* dwarf2read.c (die_specification, dwarf2_extension, follow_die_ref):
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
515ef31d 2 Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 106static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 107static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 108static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
109static int internal_reloc_compare (const void *, const void *);
110static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
111static asection *xtensa_get_property_section (asection *, const char *);
112extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 113static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
114
115/* Other functions called directly by the linker. */
116
117typedef void (*deps_callback_t)
7fa3d080 118 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 119extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
121
122
43cd72b9
BW
123/* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
7fa3d080 127
43cd72b9
BW
128int elf32xtensa_size_opt;
129
130
131/* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
e0001a05 134
7fa3d080 135typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 136
43cd72b9 137
43cd72b9
BW
138/* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143xtensa_isa xtensa_default_isa;
144
145
e0001a05
NC
146/* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150static bfd_boolean relaxing_section = FALSE;
151
43cd72b9
BW
152/* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155int elf32xtensa_no_literal_movement = 1;
156
e0001a05
NC
157\f
158static reloc_howto_type elf_howto_table[] =
159{
160 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
161 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 162 FALSE, 0, 0, FALSE),
e0001a05
NC
163 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
164 bfd_elf_xtensa_reloc, "R_XTENSA_32",
165 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 166
e0001a05
NC
167 /* Replace a 32-bit value with a value from the runtime linker (only
168 used by linker-generated stub functions). The r_addend value is
169 special: 1 means to substitute a pointer to the runtime linker's
170 dynamic resolver function; 2 means to substitute the link map for
171 the shared object. */
172 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
173 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
174
e0001a05
NC
175 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
176 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 177 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
178 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
179 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 180 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
181 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 183 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
184 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
186 FALSE, 0, 0xffffffff, FALSE),
187
e0001a05 188 EMPTY_HOWTO (7),
e5f131d1
BW
189
190 /* Old relocations for backward compatibility. */
e0001a05 191 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 192 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 193 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 194 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 195 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
197
e0001a05
NC
198 /* Assembly auto-expansion. */
199 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 200 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
201 /* Relax assembly auto-expansion. */
202 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
203 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
204
e0001a05 205 EMPTY_HOWTO (13),
1bbb5f21
BW
206
207 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
208 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
209 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 210
e0001a05
NC
211 /* GNU extension to record C++ vtable hierarchy. */
212 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 214 FALSE, 0, 0, FALSE),
e0001a05
NC
215 /* GNU extension to record C++ vtable member usage. */
216 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 218 FALSE, 0, 0, FALSE),
43cd72b9
BW
219
220 /* Relocations for supporting difference of symbols. */
221 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 223 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 225 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
227
228 /* General immediate operand relocations. */
229 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 231 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 233 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 235 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 237 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 239 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 241 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 243 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 245 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 247 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 249 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 251 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 253 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 255 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 257 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
259
260 /* "Alternate" relocations. The meaning of these is opcode-specific. */
261 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 263 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 265 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 267 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 269 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 271 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 273 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 275 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 277 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 279 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 281 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 283 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 285 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 287 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 289 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
e0001a05
NC
291};
292
43cd72b9 293#if DEBUG_GEN_RELOC
e0001a05
NC
294#define TRACE(str) \
295 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
296#else
297#define TRACE(str)
298#endif
299
300static reloc_howto_type *
7fa3d080
BW
301elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
302 bfd_reloc_code_real_type code)
e0001a05
NC
303{
304 switch (code)
305 {
306 case BFD_RELOC_NONE:
307 TRACE ("BFD_RELOC_NONE");
308 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
309
310 case BFD_RELOC_32:
311 TRACE ("BFD_RELOC_32");
312 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
313
1bbb5f21
BW
314 case BFD_RELOC_32_PCREL:
315 TRACE ("BFD_RELOC_32_PCREL");
316 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
317
43cd72b9
BW
318 case BFD_RELOC_XTENSA_DIFF8:
319 TRACE ("BFD_RELOC_XTENSA_DIFF8");
320 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
321
322 case BFD_RELOC_XTENSA_DIFF16:
323 TRACE ("BFD_RELOC_XTENSA_DIFF16");
324 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
325
326 case BFD_RELOC_XTENSA_DIFF32:
327 TRACE ("BFD_RELOC_XTENSA_DIFF32");
328 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
329
e0001a05
NC
330 case BFD_RELOC_XTENSA_RTLD:
331 TRACE ("BFD_RELOC_XTENSA_RTLD");
332 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
333
334 case BFD_RELOC_XTENSA_GLOB_DAT:
335 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
336 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
337
338 case BFD_RELOC_XTENSA_JMP_SLOT:
339 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
340 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
341
342 case BFD_RELOC_XTENSA_RELATIVE:
343 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
344 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
345
346 case BFD_RELOC_XTENSA_PLT:
347 TRACE ("BFD_RELOC_XTENSA_PLT");
348 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
349
350 case BFD_RELOC_XTENSA_OP0:
351 TRACE ("BFD_RELOC_XTENSA_OP0");
352 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
353
354 case BFD_RELOC_XTENSA_OP1:
355 TRACE ("BFD_RELOC_XTENSA_OP1");
356 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
357
358 case BFD_RELOC_XTENSA_OP2:
359 TRACE ("BFD_RELOC_XTENSA_OP2");
360 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
361
362 case BFD_RELOC_XTENSA_ASM_EXPAND:
363 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
364 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
365
366 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
367 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
368 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
369
370 case BFD_RELOC_VTABLE_INHERIT:
371 TRACE ("BFD_RELOC_VTABLE_INHERIT");
372 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
373
374 case BFD_RELOC_VTABLE_ENTRY:
375 TRACE ("BFD_RELOC_VTABLE_ENTRY");
376 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
377
378 default:
43cd72b9
BW
379 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
380 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
381 {
382 unsigned n = (R_XTENSA_SLOT0_OP +
383 (code - BFD_RELOC_XTENSA_SLOT0_OP));
384 return &elf_howto_table[n];
385 }
386
387 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
388 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
389 {
390 unsigned n = (R_XTENSA_SLOT0_ALT +
391 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
392 return &elf_howto_table[n];
393 }
394
e0001a05
NC
395 break;
396 }
397
398 TRACE ("Unknown");
399 return NULL;
400}
401
157090f7
AM
402static reloc_howto_type *
403elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
404 const char *r_name)
405{
406 unsigned int i;
407
408 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
409 if (elf_howto_table[i].name != NULL
410 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
411 return &elf_howto_table[i];
412
413 return NULL;
414}
415
e0001a05
NC
416
417/* Given an ELF "rela" relocation, find the corresponding howto and record
418 it in the BFD internal arelent representation of the relocation. */
419
420static void
7fa3d080
BW
421elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
422 arelent *cache_ptr,
423 Elf_Internal_Rela *dst)
e0001a05
NC
424{
425 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
426
427 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
428 cache_ptr->howto = &elf_howto_table[r_type];
429}
430
431\f
432/* Functions for the Xtensa ELF linker. */
433
434/* The name of the dynamic interpreter. This is put in the .interp
435 section. */
436
437#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
438
439/* The size in bytes of an entry in the procedure linkage table.
440 (This does _not_ include the space for the literals associated with
441 the PLT entry.) */
442
443#define PLT_ENTRY_SIZE 16
444
445/* For _really_ large PLTs, we may need to alternate between literals
446 and code to keep the literals within the 256K range of the L32R
447 instructions in the code. It's unlikely that anyone would ever need
448 such a big PLT, but an arbitrary limit on the PLT size would be bad.
449 Thus, we split the PLT into chunks. Since there's very little
450 overhead (2 extra literals) for each chunk, the chunk size is kept
451 small so that the code for handling multiple chunks get used and
452 tested regularly. With 254 entries, there are 1K of literals for
453 each chunk, and that seems like a nice round number. */
454
455#define PLT_ENTRIES_PER_CHUNK 254
456
457/* PLT entries are actually used as stub functions for lazy symbol
458 resolution. Once the symbol is resolved, the stub function is never
459 invoked. Note: the 32-byte frame size used here cannot be changed
460 without a corresponding change in the runtime linker. */
461
462static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
463{
464 0x6c, 0x10, 0x04, /* entry sp, 32 */
465 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
466 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
467 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
468 0x0a, 0x80, 0x00, /* jx a8 */
469 0 /* unused */
470};
471
472static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
473{
474 0x36, 0x41, 0x00, /* entry sp, 32 */
475 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
476 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
477 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
478 0xa0, 0x08, 0x00, /* jx a8 */
479 0 /* unused */
480};
481
f0e6fdb2
BW
482/* Xtensa ELF linker hash table. */
483
484struct elf_xtensa_link_hash_table
485{
486 struct elf_link_hash_table elf;
487
488 /* Short-cuts to get to dynamic linker sections. */
489 asection *sgot;
490 asection *sgotplt;
491 asection *srelgot;
492 asection *splt;
493 asection *srelplt;
494 asection *sgotloc;
495 asection *spltlittbl;
496
497 /* Total count of PLT relocations seen during check_relocs.
