config/tc-aarch64.c: Avoid trying to parse a vector mov as immediate.
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
dbaa2011 2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
aa820537 3 Free Software Foundation, Inc.
e0001a05
NC
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
cd123cb7 9 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
10 License, or (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 20 02110-1301, USA. */
e0001a05 21
e0001a05 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
e0001a05 24
e0001a05 25#include <stdarg.h>
e0001a05
NC
26#include <strings.h>
27
28#include "bfdlink.h"
29#include "libbfd.h"
30#include "elf-bfd.h"
31#include "elf/xtensa.h"
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
112static asection *xtensa_get_property_section (asection *, const char *);
113extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 114static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
115
116/* Other functions called directly by the linker. */
117
118typedef void (*deps_callback_t)
7fa3d080 119 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 120extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
122
123
43cd72b9
BW
124/* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
7fa3d080 128
43cd72b9
BW
129int elf32xtensa_size_opt;
130
131
132/* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
e0001a05 135
7fa3d080 136typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 137
43cd72b9 138
43cd72b9
BW
139/* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144xtensa_isa xtensa_default_isa;
145
146
e0001a05
NC
147/* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151static bfd_boolean relaxing_section = FALSE;
152
43cd72b9
BW
153/* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156int elf32xtensa_no_literal_movement = 1;
157
b0dddeec
AM
158/* Rename one of the generic section flags to better document how it
159 is used here. */
160/* Whether relocations have been processed. */
161#define reloc_done sec_flg0
e0001a05
NC
162\f
163static reloc_howto_type elf_howto_table[] =
164{
165 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 167 FALSE, 0, 0, FALSE),
e0001a05
NC
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 171
e0001a05
NC
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179
e0001a05
NC
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 182 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 185 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 188 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
191 FALSE, 0, 0xffffffff, FALSE),
192
e0001a05 193 EMPTY_HOWTO (7),
e5f131d1
BW
194
195 /* Old relocations for backward compatibility. */
e0001a05 196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202
e0001a05
NC
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
209
e0001a05 210 EMPTY_HOWTO (13),
1bbb5f21
BW
211
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 215
e0001a05
NC
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 219 FALSE, 0, 0, FALSE),
e0001a05
NC
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 223 FALSE, 0, 0, FALSE),
43cd72b9
BW
224
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
264
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
296
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
e0001a05
NC
319};
320
43cd72b9 321#if DEBUG_GEN_RELOC
e0001a05
NC
322#define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324#else
325#define TRACE(str)
326#endif
327
328static reloc_howto_type *
7fa3d080
BW
329elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
e0001a05
NC
331{
332 switch (code)
333 {
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
337
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341
1bbb5f21
BW
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345
43cd72b9
BW
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357
e0001a05
NC
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405
28dbbc02
BW
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
433
e0001a05 434 default:
43cd72b9
BW
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 {
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
441 }
442
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 {
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
449 }
450
e0001a05
NC
451 break;
452 }
453
454 TRACE ("Unknown");
455 return NULL;
456}
457
157090f7
AM
458static reloc_howto_type *
459elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
461{
462 unsigned int i;
463
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
468
469 return NULL;
470}
471
e0001a05
NC
472
473/* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
475
476static void
7fa3d080
BW
477elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
e0001a05
NC
480{
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482
483 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
484 cache_ptr->howto = &elf_howto_table[r_type];
485}
486
487\f
488/* Functions for the Xtensa ELF linker. */
489
490/* The name of the dynamic interpreter. This is put in the .interp
491 section. */
492
493#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
494
495/* The size in bytes of an entry in the procedure linkage table.
496 (This does _not_ include the space for the literals associated with
497 the PLT entry.) */
498
499#define PLT_ENTRY_SIZE 16
500
501/* For _really_ large PLTs, we may need to alternate between literals
502 and code to keep the literals within the 256K range of the L32R
503 instructions in the code. It's unlikely that anyone would ever need
504 such a big PLT, but an arbitrary limit on the PLT size would be bad.
505 Thus, we split the PLT into chunks. Since there's very little
506 overhead (2 extra literals) for each chunk, the chunk size is kept
507 small so that the code for handling multiple chunks get used and
508 tested regularly. With 254 entries, there are 1K of literals for
509 each chunk, and that seems like a nice round number. */
510
511#define PLT_ENTRIES_PER_CHUNK 254
512
513/* PLT entries are actually used as stub functions for lazy symbol
514 resolution. Once the symbol is resolved, the stub function is never
515 invoked. Note: the 32-byte frame size used here cannot be changed
516 without a corresponding change in the runtime linker. */
517
518static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
519{
520 0x6c, 0x10, 0x04, /* entry sp, 32 */
521 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
522 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
523 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
524 0x0a, 0x80, 0x00, /* jx a8 */
525 0 /* unused */
526};
527
528static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
529{
530 0x36, 0x41, 0x00, /* entry sp, 32 */
531 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
532 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
533 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
534 0xa0, 0x08, 0x00, /* jx a8 */
535 0 /* unused */
536};
537
28dbbc02
BW
538/* The size of the thread control block. */
539#define TCB_SIZE 8
540
541struct elf_xtensa_link_hash_entry
542{
543 struct elf_link_hash_entry elf;
544
545 bfd_signed_vma tlsfunc_refcount;
546
547#define GOT_UNKNOWN 0
548#define GOT_NORMAL 1
549#define GOT_TLS_GD 2 /* global or local dynamic */
550#define GOT_TLS_IE 4 /* initial or local exec */
551#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
552 unsigned char tls_type;
553};
554
555#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
556
557struct elf_xtensa_obj_tdata
558{
559 struct elf_obj_tdata root;
560
561 /* tls_type for each local got entry. */
562 char *local_got_tls_type;
563
564 bfd_signed_vma *local_tlsfunc_refcounts;
565};
566
567#define elf_xtensa_tdata(abfd) \
568 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
569
570#define elf_xtensa_local_got_tls_type(abfd) \
571 (elf_xtensa_tdata (abfd)->local_got_tls_type)
572
573#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
574 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
575
576#define is_xtensa_elf(bfd) \
577 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
578 && elf_tdata (bfd) != NULL \
4dfe6ac6 579 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
580
581static bfd_boolean
582elf_xtensa_mkobject (bfd *abfd)
583{
584 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 585 XTENSA_ELF_DATA);
28dbbc02
BW
586}
587
f0e6fdb2
BW
588/* Xtensa ELF linker hash table. */
589
590struct elf_xtensa_link_hash_table
591{
592 struct elf_link_hash_table elf;
593
594 /* Short-cuts to get to dynamic linker sections. */
595 asection *sgot;
596 asection *sgotplt;
597 asection *srelgot;
598 asection *splt;
599 asection *srelplt;
600 asection *sgotloc;
601 asection *spltlittbl;
602
603 /* Total count of PLT relocations seen during check_relocs.
604 The actual PLT code must be split into multiple sections and all
605 the sections have to be created before size_dynamic_sections,
606 where we figure out the exact number of PLT entries that will be
607 needed. It is OK if this count is an overestimate, e.g., some
608 relocations may be removed by GC. */
609 int plt_reloc_count;
28dbbc02
BW
610
611 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
612};
613
614/* Get the Xtensa ELF linker hash table from a link_info structure. */
615
616#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
617 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
618 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 619
28dbbc02
BW
620/* Create an entry in an Xtensa ELF linker hash table. */
621
622static struct bfd_hash_entry *
623elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
624 struct bfd_hash_table *table,
625 const char *string)
626{
627 /* Allocate the structure if it has not already been allocated by a
628 subclass. */
629 if (entry == NULL)
630 {
631 entry = bfd_hash_allocate (table,
632 sizeof (struct elf_xtensa_link_hash_entry));
633 if (entry == NULL)
634 return entry;
635 }
636
637 /* Call the allocation method of the superclass. */
638 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
639 if (entry != NULL)
640 {
641 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
642 eh->tlsfunc_refcount = 0;
643 eh->tls_type = GOT_UNKNOWN;
644 }
645
646 return entry;
647}
648
f0e6fdb2
BW
649/* Create an Xtensa ELF linker hash table. */
650
651static struct bfd_link_hash_table *
652elf_xtensa_link_hash_table_create (bfd *abfd)
653{
28dbbc02 654 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
655 struct elf_xtensa_link_hash_table *ret;
656 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
657
7bf52ea2 658 ret = bfd_zmalloc (amt);
f0e6fdb2
BW
659 if (ret == NULL)
660 return NULL;
661
662 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 663 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
664 sizeof (struct elf_xtensa_link_hash_entry),
665 XTENSA_ELF_DATA))
f0e6fdb2
BW
666 {
667 free (ret);
668 return NULL;
669 }
670
28dbbc02
BW
671 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
672 for it later. */
673 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
674 TRUE, FALSE, FALSE);
675 tlsbase->root.type = bfd_link_hash_new;
676 tlsbase->root.u.undef.abfd = NULL;
677 tlsbase->non_elf = 0;
678 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
679 ret->tlsbase->tls_type = GOT_UNKNOWN;
680
f0e6fdb2
BW
681 return &ret->elf.root;
682}
571b5725 683
28dbbc02
BW
684/* Copy the extra info we tack onto an elf_link_hash_entry. */
685
686static void
687elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
688 struct elf_link_hash_entry *dir,
689 struct elf_link_hash_entry *ind)
690{
691 struct elf_xtensa_link_hash_entry *edir, *eind;
692
693 edir = elf_xtensa_hash_entry (dir);
694 eind = elf_xtensa_hash_entry (ind);
695
696 if (ind->root.type == bfd_link_hash_indirect)
697 {
698 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
699 eind->tlsfunc_refcount = 0;
700
701 if (dir->got.refcount <= 0)
702 {
703 edir->tls_type = eind->tls_type;
704 eind->tls_type = GOT_UNKNOWN;
705 }
706 }
707
708 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
709}
710
571b5725 711static inline bfd_boolean
4608f3d9 712elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 713 struct bfd_link_info *info)
571b5725
BW
714{
715 /* Check if we should do dynamic things to this symbol. The
716 "ignore_protected" argument need not be set, because Xtensa code
717 does not require special handling of STV_PROTECTED to make function
718 pointer comparisons work properly. The PLT addresses are never
719 used for function pointers. */
720
721 return _bfd_elf_dynamic_symbol_p (h, info, 0);
722}
723
e0001a05
NC
724\f
725static int
7fa3d080 726property_table_compare (const void *ap, const void *bp)
e0001a05
NC
727{
728 const property_table_entry *a = (const property_table_entry *) ap;
729 const property_table_entry *b = (const property_table_entry *) bp;
730
43cd72b9
BW
731 if (a->address == b->address)
732 {
43cd72b9
BW
733 if (a->size != b->size)
734 return (a->size - b->size);
735
736 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
737 return ((b->flags & XTENSA_PROP_ALIGN)
738 - (a->flags & XTENSA_PROP_ALIGN));
739
740 if ((a->flags & XTENSA_PROP_ALIGN)
741 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
742 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
743 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
744 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
68ffbac6 745
43cd72b9
BW
746 if ((a->flags & XTENSA_PROP_UNREACHABLE)
747 != (b->flags & XTENSA_PROP_UNREACHABLE))
748 return ((b->flags & XTENSA_PROP_UNREACHABLE)
749 - (a->flags & XTENSA_PROP_UNREACHABLE));
750
751 return (a->flags - b->flags);
752 }
753
754 return (a->address - b->address);
755}
756
757
758static int
7fa3d080 759property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
760{
761 const property_table_entry *a = (const property_table_entry *) ap;
762 const property_table_entry *b = (const property_table_entry *) bp;
763
764 /* Check if one entry overlaps with the other. */
e0001a05
NC
765 if ((b->address >= a->address && b->address < (a->address + a->size))
766 || (a->address >= b->address && a->address < (b->address + b->size)))
767 return 0;
768
769 return (a->address - b->address);
770}
771
772
43cd72b9
BW
773/* Get the literal table or property table entries for the given
774 section. Sets TABLE_P and returns the number of entries. On
775 error, returns a negative value. */
e0001a05 776
7fa3d080
BW
777static int
778xtensa_read_table_entries (bfd *abfd,
779 asection *section,
780 property_table_entry **table_p,
781 const char *sec_name,
782 bfd_boolean output_addr)
e0001a05
NC
783{
784 asection *table_section;
e0001a05
NC
785 bfd_size_type table_size = 0;
786 bfd_byte *table_data;
787 property_table_entry *blocks;
e4115460 788 int blk, block_count;
e0001a05 789 bfd_size_type num_records;
bcc2cc8e
BW
790 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
791 bfd_vma section_addr, off;
43cd72b9 792 flagword predef_flags;
bcc2cc8e 793 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
794
795 if (!section
796 || !(section->flags & SEC_ALLOC)
797 || (section->flags & SEC_DEBUGGING))
798 {
799 *table_p = NULL;
800 return 0;
801 }
e0001a05 802
74869ac7 803 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 804 if (table_section)
eea6121a 805 table_size = table_section->size;
43cd72b9 806
68ffbac6 807 if (table_size == 0)
e0001a05
NC
808 {
809 *table_p = NULL;
810 return 0;
811 }
812
43cd72b9
BW
813 predef_flags = xtensa_get_property_predef_flags (table_section);
814 table_entry_size = 12;
815 if (predef_flags)
816 table_entry_size -= 4;
817
818 num_records = table_size / table_entry_size;
e0001a05
NC
819 table_data = retrieve_contents (abfd, table_section, TRUE);
820 blocks = (property_table_entry *)
821 bfd_malloc (num_records * sizeof (property_table_entry));
822 block_count = 0;
43cd72b9
BW
823
824 if (output_addr)
825 section_addr = section->output_section->vma + section->output_offset;
826 else
827 section_addr = section->vma;
3ba3bc8c 828
e0001a05 829 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 830 if (internal_relocs && !table_section->reloc_done)
e0001a05 831 {
bcc2cc8e
BW
832 qsort (internal_relocs, table_section->reloc_count,
833 sizeof (Elf_Internal_Rela), internal_reloc_compare);
834 irel = internal_relocs;
835 }
836 else
837 irel = NULL;
838
839 section_limit = bfd_get_section_limit (abfd, section);
840 rel_end = internal_relocs + table_section->reloc_count;
841
68ffbac6 842 for (off = 0; off < table_size; off += table_entry_size)
bcc2cc8e
BW
843 {
844 bfd_vma address = bfd_get_32 (abfd, table_data + off);
845
846 /* Skip any relocations before the current offset. This should help
847 avoid confusion caused by unexpected relocations for the preceding
848 table entry. */
849 while (irel &&
850 (irel->r_offset < off
851 || (irel->r_offset == off
852 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
853 {
854 irel += 1;
855 if (irel >= rel_end)
856 irel = 0;
857 }
e0001a05 858
bcc2cc8e 859 if (irel && irel->r_offset == off)
e0001a05 860 {
bcc2cc8e
BW
861 bfd_vma sym_off;
862 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
863 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 864
bcc2cc8e 865 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
866 continue;
867
bcc2cc8e
BW
868 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
869 BFD_ASSERT (sym_off == 0);
870 address += (section_addr + sym_off + irel->r_addend);
e0001a05 871 }
bcc2cc8e 872 else
e0001a05 873 {
bcc2cc8e
BW
874 if (address < section_addr
875 || address >= section_addr + section_limit)
876 continue;
e0001a05 877 }
bcc2cc8e
BW
878
879 blocks[block_count].address = address;
880 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
881 if (predef_flags)
882 blocks[block_count].flags = predef_flags;
883 else
884 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
885 block_count++;
e0001a05
NC
886 }
887
888 release_contents (table_section, table_data);
889 release_internal_relocs (table_section, internal_relocs);
890
43cd72b9 891 if (block_count > 0)
e0001a05
NC
892 {
893 /* Now sort them into address order for easy reference. */
894 qsort (blocks, block_count, sizeof (property_table_entry),
895 property_table_compare);
e4115460
BW
896
897 /* Check that the table contents are valid. Problems may occur,
898 for example, if an unrelocated object file is stripped. */
899 for (blk = 1; blk < block_count; blk++)
900 {
901 /* The only circumstance where two entries may legitimately
902 have the same address is when one of them is a zero-size
903 placeholder to mark a place where fill can be inserted.
904 The zero-size entry should come first. */
905 if (blocks[blk - 1].address == blocks[blk].address &&
906 blocks[blk - 1].size != 0)
907 {
908 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
909 abfd, section);
910 bfd_set_error (bfd_error_bad_value);
911 free (blocks);
912 return -1;
913 }
914 }
e0001a05 915 }
43cd72b9 916
e0001a05
NC
917 *table_p = blocks;
918 return block_count;
919}
920
921
7fa3d080
BW
922static property_table_entry *
923elf_xtensa_find_property_entry (property_table_entry *property_table,
924 int property_table_size,
925 bfd_vma addr)
e0001a05
NC
926{
927 property_table_entry entry;
43cd72b9 928 property_table_entry *rv;
e0001a05 929
43cd72b9
BW
930 if (property_table_size == 0)
931 return NULL;
e0001a05
NC
932
933 entry.address = addr;
934 entry.size = 1;
43cd72b9 935 entry.flags = 0;
e0001a05 936
43cd72b9
BW
937 rv = bsearch (&entry, property_table, property_table_size,
938 sizeof (property_table_entry), property_table_matches);
939 return rv;
940}
941
942
943static bfd_boolean
7fa3d080
BW
944elf_xtensa_in_literal_pool (property_table_entry *lit_table,
945 int lit_table_size,
946 bfd_vma addr)
43cd72b9
BW
947{
948 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
949 return TRUE;
950
951 return FALSE;
952}
953
954\f
955/* Look through the relocs for a section during the first phase, and
956 calculate needed space in the dynamic reloc sections. */
957
958static bfd_boolean
7fa3d080
BW
959elf_xtensa_check_relocs (bfd *abfd,
960 struct bfd_link_info *info,
961 asection *sec,
962 const Elf_Internal_Rela *relocs)
e0001a05 963{
f0e6fdb2 964 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
965 Elf_Internal_Shdr *symtab_hdr;
966 struct elf_link_hash_entry **sym_hashes;
967 const Elf_Internal_Rela *rel;
968 const Elf_Internal_Rela *rel_end;
e0001a05 969
28dbbc02 970 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
971 return TRUE;
972
28dbbc02
BW
973 BFD_ASSERT (is_xtensa_elf (abfd));
974
f0e6fdb2 975 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
976 if (htab == NULL)
977 return FALSE;
978
e0001a05
NC
979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
980 sym_hashes = elf_sym_hashes (abfd);
981
e0001a05
NC
982 rel_end = relocs + sec->reloc_count;
983 for (rel = relocs; rel < rel_end; rel++)
984 {
985 unsigned int r_type;
986 unsigned long r_symndx;
28dbbc02
BW
987 struct elf_link_hash_entry *h = NULL;
988 struct elf_xtensa_link_hash_entry *eh;
989 int tls_type, old_tls_type;
990 bfd_boolean is_got = FALSE;
991 bfd_boolean is_plt = FALSE;
992 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
993
994 r_symndx = ELF32_R_SYM (rel->r_info);
995 r_type = ELF32_R_TYPE (rel->r_info);
996
997 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
998 {
d003868e
AM
999 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1000 abfd, r_symndx);
e0001a05
NC
1001 return FALSE;
1002 }
1003
28dbbc02 1004 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1005 {
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007 while (h->root.type == bfd_link_hash_indirect
1008 || h->root.type == bfd_link_hash_warning)
1009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
1010
1011 /* PR15323, ref flags aren't set for references in the same
1012 object. */
1013 h->root.non_ir_ref = 1;
e0001a05 1014 }
28dbbc02 1015 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1016
1017 switch (r_type)
1018 {
28dbbc02
BW
1019 case R_XTENSA_TLSDESC_FN:
1020 if (info->shared)
1021 {
1022 tls_type = GOT_TLS_GD;
1023 is_got = TRUE;
1024 is_tlsfunc = TRUE;
1025 }
1026 else
1027 tls_type = GOT_TLS_IE;
1028 break;
e0001a05 1029
28dbbc02
BW
1030 case R_XTENSA_TLSDESC_ARG:
1031 if (info->shared)
e0001a05 1032 {
28dbbc02
BW
1033 tls_type = GOT_TLS_GD;
1034 is_got = TRUE;
1035 }
1036 else
1037 {
1038 tls_type = GOT_TLS_IE;
1039 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1040 is_got = TRUE;
e0001a05
NC
1041 }
1042 break;
1043
28dbbc02
BW
1044 case R_XTENSA_TLS_DTPOFF:
1045 if (info->shared)
1046 tls_type = GOT_TLS_GD;
1047 else
1048 tls_type = GOT_TLS_IE;
1049 break;
1050
1051 case R_XTENSA_TLS_TPOFF:
1052 tls_type = GOT_TLS_IE;
1053 if (info->shared)
1054 info->flags |= DF_STATIC_TLS;
1055 if (info->shared || h)
1056 is_got = TRUE;
1057 break;
1058
1059 case R_XTENSA_32:
1060 tls_type = GOT_NORMAL;
1061 is_got = TRUE;
1062 break;
1063
e0001a05 1064 case R_XTENSA_PLT:
28dbbc02
BW
1065 tls_type = GOT_NORMAL;
1066 is_plt = TRUE;
1067 break;
e0001a05 1068
28dbbc02
BW
1069 case R_XTENSA_GNU_VTINHERIT:
1070 /* This relocation describes the C++ object vtable hierarchy.
1071 Reconstruct it for later use during GC. */
1072 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1073 return FALSE;
1074 continue;
1075
1076 case R_XTENSA_GNU_VTENTRY:
1077 /* This relocation describes which C++ vtable entries are actually
1078 used. Record for later use during GC. */
1079 BFD_ASSERT (h != NULL);
1080 if (h != NULL
1081 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1082 return FALSE;
1083 continue;
1084
1085 default:
1086 /* Nothing to do for any other relocations. */
1087 continue;
1088 }
1089
1090 if (h)
1091 {
1092 if (is_plt)
e0001a05 1093 {
b45329f9
BW
1094 if (h->plt.refcount <= 0)
1095 {
1096 h->needs_plt = 1;
1097 h->plt.refcount = 1;
1098 }
1099 else
1100 h->plt.refcount += 1;
e0001a05
NC
1101
1102 /* Keep track of the total PLT relocation count even if we
1103 don't yet know whether the dynamic sections will be
1104 created. */
f0e6fdb2 1105 htab->plt_reloc_count += 1;
e0001a05
NC
1106
1107 if (elf_hash_table (info)->dynamic_sections_created)
1108 {
f0e6fdb2 1109 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1110 return FALSE;
1111 }
1112 }
28dbbc02 1113 else if (is_got)
b45329f9
BW
1114 {
1115 if (h->got.refcount <= 0)
1116 h->got.refcount = 1;
1117 else
1118 h->got.refcount += 1;
1119 }
28dbbc02
BW
1120
1121 if (is_tlsfunc)
1122 eh->tlsfunc_refcount += 1;
e0001a05 1123
28dbbc02
BW
1124 old_tls_type = eh->tls_type;
1125 }
1126 else
1127 {
1128 /* Allocate storage the first time. */
1129 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1130 {
28dbbc02
BW
1131 bfd_size_type size = symtab_hdr->sh_info;
1132 void *mem;
e0001a05 1133
28dbbc02
BW
1134 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1135 if (mem == NULL)
1136 return FALSE;
1137 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1138
28dbbc02
BW
1139 mem = bfd_zalloc (abfd, size);
1140 if (mem == NULL)
1141 return FALSE;
1142 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1143
1144 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1145 if (mem == NULL)
1146 return FALSE;
1147 elf_xtensa_local_tlsfunc_refcounts (abfd)
1148 = (bfd_signed_vma *) mem;
e0001a05 1149 }
e0001a05 1150
28dbbc02
BW
1151 /* This is a global offset table entry for a local symbol. */
1152 if (is_got || is_plt)
1153 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1154
28dbbc02
BW
1155 if (is_tlsfunc)
1156 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1157
28dbbc02
BW
1158 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1159 }
1160
1161 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1162 tls_type |= old_tls_type;
1163 /* If a TLS symbol is accessed using IE at least once,
1164 there is no point to use a dynamic model for it. */
1165 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1166 && ((old_tls_type & GOT_TLS_GD) == 0
1167 || (tls_type & GOT_TLS_IE) == 0))
1168 {
1169 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1170 tls_type = old_tls_type;
1171 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1172 tls_type |= old_tls_type;
1173 else
1174 {
1175 (*_bfd_error_handler)
1176 (_("%B: `%s' accessed both as normal and thread local symbol"),
1177 abfd,
1178 h ? h->root.root.string : "<local>");
1179 return FALSE;
1180 }
1181 }
1182
1183 if (old_tls_type != tls_type)
1184 {
1185 if (eh)
1186 eh->tls_type = tls_type;
1187 else
1188 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1189 }
1190 }
1191
e0001a05
NC
1192 return TRUE;
1193}
1194
1195
95147441
BW
1196static void
1197elf_xtensa_make_sym_local (struct bfd_link_info *info,
1198 struct elf_link_hash_entry *h)
1199{
1200 if (info->shared)
1201 {
1202 if (h->plt.refcount > 0)
1203 {
1204 /* For shared objects, there's no need for PLT entries for local
1205 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1206 if (h->got.refcount < 0)
1207 h->got.refcount = 0;
1208 h->got.refcount += h->plt.refcount;
1209 h->plt.refcount = 0;
1210 }
1211 }
1212 else
1213 {
1214 /* Don't need any dynamic relocations at all. */
1215 h->plt.refcount = 0;
1216 h->got.refcount = 0;
1217 }
1218}
1219
1220
1221static void
1222elf_xtensa_hide_symbol (struct bfd_link_info *info,
1223 struct elf_link_hash_entry *h,
1224 bfd_boolean force_local)
1225{
1226 /* For a shared link, move the plt refcount to the got refcount to leave
1227 space for RELATIVE relocs. */
1228 elf_xtensa_make_sym_local (info, h);
1229
1230 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1231}
1232
1233
e0001a05
NC
1234/* Return the section that should be marked against GC for a given
1235 relocation. */
1236
1237static asection *
7fa3d080 1238elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1239 struct bfd_link_info *info,
7fa3d080
BW
1240 Elf_Internal_Rela *rel,
1241 struct elf_link_hash_entry *h,
1242 Elf_Internal_Sym *sym)
e0001a05 1243{
e1e5c0b5
BW
1244 /* Property sections are marked "KEEP" in the linker scripts, but they
1245 should not cause other sections to be marked. (This approach relies
1246 on elf_xtensa_discard_info to remove property table entries that
1247 describe discarded sections. Alternatively, it might be more
1248 efficient to avoid using "KEEP" in the linker scripts and instead use
1249 the gc_mark_extra_sections hook to mark only the property sections
1250 that describe marked sections. That alternative does not work well
1251 with the current property table sections, which do not correspond
1252 one-to-one with the sections they describe, but that should be fixed
1253 someday.) */
1254 if (xtensa_is_property_section (sec))
1255 return NULL;
1256
07adf181
AM
1257 if (h != NULL)
1258 switch (ELF32_R_TYPE (rel->r_info))
1259 {
1260 case R_XTENSA_GNU_VTINHERIT:
1261 case R_XTENSA_GNU_VTENTRY:
1262 return NULL;
1263 }
1264
1265 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1266}
1267
7fa3d080 1268
e0001a05
NC
1269/* Update the GOT & PLT entry reference counts
1270 for the section being removed. */
1271
1272static bfd_boolean
7fa3d080 1273elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1274 struct bfd_link_info *info,
7fa3d080
BW
1275 asection *sec,
1276 const Elf_Internal_Rela *relocs)
e0001a05
NC
1277{
1278 Elf_Internal_Shdr *symtab_hdr;
1279 struct elf_link_hash_entry **sym_hashes;
e0001a05 1280 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1281 struct elf_xtensa_link_hash_table *htab;
1282
1283 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1284 if (htab == NULL)
1285 return FALSE;
e0001a05 1286
7dda2462
TG
1287 if (info->relocatable)
1288 return TRUE;
1289
e0001a05
NC
1290 if ((sec->flags & SEC_ALLOC) == 0)
1291 return TRUE;
1292
1293 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1294 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1295
1296 relend = relocs + sec->reloc_count;
1297 for (rel = relocs; rel < relend; rel++)
1298 {
1299 unsigned long r_symndx;
1300 unsigned int r_type;
1301 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1302 struct elf_xtensa_link_hash_entry *eh;
1303 bfd_boolean is_got = FALSE;
1304 bfd_boolean is_plt = FALSE;
1305 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1306
1307 r_symndx = ELF32_R_SYM (rel->r_info);
1308 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1309 {
1310 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1311 while (h->root.type == bfd_link_hash_indirect
1312 || h->root.type == bfd_link_hash_warning)
1313 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1314 }
28dbbc02 1315 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1316
1317 r_type = ELF32_R_TYPE (rel->r_info);
1318 switch (r_type)
1319 {
28dbbc02
BW
1320 case R_XTENSA_TLSDESC_FN:
1321 if (info->shared)
1322 {
1323 is_got = TRUE;
1324 is_tlsfunc = TRUE;
1325 }
e0001a05
NC
1326 break;
1327
28dbbc02
BW
1328 case R_XTENSA_TLSDESC_ARG:
1329 if (info->shared)
1330 is_got = TRUE;
1331 else
1332 {
1333 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1334 is_got = TRUE;
1335 }
e0001a05
NC
1336 break;
1337
28dbbc02
BW
1338 case R_XTENSA_TLS_TPOFF:
1339 if (info->shared || h)
1340 is_got = TRUE;
e0001a05
NC
1341 break;
1342
28dbbc02
BW
1343 case R_XTENSA_32:
1344 is_got = TRUE;
e0001a05 1345 break;
28dbbc02
BW
1346
1347 case R_XTENSA_PLT:
1348 is_plt = TRUE;
1349 break;
1350
1351 default:
1352 continue;
1353 }
1354
1355 if (h)
1356 {
1357 if (is_plt)
1358 {
1359 if (h->plt.refcount > 0)
1360 h->plt.refcount--;
1361 }
1362 else if (is_got)
1363 {
1364 if (h->got.refcount > 0)
1365 h->got.refcount--;
1366 }
1367 if (is_tlsfunc)
1368 {
1369 if (eh->tlsfunc_refcount > 0)
1370 eh->tlsfunc_refcount--;
1371 }
1372 }
1373 else
1374 {
1375 if (is_got || is_plt)
1376 {
1377 bfd_signed_vma *got_refcount
1378 = &elf_local_got_refcounts (abfd) [r_symndx];
1379 if (*got_refcount > 0)
1380 *got_refcount -= 1;
1381 }
1382 if (is_tlsfunc)
1383 {
1384 bfd_signed_vma *tlsfunc_refcount
1385 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1386 if (*tlsfunc_refcount > 0)
1387 *tlsfunc_refcount -= 1;
1388 }
e0001a05
NC
1389 }
1390 }
1391
1392 return TRUE;
1393}
1394
1395
1396/* Create all the dynamic sections. */
1397
1398static bfd_boolean
7fa3d080 1399elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1400{
f0e6fdb2 1401 struct elf_xtensa_link_hash_table *htab;
e901de89 1402 flagword flags, noalloc_flags;
f0e6fdb2
BW
1403
1404 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1405 if (htab == NULL)
1406 return FALSE;
e0001a05
NC
1407
1408 /* First do all the standard stuff. */
1409 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1410 return FALSE;
3d4d4302
AM
1411 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1412 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1413 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1414 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1415 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
e0001a05
NC
1416
1417 /* Create any extra PLT sections in case check_relocs has already
1418 been called on all the non-dynamic input files. */
f0e6fdb2 1419 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1420 return FALSE;
1421
e901de89
BW
1422 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1423 | SEC_LINKER_CREATED | SEC_READONLY);
1424 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1425
1426 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1427 if (htab->sgotplt == NULL
1428 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1429 return FALSE;
1430
e901de89 1431 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3d4d4302
AM
1432 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1433 flags);
f0e6fdb2
BW
1434 if (htab->sgotloc == NULL
1435 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1436 return FALSE;
1437
e0001a05 1438 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3d4d4302
AM
1439 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1440 noalloc_flags);
f0e6fdb2
BW
1441 if (htab->spltlittbl == NULL
1442 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1443 return FALSE;
1444
1445 return TRUE;
1446}
1447
1448
1449static bfd_boolean
f0e6fdb2 1450add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1451{
f0e6fdb2 1452 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1453 int chunk;
1454
1455 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1456 ".got.plt" sections. */
1457 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1458 {
1459 char *sname;
1460 flagword flags;
1461 asection *s;
1462
1463 /* Stop when we find a section has already been created. */
f0e6fdb2 1464 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1465 break;
1466
1467 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1468 | SEC_LINKER_CREATED | SEC_READONLY);
1469
1470 sname = (char *) bfd_malloc (10);
1471 sprintf (sname, ".plt.%u", chunk);
3d4d4302 1472 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1473 if (s == NULL
e0001a05
NC
1474 || ! bfd_set_section_alignment (dynobj, s, 2))
1475 return FALSE;
1476
1477 sname = (char *) bfd_malloc (14);
1478 sprintf (sname, ".got.plt.%u", chunk);
3d4d4302 1479 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
e0001a05 1480 if (s == NULL
e0001a05
NC
1481 || ! bfd_set_section_alignment (dynobj, s, 2))
1482 return FALSE;
1483 }
1484
1485 return TRUE;
1486}
1487
1488
1489/* Adjust a symbol defined by a dynamic object and referenced by a
1490 regular object. The current definition is in some section of the
1491 dynamic object, but we're not including those sections. We have to
1492 change the definition to something the rest of the link can
1493 understand. */
1494
1495static bfd_boolean
7fa3d080
BW
1496elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1497 struct elf_link_hash_entry *h)
e0001a05
NC
1498{
1499 /* If this is a weak symbol, and there is a real definition, the
1500 processor independent code will have arranged for us to see the
1501 real definition first, and we can just use the same value. */
7fa3d080 1502 if (h->u.weakdef)
e0001a05 1503 {
f6e332e6
AM
1504 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1505 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1506 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1507 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1508 return TRUE;
1509 }
1510
1511 /* This is a reference to a symbol defined by a dynamic object. The
1512 reference must go through the GOT, so there's no need for COPY relocs,
1513 .dynbss, etc. */
1514
1515 return TRUE;
1516}
1517
1518
e0001a05 1519static bfd_boolean
f1ab2340 1520elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1521{
f1ab2340
BW
1522 struct bfd_link_info *info;
1523 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1524 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1525
f1ab2340
BW
1526 if (h->root.type == bfd_link_hash_indirect)
1527 return TRUE;
e0001a05 1528
f1ab2340
BW
1529 info = (struct bfd_link_info *) arg;
1530 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1531 if (htab == NULL)
1532 return FALSE;
e0001a05 1533
28dbbc02
BW
1534 /* If we saw any use of an IE model for this symbol, we can then optimize
1535 away GOT entries for any TLSDESC_FN relocs. */
1536 if ((eh->tls_type & GOT_TLS_IE) != 0)
1537 {
1538 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1539 h->got.refcount -= eh->tlsfunc_refcount;
1540 }
e0001a05 1541
28dbbc02 1542 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1543 elf_xtensa_make_sym_local (info, h);
e0001a05 1544
f1ab2340
BW
1545 if (h->plt.refcount > 0)
1546 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1547
1548 if (h->got.refcount > 0)
f1ab2340 1549 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1550
1551 return TRUE;
1552}
1553
1554
1555static void
f0e6fdb2 1556elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1557{
f0e6fdb2 1558 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1559 bfd *i;
1560
f0e6fdb2 1561 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1562 if (htab == NULL)
1563 return;
f0e6fdb2 1564
e0001a05
NC
1565 for (i = info->input_bfds; i; i = i->link_next)
1566 {
1567 bfd_signed_vma *local_got_refcounts;
1568 bfd_size_type j, cnt;
1569 Elf_Internal_Shdr *symtab_hdr;
1570
1571 local_got_refcounts = elf_local_got_refcounts (i);
1572 if (!local_got_refcounts)
1573 continue;
1574
1575 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1576 cnt = symtab_hdr->sh_info;
1577
1578 for (j = 0; j < cnt; ++j)
1579 {
28dbbc02
BW
1580 /* If we saw any use of an IE model for this symbol, we can
1581 then optimize away GOT entries for any TLSDESC_FN relocs. */
1582 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1583 {
1584 bfd_signed_vma *tlsfunc_refcount
1585 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1586 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1587 local_got_refcounts[j] -= *tlsfunc_refcount;
1588 }
1589
e0001a05 1590 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1591 htab->srelgot->size += (local_got_refcounts[j]
1592 * sizeof (Elf32_External_Rela));
e0001a05
NC
1593 }
1594 }
1595}
1596
1597
1598/* Set the sizes of the dynamic sections. */
1599
1600static bfd_boolean
7fa3d080
BW
1601elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1602 struct bfd_link_info *info)
e0001a05 1603{
f0e6fdb2 1604 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1605 bfd *dynobj, *abfd;
1606 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1607 bfd_boolean relplt, relgot;
1608 int plt_entries, plt_chunks, chunk;
1609
1610 plt_entries = 0;
1611 plt_chunks = 0;
e0001a05 1612
f0e6fdb2 1613 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1614 if (htab == NULL)
1615 return FALSE;
1616
e0001a05
NC
1617 dynobj = elf_hash_table (info)->dynobj;
1618 if (dynobj == NULL)
1619 abort ();
f0e6fdb2
BW
1620 srelgot = htab->srelgot;
1621 srelplt = htab->srelplt;
e0001a05
NC
1622
1623 if (elf_hash_table (info)->dynamic_sections_created)
1624 {
f0e6fdb2
BW
1625 BFD_ASSERT (htab->srelgot != NULL
1626 && htab->srelplt != NULL
1627 && htab->sgot != NULL
1628 && htab->spltlittbl != NULL
1629 && htab->sgotloc != NULL);
1630
e0001a05 1631 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1632 if (info->executable)
e0001a05 1633 {
3d4d4302 1634 s = bfd_get_linker_section (dynobj, ".interp");
e0001a05
NC
1635 if (s == NULL)
1636 abort ();
eea6121a 1637 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1638 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1639 }
1640
1641 /* Allocate room for one word in ".got". */
f0e6fdb2 1642 htab->sgot->size = 4;
e0001a05 1643
f1ab2340
BW
1644 /* Allocate space in ".rela.got" for literals that reference global
1645 symbols and space in ".rela.plt" for literals that have PLT
1646 entries. */
e0001a05 1647 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1648 elf_xtensa_allocate_dynrelocs,
7fa3d080 1649 (void *) info);
e0001a05 1650
e0001a05
NC
1651 /* If we are generating a shared object, we also need space in
1652 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1653 reference local symbols. */
1654 if (info->shared)
f0e6fdb2 1655 elf_xtensa_allocate_local_got_size (info);
e0001a05 1656
e0001a05
NC
1657 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1658 each PLT entry, we need the PLT code plus a 4-byte literal.
1659 For each chunk of ".plt", we also need two more 4-byte
1660 literals, two corresponding entries in ".rela.got", and an
1661 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1662 spltlittbl = htab->spltlittbl;
eea6121a 1663 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1664 plt_chunks =
1665 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1666
1667 /* Iterate over all the PLT chunks, including any extra sections
1668 created earlier because the initial count of PLT relocations
1669 was an overestimate. */
1670 for (chunk = 0;
f0e6fdb2 1671 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1672 chunk++)
1673 {
1674 int chunk_entries;
1675
f0e6fdb2
BW
1676 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1677 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1678
1679 if (chunk < plt_chunks - 1)
1680 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1681 else if (chunk == plt_chunks - 1)
1682 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1683 else
1684 chunk_entries = 0;
1685
1686 if (chunk_entries != 0)
1687 {
eea6121a
AM
1688 sgotplt->size = 4 * (chunk_entries + 2);
1689 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1690 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1691 spltlittbl->size += 8;
e0001a05
NC
1692 }
1693 else
1694 {
eea6121a
AM
1695 sgotplt->size = 0;
1696 splt->size = 0;
e0001a05
NC
1697 }
1698 }
e901de89
BW
1699
1700 /* Allocate space in ".got.loc" to match the total size of all the
1701 literal tables. */
f0e6fdb2 1702 sgotloc = htab->sgotloc;
eea6121a 1703 sgotloc->size = spltlittbl->size;
e901de89
BW
1704 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1705 {
1706 if (abfd->flags & DYNAMIC)
1707 continue;
1708 for (s = abfd->sections; s != NULL; s = s->next)
1709 {
dbaa2011 1710 if (! discarded_section (s)
b536dc1e
BW
1711 && xtensa_is_littable_section (s)
1712 && s != spltlittbl)
eea6121a 1713 sgotloc->size += s->size;
e901de89
BW
1714 }
1715 }
e0001a05
NC
1716 }
1717
1718 /* Allocate memory for dynamic sections. */
1719 relplt = FALSE;
1720 relgot = FALSE;
1721 for (s = dynobj->sections; s != NULL; s = s->next)
1722 {
1723 const char *name;
e0001a05
NC
1724
1725 if ((s->flags & SEC_LINKER_CREATED) == 0)
1726 continue;
1727
1728 /* It's OK to base decisions on the section name, because none
1729 of the dynobj section names depend upon the input files. */
1730 name = bfd_get_section_name (dynobj, s);
1731
0112cd26 1732 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1733 {
c456f082 1734 if (s->size != 0)
e0001a05 1735 {
c456f082
AM
1736 if (strcmp (name, ".rela.plt") == 0)
1737 relplt = TRUE;
1738 else if (strcmp (name, ".rela.got") == 0)
1739 relgot = TRUE;
1740
1741 /* We use the reloc_count field as a counter if we need
1742 to copy relocs into the output file. */
1743 s->reloc_count = 0;
e0001a05
NC
1744 }
1745 }
0112cd26
NC
1746 else if (! CONST_STRNEQ (name, ".plt.")
