fix typo in previous entry
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
3eb128b2 2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
7fa3d080 38static bfd_boolean add_extra_plt_sections (bfd *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
7fa3d080
BW
97static asection *elf_xtensa_get_plt_section (bfd *, int);
98static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
106static bfd_boolean xtensa_is_littable_section (asection *);
107static int internal_reloc_compare (const void *, const void *);
108static int internal_reloc_matches (const void *, const void *);
109extern char *xtensa_get_property_section_name (asection *, const char *);
110static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
111
112/* Other functions called directly by the linker. */
113
114typedef void (*deps_callback_t)
7fa3d080 115 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 116extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
118
119
43cd72b9
BW
120/* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
7fa3d080 124
43cd72b9
BW
125int elf32xtensa_size_opt;
126
127
128/* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
e0001a05 131
7fa3d080 132typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 133
43cd72b9 134
e0001a05
NC
135/* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
b536dc1e 139 needed. It is OK if this count is an overestimate, e.g., some
e0001a05
NC
140 relocations may be removed by GC. */
141
142static int plt_reloc_count = 0;
143
144
43cd72b9
BW
145/* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
149
150xtensa_isa xtensa_default_isa;
151
152
e0001a05
NC
153/* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
156
157static bfd_boolean relaxing_section = FALSE;
158
43cd72b9
BW
159/* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
161
162int elf32xtensa_no_literal_movement = 1;
163
e0001a05
NC
164\f
165static reloc_howto_type elf_howto_table[] =
166{
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
43cd72b9
BW
220 FALSE, 0x00000000, 0x00000000, FALSE),
221
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
279
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
e0001a05
NC
326};
327
43cd72b9 328#if DEBUG_GEN_RELOC
e0001a05
NC
329#define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331#else
332#define TRACE(str)
333#endif
334
335static reloc_howto_type *
7fa3d080
BW
336elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
e0001a05
NC
338{
339 switch (code)
340 {
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
344
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348
43cd72b9
BW
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
352
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
356
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
360
e0001a05
NC
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
364
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
368
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
372
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
376
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
380
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
384
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
388
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
392
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
396
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
400
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
404
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
408
409 default:
43cd72b9
BW
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
412 {
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
416 }
417
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
420 {
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
424 }
425
e0001a05
NC
426 break;
427 }
428
429 TRACE ("Unknown");
430 return NULL;
431}
432
433
434/* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
436
437static void
7fa3d080
BW
438elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
e0001a05
NC
441{
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
446}
447
448\f
449/* Functions for the Xtensa ELF linker. */
450
451/* The name of the dynamic interpreter. This is put in the .interp
452 section. */
453
454#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
455
456/* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
459
460#define PLT_ENTRY_SIZE 16
461
462/* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
471
472#define PLT_ENTRIES_PER_CHUNK 254
473
474/* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
478
479static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
480{
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
487};
488
489static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
490{
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
497};
498
571b5725
BW
499
500static inline bfd_boolean
7fa3d080
BW
501xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
571b5725
BW
503{
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
509
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
511}
512
e0001a05
NC
513\f
514static int
7fa3d080 515property_table_compare (const void *ap, const void *bp)
e0001a05
NC
516{
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
519
43cd72b9
BW
520 if (a->address == b->address)
521 {
43cd72b9
BW
522 if (a->size != b->size)
523 return (a->size - b->size);
524
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
528
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
534
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
539
540 return (a->flags - b->flags);
541 }
542
543 return (a->address - b->address);
544}
545
546
547static int
7fa3d080 548property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
549{
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
552
553 /* Check if one entry overlaps with the other. */
e0001a05
NC
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
557
558 return (a->address - b->address);
559}
560
561
43cd72b9
BW
562/* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
e0001a05 565
7fa3d080
BW
566static int
567xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
e0001a05
NC
572{
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
e4115460 578 int blk, block_count;
e0001a05
NC
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 581 bfd_vma section_addr;
43cd72b9
BW
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
584
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
588 {
589 *table_p = NULL;
590 return 0;
591 }
e0001a05 592
43cd72b9 593 table_section_name = xtensa_get_property_section_name (section, sec_name);
e0001a05 594 table_section = bfd_get_section_by_name (abfd, table_section_name);
b614a702 595 free (table_section_name);
43cd72b9 596 if (table_section)
eea6121a 597 table_size = table_section->size;
43cd72b9 598
e0001a05
NC
599 if (table_size == 0)
600 {
601 *table_p = NULL;
602 return 0;
603 }
604
43cd72b9
BW
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
609
610 num_records = table_size / table_entry_size;
e0001a05
NC
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
43cd72b9
BW
615
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
3ba3bc8c 620
e0001a05
NC
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 624 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
625 {
626 unsigned i;
627
628 for (i = 0; i < table_section->reloc_count; i++)
629 {
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
632
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
635
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
638
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
640 {
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9
BW
642 BFD_ASSERT (sym_off == 0);
643 BFD_ASSERT (rel->r_addend == 0);
e0001a05 644 blocks[block_count].address =
3ba3bc8c 645 (section_addr + sym_off + rel->r_addend
e0001a05
NC
646 + bfd_get_32 (abfd, table_data + rel->r_offset));
647 blocks[block_count].size =
648 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
649 if (predef_flags)
650 blocks[block_count].flags = predef_flags;
651 else
652 blocks[block_count].flags =
653 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
654 block_count++;
655 }
656 }
657 }
658 else
659 {
3ba3bc8c
BW
660 /* The file has already been relocated and the addresses are
661 already in the table. */
e0001a05 662 bfd_vma off;
43cd72b9 663 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 664
43cd72b9 665 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
666 {
667 bfd_vma address = bfd_get_32 (abfd, table_data + off);
668
3ba3bc8c 669 if (address >= section_addr
43cd72b9 670 && address < section_addr + section_limit)
e0001a05
NC
671 {
672 blocks[block_count].address = address;
673 blocks[block_count].size =
674 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
675 if (predef_flags)
676 blocks[block_count].flags = predef_flags;
677 else
678 blocks[block_count].flags =
679 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
680 block_count++;
681 }
682 }
683 }
684
685 release_contents (table_section, table_data);
686 release_internal_relocs (table_section, internal_relocs);
687
43cd72b9 688 if (block_count > 0)
e0001a05
NC
689 {
690 /* Now sort them into address order for easy reference. */
691 qsort (blocks, block_count, sizeof (property_table_entry),
692 property_table_compare);
e4115460
BW
693
694 /* Check that the table contents are valid. Problems may occur,
695 for example, if an unrelocated object file is stripped. */
696 for (blk = 1; blk < block_count; blk++)
697 {
698 /* The only circumstance where two entries may legitimately
699 have the same address is when one of them is a zero-size
700 placeholder to mark a place where fill can be inserted.
701 The zero-size entry should come first. */
702 if (blocks[blk - 1].address == blocks[blk].address &&
703 blocks[blk - 1].size != 0)
704 {
705 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
706 abfd, section);
707 bfd_set_error (bfd_error_bad_value);
708 free (blocks);
709 return -1;
710 }
711 }
e0001a05 712 }
43cd72b9 713
e0001a05
NC
714 *table_p = blocks;
715 return block_count;
716}
717
718
7fa3d080
BW
719static property_table_entry *
720elf_xtensa_find_property_entry (property_table_entry *property_table,
721 int property_table_size,
722 bfd_vma addr)
e0001a05
NC
723{
724 property_table_entry entry;
43cd72b9 725 property_table_entry *rv;
e0001a05 726
43cd72b9
BW
727 if (property_table_size == 0)
728 return NULL;
e0001a05
NC
729
730 entry.address = addr;
731 entry.size = 1;
43cd72b9 732 entry.flags = 0;
e0001a05 733
43cd72b9
BW
734 rv = bsearch (&entry, property_table, property_table_size,
735 sizeof (property_table_entry), property_table_matches);
736 return rv;
737}
738
739
740static bfd_boolean
7fa3d080
BW
741elf_xtensa_in_literal_pool (property_table_entry *lit_table,
742 int lit_table_size,
743 bfd_vma addr)
43cd72b9
BW
744{
745 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
746 return TRUE;
747
748 return FALSE;
749}
750
751\f
752/* Look through the relocs for a section during the first phase, and
753 calculate needed space in the dynamic reloc sections. */
754
755static bfd_boolean
7fa3d080
BW
756elf_xtensa_check_relocs (bfd *abfd,
757 struct bfd_link_info *info,
758 asection *sec,
759 const Elf_Internal_Rela *relocs)
e0001a05
NC
760{
761 Elf_Internal_Shdr *symtab_hdr;
762 struct elf_link_hash_entry **sym_hashes;
763 const Elf_Internal_Rela *rel;
764 const Elf_Internal_Rela *rel_end;
e0001a05 765
1049f94e 766 if (info->relocatable)
e0001a05
NC
767 return TRUE;
768
769 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
770 sym_hashes = elf_sym_hashes (abfd);
771
e0001a05
NC
772 rel_end = relocs + sec->reloc_count;
773 for (rel = relocs; rel < rel_end; rel++)
774 {
775 unsigned int r_type;
776 unsigned long r_symndx;
777 struct elf_link_hash_entry *h;
778
779 r_symndx = ELF32_R_SYM (rel->r_info);
780 r_type = ELF32_R_TYPE (rel->r_info);
781
782 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
783 {
d003868e
AM
784 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
785 abfd, r_symndx);
e0001a05
NC
786 return FALSE;
787 }
788
789 if (r_symndx < symtab_hdr->sh_info)
790 h = NULL;
791 else
792 {
793 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
794 while (h->root.type == bfd_link_hash_indirect
795 || h->root.type == bfd_link_hash_warning)
796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
797 }
798
799 switch (r_type)
800 {
801 case R_XTENSA_32:
802 if (h == NULL)
803 goto local_literal;
804
805 if ((sec->flags & SEC_ALLOC) != 0)
806 {
e0001a05
NC
807 if (h->got.refcount <= 0)
808 h->got.refcount = 1;
809 else
810 h->got.refcount += 1;
811 }
812 break;
813
814 case R_XTENSA_PLT:
815 /* If this relocation is against a local symbol, then it's
816 exactly the same as a normal local GOT entry. */
817 if (h == NULL)
818 goto local_literal;
819
820 if ((sec->flags & SEC_ALLOC) != 0)
821 {
e0001a05
NC
822 if (h->plt.refcount <= 0)
823 {
f5385ebf 824 h->needs_plt = 1;
e0001a05
NC
825 h->plt.refcount = 1;
826 }
827 else
828 h->plt.refcount += 1;
829
830 /* Keep track of the total PLT relocation count even if we
831 don't yet know whether the dynamic sections will be
832 created. */
833 plt_reloc_count += 1;
834
835 if (elf_hash_table (info)->dynamic_sections_created)
836 {
837 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
838 plt_reloc_count))
839 return FALSE;
840 }
841 }
842 break;
843
844 local_literal:
845 if ((sec->flags & SEC_ALLOC) != 0)
846 {
847 bfd_signed_vma *local_got_refcounts;
848
849 /* This is a global offset table entry for a local symbol. */
850 local_got_refcounts = elf_local_got_refcounts (abfd);
851 if (local_got_refcounts == NULL)
852 {
853 bfd_size_type size;
854
855 size = symtab_hdr->sh_info;
856 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
857 local_got_refcounts =
858 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
859 if (local_got_refcounts == NULL)
860 return FALSE;
861 elf_local_got_refcounts (abfd) = local_got_refcounts;
862 }
863 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
864 }
865 break;
866
867 case R_XTENSA_OP0:
868 case R_XTENSA_OP1:
869 case R_XTENSA_OP2:
43cd72b9
BW
870 case R_XTENSA_SLOT0_OP:
871 case R_XTENSA_SLOT1_OP:
872 case R_XTENSA_SLOT2_OP:
873 case R_XTENSA_SLOT3_OP:
874 case R_XTENSA_SLOT4_OP:
875 case R_XTENSA_SLOT5_OP:
876 case R_XTENSA_SLOT6_OP:
877 case R_XTENSA_SLOT7_OP:
878 case R_XTENSA_SLOT8_OP:
879 case R_XTENSA_SLOT9_OP:
880 case R_XTENSA_SLOT10_OP:
881 case R_XTENSA_SLOT11_OP:
882 case R_XTENSA_SLOT12_OP:
883 case R_XTENSA_SLOT13_OP:
884 case R_XTENSA_SLOT14_OP:
885 case R_XTENSA_SLOT0_ALT:
886 case R_XTENSA_SLOT1_ALT:
887 case R_XTENSA_SLOT2_ALT:
888 case R_XTENSA_SLOT3_ALT:
889 case R_XTENSA_SLOT4_ALT:
890 case R_XTENSA_SLOT5_ALT:
891 case R_XTENSA_SLOT6_ALT:
892 case R_XTENSA_SLOT7_ALT:
893 case R_XTENSA_SLOT8_ALT:
894 case R_XTENSA_SLOT9_ALT:
895 case R_XTENSA_SLOT10_ALT:
896 case R_XTENSA_SLOT11_ALT:
897 case R_XTENSA_SLOT12_ALT:
898 case R_XTENSA_SLOT13_ALT:
899 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
900 case R_XTENSA_ASM_EXPAND:
901 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
902 case R_XTENSA_DIFF8:
903 case R_XTENSA_DIFF16:
904 case R_XTENSA_DIFF32:
e0001a05
NC
905 /* Nothing to do for these. */
906 break;
907
908 case R_XTENSA_GNU_VTINHERIT:
909 /* This relocation describes the C++ object vtable hierarchy.
910 Reconstruct it for later use during GC. */
c152c796 911 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
912 return FALSE;
913 break;
914
915 case R_XTENSA_GNU_VTENTRY:
916 /* This relocation describes which C++ vtable entries are actually
917 used. Record for later use during GC. */
c152c796 918 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
919 return FALSE;
920 break;
921
922 default:
923 break;
924 }
925 }
926
e0001a05
NC
927 return TRUE;
928}
929
930
931static void
7fa3d080
BW
932elf_xtensa_make_sym_local (struct bfd_link_info *info,
933 struct elf_link_hash_entry *h)
934{
935 if (info->shared)
936 {
937 if (h->plt.refcount > 0)
938 {
939 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
940 if (h->got.refcount < 0)
941 h->got.refcount = 0;
942 h->got.refcount += h->plt.refcount;
943 h->plt.refcount = 0;
944 }
945 }
946 else
947 {
948 /* Don't need any dynamic relocations at all. */
949 h->plt.refcount = 0;
950 h->got.refcount = 0;
951 }
952}
953
954
955static void
956elf_xtensa_hide_symbol (struct bfd_link_info *info,
957 struct elf_link_hash_entry *h,
958 bfd_boolean force_local)
e0001a05
NC
959{
960 /* For a shared link, move the plt refcount to the got refcount to leave
961 space for RELATIVE relocs. */
962 elf_xtensa_make_sym_local (info, h);
963
964 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
965}
966
967
e0001a05
NC
968/* Return the section that should be marked against GC for a given
969 relocation. */
970
971static asection *
7fa3d080
BW
972elf_xtensa_gc_mark_hook (asection *sec,
973 struct bfd_link_info *info ATTRIBUTE_UNUSED,
974 Elf_Internal_Rela *rel,
975 struct elf_link_hash_entry *h,
976 Elf_Internal_Sym *sym)
e0001a05 977{
7fa3d080 978 if (h)
e0001a05
NC
979 {
980 switch (ELF32_R_TYPE (rel->r_info))
981 {
982 case R_XTENSA_GNU_VTINHERIT:
983 case R_XTENSA_GNU_VTENTRY:
984 break;
985
986 default:
987 switch (h->root.type)
988 {
989 case bfd_link_hash_defined:
990 case bfd_link_hash_defweak:
991 return h->root.u.def.section;
992
993 case bfd_link_hash_common:
994 return h->root.u.c.p->section;
995
996 default:
997 break;
998 }
999 }
1000 }
1001 else
1002 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1003
1004 return NULL;
1005}
1006
7fa3d080 1007
e0001a05
NC
1008/* Update the GOT & PLT entry reference counts
1009 for the section being removed. */
1010
1011static bfd_boolean
7fa3d080
BW
1012elf_xtensa_gc_sweep_hook (bfd *abfd,
1013 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1014 asection *sec,
1015 const Elf_Internal_Rela *relocs)
e0001a05
NC
1016{
1017 Elf_Internal_Shdr *symtab_hdr;
1018 struct elf_link_hash_entry **sym_hashes;
1019 bfd_signed_vma *local_got_refcounts;
1020 const Elf_Internal_Rela *rel, *relend;
1021
1022 if ((sec->flags & SEC_ALLOC) == 0)
1023 return TRUE;
1024
1025 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1026 sym_hashes = elf_sym_hashes (abfd);
1027 local_got_refcounts = elf_local_got_refcounts (abfd);
1028
1029 relend = relocs + sec->reloc_count;
1030 for (rel = relocs; rel < relend; rel++)
1031 {
1032 unsigned long r_symndx;
1033 unsigned int r_type;
1034 struct elf_link_hash_entry *h = NULL;
1035
1036 r_symndx = ELF32_R_SYM (rel->r_info);
1037 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1038 {
1039 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1040 while (h->root.type == bfd_link_hash_indirect
1041 || h->root.type == bfd_link_hash_warning)
1042 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1043 }
e0001a05
NC
1044
1045 r_type = ELF32_R_TYPE (rel->r_info);
1046 switch (r_type)
1047 {
1048 case R_XTENSA_32:
1049 if (h == NULL)
1050 goto local_literal;
1051 if (h->got.refcount > 0)
1052 h->got.refcount--;
1053 break;
1054
1055 case R_XTENSA_PLT:
1056 if (h == NULL)
1057 goto local_literal;
1058 if (h->plt.refcount > 0)
1059 h->plt.refcount--;
1060 break;
1061
1062 local_literal:
1063 if (local_got_refcounts[r_symndx] > 0)
1064 local_got_refcounts[r_symndx] -= 1;
1065 break;
1066
1067 default:
1068 break;
1069 }
1070 }
1071
1072 return TRUE;
1073}
1074
1075
1076/* Create all the dynamic sections. */
1077
1078static bfd_boolean
7fa3d080 1079elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1080{
e901de89 1081 flagword flags, noalloc_flags;
e0001a05
NC
1082 asection *s;
1083
1084 /* First do all the standard stuff. */
1085 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1086 return FALSE;
1087
1088 /* Create any extra PLT sections in case check_relocs has already
1089 been called on all the non-dynamic input files. */
1090 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1091 return FALSE;
1092
e901de89
BW
1093 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1094 | SEC_LINKER_CREATED | SEC_READONLY);
1095 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1096
1097 /* Mark the ".got.plt" section READONLY. */
1098 s = bfd_get_section_by_name (dynobj, ".got.plt");
1099 if (s == NULL
1100 || ! bfd_set_section_flags (dynobj, s, flags))
1101 return FALSE;
1102
1103 /* Create ".rela.got". */
3496cb2a 1104 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
e0001a05 1105 if (s == NULL
e0001a05
NC
1106 || ! bfd_set_section_alignment (dynobj, s, 2))
1107 return FALSE;
1108
e901de89 1109 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3496cb2a 1110 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
e901de89 1111 if (s == NULL
e901de89
BW
1112 || ! bfd_set_section_alignment (dynobj, s, 2))
1113 return FALSE;
1114
e0001a05 1115 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3496cb2a
L
1116 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1117 noalloc_flags);
e0001a05 1118 if (s == NULL
e0001a05
NC
1119 || ! bfd_set_section_alignment (dynobj, s, 2))
1120 return FALSE;
1121
1122 return TRUE;
1123}
1124
1125
1126static bfd_boolean
7fa3d080 1127add_extra_plt_sections (bfd *dynobj, int count)
e0001a05
NC
1128{
1129 int chunk;
1130
1131 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1132 ".got.plt" sections. */
1133 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1134 {
1135 char *sname;
1136 flagword flags;
1137 asection *s;
1138
1139 /* Stop when we find a section has already been created. */
1140 if (elf_xtensa_get_plt_section (dynobj, chunk))
1141 break;
1142
1143 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1144 | SEC_LINKER_CREATED | SEC_READONLY);
1145
1146 sname = (char *) bfd_malloc (10);
1147 sprintf (sname, ".plt.%u", chunk);
3496cb2a
L
1148 s = bfd_make_section_with_flags (dynobj, sname,
1149 flags | SEC_CODE);
e0001a05 1150 if (s == NULL
e0001a05
NC
1151 || ! bfd_set_section_alignment (dynobj, s, 2))
1152 return FALSE;
1153
1154 sname = (char *) bfd_malloc (14);
1155 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1156 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1157 if (s == NULL
e0001a05
NC
1158 || ! bfd_set_section_alignment (dynobj, s, 2))
1159 return FALSE;
1160 }
1161
1162 return TRUE;
1163}
1164
1165
1166/* Adjust a symbol defined by a dynamic object and referenced by a
1167 regular object. The current definition is in some section of the
1168 dynamic object, but we're not including those sections. We have to
1169 change the definition to something the rest of the link can
1170 understand. */
1171
1172static bfd_boolean
7fa3d080
BW
1173elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1174 struct elf_link_hash_entry *h)
e0001a05
NC
1175{
1176 /* If this is a weak symbol, and there is a real definition, the
1177 processor independent code will have arranged for us to see the
1178 real definition first, and we can just use the same value. */
7fa3d080 1179 if (h->u.weakdef)
e0001a05 1180 {
f6e332e6
AM
1181 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1182 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1183 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1184 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1185 return TRUE;
1186 }
1187
1188 /* This is a reference to a symbol defined by a dynamic object. The
1189 reference must go through the GOT, so there's no need for COPY relocs,
1190 .dynbss, etc. */
1191
1192 return TRUE;
1193}
1194
1195
e0001a05 1196static bfd_boolean
7fa3d080 1197elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1198{
1199 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1200
1201 if (h->root.type == bfd_link_hash_warning)
1202 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1203
571b5725 1204 if (! xtensa_elf_dynamic_symbol_p (h, info))
e0001a05
NC
1205 elf_xtensa_make_sym_local (info, h);
1206
e0001a05
NC
1207 return TRUE;
1208}
1209
1210
1211static bfd_boolean
7fa3d080 1212elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1213{
1214 asection *srelplt = (asection *) arg;
1215
1216 if (h->root.type == bfd_link_hash_warning)
1217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1218
1219 if (h->plt.refcount > 0)
eea6121a 1220 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1221
1222 return TRUE;
1223}
1224
1225
1226static bfd_boolean
7fa3d080 1227elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1228{
1229 asection *srelgot = (asection *) arg;
1230
1231 if (h->root.type == bfd_link_hash_warning)
1232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1233
1234 if (h->got.refcount > 0)
eea6121a 1235 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1236
1237 return TRUE;
1238}
1239
1240
1241static void
7fa3d080
BW
1242elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1243 asection *srelgot)
e0001a05
NC
1244{
1245 bfd *i;
1246
1247 for (i = info->input_bfds; i; i = i->link_next)
1248 {
1249 bfd_signed_vma *local_got_refcounts;
1250 bfd_size_type j, cnt;
1251 Elf_Internal_Shdr *symtab_hdr;
1252
1253 local_got_refcounts = elf_local_got_refcounts (i);
1254 if (!local_got_refcounts)
1255 continue;
1256
1257 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1258 cnt = symtab_hdr->sh_info;
1259
1260 for (j = 0; j < cnt; ++j)
1261 {
1262 if (local_got_refcounts[j] > 0)
eea6121a
AM
1263 srelgot->size += (local_got_refcounts[j]
1264 * sizeof (Elf32_External_Rela));
e0001a05
NC
1265 }
1266 }
1267}
1268
1269
1270/* Set the sizes of the dynamic sections. */
1271
1272static bfd_boolean
7fa3d080
BW
1273elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1274 struct bfd_link_info *info)
e0001a05 1275{
e901de89
BW
1276 bfd *dynobj, *abfd;
1277 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1278 bfd_boolean relplt, relgot;
1279 int plt_entries, plt_chunks, chunk;
1280
1281 plt_entries = 0;
1282 plt_chunks = 0;
1283 srelgot = 0;
1284
1285 dynobj = elf_hash_table (info)->dynobj;
1286 if (dynobj == NULL)
1287 abort ();
1288
1289 if (elf_hash_table (info)->dynamic_sections_created)
1290 {
1291 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1292 if (info->executable)
e0001a05
NC
1293 {
1294 s = bfd_get_section_by_name (dynobj, ".interp");
1295 if (s == NULL)
1296 abort ();
eea6121a 1297 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1298 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1299 }
1300
1301 /* Allocate room for one word in ".got". */
1302 s = bfd_get_section_by_name (dynobj, ".got");
1303 if (s == NULL)
1304 abort ();
eea6121a 1305 s->size = 4;
e0001a05
NC
1306
1307 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1308 elf_link_hash_traverse (elf_hash_table (info),
1309 elf_xtensa_fix_refcounts,
7fa3d080 1310 (void *) info);
e0001a05
NC
1311
1312 /* Allocate space in ".rela.got" for literals that reference
1313 global symbols. */
1314 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1315 if (srelgot == NULL)
1316 abort ();
1317 elf_link_hash_traverse (elf_hash_table (info),
1318 elf_xtensa_allocate_got_size,
7fa3d080 1319 (void *) srelgot);
e0001a05
NC
1320
1321 /* If we are generating a shared object, we also need space in
1322 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1323 reference local symbols. */
1324 if (info->shared)
1325 elf_xtensa_allocate_local_got_size (info, srelgot);
1326
1327 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1328 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1329 if (srelplt == NULL)
1330 abort ();
1331 elf_link_hash_traverse (elf_hash_table (info),
1332 elf_xtensa_allocate_plt_size,
7fa3d080 1333 (void *) srelplt);
e0001a05
NC
1334
1335 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1336 each PLT entry, we need the PLT code plus a 4-byte literal.
1337 For each chunk of ".plt", we also need two more 4-byte
1338 literals, two corresponding entries in ".rela.got", and an
1339 8-byte entry in ".xt.lit.plt". */
1340 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1341 if (spltlittbl == NULL)
1342 abort ();
1343
eea6121a 1344 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1345 plt_chunks =
1346 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1347
1348 /* Iterate over all the PLT chunks, including any extra sections
1349 created earlier because the initial count of PLT relocations
1350 was an overestimate. */
1351 for (chunk = 0;
1352 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1353 chunk++)
1354 {
1355 int chunk_entries;
1356
1357 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1358 if (sgotplt == NULL)
1359 abort ();
1360
1361 if (chunk < plt_chunks - 1)
1362 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1363 else if (chunk == plt_chunks - 1)
1364 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1365 else
1366 chunk_entries = 0;
1367
1368 if (chunk_entries != 0)
1369 {
eea6121a
AM
1370 sgotplt->size = 4 * (chunk_entries + 2);
1371 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1372 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1373 spltlittbl->size += 8;
e0001a05
NC
1374 }
1375 else
1376 {
eea6121a
AM
1377 sgotplt->size = 0;
1378 splt->size = 0;
e0001a05
NC
1379 }
1380 }
e901de89
BW
1381
1382 /* Allocate space in ".got.loc" to match the total size of all the
1383 literal tables. */
1384 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1385 if (sgotloc == NULL)
1386 abort ();
eea6121a 1387 sgotloc->size = spltlittbl->size;
e901de89
BW
1388 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1389 {
1390 if (abfd->flags & DYNAMIC)
1391 continue;
1392 for (s = abfd->sections; s != NULL; s = s->next)
1393 {
b536dc1e
BW
1394 if (! elf_discarded_section (s)
1395 && xtensa_is_littable_section (s)
1396 && s != spltlittbl)
eea6121a 1397 sgotloc->size += s->size;
e901de89
BW
1398 }
1399 }
e0001a05
NC
1400 }
1401
1402 /* Allocate memory for dynamic sections. */
1403 relplt = FALSE;
1404 relgot = FALSE;
1405 for (s = dynobj->sections; s != NULL; s = s->next)
1406 {
1407 const char *name;
e0001a05
NC
1408
1409 if ((s->flags & SEC_LINKER_CREATED) == 0)
1410 continue;
1411
1412 /* It's OK to base decisions on the section name, because none
1413 of the dynobj section names depend upon the input files. */
1414 name = bfd_get_section_name (dynobj, s);
1415
e0001a05
NC
1416 if (strncmp (name, ".rela", 5) == 0)
1417 {
c456f082 1418 if (s->size != 0)
e0001a05 1419 {
c456f082
AM
1420 if (strcmp (name, ".rela.plt") == 0)
1421 relplt = TRUE;
1422 else if (strcmp (name, ".rela.got") == 0)
1423 relgot = TRUE;
1424
1425 /* We use the reloc_count field as a counter if we need
1426 to copy relocs into the output file. */
1427 s->reloc_count = 0;
e0001a05
NC
1428 }
1429 }
c456f082
AM
1430 else if (strncmp (name, ".plt.", 5) != 0
1431 && strncmp (name, ".got.plt.", 9) != 0
1432 && strcmp (name, ".got") != 0
e0001a05
NC
1433 && strcmp (name, ".plt") != 0
1434 && strcmp (name, ".got.plt") != 0
e901de89
BW
1435 && strcmp (name, ".xt.lit.plt") != 0
1436 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1437 {
1438 /* It's not one of our sections, so don't allocate space. */
1439 continue;
1440 }
1441
c456f082
AM
1442 if (s->size == 0)
1443 {
1444 /* If we don't need this section, strip it from the output
1445 file. We must create the ".plt*" and ".got.plt*"
1446 sections in create_dynamic_sections and/or check_relocs
1447 based on a conservative estimate of the PLT relocation
1448 count, because the sections must be created before the
1449 linker maps input sections to output sections. The
1450 linker does that before size_dynamic_sections, where we
1451 compute the exact size of the PLT, so there may be more
1452 of these sections than are actually needed. */
1453 s->flags |= SEC_EXCLUDE;
1454 }
1455 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1456 {
1457 /* Allocate memory for the section contents. */
eea6121a 1458 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1459 if (s->contents == NULL)
e0001a05
NC
1460 return FALSE;
1461 }
1462 }
1463
1464 if (elf_hash_table (info)->dynamic_sections_created)
1465 {
1466 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1467 known until finish_dynamic_sections, but we need to get the relocs
1468 in place before they are sorted. */
1469 if (srelgot == NULL)
1470 abort ();
1471 for (chunk = 0; chunk < plt_chunks; chunk++)
1472 {
1473 Elf_Internal_Rela irela;
1474 bfd_byte *loc;
1475
1476 irela.r_offset = 0;
1477 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1478 irela.r_addend = 0;
1479
1480 loc = (srelgot->contents
1481 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1483 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1484 loc + sizeof (Elf32_External_Rela));
1485 srelgot->reloc_count += 2;
1486 }
1487
1488 /* Add some entries to the .dynamic section. We fill in the
1489 values later, in elf_xtensa_finish_dynamic_sections, but we
1490 must add the entries now so that we get the correct size for
1491 the .dynamic section. The DT_DEBUG entry is filled in by the
1492 dynamic linker and used by the debugger. */
1493#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1494 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05
NC
1495
1496 if (! info->shared)
1497 {
1498 if (!add_dynamic_entry (DT_DEBUG, 0))
1499 return FALSE;
1500 }
1501
1502 if (relplt)
1503 {
1504 if (!add_dynamic_entry (DT_PLTGOT, 0)
1505 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1506 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1507 || !add_dynamic_entry (DT_JMPREL, 0))
1508 return FALSE;
1509 }
1510
1511 if (relgot)
1512 {
1513 if (!add_dynamic_entry (DT_RELA, 0)
1514 || !add_dynamic_entry (DT_RELASZ, 0)
1515 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1516 return FALSE;
1517 }
1518
e0001a05
NC
1519 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1520 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1521 return FALSE;
1522 }
1523#undef add_dynamic_entry
1524
1525 return TRUE;
1526}
1527
1528\f
1529/* Remove any PT_LOAD segments with no allocated sections. Prior to
1530 binutils 2.13, this function used to remove the non-SEC_ALLOC
1531 sections from PT_LOAD segments, but that task has now been moved
1532 into elf.c. We still need this function to remove any empty
1533 segments that result, but there's nothing Xtensa-specific about
1534 this and it probably ought to be moved into elf.c as well. */
1535
1536static bfd_boolean
7fa3d080
BW
1537elf_xtensa_modify_segment_map (bfd *abfd,
1538 struct bfd_link_info *info ATTRIBUTE_UNUSED)
e0001a05
NC
1539{
1540 struct elf_segment_map **m_p;
1541
1542 m_p = &elf_tdata (abfd)->segment_map;
7fa3d080 1543 while (*m_p)
e0001a05
NC
1544 {
1545 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1546 *m_p = (*m_p)->next;
1547 else
1548 m_p = &(*m_p)->next;
1549 }
1550 return TRUE;
1551}
1552
1553\f
1554/* Perform the specified relocation. The instruction at (contents + address)
1555 is modified to set one operand to represent the value in "relocation". The
1556 operand position is determined by the relocation type recorded in the
1557 howto. */
1558
1559#define CALL_SEGMENT_BITS (30)
7fa3d080 1560#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1561
1562static bfd_reloc_status_type
7fa3d080
BW
1563elf_xtensa_do_reloc (reloc_howto_type *howto,
1564 bfd *abfd,
1565 asection *input_section,
1566 bfd_vma relocation,
1567 bfd_byte *contents,
1568 bfd_vma address,
1569 bfd_boolean is_weak_undef,
1570 char **error_message)
e0001a05 1571{
43cd72b9 1572 xtensa_format fmt;
e0001a05 1573 xtensa_opcode opcode;
e0001a05 1574 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1575 static xtensa_insnbuf ibuff = NULL;
1576 static xtensa_insnbuf sbuff = NULL;
1577 bfd_vma self_address = 0;
1578 bfd_size_type input_size;
1579 int opnd, slot;
e0001a05
NC
1580 uint32 newval;
1581
43cd72b9
BW
1582 if (!ibuff)
1583 {
1584 ibuff = xtensa_insnbuf_alloc (isa);
1585 sbuff = xtensa_insnbuf_alloc (isa);
1586 }
1587
1588 input_size = bfd_get_section_limit (abfd, input_section);
1589
e0001a05
NC
1590 switch (howto->type)
1591 {
1592 case R_XTENSA_NONE:
43cd72b9
BW
1593 case R_XTENSA_DIFF8:
1594 case R_XTENSA_DIFF16:
1595 case R_XTENSA_DIFF32:
e0001a05
NC
1596 return bfd_reloc_ok;
1597
1598 case R_XTENSA_ASM_EXPAND:
1599 if (!is_weak_undef)
1600 {
1601 /* Check for windowed CALL across a 1GB boundary. */
1602 xtensa_opcode opcode =
1603 get_expanded_call_opcode (contents + address,
43cd72b9 1604 input_size - address, 0);
e0001a05
NC
1605 if (is_windowed_call_opcode (opcode))
1606 {
1607 self_address = (input_section->output_section->vma
1608 + input_section->output_offset
1609 + address);
43cd72b9
BW
1610 if ((self_address >> CALL_SEGMENT_BITS)
1611 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1612 {
1613 *error_message = "windowed longcall crosses 1GB boundary; "
1614 "return may fail";
1615 return bfd_reloc_dangerous;
1616 }
1617 }
1618 }
1619 return bfd_reloc_ok;
1620
1621 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1622 {
e0001a05 1623 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1624 bfd_reloc_status_type retval =
1625 elf_xtensa_do_asm_simplify (contents, address, input_size,
1626 error_message);
e0001a05 1627 if (retval != bfd_reloc_ok)
43cd72b9 1628 return bfd_reloc_dangerous;
e0001a05
NC
1629
1630 /* The CALL needs to be relocated. Continue below for that part. */
1631 address += 3;
43cd72b9 1632 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1633 }
1634 break;
1635
1636 case R_XTENSA_32:
1637 case R_XTENSA_PLT:
1638 {
1639 bfd_vma x;
1640 x = bfd_get_32 (abfd, contents + address);
1641 x = x + relocation;
1642 bfd_put_32 (abfd, x, contents + address);
1643 }
1644 return bfd_reloc_ok;
1645 }
1646
43cd72b9
BW
1647 /* Only instruction slot-specific relocations handled below.... */
1648 slot = get_relocation_slot (howto->type);
1649 if (slot == XTENSA_UNDEFINED)
e0001a05 1650 {
43cd72b9 1651 *error_message = "unexpected relocation";
e0001a05
NC
1652 return bfd_reloc_dangerous;
1653 }
1654
43cd72b9
BW
1655 /* Read the instruction into a buffer and decode the opcode. */
1656 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1657 input_size - address);
1658 fmt = xtensa_format_decode (isa, ibuff);
1659 if (fmt == XTENSA_UNDEFINED)
e0001a05 1660 {
43cd72b9 1661 *error_message = "cannot decode instruction format";
e0001a05
NC
1662 return bfd_reloc_dangerous;
1663 }
1664
43cd72b9 1665 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1666
43cd72b9
BW
1667 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1668 if (opcode == XTENSA_UNDEFINED)
e0001a05 1669 {
43cd72b9 1670 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1671 return bfd_reloc_dangerous;
1672 }
1673
43cd72b9
BW
1674 /* Check for opcode-specific "alternate" relocations. */
1675 if (is_alt_relocation (howto->type))
1676 {
1677 if (opcode == get_l32r_opcode ())
1678 {
1679 /* Handle the special-case of non-PC-relative L32R instructions. */
1680 bfd *output_bfd = input_section->output_section->owner;
1681 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1682 if (!lit4_sec)
1683 {
1684 *error_message = "relocation references missing .lit4 section";
1685 return bfd_reloc_dangerous;
1686 }
1687 self_address = ((lit4_sec->vma & ~0xfff)
1688 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1689 newval = relocation;
1690 opnd = 1;
1691 }
1692 else if (opcode == get_const16_opcode ())
1693 {
1694 /* ALT used for high 16 bits. */
1695 newval = relocation >> 16;
1696 opnd = 1;
1697 }
1698 else
1699 {
1700 /* No other "alternate" relocations currently defined. */
1701 *error_message = "unexpected relocation";
1702 return bfd_reloc_dangerous;
1703 }
1704 }
1705 else /* Not an "alternate" relocation.... */
1706 {
1707 if (opcode == get_const16_opcode ())
1708 {
1709 newval = relocation & 0xffff;
1710 opnd = 1;
1711 }
1712 else
1713 {
1714 /* ...normal PC-relative relocation.... */
1715
1716 /* Determine which operand is being relocated. */
1717 opnd = get_relocation_opnd (opcode, howto->type);
1718 if (opnd == XTENSA_UNDEFINED)
1719 {
1720 *error_message = "unexpected relocation";
1721 return bfd_reloc_dangerous;
1722 }
1723
1724 if (!howto->pc_relative)
1725 {
1726 *error_message = "expected PC-relative relocation";
1727 return bfd_reloc_dangerous;
1728 }
e0001a05 1729
43cd72b9
BW
1730 /* Calculate the PC address for this instruction. */
1731 self_address = (input_section->output_section->vma
1732 + input_section->output_offset
1733 + address);
e0001a05 1734
43cd72b9
BW
1735 newval = relocation;
1736 }
1737 }
e0001a05 1738
43cd72b9
BW
1739 /* Apply the relocation. */
1740 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1741 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1742 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1743 sbuff, newval))
e0001a05 1744 {
2db662be
BW
1745 const char *opname = xtensa_opcode_name (isa, opcode);
1746 const char *msg;
1747
1748 msg = "cannot encode";
1749 if (is_direct_call_opcode (opcode))
1750 {
1751 if ((relocation & 0x3) != 0)
1752 msg = "misaligned call target";
1753 else
1754 msg = "call target out of range";
1755 }
1756 else if (opcode == get_l32r_opcode ())
1757 {
1758 if ((relocation & 0x3) != 0)
1759 msg = "misaligned literal target";
1760 else if (is_alt_relocation (howto->type))
1761 msg = "literal target out of range (too many literals)";
1762 else if (self_address > relocation)
1763 msg = "literal target out of range (try using text-section-literals)";
1764 else
1765 msg = "literal placed after use";
1766 }
1767
1768 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1769 return bfd_reloc_dangerous;
1770 }
1771
43cd72b9 1772 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1773 if (is_direct_call_opcode (opcode)
1774 && is_windowed_call_opcode (opcode))
1775 {
43cd72b9
BW
1776 if ((self_address >> CALL_SEGMENT_BITS)
1777 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1778 {
43cd72b9
BW
1779 *error_message =
1780 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1781 return bfd_reloc_dangerous;
1782 }
1783 }
1784
43cd72b9
BW
1785 /* Write the modified instruction back out of the buffer. */
1786 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1787 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1788 input_size - address);
e0001a05
NC
1789 return bfd_reloc_ok;
1790}
1791
1792
2db662be 1793static char *
7fa3d080 1794vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1795{
1796 /* To reduce the size of the memory leak,
1797 we only use a single message buffer. */
1798 static bfd_size_type alloc_size = 0;
1799 static char *message = NULL;
1800 bfd_size_type orig_len, len = 0;
1801 bfd_boolean is_append;
1802
1803 VA_OPEN (ap, arglen);
1804 VA_FIXEDARG (ap, const char *, origmsg);
1805
1806 is_append = (origmsg == message);
1807
1808 orig_len = strlen (origmsg);
1809 len = orig_len + strlen (fmt) + arglen + 20;
1810 if (len > alloc_size)
1811 {
1812 message = (char *) bfd_realloc (message, len);
1813 alloc_size = len;
1814 }
1815 if (!is_append)
1816 memcpy (message, origmsg, orig_len);
1817 vsprintf (message + orig_len, fmt, ap);
1818 VA_CLOSE (ap);
1819 return message;
