daily update
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
3eb128b2 2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
24#ifdef ANSI_PROTOTYPES
25#include <stdarg.h>
26#else
27#include <varargs.h>
28#endif
29#include <strings.h>
30
31#include "bfdlink.h"
32#include "libbfd.h"
33#include "elf-bfd.h"
34#include "elf/xtensa.h"
35#include "xtensa-isa.h"
36#include "xtensa-config.h"
37
43cd72b9
BW
38#define XTENSA_NO_NOP_REMOVAL 0
39
e0001a05
NC
40/* Local helper functions. */
41
7fa3d080
BW
42static bfd_boolean add_extra_plt_sections (bfd *, int);
43static char *build_encoding_error_message (xtensa_opcode, bfd_vma);
e0001a05 44static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 46static bfd_boolean do_fix_for_relocatable_link
7fa3d080 47 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 48static void do_fix_for_final_link
7fa3d080 49 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
50
51/* Local functions to handle Xtensa configurability. */
52
7fa3d080
BW
53static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
54static bfd_boolean is_direct_call_opcode (xtensa_opcode);
55static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
56static xtensa_opcode get_const16_opcode (void);
57static xtensa_opcode get_l32r_opcode (void);
58static bfd_vma l32r_offset (bfd_vma, bfd_vma);
59static int get_relocation_opnd (xtensa_opcode, int);
60static int get_relocation_slot (int);
e0001a05 61static xtensa_opcode get_relocation_opcode
7fa3d080 62 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 63static bfd_boolean is_l32r_relocation
7fa3d080
BW
64 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
65static bfd_boolean is_alt_relocation (int);
66static bfd_boolean is_operand_relocation (int);
43cd72b9 67static bfd_size_type insn_decode_len
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 69static xtensa_opcode insn_decode_opcode
7fa3d080 70 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 71static bfd_boolean check_branch_target_aligned
7fa3d080 72 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 73static bfd_boolean check_loop_aligned
7fa3d080
BW
74 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
75static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 76static bfd_size_type get_asm_simplify_size
7fa3d080 77 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
78
79/* Functions for link-time code simplifications. */
80
43cd72b9 81static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 82 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 83static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
84 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
85static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
86static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
87
88/* Access to internal relocations, section contents and symbols. */
89
90static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
91 (bfd *, asection *, bfd_boolean);
92static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
93static void release_internal_relocs (asection *, Elf_Internal_Rela *);
94static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
95static void pin_contents (asection *, bfd_byte *);
96static void release_contents (asection *, bfd_byte *);
97static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
98
99/* Miscellaneous utility functions. */
100
7fa3d080
BW
101static asection *elf_xtensa_get_plt_section (bfd *, int);
102static asection *elf_xtensa_get_gotplt_section (bfd *, int);
103static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 104static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
105 (bfd *, unsigned long);
106static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
107static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
108static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
109static bfd_boolean xtensa_is_property_section (asection *);
110static bfd_boolean xtensa_is_littable_section (asection *);
111static int internal_reloc_compare (const void *, const void *);
112static int internal_reloc_matches (const void *, const void *);
113extern char *xtensa_get_property_section_name (asection *, const char *);
114static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
115
116/* Other functions called directly by the linker. */
117
118typedef void (*deps_callback_t)
7fa3d080 119 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 120extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
122
123
43cd72b9
BW
124/* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
7fa3d080 128
43cd72b9
BW
129int elf32xtensa_size_opt;
130
131
132/* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
e0001a05 135
7fa3d080 136typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 137
43cd72b9 138
e0001a05
NC
139/* Total count of PLT relocations seen during check_relocs.
140 The actual PLT code must be split into multiple sections and all
141 the sections have to be created before size_dynamic_sections,
142 where we figure out the exact number of PLT entries that will be
b536dc1e 143 needed. It is OK if this count is an overestimate, e.g., some
e0001a05
NC
144 relocations may be removed by GC. */
145
146static int plt_reloc_count = 0;
147
148
43cd72b9
BW
149/* The GNU tools do not easily allow extending interfaces to pass around
150 the pointer to the Xtensa ISA information, so instead we add a global
151 variable here (in BFD) that can be used by any of the tools that need
152 this information. */
153
154xtensa_isa xtensa_default_isa;
155
156
e0001a05
NC
157/* When this is true, relocations may have been modified to refer to
158 symbols from other input files. The per-section list of "fix"
159 records needs to be checked when resolving relocations. */
160
161static bfd_boolean relaxing_section = FALSE;
162
43cd72b9
BW
163/* When this is true, during final links, literals that cannot be
164 coalesced and their relocations may be moved to other sections. */
165
166int elf32xtensa_no_literal_movement = 1;
167
e0001a05
NC
168\f
169static reloc_howto_type elf_howto_table[] =
170{
171 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
172 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
173 FALSE, 0x00000000, 0x00000000, FALSE),
174 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_xtensa_reloc, "R_XTENSA_32",
176 TRUE, 0xffffffff, 0xffffffff, FALSE),
177 /* Replace a 32-bit value with a value from the runtime linker (only
178 used by linker-generated stub functions). The r_addend value is
179 special: 1 means to substitute a pointer to the runtime linker's
180 dynamic resolver function; 2 means to substitute the link map for
181 the shared object. */
182 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
183 NULL, "R_XTENSA_RTLD",
184 FALSE, 0x00000000, 0x00000000, FALSE),
185 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
187 FALSE, 0xffffffff, 0xffffffff, FALSE),
188 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
190 FALSE, 0xffffffff, 0xffffffff, FALSE),
191 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
192 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
193 FALSE, 0xffffffff, 0xffffffff, FALSE),
194 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
195 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
196 FALSE, 0xffffffff, 0xffffffff, FALSE),
197 EMPTY_HOWTO (7),
198 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
200 FALSE, 0x00000000, 0x00000000, TRUE),
201 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
202 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
203 FALSE, 0x00000000, 0x00000000, TRUE),
204 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
206 FALSE, 0x00000000, 0x00000000, TRUE),
207 /* Assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
210 FALSE, 0x00000000, 0x00000000, FALSE),
211 /* Relax assembly auto-expansion. */
212 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
213 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
214 FALSE, 0x00000000, 0x00000000, TRUE),
215 EMPTY_HOWTO (13),
216 EMPTY_HOWTO (14),
217 /* GNU extension to record C++ vtable hierarchy. */
218 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 NULL, "R_XTENSA_GNU_VTINHERIT",
220 FALSE, 0x00000000, 0x00000000, FALSE),
221 /* GNU extension to record C++ vtable member usage. */
222 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
223 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
43cd72b9
BW
224 FALSE, 0x00000000, 0x00000000, FALSE),
225
226 /* Relocations for supporting difference of symbols. */
227 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
229 FALSE, 0xffffffff, 0xffffffff, FALSE),
230 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
232 FALSE, 0xffffffff, 0xffffffff, FALSE),
233 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
234 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
235 FALSE, 0xffffffff, 0xffffffff, FALSE),
236
237 /* General immediate operand relocations. */
238 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
240 FALSE, 0x00000000, 0x00000000, TRUE),
241 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
243 FALSE, 0x00000000, 0x00000000, TRUE),
244 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
246 FALSE, 0x00000000, 0x00000000, TRUE),
247 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
249 FALSE, 0x00000000, 0x00000000, TRUE),
250 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
252 FALSE, 0x00000000, 0x00000000, TRUE),
253 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
255 FALSE, 0x00000000, 0x00000000, TRUE),
256 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
258 FALSE, 0x00000000, 0x00000000, TRUE),
259 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
261 FALSE, 0x00000000, 0x00000000, TRUE),
262 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
264 FALSE, 0x00000000, 0x00000000, TRUE),
265 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
267 FALSE, 0x00000000, 0x00000000, TRUE),
268 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
270 FALSE, 0x00000000, 0x00000000, TRUE),
271 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
273 FALSE, 0x00000000, 0x00000000, TRUE),
274 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
276 FALSE, 0x00000000, 0x00000000, TRUE),
277 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
279 FALSE, 0x00000000, 0x00000000, TRUE),
280 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
282 FALSE, 0x00000000, 0x00000000, TRUE),
283
284 /* "Alternate" relocations. The meaning of these is opcode-specific. */
285 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
287 FALSE, 0x00000000, 0x00000000, TRUE),
288 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
290 FALSE, 0x00000000, 0x00000000, TRUE),
291 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
293 FALSE, 0x00000000, 0x00000000, TRUE),
294 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
296 FALSE, 0x00000000, 0x00000000, TRUE),
297 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
299 FALSE, 0x00000000, 0x00000000, TRUE),
300 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
302 FALSE, 0x00000000, 0x00000000, TRUE),
303 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
305 FALSE, 0x00000000, 0x00000000, TRUE),
306 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
308 FALSE, 0x00000000, 0x00000000, TRUE),
309 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
311 FALSE, 0x00000000, 0x00000000, TRUE),
312 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
314 FALSE, 0x00000000, 0x00000000, TRUE),
315 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
317 FALSE, 0x00000000, 0x00000000, TRUE),
318 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
319 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
320 FALSE, 0x00000000, 0x00000000, TRUE),
321 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
322 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
323 FALSE, 0x00000000, 0x00000000, TRUE),
324 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
325 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
326 FALSE, 0x00000000, 0x00000000, TRUE),
327 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
328 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
329 FALSE, 0x00000000, 0x00000000, TRUE)
e0001a05
NC
330};
331
43cd72b9 332#if DEBUG_GEN_RELOC
e0001a05
NC
333#define TRACE(str) \
334 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
335#else
336#define TRACE(str)
337#endif
338
339static reloc_howto_type *
7fa3d080
BW
340elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
341 bfd_reloc_code_real_type code)
e0001a05
NC
342{
343 switch (code)
344 {
345 case BFD_RELOC_NONE:
346 TRACE ("BFD_RELOC_NONE");
347 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
348
349 case BFD_RELOC_32:
350 TRACE ("BFD_RELOC_32");
351 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
352
43cd72b9
BW
353 case BFD_RELOC_XTENSA_DIFF8:
354 TRACE ("BFD_RELOC_XTENSA_DIFF8");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
356
357 case BFD_RELOC_XTENSA_DIFF16:
358 TRACE ("BFD_RELOC_XTENSA_DIFF16");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
360
361 case BFD_RELOC_XTENSA_DIFF32:
362 TRACE ("BFD_RELOC_XTENSA_DIFF32");
363 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
364
e0001a05
NC
365 case BFD_RELOC_XTENSA_RTLD:
366 TRACE ("BFD_RELOC_XTENSA_RTLD");
367 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
368
369 case BFD_RELOC_XTENSA_GLOB_DAT:
370 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
371 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
372
373 case BFD_RELOC_XTENSA_JMP_SLOT:
374 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
375 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
376
377 case BFD_RELOC_XTENSA_RELATIVE:
378 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
379 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
380
381 case BFD_RELOC_XTENSA_PLT:
382 TRACE ("BFD_RELOC_XTENSA_PLT");
383 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
384
385 case BFD_RELOC_XTENSA_OP0:
386 TRACE ("BFD_RELOC_XTENSA_OP0");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
388
389 case BFD_RELOC_XTENSA_OP1:
390 TRACE ("BFD_RELOC_XTENSA_OP1");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
392
393 case BFD_RELOC_XTENSA_OP2:
394 TRACE ("BFD_RELOC_XTENSA_OP2");
395 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
396
397 case BFD_RELOC_XTENSA_ASM_EXPAND:
398 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
400
401 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
402 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
403 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
404
405 case BFD_RELOC_VTABLE_INHERIT:
406 TRACE ("BFD_RELOC_VTABLE_INHERIT");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
408
409 case BFD_RELOC_VTABLE_ENTRY:
410 TRACE ("BFD_RELOC_VTABLE_ENTRY");
411 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
412
413 default:
43cd72b9
BW
414 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
415 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
416 {
417 unsigned n = (R_XTENSA_SLOT0_OP +
418 (code - BFD_RELOC_XTENSA_SLOT0_OP));
419 return &elf_howto_table[n];
420 }
421
422 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
423 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
424 {
425 unsigned n = (R_XTENSA_SLOT0_ALT +
426 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
427 return &elf_howto_table[n];
428 }
429
e0001a05
NC
430 break;
431 }
432
433 TRACE ("Unknown");
434 return NULL;
435}
436
437
438/* Given an ELF "rela" relocation, find the corresponding howto and record
439 it in the BFD internal arelent representation of the relocation. */
440
441static void
7fa3d080
BW
442elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
443 arelent *cache_ptr,
444 Elf_Internal_Rela *dst)
e0001a05
NC
445{
446 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
447
448 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
449 cache_ptr->howto = &elf_howto_table[r_type];
450}
451
452\f
453/* Functions for the Xtensa ELF linker. */
454
455/* The name of the dynamic interpreter. This is put in the .interp
456 section. */
457
458#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
459
460/* The size in bytes of an entry in the procedure linkage table.
461 (This does _not_ include the space for the literals associated with
462 the PLT entry.) */
463
464#define PLT_ENTRY_SIZE 16
465
466/* For _really_ large PLTs, we may need to alternate between literals
467 and code to keep the literals within the 256K range of the L32R
468 instructions in the code. It's unlikely that anyone would ever need
469 such a big PLT, but an arbitrary limit on the PLT size would be bad.
470 Thus, we split the PLT into chunks. Since there's very little
471 overhead (2 extra literals) for each chunk, the chunk size is kept
472 small so that the code for handling multiple chunks get used and
473 tested regularly. With 254 entries, there are 1K of literals for
474 each chunk, and that seems like a nice round number. */
475
476#define PLT_ENTRIES_PER_CHUNK 254
477
478/* PLT entries are actually used as stub functions for lazy symbol
479 resolution. Once the symbol is resolved, the stub function is never
480 invoked. Note: the 32-byte frame size used here cannot be changed
481 without a corresponding change in the runtime linker. */
482
483static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
484{
485 0x6c, 0x10, 0x04, /* entry sp, 32 */
486 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
487 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
488 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
489 0x0a, 0x80, 0x00, /* jx a8 */
490 0 /* unused */
491};
492
493static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
494{
495 0x36, 0x41, 0x00, /* entry sp, 32 */
496 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
497 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
498 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
499 0xa0, 0x08, 0x00, /* jx a8 */
500 0 /* unused */
501};
502
571b5725
BW
503
504static inline bfd_boolean
7fa3d080
BW
505xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
506 struct bfd_link_info *info)
571b5725
BW
507{
508 /* Check if we should do dynamic things to this symbol. The
509 "ignore_protected" argument need not be set, because Xtensa code
510 does not require special handling of STV_PROTECTED to make function
511 pointer comparisons work properly. The PLT addresses are never
512 used for function pointers. */
513
514 return _bfd_elf_dynamic_symbol_p (h, info, 0);
515}
516
e0001a05
NC
517\f
518static int
7fa3d080 519property_table_compare (const void *ap, const void *bp)
e0001a05
NC
520{
521 const property_table_entry *a = (const property_table_entry *) ap;
522 const property_table_entry *b = (const property_table_entry *) bp;
523
43cd72b9
BW
524 if (a->address == b->address)
525 {
43cd72b9
BW
526 if (a->size != b->size)
527 return (a->size - b->size);
528
529 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
530 return ((b->flags & XTENSA_PROP_ALIGN)
531 - (a->flags & XTENSA_PROP_ALIGN));
532
533 if ((a->flags & XTENSA_PROP_ALIGN)
534 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
535 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
536 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
537 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
538
539 if ((a->flags & XTENSA_PROP_UNREACHABLE)
540 != (b->flags & XTENSA_PROP_UNREACHABLE))
541 return ((b->flags & XTENSA_PROP_UNREACHABLE)
542 - (a->flags & XTENSA_PROP_UNREACHABLE));
543
544 return (a->flags - b->flags);
545 }
546
547 return (a->address - b->address);
548}
549
550
551static int
7fa3d080 552property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
553{
554 const property_table_entry *a = (const property_table_entry *) ap;
555 const property_table_entry *b = (const property_table_entry *) bp;
556
557 /* Check if one entry overlaps with the other. */
e0001a05
NC
558 if ((b->address >= a->address && b->address < (a->address + a->size))
559 || (a->address >= b->address && a->address < (b->address + b->size)))
560 return 0;
561
562 return (a->address - b->address);
563}
564
565
43cd72b9
BW
566/* Get the literal table or property table entries for the given
567 section. Sets TABLE_P and returns the number of entries. On
568 error, returns a negative value. */
e0001a05 569
7fa3d080
BW
570static int
571xtensa_read_table_entries (bfd *abfd,
572 asection *section,
573 property_table_entry **table_p,
574 const char *sec_name,
575 bfd_boolean output_addr)
e0001a05
NC
576{
577 asection *table_section;
578 char *table_section_name;
579 bfd_size_type table_size = 0;
580 bfd_byte *table_data;
581 property_table_entry *blocks;
e4115460 582 int blk, block_count;
e0001a05
NC
583 bfd_size_type num_records;
584 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 585 bfd_vma section_addr;
43cd72b9
BW
586 flagword predef_flags;
587 bfd_size_type table_entry_size;
588
589 if (!section
590 || !(section->flags & SEC_ALLOC)
591 || (section->flags & SEC_DEBUGGING))
592 {
593 *table_p = NULL;
594 return 0;
595 }
e0001a05 596
43cd72b9 597 table_section_name = xtensa_get_property_section_name (section, sec_name);
e0001a05 598 table_section = bfd_get_section_by_name (abfd, table_section_name);
b614a702 599 free (table_section_name);
43cd72b9 600 if (table_section)
eea6121a 601 table_size = table_section->size;
43cd72b9 602
e0001a05
NC
603 if (table_size == 0)
604 {
605 *table_p = NULL;
606 return 0;
607 }
608
43cd72b9
BW
609 predef_flags = xtensa_get_property_predef_flags (table_section);
610 table_entry_size = 12;
611 if (predef_flags)
612 table_entry_size -= 4;
613
614 num_records = table_size / table_entry_size;
e0001a05
NC
615 table_data = retrieve_contents (abfd, table_section, TRUE);
616 blocks = (property_table_entry *)
617 bfd_malloc (num_records * sizeof (property_table_entry));
618 block_count = 0;
43cd72b9
BW
619
620 if (output_addr)
621 section_addr = section->output_section->vma + section->output_offset;
622 else
623 section_addr = section->vma;
3ba3bc8c 624
e0001a05
NC
625 /* If the file has not yet been relocated, process the relocations
626 and sort out the table entries that apply to the specified section. */
627 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 628 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
629 {
630 unsigned i;
631
632 for (i = 0; i < table_section->reloc_count; i++)
633 {
634 Elf_Internal_Rela *rel = &internal_relocs[i];
635 unsigned long r_symndx;
636
637 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
638 continue;
639
640 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
641 r_symndx = ELF32_R_SYM (rel->r_info);
642
643 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
644 {
645 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9
BW
646 BFD_ASSERT (sym_off == 0);
647 BFD_ASSERT (rel->r_addend == 0);
e0001a05 648 blocks[block_count].address =
3ba3bc8c 649 (section_addr + sym_off + rel->r_addend
e0001a05
NC
650 + bfd_get_32 (abfd, table_data + rel->r_offset));
651 blocks[block_count].size =
652 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
653 if (predef_flags)
654 blocks[block_count].flags = predef_flags;
655 else
656 blocks[block_count].flags =
657 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
658 block_count++;
659 }
660 }
661 }
662 else
663 {
3ba3bc8c
BW
664 /* The file has already been relocated and the addresses are
665 already in the table. */
e0001a05 666 bfd_vma off;
43cd72b9 667 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 668
43cd72b9 669 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
670 {
671 bfd_vma address = bfd_get_32 (abfd, table_data + off);
672
3ba3bc8c 673 if (address >= section_addr
43cd72b9 674 && address < section_addr + section_limit)
e0001a05
NC
675 {
676 blocks[block_count].address = address;
677 blocks[block_count].size =
678 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
679 if (predef_flags)
680 blocks[block_count].flags = predef_flags;
681 else
682 blocks[block_count].flags =
683 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
684 block_count++;
685 }
686 }
687 }
688
689 release_contents (table_section, table_data);
690 release_internal_relocs (table_section, internal_relocs);
691
43cd72b9 692 if (block_count > 0)
e0001a05
NC
693 {
694 /* Now sort them into address order for easy reference. */
695 qsort (blocks, block_count, sizeof (property_table_entry),
696 property_table_compare);
e4115460
BW
697
698 /* Check that the table contents are valid. Problems may occur,
699 for example, if an unrelocated object file is stripped. */
700 for (blk = 1; blk < block_count; blk++)
701 {
702 /* The only circumstance where two entries may legitimately
703 have the same address is when one of them is a zero-size
704 placeholder to mark a place where fill can be inserted.
705 The zero-size entry should come first. */
706 if (blocks[blk - 1].address == blocks[blk].address &&
707 blocks[blk - 1].size != 0)
708 {
709 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
710 abfd, section);
711 bfd_set_error (bfd_error_bad_value);
712 free (blocks);
713 return -1;
714 }
715 }
e0001a05 716 }
43cd72b9 717
e0001a05
NC
718 *table_p = blocks;
719 return block_count;
720}
721
722
7fa3d080
BW
723static property_table_entry *
724elf_xtensa_find_property_entry (property_table_entry *property_table,
725 int property_table_size,
726 bfd_vma addr)
e0001a05
NC
727{
728 property_table_entry entry;
43cd72b9 729 property_table_entry *rv;
e0001a05 730
43cd72b9
BW
731 if (property_table_size == 0)
732 return NULL;
e0001a05
NC
733
734 entry.address = addr;
735 entry.size = 1;
43cd72b9 736 entry.flags = 0;
e0001a05 737
43cd72b9
BW
738 rv = bsearch (&entry, property_table, property_table_size,
739 sizeof (property_table_entry), property_table_matches);
740 return rv;
741}
742
743
744static bfd_boolean
7fa3d080
BW
745elf_xtensa_in_literal_pool (property_table_entry *lit_table,
746 int lit_table_size,
747 bfd_vma addr)
43cd72b9
BW
748{
749 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
750 return TRUE;
751
752 return FALSE;
753}
754
755\f
756/* Look through the relocs for a section during the first phase, and
757 calculate needed space in the dynamic reloc sections. */
758
759static bfd_boolean
7fa3d080
BW
760elf_xtensa_check_relocs (bfd *abfd,
761 struct bfd_link_info *info,
762 asection *sec,
763 const Elf_Internal_Rela *relocs)
e0001a05
NC
764{
765 Elf_Internal_Shdr *symtab_hdr;
766 struct elf_link_hash_entry **sym_hashes;
767 const Elf_Internal_Rela *rel;
768 const Elf_Internal_Rela *rel_end;
e0001a05 769
1049f94e 770 if (info->relocatable)
e0001a05
NC
771 return TRUE;
772
773 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
774 sym_hashes = elf_sym_hashes (abfd);
775
e0001a05
NC
776 rel_end = relocs + sec->reloc_count;
777 for (rel = relocs; rel < rel_end; rel++)
778 {
779 unsigned int r_type;
780 unsigned long r_symndx;
781 struct elf_link_hash_entry *h;
782
783 r_symndx = ELF32_R_SYM (rel->r_info);
784 r_type = ELF32_R_TYPE (rel->r_info);
785
786 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
787 {
d003868e
AM
788 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
789 abfd, r_symndx);
e0001a05
NC
790 return FALSE;
791 }
792
793 if (r_symndx < symtab_hdr->sh_info)
794 h = NULL;
795 else
796 {
797 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
798 while (h->root.type == bfd_link_hash_indirect
799 || h->root.type == bfd_link_hash_warning)
800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
801 }
802
803 switch (r_type)
804 {
805 case R_XTENSA_32:
806 if (h == NULL)
807 goto local_literal;
808
809 if ((sec->flags & SEC_ALLOC) != 0)
810 {
e0001a05
NC
811 if (h->got.refcount <= 0)
812 h->got.refcount = 1;
813 else
814 h->got.refcount += 1;
815 }
816 break;
817
818 case R_XTENSA_PLT:
819 /* If this relocation is against a local symbol, then it's
820 exactly the same as a normal local GOT entry. */
821 if (h == NULL)
822 goto local_literal;
823
824 if ((sec->flags & SEC_ALLOC) != 0)
825 {
e0001a05
NC
826 if (h->plt.refcount <= 0)
827 {
f5385ebf 828 h->needs_plt = 1;
e0001a05
NC
829 h->plt.refcount = 1;
830 }
831 else
832 h->plt.refcount += 1;
833
834 /* Keep track of the total PLT relocation count even if we
835 don't yet know whether the dynamic sections will be
836 created. */
837 plt_reloc_count += 1;
838
839 if (elf_hash_table (info)->dynamic_sections_created)
840 {
841 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
842 plt_reloc_count))
843 return FALSE;
844 }
845 }
846 break;
847
848 local_literal:
849 if ((sec->flags & SEC_ALLOC) != 0)
850 {
851 bfd_signed_vma *local_got_refcounts;
852
853 /* This is a global offset table entry for a local symbol. */
854 local_got_refcounts = elf_local_got_refcounts (abfd);
855 if (local_got_refcounts == NULL)
856 {
857 bfd_size_type size;
858
859 size = symtab_hdr->sh_info;
860 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
861 local_got_refcounts =
862 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
863 if (local_got_refcounts == NULL)
864 return FALSE;
865 elf_local_got_refcounts (abfd) = local_got_refcounts;
866 }
867 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
868 }
869 break;
870
871 case R_XTENSA_OP0:
872 case R_XTENSA_OP1:
873 case R_XTENSA_OP2:
43cd72b9
BW
874 case R_XTENSA_SLOT0_OP:
875 case R_XTENSA_SLOT1_OP:
876 case R_XTENSA_SLOT2_OP:
877 case R_XTENSA_SLOT3_OP:
878 case R_XTENSA_SLOT4_OP:
879 case R_XTENSA_SLOT5_OP:
880 case R_XTENSA_SLOT6_OP:
881 case R_XTENSA_SLOT7_OP:
882 case R_XTENSA_SLOT8_OP:
883 case R_XTENSA_SLOT9_OP:
884 case R_XTENSA_SLOT10_OP:
885 case R_XTENSA_SLOT11_OP:
886 case R_XTENSA_SLOT12_OP:
887 case R_XTENSA_SLOT13_OP:
888 case R_XTENSA_SLOT14_OP:
889 case R_XTENSA_SLOT0_ALT:
890 case R_XTENSA_SLOT1_ALT:
891 case R_XTENSA_SLOT2_ALT:
892 case R_XTENSA_SLOT3_ALT:
893 case R_XTENSA_SLOT4_ALT:
894 case R_XTENSA_SLOT5_ALT:
895 case R_XTENSA_SLOT6_ALT:
896 case R_XTENSA_SLOT7_ALT:
897 case R_XTENSA_SLOT8_ALT:
898 case R_XTENSA_SLOT9_ALT:
899 case R_XTENSA_SLOT10_ALT:
900 case R_XTENSA_SLOT11_ALT:
901 case R_XTENSA_SLOT12_ALT:
902 case R_XTENSA_SLOT13_ALT:
903 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
904 case R_XTENSA_ASM_EXPAND:
905 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
906 case R_XTENSA_DIFF8:
907 case R_XTENSA_DIFF16:
908 case R_XTENSA_DIFF32:
e0001a05
NC
909 /* Nothing to do for these. */
910 break;
911
912 case R_XTENSA_GNU_VTINHERIT:
913 /* This relocation describes the C++ object vtable hierarchy.
914 Reconstruct it for later use during GC. */
c152c796 915 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
916 return FALSE;
917 break;
918
919 case R_XTENSA_GNU_VTENTRY:
920 /* This relocation describes which C++ vtable entries are actually
921 used. Record for later use during GC. */
c152c796 922 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
923 return FALSE;
924 break;
925
926 default:
927 break;
928 }
929 }
930
e0001a05
NC
931 return TRUE;
932}
933
934
935static void
7fa3d080
BW
936elf_xtensa_make_sym_local (struct bfd_link_info *info,
937 struct elf_link_hash_entry *h)
938{
939 if (info->shared)
940 {
941 if (h->plt.refcount > 0)
942 {
943 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
944 if (h->got.refcount < 0)
945 h->got.refcount = 0;
946 h->got.refcount += h->plt.refcount;
947 h->plt.refcount = 0;
948 }
949 }
950 else
951 {
952 /* Don't need any dynamic relocations at all. */
953 h->plt.refcount = 0;
954 h->got.refcount = 0;
955 }
956}
957
958
959static void
960elf_xtensa_hide_symbol (struct bfd_link_info *info,
961 struct elf_link_hash_entry *h,
962 bfd_boolean force_local)
e0001a05
NC
963{
964 /* For a shared link, move the plt refcount to the got refcount to leave
965 space for RELATIVE relocs. */
966 elf_xtensa_make_sym_local (info, h);
967
968 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
969}
970
971
e0001a05
NC
972/* Return the section that should be marked against GC for a given
973 relocation. */
974
975static asection *
7fa3d080
BW
976elf_xtensa_gc_mark_hook (asection *sec,
977 struct bfd_link_info *info ATTRIBUTE_UNUSED,
978 Elf_Internal_Rela *rel,
979 struct elf_link_hash_entry *h,
980 Elf_Internal_Sym *sym)
e0001a05 981{
7fa3d080 982 if (h)
e0001a05
NC
983 {
984 switch (ELF32_R_TYPE (rel->r_info))
985 {
986 case R_XTENSA_GNU_VTINHERIT:
987 case R_XTENSA_GNU_VTENTRY:
988 break;
989
990 default:
991 switch (h->root.type)
992 {
993 case bfd_link_hash_defined:
994 case bfd_link_hash_defweak:
995 return h->root.u.def.section;
996
997 case bfd_link_hash_common:
998 return h->root.u.c.p->section;
999
1000 default:
1001 break;
1002 }
1003 }
1004 }
1005 else
1006 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1007
1008 return NULL;
1009}
1010
7fa3d080 1011
e0001a05
NC
1012/* Update the GOT & PLT entry reference counts
1013 for the section being removed. */
1014
1015static bfd_boolean
7fa3d080
BW
1016elf_xtensa_gc_sweep_hook (bfd *abfd,
1017 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1018 asection *sec,
1019 const Elf_Internal_Rela *relocs)
e0001a05
NC
1020{
1021 Elf_Internal_Shdr *symtab_hdr;
1022 struct elf_link_hash_entry **sym_hashes;
1023 bfd_signed_vma *local_got_refcounts;
1024 const Elf_Internal_Rela *rel, *relend;
1025
1026 if ((sec->flags & SEC_ALLOC) == 0)
1027 return TRUE;
1028
1029 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1030 sym_hashes = elf_sym_hashes (abfd);
1031 local_got_refcounts = elf_local_got_refcounts (abfd);
1032
1033 relend = relocs + sec->reloc_count;
1034 for (rel = relocs; rel < relend; rel++)
1035 {
1036 unsigned long r_symndx;
1037 unsigned int r_type;
1038 struct elf_link_hash_entry *h = NULL;
1039
1040 r_symndx = ELF32_R_SYM (rel->r_info);
1041 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1042 {
1043 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1044 while (h->root.type == bfd_link_hash_indirect
1045 || h->root.type == bfd_link_hash_warning)
1046 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1047 }
e0001a05
NC
1048
1049 r_type = ELF32_R_TYPE (rel->r_info);
1050 switch (r_type)
1051 {
1052 case R_XTENSA_32:
1053 if (h == NULL)
1054 goto local_literal;
1055 if (h->got.refcount > 0)
1056 h->got.refcount--;
1057 break;
1058
1059 case R_XTENSA_PLT:
1060 if (h == NULL)
1061 goto local_literal;
1062 if (h->plt.refcount > 0)
1063 h->plt.refcount--;
1064 break;
1065
1066 local_literal:
1067 if (local_got_refcounts[r_symndx] > 0)
1068 local_got_refcounts[r_symndx] -= 1;
1069 break;
1070
1071 default:
1072 break;
1073 }
1074 }
1075
1076 return TRUE;
1077}
1078
1079
1080/* Create all the dynamic sections. */
1081
1082static bfd_boolean
7fa3d080 1083elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1084{
e901de89 1085 flagword flags, noalloc_flags;
e0001a05
NC
1086 asection *s;
1087
1088 /* First do all the standard stuff. */
1089 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1090 return FALSE;
1091
1092 /* Create any extra PLT sections in case check_relocs has already
1093 been called on all the non-dynamic input files. */
1094 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1095 return FALSE;
1096
e901de89
BW
1097 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1098 | SEC_LINKER_CREATED | SEC_READONLY);
1099 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1100
1101 /* Mark the ".got.plt" section READONLY. */
1102 s = bfd_get_section_by_name (dynobj, ".got.plt");
1103 if (s == NULL
1104 || ! bfd_set_section_flags (dynobj, s, flags))
1105 return FALSE;
1106
1107 /* Create ".rela.got". */
3496cb2a 1108 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
e0001a05 1109 if (s == NULL
e0001a05
NC
1110 || ! bfd_set_section_alignment (dynobj, s, 2))
1111 return FALSE;
1112
e901de89 1113 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3496cb2a 1114 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
e901de89 1115 if (s == NULL
e901de89
BW
1116 || ! bfd_set_section_alignment (dynobj, s, 2))
1117 return FALSE;
1118
e0001a05 1119 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3496cb2a
L
1120 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1121 noalloc_flags);
e0001a05 1122 if (s == NULL
e0001a05
NC
1123 || ! bfd_set_section_alignment (dynobj, s, 2))
1124 return FALSE;
1125
1126 return TRUE;
1127}
1128
1129
1130static bfd_boolean
7fa3d080 1131add_extra_plt_sections (bfd *dynobj, int count)
e0001a05
NC
1132{
1133 int chunk;
1134
1135 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1136 ".got.plt" sections. */
1137 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1138 {
1139 char *sname;
1140 flagword flags;
1141 asection *s;
1142
1143 /* Stop when we find a section has already been created. */
1144 if (elf_xtensa_get_plt_section (dynobj, chunk))
1145 break;
1146
1147 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1148 | SEC_LINKER_CREATED | SEC_READONLY);
1149
1150 sname = (char *) bfd_malloc (10);
1151 sprintf (sname, ".plt.%u", chunk);
3496cb2a
L
1152 s = bfd_make_section_with_flags (dynobj, sname,
1153 flags | SEC_CODE);
e0001a05 1154 if (s == NULL
e0001a05
NC
1155 || ! bfd_set_section_alignment (dynobj, s, 2))
1156 return FALSE;
1157
1158 sname = (char *) bfd_malloc (14);
1159 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1160 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1161 if (s == NULL
e0001a05
NC
1162 || ! bfd_set_section_alignment (dynobj, s, 2))
1163 return FALSE;
1164 }
1165
1166 return TRUE;
1167}
1168
1169
1170/* Adjust a symbol defined by a dynamic object and referenced by a
1171 regular object. The current definition is in some section of the
1172 dynamic object, but we're not including those sections. We have to
1173 change the definition to something the rest of the link can
1174 understand. */
1175
1176static bfd_boolean
7fa3d080
BW
1177elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1178 struct elf_link_hash_entry *h)
e0001a05
NC
1179{
1180 /* If this is a weak symbol, and there is a real definition, the
1181 processor independent code will have arranged for us to see the
1182 real definition first, and we can just use the same value. */
7fa3d080 1183 if (h->u.weakdef)
e0001a05 1184 {
f6e332e6
AM
1185 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1186 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1187 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1188 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1189 return TRUE;
1190 }
1191
1192 /* This is a reference to a symbol defined by a dynamic object. The
1193 reference must go through the GOT, so there's no need for COPY relocs,
1194 .dynbss, etc. */
1195
1196 return TRUE;
1197}
1198
1199
e0001a05 1200static bfd_boolean
7fa3d080 1201elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1202{
1203 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1204
1205 if (h->root.type == bfd_link_hash_warning)
1206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1207
571b5725 1208 if (! xtensa_elf_dynamic_symbol_p (h, info))
e0001a05
NC
1209 elf_xtensa_make_sym_local (info, h);
1210
e0001a05
NC
1211 return TRUE;
1212}
1213
1214
1215static bfd_boolean
7fa3d080 1216elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1217{
1218 asection *srelplt = (asection *) arg;
1219
1220 if (h->root.type == bfd_link_hash_warning)
1221 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1222
1223 if (h->plt.refcount > 0)
eea6121a 1224 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1225
1226 return TRUE;
1227}
1228
1229
1230static bfd_boolean
7fa3d080 1231elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1232{
1233 asection *srelgot = (asection *) arg;
1234
1235 if (h->root.type == bfd_link_hash_warning)
1236 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1237
1238 if (h->got.refcount > 0)
eea6121a 1239 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1240
1241 return TRUE;
1242}
1243
1244
1245static void
7fa3d080
BW
1246elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1247 asection *srelgot)
e0001a05
NC
1248{
1249 bfd *i;
1250
1251 for (i = info->input_bfds; i; i = i->link_next)
1252 {
1253 bfd_signed_vma *local_got_refcounts;
1254 bfd_size_type j, cnt;
1255 Elf_Internal_Shdr *symtab_hdr;
1256
1257 local_got_refcounts = elf_local_got_refcounts (i);
1258 if (!local_got_refcounts)
1259 continue;
1260
1261 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1262 cnt = symtab_hdr->sh_info;
1263
1264 for (j = 0; j < cnt; ++j)
1265 {
1266 if (local_got_refcounts[j] > 0)
eea6121a
AM
1267 srelgot->size += (local_got_refcounts[j]
1268 * sizeof (Elf32_External_Rela));
e0001a05
NC
1269 }
1270 }
1271}
1272
1273
1274/* Set the sizes of the dynamic sections. */
1275
1276static bfd_boolean
7fa3d080
BW
1277elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1278 struct bfd_link_info *info)
e0001a05 1279{
e901de89
BW
1280 bfd *dynobj, *abfd;
1281 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1282 bfd_boolean relplt, relgot;
1283 int plt_entries, plt_chunks, chunk;
1284
1285 plt_entries = 0;
1286 plt_chunks = 0;
1287 srelgot = 0;
1288
1289 dynobj = elf_hash_table (info)->dynobj;
1290 if (dynobj == NULL)
1291 abort ();
1292
1293 if (elf_hash_table (info)->dynamic_sections_created)
1294 {
1295 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1296 if (info->executable)
e0001a05
NC
1297 {
1298 s = bfd_get_section_by_name (dynobj, ".interp");
1299 if (s == NULL)
1300 abort ();
eea6121a 1301 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1302 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1303 }
1304
1305 /* Allocate room for one word in ".got". */
1306 s = bfd_get_section_by_name (dynobj, ".got");
1307 if (s == NULL)
1308 abort ();
eea6121a 1309 s->size = 4;
e0001a05
NC
1310
1311 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1312 elf_link_hash_traverse (elf_hash_table (info),
1313 elf_xtensa_fix_refcounts,
7fa3d080 1314 (void *) info);
e0001a05
NC
1315
1316 /* Allocate space in ".rela.got" for literals that reference
1317 global symbols. */
1318 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1319 if (srelgot == NULL)
1320 abort ();
1321 elf_link_hash_traverse (elf_hash_table (info),
1322 elf_xtensa_allocate_got_size,
7fa3d080 1323 (void *) srelgot);
e0001a05
NC
1324
1325 /* If we are generating a shared object, we also need space in
1326 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1327 reference local symbols. */
1328 if (info->shared)
1329 elf_xtensa_allocate_local_got_size (info, srelgot);
1330
1331 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1332 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1333 if (srelplt == NULL)
1334 abort ();
1335 elf_link_hash_traverse (elf_hash_table (info),
1336 elf_xtensa_allocate_plt_size,
7fa3d080 1337 (void *) srelplt);
e0001a05
NC
1338
1339 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1340 each PLT entry, we need the PLT code plus a 4-byte literal.