498 The actual PLT code must be split into multiple sections and all
499 the sections have to be created before size_dynamic_sections,
500 where we figure out the exact number of PLT entries that will be
501 needed. It is OK if this count is an overestimate, e.g., some
502 relocations may be removed by GC. */
503 int plt_reloc_count;
504};
505
506/* Get the Xtensa ELF linker hash table from a link_info structure. */
507
508#define elf_xtensa_hash_table(p) \
509 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
510
511/* Create an Xtensa ELF linker hash table. */
512
513static struct bfd_link_hash_table *
514elf_xtensa_link_hash_table_create (bfd *abfd)
515{
516 struct elf_xtensa_link_hash_table *ret;
517 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
518
519 ret = bfd_malloc (amt);
520 if (ret == NULL)
521 return NULL;
522
523 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
524 _bfd_elf_link_hash_newfunc,
525 sizeof (struct elf_link_hash_entry)))
526 {
527 free (ret);
528 return NULL;
529 }
530
531 ret->sgot = NULL;
532 ret->sgotplt = NULL;
533 ret->srelgot = NULL;
534 ret->splt = NULL;
535 ret->srelplt = NULL;
536 ret->sgotloc = NULL;
537 ret->spltlittbl = NULL;
538
539 ret->plt_reloc_count = 0;
540
541 return &ret->elf.root;
542}
571b5725
BW
543
544static inline bfd_boolean
4608f3d9 545elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 546 struct bfd_link_info *info)
571b5725
BW
547{
548 /* Check if we should do dynamic things to this symbol. The
549 "ignore_protected" argument need not be set, because Xtensa code
550 does not require special handling of STV_PROTECTED to make function
551 pointer comparisons work properly. The PLT addresses are never
552 used for function pointers. */
553
554 return _bfd_elf_dynamic_symbol_p (h, info, 0);
555}
556
e0001a05
NC
557\f
558static int
7fa3d080 559property_table_compare (const void *ap, const void *bp)
e0001a05
NC
560{
561 const property_table_entry *a = (const property_table_entry *) ap;
562 const property_table_entry *b = (const property_table_entry *) bp;
563
43cd72b9
BW
564 if (a->address == b->address)
565 {
43cd72b9
BW
566 if (a->size != b->size)
567 return (a->size - b->size);
568
569 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
570 return ((b->flags & XTENSA_PROP_ALIGN)
571 - (a->flags & XTENSA_PROP_ALIGN));
572
573 if ((a->flags & XTENSA_PROP_ALIGN)
574 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
575 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
576 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
577 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
578
579 if ((a->flags & XTENSA_PROP_UNREACHABLE)
580 != (b->flags & XTENSA_PROP_UNREACHABLE))
581 return ((b->flags & XTENSA_PROP_UNREACHABLE)
582 - (a->flags & XTENSA_PROP_UNREACHABLE));
583
584 return (a->flags - b->flags);
585 }
586
587 return (a->address - b->address);
588}
589
590
591static int
7fa3d080 592property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
593{
594 const property_table_entry *a = (const property_table_entry *) ap;
595 const property_table_entry *b = (const property_table_entry *) bp;
596
597 /* Check if one entry overlaps with the other. */
e0001a05
NC
598 if ((b->address >= a->address && b->address < (a->address + a->size))
599 || (a->address >= b->address && a->address < (b->address + b->size)))
600 return 0;
601
602 return (a->address - b->address);
603}
604
605
43cd72b9
BW
606/* Get the literal table or property table entries for the given
607 section. Sets TABLE_P and returns the number of entries. On
608 error, returns a negative value. */
e0001a05 609
7fa3d080
BW
610static int
611xtensa_read_table_entries (bfd *abfd,
612 asection *section,
613 property_table_entry **table_p,
614 const char *sec_name,
615 bfd_boolean output_addr)
e0001a05
NC
616{
617 asection *table_section;
e0001a05
NC
618 bfd_size_type table_size = 0;
619 bfd_byte *table_data;
620 property_table_entry *blocks;
e4115460 621 int blk, block_count;
e0001a05 622 bfd_size_type num_records;
bcc2cc8e
BW
623 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
624 bfd_vma section_addr, off;
43cd72b9 625 flagword predef_flags;
bcc2cc8e 626 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
627
628 if (!section
629 || !(section->flags & SEC_ALLOC)
630 || (section->flags & SEC_DEBUGGING))
631 {
632 *table_p = NULL;
633 return 0;
634 }
e0001a05 635
74869ac7 636 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 637 if (table_section)
eea6121a 638 table_size = table_section->size;
43cd72b9 639
e0001a05
NC
640 if (table_size == 0)
641 {
642 *table_p = NULL;
643 return 0;
644 }
645
43cd72b9
BW
646 predef_flags = xtensa_get_property_predef_flags (table_section);
647 table_entry_size = 12;
648 if (predef_flags)
649 table_entry_size -= 4;
650
651 num_records = table_size / table_entry_size;
e0001a05
NC
652 table_data = retrieve_contents (abfd, table_section, TRUE);
653 blocks = (property_table_entry *)
654 bfd_malloc (num_records * sizeof (property_table_entry));
655 block_count = 0;
43cd72b9
BW
656
657 if (output_addr)
