Delete duplicate target short-cuts to dynamic sections
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
6f2750fe 2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
4c2af04f 31#include "splay-tree.h"
e0001a05
NC
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1 112static asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 113static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
114
115/* Other functions called directly by the linker. */
116
117typedef void (*deps_callback_t)
7fa3d080 118 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 119extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
121
122
43cd72b9
BW
123/* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
7fa3d080 127
43cd72b9
BW
128int elf32xtensa_size_opt;
129
130
131/* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
e0001a05 134
7fa3d080 135typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 136
43cd72b9 137
43cd72b9
BW
138/* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143xtensa_isa xtensa_default_isa;
144
145
e0001a05
NC
146/* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150static bfd_boolean relaxing_section = FALSE;
151
43cd72b9
BW
152/* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155int elf32xtensa_no_literal_movement = 1;
156
b0dddeec
AM
157/* Rename one of the generic section flags to better document how it
158 is used here. */
159/* Whether relocations have been processed. */
160#define reloc_done sec_flg0
e0001a05
NC
161\f
162static reloc_howto_type elf_howto_table[] =
163{
6346d5ca 164 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
e0001a05 165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 166 FALSE, 0, 0, FALSE),
e0001a05
NC
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 170
e0001a05
NC
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178
e0001a05
NC
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 181 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 184 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 187 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
190 FALSE, 0, 0xffffffff, FALSE),
191
e0001a05 192 EMPTY_HOWTO (7),
e5f131d1
BW
193
194 /* Old relocations for backward compatibility. */
e0001a05 195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201
e0001a05
NC
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208
e0001a05 209 EMPTY_HOWTO (13),
1bbb5f21
BW
210
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 214
e0001a05
NC
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 218 FALSE, 0, 0, FALSE),
e0001a05
NC
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 222 FALSE, 0, 0, FALSE),
43cd72b9
BW
223
224 /* Relocations for supporting difference of symbols. */
1058c753 225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
e5f131d1 226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
1058c753 227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
e5f131d1 228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
1058c753 229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
e5f131d1 230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
231
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
263
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
295
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 FALSE, 0, 0, FALSE),
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 FALSE, 0, 0, FALSE),
e0001a05
NC
318};
319
43cd72b9 320#if DEBUG_GEN_RELOC
e0001a05
NC
321#define TRACE(str) \
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323#else
324#define TRACE(str)
325#endif
326
327static reloc_howto_type *
7fa3d080
BW
328elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
e0001a05
NC
330{
331 switch (code)
332 {
333 case BFD_RELOC_NONE:
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336
337 case BFD_RELOC_32:
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340
1bbb5f21
BW
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344
43cd72b9
BW
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356
e0001a05
NC
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404
28dbbc02
BW
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432
e0001a05 433 default:
43cd72b9
BW
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 {
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
440 }
441
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 {
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
448 }
449
e0001a05
NC
450 break;
451 }
452
453 TRACE ("Unknown");
454 return NULL;
455}
456
157090f7
AM
457static reloc_howto_type *
458elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 const char *r_name)
460{
461 unsigned int i;
462
463 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464 if (elf_howto_table[i].name != NULL
465 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
466 return &elf_howto_table[i];
467
468 return NULL;
469}
470
e0001a05
NC
471
472/* Given an ELF "rela" relocation, find the corresponding howto and record
473 it in the BFD internal arelent representation of the relocation. */
474
475static void
7fa3d080
BW
476elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
477 arelent *cache_ptr,
478 Elf_Internal_Rela *dst)
e0001a05
NC
479{
480 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
481
5860e3f8
NC
482 if (r_type >= (unsigned int) R_XTENSA_max)
483 {
695344c0 484 /* xgettext:c-format */
64d29018 485 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
5860e3f8
NC
486 r_type = 0;
487 }
e0001a05
NC
488 cache_ptr->howto = &elf_howto_table[r_type];
489}
490
491\f
492/* Functions for the Xtensa ELF linker. */
493
494/* The name of the dynamic interpreter. This is put in the .interp
495 section. */
496
497#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
498
499/* The size in bytes of an entry in the procedure linkage table.
500 (This does _not_ include the space for the literals associated with
501 the PLT entry.) */
502
503#define PLT_ENTRY_SIZE 16
504
505/* For _really_ large PLTs, we may need to alternate between literals
506 and code to keep the literals within the 256K range of the L32R
507 instructions in the code. It's unlikely that anyone would ever need
508 such a big PLT, but an arbitrary limit on the PLT size would be bad.
509 Thus, we split the PLT into chunks. Since there's very little
510 overhead (2 extra literals) for each chunk, the chunk size is kept
511 small so that the code for handling multiple chunks get used and
512 tested regularly. With 254 entries, there are 1K of literals for
513 each chunk, and that seems like a nice round number. */
514
515#define PLT_ENTRIES_PER_CHUNK 254
516
517/* PLT entries are actually used as stub functions for lazy symbol
518 resolution. Once the symbol is resolved, the stub function is never
519 invoked. Note: the 32-byte frame size used here cannot be changed
520 without a corresponding change in the runtime linker. */
521
522static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
523{
92b3f008 524#if XSHAL_ABI == XTHAL_ABI_WINDOWED
e0001a05 525 0x6c, 0x10, 0x04, /* entry sp, 32 */
92b3f008 526#endif
e0001a05
NC
527 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0x0a, 0x80, 0x00, /* jx a8 */
531 0 /* unused */
532};
533
534static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
535{
92b3f008 536#if XSHAL_ABI == XTHAL_ABI_WINDOWED
e0001a05 537 0x36, 0x41, 0x00, /* entry sp, 32 */
92b3f008 538#endif
e0001a05
NC
539 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0xa0, 0x08, 0x00, /* jx a8 */
543 0 /* unused */
544};
545
28dbbc02
BW
546/* The size of the thread control block. */
547#define TCB_SIZE 8
548
549struct elf_xtensa_link_hash_entry
550{
551 struct elf_link_hash_entry elf;
552
553 bfd_signed_vma tlsfunc_refcount;
554
555#define GOT_UNKNOWN 0
556#define GOT_NORMAL 1
557#define GOT_TLS_GD 2 /* global or local dynamic */
558#define GOT_TLS_IE 4 /* initial or local exec */
559#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
560 unsigned char tls_type;
561};
562
563#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
564
565struct elf_xtensa_obj_tdata
566{
567 struct elf_obj_tdata root;
568
569 /* tls_type for each local got entry. */
570 char *local_got_tls_type;
571
572 bfd_signed_vma *local_tlsfunc_refcounts;
573};
574
575#define elf_xtensa_tdata(abfd) \
576 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
577
578#define elf_xtensa_local_got_tls_type(abfd) \
579 (elf_xtensa_tdata (abfd)->local_got_tls_type)
580
581#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
582 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
583
584#define is_xtensa_elf(bfd) \
585 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
586 && elf_tdata (bfd) != NULL \
4dfe6ac6 587 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
588
589static bfd_boolean
590elf_xtensa_mkobject (bfd *abfd)
591{
592 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 593 XTENSA_ELF_DATA);
28dbbc02
BW
594}
595
f0e6fdb2
BW
596/* Xtensa ELF linker hash table. */
597
598struct elf_xtensa_link_hash_table
599{
600 struct elf_link_hash_table elf;
601
602 /* Short-cuts to get to dynamic linker sections. */
f0e6fdb2
BW
603 asection *sgotloc;
604 asection *spltlittbl;
605
606 /* Total count of PLT relocations seen during check_relocs.
607 The actual PLT code must be split into multiple sections and all
608 the sections have to be created before size_dynamic_sections,
609 where we figure out the exact number of PLT entries that will be
610 needed. It is OK if this count is an overestimate, e.g., some
611 relocations may be removed by GC. */
612 int plt_reloc_count;
28dbbc02
BW
613
614 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
615};
616
617/* Get the Xtensa ELF linker hash table from a link_info structure. */
618
619#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
620 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
621 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 622
28dbbc02
BW
623/* Create an entry in an Xtensa ELF linker hash table. */
624
625static struct bfd_hash_entry *
626elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
627 struct bfd_hash_table *table,
628 const char *string)
629{
630 /* Allocate the structure if it has not already been allocated by a
631 subclass. */
632 if (entry == NULL)
633 {
634 entry = bfd_hash_allocate (table,
635 sizeof (struct elf_xtensa_link_hash_entry));
636 if (entry == NULL)
637 return entry;
638 }
639
640 /* Call the allocation method of the superclass. */
641 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
642 if (entry != NULL)
643 {
644 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
645 eh->tlsfunc_refcount = 0;
646 eh->tls_type = GOT_UNKNOWN;
647 }
648
649 return entry;
650}
651
f0e6fdb2
BW
652/* Create an Xtensa ELF linker hash table. */
653
654static struct bfd_link_hash_table *
655elf_xtensa_link_hash_table_create (bfd *abfd)
656{
28dbbc02 657 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
658 struct elf_xtensa_link_hash_table *ret;
659 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
660
7bf52ea2 661 ret = bfd_zmalloc (amt);
f0e6fdb2
BW
662 if (ret == NULL)
663 return NULL;
664
665 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 666 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
667 sizeof (struct elf_xtensa_link_hash_entry),
668 XTENSA_ELF_DATA))
f0e6fdb2
BW
669 {
670 free (ret);
671 return NULL;
672 }
673
28dbbc02
BW
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
675 for it later. */
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
677 TRUE, FALSE, FALSE);
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
683
f0e6fdb2
BW
684 return &ret->elf.root;
685}
571b5725 686
28dbbc02
BW
687/* Copy the extra info we tack onto an elf_link_hash_entry. */
688
689static void
690elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
693{
694 struct elf_xtensa_link_hash_entry *edir, *eind;
695
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
698
699 if (ind->root.type == bfd_link_hash_indirect)
700 {
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
703
704 if (dir->got.refcount <= 0)
705 {
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
708 }
709 }
710
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712}
713
571b5725 714static inline bfd_boolean
4608f3d9 715elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 716 struct bfd_link_info *info)
571b5725
BW
717{
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
723
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
725}
726
e0001a05
NC
727\f
728static int
7fa3d080 729property_table_compare (const void *ap, const void *bp)
e0001a05
NC
730{
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
733
43cd72b9
BW
734 if (a->address == b->address)
735 {
43cd72b9
BW
736 if (a->size != b->size)
737 return (a->size - b->size);
738
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
742
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
68ffbac6 748
43cd72b9
BW
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
753
754 return (a->flags - b->flags);
755 }
756
757 return (a->address - b->address);
758}
759
760
761static int
7fa3d080 762property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
763{
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
766
767 /* Check if one entry overlaps with the other. */
e0001a05
NC
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
770 return 0;
771
772 return (a->address - b->address);
773}
774
775
43cd72b9
BW
776/* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
e0001a05 779
7fa3d080
BW
780static int
781xtensa_read_table_entries (bfd *abfd,
782 asection *section,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
e0001a05
NC
786{
787 asection *table_section;
e0001a05
NC
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
e4115460 791 int blk, block_count;
e0001a05 792 bfd_size_type num_records;
bcc2cc8e
BW
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
43cd72b9 795 flagword predef_flags;
bcc2cc8e 796 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
797
798 if (!section
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
801 {
802 *table_p = NULL;
803 return 0;
804 }
e0001a05 805
74869ac7 806 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 807 if (table_section)
eea6121a 808 table_size = table_section->size;
43cd72b9 809
68ffbac6 810 if (table_size == 0)
e0001a05
NC
811 {
812 *table_p = NULL;
813 return 0;
814 }
815
43cd72b9
BW
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
818 if (predef_flags)
819 table_entry_size -= 4;
820
821 num_records = table_size / table_entry_size;
e0001a05
NC
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
825 block_count = 0;
43cd72b9
BW
826
827 if (output_addr)
828 section_addr = section->output_section->vma + section->output_offset;
829 else
830 section_addr = section->vma;
3ba3bc8c 831
e0001a05 832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 833 if (internal_relocs && !table_section->reloc_done)
e0001a05 834 {
bcc2cc8e
BW
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
838 }
839 else
840 irel = NULL;
841
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
844
68ffbac6 845 for (off = 0; off < table_size; off += table_entry_size)
bcc2cc8e
BW
846 {
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
848
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
851 table entry. */
852 while (irel &&
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
856 {
857 irel += 1;
858 if (irel >= rel_end)
859 irel = 0;
860 }
e0001a05 861
bcc2cc8e 862 if (irel && irel->r_offset == off)
e0001a05 863 {
bcc2cc8e
BW
864 bfd_vma sym_off;
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 867
bcc2cc8e 868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
869 continue;
870
bcc2cc8e
BW
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
e0001a05 874 }
bcc2cc8e 875 else
e0001a05 876 {
bcc2cc8e
BW
877 if (address < section_addr
878 || address >= section_addr + section_limit)
879 continue;
e0001a05 880 }
bcc2cc8e
BW
881
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
884 if (predef_flags)
885 blocks[block_count].flags = predef_flags;
886 else
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888 block_count++;
e0001a05
NC
889 }
890
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
893
43cd72b9 894 if (block_count > 0)
e0001a05
NC
895 {
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
e4115460
BW
899
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
903 {
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
910 {
695344c0 911 /* xgettext:c-format */
4eca0228
AM
912 _bfd_error_handler (_("%B(%A): invalid property table"),
913 abfd, section);
e4115460
BW
914 bfd_set_error (bfd_error_bad_value);
915 free (blocks);
916 return -1;
917 }
918 }
e0001a05 919 }
43cd72b9 920
e0001a05
NC
921 *table_p = blocks;
922 return block_count;
923}
924
925
7fa3d080
BW
926static property_table_entry *
927elf_xtensa_find_property_entry (property_table_entry *property_table,
928 int property_table_size,
929 bfd_vma addr)
e0001a05
NC
930{
931 property_table_entry entry;
43cd72b9 932 property_table_entry *rv;
e0001a05 933
43cd72b9
BW
934 if (property_table_size == 0)
935 return NULL;
e0001a05
NC
936
937 entry.address = addr;
938 entry.size = 1;
43cd72b9 939 entry.flags = 0;
e0001a05 940
43cd72b9
BW
941 rv = bsearch (&entry, property_table, property_table_size,
942 sizeof (property_table_entry), property_table_matches);
943 return rv;
944}
945
946
947static bfd_boolean
7fa3d080
BW
948elf_xtensa_in_literal_pool (property_table_entry *lit_table,
949 int lit_table_size,
950 bfd_vma addr)
43cd72b9
BW
951{
952 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
953 return TRUE;
954
955 return FALSE;
956}
957
958\f
959/* Look through the relocs for a section during the first phase, and
960 calculate needed space in the dynamic reloc sections. */
961
962static bfd_boolean
7fa3d080
BW
963elf_xtensa_check_relocs (bfd *abfd,
964 struct bfd_link_info *info,
965 asection *sec,
966 const Elf_Internal_Rela *relocs)
e0001a05 967{
f0e6fdb2 968 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
969 Elf_Internal_Shdr *symtab_hdr;
970 struct elf_link_hash_entry **sym_hashes;
971 const Elf_Internal_Rela *rel;
972 const Elf_Internal_Rela *rel_end;
e0001a05 973
0e1862bb 974 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
975 return TRUE;
976
28dbbc02
BW
977 BFD_ASSERT (is_xtensa_elf (abfd));
978
f0e6fdb2 979 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
980 if (htab == NULL)
981 return FALSE;
982
e0001a05
NC
983 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
984 sym_hashes = elf_sym_hashes (abfd);
985
e0001a05
NC
986 rel_end = relocs + sec->reloc_count;
987 for (rel = relocs; rel < rel_end; rel++)
988 {
989 unsigned int r_type;
990 unsigned long r_symndx;
28dbbc02
BW
991 struct elf_link_hash_entry *h = NULL;
992 struct elf_xtensa_link_hash_entry *eh;
993 int tls_type, old_tls_type;
994 bfd_boolean is_got = FALSE;
995 bfd_boolean is_plt = FALSE;
996 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
997
998 r_symndx = ELF32_R_SYM (rel->r_info);
999 r_type = ELF32_R_TYPE (rel->r_info);
1000
1001 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1002 {
695344c0 1003 /* xgettext:c-format */
4eca0228
AM
1004 _bfd_error_handler (_("%B: bad symbol index: %d"),
1005 abfd, r_symndx);
e0001a05
NC
1006 return FALSE;
1007 }
1008
28dbbc02 1009 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1010 {
1011 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012 while (h->root.type == bfd_link_hash_indirect
1013 || h->root.type == bfd_link_hash_warning)
1014 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
1015
1016 /* PR15323, ref flags aren't set for references in the same
1017 object. */
1018 h->root.non_ir_ref = 1;
e0001a05 1019 }
28dbbc02 1020 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1021
1022 switch (r_type)
1023 {
28dbbc02 1024 case R_XTENSA_TLSDESC_FN:
0e1862bb 1025 if (bfd_link_pic (info))
28dbbc02
BW
1026 {
1027 tls_type = GOT_TLS_GD;
1028 is_got = TRUE;
1029 is_tlsfunc = TRUE;
1030 }
1031 else
1032 tls_type = GOT_TLS_IE;
1033 break;
e0001a05 1034
28dbbc02 1035 case R_XTENSA_TLSDESC_ARG:
0e1862bb 1036 if (bfd_link_pic (info))
e0001a05 1037 {
28dbbc02
BW
1038 tls_type = GOT_TLS_GD;
1039 is_got = TRUE;
1040 }
1041 else
1042 {
1043 tls_type = GOT_TLS_IE;
1044 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1045 is_got = TRUE;
e0001a05
NC
1046 }
1047 break;
1048
28dbbc02 1049 case R_XTENSA_TLS_DTPOFF:
0e1862bb 1050 if (bfd_link_pic (info))
28dbbc02
BW
1051 tls_type = GOT_TLS_GD;
1052 else
1053 tls_type = GOT_TLS_IE;
1054 break;
1055
1056 case R_XTENSA_TLS_TPOFF:
1057 tls_type = GOT_TLS_IE;
0e1862bb 1058 if (bfd_link_pic (info))
28dbbc02 1059 info->flags |= DF_STATIC_TLS;
0e1862bb 1060 if (bfd_link_pic (info) || h)
28dbbc02
BW
1061 is_got = TRUE;
1062 break;
1063
1064 case R_XTENSA_32:
1065 tls_type = GOT_NORMAL;
1066 is_got = TRUE;
1067 break;
1068
e0001a05 1069 case R_XTENSA_PLT:
28dbbc02
BW
1070 tls_type = GOT_NORMAL;
1071 is_plt = TRUE;
1072 break;
e0001a05 1073
28dbbc02
BW
1074 case R_XTENSA_GNU_VTINHERIT:
1075 /* This relocation describes the C++ object vtable hierarchy.
1076 Reconstruct it for later use during GC. */
1077 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1078 return FALSE;
1079 continue;
1080
1081 case R_XTENSA_GNU_VTENTRY:
1082 /* This relocation describes which C++ vtable entries are actually
1083 used. Record for later use during GC. */
1084 BFD_ASSERT (h != NULL);
1085 if (h != NULL
1086 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1087 return FALSE;
1088 continue;
1089
1090 default:
1091 /* Nothing to do for any other relocations. */
1092 continue;
1093 }
1094
1095 if (h)
1096 {
1097 if (is_plt)
e0001a05 1098 {
b45329f9
BW
1099 if (h->plt.refcount <= 0)
1100 {
1101 h->needs_plt = 1;
1102 h->plt.refcount = 1;
1103 }
1104 else
1105 h->plt.refcount += 1;
e0001a05
NC
1106
1107 /* Keep track of the total PLT relocation count even if we
1108 don't yet know whether the dynamic sections will be
1109 created. */
f0e6fdb2 1110 htab->plt_reloc_count += 1;
e0001a05
NC
1111
1112 if (elf_hash_table (info)->dynamic_sections_created)
1113 {
f0e6fdb2 1114 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1115 return FALSE;
1116 }
1117 }
28dbbc02 1118 else if (is_got)
b45329f9
BW
1119 {
1120 if (h->got.refcount <= 0)
1121 h->got.refcount = 1;
1122 else
1123 h->got.refcount += 1;
1124 }
28dbbc02
BW
1125
1126 if (is_tlsfunc)
1127 eh->tlsfunc_refcount += 1;
e0001a05 1128
28dbbc02
BW
1129 old_tls_type = eh->tls_type;
1130 }
1131 else
1132 {
1133 /* Allocate storage the first time. */
1134 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1135 {
28dbbc02
BW
1136 bfd_size_type size = symtab_hdr->sh_info;
1137 void *mem;
e0001a05 1138
28dbbc02
BW
1139 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1140 if (mem == NULL)
1141 return FALSE;
1142 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1143
28dbbc02
BW
1144 mem = bfd_zalloc (abfd, size);
1145 if (mem == NULL)
1146 return FALSE;
1147 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1148
1149 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1150 if (mem == NULL)
1151 return FALSE;
1152 elf_xtensa_local_tlsfunc_refcounts (abfd)
1153 = (bfd_signed_vma *) mem;
e0001a05 1154 }
e0001a05 1155
28dbbc02
BW
1156 /* This is a global offset table entry for a local symbol. */
1157 if (is_got || is_plt)
1158 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1159
28dbbc02
BW
1160 if (is_tlsfunc)
1161 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1162
28dbbc02
BW
1163 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1164 }
1165
1166 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1167 tls_type |= old_tls_type;
1168 /* If a TLS symbol is accessed using IE at least once,
1169 there is no point to use a dynamic model for it. */
1170 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1171 && ((old_tls_type & GOT_TLS_GD) == 0
1172 || (tls_type & GOT_TLS_IE) == 0))
1173 {
1174 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1175 tls_type = old_tls_type;
1176 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1177 tls_type |= old_tls_type;
1178 else
1179 {
4eca0228 1180 _bfd_error_handler
695344c0 1181 /* xgettext:c-format */
28dbbc02
BW
1182 (_("%B: `%s' accessed both as normal and thread local symbol"),
1183 abfd,
1184 h ? h->root.root.string : "<local>");
1185 return FALSE;
1186 }
1187 }
1188
1189 if (old_tls_type != tls_type)
1190 {
1191 if (eh)
1192 eh->tls_type = tls_type;
1193 else
1194 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1195 }
1196 }
1197
e0001a05
NC
1198 return TRUE;
1199}
1200
1201
95147441
BW
1202static void
1203elf_xtensa_make_sym_local (struct bfd_link_info *info,
1204 struct elf_link_hash_entry *h)
1205{
0e1862bb 1206 if (bfd_link_pic (info))
95147441
BW
1207 {
1208 if (h->plt.refcount > 0)
1209 {
1210 /* For shared objects, there's no need for PLT entries for local
1211 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1212 if (h->got.refcount < 0)
1213 h->got.refcount = 0;
1214 h->got.refcount += h->plt.refcount;
1215 h->plt.refcount = 0;
1216 }
1217 }
1218 else
1219 {
1220 /* Don't need any dynamic relocations at all. */
1221 h->plt.refcount = 0;
1222 h->got.refcount = 0;
1223 }
1224}
1225
1226
1227static void
1228elf_xtensa_hide_symbol (struct bfd_link_info *info,
1229 struct elf_link_hash_entry *h,
1230 bfd_boolean force_local)
1231{
1232 /* For a shared link, move the plt refcount to the got refcount to leave
1233 space for RELATIVE relocs. */
1234 elf_xtensa_make_sym_local (info, h);
1235
1236 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1237}
1238
1239
e0001a05
NC
1240/* Return the section that should be marked against GC for a given
1241 relocation. */
1242
1243static asection *
7fa3d080 1244elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1245 struct bfd_link_info *info,
7fa3d080
BW
1246 Elf_Internal_Rela *rel,
1247 struct elf_link_hash_entry *h,
1248 Elf_Internal_Sym *sym)
e0001a05 1249{
e1e5c0b5
BW
1250 /* Property sections are marked "KEEP" in the linker scripts, but they
1251 should not cause other sections to be marked. (This approach relies
1252 on elf_xtensa_discard_info to remove property table entries that
1253 describe discarded sections. Alternatively, it might be more
1254 efficient to avoid using "KEEP" in the linker scripts and instead use
1255 the gc_mark_extra_sections hook to mark only the property sections
1256 that describe marked sections. That alternative does not work well
1257 with the current property table sections, which do not correspond
1258 one-to-one with the sections they describe, but that should be fixed
1259 someday.) */
1260 if (xtensa_is_property_section (sec))
1261 return NULL;
1262
07adf181
AM
1263 if (h != NULL)
1264 switch (ELF32_R_TYPE (rel->r_info))
1265 {
1266 case R_XTENSA_GNU_VTINHERIT:
1267 case R_XTENSA_GNU_VTENTRY:
1268 return NULL;
1269 }
1270
1271 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1272}
1273
7fa3d080 1274
e0001a05
NC
1275/* Update the GOT & PLT entry reference counts
1276 for the section being removed. */
1277
1278static bfd_boolean
7fa3d080 1279elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1280 struct bfd_link_info *info,
7fa3d080
BW
1281 asection *sec,
1282 const Elf_Internal_Rela *relocs)
e0001a05
NC
1283{
1284 Elf_Internal_Shdr *symtab_hdr;
1285 struct elf_link_hash_entry **sym_hashes;
e0001a05 1286 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1287 struct elf_xtensa_link_hash_table *htab;
1288
1289 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1290 if (htab == NULL)
1291 return FALSE;
e0001a05 1292
0e1862bb 1293 if (bfd_link_relocatable (info))
7dda2462
TG
1294 return TRUE;
1295
e0001a05
NC
1296 if ((sec->flags & SEC_ALLOC) == 0)
1297 return TRUE;
1298
1299 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1300 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1301
1302 relend = relocs + sec->reloc_count;
1303 for (rel = relocs; rel < relend; rel++)
1304 {
1305 unsigned long r_symndx;
1306 unsigned int r_type;
1307 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1308 struct elf_xtensa_link_hash_entry *eh;
1309 bfd_boolean is_got = FALSE;
1310 bfd_boolean is_plt = FALSE;
1311 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1312
1313 r_symndx = ELF32_R_SYM (rel->r_info);
1314 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1315 {
1316 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1317 while (h->root.type == bfd_link_hash_indirect
1318 || h->root.type == bfd_link_hash_warning)
1319 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1320 }
28dbbc02 1321 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1322
1323 r_type = ELF32_R_TYPE (rel->r_info);
1324 switch (r_type)
1325 {
28dbbc02 1326 case R_XTENSA_TLSDESC_FN:
0e1862bb 1327 if (bfd_link_pic (info))
28dbbc02
BW
1328 {
1329 is_got = TRUE;
1330 is_tlsfunc = TRUE;
1331 }
e0001a05
NC
1332 break;
1333
28dbbc02 1334 case R_XTENSA_TLSDESC_ARG:
0e1862bb 1335 if (bfd_link_pic (info))
28dbbc02
BW
1336 is_got = TRUE;
1337 else
1338 {
1339 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1340 is_got = TRUE;
1341 }
e0001a05
NC
1342 break;
1343
28dbbc02 1344 case R_XTENSA_TLS_TPOFF:
0e1862bb 1345 if (bfd_link_pic (info) || h)
28dbbc02 1346 is_got = TRUE;
e0001a05
NC
1347 break;
1348
28dbbc02
BW
1349 case R_XTENSA_32:
1350 is_got = TRUE;
e0001a05 1351 break;
28dbbc02
BW
1352
1353 case R_XTENSA_PLT:
1354 is_plt = TRUE;
1355 break;
1356
1357 default:
1358 continue;
1359 }
1360
1361 if (h)
1362 {
1363 if (is_plt)
1364 {
e6c9a083
MF
1365 /* If the symbol has been localized its plt.refcount got moved
1366 to got.refcount. Handle it as GOT. */
28dbbc02
BW
1367 if (h->plt.refcount > 0)
1368 h->plt.refcount--;
e6c9a083
MF
1369 else
1370 is_got = TRUE;
28dbbc02 1371 }
e6c9a083 1372 if (is_got)
28dbbc02
BW
1373 {
1374 if (h->got.refcount > 0)
1375 h->got.refcount--;
1376 }
1377 if (is_tlsfunc)
1378 {
1379 if (eh->tlsfunc_refcount > 0)
1380 eh->tlsfunc_refcount--;
1381 }
1382 }
1383 else
1384 {
1385 if (is_got || is_plt)
1386 {
1387 bfd_signed_vma *got_refcount
1388 = &elf_local_got_refcounts (abfd) [r_symndx];
1389 if (*got_refcount > 0)
1390 *got_refcount -= 1;
1391 }
1392 if (is_tlsfunc)
1393 {
1394 bfd_signed_vma *tlsfunc_refcount
1395 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1396 if (*tlsfunc_refcount > 0)
1397 *tlsfunc_refcount -= 1;
1398 }
e0001a05
NC
1399 }
1400 }
1401
1402 return TRUE;
1403}
1404
1405
1406/* Create all the dynamic sections. */
1407
1408static bfd_boolean
7fa3d080 1409elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1410{
f0e6fdb2 1411 struct elf_xtensa_link_hash_table *htab;
e901de89 1412 flagword flags, noalloc_flags;
f0e6fdb2
BW
1413
1414 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1415 if (htab == NULL)
1416 return FALSE;
e0001a05
NC
1417
1418 /* First do all the standard stuff. */
1419 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1420 return FALSE;
1421
1422 /* Create any extra PLT sections in case check_relocs has already
1423 been called on all the non-dynamic input files. */
f0e6fdb2 1424 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1425 return FALSE;
1426
e901de89
BW
1427 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1428 | SEC_LINKER_CREATED | SEC_READONLY);
1429 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1430
1431 /* Mark the ".got.plt" section READONLY. */
ce558b89
AM
1432 if (htab->elf.sgotplt == NULL
1433 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
e0001a05
NC
1434 return FALSE;
1435
e901de89 1436 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3d4d4302
AM
1437 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1438 flags);
f0e6fdb2
BW
1439 if (htab->sgotloc == NULL
1440 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1441 return FALSE;
1442
e0001a05 1443 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3d4d4302
AM
1444 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1445 noalloc_flags);
f0e6fdb2
BW
1446 if (htab->spltlittbl == NULL
1447 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1448 return FALSE;
1449
1450 return TRUE;
1451}
1452
1453
1454static bfd_boolean
f0e6fdb2 1455add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1456{
f0e6fdb2 1457 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1458 int chunk;
1459
1460 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1461 ".got.plt" sections. */
1462 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1463 {
1464 char *sname;
1465 flagword flags;
1466 asection *s;
1467
1468 /* Stop when we find a section has already been created. */
f0e6fdb2 1469 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1470 break;
1471
1472 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1473 | SEC_LINKER_CREATED | SEC_READONLY);
1474
1475 sname = (char *) bfd_malloc (10);
1476 sprintf (sname, ".plt.%u", chunk);
3d4d4302 1477 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1478 if (s == NULL
e0001a05
NC
1479 || ! bfd_set_section_alignment (dynobj, s, 2))
1480 return FALSE;
1481
1482 sname = (char *) bfd_malloc (14);
1483 sprintf (sname, ".got.plt.%u", chunk);
3d4d4302 1484 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
e0001a05 1485 if (s == NULL
e0001a05
NC
1486 || ! bfd_set_section_alignment (dynobj, s, 2))
1487 return FALSE;
1488 }
1489
1490 return TRUE;
1491}
1492
1493
1494/* Adjust a symbol defined by a dynamic object and referenced by a
1495 regular object. The current definition is in some section of the
1496 dynamic object, but we're not including those sections. We have to
1497 change the definition to something the rest of the link can
1498 understand. */
1499
1500static bfd_boolean
7fa3d080
BW
1501elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1502 struct elf_link_hash_entry *h)
e0001a05
NC
1503{
1504 /* If this is a weak symbol, and there is a real definition, the
1505 processor independent code will have arranged for us to see the
1506 real definition first, and we can just use the same value. */
7fa3d080 1507 if (h->u.weakdef)
e0001a05 1508 {
f6e332e6
AM
1509 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1510 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1511 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1512 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1513 return TRUE;
1514 }
1515
1516 /* This is a reference to a symbol defined by a dynamic object. The
1517 reference must go through the GOT, so there's no need for COPY relocs,
1518 .dynbss, etc. */
1519
1520 return TRUE;
1521}
1522
1523
e0001a05 1524static bfd_boolean
f1ab2340 1525elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1526{
f1ab2340
BW
1527 struct bfd_link_info *info;
1528 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1529 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1530
f1ab2340
BW
1531 if (h->root.type == bfd_link_hash_indirect)
1532 return TRUE;
e0001a05 1533
f1ab2340
BW
1534 info = (struct bfd_link_info *) arg;
1535 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1536 if (htab == NULL)
1537 return FALSE;
e0001a05 1538
28dbbc02
BW
1539 /* If we saw any use of an IE model for this symbol, we can then optimize
1540 away GOT entries for any TLSDESC_FN relocs. */
1541 if ((eh->tls_type & GOT_TLS_IE) != 0)
1542 {
1543 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1544 h->got.refcount -= eh->tlsfunc_refcount;
1545 }
e0001a05 1546
28dbbc02 1547 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1548 elf_xtensa_make_sym_local (info, h);
e0001a05 1549
f1ab2340 1550 if (h->plt.refcount > 0)
ce558b89 1551 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1552
1553 if (h->got.refcount > 0)
ce558b89 1554 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1555
1556 return TRUE;
1557}
1558
1559
1560static void
f0e6fdb2 1561elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1562{
f0e6fdb2 1563 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1564 bfd *i;
1565
f0e6fdb2 1566 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1567 if (htab == NULL)
1568 return;
f0e6fdb2 1569
c72f2fb2 1570 for (i = info->input_bfds; i; i = i->link.next)
e0001a05
NC
1571 {
1572 bfd_signed_vma *local_got_refcounts;
1573 bfd_size_type j, cnt;
1574 Elf_Internal_Shdr *symtab_hdr;
1575
1576 local_got_refcounts = elf_local_got_refcounts (i);
1577 if (!local_got_refcounts)
1578 continue;
1579
1580 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1581 cnt = symtab_hdr->sh_info;
1582
1583 for (j = 0; j < cnt; ++j)
1584 {
28dbbc02
BW
1585 /* If we saw any use of an IE model for this symbol, we can
1586 then optimize away GOT entries for any TLSDESC_FN relocs. */
1587 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1588 {
1589 bfd_signed_vma *tlsfunc_refcount
1590 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1591 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1592 local_got_refcounts[j] -= *tlsfunc_refcount;
1593 }
1594
e0001a05 1595 if (local_got_refcounts[j] > 0)
ce558b89
AM
1596 htab->elf.srelgot->size += (local_got_refcounts[j]
1597 * sizeof (Elf32_External_Rela));
e0001a05
NC
1598 }
1599 }
1600}
1601
1602
1603/* Set the sizes of the dynamic sections. */
1604
1605static bfd_boolean
7fa3d080
BW
1606elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1607 struct bfd_link_info *info)
e0001a05 1608{
f0e6fdb2 1609 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1610 bfd *dynobj, *abfd;
1611 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1612 bfd_boolean relplt, relgot;
1613 int plt_entries, plt_chunks, chunk;
1614
1615 plt_entries = 0;
1616 plt_chunks = 0;
e0001a05 1617
f0e6fdb2 1618 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1619 if (htab == NULL)
1620 return FALSE;
1621
e0001a05
NC
1622 dynobj = elf_hash_table (info)->dynobj;
1623 if (dynobj == NULL)
1624 abort ();
ce558b89
AM
1625 srelgot = htab->elf.srelgot;
1626 srelplt = htab->elf.srelplt;
e0001a05
NC
1627
1628 if (elf_hash_table (info)->dynamic_sections_created)
1629 {
ce558b89
AM
1630 BFD_ASSERT (htab->elf.srelgot != NULL
1631 && htab->elf.srelplt != NULL
1632 && htab->elf.sgot != NULL
f0e6fdb2
BW
1633 && htab->spltlittbl != NULL
1634 && htab->sgotloc != NULL);
1635
e0001a05 1636 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 1637 if (bfd_link_executable (info) && !info->nointerp)
e0001a05 1638 {
3d4d4302 1639 s = bfd_get_linker_section (dynobj, ".interp");
e0001a05
NC
1640 if (s == NULL)
1641 abort ();
eea6121a 1642 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1643 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1644 }
1645
1646 /* Allocate room for one word in ".got". */
ce558b89 1647 htab->elf.sgot->size = 4;
e0001a05 1648
f1ab2340
BW
1649 /* Allocate space in ".rela.got" for literals that reference global
1650 symbols and space in ".rela.plt" for literals that have PLT
1651 entries. */
e0001a05 1652 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1653 elf_xtensa_allocate_dynrelocs,
7fa3d080 1654 (void *) info);
e0001a05 1655
e0001a05
NC
1656 /* If we are generating a shared object, we also need space in
1657 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1658 reference local symbols. */
0e1862bb 1659 if (bfd_link_pic (info))
f0e6fdb2 1660 elf_xtensa_allocate_local_got_size (info);
e0001a05 1661
e0001a05
NC
1662 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1663 each PLT entry, we need the PLT code plus a 4-byte literal.
1664 For each chunk of ".plt", we also need two more 4-byte
1665 literals, two corresponding entries in ".rela.got", and an
1666 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1667 spltlittbl = htab->spltlittbl;
eea6121a 1668 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1669 plt_chunks =
1670 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1671
1672 /* Iterate over all the PLT chunks, including any extra sections
1673 created earlier because the initial count of PLT relocations
1674 was an overestimate. */
1675 for (chunk = 0;
f0e6fdb2 1676 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1677 chunk++)
1678 {
1679 int chunk_entries;
1680
f0e6fdb2
BW
1681 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1682 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1683
1684 if (chunk < plt_chunks - 1)
1685 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1686 else if (chunk == plt_chunks - 1)
1687 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1688 else
1689 chunk_entries = 0;
1690
1691 if (chunk_entries != 0)
1692 {
eea6121a
AM
1693 sgotplt->size = 4 * (chunk_entries + 2);
1694 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1695 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1696 spltlittbl->size += 8;
e0001a05
NC
1697 }
1698 else
1699 {
eea6121a
AM
1700 sgotplt->size = 0;
1701 splt->size = 0;
e0001a05
NC
1702 }
1703 }
e901de89
BW
1704
1705 /* Allocate space in ".got.loc" to match the total size of all the
1706 literal tables. */
f0e6fdb2 1707 sgotloc = htab->sgotloc;
eea6121a 1708 sgotloc->size = spltlittbl->size;
c72f2fb2 1709 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
e901de89
BW
1710 {
1711 if (abfd->flags & DYNAMIC)
1712 continue;
1713 for (s = abfd->sections; s != NULL; s = s->next)
1714 {
dbaa2011 1715 if (! discarded_section (s)
b536dc1e
BW
1716 && xtensa_is_littable_section (s)
1717 && s != spltlittbl)
eea6121a 1718 sgotloc->size += s->size;
e901de89
BW
1719 }
1720 }
e0001a05
NC
1721 }
1722
1723 /* Allocate memory for dynamic sections. */
1724 relplt = FALSE;
1725 relgot = FALSE;
1726 for (s = dynobj->sections; s != NULL; s = s->next)
1727 {
1728 const char *name;
e0001a05
NC
1729
1730 if ((s->flags & SEC_LINKER_CREATED) == 0)
1731 continue;
1732
1733 /* It's OK to base decisions on the section name, because none
1734 of the dynobj section names depend upon the input files. */
1735 name = bfd_get_section_name (dynobj, s);
1736
0112cd26 1737 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1738 {
c456f082 1739 if (s->size != 0)
e0001a05 1740 {
c456f082
AM
1741 if (strcmp (name, ".rela.plt") == 0)
1742 relplt = TRUE;
1743 else if (strcmp (name, ".rela.got") == 0)
1744 relgot = TRUE;
1745
1746 /* We use the reloc_count field as a counter if we need
1747 to copy relocs into the output file. */
1748 s->reloc_count = 0;
e0001a05
NC
1749 }
1750 }
0112cd26
NC
1751 else if (! CONST_STRNEQ (name, ".plt.")
1752 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1753 && strcmp (name, ".got") != 0
e0001a05
NC
1754 && strcmp (name, ".plt") != 0
1755 && strcmp (name, ".got.plt") != 0
e901de89
BW
1756 && strcmp (name, ".xt.lit.plt") != 0
1757 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1758 {
1759 /* It's not one of our sections, so don't allocate space. */
1760 continue;
1761 }
1762
c456f082
AM
1763 if (s->size == 0)
1764 {
1765 /* If we don't need this section, strip it from the output
1766 file. We must create the ".plt*" and ".got.plt*"
1767 sections in create_dynamic_sections and/or check_relocs
1768 based on a conservative estimate of the PLT relocation
1769 count, because the sections must be created before the
1770 linker maps input sections to output sections. The
1771 linker does that before size_dynamic_sections, where we
1772 compute the exact size of the PLT, so there may be more
1773 of these sections than are actually needed. */
1774 s->flags |= SEC_EXCLUDE;
1775 }
1776 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1777 {
1778 /* Allocate memory for the section contents. */
eea6121a 1779 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1780 if (s->contents == NULL)
e0001a05
NC
1781 return FALSE;
1782 }
1783 }
1784
1785 if (elf_hash_table (info)->dynamic_sections_created)
1786 {
1787 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1788 known until finish_dynamic_sections, but we need to get the relocs
1789 in place before they are sorted. */
e0001a05
NC
1790 for (chunk = 0; chunk < plt_chunks; chunk++)
1791 {
1792 Elf_Internal_Rela irela;
1793 bfd_byte *loc;
1794
1795 irela.r_offset = 0;
1796 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1797 irela.r_addend = 0;
1798
1799 loc = (srelgot->contents
1800 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1801 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1802 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1803 loc + sizeof (Elf32_External_Rela));
1804 srelgot->reloc_count += 2;
1805 }
1806
1807 /* Add some entries to the .dynamic section. We fill in the
1808 values later, in elf_xtensa_finish_dynamic_sections, but we
1809 must add the entries now so that we get the correct size for
1810 the .dynamic section. The DT_DEBUG entry is filled in by the
1811 dynamic linker and used by the debugger. */
1812#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1813 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1814
0e1862bb 1815 if (bfd_link_executable (info))
e0001a05
NC
1816 {
1817 if (!add_dynamic_entry (DT_DEBUG, 0))
1818 return FALSE;
1819 }
1820
1821 if (relplt)
1822 {
c243ad3b 1823 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1824 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1825 || !add_dynamic_entry (DT_JMPREL, 0))
1826 return FALSE;
1827 }
1828
1829 if (relgot)
1830 {
1831 if (!add_dynamic_entry (DT_RELA, 0)
1832 || !add_dynamic_entry (DT_RELASZ, 0)
1833 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1834 return FALSE;
1835 }
1836
c243ad3b
BW
1837 if (!add_dynamic_entry (DT_PLTGOT, 0)
1838 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1839 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1840 return FALSE;
1841 }
1842#undef add_dynamic_entry
1843
1844 return TRUE;
1845}
1846
28dbbc02
BW
1847static bfd_boolean
1848elf_xtensa_always_size_sections (bfd *output_bfd,
1849 struct bfd_link_info *info)
1850{
1851 struct elf_xtensa_link_hash_table *htab;
1852 asection *tls_sec;
1853
1854 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1855 if (htab == NULL)
1856 return FALSE;
1857
28dbbc02
BW
1858 tls_sec = htab->elf.tls_sec;
1859
1860 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1861 {
1862 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1863 struct bfd_link_hash_entry *bh = &tlsbase->root;
1864 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1865
1866 tlsbase->type = STT_TLS;
1867 if (!(_bfd_generic_link_add_one_symbol
1868 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1869 tls_sec, 0, NULL, FALSE,
1870 bed->collect, &bh)))
1871 return FALSE;
1872 tlsbase->def_regular = 1;
1873 tlsbase->other = STV_HIDDEN;
1874 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1875 }
1876
1877 return TRUE;
1878}
1879
e0001a05 1880\f
28dbbc02
BW
1881/* Return the base VMA address which should be subtracted from real addresses
1882 when resolving @dtpoff relocation.