1341 For each chunk of ".plt", we also need two more 4-byte
1342 literals, two corresponding entries in ".rela.got", and an
1343 8-byte entry in ".xt.lit.plt". */
1344 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1345 if (spltlittbl == NULL)
1346 abort ();
1347
eea6121a 1348 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1349 plt_chunks =
1350 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1351
1352 /* Iterate over all the PLT chunks, including any extra sections
1353 created earlier because the initial count of PLT relocations
1354 was an overestimate. */
1355 for (chunk = 0;
1356 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1357 chunk++)
1358 {
1359 int chunk_entries;
1360
1361 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1362 if (sgotplt == NULL)
1363 abort ();
1364
1365 if (chunk < plt_chunks - 1)
1366 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1367 else if (chunk == plt_chunks - 1)
1368 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1369 else
1370 chunk_entries = 0;
1371
1372 if (chunk_entries != 0)
1373 {
eea6121a
AM
1374 sgotplt->size = 4 * (chunk_entries + 2);
1375 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1376 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1377 spltlittbl->size += 8;
e0001a05
NC
1378 }
1379 else
1380 {
eea6121a
AM
1381 sgotplt->size = 0;
1382 splt->size = 0;
e0001a05
NC
1383 }
1384 }
e901de89
BW
1385
1386 /* Allocate space in ".got.loc" to match the total size of all the
1387 literal tables. */
1388 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1389 if (sgotloc == NULL)
1390 abort ();
eea6121a 1391 sgotloc->size = spltlittbl->size;
e901de89
BW
1392 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1393 {
1394 if (abfd->flags & DYNAMIC)
1395 continue;
1396 for (s = abfd->sections; s != NULL; s = s->next)
1397 {
b536dc1e
BW
1398 if (! elf_discarded_section (s)
1399 && xtensa_is_littable_section (s)
1400 && s != spltlittbl)
eea6121a 1401 sgotloc->size += s->size;
e901de89
BW
1402 }
1403 }
e0001a05
NC
1404 }
1405
1406 /* Allocate memory for dynamic sections. */
1407 relplt = FALSE;
1408 relgot = FALSE;
1409 for (s = dynobj->sections; s != NULL; s = s->next)
1410 {
1411 const char *name;
1412 bfd_boolean strip;
1413
1414 if ((s->flags & SEC_LINKER_CREATED) == 0)
1415 continue;
1416
1417 /* It's OK to base decisions on the section name, because none
1418 of the dynobj section names depend upon the input files. */
1419 name = bfd_get_section_name (dynobj, s);
1420
1421 strip = FALSE;
1422
1423 if (strncmp (name, ".rela", 5) == 0)
1424 {
1425 if (strcmp (name, ".rela.plt") == 0)
1426 relplt = TRUE;
1427 else if (strcmp (name, ".rela.got") == 0)
1428 relgot = TRUE;
1429
1430 /* We use the reloc_count field as a counter if we need
1431 to copy relocs into the output file. */
1432 s->reloc_count = 0;
1433 }
1434 else if (strncmp (name, ".plt.", 5) == 0
1435 || strncmp (name, ".got.plt.", 9) == 0)
1436 {
eea6121a 1437 if (s->size == 0)
e0001a05
NC
1438 {
1439 /* If we don't need this section, strip it from the output
1440 file. We must create the ".plt*" and ".got.plt*"
1441 sections in create_dynamic_sections and/or check_relocs
1442 based on a conservative estimate of the PLT relocation
1443 count, because the sections must be created before the
1444 linker maps input sections to output sections. The
1445 linker does that before size_dynamic_sections, where we
1446 compute the exact size of the PLT, so there may be more
1447 of these sections than are actually needed. */
1448 strip = TRUE;
1449 }
1450 }
1451 else if (strcmp (name, ".got") != 0
1452 && strcmp (name, ".plt") != 0
1453 && strcmp (name, ".got.plt") != 0
e901de89
BW
1454 && strcmp (name, ".xt.lit.plt") != 0
1455 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1456 {
1457 /* It's not one of our sections, so don't allocate space. */
1458 continue;
1459 }
1460
1461 if (strip)
8423293d 1462 s->flags |= SEC_EXCLUDE;
e0001a05
NC
1463 else
1464 {
1465 /* Allocate memory for the section contents. */
eea6121a
AM
1466 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1467 if (s->contents == NULL && s->size != 0)
e0001a05
NC
1468 return FALSE;
1469 }
1470 }
1471
1472 if (elf_hash_table (info)->dynamic_sections_created)
1473 {
1474 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1475 known until finish_dynamic_sections, but we need to get the relocs
1476 in place before they are sorted. */
1477 if (srelgot == NULL)
1478 abort ();
1479 for (chunk = 0; chunk < plt_chunks; chunk++)
1480 {
1481 Elf_Internal_Rela irela;
1482 bfd_byte *loc;
1483
1484 irela.r_offset = 0;
1485 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1486 irela.r_addend = 0;
1487
1488 loc = (srelgot->contents
1489 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1490 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1491 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1492 loc + sizeof (Elf32_External_Rela));
1493 srelgot->reloc_count += 2;
1494 }
1495
1496 /* Add some entries to the .dynamic section. We fill in the
1497 values later, in elf_xtensa_finish_dynamic_sections, but we
1498 must add the entries now so that we get the correct size for
1499 the .dynamic section. The DT_DEBUG entry is filled in by the
1500 dynamic linker and used by the debugger. */
1501#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1502 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05
NC
1503
1504 if (! info->shared)
1505 {
1506 if (!add_dynamic_entry (DT_DEBUG, 0))
1507 return FALSE;
1508 }
1509
1510 if (relplt)
1511 {
1512 if (!add_dynamic_entry (DT_PLTGOT, 0)
1513 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1514 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1515 || !add_dynamic_entry (DT_JMPREL, 0))
1516 return FALSE;
1517 }
1518
1519 if (relgot)
1520 {
1521 if (!add_dynamic_entry (DT_RELA, 0)
1522 || !add_dynamic_entry (DT_RELASZ, 0)
1523 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1524 return FALSE;
1525 }
1526
e0001a05
NC
1527 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1528 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1529 return FALSE;
1530 }
1531#undef add_dynamic_entry
1532
1533 return TRUE;
1534}
1535
1536\f
1537/* Remove any PT_LOAD segments with no allocated sections. Prior to
1538 binutils 2.13, this function used to remove the non-SEC_ALLOC
1539 sections from PT_LOAD segments, but that task has now been moved
1540 into elf.c. We still need this function to remove any empty
1541 segments that result, but there's nothing Xtensa-specific about
1542 this and it probably ought to be moved into elf.c as well. */
1543
1544static bfd_boolean
7fa3d080
BW
1545elf_xtensa_modify_segment_map (bfd *abfd,
1546 struct bfd_link_info *info ATTRIBUTE_UNUSED)
e0001a05
NC
1547{
1548 struct elf_segment_map **m_p;
1549
1550 m_p = &elf_tdata (abfd)->segment_map;
7fa3d080 1551 while (*m_p)
e0001a05
NC
1552 {
1553 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1554 *m_p = (*m_p)->next;
1555 else
1556 m_p = &(*m_p)->next;
1557 }
1558 return TRUE;
1559}
1560
1561\f
1562/* Perform the specified relocation. The instruction at (contents + address)
1563 is modified to set one operand to represent the value in "relocation". The
1564 operand position is determined by the relocation type recorded in the
1565 howto. */
1566
1567#define CALL_SEGMENT_BITS (30)
7fa3d080 1568#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1569
1570static bfd_reloc_status_type
7fa3d080
BW
1571elf_xtensa_do_reloc (reloc_howto_type *howto,
1572 bfd *abfd,
1573 asection *input_section,
1574 bfd_vma relocation,
1575 bfd_byte *contents,
1576 bfd_vma address,
1577 bfd_boolean is_weak_undef,
1578 char **error_message)
e0001a05 1579{
43cd72b9 1580 xtensa_format fmt;
e0001a05 1581 xtensa_opcode opcode;
e0001a05 1582 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1583 static xtensa_insnbuf ibuff = NULL;
1584 static xtensa_insnbuf sbuff = NULL;
1585 bfd_vma self_address = 0;
1586 bfd_size_type input_size;
1587 int opnd, slot;
e0001a05
NC
1588 uint32 newval;
1589
43cd72b9
BW
1590 if (!ibuff)
1591 {
1592 ibuff = xtensa_insnbuf_alloc (isa);
1593 sbuff = xtensa_insnbuf_alloc (isa);
1594 }
1595
1596 input_size = bfd_get_section_limit (abfd, input_section);
1597
e0001a05
NC
1598 switch (howto->type)
1599 {
1600 case R_XTENSA_NONE:
43cd72b9
BW
1601 case R_XTENSA_DIFF8:
1602 case R_XTENSA_DIFF16:
1603 case R_XTENSA_DIFF32:
e0001a05
NC
1604 return bfd_reloc_ok;
1605
1606 case R_XTENSA_ASM_EXPAND:
1607 if (!is_weak_undef)
1608 {
1609 /* Check for windowed CALL across a 1GB boundary. */
1610 xtensa_opcode opcode =
1611 get_expanded_call_opcode (contents + address,
43cd72b9 1612 input_size - address, 0);
e0001a05
NC
1613 if (is_windowed_call_opcode (opcode))
1614 {
1615 self_address = (input_section->output_section->vma
1616 + input_section->output_offset
1617 + address);
43cd72b9
BW
1618 if ((self_address >> CALL_SEGMENT_BITS)
1619 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1620 {
1621 *error_message = "windowed longcall crosses 1GB boundary; "
1622 "return may fail";
1623 return bfd_reloc_dangerous;
1624 }
1625 }
1626 }
1627 return bfd_reloc_ok;
1628
1629 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1630 {
e0001a05 1631 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1632 bfd_reloc_status_type retval =
1633 elf_xtensa_do_asm_simplify (contents, address, input_size,
1634 error_message);
e0001a05 1635 if (retval != bfd_reloc_ok)
43cd72b9 1636 return bfd_reloc_dangerous;
e0001a05
NC
1637
1638 /* The CALL needs to be relocated. Continue below for that part. */
1639 address += 3;
43cd72b9 1640 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1641 }
1642 break;
1643
1644 case R_XTENSA_32:
1645 case R_XTENSA_PLT:
1646 {
1647 bfd_vma x;
1648 x = bfd_get_32 (abfd, contents + address);
1649 x = x + relocation;
1650 bfd_put_32 (abfd, x, contents + address);
1651 }
1652 return bfd_reloc_ok;
1653 }
1654
43cd72b9
BW
1655 /* Only instruction slot-specific relocations handled below.... */
1656 slot = get_relocation_slot (howto->type);
1657 if (slot == XTENSA_UNDEFINED)
e0001a05 1658 {
43cd72b9 1659 *error_message = "unexpected relocation";
e0001a05
NC
1660 return bfd_reloc_dangerous;
1661 }
1662
43cd72b9
BW
1663 /* Read the instruction into a buffer and decode the opcode. */
1664 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1665 input_size - address);
1666 fmt = xtensa_format_decode (isa, ibuff);
1667 if (fmt == XTENSA_UNDEFINED)
e0001a05 1668 {
43cd72b9 1669 *error_message = "cannot decode instruction format";
e0001a05
NC
1670 return bfd_reloc_dangerous;
1671 }
1672
43cd72b9 1673 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1674
43cd72b9
BW
1675 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1676 if (opcode == XTENSA_UNDEFINED)
e0001a05 1677 {
43cd72b9 1678 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1679 return bfd_reloc_dangerous;
1680 }
1681
43cd72b9
BW
1682 /* Check for opcode-specific "alternate" relocations. */
1683 if (is_alt_relocation (howto->type))
1684 {
1685 if (opcode == get_l32r_opcode ())
1686 {
1687 /* Handle the special-case of non-PC-relative L32R instructions. */
1688 bfd *output_bfd = input_section->output_section->owner;
1689 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1690 if (!lit4_sec)
1691 {
1692 *error_message = "relocation references missing .lit4 section";
1693 return bfd_reloc_dangerous;
1694 }
1695 self_address = ((lit4_sec->vma & ~0xfff)
1696 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1697 newval = relocation;
1698 opnd = 1;
1699 }
1700 else if (opcode == get_const16_opcode ())
1701 {
1702 /* ALT used for high 16 bits. */
1703 newval = relocation >> 16;
1704 opnd = 1;
1705 }
1706 else
1707 {
1708 /* No other "alternate" relocations currently defined. */
1709 *error_message = "unexpected relocation";
1710 return bfd_reloc_dangerous;
1711 }
1712 }
1713 else /* Not an "alternate" relocation.... */
1714 {
1715 if (opcode == get_const16_opcode ())
1716 {
1717 newval = relocation & 0xffff;
1718 opnd = 1;
1719 }
1720 else
1721 {
1722 /* ...normal PC-relative relocation.... */
1723
1724 /* Determine which operand is being relocated. */
1725 opnd = get_relocation_opnd (opcode, howto->type);
1726 if (opnd == XTENSA_UNDEFINED)
1727 {
1728 *error_message = "unexpected relocation";
1729 return bfd_reloc_dangerous;
1730 }
1731
1732 if (!howto->pc_relative)
1733 {
1734 *error_message = "expected PC-relative relocation";
1735 return bfd_reloc_dangerous;
1736 }
e0001a05 1737
43cd72b9
BW
1738 /* Calculate the PC address for this instruction. */
1739 self_address = (input_section->output_section->vma
1740 + input_section->output_offset
1741 + address);
e0001a05 1742
43cd72b9
BW
1743 newval = relocation;
1744 }
1745 }
e0001a05 1746
43cd72b9
BW
1747 /* Apply the relocation. */
1748 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1749 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1750 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1751 sbuff, newval))
e0001a05 1752 {
43cd72b9 1753 *error_message = build_encoding_error_message (opcode, relocation);
e0001a05
NC
1754 return bfd_reloc_dangerous;
1755 }
1756
43cd72b9 1757 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1758 if (is_direct_call_opcode (opcode)
1759 && is_windowed_call_opcode (opcode))
1760 {
43cd72b9
BW
1761 if ((self_address >> CALL_SEGMENT_BITS)
1762 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1763 {
43cd72b9
BW
1764 *error_message =
1765 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1766 return bfd_reloc_dangerous;
1767 }
1768 }
1769
43cd72b9
BW
1770 /* Write the modified instruction back out of the buffer. */
1771 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1772 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1773 input_size - address);
e0001a05
NC
1774 return bfd_reloc_ok;
1775}
1776
1777
0fd3a477 1778static char * ATTRIBUTE_PRINTF(2,4)
7fa3d080 1779vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1780{
1781 /* To reduce the size of the memory leak,
1782 we only use a single message buffer. */
1783 static bfd_size_type alloc_size = 0;
1784 static char *message = NULL;
1785 bfd_size_type orig_len, len = 0;
1786 bfd_boolean is_append;
1787
1788 VA_OPEN (ap, arglen);
1789 VA_FIXEDARG (ap, const char *, origmsg);
1790
1791 is_append = (origmsg == message);
1792
1793 orig_len = strlen (origmsg);
1794 len = orig_len + strlen (fmt) + arglen + 20;
1795 if (len > alloc_size)
1796 {
1797 message = (char *) bfd_realloc (message, len);
1798 alloc_size = len;
1799 }
1800 if (!is_append)
1801 memcpy (message, origmsg, orig_len);
1802 vsprintf (message + orig_len, fmt, ap);
1803 VA_CLOSE (ap);
1804 return message;
1805}
1806
1807
1808static char *
7fa3d080 1809build_encoding_error_message (xtensa_opcode opcode, bfd_vma target_address)
e0001a05
NC
1810{
1811 const char *opname = xtensa_opcode_name (xtensa_default_isa, opcode);
43cd72b9 1812 const char *msg;
e0001a05 1813
43cd72b9
BW
1814 msg = "cannot encode";
1815 if (is_direct_call_opcode (opcode))
e0001a05 1816 {
43cd72b9
BW
1817 if ((target_address & 0x3) != 0)
1818 msg = "misaligned call target";
1819 else
1820 msg = "call target out of range";
e0001a05 1821 }
43cd72b9 1822 else if (opcode == get_l32r_opcode ())
e0001a05 1823 {
43cd72b9
BW
1824 if ((target_address & 0x3) != 0)
1825 msg = "misaligned literal target";
1826 else
1827 msg = "literal target out of range";
e0001a05 1828 }
43cd72b9 1829
e0001a05
NC
1830 return vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1831}
1832
1833
1834/* This function is registered as the "special_function" in the
1835 Xtensa howto for handling simplify operations.
1836 bfd_perform_relocation / bfd_install_relocation use it to
1837 perform (install) the specified relocation. Since this replaces the code
1838 in bfd_perform_relocation, it is basically an Xtensa-specific,
1839 stripped-down version of bfd_perform_relocation. */
1840
1841static bfd_reloc_status_type
7fa3d080
BW
1842bfd_elf_xtensa_reloc (bfd *abfd,
1843 arelent *reloc_entry,
1844 asymbol *symbol,
1845 void *data,
1846 asection *input_section,
1847 bfd *output_bfd,
1848 char **error_message)
e0001a05
NC
1849{
1850 bfd_vma relocation;
1851 bfd_reloc_status_type flag;
1852 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1853 bfd_vma output_base = 0;
1854 reloc_howto_type *howto = reloc_entry->howto;
1855 asection *reloc_target_output_section;
1856 bfd_boolean is_weak_undef;
1857
dd1a320b
BW
1858 if (!xtensa_default_isa)
1859 xtensa_default_isa = xtensa_isa_init (0, 0);
1860
1049f94e 1861 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1862 output, and the reloc is against an external symbol, the resulting
1863 reloc will also be against the same symbol. In such a case, we
1864 don't want to change anything about the way the reloc is handled,
1865 since it will all be done at final link time. This test is similar
1866 to what bfd_elf_generic_reloc does except that it lets relocs with
1867 howto->partial_inplace go through even if the addend is non-zero.
1868 (The real problem is that partial_inplace is set for XTENSA_32
1869 relocs to begin with, but that's a long story and there's little we
1870 can do about it now....) */
1871
7fa3d080 1872 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1873 {
1874 reloc_entry->address += input_section->output_offset;
1875 return bfd_reloc_ok;
1876 }
1877
1878 /* Is the address of the relocation really within the section? */
07515404 1879 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1880 return bfd_reloc_outofrange;
1881
4cc11e76 1882 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1883 initial relocation command value. */
1884
1885 /* Get symbol value. (Common symbols are special.) */
1886 if (bfd_is_com_section (symbol->section))
1887 relocation = 0;
1888 else
1889 relocation = symbol->value;
1890
1891 reloc_target_output_section = symbol->section->output_section;
1892
1893 /* Convert input-section-relative symbol value to absolute. */
1894 if ((output_bfd && !howto->partial_inplace)
1895 || reloc_target_output_section == NULL)
1896 output_base = 0;
1897 else
1898 output_base = reloc_target_output_section->vma;
1899
1900 relocation += output_base + symbol->section->output_offset;
1901
1902 /* Add in supplied addend. */
1903 relocation += reloc_entry->addend;
1904
1905 /* Here the variable relocation holds the final address of the
1906 symbol we are relocating against, plus any addend. */
1907 if (output_bfd)
1908 {
1909 if (!howto->partial_inplace)
1910 {
1911 /* This is a partial relocation, and we want to apply the relocation
1912 to the reloc entry rather than the raw data. Everything except
1913 relocations against section symbols has already been handled
1914 above. */
43cd72b9 1915
e0001a05
NC
1916 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1917 reloc_entry->addend = relocation;
1918 reloc_entry->address += input_section->output_offset;
1919 return bfd_reloc_ok;
1920 }
1921 else
1922 {
1923 reloc_entry->address += input_section->output_offset;
1924 reloc_entry->addend = 0;
1925 }
1926 }
1927
1928 is_weak_undef = (bfd_is_und_section (symbol->section)
1929 && (symbol->flags & BSF_WEAK) != 0);
1930 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1931 (bfd_byte *) data, (bfd_vma) octets,
1932 is_weak_undef, error_message);
1933
1934 if (flag == bfd_reloc_dangerous)
1935 {
1936 /* Add the symbol name to the error message. */
1937 if (! *error_message)
1938 *error_message = "";
1939 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1940 strlen (symbol->name) + 17,
1941 symbol->name, reloc_entry->addend);
1942 }
1943
1944 return flag;
1945}
1946
1947
1948/* Set up an entry in the procedure linkage table. */
1949
1950static bfd_vma
7fa3d080
BW
1951elf_xtensa_create_plt_entry (bfd *dynobj,
1952 bfd *output_bfd,
1953 unsigned reloc_index)
e0001a05
NC
1954{
1955 asection *splt, *sgotplt;
1956 bfd_vma plt_base, got_base;
1957 bfd_vma code_offset, lit_offset;
1958 int chunk;
1959
1960 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1961 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1962 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1963 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1964
1965 plt_base = splt->output_section->vma + splt->output_offset;
1966 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1967
1968 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1969 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1970
1971 /* Fill in the literal entry. This is the offset of the dynamic
1972 relocation entry. */
1973 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1974 sgotplt->contents + lit_offset);
1975
1976 /* Fill in the entry in the procedure linkage table. */
1977 memcpy (splt->contents + code_offset,
1978 (bfd_big_endian (output_bfd)
1979 ? elf_xtensa_be_plt_entry
1980 : elf_xtensa_le_plt_entry),
1981 PLT_ENTRY_SIZE);
1982 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1983 plt_base + code_offset + 3),
1984 splt->contents + code_offset + 4);
1985 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1986 plt_base + code_offset + 6),
1987 splt->contents + code_offset + 7);
1988 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1989 plt_base + code_offset + 9),
1990 splt->contents + code_offset + 10);
1991
1992 return plt_base + code_offset;
1993}
1994
1995
e0001a05 1996/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1997 both relocatable and final links. */
e0001a05
NC
1998
1999static bfd_boolean
7fa3d080
BW
2000elf_xtensa_relocate_section (bfd *output_bfd,
2001 struct bfd_link_info *info,
2002 bfd *input_bfd,
2003 asection *input_section,
2004 bfd_byte *contents,
2005 Elf_Internal_Rela *relocs,
2006 Elf_Internal_Sym *local_syms,
2007 asection **local_sections)
e0001a05
NC
2008{
2009 Elf_Internal_Shdr *symtab_hdr;
2010 Elf_Internal_Rela *rel;
2011 Elf_Internal_Rela *relend;
2012 struct elf_link_hash_entry **sym_hashes;
2013 asection *srelgot, *srelplt;
2014 bfd *dynobj;
88d65ad6
BW
2015 property_table_entry *lit_table = 0;
2016 int ltblsize = 0;
e0001a05 2017 char *error_message = NULL;
43cd72b9 2018 bfd_size_type input_size;
e0001a05 2019
43cd72b9
BW
2020 if (!xtensa_default_isa)
2021 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05
NC
2022
2023 dynobj = elf_hash_table (info)->dynobj;
2024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2025 sym_hashes = elf_sym_hashes (input_bfd);
2026
2027 srelgot = NULL;
2028 srelplt = NULL;
7fa3d080 2029 if (dynobj)
e0001a05
NC
2030 {
2031 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2032 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2033 }
2034
88d65ad6
BW
2035 if (elf_hash_table (info)->dynamic_sections_created)
2036 {
2037 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2038 &lit_table, XTENSA_LIT_SEC_NAME,
2039 TRUE);
88d65ad6
BW
2040 if (ltblsize < 0)
2041 return FALSE;
2042 }
2043
43cd72b9
BW
2044 input_size = bfd_get_section_limit (input_bfd, input_section);
2045
e0001a05
NC
2046 rel = relocs;
2047 relend = relocs + input_section->reloc_count;
2048 for (; rel < relend; rel++)
2049 {
2050 int r_type;
2051 reloc_howto_type *howto;
2052 unsigned long r_symndx;
2053 struct elf_link_hash_entry *h;
2054 Elf_Internal_Sym *sym;
2055 asection *sec;
2056 bfd_vma relocation;
2057 bfd_reloc_status_type r;
2058 bfd_boolean is_weak_undef;
2059 bfd_boolean unresolved_reloc;
9b8c98a4 2060 bfd_boolean warned;
e0001a05
NC
2061
2062 r_type = ELF32_R_TYPE (rel->r_info);
2063 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2064 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2065 continue;
2066
2067 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2068 {
2069 bfd_set_error (bfd_error_bad_value);
2070 return FALSE;
2071 }
2072 howto = &elf_howto_table[r_type];
2073
2074 r_symndx = ELF32_R_SYM (rel->r_info);
2075
1049f94e 2076 if (info->relocatable)
e0001a05 2077 {
43cd72b9 2078 /* This is a relocatable link.
e0001a05
NC
2079 1) If the reloc is against a section symbol, adjust
2080 according to the output section.
2081 2) If there is a new target for this relocation,
2082 the new target will be in the same output section.
2083 We adjust the relocation by the output section
2084 difference. */
2085
2086 if (relaxing_section)
2087 {
2088 /* Check if this references a section in another input file. */
43cd72b9
BW
2089 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2090 contents))
2091 return FALSE;
e0001a05
NC
2092 r_type = ELF32_R_TYPE (rel->r_info);
2093 }
2094
43cd72b9 2095 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2096 {
43cd72b9 2097 char *error_message = NULL;
e0001a05
NC
2098 /* Convert ASM_SIMPLIFY into the simpler relocation
2099 so that they never escape a relaxing link. */
43cd72b9
BW
2100 r = contract_asm_expansion (contents, input_size, rel,
2101 &error_message);
2102 if (r != bfd_reloc_ok)
2103 {
2104 if (!((*info->callbacks->reloc_dangerous)
2105 (info, error_message, input_bfd, input_section,
2106 rel->r_offset)))
2107 return FALSE;
2108 }
e0001a05
NC
2109 r_type = ELF32_R_TYPE (rel->r_info);
2110 }
2111
1049f94e 2112 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2113 anything unless the reloc is against a section symbol,
2114 in which case we have to adjust according to where the
2115 section symbol winds up in the output section. */
2116 if (r_symndx < symtab_hdr->sh_info)
2117 {
2118 sym = local_syms + r_symndx;
2119 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2120 {
2121 sec = local_sections[r_symndx];
2122 rel->r_addend += sec->output_offset + sym->st_value;
2123 }
2124 }
2125
2126 /* If there is an addend with a partial_inplace howto,
2127 then move the addend to the contents. This is a hack
1049f94e 2128 to work around problems with DWARF in relocatable links
e0001a05
NC
2129 with some previous version of BFD. Now we can't easily get
2130 rid of the hack without breaking backward compatibility.... */
2131 if (rel->r_addend)
2132 {
2133 howto = &elf_howto_table[r_type];
2134 if (howto->partial_inplace)
2135 {
2136 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2137 rel->r_addend, contents,
2138 rel->r_offset, FALSE,
2139 &error_message);
2140 if (r != bfd_reloc_ok)
2141 {
2142 if (!((*info->callbacks->reloc_dangerous)
2143 (info, error_message, input_bfd, input_section,
2144 rel->r_offset)))
2145 return FALSE;
2146 }
2147 rel->r_addend = 0;
2148 }
2149 }
2150
1049f94e 2151 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2152 continue;
2153 }
2154
2155 /* This is a final link. */
2156
2157 h = NULL;
2158 sym = NULL;
2159 sec = NULL;
2160 is_weak_undef = FALSE;
2161 unresolved_reloc = FALSE;
9b8c98a4 2162 warned = FALSE;
e0001a05
NC
2163
2164 if (howto->partial_inplace)
2165 {
2166 /* Because R_XTENSA_32 was made partial_inplace to fix some
2167 problems with DWARF info in partial links, there may be
2168 an addend stored in the contents. Take it out of there
2169 and move it back into the addend field of the reloc. */
2170 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2171 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2172 }
2173
2174 if (r_symndx < symtab_hdr->sh_info)
2175 {
2176 sym = local_syms + r_symndx;
2177 sec = local_sections[r_symndx];
8517fae7 2178 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
e0001a05
NC
2179 }
2180 else
2181 {
b2a8e766
AM
2182 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2183 r_symndx, symtab_hdr, sym_hashes,
2184 h, sec, relocation,
2185 unresolved_reloc, warned);
560e09e9
NC
2186
2187 if (relocation == 0
2188 && !unresolved_reloc
2189 && h->root.type == bfd_link_hash_undefweak)
e0001a05 2190 is_weak_undef = TRUE;
e0001a05
NC
2191 }
2192
2193 if (relaxing_section)
2194 {
2195 /* Check if this references a section in another input file. */
43cd72b9
BW
2196 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2197 &relocation);
e0001a05
NC
2198
2199 /* Update some already cached values. */
2200 r_type = ELF32_R_TYPE (rel->r_info);
2201 howto = &elf_howto_table[r_type];
2202 }
2203
2204 /* Sanity check the address. */
43cd72b9 2205 if (rel->r_offset >= input_size
e0001a05
NC
2206 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2207 {
43cd72b9
BW
2208 (*_bfd_error_handler)
2209 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2210 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2211 bfd_set_error (bfd_error_bad_value);
2212 return FALSE;
2213 }
2214
2215 /* Generate dynamic relocations. */
2216 if (elf_hash_table (info)->dynamic_sections_created)
2217 {
571b5725 2218 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05 2219
43cd72b9 2220 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2221 {
2222 /* This is an error. The symbol's real value won't be known
2223 until runtime and it's likely to be out of range anyway. */
2224 const char *name = h->root.root.string;
2225 error_message = vsprint_msg ("invalid relocation for dynamic "
2226 "symbol", ": %s",
2227 strlen (name) + 2, name);
2228 if (!((*info->callbacks->reloc_dangerous)
2229 (info, error_message, input_bfd, input_section,
2230 rel->r_offset)))
2231 return FALSE;
2232 }
2233 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2234 && (input_section->flags & SEC_ALLOC) != 0
2235 && (dynamic_symbol || info->shared))
2236 {
2237 Elf_Internal_Rela outrel;
2238 bfd_byte *loc;
2239 asection *srel;
2240
2241 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2242 srel = srelplt;
2243 else
2244 srel = srelgot;
2245
2246 BFD_ASSERT (srel != NULL);
2247
2248 outrel.r_offset =
2249 _bfd_elf_section_offset (output_bfd, info,
2250 input_section, rel->r_offset);
2251
2252 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2253 memset (&outrel, 0, sizeof outrel);
2254 else
2255 {
f0578e28
BW
2256 outrel.r_offset += (input_section->output_section->vma
2257 + input_section->output_offset);
e0001a05 2258
88d65ad6
BW
2259 /* Complain if the relocation is in a read-only section
2260 and not in a literal pool. */
2261 if ((input_section->flags & SEC_READONLY) != 0
2262 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2263 outrel.r_offset))
88d65ad6
BW
2264 {
2265 error_message =
2266 _("dynamic relocation in read-only section");
2267 if (!((*info->callbacks->reloc_dangerous)
2268 (info, error_message, input_bfd, input_section,
2269 rel->r_offset)))
2270 return FALSE;
2271 }
2272
e0001a05
NC
2273 if (dynamic_symbol)
2274 {
2275 outrel.r_addend = rel->r_addend;
2276 rel->r_addend = 0;
2277
2278 if (r_type == R_XTENSA_32)
2279 {
2280 outrel.r_info =
2281 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2282 relocation = 0;
2283 }
2284 else /* r_type == R_XTENSA_PLT */
2285 {
2286 outrel.r_info =
2287 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2288
2289 /* Create the PLT entry and set the initial
2290 contents of the literal entry to the address of
2291 the PLT entry. */
43cd72b9 2292 relocation =
e0001a05
NC
2293 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2294 srel->reloc_count);
2295 }
2296 unresolved_reloc = FALSE;
2297 }
2298 else
2299 {
2300 /* Generate a RELATIVE relocation. */
2301 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2302 outrel.r_addend = 0;
2303 }
2304 }
2305
2306 loc = (srel->contents
2307 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2308 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2309 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2310 <= srel->size);
e0001a05
NC
2311 }
2312 }
2313
2314 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2315 because such sections are not SEC_ALLOC and thus ld.so will
2316 not process them. */
2317 if (unresolved_reloc
2318 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2319 && h->def_dynamic))
e0001a05 2320 (*_bfd_error_handler)
d003868e
AM
2321 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2322 input_bfd,
2323 input_section,
e0001a05
NC
2324 (long) rel->r_offset,
2325 h->root.root.string);
2326
2327 /* There's no point in calling bfd_perform_relocation here.
