd_boolean no_insn_move = FALSE;
6350
6351 if (no_insn_move)
6352 return ok;
6353
6354 /* Do nothing if the section contains no optimized longcalls. */
6355 relax_info = get_xtensa_relax_info (sec);
6356 BFD_ASSERT (relax_info);
6357 if (!relax_info->is_relaxable_asm_section)
6358 return ok;
e0001a05
NC
6359
6360 internal_relocs = retrieve_internal_relocs (abfd, sec,
6361 link_info->keep_memory);
e0001a05 6362
43cd72b9
BW
6363 if (internal_relocs)
6364 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6365 internal_reloc_compare);
6366
6367 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6368 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6369 if (contents == NULL && sec_size != 0)
e0001a05
NC
6370 {
6371 ok = FALSE;
6372 goto error_return;
6373 }
6374
43cd72b9
BW
6375 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6376 XTENSA_PROP_SEC_NAME, FALSE);
6377 if (ptblsize < 0)
6378 {
6379 ok = FALSE;
6380 goto error_return;
6381 }
6382
6383 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6384 {
6385 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6386 bfd_vma r_offset;
6387 property_table_entry *the_entry;
6388 int ptbl_idx;
6389 ebb_t *ebb;
6390 ebb_constraint ebb_table;
6391 bfd_size_type simplify_size;
6392
6393 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6394 continue;
6395 r_offset = irel->r_offset;
e0001a05 6396
43cd72b9
BW
6397 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6398 if (simplify_size == 0)
6399 {
6400 (*_bfd_error_handler)
6401 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6402 sec->owner, sec, r_offset);
6403 continue;
6404 }
e0001a05 6405
43cd72b9
BW
6406 /* If the instruction table is not around, then don't do this
6407 relaxation. */
6408 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6409 sec->vma + irel->r_offset);
6410 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6411 {
6412 text_action_add (&relax_info->action_list,
6413 ta_convert_longcall, sec, r_offset,
6414 0);
6415 continue;
6416 }
6417
6418 /* If the next longcall happens to be at the same address as an
6419 unreachable section of size 0, then skip forward. */
6420 ptbl_idx = the_entry - prop_table;
6421 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6422 && the_entry->size == 0
6423 && ptbl_idx + 1 < ptblsize
6424 && (prop_table[ptbl_idx + 1].address
6425 == prop_table[ptbl_idx].address))
6426 {
6427 ptbl_idx++;
6428 the_entry++;
6429 }
e0001a05 6430
43cd72b9
BW
6431 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6432 /* NO_REORDER is OK */
6433 continue;
e0001a05 6434
43cd72b9
BW
6435 init_ebb_constraint (&ebb_table);
6436 ebb = &ebb_table.ebb;
6437 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6438 internal_relocs, sec->reloc_count);
6439 ebb->start_offset = r_offset + simplify_size;
6440 ebb->end_offset = r_offset + simplify_size;
6441 ebb->start_ptbl_idx = ptbl_idx;
6442 ebb->end_ptbl_idx = ptbl_idx;
6443 ebb->start_reloc_idx = i;
6444 ebb->end_reloc_idx = i;
6445
cb337148
BW
6446 /* Precompute the opcode for each relocation. */
6447 if (reloc_opcodes == NULL)
6448 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6449 internal_relocs);
6450
43cd72b9
BW
6451 if (!extend_ebb_bounds (ebb)
6452 || !compute_ebb_proposed_actions (&ebb_table)
6453 || !compute_ebb_actions (&ebb_table)
6454 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6455 internal_relocs, &ebb_table,
6456 reloc_opcodes)
43cd72b9 6457 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6458 {
43cd72b9
BW
6459 /* If anything goes wrong or we get unlucky and something does
6460 not fit, with our plan because of expansion between
6461 critical branches, just convert to a NOP. */
6462
6463 text_action_add (&relax_info->action_list,
6464 ta_convert_longcall, sec, r_offset, 0);
6465 i = ebb_table.ebb.end_reloc_idx;
6466 free_ebb_constraint (&ebb_table);
6467 continue;
e0001a05 6468 }
43cd72b9
BW
6469
6470 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6471
6472 /* Update the index so we do not go looking at the relocations
6473 we have already processed. */
6474 i = ebb_table.ebb.end_reloc_idx;
6475 free_ebb_constraint (&ebb_table);
e0001a05
NC
6476 }
6477
43cd72b9 6478#if DEBUG
7fa3d080 6479 if (relax_info->action_list.head)
43cd72b9
BW
6480 print_action_list (stderr, &relax_info->action_list);
6481#endif
6482
6483error_return:
e0001a05
NC
6484 release_contents (sec, contents);
6485 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6486 if (prop_table)
6487 free (prop_table);
cb337148
BW
6488 if (reloc_opcodes)
6489 free (reloc_opcodes);
43cd72b9 6490
e0001a05
NC
6491 return ok;
6492}
6493
6494
43cd72b9 6495/* Find all of the possible actions for an extended basic block. */
e0001a05 6496
43cd72b9 6497bfd_boolean
7fa3d080 6498compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6499{
43cd72b9
BW
6500 const ebb_t *ebb = &ebb_table->ebb;
6501 unsigned rel_idx = ebb->start_reloc_idx;
6502 property_table_entry *entry, *start_entry, *end_entry;
e0001a05 6503
43cd72b9
BW
6504 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6505 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6506
43cd72b9 6507 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6508 {
43cd72b9
BW
6509 bfd_vma offset, start_offset, end_offset;
6510 bfd_size_type insn_len;
e0001a05 6511
43cd72b9
BW
6512 start_offset = entry->address - ebb->sec->vma;
6513 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6514
43cd72b9
BW
6515 if (entry == start_entry)
6516 start_offset = ebb->start_offset;
6517 if (entry == end_entry)
6518 end_offset = ebb->end_offset;
6519 offset = start_offset;
e0001a05 6520
43cd72b9
BW
6521 if (offset == entry->address - ebb->sec->vma
6522 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6523 {
6524 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6525 BFD_ASSERT (offset != end_offset);
6526 if (offset == end_offset)
6527 return FALSE;
e0001a05 6528
43cd72b9
BW
6529 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6530 offset);
6531
6532 /* Propose no actions for a section with an undecodable offset. */
6533 if (insn_len == 0)
6534 {
6535 (*_bfd_error_handler)
6536 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6537 ebb->sec->owner, ebb->sec, offset);
6538 return FALSE;
6539 }
6540 if (check_branch_target_aligned_address (offset, insn_len))
6541 align_type = EBB_REQUIRE_TGT_ALIGN;
6542
6543 ebb_propose_action (ebb_table, align_type, 0,
6544 ta_none, offset, 0, TRUE);
6545 }
6546
6547 while (offset != end_offset)
e0001a05 6548 {
43cd72b9 6549 Elf_Internal_Rela *irel;
e0001a05 6550 xtensa_opcode opcode;
e0001a05 6551
43cd72b9
BW
6552 while (rel_idx < ebb->end_reloc_idx
6553 && (ebb->relocs[rel_idx].r_offset < offset
6554 || (ebb->relocs[rel_idx].r_offset == offset
6555 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6556 != R_XTENSA_ASM_SIMPLIFY))))
6557 rel_idx++;
6558
6559 /* Check for longcall. */
6560 irel = &ebb->relocs[rel_idx];
6561 if (irel->r_offset == offset
6562 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6563 {
6564 bfd_size_type simplify_size;
e0001a05 6565
43cd72b9
BW
6566 simplify_size = get_asm_simplify_size (ebb->contents,
6567 ebb->content_length,
6568 irel->r_offset);
6569 if (simplify_size == 0)
6570 {
6571 (*_bfd_error_handler)
6572 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6573 ebb->sec->owner, ebb->sec, offset);
6574 return FALSE;
6575 }
6576
6577 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6578 ta_convert_longcall, offset, 0, TRUE);
6579
6580 offset += simplify_size;
6581 continue;
6582 }
e0001a05 6583
43cd72b9
BW
6584 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6585 offset);
6586 /* If the instruction is undecodable, then report an error. */
6587 if (insn_len == 0)
6588 {
6589 (*_bfd_error_handler)
6590 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6591 ebb->sec->owner, ebb->sec, offset);
6592 return FALSE;
6593 }
6594
6595 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6596 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6597 && narrow_instruction (ebb->contents, ebb->content_length,
6598 offset, FALSE))
6599 {
6600 /* Add an instruction narrow action. */
6601 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6602 ta_narrow_insn, offset, 0, FALSE);
6603 offset += insn_len;
6604 continue;
6605 }
6606 if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6607 && widen_instruction (ebb->contents, ebb->content_length,
6608 offset, FALSE))
6609 {
6610 /* Add an instruction widen action. */
6611 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6612 ta_widen_insn, offset, 0, FALSE);
6613 offset += insn_len;
6614 continue;
6615 }
6616 opcode = insn_decode_opcode (ebb->contents, ebb->content_length,
6617 offset, 0);
6618 if (xtensa_opcode_is_loop (xtensa_default_isa, opcode))
6619 {
6620 /* Check for branch targets. */
6621 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6622 ta_none, offset, 0, TRUE);
6623 offset += insn_len;
6624 continue;
6625 }
6626
6627 offset += insn_len;
e0001a05
NC
6628 }
6629 }
6630
43cd72b9
BW
6631 if (ebb->ends_unreachable)
6632 {
6633 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6634 ta_fill, ebb->end_offset, 0, TRUE);
6635 }
e0001a05 6636
43cd72b9
BW
6637 return TRUE;
6638}
6639
6640
6641/* After all of the information has collected about the
6642 transformations possible in an EBB, compute the appropriate actions
6643 here in compute_ebb_actions. We still must check later to make
6644 sure that the actions do not break any relocations. The algorithm
6645 used here is pretty greedy. Basically, it removes as many no-ops
6646 as possible so that the end of the EBB has the same alignment
6647 characteristics as the original. First, it uses narrowing, then
6648 fill space at the end of the EBB, and finally widenings. If that
6649 does not work, it tries again with one fewer no-op removed. The
6650 optimization will only be performed if all of the branch targets
6651 that were aligned before transformation are also aligned after the
6652 transformation.
6653
6654 When the size_opt flag is set, ignore the branch target alignments,
6655 narrow all wide instructions, and remove all no-ops unless the end
6656 of the EBB prevents it. */
6657
6658bfd_boolean
7fa3d080 6659compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6660{
6661 unsigned i = 0;
6662 unsigned j;
6663 int removed_bytes = 0;
6664 ebb_t *ebb = &ebb_table->ebb;
6665 unsigned seg_idx_start = 0;
6666 unsigned seg_idx_end = 0;
6667
6668 /* We perform this like the assembler relaxation algorithm: Start by
6669 assuming all instructions are narrow and all no-ops removed; then
6670 walk through.... */
6671
6672 /* For each segment of this that has a solid constraint, check to
6673 see if there are any combinations that will keep the constraint.