1747 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1748 && strcmp (name, ".got") != 0
e0001a05
NC
1749 && strcmp (name, ".plt") != 0
1750 && strcmp (name, ".got.plt") != 0
e901de89
BW
1751 && strcmp (name, ".xt.lit.plt") != 0
1752 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1753 {
1754 /* It's not one of our sections, so don't allocate space. */
1755 continue;
1756 }
1757
c456f082
AM
1758 if (s->size == 0)
1759 {
1760 /* If we don't need this section, strip it from the output
1761 file. We must create the ".plt*" and ".got.plt*"
1762 sections in create_dynamic_sections and/or check_relocs
1763 based on a conservative estimate of the PLT relocation
1764 count, because the sections must be created before the
1765 linker maps input sections to output sections. The
1766 linker does that before size_dynamic_sections, where we
1767 compute the exact size of the PLT, so there may be more
1768 of these sections than are actually needed. */
1769 s->flags |= SEC_EXCLUDE;
1770 }
1771 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1772 {
1773 /* Allocate memory for the section contents. */
eea6121a 1774 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1775 if (s->contents == NULL)
e0001a05
NC
1776 return FALSE;
1777 }
1778 }
1779
1780 if (elf_hash_table (info)->dynamic_sections_created)
1781 {
1782 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1783 known until finish_dynamic_sections, but we need to get the relocs
1784 in place before they are sorted. */
e0001a05
NC
1785 for (chunk = 0; chunk < plt_chunks; chunk++)
1786 {
1787 Elf_Internal_Rela irela;
1788 bfd_byte *loc;
1789
1790 irela.r_offset = 0;
1791 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1792 irela.r_addend = 0;
1793
1794 loc = (srelgot->contents
1795 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1796 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1797 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1798 loc + sizeof (Elf32_External_Rela));
1799 srelgot->reloc_count += 2;
1800 }
1801
1802 /* Add some entries to the .dynamic section. We fill in the
1803 values later, in elf_xtensa_finish_dynamic_sections, but we
1804 must add the entries now so that we get the correct size for
1805 the .dynamic section. The DT_DEBUG entry is filled in by the
1806 dynamic linker and used by the debugger. */
1807#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1808 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1809
ba05963f 1810 if (info->executable)
e0001a05
NC
1811 {
1812 if (!add_dynamic_entry (DT_DEBUG, 0))
1813 return FALSE;
1814 }
1815
1816 if (relplt)
1817 {
c243ad3b 1818 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1819 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1820 || !add_dynamic_entry (DT_JMPREL, 0))
1821 return FALSE;
1822 }
1823
1824 if (relgot)
1825 {
1826 if (!add_dynamic_entry (DT_RELA, 0)
1827 || !add_dynamic_entry (DT_RELASZ, 0)
1828 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1829 return FALSE;
1830 }
1831
c243ad3b
BW
1832 if (!add_dynamic_entry (DT_PLTGOT, 0)
1833 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1834 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1835 return FALSE;
1836 }
1837#undef add_dynamic_entry
1838
1839 return TRUE;
1840}
1841
28dbbc02
BW
1842static bfd_boolean
1843elf_xtensa_always_size_sections (bfd *output_bfd,
1844 struct bfd_link_info *info)
1845{
1846 struct elf_xtensa_link_hash_table *htab;
1847 asection *tls_sec;
1848
1849 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1850 if (htab == NULL)
1851 return FALSE;
1852
28dbbc02
BW
1853 tls_sec = htab->elf.tls_sec;
1854
1855 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1856 {
1857 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1858 struct bfd_link_hash_entry *bh = &tlsbase->root;
1859 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1860
1861 tlsbase->type = STT_TLS;
1862 if (!(_bfd_generic_link_add_one_symbol
1863 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1864 tls_sec, 0, NULL, FALSE,
1865 bed->collect, &bh)))
1866 return FALSE;
1867 tlsbase->def_regular = 1;
1868 tlsbase->other = STV_HIDDEN;
1869 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1870 }
1871
1872 return TRUE;
1873}
1874
e0001a05 1875\f
28dbbc02
BW
1876/* Return the base VMA address which should be subtracted from real addresses
1877 when resolving @dtpoff relocation.
1878 This is PT_TLS segment p_vaddr. */
1879
1880static bfd_vma
1881dtpoff_base (struct bfd_link_info *info)
1882{
1883 /* If tls_sec is NULL, we should have signalled an error already. */
1884 if (elf_hash_table (info)->tls_sec == NULL)
1885 return 0;
1886 return elf_hash_table (info)->tls_sec->vma;
1887}
1888
1889/* Return the relocation value for @tpoff relocation
1890 if STT_TLS virtual address is ADDRESS. */
1891
1892static bfd_vma
1893tpoff (struct bfd_link_info *info, bfd_vma address)
1894{
1895 struct elf_link_hash_table *htab = elf_hash_table (info);
1896 bfd_vma base;
1897
1898 /* If tls_sec is NULL, we should have signalled an error already. */
1899 if (htab->tls_sec == NULL)
1900 return 0;
1901 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1902 return address - htab->tls_sec->vma + base;
1903}
1904
e0001a05
NC
1905/* Perform the specified relocation. The instruction at (contents + address)
1906 is modified to set one operand to represent the value in "relocation". The
1907 operand position is determined by the relocation type recorded in the
1908 howto. */
1909
1910#define CALL_SEGMENT_BITS (30)
7fa3d080 1911#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1912
1913static bfd_reloc_status_type
7fa3d080
BW
1914elf_xtensa_do_reloc (reloc_howto_type *howto,
1915 bfd *abfd,
1916 asection *input_section,
1917 bfd_vma relocation,
1918 bfd_byte *contents,
1919 bfd_vma address,
1920 bfd_boolean is_weak_undef,
1921 char **error_message)
e0001a05 1922{
43cd72b9 1923 xtensa_format fmt;
e0001a05 1924 xtensa_opcode opcode;
e0001a05 1925 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1926 static xtensa_insnbuf ibuff = NULL;
1927 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1928 bfd_vma self_address;
43cd72b9
BW
1929 bfd_size_type input_size;
1930 int opnd, slot;
e0001a05
NC
1931 uint32 newval;
1932
43cd72b9
BW
1933 if (!ibuff)
1934 {
1935 ibuff = xtensa_insnbuf_alloc (isa);
1936 sbuff = xtensa_insnbuf_alloc (isa);
1937 }
1938
1939 input_size = bfd_get_section_limit (abfd, input_section);
1940
1bbb5f21
BW
1941 /* Calculate the PC address for this instruction. */
1942 self_address = (input_section->output_section->vma
1943 + input_section->output_offset
1944 + address);
1945
e0001a05
NC
1946 switch (howto->type)
1947 {
1948 case R_XTENSA_NONE:
43cd72b9
BW
1949 case R_XTENSA_DIFF8:
1950 case R_XTENSA_DIFF16:
1951 case R_XTENSA_DIFF32:
28dbbc02
BW
1952 case R_XTENSA_TLS_FUNC:
1953 case R_XTENSA_TLS_ARG:
1954 case R_XTENSA_TLS_CALL:
e0001a05
NC
1955 return bfd_reloc_ok;
1956
1957 case R_XTENSA_ASM_EXPAND:
1958 if (!is_weak_undef)
1959 {
1960 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1961 opcode = get_expanded_call_opcode (contents + address,
1962 input_size - address, 0);
e0001a05
NC
1963 if (is_windowed_call_opcode (opcode))
1964 {
43cd72b9 1965 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 1966 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1967 {
1968 *error_message = "windowed longcall crosses 1GB boundary; "
1969 "return may fail";
1970 return bfd_reloc_dangerous;
1971 }
1972 }
1973 }
1974 return bfd_reloc_ok;
1975
1976 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1977 {
e0001a05 1978 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1979 bfd_reloc_status_type retval =
1980 elf_xtensa_do_asm_simplify (contents, address, input_size,
1981 error_message);
e0001a05 1982 if (retval != bfd_reloc_ok)
43cd72b9 1983 return bfd_reloc_dangerous;
e0001a05
NC
1984
1985 /* The CALL needs to be relocated. Continue below for that part. */
1986 address += 3;
c46082c8 1987 self_address += 3;
43cd72b9 1988 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1989 }
1990 break;
1991
1992 case R_XTENSA_32:
e0001a05
NC
1993 {
1994 bfd_vma x;
1995 x = bfd_get_32 (abfd, contents + address);
1996 x = x + relocation;
1997 bfd_put_32 (abfd, x, contents + address);
1998 }
1999 return bfd_reloc_ok;
1bbb5f21
BW
2000
2001 case R_XTENSA_32_PCREL:
2002 bfd_put_32 (abfd, relocation - self_address, contents + address);
2003 return bfd_reloc_ok;
28dbbc02
BW
2004
2005 case R_XTENSA_PLT:
2006 case R_XTENSA_TLSDESC_FN:
2007 case R_XTENSA_TLSDESC_ARG:
2008 case R_XTENSA_TLS_DTPOFF:
2009 case R_XTENSA_TLS_TPOFF:
2010 bfd_put_32 (abfd, relocation, contents + address);
2011 return bfd_reloc_ok;
e0001a05
NC
2012 }
2013
43cd72b9
BW
2014 /* Only instruction slot-specific relocations handled below.... */
2015 slot = get_relocation_slot (howto->type);
2016 if (slot == XTENSA_UNDEFINED)
e0001a05 2017 {
43cd72b9 2018 *error_message = "unexpected relocation";
e0001a05
NC
2019 return bfd_reloc_dangerous;
2020 }
2021
43cd72b9
BW
2022 /* Read the instruction into a buffer and decode the opcode. */
2023 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2024 input_size - address);
2025 fmt = xtensa_format_decode (isa, ibuff);
2026 if (fmt == XTENSA_UNDEFINED)
e0001a05 2027 {
43cd72b9 2028 *error_message = "cannot decode instruction format";
e0001a05
NC
2029 return bfd_reloc_dangerous;
2030 }
2031
43cd72b9 2032 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2033
43cd72b9
BW
2034 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2035 if (opcode == XTENSA_UNDEFINED)
e0001a05 2036 {
43cd72b9 2037 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2038 return bfd_reloc_dangerous;
2039 }
2040
43cd72b9
BW
2041 /* Check for opcode-specific "alternate" relocations. */
2042 if (is_alt_relocation (howto->type))
2043 {
2044 if (opcode == get_l32r_opcode ())
2045 {
2046 /* Handle the special-case of non-PC-relative L32R instructions. */
2047 bfd *output_bfd = input_section->output_section->owner;
2048 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2049 if (!lit4_sec)
2050 {
2051 *error_message = "relocation references missing .lit4 section";
2052 return bfd_reloc_dangerous;
2053 }
2054 self_address = ((lit4_sec->vma & ~0xfff)
2055 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2056 newval = relocation;
2057 opnd = 1;
2058 }
2059 else if (opcode == get_const16_opcode ())
2060 {
2061 /* ALT used for high 16 bits. */
2062 newval = relocation >> 16;
2063 opnd = 1;
2064 }
2065 else
2066 {
2067 /* No other "alternate" relocations currently defined. */
2068 *error_message = "unexpected relocation";
2069 return bfd_reloc_dangerous;
2070 }
2071 }
2072 else /* Not an "alternate" relocation.... */
2073 {
2074 if (opcode == get_const16_opcode ())
2075 {
2076 newval = relocation & 0xffff;
2077 opnd = 1;
2078 }
2079 else
2080 {
2081 /* ...normal PC-relative relocation.... */
2082
2083 /* Determine which operand is being relocated. */
2084 opnd = get_relocation_opnd (opcode, howto->type);
2085 if (opnd == XTENSA_UNDEFINED)
2086 {
2087 *error_message = "unexpected relocation";
2088 return bfd_reloc_dangerous;
2089 }
2090
2091 if (!howto->pc_relative)
2092 {
2093 *error_message = "expected PC-relative relocation";
2094 return bfd_reloc_dangerous;
2095 }
e0001a05 2096
43cd72b9
BW
2097 newval = relocation;
2098 }
2099 }
e0001a05 2100
43cd72b9
BW
2101 /* Apply the relocation. */
2102 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2103 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2104 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2105 sbuff, newval))
e0001a05 2106 {
2db662be
BW
2107 const char *opname = xtensa_opcode_name (isa, opcode);
2108 const char *msg;
2109
2110 msg = "cannot encode";
2111 if (is_direct_call_opcode (opcode))
2112 {
2113 if ((relocation & 0x3) != 0)
2114 msg = "misaligned call target";
2115 else
2116 msg = "call target out of range";
2117 }
2118 else if (opcode == get_l32r_opcode ())
2119 {
2120 if ((relocation & 0x3) != 0)
2121 msg = "misaligned literal target";
2122 else if (is_alt_relocation (howto->type))
2123 msg = "literal target out of range (too many literals)";
2124 else if (self_address > relocation)
2125 msg = "literal target out of range (try using text-section-literals)";
2126 else
2127 msg = "literal placed after use";
2128 }
2129
2130 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2131 return bfd_reloc_dangerous;
2132 }
2133
43cd72b9 2134 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2135 if (is_direct_call_opcode (opcode)
2136 && is_windowed_call_opcode (opcode))
2137 {
43cd72b9 2138 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 2139 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2140 {
43cd72b9
BW
2141 *error_message =
2142 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2143 return bfd_reloc_dangerous;
2144 }
2145 }
2146
43cd72b9
BW
2147 /* Write the modified instruction back out of the buffer. */
2148 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2149 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2150 input_size - address);
e0001a05
NC
2151 return bfd_reloc_ok;
2152}
2153
2154
2db662be 2155static char *
7fa3d080 2156vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2157{
2158 /* To reduce the size of the memory leak,
2159 we only use a single message buffer. */
2160 static bfd_size_type alloc_size = 0;
2161 static char *message = NULL;
2162 bfd_size_type orig_len, len = 0;
2163 bfd_boolean is_append;
2164
2165 VA_OPEN (ap, arglen);
2166 VA_FIXEDARG (ap, const char *, origmsg);
68ffbac6
L
2167
2168 is_append = (origmsg == message);
e0001a05
NC
2169
2170 orig_len = strlen (origmsg);
2171 len = orig_len + strlen (fmt) + arglen + 20;
2172 if (len > alloc_size)
2173 {
515ef31d 2174 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2175 alloc_size = len;
2176 }
515ef31d
NC
2177 if (message != NULL)
2178 {
2179 if (!is_append)
2180 memcpy (message, origmsg, orig_len);
2181 vsprintf (message + orig_len, fmt, ap);
2182 }
e0001a05
NC
2183 VA_CLOSE (ap);
2184 return message;
2185}
2186
2187
e0001a05
NC
2188/* This function is registered as the "special_function" in the
2189 Xtensa howto for handling simplify operations.
2190 bfd_perform_relocation / bfd_install_relocation use it to
2191 perform (install) the specified relocation. Since this replaces the code
2192 in bfd_perform_relocation, it is basically an Xtensa-specific,
2193 stripped-down version of bfd_perform_relocation. */
2194
2195static bfd_reloc_status_type
7fa3d080
BW
2196bfd_elf_xtensa_reloc (bfd *abfd,
2197 arelent *reloc_entry,
2198 asymbol *symbol,
2199 void *data,
2200 asection *input_section,
2201 bfd *output_bfd,
2202 char **error_message)
e0001a05
NC
2203{
2204 bfd_vma relocation;
2205 bfd_reloc_status_type flag;
2206 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2207 bfd_vma output_base = 0;
2208 reloc_howto_type *howto = reloc_entry->howto;
2209 asection *reloc_target_output_section;
2210 bfd_boolean is_weak_undef;
2211
dd1a320b
BW
2212 if (!xtensa_default_isa)
2213 xtensa_default_isa = xtensa_isa_init (0, 0);
2214
1049f94e 2215 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2216 output, and the reloc is against an external symbol, the resulting
2217 reloc will also be against the same symbol. In such a case, we
2218 don't want to change anything about the way the reloc is handled,
2219 since it will all be done at final link time. This test is similar
2220 to what bfd_elf_generic_reloc does except that it lets relocs with
2221 howto->partial_inplace go through even if the addend is non-zero.
2222 (The real problem is that partial_inplace is set for XTENSA_32
2223 relocs to begin with, but that's a long story and there's little we
2224 can do about it now....) */
2225
7fa3d080 2226 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2227 {
2228 reloc_entry->address += input_section->output_offset;
2229 return bfd_reloc_ok;
2230 }
2231
2232 /* Is the address of the relocation really within the section? */
07515404 2233 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2234 return bfd_reloc_outofrange;
2235
4cc11e76 2236 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2237 initial relocation command value. */
2238
2239 /* Get symbol value. (Common symbols are special.) */
2240 if (bfd_is_com_section (symbol->section))
2241 relocation = 0;
2242 else
2243 relocation = symbol->value;
2244
2245 reloc_target_output_section = symbol->section->output_section;
2246
2247 /* Convert input-section-relative symbol value to absolute. */
2248 if ((output_bfd && !howto->partial_inplace)
2249 || reloc_target_output_section == NULL)
2250 output_base = 0;
2251 else
2252 output_base = reloc_target_output_section->vma;
2253
2254 relocation += output_base + symbol->section->output_offset;
2255
2256 /* Add in supplied addend. */
2257 relocation += reloc_entry->addend;
2258
2259 /* Here the variable relocation holds the final address of the
2260 symbol we are relocating against, plus any addend. */
2261 if (output_bfd)
2262 {
2263 if (!howto->partial_inplace)
2264 {
2265 /* This is a partial relocation, and we want to apply the relocation
2266 to the reloc entry rather than the raw data. Everything except
2267 relocations against section symbols has already been handled
2268 above. */
43cd72b9 2269
e0001a05
NC
2270 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2271 reloc_entry->addend = relocation;
2272 reloc_entry->address += input_section->output_offset;
2273 return bfd_reloc_ok;
2274 }
2275 else
2276 {
2277 reloc_entry->address += input_section->output_offset;
2278 reloc_entry->addend = 0;
2279 }
2280 }
2281
2282 is_weak_undef = (bfd_is_und_section (symbol->section)
2283 && (symbol->flags & BSF_WEAK) != 0);
2284 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2285 (bfd_byte *) data, (bfd_vma) octets,
2286 is_weak_undef, error_message);
2287
2288 if (flag == bfd_reloc_dangerous)
2289 {
2290 /* Add the symbol name to the error message. */
2291 if (! *error_message)
2292 *error_message = "";
2293 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2294 strlen (symbol->name) + 17,
70961b9d
AM
2295 symbol->name,
2296 (unsigned long) reloc_entry->addend);
e0001a05
NC
2297 }
2298
2299 return flag;
2300}
2301
2302
2303/* Set up an entry in the procedure linkage table. */
2304
2305static bfd_vma
f0e6fdb2 2306elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2307 bfd *output_bfd,
2308 unsigned reloc_index)
e0001a05
NC
2309{
2310 asection *splt, *sgotplt;
2311 bfd_vma plt_base, got_base;
2312 bfd_vma code_offset, lit_offset;
2313 int chunk;
2314
2315 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2316 splt = elf_xtensa_get_plt_section (info, chunk);
2317 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2318 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2319
2320 plt_base = splt->output_section->vma + splt->output_offset;
2321 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2322
2323 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2324 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2325
2326 /* Fill in the literal entry. This is the offset of the dynamic
2327 relocation entry. */
2328 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2329 sgotplt->contents + lit_offset);
2330
2331 /* Fill in the entry in the procedure linkage table. */
2332 memcpy (splt->contents + code_offset,
2333 (bfd_big_endian (output_bfd)
2334 ? elf_xtensa_be_plt_entry
2335 : elf_xtensa_le_plt_entry),
2336 PLT_ENTRY_SIZE);
2337 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2338 plt_base + code_offset + 3),
2339 splt->contents + code_offset + 4);
2340 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2341 plt_base + code_offset + 6),
2342 splt->contents + code_offset + 7);
2343 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2344 plt_base + code_offset + 9),
2345 splt->contents + code_offset + 10);
2346
2347 return plt_base + code_offset;
2348}
2349
2350
28dbbc02
BW
2351static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2352
2353static bfd_boolean
2354replace_tls_insn (Elf_Internal_Rela *rel,
2355 bfd *abfd,
2356 asection *input_section,
2357 bfd_byte *contents,
2358 bfd_boolean is_ld_model,
2359 char **error_message)
2360{
2361 static xtensa_insnbuf ibuff = NULL;
2362 static xtensa_insnbuf sbuff = NULL;
2363 xtensa_isa isa = xtensa_default_isa;
2364 xtensa_format fmt;
2365 xtensa_opcode old_op, new_op;
2366 bfd_size_type input_size;
2367 int r_type;
2368 unsigned dest_reg, src_reg;
2369
2370 if (ibuff == NULL)
2371 {
2372 ibuff = xtensa_insnbuf_alloc (isa);
2373 sbuff = xtensa_insnbuf_alloc (isa);
2374 }
2375
2376 input_size = bfd_get_section_limit (abfd, input_section);
2377
2378 /* Read the instruction into a buffer and decode the opcode. */
2379 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2380 input_size - rel->r_offset);
2381 fmt = xtensa_format_decode (isa, ibuff);
2382 if (fmt == XTENSA_UNDEFINED)
2383 {
2384 *error_message = "cannot decode instruction format";
2385 return FALSE;
2386 }
2387
2388 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2389 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2390
2391 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2392 if (old_op == XTENSA_UNDEFINED)
2393 {
2394 *error_message = "cannot decode instruction opcode";
2395 return FALSE;
2396 }
2397
2398 r_type = ELF32_R_TYPE (rel->r_info);
2399 switch (r_type)
2400 {
2401 case R_XTENSA_TLS_FUNC:
2402 case R_XTENSA_TLS_ARG:
2403 if (old_op != get_l32r_opcode ()
2404 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2405 sbuff, &dest_reg) != 0)
2406 {
2407 *error_message = "cannot extract L32R destination for TLS access";
2408 return FALSE;
2409 }
2410 break;
2411
2412 case R_XTENSA_TLS_CALL:
2413 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2414 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2415 sbuff, &src_reg) != 0)
2416 {
2417 *error_message = "cannot extract CALLXn operands for TLS access";
2418 return FALSE;
2419 }
2420 break;
2421
2422 default:
2423 abort ();
2424 }
2425
2426 if (is_ld_model)
2427 {
2428 switch (r_type)
2429 {
2430 case R_XTENSA_TLS_FUNC:
2431 case R_XTENSA_TLS_ARG:
2432 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2433 versions of Xtensa). */
2434 new_op = xtensa_opcode_lookup (isa, "nop");
2435 if (new_op == XTENSA_UNDEFINED)
2436 {
2437 new_op = xtensa_opcode_lookup (isa, "or");
2438 if (new_op == XTENSA_UNDEFINED
2439 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2440 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2441 sbuff, 1) != 0
2442 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2443 sbuff, 1) != 0
2444 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2445 sbuff, 1) != 0)
2446 {
2447 *error_message = "cannot encode OR for TLS access";
2448 return FALSE;
2449 }
2450 }
2451 else
2452 {
2453 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2454 {
2455 *error_message = "cannot encode NOP for TLS access";
2456 return FALSE;
2457 }
2458 }
2459 break;
2460
2461 case R_XTENSA_TLS_CALL:
2462 /* Read THREADPTR into the CALLX's return value register. */
2463 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2464 if (new_op == XTENSA_UNDEFINED
2465 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2466 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2467 sbuff, dest_reg + 2) != 0)
2468 {
2469 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2470 return FALSE;
2471 }
2472 break;
2473 }
2474 }
2475 else
2476 {
2477 switch (r_type)
2478 {
2479 case R_XTENSA_TLS_FUNC:
2480 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2481 if (new_op == XTENSA_UNDEFINED
2482 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2483 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2484 sbuff, dest_reg) != 0)
2485 {
2486 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2487 return FALSE;
2488 }
2489 break;
2490
2491 case R_XTENSA_TLS_ARG:
2492 /* Nothing to do. Keep the original L32R instruction. */
2493 return TRUE;
2494
2495 case R_XTENSA_TLS_CALL:
2496 /* Add the CALLX's src register (holding the THREADPTR value)
2497 to the first argument register (holding the offset) and put
2498 the result in the CALLX's return value register. */
2499 new_op = xtensa_opcode_lookup (isa, "add");
2500 if (new_op == XTENSA_UNDEFINED
2501 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2502 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2503 sbuff, dest_reg + 2) != 0
2504 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2505 sbuff, dest_reg + 2) != 0
2506 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2507 sbuff, src_reg) != 0)
2508 {
2509 *error_message = "cannot encode ADD for TLS access";
2510 return FALSE;
2511 }
2512 break;
2513 }
2514 }
2515
2516 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2517 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2518 input_size - rel->r_offset);
2519
2520 return TRUE;
2521}
2522
2523
2524#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2525 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2526 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2527 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2528 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2529 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2530 || (R_TYPE) == R_XTENSA_TLS_ARG \
2531 || (R_TYPE) == R_XTENSA_TLS_CALL)
2532
e0001a05 2533/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2534 both relocatable and final links. */
e0001a05
NC
2535
2536static bfd_boolean
7fa3d080
BW
2537elf_xtensa_relocate_section (bfd *output_bfd,
2538 struct bfd_link_info *info,
2539 bfd *input_bfd,
2540 asection *input_section,
2541 bfd_byte *contents,
2542 Elf_Internal_Rela *relocs,
2543 Elf_Internal_Sym *local_syms,
2544 asection **local_sections)
e0001a05 2545{
f0e6fdb2 2546 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2547 Elf_Internal_Shdr *symtab_hdr;
2548 Elf_Internal_Rela *rel;
2549 Elf_Internal_Rela *relend;
2550 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2551 property_table_entry *lit_table = 0;
2552 int ltblsize = 0;
28dbbc02 2553 char *local_got_tls_types;
e0001a05 2554 char *error_message = NULL;
43cd72b9 2555 bfd_size_type input_size;
28dbbc02 2556 int tls_type;
e0001a05 2557
43cd72b9
BW
2558 if (!xtensa_default_isa)
2559 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2560
28dbbc02
BW
2561 BFD_ASSERT (is_xtensa_elf (input_bfd));
2562
f0e6fdb2 2563 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2564 if (htab == NULL)
2565 return FALSE;
2566
e0001a05
NC
2567 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2568 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2569 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2570
88d65ad6
BW
2571 if (elf_hash_table (info)->dynamic_sections_created)
2572 {
2573 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2574 &lit_table, XTENSA_LIT_SEC_NAME,
2575 TRUE);
88d65ad6
BW
2576 if (ltblsize < 0)
2577 return FALSE;
2578 }
2579
43cd72b9
BW
2580 input_size = bfd_get_section_limit (input_bfd, input_section);
2581
e0001a05
NC
2582 rel = relocs;
2583 relend = relocs + input_section->reloc_count;
2584 for (; rel < relend; rel++)
2585 {
2586 int r_type;
2587 reloc_howto_type *howto;
2588 unsigned long r_symndx;
2589 struct elf_link_hash_entry *h;
2590 Elf_Internal_Sym *sym;
28dbbc02
BW
2591 char sym_type;
2592 const char *name;
e0001a05
NC
2593 asection *sec;
2594 bfd_vma relocation;
2595 bfd_reloc_status_type r;
2596 bfd_boolean is_weak_undef;
2597 bfd_boolean unresolved_reloc;
9b8c98a4 2598 bfd_boolean warned;
28dbbc02 2599 bfd_boolean dynamic_symbol;
e0001a05
NC
2600
2601 r_type = ELF32_R_TYPE (rel->r_info);
2602 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2603 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2604 continue;
2605
2606 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2607 {
2608 bfd_set_error (bfd_error_bad_value);
2609 return FALSE;
2610 }
2611 howto = &elf_howto_table[r_type];
2612
2613 r_symndx = ELF32_R_SYM (rel->r_info);
2614
ab96bf03
AM
2615 h = NULL;
2616 sym = NULL;
2617 sec = NULL;
2618 is_weak_undef = FALSE;
2619 unresolved_reloc = FALSE;
2620 warned = FALSE;
2621
2622 if (howto->partial_inplace && !info->relocatable)
2623 {
2624 /* Because R_XTENSA_32 was made partial_inplace to fix some
2625 problems with DWARF info in partial links, there may be
2626 an addend stored in the contents. Take it out of there
2627 and move it back into the addend field of the reloc. */
2628 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2629 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2630 }
2631
2632 if (r_symndx < symtab_hdr->sh_info)
2633 {
2634 sym = local_syms + r_symndx;
28dbbc02 2635 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2636 sec = local_sections[r_symndx];
2637 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2638 }
2639 else
2640 {
2641 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2642 r_symndx, symtab_hdr, sym_hashes,
2643 h, sec, relocation,
2644 unresolved_reloc, warned);
2645
2646 if (relocation == 0
2647 && !unresolved_reloc
2648 && h->root.type == bfd_link_hash_undefweak)
2649 is_weak_undef = TRUE;
28dbbc02
BW
2650
2651 sym_type = h->type;
ab96bf03
AM
2652 }
2653
dbaa2011 2654 if (sec != NULL && discarded_section (sec))
e4067dbb 2655 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 2656 rel, 1, relend, howto, 0, contents);
ab96bf03 2657
1049f94e 2658 if (info->relocatable)
e0001a05 2659 {
7aa09196
SA
2660 bfd_vma dest_addr;
2661 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2662
43cd72b9 2663 /* This is a relocatable link.
e0001a05
NC
2664 1) If the reloc is against a section symbol, adjust
2665 according to the output section.
2666 2) If there is a new target for this relocation,
2667 the new target will be in the same output section.
2668 We adjust the relocation by the output section
2669 difference. */
2670
2671 if (relaxing_section)
2672 {
2673 /* Check if this references a section in another input file. */
43cd72b9
BW
2674 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2675 contents))
2676 return FALSE;
e0001a05
NC
2677 }
2678
7aa09196
SA
2679 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2680 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2681
43cd72b9 2682 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2683 {
91d6fa6a 2684 error_message = NULL;
e0001a05
NC
2685 /* Convert ASM_SIMPLIFY into the simpler relocation
2686 so that they never escape a relaxing link. */
43cd72b9
BW
2687 r = contract_asm_expansion (contents, input_size, rel,
2688 &error_message);
2689 if (r != bfd_reloc_ok)
2690 {
2691 if (!((*info->callbacks->reloc_dangerous)
2692 (info, error_message, input_bfd, input_section,
2693 rel->r_offset)))
2694 return FALSE;
2695 }
e0001a05
NC
2696 r_type = ELF32_R_TYPE (rel->r_info);
2697 }
2698
1049f94e 2699 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2700 anything unless the reloc is against a section symbol,
2701 in which case we have to adjust according to where the
2702 section symbol winds up in the output section. */
2703 if (r_symndx < symtab_hdr->sh_info)
2704 {
2705 sym = local_syms + r_symndx;
2706 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2707 {
2708 sec = local_sections[r_symndx];
2709 rel->r_addend += sec->output_offset + sym->st_value;
2710 }
2711 }
2712
2713 /* If there is an addend with a partial_inplace howto,
2714 then move the addend to the contents. This is a hack
1049f94e 2715 to work around problems with DWARF in relocatable links
e0001a05
NC
2716 with some previous version of BFD. Now we can't easily get
2717 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2718 r = bfd_reloc_ok;
2719 howto = &elf_howto_table[r_type];
2720 if (howto->partial_inplace && rel->r_addend)
2721 {
2722 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2723 rel->r_addend, contents,
2724 rel->r_offset, FALSE,
2725 &error_message);
2726 rel->r_addend = 0;
2727 }
2728 else
e0001a05 2729 {
7aa09196
SA
2730 /* Put the correct bits in the target instruction, even
2731 though the relocation will still be present in the output
2732 file. This makes disassembly clearer, as well as
2733 allowing loadable kernel modules to work without needing
2734 relocations on anything other than calls and l32r's. */
2735
2736 /* If it is not in the same section, there is nothing we can do. */
2737 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2738 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2739 {
2740 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2741 dest_addr, contents,
e0001a05
NC
2742 rel->r_offset, FALSE,
2743 &error_message);
e0001a05
NC
2744 }
2745 }
7aa09196
SA
2746 if (r != bfd_reloc_ok)
2747 {
2748 if (!((*info->callbacks->reloc_dangerous)
2749 (info, error_message, input_bfd, input_section,
2750 rel->r_offset)))
2751 return FALSE;
2752 }
e0001a05 2753
1049f94e 2754 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2755 continue;
2756 }
2757
2758 /* This is a final link. */
2759
e0001a05
NC
2760 if (relaxing_section)
2761 {
2762 /* Check if this references a section in another input file. */
43cd72b9
BW
2763 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2764 &relocation);
e0001a05
NC
2765 }
2766
2767 /* Sanity check the address. */
43cd72b9 2768 if (rel->r_offset >= input_size
e0001a05
NC
2769 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2770 {
43cd72b9
BW
2771 (*_bfd_error_handler)
2772 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2773 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2774 bfd_set_error (bfd_error_bad_value);
2775 return FALSE;
2776 }
2777
28dbbc02
BW
2778 if (h != NULL)
2779 name = h->root.root.string;
2780 else
e0001a05 2781 {
28dbbc02
BW
2782 name = (bfd_elf_string_from_elf_section
2783 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2784 if (name == NULL || *name == '\0')
2785 name = bfd_section_name (input_bfd, sec);
2786 }
e0001a05 2787
cf35638d 2788 if (r_symndx != STN_UNDEF
28dbbc02
BW
2789 && r_type != R_XTENSA_NONE
2790 && (h == NULL
2791 || h->root.type == bfd_link_hash_defined
2792 || h->root.type == bfd_link_hash_defweak)
2793 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2794 {
2795 (*_bfd_error_handler)
2796 ((sym_type == STT_TLS
2797 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2798 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2799 input_bfd,
2800 input_section,
2801 (long) rel->r_offset,
2802 howto->name,
2803 name);
2804 }
2805
2806 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2807
2808 tls_type = GOT_UNKNOWN;
2809 if (h)
2810 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2811 else if (local_got_tls_types)
2812 tls_type = local_got_tls_types [r_symndx];
2813
2814 switch (r_type)
2815 {
2816 case R_XTENSA_32:
2817 case R_XTENSA_PLT:
2818 if (elf_hash_table (info)->dynamic_sections_created
2819 && (input_section->flags & SEC_ALLOC) != 0
2820 && (dynamic_symbol || info->shared))
e0001a05
NC
2821 {
2822 Elf_Internal_Rela outrel;
2823 bfd_byte *loc;
2824 asection *srel;
2825
2826 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2827 srel = htab->srelplt;
e0001a05 2828 else
f0e6fdb2 2829 srel = htab->srelgot;
e0001a05
NC
2830
2831 BFD_ASSERT (srel != NULL);
2832
2833 outrel.r_offset =
2834 _bfd_elf_section_offset (output_bfd, info,
2835 input_section, rel->r_offset);
2836
2837 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2838 memset (&outrel, 0, sizeof outrel);
2839 else
2840 {
f0578e28
BW
2841 outrel.r_offset += (input_section->output_section->vma
2842 + input_section->output_offset);
e0001a05 2843
88d65ad6
BW
2844 /* Complain if the relocation is in a read-only section
2845 and not in a literal pool. */
2846 if ((input_section->flags & SEC_READONLY) != 0
2847 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2848 outrel.r_offset))
88d65ad6
BW
2849 {
2850 error_message =
2851 _("dynamic relocation in read-only section");
2852 if (!((*info->callbacks->reloc_dangerous)
2853 (info, error_message, input_bfd, input_section,
2854 rel->r_offset)))
2855 return FALSE;
2856 }
2857
e0001a05
NC
2858 if (dynamic_symbol)
2859 {
2860 outrel.r_addend = rel->r_addend;
2861 rel->r_addend = 0;
2862
2863 if (r_type == R_XTENSA_32)
2864 {
2865 outrel.r_info =
2866 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2867 relocation = 0;
2868 }
2869 else /* r_type == R_XTENSA_PLT */
2870 {
2871 outrel.r_info =
2872 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2873
2874 /* Create the PLT entry and set the initial
2875 contents of the literal entry to the address of
2876 the PLT entry. */
43cd72b9 2877 relocation =
f0e6fdb2 2878 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2879 srel->reloc_count);
2880 }
2881 unresolved_reloc = FALSE;
2882 }
2883 else
2884 {
2885 /* Generate a RELATIVE relocation. */
2886 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2887 outrel.r_addend = 0;
2888 }
2889 }
2890
2891 loc = (srel->contents
2892 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2893 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2894 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2895 <= srel->size);
e0001a05 2896 }
d9ab3f29
BW
2897 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2898 {
2899 /* This should only happen for non-PIC code, which is not
2900 supposed to be used on systems with dynamic linking.
2901 Just ignore these relocations. */
2902 continue;
2903 }
28dbbc02
BW
2904 break;
2905
2906 case R_XTENSA_TLS_TPOFF:
2907 /* Switch to LE model for local symbols in an executable. */
2908 if (! info->shared && ! dynamic_symbol)
2909 {
2910 relocation = tpoff (info, relocation);
2911 break;
2912 }
2913 /* fall through */
2914
2915 case R_XTENSA_TLSDESC_FN:
2916 case R_XTENSA_TLSDESC_ARG:
2917 {
2918 if (r_type == R_XTENSA_TLSDESC_FN)
2919 {
2920 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2921 r_type = R_XTENSA_NONE;
2922 }
2923 else if (r_type == R_XTENSA_TLSDESC_ARG)
2924 {
2925 if (info->shared)
2926 {
2927 if ((tls_type & GOT_TLS_IE) != 0)
2928 r_type = R_XTENSA_TLS_TPOFF;
2929 }
2930 else
2931 {
2932 r_type = R_XTENSA_TLS_TPOFF;
2933 if (! dynamic_symbol)
2934 {
2935 relocation = tpoff (info, relocation);
2936 break;
2937 }
2938 }
2939 }
2940
2941 if (r_type == R_XTENSA_NONE)
2942 /* Nothing to do here; skip to the next reloc. */
2943 continue;
2944
2945 if (! elf_hash_table (info)->dynamic_sections_created)
2946 {
2947 error_message =
2948 _("TLS relocation invalid without dynamic sections");
2949 if (!((*info->callbacks->reloc_dangerous)
2950 (info, error_message, input_bfd, input_section,
2951 rel->r_offset)))
2952 return FALSE;
2953 }
2954 else
2955 {
2956 Elf_Internal_Rela outrel;
2957 bfd_byte *loc;
2958 asection *srel = htab->srelgot;
2959 int indx;
2960
2961 outrel.r_offset = (input_section->output_section->vma
2962 + input_section->output_offset
2963 + rel->r_offset);
2964
2965 /* Complain if the relocation is in a read-only section
2966 and not in a literal pool. */
2967 if ((input_section->flags & SEC_READONLY) != 0
2968 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2969 outrel.r_offset))
2970 {
2971 error_message =
2972 _("dynamic relocation in read-only section");
2973 if (!((*info->callbacks->reloc_dangerous)
2974 (info, error_message, input_bfd, input_section,
2975 rel->r_offset)))
2976 return FALSE;
2977 }
2978
2979 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2980 if (indx == 0)
2981 outrel.r_addend = relocation - dtpoff_base (info);
2982 else
2983 outrel.r_addend = 0;
2984 rel->r_addend = 0;
2985
2986 outrel.r_info = ELF32_R_INFO (indx, r_type);
2987 relocation = 0;
2988 unresolved_reloc = FALSE;
2989
2990 BFD_ASSERT (srel);
2991 loc = (srel->contents
2992 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2993 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2994 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2995 <= srel->size);
2996 }
2997 }
2998 break;
2999
3000 case R_XTENSA_TLS_DTPOFF:
3001 if (! info->shared)
3002 /* Switch from LD model to LE model. */
3003 relocation = tpoff (info, relocation);
3004 else
3005 relocation -= dtpoff_base (info);
3006 break;
3007
3008 case R_XTENSA_TLS_FUNC:
3009 case R_XTENSA_TLS_ARG:
3010 case R_XTENSA_TLS_CALL:
3011 /* Check if optimizing to IE or LE model. */
3012 if ((tls_type & GOT_TLS_IE) != 0)
3013 {
3014 bfd_boolean is_ld_model =
3015 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3016 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3017 is_ld_model, &error_message))
3018 {
3019 if (!((*info->callbacks->reloc_dangerous)
3020 (info, error_message, input_bfd, input_section,
3021 rel->r_offset)))
3022 return FALSE;
3023 }
3024
3025 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3026 {
3027 /* Skip subsequent relocations on the same instruction. */
3028 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3029 rel++;
3030 }
3031 }
3032 continue;
3033
3034 default:
3035 if (elf_hash_table (info)->dynamic_sections_created
3036 && dynamic_symbol && (is_operand_relocation (r_type)
3037 || r_type == R_XTENSA_32_PCREL))
3038 {
3039 error_message =
3040 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3041 strlen (name) + 2, name);
3042 if (!((*info->callbacks->reloc_dangerous)
3043 (info, error_message, input_bfd, input_section,
3044 rel->r_offset)))
3045 return FALSE;
3046 continue;
3047 }
3048 break;
e0001a05
NC
3049 }
3050
3051 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3052 because such sections are not SEC_ALLOC and thus ld.so will
3053 not process them. */
3054 if (unresolved_reloc
3055 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
3056 && h->def_dynamic)
3057 && _bfd_elf_section_offset (output_bfd, info, input_section,
3058 rel->r_offset) != (bfd_vma) -1)
bf1747de
BW
3059 {
3060 (*_bfd_error_handler)
3061 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3062 input_bfd,
3063 input_section,
3064 (long) rel->r_offset,
3065 howto->name,
28dbbc02 3066 name);
bf1747de
BW
3067 return FALSE;
3068 }
e0001a05 3069
28dbbc02
BW
3070 /* TLS optimizations may have changed r_type; update "howto". */
3071 howto = &elf_howto_table[r_type];
3072
e0001a05
NC
3073 /* There's no point in calling bfd_perform_relocation here.