2328 Just go directly to our "special function". */
2329 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2330 relocation + rel->r_addend,
2331 contents, rel->r_offset, is_weak_undef,
2332 &error_message);
43cd72b9 2333
9b8c98a4 2334 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2335 {
2336 const char *name;
2337
43cd72b9 2338 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2339 BFD_ASSERT (error_message != NULL);
e0001a05 2340
7fa3d080 2341 if (h)
e0001a05
NC
2342 name = h->root.root.string;
2343 else
2344 {
2345 name = bfd_elf_string_from_elf_section
2346 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2347 if (name && *name == '\0')
2348 name = bfd_section_name (input_bfd, sec);
2349 }
2350 if (name)
43cd72b9
BW
2351 {
2352 if (rel->r_addend == 0)
2353 error_message = vsprint_msg (error_message, ": %s",
2354 strlen (name) + 2, name);
2355 else
2356 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2357 strlen (name) + 22,
0fd3a477 2358 name, (int)rel->r_addend);
43cd72b9
BW
2359 }
2360
e0001a05
NC
2361 if (!((*info->callbacks->reloc_dangerous)
2362 (info, error_message, input_bfd, input_section,
2363 rel->r_offset)))
2364 return FALSE;
2365 }
2366 }
2367
88d65ad6
BW
2368 if (lit_table)
2369 free (lit_table);
2370
3ba3bc8c
BW
2371 input_section->reloc_done = TRUE;
2372
e0001a05
NC
2373 return TRUE;
2374}
2375
2376
2377/* Finish up dynamic symbol handling. There's not much to do here since
2378 the PLT and GOT entries are all set up by relocate_section. */
2379
2380static bfd_boolean
7fa3d080
BW
2381elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2382 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2383 struct elf_link_hash_entry *h,
2384 Elf_Internal_Sym *sym)
e0001a05 2385{
f5385ebf
AM
2386 if (h->needs_plt
2387 && !h->def_regular)
e0001a05
NC
2388 {
2389 /* Mark the symbol as undefined, rather than as defined in
2390 the .plt section. Leave the value alone. */
2391 sym->st_shndx = SHN_UNDEF;
2392 }
2393
2394 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2395 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2396 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2397 sym->st_shndx = SHN_ABS;
2398
2399 return TRUE;
2400}
2401
2402
2403/* Combine adjacent literal table entries in the output. Adjacent
2404 entries within each input section may have been removed during
2405 relaxation, but we repeat the process here, even though it's too late
2406 to shrink the output section, because it's important to minimize the
2407 number of literal table entries to reduce the start-up work for the
2408 runtime linker. Returns the number of remaining table entries or -1
2409 on error. */
2410
2411static int
7fa3d080
BW
2412elf_xtensa_combine_prop_entries (bfd *output_bfd,
2413 asection *sxtlit,
2414 asection *sgotloc)
e0001a05 2415{
e0001a05
NC
2416 bfd_byte *contents;
2417 property_table_entry *table;
e901de89 2418 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2419 bfd_vma offset;
2420 int n, m, num;
2421
eea6121a 2422 section_size = sxtlit->size;
e0001a05
NC
2423 BFD_ASSERT (section_size % 8 == 0);
2424 num = section_size / 8;
2425
eea6121a 2426 sgotloc_size = sgotloc->size;
e901de89 2427 if (sgotloc_size != section_size)
b536dc1e
BW
2428 {
2429 (*_bfd_error_handler)
43cd72b9 2430 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2431 return -1;
2432 }
e901de89 2433
eea6121a
AM
2434 table = bfd_malloc (num * sizeof (property_table_entry));
2435 if (table == 0)
e0001a05
NC
2436 return -1;
2437
2438 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2439 propagates to the output section, where it doesn't really apply and
eea6121a 2440 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2441 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2442
eea6121a
AM
2443 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2444 {
2445 if (contents != 0)
2446 free (contents);
2447 free (table);
2448 return -1;
2449 }
e0001a05
NC
2450
2451 /* There should never be any relocations left at this point, so this
2452 is quite a bit easier than what is done during relaxation. */
2453
2454 /* Copy the raw contents into a property table array and sort it. */
2455 offset = 0;
2456 for (n = 0; n < num; n++)
2457 {
2458 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2459 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2460 offset += 8;
2461 }
2462 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2463
2464 for (n = 0; n < num; n++)
2465 {
2466 bfd_boolean remove = FALSE;
2467
2468 if (table[n].size == 0)
2469 remove = TRUE;
2470 else if (n > 0 &&
2471 (table[n-1].address + table[n-1].size == table[n].address))
2472 {
2473 table[n-1].size += table[n].size;
2474 remove = TRUE;
2475 }
2476
2477 if (remove)
2478 {
2479 for (m = n; m < num - 1; m++)
2480 {
2481 table[m].address = table[m+1].address;
2482 table[m].size = table[m+1].size;
2483 }
2484
2485 n--;
2486 num--;
2487 }
2488 }
2489
2490 /* Copy the data back to the raw contents. */
2491 offset = 0;
2492 for (n = 0; n < num; n++)
2493 {
2494 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2495 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2496 offset += 8;
2497 }
2498
2499 /* Clear the removed bytes. */
2500 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2501 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2502
e901de89
BW
2503 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2504 section_size))
e0001a05
NC
2505 return -1;
2506
e901de89
BW
2507 /* Copy the contents to ".got.loc". */
2508 memcpy (sgotloc->contents, contents, section_size);
2509
e0001a05 2510 free (contents);
b614a702 2511 free (table);
e0001a05
NC
2512 return num;
2513}
2514
2515
2516/* Finish up the dynamic sections. */
2517
2518static bfd_boolean
7fa3d080
BW
2519elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2520 struct bfd_link_info *info)
e0001a05
NC
2521{
2522 bfd *dynobj;
e901de89 2523 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2524 Elf32_External_Dyn *dyncon, *dynconend;
2525 int num_xtlit_entries;
2526
2527 if (! elf_hash_table (info)->dynamic_sections_created)
2528 return TRUE;
2529
2530 dynobj = elf_hash_table (info)->dynobj;
2531 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2532 BFD_ASSERT (sdyn != NULL);
2533
2534 /* Set the first entry in the global offset table to the address of
2535 the dynamic section. */
2536 sgot = bfd_get_section_by_name (dynobj, ".got");
2537 if (sgot)
2538 {
eea6121a 2539 BFD_ASSERT (sgot->size == 4);
e0001a05 2540 if (sdyn == NULL)
7fa3d080 2541 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2542 else
2543 bfd_put_32 (output_bfd,
2544 sdyn->output_section->vma + sdyn->output_offset,
2545 sgot->contents);
2546 }
2547
2548 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
7fa3d080 2549 if (srelplt && srelplt->size != 0)
e0001a05
NC
2550 {
2551 asection *sgotplt, *srelgot, *spltlittbl;
2552 int chunk, plt_chunks, plt_entries;
2553 Elf_Internal_Rela irela;
2554 bfd_byte *loc;
2555 unsigned rtld_reloc;
2556
2557 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2558 BFD_ASSERT (srelgot != NULL);
2559
2560 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2561 BFD_ASSERT (spltlittbl != NULL);
2562
2563 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2564 of them follow immediately after.... */
2565 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2566 {
2567 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2568 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2569 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2570 break;
2571 }
2572 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2573
eea6121a 2574 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2575 plt_chunks =
2576 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2577
2578 for (chunk = 0; chunk < plt_chunks; chunk++)
2579 {
2580 int chunk_entries = 0;
2581
2582 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2583 BFD_ASSERT (sgotplt != NULL);
2584
2585 /* Emit special RTLD relocations for the first two entries in
2586 each chunk of the .got.plt section. */
2587
2588 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2589 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2590 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2591 irela.r_offset = (sgotplt->output_section->vma
2592 + sgotplt->output_offset);
2593 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2594 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2595 rtld_reloc += 1;
2596 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2597
2598 /* Next literal immediately follows the first. */
2599 loc += sizeof (Elf32_External_Rela);
2600 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2601 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2602 irela.r_offset = (sgotplt->output_section->vma
2603 + sgotplt->output_offset + 4);
2604 /* Tell rtld to set value to object's link map. */
2605 irela.r_addend = 2;
2606 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2607 rtld_reloc += 1;
2608 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2609
2610 /* Fill in the literal table. */
2611 if (chunk < plt_chunks - 1)
2612 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2613 else
2614 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2615
eea6121a 2616 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2617 bfd_put_32 (output_bfd,
2618 sgotplt->output_section->vma + sgotplt->output_offset,
2619 spltlittbl->contents + (chunk * 8) + 0);
2620 bfd_put_32 (output_bfd,
2621 8 + (chunk_entries * 4),
2622 spltlittbl->contents + (chunk * 8) + 4);
2623 }
2624
2625 /* All the dynamic relocations have been emitted at this point.
2626 Make sure the relocation sections are the correct size. */
eea6121a
AM
2627 if (srelgot->size != (sizeof (Elf32_External_Rela)
2628 * srelgot->reloc_count)
2629 || srelplt->size != (sizeof (Elf32_External_Rela)
2630 * srelplt->reloc_count))
e0001a05
NC
2631 abort ();
2632
2633 /* The .xt.lit.plt section has just been modified. This must
2634 happen before the code below which combines adjacent literal
2635 table entries, and the .xt.lit.plt contents have to be forced to
2636 the output here. */
2637 if (! bfd_set_section_contents (output_bfd,
2638 spltlittbl->output_section,
2639 spltlittbl->contents,
2640 spltlittbl->output_offset,
eea6121a 2641 spltlittbl->size))
e0001a05
NC
2642 return FALSE;
2643 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2644 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2645 }
2646
2647 /* Combine adjacent literal table entries. */
1049f94e 2648 BFD_ASSERT (! info->relocatable);
e901de89
BW
2649 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2650 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
b536dc1e 2651 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2652 num_xtlit_entries =
2653 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2654 if (num_xtlit_entries < 0)
2655 return FALSE;
2656
2657 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2658 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2659 for (; dyncon < dynconend; dyncon++)
2660 {
2661 Elf_Internal_Dyn dyn;
2662 const char *name;
2663 asection *s;
2664
2665 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2666
2667 switch (dyn.d_tag)
2668 {
2669 default:
2670 break;
2671
2672 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2673 dyn.d_un.d_val = num_xtlit_entries;
2674 break;
2675
2676 case DT_XTENSA_GOT_LOC_OFF:
e901de89 2677 name = ".got.loc";
e0001a05
NC
2678 goto get_vma;
2679 case DT_PLTGOT:
2680 name = ".got";
2681 goto get_vma;
2682 case DT_JMPREL:
2683 name = ".rela.plt";
2684 get_vma:
2685 s = bfd_get_section_by_name (output_bfd, name);
2686 BFD_ASSERT (s);
2687 dyn.d_un.d_ptr = s->vma;
2688 break;
2689
2690 case DT_PLTRELSZ:
2691 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2692 BFD_ASSERT (s);
eea6121a 2693 dyn.d_un.d_val = s->size;
e0001a05
NC
2694 break;
2695
2696 case DT_RELASZ:
2697 /* Adjust RELASZ to not include JMPREL. This matches what
2698 glibc expects and what is done for several other ELF
2699 targets (e.g., i386, alpha), but the "correct" behavior
2700 seems to be unresolved. Since the linker script arranges
2701 for .rela.plt to follow all other relocation sections, we
2702 don't have to worry about changing the DT_RELA entry. */
2703 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2704 if (s)
eea6121a 2705 dyn.d_un.d_val -= s->size;
e0001a05
NC
2706 break;
2707 }
2708
2709 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2710 }
2711
2712 return TRUE;
2713}
2714
2715\f
2716/* Functions for dealing with the e_flags field. */
2717
2718/* Merge backend specific data from an object file to the output
2719 object file when linking. */
2720
2721static bfd_boolean
7fa3d080 2722elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2723{
2724 unsigned out_mach, in_mach;
2725 flagword out_flag, in_flag;
2726
2727 /* Check if we have the same endianess. */
2728 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2729 return FALSE;
2730
2731 /* Don't even pretend to support mixed-format linking. */
2732 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2733 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2734 return FALSE;
2735
2736 out_flag = elf_elfheader (obfd)->e_flags;
2737 in_flag = elf_elfheader (ibfd)->e_flags;
2738
2739 out_mach = out_flag & EF_XTENSA_MACH;
2740 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2741 if (out_mach != in_mach)
e0001a05
NC
2742 {
2743 (*_bfd_error_handler)
43cd72b9 2744 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2745 ibfd, out_mach, in_mach);
e0001a05
NC
2746 bfd_set_error (bfd_error_wrong_format);
2747 return FALSE;
2748 }
2749
2750 if (! elf_flags_init (obfd))
2751 {
2752 elf_flags_init (obfd) = TRUE;
2753 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2754
e0001a05
NC
2755 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2756 && bfd_get_arch_info (obfd)->the_default)
2757 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2758 bfd_get_mach (ibfd));
43cd72b9 2759
e0001a05
NC
2760 return TRUE;
2761 }
2762
43cd72b9
BW
2763 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2764 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2765
43cd72b9
BW
2766 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2767 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2768
2769 return TRUE;
2770}
2771
2772
2773static bfd_boolean
7fa3d080 2774elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2775{
2776 BFD_ASSERT (!elf_flags_init (abfd)
2777 || elf_elfheader (abfd)->e_flags == flags);
2778
2779 elf_elfheader (abfd)->e_flags |= flags;
2780 elf_flags_init (abfd) = TRUE;
2781
2782 return TRUE;
2783}
2784
2785
e0001a05 2786static bfd_boolean
7fa3d080 2787elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2788{
2789 FILE *f = (FILE *) farg;
2790 flagword e_flags = elf_elfheader (abfd)->e_flags;
2791
2792 fprintf (f, "\nXtensa header:\n");
43cd72b9 2793 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2794 fprintf (f, "\nMachine = Base\n");
2795 else
2796 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2797
2798 fprintf (f, "Insn tables = %s\n",
2799 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2800
2801 fprintf (f, "Literal tables = %s\n",
2802 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2803
2804 return _bfd_elf_print_private_bfd_data (abfd, farg);
2805}
2806
2807
2808/* Set the right machine number for an Xtensa ELF file. */
2809
2810static bfd_boolean
7fa3d080 2811elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2812{
2813 int mach;
2814 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2815
2816 switch (arch)
2817 {
2818 case E_XTENSA_MACH:
2819 mach = bfd_mach_xtensa;
2820 break;
2821 default:
2822 return FALSE;
2823 }
2824
2825 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2826 return TRUE;
2827}
2828
2829
2830/* The final processing done just before writing out an Xtensa ELF object
2831 file. This gets the Xtensa architecture right based on the machine
2832 number. */
2833
2834static void
7fa3d080
BW
2835elf_xtensa_final_write_processing (bfd *abfd,
2836 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2837{
2838 int mach;
2839 unsigned long val;
2840
2841 switch (mach = bfd_get_mach (abfd))
2842 {
2843 case bfd_mach_xtensa:
2844 val = E_XTENSA_MACH;
2845 break;
2846 default:
2847 return;
2848 }
2849
2850 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2851 elf_elfheader (abfd)->e_flags |= val;
2852}
2853
2854
2855static enum elf_reloc_type_class
7fa3d080 2856elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2857{
2858 switch ((int) ELF32_R_TYPE (rela->r_info))
2859 {
2860 case R_XTENSA_RELATIVE:
2861 return reloc_class_relative;
2862 case R_XTENSA_JMP_SLOT:
2863 return reloc_class_plt;
2864 default:
2865 return reloc_class_normal;
2866 }
2867}
2868
2869\f
2870static bfd_boolean
7fa3d080
BW
2871elf_xtensa_discard_info_for_section (bfd *abfd,
2872 struct elf_reloc_cookie *cookie,
2873 struct bfd_link_info *info,
2874 asection *sec)
e0001a05
NC
2875{
2876 bfd_byte *contents;
2877 bfd_vma section_size;
2878 bfd_vma offset, actual_offset;
2879 size_t removed_bytes = 0;
2880
eea6121a 2881 section_size = sec->size;
e0001a05
NC
2882 if (section_size == 0 || section_size % 8 != 0)
2883 return FALSE;
2884
2885 if (sec->output_section
2886 && bfd_is_abs_section (sec->output_section))
2887 return FALSE;
2888
2889 contents = retrieve_contents (abfd, sec, info->keep_memory);
2890 if (!contents)
2891 return FALSE;
2892
2893 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2894 if (!cookie->rels)
2895 {
2896 release_contents (sec, contents);
2897 return FALSE;
2898 }
2899
2900 cookie->rel = cookie->rels;
2901 cookie->relend = cookie->rels + sec->reloc_count;
2902
2903 for (offset = 0; offset < section_size; offset += 8)
2904 {
2905 actual_offset = offset - removed_bytes;
2906
2907 /* The ...symbol_deleted_p function will skip over relocs but it
2908 won't adjust their offsets, so do that here. */
2909 while (cookie->rel < cookie->relend
2910 && cookie->rel->r_offset < offset)
2911 {
2912 cookie->rel->r_offset -= removed_bytes;
2913 cookie->rel++;
2914 }
2915
2916 while (cookie->rel < cookie->relend
2917 && cookie->rel->r_offset == offset)
2918 {
c152c796 2919 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2920 {
2921 /* Remove the table entry. (If the reloc type is NONE, then
2922 the entry has already been merged with another and deleted
2923 during relaxation.) */
2924 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2925 {
2926 /* Shift the contents up. */
2927 if (offset + 8 < section_size)
2928 memmove (&contents[actual_offset],
2929 &contents[actual_offset+8],
2930 section_size - offset - 8);
2931 removed_bytes += 8;
2932 }
2933
2934 /* Remove this relocation. */
2935 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2936 }
2937
2938 /* Adjust the relocation offset for previous removals. This
2939 should not be done before calling ...symbol_deleted_p
2940 because it might mess up the offset comparisons there.
2941 Make sure the offset doesn't underflow in the case where
2942 the first entry is removed. */
2943 if (cookie->rel->r_offset >= removed_bytes)
2944 cookie->rel->r_offset -= removed_bytes;
2945 else
2946 cookie->rel->r_offset = 0;
2947
2948 cookie->rel++;
2949 }
2950 }
2951
2952 if (removed_bytes != 0)
2953 {
2954 /* Adjust any remaining relocs (shouldn't be any). */
2955 for (; cookie->rel < cookie->relend; cookie->rel++)
2956 {
2957 if (cookie->rel->r_offset >= removed_bytes)
2958 cookie->rel->r_offset -= removed_bytes;
2959 else
2960 cookie->rel->r_offset = 0;
2961 }
2962
2963 /* Clear the removed bytes. */
2964 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2965
2966 pin_contents (sec, contents);
2967 pin_internal_relocs (sec, cookie->rels);
2968
eea6121a
AM
2969 /* Shrink size. */
2970 sec->size = section_size - removed_bytes;
b536dc1e
BW
2971
2972 if (xtensa_is_littable_section (sec))
2973 {
2974 bfd *dynobj = elf_hash_table (info)->dynobj;
2975 if (dynobj)
2976 {
2977 asection *sgotloc =
2978 bfd_get_section_by_name (dynobj, ".got.loc");
2979 if (sgotloc)
eea6121a 2980 sgotloc->size -= removed_bytes;
b536dc1e
BW
2981 }
2982 }
e0001a05
NC
2983 }
2984 else
2985 {
2986 release_contents (sec, contents);
2987 release_internal_relocs (sec, cookie->rels);
2988 }
2989
2990 return (removed_bytes != 0);
2991}
2992
2993
2994static bfd_boolean
7fa3d080
BW
2995elf_xtensa_discard_info (bfd *abfd,
2996 struct elf_reloc_cookie *cookie,
2997 struct bfd_link_info *info)
e0001a05
NC
2998{
2999 asection *sec;
3000 bfd_boolean changed = FALSE;
3001
3002 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3003 {
3004 if (xtensa_is_property_section (sec))
3005 {
3006 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3007 changed = TRUE;
3008 }
3009 }
3010
3011 return changed;
3012}
3013
3014
3015static bfd_boolean
7fa3d080 3016elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3017{
3018 return xtensa_is_property_section (sec);
3019}
3020
3021\f
3022/* Support for core dump NOTE sections. */
3023
3024static bfd_boolean
7fa3d080 3025elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3026{
3027 int offset;
eea6121a 3028 unsigned int size;
e0001a05
NC
3029
3030 /* The size for Xtensa is variable, so don't try to recognize the format
3031 based on the size. Just assume this is GNU/Linux. */
3032
3033 /* pr_cursig */
3034 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3035
3036 /* pr_pid */
3037 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3038
3039 /* pr_reg */
3040 offset = 72;
eea6121a 3041 size = note->descsz - offset - 4;
e0001a05
NC
3042
3043 /* Make a ".reg/999" section. */
3044 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3045 size, note->descpos + offset);
e0001a05
NC
3046}
3047
3048
3049static bfd_boolean
7fa3d080 3050elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3051{
3052 switch (note->descsz)
3053 {
3054 default:
3055 return FALSE;
3056
3057 case 128: /* GNU/Linux elf_prpsinfo */
3058 elf_tdata (abfd)->core_program
3059 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3060 elf_tdata (abfd)->core_command
3061 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3062 }
3063
3064 /* Note that for some reason, a spurious space is tacked
3065 onto the end of the args in some (at least one anyway)
3066 implementations, so strip it off if it exists. */
3067
3068 {
3069 char *command = elf_tdata (abfd)->core_command;
3070 int n = strlen (command);
3071
3072 if (0 < n && command[n - 1] == ' ')
3073 command[n - 1] = '\0';
3074 }
3075
3076 return TRUE;
3077}
3078
3079\f
3080/* Generic Xtensa configurability stuff. */
3081
3082static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3083static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3084static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3085static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3086static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3087static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3088static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3089static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3090
3091static void
7fa3d080 3092init_call_opcodes (void)
e0001a05
NC
3093{
3094 if (callx0_op == XTENSA_UNDEFINED)
3095 {
3096 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3097 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3098 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3099 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3100 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3101 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3102 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3103 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3104 }
3105}
3106
3107
3108static bfd_boolean
7fa3d080 3109is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3110{
3111 init_call_opcodes ();
3112 return (opcode == callx0_op
3113 || opcode == callx4_op
3114 || opcode == callx8_op
3115 || opcode == callx12_op);
3116}
3117
3118
3119static bfd_boolean
7fa3d080 3120is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3121{
3122 init_call_opcodes ();
3123 return (opcode == call0_op
3124 || opcode == call4_op
3125 || opcode == call8_op
3126 || opcode == call12_op);
3127}
3128
3129
3130static bfd_boolean
7fa3d080 3131is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3132{
3133 init_call_opcodes ();
3134 return (opcode == call4_op
3135 || opcode == call8_op
3136 || opcode == call12_op
3137 || opcode == callx4_op
3138 || opcode == callx8_op
3139 || opcode == callx12_op);
3140}
3141
3142
43cd72b9
BW
3143static xtensa_opcode
3144get_const16_opcode (void)
3145{
3146 static bfd_boolean done_lookup = FALSE;
3147 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3148 if (!done_lookup)
3149 {
3150 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3151 done_lookup = TRUE;
3152 }
3153 return const16_opcode;
3154}
3155
3156
e0001a05
NC
3157static xtensa_opcode
3158get_l32r_opcode (void)
3159{
3160 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3161 static bfd_boolean done_lookup = FALSE;
3162
3163 if (!done_lookup)
e0001a05
NC
3164 {
3165 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3166 done_lookup = TRUE;
e0001a05
NC
3167 }
3168 return l32r_opcode;
3169}
3170
3171
3172static bfd_vma
7fa3d080 3173l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3174{
3175 bfd_vma offset;
3176
3177 offset = addr - ((pc+3) & -4);
3178 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3179 offset = (signed int) offset >> 2;
3180 BFD_ASSERT ((signed int) offset >> 16 == -1);
3181 return offset;
3182}
3183
3184
e0001a05 3185static int
7fa3d080 3186get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3187{
43cd72b9
BW
3188 xtensa_isa isa = xtensa_default_isa;
3189 int last_immed, last_opnd, opi;
3190
3191 if (opcode == XTENSA_UNDEFINED)
3192 return XTENSA_UNDEFINED;
3193
3194 /* Find the last visible PC-relative immediate operand for the opcode.
3195 If there are no PC-relative immediates, then choose the last visible
3196 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3197 last_immed = XTENSA_UNDEFINED;
3198 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3199 for (opi = last_opnd - 1; opi >= 0; opi--)
3200 {
3201 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3202 continue;
3203 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3204 {
3205 last_immed = opi;
3206 break;
3207 }
3208 if (last_immed == XTENSA_UNDEFINED
3209 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3210 last_immed = opi;
3211 }
3212 if (last_immed < 0)
3213 return XTENSA_UNDEFINED;
3214
3215 /* If the operand number was specified in an old-style relocation,
3216 check for consistency with the operand computed above. */
3217 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3218 {
3219 int reloc_opnd = r_type - R_XTENSA_OP0;
3220 if (reloc_opnd != last_immed)
3221 return XTENSA_UNDEFINED;
3222 }
3223
3224 return last_immed;
3225}
3226
3227
3228int
7fa3d080 3229get_relocation_slot (int r_type)
43cd72b9
BW
3230{
3231 switch (r_type)
3232 {
3233 case R_XTENSA_OP0:
3234 case R_XTENSA_OP1:
3235 case R_XTENSA_OP2:
3236 return 0;
3237
3238 default:
3239 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3240 return r_type - R_XTENSA_SLOT0_OP;
3241 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3242 return r_type - R_XTENSA_SLOT0_ALT;
3243 break;
3244 }
3245
3246 return XTENSA_UNDEFINED;
e0001a05
NC
3247}
3248
3249
3250/* Get the opcode for a relocation. */
3251
3252static xtensa_opcode
7fa3d080
BW
3253get_relocation_opcode (bfd *abfd,
3254 asection *sec,
3255 bfd_byte *contents,
3256 Elf_Internal_Rela *irel)
e0001a05
NC
3257{
3258 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3259 static xtensa_insnbuf sbuff = NULL;
e0001a05 3260 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3261 xtensa_format fmt;
3262 int slot;
e0001a05
NC
3263
3264 if (contents == NULL)
3265 return XTENSA_UNDEFINED;
3266
43cd72b9 3267 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3268 return XTENSA_UNDEFINED;
3269
3270 if (ibuff == NULL)
43cd72b9
BW
3271 {
3272 ibuff = xtensa_insnbuf_alloc (isa);
3273 sbuff = xtensa_insnbuf_alloc (isa);
3274 }
3275
e0001a05 3276 /* Decode the instruction. */
43cd72b9
BW
3277 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3278 sec->size - irel->r_offset);
3279 fmt = xtensa_format_decode (isa, ibuff);
3280 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3281 if (slot == XTENSA_UNDEFINED)
3282 return XTENSA_UNDEFINED;
3283 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3284 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3285}
3286
3287
3288bfd_boolean
7fa3d080
BW
3289is_l32r_relocation (bfd *abfd,
3290 asection *sec,
3291 bfd_byte *contents,
3292 Elf_Internal_Rela *irel)
e0001a05
NC
3293{
3294 xtensa_opcode opcode;
43cd72b9 3295 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3296 return FALSE;
43cd72b9 3297 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3298 return (opcode == get_l32r_opcode ());
3299}
3300
e0001a05 3301
43cd72b9 3302static bfd_size_type
7fa3d080
BW
3303get_asm_simplify_size (bfd_byte *contents,
3304 bfd_size_type content_len,
3305 bfd_size_type offset)
e0001a05 3306{
43cd72b9 3307 bfd_size_type insnlen, size = 0;
e0001a05 3308
43cd72b9
BW
3309 /* Decode the size of the next two instructions. */
3310 insnlen = insn_decode_len (contents, content_len, offset);
3311 if (insnlen == 0)
3312 return 0;
e0001a05 3313
43cd72b9 3314 size += insnlen;
e0001a05 3315
43cd72b9
BW
3316 insnlen = insn_decode_len (contents, content_len, offset + size);
3317 if (insnlen == 0)
3318 return 0;
e0001a05 3319
43cd72b9
BW
3320 size += insnlen;
3321 return size;
3322}
e0001a05 3323
43cd72b9
BW
3324
3325bfd_boolean
7fa3d080 3326is_alt_relocation (int r_type)
43cd72b9
BW
3327{
3328 return (r_type >= R_XTENSA_SLOT0_ALT
3329 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3330}
3331
3332
43cd72b9 3333bfd_boolean
7fa3d080 3334is_operand_relocation (int r_type)
e0001a05 3335{
43cd72b9
BW
3336 switch (r_type)
3337 {
3338 case R_XTENSA_OP0:
3339 case R_XTENSA_OP1:
3340 case R_XTENSA_OP2:
3341 return TRUE;
e0001a05 3342
43cd72b9
BW
3343 default:
3344 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3345 return TRUE;
3346 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3347 return TRUE;
3348 break;
3349 }
e0001a05 3350
43cd72b9 3351 return FALSE;
e0001a05
NC
3352}
3353
43cd72b9
BW
3354
3355#define MIN_INSN_LENGTH 2
e0001a05 3356
43cd72b9
BW
3357/* Return 0 if it fails to decode. */
3358
3359bfd_size_type
7fa3d080
BW
3360insn_decode_len (bfd_byte *contents,
3361 bfd_size_type content_len,
3362 bfd_size_type offset)
e0001a05 3363{
43cd72b9
BW
3364 int insn_len;
3365 xtensa_isa isa = xtensa_default_isa;
3366 xtensa_format fmt;
3367 static xtensa_insnbuf ibuff = NULL;
e0001a05 3368
43cd72b9
BW
3369 if (offset + MIN_INSN_LENGTH > content_len)
3370 return 0;
e0001a05 3371
43cd72b9
BW
3372 if (ibuff == NULL)
3373 ibuff = xtensa_insnbuf_alloc (isa);
3374 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3375 content_len - offset);
3376 fmt = xtensa_format_decode (isa, ibuff);
3377 if (fmt == XTENSA_UNDEFINED)
3378 return 0;
3379 insn_len = xtensa_format_length (isa, fmt);
3380 if (insn_len == XTENSA_UNDEFINED)
3381 return 0;
3382 return insn_len;
e0001a05
NC
3383}
3384
3385
43cd72b9
BW
3386/* Decode the opcode for a single slot instruction.
3387 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3388
43cd72b9 3389xtensa_opcode
7fa3d080
BW
3390insn_decode_opcode (bfd_byte *contents,
3391 bfd_size_type content_len,
3392 bfd_size_type offset,
3393 int slot)
e0001a05 3394{
e0001a05 3395 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3396 xtensa_format fmt;
3397 static xtensa_insnbuf insnbuf = NULL;
3398 static xtensa_insnbuf slotbuf = NULL;
3399
3400 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3401 return XTENSA_UNDEFINED;
3402
3403 if (insnbuf == NULL)
43cd72b9
BW
3404 {
3405 insnbuf = xtensa_insnbuf_alloc (isa);
3406 slotbuf = xtensa_insnbuf_alloc (isa);
3407 }
3408
3409 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3410 content_len - offset);
3411 fmt = xtensa_format_decode (isa, insnbuf);
3412 if (fmt == XTENSA_UNDEFINED)
e0001a05 3413 return XTENSA_UNDEFINED;
43cd72b9
BW
3414
3415 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3416 return XTENSA_UNDEFINED;
e0001a05 3417
43cd72b9
BW
3418 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3419 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3420}
e0001a05 3421
e0001a05 3422
43cd72b9
BW
3423/* The offset is the offset in the contents.
3424 The address is the address of that offset. */
e0001a05 3425
43cd72b9 3426static bfd_boolean
7fa3d080
BW
3427check_branch_target_aligned (bfd_byte *contents,
3428 bfd_size_type content_length,
3429 bfd_vma offset,
3430 bfd_vma address)
43cd72b9
BW
3431{
3432 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3433 if (insn_len == 0)
3434 return FALSE;
3435 return check_branch_target_aligned_address (address, insn_len);
3436}
e0001a05 3437
e0001a05 3438
43cd72b9 3439static bfd_boolean
7fa3d080
BW
3440check_loop_aligned (bfd_byte *contents,
3441 bfd_size_type content_length,
3442 bfd_vma offset,
3443 bfd_vma address)
e0001a05 3444{
43cd72b9
BW
3445 bfd_size_type loop_len, insn_len;
3446 xtensa_opcode opcode =
3447 insn_decode_opcode (contents, content_length, offset, 0);
3448 BFD_ASSERT (opcode != XTENSA_UNDEFINED);
3449 if (opcode != XTENSA_UNDEFINED)
3450 return FALSE;
3451 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode));
3452 if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode))
3453 return FALSE;
e0001a05 3454
43cd72b9
BW
3455 loop_len = insn_decode_len (contents, content_length, offset);
3456 BFD_ASSERT (loop_len != 0);
3457 if (loop_len == 0)
3458 return FALSE;
3459
3460 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3461 BFD_ASSERT (insn_len != 0);
3462 if (insn_len == 0)
3463 return FALSE;
e0001a05 3464
43cd72b9
BW
3465 return check_branch_target_aligned_address (address + loop_len, insn_len);
3466}
e0001a05 3467
e0001a05
NC
3468
3469static bfd_boolean
7fa3d080 3470check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3471{
43cd72b9
BW
3472 if (len == 8)
3473 return (addr % 8 == 0);
3474 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3475}
3476
43cd72b9
BW
3477\f
3478/* Instruction widening and narrowing. */
e0001a05 3479
7fa3d080
BW
3480/* When FLIX is available we need to access certain instructions only
3481 when they are 16-bit or 24-bit instructions. This table caches
3482 information about such instructions by walking through all the
3483 opcodes and finding the smallest single-slot format into which each
3484 can be encoded. */
3485
3486static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3487
3488
7fa3d080
BW
3489static void
3490init_op_single_format_table (void)
e0001a05 3491{
7fa3d080
BW
3492 xtensa_isa isa = xtensa_default_isa;
3493 xtensa_insnbuf ibuf;
3494 xtensa_opcode opcode;
3495 xtensa_format fmt;
3496 int num_opcodes;
3497
3498 if (op_single_fmt_table)
3499 return;
3500
3501 ibuf = xtensa_insnbuf_alloc (isa);
3502 num_opcodes = xtensa_isa_num_opcodes (isa);
3503
3504 op_single_fmt_table = (xtensa_format *)
3505 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3506 for (opcode = 0; opcode < num_opcodes; opcode++)
3507 {
3508 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3509 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3510 {
3511 if (xtensa_format_num_slots (isa, fmt) == 1
3512 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3513 {
3514 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3515 int fmt_length = xtensa_format_length (isa, fmt);
3516 if (old_fmt == XTENSA_UNDEFINED
3517 || fmt_length < xtensa_format_length (isa, old_fmt))
3518 op_single_fmt_table[opcode] = fmt;
3519 }
3520 }
3521 }
3522 xtensa_insnbuf_free (isa, ibuf);
3523}
3524
3525
3526static xtensa_format
3527get_single_format (xtensa_opcode opcode)
3528{
3529 init_op_single_format_table ();
3530 return op_single_fmt_table[opcode];
3531}
e0001a05 3532
e0001a05 3533
43cd72b9
BW
3534/* For the set of narrowable instructions we do NOT include the
3535 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3536 involved during linker relaxation that may require these to
3537 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3538 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3539
7fa3d080
BW
3540struct string_pair
3541{
3542 const char *wide;
3543 const char *narrow;
3544};
3545
43cd72b9 3546struct string_pair narrowable[] =
e0001a05 3547{
43cd72b9
BW
3548 { "add", "add.n" },
3549 { "addi", "addi.n" },
3550 { "addmi", "addi.n" },
3551 { "l32i", "l32i.n" },
3552 { "movi", "movi.n" },
3553 { "ret", "ret.n" },
3554 { "retw", "retw.n" },
3555 { "s32i", "s32i.n" },
3556 { "or", "mov.n" } /* special case only when op1 == op2 */
3557};
e0001a05 3558
43cd72b9 3559struct string_pair widenable[] =
e0001a05 3560{
43cd72b9
BW
3561 { "add", "add.n" },
3562 { "addi", "addi.n" },
3563 { "addmi", "addi.n" },
3564 { "beqz", "beqz.n" },
3565 { "bnez", "bnez.n" },
3566 { "l32i", "l32i.n" },
3567 { "movi", "movi.n" },
3568 { "ret", "ret.n" },
3569 { "retw", "retw.n" },
3570 { "s32i", "s32i.n" },
3571 { "or", "mov.n" } /* special case only when op1 == op2 */
3572};
e0001a05
NC
3573
3574
43cd72b9
BW
3575/* Attempt to narrow an instruction. Return true if the narrowing is
3576 valid. If the do_it parameter is non-zero, then perform the action
3577 in-place directly into the contents. Otherwise, do not modify the
3578 contents. The set of valid narrowing are specified by a string table
3579 but require some special case operand checks in some cases. */
3580
e0001a05 3581static bfd_boolean
7fa3d080
BW
3582narrow_instruction (bfd_byte *contents,
3583 bfd_size_type content_length,
3584 bfd_size_type offset,
3585 bfd_boolean do_it)
e0001a05 3586{
43cd72b9
BW
3587 xtensa_opcode opcode;
3588 bfd_size_type insn_len, opi;
3589 xtensa_isa isa = xtensa_default_isa;
3590 xtensa_format fmt, o_fmt;
e0001a05 3591
43cd72b9
BW
3592 static xtensa_insnbuf insnbuf = NULL;
3593 static xtensa_insnbuf slotbuf = NULL;
3594 static xtensa_insnbuf o_insnbuf = NULL;
3595 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3596
43cd72b9
BW
3597 if (insnbuf == NULL)
3598 {
3599 insnbuf = xtensa_insnbuf_alloc (isa);
3600 slotbuf = xtensa_insnbuf_alloc (isa);
3601 o_insnbuf = xtensa_insnbuf_alloc (isa);
3602 o_slotbuf = xtensa_insnbuf_alloc (isa);
3603 }
e0001a05 3604
43cd72b9 3605 BFD_ASSERT (offset < content_length);
e0001a05 3606
43cd72b9
BW
3607 if (content_length < 2)
3608 return FALSE;
e0001a05 3609
43cd72b9
BW
3610 /* We will hand-code a few of these for a little while.