658 section_addr = section->output_section->vma + section->output_offset;
659 else
660 section_addr = section->vma;
3ba3bc8c 661
e0001a05 662 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 663 if (internal_relocs && !table_section->reloc_done)
e0001a05 664 {
bcc2cc8e
BW
665 qsort (internal_relocs, table_section->reloc_count,
666 sizeof (Elf_Internal_Rela), internal_reloc_compare);
667 irel = internal_relocs;
668 }
669 else
670 irel = NULL;
671
672 section_limit = bfd_get_section_limit (abfd, section);
673 rel_end = internal_relocs + table_section->reloc_count;
674
675 for (off = 0; off < table_size; off += table_entry_size)
676 {
677 bfd_vma address = bfd_get_32 (abfd, table_data + off);
678
679 /* Skip any relocations before the current offset. This should help
680 avoid confusion caused by unexpected relocations for the preceding
681 table entry. */
682 while (irel &&
683 (irel->r_offset < off
684 || (irel->r_offset == off
685 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
686 {
687 irel += 1;
688 if (irel >= rel_end)
689 irel = 0;
690 }
e0001a05 691
bcc2cc8e 692 if (irel && irel->r_offset == off)
e0001a05 693 {
bcc2cc8e
BW
694 bfd_vma sym_off;
695 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
696 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 697
bcc2cc8e 698 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
699 continue;
700
bcc2cc8e
BW
701 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
702 BFD_ASSERT (sym_off == 0);
703 address += (section_addr + sym_off + irel->r_addend);
e0001a05 704 }
bcc2cc8e 705 else
e0001a05 706 {
bcc2cc8e
BW
707 if (address < section_addr
708 || address >= section_addr + section_limit)
709 continue;
e0001a05 710 }
bcc2cc8e
BW
711
712 blocks[block_count].address = address;
713 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
714 if (predef_flags)
715 blocks[block_count].flags = predef_flags;
716 else
717 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
718 block_count++;
e0001a05
NC
719 }
720
721 release_contents (table_section, table_data);
722 release_internal_relocs (table_section, internal_relocs);
723
43cd72b9 724 if (block_count > 0)
e0001a05
NC
725 {
726 /* Now sort them into address order for easy reference. */
727 qsort (blocks, block_count, sizeof (property_table_entry),
728 property_table_compare);
e4115460
BW
729
730 /* Check that the table contents are valid. Problems may occur,
731 for example, if an unrelocated object file is stripped. */
732 for (blk = 1; blk < block_count; blk++)
733 {
734 /* The only circumstance where two entries may legitimately
735 have the same address is when one of them is a zero-size
736 placeholder to mark a place where fill can be inserted.
737 The zero-size entry should come first. */
738 if (blocks[blk - 1].address == blocks[blk].address &&
739 blocks[blk - 1].size != 0)
740 {
741 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
742 abfd, section);
743 bfd_set_error (bfd_error_bad_value);
744 free (blocks);
745 return -1;
746 }
747 }
e0001a05 748 }
43cd72b9 749
e0001a05
NC
750 *table_p = blocks;
751 return block_count;
752}
753
754
7fa3d080
BW
755static property_table_entry *
756elf_xtensa_find_property_entry (property_table_entry *property_table,
757 int property_table_size,
758 bfd_vma addr)
e0001a05
NC
759{
760 property_table_entry entry;
43cd72b9 761 property_table_entry *rv;
e0001a05 762
43cd72b9
BW
763 if (property_table_size == 0)
764 return NULL;
e0001a05
NC
765
766 entry.address = addr;
767 entry.size = 1;
43cd72b9 768 entry.flags = 0;
e0001a05 769
43cd72b9
BW
770 rv = bsearch (&entry, property_table, property_table_size,
771 sizeof (property_table_entry), property_table_matches);
772 return rv;
773}
774
775
776static bfd_boolean
7fa3d080
BW
777elf_xtensa_in_literal_pool (property_table_entry *lit_table,
778 int lit_table_size,
779 bfd_vma addr)
43cd72b9
BW
780{
781 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
782 return TRUE;
783
784 return FALSE;
785}
786
787\f
788/* Look through the relocs for a section during the first phase, and
789 calculate needed space in the dynamic reloc sections. */
790
791static bfd_boolean
7fa3d080
BW
792elf_xtensa_check_relocs (bfd *abfd,
793 struct bfd_link_info *info,
794 asection *sec,
795 const Elf_Internal_Rela *relocs)
e0001a05 796{
f0e6fdb2 797 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
798 Elf_Internal_Shdr *symtab_hdr;
799 struct elf_link_hash_entry **sym_hashes;
800 const Elf_Internal_Rela *rel;
801 const Elf_Internal_Rela *rel_end;
e0001a05 802
1049f94e 803 if (info->relocatable)
e0001a05
NC
804 return TRUE;
805
f0e6fdb2 806 htab = elf_xtensa_hash_table (info);
e0001a05
NC
807 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
808 sym_hashes = elf_sym_hashes (abfd);
809
e0001a05
NC
810 rel_end = relocs + sec->reloc_count;
811 for (rel = relocs; rel < rel_end; rel++)
812 {
813 unsigned int r_type;
814 unsigned long r_symndx;
815 struct elf_link_hash_entry *h;
816
817 r_symndx = ELF32_R_SYM (rel->r_info);
818 r_type = ELF32_R_TYPE (rel->r_info);
819