6674 If so, use it. */
6675 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6676 {
43cd72b9
BW
6677 bfd_boolean requires_text_end_align = FALSE;
6678 unsigned longcall_count = 0;
6679 unsigned longcall_convert_count = 0;
6680 unsigned narrowable_count = 0;
6681 unsigned narrowable_convert_count = 0;
6682 unsigned widenable_count = 0;
6683 unsigned widenable_convert_count = 0;
e0001a05 6684
43cd72b9
BW
6685 proposed_action *action = NULL;
6686 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6687
43cd72b9 6688 seg_idx_start = seg_idx_end;
e0001a05 6689
43cd72b9
BW
6690 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6691 {
6692 action = &ebb_table->actions[i];
6693 if (action->action == ta_convert_longcall)
6694 longcall_count++;
6695 if (action->action == ta_narrow_insn)
6696 narrowable_count++;
6697 if (action->action == ta_widen_insn)
6698 widenable_count++;
6699 if (action->action == ta_fill)
6700 break;
6701 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6702 break;
6703 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6704 && !elf32xtensa_size_opt)
6705 break;
6706 }
6707 seg_idx_end = i;
e0001a05 6708
43cd72b9
BW
6709 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6710 requires_text_end_align = TRUE;
e0001a05 6711
43cd72b9
BW
6712 if (elf32xtensa_size_opt && !requires_text_end_align
6713 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6714 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6715 {
6716 longcall_convert_count = longcall_count;
6717 narrowable_convert_count = narrowable_count;
6718 widenable_convert_count = 0;
6719 }
6720 else
6721 {
6722 /* There is a constraint. Convert the max number of longcalls. */
6723 narrowable_convert_count = 0;
6724 longcall_convert_count = 0;
6725 widenable_convert_count = 0;
e0001a05 6726
43cd72b9 6727 for (j = 0; j < longcall_count; j++)
e0001a05 6728 {
43cd72b9
BW
6729 int removed = (longcall_count - j) * 3 & (align - 1);
6730 unsigned desire_narrow = (align - removed) & (align - 1);
6731 unsigned desire_widen = removed;
6732 if (desire_narrow <= narrowable_count)
6733 {
6734 narrowable_convert_count = desire_narrow;
6735 narrowable_convert_count +=
6736 (align * ((narrowable_count - narrowable_convert_count)
6737 / align));
6738 longcall_convert_count = (longcall_count - j);
6739 widenable_convert_count = 0;
6740 break;
6741 }
6742 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6743 {
6744 narrowable_convert_count = 0;
6745 longcall_convert_count = longcall_count - j;
6746 widenable_convert_count = desire_widen;
6747 break;
6748 }
6749 }
6750 }
e0001a05 6751
43cd72b9
BW
6752 /* Now the number of conversions are saved. Do them. */
6753 for (i = seg_idx_start; i < seg_idx_end; i++)
6754 {
6755 action = &ebb_table->actions[i];
6756 switch (action->action)
6757 {
6758 case ta_convert_longcall:
6759 if (longcall_convert_count != 0)
6760 {
6761 action->action = ta_remove_longcall;
6762 action->do_action = TRUE;
6763 action->removed_bytes += 3;
6764 longcall_convert_count--;
6765 }
6766 break;
6767 case ta_narrow_insn:
6768 if (narrowable_convert_count != 0)
6769 {
6770 action->do_action = TRUE;
6771 action->removed_bytes += 1;
6772 narrowable_convert_count--;
6773 }
6774 break;
6775 case ta_widen_insn:
6776 if (widenable_convert_count != 0)
6777 {
6778 action->do_action = TRUE;
6779 action->removed_bytes -= 1;
6780 widenable_convert_count--;
6781 }
6782 break;
6783 default:
6784 break;
e0001a05 6785 }
43cd72b9
BW
6786 }
6787 }
e0001a05 6788
43cd72b9
BW
6789 /* Now we move on to some local opts. Try to remove each of the
6790 remaining longcalls. */
e0001a05 6791
43cd72b9
BW
6792 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6793 {
6794 removed_bytes = 0;
6795 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6796 {
43cd72b9
BW
6797 int old_removed_bytes = removed_bytes;
6798 proposed_action *action = &ebb_table->actions[i];
6799
6800 if (action->do_action && action->action == ta_convert_longcall)
6801 {
6802 bfd_boolean bad_alignment = FALSE;
6803 removed_bytes += 3;
6804 for (j = i + 1; j < ebb_table->action_count; j++)
6805 {
6806 proposed_action *new_action = &ebb_table->actions[j];
6807 bfd_vma offset = new_action->offset;
6808 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6809 {
6810 if (!check_branch_target_aligned
6811 (ebb_table->ebb.contents,
6812 ebb_table->ebb.content_length,
6813 offset, offset - removed_bytes))
6814 {
6815 bad_alignment = TRUE;
6816 break;
6817 }
6818 }
6819 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6820 {
6821 if (!check_loop_aligned (ebb_table->ebb.contents,
6822 ebb_table->ebb.content_length,
6823 offset,
6824 offset - removed_bytes))
6825 {
6826 bad_alignment = TRUE;
6827 break;
6828 }
6829 }
6830 if (new_action->action == ta_narrow_insn
6831 && !new_action->do_action
6832 && ebb_table->ebb.sec->alignment_power == 2)
6833 {
6834 /* Narrow an instruction and we are done. */
6835 new_action->do_action = TRUE;
6836 new_action->removed_bytes += 1;
6837 bad_alignment = FALSE;
6838 break;
6839 }
6840 if (new_action->action == ta_widen_insn
6841 && new_action->do_action
6842 && ebb_table->ebb.sec->alignment_power == 2)
6843 {
6844 /* Narrow an instruction and we are done. */
6845 new_action->do_action = FALSE;
6846 new_action->removed_bytes += 1;
6847 bad_alignment = FALSE;
6848 break;
6849 }
6850 }
6851 if (!bad_alignment)
6852 {
6853 action->removed_bytes += 3;
6854 action->action = ta_remove_longcall;
6855 action->do_action = TRUE;
6856 }
6857 }
6858 removed_bytes = old_removed_bytes;
6859 if (action->do_action)
6860 removed_bytes += action->removed_bytes;
e0001a05
NC
6861 }
6862 }
6863
43cd72b9
BW
6864 removed_bytes = 0;
6865 for (i = 0; i < ebb_table->action_count; ++i)
6866 {
6867 proposed_action *action = &ebb_table->actions[i];
6868 if (action->do_action)
6869 removed_bytes += action->removed_bytes;
6870 }
6871
6872 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6873 && ebb->ends_unreachable)
6874 {
6875 proposed_action *action;
6876 int br;
6877 int extra_space;
6878
6879 BFD_ASSERT (ebb_table->action_count != 0);
6880 action = &ebb_table->actions[ebb_table->action_count - 1];
6881 BFD_ASSERT (action->action == ta_fill);
6882 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6883
6884 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6885 br = action->removed_bytes + removed_bytes + extra_space;
6886 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6887
6888 action->removed_bytes = extra_space - br;
6889 }
6890 return TRUE;
e0001a05
NC
6891}
6892
6893
03e94c08
BW
6894/* The xlate_map is a sorted array of address mappings designed to
6895 answer the offset_with_removed_text() query with a binary search instead
6896 of a linear search through the section's action_list. */
6897
6898typedef struct xlate_map_entry xlate_map_entry_t;
6899typedef struct xlate_map xlate_map_t;
6900
6901struct xlate_map_entry
6902{
6903 unsigned orig_address;
6904 unsigned new_address;
6905 unsigned size;
6906};
6907
6908struct xlate_map
6909{
6910 unsigned entry_count;
6911 xlate_map_entry_t *entry;
6912};
6913
6914
6915static int
6916xlate_compare (const void *a_v, const void *b_v)
6917{
6918 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6919 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6920 if (a->orig_address < b->orig_address)
6921 return -1;
6922 if (a->orig_address > (b->orig_address + b->size - 1))
6923 return 1;
6924 return 0;
6925}
6926
6927
6928static bfd_vma
6929xlate_offset_with_removed_text (const xlate_map_t *map,
6930 text_action_list *action_list,
6931 bfd_vma offset)
6932{
6933 xlate_map_entry_t tmp;
6934 void *r;
6935 xlate_map_entry_t *e;
6936
6937 if (map == NULL)
6938 return offset_with_removed_text (action_list, offset);
6939
6940 if (map->entry_count == 0)
6941 return offset;
6942
6943 tmp.orig_address = offset;
6944 tmp.new_address = offset;
6945 tmp.size = 1;
6946
6947 r = bsearch (&offset, map->entry, map->entry_count,
6948 sizeof (xlate_map_entry_t), &xlate_compare);
6949 e = (xlate_map_entry_t *) r;
6950
6951 BFD_ASSERT (e != NULL);
6952 if (e == NULL)
6953 return offset;
6954 return e->new_address - e->orig_address + offset;
6955}
6956
6957
6958/* Build a binary searchable offset translation map from a section's
6959 action list. */
6960
6961static xlate_map_t *
6962build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
6963{
6964 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
6965 text_action_list *action_list = &relax_info->action_list;
6966 unsigned num_actions = 0;
6967 text_action *r;
6968 int removed;
6969 xlate_map_entry_t *current_entry;
6970
6971 if (map == NULL)
6972 return NULL;
6973
6974 num_actions = action_list_count (action_list);
6975 map->entry = (xlate_map_entry_t *)
6976 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
6977 if (map->entry == NULL)
6978 {
6979 free (map);
6980 return NULL;
6981 }
6982 map->entry_count = 0;
6983
6984 removed = 0;
6985 current_entry = &map->entry[0];
6986
6987 current_entry->orig_address = 0;
6988 current_entry->new_address = 0;
6989 current_entry->size = 0;
6990
6991 for (r = action_list->head; r != NULL; r = r->next)
6992 {
6993 unsigned orig_size = 0;
6994 switch (r->action)
6995 {
6996 case ta_none:
6997 case ta_remove_insn:
6998 case ta_convert_longcall:
6999 case ta_remove_literal:
7000 case ta_add_literal:
7001 break;
7002 case ta_remove_longcall:
7003 orig_size = 6;
7004 break;
7005 case ta_narrow_insn:
7006 orig_size = 3;
7007 break;
7008 case ta_widen_insn:
7009 orig_size = 2;
7010 break;
7011 case ta_fill:
7012 break;
7013 }
7014 current_entry->size =
7015 r->offset + orig_size - current_entry->orig_address;
7016 if (current_entry->size != 0)
7017 {
7018 current_entry++;
7019 map->entry_count++;
7020 }
7021 current_entry->orig_address = r->offset + orig_size;
7022 removed += r->removed_bytes;
7023 current_entry->new_address = r->offset + orig_size - removed;
7024 current_entry->size = 0;
7025 }
7026
7027 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7028 - current_entry->orig_address);
7029 if (current_entry->size != 0)
7030 map->entry_count++;
7031
7032 return map;
7033}
7034
7035
7036/* Free an offset translation map. */
7037
7038static void
7039free_xlate_map (xlate_map_t *map)
7040{
7041 if (map && map->entry)
7042 free (map->entry);
7043 if (map)
7044 free (map);
7045}
7046
7047
43cd72b9
BW
7048/* Use check_section_ebb_pcrels_fit to make sure that all of the
7049 relocations in a section will fit if a proposed set of actions
7050 are performed. */
e0001a05 7051
43cd72b9 7052static bfd_boolean
7fa3d080
BW
7053check_section_ebb_pcrels_fit (bfd *abfd,
7054 asection *sec,
7055 bfd_byte *contents,
7056 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7057 const ebb_constraint *constraint,
7058 const xtensa_opcode *reloc_opcodes)
e0001a05 7059{
43cd72b9
BW
7060 unsigned i, j;
7061 Elf_Internal_Rela *irel;
03e94c08
BW
7062 xlate_map_t *xmap = NULL;
7063 bfd_boolean ok = TRUE;
43cd72b9 7064 xtensa_relax_info *relax_info;
e0001a05 7065
43cd72b9 7066 relax_info = get_xtensa_relax_info (sec);
e0001a05 7067
03e94c08
BW
7068 if (relax_info && sec->reloc_count > 100)
7069 {
7070 xmap = build_xlate_map (sec, relax_info);
7071 /* NULL indicates out of memory, but the slow version
7072 can still be used. */
7073 }
7074
43cd72b9
BW
7075 for (i = 0; i < sec->reloc_count; i++)
7076 {
7077 r_reloc r_rel;
7078 bfd_vma orig_self_offset, orig_target_offset;
7079 bfd_vma self_offset, target_offset;
7080 int r_type;
7081 reloc_howto_type *howto;
7082 int self_removed_bytes, target_removed_bytes;
e0001a05 7083
43cd72b9
BW
7084 irel = &internal_relocs[i];
7085 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7086
43cd72b9
BW
7087 howto = &elf_howto_table[r_type];
7088 /* We maintain the required invariant: PC-relative relocations
7089 that fit before linking must fit after linking. Thus we only
7090 need to deal with relocations to the same section that are
7091 PC-relative. */
7092 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7093 || !howto->pc_relative)
7094 continue;
e0001a05 7095
43cd72b9
BW
7096 r_reloc_init (&r_rel, abfd, irel, contents,
7097 bfd_get_section_limit (abfd, sec));
e0001a05 7098
43cd72b9
BW
7099 if (r_reloc_get_section (&r_rel) != sec)
7100 continue;
e0001a05 7101
43cd72b9
BW
7102 orig_self_offset = irel->r_offset;
7103 orig_target_offset = r_rel.target_offset;
e0001a05 7104
43cd72b9
BW
7105 self_offset = orig_self_offset;
7106 target_offset = orig_target_offset;
7107
7108 if (relax_info)
7109 {
03e94c08
BW
7110 self_offset =
7111 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7112 orig_self_offset);
7113 target_offset =
7114 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7115 orig_target_offset);
43cd72b9
BW
7116 }
7117
7118 self_removed_bytes = 0;
7119 target_removed_bytes = 0;
7120
7121 for (j = 0; j < constraint->action_count; ++j)
7122 {
7123 proposed_action *action = &constraint->actions[j];
7124 bfd_vma offset = action->offset;
7125 int removed_bytes = action->removed_bytes;
7126 if (offset < orig_self_offset
7127 || (offset == orig_self_offset && action->action == ta_fill
7128 && action->removed_bytes < 0))