3611 These have all been specified in the assembler aleady. */
3612 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3613 content_length - offset);
3614 fmt = xtensa_format_decode (isa, insnbuf);
3615 if (xtensa_format_num_slots (isa, fmt) != 1)
3616 return FALSE;
e0001a05 3617
43cd72b9
BW
3618 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3619 return FALSE;
e0001a05 3620
43cd72b9
BW
3621 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3622 if (opcode == XTENSA_UNDEFINED)
3623 return FALSE;
3624 insn_len = xtensa_format_length (isa, fmt);
3625 if (insn_len > content_length)
3626 return FALSE;
e0001a05 3627
43cd72b9
BW
3628 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi)
3629 {
3630 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3631
43cd72b9
BW
3632 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3633 {
3634 uint32 value, newval;
3635 int i, operand_count, o_operand_count;
3636 xtensa_opcode o_opcode;
e0001a05 3637
43cd72b9
BW
3638 /* Address does not matter in this case. We might need to
3639 fix it to handle branches/jumps. */
3640 bfd_vma self_address = 0;
e0001a05 3641
43cd72b9
BW
3642 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3643 if (o_opcode == XTENSA_UNDEFINED)
3644 return FALSE;
3645 o_fmt = get_single_format (o_opcode);
3646 if (o_fmt == XTENSA_UNDEFINED)
3647 return FALSE;
e0001a05 3648
43cd72b9
BW
3649 if (xtensa_format_length (isa, fmt) != 3
3650 || xtensa_format_length (isa, o_fmt) != 2)
3651 return FALSE;
e0001a05 3652
43cd72b9
BW
3653 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3654 operand_count = xtensa_opcode_num_operands (isa, opcode);
3655 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3656
43cd72b9
BW
3657 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3658 return FALSE;
e0001a05 3659
43cd72b9
BW
3660 if (!is_or)
3661 {
3662 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3663 return FALSE;
3664 }
3665 else
3666 {
3667 uint32 rawval0, rawval1, rawval2;
e0001a05 3668
43cd72b9
BW
3669 if (o_operand_count + 1 != operand_count)
3670 return FALSE;
3671 if (xtensa_operand_get_field (isa, opcode, 0,
3672 fmt, 0, slotbuf, &rawval0) != 0)
3673 return FALSE;
3674 if (xtensa_operand_get_field (isa, opcode, 1,
3675 fmt, 0, slotbuf, &rawval1) != 0)
3676 return FALSE;
3677 if (xtensa_operand_get_field (isa, opcode, 2,
3678 fmt, 0, slotbuf, &rawval2) != 0)
3679 return FALSE;
e0001a05 3680
43cd72b9
BW
3681 if (rawval1 != rawval2)
3682 return FALSE;
3683 if (rawval0 == rawval1) /* it is a nop */
3684 return FALSE;
3685 }
e0001a05 3686
43cd72b9
BW
3687 for (i = 0; i < o_operand_count; ++i)
3688 {
3689 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3690 slotbuf, &value)
3691 || xtensa_operand_decode (isa, opcode, i, &value))
3692 return FALSE;
e0001a05 3693
43cd72b9
BW
3694 /* PC-relative branches need adjustment, but
3695 the PC-rel operand will always have a relocation. */
3696 newval = value;
3697 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3698 self_address)
3699 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3700 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3701 o_slotbuf, newval))
3702 return FALSE;
3703 }
e0001a05 3704
43cd72b9
BW
3705 if (xtensa_format_set_slot (isa, o_fmt, 0,
3706 o_insnbuf, o_slotbuf) != 0)
3707 return FALSE;
e0001a05 3708
43cd72b9
BW
3709 if (do_it)
3710 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3711 content_length - offset);
3712 return TRUE;
3713 }
3714 }
3715 return FALSE;
3716}
e0001a05 3717
e0001a05 3718
43cd72b9
BW
3719/* Attempt to widen an instruction. Return true if the widening is
3720 valid. If the do_it parameter is non-zero, then the action should
3721 be performed inplace into the contents. Otherwise, do not modify
3722 the contents. The set of valid widenings are specified by a string
3723 table but require some special case operand checks in some
3724 cases. */
e0001a05 3725
43cd72b9 3726static bfd_boolean
7fa3d080
BW
3727widen_instruction (bfd_byte *contents,
3728 bfd_size_type content_length,
3729 bfd_size_type offset,
3730 bfd_boolean do_it)
e0001a05 3731{
43cd72b9
BW
3732 xtensa_opcode opcode;
3733 bfd_size_type insn_len, opi;
3734 xtensa_isa isa = xtensa_default_isa;
3735 xtensa_format fmt, o_fmt;
e0001a05 3736
43cd72b9
BW
3737 static xtensa_insnbuf insnbuf = NULL;
3738 static xtensa_insnbuf slotbuf = NULL;
3739 static xtensa_insnbuf o_insnbuf = NULL;
3740 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3741
43cd72b9
BW
3742 if (insnbuf == NULL)
3743 {
3744 insnbuf = xtensa_insnbuf_alloc (isa);
3745 slotbuf = xtensa_insnbuf_alloc (isa);
3746 o_insnbuf = xtensa_insnbuf_alloc (isa);
3747 o_slotbuf = xtensa_insnbuf_alloc (isa);
3748 }
e0001a05 3749
43cd72b9 3750 BFD_ASSERT (offset < content_length);
2c8c90bc 3751
43cd72b9 3752 if (content_length < 2)
e0001a05
NC
3753 return FALSE;
3754
43cd72b9
BW
3755 /* We will hand code a few of these for a little while.
3756 These have all been specified in the assembler aleady. */
3757 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3758 content_length - offset);
3759 fmt = xtensa_format_decode (isa, insnbuf);
3760 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3761 return FALSE;
3762
43cd72b9 3763 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3764 return FALSE;
3765
43cd72b9
BW
3766 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3767 if (opcode == XTENSA_UNDEFINED)
e0001a05 3768 return FALSE;
43cd72b9
BW
3769 insn_len = xtensa_format_length (isa, fmt);
3770 if (insn_len > content_length)
3771 return FALSE;
3772
3773 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi)
e0001a05 3774 {
43cd72b9
BW
3775 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3776 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3777 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3778
43cd72b9
BW
3779 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3780 {
3781 uint32 value, newval;
3782 int i, operand_count, o_operand_count, check_operand_count;
3783 xtensa_opcode o_opcode;
e0001a05 3784
43cd72b9
BW
3785 /* Address does not matter in this case. We might need to fix it
3786 to handle branches/jumps. */
3787 bfd_vma self_address = 0;
e0001a05 3788
43cd72b9
BW
3789 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3790 if (o_opcode == XTENSA_UNDEFINED)
3791 return FALSE;
3792 o_fmt = get_single_format (o_opcode);
3793 if (o_fmt == XTENSA_UNDEFINED)
3794 return FALSE;
e0001a05 3795
43cd72b9
BW
3796 if (xtensa_format_length (isa, fmt) != 2
3797 || xtensa_format_length (isa, o_fmt) != 3)
3798 return FALSE;
e0001a05 3799
43cd72b9
BW
3800 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3801 operand_count = xtensa_opcode_num_operands (isa, opcode);
3802 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3803 check_operand_count = o_operand_count;
e0001a05 3804
43cd72b9
BW
3805 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3806 return FALSE;
e0001a05 3807
43cd72b9
BW
3808 if (!is_or)
3809 {
3810 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3811 return FALSE;
3812 }
3813 else
3814 {
3815 uint32 rawval0, rawval1;
3816
3817 if (o_operand_count != operand_count + 1)
3818 return FALSE;
3819 if (xtensa_operand_get_field (isa, opcode, 0,
3820 fmt, 0, slotbuf, &rawval0) != 0)
3821 return FALSE;
3822 if (xtensa_operand_get_field (isa, opcode, 1,
3823 fmt, 0, slotbuf, &rawval1) != 0)
3824 return FALSE;
3825 if (rawval0 == rawval1) /* it is a nop */
3826 return FALSE;
3827 }
3828 if (is_branch)
3829 check_operand_count--;
3830
3831 for (i = 0; i < check_operand_count; ++i)
3832 {
3833 int new_i = i;
3834 if (is_or && i == o_operand_count - 1)
3835 new_i = i - 1;
3836 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3837 slotbuf, &value)
3838 || xtensa_operand_decode (isa, opcode, new_i, &value))
3839 return FALSE;
3840
3841 /* PC-relative branches need adjustment, but
3842 the PC-rel operand will always have a relocation. */
3843 newval = value;
3844 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3845 self_address)
3846 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3847 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3848 o_slotbuf, newval))
3849 return FALSE;
3850 }
3851
3852 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3853 return FALSE;
3854
3855 if (do_it)
3856 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3857 content_length - offset);
3858 return TRUE;
3859 }
3860 }
3861 return FALSE;
e0001a05
NC
3862}
3863
43cd72b9
BW
3864\f
3865/* Code for transforming CALLs at link-time. */
e0001a05 3866
43cd72b9 3867static bfd_reloc_status_type
7fa3d080
BW
3868elf_xtensa_do_asm_simplify (bfd_byte *contents,
3869 bfd_vma address,
3870 bfd_vma content_length,
3871 char **error_message)
e0001a05 3872{
43cd72b9
BW
3873 static xtensa_insnbuf insnbuf = NULL;
3874 static xtensa_insnbuf slotbuf = NULL;
3875 xtensa_format core_format = XTENSA_UNDEFINED;
3876 xtensa_opcode opcode;
3877 xtensa_opcode direct_call_opcode;
3878 xtensa_isa isa = xtensa_default_isa;
3879 bfd_byte *chbuf = contents + address;
3880 int opn;
e0001a05 3881
43cd72b9 3882 if (insnbuf == NULL)
e0001a05 3883 {
43cd72b9
BW
3884 insnbuf = xtensa_insnbuf_alloc (isa);
3885 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3886 }
e0001a05 3887
43cd72b9
BW
3888 if (content_length < address)
3889 {
3890 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3891 return bfd_reloc_other;
3892 }
e0001a05 3893
43cd72b9
BW
3894 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3895 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3896 if (direct_call_opcode == XTENSA_UNDEFINED)
3897 {
3898 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3899 return bfd_reloc_other;
3900 }
3901
3902 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3903 core_format = xtensa_format_lookup (isa, "x24");
3904 opcode = xtensa_opcode_lookup (isa, "or");
3905 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3906 for (opn = 0; opn < 3; opn++)
3907 {
3908 uint32 regno = 1;
3909 xtensa_operand_encode (isa, opcode, opn, &regno);
3910 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3911 slotbuf, regno);
3912 }
3913 xtensa_format_encode (isa, core_format, insnbuf);
3914 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3915 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3916
43cd72b9
BW
3917 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3918 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3919 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3920
43cd72b9
BW
3921 xtensa_format_encode (isa, core_format, insnbuf);
3922 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3923 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3924 content_length - address - 3);
e0001a05 3925
43cd72b9
BW
3926 return bfd_reloc_ok;
3927}
e0001a05 3928
e0001a05 3929
43cd72b9 3930static bfd_reloc_status_type
7fa3d080
BW
3931contract_asm_expansion (bfd_byte *contents,
3932 bfd_vma content_length,
3933 Elf_Internal_Rela *irel,
3934 char **error_message)
43cd72b9
BW
3935{
3936 bfd_reloc_status_type retval =
3937 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3938 error_message);
e0001a05 3939
43cd72b9
BW
3940 if (retval != bfd_reloc_ok)
3941 return bfd_reloc_dangerous;
e0001a05 3942
43cd72b9
BW
3943 /* Update the irel->r_offset field so that the right immediate and
3944 the right instruction are modified during the relocation. */
3945 irel->r_offset += 3;
3946 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3947 return bfd_reloc_ok;
3948}
e0001a05 3949
e0001a05 3950
43cd72b9 3951static xtensa_opcode
7fa3d080 3952swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3953{
43cd72b9 3954 init_call_opcodes ();
e0001a05 3955
43cd72b9
BW
3956 if (opcode == callx0_op) return call0_op;
3957 if (opcode == callx4_op) return call4_op;
3958 if (opcode == callx8_op) return call8_op;
3959 if (opcode == callx12_op) return call12_op;
e0001a05 3960
43cd72b9
BW
3961 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3962 return XTENSA_UNDEFINED;
3963}
e0001a05 3964
e0001a05 3965
43cd72b9
BW
3966/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3967 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3968 If not, return XTENSA_UNDEFINED. */
e0001a05 3969
43cd72b9
BW
3970#define L32R_TARGET_REG_OPERAND 0
3971#define CONST16_TARGET_REG_OPERAND 0
3972#define CALLN_SOURCE_OPERAND 0
e0001a05 3973
43cd72b9 3974static xtensa_opcode
7fa3d080 3975get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3976{
43cd72b9
BW
3977 static xtensa_insnbuf insnbuf = NULL;
3978 static xtensa_insnbuf slotbuf = NULL;
3979 xtensa_format fmt;
3980 xtensa_opcode opcode;
3981 xtensa_isa isa = xtensa_default_isa;
3982 uint32 regno, const16_regno, call_regno;
3983 int offset = 0;
e0001a05 3984
43cd72b9 3985 if (insnbuf == NULL)
e0001a05 3986 {
43cd72b9
BW
3987 insnbuf = xtensa_insnbuf_alloc (isa);
3988 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3989 }
43cd72b9
BW
3990
3991 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3992 fmt = xtensa_format_decode (isa, insnbuf);
3993 if (fmt == XTENSA_UNDEFINED
3994 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3995 return XTENSA_UNDEFINED;
3996
3997 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3998 if (opcode == XTENSA_UNDEFINED)
3999 return XTENSA_UNDEFINED;
4000
4001 if (opcode == get_l32r_opcode ())
e0001a05 4002 {
43cd72b9
BW
4003 if (p_uses_l32r)
4004 *p_uses_l32r = TRUE;
4005 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4006 fmt, 0, slotbuf, &regno)
4007 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4008 &regno))
4009 return XTENSA_UNDEFINED;
e0001a05 4010 }
43cd72b9 4011 else if (opcode == get_const16_opcode ())
e0001a05 4012 {
43cd72b9
BW
4013 if (p_uses_l32r)
4014 *p_uses_l32r = FALSE;
4015 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4016 fmt, 0, slotbuf, &regno)
4017 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4018 &regno))
4019 return XTENSA_UNDEFINED;
4020
4021 /* Check that the next instruction is also CONST16. */
4022 offset += xtensa_format_length (isa, fmt);
4023 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4024 fmt = xtensa_format_decode (isa, insnbuf);
4025 if (fmt == XTENSA_UNDEFINED
4026 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4027 return XTENSA_UNDEFINED;
4028 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4029 if (opcode != get_const16_opcode ())
4030 return XTENSA_UNDEFINED;
4031
4032 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4033 fmt, 0, slotbuf, &const16_regno)
4034 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4035 &const16_regno)
4036 || const16_regno != regno)
4037 return XTENSA_UNDEFINED;
e0001a05 4038 }
43cd72b9
BW
4039 else
4040 return XTENSA_UNDEFINED;
e0001a05 4041
43cd72b9
BW
4042 /* Next instruction should be an CALLXn with operand 0 == regno. */
4043 offset += xtensa_format_length (isa, fmt);
4044 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4045 fmt = xtensa_format_decode (isa, insnbuf);
4046 if (fmt == XTENSA_UNDEFINED
4047 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4048 return XTENSA_UNDEFINED;
4049 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4050 if (opcode == XTENSA_UNDEFINED
4051 || !is_indirect_call_opcode (opcode))
4052 return XTENSA_UNDEFINED;
e0001a05 4053
43cd72b9
BW
4054 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4055 fmt, 0, slotbuf, &call_regno)
4056 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4057 &call_regno))
4058 return XTENSA_UNDEFINED;
e0001a05 4059
43cd72b9
BW
4060 if (call_regno != regno)
4061 return XTENSA_UNDEFINED;
e0001a05 4062
43cd72b9
BW
4063 return opcode;
4064}
e0001a05 4065
43cd72b9
BW
4066\f
4067/* Data structures used during relaxation. */
e0001a05 4068
43cd72b9 4069/* r_reloc: relocation values. */
e0001a05 4070
43cd72b9
BW
4071/* Through the relaxation process, we need to keep track of the values
4072 that will result from evaluating relocations. The standard ELF
4073 relocation structure is not sufficient for this purpose because we're
4074 operating on multiple input files at once, so we need to know which
4075 input file a relocation refers to. The r_reloc structure thus
4076 records both the input file (bfd) and ELF relocation.
e0001a05 4077
43cd72b9
BW
4078 For efficiency, an r_reloc also contains a "target_offset" field to
4079 cache the target-section-relative offset value that is represented by
4080 the relocation.
4081
4082 The r_reloc also contains a virtual offset that allows multiple
4083 inserted literals to be placed at the same "address" with
4084 different offsets. */
e0001a05 4085
43cd72b9 4086typedef struct r_reloc_struct r_reloc;
e0001a05 4087
43cd72b9 4088struct r_reloc_struct
e0001a05 4089{
43cd72b9
BW
4090 bfd *abfd;
4091 Elf_Internal_Rela rela;
e0001a05 4092 bfd_vma target_offset;
43cd72b9 4093 bfd_vma virtual_offset;
e0001a05
NC
4094};
4095
e0001a05 4096
43cd72b9
BW
4097/* The r_reloc structure is included by value in literal_value, but not
4098 every literal_value has an associated relocation -- some are simple
4099 constants. In such cases, we set all the fields in the r_reloc
4100 struct to zero. The r_reloc_is_const function should be used to
4101 detect this case. */
e0001a05 4102
43cd72b9 4103static bfd_boolean
7fa3d080 4104r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4105{
43cd72b9 4106 return (r_rel->abfd == NULL);
e0001a05
NC
4107}
4108
4109
43cd72b9 4110static bfd_vma
7fa3d080 4111r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4112{
43cd72b9
BW
4113 bfd_vma target_offset;
4114 unsigned long r_symndx;
e0001a05 4115
43cd72b9
BW
4116 BFD_ASSERT (!r_reloc_is_const (r_rel));
4117 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4118 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4119 return (target_offset + r_rel->rela.r_addend);
4120}
e0001a05 4121
e0001a05 4122
43cd72b9 4123static struct elf_link_hash_entry *
7fa3d080 4124r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4125{
43cd72b9
BW
4126 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4127 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4128}
e0001a05 4129
43cd72b9
BW
4130
4131static asection *
7fa3d080 4132r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4133{
4134 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4135 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4136}
e0001a05
NC
4137
4138
4139static bfd_boolean
7fa3d080 4140r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4141{
43cd72b9
BW
4142 asection *sec;
4143 if (r_rel == NULL)
e0001a05 4144 return FALSE;
e0001a05 4145
43cd72b9
BW
4146 sec = r_reloc_get_section (r_rel);
4147 if (sec == bfd_abs_section_ptr
4148 || sec == bfd_com_section_ptr
4149 || sec == bfd_und_section_ptr)
4150 return FALSE;
4151 return TRUE;
e0001a05
NC
4152}
4153
4154
7fa3d080
BW
4155static void
4156r_reloc_init (r_reloc *r_rel,
4157 bfd *abfd,
4158 Elf_Internal_Rela *irel,
4159 bfd_byte *contents,
4160 bfd_size_type content_length)
4161{
4162 int r_type;
4163 reloc_howto_type *howto;
4164
4165 if (irel)
4166 {
4167 r_rel->rela = *irel;
4168 r_rel->abfd = abfd;
4169 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4170 r_rel->virtual_offset = 0;
4171 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4172 howto = &elf_howto_table[r_type];
4173 if (howto->partial_inplace)
4174 {
4175 bfd_vma inplace_val;
4176 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4177
4178 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4179 r_rel->target_offset += inplace_val;
4180 }
4181 }
4182 else
4183 memset (r_rel, 0, sizeof (r_reloc));
4184}
4185
4186
43cd72b9
BW
4187#if DEBUG
4188
e0001a05 4189static void
7fa3d080 4190print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4191{
43cd72b9
BW
4192 if (r_reloc_is_defined (r_rel))
4193 {
4194 asection *sec = r_reloc_get_section (r_rel);
4195 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4196 }
4197 else if (r_reloc_get_hash_entry (r_rel))
4198 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4199 else
4200 fprintf (fp, " ?? + ");
e0001a05 4201
43cd72b9
BW
4202 fprintf_vma (fp, r_rel->target_offset);
4203 if (r_rel->virtual_offset)
4204 {
4205 fprintf (fp, " + ");
4206 fprintf_vma (fp, r_rel->virtual_offset);
4207 }
4208
4209 fprintf (fp, ")");
4210}
e0001a05 4211
43cd72b9 4212#endif /* DEBUG */
e0001a05 4213
43cd72b9
BW
4214\f
4215/* source_reloc: relocations that reference literals. */
e0001a05 4216
43cd72b9
BW
4217/* To determine whether literals can be coalesced, we need to first
4218 record all the relocations that reference the literals. The
4219 source_reloc structure below is used for this purpose. The
4220 source_reloc entries are kept in a per-literal-section array, sorted
4221 by offset within the literal section (i.e., target offset).
e0001a05 4222
43cd72b9
BW
4223 The source_sec and r_rel.rela.r_offset fields identify the source of
4224 the relocation. The r_rel field records the relocation value, i.e.,
4225 the offset of the literal being referenced. The opnd field is needed
4226 to determine the range of the immediate field to which the relocation
4227 applies, so we can determine whether another literal with the same
4228 value is within range. The is_null field is true when the relocation
4229 is being removed (e.g., when an L32R is being removed due to a CALLX
4230 that is converted to a direct CALL). */
e0001a05 4231
43cd72b9
BW
4232typedef struct source_reloc_struct source_reloc;
4233
4234struct source_reloc_struct
e0001a05 4235{
43cd72b9
BW
4236 asection *source_sec;
4237 r_reloc r_rel;
4238 xtensa_opcode opcode;
4239 int opnd;
4240 bfd_boolean is_null;
4241 bfd_boolean is_abs_literal;
4242};
e0001a05 4243
e0001a05 4244
e0001a05 4245static void
7fa3d080
BW
4246init_source_reloc (source_reloc *reloc,
4247 asection *source_sec,
4248 const r_reloc *r_rel,
4249 xtensa_opcode opcode,
4250 int opnd,
4251 bfd_boolean is_abs_literal)
e0001a05 4252{
43cd72b9
BW
4253 reloc->source_sec = source_sec;
4254 reloc->r_rel = *r_rel;
4255 reloc->opcode = opcode;
4256 reloc->opnd = opnd;
4257 reloc->is_null = FALSE;
4258 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4259}
4260
e0001a05 4261
43cd72b9
BW
4262/* Find the source_reloc for a particular source offset and relocation
4263 type. Note that the array is sorted by _target_ offset, so this is
4264 just a linear search. */
e0001a05 4265
43cd72b9 4266static source_reloc *
7fa3d080
BW
4267find_source_reloc (source_reloc *src_relocs,
4268 int src_count,
4269 asection *sec,
4270 Elf_Internal_Rela *irel)
e0001a05 4271{
43cd72b9 4272 int i;
e0001a05 4273
43cd72b9
BW
4274 for (i = 0; i < src_count; i++)
4275 {
4276 if (src_relocs[i].source_sec == sec
4277 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4278 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4279 == ELF32_R_TYPE (irel->r_info)))
4280 return &src_relocs[i];
4281 }
e0001a05 4282
43cd72b9 4283 return NULL;
e0001a05
NC
4284}
4285
4286
43cd72b9 4287static int
7fa3d080 4288source_reloc_compare (const void *ap, const void *bp)
e0001a05 4289{
43cd72b9
BW
4290 const source_reloc *a = (const source_reloc *) ap;
4291 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4292
43cd72b9
BW
4293 if (a->r_rel.target_offset != b->r_rel.target_offset)
4294 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4295
43cd72b9
BW
4296 /* We don't need to sort on these criteria for correctness,
4297 but enforcing a more strict ordering prevents unstable qsort
4298 from behaving differently with different implementations.
4299 Without the code below we get correct but different results
4300 on Solaris 2.7 and 2.8. We would like to always produce the
4301 same results no matter the host. */
4302
4303 if ((!a->is_null) - (!b->is_null))
4304 return ((!a->is_null) - (!b->is_null));
4305 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4306}
4307
43cd72b9
BW
4308\f
4309/* Literal values and value hash tables. */
e0001a05 4310
43cd72b9
BW
4311/* Literals with the same value can be coalesced. The literal_value
4312 structure records the value of a literal: the "r_rel" field holds the
4313 information from the relocation on the literal (if there is one) and
4314 the "value" field holds the contents of the literal word itself.
e0001a05 4315
43cd72b9
BW
4316 The value_map structure records a literal value along with the
4317 location of a literal holding that value. The value_map hash table
4318 is indexed by the literal value, so that we can quickly check if a
4319 particular literal value has been seen before and is thus a candidate
4320 for coalescing. */
e0001a05 4321
43cd72b9
BW
4322typedef struct literal_value_struct literal_value;
4323typedef struct value_map_struct value_map;
4324typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4325
43cd72b9 4326struct literal_value_struct
e0001a05 4327{
43cd72b9
BW
4328 r_reloc r_rel;
4329 unsigned long value;
4330 bfd_boolean is_abs_literal;
4331};
4332
4333struct value_map_struct
4334{
4335 literal_value val; /* The literal value. */
4336 r_reloc loc; /* Location of the literal. */
4337 value_map *next;
4338};
4339
4340struct value_map_hash_table_struct
4341{
4342 unsigned bucket_count;
4343 value_map **buckets;
4344 unsigned count;
4345 bfd_boolean has_last_loc;
4346 r_reloc last_loc;
4347};
4348
4349
e0001a05 4350static void
7fa3d080
BW
4351init_literal_value (literal_value *lit,
4352 const r_reloc *r_rel,
4353 unsigned long value,
4354 bfd_boolean is_abs_literal)
e0001a05 4355{
43cd72b9
BW
4356 lit->r_rel = *r_rel;
4357 lit->value = value;
4358 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4359}
4360
4361
43cd72b9 4362static bfd_boolean
7fa3d080
BW
4363literal_value_equal (const literal_value *src1,
4364 const literal_value *src2,
4365 bfd_boolean final_static_link)
e0001a05 4366{
43cd72b9 4367 struct elf_link_hash_entry *h1, *h2;
e0001a05 4368
43cd72b9
BW
4369 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4370 return FALSE;
e0001a05 4371
43cd72b9
BW
4372 if (r_reloc_is_const (&src1->r_rel))
4373 return (src1->value == src2->value);
e0001a05 4374
43cd72b9
BW
4375 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4376 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4377 return FALSE;
e0001a05 4378
43cd72b9
BW
4379 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4380 return FALSE;
4381
4382 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4383 return FALSE;
4384
4385 if (src1->value != src2->value)
4386 return FALSE;
4387
4388 /* Now check for the same section (if defined) or the same elf_hash
4389 (if undefined or weak). */
4390 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4391 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4392 if (r_reloc_is_defined (&src1->r_rel)
4393 && (final_static_link
4394 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4395 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4396 {
4397 if (r_reloc_get_section (&src1->r_rel)
4398 != r_reloc_get_section (&src2->r_rel))
4399 return FALSE;
4400 }
4401 else
4402 {
4403 /* Require that the hash entries (i.e., symbols) be identical. */
4404 if (h1 != h2 || h1 == 0)
4405 return FALSE;
4406 }
4407
4408 if (src1->is_abs_literal != src2->is_abs_literal)
4409 return FALSE;
4410
4411 return TRUE;
e0001a05
NC
4412}
4413
e0001a05 4414
43cd72b9
BW
4415/* Must be power of 2. */
4416#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4417
43cd72b9 4418static value_map_hash_table *
7fa3d080 4419value_map_hash_table_init (void)
43cd72b9
BW
4420{
4421 value_map_hash_table *values;
e0001a05 4422
43cd72b9
BW
4423 values = (value_map_hash_table *)
4424 bfd_zmalloc (sizeof (value_map_hash_table));
4425 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4426 values->count = 0;
4427 values->buckets = (value_map **)
4428 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4429 if (values->buckets == NULL)
4430 {
4431 free (values);
4432 return NULL;
4433 }
4434 values->has_last_loc = FALSE;
4435
4436 return values;
4437}
4438
4439
4440static void
7fa3d080 4441value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4442{
43cd72b9
BW
4443 free (table->buckets);
4444 free (table);
4445}
4446
4447
4448static unsigned
7fa3d080 4449hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4450{
4451 return (val >> 2) + (val >> 10);
4452}
4453
4454
4455static unsigned
7fa3d080 4456literal_value_hash (const literal_value *src)
43cd72b9
BW
4457{
4458 unsigned hash_val;
e0001a05 4459
43cd72b9
BW
4460 hash_val = hash_bfd_vma (src->value);
4461 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4462 {
43cd72b9
BW
4463 void *sec_or_hash;
4464
4465 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4466 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4467 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4468
4469 /* Now check for the same section and the same elf_hash. */
4470 if (r_reloc_is_defined (&src->r_rel))
4471 sec_or_hash = r_reloc_get_section (&src->r_rel);
4472 else
4473 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4474 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4475 }
43cd72b9
BW
4476 return hash_val;
4477}
e0001a05 4478
e0001a05 4479
43cd72b9 4480/* Check if the specified literal_value has been seen before. */
e0001a05 4481
43cd72b9 4482static value_map *
7fa3d080
BW
4483value_map_get_cached_value (value_map_hash_table *map,
4484 const literal_value *val,
4485 bfd_boolean final_static_link)
43cd72b9
BW
4486{
4487 value_map *map_e;
4488 value_map *bucket;
4489 unsigned idx;
4490
4491 idx = literal_value_hash (val);
4492 idx = idx & (map->bucket_count - 1);
4493 bucket = map->buckets[idx];
4494 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4495 {
43cd72b9
BW
4496 if (literal_value_equal (&map_e->val, val, final_static_link))
4497 return map_e;
4498 }
4499 return NULL;
4500}
e0001a05 4501
e0001a05 4502
43cd72b9
BW
4503/* Record a new literal value. It is illegal to call this if VALUE
4504 already has an entry here. */
4505
4506static value_map *
7fa3d080
BW
4507add_value_map (value_map_hash_table *map,
4508 const literal_value *val,
4509 const r_reloc *loc,
4510 bfd_boolean final_static_link)
43cd72b9
BW
4511{
4512 value_map **bucket_p;
4513 unsigned idx;
4514
4515 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4516 if (val_e == NULL)
4517 {
4518 bfd_set_error (bfd_error_no_memory);
4519 return NULL;
e0001a05
NC
4520 }
4521
43cd72b9
BW
4522 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4523 val_e->val = *val;
4524 val_e->loc = *loc;
4525
4526 idx = literal_value_hash (val);
4527 idx = idx & (map->bucket_count - 1);
4528 bucket_p = &map->buckets[idx];
4529
4530 val_e->next = *bucket_p;
4531 *bucket_p = val_e;
4532 map->count++;
4533 /* FIXME: Consider resizing the hash table if we get too many entries. */
4534
4535 return val_e;
e0001a05
NC
4536}
4537
43cd72b9
BW
4538\f
4539/* Lists of text actions (ta_) for narrowing, widening, longcall
4540 conversion, space fill, code & literal removal, etc. */
4541
4542/* The following text actions are generated:
4543
4544 "ta_remove_insn" remove an instruction or instructions
4545 "ta_remove_longcall" convert longcall to call
4546 "ta_convert_longcall" convert longcall to nop/call
4547 "ta_narrow_insn" narrow a wide instruction
4548 "ta_widen" widen a narrow instruction
4549 "ta_fill" add fill or remove fill
4550 removed < 0 is a fill; branches to the fill address will be
4551 changed to address + fill size (e.g., address - removed)
4552 removed >= 0 branches to the fill address will stay unchanged
4553 "ta_remove_literal" remove a literal; this action is
4554 indicated when a literal is removed
4555 or replaced.
4556 "ta_add_literal" insert a new literal; this action is
4557 indicated when a literal has been moved.
4558 It may use a virtual_offset because
4559 multiple literals can be placed at the
4560 same location.
4561
4562 For each of these text actions, we also record the number of bytes
4563 removed by performing the text action. In the case of a "ta_widen"
4564 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4565
4566typedef struct text_action_struct text_action;
4567typedef struct text_action_list_struct text_action_list;
4568typedef enum text_action_enum_t text_action_t;
4569
4570enum text_action_enum_t
4571{
4572 ta_none,
4573 ta_remove_insn, /* removed = -size */
4574 ta_remove_longcall, /* removed = -size */
4575 ta_convert_longcall, /* removed = 0 */
4576 ta_narrow_insn, /* removed = -1 */
4577 ta_widen_insn, /* removed = +1 */
4578 ta_fill, /* removed = +size */
4579 ta_remove_literal,
4580 ta_add_literal
4581};
e0001a05 4582
e0001a05 4583
43cd72b9
BW
4584/* Structure for a text action record. */
4585struct text_action_struct
e0001a05 4586{
43cd72b9
BW
4587 text_action_t action;
4588 asection *sec; /* Optional */
4589 bfd_vma offset;
4590 bfd_vma virtual_offset; /* Zero except for adding literals. */
4591 int removed_bytes;
4592 literal_value value; /* Only valid when adding literals. */
e0001a05 4593
43cd72b9
BW
4594 text_action *next;
4595};
e0001a05 4596
e0001a05 4597
43cd72b9
BW
4598/* List of all of the actions taken on a text section. */
4599struct text_action_list_struct
4600{
4601 text_action *head;
4602};
e0001a05 4603
e0001a05 4604
7fa3d080
BW
4605static text_action *
4606find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4607{
4608 text_action **m_p;
4609
4610 /* It is not necessary to fill at the end of a section. */
4611 if (sec->size == offset)
4612 return NULL;
4613
7fa3d080 4614 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4615 {
4616 text_action *t = *m_p;
4617 /* When the action is another fill at the same address,
4618 just increase the size. */
4619 if (t->offset == offset && t->action == ta_fill)
4620 return t;
4621 }
4622 return NULL;
4623}
4624
4625
4626static int
7fa3d080
BW
4627compute_removed_action_diff (const text_action *ta,
4628 asection *sec,
4629 bfd_vma offset,
4630 int removed,
4631 int removable_space)
43cd72b9
BW
4632{
4633 int new_removed;
4634 int current_removed = 0;
4635
7fa3d080 4636 if (ta)
43cd72b9
BW
4637 current_removed = ta->removed_bytes;
4638
4639 BFD_ASSERT (ta == NULL || ta->offset == offset);
4640 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4641
4642 /* It is not necessary to fill at the end of a section. Clean this up. */
4643 if (sec->size == offset)
4644 new_removed = removable_space - 0;
4645 else
4646 {
4647 int space;
4648 int added = -removed - current_removed;
4649 /* Ignore multiples of the section alignment. */
4650 added = ((1 << sec->alignment_power) - 1) & added;
4651 new_removed = (-added);
4652
4653 /* Modify for removable. */
4654 space = removable_space - new_removed;
4655 new_removed = (removable_space
4656 - (((1 << sec->alignment_power) - 1) & space));
4657 }
4658 return (new_removed - current_removed);
4659}
4660
4661
7fa3d080
BW
4662static void
4663adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4664{
4665 ta->removed_bytes += fill_diff;
4666}
4667
4668
4669/* Add a modification action to the text. For the case of adding or
4670 removing space, modify any current fill and assume that
4671 "unreachable_space" bytes can be freely contracted. Note that a
4672 negative removed value is a fill. */
4673
4674static void
7fa3d080
BW
4675text_action_add (text_action_list *l,
4676 text_action_t action,
4677 asection *sec,
4678 bfd_vma offset,
4679 int removed)
43cd72b9
BW
4680{
4681 text_action **m_p;
4682 text_action *ta;
4683
4684 /* It is not necessary to fill at the end of a section. */
4685 if (action == ta_fill && sec->size == offset)
4686 return;
4687
4688 /* It is not necessary to fill 0 bytes. */
4689 if (action == ta_fill && removed == 0)
4690 return;
4691
7fa3d080 4692 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4693 {
4694 text_action *t = *m_p;
4695 /* When the action is another fill at the same address,
4696 just increase the size. */
4697 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4698 {
4699 t->removed_bytes += removed;
4700 return;
4701 }
4702 }
4703
4704 /* Create a new record and fill it up. */
4705 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4706 ta->action = action;
4707 ta->sec = sec;
4708 ta->offset = offset;
4709 ta->removed_bytes = removed;
4710 ta->next = (*m_p);
4711 *m_p = ta;
4712}
4713
4714
4715static void
7fa3d080
BW
4716text_action_add_literal (text_action_list *l,
4717 text_action_t action,
4718 const r_reloc *loc,
4719 const literal_value *value,
4720 int removed)
43cd72b9
BW
4721{
4722 text_action **m_p;
4723 text_action *ta;
4724 asection *sec = r_reloc_get_section (loc);
4725 bfd_vma offset = loc->target_offset;
4726 bfd_vma virtual_offset = loc->virtual_offset;
4727
4728 BFD_ASSERT (action == ta_add_literal);
4729
4730 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4731 {
4732 if ((*m_p)->offset > offset
4733 && ((*m_p)->offset != offset
4734 || (*m_p)->virtual_offset > virtual_offset))
4735 break;
4736 }
4737
4738 /* Create a new record and fill it up. */
4739 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4740 ta->action = action;
4741 ta->sec = sec;
4742 ta->offset = offset;
4743 ta->virtual_offset = virtual_offset;
4744 ta->value = *value;
4745 ta->removed_bytes = removed;
4746 ta->next = (*m_p);
4747 *m_p = ta;
4748}
4749
4750
7fa3d080
BW
4751static bfd_vma
4752offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4753{
4754 text_action *r;
4755 int removed = 0;
4756
4757 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4758 {
4759 if (r->offset < offset
4760 || (r->action == ta_fill && r->removed_bytes < 0))
4761 removed += r->removed_bytes;
4762 }
4763
4764 return (offset - removed);
4765}
4766
4767
7fa3d080
BW
4768static bfd_vma
4769offset_with_removed_text_before_fill (text_action_list *action_list,
4770 bfd_vma offset)
43cd72b9
BW
4771{
4772 text_action *r;
4773 int removed = 0;
4774
4775 for (r = action_list->head; r && r->offset < offset; r = r->next)
4776 removed += r->removed_bytes;
4777
4778 return (offset - removed);
4779}
4780
4781
4782/* The find_insn_action routine will only find non-fill actions. */
4783
7fa3d080
BW
4784static text_action *
4785find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4786{
4787 text_action *t;
4788 for (t = action_list->head; t; t = t->next)
4789 {
4790 if (t->offset == offset)
4791 {
4792 switch (t->action)
4793 {
4794 case ta_none:
4795 case ta_fill:
4796 break;
4797 case ta_remove_insn:
4798 case ta_remove_longcall:
4799 case ta_convert_longcall:
4800 case ta_narrow_insn:
4801 case ta_widen_insn:
4802 return t;
4803 case ta_remove_literal:
4804 case ta_add_literal:
4805 BFD_ASSERT (0);
4806 break;
4807 }
4808 }
4809 }
4810 return NULL;
4811}
4812
4813
4814#if DEBUG
4815
4816static void
7fa3d080 4817print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4818{
4819 text_action *r;
4820
4821 fprintf (fp, "Text Action\n");
4822 for (r = action_list->head; r != NULL; r = r->next)
4823 {
4824 const char *t = "unknown";
4825 switch (r->action)
4826 {
4827 case ta_remove_insn:
4828 t = "remove_insn"; break;
4829 case ta_remove_longcall:
4830 t = "remove_longcall"; break;
4831 case ta_convert_longcall:
4832 t = "remove_longcall"; break;
4833 case ta_narrow_insn:
4834 t = "narrow_insn"; break;
4835 case ta_widen_insn:
4836 t = "widen_insn"; break;
4837 case ta_fill:
4838 t = "fill"; break;
4839 case ta_none:
4840 t = "none"; break;
4841 case ta_remove_literal:
4842 t = "remove_literal"; break;
4843 case ta_add_literal:
4844 t = "add_literal"; break;
4845 }
4846
4847 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4848 r->sec->owner->filename,
4849 r->sec->name, r->offset, t, r->removed_bytes);
4850 }
4851}
4852
4853#endif /* DEBUG */
4854
4855\f
4856/* Lists of literals being coalesced or removed. */
4857
4858/* In the usual case, the literal identified by "from" is being
4859 coalesced with another literal identified by "to". If the literal is
4860 unused and is being removed altogether, "to.abfd" will be NULL.