820 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
821 {
d003868e
AM
822 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
823 abfd, r_symndx);
e0001a05
NC
824 return FALSE;
825 }
826
827 if (r_symndx < symtab_hdr->sh_info)
828 h = NULL;
829 else
830 {
831 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
832 while (h->root.type == bfd_link_hash_indirect
833 || h->root.type == bfd_link_hash_warning)
834 h = (struct elf_link_hash_entry *) h->root.u.i.link;
835 }
836
837 switch (r_type)
838 {
839 case R_XTENSA_32:
840 if (h == NULL)
841 goto local_literal;
842
843 if ((sec->flags & SEC_ALLOC) != 0)
844 {
e0001a05
NC
845 if (h->got.refcount <= 0)
846 h->got.refcount = 1;
847 else
848 h->got.refcount += 1;
849 }
850 break;
851
852 case R_XTENSA_PLT:
853 /* If this relocation is against a local symbol, then it's
854 exactly the same as a normal local GOT entry. */
855 if (h == NULL)
856 goto local_literal;
857
858 if ((sec->flags & SEC_ALLOC) != 0)
859 {
e0001a05
NC
860 if (h->plt.refcount <= 0)
861 {
f5385ebf 862 h->needs_plt = 1;
e0001a05
NC
863 h->plt.refcount = 1;
864 }
865 else
866 h->plt.refcount += 1;
867
868 /* Keep track of the total PLT relocation count even if we
869 don't yet know whether the dynamic sections will be
870 created. */
f0e6fdb2 871 htab->plt_reloc_count += 1;
e0001a05
NC
872
873 if (elf_hash_table (info)->dynamic_sections_created)
874 {
f0e6fdb2 875 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
876 return FALSE;
877 }
878 }
879 break;
880
881 local_literal:
882 if ((sec->flags & SEC_ALLOC) != 0)
883 {
884 bfd_signed_vma *local_got_refcounts;
885
886 /* This is a global offset table entry for a local symbol. */
887 local_got_refcounts = elf_local_got_refcounts (abfd);
888 if (local_got_refcounts == NULL)
889 {
890 bfd_size_type size;
891
892 size = symtab_hdr->sh_info;
893 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
894 local_got_refcounts =
895 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
896 if (local_got_refcounts == NULL)
897 return FALSE;
898 elf_local_got_refcounts (abfd) = local_got_refcounts;
899 }
900 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
901 }
902 break;
903
e0001a05
NC
904 case R_XTENSA_GNU_VTINHERIT:
905 /* This relocation describes the C++ object vtable hierarchy.
906 Reconstruct it for later use during GC. */
c152c796 907 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
908 return FALSE;
909 break;
910
911 case R_XTENSA_GNU_VTENTRY:
912 /* This relocation describes which C++ vtable entries are actually
913 used. Record for later use during GC. */
d17e0c6e
JB
914 BFD_ASSERT (h != NULL);
915 if (h != NULL
916 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
917 return FALSE;
918 break;
919
920 default:
921 break;
922 }
923 }
924
e0001a05
NC
925 return TRUE;
926}
927
928
95147441
BW
929static void
930elf_xtensa_make_sym_local (struct bfd_link_info *info,
931 struct elf_link_hash_entry *h)
932{
933 if (info->shared)
934 {
935 if (h->plt.refcount > 0)
936 {
937 /* For shared objects, there's no need for PLT entries for local
938 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
939 if (h->got.refcount < 0)
940 h->got.refcount = 0;
941 h->got.refcount += h->plt.refcount;
942 h->plt.refcount = 0;
943 }
944 }
945 else
946 {
947 /* Don't need any dynamic relocations at all. */
948 h->plt.refcount = 0;
949 h->got.refcount = 0;
950 }
951}
952
953
954static void
955elf_xtensa_hide_symbol (struct bfd_link_info *info,
956 struct elf_link_hash_entry *h,
957 bfd_boolean force_local)
958{
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info, h);
962
963 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
964}
965
966
e0001a05
NC
967/* Return the section that should be marked against GC for a given
968 relocation. */
969
970static asection *
7fa3d080 971elf_xtensa_gc_mark_hook (asection *sec,
07adf181 972 struct bfd_link_info *info,
7fa3d080
BW
973 Elf_Internal_Rela *rel,
974 struct elf_link_hash_entry *h,
975 Elf_Internal_Sym *sym)
e0001a05 976{
e1e5c0b5
BW
977 /* Property sections are marked "KEEP" in the linker scripts, but they
978 should not cause other sections to be marked. (This approach relies
979 on elf_xtensa_discard_info to remove property table entries that
980 describe discarded sections. Alternatively, it might be more
981 efficient to avoid using "KEEP" in the linker scripts and instead use
982 the gc_mark_extra_sections hook to mark only the property sections
983 that describe marked sections. That alternative does not work well
984 with the current property table sections, which do not correspond
985 one-to-one with the sections they describe, but that should be fixed
986 someday.) */
987 if (xtensa_is_property_section (sec))
988 return NULL;
989
07adf181
AM
990 if (h != NULL)
991 switch (ELF32_R_TYPE (rel->r_info))
992 {
993 case R_XTENSA_GNU_VTINHERIT:
994 case R_XTENSA_GNU_VTENTRY:
995 return NULL;
996 }
997
998 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
999}
1000
7fa3d080 1001
e0001a05
NC
1002/* Update the GOT & PLT entry reference counts