1820}
1821
1822
e0001a05
NC
1823/* This function is registered as the "special_function" in the
1824 Xtensa howto for handling simplify operations.
1825 bfd_perform_relocation / bfd_install_relocation use it to
1826 perform (install) the specified relocation. Since this replaces the code
1827 in bfd_perform_relocation, it is basically an Xtensa-specific,
1828 stripped-down version of bfd_perform_relocation. */
1829
1830static bfd_reloc_status_type
7fa3d080
BW
1831bfd_elf_xtensa_reloc (bfd *abfd,
1832 arelent *reloc_entry,
1833 asymbol *symbol,
1834 void *data,
1835 asection *input_section,
1836 bfd *output_bfd,
1837 char **error_message)
e0001a05
NC
1838{
1839 bfd_vma relocation;
1840 bfd_reloc_status_type flag;
1841 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1842 bfd_vma output_base = 0;
1843 reloc_howto_type *howto = reloc_entry->howto;
1844 asection *reloc_target_output_section;
1845 bfd_boolean is_weak_undef;
1846
dd1a320b
BW
1847 if (!xtensa_default_isa)
1848 xtensa_default_isa = xtensa_isa_init (0, 0);
1849
1049f94e 1850 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1851 output, and the reloc is against an external symbol, the resulting
1852 reloc will also be against the same symbol. In such a case, we
1853 don't want to change anything about the way the reloc is handled,
1854 since it will all be done at final link time. This test is similar
1855 to what bfd_elf_generic_reloc does except that it lets relocs with
1856 howto->partial_inplace go through even if the addend is non-zero.
1857 (The real problem is that partial_inplace is set for XTENSA_32
1858 relocs to begin with, but that's a long story and there's little we
1859 can do about it now....) */
1860
7fa3d080 1861 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1862 {
1863 reloc_entry->address += input_section->output_offset;
1864 return bfd_reloc_ok;
1865 }
1866
1867 /* Is the address of the relocation really within the section? */
07515404 1868 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1869 return bfd_reloc_outofrange;
1870
4cc11e76 1871 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1872 initial relocation command value. */
1873
1874 /* Get symbol value. (Common symbols are special.) */
1875 if (bfd_is_com_section (symbol->section))
1876 relocation = 0;
1877 else
1878 relocation = symbol->value;
1879
1880 reloc_target_output_section = symbol->section->output_section;
1881
1882 /* Convert input-section-relative symbol value to absolute. */
1883 if ((output_bfd && !howto->partial_inplace)
1884 || reloc_target_output_section == NULL)
1885 output_base = 0;
1886 else
1887 output_base = reloc_target_output_section->vma;
1888
1889 relocation += output_base + symbol->section->output_offset;
1890
1891 /* Add in supplied addend. */
1892 relocation += reloc_entry->addend;
1893
1894 /* Here the variable relocation holds the final address of the
1895 symbol we are relocating against, plus any addend. */
1896 if (output_bfd)
1897 {
1898 if (!howto->partial_inplace)
1899 {
1900 /* This is a partial relocation, and we want to apply the relocation
1901 to the reloc entry rather than the raw data. Everything except
1902 relocations against section symbols has already been handled
1903 above. */
43cd72b9 1904
e0001a05
NC
1905 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1906 reloc_entry->addend = relocation;
1907 reloc_entry->address += input_section->output_offset;
1908 return bfd_reloc_ok;
1909 }
1910 else
1911 {
1912 reloc_entry->address += input_section->output_offset;
1913 reloc_entry->addend = 0;
1914 }
1915 }
1916
1917 is_weak_undef = (bfd_is_und_section (symbol->section)
1918 && (symbol->flags & BSF_WEAK) != 0);
1919 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1920 (bfd_byte *) data, (bfd_vma) octets,
1921 is_weak_undef, error_message);
1922
1923 if (flag == bfd_reloc_dangerous)
1924 {
1925 /* Add the symbol name to the error message. */
1926 if (! *error_message)
1927 *error_message = "";
1928 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1929 strlen (symbol->name) + 17,
70961b9d
AM
1930 symbol->name,
1931 (unsigned long) reloc_entry->addend);
e0001a05
NC
1932 }
1933
1934 return flag;
1935}
1936
1937
1938/* Set up an entry in the procedure linkage table. */
1939
1940static bfd_vma
7fa3d080
BW
1941elf_xtensa_create_plt_entry (bfd *dynobj,
1942 bfd *output_bfd,
1943 unsigned reloc_index)
e0001a05
NC
1944{
1945 asection *splt, *sgotplt;
1946 bfd_vma plt_base, got_base;
1947 bfd_vma code_offset, lit_offset;
1948 int chunk;
1949
1950 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1951 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1952 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1953 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1954
1955 plt_base = splt->output_section->vma + splt->output_offset;
1956 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1957
1958 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1959 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1960
1961 /* Fill in the literal entry. This is the offset of the dynamic
1962 relocation entry. */
1963 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1964 sgotplt->contents + lit_offset);
1965
1966 /* Fill in the entry in the procedure linkage table. */
1967 memcpy (splt->contents + code_offset,
1968 (bfd_big_endian (output_bfd)
1969 ? elf_xtensa_be_plt_entry
1970 : elf_xtensa_le_plt_entry),
1971 PLT_ENTRY_SIZE);
1972 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1973 plt_base + code_offset + 3),
1974 splt->contents + code_offset + 4);
1975 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1976 plt_base + code_offset + 6),
1977 splt->contents + code_offset + 7);
1978 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1979 plt_base + code_offset + 9),
1980 splt->contents + code_offset + 10);
1981
1982 return plt_base + code_offset;
1983}
1984
1985
e0001a05 1986/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1987 both relocatable and final links. */
e0001a05
NC
1988
1989static bfd_boolean
7fa3d080
BW
1990elf_xtensa_relocate_section (bfd *output_bfd,
1991 struct bfd_link_info *info,
1992 bfd *input_bfd,
1993 asection *input_section,
1994 bfd_byte *contents,
1995 Elf_Internal_Rela *relocs,
1996 Elf_Internal_Sym *local_syms,
1997 asection **local_sections)
e0001a05
NC
1998{
1999 Elf_Internal_Shdr *symtab_hdr;
2000 Elf_Internal_Rela *rel;
2001 Elf_Internal_Rela *relend;
2002 struct elf_link_hash_entry **sym_hashes;
2003 asection *srelgot, *srelplt;
2004 bfd *dynobj;
88d65ad6
BW
2005 property_table_entry *lit_table = 0;
2006 int ltblsize = 0;
e0001a05 2007 char *error_message = NULL;
43cd72b9 2008 bfd_size_type input_size;
e0001a05 2009
43cd72b9
BW
2010 if (!xtensa_default_isa)
2011 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05
NC
2012
2013 dynobj = elf_hash_table (info)->dynobj;
2014 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2015 sym_hashes = elf_sym_hashes (input_bfd);
2016
2017 srelgot = NULL;
2018 srelplt = NULL;
7fa3d080 2019 if (dynobj)
e0001a05
NC
2020 {
2021 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2022 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2023 }
2024
88d65ad6
BW
2025 if (elf_hash_table (info)->dynamic_sections_created)
2026 {
2027 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2028 &lit_table, XTENSA_LIT_SEC_NAME,
2029 TRUE);
88d65ad6
BW
2030 if (ltblsize < 0)
2031 return FALSE;
2032 }
2033
43cd72b9
BW
2034 input_size = bfd_get_section_limit (input_bfd, input_section);
2035
e0001a05
NC
2036 rel = relocs;
2037 relend = relocs + input_section->reloc_count;
2038 for (; rel < relend; rel++)
2039 {
2040 int r_type;
2041 reloc_howto_type *howto;
2042 unsigned long r_symndx;
2043 struct elf_link_hash_entry *h;
2044 Elf_Internal_Sym *sym;
2045 asection *sec;
2046 bfd_vma relocation;
2047 bfd_reloc_status_type r;
2048 bfd_boolean is_weak_undef;
2049 bfd_boolean unresolved_reloc;
9b8c98a4 2050 bfd_boolean warned;
e0001a05
NC
2051
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2054 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2055 continue;
2056
2057 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2058 {
2059 bfd_set_error (bfd_error_bad_value);
2060 return FALSE;
2061 }
2062 howto = &elf_howto_table[r_type];
2063
2064 r_symndx = ELF32_R_SYM (rel->r_info);
2065
1049f94e 2066 if (info->relocatable)
e0001a05 2067 {
43cd72b9 2068 /* This is a relocatable link.
e0001a05
NC
2069 1) If the reloc is against a section symbol, adjust
2070 according to the output section.
2071 2) If there is a new target for this relocation,
2072 the new target will be in the same output section.
2073 We adjust the relocation by the output section
2074 difference. */
2075
2076 if (relaxing_section)
2077 {
2078 /* Check if this references a section in another input file. */
43cd72b9
BW
2079 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2080 contents))
2081 return FALSE;
e0001a05
NC
2082 r_type = ELF32_R_TYPE (rel->r_info);
2083 }
2084
43cd72b9 2085 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2086 {
43cd72b9 2087 char *error_message = NULL;
e0001a05
NC
2088 /* Convert ASM_SIMPLIFY into the simpler relocation
2089 so that they never escape a relaxing link. */
43cd72b9
BW
2090 r = contract_asm_expansion (contents, input_size, rel,
2091 &error_message);
2092 if (r != bfd_reloc_ok)
2093 {
2094 if (!((*info->callbacks->reloc_dangerous)
2095 (info, error_message, input_bfd, input_section,
2096 rel->r_offset)))
2097 return FALSE;
2098 }
e0001a05
NC
2099 r_type = ELF32_R_TYPE (rel->r_info);
2100 }
2101
1049f94e 2102 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2103 anything unless the reloc is against a section symbol,
2104 in which case we have to adjust according to where the
2105 section symbol winds up in the output section. */
2106 if (r_symndx < symtab_hdr->sh_info)
2107 {
2108 sym = local_syms + r_symndx;
2109 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2110 {
2111 sec = local_sections[r_symndx];
2112 rel->r_addend += sec->output_offset + sym->st_value;
2113 }
2114 }
2115
2116 /* If there is an addend with a partial_inplace howto,
2117 then move the addend to the contents. This is a hack
1049f94e 2118 to work around problems with DWARF in relocatable links
e0001a05
NC
2119 with some previous version of BFD. Now we can't easily get
2120 rid of the hack without breaking backward compatibility.... */
2121 if (rel->r_addend)
2122 {
2123 howto = &elf_howto_table[r_type];
2124 if (howto->partial_inplace)
2125 {
2126 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2127 rel->r_addend, contents,
2128 rel->r_offset, FALSE,
2129 &error_message);
2130 if (r != bfd_reloc_ok)
2131 {
2132 if (!((*info->callbacks->reloc_dangerous)
2133 (info, error_message, input_bfd, input_section,
2134 rel->r_offset)))
2135 return FALSE;
2136 }
2137 rel->r_addend = 0;
2138 }
2139 }
2140
1049f94e 2141 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2142 continue;
2143 }
2144
2145 /* This is a final link. */
2146
2147 h = NULL;
2148 sym = NULL;
2149 sec = NULL;
2150 is_weak_undef = FALSE;
2151 unresolved_reloc = FALSE;
9b8c98a4 2152 warned = FALSE;
e0001a05
NC
2153
2154 if (howto->partial_inplace)
2155 {
2156 /* Because R_XTENSA_32 was made partial_inplace to fix some
2157 problems with DWARF info in partial links, there may be
2158 an addend stored in the contents. Take it out of there
2159 and move it back into the addend field of the reloc. */
2160 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2161 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2162 }
2163
2164 if (r_symndx < symtab_hdr->sh_info)
2165 {
2166 sym = local_syms + r_symndx;
2167 sec = local_sections[r_symndx];
8517fae7 2168 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
e0001a05
NC
2169 }
2170 else
2171 {
b2a8e766
AM
2172 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2173 r_symndx, symtab_hdr, sym_hashes,
2174 h, sec, relocation,
2175 unresolved_reloc, warned);
560e09e9
NC
2176
2177 if (relocation == 0
2178 && !unresolved_reloc
2179 && h->root.type == bfd_link_hash_undefweak)
e0001a05 2180 is_weak_undef = TRUE;
e0001a05
NC
2181 }
2182
2183 if (relaxing_section)
2184 {
2185 /* Check if this references a section in another input file. */
43cd72b9
BW
2186 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2187 &relocation);
e0001a05
NC
2188
2189 /* Update some already cached values. */
2190 r_type = ELF32_R_TYPE (rel->r_info);
2191 howto = &elf_howto_table[r_type];
2192 }
2193
2194 /* Sanity check the address. */
43cd72b9 2195 if (rel->r_offset >= input_size
e0001a05
NC
2196 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2197 {
43cd72b9
BW
2198 (*_bfd_error_handler)
2199 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2200 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2201 bfd_set_error (bfd_error_bad_value);
2202 return FALSE;
2203 }
2204
2205 /* Generate dynamic relocations. */
2206 if (elf_hash_table (info)->dynamic_sections_created)
2207 {
571b5725 2208 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05 2209
43cd72b9 2210 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2211 {
2212 /* This is an error. The symbol's real value won't be known
2213 until runtime and it's likely to be out of range anyway. */
2214 const char *name = h->root.root.string;
2215 error_message = vsprint_msg ("invalid relocation for dynamic "
2216 "symbol", ": %s",
2217 strlen (name) + 2, name);
2218 if (!((*info->callbacks->reloc_dangerous)
2219 (info, error_message, input_bfd, input_section,
2220 rel->r_offset)))
2221 return FALSE;
2222 }
2223 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2224 && (input_section->flags & SEC_ALLOC) != 0
2225 && (dynamic_symbol || info->shared))
2226 {
2227 Elf_Internal_Rela outrel;
2228 bfd_byte *loc;
2229 asection *srel;
2230
2231 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2232 srel = srelplt;
2233 else
2234 srel = srelgot;
2235
2236 BFD_ASSERT (srel != NULL);
2237
2238 outrel.r_offset =
2239 _bfd_elf_section_offset (output_bfd, info,
2240 input_section, rel->r_offset);
2241
2242 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2243 memset (&outrel, 0, sizeof outrel);
2244 else
2245 {
f0578e28
BW
2246 outrel.r_offset += (input_section->output_section->vma
2247 + input_section->output_offset);
e0001a05 2248
88d65ad6
BW
2249 /* Complain if the relocation is in a read-only section
2250 and not in a literal pool. */
2251 if ((input_section->flags & SEC_READONLY) != 0
2252 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2253 outrel.r_offset))
88d65ad6
BW
2254 {
2255 error_message =
2256 _("dynamic relocation in read-only section");
2257 if (!((*info->callbacks->reloc_dangerous)
2258 (info, error_message, input_bfd, input_section,
2259 rel->r_offset)))
2260 return FALSE;
2261 }
2262
e0001a05
NC
2263 if (dynamic_symbol)
2264 {
2265 outrel.r_addend = rel->r_addend;
2266 rel->r_addend = 0;
2267
2268 if (r_type == R_XTENSA_32)
2269 {
2270 outrel.r_info =
2271 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2272 relocation = 0;
2273 }
2274 else /* r_type == R_XTENSA_PLT */
2275 {
2276 outrel.r_info =
2277 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2278
2279 /* Create the PLT entry and set the initial
2280 contents of the literal entry to the address of
2281 the PLT entry. */
43cd72b9 2282 relocation =
e0001a05
NC
2283 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2284 srel->reloc_count);
2285 }
2286 unresolved_reloc = FALSE;
2287 }
2288 else
2289 {
2290 /* Generate a RELATIVE relocation. */
2291 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2292 outrel.r_addend = 0;
2293 }
2294 }
2295
2296 loc = (srel->contents
2297 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2298 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2299 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2300 <= srel->size);
e0001a05
NC
2301 }
2302 }
2303
2304 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2305 because such sections are not SEC_ALLOC and thus ld.so will
2306 not process them. */
2307 if (unresolved_reloc
2308 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2309 && h->def_dynamic))
e0001a05 2310 (*_bfd_error_handler)
843fe662 2311 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
d003868e
AM
2312 input_bfd,
2313 input_section,
e0001a05 2314 (long) rel->r_offset,
843fe662 2315 howto->name,
e0001a05
NC
2316 h->root.root.string);
2317
2318 /* There's no point in calling bfd_perform_relocation here.
2319 Just go directly to our "special function". */
2320 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2321 relocation + rel->r_addend,
2322 contents, rel->r_offset, is_weak_undef,
2323 &error_message);
43cd72b9 2324
9b8c98a4 2325 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2326 {
2327 const char *name;
2328
43cd72b9 2329 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2330 BFD_ASSERT (error_message != NULL);
e0001a05 2331
7fa3d080 2332 if (h)
e0001a05
NC
2333 name = h->root.root.string;
2334 else
2335 {
2336 name = bfd_elf_string_from_elf_section
2337 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2338 if (name && *name == '\0')
2339 name = bfd_section_name (input_bfd, sec);
2340 }
2341 if (name)
43cd72b9
BW
2342 {
2343 if (rel->r_addend == 0)
2344 error_message = vsprint_msg (error_message, ": %s",
2345 strlen (name) + 2, name);
2346 else
2347 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2348 strlen (name) + 22,
0fd3a477 2349 name, (int)rel->r_addend);
43cd72b9
BW
2350 }
2351
e0001a05
NC
2352 if (!((*info->callbacks->reloc_dangerous)
2353 (info, error_message, input_bfd, input_section,
2354 rel->r_offset)))
2355 return FALSE;
2356 }
2357 }
2358
88d65ad6
BW
2359 if (lit_table)
2360 free (lit_table);
2361
3ba3bc8c
BW
2362 input_section->reloc_done = TRUE;
2363
e0001a05
NC
2364 return TRUE;
2365}
2366
2367
2368/* Finish up dynamic symbol handling. There's not much to do here since
2369 the PLT and GOT entries are all set up by relocate_section. */
2370
2371static bfd_boolean
7fa3d080
BW
2372elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2373 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2374 struct elf_link_hash_entry *h,
2375 Elf_Internal_Sym *sym)
e0001a05 2376{
f5385ebf
AM
2377 if (h->needs_plt
2378 && !h->def_regular)
e0001a05
NC
2379 {
2380 /* Mark the symbol as undefined, rather than as defined in
2381 the .plt section. Leave the value alone. */
2382 sym->st_shndx = SHN_UNDEF;
2383 }
2384
2385 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2386 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2387 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2388 sym->st_shndx = SHN_ABS;
2389
2390 return TRUE;
2391}
2392
2393
2394/* Combine adjacent literal table entries in the output. Adjacent
2395 entries within each input section may have been removed during
2396 relaxation, but we repeat the process here, even though it's too late
2397 to shrink the output section, because it's important to minimize the
2398 number of literal table entries to reduce the start-up work for the
2399 runtime linker. Returns the number of remaining table entries or -1
2400 on error. */
2401
2402static int
7fa3d080
BW
2403elf_xtensa_combine_prop_entries (bfd *output_bfd,
2404 asection *sxtlit,
2405 asection *sgotloc)
e0001a05 2406{
e0001a05
NC
2407 bfd_byte *contents;
2408 property_table_entry *table;
e901de89 2409 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2410 bfd_vma offset;
2411 int n, m, num;
2412
eea6121a 2413 section_size = sxtlit->size;
e0001a05
NC
2414 BFD_ASSERT (section_size % 8 == 0);
2415 num = section_size / 8;
2416
eea6121a 2417 sgotloc_size = sgotloc->size;
e901de89 2418 if (sgotloc_size != section_size)
b536dc1e
BW
2419 {
2420 (*_bfd_error_handler)
43cd72b9 2421 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2422 return -1;
2423 }
e901de89 2424
eea6121a
AM
2425 table = bfd_malloc (num * sizeof (property_table_entry));
2426 if (table == 0)
e0001a05
NC
2427 return -1;
2428
2429 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2430 propagates to the output section, where it doesn't really apply and
eea6121a 2431 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2432 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2433
eea6121a
AM
2434 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2435 {
2436 if (contents != 0)
2437 free (contents);
2438 free (table);
2439 return -1;
2440 }
e0001a05
NC
2441
2442 /* There should never be any relocations left at this point, so this
2443 is quite a bit easier than what is done during relaxation. */
2444
2445 /* Copy the raw contents into a property table array and sort it. */
2446 offset = 0;
2447 for (n = 0; n < num; n++)
2448 {
2449 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2450 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2451 offset += 8;
2452 }
2453 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2454
2455 for (n = 0; n < num; n++)
2456 {
2457 bfd_boolean remove = FALSE;
2458
2459 if (table[n].size == 0)
2460 remove = TRUE;
2461 else if (n > 0 &&
2462 (table[n-1].address + table[n-1].size == table[n].address))
2463 {
2464 table[n-1].size += table[n].size;
2465 remove = TRUE;
2466 }
2467
2468 if (remove)
2469 {
2470 for (m = n; m < num - 1; m++)
2471 {
2472 table[m].address = table[m+1].address;
2473 table[m].size = table[m+1].size;
2474 }
2475
2476 n--;
2477 num--;
2478 }
2479 }
2480
2481 /* Copy the data back to the raw contents. */
2482 offset = 0;
2483 for (n = 0; n < num; n++)
2484 {
2485 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2486 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2487 offset += 8;
2488 }
2489
2490 /* Clear the removed bytes. */
2491 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2492 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2493
e901de89
BW
2494 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2495 section_size))
e0001a05
NC
2496 return -1;
2497
e901de89
BW
2498 /* Copy the contents to ".got.loc". */
2499 memcpy (sgotloc->contents, contents, section_size);
2500
e0001a05 2501 free (contents);
b614a702 2502 free (table);
e0001a05
NC
2503 return num;
2504}
2505
2506
2507/* Finish up the dynamic sections. */
2508
2509static bfd_boolean
7fa3d080
BW
2510elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2511 struct bfd_link_info *info)
e0001a05
NC
2512{
2513 bfd *dynobj;
e901de89 2514 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2515 Elf32_External_Dyn *dyncon, *dynconend;
2516 int num_xtlit_entries;
2517
2518 if (! elf_hash_table (info)->dynamic_sections_created)
2519 return TRUE;
2520
2521 dynobj = elf_hash_table (info)->dynobj;
2522 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2523 BFD_ASSERT (sdyn != NULL);
2524
2525 /* Set the first entry in the global offset table to the address of
2526 the dynamic section. */
2527 sgot = bfd_get_section_by_name (dynobj, ".got");
2528 if (sgot)
2529 {
eea6121a 2530 BFD_ASSERT (sgot->size == 4);
e0001a05 2531 if (sdyn == NULL)
7fa3d080 2532 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2533 else
2534 bfd_put_32 (output_bfd,
2535 sdyn->output_section->vma + sdyn->output_offset,
2536 sgot->contents);
2537 }
2538
2539 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
7fa3d080 2540 if (srelplt && srelplt->size != 0)
e0001a05
NC
2541 {
2542 asection *sgotplt, *srelgot, *spltlittbl;
2543 int chunk, plt_chunks, plt_entries;
2544 Elf_Internal_Rela irela;
2545 bfd_byte *loc;
2546 unsigned rtld_reloc;
2547
2548 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2549 BFD_ASSERT (srelgot != NULL);
2550
2551 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2552 BFD_ASSERT (spltlittbl != NULL);
2553
2554 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2555 of them follow immediately after.... */
2556 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2557 {
2558 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2559 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2560 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2561 break;
2562 }
2563 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2564
eea6121a 2565 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2566 plt_chunks =
2567 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2568
2569 for (chunk = 0; chunk < plt_chunks; chunk++)
2570 {
2571 int chunk_entries = 0;
2572
2573 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2574 BFD_ASSERT (sgotplt != NULL);
2575
2576 /* Emit special RTLD relocations for the first two entries in
2577 each chunk of the .got.plt section. */
2578
2579 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2580 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2581 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2582 irela.r_offset = (sgotplt->output_section->vma
2583 + sgotplt->output_offset);
2584 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2585 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2586 rtld_reloc += 1;
2587 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2588
2589 /* Next literal immediately follows the first. */
2590 loc += sizeof (Elf32_External_Rela);
2591 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2592 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2593 irela.r_offset = (sgotplt->output_section->vma
2594 + sgotplt->output_offset + 4);
2595 /* Tell rtld to set value to object's link map. */
2596 irela.r_addend = 2;
2597 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2598 rtld_reloc += 1;
2599 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2600
2601 /* Fill in the literal table. */
2602 if (chunk < plt_chunks - 1)
2603 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2604 else
2605 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2606
eea6121a 2607 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2608 bfd_put_32 (output_bfd,
2609 sgotplt->output_section->vma + sgotplt->output_offset,
2610 spltlittbl->contents + (chunk * 8) + 0);
2611 bfd_put_32 (output_bfd,
2612 8 + (chunk_entries * 4),
2613 spltlittbl->contents + (chunk * 8) + 4);
2614 }
2615
2616 /* All the dynamic relocations have been emitted at this point.
2617 Make sure the relocation sections are the correct size. */
eea6121a
AM
2618 if (srelgot->size != (sizeof (Elf32_External_Rela)
2619 * srelgot->reloc_count)
2620 || srelplt->size != (sizeof (Elf32_External_Rela)
2621 * srelplt->reloc_count))
e0001a05
NC
2622 abort ();
2623
2624 /* The .xt.lit.plt section has just been modified. This must
2625 happen before the code below which combines adjacent literal
2626 table entries, and the .xt.lit.plt contents have to be forced to
2627 the output here. */
2628 if (! bfd_set_section_contents (output_bfd,
2629 spltlittbl->output_section,
2630 spltlittbl->contents,
2631 spltlittbl->output_offset,
eea6121a 2632 spltlittbl->size))
e0001a05
NC
2633 return FALSE;
2634 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2635 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2636 }
2637
2638 /* Combine adjacent literal table entries. */
1049f94e 2639 BFD_ASSERT (! info->relocatable);
e901de89
BW
2640 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2641 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
b536dc1e 2642 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2643 num_xtlit_entries =
2644 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2645 if (num_xtlit_entries < 0)
2646 return FALSE;
2647
2648 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2649 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2650 for (; dyncon < dynconend; dyncon++)
2651 {
2652 Elf_Internal_Dyn dyn;
2653 const char *name;
2654 asection *s;
2655
2656 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2657
2658 switch (dyn.d_tag)
2659 {
2660 default:
2661 break;
2662
2663 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2664 dyn.d_un.d_val = num_xtlit_entries;
2665 break;
2666
2667 case DT_XTENSA_GOT_LOC_OFF:
e901de89 2668 name = ".got.loc";
e0001a05
NC
2669 goto get_vma;
2670 case DT_PLTGOT:
2671 name = ".got";
2672 goto get_vma;
2673 case DT_JMPREL:
2674 name = ".rela.plt";
2675 get_vma:
2676 s = bfd_get_section_by_name (output_bfd, name);
2677 BFD_ASSERT (s);
2678 dyn.d_un.d_ptr = s->vma;
2679 break;
2680
2681 case DT_PLTRELSZ:
2682 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2683 BFD_ASSERT (s);
eea6121a 2684 dyn.d_un.d_val = s->size;
e0001a05
NC
2685 break;
2686
2687 case DT_RELASZ:
2688 /* Adjust RELASZ to not include JMPREL. This matches what
2689 glibc expects and what is done for several other ELF
2690 targets (e.g., i386, alpha), but the "correct" behavior
2691 seems to be unresolved. Since the linker script arranges
2692 for .rela.plt to follow all other relocation sections, we
2693 don't have to worry about changing the DT_RELA entry. */
2694 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2695 if (s)
eea6121a 2696 dyn.d_un.d_val -= s->size;
e0001a05
NC
2697 break;
2698 }
2699
2700 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2701 }
2702
2703 return TRUE;
2704}
2705
2706\f
2707/* Functions for dealing with the e_flags field. */
2708
2709/* Merge backend specific data from an object file to the output
2710 object file when linking. */
2711
2712static bfd_boolean
7fa3d080 2713elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2714{
2715 unsigned out_mach, in_mach;
2716 flagword out_flag, in_flag;
2717
2718 /* Check if we have the same endianess. */
2719 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2720 return FALSE;
2721
2722 /* Don't even pretend to support mixed-format linking. */
2723 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2724 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2725 return FALSE;
2726
2727 out_flag = elf_elfheader (obfd)->e_flags;
2728 in_flag = elf_elfheader (ibfd)->e_flags;
2729
2730 out_mach = out_flag & EF_XTENSA_MACH;
2731 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2732 if (out_mach != in_mach)
e0001a05
NC
2733 {
2734 (*_bfd_error_handler)
43cd72b9 2735 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2736 ibfd, out_mach, in_mach);
e0001a05
NC
2737 bfd_set_error (bfd_error_wrong_format);
2738 return FALSE;
2739 }
2740
2741 if (! elf_flags_init (obfd))
2742 {
2743 elf_flags_init (obfd) = TRUE;
2744 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2745
e0001a05
NC
2746 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2747 && bfd_get_arch_info (obfd)->the_default)
2748 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2749 bfd_get_mach (ibfd));
43cd72b9 2750
e0001a05
NC
2751 return TRUE;
2752 }
2753
43cd72b9
BW
2754 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2755 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2756
43cd72b9
BW
2757 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2758 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2759
2760 return TRUE;
2761}
2762
2763
2764static bfd_boolean
7fa3d080 2765elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2766{
2767 BFD_ASSERT (!elf_flags_init (abfd)
2768 || elf_elfheader (abfd)->e_flags == flags);
2769
2770 elf_elfheader (abfd)->e_flags |= flags;
2771 elf_flags_init (abfd) = TRUE;
2772
2773 return TRUE;
2774}
2775
2776
e0001a05 2777static bfd_boolean
7fa3d080 2778elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2779{
2780 FILE *f = (FILE *) farg;
2781 flagword e_flags = elf_elfheader (abfd)->e_flags;
2782
2783 fprintf (f, "\nXtensa header:\n");
43cd72b9 2784 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2785 fprintf (f, "\nMachine = Base\n");
2786 else
2787 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2788
2789 fprintf (f, "Insn tables = %s\n",
2790 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2791
2792 fprintf (f, "Literal tables = %s\n",
2793 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2794
2795 return _bfd_elf_print_private_bfd_data (abfd, farg);
2796}
2797
2798
2799/* Set the right machine number for an Xtensa ELF file. */
2800
2801static bfd_boolean
7fa3d080 2802elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2803{
2804 int mach;
2805 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2806
2807 switch (arch)
2808 {
2809 case E_XTENSA_MACH:
2810 mach = bfd_mach_xtensa;
2811 break;
2812 default:
2813 return FALSE;
2814 }
2815
2816 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2817 return TRUE;
2818}
2819
2820
2821/* The final processing done just before writing out an Xtensa ELF object
2822 file. This gets the Xtensa architecture right based on the machine
2823 number. */
2824
2825static void
7fa3d080
BW
2826elf_xtensa_final_write_processing (bfd *abfd,
2827 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2828{
2829 int mach;
2830 unsigned long val;
2831
2832 switch (mach = bfd_get_mach (abfd))
2833 {
2834 case bfd_mach_xtensa:
2835 val = E_XTENSA_MACH;
2836 break;
2837 default:
2838 return;
2839 }
2840
2841 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2842 elf_elfheader (abfd)->e_flags |= val;
2843}
2844
2845
2846static enum elf_reloc_type_class
7fa3d080 2847elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2848{
2849 switch ((int) ELF32_R_TYPE (rela->r_info))
2850 {
2851 case R_XTENSA_RELATIVE:
2852 return reloc_class_relative;
2853 case R_XTENSA_JMP_SLOT:
2854 return reloc_class_plt;
2855 default:
2856 return reloc_class_normal;
2857 }
2858}
2859
2860\f
2861static bfd_boolean
7fa3d080
BW
2862elf_xtensa_discard_info_for_section (bfd *abfd,
2863 struct elf_reloc_cookie *cookie,
2864 struct bfd_link_info *info,
2865 asection *sec)
e0001a05
NC
2866{
2867 bfd_byte *contents;
2868 bfd_vma section_size;
2869 bfd_vma offset, actual_offset;
2870 size_t removed_bytes = 0;
2871
eea6121a 2872 section_size = sec->size;
e0001a05
NC
2873 if (section_size == 0 || section_size % 8 != 0)
2874 return FALSE;
2875
2876 if (sec->output_section
2877 && bfd_is_abs_section (sec->output_section))
2878 return FALSE;
2879
2880 contents = retrieve_contents (abfd, sec, info->keep_memory);
2881 if (!contents)
2882 return FALSE;
2883
2884 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2885 if (!cookie->rels)
2886 {
2887 release_contents (sec, contents);
2888 return FALSE;
2889 }
2890
2891 cookie->rel = cookie->rels;
2892 cookie->relend = cookie->rels + sec->reloc_count;
2893
2894 for (offset = 0; offset < section_size; offset += 8)
2895 {
2896 actual_offset = offset - removed_bytes;
2897
2898 /* The ...symbol_deleted_p function will skip over relocs but it
2899 won't adjust their offsets, so do that here. */
2900 while (cookie->rel < cookie->relend
2901 && cookie->rel->r_offset < offset)
2902 {
2903 cookie->rel->r_offset -= removed_bytes;
2904 cookie->rel++;
2905 }
2906
2907 while (cookie->rel < cookie->relend
2908 && cookie->rel->r_offset == offset)
2909 {
c152c796 2910 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2911 {
2912 /* Remove the table entry. (If the reloc type is NONE, then
2913 the entry has already been merged with another and deleted
2914 during relaxation.) */
2915 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2916 {
2917 /* Shift the contents up. */
2918 if (offset + 8 < section_size)
2919 memmove (&contents[actual_offset],
2920 &contents[actual_offset+8],
2921 section_size - offset - 8);
2922 removed_bytes += 8;
2923 }
2924
2925 /* Remove this relocation. */
2926 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2927 }
2928
2929 /* Adjust the relocation offset for previous removals. This
2930 should not be done before calling ...symbol_deleted_p
2931 because it might mess up the offset comparisons there.