3074 Just go directly to our "special function". */
3075 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3076 relocation + rel->r_addend,
3077 contents, rel->r_offset, is_weak_undef,
3078 &error_message);
43cd72b9 3079
9b8c98a4 3080 if (r != bfd_reloc_ok && !warned)
e0001a05 3081 {
43cd72b9 3082 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3083 BFD_ASSERT (error_message != NULL);
e0001a05 3084
28dbbc02
BW
3085 if (rel->r_addend == 0)
3086 error_message = vsprint_msg (error_message, ": %s",
3087 strlen (name) + 2, name);
e0001a05 3088 else
28dbbc02
BW
3089 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3090 strlen (name) + 22,
3091 name, (int) rel->r_addend);
43cd72b9 3092
e0001a05
NC
3093 if (!((*info->callbacks->reloc_dangerous)
3094 (info, error_message, input_bfd, input_section,
3095 rel->r_offset)))
3096 return FALSE;
3097 }
3098 }
3099
88d65ad6
BW
3100 if (lit_table)
3101 free (lit_table);
3102
3ba3bc8c
BW
3103 input_section->reloc_done = TRUE;
3104
e0001a05
NC
3105 return TRUE;
3106}
3107
3108
3109/* Finish up dynamic symbol handling. There's not much to do here since
3110 the PLT and GOT entries are all set up by relocate_section. */
3111
3112static bfd_boolean
7fa3d080
BW
3113elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3114 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3115 struct elf_link_hash_entry *h,
3116 Elf_Internal_Sym *sym)
e0001a05 3117{
bf1747de 3118 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3119 {
3120 /* Mark the symbol as undefined, rather than as defined in
3121 the .plt section. Leave the value alone. */
3122 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3123 /* If the symbol is weak, we do need to clear the value.
3124 Otherwise, the PLT entry would provide a definition for
3125 the symbol even if the symbol wasn't defined anywhere,
3126 and so the symbol would never be NULL. */
3127 if (!h->ref_regular_nonweak)
3128 sym->st_value = 0;
e0001a05
NC
3129 }
3130
3131 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9637f6ef 3132 if (h == elf_hash_table (info)->hdynamic
22edb2f1 3133 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3134 sym->st_shndx = SHN_ABS;
3135
3136 return TRUE;
3137}
3138
3139
3140/* Combine adjacent literal table entries in the output. Adjacent
3141 entries within each input section may have been removed during
3142 relaxation, but we repeat the process here, even though it's too late
3143 to shrink the output section, because it's important to minimize the
3144 number of literal table entries to reduce the start-up work for the
3145 runtime linker. Returns the number of remaining table entries or -1
3146 on error. */
3147
3148static int
7fa3d080
BW
3149elf_xtensa_combine_prop_entries (bfd *output_bfd,
3150 asection *sxtlit,
3151 asection *sgotloc)
e0001a05 3152{
e0001a05
NC
3153 bfd_byte *contents;
3154 property_table_entry *table;
e901de89 3155 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3156 bfd_vma offset;
3157 int n, m, num;
3158
eea6121a 3159 section_size = sxtlit->size;
e0001a05
NC
3160 BFD_ASSERT (section_size % 8 == 0);
3161 num = section_size / 8;
3162
eea6121a 3163 sgotloc_size = sgotloc->size;
e901de89 3164 if (sgotloc_size != section_size)
b536dc1e
BW
3165 {
3166 (*_bfd_error_handler)
43cd72b9 3167 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3168 return -1;
3169 }
e901de89 3170
eea6121a
AM
3171 table = bfd_malloc (num * sizeof (property_table_entry));
3172 if (table == 0)
e0001a05
NC
3173 return -1;
3174
3175 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3176 propagates to the output section, where it doesn't really apply and
eea6121a 3177 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3178 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3179
eea6121a
AM
3180 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3181 {
3182 if (contents != 0)
3183 free (contents);
3184 free (table);
3185 return -1;
3186 }
e0001a05
NC
3187
3188 /* There should never be any relocations left at this point, so this
3189 is quite a bit easier than what is done during relaxation. */
3190
3191 /* Copy the raw contents into a property table array and sort it. */
3192 offset = 0;
3193 for (n = 0; n < num; n++)
3194 {
3195 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3196 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3197 offset += 8;
3198 }
3199 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3200
3201 for (n = 0; n < num; n++)
3202 {
91d6fa6a 3203 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3204
3205 if (table[n].size == 0)
91d6fa6a
NC
3206 remove_entry = TRUE;
3207 else if (n > 0
3208 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3209 {
3210 table[n-1].size += table[n].size;
91d6fa6a 3211 remove_entry = TRUE;
e0001a05
NC
3212 }
3213
91d6fa6a 3214 if (remove_entry)
e0001a05
NC
3215 {
3216 for (m = n; m < num - 1; m++)
3217 {
3218 table[m].address = table[m+1].address;
3219 table[m].size = table[m+1].size;
3220 }
3221
3222 n--;
3223 num--;
3224 }
3225 }
3226
3227 /* Copy the data back to the raw contents. */
3228 offset = 0;
3229 for (n = 0; n < num; n++)
3230 {
3231 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3232 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3233 offset += 8;
3234 }
3235
3236 /* Clear the removed bytes. */
3237 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3238 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3239
e901de89
BW
3240 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3241 section_size))
e0001a05
NC
3242 return -1;
3243
e901de89
BW
3244 /* Copy the contents to ".got.loc". */
3245 memcpy (sgotloc->contents, contents, section_size);
3246
e0001a05 3247 free (contents);
b614a702 3248 free (table);
e0001a05
NC
3249 return num;
3250}
3251
3252
3253/* Finish up the dynamic sections. */
3254
3255static bfd_boolean
7fa3d080
BW
3256elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3257 struct bfd_link_info *info)
e0001a05 3258{
f0e6fdb2 3259 struct elf_xtensa_link_hash_table *htab;
e0001a05 3260 bfd *dynobj;
e901de89 3261 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3262 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3263 int num_xtlit_entries = 0;
e0001a05
NC
3264
3265 if (! elf_hash_table (info)->dynamic_sections_created)
3266 return TRUE;
3267
f0e6fdb2 3268 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3269 if (htab == NULL)
3270 return FALSE;
3271
e0001a05 3272 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3273 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
e0001a05
NC
3274 BFD_ASSERT (sdyn != NULL);
3275
3276 /* Set the first entry in the global offset table to the address of
3277 the dynamic section. */
f0e6fdb2 3278 sgot = htab->sgot;
e0001a05
NC
3279 if (sgot)
3280 {
eea6121a 3281 BFD_ASSERT (sgot->size == 4);
e0001a05 3282 if (sdyn == NULL)
7fa3d080 3283 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3284 else
3285 bfd_put_32 (output_bfd,
3286 sdyn->output_section->vma + sdyn->output_offset,
3287 sgot->contents);
3288 }
3289
f0e6fdb2 3290 srelplt = htab->srelplt;
7fa3d080 3291 if (srelplt && srelplt->size != 0)
e0001a05
NC
3292 {
3293 asection *sgotplt, *srelgot, *spltlittbl;
3294 int chunk, plt_chunks, plt_entries;
3295 Elf_Internal_Rela irela;
3296 bfd_byte *loc;
3297 unsigned rtld_reloc;
3298
f0e6fdb2
BW
3299 srelgot = htab->srelgot;
3300 spltlittbl = htab->spltlittbl;
3301 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3302
3303 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3304 of them follow immediately after.... */
3305 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3306 {
3307 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3308 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3309 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3310 break;
3311 }
3312 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3313
eea6121a 3314 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3315 plt_chunks =
3316 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3317
3318 for (chunk = 0; chunk < plt_chunks; chunk++)
3319 {
3320 int chunk_entries = 0;
3321
f0e6fdb2 3322 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3323 BFD_ASSERT (sgotplt != NULL);
3324
3325 /* Emit special RTLD relocations for the first two entries in
3326 each chunk of the .got.plt section. */
3327
3328 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3329 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3330 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3331 irela.r_offset = (sgotplt->output_section->vma
3332 + sgotplt->output_offset);
3333 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3334 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3335 rtld_reloc += 1;
3336 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3337
3338 /* Next literal immediately follows the first. */
3339 loc += sizeof (Elf32_External_Rela);
3340 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3341 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3342 irela.r_offset = (sgotplt->output_section->vma
3343 + sgotplt->output_offset + 4);
3344 /* Tell rtld to set value to object's link map. */
3345 irela.r_addend = 2;
3346 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3347 rtld_reloc += 1;
3348 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3349
3350 /* Fill in the literal table. */
3351 if (chunk < plt_chunks - 1)
3352 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3353 else
3354 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3355
eea6121a 3356 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3357 bfd_put_32 (output_bfd,
3358 sgotplt->output_section->vma + sgotplt->output_offset,
3359 spltlittbl->contents + (chunk * 8) + 0);
3360 bfd_put_32 (output_bfd,
3361 8 + (chunk_entries * 4),
3362 spltlittbl->contents + (chunk * 8) + 4);
3363 }
3364
3365 /* All the dynamic relocations have been emitted at this point.
3366 Make sure the relocation sections are the correct size. */
eea6121a
AM
3367 if (srelgot->size != (sizeof (Elf32_External_Rela)
3368 * srelgot->reloc_count)
3369 || srelplt->size != (sizeof (Elf32_External_Rela)
3370 * srelplt->reloc_count))
e0001a05
NC
3371 abort ();
3372
3373 /* The .xt.lit.plt section has just been modified. This must
3374 happen before the code below which combines adjacent literal
3375 table entries, and the .xt.lit.plt contents have to be forced to
3376 the output here. */
3377 if (! bfd_set_section_contents (output_bfd,
3378 spltlittbl->output_section,
3379 spltlittbl->contents,
3380 spltlittbl->output_offset,
eea6121a 3381 spltlittbl->size))
e0001a05
NC
3382 return FALSE;
3383 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3384 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3385 }
3386
3387 /* Combine adjacent literal table entries. */
1049f94e 3388 BFD_ASSERT (! info->relocatable);
e901de89 3389 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3390 sgotloc = htab->sgotloc;
d9ab3f29
BW
3391 BFD_ASSERT (sgotloc);
3392 if (sxtlit)
3393 {
3394 num_xtlit_entries =
3395 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3396 if (num_xtlit_entries < 0)
3397 return FALSE;
3398 }
e0001a05
NC
3399
3400 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3401 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3402 for (; dyncon < dynconend; dyncon++)
3403 {
3404 Elf_Internal_Dyn dyn;
e0001a05
NC
3405
3406 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3407
3408 switch (dyn.d_tag)
3409 {
3410 default:
3411 break;
3412
3413 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3414 dyn.d_un.d_val = num_xtlit_entries;
3415 break;
3416
3417 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 3418 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
3419 break;
3420
e0001a05 3421 case DT_PLTGOT:
e29297b7 3422 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
3423 break;
3424
e0001a05 3425 case DT_JMPREL:
e29297b7 3426 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
3427 break;
3428
3429 case DT_PLTRELSZ:
e29297b7 3430 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
3431 break;
3432
3433 case DT_RELASZ:
3434 /* Adjust RELASZ to not include JMPREL. This matches what
3435 glibc expects and what is done for several other ELF
3436 targets (e.g., i386, alpha), but the "correct" behavior
3437 seems to be unresolved. Since the linker script arranges
3438 for .rela.plt to follow all other relocation sections, we
3439 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3440 if (htab->srelplt)
e29297b7 3441 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
3442 break;
3443 }
3444
3445 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3446 }
3447
3448 return TRUE;
3449}
3450
3451\f
3452/* Functions for dealing with the e_flags field. */
3453
3454/* Merge backend specific data from an object file to the output
3455 object file when linking. */
3456
3457static bfd_boolean
7fa3d080 3458elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3459{
3460 unsigned out_mach, in_mach;
3461 flagword out_flag, in_flag;
3462
cc643b88 3463 /* Check if we have the same endianness. */
e0001a05
NC
3464 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3465 return FALSE;
3466
3467 /* Don't even pretend to support mixed-format linking. */
3468 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3469 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3470 return FALSE;
3471
3472 out_flag = elf_elfheader (obfd)->e_flags;
3473 in_flag = elf_elfheader (ibfd)->e_flags;
3474
3475 out_mach = out_flag & EF_XTENSA_MACH;
3476 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3477 if (out_mach != in_mach)
e0001a05
NC
3478 {
3479 (*_bfd_error_handler)
43cd72b9 3480 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3481 ibfd, out_mach, in_mach);
e0001a05
NC
3482 bfd_set_error (bfd_error_wrong_format);
3483 return FALSE;
3484 }
3485
3486 if (! elf_flags_init (obfd))
3487 {
3488 elf_flags_init (obfd) = TRUE;
3489 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3490
e0001a05
NC
3491 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3492 && bfd_get_arch_info (obfd)->the_default)
3493 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3494 bfd_get_mach (ibfd));
43cd72b9 3495
e0001a05
NC
3496 return TRUE;
3497 }
3498
68ffbac6 3499 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
43cd72b9 3500 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3501
68ffbac6 3502 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
43cd72b9 3503 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3504
3505 return TRUE;
3506}
3507
3508
3509static bfd_boolean
7fa3d080 3510elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3511{
3512 BFD_ASSERT (!elf_flags_init (abfd)
3513 || elf_elfheader (abfd)->e_flags == flags);
3514
3515 elf_elfheader (abfd)->e_flags |= flags;
3516 elf_flags_init (abfd) = TRUE;
3517
3518 return TRUE;
3519}
3520
3521
e0001a05 3522static bfd_boolean
7fa3d080 3523elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3524{
3525 FILE *f = (FILE *) farg;
3526 flagword e_flags = elf_elfheader (abfd)->e_flags;
3527
3528 fprintf (f, "\nXtensa header:\n");
43cd72b9 3529 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3530 fprintf (f, "\nMachine = Base\n");
3531 else
3532 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3533
3534 fprintf (f, "Insn tables = %s\n",
3535 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3536
3537 fprintf (f, "Literal tables = %s\n",
3538 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3539
3540 return _bfd_elf_print_private_bfd_data (abfd, farg);
3541}
3542
3543
3544/* Set the right machine number for an Xtensa ELF file. */
3545
3546static bfd_boolean
7fa3d080 3547elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3548{
3549 int mach;
3550 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3551
3552 switch (arch)
3553 {
3554 case E_XTENSA_MACH:
3555 mach = bfd_mach_xtensa;
3556 break;
3557 default:
3558 return FALSE;
3559 }
3560
3561 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3562 return TRUE;
3563}
3564
3565
3566/* The final processing done just before writing out an Xtensa ELF object
3567 file. This gets the Xtensa architecture right based on the machine
3568 number. */
3569
3570static void
7fa3d080
BW
3571elf_xtensa_final_write_processing (bfd *abfd,
3572 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3573{
3574 int mach;
3575 unsigned long val;
3576
3577 switch (mach = bfd_get_mach (abfd))
3578 {
3579 case bfd_mach_xtensa:
3580 val = E_XTENSA_MACH;
3581 break;
3582 default:
3583 return;
3584 }
3585
3586 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3587 elf_elfheader (abfd)->e_flags |= val;
3588}
3589
3590
3591static enum elf_reloc_type_class
7e612e98
AM
3592elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3593 const asection *rel_sec ATTRIBUTE_UNUSED,
3594 const Elf_Internal_Rela *rela)
e0001a05
NC
3595{
3596 switch ((int) ELF32_R_TYPE (rela->r_info))
3597 {
3598 case R_XTENSA_RELATIVE:
3599 return reloc_class_relative;
3600 case R_XTENSA_JMP_SLOT:
3601 return reloc_class_plt;
3602 default:
3603 return reloc_class_normal;
3604 }
3605}
3606
3607\f
3608static bfd_boolean
7fa3d080
BW
3609elf_xtensa_discard_info_for_section (bfd *abfd,
3610 struct elf_reloc_cookie *cookie,
3611 struct bfd_link_info *info,
3612 asection *sec)
e0001a05
NC
3613{
3614 bfd_byte *contents;
e0001a05 3615 bfd_vma offset, actual_offset;
1d25768e
BW
3616 bfd_size_type removed_bytes = 0;
3617 bfd_size_type entry_size;
e0001a05
NC
3618
3619 if (sec->output_section
3620 && bfd_is_abs_section (sec->output_section))
3621 return FALSE;
3622
1d25768e
BW
3623 if (xtensa_is_proptable_section (sec))
3624 entry_size = 12;
3625 else
3626 entry_size = 8;
3627
a3ef2d63 3628 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3629 return FALSE;
3630
e0001a05
NC
3631 contents = retrieve_contents (abfd, sec, info->keep_memory);
3632 if (!contents)
3633 return FALSE;
3634
3635 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3636 if (!cookie->rels)
3637 {
3638 release_contents (sec, contents);
3639 return FALSE;
3640 }
3641
1d25768e
BW
3642 /* Sort the relocations. They should already be in order when
3643 relaxation is enabled, but it might not be. */
3644 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3645 internal_reloc_compare);
3646
e0001a05
NC
3647 cookie->rel = cookie->rels;
3648 cookie->relend = cookie->rels + sec->reloc_count;
3649
a3ef2d63 3650 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3651 {
3652 actual_offset = offset - removed_bytes;
3653
3654 /* The ...symbol_deleted_p function will skip over relocs but it
3655 won't adjust their offsets, so do that here. */
3656 while (cookie->rel < cookie->relend
3657 && cookie->rel->r_offset < offset)
3658 {
3659 cookie->rel->r_offset -= removed_bytes;
3660 cookie->rel++;
3661 }
3662
3663 while (cookie->rel < cookie->relend
3664 && cookie->rel->r_offset == offset)
3665 {
c152c796 3666 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3667 {
3668 /* Remove the table entry. (If the reloc type is NONE, then
3669 the entry has already been merged with another and deleted
3670 during relaxation.) */
3671 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3672 {
3673 /* Shift the contents up. */
a3ef2d63 3674 if (offset + entry_size < sec->size)
e0001a05 3675 memmove (&contents[actual_offset],
1d25768e 3676 &contents[actual_offset + entry_size],
a3ef2d63 3677 sec->size - offset - entry_size);
1d25768e 3678 removed_bytes += entry_size;
e0001a05
NC
3679 }
3680
3681 /* Remove this relocation. */
3682 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3683 }
3684
3685 /* Adjust the relocation offset for previous removals. This
3686 should not be done before calling ...symbol_deleted_p
3687 because it might mess up the offset comparisons there.
3688 Make sure the offset doesn't underflow in the case where
3689 the first entry is removed. */
3690 if (cookie->rel->r_offset >= removed_bytes)
3691 cookie->rel->r_offset -= removed_bytes;
3692 else
3693 cookie->rel->r_offset = 0;
3694
3695 cookie->rel++;
3696 }
3697 }
3698
3699 if (removed_bytes != 0)
3700 {
3701 /* Adjust any remaining relocs (shouldn't be any). */
3702 for (; cookie->rel < cookie->relend; cookie->rel++)
3703 {
3704 if (cookie->rel->r_offset >= removed_bytes)
3705 cookie->rel->r_offset -= removed_bytes;
3706 else
3707 cookie->rel->r_offset = 0;
3708 }
3709
3710 /* Clear the removed bytes. */
a3ef2d63 3711 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3712
3713 pin_contents (sec, contents);
3714 pin_internal_relocs (sec, cookie->rels);
3715
eea6121a 3716 /* Shrink size. */
a3ef2d63
BW
3717 if (sec->rawsize == 0)
3718 sec->rawsize = sec->size;
3719 sec->size -= removed_bytes;
b536dc1e
BW
3720
3721 if (xtensa_is_littable_section (sec))
3722 {
f0e6fdb2
BW
3723 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3724 if (sgotloc)
3725 sgotloc->size -= removed_bytes;
b536dc1e 3726 }
e0001a05
NC
3727 }
3728 else
3729 {
3730 release_contents (sec, contents);
3731 release_internal_relocs (sec, cookie->rels);
3732 }
3733
3734 return (removed_bytes != 0);
3735}
3736
3737
3738static bfd_boolean
7fa3d080
BW
3739elf_xtensa_discard_info (bfd *abfd,
3740 struct elf_reloc_cookie *cookie,
3741 struct bfd_link_info *info)
e0001a05
NC
3742{
3743 asection *sec;
3744 bfd_boolean changed = FALSE;
3745
3746 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3747 {
3748 if (xtensa_is_property_section (sec))
3749 {
3750 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3751 changed = TRUE;
3752 }
3753 }
3754
3755 return changed;
3756}
3757
3758
3759static bfd_boolean
7fa3d080 3760elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3761{
3762 return xtensa_is_property_section (sec);
3763}
3764
a77dc2cc
BW
3765
3766static unsigned int
3767elf_xtensa_action_discarded (asection *sec)
3768{
3769 if (strcmp (".xt_except_table", sec->name) == 0)
3770 return 0;
3771
3772 if (strcmp (".xt_except_desc", sec->name) == 0)
3773 return 0;
3774
3775 return _bfd_elf_default_action_discarded (sec);
3776}
3777
e0001a05
NC
3778\f
3779/* Support for core dump NOTE sections. */
3780
3781static bfd_boolean
7fa3d080 3782elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3783{
3784 int offset;
eea6121a 3785 unsigned int size;
e0001a05
NC
3786
3787 /* The size for Xtensa is variable, so don't try to recognize the format
3788 based on the size. Just assume this is GNU/Linux. */
3789
3790 /* pr_cursig */
228e534f 3791 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
e0001a05
NC
3792
3793 /* pr_pid */
228e534f 3794 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3795
3796 /* pr_reg */
3797 offset = 72;
eea6121a 3798 size = note->descsz - offset - 4;
e0001a05
NC
3799
3800 /* Make a ".reg/999" section. */
3801 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3802 size, note->descpos + offset);
e0001a05
NC
3803}
3804
3805
3806static bfd_boolean
7fa3d080 3807elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3808{
3809 switch (note->descsz)
3810 {
3811 default:
3812 return FALSE;
3813
3814 case 128: /* GNU/Linux elf_prpsinfo */
228e534f 3815 elf_tdata (abfd)->core->program
e0001a05 3816 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
228e534f 3817 elf_tdata (abfd)->core->command
e0001a05
NC
3818 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3819 }
3820
3821 /* Note that for some reason, a spurious space is tacked
3822 onto the end of the args in some (at least one anyway)
3823 implementations, so strip it off if it exists. */
3824
3825 {
228e534f 3826 char *command = elf_tdata (abfd)->core->command;
e0001a05
NC
3827 int n = strlen (command);
3828
3829 if (0 < n && command[n - 1] == ' ')
3830 command[n - 1] = '\0';
3831 }
3832
3833 return TRUE;
3834}
3835
3836\f
3837/* Generic Xtensa configurability stuff. */
3838
3839static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3840static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3841static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3842static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3843static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3844static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3845static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3846static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3847
3848static void
7fa3d080 3849init_call_opcodes (void)
e0001a05
NC
3850{
3851 if (callx0_op == XTENSA_UNDEFINED)
3852 {
3853 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3854 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3855 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3856 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3857 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3858 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3859 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3860 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3861 }
3862}
3863
3864
3865static bfd_boolean
7fa3d080 3866is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3867{
3868 init_call_opcodes ();
3869 return (opcode == callx0_op
3870 || opcode == callx4_op
3871 || opcode == callx8_op
3872 || opcode == callx12_op);
3873}
3874
3875
3876static bfd_boolean
7fa3d080 3877is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3878{
3879 init_call_opcodes ();
3880 return (opcode == call0_op
3881 || opcode == call4_op
3882 || opcode == call8_op
3883 || opcode == call12_op);
3884}
3885
3886
3887static bfd_boolean
7fa3d080 3888is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3889{
3890 init_call_opcodes ();
3891 return (opcode == call4_op
3892 || opcode == call8_op
3893 || opcode == call12_op
3894 || opcode == callx4_op
3895 || opcode == callx8_op
3896 || opcode == callx12_op);
3897}
3898
3899
28dbbc02
BW
3900static bfd_boolean
3901get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3902{
3903 unsigned dst = (unsigned) -1;
3904
3905 init_call_opcodes ();
3906 if (opcode == callx0_op)
3907 dst = 0;
3908 else if (opcode == callx4_op)
3909 dst = 4;
3910 else if (opcode == callx8_op)
3911 dst = 8;
3912 else if (opcode == callx12_op)
3913 dst = 12;
3914
3915 if (dst == (unsigned) -1)
3916 return FALSE;
3917
3918 *pdst = dst;
3919 return TRUE;
3920}
3921
3922
43cd72b9
BW
3923static xtensa_opcode
3924get_const16_opcode (void)
3925{
3926 static bfd_boolean done_lookup = FALSE;
3927 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3928 if (!done_lookup)
3929 {
3930 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3931 done_lookup = TRUE;
3932 }
3933 return const16_opcode;
3934}
3935
3936
e0001a05
NC
3937static xtensa_opcode
3938get_l32r_opcode (void)
3939{
3940 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3941 static bfd_boolean done_lookup = FALSE;
3942
3943 if (!done_lookup)
e0001a05
NC
3944 {
3945 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3946 done_lookup = TRUE;
e0001a05
NC
3947 }
3948 return l32r_opcode;
3949}
3950
3951
3952static bfd_vma
7fa3d080 3953l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3954{
3955 bfd_vma offset;
3956
3957 offset = addr - ((pc+3) & -4);
3958 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3959 offset = (signed int) offset >> 2;
3960 BFD_ASSERT ((signed int) offset >> 16 == -1);
3961 return offset;
3962}
3963
3964
e0001a05 3965static int
7fa3d080 3966get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3967{
43cd72b9
BW
3968 xtensa_isa isa = xtensa_default_isa;
3969 int last_immed, last_opnd, opi;
3970
3971 if (opcode == XTENSA_UNDEFINED)
3972 return XTENSA_UNDEFINED;
3973
3974 /* Find the last visible PC-relative immediate operand for the opcode.
3975 If there are no PC-relative immediates, then choose the last visible
3976 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3977 last_immed = XTENSA_UNDEFINED;
3978 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3979 for (opi = last_opnd - 1; opi >= 0; opi--)
3980 {
3981 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3982 continue;
3983 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3984 {
3985 last_immed = opi;
3986 break;
3987 }
3988 if (last_immed == XTENSA_UNDEFINED
3989 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3990 last_immed = opi;
3991 }
3992 if (last_immed < 0)
3993 return XTENSA_UNDEFINED;
3994
3995 /* If the operand number was specified in an old-style relocation,
3996 check for consistency with the operand computed above. */
3997 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3998 {
3999 int reloc_opnd = r_type - R_XTENSA_OP0;
4000 if (reloc_opnd != last_immed)
4001 return XTENSA_UNDEFINED;
4002 }
4003
4004 return last_immed;
4005}
4006
4007
4008int
7fa3d080 4009get_relocation_slot (int r_type)
43cd72b9
BW
4010{
4011 switch (r_type)
4012 {
4013 case R_XTENSA_OP0:
4014 case R_XTENSA_OP1:
4015 case R_XTENSA_OP2:
4016 return 0;
4017
4018 default:
4019 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4020 return r_type - R_XTENSA_SLOT0_OP;
4021 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4022 return r_type - R_XTENSA_SLOT0_ALT;
4023 break;
4024 }
4025
4026 return XTENSA_UNDEFINED;
e0001a05
NC
4027}
4028
4029
4030/* Get the opcode for a relocation. */
4031
4032static xtensa_opcode
7fa3d080
BW
4033get_relocation_opcode (bfd *abfd,
4034 asection *sec,
4035 bfd_byte *contents,
4036 Elf_Internal_Rela *irel)
e0001a05
NC
4037{
4038 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4039 static xtensa_insnbuf sbuff = NULL;
e0001a05 4040 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4041 xtensa_format fmt;
4042 int slot;
e0001a05
NC
4043
4044 if (contents == NULL)
4045 return XTENSA_UNDEFINED;
4046
43cd72b9 4047 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4048 return XTENSA_UNDEFINED;
4049
4050 if (ibuff == NULL)
43cd72b9
BW
4051 {
4052 ibuff = xtensa_insnbuf_alloc (isa);
4053 sbuff = xtensa_insnbuf_alloc (isa);
4054 }
4055
e0001a05 4056 /* Decode the instruction. */
43cd72b9
BW
4057 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4058 sec->size - irel->r_offset);
4059 fmt = xtensa_format_decode (isa, ibuff);
4060 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4061 if (slot == XTENSA_UNDEFINED)
4062 return XTENSA_UNDEFINED;
4063 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4064 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4065}
4066
4067
4068bfd_boolean
7fa3d080
BW
4069is_l32r_relocation (bfd *abfd,
4070 asection *sec,
4071 bfd_byte *contents,
4072 Elf_Internal_Rela *irel)
e0001a05
NC
4073{
4074 xtensa_opcode opcode;
43cd72b9 4075 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4076 return FALSE;
43cd72b9 4077 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4078 return (opcode == get_l32r_opcode ());
4079}
4080
e0001a05 4081
43cd72b9 4082static bfd_size_type
7fa3d080
BW
4083get_asm_simplify_size (bfd_byte *contents,
4084 bfd_size_type content_len,
4085 bfd_size_type offset)
e0001a05 4086{
43cd72b9 4087 bfd_size_type insnlen, size = 0;
e0001a05 4088
43cd72b9
BW
4089 /* Decode the size of the next two instructions. */
4090 insnlen = insn_decode_len (contents, content_len, offset);
4091 if (insnlen == 0)
4092 return 0;
e0001a05 4093
43cd72b9 4094 size += insnlen;
68ffbac6 4095
43cd72b9
BW
4096 insnlen = insn_decode_len (contents, content_len, offset + size);
4097 if (insnlen == 0)
4098 return 0;
e0001a05 4099
43cd72b9
BW
4100 size += insnlen;
4101 return size;
4102}
e0001a05 4103
43cd72b9
BW
4104
4105bfd_boolean
7fa3d080 4106is_alt_relocation (int r_type)
43cd72b9
BW
4107{
4108 return (r_type >= R_XTENSA_SLOT0_ALT
4109 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4110}
4111
4112
43cd72b9 4113bfd_boolean
7fa3d080 4114is_operand_relocation (int r_type)
e0001a05 4115{
43cd72b9
BW
4116 switch (r_type)
4117 {
4118 case R_XTENSA_OP0:
4119 case R_XTENSA_OP1:
4120 case R_XTENSA_OP2:
4121 return TRUE;
e0001a05 4122
43cd72b9
BW
4123 default:
4124 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4125 return TRUE;
4126 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4127 return TRUE;
4128 break;
4129 }
e0001a05 4130
43cd72b9 4131 return FALSE;
e0001a05
NC
4132}
4133
68ffbac6 4134
43cd72b9 4135#define MIN_INSN_LENGTH 2
e0001a05 4136
43cd72b9
BW
4137/* Return 0 if it fails to decode. */
4138
4139bfd_size_type
7fa3d080
BW
4140insn_decode_len (bfd_byte *contents,
4141 bfd_size_type content_len,
4142 bfd_size_type offset)
e0001a05 4143{
43cd72b9
BW
4144 int insn_len;
4145 xtensa_isa isa = xtensa_default_isa;
4146 xtensa_format fmt;
4147 static xtensa_insnbuf ibuff = NULL;
e0001a05 4148
43cd72b9
BW
4149 if (offset + MIN_INSN_LENGTH > content_len)
4150 return 0;
e0001a05 4151
43cd72b9
BW
4152 if (ibuff == NULL)
4153 ibuff = xtensa_insnbuf_alloc (isa);
4154 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4155 content_len - offset);
4156 fmt = xtensa_format_decode (isa, ibuff);
4157 if (fmt == XTENSA_UNDEFINED)
4158 return 0;
4159 insn_len = xtensa_format_length (isa, fmt);
4160 if (insn_len == XTENSA_UNDEFINED)
4161 return 0;
4162 return insn_len;
e0001a05
NC
4163}
4164
4165
43cd72b9
BW
4166/* Decode the opcode for a single slot instruction.
4167 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4168
43cd72b9 4169xtensa_opcode
7fa3d080
BW
4170insn_decode_opcode (bfd_byte *contents,
4171 bfd_size_type content_len,
4172 bfd_size_type offset,
4173 int slot)
e0001a05 4174{
e0001a05 4175 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4176 xtensa_format fmt;
4177 static xtensa_insnbuf insnbuf = NULL;
4178 static xtensa_insnbuf slotbuf = NULL;
4179
4180 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4181 return XTENSA_UNDEFINED;
4182
4183 if (insnbuf == NULL)
43cd72b9
BW
4184 {
4185 insnbuf = xtensa_insnbuf_alloc (isa);
4186 slotbuf = xtensa_insnbuf_alloc (isa);
4187 }
4188
4189 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4190 content_len - offset);
4191 fmt = xtensa_format_decode (isa, insnbuf);
4192 if (fmt == XTENSA_UNDEFINED)
e0001a05 4193 return XTENSA_UNDEFINED;
43cd72b9
BW
4194
4195 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4196 return XTENSA_UNDEFINED;
e0001a05 4197
43cd72b9
BW
4198 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4199 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4200}
e0001a05 4201
e0001a05 4202
43cd72b9
BW
4203/* The offset is the offset in the contents.