7129 self_removed_bytes += removed_bytes;
7130 if (offset < orig_target_offset
7131 || (offset == orig_target_offset && action->action == ta_fill
7132 && action->removed_bytes < 0))
7133 target_removed_bytes += removed_bytes;
7134 }
7135 self_offset -= self_removed_bytes;
7136 target_offset -= target_removed_bytes;
7137
7138 /* Try to encode it. Get the operand and check. */
7139 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7140 {
7141 /* None of the current alternate relocs are PC-relative,
7142 and only PC-relative relocs matter here. */
7143 }
7144 else
7145 {
7146 xtensa_opcode opcode;
7147 int opnum;
7148
cb337148
BW
7149 if (reloc_opcodes)
7150 opcode = reloc_opcodes[i];
7151 else
7152 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7153 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7154 {
7155 ok = FALSE;
7156 break;
7157 }
43cd72b9
BW
7158
7159 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7160 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7161 {
7162 ok = FALSE;
7163 break;
7164 }
43cd72b9
BW
7165
7166 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7167 {
7168 ok = FALSE;
7169 break;
7170 }
43cd72b9
BW
7171 }
7172 }
7173
03e94c08
BW
7174 if (xmap)
7175 free_xlate_map (xmap);
7176
7177 return ok;
43cd72b9
BW
7178}
7179
7180
7181static bfd_boolean
7fa3d080 7182check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7183{
7184 int removed = 0;
7185 unsigned i;
7186
7187 for (i = 0; i < constraint->action_count; i++)
7188 {
7189 const proposed_action *action = &constraint->actions[i];
7190 if (action->do_action)
7191 removed += action->removed_bytes;
7192 }
7193 if (removed < 0)
e0001a05
NC
7194 return FALSE;
7195
7196 return TRUE;
7197}
7198
7199
43cd72b9 7200void
7fa3d080
BW
7201text_action_add_proposed (text_action_list *l,
7202 const ebb_constraint *ebb_table,
7203 asection *sec)
e0001a05
NC
7204{
7205 unsigned i;
7206
43cd72b9 7207 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7208 {
43cd72b9 7209 proposed_action *action = &ebb_table->actions[i];
e0001a05 7210
43cd72b9 7211 if (!action->do_action)
e0001a05 7212 continue;
43cd72b9
BW
7213 switch (action->action)
7214 {
7215 case ta_remove_insn:
7216 case ta_remove_longcall:
7217 case ta_convert_longcall:
7218 case ta_narrow_insn:
7219 case ta_widen_insn:
7220 case ta_fill:
7221 case ta_remove_literal:
7222 text_action_add (l, action->action, sec, action->offset,
7223 action->removed_bytes);
7224 break;
7225 case ta_none:
7226 break;
7227 default:
7228 BFD_ASSERT (0);
7229 break;
7230 }
e0001a05 7231 }
43cd72b9 7232}
e0001a05 7233
43cd72b9
BW
7234
7235int
7fa3d080 7236compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7237{
7238 int fill_extra_space;
7239
7240 if (!entry)
7241 return 0;
7242
7243 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7244 return 0;
7245
7246 fill_extra_space = entry->size;
7247 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7248 {
7249 /* Fill bytes for alignment:
7250 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7251 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7252 int nsm = (1 << pow) - 1;
7253 bfd_vma addr = entry->address + entry->size;
7254 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7255 fill_extra_space += align_fill;
7256 }
7257 return fill_extra_space;
e0001a05
NC
7258}
7259
43cd72b9 7260\f
e0001a05
NC
7261/* First relaxation pass. */
7262
43cd72b9
BW
7263/* If the section contains relaxable literals, check each literal to
7264 see if it has the same value as another literal that has already
7265 been seen, either in the current section or a previous one. If so,
7266 add an entry to the per-section list of removed literals. The
e0001a05
NC
7267 actual changes are deferred until the next pass. */
7268
7269static bfd_boolean
7fa3d080
BW
7270compute_removed_literals (bfd *abfd,
7271 asection *sec,
7272 struct bfd_link_info *link_info,
7273 value_map_hash_table *values)
e0001a05
NC
7274{
7275 xtensa_relax_info *relax_info;
7276 bfd_byte *contents;
7277 Elf_Internal_Rela *internal_relocs;
43cd72b9 7278 source_reloc *src_relocs, *rel;
e0001a05 7279 bfd_boolean ok = TRUE;
43cd72b9
BW
7280 property_table_entry *prop_table = NULL;
7281 int ptblsize;
7282 int i, prev_i;
7283 bfd_boolean last_loc_is_prev = FALSE;
7284 bfd_vma last_target_offset = 0;
7285 section_cache_t target_sec_cache;
7286 bfd_size_type sec_size;
7287
7288 init_section_cache (&target_sec_cache);
e0001a05
NC
7289
7290 /* Do nothing if it is not a relaxable literal section. */
7291 relax_info = get_xtensa_relax_info (sec);
7292 BFD_ASSERT (relax_info);
e0001a05
NC
7293 if (!relax_info->is_relaxable_literal_section)
7294 return ok;
7295
7296 internal_relocs = retrieve_internal_relocs (abfd, sec,
7297 link_info->keep_memory);
7298
43cd72b9 7299 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7300 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7301 if (contents == NULL && sec_size != 0)
e0001a05
NC
7302 {
7303 ok = FALSE;
7304 goto error_return;
7305 }
7306
7307 /* Sort the source_relocs by target offset. */
7308 src_relocs = relax_info->src_relocs;
7309 qsort (src_relocs, relax_info->src_count,
7310 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7311 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7312 internal_reloc_compare);
e0001a05 7313
43cd72b9
BW
7314 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7315 XTENSA_PROP_SEC_NAME, FALSE);
7316 if (ptblsize < 0)
7317 {
7318 ok = FALSE;
7319 goto error_return;
7320 }
7321
7322 prev_i = -1;
e0001a05
NC
7323 for (i = 0; i < relax_info->src_count; i++)
7324 {
e0001a05 7325 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7326
7327 rel = &src_relocs[i];
43cd72b9
BW
7328 if (get_l32r_opcode () != rel->opcode)
7329 continue;
e0001a05
NC
7330 irel = get_irel_at_offset (sec, internal_relocs,
7331 rel->r_rel.target_offset);
7332
43cd72b9
BW
7333 /* If the relocation on this is not a simple R_XTENSA_32 or
7334 R_XTENSA_PLT then do not consider it. This may happen when
7335 the difference of two symbols is used in a literal. */
7336 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7337 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7338 continue;
7339
e0001a05
NC
7340 /* If the target_offset for this relocation is the same as the
7341 previous relocation, then we've already considered whether the
7342 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7343 if (i != 0 && prev_i != -1
7344 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7345 continue;
43cd72b9
BW
7346 prev_i = i;
7347
7348 if (last_loc_is_prev &&
7349 last_target_offset + 4 != rel->r_rel.target_offset)
7350 last_loc_is_prev = FALSE;
e0001a05
NC
7351
7352 /* Check if the relocation was from an L32R that is being removed
7353 because a CALLX was converted to a direct CALL, and check if
7354 there are no other relocations to the literal. */
43cd72b9 7355 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7356 {
43cd72b9
BW
7357 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7358 irel, rel, prop_table, ptblsize))
e0001a05 7359 {
43cd72b9
BW
7360 ok = FALSE;
7361 goto error_return;
e0001a05 7362 }
43cd72b9 7363 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7364 continue;
7365 }
7366
43cd72b9
BW
7367 if (!identify_literal_placement (abfd, sec, contents, link_info,
7368 values,
7369 &last_loc_is_prev, irel,
7370 relax_info->src_count - i, rel,
7371 prop_table, ptblsize,
7372 &target_sec_cache, rel->is_abs_literal))
e0001a05 7373 {
43cd72b9
BW
7374 ok = FALSE;
7375 goto error_return;
7376 }
7377 last_target_offset = rel->r_rel.target_offset;
7378 }
e0001a05 7379
43cd72b9
BW
7380#if DEBUG
7381 print_removed_literals (stderr, &relax_info->removed_list);
7382 print_action_list (stderr, &relax_info->action_list);
7383#endif /* DEBUG */
7384
7385error_return:
7386 if (prop_table) free (prop_table);
7387 clear_section_cache (&target_sec_cache);
7388
7389 release_contents (sec, contents);
7390 release_internal_relocs (sec, internal_relocs);
7391 return ok;
7392}
7393
7394
7395static Elf_Internal_Rela *
7fa3d080
BW
7396get_irel_at_offset (asection *sec,
7397 Elf_Internal_Rela *internal_relocs,
7398 bfd_vma offset)
43cd72b9
BW
7399{
7400 unsigned i;
7401 Elf_Internal_Rela *irel;
7402 unsigned r_type;
7403 Elf_Internal_Rela key;
7404
7405 if (!internal_relocs)
7406 return NULL;
7407
7408 key.r_offset = offset;
7409 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7410 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7411 if (!irel)
7412 return NULL;
7413
7414 /* bsearch does not guarantee which will be returned if there are
7415 multiple matches. We need the first that is not an alignment. */
7416 i = irel - internal_relocs;
7417 while (i > 0)
7418 {
7419 if (internal_relocs[i-1].r_offset != offset)
7420 break;
7421 i--;
7422 }
7423 for ( ; i < sec->reloc_count; i++)
7424 {
7425 irel = &internal_relocs[i];
7426 r_type = ELF32_R_TYPE (irel->r_info);
7427 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7428 return irel;
7429 }
7430
7431 return NULL;
7432}
7433
7434
7435bfd_boolean
7fa3d080
BW
7436is_removable_literal (const source_reloc *rel,
7437 int i,
7438 const source_reloc *src_relocs,
7439 int src_count)
43cd72b9
BW
7440{
7441 const source_reloc *curr_rel;
7442 if (!rel->is_null)
7443 return FALSE;
7444
7445 for (++i; i < src_count; ++i)
7446 {
7447 curr_rel = &src_relocs[i];
7448 /* If all others have the same target offset.... */
7449 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7450 return TRUE;
7451
7452 if (!curr_rel->is_null
7453 && !xtensa_is_property_section (curr_rel->source_sec)
7454 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7455 return FALSE;
7456 }
7457 return TRUE;
7458}
7459
7460
7461bfd_boolean
7fa3d080
BW
7462remove_dead_literal (bfd *abfd,
7463 asection *sec,
7464 struct bfd_link_info *link_info,
7465 Elf_Internal_Rela *internal_relocs,
7466 Elf_Internal_Rela *irel,
7467 source_reloc *rel,
7468 property_table_entry *prop_table,
7469 int ptblsize)
43cd72b9
BW
7470{
7471 property_table_entry *entry;
7472 xtensa_relax_info *relax_info;
7473
7474 relax_info = get_xtensa_relax_info (sec);
7475 if (!relax_info)
7476 return FALSE;
7477
7478 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7479 sec->vma + rel->r_rel.target_offset);
7480
7481 /* Mark the unused literal so that it will be removed. */
7482 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7483
7484 text_action_add (&relax_info->action_list,
7485 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7486
7487 /* If the section is 4-byte aligned, do not add fill. */
7488 if (sec->alignment_power > 2)
7489 {
7490 int fill_extra_space;
7491 bfd_vma entry_sec_offset;
7492 text_action *fa;
7493 property_table_entry *the_add_entry;
7494 int removed_diff;
7495
7496 if (entry)
7497 entry_sec_offset = entry->address - sec->vma + entry->size;
7498 else
7499 entry_sec_offset = rel->r_rel.target_offset + 4;
7500
7501 /* If the literal range is at the end of the section,
7502 do not add fill. */
7503 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7504 entry_sec_offset);
7505 fill_extra_space = compute_fill_extra_space (the_add_entry);
7506
7507 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7508 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7509 -4, fill_extra_space);
7510 if (fa)
7511 adjust_fill_action (fa, removed_diff);
7512 else
7513 text_action_add (&relax_info->action_list,
7514 ta_fill, sec, entry_sec_offset, removed_diff);
7515 }
7516
7517 /* Zero out the relocation on this literal location. */
7518 if (irel)
7519 {
7520 if (elf_hash_table (link_info)->dynamic_sections_created)
7521 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7522
7523 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7524 pin_internal_relocs (sec, internal_relocs);
7525 }
7526
7527 /* Do not modify "last_loc_is_prev". */
7528 return TRUE;
7529}
7530
7531
7532bfd_boolean
7fa3d080
BW
7533identify_literal_placement (bfd *abfd,
7534 asection *sec,
7535 bfd_byte *contents,
7536 struct bfd_link_info *link_info,
7537 value_map_hash_table *values,
7538 bfd_boolean *last_loc_is_prev_p,
7539 Elf_Internal_Rela *irel,
7540 int remaining_src_rels,
7541 source_reloc *rel,
7542 property_table_entry *prop_table,
7543 int ptblsize,
7544 section_cache_t *target_sec_cache,
7545 bfd_boolean is_abs_literal)
43cd72b9
BW
7546{
7547 literal_value val;
7548 value_map *val_map;
7549 xtensa_relax_info *relax_info;
7550 bfd_boolean literal_placed = FALSE;
7551 r_reloc r_rel;
7552 unsigned long value;
7553 bfd_boolean final_static_link;
7554 bfd_size_type sec_size;
7555
7556 relax_info = get_xtensa_relax_info (sec);
7557 if (!relax_info)
7558 return FALSE;
7559
7560 sec_size = bfd_get_section_limit (abfd, sec);
7561
7562 final_static_link =
7563 (!link_info->relocatable
7564 && !elf_hash_table (link_info)->dynamic_sections_created);
7565
7566 /* The placement algorithm first checks to see if the literal is
7567 already in the value map. If so and the value map is reachable
7568 from all uses, then the literal is moved to that location. If
7569 not, then we identify the last location where a fresh literal was
7570 placed. If the literal can be safely moved there, then we do so.