2932 Make sure the offset doesn't underflow in the case where
2933 the first entry is removed. */
2934 if (cookie->rel->r_offset >= removed_bytes)
2935 cookie->rel->r_offset -= removed_bytes;
2936 else
2937 cookie->rel->r_offset = 0;
2938
2939 cookie->rel++;
2940 }
2941 }
2942
2943 if (removed_bytes != 0)
2944 {
2945 /* Adjust any remaining relocs (shouldn't be any). */
2946 for (; cookie->rel < cookie->relend; cookie->rel++)
2947 {
2948 if (cookie->rel->r_offset >= removed_bytes)
2949 cookie->rel->r_offset -= removed_bytes;
2950 else
2951 cookie->rel->r_offset = 0;
2952 }
2953
2954 /* Clear the removed bytes. */
2955 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2956
2957 pin_contents (sec, contents);
2958 pin_internal_relocs (sec, cookie->rels);
2959
eea6121a
AM
2960 /* Shrink size. */
2961 sec->size = section_size - removed_bytes;
b536dc1e
BW
2962
2963 if (xtensa_is_littable_section (sec))
2964 {
2965 bfd *dynobj = elf_hash_table (info)->dynobj;
2966 if (dynobj)
2967 {
2968 asection *sgotloc =
2969 bfd_get_section_by_name (dynobj, ".got.loc");
2970 if (sgotloc)
eea6121a 2971 sgotloc->size -= removed_bytes;
b536dc1e
BW
2972 }
2973 }
e0001a05
NC
2974 }
2975 else
2976 {
2977 release_contents (sec, contents);
2978 release_internal_relocs (sec, cookie->rels);
2979 }
2980
2981 return (removed_bytes != 0);
2982}
2983
2984
2985static bfd_boolean
7fa3d080
BW
2986elf_xtensa_discard_info (bfd *abfd,
2987 struct elf_reloc_cookie *cookie,
2988 struct bfd_link_info *info)
e0001a05
NC
2989{
2990 asection *sec;
2991 bfd_boolean changed = FALSE;
2992
2993 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2994 {
2995 if (xtensa_is_property_section (sec))
2996 {
2997 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2998 changed = TRUE;
2999 }
3000 }
3001
3002 return changed;
3003}
3004
3005
3006static bfd_boolean
7fa3d080 3007elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3008{
3009 return xtensa_is_property_section (sec);
3010}
3011
3012\f
3013/* Support for core dump NOTE sections. */
3014
3015static bfd_boolean
7fa3d080 3016elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3017{
3018 int offset;
eea6121a 3019 unsigned int size;
e0001a05
NC
3020
3021 /* The size for Xtensa is variable, so don't try to recognize the format
3022 based on the size. Just assume this is GNU/Linux. */
3023
3024 /* pr_cursig */
3025 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3026
3027 /* pr_pid */
3028 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3029
3030 /* pr_reg */
3031 offset = 72;
eea6121a 3032 size = note->descsz - offset - 4;
e0001a05
NC
3033
3034 /* Make a ".reg/999" section. */
3035 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3036 size, note->descpos + offset);
e0001a05
NC
3037}
3038
3039
3040static bfd_boolean
7fa3d080 3041elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3042{
3043 switch (note->descsz)
3044 {
3045 default:
3046 return FALSE;
3047
3048 case 128: /* GNU/Linux elf_prpsinfo */
3049 elf_tdata (abfd)->core_program
3050 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3051 elf_tdata (abfd)->core_command
3052 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3053 }
3054
3055 /* Note that for some reason, a spurious space is tacked
3056 onto the end of the args in some (at least one anyway)
3057 implementations, so strip it off if it exists. */
3058
3059 {
3060 char *command = elf_tdata (abfd)->core_command;
3061 int n = strlen (command);
3062
3063 if (0 < n && command[n - 1] == ' ')
3064 command[n - 1] = '\0';
3065 }
3066
3067 return TRUE;
3068}
3069
3070\f
3071/* Generic Xtensa configurability stuff. */
3072
3073static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3074static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3075static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3076static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3077static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3078static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3079static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3080static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3081
3082static void
7fa3d080 3083init_call_opcodes (void)
e0001a05
NC
3084{
3085 if (callx0_op == XTENSA_UNDEFINED)
3086 {
3087 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3088 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3089 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3090 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3091 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3092 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3093 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3094 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3095 }
3096}
3097
3098
3099static bfd_boolean
7fa3d080 3100is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3101{
3102 init_call_opcodes ();
3103 return (opcode == callx0_op
3104 || opcode == callx4_op
3105 || opcode == callx8_op
3106 || opcode == callx12_op);
3107}
3108
3109
3110static bfd_boolean
7fa3d080 3111is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3112{
3113 init_call_opcodes ();
3114 return (opcode == call0_op
3115 || opcode == call4_op
3116 || opcode == call8_op
3117 || opcode == call12_op);
3118}
3119
3120
3121static bfd_boolean
7fa3d080 3122is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3123{
3124 init_call_opcodes ();
3125 return (opcode == call4_op
3126 || opcode == call8_op
3127 || opcode == call12_op
3128 || opcode == callx4_op
3129 || opcode == callx8_op
3130 || opcode == callx12_op);
3131}
3132
3133
43cd72b9
BW
3134static xtensa_opcode
3135get_const16_opcode (void)
3136{
3137 static bfd_boolean done_lookup = FALSE;
3138 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3139 if (!done_lookup)
3140 {
3141 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3142 done_lookup = TRUE;
3143 }
3144 return const16_opcode;
3145}
3146
3147
e0001a05
NC
3148static xtensa_opcode
3149get_l32r_opcode (void)
3150{
3151 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3152 static bfd_boolean done_lookup = FALSE;
3153
3154 if (!done_lookup)
e0001a05
NC
3155 {
3156 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3157 done_lookup = TRUE;
e0001a05
NC
3158 }
3159 return l32r_opcode;
3160}
3161
3162
3163static bfd_vma
7fa3d080 3164l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3165{
3166 bfd_vma offset;
3167
3168 offset = addr - ((pc+3) & -4);
3169 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3170 offset = (signed int) offset >> 2;
3171 BFD_ASSERT ((signed int) offset >> 16 == -1);
3172 return offset;
3173}
3174
3175
e0001a05 3176static int
7fa3d080 3177get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3178{
43cd72b9
BW
3179 xtensa_isa isa = xtensa_default_isa;
3180 int last_immed, last_opnd, opi;
3181
3182 if (opcode == XTENSA_UNDEFINED)
3183 return XTENSA_UNDEFINED;
3184
3185 /* Find the last visible PC-relative immediate operand for the opcode.
3186 If there are no PC-relative immediates, then choose the last visible
3187 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3188 last_immed = XTENSA_UNDEFINED;
3189 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3190 for (opi = last_opnd - 1; opi >= 0; opi--)
3191 {
3192 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3193 continue;
3194 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3195 {
3196 last_immed = opi;
3197 break;
3198 }
3199 if (last_immed == XTENSA_UNDEFINED
3200 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3201 last_immed = opi;
3202 }
3203 if (last_immed < 0)
3204 return XTENSA_UNDEFINED;
3205
3206 /* If the operand number was specified in an old-style relocation,
3207 check for consistency with the operand computed above. */
3208 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3209 {
3210 int reloc_opnd = r_type - R_XTENSA_OP0;
3211 if (reloc_opnd != last_immed)
3212 return XTENSA_UNDEFINED;
3213 }
3214
3215 return last_immed;
3216}
3217
3218
3219int
7fa3d080 3220get_relocation_slot (int r_type)
43cd72b9
BW
3221{
3222 switch (r_type)
3223 {
3224 case R_XTENSA_OP0:
3225 case R_XTENSA_OP1:
3226 case R_XTENSA_OP2:
3227 return 0;
3228
3229 default:
3230 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3231 return r_type - R_XTENSA_SLOT0_OP;
3232 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3233 return r_type - R_XTENSA_SLOT0_ALT;
3234 break;
3235 }
3236
3237 return XTENSA_UNDEFINED;
e0001a05
NC
3238}
3239
3240
3241/* Get the opcode for a relocation. */
3242
3243static xtensa_opcode
7fa3d080
BW
3244get_relocation_opcode (bfd *abfd,
3245 asection *sec,
3246 bfd_byte *contents,
3247 Elf_Internal_Rela *irel)
e0001a05
NC
3248{
3249 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3250 static xtensa_insnbuf sbuff = NULL;
e0001a05 3251 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3252 xtensa_format fmt;
3253 int slot;
e0001a05
NC
3254
3255 if (contents == NULL)
3256 return XTENSA_UNDEFINED;
3257
43cd72b9 3258 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3259 return XTENSA_UNDEFINED;
3260
3261 if (ibuff == NULL)
43cd72b9
BW
3262 {
3263 ibuff = xtensa_insnbuf_alloc (isa);
3264 sbuff = xtensa_insnbuf_alloc (isa);
3265 }
3266
e0001a05 3267 /* Decode the instruction. */
43cd72b9
BW
3268 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3269 sec->size - irel->r_offset);
3270 fmt = xtensa_format_decode (isa, ibuff);
3271 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3272 if (slot == XTENSA_UNDEFINED)
3273 return XTENSA_UNDEFINED;
3274 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3275 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3276}
3277
3278
3279bfd_boolean
7fa3d080
BW
3280is_l32r_relocation (bfd *abfd,
3281 asection *sec,
3282 bfd_byte *contents,
3283 Elf_Internal_Rela *irel)
e0001a05
NC
3284{
3285 xtensa_opcode opcode;
43cd72b9 3286 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3287 return FALSE;
43cd72b9 3288 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3289 return (opcode == get_l32r_opcode ());
3290}
3291
e0001a05 3292
43cd72b9 3293static bfd_size_type
7fa3d080
BW
3294get_asm_simplify_size (bfd_byte *contents,
3295 bfd_size_type content_len,
3296 bfd_size_type offset)
e0001a05 3297{
43cd72b9 3298 bfd_size_type insnlen, size = 0;
e0001a05 3299
43cd72b9
BW
3300 /* Decode the size of the next two instructions. */
3301 insnlen = insn_decode_len (contents, content_len, offset);
3302 if (insnlen == 0)
3303 return 0;
e0001a05 3304
43cd72b9 3305 size += insnlen;
e0001a05 3306
43cd72b9
BW
3307 insnlen = insn_decode_len (contents, content_len, offset + size);
3308 if (insnlen == 0)
3309 return 0;
e0001a05 3310
43cd72b9
BW
3311 size += insnlen;
3312 return size;
3313}
e0001a05 3314
43cd72b9
BW
3315
3316bfd_boolean
7fa3d080 3317is_alt_relocation (int r_type)
43cd72b9
BW
3318{
3319 return (r_type >= R_XTENSA_SLOT0_ALT
3320 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3321}
3322
3323
43cd72b9 3324bfd_boolean
7fa3d080 3325is_operand_relocation (int r_type)
e0001a05 3326{
43cd72b9
BW
3327 switch (r_type)
3328 {
3329 case R_XTENSA_OP0:
3330 case R_XTENSA_OP1:
3331 case R_XTENSA_OP2:
3332 return TRUE;
e0001a05 3333
43cd72b9
BW
3334 default:
3335 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3336 return TRUE;
3337 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3338 return TRUE;
3339 break;
3340 }
e0001a05 3341
43cd72b9 3342 return FALSE;
e0001a05
NC
3343}
3344
43cd72b9
BW
3345
3346#define MIN_INSN_LENGTH 2
e0001a05 3347
43cd72b9
BW
3348/* Return 0 if it fails to decode. */
3349
3350bfd_size_type
7fa3d080
BW
3351insn_decode_len (bfd_byte *contents,
3352 bfd_size_type content_len,
3353 bfd_size_type offset)
e0001a05 3354{
43cd72b9
BW
3355 int insn_len;
3356 xtensa_isa isa = xtensa_default_isa;
3357 xtensa_format fmt;
3358 static xtensa_insnbuf ibuff = NULL;
e0001a05 3359
43cd72b9
BW
3360 if (offset + MIN_INSN_LENGTH > content_len)
3361 return 0;
e0001a05 3362
43cd72b9
BW
3363 if (ibuff == NULL)
3364 ibuff = xtensa_insnbuf_alloc (isa);
3365 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3366 content_len - offset);
3367 fmt = xtensa_format_decode (isa, ibuff);
3368 if (fmt == XTENSA_UNDEFINED)
3369 return 0;
3370 insn_len = xtensa_format_length (isa, fmt);
3371 if (insn_len == XTENSA_UNDEFINED)
3372 return 0;
3373 return insn_len;
e0001a05
NC
3374}
3375
3376
43cd72b9
BW
3377/* Decode the opcode for a single slot instruction.
3378 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3379
43cd72b9 3380xtensa_opcode
7fa3d080
BW
3381insn_decode_opcode (bfd_byte *contents,
3382 bfd_size_type content_len,
3383 bfd_size_type offset,
3384 int slot)
e0001a05 3385{
e0001a05 3386 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3387 xtensa_format fmt;
3388 static xtensa_insnbuf insnbuf = NULL;
3389 static xtensa_insnbuf slotbuf = NULL;
3390
3391 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3392 return XTENSA_UNDEFINED;
3393
3394 if (insnbuf == NULL)
43cd72b9
BW
3395 {
3396 insnbuf = xtensa_insnbuf_alloc (isa);
3397 slotbuf = xtensa_insnbuf_alloc (isa);
3398 }
3399
3400 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3401 content_len - offset);
3402 fmt = xtensa_format_decode (isa, insnbuf);
3403 if (fmt == XTENSA_UNDEFINED)
e0001a05 3404 return XTENSA_UNDEFINED;
43cd72b9
BW
3405
3406 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3407 return XTENSA_UNDEFINED;
e0001a05 3408
43cd72b9
BW
3409 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3410 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3411}
e0001a05 3412
e0001a05 3413
43cd72b9
BW
3414/* The offset is the offset in the contents.
3415 The address is the address of that offset. */
e0001a05 3416
43cd72b9 3417static bfd_boolean
7fa3d080
BW
3418check_branch_target_aligned (bfd_byte *contents,
3419 bfd_size_type content_length,
3420 bfd_vma offset,
3421 bfd_vma address)
43cd72b9
BW
3422{
3423 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3424 if (insn_len == 0)
3425 return FALSE;
3426 return check_branch_target_aligned_address (address, insn_len);
3427}
e0001a05 3428
e0001a05 3429
43cd72b9 3430static bfd_boolean
7fa3d080
BW
3431check_loop_aligned (bfd_byte *contents,
3432 bfd_size_type content_length,
3433 bfd_vma offset,
3434 bfd_vma address)
e0001a05 3435{
43cd72b9
BW
3436 bfd_size_type loop_len, insn_len;
3437 xtensa_opcode opcode =
3438 insn_decode_opcode (contents, content_length, offset, 0);
3439 BFD_ASSERT (opcode != XTENSA_UNDEFINED);
3440 if (opcode != XTENSA_UNDEFINED)
3441 return FALSE;
3442 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode));
3443 if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode))
3444 return FALSE;
e0001a05 3445
43cd72b9
BW
3446 loop_len = insn_decode_len (contents, content_length, offset);
3447 BFD_ASSERT (loop_len != 0);
3448 if (loop_len == 0)
3449 return FALSE;
3450
3451 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3452 BFD_ASSERT (insn_len != 0);
3453 if (insn_len == 0)
3454 return FALSE;
e0001a05 3455
43cd72b9
BW
3456 return check_branch_target_aligned_address (address + loop_len, insn_len);
3457}
e0001a05 3458
e0001a05
NC
3459
3460static bfd_boolean
7fa3d080 3461check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3462{
43cd72b9
BW
3463 if (len == 8)
3464 return (addr % 8 == 0);
3465 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3466}
3467
43cd72b9
BW
3468\f
3469/* Instruction widening and narrowing. */
e0001a05 3470
7fa3d080
BW
3471/* When FLIX is available we need to access certain instructions only
3472 when they are 16-bit or 24-bit instructions. This table caches
3473 information about such instructions by walking through all the
3474 opcodes and finding the smallest single-slot format into which each
3475 can be encoded. */
3476
3477static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3478
3479
7fa3d080
BW
3480static void
3481init_op_single_format_table (void)
e0001a05 3482{
7fa3d080
BW
3483 xtensa_isa isa = xtensa_default_isa;
3484 xtensa_insnbuf ibuf;
3485 xtensa_opcode opcode;
3486 xtensa_format fmt;
3487 int num_opcodes;
3488
3489 if (op_single_fmt_table)
3490 return;
3491
3492 ibuf = xtensa_insnbuf_alloc (isa);
3493 num_opcodes = xtensa_isa_num_opcodes (isa);
3494
3495 op_single_fmt_table = (xtensa_format *)
3496 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3497 for (opcode = 0; opcode < num_opcodes; opcode++)
3498 {
3499 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3500 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3501 {
3502 if (xtensa_format_num_slots (isa, fmt) == 1
3503 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3504 {
3505 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3506 int fmt_length = xtensa_format_length (isa, fmt);
3507 if (old_fmt == XTENSA_UNDEFINED
3508 || fmt_length < xtensa_format_length (isa, old_fmt))
3509 op_single_fmt_table[opcode] = fmt;
3510 }
3511 }
3512 }
3513 xtensa_insnbuf_free (isa, ibuf);
3514}
3515
3516
3517static xtensa_format
3518get_single_format (xtensa_opcode opcode)
3519{
3520 init_op_single_format_table ();
3521 return op_single_fmt_table[opcode];
3522}
e0001a05 3523
e0001a05 3524
43cd72b9
BW
3525/* For the set of narrowable instructions we do NOT include the
3526 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3527 involved during linker relaxation that may require these to
3528 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3529 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3530
7fa3d080
BW
3531struct string_pair
3532{
3533 const char *wide;
3534 const char *narrow;
3535};
3536
43cd72b9 3537struct string_pair narrowable[] =
e0001a05 3538{
43cd72b9
BW
3539 { "add", "add.n" },
3540 { "addi", "addi.n" },
3541 { "addmi", "addi.n" },
3542 { "l32i", "l32i.n" },
3543 { "movi", "movi.n" },
3544 { "ret", "ret.n" },
3545 { "retw", "retw.n" },
3546 { "s32i", "s32i.n" },
3547 { "or", "mov.n" } /* special case only when op1 == op2 */
3548};
e0001a05 3549
43cd72b9 3550struct string_pair widenable[] =
e0001a05 3551{
43cd72b9
BW
3552 { "add", "add.n" },
3553 { "addi", "addi.n" },
3554 { "addmi", "addi.n" },
3555 { "beqz", "beqz.n" },
3556 { "bnez", "bnez.n" },
3557 { "l32i", "l32i.n" },
3558 { "movi", "movi.n" },
3559 { "ret", "ret.n" },
3560 { "retw", "retw.n" },
3561 { "s32i", "s32i.n" },
3562 { "or", "mov.n" } /* special case only when op1 == op2 */
3563};
e0001a05
NC
3564
3565
43cd72b9
BW
3566/* Attempt to narrow an instruction. Return true if the narrowing is
3567 valid. If the do_it parameter is non-zero, then perform the action
3568 in-place directly into the contents. Otherwise, do not modify the
3569 contents. The set of valid narrowing are specified by a string table
3570 but require some special case operand checks in some cases. */
3571
e0001a05 3572static bfd_boolean
7fa3d080
BW
3573narrow_instruction (bfd_byte *contents,
3574 bfd_size_type content_length,
3575 bfd_size_type offset,
3576 bfd_boolean do_it)
e0001a05 3577{
43cd72b9
BW
3578 xtensa_opcode opcode;
3579 bfd_size_type insn_len, opi;
3580 xtensa_isa isa = xtensa_default_isa;
3581 xtensa_format fmt, o_fmt;
e0001a05 3582
43cd72b9
BW
3583 static xtensa_insnbuf insnbuf = NULL;
3584 static xtensa_insnbuf slotbuf = NULL;
3585 static xtensa_insnbuf o_insnbuf = NULL;
3586 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3587
43cd72b9
BW
3588 if (insnbuf == NULL)
3589 {
3590 insnbuf = xtensa_insnbuf_alloc (isa);
3591 slotbuf = xtensa_insnbuf_alloc (isa);
3592 o_insnbuf = xtensa_insnbuf_alloc (isa);
3593 o_slotbuf = xtensa_insnbuf_alloc (isa);
3594 }
e0001a05 3595
43cd72b9 3596 BFD_ASSERT (offset < content_length);
e0001a05 3597
43cd72b9
BW
3598 if (content_length < 2)
3599 return FALSE;
e0001a05 3600
43cd72b9
BW
3601 /* We will hand-code a few of these for a little while.
3602 These have all been specified in the assembler aleady. */
3603 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3604 content_length - offset);
3605 fmt = xtensa_format_decode (isa, insnbuf);
3606 if (xtensa_format_num_slots (isa, fmt) != 1)
3607 return FALSE;
e0001a05 3608
43cd72b9
BW
3609 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3610 return FALSE;
e0001a05 3611
43cd72b9
BW
3612 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3613 if (opcode == XTENSA_UNDEFINED)
3614 return FALSE;
3615 insn_len = xtensa_format_length (isa, fmt);
3616 if (insn_len > content_length)
3617 return FALSE;
e0001a05 3618
43cd72b9
BW
3619 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi)
3620 {
3621 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3622
43cd72b9
BW
3623 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3624 {
3625 uint32 value, newval;
3626 int i, operand_count, o_operand_count;
3627 xtensa_opcode o_opcode;
e0001a05 3628
43cd72b9
BW
3629 /* Address does not matter in this case. We might need to
3630 fix it to handle branches/jumps. */
3631 bfd_vma self_address = 0;
e0001a05 3632
43cd72b9
BW
3633 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3634 if (o_opcode == XTENSA_UNDEFINED)
3635 return FALSE;
3636 o_fmt = get_single_format (o_opcode);
3637 if (o_fmt == XTENSA_UNDEFINED)
3638 return FALSE;
e0001a05 3639
43cd72b9
BW
3640 if (xtensa_format_length (isa, fmt) != 3
3641 || xtensa_format_length (isa, o_fmt) != 2)
3642 return FALSE;
e0001a05 3643
43cd72b9
BW
3644 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3645 operand_count = xtensa_opcode_num_operands (isa, opcode);
3646 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3647
43cd72b9
BW
3648 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3649 return FALSE;
e0001a05 3650
43cd72b9
BW
3651 if (!is_or)
3652 {
3653 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3654 return FALSE;
3655 }
3656 else
3657 {
3658 uint32 rawval0, rawval1, rawval2;
e0001a05 3659
43cd72b9
BW
3660 if (o_operand_count + 1 != operand_count)
3661 return FALSE;
3662 if (xtensa_operand_get_field (isa, opcode, 0,
3663 fmt, 0, slotbuf, &rawval0) != 0)
3664 return FALSE;
3665 if (xtensa_operand_get_field (isa, opcode, 1,
3666 fmt, 0, slotbuf, &rawval1) != 0)
3667 return FALSE;
3668 if (xtensa_operand_get_field (isa, opcode, 2,
3669 fmt, 0, slotbuf, &rawval2) != 0)
3670 return FALSE;
e0001a05 3671
43cd72b9
BW
3672 if (rawval1 != rawval2)
3673 return FALSE;
3674 if (rawval0 == rawval1) /* it is a nop */
3675 return FALSE;
3676 }
e0001a05 3677
43cd72b9
BW
3678 for (i = 0; i < o_operand_count; ++i)
3679 {
3680 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3681 slotbuf, &value)
3682 || xtensa_operand_decode (isa, opcode, i, &value))
3683 return FALSE;
e0001a05 3684
43cd72b9
BW
3685 /* PC-relative branches need adjustment, but
3686 the PC-rel operand will always have a relocation. */
3687 newval = value;
3688 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3689 self_address)
3690 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3691 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3692 o_slotbuf, newval))
3693 return FALSE;
3694 }
e0001a05 3695
43cd72b9
BW
3696 if (xtensa_format_set_slot (isa, o_fmt, 0,
3697 o_insnbuf, o_slotbuf) != 0)
3698 return FALSE;
e0001a05 3699
43cd72b9
BW
3700 if (do_it)
3701 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3702 content_length - offset);
3703 return TRUE;
3704 }
3705 }
3706 return FALSE;
3707}
e0001a05 3708
e0001a05 3709
43cd72b9
BW
3710/* Attempt to widen an instruction. Return true if the widening is
3711 valid. If the do_it parameter is non-zero, then the action should
3712 be performed inplace into the contents. Otherwise, do not modify
3713 the contents. The set of valid widenings are specified by a string
3714 table but require some special case operand checks in some
3715 cases. */
e0001a05 3716
43cd72b9 3717static bfd_boolean
7fa3d080
BW
3718widen_instruction (bfd_byte *contents,
3719 bfd_size_type content_length,
3720 bfd_size_type offset,
3721 bfd_boolean do_it)
e0001a05 3722{
43cd72b9
BW
3723 xtensa_opcode opcode;
3724 bfd_size_type insn_len, opi;
3725 xtensa_isa isa = xtensa_default_isa;
3726 xtensa_format fmt, o_fmt;
e0001a05 3727
43cd72b9
BW
3728 static xtensa_insnbuf insnbuf = NULL;
3729 static xtensa_insnbuf slotbuf = NULL;
3730 static xtensa_insnbuf o_insnbuf = NULL;
3731 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3732
43cd72b9
BW
3733 if (insnbuf == NULL)
3734 {
3735 insnbuf = xtensa_insnbuf_alloc (isa);
3736 slotbuf = xtensa_insnbuf_alloc (isa);
3737 o_insnbuf = xtensa_insnbuf_alloc (isa);
3738 o_slotbuf = xtensa_insnbuf_alloc (isa);
3739 }
e0001a05 3740
43cd72b9 3741 BFD_ASSERT (offset < content_length);
2c8c90bc 3742
43cd72b9 3743 if (content_length < 2)
e0001a05
NC
3744 return FALSE;
3745
43cd72b9
BW
3746 /* We will hand code a few of these for a little while.
3747 These have all been specified in the assembler aleady. */
3748 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3749 content_length - offset);
3750 fmt = xtensa_format_decode (isa, insnbuf);
3751 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3752 return FALSE;
3753
43cd72b9 3754 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3755 return FALSE;
3756
43cd72b9
BW
3757 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3758 if (opcode == XTENSA_UNDEFINED)
e0001a05 3759 return FALSE;
43cd72b9
BW
3760 insn_len = xtensa_format_length (isa, fmt);
3761 if (insn_len > content_length)
3762 return FALSE;
3763
3764 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi)
e0001a05 3765 {
43cd72b9
BW
3766 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3767 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3768 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3769
43cd72b9
BW
3770 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3771 {
3772 uint32 value, newval;
3773 int i, operand_count, o_operand_count, check_operand_count;
3774 xtensa_opcode o_opcode;
e0001a05 3775
43cd72b9
BW
3776 /* Address does not matter in this case. We might need to fix it
3777 to handle branches/jumps. */
3778 bfd_vma self_address = 0;
e0001a05 3779
43cd72b9
BW
3780 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3781 if (o_opcode == XTENSA_UNDEFINED)
3782 return FALSE;
3783 o_fmt = get_single_format (o_opcode);
3784 if (o_fmt == XTENSA_UNDEFINED)
3785 return FALSE;
e0001a05 3786
43cd72b9
BW
3787 if (xtensa_format_length (isa, fmt) != 2
3788 || xtensa_format_length (isa, o_fmt) != 3)
3789 return FALSE;
e0001a05 3790
43cd72b9
BW
3791 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3792 operand_count = xtensa_opcode_num_operands (isa, opcode);
3793 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3794 check_operand_count = o_operand_count;
e0001a05 3795
43cd72b9
BW
3796 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3797 return FALSE;
e0001a05 3798
43cd72b9
BW
3799 if (!is_or)
3800 {
3801 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3802 return FALSE;
3803 }
3804 else
3805 {
3806 uint32 rawval0, rawval1;
3807
3808 if (o_operand_count != operand_count + 1)
3809 return FALSE;
3810 if (xtensa_operand_get_field (isa, opcode, 0,
3811 fmt, 0, slotbuf, &rawval0) != 0)
3812 return FALSE;
3813 if (xtensa_operand_get_field (isa, opcode, 1,
3814 fmt, 0, slotbuf, &rawval1) != 0)
3815 return FALSE;
3816 if (rawval0 == rawval1) /* it is a nop */
3817 return FALSE;
3818 }
3819 if (is_branch)
3820 check_operand_count--;
3821
3822 for (i = 0; i < check_operand_count; ++i)
3823 {
3824 int new_i = i;
3825 if (is_or && i == o_operand_count - 1)
3826 new_i = i - 1;
3827 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3828 slotbuf, &value)
3829 || xtensa_operand_decode (isa, opcode, new_i, &value))
3830 return FALSE;
3831
3832 /* PC-relative branches need adjustment, but
3833 the PC-rel operand will always have a relocation. */
3834 newval = value;
3835 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3836 self_address)
3837 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3838 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3839 o_slotbuf, newval))
3840 return FALSE;
3841 }
3842
3843 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3844 return FALSE;
3845
3846 if (do_it)
3847 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3848 content_length - offset);
3849 return TRUE;
3850 }
3851 }
3852 return FALSE;
e0001a05
NC
3853}
3854
43cd72b9
BW
3855\f
3856/* Code for transforming CALLs at link-time. */
e0001a05 3857
43cd72b9 3858static bfd_reloc_status_type
7fa3d080
BW
3859elf_xtensa_do_asm_simplify (bfd_byte *contents,
3860 bfd_vma address,
3861 bfd_vma content_length,
3862 char **error_message)
e0001a05 3863{
43cd72b9
BW
3864 static xtensa_insnbuf insnbuf = NULL;
3865 static xtensa_insnbuf slotbuf = NULL;
3866 xtensa_format core_format = XTENSA_UNDEFINED;
3867 xtensa_opcode opcode;
3868 xtensa_opcode direct_call_opcode;
3869 xtensa_isa isa = xtensa_default_isa;
3870 bfd_byte *chbuf = contents + address;
3871 int opn;
e0001a05 3872
43cd72b9 3873 if (insnbuf == NULL)
e0001a05 3874 {
43cd72b9
BW
3875 insnbuf = xtensa_insnbuf_alloc (isa);
3876 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3877 }
e0001a05 3878
43cd72b9
BW
3879 if (content_length < address)
3880 {
3881 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3882 return bfd_reloc_other;
3883 }
e0001a05 3884
43cd72b9
BW
3885 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3886 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3887 if (direct_call_opcode == XTENSA_UNDEFINED)
3888 {
3889 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3890 return bfd_reloc_other;
3891 }
3892
3893 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3894 core_format = xtensa_format_lookup (isa, "x24");
3895 opcode = xtensa_opcode_lookup (isa, "or");
3896 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3897 for (opn = 0; opn < 3; opn++)
3898 {
3899 uint32 regno = 1;
3900 xtensa_operand_encode (isa, opcode, opn, &regno);
3901 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3902 slotbuf, regno);
3903 }
3904 xtensa_format_encode (isa, core_format, insnbuf);
3905 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3906 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3907
43cd72b9
BW
3908 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3909 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3910 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3911
43cd72b9
BW
3912 xtensa_format_encode (isa, core_format, insnbuf);
3913 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3914 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3915 content_length - address - 3);
e0001a05 3916
43cd72b9
BW
3917 return bfd_reloc_ok;
3918}
e0001a05 3919
e0001a05 3920
43cd72b9 3921static bfd_reloc_status_type
7fa3d080
BW
3922contract_asm_expansion (bfd_byte *contents,
3923 bfd_vma content_length,
3924 Elf_Internal_Rela *irel,
3925 char **error_message)
43cd72b9
BW
3926{
3927 bfd_reloc_status_type retval =
3928 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3929 error_message);
e0001a05 3930
43cd72b9
BW
3931 if (retval != bfd_reloc_ok)
3932 return bfd_reloc_dangerous;
e0001a05 3933
43cd72b9
BW
3934 /* Update the irel->r_offset field so that the right immediate and
3935 the right instruction are modified during the relocation. */
3936 irel->r_offset += 3;
3937 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3938 return bfd_reloc_ok;
3939}
e0001a05 3940
e0001a05 3941
43cd72b9 3942static xtensa_opcode
7fa3d080 3943swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3944{
43cd72b9 3945 init_call_opcodes ();
e0001a05 3946
43cd72b9
BW
3947 if (opcode == callx0_op) return call0_op;
3948 if (opcode == callx4_op) return call4_op;
3949 if (opcode == callx8_op) return call8_op;
3950 if (opcode == callx12_op) return call12_op;
e0001a05 3951
43cd72b9
BW
3952 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3953 return XTENSA_UNDEFINED;
3954}
e0001a05 3955
e0001a05 3956
43cd72b9
BW
3957/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3958 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3959 If not, return XTENSA_UNDEFINED. */
e0001a05 3960
43cd72b9
BW
3961#define L32R_TARGET_REG_OPERAND 0
3962#define CONST16_TARGET_REG_OPERAND 0
3963#define CALLN_SOURCE_OPERAND 0
e0001a05 3964
43cd72b9 3965static xtensa_opcode
7fa3d080 3966get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3967{
43cd72b9
BW
3968 static xtensa_insnbuf insnbuf = NULL;
3969 static xtensa_insnbuf slotbuf = NULL;
3970 xtensa_format fmt;
3971 xtensa_opcode opcode;
3972 xtensa_isa isa = xtensa_default_isa;
3973 uint32 regno, const16_regno, call_regno;
3974 int offset = 0;
e0001a05 3975
43cd72b9 3976 if (insnbuf == NULL)
e0001a05 3977 {
43cd72b9
BW
3978 insnbuf = xtensa_insnbuf_alloc (isa);
3979 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3980 }
43cd72b9
BW
3981
3982 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3983 fmt = xtensa_format_decode (isa, insnbuf);
3984 if (fmt == XTENSA_UNDEFINED
3985 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3986 return XTENSA_UNDEFINED;
3987
3988 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3989 if (opcode == XTENSA_UNDEFINED)
3990 return XTENSA_UNDEFINED;
3991
3992 if (opcode == get_l32r_opcode ())
e0001a05 3993 {
43cd72b9
BW
3994 if (p_uses_l32r)
3995 *p_uses_l32r = TRUE;
3996 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3997 fmt, 0, slotbuf, &regno)
3998 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3999 &regno))
4000 return XTENSA_UNDEFINED;
e0001a05 4001 }
43cd72b9 4002 else if (opcode == get_const16_opcode ())
e0001a05 4003 {
43cd72b9
BW
4004 if (p_uses_l32r)
4005 *p_uses_l32r = FALSE;
4006 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4007 fmt, 0, slotbuf, &regno)
4008 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4009 &regno))
4010 return XTENSA_UNDEFINED;
4011
4012 /* Check that the next instruction is also CONST16. */
4013 offset += xtensa_format_length (isa, fmt);
4014 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4015 fmt = xtensa_format_decode (isa, insnbuf);
4016 if (fmt == XTENSA_UNDEFINED
4017 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4018 return XTENSA_UNDEFINED;
4019 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4020 if (opcode != get_const16_opcode ())
4021 return XTENSA_UNDEFINED;
4022
4023 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4024 fmt, 0, slotbuf, &const16_regno)
4025 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4026 &const16_regno)
4027 || const16_regno != regno)
4028 return XTENSA_UNDEFINED;
e0001a05 4029 }
43cd72b9
BW
4030 else
4031 return XTENSA_UNDEFINED;
e0001a05 4032
43cd72b9
BW
4033 /* Next instruction should be an CALLXn with operand 0 == regno. */
4034 offset += xtensa_format_length (isa, fmt);
4035 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4036 fmt = xtensa_format_decode (isa, insnbuf);
4037 if (fmt == XTENSA_UNDEFINED
4038 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4039 return XTENSA_UNDEFINED;
4040 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4041 if (opcode == XTENSA_UNDEFINED
4042 || !is_indirect_call_opcode (opcode))
4043 return XTENSA_UNDEFINED;
e0001a05 4044
43cd72b9
BW
4045 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4046 fmt, 0, slotbuf, &call_regno)
4047 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4048 &call_regno))
4049 return XTENSA_UNDEFINED;
e0001a05 4050
43cd72b9
BW
4051 if (call_regno != regno)
4052 return XTENSA_UNDEFINED;
e0001a05 4053
43cd72b9
BW
4054 return opcode;
4055}
e0001a05 4056
43cd72b9
BW
4057\f
4058/* Data structures used during relaxation. */
e0001a05 4059
43cd72b9 4060/* r_reloc: relocation values. */
e0001a05 4061
43cd72b9
BW
4062/* Through the relaxation process, we need to keep track of the values
4063 that will result from evaluating relocations. The standard ELF
4064 relocation structure is not sufficient for this purpose because we're
4065 operating on multiple input files at once, so we need to know which
4066 input file a relocation refers to. The r_reloc structure thus
4067 records both the input file (bfd) and ELF relocation.