4204 The address is the address of that offset. */
e0001a05 4205
43cd72b9 4206static bfd_boolean
7fa3d080
BW
4207check_branch_target_aligned (bfd_byte *contents,
4208 bfd_size_type content_length,
4209 bfd_vma offset,
4210 bfd_vma address)
43cd72b9
BW
4211{
4212 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4213 if (insn_len == 0)
4214 return FALSE;
4215 return check_branch_target_aligned_address (address, insn_len);
4216}
e0001a05 4217
e0001a05 4218
43cd72b9 4219static bfd_boolean
7fa3d080
BW
4220check_loop_aligned (bfd_byte *contents,
4221 bfd_size_type content_length,
4222 bfd_vma offset,
4223 bfd_vma address)
e0001a05 4224{
43cd72b9 4225 bfd_size_type loop_len, insn_len;
64b607e6 4226 xtensa_opcode opcode;
e0001a05 4227
64b607e6
BW
4228 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4229 if (opcode == XTENSA_UNDEFINED
4230 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4231 {
4232 BFD_ASSERT (FALSE);
4233 return FALSE;
4234 }
68ffbac6 4235
43cd72b9 4236 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4237 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4238 if (loop_len == 0 || insn_len == 0)
4239 {
4240 BFD_ASSERT (FALSE);
4241 return FALSE;
4242 }
e0001a05 4243
43cd72b9
BW
4244 return check_branch_target_aligned_address (address + loop_len, insn_len);
4245}
e0001a05 4246
e0001a05
NC
4247
4248static bfd_boolean
7fa3d080 4249check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4250{
43cd72b9
BW
4251 if (len == 8)
4252 return (addr % 8 == 0);
4253 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4254}
4255
43cd72b9
BW
4256\f
4257/* Instruction widening and narrowing. */
e0001a05 4258
7fa3d080
BW
4259/* When FLIX is available we need to access certain instructions only
4260 when they are 16-bit or 24-bit instructions. This table caches
4261 information about such instructions by walking through all the
4262 opcodes and finding the smallest single-slot format into which each
4263 can be encoded. */
4264
4265static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4266
4267
7fa3d080
BW
4268static void
4269init_op_single_format_table (void)
e0001a05 4270{
7fa3d080
BW
4271 xtensa_isa isa = xtensa_default_isa;
4272 xtensa_insnbuf ibuf;
4273 xtensa_opcode opcode;
4274 xtensa_format fmt;
4275 int num_opcodes;
4276
4277 if (op_single_fmt_table)
4278 return;
4279
4280 ibuf = xtensa_insnbuf_alloc (isa);
4281 num_opcodes = xtensa_isa_num_opcodes (isa);
4282
4283 op_single_fmt_table = (xtensa_format *)
4284 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4285 for (opcode = 0; opcode < num_opcodes; opcode++)
4286 {
4287 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4288 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4289 {
4290 if (xtensa_format_num_slots (isa, fmt) == 1
4291 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4292 {
4293 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4294 int fmt_length = xtensa_format_length (isa, fmt);
4295 if (old_fmt == XTENSA_UNDEFINED
4296 || fmt_length < xtensa_format_length (isa, old_fmt))
4297 op_single_fmt_table[opcode] = fmt;
4298 }
4299 }
4300 }
4301 xtensa_insnbuf_free (isa, ibuf);
4302}
4303
4304
4305static xtensa_format
4306get_single_format (xtensa_opcode opcode)
4307{
4308 init_op_single_format_table ();
4309 return op_single_fmt_table[opcode];
4310}
e0001a05 4311
e0001a05 4312
43cd72b9
BW
4313/* For the set of narrowable instructions we do NOT include the
4314 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4315 involved during linker relaxation that may require these to
4316 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4317 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4318
7fa3d080
BW
4319struct string_pair
4320{
4321 const char *wide;
4322 const char *narrow;
4323};
4324
43cd72b9 4325struct string_pair narrowable[] =
e0001a05 4326{
43cd72b9
BW
4327 { "add", "add.n" },
4328 { "addi", "addi.n" },
4329 { "addmi", "addi.n" },
4330 { "l32i", "l32i.n" },
4331 { "movi", "movi.n" },
4332 { "ret", "ret.n" },
4333 { "retw", "retw.n" },
4334 { "s32i", "s32i.n" },
4335 { "or", "mov.n" } /* special case only when op1 == op2 */
4336};
e0001a05 4337
43cd72b9 4338struct string_pair widenable[] =
e0001a05 4339{
43cd72b9
BW
4340 { "add", "add.n" },
4341 { "addi", "addi.n" },
4342 { "addmi", "addi.n" },
4343 { "beqz", "beqz.n" },
4344 { "bnez", "bnez.n" },
4345 { "l32i", "l32i.n" },
4346 { "movi", "movi.n" },
4347 { "ret", "ret.n" },
4348 { "retw", "retw.n" },
4349 { "s32i", "s32i.n" },
4350 { "or", "mov.n" } /* special case only when op1 == op2 */
4351};
e0001a05
NC
4352
4353
64b607e6
BW
4354/* Check if an instruction can be "narrowed", i.e., changed from a standard
4355 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4356 return the instruction buffer holding the narrow instruction. Otherwise,
4357 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4358 but require some special case operand checks in some cases. */
4359
64b607e6
BW
4360static xtensa_insnbuf
4361can_narrow_instruction (xtensa_insnbuf slotbuf,
4362 xtensa_format fmt,
4363 xtensa_opcode opcode)
e0001a05 4364{
43cd72b9 4365 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4366 xtensa_format o_fmt;
4367 unsigned opi;
e0001a05 4368
43cd72b9
BW
4369 static xtensa_insnbuf o_insnbuf = NULL;
4370 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4371
64b607e6 4372 if (o_insnbuf == NULL)
43cd72b9 4373 {
43cd72b9
BW
4374 o_insnbuf = xtensa_insnbuf_alloc (isa);
4375 o_slotbuf = xtensa_insnbuf_alloc (isa);
4376 }
e0001a05 4377
64b607e6 4378 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4379 {
4380 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4381
43cd72b9
BW
4382 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4383 {
4384 uint32 value, newval;
4385 int i, operand_count, o_operand_count;
4386 xtensa_opcode o_opcode;
e0001a05 4387
43cd72b9
BW
4388 /* Address does not matter in this case. We might need to
4389 fix it to handle branches/jumps. */
4390 bfd_vma self_address = 0;
e0001a05 4391
43cd72b9
BW
4392 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4393 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4394 return 0;
43cd72b9
BW
4395 o_fmt = get_single_format (o_opcode);
4396 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4397 return 0;
e0001a05 4398
43cd72b9
BW
4399 if (xtensa_format_length (isa, fmt) != 3
4400 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4401 return 0;
e0001a05 4402
43cd72b9
BW
4403 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4404 operand_count = xtensa_opcode_num_operands (isa, opcode);
4405 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4406
43cd72b9 4407 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4408 return 0;
e0001a05 4409
43cd72b9
BW
4410 if (!is_or)
4411 {
4412 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4413 return 0;
43cd72b9
BW
4414 }
4415 else
4416 {
4417 uint32 rawval0, rawval1, rawval2;
e0001a05 4418
64b607e6
BW
4419 if (o_operand_count + 1 != operand_count
4420 || xtensa_operand_get_field (isa, opcode, 0,
4421 fmt, 0, slotbuf, &rawval0) != 0
4422 || xtensa_operand_get_field (isa, opcode, 1,
4423 fmt, 0, slotbuf, &rawval1) != 0
4424 || xtensa_operand_get_field (isa, opcode, 2,
4425 fmt, 0, slotbuf, &rawval2) != 0
4426 || rawval1 != rawval2
4427 || rawval0 == rawval1 /* it is a nop */)
4428 return 0;
43cd72b9 4429 }
e0001a05 4430
43cd72b9
BW
4431 for (i = 0; i < o_operand_count; ++i)
4432 {
4433 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4434 slotbuf, &value)
4435 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4436 return 0;
e0001a05 4437
43cd72b9
BW
4438 /* PC-relative branches need adjustment, but
4439 the PC-rel operand will always have a relocation. */
4440 newval = value;
4441 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4442 self_address)
4443 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4444 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4445 o_slotbuf, newval))
64b607e6 4446 return 0;
43cd72b9 4447 }
e0001a05 4448
64b607e6
BW
4449 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4450 return 0;
e0001a05 4451
64b607e6 4452 return o_insnbuf;
43cd72b9
BW
4453 }
4454 }
64b607e6 4455 return 0;
43cd72b9 4456}
e0001a05 4457
e0001a05 4458
64b607e6
BW
4459/* Attempt to narrow an instruction. If the narrowing is valid, perform
4460 the action in-place directly into the contents and return TRUE. Otherwise,
4461 the return value is FALSE and the contents are not modified. */
e0001a05 4462
43cd72b9 4463static bfd_boolean
64b607e6
BW
4464narrow_instruction (bfd_byte *contents,
4465 bfd_size_type content_length,
4466 bfd_size_type offset)
e0001a05 4467{
43cd72b9 4468 xtensa_opcode opcode;
64b607e6 4469 bfd_size_type insn_len;
43cd72b9 4470 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4471 xtensa_format fmt;
4472 xtensa_insnbuf o_insnbuf;
e0001a05 4473
43cd72b9
BW
4474 static xtensa_insnbuf insnbuf = NULL;
4475 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4476
43cd72b9
BW
4477 if (insnbuf == NULL)
4478 {
4479 insnbuf = xtensa_insnbuf_alloc (isa);
4480 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4481 }
e0001a05 4482
43cd72b9 4483 BFD_ASSERT (offset < content_length);
2c8c90bc 4484
43cd72b9 4485 if (content_length < 2)
e0001a05
NC
4486 return FALSE;
4487
64b607e6 4488 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4489 These have all been specified in the assembler aleady. */
4490 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4491 content_length - offset);
4492 fmt = xtensa_format_decode (isa, insnbuf);
4493 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4494 return FALSE;
4495
43cd72b9 4496 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4497 return FALSE;
4498
43cd72b9
BW
4499 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4500 if (opcode == XTENSA_UNDEFINED)
e0001a05 4501 return FALSE;
43cd72b9
BW
4502 insn_len = xtensa_format_length (isa, fmt);
4503 if (insn_len > content_length)
4504 return FALSE;
4505
64b607e6
BW
4506 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4507 if (o_insnbuf)
4508 {
4509 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4510 content_length - offset);
4511 return TRUE;
4512 }
4513
4514 return FALSE;
4515}
4516
4517
4518/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4519 "density" instruction to a standard 3-byte instruction. If it is valid,
4520 return the instruction buffer holding the wide instruction. Otherwise,
4521 return 0. The set of valid widenings are specified by a string table
4522 but require some special case operand checks in some cases. */
4523
4524static xtensa_insnbuf
4525can_widen_instruction (xtensa_insnbuf slotbuf,
4526 xtensa_format fmt,
4527 xtensa_opcode opcode)
4528{
4529 xtensa_isa isa = xtensa_default_isa;
4530 xtensa_format o_fmt;
4531 unsigned opi;
4532
4533 static xtensa_insnbuf o_insnbuf = NULL;
4534 static xtensa_insnbuf o_slotbuf = NULL;
4535
4536 if (o_insnbuf == NULL)
4537 {
4538 o_insnbuf = xtensa_insnbuf_alloc (isa);
4539 o_slotbuf = xtensa_insnbuf_alloc (isa);
4540 }
4541
4542 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4543 {
43cd72b9
BW
4544 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4545 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4546 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4547
43cd72b9
BW
4548 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4549 {
4550 uint32 value, newval;
4551 int i, operand_count, o_operand_count, check_operand_count;
4552 xtensa_opcode o_opcode;
e0001a05 4553
43cd72b9
BW
4554 /* Address does not matter in this case. We might need to fix it
4555 to handle branches/jumps. */
4556 bfd_vma self_address = 0;
e0001a05 4557
43cd72b9
BW
4558 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4559 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4560 return 0;
43cd72b9
BW
4561 o_fmt = get_single_format (o_opcode);
4562 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4563 return 0;
e0001a05 4564
43cd72b9
BW
4565 if (xtensa_format_length (isa, fmt) != 2
4566 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4567 return 0;
e0001a05 4568
43cd72b9
BW
4569 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4570 operand_count = xtensa_opcode_num_operands (isa, opcode);
4571 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4572 check_operand_count = o_operand_count;
e0001a05 4573
43cd72b9 4574 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4575 return 0;
e0001a05 4576
43cd72b9
BW
4577 if (!is_or)
4578 {
4579 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4580 return 0;
43cd72b9
BW
4581 }
4582 else
4583 {
4584 uint32 rawval0, rawval1;
4585
64b607e6
BW
4586 if (o_operand_count != operand_count + 1
4587 || xtensa_operand_get_field (isa, opcode, 0,
4588 fmt, 0, slotbuf, &rawval0) != 0
4589 || xtensa_operand_get_field (isa, opcode, 1,
4590 fmt, 0, slotbuf, &rawval1) != 0
4591 || rawval0 == rawval1 /* it is a nop */)
4592 return 0;
43cd72b9
BW
4593 }
4594 if (is_branch)
4595 check_operand_count--;
4596
64b607e6 4597 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4598 {
4599 int new_i = i;
4600 if (is_or && i == o_operand_count - 1)
4601 new_i = i - 1;
4602 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4603 slotbuf, &value)
4604 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4605 return 0;
43cd72b9
BW
4606
4607 /* PC-relative branches need adjustment, but
4608 the PC-rel operand will always have a relocation. */
4609 newval = value;
4610 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4611 self_address)
4612 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4613 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4614 o_slotbuf, newval))
64b607e6 4615 return 0;
43cd72b9
BW
4616 }
4617
4618 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4619 return 0;
43cd72b9 4620
64b607e6 4621 return o_insnbuf;
43cd72b9
BW
4622 }
4623 }
64b607e6
BW
4624 return 0;
4625}
4626
68ffbac6 4627
64b607e6
BW
4628/* Attempt to widen an instruction. If the widening is valid, perform
4629 the action in-place directly into the contents and return TRUE. Otherwise,
4630 the return value is FALSE and the contents are not modified. */
4631
4632static bfd_boolean
4633widen_instruction (bfd_byte *contents,
4634 bfd_size_type content_length,
4635 bfd_size_type offset)
4636{
4637 xtensa_opcode opcode;
4638 bfd_size_type insn_len;
4639 xtensa_isa isa = xtensa_default_isa;
4640 xtensa_format fmt;
4641 xtensa_insnbuf o_insnbuf;
4642
4643 static xtensa_insnbuf insnbuf = NULL;
4644 static xtensa_insnbuf slotbuf = NULL;
4645
4646 if (insnbuf == NULL)
4647 {
4648 insnbuf = xtensa_insnbuf_alloc (isa);
4649 slotbuf = xtensa_insnbuf_alloc (isa);
4650 }
4651
4652 BFD_ASSERT (offset < content_length);
4653
4654 if (content_length < 2)
4655 return FALSE;
4656
4657 /* We will hand-code a few of these for a little while.
4658 These have all been specified in the assembler aleady. */
4659 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4660 content_length - offset);
4661 fmt = xtensa_format_decode (isa, insnbuf);
4662 if (xtensa_format_num_slots (isa, fmt) != 1)
4663 return FALSE;
4664
4665 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4666 return FALSE;
4667
4668 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4669 if (opcode == XTENSA_UNDEFINED)
4670 return FALSE;
4671 insn_len = xtensa_format_length (isa, fmt);
4672 if (insn_len > content_length)
4673 return FALSE;
4674
4675 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4676 if (o_insnbuf)
4677 {
4678 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4679 content_length - offset);
4680 return TRUE;
4681 }
43cd72b9 4682 return FALSE;
e0001a05
NC
4683}
4684
43cd72b9
BW
4685\f
4686/* Code for transforming CALLs at link-time. */
e0001a05 4687
43cd72b9 4688static bfd_reloc_status_type
7fa3d080
BW
4689elf_xtensa_do_asm_simplify (bfd_byte *contents,
4690 bfd_vma address,
4691 bfd_vma content_length,
4692 char **error_message)
e0001a05 4693{
43cd72b9
BW
4694 static xtensa_insnbuf insnbuf = NULL;
4695 static xtensa_insnbuf slotbuf = NULL;
4696 xtensa_format core_format = XTENSA_UNDEFINED;
4697 xtensa_opcode opcode;
4698 xtensa_opcode direct_call_opcode;
4699 xtensa_isa isa = xtensa_default_isa;
4700 bfd_byte *chbuf = contents + address;
4701 int opn;
e0001a05 4702
43cd72b9 4703 if (insnbuf == NULL)
e0001a05 4704 {
43cd72b9
BW
4705 insnbuf = xtensa_insnbuf_alloc (isa);
4706 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4707 }
e0001a05 4708
43cd72b9
BW
4709 if (content_length < address)
4710 {
4711 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4712 return bfd_reloc_other;
4713 }
e0001a05 4714
43cd72b9
BW
4715 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4716 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4717 if (direct_call_opcode == XTENSA_UNDEFINED)
4718 {
4719 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4720 return bfd_reloc_other;
4721 }
68ffbac6 4722
43cd72b9
BW
4723 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4724 core_format = xtensa_format_lookup (isa, "x24");
4725 opcode = xtensa_opcode_lookup (isa, "or");
4726 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
68ffbac6 4727 for (opn = 0; opn < 3; opn++)
43cd72b9
BW
4728 {
4729 uint32 regno = 1;
4730 xtensa_operand_encode (isa, opcode, opn, &regno);
4731 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4732 slotbuf, regno);
4733 }
4734 xtensa_format_encode (isa, core_format, insnbuf);
4735 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4736 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4737
43cd72b9
BW
4738 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4739 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4740 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4741
43cd72b9
BW
4742 xtensa_format_encode (isa, core_format, insnbuf);
4743 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4744 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4745 content_length - address - 3);
e0001a05 4746
43cd72b9
BW
4747 return bfd_reloc_ok;
4748}
e0001a05 4749
e0001a05 4750
43cd72b9 4751static bfd_reloc_status_type
7fa3d080
BW
4752contract_asm_expansion (bfd_byte *contents,
4753 bfd_vma content_length,
4754 Elf_Internal_Rela *irel,
4755 char **error_message)
43cd72b9
BW
4756{
4757 bfd_reloc_status_type retval =
4758 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4759 error_message);
e0001a05 4760
43cd72b9
BW
4761 if (retval != bfd_reloc_ok)
4762 return bfd_reloc_dangerous;
e0001a05 4763
43cd72b9
BW
4764 /* Update the irel->r_offset field so that the right immediate and
4765 the right instruction are modified during the relocation. */
4766 irel->r_offset += 3;
4767 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4768 return bfd_reloc_ok;
4769}
e0001a05 4770
e0001a05 4771
43cd72b9 4772static xtensa_opcode
7fa3d080 4773swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4774{
43cd72b9 4775 init_call_opcodes ();
e0001a05 4776
43cd72b9
BW
4777 if (opcode == callx0_op) return call0_op;
4778 if (opcode == callx4_op) return call4_op;
4779 if (opcode == callx8_op) return call8_op;
4780 if (opcode == callx12_op) return call12_op;
e0001a05 4781
43cd72b9
BW
4782 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4783 return XTENSA_UNDEFINED;
4784}
e0001a05 4785
e0001a05 4786
43cd72b9
BW
4787/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4788 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4789 If not, return XTENSA_UNDEFINED. */
e0001a05 4790
43cd72b9
BW
4791#define L32R_TARGET_REG_OPERAND 0
4792#define CONST16_TARGET_REG_OPERAND 0
4793#define CALLN_SOURCE_OPERAND 0
e0001a05 4794
68ffbac6 4795static xtensa_opcode
7fa3d080 4796get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4797{
43cd72b9
BW
4798 static xtensa_insnbuf insnbuf = NULL;
4799 static xtensa_insnbuf slotbuf = NULL;
4800 xtensa_format fmt;
4801 xtensa_opcode opcode;
4802 xtensa_isa isa = xtensa_default_isa;
4803 uint32 regno, const16_regno, call_regno;
4804 int offset = 0;
e0001a05 4805
43cd72b9 4806 if (insnbuf == NULL)
e0001a05 4807 {
43cd72b9
BW
4808 insnbuf = xtensa_insnbuf_alloc (isa);
4809 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4810 }
43cd72b9
BW
4811
4812 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4813 fmt = xtensa_format_decode (isa, insnbuf);
4814 if (fmt == XTENSA_UNDEFINED
4815 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4816 return XTENSA_UNDEFINED;
4817
4818 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4819 if (opcode == XTENSA_UNDEFINED)
4820 return XTENSA_UNDEFINED;
4821
4822 if (opcode == get_l32r_opcode ())
e0001a05 4823 {
43cd72b9
BW
4824 if (p_uses_l32r)
4825 *p_uses_l32r = TRUE;
4826 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4827 fmt, 0, slotbuf, &regno)
4828 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4829 &regno))
4830 return XTENSA_UNDEFINED;
e0001a05 4831 }
43cd72b9 4832 else if (opcode == get_const16_opcode ())
e0001a05 4833 {
43cd72b9
BW
4834 if (p_uses_l32r)
4835 *p_uses_l32r = FALSE;
4836 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4837 fmt, 0, slotbuf, &regno)
4838 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4839 &regno))
4840 return XTENSA_UNDEFINED;
4841
4842 /* Check that the next instruction is also CONST16. */
4843 offset += xtensa_format_length (isa, fmt);
4844 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4845 fmt = xtensa_format_decode (isa, insnbuf);
4846 if (fmt == XTENSA_UNDEFINED
4847 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4848 return XTENSA_UNDEFINED;
4849 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4850 if (opcode != get_const16_opcode ())
4851 return XTENSA_UNDEFINED;
4852
4853 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4854 fmt, 0, slotbuf, &const16_regno)
4855 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4856 &const16_regno)
4857 || const16_regno != regno)
4858 return XTENSA_UNDEFINED;
e0001a05 4859 }
43cd72b9
BW
4860 else
4861 return XTENSA_UNDEFINED;
e0001a05 4862
43cd72b9
BW
4863 /* Next instruction should be an CALLXn with operand 0 == regno. */
4864 offset += xtensa_format_length (isa, fmt);
4865 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4866 fmt = xtensa_format_decode (isa, insnbuf);
4867 if (fmt == XTENSA_UNDEFINED
4868 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4869 return XTENSA_UNDEFINED;
4870 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
68ffbac6 4871 if (opcode == XTENSA_UNDEFINED
43cd72b9
BW
4872 || !is_indirect_call_opcode (opcode))
4873 return XTENSA_UNDEFINED;
e0001a05 4874
43cd72b9
BW
4875 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4876 fmt, 0, slotbuf, &call_regno)
4877 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4878 &call_regno))
4879 return XTENSA_UNDEFINED;
e0001a05 4880
43cd72b9
BW
4881 if (call_regno != regno)
4882 return XTENSA_UNDEFINED;
e0001a05 4883
43cd72b9
BW
4884 return opcode;
4885}
e0001a05 4886
43cd72b9
BW
4887\f
4888/* Data structures used during relaxation. */
e0001a05 4889
43cd72b9 4890/* r_reloc: relocation values. */
e0001a05 4891
43cd72b9
BW
4892/* Through the relaxation process, we need to keep track of the values
4893 that will result from evaluating relocations. The standard ELF
4894 relocation structure is not sufficient for this purpose because we're
4895 operating on multiple input files at once, so we need to know which
4896 input file a relocation refers to. The r_reloc structure thus
4897 records both the input file (bfd) and ELF relocation.
e0001a05 4898
43cd72b9
BW
4899 For efficiency, an r_reloc also contains a "target_offset" field to
4900 cache the target-section-relative offset value that is represented by
4901 the relocation.
68ffbac6 4902
43cd72b9
BW
4903 The r_reloc also contains a virtual offset that allows multiple
4904 inserted literals to be placed at the same "address" with
4905 different offsets. */
e0001a05 4906
43cd72b9 4907typedef struct r_reloc_struct r_reloc;
e0001a05 4908
43cd72b9 4909struct r_reloc_struct
e0001a05 4910{
43cd72b9
BW
4911 bfd *abfd;
4912 Elf_Internal_Rela rela;
e0001a05 4913 bfd_vma target_offset;
43cd72b9 4914 bfd_vma virtual_offset;
e0001a05
NC
4915};
4916
e0001a05 4917
43cd72b9
BW
4918/* The r_reloc structure is included by value in literal_value, but not
4919 every literal_value has an associated relocation -- some are simple
4920 constants. In such cases, we set all the fields in the r_reloc
4921 struct to zero. The r_reloc_is_const function should be used to
4922 detect this case. */
e0001a05 4923
43cd72b9 4924static bfd_boolean
7fa3d080 4925r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4926{
43cd72b9 4927 return (r_rel->abfd == NULL);
e0001a05
NC
4928}
4929
4930
43cd72b9 4931static bfd_vma
7fa3d080 4932r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4933{
43cd72b9
BW
4934 bfd_vma target_offset;
4935 unsigned long r_symndx;
e0001a05 4936
43cd72b9
BW
4937 BFD_ASSERT (!r_reloc_is_const (r_rel));
4938 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4939 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4940 return (target_offset + r_rel->rela.r_addend);
4941}
e0001a05 4942
e0001a05 4943
43cd72b9 4944static struct elf_link_hash_entry *
7fa3d080 4945r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4946{
43cd72b9
BW
4947 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4948 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4949}
e0001a05 4950
43cd72b9
BW
4951
4952static asection *
7fa3d080 4953r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4954{
4955 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4956 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4957}
e0001a05
NC
4958
4959
4960static bfd_boolean
7fa3d080 4961r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4962{
43cd72b9
BW
4963 asection *sec;
4964 if (r_rel == NULL)
e0001a05 4965 return FALSE;
e0001a05 4966
43cd72b9
BW
4967 sec = r_reloc_get_section (r_rel);
4968 if (sec == bfd_abs_section_ptr
4969 || sec == bfd_com_section_ptr
4970 || sec == bfd_und_section_ptr)
4971 return FALSE;
4972 return TRUE;
e0001a05
NC
4973}
4974
4975
7fa3d080
BW
4976static void
4977r_reloc_init (r_reloc *r_rel,
4978 bfd *abfd,
4979 Elf_Internal_Rela *irel,
4980 bfd_byte *contents,
4981 bfd_size_type content_length)
4982{
4983 int r_type;
4984 reloc_howto_type *howto;
4985
4986 if (irel)
4987 {
4988 r_rel->rela = *irel;
4989 r_rel->abfd = abfd;
4990 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4991 r_rel->virtual_offset = 0;
4992 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4993 howto = &elf_howto_table[r_type];
4994 if (howto->partial_inplace)
4995 {
4996 bfd_vma inplace_val;
4997 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4998
4999 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5000 r_rel->target_offset += inplace_val;
5001 }
5002 }
5003 else
5004 memset (r_rel, 0, sizeof (r_reloc));
5005}
5006
5007
43cd72b9
BW
5008#if DEBUG
5009
e0001a05 5010static void
7fa3d080 5011print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 5012{
43cd72b9
BW
5013 if (r_reloc_is_defined (r_rel))
5014 {
5015 asection *sec = r_reloc_get_section (r_rel);
5016 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5017 }
5018 else if (r_reloc_get_hash_entry (r_rel))
5019 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5020 else
5021 fprintf (fp, " ?? + ");
e0001a05 5022
43cd72b9
BW
5023 fprintf_vma (fp, r_rel->target_offset);
5024 if (r_rel->virtual_offset)
5025 {
5026 fprintf (fp, " + ");
5027 fprintf_vma (fp, r_rel->virtual_offset);
5028 }
68ffbac6 5029
43cd72b9
BW
5030 fprintf (fp, ")");
5031}
e0001a05 5032
43cd72b9 5033#endif /* DEBUG */
e0001a05 5034
43cd72b9
BW
5035\f
5036/* source_reloc: relocations that reference literals. */
e0001a05 5037
43cd72b9
BW
5038/* To determine whether literals can be coalesced, we need to first
5039 record all the relocations that reference the literals. The
5040 source_reloc structure below is used for this purpose. The
5041 source_reloc entries are kept in a per-literal-section array, sorted
5042 by offset within the literal section (i.e., target offset).
e0001a05 5043
43cd72b9
BW
5044 The source_sec and r_rel.rela.r_offset fields identify the source of
5045 the relocation. The r_rel field records the relocation value, i.e.,
5046 the offset of the literal being referenced. The opnd field is needed
5047 to determine the range of the immediate field to which the relocation
5048 applies, so we can determine whether another literal with the same
5049 value is within range. The is_null field is true when the relocation
5050 is being removed (e.g., when an L32R is being removed due to a CALLX
5051 that is converted to a direct CALL). */
e0001a05 5052
43cd72b9
BW
5053typedef struct source_reloc_struct source_reloc;
5054
5055struct source_reloc_struct
e0001a05 5056{
43cd72b9
BW
5057 asection *source_sec;
5058 r_reloc r_rel;
5059 xtensa_opcode opcode;
5060 int opnd;
5061 bfd_boolean is_null;
5062 bfd_boolean is_abs_literal;
5063};
e0001a05 5064
e0001a05 5065
e0001a05 5066static void
7fa3d080
BW
5067init_source_reloc (source_reloc *reloc,
5068 asection *source_sec,
5069 const r_reloc *r_rel,
5070 xtensa_opcode opcode,
5071 int opnd,
5072 bfd_boolean is_abs_literal)
e0001a05 5073{
43cd72b9
BW
5074 reloc->source_sec = source_sec;
5075 reloc->r_rel = *r_rel;
5076 reloc->opcode = opcode;
5077 reloc->opnd = opnd;
5078 reloc->is_null = FALSE;
5079 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5080}
5081
e0001a05 5082
43cd72b9
BW
5083/* Find the source_reloc for a particular source offset and relocation
5084 type. Note that the array is sorted by _target_ offset, so this is
5085 just a linear search. */
e0001a05 5086
43cd72b9 5087static source_reloc *
7fa3d080
BW
5088find_source_reloc (source_reloc *src_relocs,
5089 int src_count,
5090 asection *sec,
5091 Elf_Internal_Rela *irel)
e0001a05 5092{
43cd72b9 5093 int i;
e0001a05 5094
43cd72b9
BW
5095 for (i = 0; i < src_count; i++)
5096 {
5097 if (src_relocs[i].source_sec == sec
5098 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5099 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5100 == ELF32_R_TYPE (irel->r_info)))
5101 return &src_relocs[i];
5102 }
e0001a05 5103
43cd72b9 5104 return NULL;
e0001a05
NC
5105}
5106
5107
43cd72b9 5108static int
7fa3d080 5109source_reloc_compare (const void *ap, const void *bp)
e0001a05 5110{
43cd72b9
BW
5111 const source_reloc *a = (const source_reloc *) ap;
5112 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5113
43cd72b9
BW
5114 if (a->r_rel.target_offset != b->r_rel.target_offset)
5115 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5116
43cd72b9
BW
5117 /* We don't need to sort on these criteria for correctness,
5118 but enforcing a more strict ordering prevents unstable qsort
5119 from behaving differently with different implementations.
5120 Without the code below we get correct but different results
5121 on Solaris 2.7 and 2.8. We would like to always produce the
5122 same results no matter the host. */
5123
5124 if ((!a->is_null) - (!b->is_null))
5125 return ((!a->is_null) - (!b->is_null));
5126 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5127}
5128
43cd72b9
BW
5129\f
5130/* Literal values and value hash tables. */
e0001a05 5131
43cd72b9
BW
5132/* Literals with the same value can be coalesced. The literal_value
5133 structure records the value of a literal: the "r_rel" field holds the
5134 information from the relocation on the literal (if there is one) and
5135 the "value" field holds the contents of the literal word itself.
e0001a05 5136
43cd72b9
BW
5137 The value_map structure records a literal value along with the
5138 location of a literal holding that value. The value_map hash table
5139 is indexed by the literal value, so that we can quickly check if a
5140 particular literal value has been seen before and is thus a candidate
5141 for coalescing. */
e0001a05 5142
43cd72b9
BW
5143typedef struct literal_value_struct literal_value;
5144typedef struct value_map_struct value_map;
5145typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5146
43cd72b9 5147struct literal_value_struct
e0001a05 5148{
68ffbac6 5149 r_reloc r_rel;
43cd72b9
BW
5150 unsigned long value;
5151 bfd_boolean is_abs_literal;
5152};
5153
5154struct value_map_struct
5155{
5156 literal_value val; /* The literal value. */
5157 r_reloc loc; /* Location of the literal. */
5158 value_map *next;
5159};
5160
5161struct value_map_hash_table_struct
5162{
5163 unsigned bucket_count;
5164 value_map **buckets;
5165 unsigned count;
5166 bfd_boolean has_last_loc;
5167 r_reloc last_loc;
5168};
5169
5170
e0001a05 5171static void
7fa3d080
BW
5172init_literal_value (literal_value *lit,
5173 const r_reloc *r_rel,
5174 unsigned long value,
5175 bfd_boolean is_abs_literal)
e0001a05 5176{
43cd72b9
BW
5177 lit->r_rel = *r_rel;
5178 lit->value = value;
5179 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5180}
5181
5182
43cd72b9 5183static bfd_boolean
7fa3d080
BW
5184literal_value_equal (const literal_value *src1,
5185 const literal_value *src2,
5186 bfd_boolean final_static_link)
e0001a05 5187{
43cd72b9 5188 struct elf_link_hash_entry *h1, *h2;
e0001a05 5189
68ffbac6 5190 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
43cd72b9 5191 return FALSE;
e0001a05 5192
43cd72b9
BW
5193 if (r_reloc_is_const (&src1->r_rel))
5194 return (src1->value == src2->value);
e0001a05 5195
43cd72b9
BW
5196 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5197 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5198 return FALSE;
e0001a05 5199
43cd72b9
BW
5200 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5201 return FALSE;
68ffbac6 5202
43cd72b9
BW
5203 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5204 return FALSE;
5205
5206 if (src1->value != src2->value)
5207 return FALSE;
68ffbac6 5208
43cd72b9
BW
5209 /* Now check for the same section (if defined) or the same elf_hash
5210 (if undefined or weak). */
5211 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5212 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5213 if (r_reloc_is_defined (&src1->r_rel)
5214 && (final_static_link
5215 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5216 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5217 {
5218 if (r_reloc_get_section (&src1->r_rel)
5219 != r_reloc_get_section (&src2->r_rel))
5220 return FALSE;
5221 }
5222 else
5223 {
5224 /* Require that the hash entries (i.e., symbols) be identical. */
5225 if (h1 != h2 || h1 == 0)
5226 return FALSE;
5227 }
5228
5229 if (src1->is_abs_literal != src2->is_abs_literal)
5230 return FALSE;
5231
5232 return TRUE;
e0001a05
NC
5233}
5234
e0001a05 5235
43cd72b9
BW
5236/* Must be power of 2. */
5237#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5238
43cd72b9 5239static value_map_hash_table *
7fa3d080 5240value_map_hash_table_init (void)
43cd72b9
BW
5241{
5242 value_map_hash_table *values;
e0001a05 5243
43cd72b9
BW
5244 values = (value_map_hash_table *)
5245 bfd_zmalloc (sizeof (value_map_hash_table));
5246 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5247 values->count = 0;
5248 values->buckets = (value_map **)
5249 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
68ffbac6 5250 if (values->buckets == NULL)
43cd72b9
BW
5251 {
5252 free (values);
5253 return NULL;
5254 }
5255 values->has_last_loc = FALSE;
5256
5257 return values;
5258}
5259
5260
5261static void
7fa3d080 5262value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5263{
43cd72b9
BW
5264 free (table->buckets);
5265 free (table);
5266}
5267
5268
5269static unsigned
7fa3d080 5270hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5271{
5272 return (val >> 2) + (val >> 10);
5273}
5274
5275
5276static unsigned
7fa3d080 5277literal_value_hash (const literal_value *src)
43cd72b9
BW
5278{
5279 unsigned hash_val;
e0001a05 5280
43cd72b9
BW
5281 hash_val = hash_bfd_vma (src->value);
5282 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5283 {
43cd72b9
BW
5284 void *sec_or_hash;
5285
5286 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5287 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5288 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
68ffbac6 5289
43cd72b9
BW
5290 /* Now check for the same section and the same elf_hash. */
5291 if (r_reloc_is_defined (&src->r_rel))
5292 sec_or_hash = r_reloc_get_section (&src->r_rel);
5293 else
5294 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5295 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5296 }
43cd72b9
BW
5297 return hash_val;
5298}
e0001a05 5299
e0001a05 5300
43cd72b9 5301/* Check if the specified literal_value has been seen before. */
e0001a05 5302
43cd72b9 5303static value_map *
7fa3d080
BW
5304value_map_get_cached_value (value_map_hash_table *map,
5305 const literal_value *val,
5306 bfd_boolean final_static_link)
43cd72b9
BW
5307{
5308 value_map *map_e;
5309 value_map *bucket;
5310 unsigned idx;
5311
5312 idx = literal_value_hash (val);
5313 idx = idx & (map->bucket_count - 1);
5314 bucket = map->buckets[idx];
5315 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5316 {
43cd72b9
BW
5317 if (literal_value_equal (&map_e->val, val, final_static_link))
5318 return map_e;
5319 }
5320 return NULL;
5321}
e0001a05 5322
e0001a05 5323
43cd72b9
BW
5324/* Record a new literal value. It is illegal to call this if VALUE
5325 already has an entry here. */
5326
5327static value_map *
7fa3d080
BW
5328add_value_map (value_map_hash_table *map,
5329 const literal_value *val,
5330 const r_reloc *loc,
5331 bfd_boolean final_static_link)
43cd72b9
BW
5332{
5333 value_map **bucket_p;
5334 unsigned idx;
5335
5336 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5337 if (val_e == NULL)
5338 {
5339 bfd_set_error (bfd_error_no_memory);
5340 return NULL;
e0001a05
NC
5341 }
5342
43cd72b9
BW
5343 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5344 val_e->val = *val;
5345 val_e->loc = *loc;
5346
5347 idx = literal_value_hash (val);
5348 idx = idx & (map->bucket_count - 1);
5349 bucket_p = &map->buckets[idx];
5350
5351 val_e->next = *bucket_p;
5352 *bucket_p = val_e;
5353 map->count++;
5354 /* FIXME: Consider resizing the hash table if we get too many entries. */
68ffbac6 5355
43cd72b9 5356 return val_e;
e0001a05
NC
5357}
5358
43cd72b9
BW
5359\f
5360/* Lists of text actions (ta_) for narrowing, widening, longcall
5361 conversion, space fill, code & literal removal, etc. */
5362
5363/* The following text actions are generated:
5364
5365 "ta_remove_insn" remove an instruction or instructions
5366 "ta_remove_longcall" convert longcall to call
5367 "ta_convert_longcall" convert longcall to nop/call
5368 "ta_narrow_insn" narrow a wide instruction
5369 "ta_widen" widen a narrow instruction
5370 "ta_fill" add fill or remove fill
5371 removed < 0 is a fill; branches to the fill address will be
5372 changed to address + fill size (e.g., address - removed)
5373 removed >= 0 branches to the fill address will stay unchanged
5374 "ta_remove_literal" remove a literal; this action is
5375 indicated when a literal is removed
5376 or replaced.
5377 "ta_add_literal" insert a new literal; this action is
5378 indicated when a literal has been moved.
5379 It may use a virtual_offset because
5380 multiple literals can be placed at the
5381 same location.
5382
5383 For each of these text actions, we also record the number of bytes
5384 removed by performing the text action. In the case of a "ta_widen"
5385 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5386
5387typedef struct text_action_struct text_action;
5388typedef struct text_action_list_struct text_action_list;
5389typedef enum text_action_enum_t text_action_t;
5390
5391enum text_action_enum_t
5392{
5393 ta_none,
5394 ta_remove_insn, /* removed = -size */
5395 ta_remove_longcall, /* removed = -size */
5396 ta_convert_longcall, /* removed = 0 */
5397 ta_narrow_insn, /* removed = -1 */
5398 ta_widen_insn, /* removed = +1 */
5399 ta_fill, /* removed = +size */
5400 ta_remove_literal,
5401 ta_add_literal
5402};
e0001a05 5403
e0001a05 5404
43cd72b9
BW
5405/* Structure for a text action record. */
5406struct text_action_struct
e0001a05 5407{
43cd72b9
BW
5408 text_action_t action;
5409 asection *sec; /* Optional */
5410 bfd_vma offset;
5411 bfd_vma virtual_offset; /* Zero except for adding literals. */
5412 int removed_bytes;
5413 literal_value value; /* Only valid when adding literals. */
e0001a05 5414
43cd72b9
BW
5415 text_action *next;
5416};
e0001a05 5417
e0001a05 5418
43cd72b9
BW
5419/* List of all of the actions taken on a text section. */
5420struct text_action_list_struct
5421{
5422 text_action *head;
5423};
e0001a05 5424
e0001a05 5425
7fa3d080
BW
5426static text_action *
5427find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
5428{
5429 text_action **m_p;
5430
5431 /* It is not necessary to fill at the end of a section. */
5432 if (sec->size == offset)
5433 return NULL;
5434
7fa3d080 5435 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5436 {
5437 text_action *t = *m_p;
5438 /* When the action is another fill at the same address,
5439 just increase the size. */
5440 if (t->offset == offset && t->action == ta_fill)
5441 return t;
5442 }
5443 return NULL;
5444}
5445
5446
5447static int
7fa3d080
BW
5448compute_removed_action_diff (const text_action *ta,
5449 asection *sec,
5450 bfd_vma offset,
5451 int removed,
5452 int removable_space)
43cd72b9
BW
5453{
5454 int new_removed;
5455 int current_removed = 0;
5456
7fa3d080 5457 if (ta)
43cd72b9
BW
5458 current_removed = ta->removed_bytes;
5459
5460 BFD_ASSERT (ta == NULL || ta->offset == offset);
5461 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5462
5463 /* It is not necessary to fill at the end of a section. Clean this up. */
5464 if (sec->size == offset)
5465 new_removed = removable_space - 0;
5466 else
5467 {
5468 int space;
5469 int added = -removed - current_removed;
5470 /* Ignore multiples of the section alignment. */
5471 added = ((1 << sec->alignment_power) - 1) & added;
5472 new_removed = (-added);
5473
5474 /* Modify for removable. */
5475 space = removable_space - new_removed;
5476 new_removed = (removable_space
5477 - (((1 << sec->alignment_power) - 1) & space));
5478 }
5479 return (new_removed - current_removed);
5480}
5481
5482
7fa3d080
BW
5483static void
5484adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5485{
5486 ta->removed_bytes += fill_diff;
5487}
5488
5489
5490/* Add a modification action to the text. For the case of adding or
5491 removing space, modify any current fill and assume that
5492 "unreachable_space" bytes can be freely contracted. Note that a
5493 negative removed value is a fill. */
5494
68ffbac6 5495static void
7fa3d080
BW
5496text_action_add (text_action_list *l,
5497 text_action_t action,
5498 asection *sec,
5499 bfd_vma offset,
5500 int removed)
43cd72b9
BW
5501{
5502 text_action **m_p;
5503 text_action *ta;
5504
5505 /* It is not necessary to fill at the end of a section. */
5506 if (action == ta_fill && sec->size == offset)
5507 return;
5508
5509 /* It is not necessary to fill 0 bytes. */
5510 if (action == ta_fill && removed == 0)
5511 return;
5512
7fa3d080 5513 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5514 {
5515 text_action *t = *m_p;
68ffbac6
L
5516
5517 if (action == ta_fill)
43cd72b9 5518 {
658ff993
SA
5519 /* When the action is another fill at the same address,
5520 just increase the size. */
5521 if (t->offset == offset && t->action == ta_fill)
5522 {
5523 t->removed_bytes += removed;
5524 return;
5525 }
5526 /* Fills need to happen before widens so that we don't
5527 insert fill bytes into the instruction stream. */
5528 if (t->offset == offset && t->action == ta_widen_insn)
5529 break;
43cd72b9
BW
5530 }
5531 }
5532
5533 /* Create a new record and fill it up. */
5534 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5535 ta->action = action;
5536 ta->sec = sec;
5537 ta->offset = offset;
5538 ta->removed_bytes = removed;
5539 ta->next = (*m_p);
5540 *m_p = ta;
5541}
5542
5543
5544static void
7fa3d080
BW
5545text_action_add_literal (text_action_list *l,
5546 text_action_t action,
5547 const r_reloc *loc,
5548 const literal_value *value,
5549 int removed)
43cd72b9
BW
5550{
5551 text_action **m_p;
5552 text_action *ta;
5553 asection *sec = r_reloc_get_section (loc);
5554 bfd_vma offset = loc->target_offset;
5555 bfd_vma virtual_offset = loc->virtual_offset;
5556
5557 BFD_ASSERT (action == ta_add_literal);
5558
5559 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5560 {
5561 if ((*m_p)->offset > offset
5562 && ((*m_p)->offset != offset
5563 || (*m_p)->virtual_offset > virtual_offset))
5564 break;
5565 }
5566
5567 /* Create a new record and fill it up. */
5568 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5569 ta->action = action;
5570 ta->sec = sec;
5571 ta->offset = offset;
5572 ta->virtual_offset = virtual_offset;
5573 ta->value = *value;
5574 ta->removed_bytes = removed;
5575 ta->next = (*m_p);
5576 *m_p = ta;
5577}
5578
5579
03669f1c
BW
5580/* Find the total offset adjustment for the relaxations specified by
5581 text_actions, beginning from a particular starting action. This is
5582 typically used from offset_with_removed_text to search an entire list of
5583 actions, but it may also be called directly when adjusting adjacent offsets
5584 so that each search may begin where the previous one left off. */
5585
5586static int
5587removed_by_actions (text_action **p_start_action,
5588 bfd_vma offset,
5589 bfd_boolean before_fill)
43cd72b9
BW
5590{
5591 text_action *r;
5592 int removed = 0;
5593
03669f1c
BW
5594 r = *p_start_action;
5595 while (r)
43cd72b9 5596 {
03669f1c
BW
5597 if (r->offset > offset)
5598 break;
5599
5600 if (r->offset == offset
5601 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5602 break;
5603
5604 removed += r->removed_bytes;
5605
5606 r = r->next;
43cd72b9
BW
5607 }
5608
03669f1c
BW
5609 *p_start_action = r;
5610 return removed;
5611}
5612
5613
68ffbac6 5614static bfd_vma
03669f1c
BW
5615offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5616{
5617 text_action *r = action_list->head;
5618 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
5619}
5620
5621
03e94c08
BW
5622static unsigned
5623action_list_count (text_action_list *action_list)
5624{
5625 text_action *r = action_list->head;
5626 unsigned count = 0;
5627 for (r = action_list->head; r != NULL; r = r->next)
5628 {
5629 count++;
5630 }
5631 return count;
5632}
5633
5634
43cd72b9
BW
5635/* The find_insn_action routine will only find non-fill actions. */
5636
7fa3d080
BW
5637static text_action *
5638find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
5639{
5640 text_action *t;
5641 for (t = action_list->head; t; t = t->next)
5642 {
5643 if (t->offset == offset)
5644 {
5645 switch (t->action)
5646 {
5647 case ta_none:
5648 case ta_fill:
5649 break;
5650 case ta_remove_insn:
5651 case ta_remove_longcall:
5652 case ta_convert_longcall:
5653 case ta_narrow_insn:
5654 case ta_widen_insn:
5655 return t;
5656 case ta_remove_literal:
5657 case ta_add_literal:
5658 BFD_ASSERT (0);
5659 break;
5660 }
5661 }
5662 }
5663 return NULL;
5664}
5665
5666
5667#if DEBUG
5668
5669static void
7fa3d080 5670print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
5671{
5672 text_action *r;
5673
5674 fprintf (fp, "Text Action\n");
5675 for (r = action_list->head; r != NULL; r = r->next)
5676 {
5677 const char *t = "unknown";
5678 switch (r->action)
5679 {
5680 case ta_remove_insn:
5681 t = "remove_insn"; break;
5682 case ta_remove_longcall:
5683 t = "remove_longcall"; break;
5684 case ta_convert_longcall:
c46082c8 5685 t = "convert_longcall"; break;
43cd72b9
BW
5686 case ta_narrow_insn:
5687 t = "narrow_insn"; break;
5688 case ta_widen_insn:
5689 t = "widen_insn"; break;
5690 case ta_fill:
5691 t = "fill"; break;
5692 case ta_none:
5693 t = "none"; break;
5694 case ta_remove_literal:
5695 t = "remove_literal"; break;
5696 case ta_add_literal:
5697 t = "add_literal"; break;
5698 }
5699
5700 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5701 r->sec->owner->filename,
9ccb8af9 5702 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
43cd72b9
BW
5703 }
5704}
5705
5706#endif /* DEBUG */
5707
5708\f
5709/* Lists of literals being coalesced or removed. */
5710
5711/* In the usual case, the literal identified by "from" is being
5712 coalesced with another literal identified by "to". If the literal is
5713 unused and is being removed altogether, "to.abfd" will be NULL.