7571 If not, then we assume that the literal is not to move and leave
7572 the literal where it is, marking it as the last literal
7573 location. */
7574
7575 /* Find the literal value. */
7576 value = 0;
7577 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7578 if (!irel)
7579 {
7580 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7581 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7582 }
7583 init_literal_value (&val, &r_rel, value, is_abs_literal);
7584
7585 /* Check if we've seen another literal with the same value that
7586 is in the same output section. */
7587 val_map = value_map_get_cached_value (values, &val, final_static_link);
7588
7589 if (val_map
7590 && (r_reloc_get_section (&val_map->loc)->output_section
7591 == sec->output_section)
7592 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7593 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7594 {
7595 /* No change to last_loc_is_prev. */
7596 literal_placed = TRUE;
7597 }
7598
7599 /* For relocatable links, do not try to move literals. To do it
7600 correctly might increase the number of relocations in an input
7601 section making the default relocatable linking fail. */
7602 if (!link_info->relocatable && !literal_placed
7603 && values->has_last_loc && !(*last_loc_is_prev_p))
7604 {
7605 asection *target_sec = r_reloc_get_section (&values->last_loc);
7606 if (target_sec && target_sec->output_section == sec->output_section)
7607 {
7608 /* Increment the virtual offset. */
7609 r_reloc try_loc = values->last_loc;
7610 try_loc.virtual_offset += 4;
7611
7612 /* There is a last loc that was in the same output section. */
7613 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7614 && move_shared_literal (sec, link_info, rel,
7615 prop_table, ptblsize,
7616 &try_loc, &val, target_sec_cache))
e0001a05 7617 {
43cd72b9
BW
7618 values->last_loc.virtual_offset += 4;
7619 literal_placed = TRUE;
7620 if (!val_map)
7621 val_map = add_value_map (values, &val, &try_loc,
7622 final_static_link);
7623 else
7624 val_map->loc = try_loc;
e0001a05
NC
7625 }
7626 }
43cd72b9
BW
7627 }
7628
7629 if (!literal_placed)
7630 {
7631 /* Nothing worked, leave the literal alone but update the last loc. */
7632 values->has_last_loc = TRUE;
7633 values->last_loc = rel->r_rel;
7634 if (!val_map)
7635 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7636 else
43cd72b9
BW
7637 val_map->loc = rel->r_rel;
7638 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7639 }
7640
43cd72b9 7641 return TRUE;
e0001a05
NC
7642}
7643
7644
7645/* Check if the original relocations (presumably on L32R instructions)
7646 identified by reloc[0..N] can be changed to reference the literal
7647 identified by r_rel. If r_rel is out of range for any of the
7648 original relocations, then we don't want to coalesce the original
7649 literal with the one at r_rel. We only check reloc[0..N], where the
7650 offsets are all the same as for reloc[0] (i.e., they're all
7651 referencing the same literal) and where N is also bounded by the
7652 number of remaining entries in the "reloc" array. The "reloc" array
7653 is sorted by target offset so we know all the entries for the same
7654 literal will be contiguous. */
7655
7656static bfd_boolean
7fa3d080
BW
7657relocations_reach (source_reloc *reloc,
7658 int remaining_relocs,
7659 const r_reloc *r_rel)
e0001a05
NC
7660{
7661 bfd_vma from_offset, source_address, dest_address;
7662 asection *sec;
7663 int i;
7664
7665 if (!r_reloc_is_defined (r_rel))
7666 return FALSE;
7667
7668 sec = r_reloc_get_section (r_rel);
7669 from_offset = reloc[0].r_rel.target_offset;
7670
7671 for (i = 0; i < remaining_relocs; i++)
7672 {
7673 if (reloc[i].r_rel.target_offset != from_offset)
7674 break;
7675
7676 /* Ignore relocations that have been removed. */
7677 if (reloc[i].is_null)
7678 continue;
7679
7680 /* The original and new output section for these must be the same
7681 in order to coalesce. */
7682 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7683 != sec->output_section)
7684 return FALSE;
7685
d638e0ac
BW
7686 /* Absolute literals in the same output section can always be
7687 combined. */
7688 if (reloc[i].is_abs_literal)
7689 continue;
7690
43cd72b9
BW
7691 /* A literal with no PC-relative relocations can be moved anywhere. */
7692 if (reloc[i].opnd != -1)
e0001a05
NC
7693 {
7694 /* Otherwise, check to see that it fits. */
7695 source_address = (reloc[i].source_sec->output_section->vma
7696 + reloc[i].source_sec->output_offset
7697 + reloc[i].r_rel.rela.r_offset);
7698 dest_address = (sec->output_section->vma
7699 + sec->output_offset
7700 + r_rel->target_offset);
7701
43cd72b9
BW
7702 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7703 source_address, dest_address))
e0001a05
NC
7704 return FALSE;
7705 }
7706 }
7707
7708 return TRUE;
7709}
7710
7711
43cd72b9
BW
7712/* Move a literal to another literal location because it is
7713 the same as the other literal value. */
e0001a05 7714
43cd72b9 7715static bfd_boolean
7fa3d080
BW
7716coalesce_shared_literal (asection *sec,
7717 source_reloc *rel,
7718 property_table_entry *prop_table,
7719 int ptblsize,
7720 value_map *val_map)
e0001a05 7721{
43cd72b9
BW
7722 property_table_entry *entry;
7723 text_action *fa;
7724 property_table_entry *the_add_entry;
7725 int removed_diff;
7726 xtensa_relax_info *relax_info;
7727
7728 relax_info = get_xtensa_relax_info (sec);
7729 if (!relax_info)
7730 return FALSE;
7731
7732 entry = elf_xtensa_find_property_entry
7733 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7734 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7735 return TRUE;
7736
7737 /* Mark that the literal will be coalesced. */
7738 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7739
7740 text_action_add (&relax_info->action_list,
7741 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7742
7743 /* If the section is 4-byte aligned, do not add fill. */
7744 if (sec->alignment_power > 2)
e0001a05 7745 {
43cd72b9
BW
7746 int fill_extra_space;
7747 bfd_vma entry_sec_offset;
7748
7749 if (entry)
7750 entry_sec_offset = entry->address - sec->vma + entry->size;
7751 else
7752 entry_sec_offset = rel->r_rel.target_offset + 4;
7753
7754 /* If the literal range is at the end of the section,
7755 do not add fill. */
7756 fill_extra_space = 0;
7757 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7758 entry_sec_offset);
7759 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7760 fill_extra_space = the_add_entry->size;
7761
7762 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7763 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7764 -4, fill_extra_space);
7765 if (fa)
7766 adjust_fill_action (fa, removed_diff);
7767 else
7768 text_action_add (&relax_info->action_list,
7769 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7770 }
43cd72b9
BW
7771
7772 return TRUE;
7773}
7774
7775
7776/* Move a literal to another location. This may actually increase the
7777 total amount of space used because of alignments so we need to do
7778 this carefully. Also, it may make a branch go out of range. */
7779
7780static bfd_boolean
7fa3d080
BW
7781move_shared_literal (asection *sec,
7782 struct bfd_link_info *link_info,
7783 source_reloc *rel,
7784 property_table_entry *prop_table,
7785 int ptblsize,
7786 const r_reloc *target_loc,
7787 const literal_value *lit_value,
7788 section_cache_t *target_sec_cache)
43cd72b9
BW
7789{
7790 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7791 text_action *fa, *target_fa;
7792 int removed_diff;
7793 xtensa_relax_info *relax_info, *target_relax_info;
7794 asection *target_sec;
7795 ebb_t *ebb;
7796 ebb_constraint ebb_table;
7797 bfd_boolean relocs_fit;
7798
7799 /* If this routine always returns FALSE, the literals that cannot be
7800 coalesced will not be moved. */
7801 if (elf32xtensa_no_literal_movement)
7802 return FALSE;
7803
7804 relax_info = get_xtensa_relax_info (sec);
7805 if (!relax_info)
7806 return FALSE;
7807
7808 target_sec = r_reloc_get_section (target_loc);
7809 target_relax_info = get_xtensa_relax_info (target_sec);
7810
7811 /* Literals to undefined sections may not be moved because they
7812 must report an error. */
7813 if (bfd_is_und_section (target_sec))
7814 return FALSE;
7815
7816 src_entry = elf_xtensa_find_property_entry
7817 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7818
7819 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7820 return FALSE;
7821
7822 target_entry = elf_xtensa_find_property_entry
7823 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7824 target_sec->vma + target_loc->target_offset);
7825
7826 if (!target_entry)
7827 return FALSE;
7828
7829 /* Make sure that we have not broken any branches. */
7830 relocs_fit = FALSE;
7831
7832 init_ebb_constraint (&ebb_table);
7833 ebb = &ebb_table.ebb;
7834 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7835 target_sec_cache->content_length,
7836 target_sec_cache->ptbl, target_sec_cache->pte_count,
7837 target_sec_cache->relocs, target_sec_cache->reloc_count);
7838
7839 /* Propose to add 4 bytes + worst-case alignment size increase to
7840 destination. */
7841 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7842 ta_fill, target_loc->target_offset,
7843 -4 - (1 << target_sec->alignment_power), TRUE);
7844
7845 /* Check all of the PC-relative relocations to make sure they still fit. */
7846 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7847 target_sec_cache->contents,
7848 target_sec_cache->relocs,
cb337148 7849 &ebb_table, NULL);
43cd72b9
BW
7850
7851 if (!relocs_fit)
7852 return FALSE;
7853
7854 text_action_add_literal (&target_relax_info->action_list,
7855 ta_add_literal, target_loc, lit_value, -4);
7856
7857 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7858 {
7859 /* May need to add or remove some fill to maintain alignment. */
7860 int fill_extra_space;
7861 bfd_vma entry_sec_offset;
7862
7863 entry_sec_offset =
7864 target_entry->address - target_sec->vma + target_entry->size;
7865
7866 /* If the literal range is at the end of the section,
7867 do not add fill. */
7868 fill_extra_space = 0;
7869 the_add_entry =
7870 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7871 target_sec_cache->pte_count,
7872 entry_sec_offset);
7873 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7874 fill_extra_space = the_add_entry->size;
7875
7876 target_fa = find_fill_action (&target_relax_info->action_list,
7877 target_sec, entry_sec_offset);
7878 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7879 entry_sec_offset, 4,
7880 fill_extra_space);
7881 if (target_fa)
7882 adjust_fill_action (target_fa, removed_diff);
7883 else
7884 text_action_add (&target_relax_info->action_list,
7885 ta_fill, target_sec, entry_sec_offset, removed_diff);
7886 }
7887
7888 /* Mark that the literal will be moved to the new location. */
7889 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7890
7891 /* Remove the literal. */
7892 text_action_add (&relax_info->action_list,
7893 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7894
7895 /* If the section is 4-byte aligned, do not add fill. */
7896 if (sec->alignment_power > 2 && target_entry != src_entry)
7897 {
7898 int fill_extra_space;
7899 bfd_vma entry_sec_offset;
7900
7901 if (src_entry)
7902 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7903 else
7904 entry_sec_offset = rel->r_rel.target_offset+4;
7905
7906 /* If the literal range is at the end of the section,
7907 do not add fill. */
7908 fill_extra_space = 0;
7909 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7910 entry_sec_offset);
7911 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7912 fill_extra_space = the_add_entry->size;
7913
7914 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7915 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7916 -4, fill_extra_space);
7917 if (fa)
7918 adjust_fill_action (fa, removed_diff);
7919 else
7920 text_action_add (&relax_info->action_list,
7921 ta_fill, sec, entry_sec_offset, removed_diff);
7922 }
7923
7924 return TRUE;
e0001a05
NC
7925}
7926
7927\f
7928/* Second relaxation pass. */
7929
7930/* Modify all of the relocations to point to the right spot, and if this
7931 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 7932 section size. */
e0001a05 7933
43cd72b9 7934bfd_boolean
7fa3d080 7935relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
7936{
7937 Elf_Internal_Rela *internal_relocs;
7938 xtensa_relax_info *relax_info;
7939 bfd_byte *contents;
7940 bfd_boolean ok = TRUE;
7941 unsigned i;
43cd72b9
BW
7942 bfd_boolean rv = FALSE;
7943 bfd_boolean virtual_action;
7944 bfd_size_type sec_size;
e0001a05 7945
43cd72b9 7946 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
7947 relax_info = get_xtensa_relax_info (sec);
7948 BFD_ASSERT (relax_info);
7949
43cd72b9
BW
7950 /* First translate any of the fixes that have been added already. */
7951 translate_section_fixes (sec);
7952
e0001a05
NC
7953 /* Handle property sections (e.g., literal tables) specially. */
7954 if (xtensa_is_property_section (sec))
7955 {
7956 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7957 return relax_property_section (abfd, sec, link_info);
7958 }
7959
43cd72b9
BW
7960 internal_relocs = retrieve_internal_relocs (abfd, sec,
7961 link_info->keep_memory);
7962 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7963 if (contents == NULL && sec_size != 0)
7964 {
7965 ok = FALSE;
7966 goto error_return;
7967 }
7968
7969 if (internal_relocs)
7970 {
7971 for (i = 0; i < sec->reloc_count; i++)
7972 {
7973 Elf_Internal_Rela *irel;
7974 xtensa_relax_info *target_relax_info;
7975 bfd_vma source_offset, old_source_offset;
7976 r_reloc r_rel;
7977 unsigned r_type;
7978 asection *target_sec;
7979
7980 /* Locally change the source address.