e0001a05 4068
43cd72b9
BW
4069 For efficiency, an r_reloc also contains a "target_offset" field to
4070 cache the target-section-relative offset value that is represented by
4071 the relocation.
4072
4073 The r_reloc also contains a virtual offset that allows multiple
4074 inserted literals to be placed at the same "address" with
4075 different offsets. */
e0001a05 4076
43cd72b9 4077typedef struct r_reloc_struct r_reloc;
e0001a05 4078
43cd72b9 4079struct r_reloc_struct
e0001a05 4080{
43cd72b9
BW
4081 bfd *abfd;
4082 Elf_Internal_Rela rela;
e0001a05 4083 bfd_vma target_offset;
43cd72b9 4084 bfd_vma virtual_offset;
e0001a05
NC
4085};
4086
e0001a05 4087
43cd72b9
BW
4088/* The r_reloc structure is included by value in literal_value, but not
4089 every literal_value has an associated relocation -- some are simple
4090 constants. In such cases, we set all the fields in the r_reloc
4091 struct to zero. The r_reloc_is_const function should be used to
4092 detect this case. */
e0001a05 4093
43cd72b9 4094static bfd_boolean
7fa3d080 4095r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4096{
43cd72b9 4097 return (r_rel->abfd == NULL);
e0001a05
NC
4098}
4099
4100
43cd72b9 4101static bfd_vma
7fa3d080 4102r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4103{
43cd72b9
BW
4104 bfd_vma target_offset;
4105 unsigned long r_symndx;
e0001a05 4106
43cd72b9
BW
4107 BFD_ASSERT (!r_reloc_is_const (r_rel));
4108 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4109 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4110 return (target_offset + r_rel->rela.r_addend);
4111}
e0001a05 4112
e0001a05 4113
43cd72b9 4114static struct elf_link_hash_entry *
7fa3d080 4115r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4116{
43cd72b9
BW
4117 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4118 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4119}
e0001a05 4120
43cd72b9
BW
4121
4122static asection *
7fa3d080 4123r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4124{
4125 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4126 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4127}
e0001a05
NC
4128
4129
4130static bfd_boolean
7fa3d080 4131r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4132{
43cd72b9
BW
4133 asection *sec;
4134 if (r_rel == NULL)
e0001a05 4135 return FALSE;
e0001a05 4136
43cd72b9
BW
4137 sec = r_reloc_get_section (r_rel);
4138 if (sec == bfd_abs_section_ptr
4139 || sec == bfd_com_section_ptr
4140 || sec == bfd_und_section_ptr)
4141 return FALSE;
4142 return TRUE;
e0001a05
NC
4143}
4144
4145
7fa3d080
BW
4146static void
4147r_reloc_init (r_reloc *r_rel,
4148 bfd *abfd,
4149 Elf_Internal_Rela *irel,
4150 bfd_byte *contents,
4151 bfd_size_type content_length)
4152{
4153 int r_type;
4154 reloc_howto_type *howto;
4155
4156 if (irel)
4157 {
4158 r_rel->rela = *irel;
4159 r_rel->abfd = abfd;
4160 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4161 r_rel->virtual_offset = 0;
4162 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4163 howto = &elf_howto_table[r_type];
4164 if (howto->partial_inplace)
4165 {
4166 bfd_vma inplace_val;
4167 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4168
4169 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4170 r_rel->target_offset += inplace_val;
4171 }
4172 }
4173 else
4174 memset (r_rel, 0, sizeof (r_reloc));
4175}
4176
4177
43cd72b9
BW
4178#if DEBUG
4179
e0001a05 4180static void
7fa3d080 4181print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4182{
43cd72b9
BW
4183 if (r_reloc_is_defined (r_rel))
4184 {
4185 asection *sec = r_reloc_get_section (r_rel);
4186 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4187 }
4188 else if (r_reloc_get_hash_entry (r_rel))
4189 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4190 else
4191 fprintf (fp, " ?? + ");
e0001a05 4192
43cd72b9
BW
4193 fprintf_vma (fp, r_rel->target_offset);
4194 if (r_rel->virtual_offset)
4195 {
4196 fprintf (fp, " + ");
4197 fprintf_vma (fp, r_rel->virtual_offset);
4198 }
4199
4200 fprintf (fp, ")");
4201}
e0001a05 4202
43cd72b9 4203#endif /* DEBUG */
e0001a05 4204
43cd72b9
BW
4205\f
4206/* source_reloc: relocations that reference literals. */
e0001a05 4207
43cd72b9
BW
4208/* To determine whether literals can be coalesced, we need to first
4209 record all the relocations that reference the literals. The
4210 source_reloc structure below is used for this purpose. The
4211 source_reloc entries are kept in a per-literal-section array, sorted
4212 by offset within the literal section (i.e., target offset).
e0001a05 4213
43cd72b9
BW
4214 The source_sec and r_rel.rela.r_offset fields identify the source of
4215 the relocation. The r_rel field records the relocation value, i.e.,
4216 the offset of the literal being referenced. The opnd field is needed
4217 to determine the range of the immediate field to which the relocation
4218 applies, so we can determine whether another literal with the same
4219 value is within range. The is_null field is true when the relocation
4220 is being removed (e.g., when an L32R is being removed due to a CALLX
4221 that is converted to a direct CALL). */
e0001a05 4222
43cd72b9
BW
4223typedef struct source_reloc_struct source_reloc;
4224
4225struct source_reloc_struct
e0001a05 4226{
43cd72b9
BW
4227 asection *source_sec;
4228 r_reloc r_rel;
4229 xtensa_opcode opcode;
4230 int opnd;
4231 bfd_boolean is_null;
4232 bfd_boolean is_abs_literal;
4233};
e0001a05 4234
e0001a05 4235
e0001a05 4236static void
7fa3d080
BW
4237init_source_reloc (source_reloc *reloc,
4238 asection *source_sec,
4239 const r_reloc *r_rel,
4240 xtensa_opcode opcode,
4241 int opnd,
4242 bfd_boolean is_abs_literal)
e0001a05 4243{
43cd72b9
BW
4244 reloc->source_sec = source_sec;
4245 reloc->r_rel = *r_rel;
4246 reloc->opcode = opcode;
4247 reloc->opnd = opnd;
4248 reloc->is_null = FALSE;
4249 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4250}
4251
e0001a05 4252
43cd72b9
BW
4253/* Find the source_reloc for a particular source offset and relocation
4254 type. Note that the array is sorted by _target_ offset, so this is
4255 just a linear search. */
e0001a05 4256
43cd72b9 4257static source_reloc *
7fa3d080
BW
4258find_source_reloc (source_reloc *src_relocs,
4259 int src_count,
4260 asection *sec,
4261 Elf_Internal_Rela *irel)
e0001a05 4262{
43cd72b9 4263 int i;
e0001a05 4264
43cd72b9
BW
4265 for (i = 0; i < src_count; i++)
4266 {
4267 if (src_relocs[i].source_sec == sec
4268 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4269 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4270 == ELF32_R_TYPE (irel->r_info)))
4271 return &src_relocs[i];
4272 }
e0001a05 4273
43cd72b9 4274 return NULL;
e0001a05
NC
4275}
4276
4277
43cd72b9 4278static int
7fa3d080 4279source_reloc_compare (const void *ap, const void *bp)
e0001a05 4280{
43cd72b9
BW
4281 const source_reloc *a = (const source_reloc *) ap;
4282 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4283
43cd72b9
BW
4284 if (a->r_rel.target_offset != b->r_rel.target_offset)
4285 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4286
43cd72b9
BW
4287 /* We don't need to sort on these criteria for correctness,
4288 but enforcing a more strict ordering prevents unstable qsort
4289 from behaving differently with different implementations.
4290 Without the code below we get correct but different results
4291 on Solaris 2.7 and 2.8. We would like to always produce the
4292 same results no matter the host. */
4293
4294 if ((!a->is_null) - (!b->is_null))
4295 return ((!a->is_null) - (!b->is_null));
4296 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4297}
4298
43cd72b9
BW
4299\f
4300/* Literal values and value hash tables. */
e0001a05 4301
43cd72b9
BW
4302/* Literals with the same value can be coalesced. The literal_value
4303 structure records the value of a literal: the "r_rel" field holds the
4304 information from the relocation on the literal (if there is one) and
4305 the "value" field holds the contents of the literal word itself.
e0001a05 4306
43cd72b9
BW
4307 The value_map structure records a literal value along with the
4308 location of a literal holding that value. The value_map hash table
4309 is indexed by the literal value, so that we can quickly check if a
4310 particular literal value has been seen before and is thus a candidate
4311 for coalescing. */
e0001a05 4312
43cd72b9
BW
4313typedef struct literal_value_struct literal_value;
4314typedef struct value_map_struct value_map;
4315typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4316
43cd72b9 4317struct literal_value_struct
e0001a05 4318{
43cd72b9
BW
4319 r_reloc r_rel;
4320 unsigned long value;
4321 bfd_boolean is_abs_literal;
4322};
4323
4324struct value_map_struct
4325{
4326 literal_value val; /* The literal value. */
4327 r_reloc loc; /* Location of the literal. */
4328 value_map *next;
4329};
4330
4331struct value_map_hash_table_struct
4332{
4333 unsigned bucket_count;
4334 value_map **buckets;
4335 unsigned count;
4336 bfd_boolean has_last_loc;
4337 r_reloc last_loc;
4338};
4339
4340
e0001a05 4341static void
7fa3d080
BW
4342init_literal_value (literal_value *lit,
4343 const r_reloc *r_rel,
4344 unsigned long value,
4345 bfd_boolean is_abs_literal)
e0001a05 4346{
43cd72b9
BW
4347 lit->r_rel = *r_rel;
4348 lit->value = value;
4349 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4350}
4351
4352
43cd72b9 4353static bfd_boolean
7fa3d080
BW
4354literal_value_equal (const literal_value *src1,
4355 const literal_value *src2,
4356 bfd_boolean final_static_link)
e0001a05 4357{
43cd72b9 4358 struct elf_link_hash_entry *h1, *h2;
e0001a05 4359
43cd72b9
BW
4360 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4361 return FALSE;
e0001a05 4362
43cd72b9
BW
4363 if (r_reloc_is_const (&src1->r_rel))
4364 return (src1->value == src2->value);
e0001a05 4365
43cd72b9
BW
4366 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4367 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4368 return FALSE;
e0001a05 4369
43cd72b9
BW
4370 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4371 return FALSE;
4372
4373 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4374 return FALSE;
4375
4376 if (src1->value != src2->value)
4377 return FALSE;
4378
4379 /* Now check for the same section (if defined) or the same elf_hash
4380 (if undefined or weak). */
4381 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4382 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4383 if (r_reloc_is_defined (&src1->r_rel)
4384 && (final_static_link
4385 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4386 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4387 {
4388 if (r_reloc_get_section (&src1->r_rel)
4389 != r_reloc_get_section (&src2->r_rel))
4390 return FALSE;
4391 }
4392 else
4393 {
4394 /* Require that the hash entries (i.e., symbols) be identical. */
4395 if (h1 != h2 || h1 == 0)
4396 return FALSE;
4397 }
4398
4399 if (src1->is_abs_literal != src2->is_abs_literal)
4400 return FALSE;
4401
4402 return TRUE;
e0001a05
NC
4403}
4404
e0001a05 4405
43cd72b9
BW
4406/* Must be power of 2. */
4407#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4408
43cd72b9 4409static value_map_hash_table *
7fa3d080 4410value_map_hash_table_init (void)
43cd72b9
BW
4411{
4412 value_map_hash_table *values;
e0001a05 4413
43cd72b9
BW
4414 values = (value_map_hash_table *)
4415 bfd_zmalloc (sizeof (value_map_hash_table));
4416 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4417 values->count = 0;
4418 values->buckets = (value_map **)
4419 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4420 if (values->buckets == NULL)
4421 {
4422 free (values);
4423 return NULL;
4424 }
4425 values->has_last_loc = FALSE;
4426
4427 return values;
4428}
4429
4430
4431static void
7fa3d080 4432value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4433{
43cd72b9
BW
4434 free (table->buckets);
4435 free (table);
4436}
4437
4438
4439static unsigned
7fa3d080 4440hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4441{
4442 return (val >> 2) + (val >> 10);
4443}
4444
4445
4446static unsigned
7fa3d080 4447literal_value_hash (const literal_value *src)
43cd72b9
BW
4448{
4449 unsigned hash_val;
e0001a05 4450
43cd72b9
BW
4451 hash_val = hash_bfd_vma (src->value);
4452 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4453 {
43cd72b9
BW
4454 void *sec_or_hash;
4455
4456 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4457 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4458 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4459
4460 /* Now check for the same section and the same elf_hash. */
4461 if (r_reloc_is_defined (&src->r_rel))
4462 sec_or_hash = r_reloc_get_section (&src->r_rel);
4463 else
4464 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4465 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4466 }
43cd72b9
BW
4467 return hash_val;
4468}
e0001a05 4469
e0001a05 4470
43cd72b9 4471/* Check if the specified literal_value has been seen before. */
e0001a05 4472
43cd72b9 4473static value_map *
7fa3d080
BW
4474value_map_get_cached_value (value_map_hash_table *map,
4475 const literal_value *val,
4476 bfd_boolean final_static_link)
43cd72b9
BW
4477{
4478 value_map *map_e;
4479 value_map *bucket;
4480 unsigned idx;
4481
4482 idx = literal_value_hash (val);
4483 idx = idx & (map->bucket_count - 1);
4484 bucket = map->buckets[idx];
4485 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4486 {
43cd72b9
BW
4487 if (literal_value_equal (&map_e->val, val, final_static_link))
4488 return map_e;
4489 }
4490 return NULL;
4491}
e0001a05 4492
e0001a05 4493
43cd72b9
BW
4494/* Record a new literal value. It is illegal to call this if VALUE
4495 already has an entry here. */
4496
4497static value_map *
7fa3d080
BW
4498add_value_map (value_map_hash_table *map,
4499 const literal_value *val,
4500 const r_reloc *loc,
4501 bfd_boolean final_static_link)
43cd72b9
BW
4502{
4503 value_map **bucket_p;
4504 unsigned idx;
4505
4506 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4507 if (val_e == NULL)
4508 {
4509 bfd_set_error (bfd_error_no_memory);
4510 return NULL;
e0001a05
NC
4511 }
4512
43cd72b9
BW
4513 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4514 val_e->val = *val;
4515 val_e->loc = *loc;
4516
4517 idx = literal_value_hash (val);
4518 idx = idx & (map->bucket_count - 1);
4519 bucket_p = &map->buckets[idx];
4520
4521 val_e->next = *bucket_p;
4522 *bucket_p = val_e;
4523 map->count++;
4524 /* FIXME: Consider resizing the hash table if we get too many entries. */
4525
4526 return val_e;
e0001a05
NC
4527}
4528
43cd72b9
BW
4529\f
4530/* Lists of text actions (ta_) for narrowing, widening, longcall
4531 conversion, space fill, code & literal removal, etc. */
4532
4533/* The following text actions are generated:
4534
4535 "ta_remove_insn" remove an instruction or instructions
4536 "ta_remove_longcall" convert longcall to call
4537 "ta_convert_longcall" convert longcall to nop/call
4538 "ta_narrow_insn" narrow a wide instruction
4539 "ta_widen" widen a narrow instruction
4540 "ta_fill" add fill or remove fill
4541 removed < 0 is a fill; branches to the fill address will be
4542 changed to address + fill size (e.g., address - removed)
4543 removed >= 0 branches to the fill address will stay unchanged
4544 "ta_remove_literal" remove a literal; this action is
4545 indicated when a literal is removed
4546 or replaced.
4547 "ta_add_literal" insert a new literal; this action is
4548 indicated when a literal has been moved.
4549 It may use a virtual_offset because
4550 multiple literals can be placed at the
4551 same location.
4552
4553 For each of these text actions, we also record the number of bytes
4554 removed by performing the text action. In the case of a "ta_widen"
4555 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4556
4557typedef struct text_action_struct text_action;
4558typedef struct text_action_list_struct text_action_list;
4559typedef enum text_action_enum_t text_action_t;
4560
4561enum text_action_enum_t
4562{
4563 ta_none,
4564 ta_remove_insn, /* removed = -size */
4565 ta_remove_longcall, /* removed = -size */
4566 ta_convert_longcall, /* removed = 0 */
4567 ta_narrow_insn, /* removed = -1 */
4568 ta_widen_insn, /* removed = +1 */
4569 ta_fill, /* removed = +size */
4570 ta_remove_literal,
4571 ta_add_literal
4572};
e0001a05 4573
e0001a05 4574
43cd72b9
BW
4575/* Structure for a text action record. */
4576struct text_action_struct
e0001a05 4577{
43cd72b9
BW
4578 text_action_t action;
4579 asection *sec; /* Optional */
4580 bfd_vma offset;
4581 bfd_vma virtual_offset; /* Zero except for adding literals. */
4582 int removed_bytes;
4583 literal_value value; /* Only valid when adding literals. */
e0001a05 4584
43cd72b9
BW
4585 text_action *next;
4586};
e0001a05 4587
e0001a05 4588
43cd72b9
BW
4589/* List of all of the actions taken on a text section. */
4590struct text_action_list_struct
4591{
4592 text_action *head;
4593};
e0001a05 4594
e0001a05 4595
7fa3d080
BW
4596static text_action *
4597find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4598{
4599 text_action **m_p;
4600
4601 /* It is not necessary to fill at the end of a section. */
4602 if (sec->size == offset)
4603 return NULL;
4604
7fa3d080 4605 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4606 {
4607 text_action *t = *m_p;
4608 /* When the action is another fill at the same address,
4609 just increase the size. */
4610 if (t->offset == offset && t->action == ta_fill)
4611 return t;
4612 }
4613 return NULL;
4614}
4615
4616
4617static int
7fa3d080
BW
4618compute_removed_action_diff (const text_action *ta,
4619 asection *sec,
4620 bfd_vma offset,
4621 int removed,
4622 int removable_space)
43cd72b9
BW
4623{
4624 int new_removed;
4625 int current_removed = 0;
4626
7fa3d080 4627 if (ta)
43cd72b9
BW
4628 current_removed = ta->removed_bytes;
4629
4630 BFD_ASSERT (ta == NULL || ta->offset == offset);
4631 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4632
4633 /* It is not necessary to fill at the end of a section. Clean this up. */
4634 if (sec->size == offset)
4635 new_removed = removable_space - 0;
4636 else
4637 {
4638 int space;
4639 int added = -removed - current_removed;
4640 /* Ignore multiples of the section alignment. */
4641 added = ((1 << sec->alignment_power) - 1) & added;
4642 new_removed = (-added);
4643
4644 /* Modify for removable. */
4645 space = removable_space - new_removed;
4646 new_removed = (removable_space
4647 - (((1 << sec->alignment_power) - 1) & space));
4648 }
4649 return (new_removed - current_removed);
4650}
4651
4652
7fa3d080
BW
4653static void
4654adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4655{
4656 ta->removed_bytes += fill_diff;
4657}
4658
4659
4660/* Add a modification action to the text. For the case of adding or
4661 removing space, modify any current fill and assume that
4662 "unreachable_space" bytes can be freely contracted. Note that a
4663 negative removed value is a fill. */
4664
4665static void
7fa3d080
BW
4666text_action_add (text_action_list *l,
4667 text_action_t action,
4668 asection *sec,
4669 bfd_vma offset,
4670 int removed)
43cd72b9
BW
4671{
4672 text_action **m_p;
4673 text_action *ta;
4674
4675 /* It is not necessary to fill at the end of a section. */
4676 if (action == ta_fill && sec->size == offset)
4677 return;
4678
4679 /* It is not necessary to fill 0 bytes. */
4680 if (action == ta_fill && removed == 0)
4681 return;
4682
7fa3d080 4683 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4684 {
4685 text_action *t = *m_p;
4686 /* When the action is another fill at the same address,
4687 just increase the size. */
4688 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4689 {
4690 t->removed_bytes += removed;
4691 return;
4692 }
4693 }
4694
4695 /* Create a new record and fill it up. */
4696 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4697 ta->action = action;
4698 ta->sec = sec;
4699 ta->offset = offset;
4700 ta->removed_bytes = removed;
4701 ta->next = (*m_p);
4702 *m_p = ta;
4703}
4704
4705
4706static void
7fa3d080
BW
4707text_action_add_literal (text_action_list *l,
4708 text_action_t action,
4709 const r_reloc *loc,
4710 const literal_value *value,
4711 int removed)
43cd72b9
BW
4712{
4713 text_action **m_p;
4714 text_action *ta;
4715 asection *sec = r_reloc_get_section (loc);
4716 bfd_vma offset = loc->target_offset;
4717 bfd_vma virtual_offset = loc->virtual_offset;
4718
4719 BFD_ASSERT (action == ta_add_literal);
4720
4721 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4722 {
4723 if ((*m_p)->offset > offset
4724 && ((*m_p)->offset != offset
4725 || (*m_p)->virtual_offset > virtual_offset))
4726 break;
4727 }
4728
4729 /* Create a new record and fill it up. */
4730 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4731 ta->action = action;
4732 ta->sec = sec;
4733 ta->offset = offset;
4734 ta->virtual_offset = virtual_offset;
4735 ta->value = *value;
4736 ta->removed_bytes = removed;
4737 ta->next = (*m_p);
4738 *m_p = ta;
4739}
4740
4741
7fa3d080
BW
4742static bfd_vma
4743offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4744{
4745 text_action *r;
4746 int removed = 0;
4747
4748 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4749 {
4750 if (r->offset < offset
4751 || (r->action == ta_fill && r->removed_bytes < 0))
4752 removed += r->removed_bytes;
4753 }
4754
4755 return (offset - removed);
4756}
4757
4758
7fa3d080
BW
4759static bfd_vma
4760offset_with_removed_text_before_fill (text_action_list *action_list,
4761 bfd_vma offset)
43cd72b9
BW
4762{
4763 text_action *r;
4764 int removed = 0;
4765
4766 for (r = action_list->head; r && r->offset < offset; r = r->next)
4767 removed += r->removed_bytes;
4768
4769 return (offset - removed);
4770}
4771
4772
4773/* The find_insn_action routine will only find non-fill actions. */
4774
7fa3d080
BW
4775static text_action *
4776find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4777{
4778 text_action *t;
4779 for (t = action_list->head; t; t = t->next)
4780 {
4781 if (t->offset == offset)
4782 {
4783 switch (t->action)
4784 {
4785 case ta_none:
4786 case ta_fill:
4787 break;
4788 case ta_remove_insn:
4789 case ta_remove_longcall:
4790 case ta_convert_longcall:
4791 case ta_narrow_insn:
4792 case ta_widen_insn:
4793 return t;
4794 case ta_remove_literal:
4795 case ta_add_literal:
4796 BFD_ASSERT (0);
4797 break;
4798 }
4799 }
4800 }
4801 return NULL;
4802}
4803
4804
4805#if DEBUG
4806
4807static void
7fa3d080 4808print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4809{
4810 text_action *r;
4811
4812 fprintf (fp, "Text Action\n");
4813 for (r = action_list->head; r != NULL; r = r->next)
4814 {
4815 const char *t = "unknown";
4816 switch (r->action)
4817 {
4818 case ta_remove_insn:
4819 t = "remove_insn"; break;
4820 case ta_remove_longcall:
4821 t = "remove_longcall"; break;
4822 case ta_convert_longcall:
4823 t = "remove_longcall"; break;
4824 case ta_narrow_insn:
4825 t = "narrow_insn"; break;
4826 case ta_widen_insn:
4827 t = "widen_insn"; break;
4828 case ta_fill:
4829 t = "fill"; break;
4830 case ta_none:
4831 t = "none"; break;
4832 case ta_remove_literal:
4833 t = "remove_literal"; break;
4834 case ta_add_literal:
4835 t = "add_literal"; break;
4836 }
4837
4838 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4839 r->sec->owner->filename,
4840 r->sec->name, r->offset, t, r->removed_bytes);
4841 }
4842}
4843
4844#endif /* DEBUG */
4845
4846\f
4847/* Lists of literals being coalesced or removed. */
4848
4849/* In the usual case, the literal identified by "from" is being
4850 coalesced with another literal identified by "to". If the literal is
4851 unused and is being removed altogether, "to.abfd" will be NULL.
4852 The removed_literal entries are kept on a per-section list, sorted
4853 by the "from" offset field. */
4854
4855typedef struct removed_literal_struct removed_literal;
4856typedef struct removed_literal_list_struct removed_literal_list;
4857
4858struct removed_literal_struct
4859{
4860 r_reloc from;
4861 r_reloc to;
4862 removed_literal *next;
4863};
4864
4865struct removed_literal_list_struct
4866{
4867 removed_literal *head;
4868 removed_literal *tail;
4869};
4870
4871
43cd72b9
BW
4872/* Record that the literal at "from" is being removed. If "to" is not
4873 NULL, the "from" literal is being coalesced with the "to" literal. */
4874
4875static void
7fa3d080
BW
4876add_removed_literal (removed_literal_list *removed_list,
4877 const r_reloc *from,
4878 const r_reloc *to)
43cd72b9
BW
4879{
4880 removed_literal *r, *new_r, *next_r;
4881
4882 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4883
4884 new_r->from = *from;
4885 if (to)
4886 new_r->to = *to;
4887 else
4888 new_r->to.abfd = NULL;
4889 new_r->next = NULL;
4890
4891 r = removed_list->head;
4892 if (r == NULL)
4893 {
4894 removed_list->head = new_r;
4895 removed_list->tail = new_r;
4896 }
4897 /* Special check for common case of append. */
4898 else if (removed_list->tail->from.target_offset < from->target_offset)
4899 {
4900 removed_list->tail->next = new_r;
4901 removed_list->tail = new_r;
4902 }
4903 else
4904 {
7fa3d080 4905 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4906 {
4907 r = r->next;
4908 }
4909 next_r = r->next;
4910 r->next = new_r;
4911 new_r->next = next_r;
4912 if (next_r == NULL)
4913 removed_list->tail = new_r;
4914 }
4915}
4916
4917
4918/* Check if the list of removed literals contains an entry for the
4919 given address. Return the entry if found. */
4920
4921static removed_literal *
7fa3d080 4922find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4923{
4924 removed_literal *r = removed_list->head;
4925 while (r && r->from.target_offset < addr)
4926 r = r->next;
4927 if (r && r->from.target_offset == addr)
4928 return r;
4929 return NULL;
4930}
4931
4932
4933#if DEBUG
4934
4935static void
7fa3d080 4936print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4937{
4938 removed_literal *r;
4939 r = removed_list->head;
4940 if (r)
4941 fprintf (fp, "Removed Literals\n");
4942 for (; r != NULL; r = r->next)
4943 {
4944 print_r_reloc (fp, &r->from);
4945 fprintf (fp, " => ");
4946 if (r->to.abfd == NULL)
4947 fprintf (fp, "REMOVED");
4948 else
4949 print_r_reloc (fp, &r->to);
4950 fprintf (fp, "\n");
4951 }
4952}
4953
4954#endif /* DEBUG */
4955
4956\f
4957/* Per-section data for relaxation. */
4958
4959typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4960
4961struct xtensa_relax_info_struct
4962{
4963 bfd_boolean is_relaxable_literal_section;
4964 bfd_boolean is_relaxable_asm_section;
4965 int visited; /* Number of times visited. */
4966
4967 source_reloc *src_relocs; /* Array[src_count]. */
4968 int src_count;
4969 int src_next; /* Next src_relocs entry to assign. */
4970
4971 removed_literal_list removed_list;
4972 text_action_list action_list;
4973
4974 reloc_bfd_fix *fix_list;
4975 reloc_bfd_fix *fix_array;
4976 unsigned fix_array_count;
4977
4978 /* Support for expanding the reloc array that is stored
4979 in the section structure. If the relocations have been
4980 reallocated, the newly allocated relocations will be referenced
4981 here along with the actual size allocated. The relocation
4982 count will always be found in the section structure. */
4983 Elf_Internal_Rela *allocated_relocs;
4984 unsigned relocs_count;
4985 unsigned allocated_relocs_count;
4986};
4987
4988struct elf_xtensa_section_data
4989{
4990 struct bfd_elf_section_data elf;
4991 xtensa_relax_info relax_info;
4992};
4993
43cd72b9
BW
4994
4995static bfd_boolean
7fa3d080 4996elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9
BW
4997{
4998 struct elf_xtensa_section_data *sdata;
4999 bfd_size_type amt = sizeof (*sdata);
5000
5001 sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt);
5002 if (sdata == NULL)
5003 return FALSE;
7fa3d080 5004 sec->used_by_bfd = (void *) sdata;
43cd72b9
BW
5005
5006 return _bfd_elf_new_section_hook (abfd, sec);
5007}
5008
5009
7fa3d080
BW
5010static xtensa_relax_info *
5011get_xtensa_relax_info (asection *sec)
5012{
5013 struct elf_xtensa_section_data *section_data;
5014
5015 /* No info available if no section or if it is an output section. */
5016 if (!sec || sec == sec->output_section)
5017 return NULL;
5018
5019 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5020 return &section_data->relax_info;
5021}
5022
5023
43cd72b9 5024static void
7fa3d080 5025init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5026{
5027 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5028
5029 relax_info->is_relaxable_literal_section = FALSE;
5030 relax_info->is_relaxable_asm_section = FALSE;
5031 relax_info->visited = 0;
5032
5033 relax_info->src_relocs = NULL;
5034 relax_info->src_count = 0;
5035 relax_info->src_next = 0;
5036
5037 relax_info->removed_list.head = NULL;
5038 relax_info->removed_list.tail = NULL;
5039
5040 relax_info->action_list.head = NULL;
5041
5042 relax_info->fix_list = NULL;
5043 relax_info->fix_array = NULL;
5044 relax_info->fix_array_count = 0;
5045
5046 relax_info->allocated_relocs = NULL;
5047 relax_info->relocs_count = 0;
5048 relax_info->allocated_relocs_count = 0;
5049}
5050
43cd72b9
BW
5051\f
5052/* Coalescing literals may require a relocation to refer to a section in
5053 a different input file, but the standard relocation information
5054 cannot express that. Instead, the reloc_bfd_fix structures are used
5055 to "fix" the relocations that refer to sections in other input files.