1003 for the section being removed. */
1004
1005static bfd_boolean
7fa3d080
BW
1006elf_xtensa_gc_sweep_hook (bfd *abfd,
1007 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1008 asection *sec,
1009 const Elf_Internal_Rela *relocs)
e0001a05
NC
1010{
1011 Elf_Internal_Shdr *symtab_hdr;
1012 struct elf_link_hash_entry **sym_hashes;
1013 bfd_signed_vma *local_got_refcounts;
1014 const Elf_Internal_Rela *rel, *relend;
1015
7dda2462
TG
1016 if (info->relocatable)
1017 return TRUE;
1018
e0001a05
NC
1019 if ((sec->flags & SEC_ALLOC) == 0)
1020 return TRUE;
1021
1022 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1023 sym_hashes = elf_sym_hashes (abfd);
1024 local_got_refcounts = elf_local_got_refcounts (abfd);
1025
1026 relend = relocs + sec->reloc_count;
1027 for (rel = relocs; rel < relend; rel++)
1028 {
1029 unsigned long r_symndx;
1030 unsigned int r_type;
1031 struct elf_link_hash_entry *h = NULL;
1032
1033 r_symndx = ELF32_R_SYM (rel->r_info);
1034 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1035 {
1036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037 while (h->root.type == bfd_link_hash_indirect
1038 || h->root.type == bfd_link_hash_warning)
1039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1040 }
e0001a05
NC
1041
1042 r_type = ELF32_R_TYPE (rel->r_info);
1043 switch (r_type)
1044 {
1045 case R_XTENSA_32:
1046 if (h == NULL)
1047 goto local_literal;
1048 if (h->got.refcount > 0)
1049 h->got.refcount--;
1050 break;
1051
1052 case R_XTENSA_PLT:
1053 if (h == NULL)
1054 goto local_literal;
1055 if (h->plt.refcount > 0)
1056 h->plt.refcount--;
1057 break;
1058
1059 local_literal:
1060 if (local_got_refcounts[r_symndx] > 0)
1061 local_got_refcounts[r_symndx] -= 1;
1062 break;
1063
1064 default:
1065 break;
1066 }
1067 }
1068
1069 return TRUE;
1070}
1071
1072
1073/* Create all the dynamic sections. */
1074
1075static bfd_boolean
7fa3d080 1076elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1077{
f0e6fdb2 1078 struct elf_xtensa_link_hash_table *htab;
e901de89 1079 flagword flags, noalloc_flags;
f0e6fdb2
BW
1080
1081 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1082
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 return FALSE;
f0e6fdb2
BW
1086 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1087 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1088 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1089 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
e0001a05
NC
1090
1091 /* Create any extra PLT sections in case check_relocs has already
1092 been called on all the non-dynamic input files. */
f0e6fdb2 1093 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1094 return FALSE;
1095
e901de89
BW
1096 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1097 | SEC_LINKER_CREATED | SEC_READONLY);
1098 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1099
1100 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1101 if (htab->sgotplt == NULL
1102 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1103 return FALSE;
1104
1105 /* Create ".rela.got". */
f0e6fdb2
BW
1106 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1107 if (htab->srelgot == NULL
1108 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
e0001a05
NC
1109 return FALSE;
1110
e901de89 1111 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1112 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1113 if (htab->sgotloc == NULL
1114 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1115 return FALSE;
1116
e0001a05 1117 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1118 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1119 noalloc_flags);
1120 if (htab->spltlittbl == NULL
1121 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1122 return FALSE;
1123
1124 return TRUE;
1125}
1126
1127
1128static bfd_boolean
f0e6fdb2 1129add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1130{
f0e6fdb2 1131 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1132 int chunk;
1133
1134 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1135 ".got.plt" sections. */
1136 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1137 {
1138 char *sname;
1139 flagword flags;
1140 asection *s;
1141
1142 /* Stop when we find a section has already been created. */
f0e6fdb2 1143 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1144 break;
1145
1146 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1147 | SEC_LINKER_CREATED | SEC_READONLY);
1148
1149 sname = (char *) bfd_malloc (10);
1150 sprintf (sname, ".plt.%u", chunk);
ba05963f 1151 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1152 if (s == NULL
e0001a05
NC
1153 || ! bfd_set_section_alignment (dynobj, s, 2))
1154 return FALSE;
1155
1156 sname = (char *) bfd_malloc (14);
1157 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1158 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1159 if (s == NULL
e0001a05
NC
1160 || ! bfd_set_section_alignment (dynobj, s, 2))
1161 return FALSE;
1162 }
1163
1164 return TRUE;
1165}
1166
1167
1168/* Adjust a symbol defined by a dynamic object and referenced by a