1883 This is PT_TLS segment p_vaddr. */
1884
1885static bfd_vma
1886dtpoff_base (struct bfd_link_info *info)
1887{
1888 /* If tls_sec is NULL, we should have signalled an error already. */
1889 if (elf_hash_table (info)->tls_sec == NULL)
1890 return 0;
1891 return elf_hash_table (info)->tls_sec->vma;
1892}
1893
1894/* Return the relocation value for @tpoff relocation
1895 if STT_TLS virtual address is ADDRESS. */
1896
1897static bfd_vma
1898tpoff (struct bfd_link_info *info, bfd_vma address)
1899{
1900 struct elf_link_hash_table *htab = elf_hash_table (info);
1901 bfd_vma base;
1902
1903 /* If tls_sec is NULL, we should have signalled an error already. */
1904 if (htab->tls_sec == NULL)
1905 return 0;
1906 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1907 return address - htab->tls_sec->vma + base;
1908}
1909
e0001a05
NC
1910/* Perform the specified relocation. The instruction at (contents + address)
1911 is modified to set one operand to represent the value in "relocation". The
1912 operand position is determined by the relocation type recorded in the
1913 howto. */
1914
1915#define CALL_SEGMENT_BITS (30)
7fa3d080 1916#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1917
1918static bfd_reloc_status_type
7fa3d080
BW
1919elf_xtensa_do_reloc (reloc_howto_type *howto,
1920 bfd *abfd,
1921 asection *input_section,
1922 bfd_vma relocation,
1923 bfd_byte *contents,
1924 bfd_vma address,
1925 bfd_boolean is_weak_undef,
1926 char **error_message)
e0001a05 1927{
43cd72b9 1928 xtensa_format fmt;
e0001a05 1929 xtensa_opcode opcode;
e0001a05 1930 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1931 static xtensa_insnbuf ibuff = NULL;
1932 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1933 bfd_vma self_address;
43cd72b9
BW
1934 bfd_size_type input_size;
1935 int opnd, slot;
e0001a05
NC
1936 uint32 newval;
1937
43cd72b9
BW
1938 if (!ibuff)
1939 {
1940 ibuff = xtensa_insnbuf_alloc (isa);
1941 sbuff = xtensa_insnbuf_alloc (isa);
1942 }
1943
1944 input_size = bfd_get_section_limit (abfd, input_section);
1945
1bbb5f21
BW
1946 /* Calculate the PC address for this instruction. */
1947 self_address = (input_section->output_section->vma
1948 + input_section->output_offset
1949 + address);
1950
e0001a05
NC
1951 switch (howto->type)
1952 {
1953 case R_XTENSA_NONE:
43cd72b9
BW
1954 case R_XTENSA_DIFF8:
1955 case R_XTENSA_DIFF16:
1956 case R_XTENSA_DIFF32:
28dbbc02
BW
1957 case R_XTENSA_TLS_FUNC:
1958 case R_XTENSA_TLS_ARG:
1959 case R_XTENSA_TLS_CALL:
e0001a05
NC
1960 return bfd_reloc_ok;
1961
1962 case R_XTENSA_ASM_EXPAND:
1963 if (!is_weak_undef)
1964 {
1965 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1966 opcode = get_expanded_call_opcode (contents + address,
1967 input_size - address, 0);
e0001a05
NC
1968 if (is_windowed_call_opcode (opcode))
1969 {
43cd72b9 1970 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 1971 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1972 {
1973 *error_message = "windowed longcall crosses 1GB boundary; "
1974 "return may fail";
1975 return bfd_reloc_dangerous;
1976 }
1977 }
1978 }
1979 return bfd_reloc_ok;
1980
1981 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1982 {
e0001a05 1983 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1984 bfd_reloc_status_type retval =
1985 elf_xtensa_do_asm_simplify (contents, address, input_size,
1986 error_message);
e0001a05 1987 if (retval != bfd_reloc_ok)
43cd72b9 1988 return bfd_reloc_dangerous;
e0001a05
NC
1989
1990 /* The CALL needs to be relocated. Continue below for that part. */
1991 address += 3;
c46082c8 1992 self_address += 3;
43cd72b9 1993 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1994 }
1995 break;
1996
1997 case R_XTENSA_32:
e0001a05
NC
1998 {
1999 bfd_vma x;
2000 x = bfd_get_32 (abfd, contents + address);
2001 x = x + relocation;
2002 bfd_put_32 (abfd, x, contents + address);
2003 }
2004 return bfd_reloc_ok;
1bbb5f21
BW
2005
2006 case R_XTENSA_32_PCREL:
2007 bfd_put_32 (abfd, relocation - self_address, contents + address);
2008 return bfd_reloc_ok;
28dbbc02
BW
2009
2010 case R_XTENSA_PLT:
2011 case R_XTENSA_TLSDESC_FN:
2012 case R_XTENSA_TLSDESC_ARG:
2013 case R_XTENSA_TLS_DTPOFF:
2014 case R_XTENSA_TLS_TPOFF:
2015 bfd_put_32 (abfd, relocation, contents + address);
2016 return bfd_reloc_ok;
e0001a05
NC
2017 }
2018
43cd72b9
BW
2019 /* Only instruction slot-specific relocations handled below.... */
2020 slot = get_relocation_slot (howto->type);
2021 if (slot == XTENSA_UNDEFINED)
e0001a05 2022 {
43cd72b9 2023 *error_message = "unexpected relocation";
e0001a05
NC
2024 return bfd_reloc_dangerous;
2025 }
2026
43cd72b9
BW
2027 /* Read the instruction into a buffer and decode the opcode. */
2028 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2029 input_size - address);
2030 fmt = xtensa_format_decode (isa, ibuff);
2031 if (fmt == XTENSA_UNDEFINED)
e0001a05 2032 {
43cd72b9 2033 *error_message = "cannot decode instruction format";
e0001a05
NC
2034 return bfd_reloc_dangerous;
2035 }
2036
43cd72b9 2037 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2038
43cd72b9
BW
2039 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2040 if (opcode == XTENSA_UNDEFINED)
e0001a05 2041 {
43cd72b9 2042 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2043 return bfd_reloc_dangerous;
2044 }
2045
43cd72b9
BW
2046 /* Check for opcode-specific "alternate" relocations. */
2047 if (is_alt_relocation (howto->type))
2048 {
2049 if (opcode == get_l32r_opcode ())
2050 {
2051 /* Handle the special-case of non-PC-relative L32R instructions. */
2052 bfd *output_bfd = input_section->output_section->owner;
2053 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2054 if (!lit4_sec)
2055 {
2056 *error_message = "relocation references missing .lit4 section";
2057 return bfd_reloc_dangerous;
2058 }
2059 self_address = ((lit4_sec->vma & ~0xfff)
2060 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2061 newval = relocation;
2062 opnd = 1;
2063 }
2064 else if (opcode == get_const16_opcode ())
2065 {
2066 /* ALT used for high 16 bits. */
2067 newval = relocation >> 16;
2068 opnd = 1;
2069 }
2070 else
2071 {
2072 /* No other "alternate" relocations currently defined. */
2073 *error_message = "unexpected relocation";
2074 return bfd_reloc_dangerous;
2075 }
2076 }
2077 else /* Not an "alternate" relocation.... */
2078 {
2079 if (opcode == get_const16_opcode ())
2080 {
2081 newval = relocation & 0xffff;
2082 opnd = 1;
2083 }
2084 else
2085 {
2086 /* ...normal PC-relative relocation.... */
2087
2088 /* Determine which operand is being relocated. */
2089 opnd = get_relocation_opnd (opcode, howto->type);
2090 if (opnd == XTENSA_UNDEFINED)
2091 {
2092 *error_message = "unexpected relocation";
2093 return bfd_reloc_dangerous;
2094 }
2095
2096 if (!howto->pc_relative)
2097 {
2098 *error_message = "expected PC-relative relocation";
2099 return bfd_reloc_dangerous;
2100 }
e0001a05 2101
43cd72b9
BW
2102 newval = relocation;
2103 }
2104 }
e0001a05 2105
43cd72b9
BW
2106 /* Apply the relocation. */
2107 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2108 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2109 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2110 sbuff, newval))
e0001a05 2111 {
2db662be
BW
2112 const char *opname = xtensa_opcode_name (isa, opcode);
2113 const char *msg;
2114
2115 msg = "cannot encode";
2116 if (is_direct_call_opcode (opcode))
2117 {
2118 if ((relocation & 0x3) != 0)
2119 msg = "misaligned call target";
2120 else
2121 msg = "call target out of range";
2122 }
2123 else if (opcode == get_l32r_opcode ())
2124 {
2125 if ((relocation & 0x3) != 0)
2126 msg = "misaligned literal target";
2127 else if (is_alt_relocation (howto->type))
2128 msg = "literal target out of range (too many literals)";
2129 else if (self_address > relocation)
2130 msg = "literal target out of range (try using text-section-literals)";
2131 else
2132 msg = "literal placed after use";
2133 }
2134
2135 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2136 return bfd_reloc_dangerous;
2137 }
2138
43cd72b9 2139 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2140 if (is_direct_call_opcode (opcode)
2141 && is_windowed_call_opcode (opcode))
2142 {
43cd72b9 2143 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 2144 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2145 {
43cd72b9
BW
2146 *error_message =
2147 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2148 return bfd_reloc_dangerous;
2149 }
2150 }
2151
43cd72b9
BW
2152 /* Write the modified instruction back out of the buffer. */
2153 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2154 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2155 input_size - address);
e0001a05
NC
2156 return bfd_reloc_ok;
2157}
2158
2159
2db662be 2160static char *
7fa3d080 2161vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2162{
2163 /* To reduce the size of the memory leak,
2164 we only use a single message buffer. */
2165 static bfd_size_type alloc_size = 0;
2166 static char *message = NULL;
2167 bfd_size_type orig_len, len = 0;
2168 bfd_boolean is_append;
1651e569 2169 va_list ap;
e0001a05 2170
1651e569 2171 va_start (ap, arglen);
68ffbac6
L
2172
2173 is_append = (origmsg == message);
e0001a05
NC
2174
2175 orig_len = strlen (origmsg);
2176 len = orig_len + strlen (fmt) + arglen + 20;
2177 if (len > alloc_size)
2178 {
515ef31d 2179 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2180 alloc_size = len;
2181 }
515ef31d
NC
2182 if (message != NULL)
2183 {
2184 if (!is_append)
2185 memcpy (message, origmsg, orig_len);
2186 vsprintf (message + orig_len, fmt, ap);
2187 }
1651e569 2188 va_end (ap);
e0001a05
NC
2189 return message;
2190}
2191
2192
e0001a05
NC
2193/* This function is registered as the "special_function" in the
2194 Xtensa howto for handling simplify operations.
2195 bfd_perform_relocation / bfd_install_relocation use it to
2196 perform (install) the specified relocation. Since this replaces the code
2197 in bfd_perform_relocation, it is basically an Xtensa-specific,
2198 stripped-down version of bfd_perform_relocation. */
2199
2200static bfd_reloc_status_type
7fa3d080
BW
2201bfd_elf_xtensa_reloc (bfd *abfd,
2202 arelent *reloc_entry,
2203 asymbol *symbol,
2204 void *data,
2205 asection *input_section,
2206 bfd *output_bfd,
2207 char **error_message)
e0001a05
NC
2208{
2209 bfd_vma relocation;
2210 bfd_reloc_status_type flag;
2211 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2212 bfd_vma output_base = 0;
2213 reloc_howto_type *howto = reloc_entry->howto;
2214 asection *reloc_target_output_section;
2215 bfd_boolean is_weak_undef;
2216
dd1a320b
BW
2217 if (!xtensa_default_isa)
2218 xtensa_default_isa = xtensa_isa_init (0, 0);
2219
1049f94e 2220 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2221 output, and the reloc is against an external symbol, the resulting
2222 reloc will also be against the same symbol. In such a case, we
2223 don't want to change anything about the way the reloc is handled,
2224 since it will all be done at final link time. This test is similar
2225 to what bfd_elf_generic_reloc does except that it lets relocs with
2226 howto->partial_inplace go through even if the addend is non-zero.
2227 (The real problem is that partial_inplace is set for XTENSA_32
2228 relocs to begin with, but that's a long story and there's little we
2229 can do about it now....) */
2230
7fa3d080 2231 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2232 {
2233 reloc_entry->address += input_section->output_offset;
2234 return bfd_reloc_ok;
2235 }
2236
2237 /* Is the address of the relocation really within the section? */
07515404 2238 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2239 return bfd_reloc_outofrange;
2240
4cc11e76 2241 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2242 initial relocation command value. */
2243
2244 /* Get symbol value. (Common symbols are special.) */
2245 if (bfd_is_com_section (symbol->section))
2246 relocation = 0;
2247 else
2248 relocation = symbol->value;
2249
2250 reloc_target_output_section = symbol->section->output_section;
2251
2252 /* Convert input-section-relative symbol value to absolute. */
2253 if ((output_bfd && !howto->partial_inplace)
2254 || reloc_target_output_section == NULL)
2255 output_base = 0;
2256 else
2257 output_base = reloc_target_output_section->vma;
2258
2259 relocation += output_base + symbol->section->output_offset;
2260
2261 /* Add in supplied addend. */
2262 relocation += reloc_entry->addend;
2263
2264 /* Here the variable relocation holds the final address of the
2265 symbol we are relocating against, plus any addend. */
2266 if (output_bfd)
2267 {
2268 if (!howto->partial_inplace)
2269 {
2270 /* This is a partial relocation, and we want to apply the relocation
2271 to the reloc entry rather than the raw data. Everything except
2272 relocations against section symbols has already been handled
2273 above. */
43cd72b9 2274
e0001a05
NC
2275 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2276 reloc_entry->addend = relocation;
2277 reloc_entry->address += input_section->output_offset;
2278 return bfd_reloc_ok;
2279 }
2280 else
2281 {
2282 reloc_entry->address += input_section->output_offset;
2283 reloc_entry->addend = 0;
2284 }
2285 }
2286
2287 is_weak_undef = (bfd_is_und_section (symbol->section)
2288 && (symbol->flags & BSF_WEAK) != 0);
2289 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2290 (bfd_byte *) data, (bfd_vma) octets,
2291 is_weak_undef, error_message);
2292
2293 if (flag == bfd_reloc_dangerous)
2294 {
2295 /* Add the symbol name to the error message. */
2296 if (! *error_message)
2297 *error_message = "";
2298 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2299 strlen (symbol->name) + 17,
70961b9d
AM
2300 symbol->name,
2301 (unsigned long) reloc_entry->addend);
e0001a05
NC
2302 }
2303
2304 return flag;
2305}
2306
2307
2308/* Set up an entry in the procedure linkage table. */
2309
2310static bfd_vma
f0e6fdb2 2311elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2312 bfd *output_bfd,
2313 unsigned reloc_index)
e0001a05
NC
2314{
2315 asection *splt, *sgotplt;
2316 bfd_vma plt_base, got_base;
92b3f008 2317 bfd_vma code_offset, lit_offset, abi_offset;
e0001a05
NC
2318 int chunk;
2319
2320 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2321 splt = elf_xtensa_get_plt_section (info, chunk);
2322 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2323 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2324
2325 plt_base = splt->output_section->vma + splt->output_offset;
2326 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2327
2328 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2329 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2330
2331 /* Fill in the literal entry. This is the offset of the dynamic
2332 relocation entry. */
2333 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2334 sgotplt->contents + lit_offset);
2335
2336 /* Fill in the entry in the procedure linkage table. */
2337 memcpy (splt->contents + code_offset,
2338 (bfd_big_endian (output_bfd)
2339 ? elf_xtensa_be_plt_entry
2340 : elf_xtensa_le_plt_entry),
2341 PLT_ENTRY_SIZE);
92b3f008 2342 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
e0001a05 2343 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
92b3f008
MF
2344 plt_base + code_offset + abi_offset),
2345 splt->contents + code_offset + abi_offset + 1);
e0001a05 2346 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
92b3f008
MF
2347 plt_base + code_offset + abi_offset + 3),
2348 splt->contents + code_offset + abi_offset + 4);
e0001a05 2349 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
92b3f008
MF
2350 plt_base + code_offset + abi_offset + 6),
2351 splt->contents + code_offset + abi_offset + 7);
e0001a05
NC
2352
2353 return plt_base + code_offset;
2354}
2355
2356
28dbbc02
BW
2357static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2358
2359static bfd_boolean
2360replace_tls_insn (Elf_Internal_Rela *rel,
2361 bfd *abfd,
2362 asection *input_section,
2363 bfd_byte *contents,
2364 bfd_boolean is_ld_model,
2365 char **error_message)
2366{
2367 static xtensa_insnbuf ibuff = NULL;
2368 static xtensa_insnbuf sbuff = NULL;
2369 xtensa_isa isa = xtensa_default_isa;
2370 xtensa_format fmt;
2371 xtensa_opcode old_op, new_op;
2372 bfd_size_type input_size;
2373 int r_type;
2374 unsigned dest_reg, src_reg;
2375
2376 if (ibuff == NULL)
2377 {
2378 ibuff = xtensa_insnbuf_alloc (isa);
2379 sbuff = xtensa_insnbuf_alloc (isa);
2380 }
2381
2382 input_size = bfd_get_section_limit (abfd, input_section);
2383
2384 /* Read the instruction into a buffer and decode the opcode. */
2385 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2386 input_size - rel->r_offset);
2387 fmt = xtensa_format_decode (isa, ibuff);
2388 if (fmt == XTENSA_UNDEFINED)
2389 {
2390 *error_message = "cannot decode instruction format";
2391 return FALSE;
2392 }
2393
2394 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2395 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2396
2397 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2398 if (old_op == XTENSA_UNDEFINED)
2399 {
2400 *error_message = "cannot decode instruction opcode";
2401 return FALSE;
2402 }
2403
2404 r_type = ELF32_R_TYPE (rel->r_info);
2405 switch (r_type)
2406 {
2407 case R_XTENSA_TLS_FUNC:
2408 case R_XTENSA_TLS_ARG:
2409 if (old_op != get_l32r_opcode ()
2410 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2411 sbuff, &dest_reg) != 0)
2412 {
2413 *error_message = "cannot extract L32R destination for TLS access";
2414 return FALSE;
2415 }
2416 break;
2417
2418 case R_XTENSA_TLS_CALL:
2419 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2420 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2421 sbuff, &src_reg) != 0)
2422 {
2423 *error_message = "cannot extract CALLXn operands for TLS access";
2424 return FALSE;
2425 }
2426 break;
2427
2428 default:
2429 abort ();
2430 }
2431
2432 if (is_ld_model)
2433 {
2434 switch (r_type)
2435 {
2436 case R_XTENSA_TLS_FUNC:
2437 case R_XTENSA_TLS_ARG:
2438 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2439 versions of Xtensa). */
2440 new_op = xtensa_opcode_lookup (isa, "nop");
2441 if (new_op == XTENSA_UNDEFINED)
2442 {
2443 new_op = xtensa_opcode_lookup (isa, "or");
2444 if (new_op == XTENSA_UNDEFINED
2445 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2446 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2447 sbuff, 1) != 0
2448 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2449 sbuff, 1) != 0
2450 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2451 sbuff, 1) != 0)
2452 {
2453 *error_message = "cannot encode OR for TLS access";
2454 return FALSE;
2455 }
2456 }
2457 else
2458 {
2459 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2460 {
2461 *error_message = "cannot encode NOP for TLS access";
2462 return FALSE;
2463 }
2464 }
2465 break;
2466
2467 case R_XTENSA_TLS_CALL:
2468 /* Read THREADPTR into the CALLX's return value register. */
2469 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2470 if (new_op == XTENSA_UNDEFINED
2471 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2472 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2473 sbuff, dest_reg + 2) != 0)
2474 {
2475 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2476 return FALSE;
2477 }
2478 break;
2479 }
2480 }
2481 else
2482 {
2483 switch (r_type)
2484 {
2485 case R_XTENSA_TLS_FUNC:
2486 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2487 if (new_op == XTENSA_UNDEFINED
2488 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2489 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2490 sbuff, dest_reg) != 0)
2491 {
2492 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2493 return FALSE;
2494 }
2495 break;
2496
2497 case R_XTENSA_TLS_ARG:
2498 /* Nothing to do. Keep the original L32R instruction. */
2499 return TRUE;
2500
2501 case R_XTENSA_TLS_CALL:
2502 /* Add the CALLX's src register (holding the THREADPTR value)
2503 to the first argument register (holding the offset) and put
2504 the result in the CALLX's return value register. */
2505 new_op = xtensa_opcode_lookup (isa, "add");
2506 if (new_op == XTENSA_UNDEFINED
2507 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2508 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2509 sbuff, dest_reg + 2) != 0
2510 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2511 sbuff, dest_reg + 2) != 0
2512 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2513 sbuff, src_reg) != 0)
2514 {
2515 *error_message = "cannot encode ADD for TLS access";
2516 return FALSE;
2517 }
2518 break;
2519 }
2520 }
2521
2522 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2523 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2524 input_size - rel->r_offset);
2525
2526 return TRUE;
2527}
2528
2529
2530#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2531 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2532 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2533 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2534 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2535 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2536 || (R_TYPE) == R_XTENSA_TLS_ARG \
2537 || (R_TYPE) == R_XTENSA_TLS_CALL)
2538
e0001a05 2539/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2540 both relocatable and final links. */
e0001a05
NC
2541
2542static bfd_boolean
7fa3d080
BW
2543elf_xtensa_relocate_section (bfd *output_bfd,
2544 struct bfd_link_info *info,
2545 bfd *input_bfd,
2546 asection *input_section,
2547 bfd_byte *contents,
2548 Elf_Internal_Rela *relocs,
2549 Elf_Internal_Sym *local_syms,
2550 asection **local_sections)
e0001a05 2551{
f0e6fdb2 2552 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2553 Elf_Internal_Shdr *symtab_hdr;
2554 Elf_Internal_Rela *rel;
2555 Elf_Internal_Rela *relend;
2556 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2557 property_table_entry *lit_table = 0;
2558 int ltblsize = 0;
28dbbc02 2559 char *local_got_tls_types;
e0001a05 2560 char *error_message = NULL;
43cd72b9 2561 bfd_size_type input_size;
28dbbc02 2562 int tls_type;
e0001a05 2563
43cd72b9
BW
2564 if (!xtensa_default_isa)
2565 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2566
28dbbc02
BW
2567 BFD_ASSERT (is_xtensa_elf (input_bfd));
2568
f0e6fdb2 2569 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2570 if (htab == NULL)
2571 return FALSE;
2572
e0001a05
NC
2573 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2574 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2575 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2576
88d65ad6
BW
2577 if (elf_hash_table (info)->dynamic_sections_created)
2578 {
2579 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2580 &lit_table, XTENSA_LIT_SEC_NAME,
2581 TRUE);
88d65ad6
BW
2582 if (ltblsize < 0)
2583 return FALSE;
2584 }
2585
43cd72b9
BW
2586 input_size = bfd_get_section_limit (input_bfd, input_section);
2587
e0001a05
NC
2588 rel = relocs;
2589 relend = relocs + input_section->reloc_count;
2590 for (; rel < relend; rel++)
2591 {
2592 int r_type;
2593 reloc_howto_type *howto;
2594 unsigned long r_symndx;
2595 struct elf_link_hash_entry *h;
2596 Elf_Internal_Sym *sym;
28dbbc02
BW
2597 char sym_type;
2598 const char *name;
e0001a05
NC
2599 asection *sec;
2600 bfd_vma relocation;
2601 bfd_reloc_status_type r;
2602 bfd_boolean is_weak_undef;
2603 bfd_boolean unresolved_reloc;
9b8c98a4 2604 bfd_boolean warned;
28dbbc02 2605 bfd_boolean dynamic_symbol;
e0001a05
NC
2606
2607 r_type = ELF32_R_TYPE (rel->r_info);
2608 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2609 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2610 continue;
2611
2612 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2613 {
2614 bfd_set_error (bfd_error_bad_value);
2615 return FALSE;
2616 }
2617 howto = &elf_howto_table[r_type];
2618
2619 r_symndx = ELF32_R_SYM (rel->r_info);
2620
ab96bf03
AM
2621 h = NULL;
2622 sym = NULL;
2623 sec = NULL;
2624 is_weak_undef = FALSE;
2625 unresolved_reloc = FALSE;
2626 warned = FALSE;
2627
0e1862bb 2628 if (howto->partial_inplace && !bfd_link_relocatable (info))
ab96bf03
AM
2629 {
2630 /* Because R_XTENSA_32 was made partial_inplace to fix some
2631 problems with DWARF info in partial links, there may be
2632 an addend stored in the contents. Take it out of there
2633 and move it back into the addend field of the reloc. */
2634 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2635 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2636 }
2637
2638 if (r_symndx < symtab_hdr->sh_info)
2639 {
2640 sym = local_syms + r_symndx;
28dbbc02 2641 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2642 sec = local_sections[r_symndx];
2643 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2644 }
2645 else
2646 {
62d887d4
L
2647 bfd_boolean ignored;
2648
ab96bf03
AM
2649 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2650 r_symndx, symtab_hdr, sym_hashes,
2651 h, sec, relocation,
62d887d4 2652 unresolved_reloc, warned, ignored);
ab96bf03
AM
2653
2654 if (relocation == 0
2655 && !unresolved_reloc
2656 && h->root.type == bfd_link_hash_undefweak)
2657 is_weak_undef = TRUE;
28dbbc02
BW
2658
2659 sym_type = h->type;
ab96bf03
AM
2660 }
2661
dbaa2011 2662 if (sec != NULL && discarded_section (sec))
e4067dbb 2663 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 2664 rel, 1, relend, howto, 0, contents);
ab96bf03 2665
0e1862bb 2666 if (bfd_link_relocatable (info))
e0001a05 2667 {
7aa09196
SA
2668 bfd_vma dest_addr;
2669 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2670
43cd72b9 2671 /* This is a relocatable link.
e0001a05
NC
2672 1) If the reloc is against a section symbol, adjust
2673 according to the output section.
2674 2) If there is a new target for this relocation,
2675 the new target will be in the same output section.
2676 We adjust the relocation by the output section
2677 difference. */
2678
2679 if (relaxing_section)
2680 {
2681 /* Check if this references a section in another input file. */
43cd72b9
BW
2682 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2683 contents))
2684 return FALSE;
e0001a05
NC
2685 }
2686
7aa09196
SA
2687 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2688 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2689
43cd72b9 2690 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2691 {
91d6fa6a 2692 error_message = NULL;
e0001a05
NC
2693 /* Convert ASM_SIMPLIFY into the simpler relocation
2694 so that they never escape a relaxing link. */
43cd72b9
BW
2695 r = contract_asm_expansion (contents, input_size, rel,
2696 &error_message);
2697 if (r != bfd_reloc_ok)
1a72702b
AM
2698 (*info->callbacks->reloc_dangerous)
2699 (info, error_message,
2700 input_bfd, input_section, rel->r_offset);
2701
e0001a05
NC
2702 r_type = ELF32_R_TYPE (rel->r_info);
2703 }
2704
1049f94e 2705 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2706 anything unless the reloc is against a section symbol,
2707 in which case we have to adjust according to where the
2708 section symbol winds up in the output section. */
2709 if (r_symndx < symtab_hdr->sh_info)
2710 {
2711 sym = local_syms + r_symndx;
2712 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2713 {
2714 sec = local_sections[r_symndx];
2715 rel->r_addend += sec->output_offset + sym->st_value;
2716 }
2717 }
2718
2719 /* If there is an addend with a partial_inplace howto,
2720 then move the addend to the contents. This is a hack
1049f94e 2721 to work around problems with DWARF in relocatable links
e0001a05
NC
2722 with some previous version of BFD. Now we can't easily get
2723 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2724 r = bfd_reloc_ok;
2725 howto = &elf_howto_table[r_type];
2726 if (howto->partial_inplace && rel->r_addend)
2727 {
2728 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2729 rel->r_addend, contents,
2730 rel->r_offset, FALSE,
2731 &error_message);
2732 rel->r_addend = 0;
2733 }
2734 else
e0001a05 2735 {
7aa09196
SA
2736 /* Put the correct bits in the target instruction, even
2737 though the relocation will still be present in the output
2738 file. This makes disassembly clearer, as well as
2739 allowing loadable kernel modules to work without needing
2740 relocations on anything other than calls and l32r's. */
2741
2742 /* If it is not in the same section, there is nothing we can do. */
2743 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2744 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2745 {
2746 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2747 dest_addr, contents,
e0001a05
NC
2748 rel->r_offset, FALSE,
2749 &error_message);
e0001a05
NC
2750 }
2751 }
7aa09196 2752 if (r != bfd_reloc_ok)
1a72702b
AM
2753 (*info->callbacks->reloc_dangerous)
2754 (info, error_message,
2755 input_bfd, input_section, rel->r_offset);
e0001a05 2756
1049f94e 2757 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2758 continue;
2759 }
2760
2761 /* This is a final link. */
2762
e0001a05
NC
2763 if (relaxing_section)
2764 {
2765 /* Check if this references a section in another input file. */
43cd72b9
BW
2766 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2767 &relocation);
e0001a05
NC
2768 }
2769
2770 /* Sanity check the address. */
43cd72b9 2771 if (rel->r_offset >= input_size
e0001a05
NC
2772 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2773 {
4eca0228 2774 _bfd_error_handler
695344c0 2775 /* xgettext:c-format */
43cd72b9
BW
2776 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2777 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2778 bfd_set_error (bfd_error_bad_value);
2779 return FALSE;
2780 }
2781
28dbbc02
BW
2782 if (h != NULL)
2783 name = h->root.root.string;
2784 else
e0001a05 2785 {
28dbbc02
BW
2786 name = (bfd_elf_string_from_elf_section
2787 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2788 if (name == NULL || *name == '\0')
2789 name = bfd_section_name (input_bfd, sec);
2790 }
e0001a05 2791
cf35638d 2792 if (r_symndx != STN_UNDEF
28dbbc02
BW
2793 && r_type != R_XTENSA_NONE
2794 && (h == NULL
2795 || h->root.type == bfd_link_hash_defined
2796 || h->root.type == bfd_link_hash_defweak)
2797 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2798 {
4eca0228 2799 _bfd_error_handler
28dbbc02 2800 ((sym_type == STT_TLS
695344c0 2801 /* xgettext:c-format */
28dbbc02 2802 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
695344c0 2803 /* xgettext:c-format */
28dbbc02
BW
2804 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2805 input_bfd,
2806 input_section,
2807 (long) rel->r_offset,
2808 howto->name,
2809 name);
2810 }
2811
2812 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2813
2814 tls_type = GOT_UNKNOWN;
2815 if (h)
2816 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2817 else if (local_got_tls_types)
2818 tls_type = local_got_tls_types [r_symndx];
2819
2820 switch (r_type)
2821 {
2822 case R_XTENSA_32:
2823 case R_XTENSA_PLT:
2824 if (elf_hash_table (info)->dynamic_sections_created
2825 && (input_section->flags & SEC_ALLOC) != 0
0e1862bb 2826 && (dynamic_symbol || bfd_link_pic (info)))
e0001a05
NC
2827 {
2828 Elf_Internal_Rela outrel;
2829 bfd_byte *loc;
2830 asection *srel;
2831
2832 if (dynamic_symbol && r_type == R_XTENSA_PLT)
ce558b89 2833 srel = htab->elf.srelplt;
e0001a05 2834 else
ce558b89 2835 srel = htab->elf.srelgot;
e0001a05
NC
2836
2837 BFD_ASSERT (srel != NULL);
2838
2839 outrel.r_offset =
2840 _bfd_elf_section_offset (output_bfd, info,
2841 input_section, rel->r_offset);
2842
2843 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2844 memset (&outrel, 0, sizeof outrel);
2845 else
2846 {
f0578e28
BW
2847 outrel.r_offset += (input_section->output_section->vma
2848 + input_section->output_offset);
e0001a05 2849
88d65ad6
BW
2850 /* Complain if the relocation is in a read-only section
2851 and not in a literal pool. */
2852 if ((input_section->flags & SEC_READONLY) != 0
2853 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2854 outrel.r_offset))
88d65ad6
BW
2855 {
2856 error_message =
2857 _("dynamic relocation in read-only section");
1a72702b
AM
2858 (*info->callbacks->reloc_dangerous)
2859 (info, error_message,
2860 input_bfd, input_section, rel->r_offset);
88d65ad6
BW
2861 }
2862
e0001a05
NC
2863 if (dynamic_symbol)
2864 {
2865 outrel.r_addend = rel->r_addend;
2866 rel->r_addend = 0;
2867
2868 if (r_type == R_XTENSA_32)
2869 {
2870 outrel.r_info =
2871 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2872 relocation = 0;
2873 }
2874 else /* r_type == R_XTENSA_PLT */
2875 {
2876 outrel.r_info =
2877 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2878
2879 /* Create the PLT entry and set the initial
2880 contents of the literal entry to the address of
2881 the PLT entry. */
43cd72b9 2882 relocation =
f0e6fdb2 2883 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2884 srel->reloc_count);
2885 }
2886 unresolved_reloc = FALSE;
2887 }
2888 else
2889 {
2890 /* Generate a RELATIVE relocation. */
2891 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2892 outrel.r_addend = 0;
2893 }
2894 }
2895
2896 loc = (srel->contents
2897 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2899 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2900 <= srel->size);
e0001a05 2901 }
d9ab3f29
BW
2902 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2903 {
2904 /* This should only happen for non-PIC code, which is not
2905 supposed to be used on systems with dynamic linking.
2906 Just ignore these relocations. */
2907 continue;
2908 }
28dbbc02
BW
2909 break;
2910
2911 case R_XTENSA_TLS_TPOFF:
2912 /* Switch to LE model for local symbols in an executable. */
0e1862bb 2913 if (! bfd_link_pic (info) && ! dynamic_symbol)
28dbbc02
BW
2914 {
2915 relocation = tpoff (info, relocation);
2916 break;
2917 }
2918 /* fall through */
2919
2920 case R_XTENSA_TLSDESC_FN:
2921 case R_XTENSA_TLSDESC_ARG:
2922 {
2923 if (r_type == R_XTENSA_TLSDESC_FN)
2924 {
0e1862bb 2925 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
28dbbc02
BW
2926 r_type = R_XTENSA_NONE;
2927 }
2928 else if (r_type == R_XTENSA_TLSDESC_ARG)
2929 {
0e1862bb 2930 if (bfd_link_pic (info))
28dbbc02
BW
2931 {
2932 if ((tls_type & GOT_TLS_IE) != 0)
2933 r_type = R_XTENSA_TLS_TPOFF;
2934 }
2935 else
2936 {
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 if (! dynamic_symbol)
2939 {
2940 relocation = tpoff (info, relocation);
2941 break;
2942 }
2943 }
2944 }
2945
2946 if (r_type == R_XTENSA_NONE)
2947 /* Nothing to do here; skip to the next reloc. */
2948 continue;
2949
2950 if (! elf_hash_table (info)->dynamic_sections_created)
2951 {
2952 error_message =
2953 _("TLS relocation invalid without dynamic sections");
1a72702b
AM
2954 (*info->callbacks->reloc_dangerous)
2955 (info, error_message,
2956 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2957 }
2958 else
2959 {
2960 Elf_Internal_Rela outrel;
2961 bfd_byte *loc;
ce558b89 2962 asection *srel = htab->elf.srelgot;
28dbbc02
BW
2963 int indx;
2964
2965 outrel.r_offset = (input_section->output_section->vma
2966 + input_section->output_offset
2967 + rel->r_offset);
2968
2969 /* Complain if the relocation is in a read-only section
2970 and not in a literal pool. */
2971 if ((input_section->flags & SEC_READONLY) != 0
2972 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2973 outrel.r_offset))
2974 {
2975 error_message =
2976 _("dynamic relocation in read-only section");
1a72702b
AM
2977 (*info->callbacks->reloc_dangerous)
2978 (info, error_message,
2979 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2980 }
2981
2982 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2983 if (indx == 0)
2984 outrel.r_addend = relocation - dtpoff_base (info);
2985 else
2986 outrel.r_addend = 0;
2987 rel->r_addend = 0;
2988
2989 outrel.r_info = ELF32_R_INFO (indx, r_type);
2990 relocation = 0;
2991 unresolved_reloc = FALSE;
2992
2993 BFD_ASSERT (srel);
2994 loc = (srel->contents
2995 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2996 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2997 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2998 <= srel->size);
2999 }
3000 }
3001 break;
3002
3003 case R_XTENSA_TLS_DTPOFF:
0e1862bb 3004 if (! bfd_link_pic (info))
28dbbc02
BW
3005 /* Switch from LD model to LE model. */
3006 relocation = tpoff (info, relocation);
3007 else
3008 relocation -= dtpoff_base (info);
3009 break;
3010
3011 case R_XTENSA_TLS_FUNC:
3012 case R_XTENSA_TLS_ARG:
3013 case R_XTENSA_TLS_CALL:
3014 /* Check if optimizing to IE or LE model. */
3015 if ((tls_type & GOT_TLS_IE) != 0)
3016 {
3017 bfd_boolean is_ld_model =
3018 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3019 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3020 is_ld_model, &error_message))
1a72702b
AM
3021 (*info->callbacks->reloc_dangerous)
3022 (info, error_message,
3023 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
3024
3025 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3026 {
3027 /* Skip subsequent relocations on the same instruction. */
3028 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3029 rel++;
3030 }
3031 }
3032 continue;
3033
3034 default:
3035 if (elf_hash_table (info)->dynamic_sections_created
3036 && dynamic_symbol && (is_operand_relocation (r_type)
3037 || r_type == R_XTENSA_32_PCREL))
3038 {
3039 error_message =
3040 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3041 strlen (name) + 2, name);
1a72702b
AM
3042 (*info->callbacks->reloc_dangerous)
3043 (info, error_message, input_bfd, input_section, rel->r_offset);
28dbbc02
BW
3044 continue;
3045 }
3046 break;
e0001a05
NC
3047 }
3048
3049 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3050 because such sections are not SEC_ALLOC and thus ld.so will
3051 not process them. */
3052 if (unresolved_reloc
3053 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
3054 && h->def_dynamic)
3055 && _bfd_elf_section_offset (output_bfd, info, input_section,
3056 rel->r_offset) != (bfd_vma) -1)
bf1747de 3057 {
4eca0228 3058 _bfd_error_handler
695344c0 3059 /* xgettext:c-format */
bf1747de
BW
3060 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3061 input_bfd,
3062 input_section,
3063 (long) rel->r_offset,
3064 howto->name,
28dbbc02 3065 name);
bf1747de
BW
3066 return FALSE;
3067 }
e0001a05 3068
28dbbc02
BW
3069 /* TLS optimizations may have changed r_type; update "howto". */
3070 howto = &elf_howto_table[r_type];
3071
e0001a05
NC
3072 /* There's no point in calling bfd_perform_relocation here.
3073 Just go directly to our "special function". */
3074 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3075 relocation + rel->r_addend,
3076 contents, rel->r_offset, is_weak_undef,
3077 &error_message);
43cd72b9 3078
9b8c98a4 3079 if (r != bfd_reloc_ok && !warned)
e0001a05 3080 {
43cd72b9 3081 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3082 BFD_ASSERT (error_message != NULL);
e0001a05 3083
28dbbc02
BW
3084 if (rel->r_addend == 0)
3085 error_message = vsprint_msg (error_message, ": %s",
3086 strlen (name) + 2, name);
e0001a05 3087 else
28dbbc02
BW
3088 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3089 strlen (name) + 22,
3090 name, (int) rel->r_addend);
43cd72b9 3091
1a72702b
AM
3092 (*info->callbacks->reloc_dangerous)
3093 (info, error_message, input_bfd, input_section, rel->r_offset);
e0001a05
NC
3094 }
3095 }
3096
88d65ad6
BW
3097 if (lit_table)
3098 free (lit_table);
3099
3ba3bc8c
BW
3100 input_section->reloc_done = TRUE;
3101
e0001a05
NC
3102 return TRUE;
3103}
3104
3105
3106/* Finish up dynamic symbol handling. There's not much to do here since
3107 the PLT and GOT entries are all set up by relocate_section. */
3108
3109static bfd_boolean
7fa3d080
BW
3110elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3111 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3112 struct elf_link_hash_entry *h,
3113 Elf_Internal_Sym *sym)
e0001a05 3114{
bf1747de 3115 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3116 {
3117 /* Mark the symbol as undefined, rather than as defined in
3118 the .plt section. Leave the value alone. */
3119 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3120 /* If the symbol is weak, we do need to clear the value.