4861 The removed_literal entries are kept on a per-section list, sorted
4862 by the "from" offset field. */
4863
4864typedef struct removed_literal_struct removed_literal;
4865typedef struct removed_literal_list_struct removed_literal_list;
4866
4867struct removed_literal_struct
4868{
4869 r_reloc from;
4870 r_reloc to;
4871 removed_literal *next;
4872};
4873
4874struct removed_literal_list_struct
4875{
4876 removed_literal *head;
4877 removed_literal *tail;
4878};
4879
4880
43cd72b9
BW
4881/* Record that the literal at "from" is being removed. If "to" is not
4882 NULL, the "from" literal is being coalesced with the "to" literal. */
4883
4884static void
7fa3d080
BW
4885add_removed_literal (removed_literal_list *removed_list,
4886 const r_reloc *from,
4887 const r_reloc *to)
43cd72b9
BW
4888{
4889 removed_literal *r, *new_r, *next_r;
4890
4891 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4892
4893 new_r->from = *from;
4894 if (to)
4895 new_r->to = *to;
4896 else
4897 new_r->to.abfd = NULL;
4898 new_r->next = NULL;
4899
4900 r = removed_list->head;
4901 if (r == NULL)
4902 {
4903 removed_list->head = new_r;
4904 removed_list->tail = new_r;
4905 }
4906 /* Special check for common case of append. */
4907 else if (removed_list->tail->from.target_offset < from->target_offset)
4908 {
4909 removed_list->tail->next = new_r;
4910 removed_list->tail = new_r;
4911 }
4912 else
4913 {
7fa3d080 4914 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4915 {
4916 r = r->next;
4917 }
4918 next_r = r->next;
4919 r->next = new_r;
4920 new_r->next = next_r;
4921 if (next_r == NULL)
4922 removed_list->tail = new_r;
4923 }
4924}
4925
4926
4927/* Check if the list of removed literals contains an entry for the
4928 given address. Return the entry if found. */
4929
4930static removed_literal *
7fa3d080 4931find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4932{
4933 removed_literal *r = removed_list->head;
4934 while (r && r->from.target_offset < addr)
4935 r = r->next;
4936 if (r && r->from.target_offset == addr)
4937 return r;
4938 return NULL;
4939}
4940
4941
4942#if DEBUG
4943
4944static void
7fa3d080 4945print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4946{
4947 removed_literal *r;
4948 r = removed_list->head;
4949 if (r)
4950 fprintf (fp, "Removed Literals\n");
4951 for (; r != NULL; r = r->next)
4952 {
4953 print_r_reloc (fp, &r->from);
4954 fprintf (fp, " => ");
4955 if (r->to.abfd == NULL)
4956 fprintf (fp, "REMOVED");
4957 else
4958 print_r_reloc (fp, &r->to);
4959 fprintf (fp, "\n");
4960 }
4961}
4962
4963#endif /* DEBUG */
4964
4965\f
4966/* Per-section data for relaxation. */
4967
4968typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4969
4970struct xtensa_relax_info_struct
4971{
4972 bfd_boolean is_relaxable_literal_section;
4973 bfd_boolean is_relaxable_asm_section;
4974 int visited; /* Number of times visited. */
4975
4976 source_reloc *src_relocs; /* Array[src_count]. */
4977 int src_count;
4978 int src_next; /* Next src_relocs entry to assign. */
4979
4980 removed_literal_list removed_list;
4981 text_action_list action_list;
4982
4983 reloc_bfd_fix *fix_list;
4984 reloc_bfd_fix *fix_array;
4985 unsigned fix_array_count;
4986
4987 /* Support for expanding the reloc array that is stored
4988 in the section structure. If the relocations have been
4989 reallocated, the newly allocated relocations will be referenced
4990 here along with the actual size allocated. The relocation
4991 count will always be found in the section structure. */
4992 Elf_Internal_Rela *allocated_relocs;
4993 unsigned relocs_count;
4994 unsigned allocated_relocs_count;
4995};
4996
4997struct elf_xtensa_section_data
4998{
4999 struct bfd_elf_section_data elf;
5000 xtensa_relax_info relax_info;
5001};
5002
43cd72b9
BW
5003
5004static bfd_boolean
7fa3d080 5005elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9
BW
5006{
5007 struct elf_xtensa_section_data *sdata;
5008 bfd_size_type amt = sizeof (*sdata);
5009
5010 sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt);
5011 if (sdata == NULL)
5012 return FALSE;
7fa3d080 5013 sec->used_by_bfd = (void *) sdata;
43cd72b9
BW
5014
5015 return _bfd_elf_new_section_hook (abfd, sec);
5016}
5017
5018
7fa3d080
BW
5019static xtensa_relax_info *
5020get_xtensa_relax_info (asection *sec)
5021{
5022 struct elf_xtensa_section_data *section_data;
5023
5024 /* No info available if no section or if it is an output section. */
5025 if (!sec || sec == sec->output_section)
5026 return NULL;
5027
5028 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5029 return &section_data->relax_info;
5030}
5031
5032
43cd72b9 5033static void
7fa3d080 5034init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5035{
5036 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5037
5038 relax_info->is_relaxable_literal_section = FALSE;
5039 relax_info->is_relaxable_asm_section = FALSE;
5040 relax_info->visited = 0;
5041
5042 relax_info->src_relocs = NULL;
5043 relax_info->src_count = 0;
5044 relax_info->src_next = 0;
5045
5046 relax_info->removed_list.head = NULL;
5047 relax_info->removed_list.tail = NULL;
5048
5049 relax_info->action_list.head = NULL;
5050
5051 relax_info->fix_list = NULL;
5052 relax_info->fix_array = NULL;
5053 relax_info->fix_array_count = 0;
5054
5055 relax_info->allocated_relocs = NULL;
5056 relax_info->relocs_count = 0;
5057 relax_info->allocated_relocs_count = 0;
5058}
5059
43cd72b9
BW
5060\f
5061/* Coalescing literals may require a relocation to refer to a section in
5062 a different input file, but the standard relocation information
5063 cannot express that. Instead, the reloc_bfd_fix structures are used
5064 to "fix" the relocations that refer to sections in other input files.
5065 These structures are kept on per-section lists. The "src_type" field
5066 records the relocation type in case there are multiple relocations on
5067 the same location. FIXME: This is ugly; an alternative might be to
5068 add new symbols with the "owner" field to some other input file. */
5069
5070struct reloc_bfd_fix_struct
5071{
5072 asection *src_sec;
5073 bfd_vma src_offset;
5074 unsigned src_type; /* Relocation type. */
5075
5076 bfd *target_abfd;
5077 asection *target_sec;
5078 bfd_vma target_offset;
5079 bfd_boolean translated;
5080
5081 reloc_bfd_fix *next;
5082};
5083
5084
43cd72b9 5085static reloc_bfd_fix *
7fa3d080
BW
5086reloc_bfd_fix_init (asection *src_sec,
5087 bfd_vma src_offset,
5088 unsigned src_type,
5089 bfd *target_abfd,
5090 asection *target_sec,
5091 bfd_vma target_offset,
5092 bfd_boolean translated)
43cd72b9
BW
5093{
5094 reloc_bfd_fix *fix;
5095
5096 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5097 fix->src_sec = src_sec;
5098 fix->src_offset = src_offset;
5099 fix->src_type = src_type;
5100 fix->target_abfd = target_abfd;
5101 fix->target_sec = target_sec;
5102 fix->target_offset = target_offset;
5103 fix->translated = translated;
5104
5105 return fix;
5106}
5107
5108
5109static void
7fa3d080 5110add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5111{
5112 xtensa_relax_info *relax_info;
5113
5114 relax_info = get_xtensa_relax_info (src_sec);
5115 fix->next = relax_info->fix_list;
5116 relax_info->fix_list = fix;
5117}
5118
5119
5120static int
7fa3d080 5121fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5122{
5123 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5124 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5125
5126 if (a->src_offset != b->src_offset)
5127 return (a->src_offset - b->src_offset);
5128 return (a->src_type - b->src_type);
5129}
5130
5131
5132static void
7fa3d080 5133cache_fix_array (asection *sec)
43cd72b9
BW
5134{
5135 unsigned i, count = 0;
5136 reloc_bfd_fix *r;
5137 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5138
5139 if (relax_info == NULL)
5140 return;
5141 if (relax_info->fix_list == NULL)
5142 return;
5143
5144 for (r = relax_info->fix_list; r != NULL; r = r->next)
5145 count++;
5146
5147 relax_info->fix_array =
5148 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5149 relax_info->fix_array_count = count;
5150
5151 r = relax_info->fix_list;
5152 for (i = 0; i < count; i++, r = r->next)
5153 {
5154 relax_info->fix_array[count - 1 - i] = *r;
5155 relax_info->fix_array[count - 1 - i].next = NULL;
5156 }
5157
5158 qsort (relax_info->fix_array, relax_info->fix_array_count,
5159 sizeof (reloc_bfd_fix), fix_compare);
5160}
5161
5162
5163static reloc_bfd_fix *
7fa3d080 5164get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5165{
5166 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5167 reloc_bfd_fix *rv;
5168 reloc_bfd_fix key;
5169
5170 if (relax_info == NULL)
5171 return NULL;
5172 if (relax_info->fix_list == NULL)
5173 return NULL;
5174
5175 if (relax_info->fix_array == NULL)
5176 cache_fix_array (sec);
5177
5178 key.src_offset = offset;
5179 key.src_type = type;
5180 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5181 sizeof (reloc_bfd_fix), fix_compare);
5182 return rv;
5183}
5184
5185\f
5186/* Section caching. */
5187
5188typedef struct section_cache_struct section_cache_t;
5189
5190struct section_cache_struct
5191{
5192 asection *sec;
5193
5194 bfd_byte *contents; /* Cache of the section contents. */
5195 bfd_size_type content_length;
5196
5197 property_table_entry *ptbl; /* Cache of the section property table. */
5198 unsigned pte_count;
5199
5200 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5201 unsigned reloc_count;
5202};
5203
5204
7fa3d080
BW
5205static void
5206init_section_cache (section_cache_t *sec_cache)
5207{
5208 memset (sec_cache, 0, sizeof (*sec_cache));
5209}
43cd72b9
BW
5210
5211
5212static void
7fa3d080 5213clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5214{
7fa3d080
BW
5215 if (sec_cache->sec)
5216 {
5217 release_contents (sec_cache->sec, sec_cache->contents);
5218 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5219 if (sec_cache->ptbl)
5220 free (sec_cache->ptbl);
5221 memset (sec_cache, 0, sizeof (sec_cache));
5222 }
43cd72b9
BW
5223}
5224
5225
5226static bfd_boolean
7fa3d080
BW
5227section_cache_section (section_cache_t *sec_cache,
5228 asection *sec,
5229 struct bfd_link_info *link_info)
43cd72b9
BW
5230{
5231 bfd *abfd;
5232 property_table_entry *prop_table = NULL;
5233 int ptblsize = 0;
5234 bfd_byte *contents = NULL;
5235 Elf_Internal_Rela *internal_relocs = NULL;
5236 bfd_size_type sec_size;
5237
5238 if (sec == NULL)
5239 return FALSE;
5240 if (sec == sec_cache->sec)
5241 return TRUE;
5242
5243 abfd = sec->owner;
5244 sec_size = bfd_get_section_limit (abfd, sec);
5245
5246 /* Get the contents. */
5247 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5248 if (contents == NULL && sec_size != 0)
5249 goto err;
5250
5251 /* Get the relocations. */
5252 internal_relocs = retrieve_internal_relocs (abfd, sec,
5253 link_info->keep_memory);
5254
5255 /* Get the entry table. */
5256 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5257 XTENSA_PROP_SEC_NAME, FALSE);
5258 if (ptblsize < 0)
5259 goto err;
5260
5261 /* Fill in the new section cache. */
5262 clear_section_cache (sec_cache);
5263 memset (sec_cache, 0, sizeof (sec_cache));
5264
5265 sec_cache->sec = sec;
5266 sec_cache->contents = contents;
5267 sec_cache->content_length = sec_size;
5268 sec_cache->relocs = internal_relocs;
5269 sec_cache->reloc_count = sec->reloc_count;
5270 sec_cache->pte_count = ptblsize;
5271 sec_cache->ptbl = prop_table;
5272
5273 return TRUE;
5274
5275 err:
5276 release_contents (sec, contents);
5277 release_internal_relocs (sec, internal_relocs);
5278 if (prop_table)
5279 free (prop_table);
5280 return FALSE;
5281}
5282
43cd72b9
BW
5283\f
5284/* Extended basic blocks. */
5285
5286/* An ebb_struct represents an Extended Basic Block. Within this
5287 range, we guarantee that all instructions are decodable, the
5288 property table entries are contiguous, and no property table
5289 specifies a segment that cannot have instructions moved. This
5290 structure contains caches of the contents, property table and
5291 relocations for the specified section for easy use. The range is
5292 specified by ranges of indices for the byte offset, property table
5293 offsets and relocation offsets. These must be consistent. */
5294
5295typedef struct ebb_struct ebb_t;
5296
5297struct ebb_struct
5298{
5299 asection *sec;
5300
5301 bfd_byte *contents; /* Cache of the section contents. */
5302 bfd_size_type content_length;
5303
5304 property_table_entry *ptbl; /* Cache of the section property table. */
5305 unsigned pte_count;
5306
5307 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5308 unsigned reloc_count;
5309
5310 bfd_vma start_offset; /* Offset in section. */
5311 unsigned start_ptbl_idx; /* Offset in the property table. */
5312 unsigned start_reloc_idx; /* Offset in the relocations. */
5313
5314 bfd_vma end_offset;
5315 unsigned end_ptbl_idx;
5316 unsigned end_reloc_idx;
5317
5318 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5319
5320 /* The unreachable property table at the end of this set of blocks;
5321 NULL if the end is not an unreachable block. */
5322 property_table_entry *ends_unreachable;
5323};
5324
5325
5326enum ebb_target_enum
5327{
5328 EBB_NO_ALIGN = 0,
5329 EBB_DESIRE_TGT_ALIGN,
5330 EBB_REQUIRE_TGT_ALIGN,
5331 EBB_REQUIRE_LOOP_ALIGN,
5332 EBB_REQUIRE_ALIGN
5333};
5334
5335
5336/* proposed_action_struct is similar to the text_action_struct except
5337 that is represents a potential transformation, not one that will
5338 occur. We build a list of these for an extended basic block
5339 and use them to compute the actual actions desired. We must be
5340 careful that the entire set of actual actions we perform do not
5341 break any relocations that would fit if the actions were not
5342 performed. */
5343
5344typedef struct proposed_action_struct proposed_action;
5345
5346struct proposed_action_struct
5347{
5348 enum ebb_target_enum align_type; /* for the target alignment */
5349 bfd_vma alignment_pow;
5350 text_action_t action;
5351 bfd_vma offset;
5352 int removed_bytes;
5353 bfd_boolean do_action; /* If false, then we will not perform the action. */
5354};
5355
5356
5357/* The ebb_constraint_struct keeps a set of proposed actions for an
5358 extended basic block. */
5359
5360typedef struct ebb_constraint_struct ebb_constraint;
5361
5362struct ebb_constraint_struct
5363{
5364 ebb_t ebb;
5365 bfd_boolean start_movable;
5366
5367 /* Bytes of extra space at the beginning if movable. */
5368 int start_extra_space;
5369
5370 enum ebb_target_enum start_align;
5371
5372 bfd_boolean end_movable;
5373
5374 /* Bytes of extra space at the end if movable. */
5375 int end_extra_space;
5376
5377 unsigned action_count;
5378 unsigned action_allocated;
5379
5380 /* Array of proposed actions. */
5381 proposed_action *actions;
5382
5383 /* Action alignments -- one for each proposed action. */
5384 enum ebb_target_enum *action_aligns;
5385};
5386
5387
43cd72b9 5388static void
7fa3d080 5389init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5390{
5391 memset (c, 0, sizeof (ebb_constraint));
5392}
5393
5394
5395static void
7fa3d080 5396free_ebb_constraint (ebb_constraint *c)
43cd72b9 5397{
7fa3d080 5398 if (c->actions)
43cd72b9
BW
5399 free (c->actions);
5400}
5401
5402
5403static void
7fa3d080
BW
5404init_ebb (ebb_t *ebb,
5405 asection *sec,
5406 bfd_byte *contents,
5407 bfd_size_type content_length,
5408 property_table_entry *prop_table,
5409 unsigned ptblsize,
5410 Elf_Internal_Rela *internal_relocs,
5411 unsigned reloc_count)
43cd72b9
BW
5412{
5413 memset (ebb, 0, sizeof (ebb_t));
5414 ebb->sec = sec;
5415 ebb->contents = contents;
5416 ebb->content_length = content_length;
5417 ebb->ptbl = prop_table;
5418 ebb->pte_count = ptblsize;
5419 ebb->relocs = internal_relocs;
5420 ebb->reloc_count = reloc_count;
5421 ebb->start_offset = 0;
5422 ebb->end_offset = ebb->content_length - 1;
5423 ebb->start_ptbl_idx = 0;
5424 ebb->end_ptbl_idx = ptblsize;
5425 ebb->start_reloc_idx = 0;
5426 ebb->end_reloc_idx = reloc_count;
5427}
5428
5429
5430/* Extend the ebb to all decodable contiguous sections. The algorithm
5431 for building a basic block around an instruction is to push it
5432 forward until we hit the end of a section, an unreachable block or
5433 a block that cannot be transformed. Then we push it backwards
5434 searching for similar conditions. */
5435
7fa3d080
BW
5436static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5437static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5438static bfd_size_type insn_block_decodable_len
5439 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5440
43cd72b9 5441static bfd_boolean
7fa3d080 5442extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5443{
5444 if (!extend_ebb_bounds_forward (ebb))
5445 return FALSE;
5446 if (!extend_ebb_bounds_backward (ebb))
5447 return FALSE;
5448 return TRUE;
5449}
5450
5451
5452static bfd_boolean
7fa3d080 5453extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5454{
5455 property_table_entry *the_entry, *new_entry;
5456
5457 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5458
5459 /* Stop when (1) we cannot decode an instruction, (2) we are at
5460 the end of the property tables, (3) we hit a non-contiguous property
5461 table entry, (4) we hit a NO_TRANSFORM region. */
5462
5463 while (1)
5464 {
5465 bfd_vma entry_end;
5466 bfd_size_type insn_block_len;
5467
5468 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5469 insn_block_len =
5470 insn_block_decodable_len (ebb->contents, ebb->content_length,
5471 ebb->end_offset,
5472 entry_end - ebb->end_offset);
5473 if (insn_block_len != (entry_end - ebb->end_offset))
5474 {
5475 (*_bfd_error_handler)
5476 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5477 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5478 return FALSE;
5479 }
5480 ebb->end_offset += insn_block_len;
5481
5482 if (ebb->end_offset == ebb->sec->size)
5483 ebb->ends_section = TRUE;
5484
5485 /* Update the reloc counter. */
5486 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5487 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5488 < ebb->end_offset))
5489 {
5490 ebb->end_reloc_idx++;
5491 }
5492
5493 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5494 return TRUE;
5495
5496 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5497 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5498 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5499 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5500 break;
5501
5502 if (the_entry->address + the_entry->size != new_entry->address)
5503 break;
5504
5505 the_entry = new_entry;
5506 ebb->end_ptbl_idx++;
5507 }
5508
5509 /* Quick check for an unreachable or end of file just at the end. */
5510 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5511 {
5512 if (ebb->end_offset == ebb->content_length)
5513 ebb->ends_section = TRUE;
5514 }
5515 else
5516 {
5517 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5518 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5519 && the_entry->address + the_entry->size == new_entry->address)
5520 ebb->ends_unreachable = new_entry;
5521 }
5522
5523 /* Any other ending requires exact alignment. */
5524 return TRUE;
5525}
5526
5527
5528static bfd_boolean
7fa3d080 5529extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5530{
5531 property_table_entry *the_entry, *new_entry;
5532
5533 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5534
5535 /* Stop when (1) we cannot decode the instructions in the current entry.
5536 (2) we are at the beginning of the property tables, (3) we hit a
5537 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5538
5539 while (1)
5540 {
5541 bfd_vma block_begin;
5542 bfd_size_type insn_block_len;
5543
5544 block_begin = the_entry->address - ebb->sec->vma;
5545 insn_block_len =
5546 insn_block_decodable_len (ebb->contents, ebb->content_length,
5547 block_begin,
5548 ebb->start_offset - block_begin);
5549 if (insn_block_len != ebb->start_offset - block_begin)
5550 {
5551 (*_bfd_error_handler)
5552 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5553 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5554 return FALSE;
5555 }
5556 ebb->start_offset -= insn_block_len;
5557
5558 /* Update the reloc counter. */
5559 while (ebb->start_reloc_idx > 0
5560 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5561 >= ebb->start_offset))
5562 {
5563 ebb->start_reloc_idx--;
5564 }
5565
5566 if (ebb->start_ptbl_idx == 0)
5567 return TRUE;
5568
5569 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5570 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5571 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5572 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5573 return TRUE;
5574 if (new_entry->address + new_entry->size != the_entry->address)
5575 return TRUE;
5576
5577 the_entry = new_entry;
5578 ebb->start_ptbl_idx--;
5579 }
5580 return TRUE;
5581}
5582
5583
5584static bfd_size_type
7fa3d080
BW
5585insn_block_decodable_len (bfd_byte *contents,
5586 bfd_size_type content_len,
5587 bfd_vma block_offset,
5588 bfd_size_type block_len)
43cd72b9
BW
5589{
5590 bfd_vma offset = block_offset;
5591
5592 while (offset < block_offset + block_len)
5593 {
5594 bfd_size_type insn_len = 0;
5595
5596 insn_len = insn_decode_len (contents, content_len, offset);
5597 if (insn_len == 0)
5598 return (offset - block_offset);
5599 offset += insn_len;
5600 }
5601 return (offset - block_offset);
5602}
5603
5604
5605static void
7fa3d080 5606ebb_propose_action (ebb_constraint *c,
7fa3d080 5607 enum ebb_target_enum align_type,
288f74fa 5608 bfd_vma alignment_pow,
7fa3d080
BW
5609 text_action_t action,
5610 bfd_vma offset,
5611 int removed_bytes,
5612 bfd_boolean do_action)
43cd72b9 5613{
b08b5071 5614 proposed_action *act;
43cd72b9 5615
43cd72b9
BW
5616 if (c->action_allocated <= c->action_count)
5617 {
b08b5071 5618 unsigned new_allocated, i;
823fc61f 5619 proposed_action *new_actions;
b08b5071
BW
5620
5621 new_allocated = (c->action_count + 2) * 2;
823fc61f 5622 new_actions = (proposed_action *)
43cd72b9
BW
5623 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5624
5625 for (i = 0; i < c->action_count; i++)
5626 new_actions[i] = c->actions[i];
7fa3d080 5627 if (c->actions)
43cd72b9
BW
5628 free (c->actions);
5629 c->actions = new_actions;
5630 c->action_allocated = new_allocated;
5631 }
b08b5071
BW
5632
5633 act = &c->actions[c->action_count];
5634 act->align_type = align_type;
5635 act->alignment_pow = alignment_pow;
5636 act->action = action;
5637 act->offset = offset;
5638 act->removed_bytes = removed_bytes;
5639 act->do_action = do_action;
5640
43cd72b9
BW
5641 c->action_count++;
5642}
5643
5644\f
5645/* Access to internal relocations, section contents and symbols. */
5646
5647/* During relaxation, we need to modify relocations, section contents,
5648 and symbol definitions, and we need to keep the original values from
5649 being reloaded from the input files, i.e., we need to "pin" the
5650 modified values in memory. We also want to continue to observe the
5651 setting of the "keep-memory" flag. The following functions wrap the
5652 standard BFD functions to take care of this for us. */
5653
5654static Elf_Internal_Rela *
7fa3d080 5655retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5656{
5657 Elf_Internal_Rela *internal_relocs;
5658
5659 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5660 return NULL;
5661
5662 internal_relocs = elf_section_data (sec)->relocs;
5663 if (internal_relocs == NULL)
5664 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5665 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5666 return internal_relocs;
5667}
5668
5669
5670static void
7fa3d080 5671pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5672{
5673 elf_section_data (sec)->relocs = internal_relocs;
5674}
5675
5676
5677static void
7fa3d080 5678release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5679{
5680 if (internal_relocs
5681 && elf_section_data (sec)->relocs != internal_relocs)
5682 free (internal_relocs);
5683}
5684
5685
5686static bfd_byte *
7fa3d080 5687retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5688{
5689 bfd_byte *contents;
5690 bfd_size_type sec_size;
5691
5692 sec_size = bfd_get_section_limit (abfd, sec);
5693 contents = elf_section_data (sec)->this_hdr.contents;
5694
5695 if (contents == NULL && sec_size != 0)
5696 {
5697 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5698 {
7fa3d080 5699 if (contents)
43cd72b9
BW
5700 free (contents);
5701 return NULL;
5702 }
5703 if (keep_memory)
5704 elf_section_data (sec)->this_hdr.contents = contents;
5705 }
5706 return contents;
5707}
5708
5709
5710static void
7fa3d080 5711pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5712{
5713 elf_section_data (sec)->this_hdr.contents = contents;
5714}
5715
5716
5717static void
7fa3d080 5718release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5719{
5720 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5721 free (contents);
5722}
5723
5724
5725static Elf_Internal_Sym *
7fa3d080 5726retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5727{
5728 Elf_Internal_Shdr *symtab_hdr;
5729 Elf_Internal_Sym *isymbuf;
5730 size_t locsymcount;
5731
5732 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5733 locsymcount = symtab_hdr->sh_info;
5734
5735 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5736 if (isymbuf == NULL && locsymcount != 0)
5737 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5738 NULL, NULL, NULL);
5739
5740 /* Save the symbols for this input file so they won't be read again. */
5741 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5742 symtab_hdr->contents = (unsigned char *) isymbuf;
5743
5744 return isymbuf;
5745}
5746
5747\f
5748/* Code for link-time relaxation. */
5749
5750/* Initialization for relaxation: */
7fa3d080 5751static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5752static bfd_boolean find_relaxable_sections
7fa3d080 5753 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5754static bfd_boolean collect_source_relocs
7fa3d080 5755 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5756static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5757 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5758 bfd_boolean *);
43cd72b9 5759static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5760 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5761static bfd_boolean compute_text_actions
7fa3d080
BW
5762 (bfd *, asection *, struct bfd_link_info *);
5763static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5764static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5765static bfd_boolean check_section_ebb_pcrels_fit
7fa3d080
BW
5766 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *);
5767static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5768static void text_action_add_proposed
7fa3d080
BW
5769 (text_action_list *, const ebb_constraint *, asection *);
5770static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5771
5772/* First pass: */
5773static bfd_boolean compute_removed_literals
7fa3d080 5774 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5775static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5776 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5777static bfd_boolean is_removable_literal
7fa3d080 5778 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5779static bfd_boolean remove_dead_literal
7fa3d080
BW
5780 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5781 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5782static bfd_boolean identify_literal_placement
5783 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5784 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5785 source_reloc *, property_table_entry *, int, section_cache_t *,
5786 bfd_boolean);
5787static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5788static bfd_boolean coalesce_shared_literal
7fa3d080 5789 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5790static bfd_boolean move_shared_literal
7fa3d080
BW
5791 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5792 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5793
5794/* Second pass: */
7fa3d080
BW
5795static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5796static bfd_boolean translate_section_fixes (asection *);
5797static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5798static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5799static void shrink_dynamic_reloc_sections
7fa3d080 5800 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5801static bfd_boolean move_literal
7fa3d080
BW
5802 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5803 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5804static bfd_boolean relax_property_section
7fa3d080 5805 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5806
5807/* Third pass: */
7fa3d080 5808static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5809
5810
5811static bfd_boolean
7fa3d080
BW
5812elf_xtensa_relax_section (bfd *abfd,
5813 asection *sec,
5814 struct bfd_link_info *link_info,
5815 bfd_boolean *again)
43cd72b9
BW
5816{
5817 static value_map_hash_table *values = NULL;
5818 static bfd_boolean relocations_analyzed = FALSE;
5819 xtensa_relax_info *relax_info;
5820
5821 if (!relocations_analyzed)
5822 {
5823 /* Do some overall initialization for relaxation. */
5824 values = value_map_hash_table_init ();
5825 if (values == NULL)
5826 return FALSE;
5827 relaxing_section = TRUE;
5828 if (!analyze_relocations (link_info))
5829 return FALSE;
5830 relocations_analyzed = TRUE;
5831 }
5832 *again = FALSE;
5833
5834 /* Don't mess with linker-created sections. */
5835 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5836 return TRUE;
5837
5838 relax_info = get_xtensa_relax_info (sec);
5839 BFD_ASSERT (relax_info != NULL);
5840
5841 switch (relax_info->visited)
5842 {
5843 case 0:
5844 /* Note: It would be nice to fold this pass into
5845 analyze_relocations, but it is important for this step that the
5846 sections be examined in link order. */
5847 if (!compute_removed_literals (abfd, sec, link_info, values))
5848 return FALSE;
5849 *again = TRUE;
5850 break;
5851
5852 case 1:
5853 if (values)
5854 value_map_hash_table_delete (values);
5855 values = NULL;
5856 if (!relax_section (abfd, sec, link_info))
5857 return FALSE;
5858 *again = TRUE;
5859 break;
5860
5861 case 2:
5862 if (!relax_section_symbols (abfd, sec))
5863 return FALSE;
5864 break;
5865 }
5866
5867 relax_info->visited++;
5868 return TRUE;
5869}
5870
5871\f
5872/* Initialization for relaxation. */
5873
5874/* This function is called once at the start of relaxation. It scans
5875 all the input sections and marks the ones that are relaxable (i.e.,
5876 literal sections with L32R relocations against them), and then
5877 collects source_reloc information for all the relocations against
5878 those relaxable sections. During this process, it also detects
5879 longcalls, i.e., calls relaxed by the assembler into indirect
5880 calls, that can be optimized back into direct calls. Within each
5881 extended basic block (ebb) containing an optimized longcall, it
5882 computes a set of "text actions" that can be performed to remove
5883 the L32R associated with the longcall while optionally preserving
5884 branch target alignments. */
5885
5886static bfd_boolean
7fa3d080 5887analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5888{
5889 bfd *abfd;
5890 asection *sec;
5891 bfd_boolean is_relaxable = FALSE;
5892
5893 /* Initialize the per-section relaxation info. */
5894 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5895 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5896 {
5897 init_xtensa_relax_info (sec);
5898 }
5899
5900 /* Mark relaxable sections (and count relocations against each one). */
5901 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5902 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5903 {
5904 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5905 return FALSE;
5906 }
5907
5908 /* Bail out if there are no relaxable sections. */
5909 if (!is_relaxable)
5910 return TRUE;
5911
5912 /* Allocate space for source_relocs. */
5913 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5914 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5915 {
5916 xtensa_relax_info *relax_info;
5917
5918 relax_info = get_xtensa_relax_info (sec);
5919 if (relax_info->is_relaxable_literal_section
5920 || relax_info->is_relaxable_asm_section)
5921 {
5922 relax_info->src_relocs = (source_reloc *)
5923 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5924 }
5925 }
5926
5927 /* Collect info on relocations against each relaxable section. */
5928 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5929 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5930 {
5931 if (!collect_source_relocs (abfd, sec, link_info))
5932 return FALSE;
5933 }
5934
5935 /* Compute the text actions. */
5936 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5937 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5938 {
5939 if (!compute_text_actions (abfd, sec, link_info))
5940 return FALSE;
5941 }
5942
5943 return TRUE;
5944}
5945
5946
5947/* Find all the sections that might be relaxed. The motivation for
5948 this pass is that collect_source_relocs() needs to record _all_ the
5949 relocations that target each relaxable section. That is expensive
5950 and unnecessary unless the target section is actually going to be
5951 relaxed. This pass identifies all such sections by checking if
5952 they have L32Rs pointing to them. In the process, the total number
5953 of relocations targeting each section is also counted so that we
5954 know how much space to allocate for source_relocs against each
5955 relaxable literal section. */
5956
5957static bfd_boolean
7fa3d080
BW
5958find_relaxable_sections (bfd *abfd,
5959 asection *sec,
5960 struct bfd_link_info *link_info,
5961 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5962{
5963 Elf_Internal_Rela *internal_relocs;
5964 bfd_byte *contents;
5965 bfd_boolean ok = TRUE;
5966 unsigned i;
5967 xtensa_relax_info *source_relax_info;
5968
5969 internal_relocs = retrieve_internal_relocs (abfd, sec,
5970 link_info->keep_memory);
5971 if (internal_relocs == NULL)
5972 return ok;
5973
5974 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5975 if (contents == NULL && sec->size != 0)
5976 {
5977 ok = FALSE;
5978 goto error_return;
5979 }
5980
5981 source_relax_info = get_xtensa_relax_info (sec);
5982 for (i = 0; i < sec->reloc_count; i++)
5983 {
5984 Elf_Internal_Rela *irel = &internal_relocs[i];
5985 r_reloc r_rel;
5986 asection *target_sec;
5987 xtensa_relax_info *target_relax_info;
5988
5989 /* If this section has not already been marked as "relaxable", and
5990 if it contains any ASM_EXPAND relocations (marking expanded
5991 longcalls) that can be optimized into direct calls, then mark
5992 the section as "relaxable". */
5993 if (source_relax_info
5994 && !source_relax_info->is_relaxable_asm_section
5995 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
5996 {
5997 bfd_boolean is_reachable = FALSE;
5998 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
5999 link_info, &is_reachable)
6000 && is_reachable)
6001 {
6002 source_relax_info->is_relaxable_asm_section = TRUE;
6003 *is_relaxable_p = TRUE;
6004 }
6005 }
6006
6007 r_reloc_init (&r_rel, abfd, irel, contents,
6008 bfd_get_section_limit (abfd, sec));
6009
6010 target_sec = r_reloc_get_section (&r_rel);
6011 target_relax_info = get_xtensa_relax_info (target_sec);
6012 if (!target_relax_info)
6013 continue;
6014
6015 /* Count PC-relative operand relocations against the target section.