5056 These structures are kept on per-section lists. The "src_type" field
5057 records the relocation type in case there are multiple relocations on
5058 the same location. FIXME: This is ugly; an alternative might be to
5059 add new symbols with the "owner" field to some other input file. */
5060
5061struct reloc_bfd_fix_struct
5062{
5063 asection *src_sec;
5064 bfd_vma src_offset;
5065 unsigned src_type; /* Relocation type. */
5066
5067 bfd *target_abfd;
5068 asection *target_sec;
5069 bfd_vma target_offset;
5070 bfd_boolean translated;
5071
5072 reloc_bfd_fix *next;
5073};
5074
5075
43cd72b9 5076static reloc_bfd_fix *
7fa3d080
BW
5077reloc_bfd_fix_init (asection *src_sec,
5078 bfd_vma src_offset,
5079 unsigned src_type,
5080 bfd *target_abfd,
5081 asection *target_sec,
5082 bfd_vma target_offset,
5083 bfd_boolean translated)
43cd72b9
BW
5084{
5085 reloc_bfd_fix *fix;
5086
5087 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5088 fix->src_sec = src_sec;
5089 fix->src_offset = src_offset;
5090 fix->src_type = src_type;
5091 fix->target_abfd = target_abfd;
5092 fix->target_sec = target_sec;
5093 fix->target_offset = target_offset;
5094 fix->translated = translated;
5095
5096 return fix;
5097}
5098
5099
5100static void
7fa3d080 5101add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5102{
5103 xtensa_relax_info *relax_info;
5104
5105 relax_info = get_xtensa_relax_info (src_sec);
5106 fix->next = relax_info->fix_list;
5107 relax_info->fix_list = fix;
5108}
5109
5110
5111static int
7fa3d080 5112fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5113{
5114 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5115 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5116
5117 if (a->src_offset != b->src_offset)
5118 return (a->src_offset - b->src_offset);
5119 return (a->src_type - b->src_type);
5120}
5121
5122
5123static void
7fa3d080 5124cache_fix_array (asection *sec)
43cd72b9
BW
5125{
5126 unsigned i, count = 0;
5127 reloc_bfd_fix *r;
5128 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5129
5130 if (relax_info == NULL)
5131 return;
5132 if (relax_info->fix_list == NULL)
5133 return;
5134
5135 for (r = relax_info->fix_list; r != NULL; r = r->next)
5136 count++;
5137
5138 relax_info->fix_array =
5139 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5140 relax_info->fix_array_count = count;
5141
5142 r = relax_info->fix_list;
5143 for (i = 0; i < count; i++, r = r->next)
5144 {
5145 relax_info->fix_array[count - 1 - i] = *r;
5146 relax_info->fix_array[count - 1 - i].next = NULL;
5147 }
5148
5149 qsort (relax_info->fix_array, relax_info->fix_array_count,
5150 sizeof (reloc_bfd_fix), fix_compare);
5151}
5152
5153
5154static reloc_bfd_fix *
7fa3d080 5155get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5156{
5157 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5158 reloc_bfd_fix *rv;
5159 reloc_bfd_fix key;
5160
5161 if (relax_info == NULL)
5162 return NULL;
5163 if (relax_info->fix_list == NULL)
5164 return NULL;
5165
5166 if (relax_info->fix_array == NULL)
5167 cache_fix_array (sec);
5168
5169 key.src_offset = offset;
5170 key.src_type = type;
5171 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5172 sizeof (reloc_bfd_fix), fix_compare);
5173 return rv;
5174}
5175
5176\f
5177/* Section caching. */
5178
5179typedef struct section_cache_struct section_cache_t;
5180
5181struct section_cache_struct
5182{
5183 asection *sec;
5184
5185 bfd_byte *contents; /* Cache of the section contents. */
5186 bfd_size_type content_length;
5187
5188 property_table_entry *ptbl; /* Cache of the section property table. */
5189 unsigned pte_count;
5190
5191 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5192 unsigned reloc_count;
5193};
5194
5195
7fa3d080
BW
5196static void
5197init_section_cache (section_cache_t *sec_cache)
5198{
5199 memset (sec_cache, 0, sizeof (*sec_cache));
5200}
43cd72b9
BW
5201
5202
5203static void
7fa3d080 5204clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5205{
7fa3d080
BW
5206 if (sec_cache->sec)
5207 {
5208 release_contents (sec_cache->sec, sec_cache->contents);
5209 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5210 if (sec_cache->ptbl)
5211 free (sec_cache->ptbl);
5212 memset (sec_cache, 0, sizeof (sec_cache));
5213 }
43cd72b9
BW
5214}
5215
5216
5217static bfd_boolean
7fa3d080
BW
5218section_cache_section (section_cache_t *sec_cache,
5219 asection *sec,
5220 struct bfd_link_info *link_info)
43cd72b9
BW
5221{
5222 bfd *abfd;
5223 property_table_entry *prop_table = NULL;
5224 int ptblsize = 0;
5225 bfd_byte *contents = NULL;
5226 Elf_Internal_Rela *internal_relocs = NULL;
5227 bfd_size_type sec_size;
5228
5229 if (sec == NULL)
5230 return FALSE;
5231 if (sec == sec_cache->sec)
5232 return TRUE;
5233
5234 abfd = sec->owner;
5235 sec_size = bfd_get_section_limit (abfd, sec);
5236
5237 /* Get the contents. */
5238 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5239 if (contents == NULL && sec_size != 0)
5240 goto err;
5241
5242 /* Get the relocations. */
5243 internal_relocs = retrieve_internal_relocs (abfd, sec,
5244 link_info->keep_memory);
5245
5246 /* Get the entry table. */
5247 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5248 XTENSA_PROP_SEC_NAME, FALSE);
5249 if (ptblsize < 0)
5250 goto err;
5251
5252 /* Fill in the new section cache. */
5253 clear_section_cache (sec_cache);
5254 memset (sec_cache, 0, sizeof (sec_cache));
5255
5256 sec_cache->sec = sec;
5257 sec_cache->contents = contents;
5258 sec_cache->content_length = sec_size;
5259 sec_cache->relocs = internal_relocs;
5260 sec_cache->reloc_count = sec->reloc_count;
5261 sec_cache->pte_count = ptblsize;
5262 sec_cache->ptbl = prop_table;
5263
5264 return TRUE;
5265
5266 err:
5267 release_contents (sec, contents);
5268 release_internal_relocs (sec, internal_relocs);
5269 if (prop_table)
5270 free (prop_table);
5271 return FALSE;
5272}
5273
43cd72b9
BW
5274\f
5275/* Extended basic blocks. */
5276
5277/* An ebb_struct represents an Extended Basic Block. Within this
5278 range, we guarantee that all instructions are decodable, the
5279 property table entries are contiguous, and no property table
5280 specifies a segment that cannot have instructions moved. This
5281 structure contains caches of the contents, property table and
5282 relocations for the specified section for easy use. The range is
5283 specified by ranges of indices for the byte offset, property table
5284 offsets and relocation offsets. These must be consistent. */
5285
5286typedef struct ebb_struct ebb_t;
5287
5288struct ebb_struct
5289{
5290 asection *sec;
5291
5292 bfd_byte *contents; /* Cache of the section contents. */
5293 bfd_size_type content_length;
5294
5295 property_table_entry *ptbl; /* Cache of the section property table. */
5296 unsigned pte_count;
5297
5298 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5299 unsigned reloc_count;
5300
5301 bfd_vma start_offset; /* Offset in section. */
5302 unsigned start_ptbl_idx; /* Offset in the property table. */
5303 unsigned start_reloc_idx; /* Offset in the relocations. */
5304
5305 bfd_vma end_offset;
5306 unsigned end_ptbl_idx;
5307 unsigned end_reloc_idx;
5308
5309 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5310
5311 /* The unreachable property table at the end of this set of blocks;
5312 NULL if the end is not an unreachable block. */
5313 property_table_entry *ends_unreachable;
5314};
5315
5316
5317enum ebb_target_enum
5318{
5319 EBB_NO_ALIGN = 0,
5320 EBB_DESIRE_TGT_ALIGN,
5321 EBB_REQUIRE_TGT_ALIGN,
5322 EBB_REQUIRE_LOOP_ALIGN,
5323 EBB_REQUIRE_ALIGN
5324};
5325
5326
5327/* proposed_action_struct is similar to the text_action_struct except
5328 that is represents a potential transformation, not one that will
5329 occur. We build a list of these for an extended basic block
5330 and use them to compute the actual actions desired. We must be
5331 careful that the entire set of actual actions we perform do not
5332 break any relocations that would fit if the actions were not
5333 performed. */
5334
5335typedef struct proposed_action_struct proposed_action;
5336
5337struct proposed_action_struct
5338{
5339 enum ebb_target_enum align_type; /* for the target alignment */
5340 bfd_vma alignment_pow;
5341 text_action_t action;
5342 bfd_vma offset;
5343 int removed_bytes;
5344 bfd_boolean do_action; /* If false, then we will not perform the action. */
5345};
5346
5347
5348/* The ebb_constraint_struct keeps a set of proposed actions for an
5349 extended basic block. */
5350
5351typedef struct ebb_constraint_struct ebb_constraint;
5352
5353struct ebb_constraint_struct
5354{
5355 ebb_t ebb;
5356 bfd_boolean start_movable;
5357
5358 /* Bytes of extra space at the beginning if movable. */
5359 int start_extra_space;
5360
5361 enum ebb_target_enum start_align;
5362
5363 bfd_boolean end_movable;
5364
5365 /* Bytes of extra space at the end if movable. */
5366 int end_extra_space;
5367
5368 unsigned action_count;
5369 unsigned action_allocated;
5370
5371 /* Array of proposed actions. */
5372 proposed_action *actions;
5373
5374 /* Action alignments -- one for each proposed action. */
5375 enum ebb_target_enum *action_aligns;
5376};
5377
5378
43cd72b9 5379static void
7fa3d080 5380init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5381{
5382 memset (c, 0, sizeof (ebb_constraint));
5383}
5384
5385
5386static void
7fa3d080 5387free_ebb_constraint (ebb_constraint *c)
43cd72b9 5388{
7fa3d080 5389 if (c->actions)
43cd72b9
BW
5390 free (c->actions);
5391}
5392
5393
5394static void
7fa3d080
BW
5395init_ebb (ebb_t *ebb,
5396 asection *sec,
5397 bfd_byte *contents,
5398 bfd_size_type content_length,
5399 property_table_entry *prop_table,
5400 unsigned ptblsize,
5401 Elf_Internal_Rela *internal_relocs,
5402 unsigned reloc_count)
43cd72b9
BW
5403{
5404 memset (ebb, 0, sizeof (ebb_t));
5405 ebb->sec = sec;
5406 ebb->contents = contents;
5407 ebb->content_length = content_length;
5408 ebb->ptbl = prop_table;
5409 ebb->pte_count = ptblsize;
5410 ebb->relocs = internal_relocs;
5411 ebb->reloc_count = reloc_count;
5412 ebb->start_offset = 0;
5413 ebb->end_offset = ebb->content_length - 1;
5414 ebb->start_ptbl_idx = 0;
5415 ebb->end_ptbl_idx = ptblsize;
5416 ebb->start_reloc_idx = 0;
5417 ebb->end_reloc_idx = reloc_count;
5418}
5419
5420
5421/* Extend the ebb to all decodable contiguous sections. The algorithm
5422 for building a basic block around an instruction is to push it
5423 forward until we hit the end of a section, an unreachable block or
5424 a block that cannot be transformed. Then we push it backwards
5425 searching for similar conditions. */
5426
7fa3d080
BW
5427static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5428static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5429static bfd_size_type insn_block_decodable_len
5430 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5431
43cd72b9 5432static bfd_boolean
7fa3d080 5433extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5434{
5435 if (!extend_ebb_bounds_forward (ebb))
5436 return FALSE;
5437 if (!extend_ebb_bounds_backward (ebb))
5438 return FALSE;
5439 return TRUE;
5440}
5441
5442
5443static bfd_boolean
7fa3d080 5444extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5445{
5446 property_table_entry *the_entry, *new_entry;
5447
5448 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5449
5450 /* Stop when (1) we cannot decode an instruction, (2) we are at
5451 the end of the property tables, (3) we hit a non-contiguous property
5452 table entry, (4) we hit a NO_TRANSFORM region. */
5453
5454 while (1)
5455 {
5456 bfd_vma entry_end;
5457 bfd_size_type insn_block_len;
5458
5459 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5460 insn_block_len =
5461 insn_block_decodable_len (ebb->contents, ebb->content_length,
5462 ebb->end_offset,
5463 entry_end - ebb->end_offset);
5464 if (insn_block_len != (entry_end - ebb->end_offset))
5465 {
5466 (*_bfd_error_handler)
5467 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5468 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5469 return FALSE;
5470 }
5471 ebb->end_offset += insn_block_len;
5472
5473 if (ebb->end_offset == ebb->sec->size)
5474 ebb->ends_section = TRUE;
5475
5476 /* Update the reloc counter. */
5477 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5478 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5479 < ebb->end_offset))
5480 {
5481 ebb->end_reloc_idx++;
5482 }
5483
5484 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5485 return TRUE;
5486
5487 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5488 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5489 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5490 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5491 break;
5492
5493 if (the_entry->address + the_entry->size != new_entry->address)
5494 break;
5495
5496 the_entry = new_entry;
5497 ebb->end_ptbl_idx++;
5498 }
5499
5500 /* Quick check for an unreachable or end of file just at the end. */
5501 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5502 {
5503 if (ebb->end_offset == ebb->content_length)
5504 ebb->ends_section = TRUE;
5505 }
5506 else
5507 {
5508 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5509 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5510 && the_entry->address + the_entry->size == new_entry->address)
5511 ebb->ends_unreachable = new_entry;
5512 }
5513
5514 /* Any other ending requires exact alignment. */
5515 return TRUE;
5516}
5517
5518
5519static bfd_boolean
7fa3d080 5520extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5521{
5522 property_table_entry *the_entry, *new_entry;
5523
5524 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5525
5526 /* Stop when (1) we cannot decode the instructions in the current entry.
5527 (2) we are at the beginning of the property tables, (3) we hit a
5528 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5529
5530 while (1)
5531 {
5532 bfd_vma block_begin;
5533 bfd_size_type insn_block_len;
5534
5535 block_begin = the_entry->address - ebb->sec->vma;
5536 insn_block_len =
5537 insn_block_decodable_len (ebb->contents, ebb->content_length,
5538 block_begin,
5539 ebb->start_offset - block_begin);
5540 if (insn_block_len != ebb->start_offset - block_begin)
5541 {
5542 (*_bfd_error_handler)
5543 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5544 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5545 return FALSE;
5546 }
5547 ebb->start_offset -= insn_block_len;
5548
5549 /* Update the reloc counter. */
5550 while (ebb->start_reloc_idx > 0
5551 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5552 >= ebb->start_offset))
5553 {
5554 ebb->start_reloc_idx--;
5555 }
5556
5557 if (ebb->start_ptbl_idx == 0)
5558 return TRUE;
5559
5560 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5561 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5562 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5563 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5564 return TRUE;
5565 if (new_entry->address + new_entry->size != the_entry->address)
5566 return TRUE;
5567
5568 the_entry = new_entry;
5569 ebb->start_ptbl_idx--;
5570 }
5571 return TRUE;
5572}
5573
5574
5575static bfd_size_type
7fa3d080
BW
5576insn_block_decodable_len (bfd_byte *contents,
5577 bfd_size_type content_len,
5578 bfd_vma block_offset,
5579 bfd_size_type block_len)
43cd72b9
BW
5580{
5581 bfd_vma offset = block_offset;
5582
5583 while (offset < block_offset + block_len)
5584 {
5585 bfd_size_type insn_len = 0;
5586
5587 insn_len = insn_decode_len (contents, content_len, offset);
5588 if (insn_len == 0)
5589 return (offset - block_offset);
5590 offset += insn_len;
5591 }
5592 return (offset - block_offset);
5593}
5594
5595
5596static void
7fa3d080 5597ebb_propose_action (ebb_constraint *c,
7fa3d080 5598 enum ebb_target_enum align_type,
288f74fa 5599 bfd_vma alignment_pow,
7fa3d080
BW
5600 text_action_t action,
5601 bfd_vma offset,
5602 int removed_bytes,
5603 bfd_boolean do_action)
43cd72b9 5604{
b08b5071 5605 proposed_action *act;
43cd72b9 5606
43cd72b9
BW
5607 if (c->action_allocated <= c->action_count)
5608 {
b08b5071 5609 unsigned new_allocated, i;
823fc61f 5610 proposed_action *new_actions;
b08b5071
BW
5611
5612 new_allocated = (c->action_count + 2) * 2;
823fc61f 5613 new_actions = (proposed_action *)
43cd72b9
BW
5614 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5615
5616 for (i = 0; i < c->action_count; i++)
5617 new_actions[i] = c->actions[i];
7fa3d080 5618 if (c->actions)
43cd72b9
BW
5619 free (c->actions);
5620 c->actions = new_actions;
5621 c->action_allocated = new_allocated;
5622 }
b08b5071
BW
5623
5624 act = &c->actions[c->action_count];
5625 act->align_type = align_type;
5626 act->alignment_pow = alignment_pow;
5627 act->action = action;
5628 act->offset = offset;
5629 act->removed_bytes = removed_bytes;
5630 act->do_action = do_action;
5631
43cd72b9
BW
5632 c->action_count++;
5633}
5634
5635\f
5636/* Access to internal relocations, section contents and symbols. */
5637
5638/* During relaxation, we need to modify relocations, section contents,
5639 and symbol definitions, and we need to keep the original values from
5640 being reloaded from the input files, i.e., we need to "pin" the
5641 modified values in memory. We also want to continue to observe the
5642 setting of the "keep-memory" flag. The following functions wrap the
5643 standard BFD functions to take care of this for us. */
5644
5645static Elf_Internal_Rela *
7fa3d080 5646retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5647{
5648 Elf_Internal_Rela *internal_relocs;
5649
5650 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5651 return NULL;
5652
5653 internal_relocs = elf_section_data (sec)->relocs;
5654 if (internal_relocs == NULL)
5655 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5656 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5657 return internal_relocs;
5658}
5659
5660
5661static void
7fa3d080 5662pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5663{
5664 elf_section_data (sec)->relocs = internal_relocs;
5665}
5666
5667
5668static void
7fa3d080 5669release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5670{
5671 if (internal_relocs
5672 && elf_section_data (sec)->relocs != internal_relocs)
5673 free (internal_relocs);
5674}
5675
5676
5677static bfd_byte *
7fa3d080 5678retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5679{
5680 bfd_byte *contents;
5681 bfd_size_type sec_size;
5682
5683 sec_size = bfd_get_section_limit (abfd, sec);
5684 contents = elf_section_data (sec)->this_hdr.contents;
5685
5686 if (contents == NULL && sec_size != 0)
5687 {
5688 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5689 {
7fa3d080 5690 if (contents)
43cd72b9
BW
5691 free (contents);
5692 return NULL;
5693 }
5694 if (keep_memory)
5695 elf_section_data (sec)->this_hdr.contents = contents;
5696 }
5697 return contents;
5698}
5699
5700
5701static void
7fa3d080 5702pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5703{
5704 elf_section_data (sec)->this_hdr.contents = contents;
5705}
5706
5707
5708static void
7fa3d080 5709release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5710{
5711 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5712 free (contents);
5713}
5714
5715
5716static Elf_Internal_Sym *
7fa3d080 5717retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5718{
5719 Elf_Internal_Shdr *symtab_hdr;
5720 Elf_Internal_Sym *isymbuf;
5721 size_t locsymcount;
5722
5723 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5724 locsymcount = symtab_hdr->sh_info;
5725
5726 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5727 if (isymbuf == NULL && locsymcount != 0)
5728 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5729 NULL, NULL, NULL);
5730
5731 /* Save the symbols for this input file so they won't be read again. */
5732 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5733 symtab_hdr->contents = (unsigned char *) isymbuf;
5734
5735 return isymbuf;
5736}
5737
5738\f
5739/* Code for link-time relaxation. */
5740
5741/* Initialization for relaxation: */
7fa3d080 5742static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5743static bfd_boolean find_relaxable_sections
7fa3d080 5744 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5745static bfd_boolean collect_source_relocs
7fa3d080 5746 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5747static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5748 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5749 bfd_boolean *);
43cd72b9 5750static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5751 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5752static bfd_boolean compute_text_actions
7fa3d080
BW
5753 (bfd *, asection *, struct bfd_link_info *);
5754static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5755static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5756static bfd_boolean check_section_ebb_pcrels_fit
7fa3d080
BW
5757 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *);
5758static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5759static void text_action_add_proposed
7fa3d080
BW
5760 (text_action_list *, const ebb_constraint *, asection *);
5761static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5762
5763/* First pass: */
5764static bfd_boolean compute_removed_literals
7fa3d080 5765 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5766static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5767 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5768static bfd_boolean is_removable_literal
7fa3d080 5769 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5770static bfd_boolean remove_dead_literal
7fa3d080
BW
5771 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5772 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5773static bfd_boolean identify_literal_placement
5774 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5775 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5776 source_reloc *, property_table_entry *, int, section_cache_t *,
5777 bfd_boolean);
5778static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5779static bfd_boolean coalesce_shared_literal
7fa3d080 5780 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5781static bfd_boolean move_shared_literal
7fa3d080
BW
5782 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5783 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5784
5785/* Second pass: */
7fa3d080
BW
5786static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5787static bfd_boolean translate_section_fixes (asection *);
5788static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5789static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5790static void shrink_dynamic_reloc_sections
7fa3d080 5791 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5792static bfd_boolean move_literal
7fa3d080
BW
5793 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5794 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5795static bfd_boolean relax_property_section
7fa3d080 5796 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5797
5798/* Third pass: */
7fa3d080 5799static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5800
5801
5802static bfd_boolean
7fa3d080
BW
5803elf_xtensa_relax_section (bfd *abfd,
5804 asection *sec,
5805 struct bfd_link_info *link_info,
5806 bfd_boolean *again)
43cd72b9
BW
5807{
5808 static value_map_hash_table *values = NULL;
5809 static bfd_boolean relocations_analyzed = FALSE;
5810 xtensa_relax_info *relax_info;
5811
5812 if (!relocations_analyzed)
5813 {
5814 /* Do some overall initialization for relaxation. */
5815 values = value_map_hash_table_init ();
5816 if (values == NULL)
5817 return FALSE;
5818 relaxing_section = TRUE;
5819 if (!analyze_relocations (link_info))
5820 return FALSE;
5821 relocations_analyzed = TRUE;
5822 }
5823 *again = FALSE;
5824
5825 /* Don't mess with linker-created sections. */
5826 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5827 return TRUE;
5828
5829 relax_info = get_xtensa_relax_info (sec);
5830 BFD_ASSERT (relax_info != NULL);
5831
5832 switch (relax_info->visited)
5833 {
5834 case 0:
5835 /* Note: It would be nice to fold this pass into
5836 analyze_relocations, but it is important for this step that the
5837 sections be examined in link order. */
5838 if (!compute_removed_literals (abfd, sec, link_info, values))
5839 return FALSE;
5840 *again = TRUE;
5841 break;
5842
5843 case 1:
5844 if (values)
5845 value_map_hash_table_delete (values);
5846 values = NULL;
5847 if (!relax_section (abfd, sec, link_info))
5848 return FALSE;
5849 *again = TRUE;
5850 break;
5851
5852 case 2:
5853 if (!relax_section_symbols (abfd, sec))
5854 return FALSE;
5855 break;
5856 }
5857
5858 relax_info->visited++;
5859 return TRUE;
5860}
5861
5862\f
5863/* Initialization for relaxation. */
5864
5865/* This function is called once at the start of relaxation. It scans
5866 all the input sections and marks the ones that are relaxable (i.e.,
5867 literal sections with L32R relocations against them), and then
5868 collects source_reloc information for all the relocations against
5869 those relaxable sections. During this process, it also detects
5870 longcalls, i.e., calls relaxed by the assembler into indirect
5871 calls, that can be optimized back into direct calls. Within each
5872 extended basic block (ebb) containing an optimized longcall, it
5873 computes a set of "text actions" that can be performed to remove
5874 the L32R associated with the longcall while optionally preserving
5875 branch target alignments. */
5876
5877static bfd_boolean
7fa3d080 5878analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5879{
5880 bfd *abfd;
5881 asection *sec;
5882 bfd_boolean is_relaxable = FALSE;
5883
5884 /* Initialize the per-section relaxation info. */
5885 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5886 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5887 {
5888 init_xtensa_relax_info (sec);
5889 }
5890
5891 /* Mark relaxable sections (and count relocations against each one). */
5892 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5893 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5894 {
5895 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5896 return FALSE;
5897 }
5898
5899 /* Bail out if there are no relaxable sections. */
5900 if (!is_relaxable)
5901 return TRUE;
5902
5903 /* Allocate space for source_relocs. */
5904 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5905 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5906 {
5907 xtensa_relax_info *relax_info;
5908
5909 relax_info = get_xtensa_relax_info (sec);
5910 if (relax_info->is_relaxable_literal_section
5911 || relax_info->is_relaxable_asm_section)
5912 {
5913 relax_info->src_relocs = (source_reloc *)
5914 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5915 }
5916 }
5917
5918 /* Collect info on relocations against each relaxable section. */
5919 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5920 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5921 {
5922 if (!collect_source_relocs (abfd, sec, link_info))
5923 return FALSE;
5924 }
5925
5926 /* Compute the text actions. */
5927 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5928 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5929 {
5930 if (!compute_text_actions (abfd, sec, link_info))
5931 return FALSE;
5932 }
5933
5934 return TRUE;
5935}
5936
5937
5938/* Find all the sections that might be relaxed. The motivation for
5939 this pass is that collect_source_relocs() needs to record _all_ the
5940 relocations that target each relaxable section. That is expensive
5941 and unnecessary unless the target section is actually going to be
5942 relaxed. This pass identifies all such sections by checking if
5943 they have L32Rs pointing to them. In the process, the total number
5944 of relocations targeting each section is also counted so that we
5945 know how much space to allocate for source_relocs against each
5946 relaxable literal section. */
5947
5948static bfd_boolean
7fa3d080
BW
5949find_relaxable_sections (bfd *abfd,
5950 asection *sec,
5951 struct bfd_link_info *link_info,
5952 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5953{
5954 Elf_Internal_Rela *internal_relocs;
5955 bfd_byte *contents;
5956 bfd_boolean ok = TRUE;
5957 unsigned i;
5958 xtensa_relax_info *source_relax_info;
5959
5960 internal_relocs = retrieve_internal_relocs (abfd, sec,
5961 link_info->keep_memory);
5962 if (internal_relocs == NULL)
5963 return ok;
5964
5965 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5966 if (contents == NULL && sec->size != 0)
5967 {
5968 ok = FALSE;
5969 goto error_return;
5970 }
5971
5972 source_relax_info = get_xtensa_relax_info (sec);
5973 for (i = 0; i < sec->reloc_count; i++)
5974 {
5975 Elf_Internal_Rela *irel = &internal_relocs[i];
5976 r_reloc r_rel;
5977 asection *target_sec;
5978 xtensa_relax_info *target_relax_info;
5979
5980 /* If this section has not already been marked as "relaxable", and
5981 if it contains any ASM_EXPAND relocations (marking expanded
5982 longcalls) that can be optimized into direct calls, then mark
5983 the section as "relaxable". */
5984 if (source_relax_info
5985 && !source_relax_info->is_relaxable_asm_section
5986 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
5987 {
5988 bfd_boolean is_reachable = FALSE;
5989 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
5990 link_info, &is_reachable)
5991 && is_reachable)
5992 {
5993 source_relax_info->is_relaxable_asm_section = TRUE;
5994 *is_relaxable_p = TRUE;
5995 }
5996 }
5997
5998 r_reloc_init (&r_rel, abfd, irel, contents,
5999 bfd_get_section_limit (abfd, sec));
6000
6001 target_sec = r_reloc_get_section (&r_rel);
6002 target_relax_info = get_xtensa_relax_info (target_sec);
6003 if (!target_relax_info)
6004 continue;
6005
6006 /* Count PC-relative operand relocations against the target section.
6007 Note: The conditions tested here must match the conditions under
6008 which init_source_reloc is called in collect_source_relocs(). */
6009 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6010 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6011 || is_l32r_relocation (abfd, sec, contents, irel)))
6012 target_relax_info->src_count++;
6013
6014 if (is_l32r_relocation (abfd, sec, contents, irel)
6015 && r_reloc_is_defined (&r_rel))
6016 {
6017 /* Mark the target section as relaxable. */
6018 target_relax_info->is_relaxable_literal_section = TRUE;
6019 *is_relaxable_p = TRUE;
6020 }
6021 }
6022
6023 error_return:
6024 release_contents (sec, contents);
6025 release_internal_relocs (sec, internal_relocs);
6026 return ok;
6027}
6028
6029
6030/* Record _all_ the relocations that point to relaxable sections, and
6031 get rid of ASM_EXPAND relocs by either converting them to
6032 ASM_SIMPLIFY or by removing them. */
6033
6034static bfd_boolean
7fa3d080
BW
6035collect_source_relocs (bfd *abfd,
6036 asection *sec,
6037 struct bfd_link_info *link_info)
43cd72b9
BW
6038{
6039 Elf_Internal_Rela *internal_relocs;
6040 bfd_byte *contents;
6041 bfd_boolean ok = TRUE;
6042 unsigned i;
6043 bfd_size_type sec_size;
6044
6045 internal_relocs = retrieve_internal_relocs (abfd, sec,
6046 link_info->keep_memory);
6047 if (internal_relocs == NULL)
6048 return ok;
6049
6050 sec_size = bfd_get_section_limit (abfd, sec);
6051 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6052 if (contents == NULL && sec_size != 0)
6053 {
6054 ok = FALSE;
6055 goto error_return;
6056 }
6057
6058 /* Record relocations against relaxable literal sections. */
6059 for (i = 0; i < sec->reloc_count; i++)
6060 {
6061 Elf_Internal_Rela *irel = &internal_relocs[i];
6062 r_reloc r_rel;
6063 asection *target_sec;
6064 xtensa_relax_info *target_relax_info;
6065
6066 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6067
6068 target_sec = r_reloc_get_section (&r_rel);
6069 target_relax_info = get_xtensa_relax_info (target_sec);
6070
6071 if (target_relax_info
6072 && (target_relax_info->is_relaxable_literal_section
6073 || target_relax_info->is_relaxable_asm_section))
6074 {
6075 xtensa_opcode opcode = XTENSA_UNDEFINED;
6076 int opnd = -1;
6077 bfd_boolean is_abs_literal = FALSE;
6078
6079 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6080 {
6081 /* None of the current alternate relocs are PC-relative,
6082 and only PC-relative relocs matter here. However, we
6083 still need to record the opcode for literal
6084 coalescing. */
6085 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6086 if (opcode == get_l32r_opcode ())
6087 {
6088 is_abs_literal = TRUE;
6089 opnd = 1;
6090 }
6091 else
6092 opcode = XTENSA_UNDEFINED;
6093 }
6094 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6095 {
6096 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6097 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6098 }
6099
6100 if (opcode != XTENSA_UNDEFINED)
6101 {
6102 int src_next = target_relax_info->src_next++;
6103 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6104
6105 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6106 is_abs_literal);
6107 }
6108 }
6109 }
6110
6111 /* Now get rid of ASM_EXPAND relocations. At this point, the
6112 src_relocs array for the target literal section may still be
6113 incomplete, but it must at least contain the entries for the L32R
6114 relocations associated with ASM_EXPANDs because they were just
6115 added in the preceding loop over the relocations. */
6116
6117 for (i = 0; i < sec->reloc_count; i++)
6118 {
6119 Elf_Internal_Rela *irel = &internal_relocs[i];
6120 bfd_boolean is_reachable;
6121
6122 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6123 &is_reachable))
6124 continue;
6125
6126 if (is_reachable)
6127 {
6128 Elf_Internal_Rela *l32r_irel;
6129 r_reloc r_rel;
6130 asection *target_sec;
6131 xtensa_relax_info *target_relax_info;
6132
6133 /* Mark the source_reloc for the L32R so that it will be
6134 removed in compute_removed_literals(), along with the
6135 associated literal. */
6136 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6137 irel, internal_relocs);
6138 if (l32r_irel == NULL)
6139 continue;
6140
6141 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6142
6143 target_sec = r_reloc_get_section (&r_rel);
6144 target_relax_info = get_xtensa_relax_info (target_sec);
6145
6146 if (target_relax_info
6147 && (target_relax_info->is_relaxable_literal_section
6148 || target_relax_info->is_relaxable_asm_section))
6149 {
6150 source_reloc *s_reloc;
6151
6152 /* Search the source_relocs for the entry corresponding to
6153 the l32r_irel. Note: The src_relocs array is not yet
6154 sorted, but it wouldn't matter anyway because we're
6155 searching by source offset instead of target offset. */
6156 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6157 target_relax_info->src_next,
6158 sec, l32r_irel);
6159 BFD_ASSERT (s_reloc);
6160 s_reloc->is_null = TRUE;
6161 }
6162
6163 /* Convert this reloc to ASM_SIMPLIFY. */
6164 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6165 R_XTENSA_ASM_SIMPLIFY);
6166 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6167
6168 pin_internal_relocs (sec, internal_relocs);
6169 }
6170 else
6171 {
6172 /* It is resolvable but doesn't reach. We resolve now
6173 by eliminating the relocation -- the call will remain
6174 expanded into L32R/CALLX. */
6175 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6176 pin_internal_relocs (sec, internal_relocs);
6177 }
6178 }
6179
6180 error_return:
6181 release_contents (sec, contents);
6182 release_internal_relocs (sec, internal_relocs);
6183 return ok;
6184}
6185
6186
6187/* Return TRUE if the asm expansion can be resolved. Generally it can
6188 be resolved on a final link or when a partial link locates it in the
6189 same section as the target. Set "is_reachable" flag if the target of
6190 the call is within the range of a direct call, given the current VMA
6191 for this section and the target section. */
6192
6193bfd_boolean
7fa3d080
BW
6194is_resolvable_asm_expansion (bfd *abfd,
6195 asection *sec,
6196 bfd_byte *contents,
6197 Elf_Internal_Rela *irel,
6198 struct bfd_link_info *link_info,
6199 bfd_boolean *is_reachable_p)
43cd72b9
BW
6200{
6201 asection *target_sec;
6202 bfd_vma target_offset;
6203 r_reloc r_rel;
6204 xtensa_opcode opcode, direct_call_opcode;
6205 bfd_vma self_address;
6206 bfd_vma dest_address;
6207 bfd_boolean uses_l32r;
6208 bfd_size_type sec_size;
6209
6210 *is_reachable_p = FALSE;
6211
6212 if (contents == NULL)
6213 return FALSE;
6214
6215 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6216 return FALSE;
6217
6218 sec_size = bfd_get_section_limit (abfd, sec);
6219 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6220 sec_size - irel->r_offset, &uses_l32r);
6221 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6222 if (!uses_l32r)
6223 return FALSE;
6224
6225 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6226 if (direct_call_opcode == XTENSA_UNDEFINED)
6227 return FALSE;
6228
6229 /* Check and see that the target resolves. */
6230 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6231 if (!r_reloc_is_defined (&r_rel))
6232 return FALSE;
6233
6234 target_sec = r_reloc_get_section (&r_rel);
6235 target_offset = r_rel.target_offset;
6236
6237 /* If the target is in a shared library, then it doesn't reach. This
6238 isn't supposed to come up because the compiler should never generate
6239 non-PIC calls on systems that use shared libraries, but the linker
6240 shouldn't crash regardless. */
6241 if (!target_sec->output_section)
6242 return FALSE;
6243
6244 /* For relocatable sections, we can only simplify when the output
6245 section of the target is the same as the output section of the
6246 source. */
6247 if (link_info->relocatable
6248 && (target_sec->output_section != sec->output_section
6249 || is_reloc_sym_weak (abfd, irel)))
6250 return FALSE;
6251
6252 self_address = (sec->output_section->vma
6253 + sec->output_offset + irel->r_offset + 3);
6254 dest_address = (target_sec->output_section->vma
6255 + target_sec->output_offset + target_offset);
6256
6257 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6258 self_address, dest_address);
6259
6260 if ((self_address >> CALL_SEGMENT_BITS) !=
6261 (dest_address >> CALL_SEGMENT_BITS))
6262 return FALSE;
6263
6264 return TRUE;
6265}
6266
6267
6268static Elf_Internal_Rela *
7fa3d080
BW
6269find_associated_l32r_irel (bfd *abfd,
6270 asection *sec,
6271 bfd_byte *contents,
6272 Elf_Internal_Rela *other_irel,
6273 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6274{
6275 unsigned i;
e0001a05 6276
43cd72b9
BW
6277 for (i = 0; i < sec->reloc_count; i++)
6278 {
6279 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6280
43cd72b9
BW
6281 if (irel == other_irel)
6282 continue;
6283 if (irel->r_offset != other_irel->r_offset)
6284 continue;
6285 if (is_l32r_relocation (abfd, sec, contents, irel))
6286 return irel;
6287 }
6288
6289 return NULL;
e0001a05
NC
6290}
6291
6292
43cd72b9
BW
6293/* The compute_text_actions function will build a list of potential
6294 transformation actions for code in the extended basic block of each
6295 longcall that is optimized to a direct call. From this list we
6296 generate a set of actions to actually perform that optimizes for
6297 space and, if not using size_opt, maintains branch target
6298 alignments.