5714 The removed_literal entries are kept on a per-section list, sorted
5715 by the "from" offset field. */
5716
5717typedef struct removed_literal_struct removed_literal;
5718typedef struct removed_literal_list_struct removed_literal_list;
5719
5720struct removed_literal_struct
5721{
5722 r_reloc from;
5723 r_reloc to;
5724 removed_literal *next;
5725};
5726
5727struct removed_literal_list_struct
5728{
5729 removed_literal *head;
5730 removed_literal *tail;
5731};
5732
5733
43cd72b9
BW
5734/* Record that the literal at "from" is being removed. If "to" is not
5735 NULL, the "from" literal is being coalesced with the "to" literal. */
5736
5737static void
7fa3d080
BW
5738add_removed_literal (removed_literal_list *removed_list,
5739 const r_reloc *from,
5740 const r_reloc *to)
43cd72b9
BW
5741{
5742 removed_literal *r, *new_r, *next_r;
5743
5744 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5745
5746 new_r->from = *from;
5747 if (to)
5748 new_r->to = *to;
5749 else
5750 new_r->to.abfd = NULL;
5751 new_r->next = NULL;
68ffbac6 5752
43cd72b9 5753 r = removed_list->head;
68ffbac6 5754 if (r == NULL)
43cd72b9
BW
5755 {
5756 removed_list->head = new_r;
5757 removed_list->tail = new_r;
5758 }
5759 /* Special check for common case of append. */
5760 else if (removed_list->tail->from.target_offset < from->target_offset)
5761 {
5762 removed_list->tail->next = new_r;
5763 removed_list->tail = new_r;
5764 }
5765 else
5766 {
68ffbac6 5767 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5768 {
5769 r = r->next;
5770 }
5771 next_r = r->next;
5772 r->next = new_r;
5773 new_r->next = next_r;
5774 if (next_r == NULL)
5775 removed_list->tail = new_r;
5776 }
5777}
5778
5779
5780/* Check if the list of removed literals contains an entry for the
5781 given address. Return the entry if found. */
5782
5783static removed_literal *
7fa3d080 5784find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
5785{
5786 removed_literal *r = removed_list->head;
5787 while (r && r->from.target_offset < addr)
5788 r = r->next;
5789 if (r && r->from.target_offset == addr)
5790 return r;
5791 return NULL;
5792}
5793
5794
5795#if DEBUG
5796
5797static void
7fa3d080 5798print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5799{
5800 removed_literal *r;
5801 r = removed_list->head;
5802 if (r)
5803 fprintf (fp, "Removed Literals\n");
5804 for (; r != NULL; r = r->next)
5805 {
5806 print_r_reloc (fp, &r->from);
5807 fprintf (fp, " => ");
5808 if (r->to.abfd == NULL)
5809 fprintf (fp, "REMOVED");
5810 else
5811 print_r_reloc (fp, &r->to);
5812 fprintf (fp, "\n");
5813 }
5814}
5815
5816#endif /* DEBUG */
5817
5818\f
5819/* Per-section data for relaxation. */
5820
5821typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5822
5823struct xtensa_relax_info_struct
5824{
5825 bfd_boolean is_relaxable_literal_section;
5826 bfd_boolean is_relaxable_asm_section;
5827 int visited; /* Number of times visited. */
5828
5829 source_reloc *src_relocs; /* Array[src_count]. */
5830 int src_count;
5831 int src_next; /* Next src_relocs entry to assign. */
5832
5833 removed_literal_list removed_list;
5834 text_action_list action_list;
5835
5836 reloc_bfd_fix *fix_list;
5837 reloc_bfd_fix *fix_array;
5838 unsigned fix_array_count;
5839
5840 /* Support for expanding the reloc array that is stored
5841 in the section structure. If the relocations have been
5842 reallocated, the newly allocated relocations will be referenced
5843 here along with the actual size allocated. The relocation
5844 count will always be found in the section structure. */
68ffbac6 5845 Elf_Internal_Rela *allocated_relocs;
43cd72b9
BW
5846 unsigned relocs_count;
5847 unsigned allocated_relocs_count;
5848};
5849
5850struct elf_xtensa_section_data
5851{
5852 struct bfd_elf_section_data elf;
5853 xtensa_relax_info relax_info;
5854};
5855
43cd72b9
BW
5856
5857static bfd_boolean
7fa3d080 5858elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5859{
f592407e
AM
5860 if (!sec->used_by_bfd)
5861 {
5862 struct elf_xtensa_section_data *sdata;
5863 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5864
f592407e
AM
5865 sdata = bfd_zalloc (abfd, amt);
5866 if (sdata == NULL)
5867 return FALSE;
5868 sec->used_by_bfd = sdata;
5869 }
43cd72b9
BW
5870
5871 return _bfd_elf_new_section_hook (abfd, sec);
5872}
5873
5874
7fa3d080
BW
5875static xtensa_relax_info *
5876get_xtensa_relax_info (asection *sec)
5877{
5878 struct elf_xtensa_section_data *section_data;
5879
5880 /* No info available if no section or if it is an output section. */
5881 if (!sec || sec == sec->output_section)
5882 return NULL;
5883
5884 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5885 return &section_data->relax_info;
5886}
5887
5888
43cd72b9 5889static void
7fa3d080 5890init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5891{
5892 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5893
5894 relax_info->is_relaxable_literal_section = FALSE;
5895 relax_info->is_relaxable_asm_section = FALSE;
5896 relax_info->visited = 0;
5897
5898 relax_info->src_relocs = NULL;
5899 relax_info->src_count = 0;
5900 relax_info->src_next = 0;
5901
5902 relax_info->removed_list.head = NULL;
5903 relax_info->removed_list.tail = NULL;
5904
5905 relax_info->action_list.head = NULL;
5906
5907 relax_info->fix_list = NULL;
5908 relax_info->fix_array = NULL;
5909 relax_info->fix_array_count = 0;
5910
68ffbac6 5911 relax_info->allocated_relocs = NULL;
43cd72b9
BW
5912 relax_info->relocs_count = 0;
5913 relax_info->allocated_relocs_count = 0;
5914}
5915
43cd72b9
BW
5916\f
5917/* Coalescing literals may require a relocation to refer to a section in
5918 a different input file, but the standard relocation information
5919 cannot express that. Instead, the reloc_bfd_fix structures are used
5920 to "fix" the relocations that refer to sections in other input files.
5921 These structures are kept on per-section lists. The "src_type" field
5922 records the relocation type in case there are multiple relocations on
5923 the same location. FIXME: This is ugly; an alternative might be to
5924 add new symbols with the "owner" field to some other input file. */
5925
5926struct reloc_bfd_fix_struct
5927{
5928 asection *src_sec;
5929 bfd_vma src_offset;
5930 unsigned src_type; /* Relocation type. */
68ffbac6 5931
43cd72b9
BW
5932 asection *target_sec;
5933 bfd_vma target_offset;
5934 bfd_boolean translated;
68ffbac6 5935
43cd72b9
BW
5936 reloc_bfd_fix *next;
5937};
5938
5939
43cd72b9 5940static reloc_bfd_fix *
7fa3d080
BW
5941reloc_bfd_fix_init (asection *src_sec,
5942 bfd_vma src_offset,
5943 unsigned src_type,
7fa3d080
BW
5944 asection *target_sec,
5945 bfd_vma target_offset,
5946 bfd_boolean translated)
43cd72b9
BW
5947{
5948 reloc_bfd_fix *fix;
5949
5950 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5951 fix->src_sec = src_sec;
5952 fix->src_offset = src_offset;
5953 fix->src_type = src_type;
43cd72b9
BW
5954 fix->target_sec = target_sec;
5955 fix->target_offset = target_offset;
5956 fix->translated = translated;
5957
5958 return fix;
5959}
5960
5961
5962static void
7fa3d080 5963add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5964{
5965 xtensa_relax_info *relax_info;
5966
5967 relax_info = get_xtensa_relax_info (src_sec);
5968 fix->next = relax_info->fix_list;
5969 relax_info->fix_list = fix;
5970}
5971
5972
5973static int
7fa3d080 5974fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5975{
5976 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5977 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5978
5979 if (a->src_offset != b->src_offset)
5980 return (a->src_offset - b->src_offset);
5981 return (a->src_type - b->src_type);
5982}
5983
5984
5985static void
7fa3d080 5986cache_fix_array (asection *sec)
43cd72b9
BW
5987{
5988 unsigned i, count = 0;
5989 reloc_bfd_fix *r;
5990 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5991
5992 if (relax_info == NULL)
5993 return;
5994 if (relax_info->fix_list == NULL)
5995 return;
5996
5997 for (r = relax_info->fix_list; r != NULL; r = r->next)
5998 count++;
5999
6000 relax_info->fix_array =
6001 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6002 relax_info->fix_array_count = count;
6003
6004 r = relax_info->fix_list;
6005 for (i = 0; i < count; i++, r = r->next)
6006 {
6007 relax_info->fix_array[count - 1 - i] = *r;
6008 relax_info->fix_array[count - 1 - i].next = NULL;
6009 }
6010
6011 qsort (relax_info->fix_array, relax_info->fix_array_count,
6012 sizeof (reloc_bfd_fix), fix_compare);
6013}
6014
6015
6016static reloc_bfd_fix *
7fa3d080 6017get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6018{
6019 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6020 reloc_bfd_fix *rv;
6021 reloc_bfd_fix key;
6022
6023 if (relax_info == NULL)
6024 return NULL;
6025 if (relax_info->fix_list == NULL)
6026 return NULL;
6027
6028 if (relax_info->fix_array == NULL)
6029 cache_fix_array (sec);
6030
6031 key.src_offset = offset;
6032 key.src_type = type;
6033 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6034 sizeof (reloc_bfd_fix), fix_compare);
6035 return rv;
6036}
6037
6038\f
6039/* Section caching. */
6040
6041typedef struct section_cache_struct section_cache_t;
6042
6043struct section_cache_struct
6044{
6045 asection *sec;
6046
6047 bfd_byte *contents; /* Cache of the section contents. */
6048 bfd_size_type content_length;
6049
6050 property_table_entry *ptbl; /* Cache of the section property table. */
6051 unsigned pte_count;
6052
6053 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6054 unsigned reloc_count;
6055};
6056
6057
7fa3d080
BW
6058static void
6059init_section_cache (section_cache_t *sec_cache)
6060{
6061 memset (sec_cache, 0, sizeof (*sec_cache));
6062}
43cd72b9
BW
6063
6064
6065static void
65e911f9 6066free_section_cache (section_cache_t *sec_cache)
43cd72b9 6067{
7fa3d080
BW
6068 if (sec_cache->sec)
6069 {
6070 release_contents (sec_cache->sec, sec_cache->contents);
6071 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6072 if (sec_cache->ptbl)
6073 free (sec_cache->ptbl);
7fa3d080 6074 }
43cd72b9
BW
6075}
6076
6077
6078static bfd_boolean
7fa3d080
BW
6079section_cache_section (section_cache_t *sec_cache,
6080 asection *sec,
6081 struct bfd_link_info *link_info)
43cd72b9
BW
6082{
6083 bfd *abfd;
6084 property_table_entry *prop_table = NULL;
6085 int ptblsize = 0;
6086 bfd_byte *contents = NULL;
6087 Elf_Internal_Rela *internal_relocs = NULL;
6088 bfd_size_type sec_size;
6089
6090 if (sec == NULL)
6091 return FALSE;
6092 if (sec == sec_cache->sec)
6093 return TRUE;
6094
6095 abfd = sec->owner;
6096 sec_size = bfd_get_section_limit (abfd, sec);
6097
6098 /* Get the contents. */
6099 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6100 if (contents == NULL && sec_size != 0)
6101 goto err;
6102
6103 /* Get the relocations. */
6104 internal_relocs = retrieve_internal_relocs (abfd, sec,
6105 link_info->keep_memory);
6106
6107 /* Get the entry table. */
6108 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6109 XTENSA_PROP_SEC_NAME, FALSE);
6110 if (ptblsize < 0)
6111 goto err;
6112
6113 /* Fill in the new section cache. */
65e911f9
AM
6114 free_section_cache (sec_cache);
6115 init_section_cache (sec_cache);
43cd72b9
BW
6116
6117 sec_cache->sec = sec;
6118 sec_cache->contents = contents;
6119 sec_cache->content_length = sec_size;
6120 sec_cache->relocs = internal_relocs;
6121 sec_cache->reloc_count = sec->reloc_count;
6122 sec_cache->pte_count = ptblsize;
6123 sec_cache->ptbl = prop_table;
6124
6125 return TRUE;
6126
6127 err:
6128 release_contents (sec, contents);
6129 release_internal_relocs (sec, internal_relocs);
6130 if (prop_table)
6131 free (prop_table);
6132 return FALSE;
6133}
6134
43cd72b9
BW
6135\f
6136/* Extended basic blocks. */
6137
6138/* An ebb_struct represents an Extended Basic Block. Within this
6139 range, we guarantee that all instructions are decodable, the
6140 property table entries are contiguous, and no property table
6141 specifies a segment that cannot have instructions moved. This
6142 structure contains caches of the contents, property table and
6143 relocations for the specified section for easy use. The range is
6144 specified by ranges of indices for the byte offset, property table
6145 offsets and relocation offsets. These must be consistent. */
6146
6147typedef struct ebb_struct ebb_t;
6148
6149struct ebb_struct
6150{
6151 asection *sec;
6152
6153 bfd_byte *contents; /* Cache of the section contents. */
6154 bfd_size_type content_length;
6155
6156 property_table_entry *ptbl; /* Cache of the section property table. */
6157 unsigned pte_count;
6158
6159 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6160 unsigned reloc_count;
6161
6162 bfd_vma start_offset; /* Offset in section. */
6163 unsigned start_ptbl_idx; /* Offset in the property table. */
6164 unsigned start_reloc_idx; /* Offset in the relocations. */
6165
6166 bfd_vma end_offset;
6167 unsigned end_ptbl_idx;
6168 unsigned end_reloc_idx;
6169
6170 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6171
6172 /* The unreachable property table at the end of this set of blocks;
6173 NULL if the end is not an unreachable block. */
6174 property_table_entry *ends_unreachable;
6175};
6176
6177
6178enum ebb_target_enum
6179{
6180 EBB_NO_ALIGN = 0,
6181 EBB_DESIRE_TGT_ALIGN,
6182 EBB_REQUIRE_TGT_ALIGN,
6183 EBB_REQUIRE_LOOP_ALIGN,
6184 EBB_REQUIRE_ALIGN
6185};
6186
6187
6188/* proposed_action_struct is similar to the text_action_struct except
6189 that is represents a potential transformation, not one that will
6190 occur. We build a list of these for an extended basic block
6191 and use them to compute the actual actions desired. We must be
6192 careful that the entire set of actual actions we perform do not
6193 break any relocations that would fit if the actions were not
6194 performed. */
6195
6196typedef struct proposed_action_struct proposed_action;
6197
6198struct proposed_action_struct
6199{
6200 enum ebb_target_enum align_type; /* for the target alignment */
6201 bfd_vma alignment_pow;
6202 text_action_t action;
6203 bfd_vma offset;
6204 int removed_bytes;
6205 bfd_boolean do_action; /* If false, then we will not perform the action. */
6206};
6207
6208
6209/* The ebb_constraint_struct keeps a set of proposed actions for an
6210 extended basic block. */
6211
6212typedef struct ebb_constraint_struct ebb_constraint;
6213
6214struct ebb_constraint_struct
6215{
6216 ebb_t ebb;
6217 bfd_boolean start_movable;
6218
6219 /* Bytes of extra space at the beginning if movable. */
6220 int start_extra_space;
6221
6222 enum ebb_target_enum start_align;
6223
6224 bfd_boolean end_movable;
6225
6226 /* Bytes of extra space at the end if movable. */
6227 int end_extra_space;
6228
6229 unsigned action_count;
6230 unsigned action_allocated;
6231
6232 /* Array of proposed actions. */
6233 proposed_action *actions;
6234
6235 /* Action alignments -- one for each proposed action. */
6236 enum ebb_target_enum *action_aligns;
6237};
6238
6239
43cd72b9 6240static void
7fa3d080 6241init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6242{
6243 memset (c, 0, sizeof (ebb_constraint));
6244}
6245
6246
6247static void
7fa3d080 6248free_ebb_constraint (ebb_constraint *c)
43cd72b9 6249{
7fa3d080 6250 if (c->actions)
43cd72b9
BW
6251 free (c->actions);
6252}
6253
6254
6255static void
7fa3d080
BW
6256init_ebb (ebb_t *ebb,
6257 asection *sec,
6258 bfd_byte *contents,
6259 bfd_size_type content_length,
6260 property_table_entry *prop_table,
6261 unsigned ptblsize,
6262 Elf_Internal_Rela *internal_relocs,
6263 unsigned reloc_count)
43cd72b9
BW
6264{
6265 memset (ebb, 0, sizeof (ebb_t));
6266 ebb->sec = sec;
6267 ebb->contents = contents;
6268 ebb->content_length = content_length;
6269 ebb->ptbl = prop_table;
6270 ebb->pte_count = ptblsize;
6271 ebb->relocs = internal_relocs;
6272 ebb->reloc_count = reloc_count;
6273 ebb->start_offset = 0;
6274 ebb->end_offset = ebb->content_length - 1;
6275 ebb->start_ptbl_idx = 0;
6276 ebb->end_ptbl_idx = ptblsize;
6277 ebb->start_reloc_idx = 0;
6278 ebb->end_reloc_idx = reloc_count;
6279}
6280
6281
6282/* Extend the ebb to all decodable contiguous sections. The algorithm
6283 for building a basic block around an instruction is to push it
6284 forward until we hit the end of a section, an unreachable block or
6285 a block that cannot be transformed. Then we push it backwards
6286 searching for similar conditions. */
6287
7fa3d080
BW
6288static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6289static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6290static bfd_size_type insn_block_decodable_len
6291 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6292
43cd72b9 6293static bfd_boolean
7fa3d080 6294extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6295{
6296 if (!extend_ebb_bounds_forward (ebb))
6297 return FALSE;
6298 if (!extend_ebb_bounds_backward (ebb))
6299 return FALSE;
6300 return TRUE;
6301}
6302
6303
6304static bfd_boolean
7fa3d080 6305extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6306{
6307 property_table_entry *the_entry, *new_entry;
6308
6309 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6310
6311 /* Stop when (1) we cannot decode an instruction, (2) we are at
6312 the end of the property tables, (3) we hit a non-contiguous property
6313 table entry, (4) we hit a NO_TRANSFORM region. */
6314
6315 while (1)
6316 {
6317 bfd_vma entry_end;
6318 bfd_size_type insn_block_len;
6319
6320 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6321 insn_block_len =
6322 insn_block_decodable_len (ebb->contents, ebb->content_length,
6323 ebb->end_offset,
6324 entry_end - ebb->end_offset);
6325 if (insn_block_len != (entry_end - ebb->end_offset))
6326 {
6327 (*_bfd_error_handler)
6328 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6329 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6330 return FALSE;
6331 }
6332 ebb->end_offset += insn_block_len;
6333
6334 if (ebb->end_offset == ebb->sec->size)
6335 ebb->ends_section = TRUE;
6336
6337 /* Update the reloc counter. */
6338 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6339 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6340 < ebb->end_offset))
6341 {
6342 ebb->end_reloc_idx++;
6343 }
6344
6345 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6346 return TRUE;
6347
6348 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6349 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6350 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6351 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6352 break;
6353
6354 if (the_entry->address + the_entry->size != new_entry->address)
6355 break;
6356
6357 the_entry = new_entry;
6358 ebb->end_ptbl_idx++;
6359 }
6360
6361 /* Quick check for an unreachable or end of file just at the end. */
6362 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6363 {
6364 if (ebb->end_offset == ebb->content_length)
6365 ebb->ends_section = TRUE;
6366 }
6367 else
6368 {
6369 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6370 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6371 && the_entry->address + the_entry->size == new_entry->address)
6372 ebb->ends_unreachable = new_entry;
6373 }
6374
6375 /* Any other ending requires exact alignment. */
6376 return TRUE;
6377}
6378
6379
6380static bfd_boolean
7fa3d080 6381extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6382{
6383 property_table_entry *the_entry, *new_entry;
6384
6385 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6386
6387 /* Stop when (1) we cannot decode the instructions in the current entry.
6388 (2) we are at the beginning of the property tables, (3) we hit a
6389 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6390
6391 while (1)
6392 {
6393 bfd_vma block_begin;
6394 bfd_size_type insn_block_len;
6395
6396 block_begin = the_entry->address - ebb->sec->vma;
6397 insn_block_len =
6398 insn_block_decodable_len (ebb->contents, ebb->content_length,
6399 block_begin,
6400 ebb->start_offset - block_begin);
6401 if (insn_block_len != ebb->start_offset - block_begin)
6402 {
6403 (*_bfd_error_handler)
6404 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6405 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6406 return FALSE;
6407 }
6408 ebb->start_offset -= insn_block_len;
6409
6410 /* Update the reloc counter. */
6411 while (ebb->start_reloc_idx > 0
6412 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6413 >= ebb->start_offset))
6414 {
6415 ebb->start_reloc_idx--;
6416 }
6417
6418 if (ebb->start_ptbl_idx == 0)
6419 return TRUE;
6420
6421 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6422 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6423 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6424 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6425 return TRUE;
6426 if (new_entry->address + new_entry->size != the_entry->address)
6427 return TRUE;
6428
6429 the_entry = new_entry;
6430 ebb->start_ptbl_idx--;
6431 }
6432 return TRUE;
6433}
6434
6435
6436static bfd_size_type
7fa3d080
BW
6437insn_block_decodable_len (bfd_byte *contents,
6438 bfd_size_type content_len,
6439 bfd_vma block_offset,
6440 bfd_size_type block_len)
43cd72b9
BW
6441{
6442 bfd_vma offset = block_offset;
6443
6444 while (offset < block_offset + block_len)
6445 {
6446 bfd_size_type insn_len = 0;
6447
6448 insn_len = insn_decode_len (contents, content_len, offset);
6449 if (insn_len == 0)
6450 return (offset - block_offset);
6451 offset += insn_len;
6452 }
6453 return (offset - block_offset);
6454}
6455
6456
6457static void
7fa3d080 6458ebb_propose_action (ebb_constraint *c,
7fa3d080 6459 enum ebb_target_enum align_type,
288f74fa 6460 bfd_vma alignment_pow,
7fa3d080
BW
6461 text_action_t action,
6462 bfd_vma offset,
6463 int removed_bytes,
6464 bfd_boolean do_action)
43cd72b9 6465{
b08b5071 6466 proposed_action *act;
43cd72b9 6467
43cd72b9
BW
6468 if (c->action_allocated <= c->action_count)
6469 {
b08b5071 6470 unsigned new_allocated, i;
823fc61f 6471 proposed_action *new_actions;
b08b5071
BW
6472
6473 new_allocated = (c->action_count + 2) * 2;
823fc61f 6474 new_actions = (proposed_action *)
43cd72b9
BW
6475 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6476
6477 for (i = 0; i < c->action_count; i++)
6478 new_actions[i] = c->actions[i];
7fa3d080 6479 if (c->actions)
43cd72b9
BW
6480 free (c->actions);
6481 c->actions = new_actions;
6482 c->action_allocated = new_allocated;
6483 }
b08b5071
BW
6484
6485 act = &c->actions[c->action_count];
6486 act->align_type = align_type;
6487 act->alignment_pow = alignment_pow;
6488 act->action = action;
6489 act->offset = offset;
6490 act->removed_bytes = removed_bytes;
6491 act->do_action = do_action;
6492
43cd72b9
BW
6493 c->action_count++;
6494}
6495
6496\f
6497/* Access to internal relocations, section contents and symbols. */
6498
6499/* During relaxation, we need to modify relocations, section contents,
6500 and symbol definitions, and we need to keep the original values from
6501 being reloaded from the input files, i.e., we need to "pin" the
6502 modified values in memory. We also want to continue to observe the
6503 setting of the "keep-memory" flag. The following functions wrap the
6504 standard BFD functions to take care of this for us. */
6505
6506static Elf_Internal_Rela *
7fa3d080 6507retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6508{
6509 Elf_Internal_Rela *internal_relocs;
6510
6511 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6512 return NULL;
6513
6514 internal_relocs = elf_section_data (sec)->relocs;
6515 if (internal_relocs == NULL)
6516 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6517 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6518 return internal_relocs;
6519}
6520
6521
6522static void
7fa3d080 6523pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6524{
6525 elf_section_data (sec)->relocs = internal_relocs;
6526}
6527
6528
6529static void
7fa3d080 6530release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6531{
6532 if (internal_relocs
6533 && elf_section_data (sec)->relocs != internal_relocs)
6534 free (internal_relocs);
6535}
6536
6537
6538static bfd_byte *
7fa3d080 6539retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6540{
6541 bfd_byte *contents;
6542 bfd_size_type sec_size;
6543
6544 sec_size = bfd_get_section_limit (abfd, sec);
6545 contents = elf_section_data (sec)->this_hdr.contents;
68ffbac6 6546
43cd72b9
BW
6547 if (contents == NULL && sec_size != 0)
6548 {
6549 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6550 {
7fa3d080 6551 if (contents)
43cd72b9
BW
6552 free (contents);
6553 return NULL;
6554 }
68ffbac6 6555 if (keep_memory)
43cd72b9
BW
6556 elf_section_data (sec)->this_hdr.contents = contents;
6557 }
6558 return contents;
6559}
6560
6561
6562static void
7fa3d080 6563pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6564{
6565 elf_section_data (sec)->this_hdr.contents = contents;
6566}
6567
6568
6569static void
7fa3d080 6570release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6571{
6572 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6573 free (contents);
6574}
6575
6576
6577static Elf_Internal_Sym *
7fa3d080 6578retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6579{
6580 Elf_Internal_Shdr *symtab_hdr;
6581 Elf_Internal_Sym *isymbuf;
6582 size_t locsymcount;
6583
6584 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6585 locsymcount = symtab_hdr->sh_info;
6586
6587 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6588 if (isymbuf == NULL && locsymcount != 0)
6589 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6590 NULL, NULL, NULL);
6591
6592 /* Save the symbols for this input file so they won't be read again. */
6593 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6594 symtab_hdr->contents = (unsigned char *) isymbuf;
6595
6596 return isymbuf;
6597}
6598
6599\f
6600/* Code for link-time relaxation. */
6601
6602/* Initialization for relaxation: */
7fa3d080 6603static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6604static bfd_boolean find_relaxable_sections
7fa3d080 6605 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6606static bfd_boolean collect_source_relocs
7fa3d080 6607 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6608static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6609 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6610 bfd_boolean *);
43cd72b9 6611static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6612 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6613static bfd_boolean compute_text_actions
7fa3d080
BW
6614 (bfd *, asection *, struct bfd_link_info *);
6615static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6616static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 6617static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
6618 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6619 const xtensa_opcode *);
7fa3d080 6620static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6621static void text_action_add_proposed
7fa3d080
BW
6622 (text_action_list *, const ebb_constraint *, asection *);
6623static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6624
6625/* First pass: */
6626static bfd_boolean compute_removed_literals
7fa3d080 6627 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6628static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6629 (asection *, Elf_Internal_Rela *, bfd_vma);
68ffbac6 6630static bfd_boolean is_removable_literal
99ded152
BW
6631 (const source_reloc *, int, const source_reloc *, int, asection *,
6632 property_table_entry *, int);
43cd72b9 6633static bfd_boolean remove_dead_literal
7fa3d080 6634 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
68ffbac6 6635 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
7fa3d080
BW
6636static bfd_boolean identify_literal_placement
6637 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6638 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6639 source_reloc *, property_table_entry *, int, section_cache_t *,
6640 bfd_boolean);
6641static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6642static bfd_boolean coalesce_shared_literal
7fa3d080 6643 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6644static bfd_boolean move_shared_literal
7fa3d080
BW
6645 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6646 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6647
6648/* Second pass: */
7fa3d080
BW
6649static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6650static bfd_boolean translate_section_fixes (asection *);
6651static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6652static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6653static void shrink_dynamic_reloc_sections
7fa3d080 6654 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6655static bfd_boolean move_literal
7fa3d080
BW
6656 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6657 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6658static bfd_boolean relax_property_section
7fa3d080 6659 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6660
6661/* Third pass: */
7fa3d080 6662static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6663
6664
68ffbac6 6665static bfd_boolean
7fa3d080
BW
6666elf_xtensa_relax_section (bfd *abfd,
6667 asection *sec,
6668 struct bfd_link_info *link_info,
6669 bfd_boolean *again)
43cd72b9
BW
6670{
6671 static value_map_hash_table *values = NULL;
6672 static bfd_boolean relocations_analyzed = FALSE;
6673 xtensa_relax_info *relax_info;
6674
6675 if (!relocations_analyzed)
6676 {
6677 /* Do some overall initialization for relaxation. */
6678 values = value_map_hash_table_init ();
6679 if (values == NULL)
6680 return FALSE;
6681 relaxing_section = TRUE;
6682 if (!analyze_relocations (link_info))
6683 return FALSE;
6684 relocations_analyzed = TRUE;
6685 }
6686 *again = FALSE;
6687
6688 /* Don't mess with linker-created sections. */
6689 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6690 return TRUE;
6691
6692 relax_info = get_xtensa_relax_info (sec);
6693 BFD_ASSERT (relax_info != NULL);
6694
6695 switch (relax_info->visited)
6696 {
6697 case 0:
6698 /* Note: It would be nice to fold this pass into
6699 analyze_relocations, but it is important for this step that the
6700 sections be examined in link order. */
6701 if (!compute_removed_literals (abfd, sec, link_info, values))
6702 return FALSE;
6703 *again = TRUE;
6704 break;
6705
6706 case 1:
6707 if (values)
6708 value_map_hash_table_delete (values);
6709 values = NULL;
6710 if (!relax_section (abfd, sec, link_info))
6711 return FALSE;
6712 *again = TRUE;
6713 break;
6714
6715 case 2:
6716 if (!relax_section_symbols (abfd, sec))
6717 return FALSE;
6718 break;
6719 }
6720
6721 relax_info->visited++;
6722 return TRUE;
6723}
6724
6725\f
6726/* Initialization for relaxation. */
6727
6728/* This function is called once at the start of relaxation. It scans
6729 all the input sections and marks the ones that are relaxable (i.e.,
6730 literal sections with L32R relocations against them), and then
6731 collects source_reloc information for all the relocations against
6732 those relaxable sections. During this process, it also detects
6733 longcalls, i.e., calls relaxed by the assembler into indirect
6734 calls, that can be optimized back into direct calls. Within each
6735 extended basic block (ebb) containing an optimized longcall, it
6736 computes a set of "text actions" that can be performed to remove
6737 the L32R associated with the longcall while optionally preserving
6738 branch target alignments. */
6739
6740static bfd_boolean
7fa3d080 6741analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6742{
6743 bfd *abfd;
6744 asection *sec;
6745 bfd_boolean is_relaxable = FALSE;
6746
6747 /* Initialize the per-section relaxation info. */
6748 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6749 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6750 {
6751 init_xtensa_relax_info (sec);
6752 }
6753
6754 /* Mark relaxable sections (and count relocations against each one). */
6755 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6756 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6757 {
6758 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6759 return FALSE;
6760 }
6761
6762 /* Bail out if there are no relaxable sections. */
6763 if (!is_relaxable)
6764 return TRUE;
6765
6766 /* Allocate space for source_relocs. */
6767 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6768 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6769 {
6770 xtensa_relax_info *relax_info;
6771
6772 relax_info = get_xtensa_relax_info (sec);
6773 if (relax_info->is_relaxable_literal_section
6774 || relax_info->is_relaxable_asm_section)
6775 {
6776 relax_info->src_relocs = (source_reloc *)
6777 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6778 }
25c6282a
BW
6779 else
6780 relax_info->src_count = 0;
43cd72b9
BW
6781 }
6782
6783 /* Collect info on relocations against each relaxable section. */
6784 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6785 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6786 {
6787 if (!collect_source_relocs (abfd, sec, link_info))
6788 return FALSE;
6789 }
6790
6791 /* Compute the text actions. */
6792 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6793 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6794 {
6795 if (!compute_text_actions (abfd, sec, link_info))
6796 return FALSE;
6797 }
6798
6799 return TRUE;
6800}
6801
6802
6803/* Find all the sections that might be relaxed. The motivation for
6804 this pass is that collect_source_relocs() needs to record _all_ the
6805 relocations that target each relaxable section. That is expensive
6806 and unnecessary unless the target section is actually going to be
6807 relaxed. This pass identifies all such sections by checking if
6808 they have L32Rs pointing to them. In the process, the total number
6809 of relocations targeting each section is also counted so that we
6810 know how much space to allocate for source_relocs against each
6811 relaxable literal section. */
6812
6813static bfd_boolean
7fa3d080
BW
6814find_relaxable_sections (bfd *abfd,
6815 asection *sec,
6816 struct bfd_link_info *link_info,
6817 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6818{
6819 Elf_Internal_Rela *internal_relocs;
6820 bfd_byte *contents;
6821 bfd_boolean ok = TRUE;
6822 unsigned i;
6823 xtensa_relax_info *source_relax_info;
25c6282a 6824 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6825
6826 internal_relocs = retrieve_internal_relocs (abfd, sec,
6827 link_info->keep_memory);
68ffbac6 6828 if (internal_relocs == NULL)
43cd72b9
BW
6829 return ok;
6830
6831 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6832 if (contents == NULL && sec->size != 0)
6833 {
6834 ok = FALSE;
6835 goto error_return;
6836 }
6837
6838 source_relax_info = get_xtensa_relax_info (sec);
68ffbac6 6839 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6840 {
6841 Elf_Internal_Rela *irel = &internal_relocs[i];
6842 r_reloc r_rel;
6843 asection *target_sec;
6844 xtensa_relax_info *target_relax_info;
6845
6846 /* If this section has not already been marked as "relaxable", and
6847 if it contains any ASM_EXPAND relocations (marking expanded
6848 longcalls) that can be optimized into direct calls, then mark
6849 the section as "relaxable". */
6850 if (source_relax_info
6851 && !source_relax_info->is_relaxable_asm_section
6852 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6853 {
6854 bfd_boolean is_reachable = FALSE;
6855 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6856 link_info, &is_reachable)
6857 && is_reachable)
6858 {
6859 source_relax_info->is_relaxable_asm_section = TRUE;
6860 *is_relaxable_p = TRUE;
6861 }
6862 }
6863
6864 r_reloc_init (&r_rel, abfd, irel, contents,
6865 bfd_get_section_limit (abfd, sec));
6866
6867 target_sec = r_reloc_get_section (&r_rel);
6868 target_relax_info = get_xtensa_relax_info (target_sec);
6869 if (!target_relax_info)
6870 continue;
6871
6872 /* Count PC-relative operand relocations against the target section.