3121 Otherwise, the PLT entry would provide a definition for
3122 the symbol even if the symbol wasn't defined anywhere,
3123 and so the symbol would never be NULL. */
3124 if (!h->ref_regular_nonweak)
3125 sym->st_value = 0;
e0001a05
NC
3126 }
3127
3128 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9637f6ef 3129 if (h == elf_hash_table (info)->hdynamic
22edb2f1 3130 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3131 sym->st_shndx = SHN_ABS;
3132
3133 return TRUE;
3134}
3135
3136
3137/* Combine adjacent literal table entries in the output. Adjacent
3138 entries within each input section may have been removed during
3139 relaxation, but we repeat the process here, even though it's too late
3140 to shrink the output section, because it's important to minimize the
3141 number of literal table entries to reduce the start-up work for the
3142 runtime linker. Returns the number of remaining table entries or -1
3143 on error. */
3144
3145static int
7fa3d080
BW
3146elf_xtensa_combine_prop_entries (bfd *output_bfd,
3147 asection *sxtlit,
3148 asection *sgotloc)
e0001a05 3149{
e0001a05
NC
3150 bfd_byte *contents;
3151 property_table_entry *table;
e901de89 3152 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3153 bfd_vma offset;
3154 int n, m, num;
3155
eea6121a 3156 section_size = sxtlit->size;
e0001a05
NC
3157 BFD_ASSERT (section_size % 8 == 0);
3158 num = section_size / 8;
3159
eea6121a 3160 sgotloc_size = sgotloc->size;
e901de89 3161 if (sgotloc_size != section_size)
b536dc1e 3162 {
4eca0228 3163 _bfd_error_handler
43cd72b9 3164 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3165 return -1;
3166 }
e901de89 3167
eea6121a
AM
3168 table = bfd_malloc (num * sizeof (property_table_entry));
3169 if (table == 0)
e0001a05
NC
3170 return -1;
3171
3172 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3173 propagates to the output section, where it doesn't really apply and
eea6121a 3174 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3175 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3176
eea6121a
AM
3177 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3178 {
3179 if (contents != 0)
3180 free (contents);
3181 free (table);
3182 return -1;
3183 }
e0001a05
NC
3184
3185 /* There should never be any relocations left at this point, so this
3186 is quite a bit easier than what is done during relaxation. */
3187
3188 /* Copy the raw contents into a property table array and sort it. */
3189 offset = 0;
3190 for (n = 0; n < num; n++)
3191 {
3192 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3193 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3194 offset += 8;
3195 }
3196 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3197
3198 for (n = 0; n < num; n++)
3199 {
91d6fa6a 3200 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3201
3202 if (table[n].size == 0)
91d6fa6a
NC
3203 remove_entry = TRUE;
3204 else if (n > 0
3205 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3206 {
3207 table[n-1].size += table[n].size;
91d6fa6a 3208 remove_entry = TRUE;
e0001a05
NC
3209 }
3210
91d6fa6a 3211 if (remove_entry)
e0001a05
NC
3212 {
3213 for (m = n; m < num - 1; m++)
3214 {
3215 table[m].address = table[m+1].address;
3216 table[m].size = table[m+1].size;
3217 }
3218
3219 n--;
3220 num--;
3221 }
3222 }
3223
3224 /* Copy the data back to the raw contents. */
3225 offset = 0;
3226 for (n = 0; n < num; n++)
3227 {
3228 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3229 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3230 offset += 8;
3231 }
3232
3233 /* Clear the removed bytes. */
3234 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3235 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3236
e901de89
BW
3237 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3238 section_size))
e0001a05
NC
3239 return -1;
3240
e901de89
BW
3241 /* Copy the contents to ".got.loc". */
3242 memcpy (sgotloc->contents, contents, section_size);
3243
e0001a05 3244 free (contents);
b614a702 3245 free (table);
e0001a05
NC
3246 return num;
3247}
3248
3249
3250/* Finish up the dynamic sections. */
3251
3252static bfd_boolean
7fa3d080
BW
3253elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3254 struct bfd_link_info *info)
e0001a05 3255{
f0e6fdb2 3256 struct elf_xtensa_link_hash_table *htab;
e0001a05 3257 bfd *dynobj;
e901de89 3258 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3259 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3260 int num_xtlit_entries = 0;
e0001a05
NC
3261
3262 if (! elf_hash_table (info)->dynamic_sections_created)
3263 return TRUE;
3264
f0e6fdb2 3265 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3266 if (htab == NULL)
3267 return FALSE;
3268
e0001a05 3269 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3270 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
e0001a05
NC
3271 BFD_ASSERT (sdyn != NULL);
3272
3273 /* Set the first entry in the global offset table to the address of
3274 the dynamic section. */
ce558b89 3275 sgot = htab->elf.sgot;
e0001a05
NC
3276 if (sgot)
3277 {
eea6121a 3278 BFD_ASSERT (sgot->size == 4);
e0001a05 3279 if (sdyn == NULL)
7fa3d080 3280 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3281 else
3282 bfd_put_32 (output_bfd,
3283 sdyn->output_section->vma + sdyn->output_offset,
3284 sgot->contents);
3285 }
3286
ce558b89 3287 srelplt = htab->elf.srelplt;
7fa3d080 3288 if (srelplt && srelplt->size != 0)
e0001a05
NC
3289 {
3290 asection *sgotplt, *srelgot, *spltlittbl;
3291 int chunk, plt_chunks, plt_entries;
3292 Elf_Internal_Rela irela;
3293 bfd_byte *loc;
3294 unsigned rtld_reloc;
3295
ce558b89 3296 srelgot = htab->elf.srelgot;
f0e6fdb2
BW
3297 spltlittbl = htab->spltlittbl;
3298 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3299
3300 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3301 of them follow immediately after.... */
3302 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3303 {
3304 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3305 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3306 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3307 break;
3308 }
3309 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3310
eea6121a 3311 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3312 plt_chunks =
3313 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3314
3315 for (chunk = 0; chunk < plt_chunks; chunk++)
3316 {
3317 int chunk_entries = 0;
3318
f0e6fdb2 3319 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3320 BFD_ASSERT (sgotplt != NULL);
3321
3322 /* Emit special RTLD relocations for the first two entries in
3323 each chunk of the .got.plt section. */
3324
3325 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3326 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3327 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3328 irela.r_offset = (sgotplt->output_section->vma
3329 + sgotplt->output_offset);
3330 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3331 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3332 rtld_reloc += 1;
3333 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3334
3335 /* Next literal immediately follows the first. */
3336 loc += sizeof (Elf32_External_Rela);
3337 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3338 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3339 irela.r_offset = (sgotplt->output_section->vma
3340 + sgotplt->output_offset + 4);
3341 /* Tell rtld to set value to object's link map. */
3342 irela.r_addend = 2;
3343 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3344 rtld_reloc += 1;
3345 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3346
3347 /* Fill in the literal table. */
3348 if (chunk < plt_chunks - 1)
3349 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3350 else
3351 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3352
eea6121a 3353 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3354 bfd_put_32 (output_bfd,
3355 sgotplt->output_section->vma + sgotplt->output_offset,
3356 spltlittbl->contents + (chunk * 8) + 0);
3357 bfd_put_32 (output_bfd,
3358 8 + (chunk_entries * 4),
3359 spltlittbl->contents + (chunk * 8) + 4);
3360 }
3361
3362 /* All the dynamic relocations have been emitted at this point.
3363 Make sure the relocation sections are the correct size. */
eea6121a
AM
3364 if (srelgot->size != (sizeof (Elf32_External_Rela)
3365 * srelgot->reloc_count)
3366 || srelplt->size != (sizeof (Elf32_External_Rela)
3367 * srelplt->reloc_count))
e0001a05
NC
3368 abort ();
3369
3370 /* The .xt.lit.plt section has just been modified. This must
3371 happen before the code below which combines adjacent literal
3372 table entries, and the .xt.lit.plt contents have to be forced to
3373 the output here. */
3374 if (! bfd_set_section_contents (output_bfd,
3375 spltlittbl->output_section,
3376 spltlittbl->contents,
3377 spltlittbl->output_offset,
eea6121a 3378 spltlittbl->size))
e0001a05
NC
3379 return FALSE;
3380 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3381 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3382 }
3383
3384 /* Combine adjacent literal table entries. */
0e1862bb 3385 BFD_ASSERT (! bfd_link_relocatable (info));
e901de89 3386 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3387 sgotloc = htab->sgotloc;
d9ab3f29
BW
3388 BFD_ASSERT (sgotloc);
3389 if (sxtlit)
3390 {
3391 num_xtlit_entries =
3392 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3393 if (num_xtlit_entries < 0)
3394 return FALSE;
3395 }
e0001a05
NC
3396
3397 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3398 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3399 for (; dyncon < dynconend; dyncon++)
3400 {
3401 Elf_Internal_Dyn dyn;
e0001a05
NC
3402
3403 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3404
3405 switch (dyn.d_tag)
3406 {
3407 default:
3408 break;
3409
3410 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3411 dyn.d_un.d_val = num_xtlit_entries;
3412 break;
3413
3414 case DT_XTENSA_GOT_LOC_OFF:
4ade44b7
AM
3415 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3416 + htab->sgotloc->output_offset);
f0e6fdb2
BW
3417 break;
3418
e0001a05 3419 case DT_PLTGOT:
ce558b89
AM
3420 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3421 + htab->elf.sgot->output_offset);
f0e6fdb2
BW
3422 break;
3423
e0001a05 3424 case DT_JMPREL:
ce558b89
AM
3425 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3426 + htab->elf.srelplt->output_offset);
e0001a05
NC
3427 break;
3428
3429 case DT_PLTRELSZ:
ce558b89 3430 dyn.d_un.d_val = htab->elf.srelplt->size;
e0001a05
NC
3431 break;
3432
3433 case DT_RELASZ:
3434 /* Adjust RELASZ to not include JMPREL. This matches what
3435 glibc expects and what is done for several other ELF
3436 targets (e.g., i386, alpha), but the "correct" behavior
3437 seems to be unresolved. Since the linker script arranges
3438 for .rela.plt to follow all other relocation sections, we
3439 don't have to worry about changing the DT_RELA entry. */
ce558b89
AM
3440 if (htab->elf.srelplt)
3441 dyn.d_un.d_val -= htab->elf.srelplt->size;
e0001a05
NC
3442 break;
3443 }
3444
3445 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3446 }
3447
3448 return TRUE;
3449}
3450
3451\f
3452/* Functions for dealing with the e_flags field. */
3453
3454/* Merge backend specific data from an object file to the output
3455 object file when linking. */
3456
3457static bfd_boolean
50e03d47 3458elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
e0001a05 3459{
50e03d47 3460 bfd *obfd = info->output_bfd;
e0001a05
NC
3461 unsigned out_mach, in_mach;
3462 flagword out_flag, in_flag;
3463
cc643b88 3464 /* Check if we have the same endianness. */
50e03d47 3465 if (!_bfd_generic_verify_endian_match (ibfd, info))
e0001a05
NC
3466 return FALSE;
3467
3468 /* Don't even pretend to support mixed-format linking. */
3469 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3470 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3471 return FALSE;
3472
3473 out_flag = elf_elfheader (obfd)->e_flags;
3474 in_flag = elf_elfheader (ibfd)->e_flags;
3475
3476 out_mach = out_flag & EF_XTENSA_MACH;
3477 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3478 if (out_mach != in_mach)
e0001a05 3479 {
4eca0228 3480 _bfd_error_handler
695344c0 3481 /* xgettext:c-format */
43cd72b9 3482 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3483 ibfd, out_mach, in_mach);
e0001a05
NC
3484 bfd_set_error (bfd_error_wrong_format);
3485 return FALSE;
3486 }
3487
3488 if (! elf_flags_init (obfd))
3489 {
3490 elf_flags_init (obfd) = TRUE;
3491 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3492
e0001a05
NC
3493 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3494 && bfd_get_arch_info (obfd)->the_default)
3495 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3496 bfd_get_mach (ibfd));
43cd72b9 3497
e0001a05
NC
3498 return TRUE;
3499 }
3500
68ffbac6 3501 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
43cd72b9 3502 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3503
68ffbac6 3504 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
43cd72b9 3505 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3506
3507 return TRUE;
3508}
3509
3510
3511static bfd_boolean
7fa3d080 3512elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3513{
3514 BFD_ASSERT (!elf_flags_init (abfd)
3515 || elf_elfheader (abfd)->e_flags == flags);
3516
3517 elf_elfheader (abfd)->e_flags |= flags;
3518 elf_flags_init (abfd) = TRUE;
3519
3520 return TRUE;
3521}
3522
3523
e0001a05 3524static bfd_boolean
7fa3d080 3525elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3526{
3527 FILE *f = (FILE *) farg;
3528 flagword e_flags = elf_elfheader (abfd)->e_flags;
3529
3530 fprintf (f, "\nXtensa header:\n");
43cd72b9 3531 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3532 fprintf (f, "\nMachine = Base\n");
3533 else
3534 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3535
3536 fprintf (f, "Insn tables = %s\n",
3537 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3538
3539 fprintf (f, "Literal tables = %s\n",
3540 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3541
3542 return _bfd_elf_print_private_bfd_data (abfd, farg);
3543}
3544
3545
3546/* Set the right machine number for an Xtensa ELF file. */
3547
3548static bfd_boolean
7fa3d080 3549elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3550{
3551 int mach;
3552 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3553
3554 switch (arch)
3555 {
3556 case E_XTENSA_MACH:
3557 mach = bfd_mach_xtensa;
3558 break;
3559 default:
3560 return FALSE;
3561 }
3562
3563 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3564 return TRUE;
3565}
3566
3567
3568/* The final processing done just before writing out an Xtensa ELF object
3569 file. This gets the Xtensa architecture right based on the machine
3570 number. */
3571
3572static void
7fa3d080
BW
3573elf_xtensa_final_write_processing (bfd *abfd,
3574 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3575{
3576 int mach;
3577 unsigned long val;
3578
3579 switch (mach = bfd_get_mach (abfd))
3580 {
3581 case bfd_mach_xtensa:
3582 val = E_XTENSA_MACH;
3583 break;
3584 default:
3585 return;
3586 }
3587
3588 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3589 elf_elfheader (abfd)->e_flags |= val;
3590}
3591
3592
3593static enum elf_reloc_type_class
7e612e98
AM
3594elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3595 const asection *rel_sec ATTRIBUTE_UNUSED,
3596 const Elf_Internal_Rela *rela)
e0001a05
NC
3597{
3598 switch ((int) ELF32_R_TYPE (rela->r_info))
3599 {
3600 case R_XTENSA_RELATIVE:
3601 return reloc_class_relative;
3602 case R_XTENSA_JMP_SLOT:
3603 return reloc_class_plt;
3604 default:
3605 return reloc_class_normal;
3606 }
3607}
3608
3609\f
3610static bfd_boolean
7fa3d080
BW
3611elf_xtensa_discard_info_for_section (bfd *abfd,
3612 struct elf_reloc_cookie *cookie,
3613 struct bfd_link_info *info,
3614 asection *sec)
e0001a05
NC
3615{
3616 bfd_byte *contents;
e0001a05 3617 bfd_vma offset, actual_offset;
1d25768e
BW
3618 bfd_size_type removed_bytes = 0;
3619 bfd_size_type entry_size;
e0001a05
NC
3620
3621 if (sec->output_section
3622 && bfd_is_abs_section (sec->output_section))
3623 return FALSE;
3624
1d25768e
BW
3625 if (xtensa_is_proptable_section (sec))
3626 entry_size = 12;
3627 else
3628 entry_size = 8;
3629
a3ef2d63 3630 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3631 return FALSE;
3632
e0001a05
NC
3633 contents = retrieve_contents (abfd, sec, info->keep_memory);
3634 if (!contents)
3635 return FALSE;
3636
3637 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3638 if (!cookie->rels)
3639 {
3640 release_contents (sec, contents);
3641 return FALSE;
3642 }
3643
1d25768e
BW
3644 /* Sort the relocations. They should already be in order when
3645 relaxation is enabled, but it might not be. */
3646 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3647 internal_reloc_compare);
3648
e0001a05
NC
3649 cookie->rel = cookie->rels;
3650 cookie->relend = cookie->rels + sec->reloc_count;
3651
a3ef2d63 3652 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3653 {
3654 actual_offset = offset - removed_bytes;
3655
3656 /* The ...symbol_deleted_p function will skip over relocs but it
3657 won't adjust their offsets, so do that here. */
3658 while (cookie->rel < cookie->relend
3659 && cookie->rel->r_offset < offset)
3660 {
3661 cookie->rel->r_offset -= removed_bytes;
3662 cookie->rel++;
3663 }
3664
3665 while (cookie->rel < cookie->relend
3666 && cookie->rel->r_offset == offset)
3667 {
c152c796 3668 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3669 {
3670 /* Remove the table entry. (If the reloc type is NONE, then
3671 the entry has already been merged with another and deleted
3672 during relaxation.) */
3673 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3674 {
3675 /* Shift the contents up. */
a3ef2d63 3676 if (offset + entry_size < sec->size)
e0001a05 3677 memmove (&contents[actual_offset],
1d25768e 3678 &contents[actual_offset + entry_size],
a3ef2d63 3679 sec->size - offset - entry_size);
1d25768e 3680 removed_bytes += entry_size;
e0001a05
NC
3681 }
3682
3683 /* Remove this relocation. */
3684 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3685 }
3686
3687 /* Adjust the relocation offset for previous removals. This
3688 should not be done before calling ...symbol_deleted_p
3689 because it might mess up the offset comparisons there.
3690 Make sure the offset doesn't underflow in the case where
3691 the first entry is removed. */
3692 if (cookie->rel->r_offset >= removed_bytes)
3693 cookie->rel->r_offset -= removed_bytes;
3694 else
3695 cookie->rel->r_offset = 0;
3696
3697 cookie->rel++;
3698 }
3699 }
3700
3701 if (removed_bytes != 0)
3702 {
3703 /* Adjust any remaining relocs (shouldn't be any). */
3704 for (; cookie->rel < cookie->relend; cookie->rel++)
3705 {
3706 if (cookie->rel->r_offset >= removed_bytes)
3707 cookie->rel->r_offset -= removed_bytes;
3708 else
3709 cookie->rel->r_offset = 0;
3710 }
3711
3712 /* Clear the removed bytes. */
a3ef2d63 3713 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3714
3715 pin_contents (sec, contents);
3716 pin_internal_relocs (sec, cookie->rels);
3717
eea6121a 3718 /* Shrink size. */
a3ef2d63
BW
3719 if (sec->rawsize == 0)
3720 sec->rawsize = sec->size;
3721 sec->size -= removed_bytes;
b536dc1e
BW
3722
3723 if (xtensa_is_littable_section (sec))
3724 {
f0e6fdb2
BW
3725 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3726 if (sgotloc)
3727 sgotloc->size -= removed_bytes;
b536dc1e 3728 }
e0001a05
NC
3729 }
3730 else
3731 {
3732 release_contents (sec, contents);
3733 release_internal_relocs (sec, cookie->rels);
3734 }
3735
3736 return (removed_bytes != 0);
3737}
3738
3739
3740static bfd_boolean
7fa3d080
BW
3741elf_xtensa_discard_info (bfd *abfd,
3742 struct elf_reloc_cookie *cookie,
3743 struct bfd_link_info *info)
e0001a05
NC
3744{
3745 asection *sec;
3746 bfd_boolean changed = FALSE;
3747
3748 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3749 {
3750 if (xtensa_is_property_section (sec))
3751 {
3752 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3753 changed = TRUE;
3754 }
3755 }
3756
3757 return changed;
3758}
3759
3760
3761static bfd_boolean
7fa3d080 3762elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3763{
3764 return xtensa_is_property_section (sec);
3765}
3766
a77dc2cc
BW
3767
3768static unsigned int
3769elf_xtensa_action_discarded (asection *sec)
3770{
3771 if (strcmp (".xt_except_table", sec->name) == 0)
3772 return 0;
3773
3774 if (strcmp (".xt_except_desc", sec->name) == 0)
3775 return 0;
3776
3777 return _bfd_elf_default_action_discarded (sec);
3778}
3779
e0001a05
NC
3780\f
3781/* Support for core dump NOTE sections. */
3782
3783static bfd_boolean
7fa3d080 3784elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3785{
3786 int offset;
eea6121a 3787 unsigned int size;
e0001a05
NC
3788
3789 /* The size for Xtensa is variable, so don't try to recognize the format
3790 based on the size. Just assume this is GNU/Linux. */
3791
3792 /* pr_cursig */
228e534f 3793 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
e0001a05
NC
3794
3795 /* pr_pid */
228e534f 3796 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3797
3798 /* pr_reg */
3799 offset = 72;
eea6121a 3800 size = note->descsz - offset - 4;
e0001a05
NC
3801
3802 /* Make a ".reg/999" section. */
3803 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3804 size, note->descpos + offset);
e0001a05
NC
3805}
3806
3807
3808static bfd_boolean
7fa3d080 3809elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3810{
3811 switch (note->descsz)
3812 {
3813 default:
3814 return FALSE;
3815
3816 case 128: /* GNU/Linux elf_prpsinfo */
228e534f 3817 elf_tdata (abfd)->core->program
e0001a05 3818 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
228e534f 3819 elf_tdata (abfd)->core->command
e0001a05
NC
3820 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3821 }
3822
3823 /* Note that for some reason, a spurious space is tacked
3824 onto the end of the args in some (at least one anyway)
3825 implementations, so strip it off if it exists. */
3826
3827 {
228e534f 3828 char *command = elf_tdata (abfd)->core->command;
e0001a05
NC
3829 int n = strlen (command);
3830
3831 if (0 < n && command[n - 1] == ' ')
3832 command[n - 1] = '\0';
3833 }
3834
3835 return TRUE;
3836}
3837
3838\f
3839/* Generic Xtensa configurability stuff. */
3840
3841static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3842static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3843static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3844static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3845static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3846static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3847static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3848static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3849
3850static void
7fa3d080 3851init_call_opcodes (void)
e0001a05
NC
3852{
3853 if (callx0_op == XTENSA_UNDEFINED)
3854 {
3855 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3856 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3857 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3858 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3859 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3860 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3861 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3862 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3863 }
3864}
3865
3866
3867static bfd_boolean
7fa3d080 3868is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3869{
3870 init_call_opcodes ();
3871 return (opcode == callx0_op
3872 || opcode == callx4_op
3873 || opcode == callx8_op
3874 || opcode == callx12_op);
3875}
3876
3877
3878static bfd_boolean
7fa3d080 3879is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3880{
3881 init_call_opcodes ();
3882 return (opcode == call0_op
3883 || opcode == call4_op
3884 || opcode == call8_op
3885 || opcode == call12_op);
3886}
3887
3888
3889static bfd_boolean
7fa3d080 3890is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3891{
3892 init_call_opcodes ();
3893 return (opcode == call4_op
3894 || opcode == call8_op
3895 || opcode == call12_op
3896 || opcode == callx4_op
3897 || opcode == callx8_op
3898 || opcode == callx12_op);
3899}
3900
3901
28dbbc02
BW
3902static bfd_boolean
3903get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3904{
3905 unsigned dst = (unsigned) -1;
3906
3907 init_call_opcodes ();
3908 if (opcode == callx0_op)
3909 dst = 0;
3910 else if (opcode == callx4_op)
3911 dst = 4;
3912 else if (opcode == callx8_op)
3913 dst = 8;
3914 else if (opcode == callx12_op)
3915 dst = 12;
3916
3917 if (dst == (unsigned) -1)
3918 return FALSE;
3919
3920 *pdst = dst;
3921 return TRUE;
3922}
3923
3924
43cd72b9
BW
3925static xtensa_opcode
3926get_const16_opcode (void)
3927{
3928 static bfd_boolean done_lookup = FALSE;
3929 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3930 if (!done_lookup)
3931 {
3932 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3933 done_lookup = TRUE;
3934 }
3935 return const16_opcode;
3936}
3937
3938
e0001a05
NC
3939static xtensa_opcode
3940get_l32r_opcode (void)
3941{
3942 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3943 static bfd_boolean done_lookup = FALSE;
3944
3945 if (!done_lookup)
e0001a05
NC
3946 {
3947 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3948 done_lookup = TRUE;
e0001a05
NC
3949 }
3950 return l32r_opcode;
3951}
3952
3953
3954static bfd_vma
7fa3d080 3955l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3956{
3957 bfd_vma offset;
3958
3959 offset = addr - ((pc+3) & -4);
3960 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3961 offset = (signed int) offset >> 2;
3962 BFD_ASSERT ((signed int) offset >> 16 == -1);
3963 return offset;
3964}
3965
3966
e0001a05 3967static int
7fa3d080 3968get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3969{
43cd72b9
BW
3970 xtensa_isa isa = xtensa_default_isa;
3971 int last_immed, last_opnd, opi;
3972
3973 if (opcode == XTENSA_UNDEFINED)
3974 return XTENSA_UNDEFINED;
3975
3976 /* Find the last visible PC-relative immediate operand for the opcode.
3977 If there are no PC-relative immediates, then choose the last visible
3978 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3979 last_immed = XTENSA_UNDEFINED;
3980 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3981 for (opi = last_opnd - 1; opi >= 0; opi--)
3982 {
3983 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3984 continue;
3985 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3986 {
3987 last_immed = opi;
3988 break;
3989 }
3990 if (last_immed == XTENSA_UNDEFINED
3991 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3992 last_immed = opi;
3993 }
3994 if (last_immed < 0)
3995 return XTENSA_UNDEFINED;
3996
3997 /* If the operand number was specified in an old-style relocation,
3998 check for consistency with the operand computed above. */
3999 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4000 {
4001 int reloc_opnd = r_type - R_XTENSA_OP0;
4002 if (reloc_opnd != last_immed)
4003 return XTENSA_UNDEFINED;
4004 }
4005
4006 return last_immed;
4007}
4008
4009
4010int
7fa3d080 4011get_relocation_slot (int r_type)
43cd72b9
BW
4012{
4013 switch (r_type)
4014 {
4015 case R_XTENSA_OP0:
4016 case R_XTENSA_OP1:
4017 case R_XTENSA_OP2:
4018 return 0;
4019
4020 default:
4021 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4022 return r_type - R_XTENSA_SLOT0_OP;
4023 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4024 return r_type - R_XTENSA_SLOT0_ALT;
4025 break;
4026 }
4027
4028 return XTENSA_UNDEFINED;
e0001a05
NC
4029}
4030
4031
4032/* Get the opcode for a relocation. */
4033
4034static xtensa_opcode
7fa3d080
BW
4035get_relocation_opcode (bfd *abfd,
4036 asection *sec,
4037 bfd_byte *contents,
4038 Elf_Internal_Rela *irel)
e0001a05
NC
4039{
4040 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4041 static xtensa_insnbuf sbuff = NULL;
e0001a05 4042 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4043 xtensa_format fmt;
4044 int slot;
e0001a05
NC
4045
4046 if (contents == NULL)
4047 return XTENSA_UNDEFINED;
4048
43cd72b9 4049 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4050 return XTENSA_UNDEFINED;
4051
4052 if (ibuff == NULL)
43cd72b9
BW
4053 {
4054 ibuff = xtensa_insnbuf_alloc (isa);
4055 sbuff = xtensa_insnbuf_alloc (isa);
4056 }
4057
e0001a05 4058 /* Decode the instruction. */
43cd72b9
BW
4059 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4060 sec->size - irel->r_offset);
4061 fmt = xtensa_format_decode (isa, ibuff);
4062 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4063 if (slot == XTENSA_UNDEFINED)
4064 return XTENSA_UNDEFINED;
4065 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4066 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4067}
4068
4069
4070bfd_boolean
7fa3d080
BW
4071is_l32r_relocation (bfd *abfd,
4072 asection *sec,
4073 bfd_byte *contents,
4074 Elf_Internal_Rela *irel)
e0001a05
NC
4075{
4076 xtensa_opcode opcode;
43cd72b9 4077 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4078 return FALSE;
43cd72b9 4079 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4080 return (opcode == get_l32r_opcode ());
4081}
4082
e0001a05 4083
43cd72b9 4084static bfd_size_type
7fa3d080
BW
4085get_asm_simplify_size (bfd_byte *contents,
4086 bfd_size_type content_len,
4087 bfd_size_type offset)
e0001a05 4088{
43cd72b9 4089 bfd_size_type insnlen, size = 0;
e0001a05 4090
43cd72b9
BW
4091 /* Decode the size of the next two instructions. */
4092 insnlen = insn_decode_len (contents, content_len, offset);
4093 if (insnlen == 0)
4094 return 0;
e0001a05 4095
43cd72b9 4096 size += insnlen;
68ffbac6 4097
43cd72b9
BW
4098 insnlen = insn_decode_len (contents, content_len, offset + size);
4099 if (insnlen == 0)
4100 return 0;
e0001a05 4101
43cd72b9
BW
4102 size += insnlen;
4103 return size;
4104}
e0001a05 4105
43cd72b9
BW
4106
4107bfd_boolean
7fa3d080 4108is_alt_relocation (int r_type)
43cd72b9
BW
4109{
4110 return (r_type >= R_XTENSA_SLOT0_ALT
4111 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4112}
4113
4114
43cd72b9 4115bfd_boolean
7fa3d080 4116is_operand_relocation (int r_type)
e0001a05 4117{
43cd72b9
BW
4118 switch (r_type)
4119 {
4120 case R_XTENSA_OP0:
4121 case R_XTENSA_OP1:
4122 case R_XTENSA_OP2:
4123 return TRUE;
e0001a05 4124
43cd72b9
BW
4125 default:
4126 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4127 return TRUE;
4128 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4129 return TRUE;
4130 break;
4131 }
e0001a05 4132
43cd72b9 4133 return FALSE;
e0001a05
NC
4134}
4135
68ffbac6 4136
43cd72b9 4137#define MIN_INSN_LENGTH 2
e0001a05 4138
43cd72b9
BW
4139/* Return 0 if it fails to decode. */
4140
4141bfd_size_type
7fa3d080
BW
4142insn_decode_len (bfd_byte *contents,
4143 bfd_size_type content_len,
4144 bfd_size_type offset)
e0001a05 4145{
43cd72b9
BW
4146 int insn_len;
4147 xtensa_isa isa = xtensa_default_isa;
4148 xtensa_format fmt;
4149 static xtensa_insnbuf ibuff = NULL;
e0001a05 4150
43cd72b9
BW
4151 if (offset + MIN_INSN_LENGTH > content_len)
4152 return 0;
e0001a05 4153
43cd72b9
BW
4154 if (ibuff == NULL)
4155 ibuff = xtensa_insnbuf_alloc (isa);
4156 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4157 content_len - offset);
4158 fmt = xtensa_format_decode (isa, ibuff);
4159 if (fmt == XTENSA_UNDEFINED)
4160 return 0;
4161 insn_len = xtensa_format_length (isa, fmt);
4162 if (insn_len == XTENSA_UNDEFINED)
4163 return 0;
4164 return insn_len;
e0001a05
NC
4165}
4166
4167
43cd72b9
BW
4168/* Decode the opcode for a single slot instruction.
4169 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4170
43cd72b9 4171xtensa_opcode
7fa3d080
BW
4172insn_decode_opcode (bfd_byte *contents,
4173 bfd_size_type content_len,
4174 bfd_size_type offset,
4175 int slot)
e0001a05 4176{
e0001a05 4177 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4178 xtensa_format fmt;
4179 static xtensa_insnbuf insnbuf = NULL;
4180 static xtensa_insnbuf slotbuf = NULL;
4181
4182 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4183 return XTENSA_UNDEFINED;
4184
4185 if (insnbuf == NULL)
43cd72b9
BW
4186 {
4187 insnbuf = xtensa_insnbuf_alloc (isa);
4188 slotbuf = xtensa_insnbuf_alloc (isa);
4189 }
4190
4191 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4192 content_len - offset);
4193 fmt = xtensa_format_decode (isa, insnbuf);
4194 if (fmt == XTENSA_UNDEFINED)
e0001a05 4195 return XTENSA_UNDEFINED;
43cd72b9
BW
4196
4197 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4198 return XTENSA_UNDEFINED;
e0001a05 4199
43cd72b9
BW
4200 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4201 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4202}
e0001a05 4203
e0001a05 4204
43cd72b9
BW
4205/* The offset is the offset in the contents.
4206 The address is the address of that offset. */
e0001a05 4207
43cd72b9 4208static bfd_boolean
7fa3d080
BW
4209check_branch_target_aligned (bfd_byte *contents,
4210 bfd_size_type content_length,
4211 bfd_vma offset,
4212 bfd_vma address)
43cd72b9
BW
4213{
4214 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4215 if (insn_len == 0)
4216 return FALSE;
4217 return check_branch_target_aligned_address (address, insn_len);
4218}
e0001a05 4219
e0001a05 4220
43cd72b9 4221static bfd_boolean
7fa3d080
BW
4222check_loop_aligned (bfd_byte *contents,
4223 bfd_size_type content_length,
4224 bfd_vma offset,
4225 bfd_vma address)
e0001a05 4226{
43cd72b9 4227 bfd_size_type loop_len, insn_len;
64b607e6 4228 xtensa_opcode opcode;
e0001a05 4229
64b607e6
BW
4230 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4231 if (opcode == XTENSA_UNDEFINED
4232 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4233 {
4234 BFD_ASSERT (FALSE);
4235 return FALSE;
4236 }
68ffbac6 4237
43cd72b9 4238 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4239 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4240 if (loop_len == 0 || insn_len == 0)
4241 {
4242 BFD_ASSERT (FALSE);
4243 return FALSE;
4244 }
e0001a05 4245
43cd72b9
BW
4246 return check_branch_target_aligned_address (address + loop_len, insn_len);
4247}
e0001a05 4248
e0001a05
NC
4249
4250static bfd_boolean
7fa3d080 4251check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4252{
43cd72b9
BW
4253 if (len == 8)
4254 return (addr % 8 == 0);
4255 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4256}
4257
43cd72b9
BW
4258\f
4259/* Instruction widening and narrowing. */
e0001a05 4260
7fa3d080
BW
4261/* When FLIX is available we need to access certain instructions only
4262 when they are 16-bit or 24-bit instructions. This table caches
4263 information about such instructions by walking through all the
4264 opcodes and finding the smallest single-slot format into which each
4265 can be encoded. */
4266
4267static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4268
4269
7fa3d080
BW
4270static void
4271init_op_single_format_table (void)
e0001a05 4272{
7fa3d080
BW
4273 xtensa_isa isa = xtensa_default_isa;
4274 xtensa_insnbuf ibuf;
4275 xtensa_opcode opcode;
4276 xtensa_format fmt;
4277 int num_opcodes;
4278
4279 if (op_single_fmt_table)
4280 return;
4281
4282 ibuf = xtensa_insnbuf_alloc (isa);
4283 num_opcodes = xtensa_isa_num_opcodes (isa);
4284
4285 op_single_fmt_table = (xtensa_format *)
4286 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4287 for (opcode = 0; opcode < num_opcodes; opcode++)
4288 {
4289 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4290 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4291 {
4292 if (xtensa_format_num_slots (isa, fmt) == 1
4293 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4294 {
4295 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4296 int fmt_length = xtensa_format_length (isa, fmt);
4297 if (old_fmt == XTENSA_UNDEFINED
4298 || fmt_length < xtensa_format_length (isa, old_fmt))
4299 op_single_fmt_table[opcode] = fmt;
4300 }
4301 }
4302 }
4303 xtensa_insnbuf_free (isa, ibuf);
4304}
4305
4306
4307static xtensa_format
4308get_single_format (xtensa_opcode opcode)
4309{
4310 init_op_single_format_table ();
4311 return op_single_fmt_table[opcode];
4312}
e0001a05 4313
e0001a05 4314
43cd72b9
BW
4315/* For the set of narrowable instructions we do NOT include the
4316 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4317 involved during linker relaxation that may require these to
4318 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4319 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4320
7fa3d080
BW
4321struct string_pair
4322{
4323 const char *wide;
4324 const char *narrow;
4325};
4326
43cd72b9 4327struct string_pair narrowable[] =
e0001a05 4328{
43cd72b9
BW
4329 { "add", "add.n" },
4330 { "addi", "addi.n" },
4331 { "addmi", "addi.n" },
4332 { "l32i", "l32i.n" },
4333 { "movi", "movi.n" },
4334 { "ret", "ret.n" },
4335 { "retw", "retw.n" },
4336 { "s32i", "s32i.n" },
4337 { "or", "mov.n" } /* special case only when op1 == op2 */
4338};
e0001a05 4339
43cd72b9 4340struct string_pair widenable[] =
e0001a05 4341{
43cd72b9
BW
4342 { "add", "add.n" },
4343 { "addi", "addi.n" },
4344 { "addmi", "addi.n" },
4345 { "beqz", "beqz.n" },
4346 { "bnez", "bnez.n" },
4347 { "l32i", "l32i.n" },
4348 { "movi", "movi.n" },
4349 { "ret", "ret.n" },
4350 { "retw", "retw.n" },
4351 { "s32i", "s32i.n" },
4352 { "or", "mov.n" } /* special case only when op1 == op2 */
4353};
e0001a05
NC
4354
4355
64b607e6
BW
4356/* Check if an instruction can be "narrowed", i.e., changed from a standard
4357 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4358 return the instruction buffer holding the narrow instruction. Otherwise,
4359 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4360 but require some special case operand checks in some cases. */
4361
64b607e6
BW
4362static xtensa_insnbuf
4363can_narrow_instruction (xtensa_insnbuf slotbuf,
4364 xtensa_format fmt,
4365 xtensa_opcode opcode)
e0001a05 4366{
43cd72b9 4367 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4368 xtensa_format o_fmt;
4369 unsigned opi;
e0001a05 4370
43cd72b9
BW
4371 static xtensa_insnbuf o_insnbuf = NULL;
4372 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4373
64b607e6 4374 if (o_insnbuf == NULL)
43cd72b9 4375 {
43cd72b9
BW
4376 o_insnbuf = xtensa_insnbuf_alloc (isa);
4377 o_slotbuf = xtensa_insnbuf_alloc (isa);
4378 }
e0001a05 4379
64b607e6 4380 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4381 {
4382 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4383
43cd72b9
BW
4384 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4385 {
4386 uint32 value, newval;
4387 int i, operand_count, o_operand_count;
4388 xtensa_opcode o_opcode;
e0001a05 4389
43cd72b9
BW
4390 /* Address does not matter in this case. We might need to
4391 fix it to handle branches/jumps. */
4392 bfd_vma self_address = 0;
e0001a05 4393
43cd72b9
BW
4394 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4395 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4396 return 0;
43cd72b9
BW
4397 o_fmt = get_single_format (o_opcode);
4398 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4399 return 0;
e0001a05 4400
43cd72b9
BW
4401 if (xtensa_format_length (isa, fmt) != 3
4402 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4403 return 0;
e0001a05 4404
43cd72b9
BW
4405 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4406 operand_count = xtensa_opcode_num_operands (isa, opcode);
4407 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4408
43cd72b9 4409 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4410 return 0;
e0001a05 4411
43cd72b9
BW
4412 if (!is_or)
4413 {
4414 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4415 return 0;
43cd72b9
BW
4416 }
4417 else
4418 {
4419 uint32 rawval0, rawval1, rawval2;
e0001a05 4420
64b607e6
BW
4421 if (o_operand_count + 1 != operand_count
4422 || xtensa_operand_get_field (isa, opcode, 0,
4423 fmt, 0, slotbuf, &rawval0) != 0
4424 || xtensa_operand_get_field (isa, opcode, 1,
4425 fmt, 0, slotbuf, &rawval1) != 0
4426 || xtensa_operand_get_field (isa, opcode, 2,
4427 fmt, 0, slotbuf, &rawval2) != 0
4428 || rawval1 != rawval2
4429 || rawval0 == rawval1 /* it is a nop */)
4430 return 0;
43cd72b9 4431 }
e0001a05 4432
43cd72b9
BW
4433 for (i = 0; i < o_operand_count; ++i)
4434 {
4435 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4436 slotbuf, &value)
4437 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4438 return 0;
e0001a05 4439
43cd72b9
BW
4440 /* PC-relative branches need adjustment, but
4441 the PC-rel operand will always have a relocation. */
4442 newval = value;
4443 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4444 self_address)
4445 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4446 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4447 o_slotbuf, newval))
64b607e6 4448 return 0;
43cd72b9 4449 }
e0001a05 4450
64b607e6
BW
4451 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4452 return 0;
e0001a05 4453
64b607e6 4454 return o_insnbuf;
43cd72b9
BW
4455 }
4456 }
64b607e6 4457 return 0;
43cd72b9 4458}
e0001a05 4459
e0001a05 4460
64b607e6
BW
4461/* Attempt to narrow an instruction. If the narrowing is valid, perform
4462 the action in-place directly into the contents and return TRUE. Otherwise,
4463 the return value is FALSE and the contents are not modified. */
e0001a05 4464
43cd72b9 4465static bfd_boolean
64b607e6
BW
4466narrow_instruction (bfd_byte *contents,
4467 bfd_size_type content_length,
4468 bfd_size_type offset)
e0001a05 4469{
43cd72b9 4470 xtensa_opcode opcode;
64b607e6 4471 bfd_size_type insn_len;
43cd72b9 4472 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4473 xtensa_format fmt;
4474 xtensa_insnbuf o_insnbuf;
e0001a05 4475
43cd72b9
BW
4476 static xtensa_insnbuf insnbuf = NULL;
4477 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4478
43cd72b9
BW
4479 if (insnbuf == NULL)
4480 {
4481 insnbuf = xtensa_insnbuf_alloc (isa);
4482 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4483 }
e0001a05 4484
43cd72b9 4485 BFD_ASSERT (offset < content_length);
2c8c90bc 4486
43cd72b9 4487 if (content_length < 2)
e0001a05
NC
4488 return FALSE;
4489
64b607e6 4490 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4491 These have all been specified in the assembler aleady. */
4492 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4493 content_length - offset);
4494 fmt = xtensa_format_decode (isa, insnbuf);
4495 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4496 return FALSE;
4497
43cd72b9 4498 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4499 return FALSE;
4500
43cd72b9
BW
4501 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4502 if (opcode == XTENSA_UNDEFINED)
e0001a05 4503 return FALSE;
43cd72b9
BW
4504 insn_len = xtensa_format_length (isa, fmt);
4505 if (insn_len > content_length)
4506 return FALSE;
4507
64b607e6
BW
4508 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4509 if (o_insnbuf)
4510 {
4511 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4512 content_length - offset);
4513 return TRUE;
4514 }
4515
4516 return FALSE;
4517}
4518
4519
4520/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4521 "density" instruction to a standard 3-byte instruction. If it is valid,
4522 return the instruction buffer holding the wide instruction. Otherwise,
4523 return 0. The set of valid widenings are specified by a string table
4524 but require some special case operand checks in some cases. */
4525
4526static xtensa_insnbuf
4527can_widen_instruction (xtensa_insnbuf slotbuf,
4528 xtensa_format fmt,
4529 xtensa_opcode opcode)
4530{
4531 xtensa_isa isa = xtensa_default_isa;
4532 xtensa_format o_fmt;
4533 unsigned opi;
4534
4535 static xtensa_insnbuf o_insnbuf = NULL;
4536 static xtensa_insnbuf o_slotbuf = NULL;
4537
4538 if (o_insnbuf == NULL)
4539 {
4540 o_insnbuf = xtensa_insnbuf_alloc (isa);
4541 o_slotbuf = xtensa_insnbuf_alloc (isa);
4542 }
4543
4544 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4545 {
43cd72b9
BW
4546 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4547 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4548 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4549
43cd72b9
BW
4550 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4551 {
4552 uint32 value, newval;
4553 int i, operand_count, o_operand_count, check_operand_count;
4554 xtensa_opcode o_opcode;
e0001a05 4555
43cd72b9
BW
4556 /* Address does not matter in this case. We might need to fix it
4557 to handle branches/jumps. */
4558 bfd_vma self_address = 0;
e0001a05 4559
43cd72b9
BW
4560 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4561 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4562 return 0;
43cd72b9
BW
4563 o_fmt = get_single_format (o_opcode);
4564 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4565 return 0;
e0001a05 4566
43cd72b9
BW
4567 if (xtensa_format_length (isa, fmt) != 2
4568 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4569 return 0;
e0001a05 4570
43cd72b9
BW
4571 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4572 operand_count = xtensa_opcode_num_operands (isa, opcode);
4573 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4574 check_operand_count = o_operand_count;
e0001a05 4575
43cd72b9 4576 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4577 return 0;
e0001a05 4578
43cd72b9
BW
4579 if (!is_or)
4580 {
4581 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4582 return 0;
43cd72b9
BW
4583 }
4584 else
4585 {
4586 uint32 rawval0, rawval1;
4587
64b607e6
BW
4588 if (o_operand_count != operand_count + 1
4589 || xtensa_operand_get_field (isa, opcode, 0,
4590 fmt, 0, slotbuf, &rawval0) != 0
4591 || xtensa_operand_get_field (isa, opcode, 1,
4592 fmt, 0, slotbuf, &rawval1) != 0
4593 || rawval0 == rawval1 /* it is a nop */)
4594 return 0;
43cd72b9
BW
4595 }
4596 if (is_branch)
4597 check_operand_count--;
4598
64b607e6 4599 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4600 {
4601 int new_i = i;
4602 if (is_or && i == o_operand_count - 1)
4603 new_i = i - 1;
4604 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4605 slotbuf, &value)
4606 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4607 return 0;
43cd72b9
BW
4608
4609 /* PC-relative branches need adjustment, but
4610 the PC-rel operand will always have a relocation. */
4611 newval = value;
4612 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4613 self_address)
4614 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4615 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4616 o_slotbuf, newval))
64b607e6 4617 return 0;
43cd72b9
BW
4618 }
4619
4620 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4621 return 0;
43cd72b9 4622
64b607e6 4623 return o_insnbuf;
43cd72b9
BW
4624 }
4625 }
64b607e6
BW
4626 return 0;
4627}
4628
68ffbac6 4629
64b607e6
BW
4630/* Attempt to widen an instruction. If the widening is valid, perform
4631 the action in-place directly into the contents and return TRUE. Otherwise,
4632 the return value is FALSE and the contents are not modified. */
4633
4634static bfd_boolean
4635widen_instruction (bfd_byte *contents,
4636 bfd_size_type content_length,
4637 bfd_size_type offset)
4638{
4639 xtensa_opcode opcode;
4640 bfd_size_type insn_len;
4641 xtensa_isa isa = xtensa_default_isa;
4642 xtensa_format fmt;
4643 xtensa_insnbuf o_insnbuf;
4644
4645 static xtensa_insnbuf insnbuf = NULL;
4646 static xtensa_insnbuf slotbuf = NULL;
4647
4648 if (insnbuf == NULL)
4649 {
4650 insnbuf = xtensa_insnbuf_alloc (isa);
4651 slotbuf = xtensa_insnbuf_alloc (isa);
4652 }
4653
4654 BFD_ASSERT (offset < content_length);
4655
4656 if (content_length < 2)
4657 return FALSE;
4658
4659 /* We will hand-code a few of these for a little while.