1169 regular object. The current definition is in some section of the
1170 dynamic object, but we're not including those sections. We have to
1171 change the definition to something the rest of the link can
1172 understand. */
1173
1174static bfd_boolean
7fa3d080
BW
1175elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1176 struct elf_link_hash_entry *h)
e0001a05
NC
1177{
1178 /* If this is a weak symbol, and there is a real definition, the
1179 processor independent code will have arranged for us to see the
1180 real definition first, and we can just use the same value. */
7fa3d080 1181 if (h->u.weakdef)
e0001a05 1182 {
f6e332e6
AM
1183 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1184 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1185 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1186 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1187 return TRUE;
1188 }
1189
1190 /* This is a reference to a symbol defined by a dynamic object. The
1191 reference must go through the GOT, so there's no need for COPY relocs,
1192 .dynbss, etc. */
1193
1194 return TRUE;
1195}
1196
1197
e0001a05 1198static bfd_boolean
f1ab2340 1199elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1200{
f1ab2340
BW
1201 struct bfd_link_info *info;
1202 struct elf_xtensa_link_hash_table *htab;
1203 bfd_boolean is_dynamic;
e0001a05 1204
f1ab2340
BW
1205 if (h->root.type == bfd_link_hash_indirect)
1206 return TRUE;
e0001a05
NC
1207
1208 if (h->root.type == bfd_link_hash_warning)
1209 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1210
f1ab2340
BW
1211 info = (struct bfd_link_info *) arg;
1212 htab = elf_xtensa_hash_table (info);
e0001a05 1213
f1ab2340 1214 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 1215
f1ab2340 1216 if (! is_dynamic)
95147441 1217 elf_xtensa_make_sym_local (info, h);
e0001a05 1218
f1ab2340
BW
1219 if (h->plt.refcount > 0)
1220 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1221
1222 if (h->got.refcount > 0)
f1ab2340 1223 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1224
1225 return TRUE;
1226}
1227
1228
1229static void
f0e6fdb2 1230elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1231{
f0e6fdb2 1232 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1233 bfd *i;
1234
f0e6fdb2
BW
1235 htab = elf_xtensa_hash_table (info);
1236
e0001a05
NC
1237 for (i = info->input_bfds; i; i = i->link_next)
1238 {
1239 bfd_signed_vma *local_got_refcounts;
1240 bfd_size_type j, cnt;
1241 Elf_Internal_Shdr *symtab_hdr;
1242
1243 local_got_refcounts = elf_local_got_refcounts (i);
1244 if (!local_got_refcounts)
1245 continue;
1246
1247 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1248 cnt = symtab_hdr->sh_info;
1249
1250 for (j = 0; j < cnt; ++j)
1251 {
1252 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1253 htab->srelgot->size += (local_got_refcounts[j]
1254 * sizeof (Elf32_External_Rela));
e0001a05
NC
1255 }
1256 }
1257}
1258
1259
1260/* Set the sizes of the dynamic sections. */
1261
1262static bfd_boolean
7fa3d080
BW
1263elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1264 struct bfd_link_info *info)
e0001a05 1265{
f0e6fdb2 1266 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1267 bfd *dynobj, *abfd;
1268 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1269 bfd_boolean relplt, relgot;
1270 int plt_entries, plt_chunks, chunk;
1271
1272 plt_entries = 0;
1273 plt_chunks = 0;
e0001a05 1274
f0e6fdb2 1275 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1276 dynobj = elf_hash_table (info)->dynobj;
1277 if (dynobj == NULL)
1278 abort ();
f0e6fdb2
BW
1279 srelgot = htab->srelgot;
1280 srelplt = htab->srelplt;
e0001a05
NC
1281
1282 if (elf_hash_table (info)->dynamic_sections_created)
1283 {
f0e6fdb2
BW
1284 BFD_ASSERT (htab->srelgot != NULL
1285 && htab->srelplt != NULL
1286 && htab->sgot != NULL
1287 && htab->spltlittbl != NULL
1288 && htab->sgotloc != NULL);
1289
e0001a05 1290 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1291 if (info->executable)
e0001a05
NC
1292 {
1293 s = bfd_get_section_by_name (dynobj, ".interp");
1294 if (s == NULL)
1295 abort ();
eea6121a 1296 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1297 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1298 }
1299
1300 /* Allocate room for one word in ".got". */
f0e6fdb2 1301 htab->sgot->size = 4;
e0001a05 1302
f1ab2340
BW
1303 /* Allocate space in ".rela.got" for literals that reference global
1304 symbols and space in ".rela.plt" for literals that have PLT
1305 entries. */
e0001a05 1306 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1307 elf_xtensa_allocate_dynrelocs,
7fa3d080 1308 (void *) info);
e0001a05 1309
e0001a05
NC
1310 /* If we are generating a shared object, we also need space in
1311 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1312 reference local symbols. */
1313 if (info->shared)
f0e6fdb2 1314 elf_xtensa_allocate_local_got_size (info);
e0001a05 1315
e0001a05
NC
1316 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1317 each PLT entry, we need the PLT code plus a 4-byte literal.