7981 Translate the target to the new target address.
7982 If it points to this section and has been removed,
7983 NULLify it.
7984 Write it back. */
7985
7986 irel = &internal_relocs[i];
7987 source_offset = irel->r_offset;
7988 old_source_offset = source_offset;
7989
7990 r_type = ELF32_R_TYPE (irel->r_info);
7991 r_reloc_init (&r_rel, abfd, irel, contents,
7992 bfd_get_section_limit (abfd, sec));
7993
7994 /* If this section could have changed then we may need to
7995 change the relocation's offset. */
7996
7997 if (relax_info->is_relaxable_literal_section
7998 || relax_info->is_relaxable_asm_section)
7999 {
8000 if (r_type != R_XTENSA_NONE
8001 && find_removed_literal (&relax_info->removed_list,
8002 irel->r_offset))
8003 {
8004 /* Remove this relocation. */
8005 if (elf_hash_table (link_info)->dynamic_sections_created)
8006 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8007 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8008 irel->r_offset = offset_with_removed_text
8009 (&relax_info->action_list, irel->r_offset);
8010 pin_internal_relocs (sec, internal_relocs);
8011 continue;
8012 }
8013
8014 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8015 {
8016 text_action *action =
8017 find_insn_action (&relax_info->action_list,
8018 irel->r_offset);
8019 if (action && (action->action == ta_convert_longcall
8020 || action->action == ta_remove_longcall))
8021 {
8022 bfd_reloc_status_type retval;
8023 char *error_message = NULL;
8024
8025 retval = contract_asm_expansion (contents, sec_size,
8026 irel, &error_message);
8027 if (retval != bfd_reloc_ok)
8028 {
8029 (*link_info->callbacks->reloc_dangerous)
8030 (link_info, error_message, abfd, sec,
8031 irel->r_offset);
8032 goto error_return;
8033 }
8034 /* Update the action so that the code that moves
8035 the contents will do the right thing. */
8036 if (action->action == ta_remove_longcall)
8037 action->action = ta_remove_insn;
8038 else
8039 action->action = ta_none;
8040 /* Refresh the info in the r_rel. */
8041 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8042 r_type = ELF32_R_TYPE (irel->r_info);
8043 }
8044 }
8045
8046 source_offset = offset_with_removed_text
8047 (&relax_info->action_list, irel->r_offset);
8048 irel->r_offset = source_offset;
8049 }
8050
8051 /* If the target section could have changed then
8052 we may need to change the relocation's target offset. */
8053
8054 target_sec = r_reloc_get_section (&r_rel);
8055 target_relax_info = get_xtensa_relax_info (target_sec);
8056
8057 if (target_relax_info
8058 && (target_relax_info->is_relaxable_literal_section
8059 || target_relax_info->is_relaxable_asm_section))
8060 {
8061 r_reloc new_reloc;
8062 reloc_bfd_fix *fix;
8063 bfd_vma addend_displacement;
8064
8065 translate_reloc (&r_rel, &new_reloc);
8066
8067 if (r_type == R_XTENSA_DIFF8
8068 || r_type == R_XTENSA_DIFF16
8069 || r_type == R_XTENSA_DIFF32)
8070 {
8071 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8072
8073 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8074 {
8075 (*link_info->callbacks->reloc_dangerous)
8076 (link_info, _("invalid relocation address"),
8077 abfd, sec, old_source_offset);
8078 goto error_return;
8079 }
8080
8081 switch (r_type)
8082 {
8083 case R_XTENSA_DIFF8:
8084 diff_value =
8085 bfd_get_8 (abfd, &contents[old_source_offset]);
8086 break;
8087 case R_XTENSA_DIFF16:
8088 diff_value =
8089 bfd_get_16 (abfd, &contents[old_source_offset]);
8090 break;
8091 case R_XTENSA_DIFF32:
8092 diff_value =
8093 bfd_get_32 (abfd, &contents[old_source_offset]);
8094 break;
8095 }
8096
8097 new_end_offset = offset_with_removed_text
8098 (&target_relax_info->action_list,
8099 r_rel.target_offset + diff_value);
8100 diff_value = new_end_offset - new_reloc.target_offset;
8101
8102 switch (r_type)
8103 {
8104 case R_XTENSA_DIFF8:
8105 diff_mask = 0xff;
8106 bfd_put_8 (abfd, diff_value,
8107 &contents[old_source_offset]);
8108 break;
8109 case R_XTENSA_DIFF16:
8110 diff_mask = 0xffff;
8111 bfd_put_16 (abfd, diff_value,
8112 &contents[old_source_offset]);
8113 break;
8114 case R_XTENSA_DIFF32:
8115 diff_mask = 0xffffffff;
8116 bfd_put_32 (abfd, diff_value,
8117 &contents[old_source_offset]);
8118 break;
8119 }
8120
8121 /* Check for overflow. */
8122 if ((diff_value & ~diff_mask) != 0)
8123 {
8124 (*link_info->callbacks->reloc_dangerous)
8125 (link_info, _("overflow after relaxation"),
8126 abfd, sec, old_source_offset);
8127 goto error_return;
8128 }
8129
8130 pin_contents (sec, contents);
8131 }
8132
8133 /* FIXME: If the relocation still references a section in
8134 the same input file, the relocation should be modified
8135 directly instead of adding a "fix" record. */
8136
8137 addend_displacement =
8138 new_reloc.target_offset + new_reloc.virtual_offset;
8139
8140 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8141 r_reloc_get_section (&new_reloc),
8142 addend_displacement, TRUE);
8143 add_fix (sec, fix);
8144 }
8145
8146 pin_internal_relocs (sec, internal_relocs);
8147 }
8148 }
8149
8150 if ((relax_info->is_relaxable_literal_section
8151 || relax_info->is_relaxable_asm_section)
8152 && relax_info->action_list.head)
8153 {
8154 /* Walk through the planned actions and build up a table
8155 of move, copy and fill records. Use the move, copy and
8156 fill records to perform the actions once. */
8157
8158 bfd_size_type size = sec->size;
8159 int removed = 0;
8160 bfd_size_type final_size, copy_size, orig_insn_size;
8161 bfd_byte *scratch = NULL;
8162 bfd_byte *dup_contents = NULL;
8163 bfd_size_type orig_size = size;
8164 bfd_vma orig_dot = 0;
8165 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8166 orig dot in physical memory. */
8167 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8168 bfd_vma dup_dot = 0;
8169
8170 text_action *action = relax_info->action_list.head;
8171
8172 final_size = sec->size;
8173 for (action = relax_info->action_list.head; action;
8174 action = action->next)
8175 {
8176 final_size -= action->removed_bytes;
8177 }
8178
8179 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8180 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8181
8182 /* The dot is the current fill location. */
8183#if DEBUG
8184 print_action_list (stderr, &relax_info->action_list);
8185#endif
8186
8187 for (action = relax_info->action_list.head; action;
8188 action = action->next)
8189 {
8190 virtual_action = FALSE;
8191 if (action->offset > orig_dot)
8192 {
8193 orig_dot += orig_dot_copied;
8194 orig_dot_copied = 0;
8195 orig_dot_vo = 0;
8196 /* Out of the virtual world. */
8197 }
8198
8199 if (action->offset > orig_dot)
8200 {
8201 copy_size = action->offset - orig_dot;
8202 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8203 orig_dot += copy_size;
8204 dup_dot += copy_size;
8205 BFD_ASSERT (action->offset == orig_dot);
8206 }
8207 else if (action->offset < orig_dot)
8208 {
8209 if (action->action == ta_fill
8210 && action->offset - action->removed_bytes == orig_dot)
8211 {
8212 /* This is OK because the fill only effects the dup_dot. */
8213 }
8214 else if (action->action == ta_add_literal)
8215 {
8216 /* TBD. Might need to handle this. */
8217 }
8218 }
8219 if (action->offset == orig_dot)
8220 {
8221 if (action->virtual_offset > orig_dot_vo)
8222 {
8223 if (orig_dot_vo == 0)
8224 {
8225 /* Need to copy virtual_offset bytes. Probably four. */
8226 copy_size = action->virtual_offset - orig_dot_vo;
8227 memmove (&dup_contents[dup_dot],
8228 &contents[orig_dot], copy_size);
8229 orig_dot_copied = copy_size;
8230 dup_dot += copy_size;
8231 }
8232 virtual_action = TRUE;
8233 }
8234 else
8235 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8236 }
8237 switch (action->action)
8238 {
8239 case ta_remove_literal:
8240 case ta_remove_insn:
8241 BFD_ASSERT (action->removed_bytes >= 0);
8242 orig_dot += action->removed_bytes;
8243 break;
8244
8245 case ta_narrow_insn:
8246 orig_insn_size = 3;
8247 copy_size = 2;
8248 memmove (scratch, &contents[orig_dot], orig_insn_size);
8249 BFD_ASSERT (action->removed_bytes == 1);
8250 rv = narrow_instruction (scratch, final_size, 0, TRUE);
8251 BFD_ASSERT (rv);
8252 memmove (&dup_contents[dup_dot], scratch, copy_size);
8253 orig_dot += orig_insn_size;
8254 dup_dot += copy_size;
8255 break;
8256
8257 case ta_fill:
8258 if (action->removed_bytes >= 0)
8259 orig_dot += action->removed_bytes;
8260 else
8261 {
8262 /* Already zeroed in dup_contents. Just bump the
8263 counters. */
8264 dup_dot += (-action->removed_bytes);
8265 }
8266 break;
8267
8268 case ta_none:
8269 BFD_ASSERT (action->removed_bytes == 0);
8270 break;
8271
8272 case ta_convert_longcall:
8273 case ta_remove_longcall:
8274 /* These will be removed or converted before we get here. */
8275 BFD_ASSERT (0);
8276 break;
8277
8278 case ta_widen_insn:
8279 orig_insn_size = 2;
8280 copy_size = 3;
8281 memmove (scratch, &contents[orig_dot], orig_insn_size);
8282 BFD_ASSERT (action->removed_bytes == -1);
8283 rv = widen_instruction (scratch, final_size, 0, TRUE);
8284 BFD_ASSERT (rv);
8285 memmove (&dup_contents[dup_dot], scratch, copy_size);
8286 orig_dot += orig_insn_size;
8287 dup_dot += copy_size;
8288 break;
8289
8290 case ta_add_literal:
8291 orig_insn_size = 0;
8292 copy_size = 4;
8293 BFD_ASSERT (action->removed_bytes == -4);
8294 /* TBD -- place the literal value here and insert
8295 into the table. */
8296 memset (&dup_contents[dup_dot], 0, 4);
8297 pin_internal_relocs (sec, internal_relocs);
8298 pin_contents (sec, contents);
8299
8300 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8301 relax_info, &internal_relocs, &action->value))
8302 goto error_return;
8303
8304 if (virtual_action)
8305 orig_dot_vo += copy_size;
8306
8307 orig_dot += orig_insn_size;
8308 dup_dot += copy_size;
8309 break;
8310
8311 default:
8312 /* Not implemented yet. */
8313 BFD_ASSERT (0);
8314 break;
8315 }
8316
8317 size -= action->removed_bytes;
8318 removed += action->removed_bytes;
8319 BFD_ASSERT (dup_dot <= final_size);
8320 BFD_ASSERT (orig_dot <= orig_size);
8321 }
8322
8323 orig_dot += orig_dot_copied;
8324 orig_dot_copied = 0;
8325
8326 if (orig_dot != orig_size)
8327 {
8328 copy_size = orig_size - orig_dot;
8329 BFD_ASSERT (orig_size > orig_dot);
8330 BFD_ASSERT (dup_dot + copy_size == final_size);
8331 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8332 orig_dot += copy_size;
8333 dup_dot += copy_size;
8334 }
8335 BFD_ASSERT (orig_size == orig_dot);
8336 BFD_ASSERT (final_size == dup_dot);
8337
8338 /* Move the dup_contents back. */
8339 if (final_size > orig_size)
8340 {
8341 /* Contents need to be reallocated. Swap the dup_contents into
8342 contents. */
8343 sec->contents = dup_contents;
8344 free (contents);
8345 contents = dup_contents;
8346 pin_contents (sec, contents);
8347 }
8348 else
8349 {
8350 BFD_ASSERT (final_size <= orig_size);
8351 memset (contents, 0, orig_size);
8352 memcpy (contents, dup_contents, final_size);
8353 free (dup_contents);
8354 }
8355 free (scratch);
8356 pin_contents (sec, contents);
8357
8358 sec->size = final_size;
8359 }
8360
8361 error_return:
8362 release_internal_relocs (sec, internal_relocs);
8363 release_contents (sec, contents);
8364 return ok;
8365}
8366
8367
8368static bfd_boolean
7fa3d080 8369translate_section_fixes (asection *sec)
43cd72b9
BW
8370{
8371 xtensa_relax_info *relax_info;
8372 reloc_bfd_fix *r;
8373
8374 relax_info = get_xtensa_relax_info (sec);
8375 if (!relax_info)
8376 return TRUE;
8377
8378 for (r = relax_info->fix_list; r != NULL; r = r->next)
8379 if (!translate_reloc_bfd_fix (r))
8380 return FALSE;
e0001a05 8381
43cd72b9
BW
8382 return TRUE;
8383}
e0001a05 8384
e0001a05 8385
43cd72b9
BW
8386/* Translate a fix given the mapping in the relax info for the target
8387 section. If it has already been translated, no work is required. */
e0001a05 8388
43cd72b9 8389static bfd_boolean
7fa3d080 8390translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8391{
8392 reloc_bfd_fix new_fix;
8393 asection *sec;
8394 xtensa_relax_info *relax_info;
8395 removed_literal *removed;
8396 bfd_vma new_offset, target_offset;
e0001a05 8397
43cd72b9
BW
8398 if (fix->translated)
8399 return TRUE;
e0001a05 8400
43cd72b9
BW
8401 sec = fix->target_sec;
8402 target_offset = fix->target_offset;
e0001a05 8403
43cd72b9
BW
8404 relax_info = get_xtensa_relax_info (sec);
8405 if (!relax_info)
8406 {
8407 fix->translated = TRUE;
8408 return TRUE;
8409 }
e0001a05 8410
43cd72b9 8411 new_fix = *fix;
e0001a05 8412
43cd72b9
BW
8413 /* The fix does not need to be translated if the section cannot change. */
8414 if (!relax_info->is_relaxable_literal_section
8415 && !relax_info->is_relaxable_asm_section)
8416 {
8417 fix->translated = TRUE;
8418 return TRUE;
8419 }
e0001a05 8420
43cd72b9
BW
8421 /* If the literal has been moved and this relocation was on an
8422 opcode, then the relocation should move to the new literal
8423 location. Otherwise, the relocation should move within the
8424 section. */
8425
8426 removed = FALSE;
8427 if (is_operand_relocation (fix->src_type))
8428 {
8429 /* Check if the original relocation is against a literal being
8430 removed. */
8431 removed = find_removed_literal (&relax_info->removed_list,
8432 target_offset);
e0001a05
NC
8433 }
8434
43cd72b9 8435 if (removed)
e0001a05 8436 {
43cd72b9 8437 asection *new_sec;
e0001a05 8438
43cd72b9
BW
8439 /* The fact that there is still a relocation to this literal indicates