6016 Note: The conditions tested here must match the conditions under
6017 which init_source_reloc is called in collect_source_relocs(). */
6018 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6019 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6020 || is_l32r_relocation (abfd, sec, contents, irel)))
6021 target_relax_info->src_count++;
6022
6023 if (is_l32r_relocation (abfd, sec, contents, irel)
6024 && r_reloc_is_defined (&r_rel))
6025 {
6026 /* Mark the target section as relaxable. */
6027 target_relax_info->is_relaxable_literal_section = TRUE;
6028 *is_relaxable_p = TRUE;
6029 }
6030 }
6031
6032 error_return:
6033 release_contents (sec, contents);
6034 release_internal_relocs (sec, internal_relocs);
6035 return ok;
6036}
6037
6038
6039/* Record _all_ the relocations that point to relaxable sections, and
6040 get rid of ASM_EXPAND relocs by either converting them to
6041 ASM_SIMPLIFY or by removing them. */
6042
6043static bfd_boolean
7fa3d080
BW
6044collect_source_relocs (bfd *abfd,
6045 asection *sec,
6046 struct bfd_link_info *link_info)
43cd72b9
BW
6047{
6048 Elf_Internal_Rela *internal_relocs;
6049 bfd_byte *contents;
6050 bfd_boolean ok = TRUE;
6051 unsigned i;
6052 bfd_size_type sec_size;
6053
6054 internal_relocs = retrieve_internal_relocs (abfd, sec,
6055 link_info->keep_memory);
6056 if (internal_relocs == NULL)
6057 return ok;
6058
6059 sec_size = bfd_get_section_limit (abfd, sec);
6060 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6061 if (contents == NULL && sec_size != 0)
6062 {
6063 ok = FALSE;
6064 goto error_return;
6065 }
6066
6067 /* Record relocations against relaxable literal sections. */
6068 for (i = 0; i < sec->reloc_count; i++)
6069 {
6070 Elf_Internal_Rela *irel = &internal_relocs[i];
6071 r_reloc r_rel;
6072 asection *target_sec;
6073 xtensa_relax_info *target_relax_info;
6074
6075 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6076
6077 target_sec = r_reloc_get_section (&r_rel);
6078 target_relax_info = get_xtensa_relax_info (target_sec);
6079
6080 if (target_relax_info
6081 && (target_relax_info->is_relaxable_literal_section
6082 || target_relax_info->is_relaxable_asm_section))
6083 {
6084 xtensa_opcode opcode = XTENSA_UNDEFINED;
6085 int opnd = -1;
6086 bfd_boolean is_abs_literal = FALSE;
6087
6088 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6089 {
6090 /* None of the current alternate relocs are PC-relative,
6091 and only PC-relative relocs matter here. However, we
6092 still need to record the opcode for literal
6093 coalescing. */
6094 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6095 if (opcode == get_l32r_opcode ())
6096 {
6097 is_abs_literal = TRUE;
6098 opnd = 1;
6099 }
6100 else
6101 opcode = XTENSA_UNDEFINED;
6102 }
6103 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6104 {
6105 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6106 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6107 }
6108
6109 if (opcode != XTENSA_UNDEFINED)
6110 {
6111 int src_next = target_relax_info->src_next++;
6112 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6113
6114 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6115 is_abs_literal);
6116 }
6117 }
6118 }
6119
6120 /* Now get rid of ASM_EXPAND relocations. At this point, the
6121 src_relocs array for the target literal section may still be
6122 incomplete, but it must at least contain the entries for the L32R
6123 relocations associated with ASM_EXPANDs because they were just
6124 added in the preceding loop over the relocations. */
6125
6126 for (i = 0; i < sec->reloc_count; i++)
6127 {
6128 Elf_Internal_Rela *irel = &internal_relocs[i];
6129 bfd_boolean is_reachable;
6130
6131 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6132 &is_reachable))
6133 continue;
6134
6135 if (is_reachable)
6136 {
6137 Elf_Internal_Rela *l32r_irel;
6138 r_reloc r_rel;
6139 asection *target_sec;
6140 xtensa_relax_info *target_relax_info;
6141
6142 /* Mark the source_reloc for the L32R so that it will be
6143 removed in compute_removed_literals(), along with the
6144 associated literal. */
6145 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6146 irel, internal_relocs);
6147 if (l32r_irel == NULL)
6148 continue;
6149
6150 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6151
6152 target_sec = r_reloc_get_section (&r_rel);
6153 target_relax_info = get_xtensa_relax_info (target_sec);
6154
6155 if (target_relax_info
6156 && (target_relax_info->is_relaxable_literal_section
6157 || target_relax_info->is_relaxable_asm_section))
6158 {
6159 source_reloc *s_reloc;
6160
6161 /* Search the source_relocs for the entry corresponding to
6162 the l32r_irel. Note: The src_relocs array is not yet
6163 sorted, but it wouldn't matter anyway because we're
6164 searching by source offset instead of target offset. */
6165 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6166 target_relax_info->src_next,
6167 sec, l32r_irel);
6168 BFD_ASSERT (s_reloc);
6169 s_reloc->is_null = TRUE;
6170 }
6171
6172 /* Convert this reloc to ASM_SIMPLIFY. */
6173 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6174 R_XTENSA_ASM_SIMPLIFY);
6175 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6176
6177 pin_internal_relocs (sec, internal_relocs);
6178 }
6179 else
6180 {
6181 /* It is resolvable but doesn't reach. We resolve now
6182 by eliminating the relocation -- the call will remain
6183 expanded into L32R/CALLX. */
6184 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6185 pin_internal_relocs (sec, internal_relocs);
6186 }
6187 }
6188
6189 error_return:
6190 release_contents (sec, contents);
6191 release_internal_relocs (sec, internal_relocs);
6192 return ok;
6193}
6194
6195
6196/* Return TRUE if the asm expansion can be resolved. Generally it can
6197 be resolved on a final link or when a partial link locates it in the
6198 same section as the target. Set "is_reachable" flag if the target of
6199 the call is within the range of a direct call, given the current VMA
6200 for this section and the target section. */
6201
6202bfd_boolean
7fa3d080
BW
6203is_resolvable_asm_expansion (bfd *abfd,
6204 asection *sec,
6205 bfd_byte *contents,
6206 Elf_Internal_Rela *irel,
6207 struct bfd_link_info *link_info,
6208 bfd_boolean *is_reachable_p)
43cd72b9
BW
6209{
6210 asection *target_sec;
6211 bfd_vma target_offset;
6212 r_reloc r_rel;
6213 xtensa_opcode opcode, direct_call_opcode;
6214 bfd_vma self_address;
6215 bfd_vma dest_address;
6216 bfd_boolean uses_l32r;
6217 bfd_size_type sec_size;
6218
6219 *is_reachable_p = FALSE;
6220
6221 if (contents == NULL)
6222 return FALSE;
6223
6224 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6225 return FALSE;
6226
6227 sec_size = bfd_get_section_limit (abfd, sec);
6228 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6229 sec_size - irel->r_offset, &uses_l32r);
6230 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6231 if (!uses_l32r)
6232 return FALSE;
6233
6234 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6235 if (direct_call_opcode == XTENSA_UNDEFINED)
6236 return FALSE;
6237
6238 /* Check and see that the target resolves. */
6239 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6240 if (!r_reloc_is_defined (&r_rel))
6241 return FALSE;
6242
6243 target_sec = r_reloc_get_section (&r_rel);
6244 target_offset = r_rel.target_offset;
6245
6246 /* If the target is in a shared library, then it doesn't reach. This
6247 isn't supposed to come up because the compiler should never generate
6248 non-PIC calls on systems that use shared libraries, but the linker
6249 shouldn't crash regardless. */
6250 if (!target_sec->output_section)
6251 return FALSE;
6252
6253 /* For relocatable sections, we can only simplify when the output
6254 section of the target is the same as the output section of the
6255 source. */
6256 if (link_info->relocatable
6257 && (target_sec->output_section != sec->output_section
6258 || is_reloc_sym_weak (abfd, irel)))
6259 return FALSE;
6260
6261 self_address = (sec->output_section->vma
6262 + sec->output_offset + irel->r_offset + 3);
6263 dest_address = (target_sec->output_section->vma
6264 + target_sec->output_offset + target_offset);
6265
6266 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6267 self_address, dest_address);
6268
6269 if ((self_address >> CALL_SEGMENT_BITS) !=
6270 (dest_address >> CALL_SEGMENT_BITS))
6271 return FALSE;
6272
6273 return TRUE;
6274}
6275
6276
6277static Elf_Internal_Rela *
7fa3d080
BW
6278find_associated_l32r_irel (bfd *abfd,
6279 asection *sec,
6280 bfd_byte *contents,
6281 Elf_Internal_Rela *other_irel,
6282 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6283{
6284 unsigned i;
e0001a05 6285
43cd72b9
BW
6286 for (i = 0; i < sec->reloc_count; i++)
6287 {
6288 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6289
43cd72b9
BW
6290 if (irel == other_irel)
6291 continue;
6292 if (irel->r_offset != other_irel->r_offset)
6293 continue;
6294 if (is_l32r_relocation (abfd, sec, contents, irel))
6295 return irel;
6296 }
6297
6298 return NULL;
e0001a05
NC
6299}
6300
6301
43cd72b9
BW
6302/* The compute_text_actions function will build a list of potential
6303 transformation actions for code in the extended basic block of each
6304 longcall that is optimized to a direct call. From this list we
6305 generate a set of actions to actually perform that optimizes for
6306 space and, if not using size_opt, maintains branch target
6307 alignments.
e0001a05 6308
43cd72b9
BW
6309 These actions to be performed are placed on a per-section list.
6310 The actual changes are performed by relax_section() in the second
6311 pass. */
6312
6313bfd_boolean
7fa3d080
BW
6314compute_text_actions (bfd *abfd,
6315 asection *sec,
6316 struct bfd_link_info *link_info)
e0001a05 6317{
43cd72b9 6318 xtensa_relax_info *relax_info;
e0001a05 6319 bfd_byte *contents;
43cd72b9 6320 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6321 bfd_boolean ok = TRUE;
6322 unsigned i;
43cd72b9
BW
6323 property_table_entry *prop_table = 0;
6324 int ptblsize = 0;
6325 bfd_size_type sec_size;
6326 static bfd_boolean no_insn_move = FALSE;
6327
6328 if (no_insn_move)
6329 return ok;
6330
6331 /* Do nothing if the section contains no optimized longcalls. */
6332 relax_info = get_xtensa_relax_info (sec);
6333 BFD_ASSERT (relax_info);
6334 if (!relax_info->is_relaxable_asm_section)
6335 return ok;
e0001a05
NC
6336
6337 internal_relocs = retrieve_internal_relocs (abfd, sec,
6338 link_info->keep_memory);
e0001a05 6339
43cd72b9
BW
6340 if (internal_relocs)
6341 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6342 internal_reloc_compare);
6343
6344 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6345 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6346 if (contents == NULL && sec_size != 0)
e0001a05
NC
6347 {
6348 ok = FALSE;
6349 goto error_return;
6350 }
6351
43cd72b9
BW
6352 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6353 XTENSA_PROP_SEC_NAME, FALSE);
6354 if (ptblsize < 0)
6355 {
6356 ok = FALSE;
6357 goto error_return;
6358 }
6359
6360 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6361 {
6362 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6363 bfd_vma r_offset;
6364 property_table_entry *the_entry;
6365 int ptbl_idx;
6366 ebb_t *ebb;
6367 ebb_constraint ebb_table;
6368 bfd_size_type simplify_size;
6369
6370 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6371 continue;
6372 r_offset = irel->r_offset;
e0001a05 6373
43cd72b9
BW
6374 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6375 if (simplify_size == 0)
6376 {
6377 (*_bfd_error_handler)
6378 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6379 sec->owner, sec, r_offset);
6380 continue;
6381 }
e0001a05 6382
43cd72b9
BW
6383 /* If the instruction table is not around, then don't do this
6384 relaxation. */
6385 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6386 sec->vma + irel->r_offset);
6387 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6388 {
6389 text_action_add (&relax_info->action_list,
6390 ta_convert_longcall, sec, r_offset,
6391 0);
6392 continue;
6393 }
6394
6395 /* If the next longcall happens to be at the same address as an
6396 unreachable section of size 0, then skip forward. */
6397 ptbl_idx = the_entry - prop_table;
6398 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6399 && the_entry->size == 0
6400 && ptbl_idx + 1 < ptblsize
6401 && (prop_table[ptbl_idx + 1].address
6402 == prop_table[ptbl_idx].address))
6403 {
6404 ptbl_idx++;
6405 the_entry++;
6406 }
e0001a05 6407
43cd72b9
BW
6408 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6409 /* NO_REORDER is OK */
6410 continue;
e0001a05 6411
43cd72b9
BW
6412 init_ebb_constraint (&ebb_table);
6413 ebb = &ebb_table.ebb;
6414 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6415 internal_relocs, sec->reloc_count);
6416 ebb->start_offset = r_offset + simplify_size;
6417 ebb->end_offset = r_offset + simplify_size;
6418 ebb->start_ptbl_idx = ptbl_idx;
6419 ebb->end_ptbl_idx = ptbl_idx;
6420 ebb->start_reloc_idx = i;
6421 ebb->end_reloc_idx = i;
6422
6423 if (!extend_ebb_bounds (ebb)
6424 || !compute_ebb_proposed_actions (&ebb_table)
6425 || !compute_ebb_actions (&ebb_table)
6426 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6427 internal_relocs, &ebb_table)
6428 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6429 {
43cd72b9
BW
6430 /* If anything goes wrong or we get unlucky and something does
6431 not fit, with our plan because of expansion between
6432 critical branches, just convert to a NOP. */
6433
6434 text_action_add (&relax_info->action_list,
6435 ta_convert_longcall, sec, r_offset, 0);
6436 i = ebb_table.ebb.end_reloc_idx;
6437 free_ebb_constraint (&ebb_table);
6438 continue;
e0001a05 6439 }
43cd72b9
BW
6440
6441 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6442
6443 /* Update the index so we do not go looking at the relocations
6444 we have already processed. */
6445 i = ebb_table.ebb.end_reloc_idx;
6446 free_ebb_constraint (&ebb_table);
e0001a05
NC
6447 }
6448
43cd72b9 6449#if DEBUG
7fa3d080 6450 if (relax_info->action_list.head)
43cd72b9
BW
6451 print_action_list (stderr, &relax_info->action_list);
6452#endif
6453
6454error_return:
e0001a05
NC
6455 release_contents (sec, contents);
6456 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6457 if (prop_table)
6458 free (prop_table);
6459
e0001a05
NC
6460 return ok;
6461}
6462
6463
43cd72b9 6464/* Find all of the possible actions for an extended basic block. */
e0001a05 6465
43cd72b9 6466bfd_boolean
7fa3d080 6467compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6468{
43cd72b9
BW
6469 const ebb_t *ebb = &ebb_table->ebb;
6470 unsigned rel_idx = ebb->start_reloc_idx;
6471 property_table_entry *entry, *start_entry, *end_entry;
e0001a05 6472
43cd72b9
BW
6473 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6474 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6475
43cd72b9 6476 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6477 {
43cd72b9
BW
6478 bfd_vma offset, start_offset, end_offset;
6479 bfd_size_type insn_len;
e0001a05 6480
43cd72b9
BW
6481 start_offset = entry->address - ebb->sec->vma;
6482 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6483
43cd72b9
BW
6484 if (entry == start_entry)
6485 start_offset = ebb->start_offset;
6486 if (entry == end_entry)
6487 end_offset = ebb->end_offset;
6488 offset = start_offset;
e0001a05 6489
43cd72b9
BW
6490 if (offset == entry->address - ebb->sec->vma
6491 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6492 {
6493 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6494 BFD_ASSERT (offset != end_offset);
6495 if (offset == end_offset)
6496 return FALSE;
e0001a05 6497
43cd72b9
BW
6498 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6499 offset);
6500
6501 /* Propose no actions for a section with an undecodable offset. */
6502 if (insn_len == 0)
6503 {
6504 (*_bfd_error_handler)
6505 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6506 ebb->sec->owner, ebb->sec, offset);
6507 return FALSE;
6508 }
6509 if (check_branch_target_aligned_address (offset, insn_len))
6510 align_type = EBB_REQUIRE_TGT_ALIGN;
6511
6512 ebb_propose_action (ebb_table, align_type, 0,
6513 ta_none, offset, 0, TRUE);
6514 }
6515
6516 while (offset != end_offset)
e0001a05 6517 {
43cd72b9 6518 Elf_Internal_Rela *irel;
e0001a05 6519 xtensa_opcode opcode;
e0001a05 6520
43cd72b9
BW
6521 while (rel_idx < ebb->end_reloc_idx
6522 && (ebb->relocs[rel_idx].r_offset < offset
6523 || (ebb->relocs[rel_idx].r_offset == offset
6524 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6525 != R_XTENSA_ASM_SIMPLIFY))))
6526 rel_idx++;
6527
6528 /* Check for longcall. */
6529 irel = &ebb->relocs[rel_idx];
6530 if (irel->r_offset == offset
6531 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6532 {
6533 bfd_size_type simplify_size;
e0001a05 6534
43cd72b9
BW
6535 simplify_size = get_asm_simplify_size (ebb->contents,
6536 ebb->content_length,
6537 irel->r_offset);
6538 if (simplify_size == 0)
6539 {
6540 (*_bfd_error_handler)
6541 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6542 ebb->sec->owner, ebb->sec, offset);
6543 return FALSE;
6544 }
6545
6546 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6547 ta_convert_longcall, offset, 0, TRUE);
6548
6549 offset += simplify_size;
6550 continue;
6551 }
e0001a05 6552
43cd72b9
BW
6553 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6554 offset);
6555 /* If the instruction is undecodable, then report an error. */
6556 if (insn_len == 0)
6557 {
6558 (*_bfd_error_handler)
6559 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6560 ebb->sec->owner, ebb->sec, offset);
6561 return FALSE;
6562 }
6563
6564 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6565 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6566 && narrow_instruction (ebb->contents, ebb->content_length,
6567 offset, FALSE))
6568 {
6569 /* Add an instruction narrow action. */
6570 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6571 ta_narrow_insn, offset, 0, FALSE);
6572 offset += insn_len;
6573 continue;
6574 }
6575 if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6576 && widen_instruction (ebb->contents, ebb->content_length,
6577 offset, FALSE))
6578 {
6579 /* Add an instruction widen action. */
6580 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6581 ta_widen_insn, offset, 0, FALSE);
6582 offset += insn_len;
6583 continue;
6584 }
6585 opcode = insn_decode_opcode (ebb->contents, ebb->content_length,
6586 offset, 0);
6587 if (xtensa_opcode_is_loop (xtensa_default_isa, opcode))
6588 {
6589 /* Check for branch targets. */
6590 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6591 ta_none, offset, 0, TRUE);
6592 offset += insn_len;
6593 continue;
6594 }
6595
6596 offset += insn_len;
e0001a05
NC
6597 }
6598 }
6599
43cd72b9
BW
6600 if (ebb->ends_unreachable)
6601 {
6602 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6603 ta_fill, ebb->end_offset, 0, TRUE);
6604 }
e0001a05 6605
43cd72b9
BW
6606 return TRUE;
6607}
6608
6609
6610/* After all of the information has collected about the
6611 transformations possible in an EBB, compute the appropriate actions
6612 here in compute_ebb_actions. We still must check later to make
6613 sure that the actions do not break any relocations. The algorithm
6614 used here is pretty greedy. Basically, it removes as many no-ops
6615 as possible so that the end of the EBB has the same alignment
6616 characteristics as the original. First, it uses narrowing, then
6617 fill space at the end of the EBB, and finally widenings. If that
6618 does not work, it tries again with one fewer no-op removed. The
6619 optimization will only be performed if all of the branch targets
6620 that were aligned before transformation are also aligned after the
6621 transformation.
6622
6623 When the size_opt flag is set, ignore the branch target alignments,
6624 narrow all wide instructions, and remove all no-ops unless the end
6625 of the EBB prevents it. */
6626
6627bfd_boolean
7fa3d080 6628compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6629{
6630 unsigned i = 0;
6631 unsigned j;
6632 int removed_bytes = 0;
6633 ebb_t *ebb = &ebb_table->ebb;
6634 unsigned seg_idx_start = 0;
6635 unsigned seg_idx_end = 0;
6636
6637 /* We perform this like the assembler relaxation algorithm: Start by
6638 assuming all instructions are narrow and all no-ops removed; then
6639 walk through.... */
6640
6641 /* For each segment of this that has a solid constraint, check to
6642 see if there are any combinations that will keep the constraint.
6643 If so, use it. */
6644 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6645 {
43cd72b9
BW
6646 bfd_boolean requires_text_end_align = FALSE;
6647 unsigned longcall_count = 0;
6648 unsigned longcall_convert_count = 0;
6649 unsigned narrowable_count = 0;
6650 unsigned narrowable_convert_count = 0;
6651 unsigned widenable_count = 0;
6652 unsigned widenable_convert_count = 0;
e0001a05 6653
43cd72b9
BW
6654 proposed_action *action = NULL;
6655 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6656
43cd72b9 6657 seg_idx_start = seg_idx_end;
e0001a05 6658
43cd72b9
BW
6659 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6660 {
6661 action = &ebb_table->actions[i];
6662 if (action->action == ta_convert_longcall)
6663 longcall_count++;
6664 if (action->action == ta_narrow_insn)
6665 narrowable_count++;
6666 if (action->action == ta_widen_insn)
6667 widenable_count++;
6668 if (action->action == ta_fill)
6669 break;
6670 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6671 break;
6672 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6673 && !elf32xtensa_size_opt)
6674 break;
6675 }
6676 seg_idx_end = i;
e0001a05 6677
43cd72b9
BW
6678 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6679 requires_text_end_align = TRUE;
e0001a05 6680
43cd72b9
BW
6681 if (elf32xtensa_size_opt && !requires_text_end_align
6682 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6683 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6684 {
6685 longcall_convert_count = longcall_count;
6686 narrowable_convert_count = narrowable_count;
6687 widenable_convert_count = 0;
6688 }
6689 else
6690 {
6691 /* There is a constraint. Convert the max number of longcalls. */
6692 narrowable_convert_count = 0;
6693 longcall_convert_count = 0;
6694 widenable_convert_count = 0;
e0001a05 6695
43cd72b9 6696 for (j = 0; j < longcall_count; j++)
e0001a05 6697 {
43cd72b9
BW
6698 int removed = (longcall_count - j) * 3 & (align - 1);
6699 unsigned desire_narrow = (align - removed) & (align - 1);
6700 unsigned desire_widen = removed;
6701 if (desire_narrow <= narrowable_count)
6702 {
6703 narrowable_convert_count = desire_narrow;
6704 narrowable_convert_count +=
6705 (align * ((narrowable_count - narrowable_convert_count)
6706 / align));
6707 longcall_convert_count = (longcall_count - j);
6708 widenable_convert_count = 0;
6709 break;
6710 }
6711 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6712 {
6713 narrowable_convert_count = 0;
6714 longcall_convert_count = longcall_count - j;
6715 widenable_convert_count = desire_widen;
6716 break;
6717 }
6718 }
6719 }
e0001a05 6720
43cd72b9
BW
6721 /* Now the number of conversions are saved. Do them. */
6722 for (i = seg_idx_start; i < seg_idx_end; i++)
6723 {
6724 action = &ebb_table->actions[i];
6725 switch (action->action)
6726 {
6727 case ta_convert_longcall:
6728 if (longcall_convert_count != 0)
6729 {
6730 action->action = ta_remove_longcall;
6731 action->do_action = TRUE;
6732 action->removed_bytes += 3;
6733 longcall_convert_count--;
6734 }
6735 break;
6736 case ta_narrow_insn:
6737 if (narrowable_convert_count != 0)
6738 {
6739 action->do_action = TRUE;
6740 action->removed_bytes += 1;
6741 narrowable_convert_count--;
6742 }
6743 break;
6744 case ta_widen_insn:
6745 if (widenable_convert_count != 0)
6746 {
6747 action->do_action = TRUE;
6748 action->removed_bytes -= 1;
6749 widenable_convert_count--;
6750 }
6751 break;
6752 default:
6753 break;
e0001a05 6754 }
43cd72b9
BW
6755 }
6756 }
e0001a05 6757
43cd72b9
BW
6758 /* Now we move on to some local opts. Try to remove each of the
6759 remaining longcalls. */
e0001a05 6760
43cd72b9
BW
6761 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6762 {
6763 removed_bytes = 0;
6764 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6765 {
43cd72b9
BW
6766 int old_removed_bytes = removed_bytes;
6767 proposed_action *action = &ebb_table->actions[i];
6768
6769 if (action->do_action && action->action == ta_convert_longcall)
6770 {
6771 bfd_boolean bad_alignment = FALSE;
6772 removed_bytes += 3;
6773 for (j = i + 1; j < ebb_table->action_count; j++)
6774 {
6775 proposed_action *new_action = &ebb_table->actions[j];
6776 bfd_vma offset = new_action->offset;
6777 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6778 {
6779 if (!check_branch_target_aligned
6780 (ebb_table->ebb.contents,
6781 ebb_table->ebb.content_length,
6782 offset, offset - removed_bytes))
6783 {
6784 bad_alignment = TRUE;
6785 break;
6786 }
6787 }
6788 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6789 {
6790 if (!check_loop_aligned (ebb_table->ebb.contents,
6791 ebb_table->ebb.content_length,
6792 offset,
6793 offset - removed_bytes))
6794 {
6795 bad_alignment = TRUE;
6796 break;
6797 }
6798 }
6799 if (new_action->action == ta_narrow_insn
6800 && !new_action->do_action
6801 && ebb_table->ebb.sec->alignment_power == 2)
6802 {
6803 /* Narrow an instruction and we are done. */
6804 new_action->do_action = TRUE;
6805 new_action->removed_bytes += 1;
6806 bad_alignment = FALSE;
6807 break;
6808 }
6809 if (new_action->action == ta_widen_insn
6810 && new_action->do_action
6811 && ebb_table->ebb.sec->alignment_power == 2)
6812 {
6813 /* Narrow an instruction and we are done. */
6814 new_action->do_action = FALSE;
6815 new_action->removed_bytes += 1;
6816 bad_alignment = FALSE;
6817 break;
6818 }
6819 }
6820 if (!bad_alignment)
6821 {
6822 action->removed_bytes += 3;
6823 action->action = ta_remove_longcall;
6824 action->do_action = TRUE;
6825 }
6826 }
6827 removed_bytes = old_removed_bytes;
6828 if (action->do_action)
6829 removed_bytes += action->removed_bytes;
e0001a05
NC
6830 }
6831 }
6832
43cd72b9
BW
6833 removed_bytes = 0;
6834 for (i = 0; i < ebb_table->action_count; ++i)
6835 {
6836 proposed_action *action = &ebb_table->actions[i];
6837 if (action->do_action)
6838 removed_bytes += action->removed_bytes;
6839 }
6840
6841 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6842 && ebb->ends_unreachable)
6843 {
6844 proposed_action *action;
6845 int br;
6846 int extra_space;
6847
6848 BFD_ASSERT (ebb_table->action_count != 0);
6849 action = &ebb_table->actions[ebb_table->action_count - 1];
6850 BFD_ASSERT (action->action == ta_fill);
6851 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6852
6853 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6854 br = action->removed_bytes + removed_bytes + extra_space;
6855 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6856
6857 action->removed_bytes = extra_space - br;
6858 }
6859 return TRUE;
e0001a05
NC
6860}
6861
6862
43cd72b9
BW
6863/* Use check_section_ebb_pcrels_fit to make sure that all of the
6864 relocations in a section will fit if a proposed set of actions
6865 are performed. */
e0001a05 6866
43cd72b9 6867static bfd_boolean
7fa3d080
BW
6868check_section_ebb_pcrels_fit (bfd *abfd,
6869 asection *sec,
6870 bfd_byte *contents,
6871 Elf_Internal_Rela *internal_relocs,
6872 const ebb_constraint *constraint)
e0001a05 6873{
43cd72b9
BW
6874 unsigned i, j;
6875 Elf_Internal_Rela *irel;
6876 xtensa_relax_info *relax_info;
e0001a05 6877
43cd72b9 6878 relax_info = get_xtensa_relax_info (sec);
e0001a05 6879
43cd72b9
BW
6880 for (i = 0; i < sec->reloc_count; i++)
6881 {
6882 r_reloc r_rel;
6883 bfd_vma orig_self_offset, orig_target_offset;
6884 bfd_vma self_offset, target_offset;
6885 int r_type;
6886 reloc_howto_type *howto;
6887 int self_removed_bytes, target_removed_bytes;
e0001a05 6888
43cd72b9
BW
6889 irel = &internal_relocs[i];
6890 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 6891
43cd72b9
BW
6892 howto = &elf_howto_table[r_type];
6893 /* We maintain the required invariant: PC-relative relocations
6894 that fit before linking must fit after linking. Thus we only
6895 need to deal with relocations to the same section that are
6896 PC-relative. */
6897 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
6898 || !howto->pc_relative)
6899 continue;
e0001a05 6900
43cd72b9
BW
6901 r_reloc_init (&r_rel, abfd, irel, contents,
6902 bfd_get_section_limit (abfd, sec));
e0001a05 6903
43cd72b9
BW
6904 if (r_reloc_get_section (&r_rel) != sec)
6905 continue;
e0001a05 6906
43cd72b9
BW
6907 orig_self_offset = irel->r_offset;
6908 orig_target_offset = r_rel.target_offset;
e0001a05 6909
43cd72b9
BW
6910 self_offset = orig_self_offset;
6911 target_offset = orig_target_offset;
6912
6913 if (relax_info)
6914 {
6915 self_offset = offset_with_removed_text (&relax_info->action_list,
6916 orig_self_offset);
6917 target_offset = offset_with_removed_text (&relax_info->action_list,
6918 orig_target_offset);
6919 }
6920
6921 self_removed_bytes = 0;
6922 target_removed_bytes = 0;
6923
6924 for (j = 0; j < constraint->action_count; ++j)
6925 {
6926 proposed_action *action = &constraint->actions[j];
6927 bfd_vma offset = action->offset;
6928 int removed_bytes = action->removed_bytes;
6929 if (offset < orig_self_offset
6930 || (offset == orig_self_offset && action->action == ta_fill
6931 && action->removed_bytes < 0))
6932 self_removed_bytes += removed_bytes;
6933 if (offset < orig_target_offset
6934 || (offset == orig_target_offset && action->action == ta_fill
6935 && action->removed_bytes < 0))
6936 target_removed_bytes += removed_bytes;
6937 }
6938 self_offset -= self_removed_bytes;
6939 target_offset -= target_removed_bytes;
6940
6941 /* Try to encode it. Get the operand and check. */
6942 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6943 {
6944 /* None of the current alternate relocs are PC-relative,
6945 and only PC-relative relocs matter here. */
6946 }
6947 else
6948 {
6949 xtensa_opcode opcode;
6950 int opnum;
6951
6952 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6953 if (opcode == XTENSA_UNDEFINED)
6954 return FALSE;
6955
6956 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6957 if (opnum == XTENSA_UNDEFINED)
6958 return FALSE;
6959
6960 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
6961 return FALSE;
6962 }
6963 }
6964
6965 return TRUE;
6966}
6967
6968
6969static bfd_boolean
7fa3d080 6970check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
6971{
6972 int removed = 0;
6973 unsigned i;
6974
6975 for (i = 0; i < constraint->action_count; i++)
6976 {
6977 const proposed_action *action = &constraint->actions[i];
6978 if (action->do_action)
6979 removed += action->removed_bytes;
6980 }
6981 if (removed < 0)
e0001a05
NC
6982 return FALSE;
6983
6984 return TRUE;
6985}
6986
6987
43cd72b9 6988void
7fa3d080
BW
6989text_action_add_proposed (text_action_list *l,
6990 const ebb_constraint *ebb_table,
6991 asection *sec)
e0001a05
NC
6992{
6993 unsigned i;
6994
43cd72b9 6995 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6996 {
43cd72b9 6997 proposed_action *action = &ebb_table->actions[i];
e0001a05 6998
43cd72b9 6999 if (!action->do_action)
e0001a05 7000 continue;
43cd72b9
BW
7001 switch (action->action)
7002 {
7003 case ta_remove_insn:
7004 case ta_remove_longcall:
7005 case ta_convert_longcall:
7006 case ta_narrow_insn:
7007 case ta_widen_insn:
7008 case ta_fill:
7009 case ta_remove_literal:
7010 text_action_add (l, action->action, sec, action->offset,
7011 action->removed_bytes);
7012 break;
7013 case ta_none:
7014 break;
7015 default:
7016 BFD_ASSERT (0);
7017 break;
7018 }
e0001a05 7019 }
43cd72b9 7020}
e0001a05 7021
43cd72b9
BW
7022
7023int
7fa3d080 7024compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7025{
7026 int fill_extra_space;
7027
7028 if (!entry)
7029 return 0;
7030
7031 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7032 return 0;
7033
7034 fill_extra_space = entry->size;
7035 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7036 {
7037 /* Fill bytes for alignment:
7038 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7039 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7040 int nsm = (1 << pow) - 1;
7041 bfd_vma addr = entry->address + entry->size;
7042 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7043 fill_extra_space += align_fill;
7044 }
7045 return fill_extra_space;
e0001a05
NC
7046}
7047
43cd72b9 7048\f
e0001a05
NC
7049/* First relaxation pass. */
7050
43cd72b9
BW
7051/* If the section contains relaxable literals, check each literal to
7052 see if it has the same value as another literal that has already
7053 been seen, either in the current section or a previous one. If so,
7054 add an entry to the per-section list of removed literals. The
e0001a05
NC
7055 actual changes are deferred until the next pass. */
7056
7057static bfd_boolean
7fa3d080
BW
7058compute_removed_literals (bfd *abfd,
7059 asection *sec,
7060 struct bfd_link_info *link_info,
7061 value_map_hash_table *values)
e0001a05
NC
7062{
7063 xtensa_relax_info *relax_info;
7064 bfd_byte *contents;
7065 Elf_Internal_Rela *internal_relocs;
43cd72b9 7066 source_reloc *src_relocs, *rel;
e0001a05 7067 bfd_boolean ok = TRUE;
43cd72b9
BW
7068 property_table_entry *prop_table = NULL;
7069 int ptblsize;
7070 int i, prev_i;
7071 bfd_boolean last_loc_is_prev = FALSE;
7072 bfd_vma last_target_offset = 0;
7073 section_cache_t target_sec_cache;
7074 bfd_size_type sec_size;
7075
7076 init_section_cache (&target_sec_cache);
e0001a05
NC
7077
7078 /* Do nothing if it is not a relaxable literal section. */
7079 relax_info = get_xtensa_relax_info (sec);
7080 BFD_ASSERT (relax_info);
e0001a05
NC
7081 if (!relax_info->is_relaxable_literal_section)
7082 return ok;
7083
7084 internal_relocs = retrieve_internal_relocs (abfd, sec,
7085 link_info->keep_memory);
7086
43cd72b9 7087 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7088 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7089 if (contents == NULL && sec_size != 0)
e0001a05
NC
7090 {
7091 ok = FALSE;
7092 goto error_return;
7093 }
7094
7095 /* Sort the source_relocs by target offset. */
7096 src_relocs = relax_info->src_relocs;
7097 qsort (src_relocs, relax_info->src_count,
7098 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7099 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7100 internal_reloc_compare);
e0001a05 7101
43cd72b9
BW
7102 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7103 XTENSA_PROP_SEC_NAME, FALSE);
7104 if (ptblsize < 0)
7105 {
7106 ok = FALSE;
7107 goto error_return;
7108 }
7109
7110 prev_i = -1;
e0001a05
NC
7111 for (i = 0; i < relax_info->src_count; i++)
7112 {
e0001a05 7113 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7114
7115 rel = &src_relocs[i];
43cd72b9
BW
7116 if (get_l32r_opcode () != rel->opcode)
7117 continue;
e0001a05
NC
7118 irel = get_irel_at_offset (sec, internal_relocs,
7119 rel->r_rel.target_offset);
7120
43cd72b9
BW
7121 /* If the relocation on this is not a simple R_XTENSA_32 or
7122 R_XTENSA_PLT then do not consider it. This may happen when
7123 the difference of two symbols is used in a literal. */
7124 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7125 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7126 continue;
7127
e0001a05
NC
7128 /* If the target_offset for this relocation is the same as the
7129 previous relocation, then we've already considered whether the
7130 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7131 if (i != 0 && prev_i != -1
7132 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7133 continue;
43cd72b9
BW
7134 prev_i = i;
7135
7136 if (last_loc_is_prev &&
7137 last_target_offset + 4 != rel->r_rel.target_offset)
7138 last_loc_is_prev = FALSE;
e0001a05
NC
7139
7140 /* Check if the relocation was from an L32R that is being removed
7141 because a CALLX was converted to a direct CALL, and check if
7142 there are no other relocations to the literal. */
43cd72b9 7143 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7144 {
43cd72b9
BW
7145 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7146 irel, rel, prop_table, ptblsize))
e0001a05 7147 {
43cd72b9
BW
7148 ok = FALSE;
7149 goto error_return;
e0001a05 7150 }
43cd72b9 7151 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7152 continue;
7153 }
7154
43cd72b9
BW
7155 if (!identify_literal_placement (abfd, sec, contents, link_info,
7156 values,
7157 &last_loc_is_prev, irel,
7158 relax_info->src_count - i, rel,
7159 prop_table, ptblsize,
7160 &target_sec_cache, rel->is_abs_literal))
e0001a05 7161 {
43cd72b9
BW
7162 ok = FALSE;
7163 goto error_return;
7164 }
7165 last_target_offset = rel->r_rel.target_offset;
7166 }
e0001a05 7167
43cd72b9
BW
7168#if DEBUG
7169 print_removed_literals (stderr, &relax_info->removed_list);
7170 print_action_list (stderr, &relax_info->action_list);
7171#endif /* DEBUG */
7172
7173error_return:
7174 if (prop_table) free (prop_table);
7175 clear_section_cache (&target_sec_cache);
7176
7177 release_contents (sec, contents);
7178 release_internal_relocs (sec, internal_relocs);
7179 return ok;
7180}
7181
7182
7183static Elf_Internal_Rela *
7fa3d080
BW
7184get_irel_at_offset (asection *sec,
7185 Elf_Internal_Rela *internal_relocs,
7186 bfd_vma offset)
43cd72b9
BW
7187{
7188 unsigned i;
7189 Elf_Internal_Rela *irel;
7190 unsigned r_type;
7191 Elf_Internal_Rela key;
7192
7193 if (!internal_relocs)
7194 return NULL;
7195
7196 key.r_offset = offset;
7197 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7198 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7199 if (!irel)
7200 return NULL;
7201
7202 /* bsearch does not guarantee which will be returned if there are
7203 multiple matches. We need the first that is not an alignment. */
7204 i = irel - internal_relocs;
7205 while (i > 0)
7206 {
7207 if (internal_relocs[i-1].r_offset != offset)
7208 break;
7209 i--;
7210 }
7211 for ( ; i < sec->reloc_count; i++)
7212 {
7213 irel = &internal_relocs[i];
7214 r_type = ELF32_R_TYPE (irel->r_info);
7215 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7216 return irel;
7217 }
7218
7219 return NULL;
7220}
7221
7222
7223bfd_boolean
7fa3d080
BW
7224is_removable_literal (const source_reloc *rel,
7225 int i,
7226 const source_reloc *src_relocs,
7227 int src_count)
43cd72b9
BW
7228{
7229 const source_reloc *curr_rel;
7230 if (!rel->is_null)
7231 return FALSE;
7232
7233 for (++i; i < src_count; ++i)
7234 {
7235 curr_rel = &src_relocs[i];
7236 /* If all others have the same target offset.... */
7237 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7238 return TRUE;
7239
7240 if (!curr_rel->is_null
7241 && !xtensa_is_property_section (curr_rel->source_sec)
7242 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7243 return FALSE;
7244 }
7245 return TRUE;
7246}
7247
7248
7249bfd_boolean
7fa3d080
BW
7250remove_dead_literal (bfd *abfd,
7251 asection *sec,
7252 struct bfd_link_info *link_info,
7253 Elf_Internal_Rela *internal_relocs,
7254 Elf_Internal_Rela *irel,
7255 source_reloc *rel,
7256 property_table_entry *prop_table,
7257 int ptblsize)
43cd72b9
BW
7258{
7259 property_table_entry *entry;
7260 xtensa_relax_info *relax_info;
7261
7262 relax_info = get_xtensa_relax_info (sec);
7263 if (!relax_info)
7264 return FALSE;
7265
7266 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7267 sec->vma + rel->r_rel.target_offset);
7268
7269 /* Mark the unused literal so that it will be removed. */
7270 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7271
7272 text_action_add (&relax_info->action_list,
7273 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7274
7275 /* If the section is 4-byte aligned, do not add fill. */
7276 if (sec->alignment_power > 2)
7277 {
7278 int fill_extra_space;
7279 bfd_vma entry_sec_offset;
7280 text_action *fa;
7281 property_table_entry *the_add_entry;
7282 int removed_diff;
7283
7284 if (entry)
7285 entry_sec_offset = entry->address - sec->vma + entry->size;
7286 else
7287 entry_sec_offset = rel->r_rel.target_offset + 4;
7288
7289 /* If the literal range is at the end of the section,
7290 do not add fill. */
7291 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7292 entry_sec_offset);
7293 fill_extra_space = compute_fill_extra_space (the_add_entry);
7294
7295 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7296 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7297 -4, fill_extra_space);
7298 if (fa)
7299 adjust_fill_action (fa, removed_diff);
7300 else
7301 text_action_add (&relax_info->action_list,
7302 ta_fill, sec, entry_sec_offset, removed_diff);
7303 }
7304
7305 /* Zero out the relocation on this literal location. */
7306 if (irel)
7307 {
7308 if (elf_hash_table (link_info)->dynamic_sections_created)
7309 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7310
7311 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7312 pin_internal_relocs (sec, internal_relocs);
7313 }
7314
7315 /* Do not modify "last_loc_is_prev". */
7316 return TRUE;
7317}
7318
7319
7320bfd_boolean
7fa3d080
BW
7321identify_literal_placement (bfd *abfd,
7322 asection *sec,
7323 bfd_byte *contents,
7324 struct bfd_link_info *link_info,
7325 value_map_hash_table *values,
7326 bfd_boolean *last_loc_is_prev_p,
7327 Elf_Internal_Rela *irel,
7328 int remaining_src_rels,
7329 source_reloc *rel,
7330 property_table_entry *prop_table,
7331 int ptblsize,
7332 section_cache_t *target_sec_cache,
7333 bfd_boolean is_abs_literal)
43cd72b9
BW
7334{
7335 literal_value val;
7336 value_map *val_map;
7337 xtensa_relax_info *relax_info;
7338 bfd_boolean literal_placed = FALSE;
7339 r_reloc r_rel;
7340 unsigned long value;
7341 bfd_boolean final_static_link;
7342 bfd_size_type sec_size;
7343
7344 relax_info = get_xtensa_relax_info (sec);
7345 if (!relax_info)
7346 return FALSE;
7347
7348 sec_size = bfd_get_section_limit (abfd, sec);
7349
7350 final_static_link =
7351 (!link_info->relocatable
7352 && !elf_hash_table (link_info)->dynamic_sections_created);
7353
7354 /* The placement algorithm first checks to see if the literal is
7355 already in the value map. If so and the value map is reachable
7356 from all uses, then the literal is moved to that location. If
7357 not, then we identify the last location where a fresh literal was
7358 placed. If the literal can be safely moved there, then we do so.