4660 These have all been specified in the assembler aleady. */
4661 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4662 content_length - offset);
4663 fmt = xtensa_format_decode (isa, insnbuf);
4664 if (xtensa_format_num_slots (isa, fmt) != 1)
4665 return FALSE;
4666
4667 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4668 return FALSE;
4669
4670 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4671 if (opcode == XTENSA_UNDEFINED)
4672 return FALSE;
4673 insn_len = xtensa_format_length (isa, fmt);
4674 if (insn_len > content_length)
4675 return FALSE;
4676
4677 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4678 if (o_insnbuf)
4679 {
4680 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4681 content_length - offset);
4682 return TRUE;
4683 }
43cd72b9 4684 return FALSE;
e0001a05
NC
4685}
4686
43cd72b9
BW
4687\f
4688/* Code for transforming CALLs at link-time. */
e0001a05 4689
43cd72b9 4690static bfd_reloc_status_type
7fa3d080
BW
4691elf_xtensa_do_asm_simplify (bfd_byte *contents,
4692 bfd_vma address,
4693 bfd_vma content_length,
4694 char **error_message)
e0001a05 4695{
43cd72b9
BW
4696 static xtensa_insnbuf insnbuf = NULL;
4697 static xtensa_insnbuf slotbuf = NULL;
4698 xtensa_format core_format = XTENSA_UNDEFINED;
4699 xtensa_opcode opcode;
4700 xtensa_opcode direct_call_opcode;
4701 xtensa_isa isa = xtensa_default_isa;
4702 bfd_byte *chbuf = contents + address;
4703 int opn;
e0001a05 4704
43cd72b9 4705 if (insnbuf == NULL)
e0001a05 4706 {
43cd72b9
BW
4707 insnbuf = xtensa_insnbuf_alloc (isa);
4708 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4709 }
e0001a05 4710
43cd72b9
BW
4711 if (content_length < address)
4712 {
4713 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4714 return bfd_reloc_other;
4715 }
e0001a05 4716
43cd72b9
BW
4717 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4718 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4719 if (direct_call_opcode == XTENSA_UNDEFINED)
4720 {
4721 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4722 return bfd_reloc_other;
4723 }
68ffbac6 4724
43cd72b9
BW
4725 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4726 core_format = xtensa_format_lookup (isa, "x24");
4727 opcode = xtensa_opcode_lookup (isa, "or");
4728 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
68ffbac6 4729 for (opn = 0; opn < 3; opn++)
43cd72b9
BW
4730 {
4731 uint32 regno = 1;
4732 xtensa_operand_encode (isa, opcode, opn, &regno);
4733 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4734 slotbuf, regno);
4735 }
4736 xtensa_format_encode (isa, core_format, insnbuf);
4737 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4738 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4739
43cd72b9
BW
4740 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4741 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4742 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4743
43cd72b9
BW
4744 xtensa_format_encode (isa, core_format, insnbuf);
4745 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4746 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4747 content_length - address - 3);
e0001a05 4748
43cd72b9
BW
4749 return bfd_reloc_ok;
4750}
e0001a05 4751
e0001a05 4752
43cd72b9 4753static bfd_reloc_status_type
7fa3d080
BW
4754contract_asm_expansion (bfd_byte *contents,
4755 bfd_vma content_length,
4756 Elf_Internal_Rela *irel,
4757 char **error_message)
43cd72b9
BW
4758{
4759 bfd_reloc_status_type retval =
4760 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4761 error_message);
e0001a05 4762
43cd72b9
BW
4763 if (retval != bfd_reloc_ok)
4764 return bfd_reloc_dangerous;
e0001a05 4765
43cd72b9
BW
4766 /* Update the irel->r_offset field so that the right immediate and
4767 the right instruction are modified during the relocation. */
4768 irel->r_offset += 3;
4769 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4770 return bfd_reloc_ok;
4771}
e0001a05 4772
e0001a05 4773
43cd72b9 4774static xtensa_opcode
7fa3d080 4775swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4776{
43cd72b9 4777 init_call_opcodes ();
e0001a05 4778
43cd72b9
BW
4779 if (opcode == callx0_op) return call0_op;
4780 if (opcode == callx4_op) return call4_op;
4781 if (opcode == callx8_op) return call8_op;
4782 if (opcode == callx12_op) return call12_op;
e0001a05 4783
43cd72b9
BW
4784 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4785 return XTENSA_UNDEFINED;
4786}
e0001a05 4787
e0001a05 4788
43cd72b9
BW
4789/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4790 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4791 If not, return XTENSA_UNDEFINED. */
e0001a05 4792
43cd72b9
BW
4793#define L32R_TARGET_REG_OPERAND 0
4794#define CONST16_TARGET_REG_OPERAND 0
4795#define CALLN_SOURCE_OPERAND 0
e0001a05 4796
68ffbac6 4797static xtensa_opcode
7fa3d080 4798get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4799{
43cd72b9
BW
4800 static xtensa_insnbuf insnbuf = NULL;
4801 static xtensa_insnbuf slotbuf = NULL;
4802 xtensa_format fmt;
4803 xtensa_opcode opcode;
4804 xtensa_isa isa = xtensa_default_isa;
4805 uint32 regno, const16_regno, call_regno;
4806 int offset = 0;
e0001a05 4807
43cd72b9 4808 if (insnbuf == NULL)
e0001a05 4809 {
43cd72b9
BW
4810 insnbuf = xtensa_insnbuf_alloc (isa);
4811 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4812 }
43cd72b9
BW
4813
4814 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4815 fmt = xtensa_format_decode (isa, insnbuf);
4816 if (fmt == XTENSA_UNDEFINED
4817 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4818 return XTENSA_UNDEFINED;
4819
4820 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4821 if (opcode == XTENSA_UNDEFINED)
4822 return XTENSA_UNDEFINED;
4823
4824 if (opcode == get_l32r_opcode ())
e0001a05 4825 {
43cd72b9
BW
4826 if (p_uses_l32r)
4827 *p_uses_l32r = TRUE;
4828 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4829 fmt, 0, slotbuf, &regno)
4830 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4831 &regno))
4832 return XTENSA_UNDEFINED;
e0001a05 4833 }
43cd72b9 4834 else if (opcode == get_const16_opcode ())
e0001a05 4835 {
43cd72b9
BW
4836 if (p_uses_l32r)
4837 *p_uses_l32r = FALSE;
4838 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4839 fmt, 0, slotbuf, &regno)
4840 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4841 &regno))
4842 return XTENSA_UNDEFINED;
4843
4844 /* Check that the next instruction is also CONST16. */
4845 offset += xtensa_format_length (isa, fmt);
4846 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4847 fmt = xtensa_format_decode (isa, insnbuf);
4848 if (fmt == XTENSA_UNDEFINED
4849 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4850 return XTENSA_UNDEFINED;
4851 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4852 if (opcode != get_const16_opcode ())
4853 return XTENSA_UNDEFINED;
4854
4855 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4856 fmt, 0, slotbuf, &const16_regno)
4857 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4858 &const16_regno)
4859 || const16_regno != regno)
4860 return XTENSA_UNDEFINED;
e0001a05 4861 }
43cd72b9
BW
4862 else
4863 return XTENSA_UNDEFINED;
e0001a05 4864
43cd72b9
BW
4865 /* Next instruction should be an CALLXn with operand 0 == regno. */
4866 offset += xtensa_format_length (isa, fmt);
4867 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4868 fmt = xtensa_format_decode (isa, insnbuf);
4869 if (fmt == XTENSA_UNDEFINED
4870 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4871 return XTENSA_UNDEFINED;
4872 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
68ffbac6 4873 if (opcode == XTENSA_UNDEFINED
43cd72b9
BW
4874 || !is_indirect_call_opcode (opcode))
4875 return XTENSA_UNDEFINED;
e0001a05 4876
43cd72b9
BW
4877 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4878 fmt, 0, slotbuf, &call_regno)
4879 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4880 &call_regno))
4881 return XTENSA_UNDEFINED;
e0001a05 4882
43cd72b9
BW
4883 if (call_regno != regno)
4884 return XTENSA_UNDEFINED;
e0001a05 4885
43cd72b9
BW
4886 return opcode;
4887}
e0001a05 4888
43cd72b9
BW
4889\f
4890/* Data structures used during relaxation. */
e0001a05 4891
43cd72b9 4892/* r_reloc: relocation values. */
e0001a05 4893
43cd72b9
BW
4894/* Through the relaxation process, we need to keep track of the values
4895 that will result from evaluating relocations. The standard ELF
4896 relocation structure is not sufficient for this purpose because we're
4897 operating on multiple input files at once, so we need to know which
4898 input file a relocation refers to. The r_reloc structure thus
4899 records both the input file (bfd) and ELF relocation.
e0001a05 4900
43cd72b9
BW
4901 For efficiency, an r_reloc also contains a "target_offset" field to
4902 cache the target-section-relative offset value that is represented by
4903 the relocation.
68ffbac6 4904
43cd72b9
BW
4905 The r_reloc also contains a virtual offset that allows multiple
4906 inserted literals to be placed at the same "address" with
4907 different offsets. */
e0001a05 4908
43cd72b9 4909typedef struct r_reloc_struct r_reloc;
e0001a05 4910
43cd72b9 4911struct r_reloc_struct
e0001a05 4912{
43cd72b9
BW
4913 bfd *abfd;
4914 Elf_Internal_Rela rela;
e0001a05 4915 bfd_vma target_offset;
43cd72b9 4916 bfd_vma virtual_offset;
e0001a05
NC
4917};
4918
e0001a05 4919
43cd72b9
BW
4920/* The r_reloc structure is included by value in literal_value, but not
4921 every literal_value has an associated relocation -- some are simple
4922 constants. In such cases, we set all the fields in the r_reloc
4923 struct to zero. The r_reloc_is_const function should be used to
4924 detect this case. */
e0001a05 4925
43cd72b9 4926static bfd_boolean
7fa3d080 4927r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4928{
43cd72b9 4929 return (r_rel->abfd == NULL);
e0001a05
NC
4930}
4931
4932
43cd72b9 4933static bfd_vma
7fa3d080 4934r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4935{
43cd72b9
BW
4936 bfd_vma target_offset;
4937 unsigned long r_symndx;
e0001a05 4938
43cd72b9
BW
4939 BFD_ASSERT (!r_reloc_is_const (r_rel));
4940 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4941 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4942 return (target_offset + r_rel->rela.r_addend);
4943}
e0001a05 4944
e0001a05 4945
43cd72b9 4946static struct elf_link_hash_entry *
7fa3d080 4947r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4948{
43cd72b9
BW
4949 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4950 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4951}
e0001a05 4952
43cd72b9
BW
4953
4954static asection *
7fa3d080 4955r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4956{
4957 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4958 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4959}
e0001a05
NC
4960
4961
4962static bfd_boolean
7fa3d080 4963r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4964{
43cd72b9
BW
4965 asection *sec;
4966 if (r_rel == NULL)
e0001a05 4967 return FALSE;
e0001a05 4968
43cd72b9
BW
4969 sec = r_reloc_get_section (r_rel);
4970 if (sec == bfd_abs_section_ptr
4971 || sec == bfd_com_section_ptr
4972 || sec == bfd_und_section_ptr)
4973 return FALSE;
4974 return TRUE;
e0001a05
NC
4975}
4976
4977
7fa3d080
BW
4978static void
4979r_reloc_init (r_reloc *r_rel,
4980 bfd *abfd,
4981 Elf_Internal_Rela *irel,
4982 bfd_byte *contents,
4983 bfd_size_type content_length)
4984{
4985 int r_type;
4986 reloc_howto_type *howto;
4987
4988 if (irel)
4989 {
4990 r_rel->rela = *irel;
4991 r_rel->abfd = abfd;
4992 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4993 r_rel->virtual_offset = 0;
4994 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4995 howto = &elf_howto_table[r_type];
4996 if (howto->partial_inplace)
4997 {
4998 bfd_vma inplace_val;
4999 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5000
5001 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5002 r_rel->target_offset += inplace_val;
5003 }
5004 }
5005 else
5006 memset (r_rel, 0, sizeof (r_reloc));
5007}
5008
5009
43cd72b9
BW
5010#if DEBUG
5011
e0001a05 5012static void
7fa3d080 5013print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 5014{
43cd72b9
BW
5015 if (r_reloc_is_defined (r_rel))
5016 {
5017 asection *sec = r_reloc_get_section (r_rel);
5018 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5019 }
5020 else if (r_reloc_get_hash_entry (r_rel))
5021 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5022 else
5023 fprintf (fp, " ?? + ");
e0001a05 5024
43cd72b9
BW
5025 fprintf_vma (fp, r_rel->target_offset);
5026 if (r_rel->virtual_offset)
5027 {
5028 fprintf (fp, " + ");
5029 fprintf_vma (fp, r_rel->virtual_offset);
5030 }
68ffbac6 5031
43cd72b9
BW
5032 fprintf (fp, ")");
5033}
e0001a05 5034
43cd72b9 5035#endif /* DEBUG */
e0001a05 5036
43cd72b9
BW
5037\f
5038/* source_reloc: relocations that reference literals. */
e0001a05 5039
43cd72b9
BW
5040/* To determine whether literals can be coalesced, we need to first
5041 record all the relocations that reference the literals. The
5042 source_reloc structure below is used for this purpose. The
5043 source_reloc entries are kept in a per-literal-section array, sorted
5044 by offset within the literal section (i.e., target offset).
e0001a05 5045
43cd72b9
BW
5046 The source_sec and r_rel.rela.r_offset fields identify the source of
5047 the relocation. The r_rel field records the relocation value, i.e.,
5048 the offset of the literal being referenced. The opnd field is needed
5049 to determine the range of the immediate field to which the relocation
5050 applies, so we can determine whether another literal with the same
5051 value is within range. The is_null field is true when the relocation
5052 is being removed (e.g., when an L32R is being removed due to a CALLX
5053 that is converted to a direct CALL). */
e0001a05 5054
43cd72b9
BW
5055typedef struct source_reloc_struct source_reloc;
5056
5057struct source_reloc_struct
e0001a05 5058{
43cd72b9
BW
5059 asection *source_sec;
5060 r_reloc r_rel;
5061 xtensa_opcode opcode;
5062 int opnd;
5063 bfd_boolean is_null;
5064 bfd_boolean is_abs_literal;
5065};
e0001a05 5066
e0001a05 5067
e0001a05 5068static void
7fa3d080
BW
5069init_source_reloc (source_reloc *reloc,
5070 asection *source_sec,
5071 const r_reloc *r_rel,
5072 xtensa_opcode opcode,
5073 int opnd,
5074 bfd_boolean is_abs_literal)
e0001a05 5075{
43cd72b9
BW
5076 reloc->source_sec = source_sec;
5077 reloc->r_rel = *r_rel;
5078 reloc->opcode = opcode;
5079 reloc->opnd = opnd;
5080 reloc->is_null = FALSE;
5081 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5082}
5083
e0001a05 5084
43cd72b9
BW
5085/* Find the source_reloc for a particular source offset and relocation
5086 type. Note that the array is sorted by _target_ offset, so this is
5087 just a linear search. */
e0001a05 5088
43cd72b9 5089static source_reloc *
7fa3d080
BW
5090find_source_reloc (source_reloc *src_relocs,
5091 int src_count,
5092 asection *sec,
5093 Elf_Internal_Rela *irel)
e0001a05 5094{
43cd72b9 5095 int i;
e0001a05 5096
43cd72b9
BW
5097 for (i = 0; i < src_count; i++)
5098 {
5099 if (src_relocs[i].source_sec == sec
5100 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5101 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5102 == ELF32_R_TYPE (irel->r_info)))
5103 return &src_relocs[i];
5104 }
e0001a05 5105
43cd72b9 5106 return NULL;
e0001a05
NC
5107}
5108
5109
43cd72b9 5110static int
7fa3d080 5111source_reloc_compare (const void *ap, const void *bp)
e0001a05 5112{
43cd72b9
BW
5113 const source_reloc *a = (const source_reloc *) ap;
5114 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5115
43cd72b9
BW
5116 if (a->r_rel.target_offset != b->r_rel.target_offset)
5117 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5118
43cd72b9
BW
5119 /* We don't need to sort on these criteria for correctness,
5120 but enforcing a more strict ordering prevents unstable qsort
5121 from behaving differently with different implementations.
5122 Without the code below we get correct but different results
5123 on Solaris 2.7 and 2.8. We would like to always produce the
5124 same results no matter the host. */
5125
5126 if ((!a->is_null) - (!b->is_null))
5127 return ((!a->is_null) - (!b->is_null));
5128 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5129}
5130
43cd72b9
BW
5131\f
5132/* Literal values and value hash tables. */
e0001a05 5133
43cd72b9
BW
5134/* Literals with the same value can be coalesced. The literal_value
5135 structure records the value of a literal: the "r_rel" field holds the
5136 information from the relocation on the literal (if there is one) and
5137 the "value" field holds the contents of the literal word itself.
e0001a05 5138
43cd72b9
BW
5139 The value_map structure records a literal value along with the
5140 location of a literal holding that value. The value_map hash table
5141 is indexed by the literal value, so that we can quickly check if a
5142 particular literal value has been seen before and is thus a candidate
5143 for coalescing. */
e0001a05 5144
43cd72b9
BW
5145typedef struct literal_value_struct literal_value;
5146typedef struct value_map_struct value_map;
5147typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5148
43cd72b9 5149struct literal_value_struct
e0001a05 5150{
68ffbac6 5151 r_reloc r_rel;
43cd72b9
BW
5152 unsigned long value;
5153 bfd_boolean is_abs_literal;
5154};
5155
5156struct value_map_struct
5157{
5158 literal_value val; /* The literal value. */
5159 r_reloc loc; /* Location of the literal. */
5160 value_map *next;
5161};
5162
5163struct value_map_hash_table_struct
5164{
5165 unsigned bucket_count;
5166 value_map **buckets;
5167 unsigned count;
5168 bfd_boolean has_last_loc;
5169 r_reloc last_loc;
5170};
5171
5172
e0001a05 5173static void
7fa3d080
BW
5174init_literal_value (literal_value *lit,
5175 const r_reloc *r_rel,
5176 unsigned long value,
5177 bfd_boolean is_abs_literal)
e0001a05 5178{
43cd72b9
BW
5179 lit->r_rel = *r_rel;
5180 lit->value = value;
5181 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5182}
5183
5184
43cd72b9 5185static bfd_boolean
7fa3d080
BW
5186literal_value_equal (const literal_value *src1,
5187 const literal_value *src2,
5188 bfd_boolean final_static_link)
e0001a05 5189{
43cd72b9 5190 struct elf_link_hash_entry *h1, *h2;
e0001a05 5191
68ffbac6 5192 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
43cd72b9 5193 return FALSE;
e0001a05 5194
43cd72b9
BW
5195 if (r_reloc_is_const (&src1->r_rel))
5196 return (src1->value == src2->value);
e0001a05 5197
43cd72b9
BW
5198 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5199 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5200 return FALSE;
e0001a05 5201
43cd72b9
BW
5202 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5203 return FALSE;
68ffbac6 5204
43cd72b9
BW
5205 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5206 return FALSE;
5207
5208 if (src1->value != src2->value)
5209 return FALSE;
68ffbac6 5210
43cd72b9
BW
5211 /* Now check for the same section (if defined) or the same elf_hash
5212 (if undefined or weak). */
5213 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5214 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5215 if (r_reloc_is_defined (&src1->r_rel)
5216 && (final_static_link
5217 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5218 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5219 {
5220 if (r_reloc_get_section (&src1->r_rel)
5221 != r_reloc_get_section (&src2->r_rel))
5222 return FALSE;
5223 }
5224 else
5225 {
5226 /* Require that the hash entries (i.e., symbols) be identical. */
5227 if (h1 != h2 || h1 == 0)
5228 return FALSE;
5229 }
5230
5231 if (src1->is_abs_literal != src2->is_abs_literal)
5232 return FALSE;
5233
5234 return TRUE;
e0001a05
NC
5235}
5236
e0001a05 5237
43cd72b9
BW
5238/* Must be power of 2. */
5239#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5240
43cd72b9 5241static value_map_hash_table *
7fa3d080 5242value_map_hash_table_init (void)
43cd72b9
BW
5243{
5244 value_map_hash_table *values;
e0001a05 5245
43cd72b9
BW
5246 values = (value_map_hash_table *)
5247 bfd_zmalloc (sizeof (value_map_hash_table));
5248 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5249 values->count = 0;
5250 values->buckets = (value_map **)
5251 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
68ffbac6 5252 if (values->buckets == NULL)
43cd72b9
BW
5253 {
5254 free (values);
5255 return NULL;
5256 }
5257 values->has_last_loc = FALSE;
5258
5259 return values;
5260}
5261
5262
5263static void
7fa3d080 5264value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5265{
43cd72b9
BW
5266 free (table->buckets);
5267 free (table);
5268}
5269
5270
5271static unsigned
7fa3d080 5272hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5273{
5274 return (val >> 2) + (val >> 10);
5275}
5276
5277
5278static unsigned
7fa3d080 5279literal_value_hash (const literal_value *src)
43cd72b9
BW
5280{
5281 unsigned hash_val;
e0001a05 5282
43cd72b9
BW
5283 hash_val = hash_bfd_vma (src->value);
5284 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5285 {
43cd72b9
BW
5286 void *sec_or_hash;
5287
5288 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5289 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5290 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
68ffbac6 5291
43cd72b9
BW
5292 /* Now check for the same section and the same elf_hash. */
5293 if (r_reloc_is_defined (&src->r_rel))
5294 sec_or_hash = r_reloc_get_section (&src->r_rel);
5295 else
5296 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5297 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5298 }
43cd72b9
BW
5299 return hash_val;
5300}
e0001a05 5301
e0001a05 5302
43cd72b9 5303/* Check if the specified literal_value has been seen before. */
e0001a05 5304
43cd72b9 5305static value_map *
7fa3d080
BW
5306value_map_get_cached_value (value_map_hash_table *map,
5307 const literal_value *val,
5308 bfd_boolean final_static_link)
43cd72b9
BW
5309{
5310 value_map *map_e;
5311 value_map *bucket;
5312 unsigned idx;
5313
5314 idx = literal_value_hash (val);
5315 idx = idx & (map->bucket_count - 1);
5316 bucket = map->buckets[idx];
5317 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5318 {
43cd72b9
BW
5319 if (literal_value_equal (&map_e->val, val, final_static_link))
5320 return map_e;
5321 }
5322 return NULL;
5323}
e0001a05 5324
e0001a05 5325
43cd72b9
BW
5326/* Record a new literal value. It is illegal to call this if VALUE
5327 already has an entry here. */
5328
5329static value_map *
7fa3d080
BW
5330add_value_map (value_map_hash_table *map,
5331 const literal_value *val,
5332 const r_reloc *loc,
5333 bfd_boolean final_static_link)
43cd72b9
BW
5334{
5335 value_map **bucket_p;
5336 unsigned idx;
5337
5338 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5339 if (val_e == NULL)
5340 {
5341 bfd_set_error (bfd_error_no_memory);
5342 return NULL;
e0001a05
NC
5343 }
5344
43cd72b9
BW
5345 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5346 val_e->val = *val;
5347 val_e->loc = *loc;
5348
5349 idx = literal_value_hash (val);
5350 idx = idx & (map->bucket_count - 1);
5351 bucket_p = &map->buckets[idx];
5352
5353 val_e->next = *bucket_p;
5354 *bucket_p = val_e;
5355 map->count++;
5356 /* FIXME: Consider resizing the hash table if we get too many entries. */
68ffbac6 5357
43cd72b9 5358 return val_e;
e0001a05
NC
5359}
5360
43cd72b9
BW
5361\f
5362/* Lists of text actions (ta_) for narrowing, widening, longcall
5363 conversion, space fill, code & literal removal, etc. */
5364
5365/* The following text actions are generated:
5366
5367 "ta_remove_insn" remove an instruction or instructions
5368 "ta_remove_longcall" convert longcall to call
5369 "ta_convert_longcall" convert longcall to nop/call
5370 "ta_narrow_insn" narrow a wide instruction
5371 "ta_widen" widen a narrow instruction
5372 "ta_fill" add fill or remove fill
5373 removed < 0 is a fill; branches to the fill address will be
5374 changed to address + fill size (e.g., address - removed)
5375 removed >= 0 branches to the fill address will stay unchanged
5376 "ta_remove_literal" remove a literal; this action is
5377 indicated when a literal is removed
5378 or replaced.
5379 "ta_add_literal" insert a new literal; this action is
5380 indicated when a literal has been moved.
5381 It may use a virtual_offset because
5382 multiple literals can be placed at the
5383 same location.
5384
5385 For each of these text actions, we also record the number of bytes
5386 removed by performing the text action. In the case of a "ta_widen"
5387 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5388
5389typedef struct text_action_struct text_action;
5390typedef struct text_action_list_struct text_action_list;
5391typedef enum text_action_enum_t text_action_t;
5392
5393enum text_action_enum_t
5394{
5395 ta_none,
5396 ta_remove_insn, /* removed = -size */
5397 ta_remove_longcall, /* removed = -size */
5398 ta_convert_longcall, /* removed = 0 */
5399 ta_narrow_insn, /* removed = -1 */
5400 ta_widen_insn, /* removed = +1 */
5401 ta_fill, /* removed = +size */
5402 ta_remove_literal,
5403 ta_add_literal
5404};
e0001a05 5405
e0001a05 5406
43cd72b9
BW
5407/* Structure for a text action record. */
5408struct text_action_struct
e0001a05 5409{
43cd72b9
BW
5410 text_action_t action;
5411 asection *sec; /* Optional */
5412 bfd_vma offset;
5413 bfd_vma virtual_offset; /* Zero except for adding literals. */
5414 int removed_bytes;
5415 literal_value value; /* Only valid when adding literals. */
43cd72b9 5416};
e0001a05 5417
071aa5c9
MF
5418struct removal_by_action_entry_struct
5419{
5420 bfd_vma offset;
5421 int removed;
5422 int eq_removed;
5423 int eq_removed_before_fill;
5424};
5425typedef struct removal_by_action_entry_struct removal_by_action_entry;
5426
5427struct removal_by_action_map_struct
5428{
5429 unsigned n_entries;
5430 removal_by_action_entry *entry;
5431};
5432typedef struct removal_by_action_map_struct removal_by_action_map;
5433
e0001a05 5434
43cd72b9
BW
5435/* List of all of the actions taken on a text section. */
5436struct text_action_list_struct
5437{
4c2af04f
MF
5438 unsigned count;
5439 splay_tree tree;
071aa5c9 5440 removal_by_action_map map;
43cd72b9 5441};
e0001a05 5442
e0001a05 5443
7fa3d080
BW
5444static text_action *
5445find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9 5446{
4c2af04f 5447 text_action a;
43cd72b9
BW
5448
5449 /* It is not necessary to fill at the end of a section. */
5450 if (sec->size == offset)
5451 return NULL;
5452
4c2af04f
MF
5453 a.offset = offset;
5454 a.action = ta_fill;
5455
5456 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5457 if (node)
5458 return (text_action *)node->value;
43cd72b9
BW
5459 return NULL;
5460}
5461
5462
5463static int
7fa3d080
BW
5464compute_removed_action_diff (const text_action *ta,
5465 asection *sec,
5466 bfd_vma offset,
5467 int removed,
5468 int removable_space)
43cd72b9
BW
5469{
5470 int new_removed;
5471 int current_removed = 0;
5472
7fa3d080 5473 if (ta)
43cd72b9
BW
5474 current_removed = ta->removed_bytes;
5475
5476 BFD_ASSERT (ta == NULL || ta->offset == offset);
5477 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5478
5479 /* It is not necessary to fill at the end of a section. Clean this up. */
5480 if (sec->size == offset)
5481 new_removed = removable_space - 0;
5482 else
5483 {
5484 int space;
5485 int added = -removed - current_removed;
5486 /* Ignore multiples of the section alignment. */
5487 added = ((1 << sec->alignment_power) - 1) & added;
5488 new_removed = (-added);
5489
5490 /* Modify for removable. */
5491 space = removable_space - new_removed;
5492 new_removed = (removable_space
5493 - (((1 << sec->alignment_power) - 1) & space));
5494 }
5495 return (new_removed - current_removed);
5496}
5497
5498
7fa3d080
BW
5499static void
5500adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5501{
5502 ta->removed_bytes += fill_diff;
5503}
5504
5505
4c2af04f
MF
5506static int
5507text_action_compare (splay_tree_key a, splay_tree_key b)
5508{
5509 text_action *pa = (text_action *)a;
5510 text_action *pb = (text_action *)b;
5511 static const int action_priority[] =
5512 {
5513 [ta_fill] = 0,
5514 [ta_none] = 1,
5515 [ta_convert_longcall] = 2,
5516 [ta_narrow_insn] = 3,
5517 [ta_remove_insn] = 4,
5518 [ta_remove_longcall] = 5,
5519 [ta_remove_literal] = 6,
5520 [ta_widen_insn] = 7,
5521 [ta_add_literal] = 8,
5522 };
5523
5524 if (pa->offset == pb->offset)
5525 {
5526 if (pa->action == pb->action)
5527 return 0;
5528 return action_priority[pa->action] - action_priority[pb->action];
5529 }
5530 else
5531 return pa->offset < pb->offset ? -1 : 1;
5532}
5533
5534static text_action *
5535action_first (text_action_list *action_list)
5536{
5537 splay_tree_node node = splay_tree_min (action_list->tree);
5538 return node ? (text_action *)node->value : NULL;
5539}
5540
5541static text_action *
5542action_next (text_action_list *action_list, text_action *action)
5543{
5544 splay_tree_node node = splay_tree_successor (action_list->tree,
5545 (splay_tree_key)action);
5546 return node ? (text_action *)node->value : NULL;
5547}
5548
43cd72b9
BW
5549/* Add a modification action to the text. For the case of adding or
5550 removing space, modify any current fill and assume that
5551 "unreachable_space" bytes can be freely contracted. Note that a
5552 negative removed value is a fill. */
5553
68ffbac6 5554static void
7fa3d080
BW
5555text_action_add (text_action_list *l,
5556 text_action_t action,
5557 asection *sec,
5558 bfd_vma offset,
5559 int removed)
43cd72b9 5560{
43cd72b9 5561 text_action *ta;
4c2af04f 5562 text_action a;
43cd72b9
BW
5563
5564 /* It is not necessary to fill at the end of a section. */
5565 if (action == ta_fill && sec->size == offset)
5566 return;
5567
5568 /* It is not necessary to fill 0 bytes. */
5569 if (action == ta_fill && removed == 0)
5570 return;
5571
4c2af04f
MF
5572 a.action = action;
5573 a.offset = offset;
5574
5575 if (action == ta_fill)
43cd72b9 5576 {
4c2af04f 5577 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
68ffbac6 5578
4c2af04f 5579 if (node)
43cd72b9 5580 {
4c2af04f
MF
5581 ta = (text_action *)node->value;
5582 ta->removed_bytes += removed;
5583 return;
43cd72b9
BW
5584 }
5585 }
4c2af04f
MF
5586 else
5587 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
43cd72b9 5588
43cd72b9
BW
5589 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5590 ta->action = action;
5591 ta->sec = sec;
5592 ta->offset = offset;
5593 ta->removed_bytes = removed;
4c2af04f
MF
5594 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5595 ++l->count;
43cd72b9
BW
5596}
5597
5598
5599static void
7fa3d080
BW
5600text_action_add_literal (text_action_list *l,
5601 text_action_t action,
5602 const r_reloc *loc,
5603 const literal_value *value,
5604 int removed)
43cd72b9 5605{
43cd72b9
BW
5606 text_action *ta;
5607 asection *sec = r_reloc_get_section (loc);
5608 bfd_vma offset = loc->target_offset;
5609 bfd_vma virtual_offset = loc->virtual_offset;
5610
5611 BFD_ASSERT (action == ta_add_literal);
5612
43cd72b9
BW
5613 /* Create a new record and fill it up. */
5614 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5615 ta->action = action;
5616 ta->sec = sec;
5617 ta->offset = offset;
5618 ta->virtual_offset = virtual_offset;
5619 ta->value = *value;
5620 ta->removed_bytes = removed;
4c2af04f
MF
5621
5622 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5623 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5624 ++l->count;
43cd72b9
BW
5625}
5626
5627
03669f1c
BW
5628/* Find the total offset adjustment for the relaxations specified by
5629 text_actions, beginning from a particular starting action. This is
5630 typically used from offset_with_removed_text to search an entire list of
5631 actions, but it may also be called directly when adjusting adjacent offsets
5632 so that each search may begin where the previous one left off. */
5633
5634static int
4c2af04f
MF
5635removed_by_actions (text_action_list *action_list,
5636 text_action **p_start_action,
03669f1c
BW
5637 bfd_vma offset,
5638 bfd_boolean before_fill)
43cd72b9
BW
5639{
5640 text_action *r;
5641 int removed = 0;
5642
03669f1c 5643 r = *p_start_action;
4c2af04f
MF
5644 if (r)
5645 {
5646 splay_tree_node node = splay_tree_lookup (action_list->tree,
5647 (splay_tree_key)r);
5648 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5649 }
5650
03669f1c 5651 while (r)
43cd72b9 5652 {
03669f1c
BW
5653 if (r->offset > offset)
5654 break;
5655
5656 if (r->offset == offset
5657 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5658 break;
5659
5660 removed += r->removed_bytes;
5661
4c2af04f 5662 r = action_next (action_list, r);
43cd72b9
BW
5663 }
5664
03669f1c
BW
5665 *p_start_action = r;
5666 return removed;
5667}
5668
5669
68ffbac6 5670static bfd_vma
03669f1c
BW
5671offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5672{
4c2af04f
MF
5673 text_action *r = action_first (action_list);
5674
5675 return offset - removed_by_actions (action_list, &r, offset, FALSE);
43cd72b9
BW
5676}
5677
5678
03e94c08
BW
5679static unsigned
5680action_list_count (text_action_list *action_list)
5681{
4c2af04f 5682 return action_list->count;
03e94c08
BW
5683}
5684
4c2af04f
MF
5685typedef struct map_action_fn_context_struct map_action_fn_context;
5686struct map_action_fn_context_struct
071aa5c9 5687{
4c2af04f 5688 int removed;
071aa5c9
MF
5689 removal_by_action_map map;
5690 bfd_boolean eq_complete;
4c2af04f 5691};
071aa5c9 5692
4c2af04f
MF
5693static int
5694map_action_fn (splay_tree_node node, void *p)
5695{
5696 map_action_fn_context *ctx = p;
5697 text_action *r = (text_action *)node->value;
5698 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
071aa5c9 5699
4c2af04f 5700 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
071aa5c9 5701 {
4c2af04f
MF
5702 --ientry;
5703 }
5704 else
5705 {
5706 ++ctx->map.n_entries;
5707 ctx->eq_complete = FALSE;
5708 ientry->offset = r->offset;
5709 ientry->eq_removed_before_fill = ctx->removed;
5710 }
071aa5c9 5711
4c2af04f
MF
5712 if (!ctx->eq_complete)
5713 {
5714 if (r->action != ta_fill || r->removed_bytes >= 0)
071aa5c9 5715 {
4c2af04f
MF
5716 ientry->eq_removed = ctx->removed;
5717 ctx->eq_complete = TRUE;
071aa5c9
MF
5718 }
5719 else
4c2af04f
MF
5720 ientry->eq_removed = ctx->removed + r->removed_bytes;
5721 }
071aa5c9 5722
4c2af04f
MF
5723 ctx->removed += r->removed_bytes;
5724 ientry->removed = ctx->removed;
5725 return 0;
5726}
071aa5c9 5727
4c2af04f
MF
5728static void
5729map_removal_by_action (text_action_list *action_list)
5730{
5731 map_action_fn_context ctx;
5732
5733 ctx.removed = 0;
5734 ctx.map.n_entries = 0;
5735 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5736 sizeof (removal_by_action_entry));
5737 ctx.eq_complete = FALSE;
5738
5739 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5740 action_list->map = ctx.map;
071aa5c9
MF
5741}
5742
5743static int
5744removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5745 bfd_boolean before_fill)
5746{
5747 unsigned a, b;
5748
5749 if (!action_list->map.entry)
5750 map_removal_by_action (action_list);
5751
5752 if (!action_list->map.n_entries)
5753 return 0;
5754
5755 a = 0;
5756 b = action_list->map.n_entries;
5757
5758 while (b - a > 1)
5759 {
5760 unsigned c = (a + b) / 2;
5761
5762 if (action_list->map.entry[c].offset <= offset)
5763 a = c;
5764 else
5765 b = c;
5766 }
5767
5768 if (action_list->map.entry[a].offset < offset)
5769 {
5770 return action_list->map.entry[a].removed;
5771 }
5772 else if (action_list->map.entry[a].offset == offset)
5773 {
5774 return before_fill ?
5775 action_list->map.entry[a].eq_removed_before_fill :
5776 action_list->map.entry[a].eq_removed;
5777 }
5778 else
5779 {
5780 return 0;
5781 }
5782}
5783
5784static bfd_vma
5785offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5786{
5787 int removed = removed_by_actions_map (action_list, offset, FALSE);
5788 return offset - removed;
5789}
5790
03e94c08 5791
43cd72b9
BW
5792/* The find_insn_action routine will only find non-fill actions. */
5793
7fa3d080
BW
5794static text_action *
5795find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9 5796{
4c2af04f 5797 static const text_action_t action[] =
43cd72b9 5798 {
4c2af04f
MF
5799 ta_convert_longcall,
5800 ta_remove_longcall,
5801 ta_widen_insn,
5802 ta_narrow_insn,
5803 ta_remove_insn,
5804 };
5805 text_action a;
5806 unsigned i;
5807
5808 a.offset = offset;
5809 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5810 {
5811 splay_tree_node node;
5812
5813 a.action = action[i];
5814 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5815 if (node)
5816 return (text_action *)node->value;
43cd72b9
BW
5817 }
5818 return NULL;
5819}
5820
5821
5822#if DEBUG
5823
5824static void
4c2af04f
MF
5825print_action (FILE *fp, text_action *r)
5826{
5827 const char *t = "unknown";
5828 switch (r->action)
5829 {
5830 case ta_remove_insn:
5831 t = "remove_insn"; break;
5832 case ta_remove_longcall:
5833 t = "remove_longcall"; break;
5834 case ta_convert_longcall:
5835 t = "convert_longcall"; break;
5836 case ta_narrow_insn:
5837 t = "narrow_insn"; break;
5838 case ta_widen_insn:
5839 t = "widen_insn"; break;
5840 case ta_fill:
5841 t = "fill"; break;
5842 case ta_none:
5843 t = "none"; break;
5844 case ta_remove_literal:
5845 t = "remove_literal"; break;
5846 case ta_add_literal:
5847 t = "add_literal"; break;
5848 }
5849
5850 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5851 r->sec->owner->filename,
5852 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5853}
5854
5855static int
5856print_action_list_fn (splay_tree_node node, void *p)
43cd72b9 5857{
4c2af04f 5858 text_action *r = (text_action *)node->value;
43cd72b9 5859
4c2af04f
MF
5860 print_action (p, r);
5861 return 0;
5862}
43cd72b9 5863
4c2af04f
MF
5864static void
5865print_action_list (FILE *fp, text_action_list *action_list)
5866{
5867 fprintf (fp, "Text Action\n");
5868 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
43cd72b9
BW
5869}
5870
5871#endif /* DEBUG */
5872
5873\f
5874/* Lists of literals being coalesced or removed. */
5875
5876/* In the usual case, the literal identified by "from" is being
5877 coalesced with another literal identified by "to". If the literal is
5878 unused and is being removed altogether, "to.abfd" will be NULL.