8440 that the literal is being coalesced, not simply removed. */
8441 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8442
43cd72b9
BW
8443 /* This was moved to some other address (possibly another section). */
8444 new_sec = r_reloc_get_section (&removed->to);
8445 if (new_sec != sec)
e0001a05 8446 {
43cd72b9
BW
8447 sec = new_sec;
8448 relax_info = get_xtensa_relax_info (sec);
8449 if (!relax_info ||
8450 (!relax_info->is_relaxable_literal_section
8451 && !relax_info->is_relaxable_asm_section))
e0001a05 8452 {
43cd72b9
BW
8453 target_offset = removed->to.target_offset;
8454 new_fix.target_sec = new_sec;
8455 new_fix.target_offset = target_offset;
8456 new_fix.translated = TRUE;
8457 *fix = new_fix;
8458 return TRUE;
e0001a05 8459 }
e0001a05 8460 }
43cd72b9
BW
8461 target_offset = removed->to.target_offset;
8462 new_fix.target_sec = new_sec;
e0001a05 8463 }
43cd72b9
BW
8464
8465 /* The target address may have been moved within its section. */
8466 new_offset = offset_with_removed_text (&relax_info->action_list,
8467 target_offset);
8468
8469 new_fix.target_offset = new_offset;
8470 new_fix.target_offset = new_offset;
8471 new_fix.translated = TRUE;
8472 *fix = new_fix;
8473 return TRUE;
e0001a05
NC
8474}
8475
8476
8477/* Fix up a relocation to take account of removed literals. */
8478
8479static void
7fa3d080 8480translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8481{
8482 asection *sec;
8483 xtensa_relax_info *relax_info;
8484 removed_literal *removed;
43cd72b9 8485 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8486
8487 *new_rel = *orig_rel;
8488
8489 if (!r_reloc_is_defined (orig_rel))
8490 return;
8491 sec = r_reloc_get_section (orig_rel);
8492
8493 relax_info = get_xtensa_relax_info (sec);
8494 BFD_ASSERT (relax_info);
8495
43cd72b9
BW
8496 if (!relax_info->is_relaxable_literal_section
8497 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8498 return;
8499
43cd72b9
BW
8500 target_offset = orig_rel->target_offset;
8501
8502 removed = FALSE;
8503 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8504 {
8505 /* Check if the original relocation is against a literal being
8506 removed. */
8507 removed = find_removed_literal (&relax_info->removed_list,
8508 target_offset);
8509 }
8510 if (removed && removed->to.abfd)
e0001a05
NC
8511 {
8512 asection *new_sec;
8513
8514 /* The fact that there is still a relocation to this literal indicates
8515 that the literal is being coalesced, not simply removed. */
8516 BFD_ASSERT (removed->to.abfd != NULL);
8517
43cd72b9
BW
8518 /* This was moved to some other address
8519 (possibly in another section). */
e0001a05
NC
8520 *new_rel = removed->to;
8521 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8522 if (new_sec != sec)
e0001a05
NC
8523 {
8524 sec = new_sec;
8525 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8526 if (!relax_info
8527 || (!relax_info->is_relaxable_literal_section
8528 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8529 return;
8530 }
43cd72b9 8531 target_offset = new_rel->target_offset;
e0001a05
NC
8532 }
8533
8534 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8535 new_offset = offset_with_removed_text (&relax_info->action_list,
8536 target_offset);
e0001a05
NC
8537
8538 /* Modify the offset and addend. */
43cd72b9 8539 removed_bytes = target_offset - new_offset;
e0001a05 8540 new_rel->target_offset = new_offset;
43cd72b9 8541 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8542}
8543
8544
8545/* For dynamic links, there may be a dynamic relocation for each
8546 literal. The number of dynamic relocations must be computed in
8547 size_dynamic_sections, which occurs before relaxation. When a
8548 literal is removed, this function checks if there is a corresponding
8549 dynamic relocation and shrinks the size of the appropriate dynamic
8550 relocation section accordingly. At this point, the contents of the
8551 dynamic relocation sections have not yet been filled in, so there's
8552 nothing else that needs to be done. */
8553
8554static void
7fa3d080
BW
8555shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8556 bfd *abfd,
8557 asection *input_section,
8558 Elf_Internal_Rela *rel)
e0001a05
NC
8559{
8560 Elf_Internal_Shdr *symtab_hdr;
8561 struct elf_link_hash_entry **sym_hashes;
8562 unsigned long r_symndx;
8563 int r_type;
8564 struct elf_link_hash_entry *h;
8565 bfd_boolean dynamic_symbol;
8566
8567 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8568 sym_hashes = elf_sym_hashes (abfd);
8569
8570 r_type = ELF32_R_TYPE (rel->r_info);
8571 r_symndx = ELF32_R_SYM (rel->r_info);
8572
8573 if (r_symndx < symtab_hdr->sh_info)
8574 h = NULL;
8575 else
8576 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8577
571b5725 8578 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05
NC
8579
8580 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8581 && (input_section->flags & SEC_ALLOC) != 0
8582 && (dynamic_symbol || info->shared))
8583 {
8584 bfd *dynobj;
8585 const char *srel_name;
8586 asection *srel;
8587 bfd_boolean is_plt = FALSE;
8588
8589 dynobj = elf_hash_table (info)->dynobj;
8590 BFD_ASSERT (dynobj != NULL);
8591
8592 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8593 {
8594 srel_name = ".rela.plt";
8595 is_plt = TRUE;
8596 }
8597 else
8598 srel_name = ".rela.got";
8599
8600 /* Reduce size of the .rela.* section by one reloc. */
8601 srel = bfd_get_section_by_name (dynobj, srel_name);
8602 BFD_ASSERT (srel != NULL);
eea6121a
AM
8603 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8604 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8605
8606 if (is_plt)
8607 {
8608 asection *splt, *sgotplt, *srelgot;
8609 int reloc_index, chunk;
8610
8611 /* Find the PLT reloc index of the entry being removed. This
8612 is computed from the size of ".rela.plt". It is needed to
8613 figure out which PLT chunk to resize. Usually "last index
8614 = size - 1" since the index starts at zero, but in this
8615 context, the size has just been decremented so there's no
8616 need to subtract one. */
eea6121a 8617 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8618
8619 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8620 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8621 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8622 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8623
8624 /* Check if an entire PLT chunk has just been eliminated. */
8625 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8626 {
8627 /* The two magic GOT entries for that chunk can go away. */
8628 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8629 BFD_ASSERT (srelgot != NULL);
8630 srelgot->reloc_count -= 2;
eea6121a
AM
8631 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8632 sgotplt->size -= 8;
e0001a05
NC
8633
8634 /* There should be only one entry left (and it will be
8635 removed below). */
eea6121a
AM
8636 BFD_ASSERT (sgotplt->size == 4);
8637 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8638 }
8639
eea6121a
AM
8640 BFD_ASSERT (sgotplt->size >= 4);
8641 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8642
eea6121a
AM
8643 sgotplt->size -= 4;
8644 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8645 }
8646 }
8647}
8648
8649
43cd72b9
BW
8650/* Take an r_rel and move it to another section. This usually
8651 requires extending the interal_relocation array and pinning it. If
8652 the original r_rel is from the same BFD, we can complete this here.
8653 Otherwise, we add a fix record to let the final link fix the
8654 appropriate address. Contents and internal relocations for the
8655 section must be pinned after calling this routine. */
8656
8657static bfd_boolean
7fa3d080
BW
8658move_literal (bfd *abfd,
8659 struct bfd_link_info *link_info,
8660 asection *sec,
8661 bfd_vma offset,
8662 bfd_byte *contents,
8663 xtensa_relax_info *relax_info,
8664 Elf_Internal_Rela **internal_relocs_p,
8665 const literal_value *lit)
43cd72b9
BW
8666{
8667 Elf_Internal_Rela *new_relocs = NULL;
8668 size_t new_relocs_count = 0;
8669 Elf_Internal_Rela this_rela;
8670 const r_reloc *r_rel;
8671
8672 r_rel = &lit->r_rel;
8673 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8674
8675 if (r_reloc_is_const (r_rel))
8676 bfd_put_32 (abfd, lit->value, contents + offset);
8677 else
8678 {
8679 int r_type;
8680 unsigned i;
8681 asection *target_sec;
8682 reloc_bfd_fix *fix;
8683 unsigned insert_at;
8684
8685 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8686 target_sec = r_reloc_get_section (r_rel);
8687
8688 /* This is the difficult case. We have to create a fix up. */
8689 this_rela.r_offset = offset;
8690 this_rela.r_info = ELF32_R_INFO (0, r_type);
8691 this_rela.r_addend =
8692 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8693 bfd_put_32 (abfd, lit->value, contents + offset);
8694
8695 /* Currently, we cannot move relocations during a relocatable link. */
8696 BFD_ASSERT (!link_info->relocatable);
8697 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8698 r_reloc_get_section (r_rel),
8699 r_rel->target_offset + r_rel->virtual_offset,
8700 FALSE);
8701 /* We also need to mark that relocations are needed here. */
8702 sec->flags |= SEC_RELOC;
8703
8704 translate_reloc_bfd_fix (fix);
8705 /* This fix has not yet been translated. */
8706 add_fix (sec, fix);
8707
8708 /* Add the relocation. If we have already allocated our own
8709 space for the relocations and we have room for more, then use
8710 it. Otherwise, allocate new space and move the literals. */
8711 insert_at = sec->reloc_count;
8712 for (i = 0; i < sec->reloc_count; ++i)
8713 {
8714 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8715 {
8716 insert_at = i;
8717 break;
8718 }
8719 }
8720
8721 if (*internal_relocs_p != relax_info->allocated_relocs
8722 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8723 {
8724 BFD_ASSERT (relax_info->allocated_relocs == NULL
8725 || sec->reloc_count == relax_info->relocs_count);
8726
8727 if (relax_info->allocated_relocs_count == 0)
8728 new_relocs_count = (sec->reloc_count + 2) * 2;
8729 else
8730 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8731
8732 new_relocs = (Elf_Internal_Rela *)
8733 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8734 if (!new_relocs)
8735 return FALSE;
8736
8737 /* We could handle this more quickly by finding the split point. */
8738 if (insert_at != 0)
8739 memcpy (new_relocs, *internal_relocs_p,
8740 insert_at * sizeof (Elf_Internal_Rela));
8741
8742 new_relocs[insert_at] = this_rela;
8743
8744 if (insert_at != sec->reloc_count)
8745 memcpy (new_relocs + insert_at + 1,
8746 (*internal_relocs_p) + insert_at,
8747 (sec->reloc_count - insert_at)
8748 * sizeof (Elf_Internal_Rela));
8749
8750 if (*internal_relocs_p != relax_info->allocated_relocs)
8751 {
8752 /* The first time we re-allocate, we can only free the
8753 old relocs if they were allocated with bfd_malloc.
8754 This is not true when keep_memory is in effect. */
8755 if (!link_info->keep_memory)
8756 free (*internal_relocs_p);
8757 }
8758 else
8759 free (*internal_relocs_p);
8760 relax_info->allocated_relocs = new_relocs;
8761 relax_info->allocated_relocs_count = new_relocs_count;
8762 elf_section_data (sec)->relocs = new_relocs;
8763 sec->reloc_count++;
8764 relax_info->relocs_count = sec->reloc_count;
8765 *internal_relocs_p = new_relocs;
8766 }
8767 else
8768 {
8769 if (insert_at != sec->reloc_count)
8770 {
8771 unsigned idx;
8772 for (idx = sec->reloc_count; idx > insert_at; idx--)
8773 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8774 }
8775 (*internal_relocs_p)[insert_at] = this_rela;
8776 sec->reloc_count++;
8777 if (relax_info->allocated_relocs)
8778 relax_info->relocs_count = sec->reloc_count;
8779 }
8780 }
8781 return TRUE;
8782}
8783
8784
e0001a05
NC
8785/* This is similar to relax_section except that when a target is moved,
8786 we shift addresses up. We also need to modify the size. This
8787 algorithm does NOT allow for relocations into the middle of the
8788 property sections. */
8789
43cd72b9 8790static bfd_boolean
7fa3d080
BW
8791relax_property_section (bfd *abfd,
8792 asection *sec,
8793 struct bfd_link_info *link_info)
e0001a05
NC
8794{
8795 Elf_Internal_Rela *internal_relocs;
8796 bfd_byte *contents;
8797 unsigned i, nexti;
8798 bfd_boolean ok = TRUE;
43cd72b9
BW
8799 bfd_boolean is_full_prop_section;
8800 size_t last_zfill_target_offset = 0;
8801 asection *last_zfill_target_sec = NULL;
8802 bfd_size_type sec_size;
e0001a05 8803
43cd72b9 8804 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8805 internal_relocs = retrieve_internal_relocs (abfd, sec,
8806 link_info->keep_memory);
8807 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8808 if (contents == NULL && sec_size != 0)
e0001a05
NC
8809 {
8810 ok = FALSE;
8811 goto error_return;
8812 }
8813
43cd72b9
BW
8814 is_full_prop_section =
8815 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8816 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8817 sizeof ".gnu.linkonce.prop." - 1) == 0));
8818
8819 if (internal_relocs)
e0001a05 8820 {
43cd72b9 8821 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8822 {
8823 Elf_Internal_Rela *irel;
8824 xtensa_relax_info *target_relax_info;
e0001a05
NC
8825 unsigned r_type;
8826 asection *target_sec;
43cd72b9
BW
8827 literal_value val;
8828 bfd_byte *size_p, *flags_p;
e0001a05
NC
8829
8830 /* Locally change the source address.