7359 If not, then we assume that the literal is not to move and leave
7360 the literal where it is, marking it as the last literal
7361 location. */
7362
7363 /* Find the literal value. */
7364 value = 0;
7365 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7366 if (!irel)
7367 {
7368 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7369 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7370 }
7371 init_literal_value (&val, &r_rel, value, is_abs_literal);
7372
7373 /* Check if we've seen another literal with the same value that
7374 is in the same output section. */
7375 val_map = value_map_get_cached_value (values, &val, final_static_link);
7376
7377 if (val_map
7378 && (r_reloc_get_section (&val_map->loc)->output_section
7379 == sec->output_section)
7380 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7381 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7382 {
7383 /* No change to last_loc_is_prev. */
7384 literal_placed = TRUE;
7385 }
7386
7387 /* For relocatable links, do not try to move literals. To do it
7388 correctly might increase the number of relocations in an input
7389 section making the default relocatable linking fail. */
7390 if (!link_info->relocatable && !literal_placed
7391 && values->has_last_loc && !(*last_loc_is_prev_p))
7392 {
7393 asection *target_sec = r_reloc_get_section (&values->last_loc);
7394 if (target_sec && target_sec->output_section == sec->output_section)
7395 {
7396 /* Increment the virtual offset. */
7397 r_reloc try_loc = values->last_loc;
7398 try_loc.virtual_offset += 4;
7399
7400 /* There is a last loc that was in the same output section. */
7401 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7402 && move_shared_literal (sec, link_info, rel,
7403 prop_table, ptblsize,
7404 &try_loc, &val, target_sec_cache))
e0001a05 7405 {
43cd72b9
BW
7406 values->last_loc.virtual_offset += 4;
7407 literal_placed = TRUE;
7408 if (!val_map)
7409 val_map = add_value_map (values, &val, &try_loc,
7410 final_static_link);
7411 else
7412 val_map->loc = try_loc;
e0001a05
NC
7413 }
7414 }
43cd72b9
BW
7415 }
7416
7417 if (!literal_placed)
7418 {
7419 /* Nothing worked, leave the literal alone but update the last loc. */
7420 values->has_last_loc = TRUE;
7421 values->last_loc = rel->r_rel;
7422 if (!val_map)
7423 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7424 else
43cd72b9
BW
7425 val_map->loc = rel->r_rel;
7426 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7427 }
7428
43cd72b9 7429 return TRUE;
e0001a05
NC
7430}
7431
7432
7433/* Check if the original relocations (presumably on L32R instructions)
7434 identified by reloc[0..N] can be changed to reference the literal
7435 identified by r_rel. If r_rel is out of range for any of the
7436 original relocations, then we don't want to coalesce the original
7437 literal with the one at r_rel. We only check reloc[0..N], where the
7438 offsets are all the same as for reloc[0] (i.e., they're all
7439 referencing the same literal) and where N is also bounded by the
7440 number of remaining entries in the "reloc" array. The "reloc" array
7441 is sorted by target offset so we know all the entries for the same
7442 literal will be contiguous. */
7443
7444static bfd_boolean
7fa3d080
BW
7445relocations_reach (source_reloc *reloc,
7446 int remaining_relocs,
7447 const r_reloc *r_rel)
e0001a05
NC
7448{
7449 bfd_vma from_offset, source_address, dest_address;
7450 asection *sec;
7451 int i;
7452
7453 if (!r_reloc_is_defined (r_rel))
7454 return FALSE;
7455
7456 sec = r_reloc_get_section (r_rel);
7457 from_offset = reloc[0].r_rel.target_offset;
7458
7459 for (i = 0; i < remaining_relocs; i++)
7460 {
7461 if (reloc[i].r_rel.target_offset != from_offset)
7462 break;
7463
7464 /* Ignore relocations that have been removed. */
7465 if (reloc[i].is_null)
7466 continue;
7467
7468 /* The original and new output section for these must be the same
7469 in order to coalesce. */
7470 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7471 != sec->output_section)
7472 return FALSE;
7473
43cd72b9
BW
7474 /* A literal with no PC-relative relocations can be moved anywhere. */
7475 if (reloc[i].opnd != -1)
e0001a05
NC
7476 {
7477 /* Otherwise, check to see that it fits. */
7478 source_address = (reloc[i].source_sec->output_section->vma
7479 + reloc[i].source_sec->output_offset
7480 + reloc[i].r_rel.rela.r_offset);
7481 dest_address = (sec->output_section->vma
7482 + sec->output_offset
7483 + r_rel->target_offset);
7484
43cd72b9
BW
7485 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7486 source_address, dest_address))
e0001a05
NC
7487 return FALSE;
7488 }
7489 }
7490
7491 return TRUE;
7492}
7493
7494
43cd72b9
BW
7495/* Move a literal to another literal location because it is
7496 the same as the other literal value. */
e0001a05 7497
43cd72b9 7498static bfd_boolean
7fa3d080
BW
7499coalesce_shared_literal (asection *sec,
7500 source_reloc *rel,
7501 property_table_entry *prop_table,
7502 int ptblsize,
7503 value_map *val_map)
e0001a05 7504{
43cd72b9
BW
7505 property_table_entry *entry;
7506 text_action *fa;
7507 property_table_entry *the_add_entry;
7508 int removed_diff;
7509 xtensa_relax_info *relax_info;
7510
7511 relax_info = get_xtensa_relax_info (sec);
7512 if (!relax_info)
7513 return FALSE;
7514
7515 entry = elf_xtensa_find_property_entry
7516 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7517 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7518 return TRUE;
7519
7520 /* Mark that the literal will be coalesced. */
7521 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7522
7523 text_action_add (&relax_info->action_list,
7524 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7525
7526 /* If the section is 4-byte aligned, do not add fill. */
7527 if (sec->alignment_power > 2)
e0001a05 7528 {
43cd72b9
BW
7529 int fill_extra_space;
7530 bfd_vma entry_sec_offset;
7531
7532 if (entry)
7533 entry_sec_offset = entry->address - sec->vma + entry->size;
7534 else
7535 entry_sec_offset = rel->r_rel.target_offset + 4;
7536
7537 /* If the literal range is at the end of the section,
7538 do not add fill. */
7539 fill_extra_space = 0;
7540 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7541 entry_sec_offset);
7542 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7543 fill_extra_space = the_add_entry->size;
7544
7545 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7546 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7547 -4, fill_extra_space);
7548 if (fa)
7549 adjust_fill_action (fa, removed_diff);
7550 else
7551 text_action_add (&relax_info->action_list,
7552 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7553 }
43cd72b9
BW
7554
7555 return TRUE;
7556}
7557
7558
7559/* Move a literal to another location. This may actually increase the
7560 total amount of space used because of alignments so we need to do
7561 this carefully. Also, it may make a branch go out of range. */
7562
7563static bfd_boolean
7fa3d080
BW
7564move_shared_literal (asection *sec,
7565 struct bfd_link_info *link_info,
7566 source_reloc *rel,
7567 property_table_entry *prop_table,
7568 int ptblsize,
7569 const r_reloc *target_loc,
7570 const literal_value *lit_value,
7571 section_cache_t *target_sec_cache)
43cd72b9
BW
7572{
7573 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7574 text_action *fa, *target_fa;
7575 int removed_diff;
7576 xtensa_relax_info *relax_info, *target_relax_info;
7577 asection *target_sec;
7578 ebb_t *ebb;
7579 ebb_constraint ebb_table;
7580 bfd_boolean relocs_fit;
7581
7582 /* If this routine always returns FALSE, the literals that cannot be
7583 coalesced will not be moved. */
7584 if (elf32xtensa_no_literal_movement)
7585 return FALSE;
7586
7587 relax_info = get_xtensa_relax_info (sec);
7588 if (!relax_info)
7589 return FALSE;
7590
7591 target_sec = r_reloc_get_section (target_loc);
7592 target_relax_info = get_xtensa_relax_info (target_sec);
7593
7594 /* Literals to undefined sections may not be moved because they
7595 must report an error. */
7596 if (bfd_is_und_section (target_sec))
7597 return FALSE;
7598
7599 src_entry = elf_xtensa_find_property_entry
7600 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7601
7602 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7603 return FALSE;
7604
7605 target_entry = elf_xtensa_find_property_entry
7606 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7607 target_sec->vma + target_loc->target_offset);
7608
7609 if (!target_entry)
7610 return FALSE;
7611
7612 /* Make sure that we have not broken any branches. */
7613 relocs_fit = FALSE;
7614
7615 init_ebb_constraint (&ebb_table);
7616 ebb = &ebb_table.ebb;
7617 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7618 target_sec_cache->content_length,
7619 target_sec_cache->ptbl, target_sec_cache->pte_count,
7620 target_sec_cache->relocs, target_sec_cache->reloc_count);
7621
7622 /* Propose to add 4 bytes + worst-case alignment size increase to
7623 destination. */
7624 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7625 ta_fill, target_loc->target_offset,
7626 -4 - (1 << target_sec->alignment_power), TRUE);
7627
7628 /* Check all of the PC-relative relocations to make sure they still fit. */
7629 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7630 target_sec_cache->contents,
7631 target_sec_cache->relocs,
7632 &ebb_table);
7633
7634 if (!relocs_fit)
7635 return FALSE;
7636
7637 text_action_add_literal (&target_relax_info->action_list,
7638 ta_add_literal, target_loc, lit_value, -4);
7639
7640 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7641 {
7642 /* May need to add or remove some fill to maintain alignment. */
7643 int fill_extra_space;
7644 bfd_vma entry_sec_offset;
7645
7646 entry_sec_offset =
7647 target_entry->address - target_sec->vma + target_entry->size;
7648
7649 /* If the literal range is at the end of the section,
7650 do not add fill. */
7651 fill_extra_space = 0;
7652 the_add_entry =
7653 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7654 target_sec_cache->pte_count,
7655 entry_sec_offset);
7656 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7657 fill_extra_space = the_add_entry->size;
7658
7659 target_fa = find_fill_action (&target_relax_info->action_list,
7660 target_sec, entry_sec_offset);
7661 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7662 entry_sec_offset, 4,
7663 fill_extra_space);
7664 if (target_fa)
7665 adjust_fill_action (target_fa, removed_diff);
7666 else
7667 text_action_add (&target_relax_info->action_list,
7668 ta_fill, target_sec, entry_sec_offset, removed_diff);
7669 }
7670
7671 /* Mark that the literal will be moved to the new location. */
7672 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7673
7674 /* Remove the literal. */
7675 text_action_add (&relax_info->action_list,
7676 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7677
7678 /* If the section is 4-byte aligned, do not add fill. */
7679 if (sec->alignment_power > 2 && target_entry != src_entry)
7680 {
7681 int fill_extra_space;
7682 bfd_vma entry_sec_offset;
7683
7684 if (src_entry)
7685 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7686 else
7687 entry_sec_offset = rel->r_rel.target_offset+4;
7688
7689 /* If the literal range is at the end of the section,
7690 do not add fill. */
7691 fill_extra_space = 0;
7692 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7693 entry_sec_offset);
7694 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7695 fill_extra_space = the_add_entry->size;
7696
7697 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7698 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7699 -4, fill_extra_space);
7700 if (fa)
7701 adjust_fill_action (fa, removed_diff);
7702 else
7703 text_action_add (&relax_info->action_list,
7704 ta_fill, sec, entry_sec_offset, removed_diff);
7705 }
7706
7707 return TRUE;
e0001a05
NC
7708}
7709
7710\f
7711/* Second relaxation pass. */
7712
7713/* Modify all of the relocations to point to the right spot, and if this
7714 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 7715 section size. */
e0001a05 7716
43cd72b9 7717bfd_boolean
7fa3d080 7718relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
7719{
7720 Elf_Internal_Rela *internal_relocs;
7721 xtensa_relax_info *relax_info;
7722 bfd_byte *contents;
7723 bfd_boolean ok = TRUE;
7724 unsigned i;
43cd72b9
BW
7725 bfd_boolean rv = FALSE;
7726 bfd_boolean virtual_action;
7727 bfd_size_type sec_size;
e0001a05 7728
43cd72b9 7729 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
7730 relax_info = get_xtensa_relax_info (sec);
7731 BFD_ASSERT (relax_info);
7732
43cd72b9
BW
7733 /* First translate any of the fixes that have been added already. */
7734 translate_section_fixes (sec);
7735
e0001a05
NC
7736 /* Handle property sections (e.g., literal tables) specially. */
7737 if (xtensa_is_property_section (sec))
7738 {
7739 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7740 return relax_property_section (abfd, sec, link_info);
7741 }
7742
43cd72b9
BW
7743 internal_relocs = retrieve_internal_relocs (abfd, sec,
7744 link_info->keep_memory);
7745 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7746 if (contents == NULL && sec_size != 0)
7747 {
7748 ok = FALSE;
7749 goto error_return;
7750 }
7751
7752 if (internal_relocs)
7753 {
7754 for (i = 0; i < sec->reloc_count; i++)
7755 {
7756 Elf_Internal_Rela *irel;
7757 xtensa_relax_info *target_relax_info;
7758 bfd_vma source_offset, old_source_offset;
7759 r_reloc r_rel;
7760 unsigned r_type;
7761 asection *target_sec;
7762
7763 /* Locally change the source address.
7764 Translate the target to the new target address.
7765 If it points to this section and has been removed,
7766 NULLify it.
7767 Write it back. */
7768
7769 irel = &internal_relocs[i];
7770 source_offset = irel->r_offset;
7771 old_source_offset = source_offset;
7772
7773 r_type = ELF32_R_TYPE (irel->r_info);
7774 r_reloc_init (&r_rel, abfd, irel, contents,
7775 bfd_get_section_limit (abfd, sec));
7776
7777 /* If this section could have changed then we may need to
7778 change the relocation's offset. */
7779
7780 if (relax_info->is_relaxable_literal_section
7781 || relax_info->is_relaxable_asm_section)
7782 {
7783 if (r_type != R_XTENSA_NONE
7784 && find_removed_literal (&relax_info->removed_list,
7785 irel->r_offset))
7786 {
7787 /* Remove this relocation. */
7788 if (elf_hash_table (link_info)->dynamic_sections_created)
7789 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7790 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7791 irel->r_offset = offset_with_removed_text
7792 (&relax_info->action_list, irel->r_offset);
7793 pin_internal_relocs (sec, internal_relocs);
7794 continue;
7795 }
7796
7797 if (r_type == R_XTENSA_ASM_SIMPLIFY)
7798 {
7799 text_action *action =
7800 find_insn_action (&relax_info->action_list,
7801 irel->r_offset);
7802 if (action && (action->action == ta_convert_longcall
7803 || action->action == ta_remove_longcall))
7804 {
7805 bfd_reloc_status_type retval;
7806 char *error_message = NULL;
7807
7808 retval = contract_asm_expansion (contents, sec_size,
7809 irel, &error_message);
7810 if (retval != bfd_reloc_ok)
7811 {
7812 (*link_info->callbacks->reloc_dangerous)
7813 (link_info, error_message, abfd, sec,
7814 irel->r_offset);
7815 goto error_return;
7816 }
7817 /* Update the action so that the code that moves
7818 the contents will do the right thing. */
7819 if (action->action == ta_remove_longcall)
7820 action->action = ta_remove_insn;
7821 else
7822 action->action = ta_none;
7823 /* Refresh the info in the r_rel. */
7824 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7825 r_type = ELF32_R_TYPE (irel->r_info);
7826 }
7827 }
7828
7829 source_offset = offset_with_removed_text
7830 (&relax_info->action_list, irel->r_offset);
7831 irel->r_offset = source_offset;
7832 }
7833
7834 /* If the target section could have changed then
7835 we may need to change the relocation's target offset. */
7836
7837 target_sec = r_reloc_get_section (&r_rel);
7838 target_relax_info = get_xtensa_relax_info (target_sec);
7839
7840 if (target_relax_info
7841 && (target_relax_info->is_relaxable_literal_section
7842 || target_relax_info->is_relaxable_asm_section))
7843 {
7844 r_reloc new_reloc;
7845 reloc_bfd_fix *fix;
7846 bfd_vma addend_displacement;
7847
7848 translate_reloc (&r_rel, &new_reloc);
7849
7850 if (r_type == R_XTENSA_DIFF8
7851 || r_type == R_XTENSA_DIFF16
7852 || r_type == R_XTENSA_DIFF32)
7853 {
7854 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
7855
7856 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
7857 {
7858 (*link_info->callbacks->reloc_dangerous)
7859 (link_info, _("invalid relocation address"),
7860 abfd, sec, old_source_offset);
7861 goto error_return;
7862 }
7863
7864 switch (r_type)
7865 {
7866 case R_XTENSA_DIFF8:
7867 diff_value =
7868 bfd_get_8 (abfd, &contents[old_source_offset]);
7869 break;
7870 case R_XTENSA_DIFF16:
7871 diff_value =
7872 bfd_get_16 (abfd, &contents[old_source_offset]);
7873 break;
7874 case R_XTENSA_DIFF32:
7875 diff_value =
7876 bfd_get_32 (abfd, &contents[old_source_offset]);
7877 break;
7878 }
7879
7880 new_end_offset = offset_with_removed_text
7881 (&target_relax_info->action_list,
7882 r_rel.target_offset + diff_value);
7883 diff_value = new_end_offset - new_reloc.target_offset;
7884
7885 switch (r_type)
7886 {
7887 case R_XTENSA_DIFF8:
7888 diff_mask = 0xff;
7889 bfd_put_8 (abfd, diff_value,
7890 &contents[old_source_offset]);
7891 break;
7892 case R_XTENSA_DIFF16:
7893 diff_mask = 0xffff;
7894 bfd_put_16 (abfd, diff_value,
7895 &contents[old_source_offset]);
7896 break;
7897 case R_XTENSA_DIFF32:
7898 diff_mask = 0xffffffff;
7899 bfd_put_32 (abfd, diff_value,
7900 &contents[old_source_offset]);
7901 break;
7902 }
7903
7904 /* Check for overflow. */
7905 if ((diff_value & ~diff_mask) != 0)
7906 {
7907 (*link_info->callbacks->reloc_dangerous)
7908 (link_info, _("overflow after relaxation"),
7909 abfd, sec, old_source_offset);
7910 goto error_return;
7911 }
7912
7913 pin_contents (sec, contents);
7914 }
7915
7916 /* FIXME: If the relocation still references a section in
7917 the same input file, the relocation should be modified
7918 directly instead of adding a "fix" record. */
7919
7920 addend_displacement =
7921 new_reloc.target_offset + new_reloc.virtual_offset;
7922
7923 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
7924 r_reloc_get_section (&new_reloc),
7925 addend_displacement, TRUE);
7926 add_fix (sec, fix);
7927 }
7928
7929 pin_internal_relocs (sec, internal_relocs);
7930 }
7931 }
7932
7933 if ((relax_info->is_relaxable_literal_section
7934 || relax_info->is_relaxable_asm_section)
7935 && relax_info->action_list.head)
7936 {
7937 /* Walk through the planned actions and build up a table
7938 of move, copy and fill records. Use the move, copy and
7939 fill records to perform the actions once. */
7940
7941 bfd_size_type size = sec->size;
7942 int removed = 0;
7943 bfd_size_type final_size, copy_size, orig_insn_size;
7944 bfd_byte *scratch = NULL;
7945 bfd_byte *dup_contents = NULL;
7946 bfd_size_type orig_size = size;
7947 bfd_vma orig_dot = 0;
7948 bfd_vma orig_dot_copied = 0; /* Byte copied already from
7949 orig dot in physical memory. */
7950 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
7951 bfd_vma dup_dot = 0;
7952
7953 text_action *action = relax_info->action_list.head;
7954
7955 final_size = sec->size;
7956 for (action = relax_info->action_list.head; action;
7957 action = action->next)
7958 {
7959 final_size -= action->removed_bytes;
7960 }
7961
7962 scratch = (bfd_byte *) bfd_zmalloc (final_size);
7963 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
7964
7965 /* The dot is the current fill location. */
7966#if DEBUG
7967 print_action_list (stderr, &relax_info->action_list);
7968#endif
7969
7970 for (action = relax_info->action_list.head; action;
7971 action = action->next)
7972 {
7973 virtual_action = FALSE;
7974 if (action->offset > orig_dot)
7975 {
7976 orig_dot += orig_dot_copied;
7977 orig_dot_copied = 0;
7978 orig_dot_vo = 0;
7979 /* Out of the virtual world. */
7980 }
7981
7982 if (action->offset > orig_dot)
7983 {
7984 copy_size = action->offset - orig_dot;
7985 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
7986 orig_dot += copy_size;
7987 dup_dot += copy_size;
7988 BFD_ASSERT (action->offset == orig_dot);
7989 }
7990 else if (action->offset < orig_dot)
7991 {
7992 if (action->action == ta_fill
7993 && action->offset - action->removed_bytes == orig_dot)
7994 {
7995 /* This is OK because the fill only effects the dup_dot. */
7996 }
7997 else if (action->action == ta_add_literal)
7998 {
7999 /* TBD. Might need to handle this. */
8000 }
8001 }
8002 if (action->offset == orig_dot)
8003 {
8004 if (action->virtual_offset > orig_dot_vo)
8005 {
8006 if (orig_dot_vo == 0)
8007 {
8008 /* Need to copy virtual_offset bytes. Probably four. */
8009 copy_size = action->virtual_offset - orig_dot_vo;
8010 memmove (&dup_contents[dup_dot],
8011 &contents[orig_dot], copy_size);
8012 orig_dot_copied = copy_size;
8013 dup_dot += copy_size;
8014 }
8015 virtual_action = TRUE;
8016 }
8017 else
8018 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8019 }
8020 switch (action->action)
8021 {
8022 case ta_remove_literal:
8023 case ta_remove_insn:
8024 BFD_ASSERT (action->removed_bytes >= 0);
8025 orig_dot += action->removed_bytes;
8026 break;
8027
8028 case ta_narrow_insn:
8029 orig_insn_size = 3;
8030 copy_size = 2;
8031 memmove (scratch, &contents[orig_dot], orig_insn_size);
8032 BFD_ASSERT (action->removed_bytes == 1);
8033 rv = narrow_instruction (scratch, final_size, 0, TRUE);
8034 BFD_ASSERT (rv);
8035 memmove (&dup_contents[dup_dot], scratch, copy_size);
8036 orig_dot += orig_insn_size;
8037 dup_dot += copy_size;
8038 break;
8039
8040 case ta_fill:
8041 if (action->removed_bytes >= 0)
8042 orig_dot += action->removed_bytes;
8043 else
8044 {
8045 /* Already zeroed in dup_contents. Just bump the
8046 counters. */
8047 dup_dot += (-action->removed_bytes);
8048 }
8049 break;
8050
8051 case ta_none:
8052 BFD_ASSERT (action->removed_bytes == 0);
8053 break;
8054
8055 case ta_convert_longcall:
8056 case ta_remove_longcall:
8057 /* These will be removed or converted before we get here. */
8058 BFD_ASSERT (0);
8059 break;
8060
8061 case ta_widen_insn:
8062 orig_insn_size = 2;
8063 copy_size = 3;
8064 memmove (scratch, &contents[orig_dot], orig_insn_size);
8065 BFD_ASSERT (action->removed_bytes == -1);
8066 rv = widen_instruction (scratch, final_size, 0, TRUE);
8067 BFD_ASSERT (rv);
8068 memmove (&dup_contents[dup_dot], scratch, copy_size);
8069 orig_dot += orig_insn_size;
8070 dup_dot += copy_size;
8071 break;
8072
8073 case ta_add_literal:
8074 orig_insn_size = 0;
8075 copy_size = 4;
8076 BFD_ASSERT (action->removed_bytes == -4);
8077 /* TBD -- place the literal value here and insert
8078 into the table. */
8079 memset (&dup_contents[dup_dot], 0, 4);
8080 pin_internal_relocs (sec, internal_relocs);
8081 pin_contents (sec, contents);
8082
8083 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8084 relax_info, &internal_relocs, &action->value))
8085 goto error_return;
8086
8087 if (virtual_action)
8088 orig_dot_vo += copy_size;
8089
8090 orig_dot += orig_insn_size;
8091 dup_dot += copy_size;
8092 break;
8093
8094 default:
8095 /* Not implemented yet. */
8096 BFD_ASSERT (0);
8097 break;
8098 }
8099
8100 size -= action->removed_bytes;
8101 removed += action->removed_bytes;
8102 BFD_ASSERT (dup_dot <= final_size);
8103 BFD_ASSERT (orig_dot <= orig_size);
8104 }
8105
8106 orig_dot += orig_dot_copied;
8107 orig_dot_copied = 0;
8108
8109 if (orig_dot != orig_size)
8110 {
8111 copy_size = orig_size - orig_dot;
8112 BFD_ASSERT (orig_size > orig_dot);
8113 BFD_ASSERT (dup_dot + copy_size == final_size);
8114 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8115 orig_dot += copy_size;
8116 dup_dot += copy_size;
8117 }
8118 BFD_ASSERT (orig_size == orig_dot);
8119 BFD_ASSERT (final_size == dup_dot);
8120
8121 /* Move the dup_contents back. */
8122 if (final_size > orig_size)
8123 {
8124 /* Contents need to be reallocated. Swap the dup_contents into
8125 contents. */
8126 sec->contents = dup_contents;
8127 free (contents);
8128 contents = dup_contents;
8129 pin_contents (sec, contents);
8130 }
8131 else
8132 {
8133 BFD_ASSERT (final_size <= orig_size);
8134 memset (contents, 0, orig_size);
8135 memcpy (contents, dup_contents, final_size);
8136 free (dup_contents);
8137 }
8138 free (scratch);
8139 pin_contents (sec, contents);
8140
8141 sec->size = final_size;
8142 }
8143
8144 error_return:
8145 release_internal_relocs (sec, internal_relocs);
8146 release_contents (sec, contents);
8147 return ok;
8148}
8149
8150
8151static bfd_boolean
7fa3d080 8152translate_section_fixes (asection *sec)
43cd72b9
BW
8153{
8154 xtensa_relax_info *relax_info;
8155 reloc_bfd_fix *r;
8156
8157 relax_info = get_xtensa_relax_info (sec);
8158 if (!relax_info)
8159 return TRUE;
8160
8161 for (r = relax_info->fix_list; r != NULL; r = r->next)
8162 if (!translate_reloc_bfd_fix (r))
8163 return FALSE;
e0001a05 8164
43cd72b9
BW
8165 return TRUE;
8166}
e0001a05 8167
e0001a05 8168
43cd72b9
BW
8169/* Translate a fix given the mapping in the relax info for the target
8170 section. If it has already been translated, no work is required. */
e0001a05 8171
43cd72b9 8172static bfd_boolean
7fa3d080 8173translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8174{
8175 reloc_bfd_fix new_fix;
8176 asection *sec;
8177 xtensa_relax_info *relax_info;
8178 removed_literal *removed;
8179 bfd_vma new_offset, target_offset;
e0001a05 8180
43cd72b9
BW
8181 if (fix->translated)
8182 return TRUE;
e0001a05 8183
43cd72b9
BW
8184 sec = fix->target_sec;
8185 target_offset = fix->target_offset;
e0001a05 8186
43cd72b9
BW
8187 relax_info = get_xtensa_relax_info (sec);
8188 if (!relax_info)
8189 {
8190 fix->translated = TRUE;
8191 return TRUE;
8192 }
e0001a05 8193
43cd72b9 8194 new_fix = *fix;
e0001a05 8195
43cd72b9
BW
8196 /* The fix does not need to be translated if the section cannot change. */
8197 if (!relax_info->is_relaxable_literal_section
8198 && !relax_info->is_relaxable_asm_section)
8199 {
8200 fix->translated = TRUE;
8201 return TRUE;
8202 }
e0001a05 8203
43cd72b9
BW
8204 /* If the literal has been moved and this relocation was on an
8205 opcode, then the relocation should move to the new literal
8206 location. Otherwise, the relocation should move within the
8207 section. */
8208
8209 removed = FALSE;
8210 if (is_operand_relocation (fix->src_type))
8211 {
8212 /* Check if the original relocation is against a literal being
8213 removed. */
8214 removed = find_removed_literal (&relax_info->removed_list,
8215 target_offset);
e0001a05
NC
8216 }
8217
43cd72b9 8218 if (removed)
e0001a05 8219 {
43cd72b9 8220 asection *new_sec;
e0001a05 8221
43cd72b9
BW
8222 /* The fact that there is still a relocation to this literal indicates
8223 that the literal is being coalesced, not simply removed. */
8224 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8225
43cd72b9
BW
8226 /* This was moved to some other address (possibly another section). */
8227 new_sec = r_reloc_get_section (&removed->to);
8228 if (new_sec != sec)
e0001a05 8229 {
43cd72b9
BW
8230 sec = new_sec;
8231 relax_info = get_xtensa_relax_info (sec);
8232 if (!relax_info ||
8233 (!relax_info->is_relaxable_literal_section
8234 && !relax_info->is_relaxable_asm_section))
e0001a05 8235 {
43cd72b9
BW
8236 target_offset = removed->to.target_offset;
8237 new_fix.target_sec = new_sec;
8238 new_fix.target_offset = target_offset;
8239 new_fix.translated = TRUE;
8240 *fix = new_fix;
8241 return TRUE;
e0001a05 8242 }
e0001a05 8243 }
43cd72b9
BW
8244 target_offset = removed->to.target_offset;
8245 new_fix.target_sec = new_sec;
e0001a05 8246 }
43cd72b9
BW
8247
8248 /* The target address may have been moved within its section. */
8249 new_offset = offset_with_removed_text (&relax_info->action_list,
8250 target_offset);
8251
8252 new_fix.target_offset = new_offset;
8253 new_fix.target_offset = new_offset;
8254 new_fix.translated = TRUE;
8255 *fix = new_fix;
8256 return TRUE;
e0001a05
NC
8257}
8258
8259
8260/* Fix up a relocation to take account of removed literals. */
8261
8262static void
7fa3d080 8263translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8264{
8265 asection *sec;
8266 xtensa_relax_info *relax_info;
8267 removed_literal *removed;
43cd72b9 8268 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8269
8270 *new_rel = *orig_rel;
8271
8272 if (!r_reloc_is_defined (orig_rel))
8273 return;
8274 sec = r_reloc_get_section (orig_rel);
8275
8276 relax_info = get_xtensa_relax_info (sec);
8277 BFD_ASSERT (relax_info);
8278
43cd72b9
BW
8279 if (!relax_info->is_relaxable_literal_section
8280 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8281 return;
8282
43cd72b9
BW
8283 target_offset = orig_rel->target_offset;
8284
8285 removed = FALSE;
8286 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8287 {
8288 /* Check if the original relocation is against a literal being
8289 removed. */
8290 removed = find_removed_literal (&relax_info->removed_list,
8291 target_offset);
8292 }
8293 if (removed && removed->to.abfd)
e0001a05
NC
8294 {
8295 asection *new_sec;
8296
8297 /* The fact that there is still a relocation to this literal indicates
8298 that the literal is being coalesced, not simply removed. */
8299 BFD_ASSERT (removed->to.abfd != NULL);
8300
43cd72b9
BW
8301 /* This was moved to some other address
8302 (possibly in another section). */
e0001a05
NC
8303 *new_rel = removed->to;
8304 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8305 if (new_sec != sec)
e0001a05
NC
8306 {
8307 sec = new_sec;
8308 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8309 if (!relax_info
8310 || (!relax_info->is_relaxable_literal_section
8311 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8312 return;
8313 }
43cd72b9 8314 target_offset = new_rel->target_offset;
e0001a05
NC
8315 }
8316
8317 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8318 new_offset = offset_with_removed_text (&relax_info->action_list,
8319 target_offset);
e0001a05
NC
8320
8321 /* Modify the offset and addend. */
43cd72b9 8322 removed_bytes = target_offset - new_offset;
e0001a05 8323 new_rel->target_offset = new_offset;
43cd72b9 8324 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8325}
8326
8327
8328/* For dynamic links, there may be a dynamic relocation for each
8329 literal. The number of dynamic relocations must be computed in
8330 size_dynamic_sections, which occurs before relaxation. When a
8331 literal is removed, this function checks if there is a corresponding
8332 dynamic relocation and shrinks the size of the appropriate dynamic
8333 relocation section accordingly. At this point, the contents of the
8334 dynamic relocation sections have not yet been filled in, so there's
8335 nothing else that needs to be done. */
8336
8337static void
7fa3d080
BW
8338shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8339 bfd *abfd,
8340 asection *input_section,
8341 Elf_Internal_Rela *rel)
e0001a05
NC
8342{
8343 Elf_Internal_Shdr *symtab_hdr;
8344 struct elf_link_hash_entry **sym_hashes;
8345 unsigned long r_symndx;
8346 int r_type;
8347 struct elf_link_hash_entry *h;
8348 bfd_boolean dynamic_symbol;
8349
8350 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8351 sym_hashes = elf_sym_hashes (abfd);
8352
8353 r_type = ELF32_R_TYPE (rel->r_info);
8354 r_symndx = ELF32_R_SYM (rel->r_info);
8355
8356 if (r_symndx < symtab_hdr->sh_info)
8357 h = NULL;
8358 else
8359 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8360
571b5725 8361 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05
NC
8362
8363 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8364 && (input_section->flags & SEC_ALLOC) != 0
8365 && (dynamic_symbol || info->shared))
8366 {
8367 bfd *dynobj;
8368 const char *srel_name;
8369 asection *srel;
8370 bfd_boolean is_plt = FALSE;
8371
8372 dynobj = elf_hash_table (info)->dynobj;
8373 BFD_ASSERT (dynobj != NULL);
8374
8375 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8376 {
8377 srel_name = ".rela.plt";
8378 is_plt = TRUE;
8379 }
8380 else
8381 srel_name = ".rela.got";
8382
8383 /* Reduce size of the .rela.* section by one reloc. */
8384 srel = bfd_get_section_by_name (dynobj, srel_name);
8385 BFD_ASSERT (srel != NULL);
eea6121a
AM
8386 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8387 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8388
8389 if (is_plt)
8390 {
8391 asection *splt, *sgotplt, *srelgot;
8392 int reloc_index, chunk;
8393
8394 /* Find the PLT reloc index of the entry being removed. This
8395 is computed from the size of ".rela.plt". It is needed to
8396 figure out which PLT chunk to resize. Usually "last index
8397 = size - 1" since the index starts at zero, but in this
8398 context, the size has just been decremented so there's no
8399 need to subtract one. */
eea6121a 8400 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8401
8402 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8403 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8404 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8405 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8406
8407 /* Check if an entire PLT chunk has just been eliminated. */
8408 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8409 {
8410 /* The two magic GOT entries for that chunk can go away. */
8411 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8412 BFD_ASSERT (srelgot != NULL);
8413 srelgot->reloc_count -= 2;
eea6121a
AM
8414 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8415 sgotplt->size -= 8;
e0001a05
NC
8416
8417 /* There should be only one entry left (and it will be
8418 removed below). */
eea6121a
AM
8419 BFD_ASSERT (sgotplt->size == 4);
8420 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8421 }
8422
eea6121a
AM
8423 BFD_ASSERT (sgotplt->size >= 4);
8424 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8425
eea6121a
AM
8426 sgotplt->size -= 4;
8427 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8428 }
8429 }
8430}
8431
8432
43cd72b9
BW
8433/* Take an r_rel and move it to another section. This usually
8434 requires extending the interal_relocation array and pinning it. If
8435 the original r_rel is from the same BFD, we can complete this here.