5879 The removed_literal entries are kept on a per-section list, sorted
5880 by the "from" offset field. */
5881
5882typedef struct removed_literal_struct removed_literal;
3439c466 5883typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
43cd72b9
BW
5884typedef struct removed_literal_list_struct removed_literal_list;
5885
5886struct removed_literal_struct
5887{
5888 r_reloc from;
5889 r_reloc to;
5890 removed_literal *next;
5891};
5892
3439c466
MF
5893struct removed_literal_map_entry_struct
5894{
5895 bfd_vma addr;
5896 removed_literal *literal;
5897};
5898
43cd72b9
BW
5899struct removed_literal_list_struct
5900{
5901 removed_literal *head;
5902 removed_literal *tail;
3439c466
MF
5903
5904 unsigned n_map;
5905 removed_literal_map_entry *map;
43cd72b9
BW
5906};
5907
5908
43cd72b9
BW
5909/* Record that the literal at "from" is being removed. If "to" is not
5910 NULL, the "from" literal is being coalesced with the "to" literal. */
5911
5912static void
7fa3d080
BW
5913add_removed_literal (removed_literal_list *removed_list,
5914 const r_reloc *from,
5915 const r_reloc *to)
43cd72b9
BW
5916{
5917 removed_literal *r, *new_r, *next_r;
5918
5919 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5920
5921 new_r->from = *from;
5922 if (to)
5923 new_r->to = *to;
5924 else
5925 new_r->to.abfd = NULL;
5926 new_r->next = NULL;
68ffbac6 5927
43cd72b9 5928 r = removed_list->head;
68ffbac6 5929 if (r == NULL)
43cd72b9
BW
5930 {
5931 removed_list->head = new_r;
5932 removed_list->tail = new_r;
5933 }
5934 /* Special check for common case of append. */
5935 else if (removed_list->tail->from.target_offset < from->target_offset)
5936 {
5937 removed_list->tail->next = new_r;
5938 removed_list->tail = new_r;
5939 }
5940 else
5941 {
68ffbac6 5942 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5943 {
5944 r = r->next;
5945 }
5946 next_r = r->next;
5947 r->next = new_r;
5948 new_r->next = next_r;
5949 if (next_r == NULL)
5950 removed_list->tail = new_r;
5951 }
5952}
5953
3439c466
MF
5954static void
5955map_removed_literal (removed_literal_list *removed_list)
5956{
5957 unsigned n_map = 0;
5958 unsigned i;
5959 removed_literal_map_entry *map = NULL;
5960 removed_literal *r = removed_list->head;
5961
5962 for (i = 0; r; ++i, r = r->next)
5963 {
5964 if (i == n_map)
5965 {
5966 n_map = (n_map * 2) + 2;
5967 map = bfd_realloc (map, n_map * sizeof (*map));
5968 }
5969 map[i].addr = r->from.target_offset;
5970 map[i].literal = r;
5971 }
5972 removed_list->map = map;
5973 removed_list->n_map = i;
5974}
5975
5976static int
5977removed_literal_compare (const void *a, const void *b)
5978{
5979 const removed_literal_map_entry *pa = a;
5980 const removed_literal_map_entry *pb = b;
5981
5982 if (pa->addr == pb->addr)
5983 return 0;
5984 else
5985 return pa->addr < pb->addr ? -1 : 1;
5986}
43cd72b9
BW
5987
5988/* Check if the list of removed literals contains an entry for the
5989 given address. Return the entry if found. */
5990
5991static removed_literal *
7fa3d080 5992find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9 5993{
3439c466
MF
5994 removed_literal_map_entry *p;
5995 removed_literal *r = NULL;
5996
5997 if (removed_list->map == NULL)
5998 map_removed_literal (removed_list);
5999
6000 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6001 sizeof (*removed_list->map), removed_literal_compare);
6002 if (p)
6003 {
6004 while (p != removed_list->map && (p - 1)->addr == addr)
6005 --p;
6006 r = p->literal;
6007 }
6008 return r;
43cd72b9
BW
6009}
6010
6011
6012#if DEBUG
6013
6014static void
7fa3d080 6015print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
6016{
6017 removed_literal *r;
6018 r = removed_list->head;
6019 if (r)
6020 fprintf (fp, "Removed Literals\n");
6021 for (; r != NULL; r = r->next)
6022 {
6023 print_r_reloc (fp, &r->from);
6024 fprintf (fp, " => ");
6025 if (r->to.abfd == NULL)
6026 fprintf (fp, "REMOVED");
6027 else
6028 print_r_reloc (fp, &r->to);
6029 fprintf (fp, "\n");
6030 }
6031}
6032
6033#endif /* DEBUG */
6034
6035\f
6036/* Per-section data for relaxation. */
6037
6038typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6039
6040struct xtensa_relax_info_struct
6041{
6042 bfd_boolean is_relaxable_literal_section;
6043 bfd_boolean is_relaxable_asm_section;
6044 int visited; /* Number of times visited. */
6045
6046 source_reloc *src_relocs; /* Array[src_count]. */
6047 int src_count;
6048 int src_next; /* Next src_relocs entry to assign. */
6049
6050 removed_literal_list removed_list;
6051 text_action_list action_list;
6052
6053 reloc_bfd_fix *fix_list;
6054 reloc_bfd_fix *fix_array;
6055 unsigned fix_array_count;
6056
6057 /* Support for expanding the reloc array that is stored
6058 in the section structure. If the relocations have been
6059 reallocated, the newly allocated relocations will be referenced
6060 here along with the actual size allocated. The relocation
6061 count will always be found in the section structure. */
68ffbac6 6062 Elf_Internal_Rela *allocated_relocs;
43cd72b9
BW
6063 unsigned relocs_count;
6064 unsigned allocated_relocs_count;
6065};
6066
6067struct elf_xtensa_section_data
6068{
6069 struct bfd_elf_section_data elf;
6070 xtensa_relax_info relax_info;
6071};
6072
43cd72b9
BW
6073
6074static bfd_boolean
7fa3d080 6075elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 6076{
f592407e
AM
6077 if (!sec->used_by_bfd)
6078 {
6079 struct elf_xtensa_section_data *sdata;
6080 bfd_size_type amt = sizeof (*sdata);
43cd72b9 6081
f592407e
AM
6082 sdata = bfd_zalloc (abfd, amt);
6083 if (sdata == NULL)
6084 return FALSE;
6085 sec->used_by_bfd = sdata;
6086 }
43cd72b9
BW
6087
6088 return _bfd_elf_new_section_hook (abfd, sec);
6089}
6090
6091
7fa3d080
BW
6092static xtensa_relax_info *
6093get_xtensa_relax_info (asection *sec)
6094{
6095 struct elf_xtensa_section_data *section_data;
6096
6097 /* No info available if no section or if it is an output section. */
6098 if (!sec || sec == sec->output_section)
6099 return NULL;
6100
6101 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6102 return &section_data->relax_info;
6103}
6104
6105
43cd72b9 6106static void
7fa3d080 6107init_xtensa_relax_info (asection *sec)
43cd72b9
BW
6108{
6109 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6110
6111 relax_info->is_relaxable_literal_section = FALSE;
6112 relax_info->is_relaxable_asm_section = FALSE;
6113 relax_info->visited = 0;
6114
6115 relax_info->src_relocs = NULL;
6116 relax_info->src_count = 0;
6117 relax_info->src_next = 0;
6118
6119 relax_info->removed_list.head = NULL;
6120 relax_info->removed_list.tail = NULL;
6121
4c2af04f
MF
6122 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6123 NULL, NULL);
071aa5c9
MF
6124 relax_info->action_list.map.n_entries = 0;
6125 relax_info->action_list.map.entry = NULL;
6126
43cd72b9
BW
6127 relax_info->fix_list = NULL;
6128 relax_info->fix_array = NULL;
6129 relax_info->fix_array_count = 0;
6130
68ffbac6 6131 relax_info->allocated_relocs = NULL;
43cd72b9
BW
6132 relax_info->relocs_count = 0;
6133 relax_info->allocated_relocs_count = 0;
6134}
6135
43cd72b9
BW
6136\f
6137/* Coalescing literals may require a relocation to refer to a section in
6138 a different input file, but the standard relocation information
6139 cannot express that. Instead, the reloc_bfd_fix structures are used
6140 to "fix" the relocations that refer to sections in other input files.
6141 These structures are kept on per-section lists. The "src_type" field
6142 records the relocation type in case there are multiple relocations on
6143 the same location. FIXME: This is ugly; an alternative might be to
6144 add new symbols with the "owner" field to some other input file. */
6145
6146struct reloc_bfd_fix_struct
6147{
6148 asection *src_sec;
6149 bfd_vma src_offset;
6150 unsigned src_type; /* Relocation type. */
68ffbac6 6151
43cd72b9
BW
6152 asection *target_sec;
6153 bfd_vma target_offset;
6154 bfd_boolean translated;
68ffbac6 6155
43cd72b9
BW
6156 reloc_bfd_fix *next;
6157};
6158
6159
43cd72b9 6160static reloc_bfd_fix *
7fa3d080
BW
6161reloc_bfd_fix_init (asection *src_sec,
6162 bfd_vma src_offset,
6163 unsigned src_type,
7fa3d080
BW
6164 asection *target_sec,
6165 bfd_vma target_offset,
6166 bfd_boolean translated)
43cd72b9
BW
6167{
6168 reloc_bfd_fix *fix;
6169
6170 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6171 fix->src_sec = src_sec;
6172 fix->src_offset = src_offset;
6173 fix->src_type = src_type;
43cd72b9
BW
6174 fix->target_sec = target_sec;
6175 fix->target_offset = target_offset;
6176 fix->translated = translated;
6177
6178 return fix;
6179}
6180
6181
6182static void
7fa3d080 6183add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
6184{
6185 xtensa_relax_info *relax_info;
6186
6187 relax_info = get_xtensa_relax_info (src_sec);
6188 fix->next = relax_info->fix_list;
6189 relax_info->fix_list = fix;
6190}
6191
6192
6193static int
7fa3d080 6194fix_compare (const void *ap, const void *bp)
43cd72b9
BW
6195{
6196 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6197 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6198
6199 if (a->src_offset != b->src_offset)
6200 return (a->src_offset - b->src_offset);
6201 return (a->src_type - b->src_type);
6202}
6203
6204
6205static void
7fa3d080 6206cache_fix_array (asection *sec)
43cd72b9
BW
6207{
6208 unsigned i, count = 0;
6209 reloc_bfd_fix *r;
6210 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6211
6212 if (relax_info == NULL)
6213 return;
6214 if (relax_info->fix_list == NULL)
6215 return;
6216
6217 for (r = relax_info->fix_list; r != NULL; r = r->next)
6218 count++;
6219
6220 relax_info->fix_array =
6221 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6222 relax_info->fix_array_count = count;
6223
6224 r = relax_info->fix_list;
6225 for (i = 0; i < count; i++, r = r->next)
6226 {
6227 relax_info->fix_array[count - 1 - i] = *r;
6228 relax_info->fix_array[count - 1 - i].next = NULL;
6229 }
6230
6231 qsort (relax_info->fix_array, relax_info->fix_array_count,
6232 sizeof (reloc_bfd_fix), fix_compare);
6233}
6234
6235
6236static reloc_bfd_fix *
7fa3d080 6237get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6238{
6239 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6240 reloc_bfd_fix *rv;
6241 reloc_bfd_fix key;
6242
6243 if (relax_info == NULL)
6244 return NULL;
6245 if (relax_info->fix_list == NULL)
6246 return NULL;
6247
6248 if (relax_info->fix_array == NULL)
6249 cache_fix_array (sec);
6250
6251 key.src_offset = offset;
6252 key.src_type = type;
6253 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6254 sizeof (reloc_bfd_fix), fix_compare);
6255 return rv;
6256}
6257
6258\f
6259/* Section caching. */
6260
6261typedef struct section_cache_struct section_cache_t;
6262
6263struct section_cache_struct
6264{
6265 asection *sec;
6266
6267 bfd_byte *contents; /* Cache of the section contents. */
6268 bfd_size_type content_length;
6269
6270 property_table_entry *ptbl; /* Cache of the section property table. */
6271 unsigned pte_count;
6272
6273 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6274 unsigned reloc_count;
6275};
6276
6277
7fa3d080
BW
6278static void
6279init_section_cache (section_cache_t *sec_cache)
6280{
6281 memset (sec_cache, 0, sizeof (*sec_cache));
6282}
43cd72b9
BW
6283
6284
6285static void
65e911f9 6286free_section_cache (section_cache_t *sec_cache)
43cd72b9 6287{
7fa3d080
BW
6288 if (sec_cache->sec)
6289 {
6290 release_contents (sec_cache->sec, sec_cache->contents);
6291 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6292 if (sec_cache->ptbl)
6293 free (sec_cache->ptbl);
7fa3d080 6294 }
43cd72b9
BW
6295}
6296
6297
6298static bfd_boolean
7fa3d080
BW
6299section_cache_section (section_cache_t *sec_cache,
6300 asection *sec,
6301 struct bfd_link_info *link_info)
43cd72b9
BW
6302{
6303 bfd *abfd;
6304 property_table_entry *prop_table = NULL;
6305 int ptblsize = 0;
6306 bfd_byte *contents = NULL;
6307 Elf_Internal_Rela *internal_relocs = NULL;
6308 bfd_size_type sec_size;
6309
6310 if (sec == NULL)
6311 return FALSE;
6312 if (sec == sec_cache->sec)
6313 return TRUE;
6314
6315 abfd = sec->owner;
6316 sec_size = bfd_get_section_limit (abfd, sec);
6317
6318 /* Get the contents. */
6319 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6320 if (contents == NULL && sec_size != 0)
6321 goto err;
6322
6323 /* Get the relocations. */
6324 internal_relocs = retrieve_internal_relocs (abfd, sec,
6325 link_info->keep_memory);
6326
6327 /* Get the entry table. */
6328 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6329 XTENSA_PROP_SEC_NAME, FALSE);
6330 if (ptblsize < 0)
6331 goto err;
6332
6333 /* Fill in the new section cache. */
65e911f9
AM
6334 free_section_cache (sec_cache);
6335 init_section_cache (sec_cache);
43cd72b9
BW
6336
6337 sec_cache->sec = sec;
6338 sec_cache->contents = contents;
6339 sec_cache->content_length = sec_size;
6340 sec_cache->relocs = internal_relocs;
6341 sec_cache->reloc_count = sec->reloc_count;
6342 sec_cache->pte_count = ptblsize;
6343 sec_cache->ptbl = prop_table;
6344
6345 return TRUE;
6346
6347 err:
6348 release_contents (sec, contents);
6349 release_internal_relocs (sec, internal_relocs);
6350 if (prop_table)
6351 free (prop_table);
6352 return FALSE;
6353}
6354
43cd72b9
BW
6355\f
6356/* Extended basic blocks. */
6357
6358/* An ebb_struct represents an Extended Basic Block. Within this
6359 range, we guarantee that all instructions are decodable, the
6360 property table entries are contiguous, and no property table
6361 specifies a segment that cannot have instructions moved. This
6362 structure contains caches of the contents, property table and
6363 relocations for the specified section for easy use. The range is
6364 specified by ranges of indices for the byte offset, property table
6365 offsets and relocation offsets. These must be consistent. */
6366
6367typedef struct ebb_struct ebb_t;
6368
6369struct ebb_struct
6370{
6371 asection *sec;
6372
6373 bfd_byte *contents; /* Cache of the section contents. */
6374 bfd_size_type content_length;
6375
6376 property_table_entry *ptbl; /* Cache of the section property table. */
6377 unsigned pte_count;
6378
6379 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6380 unsigned reloc_count;
6381
6382 bfd_vma start_offset; /* Offset in section. */
6383 unsigned start_ptbl_idx; /* Offset in the property table. */
6384 unsigned start_reloc_idx; /* Offset in the relocations. */
6385
6386 bfd_vma end_offset;
6387 unsigned end_ptbl_idx;
6388 unsigned end_reloc_idx;
6389
6390 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6391
6392 /* The unreachable property table at the end of this set of blocks;
6393 NULL if the end is not an unreachable block. */
6394 property_table_entry *ends_unreachable;
6395};
6396
6397
6398enum ebb_target_enum
6399{
6400 EBB_NO_ALIGN = 0,
6401 EBB_DESIRE_TGT_ALIGN,
6402 EBB_REQUIRE_TGT_ALIGN,
6403 EBB_REQUIRE_LOOP_ALIGN,
6404 EBB_REQUIRE_ALIGN
6405};
6406
6407
6408/* proposed_action_struct is similar to the text_action_struct except
6409 that is represents a potential transformation, not one that will
6410 occur. We build a list of these for an extended basic block
6411 and use them to compute the actual actions desired. We must be
6412 careful that the entire set of actual actions we perform do not
6413 break any relocations that would fit if the actions were not
6414 performed. */
6415
6416typedef struct proposed_action_struct proposed_action;
6417
6418struct proposed_action_struct
6419{
6420 enum ebb_target_enum align_type; /* for the target alignment */
6421 bfd_vma alignment_pow;
6422 text_action_t action;
6423 bfd_vma offset;
6424 int removed_bytes;
6425 bfd_boolean do_action; /* If false, then we will not perform the action. */
6426};
6427
6428
6429/* The ebb_constraint_struct keeps a set of proposed actions for an
6430 extended basic block. */
6431
6432typedef struct ebb_constraint_struct ebb_constraint;
6433
6434struct ebb_constraint_struct
6435{
6436 ebb_t ebb;
6437 bfd_boolean start_movable;
6438
6439 /* Bytes of extra space at the beginning if movable. */
6440 int start_extra_space;
6441
6442 enum ebb_target_enum start_align;
6443
6444 bfd_boolean end_movable;
6445
6446 /* Bytes of extra space at the end if movable. */
6447 int end_extra_space;
6448
6449 unsigned action_count;
6450 unsigned action_allocated;
6451
6452 /* Array of proposed actions. */
6453 proposed_action *actions;
6454
6455 /* Action alignments -- one for each proposed action. */
6456 enum ebb_target_enum *action_aligns;
6457};
6458
6459
43cd72b9 6460static void
7fa3d080 6461init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6462{
6463 memset (c, 0, sizeof (ebb_constraint));
6464}
6465
6466
6467static void
7fa3d080 6468free_ebb_constraint (ebb_constraint *c)
43cd72b9 6469{
7fa3d080 6470 if (c->actions)
43cd72b9
BW
6471 free (c->actions);
6472}
6473
6474
6475static void
7fa3d080
BW
6476init_ebb (ebb_t *ebb,
6477 asection *sec,
6478 bfd_byte *contents,
6479 bfd_size_type content_length,
6480 property_table_entry *prop_table,
6481 unsigned ptblsize,
6482 Elf_Internal_Rela *internal_relocs,
6483 unsigned reloc_count)
43cd72b9
BW
6484{
6485 memset (ebb, 0, sizeof (ebb_t));
6486 ebb->sec = sec;
6487 ebb->contents = contents;
6488 ebb->content_length = content_length;
6489 ebb->ptbl = prop_table;
6490 ebb->pte_count = ptblsize;
6491 ebb->relocs = internal_relocs;
6492 ebb->reloc_count = reloc_count;
6493 ebb->start_offset = 0;
6494 ebb->end_offset = ebb->content_length - 1;
6495 ebb->start_ptbl_idx = 0;
6496 ebb->end_ptbl_idx = ptblsize;
6497 ebb->start_reloc_idx = 0;
6498 ebb->end_reloc_idx = reloc_count;
6499}
6500
6501
6502/* Extend the ebb to all decodable contiguous sections. The algorithm
6503 for building a basic block around an instruction is to push it
6504 forward until we hit the end of a section, an unreachable block or
6505 a block that cannot be transformed. Then we push it backwards
6506 searching for similar conditions. */
6507
7fa3d080
BW
6508static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6509static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6510static bfd_size_type insn_block_decodable_len
6511 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6512
43cd72b9 6513static bfd_boolean
7fa3d080 6514extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6515{
6516 if (!extend_ebb_bounds_forward (ebb))
6517 return FALSE;
6518 if (!extend_ebb_bounds_backward (ebb))
6519 return FALSE;
6520 return TRUE;
6521}
6522
6523
6524static bfd_boolean
7fa3d080 6525extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6526{
6527 property_table_entry *the_entry, *new_entry;
6528
6529 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6530
6531 /* Stop when (1) we cannot decode an instruction, (2) we are at
6532 the end of the property tables, (3) we hit a non-contiguous property
6533 table entry, (4) we hit a NO_TRANSFORM region. */
6534
6535 while (1)
6536 {
6537 bfd_vma entry_end;
6538 bfd_size_type insn_block_len;
6539
6540 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6541 insn_block_len =
6542 insn_block_decodable_len (ebb->contents, ebb->content_length,
6543 ebb->end_offset,
6544 entry_end - ebb->end_offset);
6545 if (insn_block_len != (entry_end - ebb->end_offset))
6546 {
4eca0228 6547 _bfd_error_handler
695344c0 6548 /* xgettext:c-format */
43cd72b9
BW
6549 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6550 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6551 return FALSE;
6552 }
6553 ebb->end_offset += insn_block_len;
6554
6555 if (ebb->end_offset == ebb->sec->size)
6556 ebb->ends_section = TRUE;
6557
6558 /* Update the reloc counter. */
6559 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6560 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6561 < ebb->end_offset))
6562 {
6563 ebb->end_reloc_idx++;
6564 }
6565
6566 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6567 return TRUE;
6568
6569 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6570 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6571 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6572 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6573 break;
6574
6575 if (the_entry->address + the_entry->size != new_entry->address)
6576 break;
6577
6578 the_entry = new_entry;
6579 ebb->end_ptbl_idx++;
6580 }
6581
6582 /* Quick check for an unreachable or end of file just at the end. */
6583 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6584 {
6585 if (ebb->end_offset == ebb->content_length)
6586 ebb->ends_section = TRUE;
6587 }
6588 else
6589 {
6590 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6591 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6592 && the_entry->address + the_entry->size == new_entry->address)
6593 ebb->ends_unreachable = new_entry;
6594 }
6595
6596 /* Any other ending requires exact alignment. */
6597 return TRUE;
6598}
6599
6600
6601static bfd_boolean
7fa3d080 6602extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6603{
6604 property_table_entry *the_entry, *new_entry;
6605
6606 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6607
6608 /* Stop when (1) we cannot decode the instructions in the current entry.
6609 (2) we are at the beginning of the property tables, (3) we hit a
6610 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6611
6612 while (1)
6613 {
6614 bfd_vma block_begin;
6615 bfd_size_type insn_block_len;
6616
6617 block_begin = the_entry->address - ebb->sec->vma;
6618 insn_block_len =
6619 insn_block_decodable_len (ebb->contents, ebb->content_length,
6620 block_begin,
6621 ebb->start_offset - block_begin);
6622 if (insn_block_len != ebb->start_offset - block_begin)
6623 {
4eca0228 6624 _bfd_error_handler
695344c0 6625 /* xgettext:c-format */
43cd72b9
BW
6626 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6627 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6628 return FALSE;
6629 }
6630 ebb->start_offset -= insn_block_len;
6631
6632 /* Update the reloc counter. */
6633 while (ebb->start_reloc_idx > 0
6634 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6635 >= ebb->start_offset))
6636 {
6637 ebb->start_reloc_idx--;
6638 }
6639
6640 if (ebb->start_ptbl_idx == 0)
6641 return TRUE;
6642
6643 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6644 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6645 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6646 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6647 return TRUE;
6648 if (new_entry->address + new_entry->size != the_entry->address)
6649 return TRUE;
6650
6651 the_entry = new_entry;
6652 ebb->start_ptbl_idx--;
6653 }
6654 return TRUE;
6655}
6656
6657
6658static bfd_size_type
7fa3d080
BW
6659insn_block_decodable_len (bfd_byte *contents,
6660 bfd_size_type content_len,
6661 bfd_vma block_offset,
6662 bfd_size_type block_len)
43cd72b9
BW
6663{
6664 bfd_vma offset = block_offset;
6665
6666 while (offset < block_offset + block_len)
6667 {
6668 bfd_size_type insn_len = 0;
6669
6670 insn_len = insn_decode_len (contents, content_len, offset);
6671 if (insn_len == 0)
6672 return (offset - block_offset);
6673 offset += insn_len;
6674 }
6675 return (offset - block_offset);
6676}
6677
6678
6679static void
7fa3d080 6680ebb_propose_action (ebb_constraint *c,
7fa3d080 6681 enum ebb_target_enum align_type,
288f74fa 6682 bfd_vma alignment_pow,
7fa3d080
BW
6683 text_action_t action,
6684 bfd_vma offset,
6685 int removed_bytes,
6686 bfd_boolean do_action)
43cd72b9 6687{
b08b5071 6688 proposed_action *act;
43cd72b9 6689
43cd72b9
BW
6690 if (c->action_allocated <= c->action_count)
6691 {
b08b5071 6692 unsigned new_allocated, i;
823fc61f 6693 proposed_action *new_actions;
b08b5071
BW
6694
6695 new_allocated = (c->action_count + 2) * 2;
823fc61f 6696 new_actions = (proposed_action *)
43cd72b9
BW
6697 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6698
6699 for (i = 0; i < c->action_count; i++)
6700 new_actions[i] = c->actions[i];
7fa3d080 6701 if (c->actions)
43cd72b9
BW
6702 free (c->actions);
6703 c->actions = new_actions;
6704 c->action_allocated = new_allocated;
6705 }
b08b5071
BW
6706
6707 act = &c->actions[c->action_count];
6708 act->align_type = align_type;
6709 act->alignment_pow = alignment_pow;
6710 act->action = action;
6711 act->offset = offset;
6712 act->removed_bytes = removed_bytes;
6713 act->do_action = do_action;
6714
43cd72b9
BW
6715 c->action_count++;
6716}
6717
6718\f
6719/* Access to internal relocations, section contents and symbols. */
6720
6721/* During relaxation, we need to modify relocations, section contents,
6722 and symbol definitions, and we need to keep the original values from
6723 being reloaded from the input files, i.e., we need to "pin" the
6724 modified values in memory. We also want to continue to observe the
6725 setting of the "keep-memory" flag. The following functions wrap the
6726 standard BFD functions to take care of this for us. */
6727
6728static Elf_Internal_Rela *
7fa3d080 6729retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6730{
6731 Elf_Internal_Rela *internal_relocs;
6732
6733 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6734 return NULL;
6735
6736 internal_relocs = elf_section_data (sec)->relocs;
6737 if (internal_relocs == NULL)
6738 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6739 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6740 return internal_relocs;
6741}
6742
6743
6744static void
7fa3d080 6745pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6746{
6747 elf_section_data (sec)->relocs = internal_relocs;
6748}
6749
6750
6751static void
7fa3d080 6752release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6753{
6754 if (internal_relocs
6755 && elf_section_data (sec)->relocs != internal_relocs)
6756 free (internal_relocs);
6757}
6758
6759
6760static bfd_byte *
7fa3d080 6761retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6762{
6763 bfd_byte *contents;
6764 bfd_size_type sec_size;
6765
6766 sec_size = bfd_get_section_limit (abfd, sec);
6767 contents = elf_section_data (sec)->this_hdr.contents;
68ffbac6 6768
43cd72b9
BW
6769 if (contents == NULL && sec_size != 0)
6770 {
6771 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6772 {
7fa3d080 6773 if (contents)
43cd72b9
BW
6774 free (contents);
6775 return NULL;
6776 }
68ffbac6 6777 if (keep_memory)
43cd72b9
BW
6778 elf_section_data (sec)->this_hdr.contents = contents;
6779 }
6780 return contents;
6781}
6782
6783
6784static void
7fa3d080 6785pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6786{
6787 elf_section_data (sec)->this_hdr.contents = contents;
6788}
6789
6790
6791static void
7fa3d080 6792release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6793{
6794 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6795 free (contents);
6796}
6797
6798
6799static Elf_Internal_Sym *
7fa3d080 6800retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6801{
6802 Elf_Internal_Shdr *symtab_hdr;
6803 Elf_Internal_Sym *isymbuf;
6804 size_t locsymcount;
6805
6806 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6807 locsymcount = symtab_hdr->sh_info;
6808
6809 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6810 if (isymbuf == NULL && locsymcount != 0)
6811 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6812 NULL, NULL, NULL);
6813
6814 /* Save the symbols for this input file so they won't be read again. */
6815 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6816 symtab_hdr->contents = (unsigned char *) isymbuf;
6817
6818 return isymbuf;
6819}
6820
6821\f
6822/* Code for link-time relaxation. */
6823
6824/* Initialization for relaxation: */
7fa3d080 6825static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6826static bfd_boolean find_relaxable_sections
7fa3d080 6827 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6828static bfd_boolean collect_source_relocs
7fa3d080 6829 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6830static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6831 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6832 bfd_boolean *);
43cd72b9 6833static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6834 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6835static bfd_boolean compute_text_actions
7fa3d080
BW
6836 (bfd *, asection *, struct bfd_link_info *);
6837static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6838static bfd_boolean compute_ebb_actions (ebb_constraint *);
b2b326d2 6839typedef struct reloc_range_list_struct reloc_range_list;
43cd72b9 6840static bfd_boolean check_section_ebb_pcrels_fit
b2b326d2
MF
6841 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6842 reloc_range_list *, const ebb_constraint *,
cb337148 6843 const xtensa_opcode *);
7fa3d080 6844static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6845static void text_action_add_proposed
7fa3d080
BW
6846 (text_action_list *, const ebb_constraint *, asection *);
6847static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6848
6849/* First pass: */
6850static bfd_boolean compute_removed_literals
7fa3d080 6851 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6852static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6853 (asection *, Elf_Internal_Rela *, bfd_vma);
68ffbac6 6854static bfd_boolean is_removable_literal
99ded152
BW
6855 (const source_reloc *, int, const source_reloc *, int, asection *,
6856 property_table_entry *, int);
43cd72b9 6857static bfd_boolean remove_dead_literal
7fa3d080 6858 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
68ffbac6 6859 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
7fa3d080
BW
6860static bfd_boolean identify_literal_placement
6861 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6862 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6863 source_reloc *, property_table_entry *, int, section_cache_t *,
6864 bfd_boolean);
6865static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6866static bfd_boolean coalesce_shared_literal
7fa3d080 6867 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6868static bfd_boolean move_shared_literal
7fa3d080
BW
6869 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6870 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6871
6872/* Second pass: */
7fa3d080
BW
6873static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6874static bfd_boolean translate_section_fixes (asection *);
6875static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6876static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6877static void shrink_dynamic_reloc_sections
7fa3d080 6878 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6879static bfd_boolean move_literal
7fa3d080
BW
6880 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6881 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6882static bfd_boolean relax_property_section
7fa3d080 6883 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6884
6885/* Third pass: */
7fa3d080 6886static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6887
6888
68ffbac6 6889static bfd_boolean
7fa3d080
BW
6890elf_xtensa_relax_section (bfd *abfd,
6891 asection *sec,
6892 struct bfd_link_info *link_info,
6893 bfd_boolean *again)
43cd72b9
BW
6894{
6895 static value_map_hash_table *values = NULL;
6896 static bfd_boolean relocations_analyzed = FALSE;
6897 xtensa_relax_info *relax_info;
6898
6899 if (!relocations_analyzed)
6900 {
6901 /* Do some overall initialization for relaxation. */
6902 values = value_map_hash_table_init ();
6903 if (values == NULL)
6904 return FALSE;
6905 relaxing_section = TRUE;
6906 if (!analyze_relocations (link_info))
6907 return FALSE;
6908 relocations_analyzed = TRUE;
6909 }
6910 *again = FALSE;
6911
6912 /* Don't mess with linker-created sections. */
6913 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6914 return TRUE;
6915
6916 relax_info = get_xtensa_relax_info (sec);
6917 BFD_ASSERT (relax_info != NULL);
6918
6919 switch (relax_info->visited)
6920 {
6921 case 0:
6922 /* Note: It would be nice to fold this pass into
6923 analyze_relocations, but it is important for this step that the
6924 sections be examined in link order. */
6925 if (!compute_removed_literals (abfd, sec, link_info, values))
6926 return FALSE;
6927 *again = TRUE;
6928 break;
6929
6930 case 1:
6931 if (values)
6932 value_map_hash_table_delete (values);
6933 values = NULL;
6934 if (!relax_section (abfd, sec, link_info))
6935 return FALSE;
6936 *again = TRUE;
6937 break;
6938
6939 case 2:
6940 if (!relax_section_symbols (abfd, sec))
6941 return FALSE;
6942 break;
6943 }
6944
6945 relax_info->visited++;
6946 return TRUE;
6947}
6948
6949\f
6950/* Initialization for relaxation. */
6951
6952/* This function is called once at the start of relaxation. It scans
6953 all the input sections and marks the ones that are relaxable (i.e.,
6954 literal sections with L32R relocations against them), and then
6955 collects source_reloc information for all the relocations against
6956 those relaxable sections. During this process, it also detects
6957 longcalls, i.e., calls relaxed by the assembler into indirect
6958 calls, that can be optimized back into direct calls. Within each
6959 extended basic block (ebb) containing an optimized longcall, it
6960 computes a set of "text actions" that can be performed to remove
6961 the L32R associated with the longcall while optionally preserving
6962 branch target alignments. */
6963
6964static bfd_boolean
7fa3d080 6965analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6966{
6967 bfd *abfd;
6968 asection *sec;
6969 bfd_boolean is_relaxable = FALSE;
6970
6971 /* Initialize the per-section relaxation info. */
c72f2fb2 6972 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6973 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6974 {
6975 init_xtensa_relax_info (sec);
6976 }
6977
6978 /* Mark relaxable sections (and count relocations against each one). */
c72f2fb2 6979 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6980 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6981 {
6982 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6983 return FALSE;
6984 }
6985
6986 /* Bail out if there are no relaxable sections. */
6987 if (!is_relaxable)
6988 return TRUE;
6989
6990 /* Allocate space for source_relocs. */
c72f2fb2 6991 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6993 {
6994 xtensa_relax_info *relax_info;
6995
6996 relax_info = get_xtensa_relax_info (sec);
6997 if (relax_info->is_relaxable_literal_section
6998 || relax_info->is_relaxable_asm_section)
6999 {
7000 relax_info->src_relocs = (source_reloc *)
7001 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7002 }
25c6282a
BW
7003 else
7004 relax_info->src_count = 0;
43cd72b9
BW
7005 }
7006
7007 /* Collect info on relocations against each relaxable section. */
c72f2fb2 7008 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
7009 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7010 {
7011 if (!collect_source_relocs (abfd, sec, link_info))
7012 return FALSE;
7013 }
7014
7015 /* Compute the text actions. */
c72f2fb2 7016 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
7017 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7018 {
7019 if (!compute_text_actions (abfd, sec, link_info))
7020 return FALSE;
7021 }
7022
7023 return TRUE;
7024}
7025
7026
7027/* Find all the sections that might be relaxed. The motivation for
7028 this pass is that collect_source_relocs() needs to record _all_ the
7029 relocations that target each relaxable section. That is expensive
7030 and unnecessary unless the target section is actually going to be
7031 relaxed. This pass identifies all such sections by checking if
7032 they have L32Rs pointing to them. In the process, the total number
7033 of relocations targeting each section is also counted so that we
7034 know how much space to allocate for source_relocs against each
7035 relaxable literal section. */
7036
7037static bfd_boolean
7fa3d080
BW
7038find_relaxable_sections (bfd *abfd,
7039 asection *sec,
7040 struct bfd_link_info *link_info,
7041 bfd_boolean *is_relaxable_p)
43cd72b9
BW
7042{
7043 Elf_Internal_Rela *internal_relocs;
7044 bfd_byte *contents;
7045 bfd_boolean ok = TRUE;
7046 unsigned i;
7047 xtensa_relax_info *source_relax_info;
25c6282a 7048 bfd_boolean is_l32r_reloc;
43cd72b9
BW
7049
7050 internal_relocs = retrieve_internal_relocs (abfd, sec,
7051 link_info->keep_memory);
68ffbac6 7052 if (internal_relocs == NULL)
43cd72b9
BW
7053 return ok;
7054
7055 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7056 if (contents == NULL && sec->size != 0)
7057 {
7058 ok = FALSE;
7059 goto error_return;
7060 }
7061
7062 source_relax_info = get_xtensa_relax_info (sec);
68ffbac6 7063 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7064 {
7065 Elf_Internal_Rela *irel = &internal_relocs[i];
7066 r_reloc r_rel;
7067 asection *target_sec;
7068 xtensa_relax_info *target_relax_info;
7069
7070 /* If this section has not already been marked as "relaxable", and
7071 if it contains any ASM_EXPAND relocations (marking expanded
7072 longcalls) that can be optimized into direct calls, then mark
7073 the section as "relaxable". */
7074 if (source_relax_info
7075 && !source_relax_info->is_relaxable_asm_section
7076 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7077 {
7078 bfd_boolean is_reachable = FALSE;
7079 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7080 link_info, &is_reachable)
7081 && is_reachable)
7082 {
7083 source_relax_info->is_relaxable_asm_section = TRUE;
7084 *is_relaxable_p = TRUE;
7085 }
7086 }
7087
7088 r_reloc_init (&r_rel, abfd, irel, contents,
7089 bfd_get_section_limit (abfd, sec));
7090
7091 target_sec = r_reloc_get_section (&r_rel);
7092 target_relax_info = get_xtensa_relax_info (target_sec);
7093 if (!target_relax_info)
7094 continue;
7095
7096 /* Count PC-relative operand relocations against the target section.
7097 Note: The conditions tested here must match the conditions under
7098 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
7099 is_l32r_reloc = FALSE;
7100 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7101 {
7102 xtensa_opcode opcode =
7103 get_relocation_opcode (abfd, sec, contents, irel);
7104 if (opcode != XTENSA_UNDEFINED)
7105 {
7106 is_l32r_reloc = (opcode == get_l32r_opcode ());
7107 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7108 || is_l32r_reloc)
7109 target_relax_info->src_count++;
7110 }
7111 }
43cd72b9 7112
25c6282a 7113 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
7114 {
7115 /* Mark the target section as relaxable. */
7116 target_relax_info->is_relaxable_literal_section = TRUE;
7117 *is_relaxable_p = TRUE;
7118 }
7119 }
7120
7121 error_return:
7122 release_contents (sec, contents);
7123 release_internal_relocs (sec, internal_relocs);
7124 return ok;
7125}
7126
7127
7128/* Record _all_ the relocations that point to relaxable sections, and
7129 get rid of ASM_EXPAND relocs by either converting them to
7130 ASM_SIMPLIFY or by removing them. */
7131
7132static bfd_boolean
7fa3d080
BW
7133collect_source_relocs (bfd *abfd,
7134 asection *sec,
7135 struct bfd_link_info *link_info)
43cd72b9
BW
7136{
7137 Elf_Internal_Rela *internal_relocs;
7138 bfd_byte *contents;
7139 bfd_boolean ok = TRUE;
7140 unsigned i;
7141 bfd_size_type sec_size;
7142
68ffbac6 7143 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 7144 link_info->keep_memory);
68ffbac6 7145 if (internal_relocs == NULL)
43cd72b9
BW
7146 return ok;
7147
7148 sec_size = bfd_get_section_limit (abfd, sec);
7149 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7150 if (contents == NULL && sec_size != 0)
7151 {
7152 ok = FALSE;
7153 goto error_return;
7154 }
7155
7156 /* Record relocations against relaxable literal sections. */
68ffbac6 7157 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7158 {
7159 Elf_Internal_Rela *irel = &internal_relocs[i];
7160 r_reloc r_rel;
7161 asection *target_sec;
7162 xtensa_relax_info *target_relax_info;
7163
7164 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7165
7166 target_sec = r_reloc_get_section (&r_rel);
7167 target_relax_info = get_xtensa_relax_info (target_sec);
7168
7169 if (target_relax_info
7170 && (target_relax_info->is_relaxable_literal_section
7171 || target_relax_info->is_relaxable_asm_section))
7172 {
7173 xtensa_opcode opcode = XTENSA_UNDEFINED;
7174 int opnd = -1;
7175 bfd_boolean is_abs_literal = FALSE;
7176
7177 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7178 {
7179 /* None of the current alternate relocs are PC-relative,
7180 and only PC-relative relocs matter here. However, we
7181 still need to record the opcode for literal
7182 coalescing. */
7183 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7184 if (opcode == get_l32r_opcode ())
7185 {
7186 is_abs_literal = TRUE;
7187 opnd = 1;
7188 }
7189 else
7190 opcode = XTENSA_UNDEFINED;
7191 }
7192 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7193 {
7194 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7195 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7196 }
7197
7198 if (opcode != XTENSA_UNDEFINED)
7199 {
7200 int src_next = target_relax_info->src_next++;
7201 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7202
7203 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7204 is_abs_literal);
7205 }
7206 }
7207 }
7208
7209 /* Now get rid of ASM_EXPAND relocations. At this point, the
7210 src_relocs array for the target literal section may still be
7211 incomplete, but it must at least contain the entries for the L32R
7212 relocations associated with ASM_EXPANDs because they were just
7213 added in the preceding loop over the relocations. */
7214
68ffbac6 7215 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7216 {
7217 Elf_Internal_Rela *irel = &internal_relocs[i];
7218 bfd_boolean is_reachable;
7219
7220 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7221 &is_reachable))
7222 continue;
7223
7224 if (is_reachable)
7225 {
7226 Elf_Internal_Rela *l32r_irel;
7227 r_reloc r_rel;
7228 asection *target_sec;
7229 xtensa_relax_info *target_relax_info;
7230
7231 /* Mark the source_reloc for the L32R so that it will be
7232 removed in compute_removed_literals(), along with the
7233 associated literal. */
7234 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7235 irel, internal_relocs);
7236 if (l32r_irel == NULL)
7237 continue;
7238
7239 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7240
7241 target_sec = r_reloc_get_section (&r_rel);
7242 target_relax_info = get_xtensa_relax_info (target_sec);
7243
7244 if (target_relax_info
7245 && (target_relax_info->is_relaxable_literal_section
7246 || target_relax_info->is_relaxable_asm_section))
7247 {
7248 source_reloc *s_reloc;
7249
7250 /* Search the source_relocs for the entry corresponding to
7251 the l32r_irel. Note: The src_relocs array is not yet
7252 sorted, but it wouldn't matter anyway because we're
7253 searching by source offset instead of target offset. */
68ffbac6 7254 s_reloc = find_source_reloc (target_relax_info->src_relocs,
43cd72b9
BW
7255 target_relax_info->src_next,
7256 sec, l32r_irel);
7257 BFD_ASSERT (s_reloc);
7258 s_reloc->is_null = TRUE;
7259 }
7260
7261 /* Convert this reloc to ASM_SIMPLIFY. */
7262 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7263 R_XTENSA_ASM_SIMPLIFY);
7264 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7265
7266 pin_internal_relocs (sec, internal_relocs);
7267 }
7268 else
7269 {
7270 /* It is resolvable but doesn't reach. We resolve now
7271 by eliminating the relocation -- the call will remain
7272 expanded into L32R/CALLX. */
7273 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7274 pin_internal_relocs (sec, internal_relocs);
7275 }
7276 }
7277
7278 error_return:
7279 release_contents (sec, contents);
7280 release_internal_relocs (sec, internal_relocs);
7281 return ok;
7282}
7283
7284
7285/* Return TRUE if the asm expansion can be resolved. Generally it can
7286 be resolved on a final link or when a partial link locates it in the
7287 same section as the target. Set "is_reachable" flag if the target of
7288 the call is within the range of a direct call, given the current VMA
7289 for this section and the target section. */
7290
7291bfd_boolean
7fa3d080
BW
7292is_resolvable_asm_expansion (bfd *abfd,
7293 asection *sec,
7294 bfd_byte *contents,
7295 Elf_Internal_Rela *irel,
7296 struct bfd_link_info *link_info,
7297 bfd_boolean *is_reachable_p)
43cd72b9
BW
7298{
7299 asection *target_sec;
7300 bfd_vma target_offset;
7301 r_reloc r_rel;
7302 xtensa_opcode opcode, direct_call_opcode;
7303 bfd_vma self_address;
7304 bfd_vma dest_address;
7305 bfd_boolean uses_l32r;
7306 bfd_size_type sec_size;
7307
7308 *is_reachable_p = FALSE;
7309
7310 if (contents == NULL)
7311 return FALSE;
7312
68ffbac6 7313 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
43cd72b9
BW
7314 return FALSE;
7315
7316 sec_size = bfd_get_section_limit (abfd, sec);
7317 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7318 sec_size - irel->r_offset, &uses_l32r);
7319 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7320 if (!uses_l32r)
7321 return FALSE;
68ffbac6 7322
43cd72b9
BW
7323 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7324 if (direct_call_opcode == XTENSA_UNDEFINED)
7325 return FALSE;
7326
7327 /* Check and see that the target resolves. */
7328 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7329 if (!r_reloc_is_defined (&r_rel))
7330 return FALSE;
7331
7332 target_sec = r_reloc_get_section (&r_rel);
7333 target_offset = r_rel.target_offset;
7334
7335 /* If the target is in a shared library, then it doesn't reach. This
7336 isn't supposed to come up because the compiler should never generate
7337 non-PIC calls on systems that use shared libraries, but the linker
7338 shouldn't crash regardless. */
7339 if (!target_sec->output_section)
7340 return FALSE;
68ffbac6 7341
43cd72b9
BW
7342 /* For relocatable sections, we can only simplify when the output
7343 section of the target is the same as the output section of the
7344 source. */
0e1862bb 7345 if (bfd_link_relocatable (link_info)
43cd72b9
BW
7346 && (target_sec->output_section != sec->output_section
7347 || is_reloc_sym_weak (abfd, irel)))
7348 return FALSE;
7349
331ed130
SA
7350 if (target_sec->output_section != sec->output_section)
7351 {
7352 /* If the two sections are sufficiently far away that relaxation
7353 might take the call out of range, we can't simplify. For
7354 example, a positive displacement call into another memory
7355 could get moved to a lower address due to literal removal,
7356 but the destination won't move, and so the displacment might
7357 get larger.
7358
7359 If the displacement is negative, assume the destination could
7360 move as far back as the start of the output section. The
7361 self_address will be at least as far into the output section
7362 as it is prior to relaxation.