8831 Translate the target to the new target address.
8832 If it points to this section and has been removed, MOVE IT.
8833 Also, don't forget to modify the associated SIZE at
8834 (offset + 4). */
8835
8836 irel = &internal_relocs[i];
8837 r_type = ELF32_R_TYPE (irel->r_info);
8838 if (r_type == R_XTENSA_NONE)
8839 continue;
8840
43cd72b9
BW
8841 /* Find the literal value. */
8842 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8843 size_p = &contents[irel->r_offset + 4];
8844 flags_p = NULL;
8845 if (is_full_prop_section)
8846 {
8847 flags_p = &contents[irel->r_offset + 8];
8848 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8849 }
8850 else
8851 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8852
43cd72b9 8853 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8854 target_relax_info = get_xtensa_relax_info (target_sec);
8855
8856 if (target_relax_info
43cd72b9
BW
8857 && (target_relax_info->is_relaxable_literal_section
8858 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8859 {
8860 /* Translate the relocation's destination. */
43cd72b9 8861 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8862 long old_size, new_size;
8863
43cd72b9
BW
8864 new_offset = offset_with_removed_text
8865 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8866
8867 /* Assert that we are not out of bounds. */
43cd72b9
BW
8868 old_size = bfd_get_32 (abfd, size_p);
8869
8870 if (old_size == 0)
8871 {
8872 /* Only the first zero-sized unreachable entry is
8873 allowed to expand. In this case the new offset
8874 should be the offset before the fill and the new
8875 size is the expansion size. For other zero-sized
8876 entries the resulting size should be zero with an
8877 offset before or after the fill address depending
8878 on whether the expanding unreachable entry
8879 preceeds it. */
8880 if (last_zfill_target_sec
8881 && last_zfill_target_sec == target_sec
8882 && last_zfill_target_offset == val.r_rel.target_offset)
8883 new_end_offset = new_offset;
8884 else
8885 {
8886 new_end_offset = new_offset;
8887 new_offset = offset_with_removed_text_before_fill
8888 (&target_relax_info->action_list,
8889 val.r_rel.target_offset);
8890
8891 /* If it is not unreachable and we have not yet
8892 seen an unreachable at this address, place it
8893 before the fill address. */
8894 if (!flags_p
8895 || (bfd_get_32 (abfd, flags_p)
8896 & XTENSA_PROP_UNREACHABLE) == 0)
8897 new_end_offset = new_offset;
8898 else
8899 {
8900 last_zfill_target_sec = target_sec;
8901 last_zfill_target_offset = val.r_rel.target_offset;
8902 }
8903 }
8904 }
8905 else
8906 {
8907 new_end_offset = offset_with_removed_text_before_fill
8908 (&target_relax_info->action_list,
8909 val.r_rel.target_offset + old_size);
8910 }
e0001a05 8911
e0001a05 8912 new_size = new_end_offset - new_offset;
43cd72b9 8913
e0001a05
NC
8914 if (new_size != old_size)
8915 {
8916 bfd_put_32 (abfd, new_size, size_p);
8917 pin_contents (sec, contents);
8918 }
43cd72b9
BW
8919
8920 if (new_offset != val.r_rel.target_offset)
e0001a05 8921 {
43cd72b9 8922 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8923 irel->r_addend += diff;
8924 pin_internal_relocs (sec, internal_relocs);
8925 }
8926 }
8927 }
8928 }
8929
8930 /* Combine adjacent property table entries. This is also done in
8931 finish_dynamic_sections() but at that point it's too late to
8932 reclaim the space in the output section, so we do this twice. */
8933
43cd72b9
BW
8934 if (internal_relocs && (!link_info->relocatable
8935 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
8936 {
8937 Elf_Internal_Rela *last_irel = NULL;
8938 int removed_bytes = 0;
8939 bfd_vma offset, last_irel_offset;
8940 bfd_vma section_size;
43cd72b9
BW
8941 bfd_size_type entry_size;
8942 flagword predef_flags;
8943
8944 if (is_full_prop_section)
8945 entry_size = 12;
8946 else
8947 entry_size = 8;
8948
8949 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
8950
8951 /* Walk over memory and irels at the same time.
8952 This REQUIRES that the internal_relocs be sorted by offset. */
8953 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8954 internal_reloc_compare);
8955 nexti = 0; /* Index into internal_relocs. */
8956
8957 pin_internal_relocs (sec, internal_relocs);
8958 pin_contents (sec, contents);
8959
8960 last_irel_offset = (bfd_vma) -1;
eea6121a 8961 section_size = sec->size;
43cd72b9 8962 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 8963
43cd72b9 8964 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
8965 {
8966 Elf_Internal_Rela *irel, *next_irel;
8967 bfd_vma bytes_to_remove, size, actual_offset;
8968 bfd_boolean remove_this_irel;
43cd72b9 8969 flagword flags;
e0001a05
NC
8970
8971 irel = NULL;
8972 next_irel = NULL;
8973
8974 /* Find the next two relocations (if there are that many left),
8975 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8976 the starting reloc index. After these two loops, "i"
8977 is the index of the first non-NONE reloc past that starting
8978 index, and "nexti" is the index for the next non-NONE reloc
8979 after "i". */
8980
8981 for (i = nexti; i < sec->reloc_count; i++)
8982 {
8983 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8984 {
8985 irel = &internal_relocs[i];
8986 break;
8987 }
8988 internal_relocs[i].r_offset -= removed_bytes;
8989 }
8990
8991 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
8992 {
8993 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
8994 != R_XTENSA_NONE)
8995 {
8996 next_irel = &internal_relocs[nexti];
8997 break;
8998 }
8999 internal_relocs[nexti].r_offset -= removed_bytes;
9000 }
9001
9002 remove_this_irel = FALSE;
9003 bytes_to_remove = 0;
9004 actual_offset = offset - removed_bytes;
9005 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9006
43cd72b9
BW
9007 if (is_full_prop_section)
9008 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9009 else
9010 flags = predef_flags;
9011
e0001a05
NC
9012 /* Check that the irels are sorted by offset,
9013 with only one per address. */
9014 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
9015 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
9016
43cd72b9
BW
9017 /* Make sure there aren't relocs on the size or flag fields. */
9018 if ((irel && irel->r_offset == offset + 4)
9019 || (is_full_prop_section
9020 && irel && irel->r_offset == offset + 8))
e0001a05
NC
9021 {
9022 irel->r_offset -= removed_bytes;
9023 last_irel_offset = irel->r_offset;
9024 }
43cd72b9
BW
9025 else if (next_irel && (next_irel->r_offset == offset + 4
9026 || (is_full_prop_section
9027 && next_irel->r_offset == offset + 8)))
e0001a05
NC
9028 {
9029 nexti += 1;
9030 irel->r_offset -= removed_bytes;
9031 next_irel->r_offset -= removed_bytes;
9032 last_irel_offset = next_irel->r_offset;
9033 }
43cd72b9
BW
9034 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9035 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9036 {
43cd72b9
BW
9037 /* Always remove entries with zero size and no alignment. */
9038 bytes_to_remove = entry_size;
e0001a05
NC
9039 if (irel && irel->r_offset == offset)
9040 {
9041 remove_this_irel = TRUE;
9042
9043 irel->r_offset -= removed_bytes;
9044 last_irel_offset = irel->r_offset;
9045 }
9046 }
9047 else if (irel && irel->r_offset == offset)
9048 {
9049 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9050 {
9051 if (last_irel)
9052 {
43cd72b9
BW
9053 flagword old_flags;
9054 bfd_vma old_size =
e0001a05 9055 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
9056 bfd_vma old_address =
9057 (last_irel->r_addend
e0001a05 9058 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
9059 bfd_vma new_address =
9060 (irel->r_addend
e0001a05 9061 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
9062 if (is_full_prop_section)
9063 old_flags = bfd_get_32
9064 (abfd, &contents[last_irel->r_offset + 8]);
9065 else
9066 old_flags = predef_flags;
9067
9068 if ((ELF32_R_SYM (irel->r_info)
9069 == ELF32_R_SYM (last_irel->r_info))
9070 && old_address + old_size == new_address
9071 && old_flags == flags
9072 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9073 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9074 {
43cd72b9 9075 /* Fix the old size. */
e0001a05
NC
9076 bfd_put_32 (abfd, old_size + size,
9077 &contents[last_irel->r_offset + 4]);
43cd72b9 9078 bytes_to_remove = entry_size;
e0001a05
NC
9079 remove_this_irel = TRUE;
9080 }
9081 else
9082 last_irel = irel;
9083 }
9084 else
9085 last_irel = irel;
9086 }
9087
9088 irel->r_offset -= removed_bytes;
9089 last_irel_offset = irel->r_offset;
9090 }
9091
9092 if (remove_this_irel)
9093 {
9094 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9095 irel->r_offset -= bytes_to_remove;
9096 }
9097
9098 if (bytes_to_remove != 0)
9099 {
9100 removed_bytes += bytes_to_remove;
43cd72b9 9101 if (offset + bytes_to_remove < section_size)
e0001a05 9102 memmove (&contents[actual_offset],
43cd72b9
BW
9103 &contents[actual_offset + bytes_to_remove],
9104 section_size - offset - bytes_to_remove);
e0001a05
NC
9105 }
9106 }
9107
43cd72b9 9108 if (removed_bytes)
e0001a05
NC
9109 {
9110 /* Clear the removed bytes. */
9111 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9112
eea6121a 9113 sec->size = section_size - removed_bytes;
e901de89
BW
9114
9115 if (xtensa_is_littable_section (sec))
9116 {
9117 bfd *dynobj = elf_hash_table (link_info)->dynobj;
9118 if (dynobj)
9119 {
9120 asection *sgotloc =
9121 bfd_get_section_by_name (dynobj, ".got.loc");
9122 if (sgotloc)
eea6121a 9123 sgotloc->size -= removed_bytes;
e901de89
BW
9124 }
9125 }
e0001a05
NC
9126 }
9127 }
e901de89 9128
e0001a05
NC
9129 error_return:
9130 release_internal_relocs (sec, internal_relocs);
9131 release_contents (sec, contents);
9132 return ok;
9133}
9134
9135\f
9136/* Third relaxation pass. */
9137
9138/* Change symbol values to account for removed literals. */
9139
43cd72b9 9140bfd_boolean
7fa3d080 9141relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9142{
9143 xtensa_relax_info *relax_info;
9144 unsigned int sec_shndx;
9145 Elf_Internal_Shdr *symtab_hdr;
9146 Elf_Internal_Sym *isymbuf;
9147 unsigned i, num_syms, num_locals;
9148
9149 relax_info = get_xtensa_relax_info (sec);
9150 BFD_ASSERT (relax_info);
9151
43cd72b9
BW
9152 if (!relax_info->is_relaxable_literal_section
9153 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9154 return TRUE;
9155
9156 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9157
9158 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9159 isymbuf = retrieve_local_syms (abfd);
9160
9161 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9162 num_locals = symtab_hdr->sh_info;
9163
9164 /* Adjust the local symbols defined in this section. */
9165 for (i = 0; i < num_locals; i++)
9166 {
9167 Elf_Internal_Sym *isym = &isymbuf[i];
9168
9169 if (isym->st_shndx == sec_shndx)
9170 {
43cd72b9
BW
9171 bfd_vma new_address = offset_with_removed_text
9172 (&relax_info->action_list, isym->st_value);
9173 bfd_vma new_size = isym->st_size;
9174
9175 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9176 {
9177 bfd_vma new_end = offset_with_removed_text
9178 (&relax_info->action_list, isym->st_value + isym->st_size);
9179 new_size = new_end - new_address;
9180 }
9181
9182 isym->st_value = new_address;
9183 isym->st_size = new_size;
e0001a05
NC
9184 }
9185 }
9186
9187 /* Now adjust the global symbols defined in this section. */
9188 for (i = 0; i < (num_syms - num_locals); i++)
9189 {
9190 struct elf_link_hash_entry *sym_hash;
9191
9192 sym_hash = elf_sym_hashes (abfd)[i];
9193
9194 if (sym_hash->root.type == bfd_link_hash_warning)
9195 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9196
9197 if ((sym_hash->root.type == bfd_link_hash_defined
9198 || sym_hash->root.type == bfd_link_hash_defweak)
9199 && sym_hash->root.u.def.section == sec)
9200 {
43cd72b9
BW
9201 bfd_vma new_address = offset_with_removed_text
9202 (&relax_info->action_list, sym_hash->root.u.def.value);
9203 bfd_vma new_size = sym_hash->size;
9204
9205 if (sym_hash->type == STT_FUNC)
9206 {
9207 bfd_vma new_end = offset_with_removed_text
9208 (&relax_info->action_list,
9209 sym_hash->root.u.def.value + sym_hash->size);
9210 new_size = new_end - new_address;
9211 }
9212
9213 sym_hash->root.u.def.value = new_address;
9214 sym_hash->size = new_size;
e0001a05
NC
9215 }
9216 }
9217
9218 return TRUE;
9219}
9220
9221\f
9222/* "Fix" handling functions, called while performing relocations. */
9223
43cd72b9 9224static bfd_boolean
7fa3d080
BW
9225do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9226 bfd *input_bfd,
9227 asection *input_section,
9228 bfd_byte *contents)
e0001a05
NC
9229{
9230 r_reloc r_rel;
9231 asection *sec, *old_sec;
9232 bfd_vma old_offset;
9233 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9234 reloc_bfd_fix *fix;
9235
9236 if (r_type == R_XTENSA_NONE)
43cd72b9 9237 return TRUE;
e0001a05 9238
43cd72b9
BW
9239 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9240 if (!fix)
9241 return TRUE;
e0001a05 9242
43cd72b9
BW
9243 r_reloc_init (&r_rel, input_bfd, rel, contents,
9244 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9245 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9246 old_offset = r_rel.target_offset;
9247
9248 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9249 {
43cd72b9
BW
9250 if (r_type != R_XTENSA_ASM_EXPAND)
9251 {
9252 (*_bfd_error_handler)
9253 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9254 input_bfd, input_section, rel->r_offset,
9255 elf_howto_table[r_type].name);
9256 return FALSE;
9257 }
e0001a05
NC
9258 /* Leave it be. Resolution will happen in a later stage. */
9259 }
9260 else
9261 {
9262 sec = fix->target_sec;
9263 rel->r_addend += ((sec->output_offset + fix->target_offset)
9264 - (old_sec->output_offset + old_offset));
9265 }
43cd72b9 9266 return TRUE;
e0001a05
NC
9267}
9268
9269
9270static void
7fa3d080
BW
9271do_fix_for_final_link (Elf_Internal_Rela *rel,
9272 bfd *input_bfd,
9273 asection *input_section,
9274 bfd_byte *contents,
9275 bfd_vma *relocationp)
e0001a05
NC
9276{
9277 asection *sec;
9278 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9279 reloc_bfd_fix *fix;
43cd72b9 9280 bfd_vma fixup_diff;
e0001a05
NC
9281
9282 if (r_type == R_XTENSA_NONE)
9283 return;
9284
43cd72b9
BW
9285 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9286 if (!fix)
e0001a05
NC
9287 return;
9288
9289 sec = fix->target_sec;
43cd72b9
BW
9290
9291 fixup_diff = rel->r_addend;
9292 if (elf_howto_table[fix->src_type].partial_inplace)
9293 {
9294 bfd_vma inplace_val;
9295 BFD_ASSERT (fix->src_offset
9296 < bfd_get_section_limit (input_bfd, input_section));
9297 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9298 fixup_diff += inplace_val;
9299 }
9300
e0001a05
NC
9301 *relocationp = (sec->output_section->vma
9302 + sec->output_offset
43cd72b9 9303 + fix->target_offset - fixup_diff);
e0001a05
NC
9304}
9305
9306\f
9307/* Miscellaneous utility functions.... */
9308
9309static asection *
7fa3d080 9310elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
e0001a05
NC
9311{
9312 char plt_name[10];
9313
9314 if (chunk == 0)
9315 return bfd_get_section_by_name (dynobj, ".plt");
9316
9317 sprintf (plt_name, ".plt.%u", chunk);
9318 return bfd_get_section_by_name (dynobj, plt_name);
9319}
9320
9321
9322static asection *
7fa3d080 9323elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
e0001a05
NC
9324{
9325 char got_name[14];
9326
9327 if (chunk == 0)
9328 return bfd_get_section_by_name (dynobj, ".got.plt");
9329
9330 sprintf (got_name, ".got.plt.%u", chunk);
9331 return bfd_get_section_by_name (dynobj, got_name);
9332}
9333
9334
9335/* Get the input section for a given symbol index.