8436 Otherwise, we add a fix record to let the final link fix the
8437 appropriate address. Contents and internal relocations for the
8438 section must be pinned after calling this routine. */
8439
8440static bfd_boolean
7fa3d080
BW
8441move_literal (bfd *abfd,
8442 struct bfd_link_info *link_info,
8443 asection *sec,
8444 bfd_vma offset,
8445 bfd_byte *contents,
8446 xtensa_relax_info *relax_info,
8447 Elf_Internal_Rela **internal_relocs_p,
8448 const literal_value *lit)
43cd72b9
BW
8449{
8450 Elf_Internal_Rela *new_relocs = NULL;
8451 size_t new_relocs_count = 0;
8452 Elf_Internal_Rela this_rela;
8453 const r_reloc *r_rel;
8454
8455 r_rel = &lit->r_rel;
8456 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8457
8458 if (r_reloc_is_const (r_rel))
8459 bfd_put_32 (abfd, lit->value, contents + offset);
8460 else
8461 {
8462 int r_type;
8463 unsigned i;
8464 asection *target_sec;
8465 reloc_bfd_fix *fix;
8466 unsigned insert_at;
8467
8468 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8469 target_sec = r_reloc_get_section (r_rel);
8470
8471 /* This is the difficult case. We have to create a fix up. */
8472 this_rela.r_offset = offset;
8473 this_rela.r_info = ELF32_R_INFO (0, r_type);
8474 this_rela.r_addend =
8475 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8476 bfd_put_32 (abfd, lit->value, contents + offset);
8477
8478 /* Currently, we cannot move relocations during a relocatable link. */
8479 BFD_ASSERT (!link_info->relocatable);
8480 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8481 r_reloc_get_section (r_rel),
8482 r_rel->target_offset + r_rel->virtual_offset,
8483 FALSE);
8484 /* We also need to mark that relocations are needed here. */
8485 sec->flags |= SEC_RELOC;
8486
8487 translate_reloc_bfd_fix (fix);
8488 /* This fix has not yet been translated. */
8489 add_fix (sec, fix);
8490
8491 /* Add the relocation. If we have already allocated our own
8492 space for the relocations and we have room for more, then use
8493 it. Otherwise, allocate new space and move the literals. */
8494 insert_at = sec->reloc_count;
8495 for (i = 0; i < sec->reloc_count; ++i)
8496 {
8497 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8498 {
8499 insert_at = i;
8500 break;
8501 }
8502 }
8503
8504 if (*internal_relocs_p != relax_info->allocated_relocs
8505 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8506 {
8507 BFD_ASSERT (relax_info->allocated_relocs == NULL
8508 || sec->reloc_count == relax_info->relocs_count);
8509
8510 if (relax_info->allocated_relocs_count == 0)
8511 new_relocs_count = (sec->reloc_count + 2) * 2;
8512 else
8513 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8514
8515 new_relocs = (Elf_Internal_Rela *)
8516 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8517 if (!new_relocs)
8518 return FALSE;
8519
8520 /* We could handle this more quickly by finding the split point. */
8521 if (insert_at != 0)
8522 memcpy (new_relocs, *internal_relocs_p,
8523 insert_at * sizeof (Elf_Internal_Rela));
8524
8525 new_relocs[insert_at] = this_rela;
8526
8527 if (insert_at != sec->reloc_count)
8528 memcpy (new_relocs + insert_at + 1,
8529 (*internal_relocs_p) + insert_at,
8530 (sec->reloc_count - insert_at)
8531 * sizeof (Elf_Internal_Rela));
8532
8533 if (*internal_relocs_p != relax_info->allocated_relocs)
8534 {
8535 /* The first time we re-allocate, we can only free the
8536 old relocs if they were allocated with bfd_malloc.
8537 This is not true when keep_memory is in effect. */
8538 if (!link_info->keep_memory)
8539 free (*internal_relocs_p);
8540 }
8541 else
8542 free (*internal_relocs_p);
8543 relax_info->allocated_relocs = new_relocs;
8544 relax_info->allocated_relocs_count = new_relocs_count;
8545 elf_section_data (sec)->relocs = new_relocs;
8546 sec->reloc_count++;
8547 relax_info->relocs_count = sec->reloc_count;
8548 *internal_relocs_p = new_relocs;
8549 }
8550 else
8551 {
8552 if (insert_at != sec->reloc_count)
8553 {
8554 unsigned idx;
8555 for (idx = sec->reloc_count; idx > insert_at; idx--)
8556 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8557 }
8558 (*internal_relocs_p)[insert_at] = this_rela;
8559 sec->reloc_count++;
8560 if (relax_info->allocated_relocs)
8561 relax_info->relocs_count = sec->reloc_count;
8562 }
8563 }
8564 return TRUE;
8565}
8566
8567
e0001a05
NC
8568/* This is similar to relax_section except that when a target is moved,
8569 we shift addresses up. We also need to modify the size. This
8570 algorithm does NOT allow for relocations into the middle of the
8571 property sections. */
8572
43cd72b9 8573static bfd_boolean
7fa3d080
BW
8574relax_property_section (bfd *abfd,
8575 asection *sec,
8576 struct bfd_link_info *link_info)
e0001a05
NC
8577{
8578 Elf_Internal_Rela *internal_relocs;
8579 bfd_byte *contents;
8580 unsigned i, nexti;
8581 bfd_boolean ok = TRUE;
43cd72b9
BW
8582 bfd_boolean is_full_prop_section;
8583 size_t last_zfill_target_offset = 0;
8584 asection *last_zfill_target_sec = NULL;
8585 bfd_size_type sec_size;
e0001a05 8586
43cd72b9 8587 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8588 internal_relocs = retrieve_internal_relocs (abfd, sec,
8589 link_info->keep_memory);
8590 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8591 if (contents == NULL && sec_size != 0)
e0001a05
NC
8592 {
8593 ok = FALSE;
8594 goto error_return;
8595 }
8596
43cd72b9
BW
8597 is_full_prop_section =
8598 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8599 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8600 sizeof ".gnu.linkonce.prop." - 1) == 0));
8601
8602 if (internal_relocs)
e0001a05 8603 {
43cd72b9 8604 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8605 {
8606 Elf_Internal_Rela *irel;
8607 xtensa_relax_info *target_relax_info;
e0001a05
NC
8608 unsigned r_type;
8609 asection *target_sec;
43cd72b9
BW
8610 literal_value val;
8611 bfd_byte *size_p, *flags_p;
e0001a05
NC
8612
8613 /* Locally change the source address.
8614 Translate the target to the new target address.
8615 If it points to this section and has been removed, MOVE IT.
8616 Also, don't forget to modify the associated SIZE at
8617 (offset + 4). */
8618
8619 irel = &internal_relocs[i];
8620 r_type = ELF32_R_TYPE (irel->r_info);
8621 if (r_type == R_XTENSA_NONE)
8622 continue;
8623
43cd72b9
BW
8624 /* Find the literal value. */
8625 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8626 size_p = &contents[irel->r_offset + 4];
8627 flags_p = NULL;
8628 if (is_full_prop_section)
8629 {
8630 flags_p = &contents[irel->r_offset + 8];
8631 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8632 }
8633 else
8634 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8635
43cd72b9 8636 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8637 target_relax_info = get_xtensa_relax_info (target_sec);
8638
8639 if (target_relax_info
43cd72b9
BW
8640 && (target_relax_info->is_relaxable_literal_section
8641 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8642 {
8643 /* Translate the relocation's destination. */
43cd72b9 8644 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8645 long old_size, new_size;
8646
43cd72b9
BW
8647 new_offset = offset_with_removed_text
8648 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8649
8650 /* Assert that we are not out of bounds. */
43cd72b9
BW
8651 old_size = bfd_get_32 (abfd, size_p);
8652
8653 if (old_size == 0)
8654 {
8655 /* Only the first zero-sized unreachable entry is
8656 allowed to expand. In this case the new offset
8657 should be the offset before the fill and the new
8658 size is the expansion size. For other zero-sized
8659 entries the resulting size should be zero with an
8660 offset before or after the fill address depending
8661 on whether the expanding unreachable entry
8662 preceeds it. */
8663 if (last_zfill_target_sec
8664 && last_zfill_target_sec == target_sec
8665 && last_zfill_target_offset == val.r_rel.target_offset)
8666 new_end_offset = new_offset;
8667 else
8668 {
8669 new_end_offset = new_offset;
8670 new_offset = offset_with_removed_text_before_fill
8671 (&target_relax_info->action_list,
8672 val.r_rel.target_offset);
8673
8674 /* If it is not unreachable and we have not yet
8675 seen an unreachable at this address, place it
8676 before the fill address. */
8677 if (!flags_p
8678 || (bfd_get_32 (abfd, flags_p)
8679 & XTENSA_PROP_UNREACHABLE) == 0)
8680 new_end_offset = new_offset;
8681 else
8682 {
8683 last_zfill_target_sec = target_sec;
8684 last_zfill_target_offset = val.r_rel.target_offset;
8685 }
8686 }
8687 }
8688 else
8689 {
8690 new_end_offset = offset_with_removed_text_before_fill
8691 (&target_relax_info->action_list,
8692 val.r_rel.target_offset + old_size);
8693 }
e0001a05 8694
e0001a05 8695 new_size = new_end_offset - new_offset;
43cd72b9 8696
e0001a05
NC
8697 if (new_size != old_size)
8698 {
8699 bfd_put_32 (abfd, new_size, size_p);
8700 pin_contents (sec, contents);
8701 }
43cd72b9
BW
8702
8703 if (new_offset != val.r_rel.target_offset)
e0001a05 8704 {
43cd72b9 8705 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8706 irel->r_addend += diff;
8707 pin_internal_relocs (sec, internal_relocs);
8708 }
8709 }
8710 }
8711 }
8712
8713 /* Combine adjacent property table entries. This is also done in
8714 finish_dynamic_sections() but at that point it's too late to
8715 reclaim the space in the output section, so we do this twice. */
8716
43cd72b9
BW
8717 if (internal_relocs && (!link_info->relocatable
8718 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
8719 {
8720 Elf_Internal_Rela *last_irel = NULL;
8721 int removed_bytes = 0;
8722 bfd_vma offset, last_irel_offset;
8723 bfd_vma section_size;
43cd72b9
BW
8724 bfd_size_type entry_size;
8725 flagword predef_flags;
8726
8727 if (is_full_prop_section)
8728 entry_size = 12;
8729 else
8730 entry_size = 8;
8731
8732 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
8733
8734 /* Walk over memory and irels at the same time.
8735 This REQUIRES that the internal_relocs be sorted by offset. */
8736 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8737 internal_reloc_compare);
8738 nexti = 0; /* Index into internal_relocs. */
8739
8740 pin_internal_relocs (sec, internal_relocs);
8741 pin_contents (sec, contents);
8742
8743 last_irel_offset = (bfd_vma) -1;
eea6121a 8744 section_size = sec->size;
43cd72b9 8745 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 8746
43cd72b9 8747 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
8748 {
8749 Elf_Internal_Rela *irel, *next_irel;
8750 bfd_vma bytes_to_remove, size, actual_offset;
8751 bfd_boolean remove_this_irel;
43cd72b9 8752 flagword flags;
e0001a05
NC
8753
8754 irel = NULL;
8755 next_irel = NULL;
8756
8757 /* Find the next two relocations (if there are that many left),
8758 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8759 the starting reloc index. After these two loops, "i"
8760 is the index of the first non-NONE reloc past that starting
8761 index, and "nexti" is the index for the next non-NONE reloc
8762 after "i". */
8763
8764 for (i = nexti; i < sec->reloc_count; i++)
8765 {
8766 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8767 {
8768 irel = &internal_relocs[i];
8769 break;
8770 }
8771 internal_relocs[i].r_offset -= removed_bytes;
8772 }
8773
8774 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
8775 {
8776 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
8777 != R_XTENSA_NONE)
8778 {
8779 next_irel = &internal_relocs[nexti];
8780 break;
8781 }
8782 internal_relocs[nexti].r_offset -= removed_bytes;
8783 }
8784
8785 remove_this_irel = FALSE;
8786 bytes_to_remove = 0;
8787 actual_offset = offset - removed_bytes;
8788 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
8789
43cd72b9
BW
8790 if (is_full_prop_section)
8791 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
8792 else
8793 flags = predef_flags;
8794
e0001a05
NC
8795 /* Check that the irels are sorted by offset,
8796 with only one per address. */
8797 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
8798 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
8799
43cd72b9
BW
8800 /* Make sure there aren't relocs on the size or flag fields. */
8801 if ((irel && irel->r_offset == offset + 4)
8802 || (is_full_prop_section
8803 && irel && irel->r_offset == offset + 8))
e0001a05
NC
8804 {
8805 irel->r_offset -= removed_bytes;
8806 last_irel_offset = irel->r_offset;
8807 }
43cd72b9
BW
8808 else if (next_irel && (next_irel->r_offset == offset + 4
8809 || (is_full_prop_section
8810 && next_irel->r_offset == offset + 8)))
e0001a05
NC
8811 {
8812 nexti += 1;
8813 irel->r_offset -= removed_bytes;
8814 next_irel->r_offset -= removed_bytes;
8815 last_irel_offset = next_irel->r_offset;
8816 }
43cd72b9
BW
8817 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
8818 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 8819 {
43cd72b9
BW
8820 /* Always remove entries with zero size and no alignment. */
8821 bytes_to_remove = entry_size;
e0001a05
NC
8822 if (irel && irel->r_offset == offset)
8823 {
8824 remove_this_irel = TRUE;
8825
8826 irel->r_offset -= removed_bytes;
8827 last_irel_offset = irel->r_offset;
8828 }
8829 }
8830 else if (irel && irel->r_offset == offset)
8831 {
8832 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
8833 {
8834 if (last_irel)
8835 {
43cd72b9
BW
8836 flagword old_flags;
8837 bfd_vma old_size =
e0001a05 8838 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
8839 bfd_vma old_address =
8840 (last_irel->r_addend
e0001a05 8841 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
8842 bfd_vma new_address =
8843 (irel->r_addend
e0001a05 8844 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
8845 if (is_full_prop_section)
8846 old_flags = bfd_get_32
8847 (abfd, &contents[last_irel->r_offset + 8]);
8848 else
8849 old_flags = predef_flags;
8850
8851 if ((ELF32_R_SYM (irel->r_info)
8852 == ELF32_R_SYM (last_irel->r_info))
8853 && old_address + old_size == new_address
8854 && old_flags == flags
8855 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
8856 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 8857 {
43cd72b9 8858 /* Fix the old size. */
e0001a05
NC
8859 bfd_put_32 (abfd, old_size + size,
8860 &contents[last_irel->r_offset + 4]);
43cd72b9 8861 bytes_to_remove = entry_size;
e0001a05
NC
8862 remove_this_irel = TRUE;
8863 }
8864 else
8865 last_irel = irel;
8866 }
8867 else
8868 last_irel = irel;
8869 }
8870
8871 irel->r_offset -= removed_bytes;
8872 last_irel_offset = irel->r_offset;
8873 }
8874
8875 if (remove_this_irel)
8876 {
8877 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8878 irel->r_offset -= bytes_to_remove;
8879 }
8880
8881 if (bytes_to_remove != 0)
8882 {
8883 removed_bytes += bytes_to_remove;
43cd72b9 8884 if (offset + bytes_to_remove < section_size)
e0001a05 8885 memmove (&contents[actual_offset],
43cd72b9
BW
8886 &contents[actual_offset + bytes_to_remove],
8887 section_size - offset - bytes_to_remove);
e0001a05
NC
8888 }
8889 }
8890
43cd72b9 8891 if (removed_bytes)
e0001a05
NC
8892 {
8893 /* Clear the removed bytes. */
8894 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
8895
eea6121a 8896 sec->size = section_size - removed_bytes;
e901de89
BW
8897
8898 if (xtensa_is_littable_section (sec))
8899 {
8900 bfd *dynobj = elf_hash_table (link_info)->dynobj;
8901 if (dynobj)
8902 {
8903 asection *sgotloc =
8904 bfd_get_section_by_name (dynobj, ".got.loc");
8905 if (sgotloc)
eea6121a 8906 sgotloc->size -= removed_bytes;
e901de89
BW
8907 }
8908 }
e0001a05
NC
8909 }
8910 }
e901de89 8911
e0001a05
NC
8912 error_return:
8913 release_internal_relocs (sec, internal_relocs);
8914 release_contents (sec, contents);
8915 return ok;
8916}
8917
8918\f
8919/* Third relaxation pass. */
8920
8921/* Change symbol values to account for removed literals. */
8922
43cd72b9 8923bfd_boolean
7fa3d080 8924relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
8925{
8926 xtensa_relax_info *relax_info;
8927 unsigned int sec_shndx;
8928 Elf_Internal_Shdr *symtab_hdr;
8929 Elf_Internal_Sym *isymbuf;
8930 unsigned i, num_syms, num_locals;
8931
8932 relax_info = get_xtensa_relax_info (sec);
8933 BFD_ASSERT (relax_info);
8934
43cd72b9
BW
8935 if (!relax_info->is_relaxable_literal_section
8936 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8937 return TRUE;
8938
8939 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8940
8941 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8942 isymbuf = retrieve_local_syms (abfd);
8943
8944 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
8945 num_locals = symtab_hdr->sh_info;
8946
8947 /* Adjust the local symbols defined in this section. */
8948 for (i = 0; i < num_locals; i++)
8949 {
8950 Elf_Internal_Sym *isym = &isymbuf[i];
8951
8952 if (isym->st_shndx == sec_shndx)
8953 {
43cd72b9
BW
8954 bfd_vma new_address = offset_with_removed_text
8955 (&relax_info->action_list, isym->st_value);
8956 bfd_vma new_size = isym->st_size;
8957
8958 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
8959 {
8960 bfd_vma new_end = offset_with_removed_text
8961 (&relax_info->action_list, isym->st_value + isym->st_size);
8962 new_size = new_end - new_address;
8963 }
8964
8965 isym->st_value = new_address;
8966 isym->st_size = new_size;
e0001a05
NC
8967 }
8968 }
8969
8970 /* Now adjust the global symbols defined in this section. */
8971 for (i = 0; i < (num_syms - num_locals); i++)
8972 {
8973 struct elf_link_hash_entry *sym_hash;
8974
8975 sym_hash = elf_sym_hashes (abfd)[i];
8976
8977 if (sym_hash->root.type == bfd_link_hash_warning)
8978 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
8979
8980 if ((sym_hash->root.type == bfd_link_hash_defined
8981 || sym_hash->root.type == bfd_link_hash_defweak)
8982 && sym_hash->root.u.def.section == sec)
8983 {
43cd72b9
BW
8984 bfd_vma new_address = offset_with_removed_text
8985 (&relax_info->action_list, sym_hash->root.u.def.value);
8986 bfd_vma new_size = sym_hash->size;
8987
8988 if (sym_hash->type == STT_FUNC)
8989 {
8990 bfd_vma new_end = offset_with_removed_text
8991 (&relax_info->action_list,
8992 sym_hash->root.u.def.value + sym_hash->size);
8993 new_size = new_end - new_address;
8994 }
8995
8996 sym_hash->root.u.def.value = new_address;
8997 sym_hash->size = new_size;
e0001a05
NC
8998 }
8999 }
9000
9001 return TRUE;
9002}
9003
9004\f
9005/* "Fix" handling functions, called while performing relocations. */
9006
43cd72b9 9007static bfd_boolean
7fa3d080
BW
9008do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9009 bfd *input_bfd,
9010 asection *input_section,
9011 bfd_byte *contents)
e0001a05
NC
9012{
9013 r_reloc r_rel;
9014 asection *sec, *old_sec;
9015 bfd_vma old_offset;
9016 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9017 reloc_bfd_fix *fix;
9018
9019 if (r_type == R_XTENSA_NONE)
43cd72b9 9020 return TRUE;
e0001a05 9021
43cd72b9
BW
9022 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9023 if (!fix)
9024 return TRUE;
e0001a05 9025
43cd72b9
BW
9026 r_reloc_init (&r_rel, input_bfd, rel, contents,
9027 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9028 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9029 old_offset = r_rel.target_offset;
9030
9031 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9032 {
43cd72b9
BW
9033 if (r_type != R_XTENSA_ASM_EXPAND)
9034 {
9035 (*_bfd_error_handler)
9036 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9037 input_bfd, input_section, rel->r_offset,
9038 elf_howto_table[r_type].name);
9039 return FALSE;
9040 }
e0001a05
NC
9041 /* Leave it be. Resolution will happen in a later stage. */
9042 }
9043 else
9044 {
9045 sec = fix->target_sec;
9046 rel->r_addend += ((sec->output_offset + fix->target_offset)
9047 - (old_sec->output_offset + old_offset));
9048 }
43cd72b9 9049 return TRUE;
e0001a05
NC
9050}
9051
9052
9053static void
7fa3d080
BW
9054do_fix_for_final_link (Elf_Internal_Rela *rel,
9055 bfd *input_bfd,
9056 asection *input_section,
9057 bfd_byte *contents,
9058 bfd_vma *relocationp)
e0001a05
NC
9059{
9060 asection *sec;
9061 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9062 reloc_bfd_fix *fix;
43cd72b9 9063 bfd_vma fixup_diff;
e0001a05
NC
9064
9065 if (r_type == R_XTENSA_NONE)
9066 return;
9067
43cd72b9
BW
9068 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9069 if (!fix)
e0001a05
NC
9070 return;
9071
9072 sec = fix->target_sec;
43cd72b9
BW
9073
9074 fixup_diff = rel->r_addend;
9075 if (elf_howto_table[fix->src_type].partial_inplace)
9076 {
9077 bfd_vma inplace_val;
9078 BFD_ASSERT (fix->src_offset
9079 < bfd_get_section_limit (input_bfd, input_section));
9080 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9081 fixup_diff += inplace_val;
9082 }
9083
e0001a05
NC
9084 *relocationp = (sec->output_section->vma
9085 + sec->output_offset
43cd72b9 9086 + fix->target_offset - fixup_diff);
e0001a05
NC
9087}
9088
9089\f
9090/* Miscellaneous utility functions.... */
9091
9092static asection *
7fa3d080 9093elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
e0001a05
NC
9094{
9095 char plt_name[10];
9096
9097 if (chunk == 0)
9098 return bfd_get_section_by_name (dynobj, ".plt");
9099
9100 sprintf (plt_name, ".plt.%u", chunk);
9101 return bfd_get_section_by_name (dynobj, plt_name);
9102}
9103
9104
9105static asection *
7fa3d080 9106elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
e0001a05
NC
9107{
9108 char got_name[14];
9109
9110 if (chunk == 0)
9111 return bfd_get_section_by_name (dynobj, ".got.plt");
9112
9113 sprintf (got_name, ".got.plt.%u", chunk);
9114 return bfd_get_section_by_name (dynobj, got_name);
9115}
9116
9117
9118/* Get the input section for a given symbol index.
9119 If the symbol is:
9120 . a section symbol, return the section;
9121 . a common symbol, return the common section;
9122 . an undefined symbol, return the undefined section;
9123 . an indirect symbol, follow the links;
9124 . an absolute value, return the absolute section. */
9125
9126static asection *
7fa3d080 9127get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9128{
9129 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9130 asection *target_sec = NULL;
43cd72b9 9131 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9132 {
9133 Elf_Internal_Sym *isymbuf;
9134 unsigned int section_index;
9135
9136 isymbuf = retrieve_local_syms (abfd);
9137 section_index = isymbuf[r_symndx].st_shndx;
9138
9139 if (section_index == SHN_UNDEF)
9140 target_sec = bfd_und_section_ptr;
9141 else if (section_index > 0 && section_index < SHN_LORESERVE)
9142 target_sec = bfd_section_from_elf_index (abfd, section_index);
9143 else if (section_index == SHN_ABS)
9144 target_sec = bfd_abs_section_ptr;
9145 else if (section_index == SHN_COMMON)
9146 target_sec = bfd_com_section_ptr;
43cd72b9 9147 else
e0001a05
NC
9148 /* Who knows? */
9149 target_sec = NULL;
9150 }
9151 else
9152 {
9153 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9154 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9155
9156 while (h->root.type == bfd_link_hash_indirect
9157 || h->root.type == bfd_link_hash_warning)
9158 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9159
9160 switch (h->root.type)
9161 {
9162 case bfd_link_hash_defined:
9163 case bfd_link_hash_defweak:
9164 target_sec = h->root.u.def.section;
9165 break;
9166 case bfd_link_hash_common:
9167 target_sec = bfd_com_section_ptr;
9168 break;
9169 case bfd_link_hash_undefined:
9170 case bfd_link_hash_undefweak:
9171 target_sec = bfd_und_section_ptr;
9172 break;
9173 default: /* New indirect warning. */
9174 target_sec = bfd_und_section_ptr;
9175 break;
9176 }
9177 }
9178 return target_sec;
9179}
9180
9181
9182static struct elf_link_hash_entry *
7fa3d080 9183get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9184{
9185 unsigned long indx;
9186 struct elf_link_hash_entry *h;
9187 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9188
9189 if (r_symndx < symtab_hdr->sh_info)
9190 return NULL;
43cd72b9 9191
e0001a05
NC
9192 indx = r_symndx - symtab_hdr->sh_info;
9193 h = elf_sym_hashes (abfd)[indx];
9194 while (h->root.type == bfd_link_hash_indirect
9195 || h->root.type == bfd_link_hash_warning)
9196 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9197 return h;
9198}
9199
9200
9201/* Get the section-relative offset for a symbol number. */
9202
9203static bfd_vma
7fa3d080 9204get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9205{
9206 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9207 bfd_vma offset = 0;
9208
43cd72b9 9209 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9210 {
9211 Elf_Internal_Sym *isymbuf;
9212 isymbuf = retrieve_local_syms (abfd);
9213 offset = isymbuf[r_symndx].st_value;
9214 }
9215 else
9216 {
9217 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9218 struct elf_link_hash_entry *h =
9219 elf_sym_hashes (abfd)[indx];
9220
9221 while (h->root.type == bfd_link_hash_indirect
9222 || h->root.type == bfd_link_hash_warning)
9223 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9224 if (h->root.type == bfd_link_hash_defined
9225 || h->root.type == bfd_link_hash_defweak)
9226 offset = h->root.u.def.value;
9227 }
9228 return offset;
9229}
9230
9231
9232static bfd_boolean
7fa3d080 9233is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9234{
9235 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9236 struct elf_link_hash_entry *h;
9237
9238 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9239 if (h && h->root.type == bfd_link_hash_defweak)
9240 return TRUE;
9241 return FALSE;
9242}
9243
9244
9245static bfd_boolean
7fa3d080
BW
9246pcrel_reloc_fits (xtensa_opcode opc,
9247 int opnd,
9248 bfd_vma self_address,
9249 bfd_vma dest_address)
e0001a05 9250{
43cd72b9
BW
9251 xtensa_isa isa = xtensa_default_isa;
9252 uint32 valp = dest_address;
9253 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9254 || xtensa_operand_encode (isa, opc, opnd, &valp))
9255 return FALSE;
9256 return TRUE;
e0001a05
NC
9257}
9258
9259
b614a702
BW
9260static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9261static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9262static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
43cd72b9 9263static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
b614a702
BW
9264
9265
e0001a05 9266static bfd_boolean
7fa3d080 9267xtensa_is_property_section (asection *sec)
e0001a05 9268{
b614a702 9269 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
43cd72b9
BW
9270 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9271 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
b614a702 9272 return TRUE;
e901de89 9273
b614a702 9274 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
43cd72b9
BW
9275 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9276 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9277 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
e901de89
BW
9278 return TRUE;
9279
e901de89
BW
9280 return FALSE;
9281}
9282
9283
9284static bfd_boolean
7fa3d080 9285xtensa_is_littable_section (asection *sec)
e901de89 9286{
b614a702
BW
9287 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9288 return TRUE;
e901de89 9289
b614a702
BW
9290 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9291 && sec->name[linkonce_len] == 'p'
9292 && sec->name[linkonce_len + 1] == '.')
e901de89 9293 return TRUE;
e0001a05 9294
e901de89 9295 return FALSE;
e0001a05
NC
9296}
9297
9298
43cd72b9 9299static int
7fa3d080 9300internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9301{
43cd72b9
BW
9302 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9303 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9304
9305 if (a->r_offset != b->r_offset)
9306 return (a->r_offset - b->r_offset);
9307
9308 /* We don't need to sort on these criteria for correctness,
9309 but enforcing a more strict ordering prevents unstable qsort
9310 from behaving differently with different implementations.
9311 Without the code below we get correct but different results
9312 on Solaris 2.7 and 2.8. We would like to always produce the
9313 same results no matter the host. */
9314
9315 if (a->r_info != b->r_info)
9316 return (a->r_info - b->r_info);
9317
9318 return (a->r_addend - b->r_addend);
e0001a05
NC
9319}
9320
9321
9322static int
7fa3d080 9323internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9324{
9325 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9326 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9327
43cd72b9
BW
9328 /* Check if one entry overlaps with the other; this shouldn't happen
9329 except when searching for a match. */
e0001a05
NC
9330 return (a->r_offset - b->r_offset);
9331}
9332
9333
e0001a05 9334char *
7fa3d080 9335xtensa_get_property_section_name (asection *sec, const char *base_name)
e0001a05 9336{
b614a702 9337 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9338 {
b614a702
BW
9339 char *prop_sec_name;
9340 const char *suffix;
43cd72b9 9341 char *linkonce_kind = 0;
b614a702
BW
9342
9343 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9344 linkonce_kind = "x.";
b614a702 9345 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9346 linkonce_kind = "p.";
43cd72b9
BW
9347 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9348 linkonce_kind = "prop.";
e0001a05 9349 else
b614a702
BW
9350 abort ();
9351
43cd72b9
BW
9352 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9353 + strlen (linkonce_kind) + 1);
b614a702 9354 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9355 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9356
9357 suffix = sec->name + linkonce_len;
096c35a7 9358 /* For backward compatibility, replace "t." instead of inserting
43cd72b9
BW
9359 the new linkonce_kind (but not for "prop" sections). */
9360 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9361 suffix += 2;
9362 strcat (prop_sec_name + linkonce_len, suffix);
b614a702
BW
9363
9364 return prop_sec_name;
e0001a05
NC
9365 }
9366
b614a702 9367 return strdup (base_name);
e0001a05
NC
9368}
9369
43cd72b9
BW
9370
9371flagword
7fa3d080 9372xtensa_get_property_predef_flags (asection *sec)
43cd72b9
BW
9373{
9374 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9375 || strncmp (sec->name, ".gnu.linkonce.x.",
9376 sizeof ".gnu.linkonce.x." - 1) == 0)
9377 return (XTENSA_PROP_INSN
9378 | XTENSA_PROP_INSN_NO_TRANSFORM
9379 | XTENSA_PROP_INSN_NO_REORDER);
9380
9381 if (xtensa_is_littable_section (sec))
9382 return (XTENSA_PROP_LITERAL
9383 | XTENSA_PROP_INSN_NO_TRANSFORM
9384 | XTENSA_PROP_INSN_NO_REORDER);
9385
9386 return 0;
9387}
9388
e0001a05
NC
9389\f
9390/* Other functions called directly by the linker. */
9391
9392bfd_boolean
7fa3d080
BW
9393xtensa_callback_required_dependence (bfd *abfd,
9394 asection *sec,
9395 struct bfd_link_info *link_info,
9396 deps_callback_t callback,
9397 void *closure)
e0001a05
NC
9398{
9399 Elf_Internal_Rela *internal_relocs;
9400 bfd_byte *contents;
9401 unsigned i;
9402 bfd_boolean ok = TRUE;
43cd72b9
BW
9403 bfd_size_type sec_size;
9404
9405 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9406
9407 /* ".plt*" sections have no explicit relocations but they contain L32R
9408 instructions that reference the corresponding ".got.plt*" sections. */
9409 if ((sec->flags & SEC_LINKER_CREATED) != 0
9410 && strncmp (sec->name, ".plt", 4) == 0)
9411 {
9412 asection *sgotplt;
9413
9414 /* Find the corresponding ".got.plt*" section. */
9415 if (sec->name[4] == '\0')
9416 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9417 else
9418 {
9419 char got_name[14];
9420 int chunk = 0;
9421
9422 BFD_ASSERT (sec->name[4] == '.');
9423 chunk = strtol (&sec->name[5], NULL, 10);
9424
9425 sprintf (got_name, ".got.plt.%u", chunk);
9426 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9427 }
9428 BFD_ASSERT (sgotplt);
9429
9430 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9431 section referencing a literal at the very beginning of
9432 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9433 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9434 }
9435
9436 internal_relocs = retrieve_internal_relocs (abfd, sec,
9437 link_info->keep_memory);
9438 if (internal_relocs == NULL
43cd72b9 9439 || sec->reloc_count == 0)
e0001a05
NC
9440 return ok;
9441
9442 /* Cache the contents for the duration of this scan. */
9443 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9444 if (contents == NULL && sec_size != 0)
e0001a05
NC
9445 {
9446 ok = FALSE;
9447 goto error_return;
9448 }
9449
43cd72b9
BW
9450 if (!xtensa_default_isa)
9451 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9452
43cd72b9 9453 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9454 {
9455 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9456 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9457 {
9458 r_reloc l32r_rel;
9459 asection *target_sec;
9460 bfd_vma target_offset;
43cd72b9
BW
9461
9462 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9463 target_sec = NULL;
9464 target_offset = 0;
9465 /* L32Rs must be local to the input file. */
9466 if (r_reloc_is_defined (&l32r_rel))
9467 {
9468 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9469 target_offset = l32r_rel.target_offset;
e0001a05
NC
9470 }
9471 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9472 closure);
9473 }
9474 }
9475
9476 error_return:
9477 release_internal_relocs (sec, internal_relocs);
9478 release_contents (sec, contents);
9479 return ok;
9480}
9481
2f89ff8d
L
9482/* The default literal sections should always be marked as "code" (i.e.,
9483 SHF_EXECINSTR). This is particularly important for the Linux kernel
9484 module loader so that the literals are not placed after the text. */
b35d266b 9485static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9486{
7dcb9820 9487 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958 9488 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958
L
9489 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9490 { NULL, 0, 0, 0, 0 }
9491};
9492
551b43fd
AM
9493static const struct bfd_elf_special_section *
9494elf_xtensa_get_sec_type_attr (bfd *abfd, asection *sec)
9495{
b35d266b 9496 const struct bfd_elf_special_section *ssect;
551b43fd
AM
9497
9498 /* See if this is one of the special sections. */
9499 if (sec->name == NULL)
9500 return NULL;
9501
9502 ssect = _bfd_elf_get_special_section (sec->name,
9503 elf_xtensa_special_sections,
9504 sec->use_rela_p);
9505 if (ssect != NULL)
9506 return ssect;
9507
9508 return _bfd_elf_get_sec_type_attr (abfd, sec);
9509}
7f4d3958 9510
e0001a05
NC
9511\f
9512#ifndef ELF_ARCH
9513#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9514#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9515#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9516#define TARGET_BIG_NAME "elf32-xtensa-be"
9517#define ELF_ARCH bfd_arch_xtensa
9518
9519/* The new EM_XTENSA value will be recognized beginning in the Xtensa T1040
9520 release. However, we still have to generate files with the EM_XTENSA_OLD
9521 value so that pre-T1040 tools can read the files. As soon as we stop
9522 caring about pre-T1040 tools, the following two values should be
9523 swapped. At the same time, any other code that uses EM_XTENSA_OLD
43cd72b9 9524 should be changed to use EM_XTENSA. */
e0001a05
NC
9525#define ELF_MACHINE_CODE EM_XTENSA_OLD
9526#define ELF_MACHINE_ALT1 EM_XTENSA
9527
9528#if XCHAL_HAVE_MMU
9529#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9530#else /* !XCHAL_HAVE_MMU */
9531#define ELF_MAXPAGESIZE 1
9532#endif /* !XCHAL_HAVE_MMU */
9533#endif /* ELF_ARCH */
9534
9535#define elf_backend_can_gc_sections 1
9536#define elf_backend_can_refcount 1
9537#define elf_backend_plt_readonly 1
9538#define elf_backend_got_header_size 4
9539#define elf_backend_want_dynbss 0
9540#define elf_backend_want_got_plt 1
9541
9542#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9543
e0001a05
NC
9544#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9545#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9546#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9547#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9548#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9549#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9550
9551#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9552#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9553#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9554#define elf_backend_discard_info elf_xtensa_discard_info
9555#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9556#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9557#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9558#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9559#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9560#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9561#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9562#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9563#define elf_backend_hide_symbol elf_xtensa_hide_symbol
9564#define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9565#define elf_backend_object_p elf_xtensa_object_p
9566#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9567#define elf_backend_relocate_section elf_xtensa_relocate_section
9568#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
551b43fd 9569#define elf_backend_get_sec_type_attr elf_xtensa_get_sec_type_attr
e0001a05
NC
9570
9571#include "elf32-target.h"
This page took 0.630576 seconds and 4 git commands to generate.