6873 Note: The conditions tested here must match the conditions under
6874 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6875 is_l32r_reloc = FALSE;
6876 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6877 {
6878 xtensa_opcode opcode =
6879 get_relocation_opcode (abfd, sec, contents, irel);
6880 if (opcode != XTENSA_UNDEFINED)
6881 {
6882 is_l32r_reloc = (opcode == get_l32r_opcode ());
6883 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6884 || is_l32r_reloc)
6885 target_relax_info->src_count++;
6886 }
6887 }
43cd72b9 6888
25c6282a 6889 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6890 {
6891 /* Mark the target section as relaxable. */
6892 target_relax_info->is_relaxable_literal_section = TRUE;
6893 *is_relaxable_p = TRUE;
6894 }
6895 }
6896
6897 error_return:
6898 release_contents (sec, contents);
6899 release_internal_relocs (sec, internal_relocs);
6900 return ok;
6901}
6902
6903
6904/* Record _all_ the relocations that point to relaxable sections, and
6905 get rid of ASM_EXPAND relocs by either converting them to
6906 ASM_SIMPLIFY or by removing them. */
6907
6908static bfd_boolean
7fa3d080
BW
6909collect_source_relocs (bfd *abfd,
6910 asection *sec,
6911 struct bfd_link_info *link_info)
43cd72b9
BW
6912{
6913 Elf_Internal_Rela *internal_relocs;
6914 bfd_byte *contents;
6915 bfd_boolean ok = TRUE;
6916 unsigned i;
6917 bfd_size_type sec_size;
6918
68ffbac6 6919 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 6920 link_info->keep_memory);
68ffbac6 6921 if (internal_relocs == NULL)
43cd72b9
BW
6922 return ok;
6923
6924 sec_size = bfd_get_section_limit (abfd, sec);
6925 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6926 if (contents == NULL && sec_size != 0)
6927 {
6928 ok = FALSE;
6929 goto error_return;
6930 }
6931
6932 /* Record relocations against relaxable literal sections. */
68ffbac6 6933 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6934 {
6935 Elf_Internal_Rela *irel = &internal_relocs[i];
6936 r_reloc r_rel;
6937 asection *target_sec;
6938 xtensa_relax_info *target_relax_info;
6939
6940 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6941
6942 target_sec = r_reloc_get_section (&r_rel);
6943 target_relax_info = get_xtensa_relax_info (target_sec);
6944
6945 if (target_relax_info
6946 && (target_relax_info->is_relaxable_literal_section
6947 || target_relax_info->is_relaxable_asm_section))
6948 {
6949 xtensa_opcode opcode = XTENSA_UNDEFINED;
6950 int opnd = -1;
6951 bfd_boolean is_abs_literal = FALSE;
6952
6953 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6954 {
6955 /* None of the current alternate relocs are PC-relative,
6956 and only PC-relative relocs matter here. However, we
6957 still need to record the opcode for literal
6958 coalescing. */
6959 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6960 if (opcode == get_l32r_opcode ())
6961 {
6962 is_abs_literal = TRUE;
6963 opnd = 1;
6964 }
6965 else
6966 opcode = XTENSA_UNDEFINED;
6967 }
6968 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6969 {
6970 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6971 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6972 }
6973
6974 if (opcode != XTENSA_UNDEFINED)
6975 {
6976 int src_next = target_relax_info->src_next++;
6977 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6978
6979 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6980 is_abs_literal);
6981 }
6982 }
6983 }
6984
6985 /* Now get rid of ASM_EXPAND relocations. At this point, the
6986 src_relocs array for the target literal section may still be
6987 incomplete, but it must at least contain the entries for the L32R
6988 relocations associated with ASM_EXPANDs because they were just
6989 added in the preceding loop over the relocations. */
6990
68ffbac6 6991 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6992 {
6993 Elf_Internal_Rela *irel = &internal_relocs[i];
6994 bfd_boolean is_reachable;
6995
6996 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6997 &is_reachable))
6998 continue;
6999
7000 if (is_reachable)
7001 {
7002 Elf_Internal_Rela *l32r_irel;
7003 r_reloc r_rel;
7004 asection *target_sec;
7005 xtensa_relax_info *target_relax_info;
7006
7007 /* Mark the source_reloc for the L32R so that it will be
7008 removed in compute_removed_literals(), along with the
7009 associated literal. */
7010 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7011 irel, internal_relocs);
7012 if (l32r_irel == NULL)
7013 continue;
7014
7015 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7016
7017 target_sec = r_reloc_get_section (&r_rel);
7018 target_relax_info = get_xtensa_relax_info (target_sec);
7019
7020 if (target_relax_info
7021 && (target_relax_info->is_relaxable_literal_section
7022 || target_relax_info->is_relaxable_asm_section))
7023 {
7024 source_reloc *s_reloc;
7025
7026 /* Search the source_relocs for the entry corresponding to
7027 the l32r_irel. Note: The src_relocs array is not yet
7028 sorted, but it wouldn't matter anyway because we're
7029 searching by source offset instead of target offset. */
68ffbac6 7030 s_reloc = find_source_reloc (target_relax_info->src_relocs,
43cd72b9
BW
7031 target_relax_info->src_next,
7032 sec, l32r_irel);
7033 BFD_ASSERT (s_reloc);
7034 s_reloc->is_null = TRUE;
7035 }
7036
7037 /* Convert this reloc to ASM_SIMPLIFY. */
7038 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7039 R_XTENSA_ASM_SIMPLIFY);
7040 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7041
7042 pin_internal_relocs (sec, internal_relocs);
7043 }
7044 else
7045 {
7046 /* It is resolvable but doesn't reach. We resolve now
7047 by eliminating the relocation -- the call will remain
7048 expanded into L32R/CALLX. */
7049 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7050 pin_internal_relocs (sec, internal_relocs);
7051 }
7052 }
7053
7054 error_return:
7055 release_contents (sec, contents);
7056 release_internal_relocs (sec, internal_relocs);
7057 return ok;
7058}
7059
7060
7061/* Return TRUE if the asm expansion can be resolved. Generally it can
7062 be resolved on a final link or when a partial link locates it in the
7063 same section as the target. Set "is_reachable" flag if the target of
7064 the call is within the range of a direct call, given the current VMA
7065 for this section and the target section. */
7066
7067bfd_boolean
7fa3d080
BW
7068is_resolvable_asm_expansion (bfd *abfd,
7069 asection *sec,
7070 bfd_byte *contents,
7071 Elf_Internal_Rela *irel,
7072 struct bfd_link_info *link_info,
7073 bfd_boolean *is_reachable_p)
43cd72b9
BW
7074{
7075 asection *target_sec;
7076 bfd_vma target_offset;
7077 r_reloc r_rel;
7078 xtensa_opcode opcode, direct_call_opcode;
7079 bfd_vma self_address;
7080 bfd_vma dest_address;
7081 bfd_boolean uses_l32r;
7082 bfd_size_type sec_size;
7083
7084 *is_reachable_p = FALSE;
7085
7086 if (contents == NULL)
7087 return FALSE;
7088
68ffbac6 7089 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
43cd72b9
BW
7090 return FALSE;
7091
7092 sec_size = bfd_get_section_limit (abfd, sec);
7093 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7094 sec_size - irel->r_offset, &uses_l32r);
7095 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7096 if (!uses_l32r)
7097 return FALSE;
68ffbac6 7098
43cd72b9
BW
7099 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7100 if (direct_call_opcode == XTENSA_UNDEFINED)
7101 return FALSE;
7102
7103 /* Check and see that the target resolves. */
7104 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7105 if (!r_reloc_is_defined (&r_rel))
7106 return FALSE;
7107
7108 target_sec = r_reloc_get_section (&r_rel);
7109 target_offset = r_rel.target_offset;
7110
7111 /* If the target is in a shared library, then it doesn't reach. This
7112 isn't supposed to come up because the compiler should never generate
7113 non-PIC calls on systems that use shared libraries, but the linker
7114 shouldn't crash regardless. */
7115 if (!target_sec->output_section)
7116 return FALSE;
68ffbac6 7117
43cd72b9
BW
7118 /* For relocatable sections, we can only simplify when the output
7119 section of the target is the same as the output section of the
7120 source. */
7121 if (link_info->relocatable
7122 && (target_sec->output_section != sec->output_section
7123 || is_reloc_sym_weak (abfd, irel)))
7124 return FALSE;
7125
7126 self_address = (sec->output_section->vma
7127 + sec->output_offset + irel->r_offset + 3);
7128 dest_address = (target_sec->output_section->vma
7129 + target_sec->output_offset + target_offset);
68ffbac6 7130
43cd72b9
BW
7131 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7132 self_address, dest_address);
7133
7134 if ((self_address >> CALL_SEGMENT_BITS) !=
7135 (dest_address >> CALL_SEGMENT_BITS))
7136 return FALSE;
7137
7138 return TRUE;
7139}
7140
7141
7142static Elf_Internal_Rela *
7fa3d080
BW
7143find_associated_l32r_irel (bfd *abfd,
7144 asection *sec,
7145 bfd_byte *contents,
7146 Elf_Internal_Rela *other_irel,
7147 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7148{
7149 unsigned i;
e0001a05 7150
68ffbac6 7151 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7152 {
7153 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7154
43cd72b9
BW
7155 if (irel == other_irel)
7156 continue;
7157 if (irel->r_offset != other_irel->r_offset)
7158 continue;
7159 if (is_l32r_relocation (abfd, sec, contents, irel))
7160 return irel;
7161 }
7162
7163 return NULL;
e0001a05
NC
7164}
7165
7166
cb337148
BW
7167static xtensa_opcode *
7168build_reloc_opcodes (bfd *abfd,
7169 asection *sec,
7170 bfd_byte *contents,
7171 Elf_Internal_Rela *internal_relocs)
7172{
7173 unsigned i;
7174 xtensa_opcode *reloc_opcodes =
7175 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7176 for (i = 0; i < sec->reloc_count; i++)
7177 {
7178 Elf_Internal_Rela *irel = &internal_relocs[i];
7179 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7180 }
7181 return reloc_opcodes;
7182}
7183
7184
43cd72b9
BW
7185/* The compute_text_actions function will build a list of potential
7186 transformation actions for code in the extended basic block of each
7187 longcall that is optimized to a direct call. From this list we
7188 generate a set of actions to actually perform that optimizes for
7189 space and, if not using size_opt, maintains branch target
7190 alignments.
e0001a05 7191
43cd72b9
BW
7192 These actions to be performed are placed on a per-section list.
7193 The actual changes are performed by relax_section() in the second
7194 pass. */
7195
7196bfd_boolean
7fa3d080
BW
7197compute_text_actions (bfd *abfd,
7198 asection *sec,
7199 struct bfd_link_info *link_info)
e0001a05 7200{
cb337148 7201 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7202 xtensa_relax_info *relax_info;
e0001a05 7203 bfd_byte *contents;
43cd72b9 7204 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7205 bfd_boolean ok = TRUE;
7206 unsigned i;
43cd72b9
BW
7207 property_table_entry *prop_table = 0;
7208 int ptblsize = 0;
7209 bfd_size_type sec_size;
43cd72b9 7210
43cd72b9
BW
7211 relax_info = get_xtensa_relax_info (sec);
7212 BFD_ASSERT (relax_info);
25c6282a
BW
7213 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7214
7215 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7216 if (!relax_info->is_relaxable_asm_section)
7217 return ok;
e0001a05
NC
7218
7219 internal_relocs = retrieve_internal_relocs (abfd, sec,
7220 link_info->keep_memory);
e0001a05 7221
43cd72b9
BW
7222 if (internal_relocs)
7223 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7224 internal_reloc_compare);
7225
7226 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7227 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7228 if (contents == NULL && sec_size != 0)
e0001a05
NC
7229 {
7230 ok = FALSE;
7231 goto error_return;
7232 }
7233
43cd72b9
BW
7234 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7235 XTENSA_PROP_SEC_NAME, FALSE);
7236 if (ptblsize < 0)
7237 {
7238 ok = FALSE;
7239 goto error_return;
7240 }
7241
7242 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7243 {
7244 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7245 bfd_vma r_offset;
7246 property_table_entry *the_entry;
7247 int ptbl_idx;
7248 ebb_t *ebb;
7249 ebb_constraint ebb_table;
7250 bfd_size_type simplify_size;
7251
7252 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7253 continue;
7254 r_offset = irel->r_offset;
e0001a05 7255
43cd72b9
BW
7256 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7257 if (simplify_size == 0)
7258 {
7259 (*_bfd_error_handler)
7260 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7261 sec->owner, sec, r_offset);
7262 continue;
7263 }
e0001a05 7264
43cd72b9
BW
7265 /* If the instruction table is not around, then don't do this
7266 relaxation. */
7267 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7268 sec->vma + irel->r_offset);
7269 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7270 {
7271 text_action_add (&relax_info->action_list,
7272 ta_convert_longcall, sec, r_offset,
7273 0);
7274 continue;
7275 }
7276
7277 /* If the next longcall happens to be at the same address as an
7278 unreachable section of size 0, then skip forward. */
7279 ptbl_idx = the_entry - prop_table;
7280 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7281 && the_entry->size == 0
7282 && ptbl_idx + 1 < ptblsize
7283 && (prop_table[ptbl_idx + 1].address
7284 == prop_table[ptbl_idx].address))
7285 {
7286 ptbl_idx++;
7287 the_entry++;
7288 }
e0001a05 7289
99ded152 7290 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7291 /* NO_REORDER is OK */
7292 continue;
e0001a05 7293
43cd72b9
BW
7294 init_ebb_constraint (&ebb_table);
7295 ebb = &ebb_table.ebb;
7296 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7297 internal_relocs, sec->reloc_count);
7298 ebb->start_offset = r_offset + simplify_size;
7299 ebb->end_offset = r_offset + simplify_size;
7300 ebb->start_ptbl_idx = ptbl_idx;
7301 ebb->end_ptbl_idx = ptbl_idx;
7302 ebb->start_reloc_idx = i;
7303 ebb->end_reloc_idx = i;
7304
cb337148
BW
7305 /* Precompute the opcode for each relocation. */
7306 if (reloc_opcodes == NULL)
7307 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7308 internal_relocs);
7309
43cd72b9
BW
7310 if (!extend_ebb_bounds (ebb)
7311 || !compute_ebb_proposed_actions (&ebb_table)
7312 || !compute_ebb_actions (&ebb_table)
7313 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
7314 internal_relocs, &ebb_table,
7315 reloc_opcodes)
43cd72b9 7316 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7317 {
43cd72b9
BW
7318 /* If anything goes wrong or we get unlucky and something does
7319 not fit, with our plan because of expansion between
7320 critical branches, just convert to a NOP. */
7321
7322 text_action_add (&relax_info->action_list,
7323 ta_convert_longcall, sec, r_offset, 0);
7324 i = ebb_table.ebb.end_reloc_idx;
7325 free_ebb_constraint (&ebb_table);
7326 continue;
e0001a05 7327 }
43cd72b9
BW
7328
7329 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7330
7331 /* Update the index so we do not go looking at the relocations
7332 we have already processed. */
7333 i = ebb_table.ebb.end_reloc_idx;
7334 free_ebb_constraint (&ebb_table);
e0001a05
NC
7335 }
7336
43cd72b9 7337#if DEBUG
7fa3d080 7338 if (relax_info->action_list.head)
43cd72b9
BW
7339 print_action_list (stderr, &relax_info->action_list);
7340#endif
7341
7342error_return:
e0001a05
NC
7343 release_contents (sec, contents);
7344 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7345 if (prop_table)
7346 free (prop_table);
cb337148
BW
7347 if (reloc_opcodes)
7348 free (reloc_opcodes);
43cd72b9 7349
e0001a05
NC
7350 return ok;
7351}
7352
7353
64b607e6
BW
7354/* Do not widen an instruction if it is preceeded by a
7355 loop opcode. It might cause misalignment. */
7356
7357static bfd_boolean
7358prev_instr_is_a_loop (bfd_byte *contents,
7359 bfd_size_type content_length,
7360 bfd_size_type offset)
7361{
7362 xtensa_opcode prev_opcode;
7363
7364 if (offset < 3)
7365 return FALSE;
7366 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7367 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
68ffbac6 7368}
64b607e6
BW
7369
7370
43cd72b9 7371/* Find all of the possible actions for an extended basic block. */
e0001a05 7372
43cd72b9 7373bfd_boolean
7fa3d080 7374compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7375{
43cd72b9
BW
7376 const ebb_t *ebb = &ebb_table->ebb;
7377 unsigned rel_idx = ebb->start_reloc_idx;
7378 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7379 bfd_vma offset = 0;
7380 xtensa_isa isa = xtensa_default_isa;
7381 xtensa_format fmt;
7382 static xtensa_insnbuf insnbuf = NULL;
7383 static xtensa_insnbuf slotbuf = NULL;
7384
7385 if (insnbuf == NULL)
7386 {
7387 insnbuf = xtensa_insnbuf_alloc (isa);
7388 slotbuf = xtensa_insnbuf_alloc (isa);
7389 }
e0001a05 7390
43cd72b9
BW
7391 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7392 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7393
43cd72b9 7394 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7395 {
64b607e6 7396 bfd_vma start_offset, end_offset;
43cd72b9 7397 bfd_size_type insn_len;
e0001a05 7398
43cd72b9
BW
7399 start_offset = entry->address - ebb->sec->vma;
7400 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7401
43cd72b9
BW
7402 if (entry == start_entry)
7403 start_offset = ebb->start_offset;
7404 if (entry == end_entry)
7405 end_offset = ebb->end_offset;
7406 offset = start_offset;
e0001a05 7407
43cd72b9
BW
7408 if (offset == entry->address - ebb->sec->vma
7409 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7410 {
7411 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7412 BFD_ASSERT (offset != end_offset);
7413 if (offset == end_offset)
7414 return FALSE;
e0001a05 7415
43cd72b9
BW
7416 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7417 offset);
68ffbac6 7418 if (insn_len == 0)
64b607e6
BW
7419 goto decode_error;
7420
43cd72b9
BW
7421 if (check_branch_target_aligned_address (offset, insn_len))
7422 align_type = EBB_REQUIRE_TGT_ALIGN;
7423
7424 ebb_propose_action (ebb_table, align_type, 0,
7425 ta_none, offset, 0, TRUE);
7426 }
7427
7428 while (offset != end_offset)
e0001a05 7429 {
43cd72b9 7430 Elf_Internal_Rela *irel;
e0001a05 7431 xtensa_opcode opcode;
e0001a05 7432
43cd72b9
BW
7433 while (rel_idx < ebb->end_reloc_idx
7434 && (ebb->relocs[rel_idx].r_offset < offset
7435 || (ebb->relocs[rel_idx].r_offset == offset
7436 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7437 != R_XTENSA_ASM_SIMPLIFY))))
7438 rel_idx++;
7439
7440 /* Check for longcall. */
7441 irel = &ebb->relocs[rel_idx];
7442 if (irel->r_offset == offset
7443 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7444 {
7445 bfd_size_type simplify_size;
e0001a05 7446
68ffbac6 7447 simplify_size = get_asm_simplify_size (ebb->contents,
43cd72b9
BW
7448 ebb->content_length,
7449 irel->r_offset);
7450 if (simplify_size == 0)
64b607e6 7451 goto decode_error;
43cd72b9
BW
7452
7453 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7454 ta_convert_longcall, offset, 0, TRUE);
68ffbac6 7455
43cd72b9
BW
7456 offset += simplify_size;
7457 continue;
7458 }
e0001a05 7459
64b607e6
BW
7460 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7461 goto decode_error;
7462 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7463 ebb->content_length - offset);
7464 fmt = xtensa_format_decode (isa, insnbuf);
7465 if (fmt == XTENSA_UNDEFINED)
7466 goto decode_error;
7467 insn_len = xtensa_format_length (isa, fmt);
7468 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7469 goto decode_error;
7470
7471 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7472 {
64b607e6
BW
7473 offset += insn_len;
7474 continue;
43cd72b9 7475 }
64b607e6
BW
7476
7477 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7478 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7479 if (opcode == XTENSA_UNDEFINED)
7480 goto decode_error;
7481
43cd72b9 7482 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7483 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7484 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7485 {
7486 /* Add an instruction narrow action. */
7487 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7488 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7489 }
99ded152 7490 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7491 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7492 && ! prev_instr_is_a_loop (ebb->contents,
7493 ebb->content_length, offset))
43cd72b9
BW
7494 {
7495 /* Add an instruction widen action. */
7496 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7497 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7498 }
64b607e6 7499 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7500 {
7501 /* Check for branch targets. */
7502 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7503 ta_none, offset, 0, TRUE);
43cd72b9
BW
7504 }
7505
7506 offset += insn_len;
e0001a05
NC
7507 }
7508 }
7509
43cd72b9
BW
7510 if (ebb->ends_unreachable)
7511 {
7512 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7513 ta_fill, ebb->end_offset, 0, TRUE);
7514 }
e0001a05 7515
43cd72b9 7516 return TRUE;
64b607e6
BW
7517
7518 decode_error:
7519 (*_bfd_error_handler)
7520 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7521 ebb->sec->owner, ebb->sec, offset);
7522 return FALSE;
43cd72b9
BW
7523}
7524
7525
7526/* After all of the information has collected about the
7527 transformations possible in an EBB, compute the appropriate actions
7528 here in compute_ebb_actions. We still must check later to make
7529 sure that the actions do not break any relocations. The algorithm
7530 used here is pretty greedy. Basically, it removes as many no-ops
7531 as possible so that the end of the EBB has the same alignment
7532 characteristics as the original. First, it uses narrowing, then
7533 fill space at the end of the EBB, and finally widenings. If that
7534 does not work, it tries again with one fewer no-op removed. The
7535 optimization will only be performed if all of the branch targets
7536 that were aligned before transformation are also aligned after the
7537 transformation.
7538
7539 When the size_opt flag is set, ignore the branch target alignments,
7540 narrow all wide instructions, and remove all no-ops unless the end
7541 of the EBB prevents it. */
7542
7543bfd_boolean
7fa3d080 7544compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7545{
7546 unsigned i = 0;
7547 unsigned j;
7548 int removed_bytes = 0;
7549 ebb_t *ebb = &ebb_table->ebb;
7550 unsigned seg_idx_start = 0;
7551 unsigned seg_idx_end = 0;
7552
7553 /* We perform this like the assembler relaxation algorithm: Start by
7554 assuming all instructions are narrow and all no-ops removed; then
7555 walk through.... */
7556
7557 /* For each segment of this that has a solid constraint, check to
7558 see if there are any combinations that will keep the constraint.
7559 If so, use it. */
7560 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7561 {
43cd72b9
BW
7562 bfd_boolean requires_text_end_align = FALSE;
7563 unsigned longcall_count = 0;
7564 unsigned longcall_convert_count = 0;
7565 unsigned narrowable_count = 0;
7566 unsigned narrowable_convert_count = 0;
7567 unsigned widenable_count = 0;
7568 unsigned widenable_convert_count = 0;
e0001a05 7569
43cd72b9
BW
7570 proposed_action *action = NULL;
7571 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7572
43cd72b9 7573 seg_idx_start = seg_idx_end;
e0001a05 7574
43cd72b9
BW
7575 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7576 {
7577 action = &ebb_table->actions[i];
7578 if (action->action == ta_convert_longcall)
7579 longcall_count++;
7580 if (action->action == ta_narrow_insn)
7581 narrowable_count++;
7582 if (action->action == ta_widen_insn)
7583 widenable_count++;
7584 if (action->action == ta_fill)
7585 break;
7586 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7587 break;
7588 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7589 && !elf32xtensa_size_opt)
7590 break;
7591 }
7592 seg_idx_end = i;
e0001a05 7593
43cd72b9
BW
7594 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7595 requires_text_end_align = TRUE;
e0001a05 7596
43cd72b9
BW
7597 if (elf32xtensa_size_opt && !requires_text_end_align
7598 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7599 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7600 {
7601 longcall_convert_count = longcall_count;
7602 narrowable_convert_count = narrowable_count;
7603 widenable_convert_count = 0;
7604 }
7605 else
7606 {
7607 /* There is a constraint. Convert the max number of longcalls. */
7608 narrowable_convert_count = 0;
7609 longcall_convert_count = 0;
7610 widenable_convert_count = 0;
e0001a05 7611
43cd72b9 7612 for (j = 0; j < longcall_count; j++)
e0001a05 7613 {
43cd72b9
BW
7614 int removed = (longcall_count - j) * 3 & (align - 1);
7615 unsigned desire_narrow = (align - removed) & (align - 1);
7616 unsigned desire_widen = removed;
7617 if (desire_narrow <= narrowable_count)
7618 {
7619 narrowable_convert_count = desire_narrow;
7620 narrowable_convert_count +=
7621 (align * ((narrowable_count - narrowable_convert_count)
7622 / align));
7623 longcall_convert_count = (longcall_count - j);
7624 widenable_convert_count = 0;
7625 break;
7626 }
7627 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7628 {
7629 narrowable_convert_count = 0;
7630 longcall_convert_count = longcall_count - j;
7631 widenable_convert_count = desire_widen;
7632 break;
7633 }
7634 }
7635 }
e0001a05 7636
43cd72b9
BW
7637 /* Now the number of conversions are saved. Do them. */
7638 for (i = seg_idx_start; i < seg_idx_end; i++)
7639 {
7640 action = &ebb_table->actions[i];
7641 switch (action->action)
7642 {
7643 case ta_convert_longcall:
7644 if (longcall_convert_count != 0)
7645 {
7646 action->action = ta_remove_longcall;
7647 action->do_action = TRUE;
7648 action->removed_bytes += 3;
7649 longcall_convert_count--;
7650 }
7651 break;
7652 case ta_narrow_insn:
7653 if (narrowable_convert_count != 0)
7654 {
7655 action->do_action = TRUE;
7656 action->removed_bytes += 1;
7657 narrowable_convert_count--;
7658 }
7659 break;
7660 case ta_widen_insn:
7661 if (widenable_convert_count != 0)
7662 {
7663 action->do_action = TRUE;
7664 action->removed_bytes -= 1;
7665 widenable_convert_count--;
7666 }
7667 break;
7668 default:
7669 break;
e0001a05 7670 }
43cd72b9
BW
7671 }
7672 }
e0001a05 7673
43cd72b9
BW
7674 /* Now we move on to some local opts. Try to remove each of the
7675 remaining longcalls. */
e0001a05 7676
43cd72b9
BW
7677 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7678 {
7679 removed_bytes = 0;
7680 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7681 {
43cd72b9
BW
7682 int old_removed_bytes = removed_bytes;
7683 proposed_action *action = &ebb_table->actions[i];
7684
7685 if (action->do_action && action->action == ta_convert_longcall)
7686 {
7687 bfd_boolean bad_alignment = FALSE;
7688 removed_bytes += 3;
7689 for (j = i + 1; j < ebb_table->action_count; j++)
7690 {
7691 proposed_action *new_action = &ebb_table->actions[j];
7692 bfd_vma offset = new_action->offset;
7693 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7694 {
7695 if (!check_branch_target_aligned
7696 (ebb_table->ebb.contents,
7697 ebb_table->ebb.content_length,
7698 offset, offset - removed_bytes))
7699 {
7700 bad_alignment = TRUE;
7701 break;
7702 }
7703 }
7704 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7705 {
7706 if (!check_loop_aligned (ebb_table->ebb.contents,
7707 ebb_table->ebb.content_length,
7708 offset,
7709 offset - removed_bytes))
7710 {
7711 bad_alignment = TRUE;
7712 break;
7713 }
7714 }
7715 if (new_action->action == ta_narrow_insn
7716 && !new_action->do_action
7717 && ebb_table->ebb.sec->alignment_power == 2)
7718 {
7719 /* Narrow an instruction and we are done. */
7720 new_action->do_action = TRUE;
7721 new_action->removed_bytes += 1;
7722 bad_alignment = FALSE;
7723 break;
7724 }
7725 if (new_action->action == ta_widen_insn
7726 && new_action->do_action
7727 && ebb_table->ebb.sec->alignment_power == 2)
7728 {
7729 /* Narrow an instruction and we are done. */
7730 new_action->do_action = FALSE;
7731 new_action->removed_bytes += 1;
7732 bad_alignment = FALSE;
7733 break;
7734 }
5c5d6806
BW
7735 if (new_action->do_action)
7736 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
7737 }
7738 if (!bad_alignment)
7739 {
7740 action->removed_bytes += 3;
7741 action->action = ta_remove_longcall;
7742 action->do_action = TRUE;
7743 }
7744 }
7745 removed_bytes = old_removed_bytes;
7746 if (action->do_action)
7747 removed_bytes += action->removed_bytes;
e0001a05
NC
7748 }
7749 }
7750
43cd72b9
BW
7751 removed_bytes = 0;
7752 for (i = 0; i < ebb_table->action_count; ++i)
7753 {
7754 proposed_action *action = &ebb_table->actions[i];
7755 if (action->do_action)
7756 removed_bytes += action->removed_bytes;
7757 }
7758
7759 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7760 && ebb->ends_unreachable)
7761 {
7762 proposed_action *action;
7763 int br;
7764 int extra_space;
7765
7766 BFD_ASSERT (ebb_table->action_count != 0);
7767 action = &ebb_table->actions[ebb_table->action_count - 1];
7768 BFD_ASSERT (action->action == ta_fill);
7769 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7770
7771 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7772 br = action->removed_bytes + removed_bytes + extra_space;
7773 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7774
7775 action->removed_bytes = extra_space - br;
7776 }
7777 return TRUE;
e0001a05
NC
7778}
7779
7780
03e94c08
BW
7781/* The xlate_map is a sorted array of address mappings designed to
7782 answer the offset_with_removed_text() query with a binary search instead
7783 of a linear search through the section's action_list. */
7784
7785typedef struct xlate_map_entry xlate_map_entry_t;
7786typedef struct xlate_map xlate_map_t;
7787
7788struct xlate_map_entry
7789{
7790 unsigned orig_address;
7791 unsigned new_address;
7792 unsigned size;
7793};
7794
7795struct xlate_map
7796{
7797 unsigned entry_count;
7798 xlate_map_entry_t *entry;
7799};
7800
7801
68ffbac6 7802static int
03e94c08
BW
7803xlate_compare (const void *a_v, const void *b_v)
7804{
7805 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7806 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7807 if (a->orig_address < b->orig_address)
7808 return -1;
7809 if (a->orig_address > (b->orig_address + b->size - 1))
7810 return 1;
7811 return 0;
7812}
7813
7814
7815static bfd_vma
7816xlate_offset_with_removed_text (const xlate_map_t *map,
7817 text_action_list *action_list,
7818 bfd_vma offset)
7819{
03e94c08
BW
7820 void *r;
7821 xlate_map_entry_t *e;
7822
7823 if (map == NULL)
7824 return offset_with_removed_text (action_list, offset);
7825
7826 if (map->entry_count == 0)
7827 return offset;
7828
03e94c08
BW
7829 r = bsearch (&offset, map->entry, map->entry_count,
7830 sizeof (xlate_map_entry_t), &xlate_compare);
7831 e = (xlate_map_entry_t *) r;
68ffbac6 7832
03e94c08
BW
7833 BFD_ASSERT (e != NULL);
7834 if (e == NULL)
7835 return offset;
7836 return e->new_address - e->orig_address + offset;
7837}
7838
7839
7840/* Build a binary searchable offset translation map from a section's
7841 action list. */
7842
7843static xlate_map_t *
7844build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7845{
7846 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7847 text_action_list *action_list = &relax_info->action_list;
7848 unsigned num_actions = 0;
7849 text_action *r;
7850 int removed;
7851 xlate_map_entry_t *current_entry;
7852
7853 if (map == NULL)
7854 return NULL;
7855
7856 num_actions = action_list_count (action_list);
68ffbac6 7857 map->entry = (xlate_map_entry_t *)
03e94c08
BW
7858 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7859 if (map->entry == NULL)
7860 {
7861 free (map);
7862 return NULL;
7863 }
7864 map->entry_count = 0;
68ffbac6 7865
03e94c08
BW
7866 removed = 0;
7867 current_entry = &map->entry[0];
7868
7869 current_entry->orig_address = 0;
7870 current_entry->new_address = 0;
7871 current_entry->size = 0;
7872
7873 for (r = action_list->head; r != NULL; r = r->next)
7874 {
7875 unsigned orig_size = 0;
7876 switch (r->action)
7877 {
7878 case ta_none:
7879 case ta_remove_insn:
7880 case ta_convert_longcall:
7881 case ta_remove_literal:
7882 case ta_add_literal:
7883 break;
7884 case ta_remove_longcall:
7885 orig_size = 6;
7886 break;
7887 case ta_narrow_insn:
7888 orig_size = 3;
7889 break;
7890 case ta_widen_insn:
7891 orig_size = 2;
7892 break;
7893 case ta_fill:
7894 break;
7895 }
7896 current_entry->size =
7897 r->offset + orig_size - current_entry->orig_address;
7898 if (current_entry->size != 0)
7899 {
7900 current_entry++;
7901 map->entry_count++;
7902 }
7903 current_entry->orig_address = r->offset + orig_size;
7904 removed += r->removed_bytes;
7905 current_entry->new_address = r->offset + orig_size - removed;
7906 current_entry->size = 0;
7907 }
7908
7909 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7910 - current_entry->orig_address);
7911 if (current_entry->size != 0)
7912 map->entry_count++;
7913
7914 return map;
7915}
7916
7917
7918/* Free an offset translation map. */
7919
68ffbac6 7920static void
03e94c08
BW
7921free_xlate_map (xlate_map_t *map)
7922{
7923 if (map && map->entry)
7924 free (map->entry);
7925 if (map)
7926 free (map);
7927}
7928
7929
43cd72b9
BW
7930/* Use check_section_ebb_pcrels_fit to make sure that all of the
7931 relocations in a section will fit if a proposed set of actions
7932 are performed. */
e0001a05 7933
43cd72b9 7934static bfd_boolean
7fa3d080
BW
7935check_section_ebb_pcrels_fit (bfd *abfd,
7936 asection *sec,
7937 bfd_byte *contents,
7938 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7939 const ebb_constraint *constraint,
7940 const xtensa_opcode *reloc_opcodes)
e0001a05 7941{
43cd72b9
BW
7942 unsigned i, j;
7943 Elf_Internal_Rela *irel;
03e94c08
BW
7944 xlate_map_t *xmap = NULL;
7945 bfd_boolean ok = TRUE;
43cd72b9 7946 xtensa_relax_info *relax_info;
e0001a05 7947
43cd72b9 7948 relax_info = get_xtensa_relax_info (sec);
e0001a05 7949
03e94c08
BW
7950 if (relax_info && sec->reloc_count > 100)
7951 {
7952 xmap = build_xlate_map (sec, relax_info);
7953 /* NULL indicates out of memory, but the slow version
7954 can still be used. */
7955 }
7956
43cd72b9
BW
7957 for (i = 0; i < sec->reloc_count; i++)
7958 {
7959 r_reloc r_rel;
7960 bfd_vma orig_self_offset, orig_target_offset;
7961 bfd_vma self_offset, target_offset;
7962 int r_type;
7963 reloc_howto_type *howto;
7964 int self_removed_bytes, target_removed_bytes;
e0001a05 7965
43cd72b9
BW
7966 irel = &internal_relocs[i];
7967 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7968
43cd72b9
BW
7969 howto = &elf_howto_table[r_type];
7970 /* We maintain the required invariant: PC-relative relocations
7971 that fit before linking must fit after linking. Thus we only
7972 need to deal with relocations to the same section that are
7973 PC-relative. */
1bbb5f21
BW
7974 if (r_type == R_XTENSA_ASM_SIMPLIFY
7975 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7976 || !howto->pc_relative)
7977 continue;
e0001a05 7978
43cd72b9
BW
7979 r_reloc_init (&r_rel, abfd, irel, contents,
7980 bfd_get_section_limit (abfd, sec));
e0001a05 7981
43cd72b9
BW
7982 if (r_reloc_get_section (&r_rel) != sec)
7983 continue;
e0001a05 7984
43cd72b9
BW
7985 orig_self_offset = irel->r_offset;
7986 orig_target_offset = r_rel.target_offset;
e0001a05 7987
43cd72b9
BW
7988 self_offset = orig_self_offset;
7989 target_offset = orig_target_offset;
7990
7991 if (relax_info)
7992 {
03e94c08
BW
7993 self_offset =
7994 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7995 orig_self_offset);
7996 target_offset =
7997 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7998 orig_target_offset);
43cd72b9
BW
7999 }
8000
8001 self_removed_bytes = 0;
8002 target_removed_bytes = 0;
8003
8004 for (j = 0; j < constraint->action_count; ++j)
8005 {
8006 proposed_action *action = &constraint->actions[j];
8007 bfd_vma offset = action->offset;
8008 int removed_bytes = action->removed_bytes;
8009 if (offset < orig_self_offset
8010 || (offset == orig_self_offset && action->action == ta_fill
8011 && action->removed_bytes < 0))
8012 self_removed_bytes += removed_bytes;
8013 if (offset < orig_target_offset
8014 || (offset == orig_target_offset && action->action == ta_fill
8015 && action->removed_bytes < 0))
8016 target_removed_bytes += removed_bytes;
8017 }
8018 self_offset -= self_removed_bytes;
8019 target_offset -= target_removed_bytes;
8020
8021 /* Try to encode it. Get the operand and check. */
8022 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8023 {
8024 /* None of the current alternate relocs are PC-relative,
8025 and only PC-relative relocs matter here. */
8026 }
8027 else
8028 {
8029 xtensa_opcode opcode;
8030 int opnum;
8031
cb337148
BW
8032 if (reloc_opcodes)
8033 opcode = reloc_opcodes[i];
8034 else
8035 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 8036 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
8037 {
8038 ok = FALSE;
8039 break;
8040 }
43cd72b9
BW
8041
8042 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8043 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
8044 {
8045 ok = FALSE;
8046 break;
8047 }
43cd72b9
BW
8048
8049 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8050 {
8051 ok = FALSE;
8052 break;
8053 }
43cd72b9
BW
8054 }
8055 }
8056
03e94c08
BW
8057 if (xmap)
8058 free_xlate_map (xmap);
8059
8060 return ok;
43cd72b9
BW
8061}
8062
8063
8064static bfd_boolean
7fa3d080 8065check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8066{
8067 int removed = 0;
8068 unsigned i;
8069
8070 for (i = 0; i < constraint->action_count; i++)
8071 {
8072 const proposed_action *action = &constraint->actions[i];
8073 if (action->do_action)
8074 removed += action->removed_bytes;
8075 }
8076 if (removed < 0)
e0001a05
NC
8077 return FALSE;
8078
8079 return TRUE;
8080}
8081
8082
43cd72b9 8083void
7fa3d080
BW
8084text_action_add_proposed (text_action_list *l,
8085 const ebb_constraint *ebb_table,
8086 asection *sec)
e0001a05
NC
8087{
8088 unsigned i;
8089
43cd72b9 8090 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8091 {
43cd72b9 8092 proposed_action *action = &ebb_table->actions[i];
e0001a05 8093
43cd72b9 8094 if (!action->do_action)
e0001a05 8095 continue;
43cd72b9
BW
8096 switch (action->action)
8097 {
8098 case ta_remove_insn:
8099 case ta_remove_longcall:
8100 case ta_convert_longcall:
8101 case ta_narrow_insn:
8102 case ta_widen_insn:
8103 case ta_fill:
8104 case ta_remove_literal:
8105 text_action_add (l, action->action, sec, action->offset,
8106 action->removed_bytes);
8107 break;
8108 case ta_none:
8109 break;
8110 default:
8111 BFD_ASSERT (0);
8112 break;
8113 }
e0001a05 8114 }
43cd72b9 8115}
e0001a05 8116
43cd72b9
BW
8117
8118int
7fa3d080 8119compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8120{
8121 int fill_extra_space;
8122
8123 if (!entry)
8124 return 0;
8125
8126 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8127 return 0;
8128
8129 fill_extra_space = entry->size;
8130 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8131 {
8132 /* Fill bytes for alignment:
8133 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8134 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8135 int nsm = (1 << pow) - 1;
8136 bfd_vma addr = entry->address + entry->size;
8137 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8138 fill_extra_space += align_fill;
8139 }
8140 return fill_extra_space;
e0001a05
NC
8141}
8142
43cd72b9 8143\f
e0001a05
NC
8144/* First relaxation pass. */
8145
43cd72b9
BW
8146/* If the section contains relaxable literals, check each literal to
8147 see if it has the same value as another literal that has already
8148 been seen, either in the current section or a previous one. If so,
8149 add an entry to the per-section list of removed literals. The
e0001a05
NC
8150 actual changes are deferred until the next pass. */
8151
68ffbac6 8152static bfd_boolean
7fa3d080
BW
8153compute_removed_literals (bfd *abfd,
8154 asection *sec,
8155 struct bfd_link_info *link_info,
8156 value_map_hash_table *values)
e0001a05
NC
8157{
8158 xtensa_relax_info *relax_info;
8159 bfd_byte *contents;
8160 Elf_Internal_Rela *internal_relocs;
43cd72b9 8161 source_reloc *src_relocs, *rel;
e0001a05 8162 bfd_boolean ok = TRUE;
43cd72b9
BW
8163 property_table_entry *prop_table = NULL;
8164 int ptblsize;
8165 int i, prev_i;
8166 bfd_boolean last_loc_is_prev = FALSE;
8167 bfd_vma last_target_offset = 0;
8168 section_cache_t target_sec_cache;
8169 bfd_size_type sec_size;
8170
8171 init_section_cache (&target_sec_cache);
e0001a05
NC
8172
8173 /* Do nothing if it is not a relaxable literal section. */
8174 relax_info = get_xtensa_relax_info (sec);
8175 BFD_ASSERT (relax_info);
e0001a05
NC
8176 if (!relax_info->is_relaxable_literal_section)
8177 return ok;
8178
68ffbac6 8179 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
8180 link_info->keep_memory);
8181
43cd72b9 8182 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8183 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8184 if (contents == NULL && sec_size != 0)
e0001a05
NC
8185 {
8186 ok = FALSE;
8187 goto error_return;
8188 }
8189
8190 /* Sort the source_relocs by target offset. */
8191 src_relocs = relax_info->src_relocs;
8192 qsort (src_relocs, relax_info->src_count,
8193 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8194 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8195 internal_reloc_compare);
e0001a05 8196
43cd72b9
BW
8197 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8198 XTENSA_PROP_SEC_NAME, FALSE);
8199 if (ptblsize < 0)
8200 {
8201 ok = FALSE;
8202 goto error_return;
8203 }
8204
8205 prev_i = -1;
e0001a05
NC
8206 for (i = 0; i < relax_info->src_count; i++)
8207 {
e0001a05 8208 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8209
8210 rel = &src_relocs[i];
43cd72b9
BW
8211 if (get_l32r_opcode () != rel->opcode)
8212 continue;
e0001a05
NC
8213 irel = get_irel_at_offset (sec, internal_relocs,
8214 rel->r_rel.target_offset);
8215
43cd72b9
BW
8216 /* If the relocation on this is not a simple R_XTENSA_32 or
8217 R_XTENSA_PLT then do not consider it. This may happen when
8218 the difference of two symbols is used in a literal. */
8219 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8220 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8221 continue;
8222
e0001a05
NC
8223 /* If the target_offset for this relocation is the same as the
8224 previous relocation, then we've already considered whether the
8225 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8226 if (i != 0 && prev_i != -1
8227 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8228 continue;
43cd72b9
BW
8229 prev_i = i;
8230
68ffbac6 8231 if (last_loc_is_prev &&
43cd72b9
BW
8232 last_target_offset + 4 != rel->r_rel.target_offset)
8233 last_loc_is_prev = FALSE;
e0001a05
NC
8234
8235 /* Check if the relocation was from an L32R that is being removed
8236 because a CALLX was converted to a direct CALL, and check if
8237 there are no other relocations to the literal. */
68ffbac6 8238 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
99ded152 8239 sec, prop_table, ptblsize))
e0001a05 8240 {
43cd72b9
BW
8241 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8242 irel, rel, prop_table, ptblsize))
e0001a05 8243 {
43cd72b9
BW
8244 ok = FALSE;
8245 goto error_return;
e0001a05 8246 }
43cd72b9 8247 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8248 continue;
8249 }
8250
43cd72b9 8251 if (!identify_literal_placement (abfd, sec, contents, link_info,
68ffbac6
L
8252 values,
8253 &last_loc_is_prev, irel,
43cd72b9
BW
8254 relax_info->src_count - i, rel,
8255 prop_table, ptblsize,
8256 &target_sec_cache, rel->is_abs_literal))
e0001a05 8257 {
43cd72b9
BW
8258 ok = FALSE;
8259 goto error_return;
8260 }
8261 last_target_offset = rel->r_rel.target_offset;
8262 }
e0001a05 8263
43cd72b9
BW
8264#if DEBUG
8265 print_removed_literals (stderr, &relax_info->removed_list);
8266 print_action_list (stderr, &relax_info->action_list);
8267#endif /* DEBUG */
8268
8269error_return:
65e911f9
AM
8270 if (prop_table)
8271 free (prop_table);
8272 free_section_cache (&target_sec_cache);
43cd72b9
BW
8273
8274 release_contents (sec, contents);
8275 release_internal_relocs (sec, internal_relocs);
8276 return ok;
8277}
8278
8279
8280static Elf_Internal_Rela *
7fa3d080
BW
8281get_irel_at_offset (asection *sec,
8282 Elf_Internal_Rela *internal_relocs,
8283 bfd_vma offset)
43cd72b9
BW
8284{
8285 unsigned i;
8286 Elf_Internal_Rela *irel;
8287 unsigned r_type;
8288 Elf_Internal_Rela key;
8289
68ffbac6 8290 if (!internal_relocs)
43cd72b9
BW
8291 return NULL;
8292
8293 key.r_offset = offset;
8294 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8295 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8296 if (!irel)
8297 return NULL;
8298
8299 /* bsearch does not guarantee which will be returned if there are
8300 multiple matches. We need the first that is not an alignment. */
8301 i = irel - internal_relocs;
8302 while (i > 0)
8303 {
8304 if (internal_relocs[i-1].r_offset != offset)
8305 break;
8306 i--;
8307 }
8308 for ( ; i < sec->reloc_count; i++)
8309 {
8310 irel = &internal_relocs[i];
8311 r_type = ELF32_R_TYPE (irel->r_info);
8312 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8313 return irel;
8314 }
8315
8316 return NULL;
8317}
8318
8319
8320bfd_boolean
7fa3d080
BW
8321is_removable_literal (const source_reloc *rel,
8322 int i,
8323 const source_reloc *src_relocs,
99ded152
BW
8324 int src_count,
8325 asection *sec,
8326 property_table_entry *prop_table,
8327 int ptblsize)
43cd72b9
BW
8328{
8329 const source_reloc *curr_rel;
99ded152
BW
8330 property_table_entry *entry;
8331
43cd72b9
BW
8332 if (!rel->is_null)
8333 return FALSE;
68ffbac6
L
8334
8335 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
99ded152
BW
8336 sec->vma + rel->r_rel.target_offset);
8337 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8338 return FALSE;
8339
43cd72b9
BW
8340 for (++i; i < src_count; ++i)
8341 {
8342 curr_rel = &src_relocs[i];
8343 /* If all others have the same target offset.... */
8344 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8345 return TRUE;
8346
8347 if (!curr_rel->is_null
8348 && !xtensa_is_property_section (curr_rel->source_sec)
8349 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8350 return FALSE;
8351 }
8352 return TRUE;
8353}
8354
8355
68ffbac6 8356bfd_boolean
7fa3d080
BW
8357remove_dead_literal (bfd *abfd,
8358 asection *sec,
8359 struct bfd_link_info *link_info,
8360 Elf_Internal_Rela *internal_relocs,
8361 Elf_Internal_Rela *irel,
8362 source_reloc *rel,
8363 property_table_entry *prop_table,
8364 int ptblsize)
43cd72b9
BW
8365{
8366 property_table_entry *entry;
8367 xtensa_relax_info *relax_info;
8368
8369 relax_info = get_xtensa_relax_info (sec);
8370 if (!relax_info)
8371 return FALSE;
8372
8373 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8374 sec->vma + rel->r_rel.target_offset);
8375
8376 /* Mark the unused literal so that it will be removed. */
8377 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8378
8379 text_action_add (&relax_info->action_list,
8380 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8381
8382 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8383 if (sec->alignment_power > 2)
43cd72b9
BW
8384 {
8385 int fill_extra_space;
8386 bfd_vma entry_sec_offset;
8387 text_action *fa;
8388 property_table_entry *the_add_entry;
8389 int removed_diff;
8390
8391 if (entry)
8392 entry_sec_offset = entry->address - sec->vma + entry->size;
8393 else
8394 entry_sec_offset = rel->r_rel.target_offset + 4;
8395
8396 /* If the literal range is at the end of the section,
8397 do not add fill. */
8398 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8399 entry_sec_offset);
8400 fill_extra_space = compute_fill_extra_space (the_add_entry);
8401
8402 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8403 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8404 -4, fill_extra_space);
8405 if (fa)
8406 adjust_fill_action (fa, removed_diff);
8407 else
8408 text_action_add (&relax_info->action_list,
8409 ta_fill, sec, entry_sec_offset, removed_diff);
8410 }
8411
8412 /* Zero out the relocation on this literal location. */
8413 if (irel)
8414 {
8415 if (elf_hash_table (link_info)->dynamic_sections_created)
8416 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8417
8418 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8419 pin_internal_relocs (sec, internal_relocs);
8420 }
8421
8422 /* Do not modify "last_loc_is_prev". */
8423 return TRUE;
8424}
8425
8426
68ffbac6 8427bfd_boolean
7fa3d080
BW
8428identify_literal_placement (bfd *abfd,
8429 asection *sec,
8430 bfd_byte *contents,
8431 struct bfd_link_info *link_info,
8432 value_map_hash_table *values,
8433 bfd_boolean *last_loc_is_prev_p,
8434 Elf_Internal_Rela *irel,
8435 int remaining_src_rels,
8436 source_reloc *rel,
8437 property_table_entry *prop_table,
8438 int ptblsize,
8439 section_cache_t *target_sec_cache,
8440 bfd_boolean is_abs_literal)
43cd72b9
BW
8441{
8442 literal_value val;
8443 value_map *val_map;
8444 xtensa_relax_info *relax_info;
8445 bfd_boolean literal_placed = FALSE;
8446 r_reloc r_rel;
8447 unsigned long value;
8448 bfd_boolean final_static_link;
8449 bfd_size_type sec_size;
8450
8451 relax_info = get_xtensa_relax_info (sec);
8452 if (!relax_info)
8453 return FALSE;
8454
8455 sec_size = bfd_get_section_limit (abfd, sec);
8456
8457 final_static_link =
8458 (!link_info->relocatable
8459 && !elf_hash_table (link_info)->dynamic_sections_created);
8460
8461 /* The placement algorithm first checks to see if the literal is
8462 already in the value map. If so and the value map is reachable
8463 from all uses, then the literal is moved to that location. If
8464 not, then we identify the last location where a fresh literal was
8465 placed. If the literal can be safely moved there, then we do so.