7363
7364 If the displacement is postive, assume the destination will be in
7365 it's pre-relaxed location (because relaxation only makes sections
7366 smaller). The self_address could go all the way to the beginning
7367 of the output section. */
7368
7369 dest_address = target_sec->output_section->vma;
7370 self_address = sec->output_section->vma;
7371
7372 if (sec->output_section->vma > target_sec->output_section->vma)
7373 self_address += sec->output_offset + irel->r_offset + 3;
7374 else
7375 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7376 /* Call targets should be four-byte aligned. */
7377 dest_address = (dest_address + 3) & ~3;
7378 }
7379 else
7380 {
7381
7382 self_address = (sec->output_section->vma
7383 + sec->output_offset + irel->r_offset + 3);
7384 dest_address = (target_sec->output_section->vma
7385 + target_sec->output_offset + target_offset);
7386 }
68ffbac6 7387
43cd72b9
BW
7388 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7389 self_address, dest_address);
7390
7391 if ((self_address >> CALL_SEGMENT_BITS) !=
7392 (dest_address >> CALL_SEGMENT_BITS))
7393 return FALSE;
7394
7395 return TRUE;
7396}
7397
7398
7399static Elf_Internal_Rela *
7fa3d080
BW
7400find_associated_l32r_irel (bfd *abfd,
7401 asection *sec,
7402 bfd_byte *contents,
7403 Elf_Internal_Rela *other_irel,
7404 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7405{
7406 unsigned i;
e0001a05 7407
68ffbac6 7408 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7409 {
7410 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7411
43cd72b9
BW
7412 if (irel == other_irel)
7413 continue;
7414 if (irel->r_offset != other_irel->r_offset)
7415 continue;
7416 if (is_l32r_relocation (abfd, sec, contents, irel))
7417 return irel;
7418 }
7419
7420 return NULL;
e0001a05
NC
7421}
7422
7423
cb337148
BW
7424static xtensa_opcode *
7425build_reloc_opcodes (bfd *abfd,
7426 asection *sec,
7427 bfd_byte *contents,
7428 Elf_Internal_Rela *internal_relocs)
7429{
7430 unsigned i;
7431 xtensa_opcode *reloc_opcodes =
7432 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7433 for (i = 0; i < sec->reloc_count; i++)
7434 {
7435 Elf_Internal_Rela *irel = &internal_relocs[i];
7436 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7437 }
7438 return reloc_opcodes;
7439}
7440
b2b326d2
MF
7441struct reloc_range_struct
7442{
7443 bfd_vma addr;
7444 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7445 /* Original irel index in the array of relocations for a section. */
7446 unsigned irel_index;
7447};
7448typedef struct reloc_range_struct reloc_range;
7449
7450typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7451struct reloc_range_list_entry_struct
7452{
7453 reloc_range_list_entry *next;
7454 reloc_range_list_entry *prev;
7455 Elf_Internal_Rela *irel;
7456 xtensa_opcode opcode;
7457 int opnum;
7458};
7459
7460struct reloc_range_list_struct
7461{
7462 /* The rest of the structure is only meaningful when ok is TRUE. */
7463 bfd_boolean ok;
7464
7465 unsigned n_range; /* Number of range markers. */
7466 reloc_range *range; /* Sorted range markers. */
7467
7468 unsigned first; /* Index of a first range element in the list. */
7469 unsigned last; /* One past index of a last range element in the list. */
7470
7471 unsigned n_list; /* Number of list elements. */
7472 reloc_range_list_entry *reloc; /* */
7473 reloc_range_list_entry list_root;
7474};
7475
7476static int
7477reloc_range_compare (const void *a, const void *b)
7478{
7479 const reloc_range *ra = a;
7480 const reloc_range *rb = b;
7481
7482 if (ra->addr != rb->addr)
7483 return ra->addr < rb->addr ? -1 : 1;
7484 if (ra->add != rb->add)
7485 return ra->add ? -1 : 1;
7486 return 0;
7487}
7488
7489static void
7490build_reloc_ranges (bfd *abfd, asection *sec,
7491 bfd_byte *contents,
7492 Elf_Internal_Rela *internal_relocs,
7493 xtensa_opcode *reloc_opcodes,
7494 reloc_range_list *list)
7495{
7496 unsigned i;
7497 size_t n = 0;
7498 size_t max_n = 0;
7499 reloc_range *ranges = NULL;
7500 reloc_range_list_entry *reloc =
7501 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7502
7503 memset (list, 0, sizeof (*list));
7504 list->ok = TRUE;
7505
7506 for (i = 0; i < sec->reloc_count; i++)
7507 {
7508 Elf_Internal_Rela *irel = &internal_relocs[i];
7509 int r_type = ELF32_R_TYPE (irel->r_info);
7510 reloc_howto_type *howto = &elf_howto_table[r_type];
7511 r_reloc r_rel;
7512
7513 if (r_type == R_XTENSA_ASM_SIMPLIFY
7514 || r_type == R_XTENSA_32_PCREL
7515 || !howto->pc_relative)
7516 continue;
7517
7518 r_reloc_init (&r_rel, abfd, irel, contents,
7519 bfd_get_section_limit (abfd, sec));
7520
7521 if (r_reloc_get_section (&r_rel) != sec)
7522 continue;
7523
7524 if (n + 2 > max_n)
7525 {
7526 max_n = (max_n + 2) * 2;
7527 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7528 }
7529
7530 ranges[n].addr = irel->r_offset;
7531 ranges[n + 1].addr = r_rel.target_offset;
7532
7533 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7534 ranges[n + 1].add = !ranges[n].add;
7535
7536 ranges[n].irel_index = i;
7537 ranges[n + 1].irel_index = i;
7538
7539 n += 2;
7540
7541 reloc[i].irel = irel;
7542
7543 /* Every relocation won't possibly be checked in the optimized version of
7544 check_section_ebb_pcrels_fit, so this needs to be done here. */
7545 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7546 {
7547 /* None of the current alternate relocs are PC-relative,
7548 and only PC-relative relocs matter here. */
7549 }
7550 else
7551 {
7552 xtensa_opcode opcode;
7553 int opnum;
7554
7555 if (reloc_opcodes)
7556 opcode = reloc_opcodes[i];
7557 else
7558 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7559
7560 if (opcode == XTENSA_UNDEFINED)
7561 {
7562 list->ok = FALSE;
7563 break;
7564 }
7565
7566 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7567 if (opnum == XTENSA_UNDEFINED)
7568 {
7569 list->ok = FALSE;
7570 break;
7571 }
7572
7573 /* Record relocation opcode and opnum as we've calculated them
7574 anyway and they won't change. */
7575 reloc[i].opcode = opcode;
7576 reloc[i].opnum = opnum;
7577 }
7578 }
7579
7580 if (list->ok)
7581 {
7582 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7583 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7584
7585 list->n_range = n;
7586 list->range = ranges;
7587 list->reloc = reloc;
7588 list->list_root.prev = &list->list_root;
7589 list->list_root.next = &list->list_root;
7590 }
7591 else
7592 {
7593 free (ranges);
7594 free (reloc);
7595 }
7596}
7597
7598static void reloc_range_list_append (reloc_range_list *list,
7599 unsigned irel_index)
7600{
7601 reloc_range_list_entry *entry = list->reloc + irel_index;
7602
7603 entry->prev = list->list_root.prev;
7604 entry->next = &list->list_root;
7605 entry->prev->next = entry;
7606 entry->next->prev = entry;
7607 ++list->n_list;
7608}
7609
7610static void reloc_range_list_remove (reloc_range_list *list,
7611 unsigned irel_index)
7612{
7613 reloc_range_list_entry *entry = list->reloc + irel_index;
7614
7615 entry->next->prev = entry->prev;
7616 entry->prev->next = entry->next;
7617 --list->n_list;
7618}
7619
7620/* Update relocation list object so that it lists all relocations that cross
7621 [first; last] range. Range bounds should not decrease with successive
7622 invocations. */
7623static void reloc_range_list_update_range (reloc_range_list *list,
7624 bfd_vma first, bfd_vma last)
7625{
7626 /* This should not happen: EBBs are iterated from lower addresses to higher.
7627 But even if that happens there's no need to break: just flush current list
7628 and start from scratch. */
7629 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7630 (list->first > 0 && list->range[list->first - 1].addr >= first))
7631 {
7632 list->first = 0;
7633 list->last = 0;
7634 list->n_list = 0;
7635 list->list_root.next = &list->list_root;
7636 list->list_root.prev = &list->list_root;
7637 fprintf (stderr, "%s: move backwards requested\n", __func__);
7638 }
7639
7640 for (; list->last < list->n_range &&
7641 list->range[list->last].addr <= last; ++list->last)
7642 if (list->range[list->last].add)
7643 reloc_range_list_append (list, list->range[list->last].irel_index);
7644
7645 for (; list->first < list->n_range &&
7646 list->range[list->first].addr < first; ++list->first)
7647 if (!list->range[list->first].add)
7648 reloc_range_list_remove (list, list->range[list->first].irel_index);
7649}
7650
7651static void free_reloc_range_list (reloc_range_list *list)
7652{
7653 free (list->range);
7654 free (list->reloc);
7655}
cb337148 7656
43cd72b9
BW
7657/* The compute_text_actions function will build a list of potential
7658 transformation actions for code in the extended basic block of each
7659 longcall that is optimized to a direct call. From this list we
7660 generate a set of actions to actually perform that optimizes for
7661 space and, if not using size_opt, maintains branch target
7662 alignments.
e0001a05 7663
43cd72b9
BW
7664 These actions to be performed are placed on a per-section list.
7665 The actual changes are performed by relax_section() in the second
7666 pass. */
7667
7668bfd_boolean
7fa3d080
BW
7669compute_text_actions (bfd *abfd,
7670 asection *sec,
7671 struct bfd_link_info *link_info)
e0001a05 7672{
cb337148 7673 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7674 xtensa_relax_info *relax_info;
e0001a05 7675 bfd_byte *contents;
43cd72b9 7676 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7677 bfd_boolean ok = TRUE;
7678 unsigned i;
43cd72b9
BW
7679 property_table_entry *prop_table = 0;
7680 int ptblsize = 0;
7681 bfd_size_type sec_size;
b2b326d2 7682 reloc_range_list relevant_relocs;
43cd72b9 7683
43cd72b9
BW
7684 relax_info = get_xtensa_relax_info (sec);
7685 BFD_ASSERT (relax_info);
25c6282a
BW
7686 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7687
7688 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7689 if (!relax_info->is_relaxable_asm_section)
7690 return ok;
e0001a05
NC
7691
7692 internal_relocs = retrieve_internal_relocs (abfd, sec,
7693 link_info->keep_memory);
e0001a05 7694
43cd72b9
BW
7695 if (internal_relocs)
7696 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7697 internal_reloc_compare);
7698
7699 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7700 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7701 if (contents == NULL && sec_size != 0)
e0001a05
NC
7702 {
7703 ok = FALSE;
7704 goto error_return;
7705 }
7706
43cd72b9
BW
7707 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7708 XTENSA_PROP_SEC_NAME, FALSE);
7709 if (ptblsize < 0)
7710 {
7711 ok = FALSE;
7712 goto error_return;
7713 }
7714
b2b326d2
MF
7715 /* Precompute the opcode for each relocation. */
7716 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7717
7718 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7719 &relevant_relocs);
7720
43cd72b9 7721 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7722 {
7723 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7724 bfd_vma r_offset;
7725 property_table_entry *the_entry;
7726 int ptbl_idx;
7727 ebb_t *ebb;
7728 ebb_constraint ebb_table;
7729 bfd_size_type simplify_size;
7730
7731 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7732 continue;
7733 r_offset = irel->r_offset;
e0001a05 7734
43cd72b9
BW
7735 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7736 if (simplify_size == 0)
7737 {
4eca0228 7738 _bfd_error_handler
695344c0 7739 /* xgettext:c-format */
43cd72b9
BW
7740 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7741 sec->owner, sec, r_offset);
7742 continue;
7743 }
e0001a05 7744
43cd72b9
BW
7745 /* If the instruction table is not around, then don't do this
7746 relaxation. */
7747 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7748 sec->vma + irel->r_offset);
7749 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7750 {
7751 text_action_add (&relax_info->action_list,
7752 ta_convert_longcall, sec, r_offset,
7753 0);
7754 continue;
7755 }
7756
7757 /* If the next longcall happens to be at the same address as an
7758 unreachable section of size 0, then skip forward. */
7759 ptbl_idx = the_entry - prop_table;
7760 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7761 && the_entry->size == 0
7762 && ptbl_idx + 1 < ptblsize
7763 && (prop_table[ptbl_idx + 1].address
7764 == prop_table[ptbl_idx].address))
7765 {
7766 ptbl_idx++;
7767 the_entry++;
7768 }
e0001a05 7769
99ded152 7770 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7771 /* NO_REORDER is OK */
7772 continue;
e0001a05 7773
43cd72b9
BW
7774 init_ebb_constraint (&ebb_table);
7775 ebb = &ebb_table.ebb;
7776 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7777 internal_relocs, sec->reloc_count);
7778 ebb->start_offset = r_offset + simplify_size;
7779 ebb->end_offset = r_offset + simplify_size;
7780 ebb->start_ptbl_idx = ptbl_idx;
7781 ebb->end_ptbl_idx = ptbl_idx;
7782 ebb->start_reloc_idx = i;
7783 ebb->end_reloc_idx = i;
7784
7785 if (!extend_ebb_bounds (ebb)
7786 || !compute_ebb_proposed_actions (&ebb_table)
7787 || !compute_ebb_actions (&ebb_table)
7788 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
b2b326d2
MF
7789 internal_relocs,
7790 &relevant_relocs,
7791 &ebb_table, reloc_opcodes)
43cd72b9 7792 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7793 {
43cd72b9
BW
7794 /* If anything goes wrong or we get unlucky and something does
7795 not fit, with our plan because of expansion between
7796 critical branches, just convert to a NOP. */
7797
7798 text_action_add (&relax_info->action_list,
7799 ta_convert_longcall, sec, r_offset, 0);
7800 i = ebb_table.ebb.end_reloc_idx;
7801 free_ebb_constraint (&ebb_table);
7802 continue;
e0001a05 7803 }
43cd72b9
BW
7804
7805 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7806
7807 /* Update the index so we do not go looking at the relocations
7808 we have already processed. */
7809 i = ebb_table.ebb.end_reloc_idx;
7810 free_ebb_constraint (&ebb_table);
e0001a05
NC
7811 }
7812
b2b326d2
MF
7813 free_reloc_range_list (&relevant_relocs);
7814
43cd72b9 7815#if DEBUG
4c2af04f 7816 if (action_list_count (&relax_info->action_list))
43cd72b9
BW
7817 print_action_list (stderr, &relax_info->action_list);
7818#endif
7819
7820error_return:
e0001a05
NC
7821 release_contents (sec, contents);
7822 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7823 if (prop_table)
7824 free (prop_table);
cb337148
BW
7825 if (reloc_opcodes)
7826 free (reloc_opcodes);
43cd72b9 7827
e0001a05
NC
7828 return ok;
7829}
7830
7831
64b607e6
BW
7832/* Do not widen an instruction if it is preceeded by a
7833 loop opcode. It might cause misalignment. */
7834
7835static bfd_boolean
7836prev_instr_is_a_loop (bfd_byte *contents,
7837 bfd_size_type content_length,
7838 bfd_size_type offset)
7839{
7840 xtensa_opcode prev_opcode;
7841
7842 if (offset < 3)
7843 return FALSE;
7844 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7845 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
68ffbac6 7846}
64b607e6
BW
7847
7848
43cd72b9 7849/* Find all of the possible actions for an extended basic block. */
e0001a05 7850
43cd72b9 7851bfd_boolean
7fa3d080 7852compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7853{
43cd72b9
BW
7854 const ebb_t *ebb = &ebb_table->ebb;
7855 unsigned rel_idx = ebb->start_reloc_idx;
7856 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7857 bfd_vma offset = 0;
7858 xtensa_isa isa = xtensa_default_isa;
7859 xtensa_format fmt;
7860 static xtensa_insnbuf insnbuf = NULL;
7861 static xtensa_insnbuf slotbuf = NULL;
7862
7863 if (insnbuf == NULL)
7864 {
7865 insnbuf = xtensa_insnbuf_alloc (isa);
7866 slotbuf = xtensa_insnbuf_alloc (isa);
7867 }
e0001a05 7868
43cd72b9
BW
7869 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7870 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7871
43cd72b9 7872 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7873 {
64b607e6 7874 bfd_vma start_offset, end_offset;
43cd72b9 7875 bfd_size_type insn_len;
e0001a05 7876
43cd72b9
BW
7877 start_offset = entry->address - ebb->sec->vma;
7878 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7879
43cd72b9
BW
7880 if (entry == start_entry)
7881 start_offset = ebb->start_offset;
7882 if (entry == end_entry)
7883 end_offset = ebb->end_offset;
7884 offset = start_offset;
e0001a05 7885
43cd72b9
BW
7886 if (offset == entry->address - ebb->sec->vma
7887 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7888 {
7889 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7890 BFD_ASSERT (offset != end_offset);
7891 if (offset == end_offset)
7892 return FALSE;
e0001a05 7893
43cd72b9
BW
7894 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7895 offset);
68ffbac6 7896 if (insn_len == 0)
64b607e6
BW
7897 goto decode_error;
7898
43cd72b9
BW
7899 if (check_branch_target_aligned_address (offset, insn_len))
7900 align_type = EBB_REQUIRE_TGT_ALIGN;
7901
7902 ebb_propose_action (ebb_table, align_type, 0,
7903 ta_none, offset, 0, TRUE);
7904 }
7905
7906 while (offset != end_offset)
e0001a05 7907 {
43cd72b9 7908 Elf_Internal_Rela *irel;
e0001a05 7909 xtensa_opcode opcode;
e0001a05 7910
43cd72b9
BW
7911 while (rel_idx < ebb->end_reloc_idx
7912 && (ebb->relocs[rel_idx].r_offset < offset
7913 || (ebb->relocs[rel_idx].r_offset == offset
7914 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7915 != R_XTENSA_ASM_SIMPLIFY))))
7916 rel_idx++;
7917
7918 /* Check for longcall. */
7919 irel = &ebb->relocs[rel_idx];
7920 if (irel->r_offset == offset
7921 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7922 {
7923 bfd_size_type simplify_size;
e0001a05 7924
68ffbac6 7925 simplify_size = get_asm_simplify_size (ebb->contents,
43cd72b9
BW
7926 ebb->content_length,
7927 irel->r_offset);
7928 if (simplify_size == 0)
64b607e6 7929 goto decode_error;
43cd72b9
BW
7930
7931 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7932 ta_convert_longcall, offset, 0, TRUE);
68ffbac6 7933
43cd72b9
BW
7934 offset += simplify_size;
7935 continue;
7936 }
e0001a05 7937
64b607e6
BW
7938 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7939 goto decode_error;
7940 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7941 ebb->content_length - offset);
7942 fmt = xtensa_format_decode (isa, insnbuf);
7943 if (fmt == XTENSA_UNDEFINED)
7944 goto decode_error;
7945 insn_len = xtensa_format_length (isa, fmt);
7946 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7947 goto decode_error;
7948
7949 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7950 {
64b607e6
BW
7951 offset += insn_len;
7952 continue;
43cd72b9 7953 }
64b607e6
BW
7954
7955 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7956 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7957 if (opcode == XTENSA_UNDEFINED)
7958 goto decode_error;
7959
43cd72b9 7960 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7961 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7962 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7963 {
7964 /* Add an instruction narrow action. */
7965 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7966 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7967 }
99ded152 7968 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7969 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7970 && ! prev_instr_is_a_loop (ebb->contents,
7971 ebb->content_length, offset))
43cd72b9
BW
7972 {
7973 /* Add an instruction widen action. */
7974 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7975 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7976 }
64b607e6 7977 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7978 {
7979 /* Check for branch targets. */
7980 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7981 ta_none, offset, 0, TRUE);
43cd72b9
BW
7982 }
7983
7984 offset += insn_len;
e0001a05
NC
7985 }
7986 }
7987
43cd72b9
BW
7988 if (ebb->ends_unreachable)
7989 {
7990 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7991 ta_fill, ebb->end_offset, 0, TRUE);
7992 }
e0001a05 7993
43cd72b9 7994 return TRUE;
64b607e6
BW
7995
7996 decode_error:
4eca0228 7997 _bfd_error_handler
695344c0 7998 /* xgettext:c-format */
64b607e6
BW
7999 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
8000 ebb->sec->owner, ebb->sec, offset);
8001 return FALSE;
43cd72b9
BW
8002}
8003
8004
8005/* After all of the information has collected about the
8006 transformations possible in an EBB, compute the appropriate actions
8007 here in compute_ebb_actions. We still must check later to make
8008 sure that the actions do not break any relocations. The algorithm
8009 used here is pretty greedy. Basically, it removes as many no-ops
8010 as possible so that the end of the EBB has the same alignment
8011 characteristics as the original. First, it uses narrowing, then
8012 fill space at the end of the EBB, and finally widenings. If that
8013 does not work, it tries again with one fewer no-op removed. The
8014 optimization will only be performed if all of the branch targets
8015 that were aligned before transformation are also aligned after the
8016 transformation.
8017
8018 When the size_opt flag is set, ignore the branch target alignments,
8019 narrow all wide instructions, and remove all no-ops unless the end
8020 of the EBB prevents it. */
8021
8022bfd_boolean
7fa3d080 8023compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
8024{
8025 unsigned i = 0;
8026 unsigned j;
8027 int removed_bytes = 0;
8028 ebb_t *ebb = &ebb_table->ebb;
8029 unsigned seg_idx_start = 0;
8030 unsigned seg_idx_end = 0;
8031
8032 /* We perform this like the assembler relaxation algorithm: Start by
8033 assuming all instructions are narrow and all no-ops removed; then
8034 walk through.... */
8035
8036 /* For each segment of this that has a solid constraint, check to
8037 see if there are any combinations that will keep the constraint.
8038 If so, use it. */
8039 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 8040 {
43cd72b9
BW
8041 bfd_boolean requires_text_end_align = FALSE;
8042 unsigned longcall_count = 0;
8043 unsigned longcall_convert_count = 0;
8044 unsigned narrowable_count = 0;
8045 unsigned narrowable_convert_count = 0;
8046 unsigned widenable_count = 0;
8047 unsigned widenable_convert_count = 0;
e0001a05 8048
43cd72b9
BW
8049 proposed_action *action = NULL;
8050 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 8051
43cd72b9 8052 seg_idx_start = seg_idx_end;
e0001a05 8053
43cd72b9
BW
8054 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8055 {
8056 action = &ebb_table->actions[i];
8057 if (action->action == ta_convert_longcall)
8058 longcall_count++;
8059 if (action->action == ta_narrow_insn)
8060 narrowable_count++;
8061 if (action->action == ta_widen_insn)
8062 widenable_count++;
8063 if (action->action == ta_fill)
8064 break;
8065 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8066 break;
8067 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8068 && !elf32xtensa_size_opt)
8069 break;
8070 }
8071 seg_idx_end = i;
e0001a05 8072
43cd72b9
BW
8073 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8074 requires_text_end_align = TRUE;
e0001a05 8075
43cd72b9
BW
8076 if (elf32xtensa_size_opt && !requires_text_end_align
8077 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8078 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8079 {
8080 longcall_convert_count = longcall_count;
8081 narrowable_convert_count = narrowable_count;
8082 widenable_convert_count = 0;
8083 }
8084 else
8085 {
8086 /* There is a constraint. Convert the max number of longcalls. */
8087 narrowable_convert_count = 0;
8088 longcall_convert_count = 0;
8089 widenable_convert_count = 0;
e0001a05 8090
43cd72b9 8091 for (j = 0; j < longcall_count; j++)
e0001a05 8092 {
43cd72b9
BW
8093 int removed = (longcall_count - j) * 3 & (align - 1);
8094 unsigned desire_narrow = (align - removed) & (align - 1);
8095 unsigned desire_widen = removed;
8096 if (desire_narrow <= narrowable_count)
8097 {
8098 narrowable_convert_count = desire_narrow;
8099 narrowable_convert_count +=
8100 (align * ((narrowable_count - narrowable_convert_count)
8101 / align));
8102 longcall_convert_count = (longcall_count - j);
8103 widenable_convert_count = 0;
8104 break;
8105 }
8106 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8107 {
8108 narrowable_convert_count = 0;
8109 longcall_convert_count = longcall_count - j;
8110 widenable_convert_count = desire_widen;
8111 break;
8112 }
8113 }
8114 }
e0001a05 8115
43cd72b9
BW
8116 /* Now the number of conversions are saved. Do them. */
8117 for (i = seg_idx_start; i < seg_idx_end; i++)
8118 {
8119 action = &ebb_table->actions[i];
8120 switch (action->action)
8121 {
8122 case ta_convert_longcall:
8123 if (longcall_convert_count != 0)
8124 {
8125 action->action = ta_remove_longcall;
8126 action->do_action = TRUE;
8127 action->removed_bytes += 3;
8128 longcall_convert_count--;
8129 }
8130 break;
8131 case ta_narrow_insn:
8132 if (narrowable_convert_count != 0)
8133 {
8134 action->do_action = TRUE;
8135 action->removed_bytes += 1;
8136 narrowable_convert_count--;
8137 }
8138 break;
8139 case ta_widen_insn:
8140 if (widenable_convert_count != 0)
8141 {
8142 action->do_action = TRUE;
8143 action->removed_bytes -= 1;
8144 widenable_convert_count--;
8145 }
8146 break;
8147 default:
8148 break;
e0001a05 8149 }
43cd72b9
BW
8150 }
8151 }
e0001a05 8152
43cd72b9
BW
8153 /* Now we move on to some local opts. Try to remove each of the
8154 remaining longcalls. */
e0001a05 8155
43cd72b9
BW
8156 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8157 {
8158 removed_bytes = 0;
8159 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8160 {
43cd72b9
BW
8161 int old_removed_bytes = removed_bytes;
8162 proposed_action *action = &ebb_table->actions[i];
8163
8164 if (action->do_action && action->action == ta_convert_longcall)
8165 {
8166 bfd_boolean bad_alignment = FALSE;
8167 removed_bytes += 3;
8168 for (j = i + 1; j < ebb_table->action_count; j++)
8169 {
8170 proposed_action *new_action = &ebb_table->actions[j];
8171 bfd_vma offset = new_action->offset;
8172 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8173 {
8174 if (!check_branch_target_aligned
8175 (ebb_table->ebb.contents,
8176 ebb_table->ebb.content_length,
8177 offset, offset - removed_bytes))
8178 {
8179 bad_alignment = TRUE;
8180 break;
8181 }
8182 }
8183 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8184 {
8185 if (!check_loop_aligned (ebb_table->ebb.contents,
8186 ebb_table->ebb.content_length,
8187 offset,
8188 offset - removed_bytes))
8189 {
8190 bad_alignment = TRUE;
8191 break;
8192 }
8193 }
8194 if (new_action->action == ta_narrow_insn
8195 && !new_action->do_action
8196 && ebb_table->ebb.sec->alignment_power == 2)
8197 {
8198 /* Narrow an instruction and we are done. */
8199 new_action->do_action = TRUE;
8200 new_action->removed_bytes += 1;
8201 bad_alignment = FALSE;
8202 break;
8203 }
8204 if (new_action->action == ta_widen_insn
8205 && new_action->do_action
8206 && ebb_table->ebb.sec->alignment_power == 2)
8207 {
8208 /* Narrow an instruction and we are done. */
8209 new_action->do_action = FALSE;
8210 new_action->removed_bytes += 1;
8211 bad_alignment = FALSE;
8212 break;
8213 }
5c5d6806
BW
8214 if (new_action->do_action)
8215 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
8216 }
8217 if (!bad_alignment)
8218 {
8219 action->removed_bytes += 3;
8220 action->action = ta_remove_longcall;
8221 action->do_action = TRUE;
8222 }
8223 }
8224 removed_bytes = old_removed_bytes;
8225 if (action->do_action)
8226 removed_bytes += action->removed_bytes;
e0001a05
NC
8227 }
8228 }
8229
43cd72b9
BW
8230 removed_bytes = 0;
8231 for (i = 0; i < ebb_table->action_count; ++i)
8232 {
8233 proposed_action *action = &ebb_table->actions[i];
8234 if (action->do_action)
8235 removed_bytes += action->removed_bytes;
8236 }
8237
8238 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8239 && ebb->ends_unreachable)
8240 {
8241 proposed_action *action;
8242 int br;
8243 int extra_space;
8244
8245 BFD_ASSERT (ebb_table->action_count != 0);
8246 action = &ebb_table->actions[ebb_table->action_count - 1];
8247 BFD_ASSERT (action->action == ta_fill);
8248 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8249
8250 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8251 br = action->removed_bytes + removed_bytes + extra_space;
8252 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8253
8254 action->removed_bytes = extra_space - br;
8255 }
8256 return TRUE;
e0001a05
NC
8257}
8258
8259
03e94c08
BW
8260/* The xlate_map is a sorted array of address mappings designed to
8261 answer the offset_with_removed_text() query with a binary search instead
8262 of a linear search through the section's action_list. */
8263
8264typedef struct xlate_map_entry xlate_map_entry_t;
8265typedef struct xlate_map xlate_map_t;
8266
8267struct xlate_map_entry
8268{
8269 unsigned orig_address;
8270 unsigned new_address;
8271 unsigned size;
8272};
8273
8274struct xlate_map
8275{
8276 unsigned entry_count;
8277 xlate_map_entry_t *entry;
8278};
8279
8280
68ffbac6 8281static int
03e94c08
BW
8282xlate_compare (const void *a_v, const void *b_v)
8283{
8284 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8285 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8286 if (a->orig_address < b->orig_address)
8287 return -1;
8288 if (a->orig_address > (b->orig_address + b->size - 1))
8289 return 1;
8290 return 0;
8291}
8292
8293
8294static bfd_vma
8295xlate_offset_with_removed_text (const xlate_map_t *map,
8296 text_action_list *action_list,
8297 bfd_vma offset)
8298{
03e94c08
BW
8299 void *r;
8300 xlate_map_entry_t *e;
8301
8302 if (map == NULL)
8303 return offset_with_removed_text (action_list, offset);
8304
8305 if (map->entry_count == 0)
8306 return offset;
8307
03e94c08
BW
8308 r = bsearch (&offset, map->entry, map->entry_count,
8309 sizeof (xlate_map_entry_t), &xlate_compare);
8310 e = (xlate_map_entry_t *) r;
68ffbac6 8311
03e94c08
BW
8312 BFD_ASSERT (e != NULL);
8313 if (e == NULL)
8314 return offset;
8315 return e->new_address - e->orig_address + offset;
8316}
8317
4c2af04f
MF
8318typedef struct xlate_map_context_struct xlate_map_context;
8319struct xlate_map_context_struct
8320{
8321 xlate_map_t *map;
8322 xlate_map_entry_t *current_entry;
8323 int removed;
8324};
8325
8326static int
8327xlate_map_fn (splay_tree_node node, void *p)
8328{
8329 text_action *r = (text_action *)node->value;
8330 xlate_map_context *ctx = p;
8331 unsigned orig_size = 0;
8332
8333 switch (r->action)
8334 {
8335 case ta_none:
8336 case ta_remove_insn:
8337 case ta_convert_longcall:
8338 case ta_remove_literal:
8339 case ta_add_literal:
8340 break;
8341 case ta_remove_longcall:
8342 orig_size = 6;
8343 break;
8344 case ta_narrow_insn:
8345 orig_size = 3;
8346 break;
8347 case ta_widen_insn:
8348 orig_size = 2;
8349 break;
8350 case ta_fill:
8351 break;
8352 }
8353 ctx->current_entry->size =
8354 r->offset + orig_size - ctx->current_entry->orig_address;
8355 if (ctx->current_entry->size != 0)
8356 {
8357 ctx->current_entry++;
8358 ctx->map->entry_count++;
8359 }
8360 ctx->current_entry->orig_address = r->offset + orig_size;
8361 ctx->removed += r->removed_bytes;
8362 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8363 ctx->current_entry->size = 0;
8364 return 0;
8365}
03e94c08
BW
8366
8367/* Build a binary searchable offset translation map from a section's
8368 action list. */
8369
8370static xlate_map_t *
8371build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8372{
03e94c08
BW
8373 text_action_list *action_list = &relax_info->action_list;
8374 unsigned num_actions = 0;
4c2af04f 8375 xlate_map_context ctx;
03e94c08 8376
4c2af04f
MF
8377 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8378
8379 if (ctx.map == NULL)
03e94c08
BW
8380 return NULL;
8381
8382 num_actions = action_list_count (action_list);
4c2af04f 8383 ctx.map->entry = (xlate_map_entry_t *)
03e94c08 8384 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
4c2af04f 8385 if (ctx.map->entry == NULL)
03e94c08 8386 {
4c2af04f 8387 free (ctx.map);
03e94c08
BW
8388 return NULL;
8389 }
4c2af04f 8390 ctx.map->entry_count = 0;
68ffbac6 8391
4c2af04f
MF
8392 ctx.removed = 0;
8393 ctx.current_entry = &ctx.map->entry[0];
03e94c08 8394
4c2af04f
MF
8395 ctx.current_entry->orig_address = 0;
8396 ctx.current_entry->new_address = 0;
8397 ctx.current_entry->size = 0;
03e94c08 8398
4c2af04f 8399 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
03e94c08 8400
4c2af04f
MF
8401 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8402 - ctx.current_entry->orig_address);
8403 if (ctx.current_entry->size != 0)
8404 ctx.map->entry_count++;
03e94c08 8405
4c2af04f 8406 return ctx.map;
03e94c08
BW
8407}
8408
8409
8410/* Free an offset translation map. */
8411
68ffbac6 8412static void
03e94c08
BW
8413free_xlate_map (xlate_map_t *map)
8414{
8415 if (map && map->entry)
8416 free (map->entry);
8417 if (map)
8418 free (map);
8419}
8420
8421
43cd72b9
BW
8422/* Use check_section_ebb_pcrels_fit to make sure that all of the
8423 relocations in a section will fit if a proposed set of actions
8424 are performed. */
e0001a05 8425
43cd72b9 8426static bfd_boolean
7fa3d080
BW
8427check_section_ebb_pcrels_fit (bfd *abfd,
8428 asection *sec,
8429 bfd_byte *contents,
8430 Elf_Internal_Rela *internal_relocs,
b2b326d2 8431 reloc_range_list *relevant_relocs,
cb337148
BW
8432 const ebb_constraint *constraint,
8433 const xtensa_opcode *reloc_opcodes)
e0001a05 8434{
43cd72b9 8435 unsigned i, j;
b2b326d2 8436 unsigned n = sec->reloc_count;
43cd72b9 8437 Elf_Internal_Rela *irel;
03e94c08
BW
8438 xlate_map_t *xmap = NULL;
8439 bfd_boolean ok = TRUE;
43cd72b9 8440 xtensa_relax_info *relax_info;
b2b326d2 8441 reloc_range_list_entry *entry = NULL;
e0001a05 8442
43cd72b9 8443 relax_info = get_xtensa_relax_info (sec);
e0001a05 8444
03e94c08
BW
8445 if (relax_info && sec->reloc_count > 100)
8446 {
8447 xmap = build_xlate_map (sec, relax_info);
8448 /* NULL indicates out of memory, but the slow version
8449 can still be used. */
8450 }
8451
b2b326d2
MF
8452 if (relevant_relocs && constraint->action_count)
8453 {
8454 if (!relevant_relocs->ok)
8455 {
8456 ok = FALSE;
8457 n = 0;
8458 }
8459 else
8460 {
8461 bfd_vma min_offset, max_offset;
8462 min_offset = max_offset = constraint->actions[0].offset;
8463
8464 for (i = 1; i < constraint->action_count; ++i)
8465 {
8466 proposed_action *action = &constraint->actions[i];
8467 bfd_vma offset = action->offset;
8468
8469 if (offset < min_offset)
8470 min_offset = offset;
8471 if (offset > max_offset)
8472 max_offset = offset;
8473 }
8474 reloc_range_list_update_range (relevant_relocs, min_offset,
8475 max_offset);
8476 n = relevant_relocs->n_list;
8477 entry = &relevant_relocs->list_root;
8478 }
8479 }
8480 else
8481 {
8482 relevant_relocs = NULL;
8483 }
8484
8485 for (i = 0; i < n; i++)
43cd72b9
BW
8486 {
8487 r_reloc r_rel;
8488 bfd_vma orig_self_offset, orig_target_offset;
8489 bfd_vma self_offset, target_offset;
8490 int r_type;
8491 reloc_howto_type *howto;
8492 int self_removed_bytes, target_removed_bytes;
e0001a05 8493
b2b326d2
MF
8494 if (relevant_relocs)
8495 {
8496 entry = entry->next;
8497 irel = entry->irel;
8498 }
8499 else
8500 {
8501 irel = internal_relocs + i;
8502 }
43cd72b9 8503 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 8504
43cd72b9
BW
8505 howto = &elf_howto_table[r_type];
8506 /* We maintain the required invariant: PC-relative relocations
8507 that fit before linking must fit after linking. Thus we only
8508 need to deal with relocations to the same section that are
8509 PC-relative. */
1bbb5f21
BW
8510 if (r_type == R_XTENSA_ASM_SIMPLIFY
8511 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
8512 || !howto->pc_relative)
8513 continue;
e0001a05 8514
43cd72b9
BW
8515 r_reloc_init (&r_rel, abfd, irel, contents,
8516 bfd_get_section_limit (abfd, sec));
e0001a05 8517
43cd72b9
BW
8518 if (r_reloc_get_section (&r_rel) != sec)
8519 continue;
e0001a05 8520
43cd72b9
BW
8521 orig_self_offset = irel->r_offset;
8522 orig_target_offset = r_rel.target_offset;
e0001a05 8523
43cd72b9
BW
8524 self_offset = orig_self_offset;
8525 target_offset = orig_target_offset;
8526
8527 if (relax_info)
8528 {
03e94c08
BW
8529 self_offset =
8530 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8531 orig_self_offset);
8532 target_offset =
8533 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8534 orig_target_offset);
43cd72b9
BW
8535 }
8536
8537 self_removed_bytes = 0;
8538 target_removed_bytes = 0;
8539
8540 for (j = 0; j < constraint->action_count; ++j)
8541 {
8542 proposed_action *action = &constraint->actions[j];
8543 bfd_vma offset = action->offset;
8544 int removed_bytes = action->removed_bytes;
8545 if (offset < orig_self_offset
8546 || (offset == orig_self_offset && action->action == ta_fill
8547 && action->removed_bytes < 0))
8548 self_removed_bytes += removed_bytes;
8549 if (offset < orig_target_offset
8550 || (offset == orig_target_offset && action->action == ta_fill
8551 && action->removed_bytes < 0))
8552 target_removed_bytes += removed_bytes;
8553 }
8554 self_offset -= self_removed_bytes;
8555 target_offset -= target_removed_bytes;
8556
8557 /* Try to encode it. Get the operand and check. */
8558 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8559 {
8560 /* None of the current alternate relocs are PC-relative,
8561 and only PC-relative relocs matter here. */
8562 }
8563 else
8564 {
8565 xtensa_opcode opcode;
8566 int opnum;
8567
b2b326d2 8568 if (relevant_relocs)
03e94c08 8569 {
b2b326d2
MF
8570 opcode = entry->opcode;
8571 opnum = entry->opnum;
03e94c08 8572 }
b2b326d2 8573 else
03e94c08 8574 {
b2b326d2
MF
8575 if (reloc_opcodes)
8576 opcode = reloc_opcodes[relevant_relocs ?