e0001a05 6299
43cd72b9
BW
6300 These actions to be performed are placed on a per-section list.
6301 The actual changes are performed by relax_section() in the second
6302 pass. */
6303
6304bfd_boolean
7fa3d080
BW
6305compute_text_actions (bfd *abfd,
6306 asection *sec,
6307 struct bfd_link_info *link_info)
e0001a05 6308{
43cd72b9 6309 xtensa_relax_info *relax_info;
e0001a05 6310 bfd_byte *contents;
43cd72b9 6311 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6312 bfd_boolean ok = TRUE;
6313 unsigned i;
43cd72b9
BW
6314 property_table_entry *prop_table = 0;
6315 int ptblsize = 0;
6316 bfd_size_type sec_size;
6317 static bfd_boolean no_insn_move = FALSE;
6318
6319 if (no_insn_move)
6320 return ok;
6321
6322 /* Do nothing if the section contains no optimized longcalls. */
6323 relax_info = get_xtensa_relax_info (sec);
6324 BFD_ASSERT (relax_info);
6325 if (!relax_info->is_relaxable_asm_section)
6326 return ok;
e0001a05
NC
6327
6328 internal_relocs = retrieve_internal_relocs (abfd, sec,
6329 link_info->keep_memory);
e0001a05 6330
43cd72b9
BW
6331 if (internal_relocs)
6332 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6333 internal_reloc_compare);
6334
6335 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6336 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6337 if (contents == NULL && sec_size != 0)
e0001a05
NC
6338 {
6339 ok = FALSE;
6340 goto error_return;
6341 }
6342
43cd72b9
BW
6343 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6344 XTENSA_PROP_SEC_NAME, FALSE);
6345 if (ptblsize < 0)
6346 {
6347 ok = FALSE;
6348 goto error_return;
6349 }
6350
6351 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6352 {
6353 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6354 bfd_vma r_offset;
6355 property_table_entry *the_entry;
6356 int ptbl_idx;
6357 ebb_t *ebb;
6358 ebb_constraint ebb_table;
6359 bfd_size_type simplify_size;
6360
6361 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6362 continue;
6363 r_offset = irel->r_offset;
e0001a05 6364
43cd72b9
BW
6365 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6366 if (simplify_size == 0)
6367 {
6368 (*_bfd_error_handler)
6369 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6370 sec->owner, sec, r_offset);
6371 continue;
6372 }
e0001a05 6373
43cd72b9
BW
6374 /* If the instruction table is not around, then don't do this
6375 relaxation. */
6376 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6377 sec->vma + irel->r_offset);
6378 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6379 {
6380 text_action_add (&relax_info->action_list,
6381 ta_convert_longcall, sec, r_offset,
6382 0);
6383 continue;
6384 }
6385
6386 /* If the next longcall happens to be at the same address as an
6387 unreachable section of size 0, then skip forward. */
6388 ptbl_idx = the_entry - prop_table;
6389 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6390 && the_entry->size == 0
6391 && ptbl_idx + 1 < ptblsize
6392 && (prop_table[ptbl_idx + 1].address
6393 == prop_table[ptbl_idx].address))
6394 {
6395 ptbl_idx++;
6396 the_entry++;
6397 }
e0001a05 6398
43cd72b9
BW
6399 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6400 /* NO_REORDER is OK */
6401 continue;
e0001a05 6402
43cd72b9
BW
6403 init_ebb_constraint (&ebb_table);
6404 ebb = &ebb_table.ebb;
6405 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6406 internal_relocs, sec->reloc_count);
6407 ebb->start_offset = r_offset + simplify_size;
6408 ebb->end_offset = r_offset + simplify_size;
6409 ebb->start_ptbl_idx = ptbl_idx;
6410 ebb->end_ptbl_idx = ptbl_idx;
6411 ebb->start_reloc_idx = i;
6412 ebb->end_reloc_idx = i;
6413
6414 if (!extend_ebb_bounds (ebb)
6415 || !compute_ebb_proposed_actions (&ebb_table)
6416 || !compute_ebb_actions (&ebb_table)
6417 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6418 internal_relocs, &ebb_table)
6419 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6420 {
43cd72b9
BW
6421 /* If anything goes wrong or we get unlucky and something does
6422 not fit, with our plan because of expansion between
6423 critical branches, just convert to a NOP. */
6424
6425 text_action_add (&relax_info->action_list,
6426 ta_convert_longcall, sec, r_offset, 0);
6427 i = ebb_table.ebb.end_reloc_idx;
6428 free_ebb_constraint (&ebb_table);
6429 continue;
e0001a05 6430 }
43cd72b9
BW
6431
6432 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6433
6434 /* Update the index so we do not go looking at the relocations
6435 we have already processed. */
6436 i = ebb_table.ebb.end_reloc_idx;
6437 free_ebb_constraint (&ebb_table);
e0001a05
NC
6438 }
6439
43cd72b9 6440#if DEBUG
7fa3d080 6441 if (relax_info->action_list.head)
43cd72b9
BW
6442 print_action_list (stderr, &relax_info->action_list);
6443#endif
6444
6445error_return:
e0001a05
NC
6446 release_contents (sec, contents);
6447 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6448 if (prop_table)
6449 free (prop_table);
6450
e0001a05
NC
6451 return ok;
6452}
6453
6454
43cd72b9 6455/* Find all of the possible actions for an extended basic block. */
e0001a05 6456
43cd72b9 6457bfd_boolean
7fa3d080 6458compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6459{
43cd72b9
BW
6460 const ebb_t *ebb = &ebb_table->ebb;
6461 unsigned rel_idx = ebb->start_reloc_idx;
6462 property_table_entry *entry, *start_entry, *end_entry;
e0001a05 6463
43cd72b9
BW
6464 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6465 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6466
43cd72b9 6467 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6468 {
43cd72b9
BW
6469 bfd_vma offset, start_offset, end_offset;
6470 bfd_size_type insn_len;
e0001a05 6471
43cd72b9
BW
6472 start_offset = entry->address - ebb->sec->vma;
6473 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6474
43cd72b9
BW
6475 if (entry == start_entry)
6476 start_offset = ebb->start_offset;
6477 if (entry == end_entry)
6478 end_offset = ebb->end_offset;
6479 offset = start_offset;
e0001a05 6480
43cd72b9
BW
6481 if (offset == entry->address - ebb->sec->vma
6482 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6483 {
6484 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6485 BFD_ASSERT (offset != end_offset);
6486 if (offset == end_offset)
6487 return FALSE;
e0001a05 6488
43cd72b9
BW
6489 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6490 offset);
6491
6492 /* Propose no actions for a section with an undecodable offset. */
6493 if (insn_len == 0)
6494 {
6495 (*_bfd_error_handler)
6496 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6497 ebb->sec->owner, ebb->sec, offset);
6498 return FALSE;
6499 }
6500 if (check_branch_target_aligned_address (offset, insn_len))
6501 align_type = EBB_REQUIRE_TGT_ALIGN;
6502
6503 ebb_propose_action (ebb_table, align_type, 0,
6504 ta_none, offset, 0, TRUE);
6505 }
6506
6507 while (offset != end_offset)
e0001a05 6508 {
43cd72b9 6509 Elf_Internal_Rela *irel;
e0001a05 6510 xtensa_opcode opcode;
e0001a05 6511
43cd72b9
BW
6512 while (rel_idx < ebb->end_reloc_idx
6513 && (ebb->relocs[rel_idx].r_offset < offset
6514 || (ebb->relocs[rel_idx].r_offset == offset
6515 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6516 != R_XTENSA_ASM_SIMPLIFY))))
6517 rel_idx++;
6518
6519 /* Check for longcall. */
6520 irel = &ebb->relocs[rel_idx];
6521 if (irel->r_offset == offset
6522 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6523 {
6524 bfd_size_type simplify_size;
e0001a05 6525
43cd72b9
BW
6526 simplify_size = get_asm_simplify_size (ebb->contents,
6527 ebb->content_length,
6528 irel->r_offset);
6529 if (simplify_size == 0)
6530 {
6531 (*_bfd_error_handler)
6532 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6533 ebb->sec->owner, ebb->sec, offset);
6534 return FALSE;
6535 }
6536
6537 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6538 ta_convert_longcall, offset, 0, TRUE);
6539
6540 offset += simplify_size;
6541 continue;
6542 }
e0001a05 6543
43cd72b9
BW
6544 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6545 offset);
6546 /* If the instruction is undecodable, then report an error. */
6547 if (insn_len == 0)
6548 {
6549 (*_bfd_error_handler)
6550 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6551 ebb->sec->owner, ebb->sec, offset);
6552 return FALSE;
6553 }
6554
6555 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6556 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6557 && narrow_instruction (ebb->contents, ebb->content_length,
6558 offset, FALSE))
6559 {
6560 /* Add an instruction narrow action. */
6561 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6562 ta_narrow_insn, offset, 0, FALSE);
6563 offset += insn_len;
6564 continue;
6565 }
6566 if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6567 && widen_instruction (ebb->contents, ebb->content_length,
6568 offset, FALSE))
6569 {
6570 /* Add an instruction widen action. */
6571 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6572 ta_widen_insn, offset, 0, FALSE);
6573 offset += insn_len;
6574 continue;
6575 }
6576 opcode = insn_decode_opcode (ebb->contents, ebb->content_length,
6577 offset, 0);
6578 if (xtensa_opcode_is_loop (xtensa_default_isa, opcode))
6579 {
6580 /* Check for branch targets. */
6581 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6582 ta_none, offset, 0, TRUE);
6583 offset += insn_len;
6584 continue;
6585 }
6586
6587 offset += insn_len;
e0001a05
NC
6588 }
6589 }
6590
43cd72b9
BW
6591 if (ebb->ends_unreachable)
6592 {
6593 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6594 ta_fill, ebb->end_offset, 0, TRUE);
6595 }
e0001a05 6596
43cd72b9
BW
6597 return TRUE;
6598}
6599
6600
6601/* After all of the information has collected about the
6602 transformations possible in an EBB, compute the appropriate actions
6603 here in compute_ebb_actions. We still must check later to make
6604 sure that the actions do not break any relocations. The algorithm
6605 used here is pretty greedy. Basically, it removes as many no-ops
6606 as possible so that the end of the EBB has the same alignment
6607 characteristics as the original. First, it uses narrowing, then
6608 fill space at the end of the EBB, and finally widenings. If that
6609 does not work, it tries again with one fewer no-op removed. The
6610 optimization will only be performed if all of the branch targets
6611 that were aligned before transformation are also aligned after the
6612 transformation.
6613
6614 When the size_opt flag is set, ignore the branch target alignments,
6615 narrow all wide instructions, and remove all no-ops unless the end
6616 of the EBB prevents it. */
6617
6618bfd_boolean
7fa3d080 6619compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6620{
6621 unsigned i = 0;
6622 unsigned j;
6623 int removed_bytes = 0;
6624 ebb_t *ebb = &ebb_table->ebb;
6625 unsigned seg_idx_start = 0;
6626 unsigned seg_idx_end = 0;
6627
6628 /* We perform this like the assembler relaxation algorithm: Start by
6629 assuming all instructions are narrow and all no-ops removed; then
6630 walk through.... */
6631
6632 /* For each segment of this that has a solid constraint, check to
6633 see if there are any combinations that will keep the constraint.
6634 If so, use it. */
6635 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6636 {
43cd72b9
BW
6637 bfd_boolean requires_text_end_align = FALSE;
6638 unsigned longcall_count = 0;
6639 unsigned longcall_convert_count = 0;
6640 unsigned narrowable_count = 0;
6641 unsigned narrowable_convert_count = 0;
6642 unsigned widenable_count = 0;
6643 unsigned widenable_convert_count = 0;
e0001a05 6644
43cd72b9
BW
6645 proposed_action *action = NULL;
6646 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6647
43cd72b9 6648 seg_idx_start = seg_idx_end;
e0001a05 6649
43cd72b9
BW
6650 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6651 {
6652 action = &ebb_table->actions[i];
6653 if (action->action == ta_convert_longcall)
6654 longcall_count++;
6655 if (action->action == ta_narrow_insn)
6656 narrowable_count++;
6657 if (action->action == ta_widen_insn)
6658 widenable_count++;
6659 if (action->action == ta_fill)
6660 break;
6661 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6662 break;
6663 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6664 && !elf32xtensa_size_opt)
6665 break;
6666 }
6667 seg_idx_end = i;
e0001a05 6668
43cd72b9
BW
6669 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6670 requires_text_end_align = TRUE;
e0001a05 6671
43cd72b9
BW
6672 if (elf32xtensa_size_opt && !requires_text_end_align
6673 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6674 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6675 {
6676 longcall_convert_count = longcall_count;
6677 narrowable_convert_count = narrowable_count;
6678 widenable_convert_count = 0;
6679 }
6680 else
6681 {
6682 /* There is a constraint. Convert the max number of longcalls. */
6683 narrowable_convert_count = 0;
6684 longcall_convert_count = 0;
6685 widenable_convert_count = 0;
e0001a05 6686
43cd72b9 6687 for (j = 0; j < longcall_count; j++)
e0001a05 6688 {
43cd72b9
BW
6689 int removed = (longcall_count - j) * 3 & (align - 1);
6690 unsigned desire_narrow = (align - removed) & (align - 1);
6691 unsigned desire_widen = removed;
6692 if (desire_narrow <= narrowable_count)
6693 {
6694 narrowable_convert_count = desire_narrow;
6695 narrowable_convert_count +=
6696 (align * ((narrowable_count - narrowable_convert_count)
6697 / align));
6698 longcall_convert_count = (longcall_count - j);
6699 widenable_convert_count = 0;
6700 break;
6701 }
6702 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6703 {
6704 narrowable_convert_count = 0;
6705 longcall_convert_count = longcall_count - j;
6706 widenable_convert_count = desire_widen;
6707 break;
6708 }
6709 }
6710 }
e0001a05 6711
43cd72b9
BW
6712 /* Now the number of conversions are saved. Do them. */
6713 for (i = seg_idx_start; i < seg_idx_end; i++)
6714 {
6715 action = &ebb_table->actions[i];
6716 switch (action->action)
6717 {
6718 case ta_convert_longcall:
6719 if (longcall_convert_count != 0)
6720 {
6721 action->action = ta_remove_longcall;
6722 action->do_action = TRUE;
6723 action->removed_bytes += 3;
6724 longcall_convert_count--;
6725 }
6726 break;
6727 case ta_narrow_insn:
6728 if (narrowable_convert_count != 0)
6729 {
6730 action->do_action = TRUE;
6731 action->removed_bytes += 1;
6732 narrowable_convert_count--;
6733 }
6734 break;
6735 case ta_widen_insn:
6736 if (widenable_convert_count != 0)
6737 {
6738 action->do_action = TRUE;
6739 action->removed_bytes -= 1;
6740 widenable_convert_count--;
6741 }
6742 break;
6743 default:
6744 break;
e0001a05 6745 }
43cd72b9
BW
6746 }
6747 }
e0001a05 6748
43cd72b9
BW
6749 /* Now we move on to some local opts. Try to remove each of the
6750 remaining longcalls. */
e0001a05 6751
43cd72b9
BW
6752 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6753 {
6754 removed_bytes = 0;
6755 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6756 {
43cd72b9
BW
6757 int old_removed_bytes = removed_bytes;
6758 proposed_action *action = &ebb_table->actions[i];
6759
6760 if (action->do_action && action->action == ta_convert_longcall)
6761 {
6762 bfd_boolean bad_alignment = FALSE;
6763 removed_bytes += 3;
6764 for (j = i + 1; j < ebb_table->action_count; j++)
6765 {
6766 proposed_action *new_action = &ebb_table->actions[j];
6767 bfd_vma offset = new_action->offset;
6768 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6769 {
6770 if (!check_branch_target_aligned
6771 (ebb_table->ebb.contents,
6772 ebb_table->ebb.content_length,
6773 offset, offset - removed_bytes))
6774 {
6775 bad_alignment = TRUE;
6776 break;
6777 }
6778 }
6779 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6780 {
6781 if (!check_loop_aligned (ebb_table->ebb.contents,
6782 ebb_table->ebb.content_length,
6783 offset,
6784 offset - removed_bytes))
6785 {
6786 bad_alignment = TRUE;
6787 break;
6788 }
6789 }
6790 if (new_action->action == ta_narrow_insn
6791 && !new_action->do_action
6792 && ebb_table->ebb.sec->alignment_power == 2)
6793 {
6794 /* Narrow an instruction and we are done. */
6795 new_action->do_action = TRUE;
6796 new_action->removed_bytes += 1;
6797 bad_alignment = FALSE;
6798 break;
6799 }
6800 if (new_action->action == ta_widen_insn
6801 && new_action->do_action
6802 && ebb_table->ebb.sec->alignment_power == 2)
6803 {
6804 /* Narrow an instruction and we are done. */
6805 new_action->do_action = FALSE;
6806 new_action->removed_bytes += 1;
6807 bad_alignment = FALSE;
6808 break;
6809 }
6810 }
6811 if (!bad_alignment)
6812 {
6813 action->removed_bytes += 3;
6814 action->action = ta_remove_longcall;
6815 action->do_action = TRUE;
6816 }
6817 }
6818 removed_bytes = old_removed_bytes;
6819 if (action->do_action)
6820 removed_bytes += action->removed_bytes;
e0001a05
NC
6821 }
6822 }
6823
43cd72b9
BW
6824 removed_bytes = 0;
6825 for (i = 0; i < ebb_table->action_count; ++i)
6826 {
6827 proposed_action *action = &ebb_table->actions[i];
6828 if (action->do_action)
6829 removed_bytes += action->removed_bytes;
6830 }
6831
6832 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6833 && ebb->ends_unreachable)
6834 {
6835 proposed_action *action;
6836 int br;
6837 int extra_space;
6838
6839 BFD_ASSERT (ebb_table->action_count != 0);
6840 action = &ebb_table->actions[ebb_table->action_count - 1];
6841 BFD_ASSERT (action->action == ta_fill);
6842 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6843
6844 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6845 br = action->removed_bytes + removed_bytes + extra_space;
6846 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6847
6848 action->removed_bytes = extra_space - br;
6849 }
6850 return TRUE;
e0001a05
NC
6851}
6852
6853
43cd72b9
BW
6854/* Use check_section_ebb_pcrels_fit to make sure that all of the
6855 relocations in a section will fit if a proposed set of actions
6856 are performed. */
e0001a05 6857
43cd72b9 6858static bfd_boolean
7fa3d080
BW
6859check_section_ebb_pcrels_fit (bfd *abfd,
6860 asection *sec,
6861 bfd_byte *contents,
6862 Elf_Internal_Rela *internal_relocs,
6863 const ebb_constraint *constraint)
e0001a05 6864{
43cd72b9
BW
6865 unsigned i, j;
6866 Elf_Internal_Rela *irel;
6867 xtensa_relax_info *relax_info;
e0001a05 6868
43cd72b9 6869 relax_info = get_xtensa_relax_info (sec);
e0001a05 6870
43cd72b9
BW
6871 for (i = 0; i < sec->reloc_count; i++)
6872 {
6873 r_reloc r_rel;
6874 bfd_vma orig_self_offset, orig_target_offset;
6875 bfd_vma self_offset, target_offset;
6876 int r_type;
6877 reloc_howto_type *howto;
6878 int self_removed_bytes, target_removed_bytes;
e0001a05 6879
43cd72b9
BW
6880 irel = &internal_relocs[i];
6881 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 6882
43cd72b9
BW
6883 howto = &elf_howto_table[r_type];
6884 /* We maintain the required invariant: PC-relative relocations
6885 that fit before linking must fit after linking. Thus we only
6886 need to deal with relocations to the same section that are
6887 PC-relative. */
6888 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
6889 || !howto->pc_relative)
6890 continue;
e0001a05 6891
43cd72b9
BW
6892 r_reloc_init (&r_rel, abfd, irel, contents,
6893 bfd_get_section_limit (abfd, sec));
e0001a05 6894
43cd72b9
BW
6895 if (r_reloc_get_section (&r_rel) != sec)
6896 continue;
e0001a05 6897
43cd72b9
BW
6898 orig_self_offset = irel->r_offset;
6899 orig_target_offset = r_rel.target_offset;
e0001a05 6900
43cd72b9
BW
6901 self_offset = orig_self_offset;
6902 target_offset = orig_target_offset;
6903
6904 if (relax_info)
6905 {
6906 self_offset = offset_with_removed_text (&relax_info->action_list,
6907 orig_self_offset);
6908 target_offset = offset_with_removed_text (&relax_info->action_list,
6909 orig_target_offset);
6910 }
6911
6912 self_removed_bytes = 0;
6913 target_removed_bytes = 0;
6914
6915 for (j = 0; j < constraint->action_count; ++j)
6916 {
6917 proposed_action *action = &constraint->actions[j];
6918 bfd_vma offset = action->offset;
6919 int removed_bytes = action->removed_bytes;
6920 if (offset < orig_self_offset
6921 || (offset == orig_self_offset && action->action == ta_fill
6922 && action->removed_bytes < 0))
6923 self_removed_bytes += removed_bytes;
6924 if (offset < orig_target_offset
6925 || (offset == orig_target_offset && action->action == ta_fill
6926 && action->removed_bytes < 0))
6927 target_removed_bytes += removed_bytes;
6928 }
6929 self_offset -= self_removed_bytes;
6930 target_offset -= target_removed_bytes;
6931
6932 /* Try to encode it. Get the operand and check. */
6933 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6934 {
6935 /* None of the current alternate relocs are PC-relative,
6936 and only PC-relative relocs matter here. */
6937 }
6938 else
6939 {
6940 xtensa_opcode opcode;
6941 int opnum;
6942
6943 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6944 if (opcode == XTENSA_UNDEFINED)
6945 return FALSE;
6946
6947 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6948 if (opnum == XTENSA_UNDEFINED)
6949 return FALSE;
6950
6951 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
6952 return FALSE;
6953 }
6954 }
6955
6956 return TRUE;
6957}
6958
6959
6960static bfd_boolean
7fa3d080 6961check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
6962{
6963 int removed = 0;
6964 unsigned i;
6965
6966 for (i = 0; i < constraint->action_count; i++)
6967 {
6968 const proposed_action *action = &constraint->actions[i];
6969 if (action->do_action)
6970 removed += action->removed_bytes;
6971 }
6972 if (removed < 0)
e0001a05
NC
6973 return FALSE;
6974
6975 return TRUE;
6976}
6977
6978
43cd72b9 6979void
7fa3d080
BW
6980text_action_add_proposed (text_action_list *l,
6981 const ebb_constraint *ebb_table,
6982 asection *sec)
e0001a05
NC
6983{
6984 unsigned i;
6985
43cd72b9 6986 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6987 {
43cd72b9 6988 proposed_action *action = &ebb_table->actions[i];
e0001a05 6989
43cd72b9 6990 if (!action->do_action)
e0001a05 6991 continue;
43cd72b9
BW
6992 switch (action->action)
6993 {
6994 case ta_remove_insn:
6995 case ta_remove_longcall:
6996 case ta_convert_longcall:
6997 case ta_narrow_insn:
6998 case ta_widen_insn:
6999 case ta_fill:
7000 case ta_remove_literal:
7001 text_action_add (l, action->action, sec, action->offset,
7002 action->removed_bytes);
7003 break;
7004 case ta_none:
7005 break;
7006 default:
7007 BFD_ASSERT (0);
7008 break;
7009 }
e0001a05 7010 }
43cd72b9 7011}
e0001a05 7012
43cd72b9
BW
7013
7014int
7fa3d080 7015compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7016{
7017 int fill_extra_space;
7018
7019 if (!entry)
7020 return 0;
7021
7022 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7023 return 0;
7024
7025 fill_extra_space = entry->size;
7026 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7027 {
7028 /* Fill bytes for alignment:
7029 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7030 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7031 int nsm = (1 << pow) - 1;
7032 bfd_vma addr = entry->address + entry->size;
7033 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7034 fill_extra_space += align_fill;
7035 }
7036 return fill_extra_space;
e0001a05
NC
7037}
7038
43cd72b9 7039\f
e0001a05
NC
7040/* First relaxation pass. */
7041
43cd72b9
BW
7042/* If the section contains relaxable literals, check each literal to
7043 see if it has the same value as another literal that has already
7044 been seen, either in the current section or a previous one. If so,
7045 add an entry to the per-section list of removed literals. The
e0001a05
NC
7046 actual changes are deferred until the next pass. */
7047
7048static bfd_boolean
7fa3d080
BW
7049compute_removed_literals (bfd *abfd,
7050 asection *sec,
7051 struct bfd_link_info *link_info,
7052 value_map_hash_table *values)
e0001a05
NC
7053{
7054 xtensa_relax_info *relax_info;
7055 bfd_byte *contents;
7056 Elf_Internal_Rela *internal_relocs;
43cd72b9 7057 source_reloc *src_relocs, *rel;
e0001a05 7058 bfd_boolean ok = TRUE;
43cd72b9
BW
7059 property_table_entry *prop_table = NULL;
7060 int ptblsize;
7061 int i, prev_i;
7062 bfd_boolean last_loc_is_prev = FALSE;
7063 bfd_vma last_target_offset = 0;
7064 section_cache_t target_sec_cache;
7065 bfd_size_type sec_size;
7066
7067 init_section_cache (&target_sec_cache);
e0001a05
NC
7068
7069 /* Do nothing if it is not a relaxable literal section. */
7070 relax_info = get_xtensa_relax_info (sec);
7071 BFD_ASSERT (relax_info);
e0001a05
NC
7072 if (!relax_info->is_relaxable_literal_section)
7073 return ok;
7074
7075 internal_relocs = retrieve_internal_relocs (abfd, sec,
7076 link_info->keep_memory);
7077
43cd72b9 7078 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7079 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7080 if (contents == NULL && sec_size != 0)
e0001a05
NC
7081 {
7082 ok = FALSE;
7083 goto error_return;
7084 }
7085
7086 /* Sort the source_relocs by target offset. */
7087 src_relocs = relax_info->src_relocs;
7088 qsort (src_relocs, relax_info->src_count,
7089 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7090 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7091 internal_reloc_compare);
e0001a05 7092
43cd72b9
BW
7093 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7094 XTENSA_PROP_SEC_NAME, FALSE);
7095 if (ptblsize < 0)
7096 {
7097 ok = FALSE;
7098 goto error_return;
7099 }
7100
7101 prev_i = -1;
e0001a05
NC
7102 for (i = 0; i < relax_info->src_count; i++)
7103 {
e0001a05 7104 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7105
7106 rel = &src_relocs[i];
43cd72b9
BW
7107 if (get_l32r_opcode () != rel->opcode)
7108 continue;
e0001a05
NC
7109 irel = get_irel_at_offset (sec, internal_relocs,
7110 rel->r_rel.target_offset);
7111
43cd72b9
BW
7112 /* If the relocation on this is not a simple R_XTENSA_32 or
7113 R_XTENSA_PLT then do not consider it. This may happen when
7114 the difference of two symbols is used in a literal. */
7115 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7116 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7117 continue;
7118
e0001a05
NC
7119 /* If the target_offset for this relocation is the same as the
7120 previous relocation, then we've already considered whether the
7121 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7122 if (i != 0 && prev_i != -1
7123 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7124 continue;
43cd72b9
BW
7125 prev_i = i;
7126
7127 if (last_loc_is_prev &&
7128 last_target_offset + 4 != rel->r_rel.target_offset)
7129 last_loc_is_prev = FALSE;
e0001a05
NC
7130
7131 /* Check if the relocation was from an L32R that is being removed
7132 because a CALLX was converted to a direct CALL, and check if
7133 there are no other relocations to the literal. */
43cd72b9 7134 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7135 {
43cd72b9
BW
7136 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7137 irel, rel, prop_table, ptblsize))
e0001a05 7138 {
43cd72b9
BW
7139 ok = FALSE;
7140 goto error_return;
e0001a05 7141 }
43cd72b9 7142 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7143 continue;
7144 }
7145
43cd72b9
BW
7146 if (!identify_literal_placement (abfd, sec, contents, link_info,
7147 values,
7148 &last_loc_is_prev, irel,
7149 relax_info->src_count - i, rel,
7150 prop_table, ptblsize,
7151 &target_sec_cache, rel->is_abs_literal))
e0001a05 7152 {
43cd72b9
BW
7153 ok = FALSE;
7154 goto error_return;
7155 }
7156 last_target_offset = rel->r_rel.target_offset;
7157 }
e0001a05 7158
43cd72b9
BW
7159#if DEBUG
7160 print_removed_literals (stderr, &relax_info->removed_list);
7161 print_action_list (stderr, &relax_info->action_list);
7162#endif /* DEBUG */
7163
7164error_return:
7165 if (prop_table) free (prop_table);
7166 clear_section_cache (&target_sec_cache);
7167
7168 release_contents (sec, contents);
7169 release_internal_relocs (sec, internal_relocs);
7170 return ok;
7171}
7172
7173
7174static Elf_Internal_Rela *
7fa3d080
BW
7175get_irel_at_offset (asection *sec,
7176 Elf_Internal_Rela *internal_relocs,
7177 bfd_vma offset)
43cd72b9
BW
7178{
7179 unsigned i;
7180 Elf_Internal_Rela *irel;
7181 unsigned r_type;
7182 Elf_Internal_Rela key;
7183
7184 if (!internal_relocs)
7185 return NULL;
7186
7187 key.r_offset = offset;
7188 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7189 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7190 if (!irel)
7191 return NULL;
7192
7193 /* bsearch does not guarantee which will be returned if there are
7194 multiple matches. We need the first that is not an alignment. */
7195 i = irel - internal_relocs;
7196 while (i > 0)
7197 {
7198 if (internal_relocs[i-1].r_offset != offset)
7199 break;
7200 i--;
7201 }
7202 for ( ; i < sec->reloc_count; i++)
7203 {
7204 irel = &internal_relocs[i];
7205 r_type = ELF32_R_TYPE (irel->r_info);
7206 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7207 return irel;
7208 }
7209
7210 return NULL;
7211}
7212
7213
7214bfd_boolean
7fa3d080
BW
7215is_removable_literal (const source_reloc *rel,
7216 int i,
7217 const source_reloc *src_relocs,
7218 int src_count)
43cd72b9
BW
7219{
7220 const source_reloc *curr_rel;
7221 if (!rel->is_null)
7222 return FALSE;
7223
7224 for (++i; i < src_count; ++i)
7225 {
7226 curr_rel = &src_relocs[i];
7227 /* If all others have the same target offset.... */
7228 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7229 return TRUE;
7230
7231 if (!curr_rel->is_null
7232 && !xtensa_is_property_section (curr_rel->source_sec)
7233 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7234 return FALSE;
7235 }
7236 return TRUE;
7237}
7238
7239
7240bfd_boolean
7fa3d080
BW
7241remove_dead_literal (bfd *abfd,
7242 asection *sec,
7243 struct bfd_link_info *link_info,
7244 Elf_Internal_Rela *internal_relocs,
7245 Elf_Internal_Rela *irel,
7246 source_reloc *rel,
7247 property_table_entry *prop_table,
7248 int ptblsize)
43cd72b9
BW
7249{
7250 property_table_entry *entry;
7251 xtensa_relax_info *relax_info;
7252
7253 relax_info = get_xtensa_relax_info (sec);
7254 if (!relax_info)
7255 return FALSE;
7256
7257 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7258 sec->vma + rel->r_rel.target_offset);
7259
7260 /* Mark the unused literal so that it will be removed. */
7261 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7262
7263 text_action_add (&relax_info->action_list,
7264 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7265
7266 /* If the section is 4-byte aligned, do not add fill. */
7267 if (sec->alignment_power > 2)
7268 {
7269 int fill_extra_space;
7270 bfd_vma entry_sec_offset;
7271 text_action *fa;
7272 property_table_entry *the_add_entry;
7273 int removed_diff;
7274
7275 if (entry)
7276 entry_sec_offset = entry->address - sec->vma + entry->size;
7277 else
7278 entry_sec_offset = rel->r_rel.target_offset + 4;
7279
7280 /* If the literal range is at the end of the section,
7281 do not add fill. */
7282 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7283 entry_sec_offset);
7284 fill_extra_space = compute_fill_extra_space (the_add_entry);
7285
7286 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7287 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7288 -4, fill_extra_space);
7289 if (fa)
7290 adjust_fill_action (fa, removed_diff);
7291 else
7292 text_action_add (&relax_info->action_list,
7293 ta_fill, sec, entry_sec_offset, removed_diff);
7294 }
7295
7296 /* Zero out the relocation on this literal location. */
7297 if (irel)
7298 {
7299 if (elf_hash_table (link_info)->dynamic_sections_created)
7300 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7301
7302 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7303 pin_internal_relocs (sec, internal_relocs);
7304 }
7305
7306 /* Do not modify "last_loc_is_prev". */
7307 return TRUE;
7308}
7309
7310
7311bfd_boolean
7fa3d080
BW
7312identify_literal_placement (bfd *abfd,
7313 asection *sec,
7314 bfd_byte *contents,
7315 struct bfd_link_info *link_info,
7316 value_map_hash_table *values,
7317 bfd_boolean *last_loc_is_prev_p,
7318 Elf_Internal_Rela *irel,
7319 int remaining_src_rels,
7320 source_reloc *rel,
7321 property_table_entry *prop_table,
7322 int ptblsize,
7323 section_cache_t *target_sec_cache,
7324 bfd_boolean is_abs_literal)
43cd72b9
BW
7325{
7326 literal_value val;
7327 value_map *val_map;
7328 xtensa_relax_info *relax_info;
7329 bfd_boolean literal_placed = FALSE;
7330 r_reloc r_rel;
7331 unsigned long value;
7332 bfd_boolean final_static_link;
7333 bfd_size_type sec_size;
7334
7335 relax_info = get_xtensa_relax_info (sec);
7336 if (!relax_info)
7337 return FALSE;
7338
7339 sec_size = bfd_get_section_limit (abfd, sec);
7340
7341 final_static_link =
7342 (!link_info->relocatable
7343 && !elf_hash_table (link_info)->dynamic_sections_created);
7344
7345 /* The placement algorithm first checks to see if the literal is
7346 already in the value map. If so and the value map is reachable
7347 from all uses, then the literal is moved to that location. If
7348 not, then we identify the last location where a fresh literal was
7349 placed. If the literal can be safely moved there, then we do so.