8466 If not, then we assume that the literal is not to move and leave
8467 the literal where it is, marking it as the last literal
8468 location. */
8469
8470 /* Find the literal value. */
8471 value = 0;
8472 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8473 if (!irel)
8474 {
8475 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8476 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8477 }
8478 init_literal_value (&val, &r_rel, value, is_abs_literal);
8479
8480 /* Check if we've seen another literal with the same value that
8481 is in the same output section. */
8482 val_map = value_map_get_cached_value (values, &val, final_static_link);
8483
8484 if (val_map
8485 && (r_reloc_get_section (&val_map->loc)->output_section
8486 == sec->output_section)
8487 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8488 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8489 {
8490 /* No change to last_loc_is_prev. */
8491 literal_placed = TRUE;
8492 }
8493
8494 /* For relocatable links, do not try to move literals. To do it
8495 correctly might increase the number of relocations in an input
8496 section making the default relocatable linking fail. */
68ffbac6 8497 if (!link_info->relocatable && !literal_placed
43cd72b9
BW
8498 && values->has_last_loc && !(*last_loc_is_prev_p))
8499 {
8500 asection *target_sec = r_reloc_get_section (&values->last_loc);
8501 if (target_sec && target_sec->output_section == sec->output_section)
8502 {
8503 /* Increment the virtual offset. */
8504 r_reloc try_loc = values->last_loc;
8505 try_loc.virtual_offset += 4;
8506
8507 /* There is a last loc that was in the same output section. */
8508 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8509 && move_shared_literal (sec, link_info, rel,
68ffbac6 8510 prop_table, ptblsize,
43cd72b9 8511 &try_loc, &val, target_sec_cache))
e0001a05 8512 {
43cd72b9
BW
8513 values->last_loc.virtual_offset += 4;
8514 literal_placed = TRUE;
8515 if (!val_map)
8516 val_map = add_value_map (values, &val, &try_loc,
8517 final_static_link);
8518 else
8519 val_map->loc = try_loc;
e0001a05
NC
8520 }
8521 }
43cd72b9
BW
8522 }
8523
8524 if (!literal_placed)
8525 {
8526 /* Nothing worked, leave the literal alone but update the last loc. */
8527 values->has_last_loc = TRUE;
8528 values->last_loc = rel->r_rel;
8529 if (!val_map)
8530 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8531 else
43cd72b9
BW
8532 val_map->loc = rel->r_rel;
8533 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8534 }
8535
43cd72b9 8536 return TRUE;
e0001a05
NC
8537}
8538
8539
8540/* Check if the original relocations (presumably on L32R instructions)
8541 identified by reloc[0..N] can be changed to reference the literal
8542 identified by r_rel. If r_rel is out of range for any of the
8543 original relocations, then we don't want to coalesce the original
8544 literal with the one at r_rel. We only check reloc[0..N], where the
8545 offsets are all the same as for reloc[0] (i.e., they're all
8546 referencing the same literal) and where N is also bounded by the
8547 number of remaining entries in the "reloc" array. The "reloc" array
8548 is sorted by target offset so we know all the entries for the same
8549 literal will be contiguous. */
8550
8551static bfd_boolean
7fa3d080
BW
8552relocations_reach (source_reloc *reloc,
8553 int remaining_relocs,
8554 const r_reloc *r_rel)
e0001a05
NC
8555{
8556 bfd_vma from_offset, source_address, dest_address;
8557 asection *sec;
8558 int i;
8559
8560 if (!r_reloc_is_defined (r_rel))
8561 return FALSE;
8562
8563 sec = r_reloc_get_section (r_rel);
8564 from_offset = reloc[0].r_rel.target_offset;
8565
8566 for (i = 0; i < remaining_relocs; i++)
8567 {
8568 if (reloc[i].r_rel.target_offset != from_offset)
8569 break;
8570
8571 /* Ignore relocations that have been removed. */
8572 if (reloc[i].is_null)
8573 continue;
8574
8575 /* The original and new output section for these must be the same
8576 in order to coalesce. */
8577 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8578 != sec->output_section)
8579 return FALSE;
8580
d638e0ac
BW
8581 /* Absolute literals in the same output section can always be
8582 combined. */
8583 if (reloc[i].is_abs_literal)
8584 continue;
8585
43cd72b9
BW
8586 /* A literal with no PC-relative relocations can be moved anywhere. */
8587 if (reloc[i].opnd != -1)
e0001a05
NC
8588 {
8589 /* Otherwise, check to see that it fits. */
8590 source_address = (reloc[i].source_sec->output_section->vma
8591 + reloc[i].source_sec->output_offset
8592 + reloc[i].r_rel.rela.r_offset);
8593 dest_address = (sec->output_section->vma
8594 + sec->output_offset
8595 + r_rel->target_offset);
8596
43cd72b9
BW
8597 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8598 source_address, dest_address))
e0001a05
NC
8599 return FALSE;
8600 }
8601 }
8602
8603 return TRUE;
8604}
8605
8606
43cd72b9
BW
8607/* Move a literal to another literal location because it is
8608 the same as the other literal value. */
e0001a05 8609
68ffbac6 8610static bfd_boolean
7fa3d080
BW
8611coalesce_shared_literal (asection *sec,
8612 source_reloc *rel,
8613 property_table_entry *prop_table,
8614 int ptblsize,
8615 value_map *val_map)
e0001a05 8616{
43cd72b9
BW
8617 property_table_entry *entry;
8618 text_action *fa;
8619 property_table_entry *the_add_entry;
8620 int removed_diff;
8621 xtensa_relax_info *relax_info;
8622
8623 relax_info = get_xtensa_relax_info (sec);
8624 if (!relax_info)
8625 return FALSE;
8626
8627 entry = elf_xtensa_find_property_entry
8628 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 8629 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
8630 return TRUE;
8631
8632 /* Mark that the literal will be coalesced. */
8633 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8634
8635 text_action_add (&relax_info->action_list,
8636 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8637
8638 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8639 if (sec->alignment_power > 2)
e0001a05 8640 {
43cd72b9
BW
8641 int fill_extra_space;
8642 bfd_vma entry_sec_offset;
8643
8644 if (entry)
8645 entry_sec_offset = entry->address - sec->vma + entry->size;
8646 else
8647 entry_sec_offset = rel->r_rel.target_offset + 4;
8648
8649 /* If the literal range is at the end of the section,
8650 do not add fill. */
8651 fill_extra_space = 0;
8652 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8653 entry_sec_offset);
8654 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8655 fill_extra_space = the_add_entry->size;
8656
8657 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8658 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8659 -4, fill_extra_space);
8660 if (fa)
8661 adjust_fill_action (fa, removed_diff);
8662 else
8663 text_action_add (&relax_info->action_list,
8664 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 8665 }
43cd72b9
BW
8666
8667 return TRUE;
8668}
8669
8670
8671/* Move a literal to another location. This may actually increase the
8672 total amount of space used because of alignments so we need to do
8673 this carefully. Also, it may make a branch go out of range. */
8674
68ffbac6 8675static bfd_boolean
7fa3d080
BW
8676move_shared_literal (asection *sec,
8677 struct bfd_link_info *link_info,
8678 source_reloc *rel,
8679 property_table_entry *prop_table,
8680 int ptblsize,
8681 const r_reloc *target_loc,
8682 const literal_value *lit_value,
8683 section_cache_t *target_sec_cache)
43cd72b9
BW
8684{
8685 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8686 text_action *fa, *target_fa;
8687 int removed_diff;
8688 xtensa_relax_info *relax_info, *target_relax_info;
8689 asection *target_sec;
8690 ebb_t *ebb;
8691 ebb_constraint ebb_table;
8692 bfd_boolean relocs_fit;
8693
8694 /* If this routine always returns FALSE, the literals that cannot be
8695 coalesced will not be moved. */
8696 if (elf32xtensa_no_literal_movement)
8697 return FALSE;
8698
8699 relax_info = get_xtensa_relax_info (sec);
8700 if (!relax_info)
8701 return FALSE;
8702
8703 target_sec = r_reloc_get_section (target_loc);
8704 target_relax_info = get_xtensa_relax_info (target_sec);
8705
8706 /* Literals to undefined sections may not be moved because they
8707 must report an error. */
8708 if (bfd_is_und_section (target_sec))
8709 return FALSE;
8710
8711 src_entry = elf_xtensa_find_property_entry
8712 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8713
8714 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8715 return FALSE;
8716
8717 target_entry = elf_xtensa_find_property_entry
68ffbac6 8718 (target_sec_cache->ptbl, target_sec_cache->pte_count,
43cd72b9
BW
8719 target_sec->vma + target_loc->target_offset);
8720
8721 if (!target_entry)
8722 return FALSE;
8723
8724 /* Make sure that we have not broken any branches. */
8725 relocs_fit = FALSE;
8726
8727 init_ebb_constraint (&ebb_table);
8728 ebb = &ebb_table.ebb;
68ffbac6 8729 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
43cd72b9
BW
8730 target_sec_cache->content_length,
8731 target_sec_cache->ptbl, target_sec_cache->pte_count,
8732 target_sec_cache->relocs, target_sec_cache->reloc_count);
8733
8734 /* Propose to add 4 bytes + worst-case alignment size increase to
8735 destination. */
8736 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8737 ta_fill, target_loc->target_offset,
8738 -4 - (1 << target_sec->alignment_power), TRUE);
8739
8740 /* Check all of the PC-relative relocations to make sure they still fit. */
68ffbac6 8741 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
43cd72b9
BW
8742 target_sec_cache->contents,
8743 target_sec_cache->relocs,
cb337148 8744 &ebb_table, NULL);
43cd72b9 8745
68ffbac6 8746 if (!relocs_fit)
43cd72b9
BW
8747 return FALSE;
8748
8749 text_action_add_literal (&target_relax_info->action_list,
8750 ta_add_literal, target_loc, lit_value, -4);
8751
68ffbac6 8752 if (target_sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
8753 {
8754 /* May need to add or remove some fill to maintain alignment. */
8755 int fill_extra_space;
8756 bfd_vma entry_sec_offset;
8757
68ffbac6 8758 entry_sec_offset =
43cd72b9
BW
8759 target_entry->address - target_sec->vma + target_entry->size;
8760
8761 /* If the literal range is at the end of the section,
8762 do not add fill. */
8763 fill_extra_space = 0;
8764 the_add_entry =
8765 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8766 target_sec_cache->pte_count,
8767 entry_sec_offset);
8768 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8769 fill_extra_space = the_add_entry->size;
8770
8771 target_fa = find_fill_action (&target_relax_info->action_list,
8772 target_sec, entry_sec_offset);
8773 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8774 entry_sec_offset, 4,
8775 fill_extra_space);
8776 if (target_fa)
8777 adjust_fill_action (target_fa, removed_diff);
8778 else
8779 text_action_add (&target_relax_info->action_list,
8780 ta_fill, target_sec, entry_sec_offset, removed_diff);
8781 }
8782
8783 /* Mark that the literal will be moved to the new location. */
8784 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8785
8786 /* Remove the literal. */
8787 text_action_add (&relax_info->action_list,
8788 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8789
8790 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8791 if (sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
8792 {
8793 int fill_extra_space;
8794 bfd_vma entry_sec_offset;
8795
8796 if (src_entry)
8797 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8798 else
8799 entry_sec_offset = rel->r_rel.target_offset+4;
8800
8801 /* If the literal range is at the end of the section,
8802 do not add fill. */
8803 fill_extra_space = 0;
8804 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8805 entry_sec_offset);
8806 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8807 fill_extra_space = the_add_entry->size;
8808
8809 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8810 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8811 -4, fill_extra_space);
8812 if (fa)
8813 adjust_fill_action (fa, removed_diff);
8814 else
8815 text_action_add (&relax_info->action_list,
8816 ta_fill, sec, entry_sec_offset, removed_diff);
8817 }
8818
8819 return TRUE;
e0001a05
NC
8820}
8821
8822\f
8823/* Second relaxation pass. */
8824
8825/* Modify all of the relocations to point to the right spot, and if this
8826 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8827 section size. */
e0001a05 8828
43cd72b9 8829bfd_boolean
7fa3d080 8830relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8831{
8832 Elf_Internal_Rela *internal_relocs;
8833 xtensa_relax_info *relax_info;
8834 bfd_byte *contents;
8835 bfd_boolean ok = TRUE;
8836 unsigned i;
43cd72b9
BW
8837 bfd_boolean rv = FALSE;
8838 bfd_boolean virtual_action;
8839 bfd_size_type sec_size;
e0001a05 8840
43cd72b9 8841 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8842 relax_info = get_xtensa_relax_info (sec);
8843 BFD_ASSERT (relax_info);
8844
43cd72b9
BW
8845 /* First translate any of the fixes that have been added already. */
8846 translate_section_fixes (sec);
8847
e0001a05
NC
8848 /* Handle property sections (e.g., literal tables) specially. */
8849 if (xtensa_is_property_section (sec))
8850 {
8851 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8852 return relax_property_section (abfd, sec, link_info);
8853 }
8854
68ffbac6 8855 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 8856 link_info->keep_memory);
7aa09196
SA
8857 if (!internal_relocs && !relax_info->action_list.head)
8858 return TRUE;
8859
43cd72b9
BW
8860 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8861 if (contents == NULL && sec_size != 0)
8862 {
8863 ok = FALSE;
8864 goto error_return;
8865 }
8866
8867 if (internal_relocs)
8868 {
8869 for (i = 0; i < sec->reloc_count; i++)
8870 {
8871 Elf_Internal_Rela *irel;
8872 xtensa_relax_info *target_relax_info;
8873 bfd_vma source_offset, old_source_offset;
8874 r_reloc r_rel;
8875 unsigned r_type;
8876 asection *target_sec;
8877
8878 /* Locally change the source address.
8879 Translate the target to the new target address.
8880 If it points to this section and has been removed,
8881 NULLify it.
8882 Write it back. */
8883
8884 irel = &internal_relocs[i];
8885 source_offset = irel->r_offset;
8886 old_source_offset = source_offset;
8887
8888 r_type = ELF32_R_TYPE (irel->r_info);
8889 r_reloc_init (&r_rel, abfd, irel, contents,
8890 bfd_get_section_limit (abfd, sec));
8891
8892 /* If this section could have changed then we may need to
8893 change the relocation's offset. */
8894
8895 if (relax_info->is_relaxable_literal_section
8896 || relax_info->is_relaxable_asm_section)
8897 {
9b7f5d20
BW
8898 pin_internal_relocs (sec, internal_relocs);
8899
43cd72b9
BW
8900 if (r_type != R_XTENSA_NONE
8901 && find_removed_literal (&relax_info->removed_list,
8902 irel->r_offset))
8903 {
8904 /* Remove this relocation. */
8905 if (elf_hash_table (link_info)->dynamic_sections_created)
8906 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8907 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8908 irel->r_offset = offset_with_removed_text
8909 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8910 continue;
8911 }
8912
8913 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8914 {
8915 text_action *action =
8916 find_insn_action (&relax_info->action_list,
8917 irel->r_offset);
8918 if (action && (action->action == ta_convert_longcall
8919 || action->action == ta_remove_longcall))
8920 {
8921 bfd_reloc_status_type retval;
8922 char *error_message = NULL;
8923
8924 retval = contract_asm_expansion (contents, sec_size,
8925 irel, &error_message);
8926 if (retval != bfd_reloc_ok)
8927 {
8928 (*link_info->callbacks->reloc_dangerous)
8929 (link_info, error_message, abfd, sec,
8930 irel->r_offset);
8931 goto error_return;
8932 }
8933 /* Update the action so that the code that moves
8934 the contents will do the right thing. */
8935 if (action->action == ta_remove_longcall)
8936 action->action = ta_remove_insn;
8937 else
8938 action->action = ta_none;
8939 /* Refresh the info in the r_rel. */
8940 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8941 r_type = ELF32_R_TYPE (irel->r_info);
8942 }
8943 }
8944
8945 source_offset = offset_with_removed_text
8946 (&relax_info->action_list, irel->r_offset);
8947 irel->r_offset = source_offset;
8948 }
8949
8950 /* If the target section could have changed then
8951 we may need to change the relocation's target offset. */
8952
8953 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8954
ae326da8
BW
8955 /* For a reference to a discarded section from a DWARF section,
8956 i.e., where action_discarded is PRETEND, the symbol will
8957 eventually be modified to refer to the kept section (at least if
8958 the kept and discarded sections are the same size). Anticipate
8959 that here and adjust things accordingly. */
8960 if (! elf_xtensa_ignore_discarded_relocs (sec)
8961 && elf_xtensa_action_discarded (sec) == PRETEND
dbaa2011 8962 && sec->sec_info_type != SEC_INFO_TYPE_STABS
ae326da8 8963 && target_sec != NULL
dbaa2011 8964 && discarded_section (target_sec))
ae326da8
BW
8965 {
8966 /* It would be natural to call _bfd_elf_check_kept_section
8967 here, but it's not exported from elflink.c. It's also a
8968 fairly expensive check. Adjusting the relocations to the
8969 discarded section is fairly harmless; it will only adjust
8970 some addends and difference values. If it turns out that
8971 _bfd_elf_check_kept_section fails later, it won't matter,
8972 so just compare the section names to find the right group
8973 member. */
8974 asection *kept = target_sec->kept_section;
8975 if (kept != NULL)
8976 {
8977 if ((kept->flags & SEC_GROUP) != 0)
8978 {
8979 asection *first = elf_next_in_group (kept);
8980 asection *s = first;
8981
8982 kept = NULL;
8983 while (s != NULL)
8984 {
8985 if (strcmp (s->name, target_sec->name) == 0)
8986 {
8987 kept = s;
8988 break;
8989 }
8990 s = elf_next_in_group (s);
8991 if (s == first)
8992 break;
8993 }
8994 }
8995 }
8996 if (kept != NULL
8997 && ((target_sec->rawsize != 0
8998 ? target_sec->rawsize : target_sec->size)
8999 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9000 target_sec = kept;
9001 }
9002
9003 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9004 if (target_relax_info
9005 && (target_relax_info->is_relaxable_literal_section
9006 || target_relax_info->is_relaxable_asm_section))
9007 {
9008 r_reloc new_reloc;
9b7f5d20 9009 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9010
9011 if (r_type == R_XTENSA_DIFF8
9012 || r_type == R_XTENSA_DIFF16
9013 || r_type == R_XTENSA_DIFF32)
9014 {
9015 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
9016
9017 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9018 {
9019 (*link_info->callbacks->reloc_dangerous)
9020 (link_info, _("invalid relocation address"),
9021 abfd, sec, old_source_offset);
9022 goto error_return;
9023 }
9024
9025 switch (r_type)
9026 {
9027 case R_XTENSA_DIFF8:
9028 diff_value =
9029 bfd_get_8 (abfd, &contents[old_source_offset]);
9030 break;
9031 case R_XTENSA_DIFF16:
9032 diff_value =
9033 bfd_get_16 (abfd, &contents[old_source_offset]);
9034 break;
9035 case R_XTENSA_DIFF32:
9036 diff_value =
9037 bfd_get_32 (abfd, &contents[old_source_offset]);
9038 break;
9039 }
9040
9041 new_end_offset = offset_with_removed_text
9042 (&target_relax_info->action_list,
9043 r_rel.target_offset + diff_value);
9044 diff_value = new_end_offset - new_reloc.target_offset;
9045
9046 switch (r_type)
9047 {
9048 case R_XTENSA_DIFF8:
9049 diff_mask = 0xff;
9050 bfd_put_8 (abfd, diff_value,
9051 &contents[old_source_offset]);
9052 break;
9053 case R_XTENSA_DIFF16:
9054 diff_mask = 0xffff;
9055 bfd_put_16 (abfd, diff_value,
9056 &contents[old_source_offset]);
9057 break;
9058 case R_XTENSA_DIFF32:
9059 diff_mask = 0xffffffff;
9060 bfd_put_32 (abfd, diff_value,
9061 &contents[old_source_offset]);
9062 break;
9063 }
9064
9065 /* Check for overflow. */
9066 if ((diff_value & ~diff_mask) != 0)
9067 {
9068 (*link_info->callbacks->reloc_dangerous)
9069 (link_info, _("overflow after relaxation"),
9070 abfd, sec, old_source_offset);
9071 goto error_return;
9072 }
9073
9074 pin_contents (sec, contents);
9075 }
dc96b90a
BW
9076
9077 /* If the relocation still references a section in the same
9078 input file, modify the relocation directly instead of
9079 adding a "fix" record. */
9080 if (target_sec->owner == abfd)
9081 {
9082 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9083 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9084 irel->r_addend = new_reloc.rela.r_addend;
9085 pin_internal_relocs (sec, internal_relocs);
9086 }
9b7f5d20
BW
9087 else
9088 {
dc96b90a
BW
9089 bfd_vma addend_displacement;
9090 reloc_bfd_fix *fix;
9091
9092 addend_displacement =
9093 new_reloc.target_offset + new_reloc.virtual_offset;
9094 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9095 target_sec,
9096 addend_displacement, TRUE);
9097 add_fix (sec, fix);
9b7f5d20 9098 }
43cd72b9 9099 }
43cd72b9
BW
9100 }
9101 }
9102
9103 if ((relax_info->is_relaxable_literal_section
9104 || relax_info->is_relaxable_asm_section)
9105 && relax_info->action_list.head)
9106 {
9107 /* Walk through the planned actions and build up a table
9108 of move, copy and fill records. Use the move, copy and
9109 fill records to perform the actions once. */
9110
43cd72b9
BW
9111 int removed = 0;
9112 bfd_size_type final_size, copy_size, orig_insn_size;
9113 bfd_byte *scratch = NULL;
9114 bfd_byte *dup_contents = NULL;
a3ef2d63 9115 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9116 bfd_vma orig_dot = 0;
9117 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9118 orig dot in physical memory. */
9119 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9120 bfd_vma dup_dot = 0;
9121
9122 text_action *action = relax_info->action_list.head;
9123
9124 final_size = sec->size;
9125 for (action = relax_info->action_list.head; action;
9126 action = action->next)
9127 {
9128 final_size -= action->removed_bytes;
9129 }
9130
9131 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9132 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9133
9134 /* The dot is the current fill location. */
9135#if DEBUG
9136 print_action_list (stderr, &relax_info->action_list);
9137#endif
9138
9139 for (action = relax_info->action_list.head; action;
9140 action = action->next)
9141 {
9142 virtual_action = FALSE;
9143 if (action->offset > orig_dot)
9144 {
9145 orig_dot += orig_dot_copied;
9146 orig_dot_copied = 0;
9147 orig_dot_vo = 0;
9148 /* Out of the virtual world. */
9149 }
9150
9151 if (action->offset > orig_dot)
9152 {
9153 copy_size = action->offset - orig_dot;
9154 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9155 orig_dot += copy_size;
9156 dup_dot += copy_size;
9157 BFD_ASSERT (action->offset == orig_dot);
9158 }
9159 else if (action->offset < orig_dot)
9160 {
9161 if (action->action == ta_fill
9162 && action->offset - action->removed_bytes == orig_dot)
9163 {
9164 /* This is OK because the fill only effects the dup_dot. */
9165 }
9166 else if (action->action == ta_add_literal)
9167 {
9168 /* TBD. Might need to handle this. */
9169 }
9170 }
9171 if (action->offset == orig_dot)
9172 {
9173 if (action->virtual_offset > orig_dot_vo)
9174 {
9175 if (orig_dot_vo == 0)
9176 {
9177 /* Need to copy virtual_offset bytes. Probably four. */
9178 copy_size = action->virtual_offset - orig_dot_vo;
9179 memmove (&dup_contents[dup_dot],
9180 &contents[orig_dot], copy_size);
9181 orig_dot_copied = copy_size;
9182 dup_dot += copy_size;
9183 }
9184 virtual_action = TRUE;
68ffbac6 9185 }
43cd72b9
BW
9186 else
9187 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9188 }
9189 switch (action->action)
9190 {
9191 case ta_remove_literal:
9192 case ta_remove_insn:
9193 BFD_ASSERT (action->removed_bytes >= 0);
9194 orig_dot += action->removed_bytes;
9195 break;
9196
9197 case ta_narrow_insn:
9198 orig_insn_size = 3;
9199 copy_size = 2;
9200 memmove (scratch, &contents[orig_dot], orig_insn_size);
9201 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9202 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9203 BFD_ASSERT (rv);
9204 memmove (&dup_contents[dup_dot], scratch, copy_size);
9205 orig_dot += orig_insn_size;
9206 dup_dot += copy_size;
9207 break;
9208
9209 case ta_fill:
9210 if (action->removed_bytes >= 0)
9211 orig_dot += action->removed_bytes;
9212 else
9213 {
9214 /* Already zeroed in dup_contents. Just bump the
9215 counters. */
9216 dup_dot += (-action->removed_bytes);
9217 }
9218 break;
9219
9220 case ta_none:
9221 BFD_ASSERT (action->removed_bytes == 0);
9222 break;
9223
9224 case ta_convert_longcall:
9225 case ta_remove_longcall:
9226 /* These will be removed or converted before we get here. */
9227 BFD_ASSERT (0);
9228 break;
9229
9230 case ta_widen_insn:
9231 orig_insn_size = 2;
9232 copy_size = 3;
9233 memmove (scratch, &contents[orig_dot], orig_insn_size);
9234 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9235 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9236 BFD_ASSERT (rv);
9237 memmove (&dup_contents[dup_dot], scratch, copy_size);
9238 orig_dot += orig_insn_size;
9239 dup_dot += copy_size;
9240 break;
9241
9242 case ta_add_literal:
9243 orig_insn_size = 0;
9244 copy_size = 4;
9245 BFD_ASSERT (action->removed_bytes == -4);
9246 /* TBD -- place the literal value here and insert
9247 into the table. */
9248 memset (&dup_contents[dup_dot], 0, 4);
9249 pin_internal_relocs (sec, internal_relocs);
9250 pin_contents (sec, contents);
9251
9252 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9253 relax_info, &internal_relocs, &action->value))
9254 goto error_return;
9255
68ffbac6 9256 if (virtual_action)
43cd72b9
BW
9257 orig_dot_vo += copy_size;
9258
9259 orig_dot += orig_insn_size;
9260 dup_dot += copy_size;
9261 break;
9262
9263 default:
9264 /* Not implemented yet. */
9265 BFD_ASSERT (0);
9266 break;
9267 }
9268
43cd72b9
BW
9269 removed += action->removed_bytes;
9270 BFD_ASSERT (dup_dot <= final_size);
9271 BFD_ASSERT (orig_dot <= orig_size);
9272 }
9273
9274 orig_dot += orig_dot_copied;
9275 orig_dot_copied = 0;
9276
9277 if (orig_dot != orig_size)
9278 {
9279 copy_size = orig_size - orig_dot;
9280 BFD_ASSERT (orig_size > orig_dot);
9281 BFD_ASSERT (dup_dot + copy_size == final_size);
9282 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9283 orig_dot += copy_size;
9284 dup_dot += copy_size;
9285 }
9286 BFD_ASSERT (orig_size == orig_dot);
9287 BFD_ASSERT (final_size == dup_dot);
9288
9289 /* Move the dup_contents back. */
9290 if (final_size > orig_size)
9291 {
9292 /* Contents need to be reallocated. Swap the dup_contents into
9293 contents. */
9294 sec->contents = dup_contents;
9295 free (contents);
9296 contents = dup_contents;
9297 pin_contents (sec, contents);
9298 }
9299 else
9300 {
9301 BFD_ASSERT (final_size <= orig_size);
9302 memset (contents, 0, orig_size);
9303 memcpy (contents, dup_contents, final_size);
9304 free (dup_contents);
9305 }
9306 free (scratch);
9307 pin_contents (sec, contents);
9308
a3ef2d63
BW
9309 if (sec->rawsize == 0)
9310 sec->rawsize = sec->size;
43cd72b9
BW
9311 sec->size = final_size;
9312 }
9313
9314 error_return:
9315 release_internal_relocs (sec, internal_relocs);
9316 release_contents (sec, contents);
9317 return ok;
9318}
9319
9320
68ffbac6 9321static bfd_boolean
7fa3d080 9322translate_section_fixes (asection *sec)
43cd72b9
BW
9323{
9324 xtensa_relax_info *relax_info;
9325 reloc_bfd_fix *r;
9326
9327 relax_info = get_xtensa_relax_info (sec);
9328 if (!relax_info)
9329 return TRUE;
9330
9331 for (r = relax_info->fix_list; r != NULL; r = r->next)
9332 if (!translate_reloc_bfd_fix (r))
9333 return FALSE;
e0001a05 9334
43cd72b9
BW
9335 return TRUE;
9336}
e0001a05 9337
e0001a05 9338
43cd72b9
BW
9339/* Translate a fix given the mapping in the relax info for the target
9340 section. If it has already been translated, no work is required. */
e0001a05 9341
68ffbac6 9342static bfd_boolean
7fa3d080 9343translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9344{
9345 reloc_bfd_fix new_fix;
9346 asection *sec;
9347 xtensa_relax_info *relax_info;
9348 removed_literal *removed;
9349 bfd_vma new_offset, target_offset;
e0001a05 9350
43cd72b9
BW
9351 if (fix->translated)
9352 return TRUE;
e0001a05 9353
43cd72b9
BW
9354 sec = fix->target_sec;
9355 target_offset = fix->target_offset;
e0001a05 9356
43cd72b9
BW
9357 relax_info = get_xtensa_relax_info (sec);
9358 if (!relax_info)
9359 {
9360 fix->translated = TRUE;
9361 return TRUE;
9362 }
e0001a05 9363
43cd72b9 9364 new_fix = *fix;
e0001a05 9365
43cd72b9
BW
9366 /* The fix does not need to be translated if the section cannot change. */
9367 if (!relax_info->is_relaxable_literal_section
9368 && !relax_info->is_relaxable_asm_section)
9369 {
9370 fix->translated = TRUE;
9371 return TRUE;
9372 }
e0001a05 9373
43cd72b9
BW
9374 /* If the literal has been moved and this relocation was on an
9375 opcode, then the relocation should move to the new literal
9376 location. Otherwise, the relocation should move within the
9377 section. */
9378
9379 removed = FALSE;
9380 if (is_operand_relocation (fix->src_type))
9381 {
9382 /* Check if the original relocation is against a literal being
9383 removed. */
9384 removed = find_removed_literal (&relax_info->removed_list,
9385 target_offset);
e0001a05
NC
9386 }
9387
68ffbac6 9388 if (removed)
e0001a05 9389 {
43cd72b9 9390 asection *new_sec;
e0001a05 9391
43cd72b9
BW
9392 /* The fact that there is still a relocation to this literal indicates
9393 that the literal is being coalesced, not simply removed. */
9394 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9395
43cd72b9
BW
9396 /* This was moved to some other address (possibly another section). */
9397 new_sec = r_reloc_get_section (&removed->to);
68ffbac6 9398 if (new_sec != sec)
e0001a05 9399 {
43cd72b9
BW
9400 sec = new_sec;
9401 relax_info = get_xtensa_relax_info (sec);
68ffbac6 9402 if (!relax_info ||
43cd72b9
BW
9403 (!relax_info->is_relaxable_literal_section
9404 && !relax_info->is_relaxable_asm_section))
e0001a05 9405 {
43cd72b9
BW
9406 target_offset = removed->to.target_offset;
9407 new_fix.target_sec = new_sec;
9408 new_fix.target_offset = target_offset;
9409 new_fix.translated = TRUE;
9410 *fix = new_fix;
9411 return TRUE;
e0001a05 9412 }
e0001a05 9413 }
43cd72b9
BW
9414 target_offset = removed->to.target_offset;
9415 new_fix.target_sec = new_sec;
e0001a05 9416 }
43cd72b9
BW
9417
9418 /* The target address may have been moved within its section. */
9419 new_offset = offset_with_removed_text (&relax_info->action_list,
9420 target_offset);
9421
9422 new_fix.target_offset = new_offset;
9423 new_fix.target_offset = new_offset;
9424 new_fix.translated = TRUE;
9425 *fix = new_fix;
9426 return TRUE;
e0001a05
NC
9427}
9428
9429
9430/* Fix up a relocation to take account of removed literals. */
9431
9b7f5d20
BW
9432static asection *
9433translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9434{
e0001a05
NC
9435 xtensa_relax_info *relax_info;
9436 removed_literal *removed;
9b7f5d20
BW
9437 bfd_vma target_offset, base_offset;
9438 text_action *act;
e0001a05
NC
9439
9440 *new_rel = *orig_rel;
9441
9442 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9443 return sec ;
e0001a05
NC
9444
9445 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9446 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9447 || relax_info->is_relaxable_asm_section));
e0001a05 9448
43cd72b9
BW
9449 target_offset = orig_rel->target_offset;
9450
9451 removed = FALSE;
9452 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9453 {
9454 /* Check if the original relocation is against a literal being
9455 removed. */
9456 removed = find_removed_literal (&relax_info->removed_list,
9457 target_offset);
9458 }
9459 if (removed && removed->to.abfd)
e0001a05
NC
9460 {
9461 asection *new_sec;
9462
9463 /* The fact that there is still a relocation to this literal indicates
9464 that the literal is being coalesced, not simply removed. */
9465 BFD_ASSERT (removed->to.abfd != NULL);
9466
43cd72b9
BW
9467 /* This was moved to some other address
9468 (possibly in another section). */
e0001a05
NC
9469 *new_rel = removed->to;
9470 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9471 if (new_sec != sec)
e0001a05
NC
9472 {
9473 sec = new_sec;
9474 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9475 if (!relax_info
9476 || (!relax_info->is_relaxable_literal_section
9477 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9478 return sec;
e0001a05 9479 }
43cd72b9 9480 target_offset = new_rel->target_offset;
e0001a05
NC
9481 }
9482
9b7f5d20
BW
9483 /* Find the base offset of the reloc symbol, excluding any addend from the
9484 reloc or from the section contents (for a partial_inplace reloc). Then
9485 find the adjusted values of the offsets due to relaxation. The base
9486 offset is needed to determine the change to the reloc's addend; the reloc
9487 addend should not be adjusted due to relaxations located before the base
9488 offset. */
9489
9490 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9491 act = relax_info->action_list.head;
9492 if (base_offset <= target_offset)
9493 {
9494 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9495 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9496 new_rel->target_offset = target_offset - base_removed - addend_removed;
9497 new_rel->rela.r_addend -= addend_removed;
9498 }
9499 else
9500 {
9501 /* Handle a negative addend. The base offset comes first. */
9502 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9503 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9504 new_rel->target_offset = target_offset - tgt_removed;
9505 new_rel->rela.r_addend += addend_removed;
9506 }
e0001a05 9507
9b7f5d20 9508 return sec;
e0001a05
NC
9509}
9510
9511
9512/* For dynamic links, there may be a dynamic relocation for each
9513 literal. The number of dynamic relocations must be computed in
9514 size_dynamic_sections, which occurs before relaxation. When a
9515 literal is removed, this function checks if there is a corresponding
9516 dynamic relocation and shrinks the size of the appropriate dynamic
9517 relocation section accordingly. At this point, the contents of the
9518 dynamic relocation sections have not yet been filled in, so there's
9519 nothing else that needs to be done. */
9520
9521static void
7fa3d080
BW
9522shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9523 bfd *abfd,
9524 asection *input_section,
9525 Elf_Internal_Rela *rel)
e0001a05 9526{
f0e6fdb2 9527 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9528 Elf_Internal_Shdr *symtab_hdr;
9529 struct elf_link_hash_entry **sym_hashes;
9530 unsigned long r_symndx;
9531 int r_type;
9532 struct elf_link_hash_entry *h;
9533 bfd_boolean dynamic_symbol;
9534
f0e6fdb2 9535 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
9536 if (htab == NULL)
9537 return;
9538
e0001a05
NC
9539 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9540 sym_hashes = elf_sym_hashes (abfd);
9541
9542 r_type = ELF32_R_TYPE (rel->r_info);
9543 r_symndx = ELF32_R_SYM (rel->r_info);
9544
9545 if (r_symndx < symtab_hdr->sh_info)
9546 h = NULL;
9547 else
9548 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9549
4608f3d9 9550 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
9551
9552 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9553 && (input_section->flags & SEC_ALLOC) != 0
9554 && (dynamic_symbol || info->shared))
9555 {
e0001a05
NC
9556 asection *srel;
9557 bfd_boolean is_plt = FALSE;
9558
e0001a05
NC
9559 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9560 {
f0e6fdb2 9561 srel = htab->srelplt;
e0001a05
NC
9562 is_plt = TRUE;
9563 }
9564 else
f0e6fdb2 9565 srel = htab->srelgot;
e0001a05
NC
9566
9567 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 9568 BFD_ASSERT (srel != NULL);
eea6121a
AM
9569 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9570 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
9571
9572 if (is_plt)
9573 {
9574 asection *splt, *sgotplt, *srelgot;
9575 int reloc_index, chunk;
9576
9577 /* Find the PLT reloc index of the entry being removed. This
9578 is computed from the size of ".rela.plt". It is needed to
9579 figure out which PLT chunk to resize. Usually "last index
9580 = size - 1" since the index starts at zero, but in this
9581 context, the size has just been decremented so there's no
9582 need to subtract one. */
eea6121a 9583 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
9584
9585 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
9586 splt = elf_xtensa_get_plt_section (info, chunk);
9587 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
9588 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9589
9590 /* Check if an entire PLT chunk has just been eliminated. */
9591 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9592 {
9593 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 9594 srelgot = htab->srelgot;
e0001a05
NC
9595 BFD_ASSERT (srelgot != NULL);
9596 srelgot->reloc_count -= 2;
eea6121a
AM
9597 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9598 sgotplt->size -= 8;
e0001a05
NC
9599
9600 /* There should be only one entry left (and it will be
9601 removed below). */
eea6121a
AM
9602 BFD_ASSERT (sgotplt->size == 4);
9603 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
9604 }
9605
eea6121a
AM
9606 BFD_ASSERT (sgotplt->size >= 4);
9607 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 9608
eea6121a
AM
9609 sgotplt->size -= 4;
9610 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
9611 }
9612 }
9613}
9614
9615
43cd72b9
BW
9616/* Take an r_rel and move it to another section. This usually
9617 requires extending the interal_relocation array and pinning it. If
9618 the original r_rel is from the same BFD, we can complete this here.