8577 (unsigned)(entry - relevant_relocs->reloc) : i];
8578 else
8579 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8580 if (opcode == XTENSA_UNDEFINED)
8581 {
8582 ok = FALSE;
8583 break;
8584 }
8585
8586 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8587 if (opnum == XTENSA_UNDEFINED)
8588 {
8589 ok = FALSE;
8590 break;
8591 }
03e94c08 8592 }
43cd72b9
BW
8593
8594 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8595 {
8596 ok = FALSE;
8597 break;
8598 }
43cd72b9
BW
8599 }
8600 }
8601
03e94c08
BW
8602 if (xmap)
8603 free_xlate_map (xmap);
8604
8605 return ok;
43cd72b9
BW
8606}
8607
8608
8609static bfd_boolean
7fa3d080 8610check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8611{
8612 int removed = 0;
8613 unsigned i;
8614
8615 for (i = 0; i < constraint->action_count; i++)
8616 {
8617 const proposed_action *action = &constraint->actions[i];
8618 if (action->do_action)
8619 removed += action->removed_bytes;
8620 }
8621 if (removed < 0)
e0001a05
NC
8622 return FALSE;
8623
8624 return TRUE;
8625}
8626
8627
43cd72b9 8628void
7fa3d080
BW
8629text_action_add_proposed (text_action_list *l,
8630 const ebb_constraint *ebb_table,
8631 asection *sec)
e0001a05
NC
8632{
8633 unsigned i;
8634
43cd72b9 8635 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8636 {
43cd72b9 8637 proposed_action *action = &ebb_table->actions[i];
e0001a05 8638
43cd72b9 8639 if (!action->do_action)
e0001a05 8640 continue;
43cd72b9
BW
8641 switch (action->action)
8642 {
8643 case ta_remove_insn:
8644 case ta_remove_longcall:
8645 case ta_convert_longcall:
8646 case ta_narrow_insn:
8647 case ta_widen_insn:
8648 case ta_fill:
8649 case ta_remove_literal:
8650 text_action_add (l, action->action, sec, action->offset,
8651 action->removed_bytes);
8652 break;
8653 case ta_none:
8654 break;
8655 default:
8656 BFD_ASSERT (0);
8657 break;
8658 }
e0001a05 8659 }
43cd72b9 8660}
e0001a05 8661
43cd72b9
BW
8662
8663int
7fa3d080 8664compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8665{
8666 int fill_extra_space;
8667
8668 if (!entry)
8669 return 0;
8670
8671 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8672 return 0;
8673
8674 fill_extra_space = entry->size;
8675 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8676 {
8677 /* Fill bytes for alignment:
8678 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8679 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8680 int nsm = (1 << pow) - 1;
8681 bfd_vma addr = entry->address + entry->size;
8682 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8683 fill_extra_space += align_fill;
8684 }
8685 return fill_extra_space;
e0001a05
NC
8686}
8687
43cd72b9 8688\f
e0001a05
NC
8689/* First relaxation pass. */
8690
43cd72b9
BW
8691/* If the section contains relaxable literals, check each literal to
8692 see if it has the same value as another literal that has already
8693 been seen, either in the current section or a previous one. If so,
8694 add an entry to the per-section list of removed literals. The
e0001a05
NC
8695 actual changes are deferred until the next pass. */
8696
68ffbac6 8697static bfd_boolean
7fa3d080
BW
8698compute_removed_literals (bfd *abfd,
8699 asection *sec,
8700 struct bfd_link_info *link_info,
8701 value_map_hash_table *values)
e0001a05
NC
8702{
8703 xtensa_relax_info *relax_info;
8704 bfd_byte *contents;
8705 Elf_Internal_Rela *internal_relocs;
43cd72b9 8706 source_reloc *src_relocs, *rel;
e0001a05 8707 bfd_boolean ok = TRUE;
43cd72b9
BW
8708 property_table_entry *prop_table = NULL;
8709 int ptblsize;
8710 int i, prev_i;
8711 bfd_boolean last_loc_is_prev = FALSE;
8712 bfd_vma last_target_offset = 0;
8713 section_cache_t target_sec_cache;
8714 bfd_size_type sec_size;
8715
8716 init_section_cache (&target_sec_cache);
e0001a05
NC
8717
8718 /* Do nothing if it is not a relaxable literal section. */
8719 relax_info = get_xtensa_relax_info (sec);
8720 BFD_ASSERT (relax_info);
e0001a05
NC
8721 if (!relax_info->is_relaxable_literal_section)
8722 return ok;
8723
68ffbac6 8724 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
8725 link_info->keep_memory);
8726
43cd72b9 8727 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8728 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8729 if (contents == NULL && sec_size != 0)
e0001a05
NC
8730 {
8731 ok = FALSE;
8732 goto error_return;
8733 }
8734
8735 /* Sort the source_relocs by target offset. */
8736 src_relocs = relax_info->src_relocs;
8737 qsort (src_relocs, relax_info->src_count,
8738 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8739 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8740 internal_reloc_compare);
e0001a05 8741
43cd72b9
BW
8742 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8743 XTENSA_PROP_SEC_NAME, FALSE);
8744 if (ptblsize < 0)
8745 {
8746 ok = FALSE;
8747 goto error_return;
8748 }
8749
8750 prev_i = -1;
e0001a05
NC
8751 for (i = 0; i < relax_info->src_count; i++)
8752 {
e0001a05 8753 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8754
8755 rel = &src_relocs[i];
43cd72b9
BW
8756 if (get_l32r_opcode () != rel->opcode)
8757 continue;
e0001a05
NC
8758 irel = get_irel_at_offset (sec, internal_relocs,
8759 rel->r_rel.target_offset);
8760
43cd72b9
BW
8761 /* If the relocation on this is not a simple R_XTENSA_32 or
8762 R_XTENSA_PLT then do not consider it. This may happen when
8763 the difference of two symbols is used in a literal. */
8764 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8765 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8766 continue;
8767
e0001a05
NC
8768 /* If the target_offset for this relocation is the same as the
8769 previous relocation, then we've already considered whether the
8770 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8771 if (i != 0 && prev_i != -1
8772 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8773 continue;
43cd72b9
BW
8774 prev_i = i;
8775
68ffbac6 8776 if (last_loc_is_prev &&
43cd72b9
BW
8777 last_target_offset + 4 != rel->r_rel.target_offset)
8778 last_loc_is_prev = FALSE;
e0001a05
NC
8779
8780 /* Check if the relocation was from an L32R that is being removed
8781 because a CALLX was converted to a direct CALL, and check if
8782 there are no other relocations to the literal. */
68ffbac6 8783 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
99ded152 8784 sec, prop_table, ptblsize))
e0001a05 8785 {
43cd72b9
BW
8786 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8787 irel, rel, prop_table, ptblsize))
e0001a05 8788 {
43cd72b9
BW
8789 ok = FALSE;
8790 goto error_return;
e0001a05 8791 }
43cd72b9 8792 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8793 continue;
8794 }
8795
43cd72b9 8796 if (!identify_literal_placement (abfd, sec, contents, link_info,
68ffbac6
L
8797 values,
8798 &last_loc_is_prev, irel,
43cd72b9
BW
8799 relax_info->src_count - i, rel,
8800 prop_table, ptblsize,
8801 &target_sec_cache, rel->is_abs_literal))
e0001a05 8802 {
43cd72b9
BW
8803 ok = FALSE;
8804 goto error_return;
8805 }
8806 last_target_offset = rel->r_rel.target_offset;
8807 }
e0001a05 8808
43cd72b9
BW
8809#if DEBUG
8810 print_removed_literals (stderr, &relax_info->removed_list);
8811 print_action_list (stderr, &relax_info->action_list);
8812#endif /* DEBUG */
8813
8814error_return:
65e911f9
AM
8815 if (prop_table)
8816 free (prop_table);
8817 free_section_cache (&target_sec_cache);
43cd72b9
BW
8818
8819 release_contents (sec, contents);
8820 release_internal_relocs (sec, internal_relocs);
8821 return ok;
8822}
8823
8824
8825static Elf_Internal_Rela *
7fa3d080
BW
8826get_irel_at_offset (asection *sec,
8827 Elf_Internal_Rela *internal_relocs,
8828 bfd_vma offset)
43cd72b9
BW
8829{
8830 unsigned i;
8831 Elf_Internal_Rela *irel;
8832 unsigned r_type;
8833 Elf_Internal_Rela key;
8834
68ffbac6 8835 if (!internal_relocs)
43cd72b9
BW
8836 return NULL;
8837
8838 key.r_offset = offset;
8839 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8840 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8841 if (!irel)
8842 return NULL;
8843
8844 /* bsearch does not guarantee which will be returned if there are
8845 multiple matches. We need the first that is not an alignment. */
8846 i = irel - internal_relocs;
8847 while (i > 0)
8848 {
8849 if (internal_relocs[i-1].r_offset != offset)
8850 break;
8851 i--;
8852 }
8853 for ( ; i < sec->reloc_count; i++)
8854 {
8855 irel = &internal_relocs[i];
8856 r_type = ELF32_R_TYPE (irel->r_info);
8857 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8858 return irel;
8859 }
8860
8861 return NULL;
8862}
8863
8864
8865bfd_boolean
7fa3d080
BW
8866is_removable_literal (const source_reloc *rel,
8867 int i,
8868 const source_reloc *src_relocs,
99ded152
BW
8869 int src_count,
8870 asection *sec,
8871 property_table_entry *prop_table,
8872 int ptblsize)
43cd72b9
BW
8873{
8874 const source_reloc *curr_rel;
99ded152
BW
8875 property_table_entry *entry;
8876
43cd72b9
BW
8877 if (!rel->is_null)
8878 return FALSE;
68ffbac6
L
8879
8880 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
99ded152
BW
8881 sec->vma + rel->r_rel.target_offset);
8882 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8883 return FALSE;
8884
43cd72b9
BW
8885 for (++i; i < src_count; ++i)
8886 {
8887 curr_rel = &src_relocs[i];
8888 /* If all others have the same target offset.... */
8889 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8890 return TRUE;
8891
8892 if (!curr_rel->is_null
8893 && !xtensa_is_property_section (curr_rel->source_sec)
8894 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8895 return FALSE;
8896 }
8897 return TRUE;
8898}
8899
8900
68ffbac6 8901bfd_boolean
7fa3d080
BW
8902remove_dead_literal (bfd *abfd,
8903 asection *sec,
8904 struct bfd_link_info *link_info,
8905 Elf_Internal_Rela *internal_relocs,
8906 Elf_Internal_Rela *irel,
8907 source_reloc *rel,
8908 property_table_entry *prop_table,
8909 int ptblsize)
43cd72b9
BW
8910{
8911 property_table_entry *entry;
8912 xtensa_relax_info *relax_info;
8913
8914 relax_info = get_xtensa_relax_info (sec);
8915 if (!relax_info)
8916 return FALSE;
8917
8918 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8919 sec->vma + rel->r_rel.target_offset);
8920
8921 /* Mark the unused literal so that it will be removed. */
8922 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8923
8924 text_action_add (&relax_info->action_list,
8925 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8926
8927 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8928 if (sec->alignment_power > 2)
43cd72b9
BW
8929 {
8930 int fill_extra_space;
8931 bfd_vma entry_sec_offset;
8932 text_action *fa;
8933 property_table_entry *the_add_entry;
8934 int removed_diff;
8935
8936 if (entry)
8937 entry_sec_offset = entry->address - sec->vma + entry->size;
8938 else
8939 entry_sec_offset = rel->r_rel.target_offset + 4;
8940
8941 /* If the literal range is at the end of the section,
8942 do not add fill. */
8943 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8944 entry_sec_offset);
8945 fill_extra_space = compute_fill_extra_space (the_add_entry);
8946
8947 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8948 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8949 -4, fill_extra_space);
8950 if (fa)
8951 adjust_fill_action (fa, removed_diff);
8952 else
8953 text_action_add (&relax_info->action_list,
8954 ta_fill, sec, entry_sec_offset, removed_diff);
8955 }
8956
8957 /* Zero out the relocation on this literal location. */
8958 if (irel)
8959 {
8960 if (elf_hash_table (link_info)->dynamic_sections_created)
8961 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8962
8963 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8964 pin_internal_relocs (sec, internal_relocs);
8965 }
8966
8967 /* Do not modify "last_loc_is_prev". */
8968 return TRUE;
8969}
8970
8971
68ffbac6 8972bfd_boolean
7fa3d080
BW
8973identify_literal_placement (bfd *abfd,
8974 asection *sec,
8975 bfd_byte *contents,
8976 struct bfd_link_info *link_info,
8977 value_map_hash_table *values,
8978 bfd_boolean *last_loc_is_prev_p,
8979 Elf_Internal_Rela *irel,
8980 int remaining_src_rels,
8981 source_reloc *rel,
8982 property_table_entry *prop_table,
8983 int ptblsize,
8984 section_cache_t *target_sec_cache,
8985 bfd_boolean is_abs_literal)
43cd72b9
BW
8986{
8987 literal_value val;
8988 value_map *val_map;
8989 xtensa_relax_info *relax_info;
8990 bfd_boolean literal_placed = FALSE;
8991 r_reloc r_rel;
8992 unsigned long value;
8993 bfd_boolean final_static_link;
8994 bfd_size_type sec_size;
8995
8996 relax_info = get_xtensa_relax_info (sec);
8997 if (!relax_info)
8998 return FALSE;
8999
9000 sec_size = bfd_get_section_limit (abfd, sec);
9001
9002 final_static_link =
0e1862bb 9003 (!bfd_link_relocatable (link_info)
43cd72b9
BW
9004 && !elf_hash_table (link_info)->dynamic_sections_created);
9005
9006 /* The placement algorithm first checks to see if the literal is
9007 already in the value map. If so and the value map is reachable
9008 from all uses, then the literal is moved to that location. If
9009 not, then we identify the last location where a fresh literal was
9010 placed. If the literal can be safely moved there, then we do so.
9011 If not, then we assume that the literal is not to move and leave
9012 the literal where it is, marking it as the last literal
9013 location. */
9014
9015 /* Find the literal value. */
9016 value = 0;
9017 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9018 if (!irel)
9019 {
9020 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9021 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9022 }
9023 init_literal_value (&val, &r_rel, value, is_abs_literal);
9024
9025 /* Check if we've seen another literal with the same value that
9026 is in the same output section. */
9027 val_map = value_map_get_cached_value (values, &val, final_static_link);
9028
9029 if (val_map
9030 && (r_reloc_get_section (&val_map->loc)->output_section
9031 == sec->output_section)
9032 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9033 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9034 {
9035 /* No change to last_loc_is_prev. */
9036 literal_placed = TRUE;
9037 }
9038
9039 /* For relocatable links, do not try to move literals. To do it
9040 correctly might increase the number of relocations in an input
9041 section making the default relocatable linking fail. */
0e1862bb 9042 if (!bfd_link_relocatable (link_info) && !literal_placed
43cd72b9
BW
9043 && values->has_last_loc && !(*last_loc_is_prev_p))
9044 {
9045 asection *target_sec = r_reloc_get_section (&values->last_loc);
9046 if (target_sec && target_sec->output_section == sec->output_section)
9047 {
9048 /* Increment the virtual offset. */
9049 r_reloc try_loc = values->last_loc;
9050 try_loc.virtual_offset += 4;
9051
9052 /* There is a last loc that was in the same output section. */
9053 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9054 && move_shared_literal (sec, link_info, rel,
68ffbac6 9055 prop_table, ptblsize,
43cd72b9 9056 &try_loc, &val, target_sec_cache))
e0001a05 9057 {
43cd72b9
BW
9058 values->last_loc.virtual_offset += 4;
9059 literal_placed = TRUE;
9060 if (!val_map)
9061 val_map = add_value_map (values, &val, &try_loc,
9062 final_static_link);
9063 else
9064 val_map->loc = try_loc;
e0001a05
NC
9065 }
9066 }
43cd72b9
BW
9067 }
9068
9069 if (!literal_placed)
9070 {
9071 /* Nothing worked, leave the literal alone but update the last loc. */
9072 values->has_last_loc = TRUE;
9073 values->last_loc = rel->r_rel;
9074 if (!val_map)
9075 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 9076 else
43cd72b9
BW
9077 val_map->loc = rel->r_rel;
9078 *last_loc_is_prev_p = TRUE;
e0001a05
NC
9079 }
9080
43cd72b9 9081 return TRUE;
e0001a05
NC
9082}
9083
9084
9085/* Check if the original relocations (presumably on L32R instructions)
9086 identified by reloc[0..N] can be changed to reference the literal
9087 identified by r_rel. If r_rel is out of range for any of the
9088 original relocations, then we don't want to coalesce the original
9089 literal with the one at r_rel. We only check reloc[0..N], where the
9090 offsets are all the same as for reloc[0] (i.e., they're all
9091 referencing the same literal) and where N is also bounded by the
9092 number of remaining entries in the "reloc" array. The "reloc" array
9093 is sorted by target offset so we know all the entries for the same
9094 literal will be contiguous. */
9095
9096static bfd_boolean
7fa3d080
BW
9097relocations_reach (source_reloc *reloc,
9098 int remaining_relocs,
9099 const r_reloc *r_rel)
e0001a05
NC
9100{
9101 bfd_vma from_offset, source_address, dest_address;
9102 asection *sec;
9103 int i;
9104
9105 if (!r_reloc_is_defined (r_rel))
9106 return FALSE;
9107
9108 sec = r_reloc_get_section (r_rel);
9109 from_offset = reloc[0].r_rel.target_offset;
9110
9111 for (i = 0; i < remaining_relocs; i++)
9112 {
9113 if (reloc[i].r_rel.target_offset != from_offset)
9114 break;
9115
9116 /* Ignore relocations that have been removed. */
9117 if (reloc[i].is_null)
9118 continue;
9119
9120 /* The original and new output section for these must be the same
9121 in order to coalesce. */
9122 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9123 != sec->output_section)
9124 return FALSE;
9125
d638e0ac
BW
9126 /* Absolute literals in the same output section can always be
9127 combined. */
9128 if (reloc[i].is_abs_literal)
9129 continue;
9130
43cd72b9
BW
9131 /* A literal with no PC-relative relocations can be moved anywhere. */
9132 if (reloc[i].opnd != -1)
e0001a05
NC
9133 {
9134 /* Otherwise, check to see that it fits. */
9135 source_address = (reloc[i].source_sec->output_section->vma
9136 + reloc[i].source_sec->output_offset
9137 + reloc[i].r_rel.rela.r_offset);
9138 dest_address = (sec->output_section->vma
9139 + sec->output_offset
9140 + r_rel->target_offset);
9141
43cd72b9
BW
9142 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9143 source_address, dest_address))
e0001a05
NC
9144 return FALSE;
9145 }
9146 }
9147
9148 return TRUE;
9149}
9150
9151
43cd72b9
BW
9152/* Move a literal to another literal location because it is
9153 the same as the other literal value. */
e0001a05 9154
68ffbac6 9155static bfd_boolean
7fa3d080
BW
9156coalesce_shared_literal (asection *sec,
9157 source_reloc *rel,
9158 property_table_entry *prop_table,
9159 int ptblsize,
9160 value_map *val_map)
e0001a05 9161{
43cd72b9
BW
9162 property_table_entry *entry;
9163 text_action *fa;
9164 property_table_entry *the_add_entry;
9165 int removed_diff;
9166 xtensa_relax_info *relax_info;
9167
9168 relax_info = get_xtensa_relax_info (sec);
9169 if (!relax_info)
9170 return FALSE;
9171
9172 entry = elf_xtensa_find_property_entry
9173 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 9174 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
9175 return TRUE;
9176
9177 /* Mark that the literal will be coalesced. */
9178 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9179
9180 text_action_add (&relax_info->action_list,
9181 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9182
9183 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9184 if (sec->alignment_power > 2)
e0001a05 9185 {
43cd72b9
BW
9186 int fill_extra_space;
9187 bfd_vma entry_sec_offset;
9188
9189 if (entry)
9190 entry_sec_offset = entry->address - sec->vma + entry->size;
9191 else
9192 entry_sec_offset = rel->r_rel.target_offset + 4;
9193
9194 /* If the literal range is at the end of the section,
9195 do not add fill. */
9196 fill_extra_space = 0;
9197 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9198 entry_sec_offset);
9199 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9200 fill_extra_space = the_add_entry->size;
9201
9202 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9203 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9204 -4, fill_extra_space);
9205 if (fa)
9206 adjust_fill_action (fa, removed_diff);
9207 else
9208 text_action_add (&relax_info->action_list,
9209 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 9210 }
43cd72b9
BW
9211
9212 return TRUE;
9213}
9214
9215
9216/* Move a literal to another location. This may actually increase the
9217 total amount of space used because of alignments so we need to do
9218 this carefully. Also, it may make a branch go out of range. */
9219
68ffbac6 9220static bfd_boolean
7fa3d080
BW
9221move_shared_literal (asection *sec,
9222 struct bfd_link_info *link_info,
9223 source_reloc *rel,
9224 property_table_entry *prop_table,
9225 int ptblsize,
9226 const r_reloc *target_loc,
9227 const literal_value *lit_value,
9228 section_cache_t *target_sec_cache)
43cd72b9
BW
9229{
9230 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9231 text_action *fa, *target_fa;
9232 int removed_diff;
9233 xtensa_relax_info *relax_info, *target_relax_info;
9234 asection *target_sec;
9235 ebb_t *ebb;
9236 ebb_constraint ebb_table;
9237 bfd_boolean relocs_fit;
9238
9239 /* If this routine always returns FALSE, the literals that cannot be
9240 coalesced will not be moved. */
9241 if (elf32xtensa_no_literal_movement)
9242 return FALSE;
9243
9244 relax_info = get_xtensa_relax_info (sec);
9245 if (!relax_info)
9246 return FALSE;
9247
9248 target_sec = r_reloc_get_section (target_loc);
9249 target_relax_info = get_xtensa_relax_info (target_sec);
9250
9251 /* Literals to undefined sections may not be moved because they
9252 must report an error. */
9253 if (bfd_is_und_section (target_sec))
9254 return FALSE;
9255
9256 src_entry = elf_xtensa_find_property_entry
9257 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9258
9259 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9260 return FALSE;
9261
9262 target_entry = elf_xtensa_find_property_entry
68ffbac6 9263 (target_sec_cache->ptbl, target_sec_cache->pte_count,
43cd72b9
BW
9264 target_sec->vma + target_loc->target_offset);
9265
9266 if (!target_entry)
9267 return FALSE;
9268
9269 /* Make sure that we have not broken any branches. */
9270 relocs_fit = FALSE;
9271
9272 init_ebb_constraint (&ebb_table);
9273 ebb = &ebb_table.ebb;
68ffbac6 9274 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
43cd72b9
BW
9275 target_sec_cache->content_length,
9276 target_sec_cache->ptbl, target_sec_cache->pte_count,
9277 target_sec_cache->relocs, target_sec_cache->reloc_count);
9278
9279 /* Propose to add 4 bytes + worst-case alignment size increase to
9280 destination. */
9281 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9282 ta_fill, target_loc->target_offset,
9283 -4 - (1 << target_sec->alignment_power), TRUE);
9284
9285 /* Check all of the PC-relative relocations to make sure they still fit. */
68ffbac6 9286 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
43cd72b9 9287 target_sec_cache->contents,
b2b326d2 9288 target_sec_cache->relocs, NULL,
cb337148 9289 &ebb_table, NULL);
43cd72b9 9290
68ffbac6 9291 if (!relocs_fit)
43cd72b9
BW
9292 return FALSE;
9293
9294 text_action_add_literal (&target_relax_info->action_list,
9295 ta_add_literal, target_loc, lit_value, -4);
9296
68ffbac6 9297 if (target_sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9298 {
9299 /* May need to add or remove some fill to maintain alignment. */
9300 int fill_extra_space;
9301 bfd_vma entry_sec_offset;
9302
68ffbac6 9303 entry_sec_offset =
43cd72b9
BW
9304 target_entry->address - target_sec->vma + target_entry->size;
9305
9306 /* If the literal range is at the end of the section,
9307 do not add fill. */
9308 fill_extra_space = 0;
9309 the_add_entry =
9310 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9311 target_sec_cache->pte_count,
9312 entry_sec_offset);
9313 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9314 fill_extra_space = the_add_entry->size;
9315
9316 target_fa = find_fill_action (&target_relax_info->action_list,
9317 target_sec, entry_sec_offset);
9318 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9319 entry_sec_offset, 4,
9320 fill_extra_space);
9321 if (target_fa)
9322 adjust_fill_action (target_fa, removed_diff);
9323 else
9324 text_action_add (&target_relax_info->action_list,
9325 ta_fill, target_sec, entry_sec_offset, removed_diff);
9326 }
9327
9328 /* Mark that the literal will be moved to the new location. */
9329 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9330
9331 /* Remove the literal. */
9332 text_action_add (&relax_info->action_list,
9333 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9334
9335 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9336 if (sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9337 {
9338 int fill_extra_space;
9339 bfd_vma entry_sec_offset;
9340
9341 if (src_entry)
9342 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9343 else
9344 entry_sec_offset = rel->r_rel.target_offset+4;
9345
9346 /* If the literal range is at the end of the section,
9347 do not add fill. */
9348 fill_extra_space = 0;
9349 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9350 entry_sec_offset);
9351 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9352 fill_extra_space = the_add_entry->size;
9353
9354 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9355 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9356 -4, fill_extra_space);
9357 if (fa)
9358 adjust_fill_action (fa, removed_diff);
9359 else
9360 text_action_add (&relax_info->action_list,
9361 ta_fill, sec, entry_sec_offset, removed_diff);
9362 }
9363
9364 return TRUE;
e0001a05
NC
9365}
9366
9367\f
9368/* Second relaxation pass. */
9369
4c2af04f
MF
9370static int
9371action_remove_bytes_fn (splay_tree_node node, void *p)
9372{
9373 bfd_size_type *final_size = p;
9374 text_action *action = (text_action *)node->value;
9375
9376 *final_size -= action->removed_bytes;
9377 return 0;
9378}
9379
e0001a05
NC
9380/* Modify all of the relocations to point to the right spot, and if this
9381 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 9382 section size. */
e0001a05 9383
43cd72b9 9384bfd_boolean
7fa3d080 9385relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
9386{
9387 Elf_Internal_Rela *internal_relocs;
9388 xtensa_relax_info *relax_info;
9389 bfd_byte *contents;
9390 bfd_boolean ok = TRUE;
9391 unsigned i;
43cd72b9
BW
9392 bfd_boolean rv = FALSE;
9393 bfd_boolean virtual_action;
9394 bfd_size_type sec_size;
e0001a05 9395
43cd72b9 9396 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9397 relax_info = get_xtensa_relax_info (sec);
9398 BFD_ASSERT (relax_info);
9399
43cd72b9
BW
9400 /* First translate any of the fixes that have been added already. */
9401 translate_section_fixes (sec);
9402
e0001a05
NC
9403 /* Handle property sections (e.g., literal tables) specially. */
9404 if (xtensa_is_property_section (sec))
9405 {
9406 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9407 return relax_property_section (abfd, sec, link_info);
9408 }
9409
68ffbac6 9410 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 9411 link_info->keep_memory);
4c2af04f 9412 if (!internal_relocs && !action_list_count (&relax_info->action_list))
7aa09196
SA
9413 return TRUE;
9414
43cd72b9
BW
9415 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9416 if (contents == NULL && sec_size != 0)
9417 {
9418 ok = FALSE;
9419 goto error_return;
9420 }
9421
9422 if (internal_relocs)
9423 {
9424 for (i = 0; i < sec->reloc_count; i++)
9425 {
9426 Elf_Internal_Rela *irel;
9427 xtensa_relax_info *target_relax_info;
9428 bfd_vma source_offset, old_source_offset;
9429 r_reloc r_rel;
9430 unsigned r_type;
9431 asection *target_sec;
9432
9433 /* Locally change the source address.
9434 Translate the target to the new target address.
9435 If it points to this section and has been removed,
9436 NULLify it.
9437 Write it back. */
9438
9439 irel = &internal_relocs[i];
9440 source_offset = irel->r_offset;
9441 old_source_offset = source_offset;
9442
9443 r_type = ELF32_R_TYPE (irel->r_info);
9444 r_reloc_init (&r_rel, abfd, irel, contents,
9445 bfd_get_section_limit (abfd, sec));
9446
9447 /* If this section could have changed then we may need to
9448 change the relocation's offset. */
9449
9450 if (relax_info->is_relaxable_literal_section
9451 || relax_info->is_relaxable_asm_section)
9452 {
9b7f5d20
BW
9453 pin_internal_relocs (sec, internal_relocs);
9454
43cd72b9
BW
9455 if (r_type != R_XTENSA_NONE
9456 && find_removed_literal (&relax_info->removed_list,
9457 irel->r_offset))
9458 {
9459 /* Remove this relocation. */
9460 if (elf_hash_table (link_info)->dynamic_sections_created)
9461 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9462 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
071aa5c9 9463 irel->r_offset = offset_with_removed_text_map
43cd72b9 9464 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
9465 continue;
9466 }
9467
9468 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9469 {
9470 text_action *action =
9471 find_insn_action (&relax_info->action_list,
9472 irel->r_offset);
9473 if (action && (action->action == ta_convert_longcall
9474 || action->action == ta_remove_longcall))
9475 {
9476 bfd_reloc_status_type retval;
9477 char *error_message = NULL;
9478
9479 retval = contract_asm_expansion (contents, sec_size,
9480 irel, &error_message);
9481 if (retval != bfd_reloc_ok)
9482 {
9483 (*link_info->callbacks->reloc_dangerous)
9484 (link_info, error_message, abfd, sec,
9485 irel->r_offset);
9486 goto error_return;
9487 }
9488 /* Update the action so that the code that moves
9489 the contents will do the right thing. */
4c2af04f
MF
9490 /* ta_remove_longcall and ta_remove_insn actions are
9491 grouped together in the tree as well as
9492 ta_convert_longcall and ta_none, so that changes below
9493 can be done w/o removing and reinserting action into
9494 the tree. */
9495
43cd72b9
BW
9496 if (action->action == ta_remove_longcall)
9497 action->action = ta_remove_insn;
9498 else
9499 action->action = ta_none;
9500 /* Refresh the info in the r_rel. */
9501 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9502 r_type = ELF32_R_TYPE (irel->r_info);
9503 }
9504 }
9505
071aa5c9 9506 source_offset = offset_with_removed_text_map
43cd72b9
BW
9507 (&relax_info->action_list, irel->r_offset);
9508 irel->r_offset = source_offset;
9509 }
9510
9511 /* If the target section could have changed then
9512 we may need to change the relocation's target offset. */
9513
9514 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 9515
ae326da8
BW
9516 /* For a reference to a discarded section from a DWARF section,
9517 i.e., where action_discarded is PRETEND, the symbol will
9518 eventually be modified to refer to the kept section (at least if
9519 the kept and discarded sections are the same size). Anticipate
9520 that here and adjust things accordingly. */
9521 if (! elf_xtensa_ignore_discarded_relocs (sec)
9522 && elf_xtensa_action_discarded (sec) == PRETEND
dbaa2011 9523 && sec->sec_info_type != SEC_INFO_TYPE_STABS
ae326da8 9524 && target_sec != NULL
dbaa2011 9525 && discarded_section (target_sec))
ae326da8
BW
9526 {
9527 /* It would be natural to call _bfd_elf_check_kept_section
9528 here, but it's not exported from elflink.c. It's also a
9529 fairly expensive check. Adjusting the relocations to the
9530 discarded section is fairly harmless; it will only adjust
9531 some addends and difference values. If it turns out that
9532 _bfd_elf_check_kept_section fails later, it won't matter,
9533 so just compare the section names to find the right group
9534 member. */
9535 asection *kept = target_sec->kept_section;
9536 if (kept != NULL)
9537 {
9538 if ((kept->flags & SEC_GROUP) != 0)
9539 {
9540 asection *first = elf_next_in_group (kept);
9541 asection *s = first;
9542
9543 kept = NULL;
9544 while (s != NULL)
9545 {
9546 if (strcmp (s->name, target_sec->name) == 0)
9547 {
9548 kept = s;
9549 break;
9550 }
9551 s = elf_next_in_group (s);
9552 if (s == first)
9553 break;
9554 }
9555 }
9556 }
9557 if (kept != NULL
9558 && ((target_sec->rawsize != 0
9559 ? target_sec->rawsize : target_sec->size)
9560 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9561 target_sec = kept;
9562 }
9563
9564 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9565 if (target_relax_info
9566 && (target_relax_info->is_relaxable_literal_section
9567 || target_relax_info->is_relaxable_asm_section))
9568 {
9569 r_reloc new_reloc;
9b7f5d20 9570 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9571
9572 if (r_type == R_XTENSA_DIFF8
9573 || r_type == R_XTENSA_DIFF16
9574 || r_type == R_XTENSA_DIFF32)
9575 {
1058c753
VA
9576 bfd_signed_vma diff_value = 0;
9577 bfd_vma new_end_offset, diff_mask = 0;
43cd72b9
BW
9578
9579 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9580 {
9581 (*link_info->callbacks->reloc_dangerous)
9582 (link_info, _("invalid relocation address"),
9583 abfd, sec, old_source_offset);
9584 goto error_return;
9585 }
9586
9587 switch (r_type)
9588 {
9589 case R_XTENSA_DIFF8:
9590 diff_value =
1058c753 9591 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9592 break;
9593 case R_XTENSA_DIFF16:
9594 diff_value =
1058c753 9595 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9596 break;
9597 case R_XTENSA_DIFF32:
9598 diff_value =
1058c753 9599 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9600 break;
9601 }
9602
071aa5c9 9603 new_end_offset = offset_with_removed_text_map
43cd72b9
BW
9604 (&target_relax_info->action_list,
9605 r_rel.target_offset + diff_value);
9606 diff_value = new_end_offset - new_reloc.target_offset;
9607
9608 switch (r_type)
9609 {
9610 case R_XTENSA_DIFF8:
1058c753
VA
9611 diff_mask = 0x7f;
9612 bfd_put_signed_8 (abfd, diff_value,
43cd72b9
BW
9613 &contents[old_source_offset]);
9614 break;
9615 case R_XTENSA_DIFF16:
1058c753
VA
9616 diff_mask = 0x7fff;
9617 bfd_put_signed_16 (abfd, diff_value,
43cd72b9
BW
9618 &contents[old_source_offset]);
9619 break;
9620 case R_XTENSA_DIFF32:
1058c753
VA
9621 diff_mask = 0x7fffffff;
9622 bfd_put_signed_32 (abfd, diff_value,
43cd72b9
BW
9623 &contents[old_source_offset]);
9624 break;
9625 }
9626
1058c753
VA
9627 /* Check for overflow. Sign bits must be all zeroes or all ones */
9628 if ((diff_value & ~diff_mask) != 0 &&
9629 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
43cd72b9
BW
9630 {
9631 (*link_info->callbacks->reloc_dangerous)
9632 (link_info, _("overflow after relaxation"),
9633 abfd, sec, old_source_offset);
9634 goto error_return;
9635 }
9636
9637 pin_contents (sec, contents);
9638 }
dc96b90a
BW
9639
9640 /* If the relocation still references a section in the same
9641 input file, modify the relocation directly instead of
9642 adding a "fix" record. */
9643 if (target_sec->owner == abfd)
9644 {
9645 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9646 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9647 irel->r_addend = new_reloc.rela.r_addend;
9648 pin_internal_relocs (sec, internal_relocs);
9649 }
9b7f5d20
BW
9650 else
9651 {
dc96b90a
BW
9652 bfd_vma addend_displacement;
9653 reloc_bfd_fix *fix;
9654
9655 addend_displacement =
9656 new_reloc.target_offset + new_reloc.virtual_offset;
9657 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9658 target_sec,
9659 addend_displacement, TRUE);
9660 add_fix (sec, fix);
9b7f5d20 9661 }
43cd72b9 9662 }
43cd72b9
BW
9663 }
9664 }
9665
9666 if ((relax_info->is_relaxable_literal_section
9667 || relax_info->is_relaxable_asm_section)
4c2af04f 9668 && action_list_count (&relax_info->action_list))
43cd72b9
BW
9669 {
9670 /* Walk through the planned actions and build up a table
9671 of move, copy and fill records. Use the move, copy and
9672 fill records to perform the actions once. */
9673
43cd72b9
BW
9674 bfd_size_type final_size, copy_size, orig_insn_size;
9675 bfd_byte *scratch = NULL;
9676 bfd_byte *dup_contents = NULL;
a3ef2d63 9677 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9678 bfd_vma orig_dot = 0;
9679 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9680 orig dot in physical memory. */
9681 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9682 bfd_vma dup_dot = 0;
9683
4c2af04f 9684 text_action *action;
43cd72b9
BW
9685
9686 final_size = sec->size;
43cd72b9 9687
4c2af04f
MF
9688 splay_tree_foreach (relax_info->action_list.tree,
9689 action_remove_bytes_fn, &final_size);
43cd72b9
BW
9690 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9691 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9692
9693 /* The dot is the current fill location. */
9694#if DEBUG
9695 print_action_list (stderr, &relax_info->action_list);
9696#endif
9697
4c2af04f
MF
9698 for (action = action_first (&relax_info->action_list); action;
9699 action = action_next (&relax_info->action_list, action))
43cd72b9
BW
9700 {
9701 virtual_action = FALSE;
9702 if (action->offset > orig_dot)
9703 {
9704 orig_dot += orig_dot_copied;
9705 orig_dot_copied = 0;
9706 orig_dot_vo = 0;
9707 /* Out of the virtual world. */
9708 }
9709
9710 if (action->offset > orig_dot)
9711 {
9712 copy_size = action->offset - orig_dot;
9713 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9714 orig_dot += copy_size;
9715 dup_dot += copy_size;
9716 BFD_ASSERT (action->offset == orig_dot);
9717 }
9718 else if (action->offset < orig_dot)
9719 {
9720 if (action->action == ta_fill
9721 && action->offset - action->removed_bytes == orig_dot)
9722 {
9723 /* This is OK because the fill only effects the dup_dot. */
9724 }
9725 else if (action->action == ta_add_literal)
9726 {
9727 /* TBD. Might need to handle this. */
9728 }
9729 }
9730 if (action->offset == orig_dot)
9731 {
9732 if (action->virtual_offset > orig_dot_vo)
9733 {
9734 if (orig_dot_vo == 0)
9735 {
9736 /* Need to copy virtual_offset bytes. Probably four. */
9737 copy_size = action->virtual_offset - orig_dot_vo;
9738 memmove (&dup_contents[dup_dot],
9739 &contents[orig_dot], copy_size);
9740 orig_dot_copied = copy_size;
9741 dup_dot += copy_size;
9742 }
9743 virtual_action = TRUE;
68ffbac6 9744 }
43cd72b9
BW
9745 else
9746 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9747 }
9748 switch (action->action)
9749 {
9750 case ta_remove_literal:
9751 case ta_remove_insn:
9752 BFD_ASSERT (action->removed_bytes >= 0);
9753 orig_dot += action->removed_bytes;
9754 break;
9755
9756 case ta_narrow_insn:
9757 orig_insn_size = 3;
9758 copy_size = 2;
9759 memmove (scratch, &contents[orig_dot], orig_insn_size);
9760 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9761 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9762 BFD_ASSERT (rv);
9763 memmove (&dup_contents[dup_dot], scratch, copy_size);
9764 orig_dot += orig_insn_size;
9765 dup_dot += copy_size;
9766 break;
9767
9768 case ta_fill:
9769 if (action->removed_bytes >= 0)
9770 orig_dot += action->removed_bytes;
9771 else
9772 {
9773 /* Already zeroed in dup_contents. Just bump the
9774 counters. */
9775 dup_dot += (-action->removed_bytes);
9776 }
9777 break;
9778
9779 case ta_none:
9780 BFD_ASSERT (action->removed_bytes == 0);
9781 break;
9782
9783 case ta_convert_longcall:
9784 case ta_remove_longcall:
9785 /* These will be removed or converted before we get here. */
9786 BFD_ASSERT (0);
9787 break;
9788
9789 case ta_widen_insn:
9790 orig_insn_size = 2;
9791 copy_size = 3;
9792 memmove (scratch, &contents[orig_dot], orig_insn_size);
9793 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9794 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9795 BFD_ASSERT (rv);
9796 memmove (&dup_contents[dup_dot], scratch, copy_size);
9797 orig_dot += orig_insn_size;
9798 dup_dot += copy_size;
9799 break;
9800
9801 case ta_add_literal:
9802 orig_insn_size = 0;
9803 copy_size = 4;
9804 BFD_ASSERT (action->removed_bytes == -4);
9805 /* TBD -- place the literal value here and insert
9806 into the table. */
9807 memset (&dup_contents[dup_dot], 0, 4);
9808 pin_internal_relocs (sec, internal_relocs);
9809 pin_contents (sec, contents);
9810
9811 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9812 relax_info, &internal_relocs, &action->value))
9813 goto error_return;
9814
68ffbac6 9815 if (virtual_action)
43cd72b9
BW
9816 orig_dot_vo += copy_size;
9817
9818 orig_dot += orig_insn_size;
9819 dup_dot += copy_size;
9820 break;
9821
9822 default:
9823 /* Not implemented yet. */
9824 BFD_ASSERT (0);
9825 break;
9826 }
9827
43cd72b9
BW
9828 BFD_ASSERT (dup_dot <= final_size);
9829 BFD_ASSERT (orig_dot <= orig_size);
9830 }
9831
9832 orig_dot += orig_dot_copied;
9833 orig_dot_copied = 0;
9834
9835 if (orig_dot != orig_size)
9836 {
9837 copy_size = orig_size - orig_dot;
9838 BFD_ASSERT (orig_size > orig_dot);
9839 BFD_ASSERT (dup_dot + copy_size == final_size);
9840 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9841 orig_dot += copy_size;
9842 dup_dot += copy_size;
9843 }
9844 BFD_ASSERT (orig_size == orig_dot);
9845 BFD_ASSERT (final_size == dup_dot);
9846
9847 /* Move the dup_contents back. */
9848 if (final_size > orig_size)
9849 {
9850 /* Contents need to be reallocated. Swap the dup_contents into
9851 contents. */
9852 sec->contents = dup_contents;
9853 free (contents);
9854 contents = dup_contents;
9855 pin_contents (sec, contents);
9856 }
9857 else
9858 {
9859 BFD_ASSERT (final_size <= orig_size);
9860 memset (contents, 0, orig_size);
9861 memcpy (contents, dup_contents, final_size);
9862 free (dup_contents);
9863 }
9864 free (scratch);
9865 pin_contents (sec, contents);
9866
a3ef2d63
BW
9867 if (sec->rawsize == 0)
9868 sec->rawsize = sec->size;
43cd72b9
BW
9869 sec->size = final_size;
9870 }
9871
9872 error_return:
9873 release_internal_relocs (sec, internal_relocs);
9874 release_contents (sec, contents);
9875 return ok;
9876}
9877
9878
68ffbac6 9879static bfd_boolean
7fa3d080 9880translate_section_fixes (asection *sec)
43cd72b9
BW
9881{
9882 xtensa_relax_info *relax_info;
9883 reloc_bfd_fix *r;
9884
9885 relax_info = get_xtensa_relax_info (sec);
9886 if (!relax_info)
9887 return TRUE;
9888
9889 for (r = relax_info->fix_list; r != NULL; r = r->next)
9890 if (!translate_reloc_bfd_fix (r))
9891 return FALSE;
e0001a05 9892
43cd72b9
BW
9893 return TRUE;
9894}
e0001a05 9895
e0001a05 9896
43cd72b9
BW
9897/* Translate a fix given the mapping in the relax info for the target
9898 section. If it has already been translated, no work is required. */
e0001a05 9899
68ffbac6 9900static bfd_boolean
7fa3d080 9901translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9902{
9903 reloc_bfd_fix new_fix;
9904 asection *sec;
9905 xtensa_relax_info *relax_info;
9906 removed_literal *removed;
9907 bfd_vma new_offset, target_offset;
e0001a05 9908
43cd72b9
BW
9909 if (fix->translated)
9910 return TRUE;
e0001a05 9911
43cd72b9
BW
9912 sec = fix->target_sec;
9913 target_offset = fix->target_offset;
e0001a05 9914
43cd72b9
BW
9915 relax_info = get_xtensa_relax_info (sec);
9916 if (!relax_info)
9917 {
9918 fix->translated = TRUE;
9919 return TRUE;
9920 }
e0001a05 9921
43cd72b9 9922 new_fix = *fix;
e0001a05 9923
43cd72b9
BW
9924 /* The fix does not need to be translated if the section cannot change. */
9925 if (!relax_info->is_relaxable_literal_section
9926 && !relax_info->is_relaxable_asm_section)
9927 {
9928 fix->translated = TRUE;
9929 return TRUE;
9930 }
e0001a05 9931
43cd72b9
BW
9932 /* If the literal has been moved and this relocation was on an
9933 opcode, then the relocation should move to the new literal
9934 location. Otherwise, the relocation should move within the
9935 section. */
9936
9937 removed = FALSE;
9938 if (is_operand_relocation (fix->src_type))
9939 {
9940 /* Check if the original relocation is against a literal being
9941 removed. */
9942 removed = find_removed_literal (&relax_info->removed_list,
9943 target_offset);
e0001a05
NC
9944 }
9945
68ffbac6 9946 if (removed)
e0001a05 9947 {
43cd72b9 9948 asection *new_sec;
e0001a05 9949
43cd72b9
BW
9950 /* The fact that there is still a relocation to this literal indicates
9951 that the literal is being coalesced, not simply removed. */
9952 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9953
43cd72b9
BW
9954 /* This was moved to some other address (possibly another section). */
9955 new_sec = r_reloc_get_section (&removed->to);
68ffbac6 9956 if (new_sec != sec)
e0001a05 9957 {
43cd72b9
BW
9958 sec = new_sec;
9959 relax_info = get_xtensa_relax_info (sec);
68ffbac6 9960 if (!relax_info ||
43cd72b9
BW
9961 (!relax_info->is_relaxable_literal_section
9962 && !relax_info->is_relaxable_asm_section))
e0001a05 9963 {
43cd72b9
BW
9964 target_offset = removed->to.target_offset;
9965 new_fix.target_sec = new_sec;
9966 new_fix.target_offset = target_offset;
9967 new_fix.translated = TRUE;
9968 *fix = new_fix;
9969 return TRUE;
e0001a05 9970 }
e0001a05 9971 }
43cd72b9
BW
9972 target_offset = removed->to.target_offset;
9973 new_fix.target_sec = new_sec;
e0001a05 9974 }
43cd72b9
BW
9975
9976 /* The target address may have been moved within its section. */
9977 new_offset = offset_with_removed_text (&relax_info->action_list,
9978 target_offset);
9979
9980 new_fix.target_offset = new_offset;
9981 new_fix.target_offset = new_offset;
9982 new_fix.translated = TRUE;
9983 *fix = new_fix;
9984 return TRUE;
e0001a05
NC
9985}
9986
9987
9988/* Fix up a relocation to take account of removed literals. */
9989
9b7f5d20
BW
9990static asection *
9991translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9992{
e0001a05
NC
9993 xtensa_relax_info *relax_info;
9994 removed_literal *removed;
9b7f5d20 9995 bfd_vma target_offset, base_offset;
e0001a05
NC
9996
9997 *new_rel = *orig_rel;
9998
9999 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 10000 return sec ;
e0001a05
NC
10001
10002 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
10003 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10004 || relax_info->is_relaxable_asm_section));
e0001a05 10005
43cd72b9
BW
10006 target_offset = orig_rel->target_offset;
10007
10008 removed = FALSE;
10009 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10010 {
10011 /* Check if the original relocation is against a literal being
10012 removed. */
10013 removed = find_removed_literal (&relax_info->removed_list,
10014 target_offset);
10015 }
10016 if (removed && removed->to.abfd)
e0001a05
NC
10017 {
10018 asection *new_sec;
10019
10020 /* The fact that there is still a relocation to this literal indicates
10021 that the literal is being coalesced, not simply removed. */
10022 BFD_ASSERT (removed->to.abfd != NULL);
10023
43cd72b9
BW
10024 /* This was moved to some other address
10025 (possibly in another section). */
e0001a05
NC
10026 *new_rel = removed->to;
10027 new_sec = r_reloc_get_section (new_rel);
43cd72b9 10028 if (new_sec != sec)
e0001a05
NC
10029 {
10030 sec = new_sec;
10031 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
10032 if (!relax_info
10033 || (!relax_info->is_relaxable_literal_section
10034 && !relax_info->is_relaxable_asm_section))
9b7f5d20 10035 return sec;
e0001a05 10036 }
43cd72b9 10037 target_offset = new_rel->target_offset;
e0001a05
NC
10038 }
10039
9b7f5d20
BW
10040 /* Find the base offset of the reloc symbol, excluding any addend from the
10041 reloc or from the section contents (for a partial_inplace reloc). Then
10042 find the adjusted values of the offsets due to relaxation. The base
10043 offset is needed to determine the change to the reloc's addend; the reloc
10044 addend should not be adjusted due to relaxations located before the base
10045 offset. */
10046
10047 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9b7f5d20
BW
10048 if (base_offset <= target_offset)
10049 {
071aa5c9
MF
10050 int base_removed = removed_by_actions_map (&relax_info->action_list,
10051 base_offset, FALSE);
10052 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10053 target_offset, FALSE) -
10054 base_removed;
10055
9b7f5d20
BW
10056 new_rel->target_offset = target_offset - base_removed - addend_removed;
10057 new_rel->rela.r_addend -= addend_removed;
10058 }
10059 else
10060 {
10061 /* Handle a negative addend. The base offset comes first. */
071aa5c9
MF
10062 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10063 target_offset, FALSE);
10064 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10065 base_offset, FALSE) -
10066 tgt_removed;
10067
9b7f5d20
BW
10068 new_rel->target_offset = target_offset - tgt_removed;
10069 new_rel->rela.r_addend += addend_removed;
10070 }
e0001a05 10071
9b7f5d20 10072 return sec;
e0001a05
NC
10073}
10074
10075
10076/* For dynamic links, there may be a dynamic relocation for each
10077 literal. The number of dynamic relocations must be computed in
10078 size_dynamic_sections, which occurs before relaxation. When a
10079 literal is removed, this function checks if there is a corresponding
10080 dynamic relocation and shrinks the size of the appropriate dynamic
10081 relocation section accordingly. At this point, the contents of the
10082 dynamic relocation sections have not yet been filled in, so there's
10083 nothing else that needs to be done. */
10084
10085static void
7fa3d080
BW
10086shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10087 bfd *abfd,
10088 asection *input_section,
10089 Elf_Internal_Rela *rel)
e0001a05 10090{
f0e6fdb2 10091 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
10092 Elf_Internal_Shdr *symtab_hdr;
10093 struct elf_link_hash_entry **sym_hashes;
10094 unsigned long r_symndx;
10095 int r_type;
10096 struct elf_link_hash_entry *h;
10097 bfd_boolean dynamic_symbol;
10098
f0e6fdb2 10099 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10100 if (htab == NULL)
10101 return;
10102
e0001a05
NC
10103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10104 sym_hashes = elf_sym_hashes (abfd);
10105
10106 r_type = ELF32_R_TYPE (rel->r_info);
10107 r_symndx = ELF32_R_SYM (rel->r_info);
10108
10109 if (r_symndx < symtab_hdr->sh_info)
10110 h = NULL;
10111 else
10112 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10113
4608f3d9 10114 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
10115
10116 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10117 && (input_section->flags & SEC_ALLOC) != 0
0e1862bb 10118 && (dynamic_symbol || bfd_link_pic (info)))
e0001a05 10119 {
e0001a05
NC
10120 asection *srel;
10121 bfd_boolean is_plt = FALSE;
10122
e0001a05
NC
10123 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10124 {
ce558b89 10125 srel = htab->elf.srelplt;
e0001a05
NC
10126 is_plt = TRUE;
10127 }
10128 else
ce558b89 10129 srel = htab->elf.srelgot;
e0001a05
NC
10130
10131 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 10132 BFD_ASSERT (srel != NULL);
eea6121a
AM
10133 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10134 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
10135
10136 if (is_plt)
10137 {
10138 asection *splt, *sgotplt, *srelgot;
10139 int reloc_index, chunk;
10140
10141 /* Find the PLT reloc index of the entry being removed. This
10142 is computed from the size of ".rela.plt". It is needed to
10143 figure out which PLT chunk to resize. Usually "last index
10144 = size - 1" since the index starts at zero, but in this
10145 context, the size has just been decremented so there's no
10146 need to subtract one. */
eea6121a 10147 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
10148
10149 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
10150 splt = elf_xtensa_get_plt_section (info, chunk);
10151 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
10152 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10153
10154 /* Check if an entire PLT chunk has just been eliminated. */
10155 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10156 {
10157 /* The two magic GOT entries for that chunk can go away. */
ce558b89 10158 srelgot = htab->elf.srelgot;
e0001a05
NC
10159 BFD_ASSERT (srelgot != NULL);
10160 srelgot->reloc_count -= 2;
eea6121a
AM
10161 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10162 sgotplt->size -= 8;
e0001a05
NC
10163
10164 /* There should be only one entry left (and it will be
10165 removed below). */
eea6121a
AM
10166 BFD_ASSERT (sgotplt->size == 4);
10167 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
10168 }
10169
eea6121a
AM
10170 BFD_ASSERT (sgotplt->size >= 4);
10171 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 10172
eea6121a
AM
10173 sgotplt->size -= 4;
10174 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
10175 }
10176 }
10177}
10178
10179
43cd72b9
BW
10180/* Take an r_rel and move it to another section. This usually
10181 requires extending the interal_relocation array and pinning it. If
10182 the original r_rel is from the same BFD, we can complete this here.