7350 If not, then we assume that the literal is not to move and leave
7351 the literal where it is, marking it as the last literal
7352 location. */
7353
7354 /* Find the literal value. */
7355 value = 0;
7356 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7357 if (!irel)
7358 {
7359 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7360 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7361 }
7362 init_literal_value (&val, &r_rel, value, is_abs_literal);
7363
7364 /* Check if we've seen another literal with the same value that
7365 is in the same output section. */
7366 val_map = value_map_get_cached_value (values, &val, final_static_link);
7367
7368 if (val_map
7369 && (r_reloc_get_section (&val_map->loc)->output_section
7370 == sec->output_section)
7371 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7372 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7373 {
7374 /* No change to last_loc_is_prev. */
7375 literal_placed = TRUE;
7376 }
7377
7378 /* For relocatable links, do not try to move literals. To do it
7379 correctly might increase the number of relocations in an input
7380 section making the default relocatable linking fail. */
7381 if (!link_info->relocatable && !literal_placed
7382 && values->has_last_loc && !(*last_loc_is_prev_p))
7383 {
7384 asection *target_sec = r_reloc_get_section (&values->last_loc);
7385 if (target_sec && target_sec->output_section == sec->output_section)
7386 {
7387 /* Increment the virtual offset. */
7388 r_reloc try_loc = values->last_loc;
7389 try_loc.virtual_offset += 4;
7390
7391 /* There is a last loc that was in the same output section. */
7392 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7393 && move_shared_literal (sec, link_info, rel,
7394 prop_table, ptblsize,
7395 &try_loc, &val, target_sec_cache))
e0001a05 7396 {
43cd72b9
BW
7397 values->last_loc.virtual_offset += 4;
7398 literal_placed = TRUE;
7399 if (!val_map)
7400 val_map = add_value_map (values, &val, &try_loc,
7401 final_static_link);
7402 else
7403 val_map->loc = try_loc;
e0001a05
NC
7404 }
7405 }
43cd72b9
BW
7406 }
7407
7408 if (!literal_placed)
7409 {
7410 /* Nothing worked, leave the literal alone but update the last loc. */
7411 values->has_last_loc = TRUE;
7412 values->last_loc = rel->r_rel;
7413 if (!val_map)
7414 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7415 else
43cd72b9
BW
7416 val_map->loc = rel->r_rel;
7417 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7418 }
7419
43cd72b9 7420 return TRUE;
e0001a05
NC
7421}
7422
7423
7424/* Check if the original relocations (presumably on L32R instructions)
7425 identified by reloc[0..N] can be changed to reference the literal
7426 identified by r_rel. If r_rel is out of range for any of the
7427 original relocations, then we don't want to coalesce the original
7428 literal with the one at r_rel. We only check reloc[0..N], where the
7429 offsets are all the same as for reloc[0] (i.e., they're all
7430 referencing the same literal) and where N is also bounded by the
7431 number of remaining entries in the "reloc" array. The "reloc" array
7432 is sorted by target offset so we know all the entries for the same
7433 literal will be contiguous. */
7434
7435static bfd_boolean
7fa3d080
BW
7436relocations_reach (source_reloc *reloc,
7437 int remaining_relocs,
7438 const r_reloc *r_rel)
e0001a05
NC
7439{
7440 bfd_vma from_offset, source_address, dest_address;
7441 asection *sec;
7442 int i;
7443
7444 if (!r_reloc_is_defined (r_rel))
7445 return FALSE;
7446
7447 sec = r_reloc_get_section (r_rel);
7448 from_offset = reloc[0].r_rel.target_offset;
7449
7450 for (i = 0; i < remaining_relocs; i++)
7451 {
7452 if (reloc[i].r_rel.target_offset != from_offset)
7453 break;
7454
7455 /* Ignore relocations that have been removed. */
7456 if (reloc[i].is_null)
7457 continue;
7458
7459 /* The original and new output section for these must be the same
7460 in order to coalesce. */
7461 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7462 != sec->output_section)
7463 return FALSE;
7464
d638e0ac
BW
7465 /* Absolute literals in the same output section can always be
7466 combined. */
7467 if (reloc[i].is_abs_literal)
7468 continue;
7469
43cd72b9
BW
7470 /* A literal with no PC-relative relocations can be moved anywhere. */
7471 if (reloc[i].opnd != -1)
e0001a05
NC
7472 {
7473 /* Otherwise, check to see that it fits. */
7474 source_address = (reloc[i].source_sec->output_section->vma
7475 + reloc[i].source_sec->output_offset
7476 + reloc[i].r_rel.rela.r_offset);
7477 dest_address = (sec->output_section->vma
7478 + sec->output_offset
7479 + r_rel->target_offset);
7480
43cd72b9
BW
7481 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7482 source_address, dest_address))
e0001a05
NC
7483 return FALSE;
7484 }
7485 }
7486
7487 return TRUE;
7488}
7489
7490
43cd72b9
BW
7491/* Move a literal to another literal location because it is
7492 the same as the other literal value. */
e0001a05 7493
43cd72b9 7494static bfd_boolean
7fa3d080
BW
7495coalesce_shared_literal (asection *sec,
7496 source_reloc *rel,
7497 property_table_entry *prop_table,
7498 int ptblsize,
7499 value_map *val_map)
e0001a05 7500{
43cd72b9
BW
7501 property_table_entry *entry;
7502 text_action *fa;
7503 property_table_entry *the_add_entry;
7504 int removed_diff;
7505 xtensa_relax_info *relax_info;
7506
7507 relax_info = get_xtensa_relax_info (sec);
7508 if (!relax_info)
7509 return FALSE;
7510
7511 entry = elf_xtensa_find_property_entry
7512 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7513 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7514 return TRUE;
7515
7516 /* Mark that the literal will be coalesced. */
7517 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7518
7519 text_action_add (&relax_info->action_list,
7520 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7521
7522 /* If the section is 4-byte aligned, do not add fill. */
7523 if (sec->alignment_power > 2)
e0001a05 7524 {
43cd72b9
BW
7525 int fill_extra_space;
7526 bfd_vma entry_sec_offset;
7527
7528 if (entry)
7529 entry_sec_offset = entry->address - sec->vma + entry->size;
7530 else
7531 entry_sec_offset = rel->r_rel.target_offset + 4;
7532
7533 /* If the literal range is at the end of the section,
7534 do not add fill. */
7535 fill_extra_space = 0;
7536 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7537 entry_sec_offset);
7538 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7539 fill_extra_space = the_add_entry->size;
7540
7541 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7542 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7543 -4, fill_extra_space);
7544 if (fa)
7545 adjust_fill_action (fa, removed_diff);
7546 else
7547 text_action_add (&relax_info->action_list,
7548 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7549 }
43cd72b9
BW
7550
7551 return TRUE;
7552}
7553
7554
7555/* Move a literal to another location. This may actually increase the
7556 total amount of space used because of alignments so we need to do
7557 this carefully. Also, it may make a branch go out of range. */
7558
7559static bfd_boolean
7fa3d080
BW
7560move_shared_literal (asection *sec,
7561 struct bfd_link_info *link_info,
7562 source_reloc *rel,
7563 property_table_entry *prop_table,
7564 int ptblsize,
7565 const r_reloc *target_loc,
7566 const literal_value *lit_value,
7567 section_cache_t *target_sec_cache)
43cd72b9
BW
7568{
7569 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7570 text_action *fa, *target_fa;
7571 int removed_diff;
7572 xtensa_relax_info *relax_info, *target_relax_info;
7573 asection *target_sec;
7574 ebb_t *ebb;
7575 ebb_constraint ebb_table;
7576 bfd_boolean relocs_fit;
7577
7578 /* If this routine always returns FALSE, the literals that cannot be
7579 coalesced will not be moved. */
7580 if (elf32xtensa_no_literal_movement)
7581 return FALSE;
7582
7583 relax_info = get_xtensa_relax_info (sec);
7584 if (!relax_info)
7585 return FALSE;
7586
7587 target_sec = r_reloc_get_section (target_loc);
7588 target_relax_info = get_xtensa_relax_info (target_sec);
7589
7590 /* Literals to undefined sections may not be moved because they
7591 must report an error. */
7592 if (bfd_is_und_section (target_sec))
7593 return FALSE;
7594
7595 src_entry = elf_xtensa_find_property_entry
7596 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7597
7598 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7599 return FALSE;
7600
7601 target_entry = elf_xtensa_find_property_entry
7602 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7603 target_sec->vma + target_loc->target_offset);
7604
7605 if (!target_entry)
7606 return FALSE;
7607
7608 /* Make sure that we have not broken any branches. */
7609 relocs_fit = FALSE;
7610
7611 init_ebb_constraint (&ebb_table);
7612 ebb = &ebb_table.ebb;
7613 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7614 target_sec_cache->content_length,
7615 target_sec_cache->ptbl, target_sec_cache->pte_count,
7616 target_sec_cache->relocs, target_sec_cache->reloc_count);
7617
7618 /* Propose to add 4 bytes + worst-case alignment size increase to
7619 destination. */
7620 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7621 ta_fill, target_loc->target_offset,
7622 -4 - (1 << target_sec->alignment_power), TRUE);
7623
7624 /* Check all of the PC-relative relocations to make sure they still fit. */
7625 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7626 target_sec_cache->contents,
7627 target_sec_cache->relocs,
7628 &ebb_table);
7629
7630 if (!relocs_fit)
7631 return FALSE;
7632
7633 text_action_add_literal (&target_relax_info->action_list,
7634 ta_add_literal, target_loc, lit_value, -4);
7635
7636 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7637 {
7638 /* May need to add or remove some fill to maintain alignment. */
7639 int fill_extra_space;
7640 bfd_vma entry_sec_offset;
7641
7642 entry_sec_offset =
7643 target_entry->address - target_sec->vma + target_entry->size;
7644
7645 /* If the literal range is at the end of the section,
7646 do not add fill. */
7647 fill_extra_space = 0;
7648 the_add_entry =
7649 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7650 target_sec_cache->pte_count,
7651 entry_sec_offset);
7652 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7653 fill_extra_space = the_add_entry->size;
7654
7655 target_fa = find_fill_action (&target_relax_info->action_list,
7656 target_sec, entry_sec_offset);
7657 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7658 entry_sec_offset, 4,
7659 fill_extra_space);
7660 if (target_fa)
7661 adjust_fill_action (target_fa, removed_diff);
7662 else
7663 text_action_add (&target_relax_info->action_list,
7664 ta_fill, target_sec, entry_sec_offset, removed_diff);
7665 }
7666
7667 /* Mark that the literal will be moved to the new location. */
7668 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7669
7670 /* Remove the literal. */
7671 text_action_add (&relax_info->action_list,
7672 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7673
7674 /* If the section is 4-byte aligned, do not add fill. */
7675 if (sec->alignment_power > 2 && target_entry != src_entry)
7676 {
7677 int fill_extra_space;
7678 bfd_vma entry_sec_offset;
7679
7680 if (src_entry)
7681 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7682 else
7683 entry_sec_offset = rel->r_rel.target_offset+4;
7684
7685 /* If the literal range is at the end of the section,
7686 do not add fill. */
7687 fill_extra_space = 0;
7688 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7689 entry_sec_offset);
7690 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7691 fill_extra_space = the_add_entry->size;
7692
7693 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7694 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7695 -4, fill_extra_space);
7696 if (fa)
7697 adjust_fill_action (fa, removed_diff);
7698 else
7699 text_action_add (&relax_info->action_list,
7700 ta_fill, sec, entry_sec_offset, removed_diff);
7701 }
7702
7703 return TRUE;
e0001a05
NC
7704}
7705
7706\f
7707/* Second relaxation pass. */
7708
7709/* Modify all of the relocations to point to the right spot, and if this
7710 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 7711 section size. */
e0001a05 7712
43cd72b9 7713bfd_boolean
7fa3d080 7714relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
7715{
7716 Elf_Internal_Rela *internal_relocs;
7717 xtensa_relax_info *relax_info;
7718 bfd_byte *contents;
7719 bfd_boolean ok = TRUE;
7720 unsigned i;
43cd72b9
BW
7721 bfd_boolean rv = FALSE;
7722 bfd_boolean virtual_action;
7723 bfd_size_type sec_size;
e0001a05 7724
43cd72b9 7725 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
7726 relax_info = get_xtensa_relax_info (sec);
7727 BFD_ASSERT (relax_info);
7728
43cd72b9
BW
7729 /* First translate any of the fixes that have been added already. */
7730 translate_section_fixes (sec);
7731
e0001a05
NC
7732 /* Handle property sections (e.g., literal tables) specially. */
7733 if (xtensa_is_property_section (sec))
7734 {
7735 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7736 return relax_property_section (abfd, sec, link_info);
7737 }
7738
43cd72b9
BW
7739 internal_relocs = retrieve_internal_relocs (abfd, sec,
7740 link_info->keep_memory);
7741 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7742 if (contents == NULL && sec_size != 0)
7743 {
7744 ok = FALSE;
7745 goto error_return;
7746 }
7747
7748 if (internal_relocs)
7749 {
7750 for (i = 0; i < sec->reloc_count; i++)
7751 {
7752 Elf_Internal_Rela *irel;
7753 xtensa_relax_info *target_relax_info;
7754 bfd_vma source_offset, old_source_offset;
7755 r_reloc r_rel;
7756 unsigned r_type;
7757 asection *target_sec;
7758
7759 /* Locally change the source address.
7760 Translate the target to the new target address.
7761 If it points to this section and has been removed,
7762 NULLify it.
7763 Write it back. */
7764
7765 irel = &internal_relocs[i];
7766 source_offset = irel->r_offset;
7767 old_source_offset = source_offset;
7768
7769 r_type = ELF32_R_TYPE (irel->r_info);
7770 r_reloc_init (&r_rel, abfd, irel, contents,
7771 bfd_get_section_limit (abfd, sec));
7772
7773 /* If this section could have changed then we may need to
7774 change the relocation's offset. */
7775
7776 if (relax_info->is_relaxable_literal_section
7777 || relax_info->is_relaxable_asm_section)
7778 {
7779 if (r_type != R_XTENSA_NONE
7780 && find_removed_literal (&relax_info->removed_list,
7781 irel->r_offset))
7782 {
7783 /* Remove this relocation. */
7784 if (elf_hash_table (link_info)->dynamic_sections_created)
7785 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7786 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7787 irel->r_offset = offset_with_removed_text
7788 (&relax_info->action_list, irel->r_offset);
7789 pin_internal_relocs (sec, internal_relocs);
7790 continue;
7791 }
7792
7793 if (r_type == R_XTENSA_ASM_SIMPLIFY)
7794 {
7795 text_action *action =
7796 find_insn_action (&relax_info->action_list,
7797 irel->r_offset);
7798 if (action && (action->action == ta_convert_longcall
7799 || action->action == ta_remove_longcall))
7800 {
7801 bfd_reloc_status_type retval;
7802 char *error_message = NULL;
7803
7804 retval = contract_asm_expansion (contents, sec_size,
7805 irel, &error_message);
7806 if (retval != bfd_reloc_ok)
7807 {
7808 (*link_info->callbacks->reloc_dangerous)
7809 (link_info, error_message, abfd, sec,
7810 irel->r_offset);
7811 goto error_return;
7812 }
7813 /* Update the action so that the code that moves
7814 the contents will do the right thing. */
7815 if (action->action == ta_remove_longcall)
7816 action->action = ta_remove_insn;
7817 else
7818 action->action = ta_none;
7819 /* Refresh the info in the r_rel. */
7820 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7821 r_type = ELF32_R_TYPE (irel->r_info);
7822 }
7823 }
7824
7825 source_offset = offset_with_removed_text
7826 (&relax_info->action_list, irel->r_offset);
7827 irel->r_offset = source_offset;
7828 }
7829
7830 /* If the target section could have changed then
7831 we may need to change the relocation's target offset. */
7832
7833 target_sec = r_reloc_get_section (&r_rel);
7834 target_relax_info = get_xtensa_relax_info (target_sec);
7835
7836 if (target_relax_info
7837 && (target_relax_info->is_relaxable_literal_section
7838 || target_relax_info->is_relaxable_asm_section))
7839 {
7840 r_reloc new_reloc;
7841 reloc_bfd_fix *fix;
7842 bfd_vma addend_displacement;
7843
7844 translate_reloc (&r_rel, &new_reloc);
7845
7846 if (r_type == R_XTENSA_DIFF8
7847 || r_type == R_XTENSA_DIFF16
7848 || r_type == R_XTENSA_DIFF32)
7849 {
7850 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
7851
7852 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
7853 {
7854 (*link_info->callbacks->reloc_dangerous)
7855 (link_info, _("invalid relocation address"),
7856 abfd, sec, old_source_offset);
7857 goto error_return;
7858 }
7859
7860 switch (r_type)
7861 {
7862 case R_XTENSA_DIFF8:
7863 diff_value =
7864 bfd_get_8 (abfd, &contents[old_source_offset]);
7865 break;
7866 case R_XTENSA_DIFF16:
7867 diff_value =
7868 bfd_get_16 (abfd, &contents[old_source_offset]);
7869 break;
7870 case R_XTENSA_DIFF32:
7871 diff_value =
7872 bfd_get_32 (abfd, &contents[old_source_offset]);
7873 break;
7874 }
7875
7876 new_end_offset = offset_with_removed_text
7877 (&target_relax_info->action_list,
7878 r_rel.target_offset + diff_value);
7879 diff_value = new_end_offset - new_reloc.target_offset;
7880
7881 switch (r_type)
7882 {
7883 case R_XTENSA_DIFF8:
7884 diff_mask = 0xff;
7885 bfd_put_8 (abfd, diff_value,
7886 &contents[old_source_offset]);
7887 break;
7888 case R_XTENSA_DIFF16:
7889 diff_mask = 0xffff;
7890 bfd_put_16 (abfd, diff_value,
7891 &contents[old_source_offset]);
7892 break;
7893 case R_XTENSA_DIFF32:
7894 diff_mask = 0xffffffff;
7895 bfd_put_32 (abfd, diff_value,
7896 &contents[old_source_offset]);
7897 break;
7898 }
7899
7900 /* Check for overflow. */
7901 if ((diff_value & ~diff_mask) != 0)
7902 {
7903 (*link_info->callbacks->reloc_dangerous)
7904 (link_info, _("overflow after relaxation"),
7905 abfd, sec, old_source_offset);
7906 goto error_return;
7907 }
7908
7909 pin_contents (sec, contents);
7910 }
7911
7912 /* FIXME: If the relocation still references a section in
7913 the same input file, the relocation should be modified
7914 directly instead of adding a "fix" record. */
7915
7916 addend_displacement =
7917 new_reloc.target_offset + new_reloc.virtual_offset;
7918
7919 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
7920 r_reloc_get_section (&new_reloc),
7921 addend_displacement, TRUE);
7922 add_fix (sec, fix);
7923 }
7924
7925 pin_internal_relocs (sec, internal_relocs);
7926 }
7927 }
7928
7929 if ((relax_info->is_relaxable_literal_section
7930 || relax_info->is_relaxable_asm_section)
7931 && relax_info->action_list.head)
7932 {
7933 /* Walk through the planned actions and build up a table
7934 of move, copy and fill records. Use the move, copy and
7935 fill records to perform the actions once. */
7936
7937 bfd_size_type size = sec->size;
7938 int removed = 0;
7939 bfd_size_type final_size, copy_size, orig_insn_size;
7940 bfd_byte *scratch = NULL;
7941 bfd_byte *dup_contents = NULL;
7942 bfd_size_type orig_size = size;
7943 bfd_vma orig_dot = 0;
7944 bfd_vma orig_dot_copied = 0; /* Byte copied already from
7945 orig dot in physical memory. */
7946 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
7947 bfd_vma dup_dot = 0;
7948
7949 text_action *action = relax_info->action_list.head;
7950
7951 final_size = sec->size;
7952 for (action = relax_info->action_list.head; action;
7953 action = action->next)
7954 {
7955 final_size -= action->removed_bytes;
7956 }
7957
7958 scratch = (bfd_byte *) bfd_zmalloc (final_size);
7959 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
7960
7961 /* The dot is the current fill location. */
7962#if DEBUG
7963 print_action_list (stderr, &relax_info->action_list);
7964#endif
7965
7966 for (action = relax_info->action_list.head; action;
7967 action = action->next)
7968 {
7969 virtual_action = FALSE;
7970 if (action->offset > orig_dot)
7971 {
7972 orig_dot += orig_dot_copied;
7973 orig_dot_copied = 0;
7974 orig_dot_vo = 0;
7975 /* Out of the virtual world. */
7976 }
7977
7978 if (action->offset > orig_dot)
7979 {
7980 copy_size = action->offset - orig_dot;
7981 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
7982 orig_dot += copy_size;
7983 dup_dot += copy_size;
7984 BFD_ASSERT (action->offset == orig_dot);
7985 }
7986 else if (action->offset < orig_dot)
7987 {
7988 if (action->action == ta_fill
7989 && action->offset - action->removed_bytes == orig_dot)
7990 {
7991 /* This is OK because the fill only effects the dup_dot. */
7992 }
7993 else if (action->action == ta_add_literal)
7994 {
7995 /* TBD. Might need to handle this. */
7996 }
7997 }
7998 if (action->offset == orig_dot)
7999 {
8000 if (action->virtual_offset > orig_dot_vo)
8001 {
8002 if (orig_dot_vo == 0)
8003 {
8004 /* Need to copy virtual_offset bytes. Probably four. */
8005 copy_size = action->virtual_offset - orig_dot_vo;
8006 memmove (&dup_contents[dup_dot],
8007 &contents[orig_dot], copy_size);
8008 orig_dot_copied = copy_size;
8009 dup_dot += copy_size;
8010 }
8011 virtual_action = TRUE;
8012 }
8013 else
8014 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8015 }
8016 switch (action->action)
8017 {
8018 case ta_remove_literal:
8019 case ta_remove_insn:
8020 BFD_ASSERT (action->removed_bytes >= 0);
8021 orig_dot += action->removed_bytes;
8022 break;
8023
8024 case ta_narrow_insn:
8025 orig_insn_size = 3;
8026 copy_size = 2;
8027 memmove (scratch, &contents[orig_dot], orig_insn_size);
8028 BFD_ASSERT (action->removed_bytes == 1);
8029 rv = narrow_instruction (scratch, final_size, 0, TRUE);
8030 BFD_ASSERT (rv);
8031 memmove (&dup_contents[dup_dot], scratch, copy_size);
8032 orig_dot += orig_insn_size;
8033 dup_dot += copy_size;
8034 break;
8035
8036 case ta_fill:
8037 if (action->removed_bytes >= 0)
8038 orig_dot += action->removed_bytes;
8039 else
8040 {
8041 /* Already zeroed in dup_contents. Just bump the
8042 counters. */
8043 dup_dot += (-action->removed_bytes);
8044 }
8045 break;
8046
8047 case ta_none:
8048 BFD_ASSERT (action->removed_bytes == 0);
8049 break;
8050
8051 case ta_convert_longcall:
8052 case ta_remove_longcall:
8053 /* These will be removed or converted before we get here. */
8054 BFD_ASSERT (0);
8055 break;
8056
8057 case ta_widen_insn:
8058 orig_insn_size = 2;
8059 copy_size = 3;
8060 memmove (scratch, &contents[orig_dot], orig_insn_size);
8061 BFD_ASSERT (action->removed_bytes == -1);
8062 rv = widen_instruction (scratch, final_size, 0, TRUE);
8063 BFD_ASSERT (rv);
8064 memmove (&dup_contents[dup_dot], scratch, copy_size);
8065 orig_dot += orig_insn_size;
8066 dup_dot += copy_size;
8067 break;
8068
8069 case ta_add_literal:
8070 orig_insn_size = 0;
8071 copy_size = 4;
8072 BFD_ASSERT (action->removed_bytes == -4);
8073 /* TBD -- place the literal value here and insert
8074 into the table. */
8075 memset (&dup_contents[dup_dot], 0, 4);
8076 pin_internal_relocs (sec, internal_relocs);
8077 pin_contents (sec, contents);
8078
8079 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8080 relax_info, &internal_relocs, &action->value))
8081 goto error_return;
8082
8083 if (virtual_action)
8084 orig_dot_vo += copy_size;
8085
8086 orig_dot += orig_insn_size;
8087 dup_dot += copy_size;
8088 break;
8089
8090 default:
8091 /* Not implemented yet. */
8092 BFD_ASSERT (0);
8093 break;
8094 }
8095
8096 size -= action->removed_bytes;
8097 removed += action->removed_bytes;
8098 BFD_ASSERT (dup_dot <= final_size);
8099 BFD_ASSERT (orig_dot <= orig_size);
8100 }
8101
8102 orig_dot += orig_dot_copied;
8103 orig_dot_copied = 0;
8104
8105 if (orig_dot != orig_size)
8106 {
8107 copy_size = orig_size - orig_dot;
8108 BFD_ASSERT (orig_size > orig_dot);
8109 BFD_ASSERT (dup_dot + copy_size == final_size);
8110 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8111 orig_dot += copy_size;
8112 dup_dot += copy_size;
8113 }
8114 BFD_ASSERT (orig_size == orig_dot);
8115 BFD_ASSERT (final_size == dup_dot);
8116
8117 /* Move the dup_contents back. */
8118 if (final_size > orig_size)
8119 {
8120 /* Contents need to be reallocated. Swap the dup_contents into
8121 contents. */
8122 sec->contents = dup_contents;
8123 free (contents);
8124 contents = dup_contents;
8125 pin_contents (sec, contents);
8126 }
8127 else
8128 {
8129 BFD_ASSERT (final_size <= orig_size);
8130 memset (contents, 0, orig_size);
8131 memcpy (contents, dup_contents, final_size);
8132 free (dup_contents);
8133 }
8134 free (scratch);
8135 pin_contents (sec, contents);
8136
8137 sec->size = final_size;
8138 }
8139
8140 error_return:
8141 release_internal_relocs (sec, internal_relocs);
8142 release_contents (sec, contents);
8143 return ok;
8144}
8145
8146
8147static bfd_boolean
7fa3d080 8148translate_section_fixes (asection *sec)
43cd72b9
BW
8149{
8150 xtensa_relax_info *relax_info;
8151 reloc_bfd_fix *r;
8152
8153 relax_info = get_xtensa_relax_info (sec);
8154 if (!relax_info)
8155 return TRUE;
8156
8157 for (r = relax_info->fix_list; r != NULL; r = r->next)
8158 if (!translate_reloc_bfd_fix (r))
8159 return FALSE;
e0001a05 8160
43cd72b9
BW
8161 return TRUE;
8162}
e0001a05 8163
e0001a05 8164
43cd72b9
BW
8165/* Translate a fix given the mapping in the relax info for the target
8166 section. If it has already been translated, no work is required. */
e0001a05 8167
43cd72b9 8168static bfd_boolean
7fa3d080 8169translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8170{
8171 reloc_bfd_fix new_fix;
8172 asection *sec;
8173 xtensa_relax_info *relax_info;
8174 removed_literal *removed;
8175 bfd_vma new_offset, target_offset;
e0001a05 8176
43cd72b9
BW
8177 if (fix->translated)
8178 return TRUE;
e0001a05 8179
43cd72b9
BW
8180 sec = fix->target_sec;
8181 target_offset = fix->target_offset;
e0001a05 8182
43cd72b9
BW
8183 relax_info = get_xtensa_relax_info (sec);
8184 if (!relax_info)
8185 {
8186 fix->translated = TRUE;
8187 return TRUE;
8188 }
e0001a05 8189
43cd72b9 8190 new_fix = *fix;
e0001a05 8191
43cd72b9
BW
8192 /* The fix does not need to be translated if the section cannot change. */
8193 if (!relax_info->is_relaxable_literal_section
8194 && !relax_info->is_relaxable_asm_section)
8195 {
8196 fix->translated = TRUE;
8197 return TRUE;
8198 }
e0001a05 8199
43cd72b9
BW
8200 /* If the literal has been moved and this relocation was on an
8201 opcode, then the relocation should move to the new literal
8202 location. Otherwise, the relocation should move within the
8203 section. */
8204
8205 removed = FALSE;
8206 if (is_operand_relocation (fix->src_type))
8207 {
8208 /* Check if the original relocation is against a literal being
8209 removed. */
8210 removed = find_removed_literal (&relax_info->removed_list,
8211 target_offset);
e0001a05
NC
8212 }
8213
43cd72b9 8214 if (removed)
e0001a05 8215 {
43cd72b9 8216 asection *new_sec;
e0001a05 8217
43cd72b9
BW
8218 /* The fact that there is still a relocation to this literal indicates
8219 that the literal is being coalesced, not simply removed. */
8220 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8221
43cd72b9
BW
8222 /* This was moved to some other address (possibly another section). */
8223 new_sec = r_reloc_get_section (&removed->to);
8224 if (new_sec != sec)
e0001a05 8225 {
43cd72b9
BW
8226 sec = new_sec;
8227 relax_info = get_xtensa_relax_info (sec);
8228 if (!relax_info ||
8229 (!relax_info->is_relaxable_literal_section
8230 && !relax_info->is_relaxable_asm_section))
e0001a05 8231 {
43cd72b9
BW
8232 target_offset = removed->to.target_offset;
8233 new_fix.target_sec = new_sec;
8234 new_fix.target_offset = target_offset;
8235 new_fix.translated = TRUE;
8236 *fix = new_fix;
8237 return TRUE;
e0001a05 8238 }
e0001a05 8239 }
43cd72b9
BW
8240 target_offset = removed->to.target_offset;
8241 new_fix.target_sec = new_sec;
e0001a05 8242 }
43cd72b9
BW
8243
8244 /* The target address may have been moved within its section. */
8245 new_offset = offset_with_removed_text (&relax_info->action_list,
8246 target_offset);
8247
8248 new_fix.target_offset = new_offset;
8249 new_fix.target_offset = new_offset;
8250 new_fix.translated = TRUE;
8251 *fix = new_fix;
8252 return TRUE;
e0001a05
NC
8253}
8254
8255
8256/* Fix up a relocation to take account of removed literals. */
8257
8258static void
7fa3d080 8259translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8260{
8261 asection *sec;
8262 xtensa_relax_info *relax_info;
8263 removed_literal *removed;
43cd72b9 8264 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8265
8266 *new_rel = *orig_rel;
8267
8268 if (!r_reloc_is_defined (orig_rel))
8269 return;
8270 sec = r_reloc_get_section (orig_rel);
8271
8272 relax_info = get_xtensa_relax_info (sec);
8273 BFD_ASSERT (relax_info);
8274
43cd72b9
BW
8275 if (!relax_info->is_relaxable_literal_section
8276 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8277 return;
8278
43cd72b9
BW
8279 target_offset = orig_rel->target_offset;
8280
8281 removed = FALSE;
8282 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8283 {
8284 /* Check if the original relocation is against a literal being
8285 removed. */
8286 removed = find_removed_literal (&relax_info->removed_list,
8287 target_offset);
8288 }
8289 if (removed && removed->to.abfd)
e0001a05
NC
8290 {
8291 asection *new_sec;
8292
8293 /* The fact that there is still a relocation to this literal indicates
8294 that the literal is being coalesced, not simply removed. */
8295 BFD_ASSERT (removed->to.abfd != NULL);
8296
43cd72b9
BW
8297 /* This was moved to some other address
8298 (possibly in another section). */
e0001a05
NC
8299 *new_rel = removed->to;
8300 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8301 if (new_sec != sec)
e0001a05
NC
8302 {
8303 sec = new_sec;
8304 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8305 if (!relax_info
8306 || (!relax_info->is_relaxable_literal_section
8307 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8308 return;
8309 }
43cd72b9 8310 target_offset = new_rel->target_offset;
e0001a05
NC
8311 }
8312
8313 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8314 new_offset = offset_with_removed_text (&relax_info->action_list,
8315 target_offset);
e0001a05
NC
8316
8317 /* Modify the offset and addend. */
43cd72b9 8318 removed_bytes = target_offset - new_offset;
e0001a05 8319 new_rel->target_offset = new_offset;
43cd72b9 8320 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8321}
8322
8323
8324/* For dynamic links, there may be a dynamic relocation for each
8325 literal. The number of dynamic relocations must be computed in
8326 size_dynamic_sections, which occurs before relaxation. When a
8327 literal is removed, this function checks if there is a corresponding
8328 dynamic relocation and shrinks the size of the appropriate dynamic
8329 relocation section accordingly. At this point, the contents of the
8330 dynamic relocation sections have not yet been filled in, so there's
8331 nothing else that needs to be done. */
8332
8333static void
7fa3d080
BW
8334shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8335 bfd *abfd,
8336 asection *input_section,
8337 Elf_Internal_Rela *rel)
e0001a05
NC
8338{
8339 Elf_Internal_Shdr *symtab_hdr;
8340 struct elf_link_hash_entry **sym_hashes;
8341 unsigned long r_symndx;
8342 int r_type;
8343 struct elf_link_hash_entry *h;
8344 bfd_boolean dynamic_symbol;
8345
8346 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8347 sym_hashes = elf_sym_hashes (abfd);
8348
8349 r_type = ELF32_R_TYPE (rel->r_info);
8350 r_symndx = ELF32_R_SYM (rel->r_info);
8351
8352 if (r_symndx < symtab_hdr->sh_info)
8353 h = NULL;
8354 else
8355 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8356
571b5725 8357 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05
NC
8358
8359 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8360 && (input_section->flags & SEC_ALLOC) != 0
8361 && (dynamic_symbol || info->shared))
8362 {
8363 bfd *dynobj;
8364 const char *srel_name;
8365 asection *srel;
8366 bfd_boolean is_plt = FALSE;
8367
8368 dynobj = elf_hash_table (info)->dynobj;
8369 BFD_ASSERT (dynobj != NULL);
8370
8371 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8372 {
8373 srel_name = ".rela.plt";
8374 is_plt = TRUE;
8375 }
8376 else
8377 srel_name = ".rela.got";
8378
8379 /* Reduce size of the .rela.* section by one reloc. */
8380 srel = bfd_get_section_by_name (dynobj, srel_name);
8381 BFD_ASSERT (srel != NULL);
eea6121a
AM
8382 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8383 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8384
8385 if (is_plt)
8386 {
8387 asection *splt, *sgotplt, *srelgot;
8388 int reloc_index, chunk;
8389
8390 /* Find the PLT reloc index of the entry being removed. This
8391 is computed from the size of ".rela.plt". It is needed to
8392 figure out which PLT chunk to resize. Usually "last index
8393 = size - 1" since the index starts at zero, but in this
8394 context, the size has just been decremented so there's no
8395 need to subtract one. */
eea6121a 8396 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8397
8398 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8399 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8400 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8401 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8402
8403 /* Check if an entire PLT chunk has just been eliminated. */
8404 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8405 {
8406 /* The two magic GOT entries for that chunk can go away. */
8407 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8408 BFD_ASSERT (srelgot != NULL);
8409 srelgot->reloc_count -= 2;
eea6121a
AM
8410 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8411 sgotplt->size -= 8;
e0001a05
NC
8412
8413 /* There should be only one entry left (and it will be
8414 removed below). */
eea6121a
AM
8415 BFD_ASSERT (sgotplt->size == 4);
8416 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8417 }
8418
eea6121a
AM
8419 BFD_ASSERT (sgotplt->size >= 4);
8420 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8421
eea6121a
AM
8422 sgotplt->size -= 4;
8423 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8424 }
8425 }
8426}
8427
8428
43cd72b9
BW
8429/* Take an r_rel and move it to another section. This usually
8430 requires extending the interal_relocation array and pinning it. If
8431 the original r_rel is from the same BFD, we can complete this here.