9336 If the symbol is:
9337 . a section symbol, return the section;
9338 . a common symbol, return the common section;
9339 . an undefined symbol, return the undefined section;
9340 . an indirect symbol, follow the links;
9341 . an absolute value, return the absolute section. */
9342
9343static asection *
7fa3d080 9344get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9345{
9346 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9347 asection *target_sec = NULL;
43cd72b9 9348 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9349 {
9350 Elf_Internal_Sym *isymbuf;
9351 unsigned int section_index;
9352
9353 isymbuf = retrieve_local_syms (abfd);
9354 section_index = isymbuf[r_symndx].st_shndx;
9355
9356 if (section_index == SHN_UNDEF)
9357 target_sec = bfd_und_section_ptr;
9358 else if (section_index > 0 && section_index < SHN_LORESERVE)
9359 target_sec = bfd_section_from_elf_index (abfd, section_index);
9360 else if (section_index == SHN_ABS)
9361 target_sec = bfd_abs_section_ptr;
9362 else if (section_index == SHN_COMMON)
9363 target_sec = bfd_com_section_ptr;
43cd72b9 9364 else
e0001a05
NC
9365 /* Who knows? */
9366 target_sec = NULL;
9367 }
9368 else
9369 {
9370 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9371 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9372
9373 while (h->root.type == bfd_link_hash_indirect
9374 || h->root.type == bfd_link_hash_warning)
9375 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9376
9377 switch (h->root.type)
9378 {
9379 case bfd_link_hash_defined:
9380 case bfd_link_hash_defweak:
9381 target_sec = h->root.u.def.section;
9382 break;
9383 case bfd_link_hash_common:
9384 target_sec = bfd_com_section_ptr;
9385 break;
9386 case bfd_link_hash_undefined:
9387 case bfd_link_hash_undefweak:
9388 target_sec = bfd_und_section_ptr;
9389 break;
9390 default: /* New indirect warning. */
9391 target_sec = bfd_und_section_ptr;
9392 break;
9393 }
9394 }
9395 return target_sec;
9396}
9397
9398
9399static struct elf_link_hash_entry *
7fa3d080 9400get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9401{
9402 unsigned long indx;
9403 struct elf_link_hash_entry *h;
9404 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9405
9406 if (r_symndx < symtab_hdr->sh_info)
9407 return NULL;
43cd72b9 9408
e0001a05
NC
9409 indx = r_symndx - symtab_hdr->sh_info;
9410 h = elf_sym_hashes (abfd)[indx];
9411 while (h->root.type == bfd_link_hash_indirect
9412 || h->root.type == bfd_link_hash_warning)
9413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9414 return h;
9415}
9416
9417
9418/* Get the section-relative offset for a symbol number. */
9419
9420static bfd_vma
7fa3d080 9421get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9422{
9423 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9424 bfd_vma offset = 0;
9425
43cd72b9 9426 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9427 {
9428 Elf_Internal_Sym *isymbuf;
9429 isymbuf = retrieve_local_syms (abfd);
9430 offset = isymbuf[r_symndx].st_value;
9431 }
9432 else
9433 {
9434 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9435 struct elf_link_hash_entry *h =
9436 elf_sym_hashes (abfd)[indx];
9437
9438 while (h->root.type == bfd_link_hash_indirect
9439 || h->root.type == bfd_link_hash_warning)
9440 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9441 if (h->root.type == bfd_link_hash_defined
9442 || h->root.type == bfd_link_hash_defweak)
9443 offset = h->root.u.def.value;
9444 }
9445 return offset;
9446}
9447
9448
9449static bfd_boolean
7fa3d080 9450is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9451{
9452 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9453 struct elf_link_hash_entry *h;
9454
9455 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9456 if (h && h->root.type == bfd_link_hash_defweak)
9457 return TRUE;
9458 return FALSE;
9459}
9460
9461
9462static bfd_boolean
7fa3d080
BW
9463pcrel_reloc_fits (xtensa_opcode opc,
9464 int opnd,
9465 bfd_vma self_address,
9466 bfd_vma dest_address)
e0001a05 9467{
43cd72b9
BW
9468 xtensa_isa isa = xtensa_default_isa;
9469 uint32 valp = dest_address;
9470 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9471 || xtensa_operand_encode (isa, opc, opnd, &valp))
9472 return FALSE;
9473 return TRUE;
e0001a05
NC
9474}
9475
9476
b614a702
BW
9477static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9478static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9479static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
43cd72b9 9480static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
b614a702
BW
9481
9482
e0001a05 9483static bfd_boolean
7fa3d080 9484xtensa_is_property_section (asection *sec)
e0001a05 9485{
b614a702 9486 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
43cd72b9
BW
9487 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9488 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
b614a702 9489 return TRUE;
e901de89 9490
b614a702 9491 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
43cd72b9
BW
9492 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9493 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9494 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
e901de89
BW
9495 return TRUE;
9496
e901de89
BW
9497 return FALSE;
9498}
9499
9500
9501static bfd_boolean
7fa3d080 9502xtensa_is_littable_section (asection *sec)
e901de89 9503{
b614a702
BW
9504 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9505 return TRUE;
e901de89 9506
b614a702
BW
9507 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9508 && sec->name[linkonce_len] == 'p'
9509 && sec->name[linkonce_len + 1] == '.')
e901de89 9510 return TRUE;
e0001a05 9511
e901de89 9512 return FALSE;
e0001a05
NC
9513}
9514
9515
43cd72b9 9516static int
7fa3d080 9517internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9518{
43cd72b9
BW
9519 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9520 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9521
9522 if (a->r_offset != b->r_offset)
9523 return (a->r_offset - b->r_offset);
9524
9525 /* We don't need to sort on these criteria for correctness,
9526 but enforcing a more strict ordering prevents unstable qsort
9527 from behaving differently with different implementations.
9528 Without the code below we get correct but different results
9529 on Solaris 2.7 and 2.8. We would like to always produce the
9530 same results no matter the host. */
9531
9532 if (a->r_info != b->r_info)
9533 return (a->r_info - b->r_info);
9534
9535 return (a->r_addend - b->r_addend);
e0001a05
NC
9536}
9537
9538
9539static int
7fa3d080 9540internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9541{
9542 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9543 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9544
43cd72b9
BW
9545 /* Check if one entry overlaps with the other; this shouldn't happen
9546 except when searching for a match. */
e0001a05
NC
9547 return (a->r_offset - b->r_offset);
9548}
9549
9550
e0001a05 9551char *
7fa3d080 9552xtensa_get_property_section_name (asection *sec, const char *base_name)
e0001a05 9553{
b614a702 9554 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9555 {
b614a702
BW
9556 char *prop_sec_name;
9557 const char *suffix;
43cd72b9 9558 char *linkonce_kind = 0;
b614a702
BW
9559
9560 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9561 linkonce_kind = "x.";
b614a702 9562 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9563 linkonce_kind = "p.";
43cd72b9
BW
9564 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9565 linkonce_kind = "prop.";
e0001a05 9566 else
b614a702
BW
9567 abort ();
9568
43cd72b9
BW
9569 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9570 + strlen (linkonce_kind) + 1);
b614a702 9571 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9572 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9573
9574 suffix = sec->name + linkonce_len;
096c35a7 9575 /* For backward compatibility, replace "t." instead of inserting
43cd72b9
BW
9576 the new linkonce_kind (but not for "prop" sections). */
9577 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9578 suffix += 2;
9579 strcat (prop_sec_name + linkonce_len, suffix);
b614a702
BW
9580
9581 return prop_sec_name;
e0001a05
NC
9582 }
9583
b614a702 9584 return strdup (base_name);
e0001a05
NC
9585}
9586
43cd72b9
BW
9587
9588flagword
7fa3d080 9589xtensa_get_property_predef_flags (asection *sec)
43cd72b9
BW
9590{
9591 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9592 || strncmp (sec->name, ".gnu.linkonce.x.",
9593 sizeof ".gnu.linkonce.x." - 1) == 0)
9594 return (XTENSA_PROP_INSN
9595 | XTENSA_PROP_INSN_NO_TRANSFORM
9596 | XTENSA_PROP_INSN_NO_REORDER);
9597
9598 if (xtensa_is_littable_section (sec))
9599 return (XTENSA_PROP_LITERAL
9600 | XTENSA_PROP_INSN_NO_TRANSFORM
9601 | XTENSA_PROP_INSN_NO_REORDER);
9602
9603 return 0;
9604}
9605
e0001a05
NC
9606\f
9607/* Other functions called directly by the linker. */
9608
9609bfd_boolean
7fa3d080
BW
9610xtensa_callback_required_dependence (bfd *abfd,
9611 asection *sec,
9612 struct bfd_link_info *link_info,
9613 deps_callback_t callback,
9614 void *closure)
e0001a05
NC
9615{
9616 Elf_Internal_Rela *internal_relocs;
9617 bfd_byte *contents;
9618 unsigned i;
9619 bfd_boolean ok = TRUE;
43cd72b9
BW
9620 bfd_size_type sec_size;
9621
9622 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9623
9624 /* ".plt*" sections have no explicit relocations but they contain L32R
9625 instructions that reference the corresponding ".got.plt*" sections. */
9626 if ((sec->flags & SEC_LINKER_CREATED) != 0
9627 && strncmp (sec->name, ".plt", 4) == 0)
9628 {
9629 asection *sgotplt;
9630
9631 /* Find the corresponding ".got.plt*" section. */
9632 if (sec->name[4] == '\0')
9633 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9634 else
9635 {
9636 char got_name[14];
9637 int chunk = 0;
9638
9639 BFD_ASSERT (sec->name[4] == '.');
9640 chunk = strtol (&sec->name[5], NULL, 10);
9641
9642 sprintf (got_name, ".got.plt.%u", chunk);
9643 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9644 }
9645 BFD_ASSERT (sgotplt);
9646
9647 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9648 section referencing a literal at the very beginning of
9649 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9650 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9651 }
9652
9653 internal_relocs = retrieve_internal_relocs (abfd, sec,
9654 link_info->keep_memory);
9655 if (internal_relocs == NULL
43cd72b9 9656 || sec->reloc_count == 0)
e0001a05
NC
9657 return ok;
9658
9659 /* Cache the contents for the duration of this scan. */
9660 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9661 if (contents == NULL && sec_size != 0)
e0001a05
NC
9662 {
9663 ok = FALSE;
9664 goto error_return;
9665 }
9666
43cd72b9
BW
9667 if (!xtensa_default_isa)
9668 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9669
43cd72b9 9670 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9671 {
9672 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9673 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9674 {
9675 r_reloc l32r_rel;
9676 asection *target_sec;
9677 bfd_vma target_offset;
43cd72b9
BW
9678
9679 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9680 target_sec = NULL;
9681 target_offset = 0;
9682 /* L32Rs must be local to the input file. */
9683 if (r_reloc_is_defined (&l32r_rel))
9684 {
9685 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9686 target_offset = l32r_rel.target_offset;
e0001a05
NC
9687 }
9688 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9689 closure);
9690 }
9691 }
9692
9693 error_return:
9694 release_internal_relocs (sec, internal_relocs);
9695 release_contents (sec, contents);
9696 return ok;
9697}
9698
2f89ff8d
L
9699/* The default literal sections should always be marked as "code" (i.e.,
9700 SHF_EXECINSTR). This is particularly important for the Linux kernel
9701 module loader so that the literals are not placed after the text. */
b35d266b 9702static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9703{
7dcb9820 9704 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958 9705 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958
L
9706 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9707 { NULL, 0, 0, 0, 0 }
9708};
e0001a05
NC
9709\f
9710#ifndef ELF_ARCH
9711#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9712#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9713#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9714#define TARGET_BIG_NAME "elf32-xtensa-be"
9715#define ELF_ARCH bfd_arch_xtensa
9716
4af0a1d8
BW
9717#define ELF_MACHINE_CODE EM_XTENSA
9718#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9719
9720#if XCHAL_HAVE_MMU
9721#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9722#else /* !XCHAL_HAVE_MMU */
9723#define ELF_MAXPAGESIZE 1
9724#endif /* !XCHAL_HAVE_MMU */
9725#endif /* ELF_ARCH */
9726
9727#define elf_backend_can_gc_sections 1
9728#define elf_backend_can_refcount 1
9729#define elf_backend_plt_readonly 1
9730#define elf_backend_got_header_size 4
9731#define elf_backend_want_dynbss 0
9732#define elf_backend_want_got_plt 1
9733
9734#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9735
e0001a05
NC
9736#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9737#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9738#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9739#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9740#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9741#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9742
9743#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9744#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9745#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9746#define elf_backend_discard_info elf_xtensa_discard_info
9747#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9748#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9749#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9750#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9751#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9752#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9753#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9754#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9755#define elf_backend_hide_symbol elf_xtensa_hide_symbol
9756#define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9757#define elf_backend_object_p elf_xtensa_object_p
9758#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9759#define elf_backend_relocate_section elf_xtensa_relocate_section
9760#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
29ef7005 9761#define elf_backend_special_sections elf_xtensa_special_sections
e0001a05
NC
9762
9763#include "elf32-target.h"
This page took 0.672095 seconds and 4 git commands to generate.