10183 Otherwise, we add a fix record to let the final link fix the
10184 appropriate address. Contents and internal relocations for the
10185 section must be pinned after calling this routine. */
10186
10187static bfd_boolean
7fa3d080
BW
10188move_literal (bfd *abfd,
10189 struct bfd_link_info *link_info,
10190 asection *sec,
10191 bfd_vma offset,
10192 bfd_byte *contents,
10193 xtensa_relax_info *relax_info,
10194 Elf_Internal_Rela **internal_relocs_p,
10195 const literal_value *lit)
43cd72b9
BW
10196{
10197 Elf_Internal_Rela *new_relocs = NULL;
10198 size_t new_relocs_count = 0;
10199 Elf_Internal_Rela this_rela;
10200 const r_reloc *r_rel;
10201
10202 r_rel = &lit->r_rel;
10203 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10204
10205 if (r_reloc_is_const (r_rel))
10206 bfd_put_32 (abfd, lit->value, contents + offset);
10207 else
10208 {
10209 int r_type;
10210 unsigned i;
43cd72b9
BW
10211 reloc_bfd_fix *fix;
10212 unsigned insert_at;
10213
10214 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
10215
10216 /* This is the difficult case. We have to create a fix up. */
10217 this_rela.r_offset = offset;
10218 this_rela.r_info = ELF32_R_INFO (0, r_type);
10219 this_rela.r_addend =
10220 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10221 bfd_put_32 (abfd, lit->value, contents + offset);
10222
10223 /* Currently, we cannot move relocations during a relocatable link. */
0e1862bb 10224 BFD_ASSERT (!bfd_link_relocatable (link_info));
0f5f1638 10225 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
10226 r_reloc_get_section (r_rel),
10227 r_rel->target_offset + r_rel->virtual_offset,
10228 FALSE);
10229 /* We also need to mark that relocations are needed here. */
10230 sec->flags |= SEC_RELOC;
10231
10232 translate_reloc_bfd_fix (fix);
10233 /* This fix has not yet been translated. */
10234 add_fix (sec, fix);
10235
10236 /* Add the relocation. If we have already allocated our own
10237 space for the relocations and we have room for more, then use
10238 it. Otherwise, allocate new space and move the literals. */
10239 insert_at = sec->reloc_count;
10240 for (i = 0; i < sec->reloc_count; ++i)
10241 {
10242 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10243 {
10244 insert_at = i;
10245 break;
10246 }
10247 }
10248
10249 if (*internal_relocs_p != relax_info->allocated_relocs
10250 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10251 {
10252 BFD_ASSERT (relax_info->allocated_relocs == NULL
10253 || sec->reloc_count == relax_info->relocs_count);
10254
68ffbac6 10255 if (relax_info->allocated_relocs_count == 0)
43cd72b9
BW
10256 new_relocs_count = (sec->reloc_count + 2) * 2;
10257 else
10258 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10259
10260 new_relocs = (Elf_Internal_Rela *)
10261 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10262 if (!new_relocs)
10263 return FALSE;
10264
10265 /* We could handle this more quickly by finding the split point. */
10266 if (insert_at != 0)
10267 memcpy (new_relocs, *internal_relocs_p,
10268 insert_at * sizeof (Elf_Internal_Rela));
10269
10270 new_relocs[insert_at] = this_rela;
10271
10272 if (insert_at != sec->reloc_count)
10273 memcpy (new_relocs + insert_at + 1,
10274 (*internal_relocs_p) + insert_at,
68ffbac6 10275 (sec->reloc_count - insert_at)
43cd72b9
BW
10276 * sizeof (Elf_Internal_Rela));
10277
10278 if (*internal_relocs_p != relax_info->allocated_relocs)
10279 {
10280 /* The first time we re-allocate, we can only free the
10281 old relocs if they were allocated with bfd_malloc.
10282 This is not true when keep_memory is in effect. */
10283 if (!link_info->keep_memory)
10284 free (*internal_relocs_p);
10285 }
10286 else
10287 free (*internal_relocs_p);
10288 relax_info->allocated_relocs = new_relocs;
10289 relax_info->allocated_relocs_count = new_relocs_count;
10290 elf_section_data (sec)->relocs = new_relocs;
10291 sec->reloc_count++;
10292 relax_info->relocs_count = sec->reloc_count;
10293 *internal_relocs_p = new_relocs;
10294 }
10295 else
10296 {
10297 if (insert_at != sec->reloc_count)
10298 {
10299 unsigned idx;
10300 for (idx = sec->reloc_count; idx > insert_at; idx--)
10301 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10302 }
10303 (*internal_relocs_p)[insert_at] = this_rela;
10304 sec->reloc_count++;
10305 if (relax_info->allocated_relocs)
10306 relax_info->relocs_count = sec->reloc_count;
10307 }
10308 }
10309 return TRUE;
10310}
10311
10312
e0001a05
NC
10313/* This is similar to relax_section except that when a target is moved,
10314 we shift addresses up. We also need to modify the size. This
10315 algorithm does NOT allow for relocations into the middle of the
10316 property sections. */
10317
43cd72b9 10318static bfd_boolean
7fa3d080
BW
10319relax_property_section (bfd *abfd,
10320 asection *sec,
10321 struct bfd_link_info *link_info)
e0001a05
NC
10322{
10323 Elf_Internal_Rela *internal_relocs;
10324 bfd_byte *contents;
1d25768e 10325 unsigned i;
e0001a05 10326 bfd_boolean ok = TRUE;
43cd72b9
BW
10327 bfd_boolean is_full_prop_section;
10328 size_t last_zfill_target_offset = 0;
10329 asection *last_zfill_target_sec = NULL;
10330 bfd_size_type sec_size;
1d25768e 10331 bfd_size_type entry_size;
e0001a05 10332
43cd72b9 10333 sec_size = bfd_get_section_limit (abfd, sec);
68ffbac6 10334 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
10335 link_info->keep_memory);
10336 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10337 if (contents == NULL && sec_size != 0)
e0001a05
NC
10338 {
10339 ok = FALSE;
10340 goto error_return;
10341 }
10342
1d25768e
BW
10343 is_full_prop_section = xtensa_is_proptable_section (sec);
10344 if (is_full_prop_section)
10345 entry_size = 12;
10346 else
10347 entry_size = 8;
43cd72b9
BW
10348
10349 if (internal_relocs)
e0001a05 10350 {
43cd72b9 10351 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10352 {
10353 Elf_Internal_Rela *irel;
10354 xtensa_relax_info *target_relax_info;
e0001a05
NC
10355 unsigned r_type;
10356 asection *target_sec;
43cd72b9
BW
10357 literal_value val;
10358 bfd_byte *size_p, *flags_p;
e0001a05
NC
10359
10360 /* Locally change the source address.
10361 Translate the target to the new target address.
10362 If it points to this section and has been removed, MOVE IT.
10363 Also, don't forget to modify the associated SIZE at
10364 (offset + 4). */
10365
10366 irel = &internal_relocs[i];
10367 r_type = ELF32_R_TYPE (irel->r_info);
10368 if (r_type == R_XTENSA_NONE)
10369 continue;
10370
43cd72b9
BW
10371 /* Find the literal value. */
10372 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10373 size_p = &contents[irel->r_offset + 4];
10374 flags_p = NULL;
10375 if (is_full_prop_section)
1d25768e
BW
10376 flags_p = &contents[irel->r_offset + 8];
10377 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 10378
43cd72b9 10379 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
10380 target_relax_info = get_xtensa_relax_info (target_sec);
10381
10382 if (target_relax_info
43cd72b9
BW
10383 && (target_relax_info->is_relaxable_literal_section
10384 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
10385 {
10386 /* Translate the relocation's destination. */
03669f1c
BW
10387 bfd_vma old_offset = val.r_rel.target_offset;
10388 bfd_vma new_offset;
e0001a05 10389 long old_size, new_size;
071aa5c9
MF
10390 int removed_by_old_offset =
10391 removed_by_actions_map (&target_relax_info->action_list,
10392 old_offset, FALSE);
10393 new_offset = old_offset - removed_by_old_offset;
e0001a05
NC
10394
10395 /* Assert that we are not out of bounds. */
43cd72b9 10396 old_size = bfd_get_32 (abfd, size_p);
03669f1c 10397 new_size = old_size;
43cd72b9
BW
10398
10399 if (old_size == 0)
10400 {
10401 /* Only the first zero-sized unreachable entry is
10402 allowed to expand. In this case the new offset
10403 should be the offset before the fill and the new
10404 size is the expansion size. For other zero-sized
10405 entries the resulting size should be zero with an
10406 offset before or after the fill address depending
10407 on whether the expanding unreachable entry
10408 preceeds it. */
03669f1c
BW
10409 if (last_zfill_target_sec == 0
10410 || last_zfill_target_sec != target_sec
10411 || last_zfill_target_offset != old_offset)
43cd72b9 10412 {
03669f1c
BW
10413 bfd_vma new_end_offset = new_offset;
10414
10415 /* Recompute the new_offset, but this time don't
10416 include any fill inserted by relaxation. */
071aa5c9
MF
10417 removed_by_old_offset =
10418 removed_by_actions_map (&target_relax_info->action_list,
10419 old_offset, TRUE);
10420 new_offset = old_offset - removed_by_old_offset;
43cd72b9
BW
10421
10422 /* If it is not unreachable and we have not yet
10423 seen an unreachable at this address, place it
10424 before the fill address. */
03669f1c
BW
10425 if (flags_p && (bfd_get_32 (abfd, flags_p)
10426 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 10427 {
03669f1c
BW
10428 new_size = new_end_offset - new_offset;
10429
43cd72b9 10430 last_zfill_target_sec = target_sec;
03669f1c 10431 last_zfill_target_offset = old_offset;
43cd72b9
BW
10432 }
10433 }
10434 }
10435 else
071aa5c9
MF
10436 {
10437 int removed_by_old_offset_size =
10438 removed_by_actions_map (&target_relax_info->action_list,
10439 old_offset + old_size, TRUE);
10440 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10441 }
43cd72b9 10442
e0001a05
NC
10443 if (new_size != old_size)
10444 {
10445 bfd_put_32 (abfd, new_size, size_p);
10446 pin_contents (sec, contents);
10447 }
43cd72b9 10448
03669f1c 10449 if (new_offset != old_offset)
e0001a05 10450 {
03669f1c 10451 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
10452 irel->r_addend += diff;
10453 pin_internal_relocs (sec, internal_relocs);
10454 }
10455 }
10456 }
10457 }
10458
10459 /* Combine adjacent property table entries. This is also done in
10460 finish_dynamic_sections() but at that point it's too late to
10461 reclaim the space in the output section, so we do this twice. */
10462
0e1862bb 10463 if (internal_relocs && (!bfd_link_relocatable (link_info)
1d25768e 10464 || xtensa_is_littable_section (sec)))
e0001a05
NC
10465 {
10466 Elf_Internal_Rela *last_irel = NULL;
1d25768e 10467 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 10468 int removed_bytes = 0;
1d25768e 10469 bfd_vma offset;
43cd72b9
BW
10470 flagword predef_flags;
10471
43cd72b9 10472 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 10473
1d25768e 10474 /* Walk over memory and relocations at the same time.
e0001a05
NC
10475 This REQUIRES that the internal_relocs be sorted by offset. */
10476 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10477 internal_reloc_compare);
e0001a05
NC
10478
10479 pin_internal_relocs (sec, internal_relocs);
10480 pin_contents (sec, contents);
10481
1d25768e
BW
10482 next_rel = internal_relocs;
10483 rel_end = internal_relocs + sec->reloc_count;
10484
a3ef2d63 10485 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 10486
a3ef2d63 10487 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 10488 {
1d25768e 10489 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 10490 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 10491 bfd_boolean remove_this_rel;
43cd72b9 10492 flagword flags;
e0001a05 10493
1d25768e
BW
10494 /* Find the first relocation for the entry at the current offset.
10495 Adjust the offsets of any extra relocations for the previous
10496 entry. */
10497 offset_rel = NULL;
10498 if (next_rel)
10499 {
10500 for (irel = next_rel; irel < rel_end; irel++)
10501 {
10502 if ((irel->r_offset == offset
10503 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10504 || irel->r_offset > offset)
10505 {
10506 offset_rel = irel;
10507 break;
10508 }
10509 irel->r_offset -= removed_bytes;
1d25768e
BW
10510 }
10511 }
e0001a05 10512
1d25768e
BW
10513 /* Find the next relocation (if there are any left). */
10514 extra_rel = NULL;
10515 if (offset_rel)
e0001a05 10516 {
1d25768e 10517 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 10518 {
1d25768e
BW
10519 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10520 {
10521 extra_rel = irel;
10522 break;
10523 }
e0001a05 10524 }
e0001a05
NC
10525 }
10526
1d25768e
BW
10527 /* Check if there are relocations on the current entry. There
10528 should usually be a relocation on the offset field. If there
10529 are relocations on the size or flags, then we can't optimize
10530 this entry. Also, find the next relocation to examine on the
10531 next iteration. */
10532 if (offset_rel)
e0001a05 10533 {
1d25768e 10534 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 10535 {
1d25768e
BW
10536 next_rel = offset_rel;
10537 /* There are no relocations on the current entry, but we
10538 might still be able to remove it if the size is zero. */
10539 offset_rel = NULL;
10540 }
10541 else if (offset_rel->r_offset > offset
10542 || (extra_rel
10543 && extra_rel->r_offset < offset + entry_size))
10544 {
10545 /* There is a relocation on the size or flags, so we can't
10546 do anything with this entry. Continue with the next. */
10547 next_rel = offset_rel;
10548 continue;
10549 }
10550 else
10551 {
10552 BFD_ASSERT (offset_rel->r_offset == offset);
10553 offset_rel->r_offset -= removed_bytes;
10554 next_rel = offset_rel + 1;
e0001a05 10555 }
e0001a05 10556 }
1d25768e
BW
10557 else
10558 next_rel = NULL;
e0001a05 10559
1d25768e 10560 remove_this_rel = FALSE;
e0001a05
NC
10561 bytes_to_remove = 0;
10562 actual_offset = offset - removed_bytes;
10563 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10564
68ffbac6 10565 if (is_full_prop_section)
43cd72b9
BW
10566 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10567 else
10568 flags = predef_flags;
10569
1d25768e
BW
10570 if (size == 0
10571 && (flags & XTENSA_PROP_ALIGN) == 0
10572 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10573 {
43cd72b9
BW
10574 /* Always remove entries with zero size and no alignment. */
10575 bytes_to_remove = entry_size;
1d25768e
BW
10576 if (offset_rel)
10577 remove_this_rel = TRUE;
e0001a05 10578 }
1d25768e
BW
10579 else if (offset_rel
10580 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10581 {
1d25768e 10582 if (last_irel)
e0001a05 10583 {
1d25768e
BW
10584 flagword old_flags;
10585 bfd_vma old_size =
10586 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10587 bfd_vma old_address =
10588 (last_irel->r_addend
10589 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10590 bfd_vma new_address =
10591 (offset_rel->r_addend
10592 + bfd_get_32 (abfd, &contents[actual_offset]));
68ffbac6 10593 if (is_full_prop_section)
1d25768e
BW
10594 old_flags = bfd_get_32
10595 (abfd, &contents[last_irel->r_offset + 8]);
10596 else
10597 old_flags = predef_flags;
10598
10599 if ((ELF32_R_SYM (offset_rel->r_info)
10600 == ELF32_R_SYM (last_irel->r_info))
10601 && old_address + old_size == new_address
10602 && old_flags == flags
10603 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10604 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10605 {
1d25768e
BW
10606 /* Fix the old size. */
10607 bfd_put_32 (abfd, old_size + size,
10608 &contents[last_irel->r_offset + 4]);
10609 bytes_to_remove = entry_size;
10610 remove_this_rel = TRUE;
e0001a05
NC
10611 }
10612 else
1d25768e 10613 last_irel = offset_rel;
e0001a05 10614 }
1d25768e
BW
10615 else
10616 last_irel = offset_rel;
e0001a05
NC
10617 }
10618
1d25768e 10619 if (remove_this_rel)
e0001a05 10620 {
1d25768e 10621 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10622 offset_rel->r_offset = 0;
e0001a05
NC
10623 }
10624
10625 if (bytes_to_remove != 0)
10626 {
10627 removed_bytes += bytes_to_remove;
a3ef2d63 10628 if (offset + bytes_to_remove < sec->size)
e0001a05 10629 memmove (&contents[actual_offset],
43cd72b9 10630 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10631 sec->size - offset - bytes_to_remove);
e0001a05
NC
10632 }
10633 }
10634
43cd72b9 10635 if (removed_bytes)
e0001a05 10636 {
1d25768e
BW
10637 /* Fix up any extra relocations on the last entry. */
10638 for (irel = next_rel; irel < rel_end; irel++)
10639 irel->r_offset -= removed_bytes;
10640
e0001a05 10641 /* Clear the removed bytes. */
a3ef2d63 10642 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10643
a3ef2d63
BW
10644 if (sec->rawsize == 0)
10645 sec->rawsize = sec->size;
10646 sec->size -= removed_bytes;
e901de89
BW
10647
10648 if (xtensa_is_littable_section (sec))
10649 {
f0e6fdb2
BW
10650 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10651 if (sgotloc)
10652 sgotloc->size -= removed_bytes;
e901de89 10653 }
e0001a05
NC
10654 }
10655 }
e901de89 10656
e0001a05
NC
10657 error_return:
10658 release_internal_relocs (sec, internal_relocs);
10659 release_contents (sec, contents);
10660 return ok;
10661}
10662
10663\f
10664/* Third relaxation pass. */
10665
10666/* Change symbol values to account for removed literals. */
10667
43cd72b9 10668bfd_boolean
7fa3d080 10669relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10670{
10671 xtensa_relax_info *relax_info;
10672 unsigned int sec_shndx;
10673 Elf_Internal_Shdr *symtab_hdr;
10674 Elf_Internal_Sym *isymbuf;
10675 unsigned i, num_syms, num_locals;
10676
10677 relax_info = get_xtensa_relax_info (sec);
10678 BFD_ASSERT (relax_info);
10679
43cd72b9
BW
10680 if (!relax_info->is_relaxable_literal_section
10681 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10682 return TRUE;
10683
10684 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10685
10686 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10687 isymbuf = retrieve_local_syms (abfd);
10688
10689 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10690 num_locals = symtab_hdr->sh_info;
10691
10692 /* Adjust the local symbols defined in this section. */
10693 for (i = 0; i < num_locals; i++)
10694 {
10695 Elf_Internal_Sym *isym = &isymbuf[i];
10696
10697 if (isym->st_shndx == sec_shndx)
10698 {
03669f1c 10699 bfd_vma orig_addr = isym->st_value;
071aa5c9
MF
10700 int removed = removed_by_actions_map (&relax_info->action_list,
10701 orig_addr, FALSE);
43cd72b9 10702
071aa5c9 10703 isym->st_value -= removed;
03669f1c
BW
10704 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10705 isym->st_size -=
071aa5c9
MF
10706 removed_by_actions_map (&relax_info->action_list,
10707 orig_addr + isym->st_size, FALSE) -
10708 removed;
e0001a05
NC
10709 }
10710 }
10711
10712 /* Now adjust the global symbols defined in this section. */
10713 for (i = 0; i < (num_syms - num_locals); i++)
10714 {
10715 struct elf_link_hash_entry *sym_hash;
10716
10717 sym_hash = elf_sym_hashes (abfd)[i];
10718
10719 if (sym_hash->root.type == bfd_link_hash_warning)
10720 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10721
10722 if ((sym_hash->root.type == bfd_link_hash_defined
10723 || sym_hash->root.type == bfd_link_hash_defweak)
10724 && sym_hash->root.u.def.section == sec)
10725 {
03669f1c 10726 bfd_vma orig_addr = sym_hash->root.u.def.value;
071aa5c9
MF
10727 int removed = removed_by_actions_map (&relax_info->action_list,
10728 orig_addr, FALSE);
43cd72b9 10729
071aa5c9 10730 sym_hash->root.u.def.value -= removed;
43cd72b9 10731
03669f1c
BW
10732 if (sym_hash->type == STT_FUNC)
10733 sym_hash->size -=
071aa5c9
MF
10734 removed_by_actions_map (&relax_info->action_list,
10735 orig_addr + sym_hash->size, FALSE) -
10736 removed;
e0001a05
NC
10737 }
10738 }
10739
10740 return TRUE;
10741}
10742
10743\f
10744/* "Fix" handling functions, called while performing relocations. */
10745
43cd72b9 10746static bfd_boolean
7fa3d080
BW
10747do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10748 bfd *input_bfd,
10749 asection *input_section,
10750 bfd_byte *contents)
e0001a05
NC
10751{
10752 r_reloc r_rel;
10753 asection *sec, *old_sec;
10754 bfd_vma old_offset;
10755 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10756 reloc_bfd_fix *fix;
10757
10758 if (r_type == R_XTENSA_NONE)
43cd72b9 10759 return TRUE;
e0001a05 10760
43cd72b9
BW
10761 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10762 if (!fix)
10763 return TRUE;
e0001a05 10764
43cd72b9
BW
10765 r_reloc_init (&r_rel, input_bfd, rel, contents,
10766 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10767 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10768 old_offset = r_rel.target_offset;
10769
10770 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10771 {
43cd72b9
BW
10772 if (r_type != R_XTENSA_ASM_EXPAND)
10773 {
4eca0228 10774 _bfd_error_handler
695344c0 10775 /* xgettext:c-format */
43cd72b9
BW
10776 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10777 input_bfd, input_section, rel->r_offset,
10778 elf_howto_table[r_type].name);
10779 return FALSE;
10780 }
e0001a05
NC
10781 /* Leave it be. Resolution will happen in a later stage. */
10782 }
10783 else
10784 {
10785 sec = fix->target_sec;
10786 rel->r_addend += ((sec->output_offset + fix->target_offset)
10787 - (old_sec->output_offset + old_offset));
10788 }
43cd72b9 10789 return TRUE;
e0001a05
NC
10790}
10791
10792
10793static void
7fa3d080
BW
10794do_fix_for_final_link (Elf_Internal_Rela *rel,
10795 bfd *input_bfd,
10796 asection *input_section,
10797 bfd_byte *contents,
10798 bfd_vma *relocationp)
e0001a05
NC
10799{
10800 asection *sec;
10801 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10802 reloc_bfd_fix *fix;
43cd72b9 10803 bfd_vma fixup_diff;
e0001a05
NC
10804
10805 if (r_type == R_XTENSA_NONE)
10806 return;
10807
43cd72b9
BW
10808 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10809 if (!fix)
e0001a05
NC
10810 return;
10811
10812 sec = fix->target_sec;
43cd72b9
BW
10813
10814 fixup_diff = rel->r_addend;
10815 if (elf_howto_table[fix->src_type].partial_inplace)
10816 {
10817 bfd_vma inplace_val;
10818 BFD_ASSERT (fix->src_offset
10819 < bfd_get_section_limit (input_bfd, input_section));
10820 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10821 fixup_diff += inplace_val;
10822 }
10823
e0001a05
NC
10824 *relocationp = (sec->output_section->vma
10825 + sec->output_offset
43cd72b9 10826 + fix->target_offset - fixup_diff);
e0001a05
NC
10827}
10828
10829\f
10830/* Miscellaneous utility functions.... */
10831
10832static asection *
f0e6fdb2 10833elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10834{
f0e6fdb2 10835 bfd *dynobj;
e0001a05
NC
10836 char plt_name[10];
10837
10838 if (chunk == 0)
ce558b89 10839 return elf_hash_table (info)->splt;
e0001a05 10840
f0e6fdb2 10841 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10842 sprintf (plt_name, ".plt.%u", chunk);
3d4d4302 10843 return bfd_get_linker_section (dynobj, plt_name);
e0001a05
NC
10844}
10845
10846
10847static asection *
f0e6fdb2 10848elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10849{
f0e6fdb2 10850 bfd *dynobj;
e0001a05
NC
10851 char got_name[14];
10852
10853 if (chunk == 0)
ce558b89 10854 return elf_hash_table (info)->sgotplt;
e0001a05 10855
f0e6fdb2 10856 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10857 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10858 return bfd_get_linker_section (dynobj, got_name);
e0001a05
NC
10859}
10860
10861
10862/* Get the input section for a given symbol index.
10863 If the symbol is:
10864 . a section symbol, return the section;
10865 . a common symbol, return the common section;
10866 . an undefined symbol, return the undefined section;
10867 . an indirect symbol, follow the links;
10868 . an absolute value, return the absolute section. */
10869
10870static asection *
7fa3d080 10871get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10872{
10873 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10874 asection *target_sec = NULL;
43cd72b9 10875 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10876 {
10877 Elf_Internal_Sym *isymbuf;
10878 unsigned int section_index;
10879
10880 isymbuf = retrieve_local_syms (abfd);
10881 section_index = isymbuf[r_symndx].st_shndx;
10882
10883 if (section_index == SHN_UNDEF)
10884 target_sec = bfd_und_section_ptr;
e0001a05
NC
10885 else if (section_index == SHN_ABS)
10886 target_sec = bfd_abs_section_ptr;
10887 else if (section_index == SHN_COMMON)
10888 target_sec = bfd_com_section_ptr;
43cd72b9 10889 else
cb33740c 10890 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10891 }
10892 else
10893 {
10894 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10895 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10896
10897 while (h->root.type == bfd_link_hash_indirect
10898 || h->root.type == bfd_link_hash_warning)
10899 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10900
10901 switch (h->root.type)
10902 {
10903 case bfd_link_hash_defined:
10904 case bfd_link_hash_defweak:
10905 target_sec = h->root.u.def.section;
10906 break;
10907 case bfd_link_hash_common:
10908 target_sec = bfd_com_section_ptr;
10909 break;
10910 case bfd_link_hash_undefined:
10911 case bfd_link_hash_undefweak:
10912 target_sec = bfd_und_section_ptr;
10913 break;
10914 default: /* New indirect warning. */
10915 target_sec = bfd_und_section_ptr;
10916 break;
10917 }
10918 }
10919 return target_sec;
10920}
10921
10922
10923static struct elf_link_hash_entry *
7fa3d080 10924get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10925{
10926 unsigned long indx;
10927 struct elf_link_hash_entry *h;
10928 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10929
10930 if (r_symndx < symtab_hdr->sh_info)
10931 return NULL;
43cd72b9 10932
e0001a05
NC
10933 indx = r_symndx - symtab_hdr->sh_info;
10934 h = elf_sym_hashes (abfd)[indx];
10935 while (h->root.type == bfd_link_hash_indirect
10936 || h->root.type == bfd_link_hash_warning)
10937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10938 return h;
10939}
10940
10941
10942/* Get the section-relative offset for a symbol number. */
10943
10944static bfd_vma
7fa3d080 10945get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10946{
10947 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10948 bfd_vma offset = 0;
10949
43cd72b9 10950 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10951 {
10952 Elf_Internal_Sym *isymbuf;
10953 isymbuf = retrieve_local_syms (abfd);
10954 offset = isymbuf[r_symndx].st_value;
10955 }
10956 else
10957 {
10958 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10959 struct elf_link_hash_entry *h =
10960 elf_sym_hashes (abfd)[indx];
10961
10962 while (h->root.type == bfd_link_hash_indirect
10963 || h->root.type == bfd_link_hash_warning)
10964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10965 if (h->root.type == bfd_link_hash_defined
10966 || h->root.type == bfd_link_hash_defweak)
10967 offset = h->root.u.def.value;
10968 }
10969 return offset;
10970}
10971
10972
10973static bfd_boolean
7fa3d080 10974is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10975{
10976 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10977 struct elf_link_hash_entry *h;
10978
10979 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10980 if (h && h->root.type == bfd_link_hash_defweak)
10981 return TRUE;
10982 return FALSE;
10983}
10984
10985
10986static bfd_boolean
7fa3d080
BW
10987pcrel_reloc_fits (xtensa_opcode opc,
10988 int opnd,
10989 bfd_vma self_address,
10990 bfd_vma dest_address)
e0001a05 10991{
43cd72b9
BW
10992 xtensa_isa isa = xtensa_default_isa;
10993 uint32 valp = dest_address;
10994 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10995 || xtensa_operand_encode (isa, opc, opnd, &valp))
10996 return FALSE;
10997 return TRUE;
e0001a05
NC
10998}
10999
11000
68ffbac6 11001static bfd_boolean
7fa3d080 11002xtensa_is_property_section (asection *sec)
e0001a05 11003{
1d25768e
BW
11004 if (xtensa_is_insntable_section (sec)
11005 || xtensa_is_littable_section (sec)
11006 || xtensa_is_proptable_section (sec))
b614a702 11007 return TRUE;
e901de89 11008
1d25768e
BW
11009 return FALSE;
11010}
11011
11012
68ffbac6 11013static bfd_boolean
1d25768e
BW
11014xtensa_is_insntable_section (asection *sec)
11015{
11016 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11017 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
11018 return TRUE;
11019
e901de89
BW
11020 return FALSE;
11021}
11022
11023
68ffbac6 11024static bfd_boolean
7fa3d080 11025xtensa_is_littable_section (asection *sec)
e901de89 11026{
1d25768e
BW
11027 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11028 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 11029 return TRUE;
e901de89 11030
1d25768e
BW
11031 return FALSE;
11032}
11033
11034
68ffbac6 11035static bfd_boolean
1d25768e
BW
11036xtensa_is_proptable_section (asection *sec)
11037{
11038 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11039 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 11040 return TRUE;
e0001a05 11041
e901de89 11042 return FALSE;
e0001a05
NC
11043}
11044
11045
43cd72b9 11046static int
7fa3d080 11047internal_reloc_compare (const void *ap, const void *bp)
e0001a05 11048{
43cd72b9
BW
11049 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11050 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11051
11052 if (a->r_offset != b->r_offset)
11053 return (a->r_offset - b->r_offset);
11054
11055 /* We don't need to sort on these criteria for correctness,
11056 but enforcing a more strict ordering prevents unstable qsort
11057 from behaving differently with different implementations.
11058 Without the code below we get correct but different results
11059 on Solaris 2.7 and 2.8. We would like to always produce the
11060 same results no matter the host. */
11061
11062 if (a->r_info != b->r_info)
11063 return (a->r_info - b->r_info);
11064
11065 return (a->r_addend - b->r_addend);
e0001a05
NC
11066}
11067
11068
11069static int
7fa3d080 11070internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
11071{
11072 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11073 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11074
43cd72b9
BW
11075 /* Check if one entry overlaps with the other; this shouldn't happen
11076 except when searching for a match. */
e0001a05
NC
11077 return (a->r_offset - b->r_offset);
11078}
11079
11080
74869ac7
BW
11081/* Predicate function used to look up a section in a particular group. */
11082
11083static bfd_boolean
11084match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11085{
11086 const char *gname = inf;
11087 const char *group_name = elf_group_name (sec);
68ffbac6 11088
74869ac7
BW
11089 return (group_name == gname
11090 || (group_name != NULL
11091 && gname != NULL
11092 && strcmp (group_name, gname) == 0));
11093}
11094
11095
1d25768e
BW
11096static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11097
51c8ebc1
BW
11098static char *
11099xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 11100{
74869ac7
BW
11101 const char *suffix, *group_name;
11102 char *prop_sec_name;
74869ac7
BW
11103
11104 group_name = elf_group_name (sec);
11105 if (group_name)
11106 {
11107 suffix = strrchr (sec->name, '.');
11108 if (suffix == sec->name)
11109 suffix = 0;
11110 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
11111 + (suffix ? strlen (suffix) : 0));
11112 strcpy (prop_sec_name, base_name);
11113 if (suffix)
11114 strcat (prop_sec_name, suffix);
11115 }
11116 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 11117 {
43cd72b9 11118 char *linkonce_kind = 0;
b614a702 11119
68ffbac6 11120 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 11121 linkonce_kind = "x.";
68ffbac6 11122 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 11123 linkonce_kind = "p.";
43cd72b9
BW
11124 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11125 linkonce_kind = "prop.";
e0001a05 11126 else
b614a702
BW
11127 abort ();
11128
43cd72b9
BW
11129 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11130 + strlen (linkonce_kind) + 1);
b614a702 11131 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 11132 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
11133
11134 suffix = sec->name + linkonce_len;
096c35a7 11135 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 11136 the new linkonce_kind (but not for "prop" sections). */
0112cd26 11137 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
11138 suffix += 2;
11139 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
11140 }
11141 else
11142 prop_sec_name = strdup (base_name);
11143
51c8ebc1
BW
11144 return prop_sec_name;
11145}
11146
11147
11148static asection *
11149xtensa_get_property_section (asection *sec, const char *base_name)
11150{
11151 char *prop_sec_name;
11152 asection *prop_sec;
11153
11154 prop_sec_name = xtensa_property_section_name (sec, base_name);
11155 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11156 match_section_group,
11157 (void *) elf_group_name (sec));
11158 free (prop_sec_name);
11159 return prop_sec;
11160}
11161
11162
11163asection *
11164xtensa_make_property_section (asection *sec, const char *base_name)
11165{
11166 char *prop_sec_name;
11167 asection *prop_sec;
11168
74869ac7 11169 /* Check if the section already exists. */
51c8ebc1 11170 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
11171 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11172 match_section_group,
51c8ebc1 11173 (void *) elf_group_name (sec));
74869ac7
BW
11174 /* If not, create it. */
11175 if (! prop_sec)
11176 {
11177 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11178 flags |= (bfd_get_section_flags (sec->owner, sec)
11179 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11180
11181 prop_sec = bfd_make_section_anyway_with_flags
11182 (sec->owner, strdup (prop_sec_name), flags);
11183 if (! prop_sec)
11184 return 0;
b614a702 11185
51c8ebc1 11186 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
11187 }
11188
74869ac7
BW
11189 free (prop_sec_name);
11190 return prop_sec;
e0001a05
NC
11191}
11192
43cd72b9
BW
11193
11194flagword
7fa3d080 11195xtensa_get_property_predef_flags (asection *sec)
43cd72b9 11196{
1d25768e 11197 if (xtensa_is_insntable_section (sec))
43cd72b9 11198 return (XTENSA_PROP_INSN
99ded152 11199 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11200 | XTENSA_PROP_INSN_NO_REORDER);
11201
11202 if (xtensa_is_littable_section (sec))
11203 return (XTENSA_PROP_LITERAL
99ded152 11204 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11205 | XTENSA_PROP_INSN_NO_REORDER);
11206
11207 return 0;
11208}
11209
e0001a05
NC
11210\f
11211/* Other functions called directly by the linker. */
11212
11213bfd_boolean
7fa3d080
BW
11214xtensa_callback_required_dependence (bfd *abfd,
11215 asection *sec,
11216 struct bfd_link_info *link_info,
11217 deps_callback_t callback,
11218 void *closure)
e0001a05
NC
11219{
11220 Elf_Internal_Rela *internal_relocs;
11221 bfd_byte *contents;
11222 unsigned i;
11223 bfd_boolean ok = TRUE;
43cd72b9
BW
11224 bfd_size_type sec_size;
11225
11226 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
11227
11228 /* ".plt*" sections have no explicit relocations but they contain L32R
11229 instructions that reference the corresponding ".got.plt*" sections. */
11230 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 11231 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
11232 {
11233 asection *sgotplt;
11234
11235 /* Find the corresponding ".got.plt*" section. */
11236 if (sec->name[4] == '\0')
ce558b89 11237 sgotplt = elf_hash_table (link_info)->sgotplt;
e0001a05
NC
11238 else
11239 {
11240 char got_name[14];
11241 int chunk = 0;
11242
11243 BFD_ASSERT (sec->name[4] == '.');
11244 chunk = strtol (&sec->name[5], NULL, 10);
11245
11246 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 11247 sgotplt = bfd_get_linker_section (sec->owner, got_name);
e0001a05
NC
11248 }
11249 BFD_ASSERT (sgotplt);
11250
11251 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11252 section referencing a literal at the very beginning of
11253 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 11254 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
11255 }
11256
13161072
BW
11257 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11258 when building uclibc, which runs "ld -b binary /dev/null". */
11259 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11260 return ok;
11261
68ffbac6 11262 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
11263 link_info->keep_memory);
11264 if (internal_relocs == NULL
43cd72b9 11265 || sec->reloc_count == 0)
e0001a05
NC
11266 return ok;
11267
11268 /* Cache the contents for the duration of this scan. */
11269 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 11270 if (contents == NULL && sec_size != 0)
e0001a05
NC
11271 {
11272 ok = FALSE;
11273 goto error_return;
11274 }
11275
43cd72b9
BW
11276 if (!xtensa_default_isa)
11277 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 11278
43cd72b9 11279 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
11280 {
11281 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 11282 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
11283 {
11284 r_reloc l32r_rel;
11285 asection *target_sec;
11286 bfd_vma target_offset;
43cd72b9
BW
11287
11288 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
11289 target_sec = NULL;
11290 target_offset = 0;
11291 /* L32Rs must be local to the input file. */
11292 if (r_reloc_is_defined (&l32r_rel))
11293 {
11294 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 11295 target_offset = l32r_rel.target_offset;
e0001a05
NC
11296 }
11297 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11298 closure);
11299 }
11300 }
11301
11302 error_return:
11303 release_internal_relocs (sec, internal_relocs);
11304 release_contents (sec, contents);
11305 return ok;
11306}
11307
2f89ff8d
L
11308/* The default literal sections should always be marked as "code" (i.e.,
11309 SHF_EXECINSTR). This is particularly important for the Linux kernel
11310 module loader so that the literals are not placed after the text. */
b35d266b 11311static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 11312{
0112cd26
NC
11313 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11314 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11315 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 11316 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 11317 { NULL, 0, 0, 0, 0 }
7f4d3958 11318};
e0001a05 11319\f
ae95ffa6 11320#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05 11321#ifndef ELF_ARCH
6d00b590 11322#define TARGET_LITTLE_SYM xtensa_elf32_le_vec
e0001a05 11323#define TARGET_LITTLE_NAME "elf32-xtensa-le"
6d00b590 11324#define TARGET_BIG_SYM xtensa_elf32_be_vec
e0001a05
NC
11325#define TARGET_BIG_NAME "elf32-xtensa-be"
11326#define ELF_ARCH bfd_arch_xtensa
11327
4af0a1d8
BW
11328#define ELF_MACHINE_CODE EM_XTENSA
11329#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
11330
11331#if XCHAL_HAVE_MMU
11332#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11333#else /* !XCHAL_HAVE_MMU */
11334#define ELF_MAXPAGESIZE 1
11335#endif /* !XCHAL_HAVE_MMU */
11336#endif /* ELF_ARCH */
11337
11338#define elf_backend_can_gc_sections 1
11339#define elf_backend_can_refcount 1
11340#define elf_backend_plt_readonly 1
11341#define elf_backend_got_header_size 4
11342#define elf_backend_want_dynbss 0
11343#define elf_backend_want_got_plt 1
11344
11345#define elf_info_to_howto elf_xtensa_info_to_howto_rela
11346
28dbbc02
BW
11347#define bfd_elf32_mkobject elf_xtensa_mkobject
11348
e0001a05
NC
11349#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11350#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11351#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11352#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11353#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
11354#define bfd_elf32_bfd_reloc_name_lookup \
11355 elf_xtensa_reloc_name_lookup
e0001a05 11356#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 11357#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
11358
11359#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11360#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
11361#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11362#define elf_backend_discard_info elf_xtensa_discard_info
11363#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11364#define elf_backend_final_write_processing elf_xtensa_final_write_processing
11365#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11366#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11367#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11368#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11369#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11370#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 11371#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
11372#define elf_backend_object_p elf_xtensa_object_p
11373#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11374#define elf_backend_relocate_section elf_xtensa_relocate_section
11375#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 11376#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
11377#define elf_backend_omit_section_dynsym \
11378 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 11379#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 11380#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 11381#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
11382
11383#include "elf32-target.h"
This page took 1.63469 seconds and 4 git commands to generate.