8432 Otherwise, we add a fix record to let the final link fix the
8433 appropriate address. Contents and internal relocations for the
8434 section must be pinned after calling this routine. */
8435
8436static bfd_boolean
7fa3d080
BW
8437move_literal (bfd *abfd,
8438 struct bfd_link_info *link_info,
8439 asection *sec,
8440 bfd_vma offset,
8441 bfd_byte *contents,
8442 xtensa_relax_info *relax_info,
8443 Elf_Internal_Rela **internal_relocs_p,
8444 const literal_value *lit)
43cd72b9
BW
8445{
8446 Elf_Internal_Rela *new_relocs = NULL;
8447 size_t new_relocs_count = 0;
8448 Elf_Internal_Rela this_rela;
8449 const r_reloc *r_rel;
8450
8451 r_rel = &lit->r_rel;
8452 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8453
8454 if (r_reloc_is_const (r_rel))
8455 bfd_put_32 (abfd, lit->value, contents + offset);
8456 else
8457 {
8458 int r_type;
8459 unsigned i;
8460 asection *target_sec;
8461 reloc_bfd_fix *fix;
8462 unsigned insert_at;
8463
8464 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8465 target_sec = r_reloc_get_section (r_rel);
8466
8467 /* This is the difficult case. We have to create a fix up. */
8468 this_rela.r_offset = offset;
8469 this_rela.r_info = ELF32_R_INFO (0, r_type);
8470 this_rela.r_addend =
8471 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8472 bfd_put_32 (abfd, lit->value, contents + offset);
8473
8474 /* Currently, we cannot move relocations during a relocatable link. */
8475 BFD_ASSERT (!link_info->relocatable);
8476 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8477 r_reloc_get_section (r_rel),
8478 r_rel->target_offset + r_rel->virtual_offset,
8479 FALSE);
8480 /* We also need to mark that relocations are needed here. */
8481 sec->flags |= SEC_RELOC;
8482
8483 translate_reloc_bfd_fix (fix);
8484 /* This fix has not yet been translated. */
8485 add_fix (sec, fix);
8486
8487 /* Add the relocation. If we have already allocated our own
8488 space for the relocations and we have room for more, then use
8489 it. Otherwise, allocate new space and move the literals. */
8490 insert_at = sec->reloc_count;
8491 for (i = 0; i < sec->reloc_count; ++i)
8492 {
8493 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8494 {
8495 insert_at = i;
8496 break;
8497 }
8498 }
8499
8500 if (*internal_relocs_p != relax_info->allocated_relocs
8501 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8502 {
8503 BFD_ASSERT (relax_info->allocated_relocs == NULL
8504 || sec->reloc_count == relax_info->relocs_count);
8505
8506 if (relax_info->allocated_relocs_count == 0)
8507 new_relocs_count = (sec->reloc_count + 2) * 2;
8508 else
8509 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8510
8511 new_relocs = (Elf_Internal_Rela *)
8512 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8513 if (!new_relocs)
8514 return FALSE;
8515
8516 /* We could handle this more quickly by finding the split point. */
8517 if (insert_at != 0)
8518 memcpy (new_relocs, *internal_relocs_p,
8519 insert_at * sizeof (Elf_Internal_Rela));
8520
8521 new_relocs[insert_at] = this_rela;
8522
8523 if (insert_at != sec->reloc_count)
8524 memcpy (new_relocs + insert_at + 1,
8525 (*internal_relocs_p) + insert_at,
8526 (sec->reloc_count - insert_at)
8527 * sizeof (Elf_Internal_Rela));
8528
8529 if (*internal_relocs_p != relax_info->allocated_relocs)
8530 {
8531 /* The first time we re-allocate, we can only free the
8532 old relocs if they were allocated with bfd_malloc.
8533 This is not true when keep_memory is in effect. */
8534 if (!link_info->keep_memory)
8535 free (*internal_relocs_p);
8536 }
8537 else
8538 free (*internal_relocs_p);
8539 relax_info->allocated_relocs = new_relocs;
8540 relax_info->allocated_relocs_count = new_relocs_count;
8541 elf_section_data (sec)->relocs = new_relocs;
8542 sec->reloc_count++;
8543 relax_info->relocs_count = sec->reloc_count;
8544 *internal_relocs_p = new_relocs;
8545 }
8546 else
8547 {
8548 if (insert_at != sec->reloc_count)
8549 {
8550 unsigned idx;
8551 for (idx = sec->reloc_count; idx > insert_at; idx--)
8552 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8553 }
8554 (*internal_relocs_p)[insert_at] = this_rela;
8555 sec->reloc_count++;
8556 if (relax_info->allocated_relocs)
8557 relax_info->relocs_count = sec->reloc_count;
8558 }
8559 }
8560 return TRUE;
8561}
8562
8563
e0001a05
NC
8564/* This is similar to relax_section except that when a target is moved,
8565 we shift addresses up. We also need to modify the size. This
8566 algorithm does NOT allow for relocations into the middle of the
8567 property sections. */
8568
43cd72b9 8569static bfd_boolean
7fa3d080
BW
8570relax_property_section (bfd *abfd,
8571 asection *sec,
8572 struct bfd_link_info *link_info)
e0001a05
NC
8573{
8574 Elf_Internal_Rela *internal_relocs;
8575 bfd_byte *contents;
8576 unsigned i, nexti;
8577 bfd_boolean ok = TRUE;
43cd72b9
BW
8578 bfd_boolean is_full_prop_section;
8579 size_t last_zfill_target_offset = 0;
8580 asection *last_zfill_target_sec = NULL;
8581 bfd_size_type sec_size;
e0001a05 8582
43cd72b9 8583 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8584 internal_relocs = retrieve_internal_relocs (abfd, sec,
8585 link_info->keep_memory);
8586 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8587 if (contents == NULL && sec_size != 0)
e0001a05
NC
8588 {
8589 ok = FALSE;
8590 goto error_return;
8591 }
8592
43cd72b9
BW
8593 is_full_prop_section =
8594 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8595 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8596 sizeof ".gnu.linkonce.prop." - 1) == 0));
8597
8598 if (internal_relocs)
e0001a05 8599 {
43cd72b9 8600 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8601 {
8602 Elf_Internal_Rela *irel;
8603 xtensa_relax_info *target_relax_info;
e0001a05
NC
8604 unsigned r_type;
8605 asection *target_sec;
43cd72b9
BW
8606 literal_value val;
8607 bfd_byte *size_p, *flags_p;
e0001a05
NC
8608
8609 /* Locally change the source address.
8610 Translate the target to the new target address.
8611 If it points to this section and has been removed, MOVE IT.
8612 Also, don't forget to modify the associated SIZE at
8613 (offset + 4). */
8614
8615 irel = &internal_relocs[i];
8616 r_type = ELF32_R_TYPE (irel->r_info);
8617 if (r_type == R_XTENSA_NONE)
8618 continue;
8619
43cd72b9
BW
8620 /* Find the literal value. */
8621 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8622 size_p = &contents[irel->r_offset + 4];
8623 flags_p = NULL;
8624 if (is_full_prop_section)
8625 {
8626 flags_p = &contents[irel->r_offset + 8];
8627 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8628 }
8629 else
8630 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8631
43cd72b9 8632 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8633 target_relax_info = get_xtensa_relax_info (target_sec);
8634
8635 if (target_relax_info
43cd72b9
BW
8636 && (target_relax_info->is_relaxable_literal_section
8637 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8638 {
8639 /* Translate the relocation's destination. */
43cd72b9 8640 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8641 long old_size, new_size;
8642
43cd72b9
BW
8643 new_offset = offset_with_removed_text
8644 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8645
8646 /* Assert that we are not out of bounds. */
43cd72b9
BW
8647 old_size = bfd_get_32 (abfd, size_p);
8648
8649 if (old_size == 0)
8650 {
8651 /* Only the first zero-sized unreachable entry is
8652 allowed to expand. In this case the new offset
8653 should be the offset before the fill and the new
8654 size is the expansion size. For other zero-sized
8655 entries the resulting size should be zero with an
8656 offset before or after the fill address depending
8657 on whether the expanding unreachable entry
8658 preceeds it. */
8659 if (last_zfill_target_sec
8660 && last_zfill_target_sec == target_sec
8661 && last_zfill_target_offset == val.r_rel.target_offset)
8662 new_end_offset = new_offset;
8663 else
8664 {
8665 new_end_offset = new_offset;
8666 new_offset = offset_with_removed_text_before_fill
8667 (&target_relax_info->action_list,
8668 val.r_rel.target_offset);
8669
8670 /* If it is not unreachable and we have not yet
8671 seen an unreachable at this address, place it
8672 before the fill address. */
8673 if (!flags_p
8674 || (bfd_get_32 (abfd, flags_p)
8675 & XTENSA_PROP_UNREACHABLE) == 0)
8676 new_end_offset = new_offset;
8677 else
8678 {
8679 last_zfill_target_sec = target_sec;
8680 last_zfill_target_offset = val.r_rel.target_offset;
8681 }
8682 }
8683 }
8684 else
8685 {
8686 new_end_offset = offset_with_removed_text_before_fill
8687 (&target_relax_info->action_list,
8688 val.r_rel.target_offset + old_size);
8689 }
e0001a05 8690
e0001a05 8691 new_size = new_end_offset - new_offset;
43cd72b9 8692
e0001a05
NC
8693 if (new_size != old_size)
8694 {
8695 bfd_put_32 (abfd, new_size, size_p);
8696 pin_contents (sec, contents);
8697 }
43cd72b9
BW
8698
8699 if (new_offset != val.r_rel.target_offset)
e0001a05 8700 {
43cd72b9 8701 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8702 irel->r_addend += diff;
8703 pin_internal_relocs (sec, internal_relocs);
8704 }
8705 }
8706 }
8707 }
8708
8709 /* Combine adjacent property table entries. This is also done in
8710 finish_dynamic_sections() but at that point it's too late to
8711 reclaim the space in the output section, so we do this twice. */
8712
43cd72b9
BW
8713 if (internal_relocs && (!link_info->relocatable
8714 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
8715 {
8716 Elf_Internal_Rela *last_irel = NULL;
8717 int removed_bytes = 0;
8718 bfd_vma offset, last_irel_offset;
8719 bfd_vma section_size;
43cd72b9
BW
8720 bfd_size_type entry_size;
8721 flagword predef_flags;
8722
8723 if (is_full_prop_section)
8724 entry_size = 12;
8725 else
8726 entry_size = 8;
8727
8728 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
8729
8730 /* Walk over memory and irels at the same time.
8731 This REQUIRES that the internal_relocs be sorted by offset. */
8732 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8733 internal_reloc_compare);
8734 nexti = 0; /* Index into internal_relocs. */
8735
8736 pin_internal_relocs (sec, internal_relocs);
8737 pin_contents (sec, contents);
8738
8739 last_irel_offset = (bfd_vma) -1;
eea6121a 8740 section_size = sec->size;
43cd72b9 8741 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 8742
43cd72b9 8743 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
8744 {
8745 Elf_Internal_Rela *irel, *next_irel;
8746 bfd_vma bytes_to_remove, size, actual_offset;
8747 bfd_boolean remove_this_irel;
43cd72b9 8748 flagword flags;
e0001a05
NC
8749
8750 irel = NULL;
8751 next_irel = NULL;
8752
8753 /* Find the next two relocations (if there are that many left),
8754 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8755 the starting reloc index. After these two loops, "i"
8756 is the index of the first non-NONE reloc past that starting
8757 index, and "nexti" is the index for the next non-NONE reloc
8758 after "i". */
8759
8760 for (i = nexti; i < sec->reloc_count; i++)
8761 {
8762 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8763 {
8764 irel = &internal_relocs[i];
8765 break;
8766 }
8767 internal_relocs[i].r_offset -= removed_bytes;
8768 }
8769
8770 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
8771 {
8772 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
8773 != R_XTENSA_NONE)
8774 {
8775 next_irel = &internal_relocs[nexti];
8776 break;
8777 }
8778 internal_relocs[nexti].r_offset -= removed_bytes;
8779 }
8780
8781 remove_this_irel = FALSE;
8782 bytes_to_remove = 0;
8783 actual_offset = offset - removed_bytes;
8784 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
8785
43cd72b9
BW
8786 if (is_full_prop_section)
8787 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
8788 else
8789 flags = predef_flags;
8790
e0001a05
NC
8791 /* Check that the irels are sorted by offset,
8792 with only one per address. */
8793 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
8794 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
8795
43cd72b9
BW
8796 /* Make sure there aren't relocs on the size or flag fields. */
8797 if ((irel && irel->r_offset == offset + 4)
8798 || (is_full_prop_section
8799 && irel && irel->r_offset == offset + 8))
e0001a05
NC
8800 {
8801 irel->r_offset -= removed_bytes;
8802 last_irel_offset = irel->r_offset;
8803 }
43cd72b9
BW
8804 else if (next_irel && (next_irel->r_offset == offset + 4
8805 || (is_full_prop_section
8806 && next_irel->r_offset == offset + 8)))
e0001a05
NC
8807 {
8808 nexti += 1;
8809 irel->r_offset -= removed_bytes;
8810 next_irel->r_offset -= removed_bytes;
8811 last_irel_offset = next_irel->r_offset;
8812 }
43cd72b9
BW
8813 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
8814 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 8815 {
43cd72b9
BW
8816 /* Always remove entries with zero size and no alignment. */
8817 bytes_to_remove = entry_size;
e0001a05
NC
8818 if (irel && irel->r_offset == offset)
8819 {
8820 remove_this_irel = TRUE;
8821
8822 irel->r_offset -= removed_bytes;
8823 last_irel_offset = irel->r_offset;
8824 }
8825 }
8826 else if (irel && irel->r_offset == offset)
8827 {
8828 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
8829 {
8830 if (last_irel)
8831 {
43cd72b9
BW
8832 flagword old_flags;
8833 bfd_vma old_size =
e0001a05 8834 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
8835 bfd_vma old_address =
8836 (last_irel->r_addend
e0001a05 8837 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
8838 bfd_vma new_address =
8839 (irel->r_addend
e0001a05 8840 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
8841 if (is_full_prop_section)
8842 old_flags = bfd_get_32
8843 (abfd, &contents[last_irel->r_offset + 8]);
8844 else
8845 old_flags = predef_flags;
8846
8847 if ((ELF32_R_SYM (irel->r_info)
8848 == ELF32_R_SYM (last_irel->r_info))
8849 && old_address + old_size == new_address
8850 && old_flags == flags
8851 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
8852 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 8853 {
43cd72b9 8854 /* Fix the old size. */
e0001a05
NC
8855 bfd_put_32 (abfd, old_size + size,
8856 &contents[last_irel->r_offset + 4]);
43cd72b9 8857 bytes_to_remove = entry_size;
e0001a05
NC
8858 remove_this_irel = TRUE;
8859 }
8860 else
8861 last_irel = irel;
8862 }
8863 else
8864 last_irel = irel;
8865 }
8866
8867 irel->r_offset -= removed_bytes;
8868 last_irel_offset = irel->r_offset;
8869 }
8870
8871 if (remove_this_irel)
8872 {
8873 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8874 irel->r_offset -= bytes_to_remove;
8875 }
8876
8877 if (bytes_to_remove != 0)
8878 {
8879 removed_bytes += bytes_to_remove;
43cd72b9 8880 if (offset + bytes_to_remove < section_size)
e0001a05 8881 memmove (&contents[actual_offset],
43cd72b9
BW
8882 &contents[actual_offset + bytes_to_remove],
8883 section_size - offset - bytes_to_remove);
e0001a05
NC
8884 }
8885 }
8886
43cd72b9 8887 if (removed_bytes)
e0001a05
NC
8888 {
8889 /* Clear the removed bytes. */
8890 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
8891
eea6121a 8892 sec->size = section_size - removed_bytes;
e901de89
BW
8893
8894 if (xtensa_is_littable_section (sec))
8895 {
8896 bfd *dynobj = elf_hash_table (link_info)->dynobj;
8897 if (dynobj)
8898 {
8899 asection *sgotloc =
8900 bfd_get_section_by_name (dynobj, ".got.loc");
8901 if (sgotloc)
eea6121a 8902 sgotloc->size -= removed_bytes;
e901de89
BW
8903 }
8904 }
e0001a05
NC
8905 }
8906 }
e901de89 8907
e0001a05
NC
8908 error_return:
8909 release_internal_relocs (sec, internal_relocs);
8910 release_contents (sec, contents);
8911 return ok;
8912}
8913
8914\f
8915/* Third relaxation pass. */
8916
8917/* Change symbol values to account for removed literals. */
8918
43cd72b9 8919bfd_boolean
7fa3d080 8920relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
8921{
8922 xtensa_relax_info *relax_info;
8923 unsigned int sec_shndx;
8924 Elf_Internal_Shdr *symtab_hdr;
8925 Elf_Internal_Sym *isymbuf;
8926 unsigned i, num_syms, num_locals;
8927
8928 relax_info = get_xtensa_relax_info (sec);
8929 BFD_ASSERT (relax_info);
8930
43cd72b9
BW
8931 if (!relax_info->is_relaxable_literal_section
8932 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8933 return TRUE;
8934
8935 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8936
8937 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8938 isymbuf = retrieve_local_syms (abfd);
8939
8940 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
8941 num_locals = symtab_hdr->sh_info;
8942
8943 /* Adjust the local symbols defined in this section. */
8944 for (i = 0; i < num_locals; i++)
8945 {
8946 Elf_Internal_Sym *isym = &isymbuf[i];
8947
8948 if (isym->st_shndx == sec_shndx)
8949 {
43cd72b9
BW
8950 bfd_vma new_address = offset_with_removed_text
8951 (&relax_info->action_list, isym->st_value);
8952 bfd_vma new_size = isym->st_size;
8953
8954 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
8955 {
8956 bfd_vma new_end = offset_with_removed_text
8957 (&relax_info->action_list, isym->st_value + isym->st_size);
8958 new_size = new_end - new_address;
8959 }
8960
8961 isym->st_value = new_address;
8962 isym->st_size = new_size;
e0001a05
NC
8963 }
8964 }
8965
8966 /* Now adjust the global symbols defined in this section. */
8967 for (i = 0; i < (num_syms - num_locals); i++)
8968 {
8969 struct elf_link_hash_entry *sym_hash;
8970
8971 sym_hash = elf_sym_hashes (abfd)[i];
8972
8973 if (sym_hash->root.type == bfd_link_hash_warning)
8974 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
8975
8976 if ((sym_hash->root.type == bfd_link_hash_defined
8977 || sym_hash->root.type == bfd_link_hash_defweak)
8978 && sym_hash->root.u.def.section == sec)
8979 {
43cd72b9
BW
8980 bfd_vma new_address = offset_with_removed_text
8981 (&relax_info->action_list, sym_hash->root.u.def.value);
8982 bfd_vma new_size = sym_hash->size;
8983
8984 if (sym_hash->type == STT_FUNC)
8985 {
8986 bfd_vma new_end = offset_with_removed_text
8987 (&relax_info->action_list,
8988 sym_hash->root.u.def.value + sym_hash->size);
8989 new_size = new_end - new_address;
8990 }
8991
8992 sym_hash->root.u.def.value = new_address;
8993 sym_hash->size = new_size;
e0001a05
NC
8994 }
8995 }
8996
8997 return TRUE;
8998}
8999
9000\f
9001/* "Fix" handling functions, called while performing relocations. */
9002
43cd72b9 9003static bfd_boolean
7fa3d080
BW
9004do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9005 bfd *input_bfd,
9006 asection *input_section,
9007 bfd_byte *contents)
e0001a05
NC
9008{
9009 r_reloc r_rel;
9010 asection *sec, *old_sec;
9011 bfd_vma old_offset;
9012 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9013 reloc_bfd_fix *fix;
9014
9015 if (r_type == R_XTENSA_NONE)
43cd72b9 9016 return TRUE;
e0001a05 9017
43cd72b9
BW
9018 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9019 if (!fix)
9020 return TRUE;
e0001a05 9021
43cd72b9
BW
9022 r_reloc_init (&r_rel, input_bfd, rel, contents,
9023 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9024 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9025 old_offset = r_rel.target_offset;
9026
9027 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9028 {
43cd72b9
BW
9029 if (r_type != R_XTENSA_ASM_EXPAND)
9030 {
9031 (*_bfd_error_handler)
9032 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9033 input_bfd, input_section, rel->r_offset,
9034 elf_howto_table[r_type].name);
9035 return FALSE;
9036 }
e0001a05
NC
9037 /* Leave it be. Resolution will happen in a later stage. */
9038 }
9039 else
9040 {
9041 sec = fix->target_sec;
9042 rel->r_addend += ((sec->output_offset + fix->target_offset)
9043 - (old_sec->output_offset + old_offset));
9044 }
43cd72b9 9045 return TRUE;
e0001a05
NC
9046}
9047
9048
9049static void
7fa3d080
BW
9050do_fix_for_final_link (Elf_Internal_Rela *rel,
9051 bfd *input_bfd,
9052 asection *input_section,
9053 bfd_byte *contents,
9054 bfd_vma *relocationp)
e0001a05
NC
9055{
9056 asection *sec;
9057 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9058 reloc_bfd_fix *fix;
43cd72b9 9059 bfd_vma fixup_diff;
e0001a05
NC
9060
9061 if (r_type == R_XTENSA_NONE)
9062 return;
9063
43cd72b9
BW
9064 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9065 if (!fix)
e0001a05
NC
9066 return;
9067
9068 sec = fix->target_sec;
43cd72b9
BW
9069
9070 fixup_diff = rel->r_addend;
9071 if (elf_howto_table[fix->src_type].partial_inplace)
9072 {
9073 bfd_vma inplace_val;
9074 BFD_ASSERT (fix->src_offset
9075 < bfd_get_section_limit (input_bfd, input_section));
9076 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9077 fixup_diff += inplace_val;
9078 }
9079
e0001a05
NC
9080 *relocationp = (sec->output_section->vma
9081 + sec->output_offset
43cd72b9 9082 + fix->target_offset - fixup_diff);
e0001a05
NC
9083}
9084
9085\f
9086/* Miscellaneous utility functions.... */
9087
9088static asection *
7fa3d080 9089elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
e0001a05
NC
9090{
9091 char plt_name[10];
9092
9093 if (chunk == 0)
9094 return bfd_get_section_by_name (dynobj, ".plt");
9095
9096 sprintf (plt_name, ".plt.%u", chunk);
9097 return bfd_get_section_by_name (dynobj, plt_name);
9098}
9099
9100
9101static asection *
7fa3d080 9102elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
e0001a05
NC
9103{
9104 char got_name[14];
9105
9106 if (chunk == 0)
9107 return bfd_get_section_by_name (dynobj, ".got.plt");
9108
9109 sprintf (got_name, ".got.plt.%u", chunk);
9110 return bfd_get_section_by_name (dynobj, got_name);
9111}
9112
9113
9114/* Get the input section for a given symbol index.
9115 If the symbol is:
9116 . a section symbol, return the section;
9117 . a common symbol, return the common section;
9118 . an undefined symbol, return the undefined section;
9119 . an indirect symbol, follow the links;
9120 . an absolute value, return the absolute section. */
9121
9122static asection *
7fa3d080 9123get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9124{
9125 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9126 asection *target_sec = NULL;
43cd72b9 9127 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9128 {
9129 Elf_Internal_Sym *isymbuf;
9130 unsigned int section_index;
9131
9132 isymbuf = retrieve_local_syms (abfd);
9133 section_index = isymbuf[r_symndx].st_shndx;
9134
9135 if (section_index == SHN_UNDEF)
9136 target_sec = bfd_und_section_ptr;
9137 else if (section_index > 0 && section_index < SHN_LORESERVE)
9138 target_sec = bfd_section_from_elf_index (abfd, section_index);
9139 else if (section_index == SHN_ABS)
9140 target_sec = bfd_abs_section_ptr;
9141 else if (section_index == SHN_COMMON)
9142 target_sec = bfd_com_section_ptr;
43cd72b9 9143 else
e0001a05
NC
9144 /* Who knows? */
9145 target_sec = NULL;
9146 }
9147 else
9148 {
9149 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9150 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9151
9152 while (h->root.type == bfd_link_hash_indirect
9153 || h->root.type == bfd_link_hash_warning)
9154 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9155
9156 switch (h->root.type)
9157 {
9158 case bfd_link_hash_defined:
9159 case bfd_link_hash_defweak:
9160 target_sec = h->root.u.def.section;
9161 break;
9162 case bfd_link_hash_common:
9163 target_sec = bfd_com_section_ptr;
9164 break;
9165 case bfd_link_hash_undefined:
9166 case bfd_link_hash_undefweak:
9167 target_sec = bfd_und_section_ptr;
9168 break;
9169 default: /* New indirect warning. */
9170 target_sec = bfd_und_section_ptr;
9171 break;
9172 }
9173 }
9174 return target_sec;
9175}
9176
9177
9178static struct elf_link_hash_entry *
7fa3d080 9179get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9180{
9181 unsigned long indx;
9182 struct elf_link_hash_entry *h;
9183 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9184
9185 if (r_symndx < symtab_hdr->sh_info)
9186 return NULL;
43cd72b9 9187
e0001a05
NC
9188 indx = r_symndx - symtab_hdr->sh_info;
9189 h = elf_sym_hashes (abfd)[indx];
9190 while (h->root.type == bfd_link_hash_indirect
9191 || h->root.type == bfd_link_hash_warning)
9192 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9193 return h;
9194}
9195
9196
9197/* Get the section-relative offset for a symbol number. */
9198
9199static bfd_vma
7fa3d080 9200get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9201{
9202 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9203 bfd_vma offset = 0;
9204
43cd72b9 9205 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9206 {
9207 Elf_Internal_Sym *isymbuf;
9208 isymbuf = retrieve_local_syms (abfd);
9209 offset = isymbuf[r_symndx].st_value;
9210 }
9211 else
9212 {
9213 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9214 struct elf_link_hash_entry *h =
9215 elf_sym_hashes (abfd)[indx];
9216
9217 while (h->root.type == bfd_link_hash_indirect
9218 || h->root.type == bfd_link_hash_warning)
9219 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9220 if (h->root.type == bfd_link_hash_defined
9221 || h->root.type == bfd_link_hash_defweak)
9222 offset = h->root.u.def.value;
9223 }
9224 return offset;
9225}
9226
9227
9228static bfd_boolean
7fa3d080 9229is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9230{
9231 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9232 struct elf_link_hash_entry *h;
9233
9234 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9235 if (h && h->root.type == bfd_link_hash_defweak)
9236 return TRUE;
9237 return FALSE;
9238}
9239
9240
9241static bfd_boolean
7fa3d080
BW
9242pcrel_reloc_fits (xtensa_opcode opc,
9243 int opnd,
9244 bfd_vma self_address,
9245 bfd_vma dest_address)
e0001a05 9246{
43cd72b9
BW
9247 xtensa_isa isa = xtensa_default_isa;
9248 uint32 valp = dest_address;
9249 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9250 || xtensa_operand_encode (isa, opc, opnd, &valp))
9251 return FALSE;
9252 return TRUE;
e0001a05
NC
9253}
9254
9255
b614a702
BW
9256static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9257static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9258static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
43cd72b9 9259static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
b614a702
BW
9260
9261
e0001a05 9262static bfd_boolean
7fa3d080 9263xtensa_is_property_section (asection *sec)
e0001a05 9264{
b614a702 9265 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
43cd72b9
BW
9266 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9267 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
b614a702 9268 return TRUE;
e901de89 9269
b614a702 9270 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
43cd72b9
BW
9271 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9272 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9273 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
e901de89
BW
9274 return TRUE;
9275
e901de89
BW
9276 return FALSE;
9277}
9278
9279
9280static bfd_boolean
7fa3d080 9281xtensa_is_littable_section (asection *sec)
e901de89 9282{
b614a702
BW
9283 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9284 return TRUE;
e901de89 9285
b614a702
BW
9286 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9287 && sec->name[linkonce_len] == 'p'
9288 && sec->name[linkonce_len + 1] == '.')
e901de89 9289 return TRUE;
e0001a05 9290
e901de89 9291 return FALSE;
e0001a05
NC
9292}
9293
9294
43cd72b9 9295static int
7fa3d080 9296internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9297{
43cd72b9
BW
9298 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9299 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9300
9301 if (a->r_offset != b->r_offset)
9302 return (a->r_offset - b->r_offset);
9303
9304 /* We don't need to sort on these criteria for correctness,
9305 but enforcing a more strict ordering prevents unstable qsort
9306 from behaving differently with different implementations.
9307 Without the code below we get correct but different results
9308 on Solaris 2.7 and 2.8. We would like to always produce the
9309 same results no matter the host. */
9310
9311 if (a->r_info != b->r_info)
9312 return (a->r_info - b->r_info);
9313
9314 return (a->r_addend - b->r_addend);
e0001a05
NC
9315}
9316
9317
9318static int
7fa3d080 9319internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9320{
9321 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9322 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9323
43cd72b9
BW
9324 /* Check if one entry overlaps with the other; this shouldn't happen
9325 except when searching for a match. */
e0001a05
NC
9326 return (a->r_offset - b->r_offset);
9327}
9328
9329
e0001a05 9330char *
7fa3d080 9331xtensa_get_property_section_name (asection *sec, const char *base_name)
e0001a05 9332{
b614a702 9333 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9334 {
b614a702
BW
9335 char *prop_sec_name;
9336 const char *suffix;
43cd72b9 9337 char *linkonce_kind = 0;
b614a702
BW
9338
9339 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9340 linkonce_kind = "x.";
b614a702 9341 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9342 linkonce_kind = "p.";
43cd72b9
BW
9343 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9344 linkonce_kind = "prop.";
e0001a05 9345 else
b614a702
BW
9346 abort ();
9347
43cd72b9
BW
9348 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9349 + strlen (linkonce_kind) + 1);
b614a702 9350 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9351 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9352
9353 suffix = sec->name + linkonce_len;
096c35a7 9354 /* For backward compatibility, replace "t." instead of inserting
43cd72b9
BW
9355 the new linkonce_kind (but not for "prop" sections). */
9356 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9357 suffix += 2;
9358 strcat (prop_sec_name + linkonce_len, suffix);
b614a702
BW
9359
9360 return prop_sec_name;
e0001a05
NC
9361 }
9362
b614a702 9363 return strdup (base_name);
e0001a05
NC
9364}
9365
43cd72b9
BW
9366
9367flagword
7fa3d080 9368xtensa_get_property_predef_flags (asection *sec)
43cd72b9
BW
9369{
9370 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9371 || strncmp (sec->name, ".gnu.linkonce.x.",
9372 sizeof ".gnu.linkonce.x." - 1) == 0)
9373 return (XTENSA_PROP_INSN
9374 | XTENSA_PROP_INSN_NO_TRANSFORM
9375 | XTENSA_PROP_INSN_NO_REORDER);
9376
9377 if (xtensa_is_littable_section (sec))
9378 return (XTENSA_PROP_LITERAL
9379 | XTENSA_PROP_INSN_NO_TRANSFORM
9380 | XTENSA_PROP_INSN_NO_REORDER);
9381
9382 return 0;
9383}
9384
e0001a05
NC
9385\f
9386/* Other functions called directly by the linker. */
9387
9388bfd_boolean
7fa3d080
BW
9389xtensa_callback_required_dependence (bfd *abfd,
9390 asection *sec,
9391 struct bfd_link_info *link_info,
9392 deps_callback_t callback,
9393 void *closure)
e0001a05
NC
9394{
9395 Elf_Internal_Rela *internal_relocs;
9396 bfd_byte *contents;
9397 unsigned i;
9398 bfd_boolean ok = TRUE;
43cd72b9
BW
9399 bfd_size_type sec_size;
9400
9401 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9402
9403 /* ".plt*" sections have no explicit relocations but they contain L32R
9404 instructions that reference the corresponding ".got.plt*" sections. */
9405 if ((sec->flags & SEC_LINKER_CREATED) != 0
9406 && strncmp (sec->name, ".plt", 4) == 0)
9407 {
9408 asection *sgotplt;
9409
9410 /* Find the corresponding ".got.plt*" section. */
9411 if (sec->name[4] == '\0')
9412 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9413 else
9414 {
9415 char got_name[14];
9416 int chunk = 0;
9417
9418 BFD_ASSERT (sec->name[4] == '.');
9419 chunk = strtol (&sec->name[5], NULL, 10);
9420
9421 sprintf (got_name, ".got.plt.%u", chunk);
9422 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9423 }
9424 BFD_ASSERT (sgotplt);
9425
9426 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9427 section referencing a literal at the very beginning of
9428 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9429 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9430 }
9431
9432 internal_relocs = retrieve_internal_relocs (abfd, sec,
9433 link_info->keep_memory);
9434 if (internal_relocs == NULL
43cd72b9 9435 || sec->reloc_count == 0)
e0001a05
NC
9436 return ok;
9437
9438 /* Cache the contents for the duration of this scan. */
9439 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9440 if (contents == NULL && sec_size != 0)
e0001a05
NC
9441 {
9442 ok = FALSE;
9443 goto error_return;
9444 }
9445
43cd72b9
BW
9446 if (!xtensa_default_isa)
9447 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9448
43cd72b9 9449 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9450 {
9451 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9452 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9453 {
9454 r_reloc l32r_rel;
9455 asection *target_sec;
9456 bfd_vma target_offset;
43cd72b9
BW
9457
9458 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9459 target_sec = NULL;
9460 target_offset = 0;
9461 /* L32Rs must be local to the input file. */
9462 if (r_reloc_is_defined (&l32r_rel))
9463 {
9464 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9465 target_offset = l32r_rel.target_offset;
e0001a05
NC
9466 }
9467 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9468 closure);
9469 }
9470 }
9471
9472 error_return:
9473 release_internal_relocs (sec, internal_relocs);
9474 release_contents (sec, contents);
9475 return ok;
9476}
9477
2f89ff8d
L
9478/* The default literal sections should always be marked as "code" (i.e.,
9479 SHF_EXECINSTR). This is particularly important for the Linux kernel
9480 module loader so that the literals are not placed after the text. */
b35d266b 9481static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9482{
7dcb9820 9483 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958 9484 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958
L
9485 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9486 { NULL, 0, 0, 0, 0 }
9487};
e0001a05
NC
9488\f
9489#ifndef ELF_ARCH
9490#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9491#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9492#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9493#define TARGET_BIG_NAME "elf32-xtensa-be"
9494#define ELF_ARCH bfd_arch_xtensa
9495
4af0a1d8
BW
9496#define ELF_MACHINE_CODE EM_XTENSA
9497#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9498
9499#if XCHAL_HAVE_MMU
9500#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9501#else /* !XCHAL_HAVE_MMU */
9502#define ELF_MAXPAGESIZE 1
9503#endif /* !XCHAL_HAVE_MMU */
9504#endif /* ELF_ARCH */
9505
9506#define elf_backend_can_gc_sections 1
9507#define elf_backend_can_refcount 1
9508#define elf_backend_plt_readonly 1
9509#define elf_backend_got_header_size 4
9510#define elf_backend_want_dynbss 0
9511#define elf_backend_want_got_plt 1
9512
9513#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9514
e0001a05
NC
9515#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9516#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9517#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9518#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9519#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9520#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9521
9522#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9523#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9524#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9525#define elf_backend_discard_info elf_xtensa_discard_info
9526#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9527#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9528#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9529#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9530#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9531#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9532#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9533#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9534#define elf_backend_hide_symbol elf_xtensa_hide_symbol
9535#define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9536#define elf_backend_object_p elf_xtensa_object_p
9537#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9538#define elf_backend_relocate_section elf_xtensa_relocate_section
9539#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
29ef7005 9540#define elf_backend_special_sections elf_xtensa_special_sections
e0001a05
NC
9541
9542#include "elf32-target.h"
This page took 0.729927 seconds and 4 git commands to generate.