9619 Otherwise, we add a fix record to let the final link fix the
9620 appropriate address. Contents and internal relocations for the
9621 section must be pinned after calling this routine. */
9622
9623static bfd_boolean
7fa3d080
BW
9624move_literal (bfd *abfd,
9625 struct bfd_link_info *link_info,
9626 asection *sec,
9627 bfd_vma offset,
9628 bfd_byte *contents,
9629 xtensa_relax_info *relax_info,
9630 Elf_Internal_Rela **internal_relocs_p,
9631 const literal_value *lit)
43cd72b9
BW
9632{
9633 Elf_Internal_Rela *new_relocs = NULL;
9634 size_t new_relocs_count = 0;
9635 Elf_Internal_Rela this_rela;
9636 const r_reloc *r_rel;
9637
9638 r_rel = &lit->r_rel;
9639 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9640
9641 if (r_reloc_is_const (r_rel))
9642 bfd_put_32 (abfd, lit->value, contents + offset);
9643 else
9644 {
9645 int r_type;
9646 unsigned i;
43cd72b9
BW
9647 reloc_bfd_fix *fix;
9648 unsigned insert_at;
9649
9650 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
9651
9652 /* This is the difficult case. We have to create a fix up. */
9653 this_rela.r_offset = offset;
9654 this_rela.r_info = ELF32_R_INFO (0, r_type);
9655 this_rela.r_addend =
9656 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9657 bfd_put_32 (abfd, lit->value, contents + offset);
9658
9659 /* Currently, we cannot move relocations during a relocatable link. */
9660 BFD_ASSERT (!link_info->relocatable);
0f5f1638 9661 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
9662 r_reloc_get_section (r_rel),
9663 r_rel->target_offset + r_rel->virtual_offset,
9664 FALSE);
9665 /* We also need to mark that relocations are needed here. */
9666 sec->flags |= SEC_RELOC;
9667
9668 translate_reloc_bfd_fix (fix);
9669 /* This fix has not yet been translated. */
9670 add_fix (sec, fix);
9671
9672 /* Add the relocation. If we have already allocated our own
9673 space for the relocations and we have room for more, then use
9674 it. Otherwise, allocate new space and move the literals. */
9675 insert_at = sec->reloc_count;
9676 for (i = 0; i < sec->reloc_count; ++i)
9677 {
9678 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9679 {
9680 insert_at = i;
9681 break;
9682 }
9683 }
9684
9685 if (*internal_relocs_p != relax_info->allocated_relocs
9686 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9687 {
9688 BFD_ASSERT (relax_info->allocated_relocs == NULL
9689 || sec->reloc_count == relax_info->relocs_count);
9690
68ffbac6 9691 if (relax_info->allocated_relocs_count == 0)
43cd72b9
BW
9692 new_relocs_count = (sec->reloc_count + 2) * 2;
9693 else
9694 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9695
9696 new_relocs = (Elf_Internal_Rela *)
9697 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9698 if (!new_relocs)
9699 return FALSE;
9700
9701 /* We could handle this more quickly by finding the split point. */
9702 if (insert_at != 0)
9703 memcpy (new_relocs, *internal_relocs_p,
9704 insert_at * sizeof (Elf_Internal_Rela));
9705
9706 new_relocs[insert_at] = this_rela;
9707
9708 if (insert_at != sec->reloc_count)
9709 memcpy (new_relocs + insert_at + 1,
9710 (*internal_relocs_p) + insert_at,
68ffbac6 9711 (sec->reloc_count - insert_at)
43cd72b9
BW
9712 * sizeof (Elf_Internal_Rela));
9713
9714 if (*internal_relocs_p != relax_info->allocated_relocs)
9715 {
9716 /* The first time we re-allocate, we can only free the
9717 old relocs if they were allocated with bfd_malloc.
9718 This is not true when keep_memory is in effect. */
9719 if (!link_info->keep_memory)
9720 free (*internal_relocs_p);
9721 }
9722 else
9723 free (*internal_relocs_p);
9724 relax_info->allocated_relocs = new_relocs;
9725 relax_info->allocated_relocs_count = new_relocs_count;
9726 elf_section_data (sec)->relocs = new_relocs;
9727 sec->reloc_count++;
9728 relax_info->relocs_count = sec->reloc_count;
9729 *internal_relocs_p = new_relocs;
9730 }
9731 else
9732 {
9733 if (insert_at != sec->reloc_count)
9734 {
9735 unsigned idx;
9736 for (idx = sec->reloc_count; idx > insert_at; idx--)
9737 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9738 }
9739 (*internal_relocs_p)[insert_at] = this_rela;
9740 sec->reloc_count++;
9741 if (relax_info->allocated_relocs)
9742 relax_info->relocs_count = sec->reloc_count;
9743 }
9744 }
9745 return TRUE;
9746}
9747
9748
e0001a05
NC
9749/* This is similar to relax_section except that when a target is moved,
9750 we shift addresses up. We also need to modify the size. This
9751 algorithm does NOT allow for relocations into the middle of the
9752 property sections. */
9753
43cd72b9 9754static bfd_boolean
7fa3d080
BW
9755relax_property_section (bfd *abfd,
9756 asection *sec,
9757 struct bfd_link_info *link_info)
e0001a05
NC
9758{
9759 Elf_Internal_Rela *internal_relocs;
9760 bfd_byte *contents;
1d25768e 9761 unsigned i;
e0001a05 9762 bfd_boolean ok = TRUE;
43cd72b9
BW
9763 bfd_boolean is_full_prop_section;
9764 size_t last_zfill_target_offset = 0;
9765 asection *last_zfill_target_sec = NULL;
9766 bfd_size_type sec_size;
1d25768e 9767 bfd_size_type entry_size;
e0001a05 9768
43cd72b9 9769 sec_size = bfd_get_section_limit (abfd, sec);
68ffbac6 9770 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
9771 link_info->keep_memory);
9772 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9773 if (contents == NULL && sec_size != 0)
e0001a05
NC
9774 {
9775 ok = FALSE;
9776 goto error_return;
9777 }
9778
1d25768e
BW
9779 is_full_prop_section = xtensa_is_proptable_section (sec);
9780 if (is_full_prop_section)
9781 entry_size = 12;
9782 else
9783 entry_size = 8;
43cd72b9
BW
9784
9785 if (internal_relocs)
e0001a05 9786 {
43cd72b9 9787 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9788 {
9789 Elf_Internal_Rela *irel;
9790 xtensa_relax_info *target_relax_info;
e0001a05
NC
9791 unsigned r_type;
9792 asection *target_sec;
43cd72b9
BW
9793 literal_value val;
9794 bfd_byte *size_p, *flags_p;
e0001a05
NC
9795
9796 /* Locally change the source address.
9797 Translate the target to the new target address.
9798 If it points to this section and has been removed, MOVE IT.
9799 Also, don't forget to modify the associated SIZE at
9800 (offset + 4). */
9801
9802 irel = &internal_relocs[i];
9803 r_type = ELF32_R_TYPE (irel->r_info);
9804 if (r_type == R_XTENSA_NONE)
9805 continue;
9806
43cd72b9
BW
9807 /* Find the literal value. */
9808 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9809 size_p = &contents[irel->r_offset + 4];
9810 flags_p = NULL;
9811 if (is_full_prop_section)
1d25768e
BW
9812 flags_p = &contents[irel->r_offset + 8];
9813 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 9814
43cd72b9 9815 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
9816 target_relax_info = get_xtensa_relax_info (target_sec);
9817
9818 if (target_relax_info
43cd72b9
BW
9819 && (target_relax_info->is_relaxable_literal_section
9820 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9821 {
9822 /* Translate the relocation's destination. */
03669f1c
BW
9823 bfd_vma old_offset = val.r_rel.target_offset;
9824 bfd_vma new_offset;
e0001a05 9825 long old_size, new_size;
03669f1c
BW
9826 text_action *act = target_relax_info->action_list.head;
9827 new_offset = old_offset -
9828 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9829
9830 /* Assert that we are not out of bounds. */
43cd72b9 9831 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9832 new_size = old_size;
43cd72b9
BW
9833
9834 if (old_size == 0)
9835 {
9836 /* Only the first zero-sized unreachable entry is
9837 allowed to expand. In this case the new offset
9838 should be the offset before the fill and the new
9839 size is the expansion size. For other zero-sized
9840 entries the resulting size should be zero with an
9841 offset before or after the fill address depending
9842 on whether the expanding unreachable entry
9843 preceeds it. */
03669f1c
BW
9844 if (last_zfill_target_sec == 0
9845 || last_zfill_target_sec != target_sec
9846 || last_zfill_target_offset != old_offset)
43cd72b9 9847 {
03669f1c
BW
9848 bfd_vma new_end_offset = new_offset;
9849
9850 /* Recompute the new_offset, but this time don't
9851 include any fill inserted by relaxation. */
9852 act = target_relax_info->action_list.head;
9853 new_offset = old_offset -
9854 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9855
9856 /* If it is not unreachable and we have not yet
9857 seen an unreachable at this address, place it
9858 before the fill address. */
03669f1c
BW
9859 if (flags_p && (bfd_get_32 (abfd, flags_p)
9860 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9861 {
03669f1c
BW
9862 new_size = new_end_offset - new_offset;
9863
43cd72b9 9864 last_zfill_target_sec = target_sec;
03669f1c 9865 last_zfill_target_offset = old_offset;
43cd72b9
BW
9866 }
9867 }
9868 }
9869 else
03669f1c
BW
9870 new_size -=
9871 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9872
e0001a05
NC
9873 if (new_size != old_size)
9874 {
9875 bfd_put_32 (abfd, new_size, size_p);
9876 pin_contents (sec, contents);
9877 }
43cd72b9 9878
03669f1c 9879 if (new_offset != old_offset)
e0001a05 9880 {
03669f1c 9881 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9882 irel->r_addend += diff;
9883 pin_internal_relocs (sec, internal_relocs);
9884 }
9885 }
9886 }
9887 }
9888
9889 /* Combine adjacent property table entries. This is also done in
9890 finish_dynamic_sections() but at that point it's too late to
9891 reclaim the space in the output section, so we do this twice. */
9892
43cd72b9 9893 if (internal_relocs && (!link_info->relocatable
1d25768e 9894 || xtensa_is_littable_section (sec)))
e0001a05
NC
9895 {
9896 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9897 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9898 int removed_bytes = 0;
1d25768e 9899 bfd_vma offset;
43cd72b9
BW
9900 flagword predef_flags;
9901
43cd72b9 9902 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9903
1d25768e 9904 /* Walk over memory and relocations at the same time.
e0001a05
NC
9905 This REQUIRES that the internal_relocs be sorted by offset. */
9906 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9907 internal_reloc_compare);
e0001a05
NC
9908
9909 pin_internal_relocs (sec, internal_relocs);
9910 pin_contents (sec, contents);
9911
1d25768e
BW
9912 next_rel = internal_relocs;
9913 rel_end = internal_relocs + sec->reloc_count;
9914
a3ef2d63 9915 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9916
a3ef2d63 9917 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9918 {
1d25768e 9919 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9920 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9921 bfd_boolean remove_this_rel;
43cd72b9 9922 flagword flags;
e0001a05 9923
1d25768e
BW
9924 /* Find the first relocation for the entry at the current offset.
9925 Adjust the offsets of any extra relocations for the previous
9926 entry. */
9927 offset_rel = NULL;
9928 if (next_rel)
9929 {
9930 for (irel = next_rel; irel < rel_end; irel++)
9931 {
9932 if ((irel->r_offset == offset
9933 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9934 || irel->r_offset > offset)
9935 {
9936 offset_rel = irel;
9937 break;
9938 }
9939 irel->r_offset -= removed_bytes;
1d25768e
BW
9940 }
9941 }
e0001a05 9942
1d25768e
BW
9943 /* Find the next relocation (if there are any left). */
9944 extra_rel = NULL;
9945 if (offset_rel)
e0001a05 9946 {
1d25768e 9947 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9948 {
1d25768e
BW
9949 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9950 {
9951 extra_rel = irel;
9952 break;
9953 }
e0001a05 9954 }
e0001a05
NC
9955 }
9956
1d25768e
BW
9957 /* Check if there are relocations on the current entry. There
9958 should usually be a relocation on the offset field. If there
9959 are relocations on the size or flags, then we can't optimize
9960 this entry. Also, find the next relocation to examine on the
9961 next iteration. */
9962 if (offset_rel)
e0001a05 9963 {
1d25768e 9964 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9965 {
1d25768e
BW
9966 next_rel = offset_rel;
9967 /* There are no relocations on the current entry, but we
9968 might still be able to remove it if the size is zero. */
9969 offset_rel = NULL;
9970 }
9971 else if (offset_rel->r_offset > offset
9972 || (extra_rel
9973 && extra_rel->r_offset < offset + entry_size))
9974 {
9975 /* There is a relocation on the size or flags, so we can't
9976 do anything with this entry. Continue with the next. */
9977 next_rel = offset_rel;
9978 continue;
9979 }
9980 else
9981 {
9982 BFD_ASSERT (offset_rel->r_offset == offset);
9983 offset_rel->r_offset -= removed_bytes;
9984 next_rel = offset_rel + 1;
e0001a05 9985 }
e0001a05 9986 }
1d25768e
BW
9987 else
9988 next_rel = NULL;
e0001a05 9989
1d25768e 9990 remove_this_rel = FALSE;
e0001a05
NC
9991 bytes_to_remove = 0;
9992 actual_offset = offset - removed_bytes;
9993 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9994
68ffbac6 9995 if (is_full_prop_section)
43cd72b9
BW
9996 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9997 else
9998 flags = predef_flags;
9999
1d25768e
BW
10000 if (size == 0
10001 && (flags & XTENSA_PROP_ALIGN) == 0
10002 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10003 {
43cd72b9
BW
10004 /* Always remove entries with zero size and no alignment. */
10005 bytes_to_remove = entry_size;
1d25768e
BW
10006 if (offset_rel)
10007 remove_this_rel = TRUE;
e0001a05 10008 }
1d25768e
BW
10009 else if (offset_rel
10010 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10011 {
1d25768e 10012 if (last_irel)
e0001a05 10013 {
1d25768e
BW
10014 flagword old_flags;
10015 bfd_vma old_size =
10016 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10017 bfd_vma old_address =
10018 (last_irel->r_addend
10019 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10020 bfd_vma new_address =
10021 (offset_rel->r_addend
10022 + bfd_get_32 (abfd, &contents[actual_offset]));
68ffbac6 10023 if (is_full_prop_section)
1d25768e
BW
10024 old_flags = bfd_get_32
10025 (abfd, &contents[last_irel->r_offset + 8]);
10026 else
10027 old_flags = predef_flags;
10028
10029 if ((ELF32_R_SYM (offset_rel->r_info)
10030 == ELF32_R_SYM (last_irel->r_info))
10031 && old_address + old_size == new_address
10032 && old_flags == flags
10033 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10034 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10035 {
1d25768e
BW
10036 /* Fix the old size. */
10037 bfd_put_32 (abfd, old_size + size,
10038 &contents[last_irel->r_offset + 4]);
10039 bytes_to_remove = entry_size;
10040 remove_this_rel = TRUE;
e0001a05
NC
10041 }
10042 else
1d25768e 10043 last_irel = offset_rel;
e0001a05 10044 }
1d25768e
BW
10045 else
10046 last_irel = offset_rel;
e0001a05
NC
10047 }
10048
1d25768e 10049 if (remove_this_rel)
e0001a05 10050 {
1d25768e 10051 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10052 offset_rel->r_offset = 0;
e0001a05
NC
10053 }
10054
10055 if (bytes_to_remove != 0)
10056 {
10057 removed_bytes += bytes_to_remove;
a3ef2d63 10058 if (offset + bytes_to_remove < sec->size)
e0001a05 10059 memmove (&contents[actual_offset],
43cd72b9 10060 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10061 sec->size - offset - bytes_to_remove);
e0001a05
NC
10062 }
10063 }
10064
43cd72b9 10065 if (removed_bytes)
e0001a05 10066 {
1d25768e
BW
10067 /* Fix up any extra relocations on the last entry. */
10068 for (irel = next_rel; irel < rel_end; irel++)
10069 irel->r_offset -= removed_bytes;
10070
e0001a05 10071 /* Clear the removed bytes. */
a3ef2d63 10072 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10073
a3ef2d63
BW
10074 if (sec->rawsize == 0)
10075 sec->rawsize = sec->size;
10076 sec->size -= removed_bytes;
e901de89
BW
10077
10078 if (xtensa_is_littable_section (sec))
10079 {
f0e6fdb2
BW
10080 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10081 if (sgotloc)
10082 sgotloc->size -= removed_bytes;
e901de89 10083 }
e0001a05
NC
10084 }
10085 }
e901de89 10086
e0001a05
NC
10087 error_return:
10088 release_internal_relocs (sec, internal_relocs);
10089 release_contents (sec, contents);
10090 return ok;
10091}
10092
10093\f
10094/* Third relaxation pass. */
10095
10096/* Change symbol values to account for removed literals. */
10097
43cd72b9 10098bfd_boolean
7fa3d080 10099relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10100{
10101 xtensa_relax_info *relax_info;
10102 unsigned int sec_shndx;
10103 Elf_Internal_Shdr *symtab_hdr;
10104 Elf_Internal_Sym *isymbuf;
10105 unsigned i, num_syms, num_locals;
10106
10107 relax_info = get_xtensa_relax_info (sec);
10108 BFD_ASSERT (relax_info);
10109
43cd72b9
BW
10110 if (!relax_info->is_relaxable_literal_section
10111 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10112 return TRUE;
10113
10114 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10115
10116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10117 isymbuf = retrieve_local_syms (abfd);
10118
10119 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10120 num_locals = symtab_hdr->sh_info;
10121
10122 /* Adjust the local symbols defined in this section. */
10123 for (i = 0; i < num_locals; i++)
10124 {
10125 Elf_Internal_Sym *isym = &isymbuf[i];
10126
10127 if (isym->st_shndx == sec_shndx)
10128 {
03669f1c
BW
10129 text_action *act = relax_info->action_list.head;
10130 bfd_vma orig_addr = isym->st_value;
43cd72b9 10131
03669f1c 10132 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10133
03669f1c
BW
10134 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10135 isym->st_size -=
10136 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
10137 }
10138 }
10139
10140 /* Now adjust the global symbols defined in this section. */
10141 for (i = 0; i < (num_syms - num_locals); i++)
10142 {
10143 struct elf_link_hash_entry *sym_hash;
10144
10145 sym_hash = elf_sym_hashes (abfd)[i];
10146
10147 if (sym_hash->root.type == bfd_link_hash_warning)
10148 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10149
10150 if ((sym_hash->root.type == bfd_link_hash_defined
10151 || sym_hash->root.type == bfd_link_hash_defweak)
10152 && sym_hash->root.u.def.section == sec)
10153 {
03669f1c
BW
10154 text_action *act = relax_info->action_list.head;
10155 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 10156
03669f1c
BW
10157 sym_hash->root.u.def.value -=
10158 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10159
03669f1c
BW
10160 if (sym_hash->type == STT_FUNC)
10161 sym_hash->size -=
10162 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
10163 }
10164 }
10165
10166 return TRUE;
10167}
10168
10169\f
10170/* "Fix" handling functions, called while performing relocations. */
10171
43cd72b9 10172static bfd_boolean
7fa3d080
BW
10173do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10174 bfd *input_bfd,
10175 asection *input_section,
10176 bfd_byte *contents)
e0001a05
NC
10177{
10178 r_reloc r_rel;
10179 asection *sec, *old_sec;
10180 bfd_vma old_offset;
10181 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10182 reloc_bfd_fix *fix;
10183
10184 if (r_type == R_XTENSA_NONE)
43cd72b9 10185 return TRUE;
e0001a05 10186
43cd72b9
BW
10187 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10188 if (!fix)
10189 return TRUE;
e0001a05 10190
43cd72b9
BW
10191 r_reloc_init (&r_rel, input_bfd, rel, contents,
10192 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10193 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10194 old_offset = r_rel.target_offset;
10195
10196 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10197 {
43cd72b9
BW
10198 if (r_type != R_XTENSA_ASM_EXPAND)
10199 {
10200 (*_bfd_error_handler)
10201 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10202 input_bfd, input_section, rel->r_offset,
10203 elf_howto_table[r_type].name);
10204 return FALSE;
10205 }
e0001a05
NC
10206 /* Leave it be. Resolution will happen in a later stage. */
10207 }
10208 else
10209 {
10210 sec = fix->target_sec;
10211 rel->r_addend += ((sec->output_offset + fix->target_offset)
10212 - (old_sec->output_offset + old_offset));
10213 }
43cd72b9 10214 return TRUE;
e0001a05
NC
10215}
10216
10217
10218static void
7fa3d080
BW
10219do_fix_for_final_link (Elf_Internal_Rela *rel,
10220 bfd *input_bfd,
10221 asection *input_section,
10222 bfd_byte *contents,
10223 bfd_vma *relocationp)
e0001a05
NC
10224{
10225 asection *sec;
10226 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10227 reloc_bfd_fix *fix;
43cd72b9 10228 bfd_vma fixup_diff;
e0001a05
NC
10229
10230 if (r_type == R_XTENSA_NONE)
10231 return;
10232
43cd72b9
BW
10233 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10234 if (!fix)
e0001a05
NC
10235 return;
10236
10237 sec = fix->target_sec;
43cd72b9
BW
10238
10239 fixup_diff = rel->r_addend;
10240 if (elf_howto_table[fix->src_type].partial_inplace)
10241 {
10242 bfd_vma inplace_val;
10243 BFD_ASSERT (fix->src_offset
10244 < bfd_get_section_limit (input_bfd, input_section));
10245 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10246 fixup_diff += inplace_val;
10247 }
10248
e0001a05
NC
10249 *relocationp = (sec->output_section->vma
10250 + sec->output_offset
43cd72b9 10251 + fix->target_offset - fixup_diff);
e0001a05
NC
10252}
10253
10254\f
10255/* Miscellaneous utility functions.... */
10256
10257static asection *
f0e6fdb2 10258elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10259{
f0e6fdb2
BW
10260 struct elf_xtensa_link_hash_table *htab;
10261 bfd *dynobj;
e0001a05
NC
10262 char plt_name[10];
10263
10264 if (chunk == 0)
f0e6fdb2
BW
10265 {
10266 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10267 if (htab == NULL)
10268 return NULL;
10269
f0e6fdb2
BW
10270 return htab->splt;
10271 }
e0001a05 10272
f0e6fdb2 10273 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10274 sprintf (plt_name, ".plt.%u", chunk);
3d4d4302 10275 return bfd_get_linker_section (dynobj, plt_name);
e0001a05
NC
10276}
10277
10278
10279static asection *
f0e6fdb2 10280elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10281{
f0e6fdb2
BW
10282 struct elf_xtensa_link_hash_table *htab;
10283 bfd *dynobj;
e0001a05
NC
10284 char got_name[14];
10285
10286 if (chunk == 0)
f0e6fdb2
BW
10287 {
10288 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10289 if (htab == NULL)
10290 return NULL;
f0e6fdb2
BW
10291 return htab->sgotplt;
10292 }
e0001a05 10293
f0e6fdb2 10294 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10295 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10296 return bfd_get_linker_section (dynobj, got_name);
e0001a05
NC
10297}
10298
10299
10300/* Get the input section for a given symbol index.
10301 If the symbol is:
10302 . a section symbol, return the section;
10303 . a common symbol, return the common section;
10304 . an undefined symbol, return the undefined section;
10305 . an indirect symbol, follow the links;
10306 . an absolute value, return the absolute section. */
10307
10308static asection *
7fa3d080 10309get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10310{
10311 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10312 asection *target_sec = NULL;
43cd72b9 10313 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10314 {
10315 Elf_Internal_Sym *isymbuf;
10316 unsigned int section_index;
10317
10318 isymbuf = retrieve_local_syms (abfd);
10319 section_index = isymbuf[r_symndx].st_shndx;
10320
10321 if (section_index == SHN_UNDEF)
10322 target_sec = bfd_und_section_ptr;
e0001a05
NC
10323 else if (section_index == SHN_ABS)
10324 target_sec = bfd_abs_section_ptr;
10325 else if (section_index == SHN_COMMON)
10326 target_sec = bfd_com_section_ptr;
43cd72b9 10327 else
cb33740c 10328 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10329 }
10330 else
10331 {
10332 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10333 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10334
10335 while (h->root.type == bfd_link_hash_indirect
10336 || h->root.type == bfd_link_hash_warning)
10337 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10338
10339 switch (h->root.type)
10340 {
10341 case bfd_link_hash_defined:
10342 case bfd_link_hash_defweak:
10343 target_sec = h->root.u.def.section;
10344 break;
10345 case bfd_link_hash_common:
10346 target_sec = bfd_com_section_ptr;
10347 break;
10348 case bfd_link_hash_undefined:
10349 case bfd_link_hash_undefweak:
10350 target_sec = bfd_und_section_ptr;
10351 break;
10352 default: /* New indirect warning. */
10353 target_sec = bfd_und_section_ptr;
10354 break;
10355 }
10356 }
10357 return target_sec;
10358}
10359
10360
10361static struct elf_link_hash_entry *
7fa3d080 10362get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10363{
10364 unsigned long indx;
10365 struct elf_link_hash_entry *h;
10366 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10367
10368 if (r_symndx < symtab_hdr->sh_info)
10369 return NULL;
43cd72b9 10370
e0001a05
NC
10371 indx = r_symndx - symtab_hdr->sh_info;
10372 h = elf_sym_hashes (abfd)[indx];
10373 while (h->root.type == bfd_link_hash_indirect
10374 || h->root.type == bfd_link_hash_warning)
10375 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10376 return h;
10377}
10378
10379
10380/* Get the section-relative offset for a symbol number. */
10381
10382static bfd_vma
7fa3d080 10383get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10384{
10385 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10386 bfd_vma offset = 0;
10387
43cd72b9 10388 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10389 {
10390 Elf_Internal_Sym *isymbuf;
10391 isymbuf = retrieve_local_syms (abfd);
10392 offset = isymbuf[r_symndx].st_value;
10393 }
10394 else
10395 {
10396 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10397 struct elf_link_hash_entry *h =
10398 elf_sym_hashes (abfd)[indx];
10399
10400 while (h->root.type == bfd_link_hash_indirect
10401 || h->root.type == bfd_link_hash_warning)
10402 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10403 if (h->root.type == bfd_link_hash_defined
10404 || h->root.type == bfd_link_hash_defweak)
10405 offset = h->root.u.def.value;
10406 }
10407 return offset;
10408}
10409
10410
10411static bfd_boolean
7fa3d080 10412is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10413{
10414 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10415 struct elf_link_hash_entry *h;
10416
10417 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10418 if (h && h->root.type == bfd_link_hash_defweak)
10419 return TRUE;
10420 return FALSE;
10421}
10422
10423
10424static bfd_boolean
7fa3d080
BW
10425pcrel_reloc_fits (xtensa_opcode opc,
10426 int opnd,
10427 bfd_vma self_address,
10428 bfd_vma dest_address)
e0001a05 10429{
43cd72b9
BW
10430 xtensa_isa isa = xtensa_default_isa;
10431 uint32 valp = dest_address;
10432 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10433 || xtensa_operand_encode (isa, opc, opnd, &valp))
10434 return FALSE;
10435 return TRUE;
e0001a05
NC
10436}
10437
10438
68ffbac6 10439static bfd_boolean
7fa3d080 10440xtensa_is_property_section (asection *sec)
e0001a05 10441{
1d25768e
BW
10442 if (xtensa_is_insntable_section (sec)
10443 || xtensa_is_littable_section (sec)
10444 || xtensa_is_proptable_section (sec))
b614a702 10445 return TRUE;
e901de89 10446
1d25768e
BW
10447 return FALSE;
10448}
10449
10450
68ffbac6 10451static bfd_boolean
1d25768e
BW
10452xtensa_is_insntable_section (asection *sec)
10453{
10454 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10455 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10456 return TRUE;
10457
e901de89
BW
10458 return FALSE;
10459}
10460
10461
68ffbac6 10462static bfd_boolean
7fa3d080 10463xtensa_is_littable_section (asection *sec)
e901de89 10464{
1d25768e
BW
10465 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10466 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10467 return TRUE;
e901de89 10468
1d25768e
BW
10469 return FALSE;
10470}
10471
10472
68ffbac6 10473static bfd_boolean
1d25768e
BW
10474xtensa_is_proptable_section (asection *sec)
10475{
10476 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10477 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10478 return TRUE;
e0001a05 10479
e901de89 10480 return FALSE;
e0001a05
NC
10481}
10482
10483
43cd72b9 10484static int
7fa3d080 10485internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10486{
43cd72b9
BW
10487 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10488 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10489
10490 if (a->r_offset != b->r_offset)
10491 return (a->r_offset - b->r_offset);
10492
10493 /* We don't need to sort on these criteria for correctness,
10494 but enforcing a more strict ordering prevents unstable qsort
10495 from behaving differently with different implementations.
10496 Without the code below we get correct but different results
10497 on Solaris 2.7 and 2.8. We would like to always produce the
10498 same results no matter the host. */
10499
10500 if (a->r_info != b->r_info)
10501 return (a->r_info - b->r_info);
10502
10503 return (a->r_addend - b->r_addend);
e0001a05
NC
10504}
10505
10506
10507static int
7fa3d080 10508internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10509{
10510 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10511 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10512
43cd72b9
BW
10513 /* Check if one entry overlaps with the other; this shouldn't happen
10514 except when searching for a match. */
e0001a05
NC
10515 return (a->r_offset - b->r_offset);
10516}
10517
10518
74869ac7
BW
10519/* Predicate function used to look up a section in a particular group. */
10520
10521static bfd_boolean
10522match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10523{
10524 const char *gname = inf;
10525 const char *group_name = elf_group_name (sec);
68ffbac6 10526
74869ac7
BW
10527 return (group_name == gname
10528 || (group_name != NULL
10529 && gname != NULL
10530 && strcmp (group_name, gname) == 0));
10531}
10532
10533
1d25768e
BW
10534static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10535
51c8ebc1
BW
10536static char *
10537xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 10538{
74869ac7
BW
10539 const char *suffix, *group_name;
10540 char *prop_sec_name;
74869ac7
BW
10541
10542 group_name = elf_group_name (sec);
10543 if (group_name)
10544 {
10545 suffix = strrchr (sec->name, '.');
10546 if (suffix == sec->name)
10547 suffix = 0;
10548 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10549 + (suffix ? strlen (suffix) : 0));
10550 strcpy (prop_sec_name, base_name);
10551 if (suffix)
10552 strcat (prop_sec_name, suffix);
10553 }
10554 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 10555 {
43cd72b9 10556 char *linkonce_kind = 0;
b614a702 10557
68ffbac6 10558 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 10559 linkonce_kind = "x.";
68ffbac6 10560 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 10561 linkonce_kind = "p.";
43cd72b9
BW
10562 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10563 linkonce_kind = "prop.";
e0001a05 10564 else
b614a702
BW
10565 abort ();
10566
43cd72b9
BW
10567 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10568 + strlen (linkonce_kind) + 1);
b614a702 10569 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 10570 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
10571
10572 suffix = sec->name + linkonce_len;
096c35a7 10573 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 10574 the new linkonce_kind (but not for "prop" sections). */
0112cd26 10575 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
10576 suffix += 2;
10577 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
10578 }
10579 else
10580 prop_sec_name = strdup (base_name);
10581
51c8ebc1
BW
10582 return prop_sec_name;
10583}
10584
10585
10586static asection *
10587xtensa_get_property_section (asection *sec, const char *base_name)
10588{
10589 char *prop_sec_name;
10590 asection *prop_sec;
10591
10592 prop_sec_name = xtensa_property_section_name (sec, base_name);
10593 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10594 match_section_group,
10595 (void *) elf_group_name (sec));
10596 free (prop_sec_name);
10597 return prop_sec;
10598}
10599
10600
10601asection *
10602xtensa_make_property_section (asection *sec, const char *base_name)
10603{
10604 char *prop_sec_name;
10605 asection *prop_sec;
10606
74869ac7 10607 /* Check if the section already exists. */
51c8ebc1 10608 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
10609 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10610 match_section_group,
51c8ebc1 10611 (void *) elf_group_name (sec));
74869ac7
BW
10612 /* If not, create it. */
10613 if (! prop_sec)
10614 {
10615 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10616 flags |= (bfd_get_section_flags (sec->owner, sec)
10617 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10618
10619 prop_sec = bfd_make_section_anyway_with_flags
10620 (sec->owner, strdup (prop_sec_name), flags);
10621 if (! prop_sec)
10622 return 0;
b614a702 10623
51c8ebc1 10624 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
10625 }
10626
74869ac7
BW
10627 free (prop_sec_name);
10628 return prop_sec;
e0001a05
NC
10629}
10630
43cd72b9
BW
10631
10632flagword
7fa3d080 10633xtensa_get_property_predef_flags (asection *sec)
43cd72b9 10634{
1d25768e 10635 if (xtensa_is_insntable_section (sec))
43cd72b9 10636 return (XTENSA_PROP_INSN
99ded152 10637 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10638 | XTENSA_PROP_INSN_NO_REORDER);
10639
10640 if (xtensa_is_littable_section (sec))
10641 return (XTENSA_PROP_LITERAL
99ded152 10642 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10643 | XTENSA_PROP_INSN_NO_REORDER);
10644
10645 return 0;
10646}
10647
e0001a05
NC
10648\f
10649/* Other functions called directly by the linker. */
10650
10651bfd_boolean
7fa3d080
BW
10652xtensa_callback_required_dependence (bfd *abfd,
10653 asection *sec,
10654 struct bfd_link_info *link_info,
10655 deps_callback_t callback,
10656 void *closure)
e0001a05
NC
10657{
10658 Elf_Internal_Rela *internal_relocs;
10659 bfd_byte *contents;
10660 unsigned i;
10661 bfd_boolean ok = TRUE;
43cd72b9
BW
10662 bfd_size_type sec_size;
10663
10664 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
10665
10666 /* ".plt*" sections have no explicit relocations but they contain L32R
10667 instructions that reference the corresponding ".got.plt*" sections. */
10668 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 10669 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
10670 {
10671 asection *sgotplt;
10672
10673 /* Find the corresponding ".got.plt*" section. */
10674 if (sec->name[4] == '\0')
3d4d4302 10675 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
e0001a05
NC
10676 else
10677 {
10678 char got_name[14];
10679 int chunk = 0;
10680
10681 BFD_ASSERT (sec->name[4] == '.');
10682 chunk = strtol (&sec->name[5], NULL, 10);
10683
10684 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10685 sgotplt = bfd_get_linker_section (sec->owner, got_name);
e0001a05
NC
10686 }
10687 BFD_ASSERT (sgotplt);
10688
10689 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10690 section referencing a literal at the very beginning of
10691 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 10692 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
10693 }
10694
13161072
BW
10695 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10696 when building uclibc, which runs "ld -b binary /dev/null". */
10697 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10698 return ok;
10699
68ffbac6 10700 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
10701 link_info->keep_memory);
10702 if (internal_relocs == NULL
43cd72b9 10703 || sec->reloc_count == 0)
e0001a05
NC
10704 return ok;
10705
10706 /* Cache the contents for the duration of this scan. */
10707 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10708 if (contents == NULL && sec_size != 0)
e0001a05
NC
10709 {
10710 ok = FALSE;
10711 goto error_return;
10712 }
10713
43cd72b9
BW
10714 if (!xtensa_default_isa)
10715 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 10716
43cd72b9 10717 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10718 {
10719 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 10720 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
10721 {
10722 r_reloc l32r_rel;
10723 asection *target_sec;
10724 bfd_vma target_offset;
43cd72b9
BW
10725
10726 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
10727 target_sec = NULL;
10728 target_offset = 0;
10729 /* L32Rs must be local to the input file. */
10730 if (r_reloc_is_defined (&l32r_rel))
10731 {
10732 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 10733 target_offset = l32r_rel.target_offset;
e0001a05
NC
10734 }
10735 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10736 closure);
10737 }
10738 }
10739
10740 error_return:
10741 release_internal_relocs (sec, internal_relocs);
10742 release_contents (sec, contents);
10743 return ok;
10744}
10745
2f89ff8d
L
10746/* The default literal sections should always be marked as "code" (i.e.,
10747 SHF_EXECINSTR). This is particularly important for the Linux kernel
10748 module loader so that the literals are not placed after the text. */
b35d266b 10749static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 10750{
0112cd26
NC
10751 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10752 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10753 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 10754 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 10755 { NULL, 0, 0, 0, 0 }
7f4d3958 10756};
e0001a05 10757\f
ae95ffa6 10758#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05
NC
10759#ifndef ELF_ARCH
10760#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10761#define TARGET_LITTLE_NAME "elf32-xtensa-le"
10762#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10763#define TARGET_BIG_NAME "elf32-xtensa-be"
10764#define ELF_ARCH bfd_arch_xtensa
10765
4af0a1d8
BW
10766#define ELF_MACHINE_CODE EM_XTENSA
10767#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
10768
10769#if XCHAL_HAVE_MMU
10770#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10771#else /* !XCHAL_HAVE_MMU */
10772#define ELF_MAXPAGESIZE 1
10773#endif /* !XCHAL_HAVE_MMU */
10774#endif /* ELF_ARCH */
10775
10776#define elf_backend_can_gc_sections 1
10777#define elf_backend_can_refcount 1
10778#define elf_backend_plt_readonly 1
10779#define elf_backend_got_header_size 4
10780#define elf_backend_want_dynbss 0
10781#define elf_backend_want_got_plt 1
10782
10783#define elf_info_to_howto elf_xtensa_info_to_howto_rela
10784
28dbbc02
BW
10785#define bfd_elf32_mkobject elf_xtensa_mkobject
10786
e0001a05
NC
10787#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10788#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10789#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10790#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10791#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
10792#define bfd_elf32_bfd_reloc_name_lookup \
10793 elf_xtensa_reloc_name_lookup
e0001a05 10794#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 10795#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
10796
10797#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10798#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
10799#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10800#define elf_backend_discard_info elf_xtensa_discard_info
10801#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10802#define elf_backend_final_write_processing elf_xtensa_final_write_processing
10803#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10804#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10805#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10806#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10807#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10808#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 10809#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
10810#define elf_backend_object_p elf_xtensa_object_p
10811#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10812#define elf_backend_relocate_section elf_xtensa_relocate_section
10813#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 10814#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
10815#define elf_backend_omit_section_dynsym \
10816 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 10817#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 10818#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 10819#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
10820
10821#include "elf32-target.h"
This page took 1.121829 seconds and 4 git commands to generate.