1318 For each chunk of ".plt", we also need two more 4-byte
1319 literals, two corresponding entries in ".rela.got", and an
1320 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1321 spltlittbl = htab->spltlittbl;
eea6121a 1322 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1323 plt_chunks =
1324 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1325
1326 /* Iterate over all the PLT chunks, including any extra sections
1327 created earlier because the initial count of PLT relocations
1328 was an overestimate. */
1329 for (chunk = 0;
f0e6fdb2 1330 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1331 chunk++)
1332 {
1333 int chunk_entries;
1334
f0e6fdb2
BW
1335 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1336 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1337
1338 if (chunk < plt_chunks - 1)
1339 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1340 else if (chunk == plt_chunks - 1)
1341 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1342 else
1343 chunk_entries = 0;
1344
1345 if (chunk_entries != 0)
1346 {
eea6121a
AM
1347 sgotplt->size = 4 * (chunk_entries + 2);
1348 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1349 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1350 spltlittbl->size += 8;
e0001a05
NC
1351 }
1352 else
1353 {
eea6121a
AM
1354 sgotplt->size = 0;
1355 splt->size = 0;
e0001a05
NC
1356 }
1357 }
e901de89
BW
1358
1359 /* Allocate space in ".got.loc" to match the total size of all the
1360 literal tables. */
f0e6fdb2 1361 sgotloc = htab->sgotloc;
eea6121a 1362 sgotloc->size = spltlittbl->size;
e901de89
BW
1363 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1364 {
1365 if (abfd->flags & DYNAMIC)
1366 continue;
1367 for (s = abfd->sections; s != NULL; s = s->next)
1368 {
b536dc1e
BW
1369 if (! elf_discarded_section (s)
1370 && xtensa_is_littable_section (s)
1371 && s != spltlittbl)
eea6121a 1372 sgotloc->size += s->size;
e901de89
BW
1373 }
1374 }
e0001a05
NC
1375 }
1376
1377 /* Allocate memory for dynamic sections. */
1378 relplt = FALSE;
1379 relgot = FALSE;
1380 for (s = dynobj->sections; s != NULL; s = s->next)
1381 {
1382 const char *name;
e0001a05
NC
1383
1384 if ((s->flags & SEC_LINKER_CREATED) == 0)
1385 continue;
1386
1387 /* It's OK to base decisions on the section name, because none
1388 of the dynobj section names depend upon the input files. */
1389 name = bfd_get_section_name (dynobj, s);
1390
0112cd26 1391 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1392 {
c456f082 1393 if (s->size != 0)
e0001a05 1394 {
c456f082
AM
1395 if (strcmp (name, ".rela.plt") == 0)
1396 relplt = TRUE;
1397 else if (strcmp (name, ".rela.got") == 0)
1398 relgot = TRUE;
1399
1400 /* We use the reloc_count field as a counter if we need
1401 to copy relocs into the output file. */
1402 s->reloc_count = 0;
e0001a05
NC
1403 }
1404 }
0112cd26
NC
1405 else if (! CONST_STRNEQ (name, ".plt.")
1406 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1407 && strcmp (name, ".got") != 0
e0001a05
NC
1408 && strcmp (name, ".plt") != 0
1409 && strcmp (name, ".got.plt") != 0
e901de89
BW
1410 && strcmp (name, ".xt.lit.plt") != 0
1411 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1412 {
1413 /* It's not one of our sections, so don't allocate space. */
1414 continue;
1415 }
1416
c456f082
AM
1417 if (s->size == 0)
1418 {
1419 /* If we don't need this section, strip it from the output
1420 file. We must create the ".plt*" and ".got.plt*"
1421 sections in create_dynamic_sections and/or check_relocs
1422 based on a conservative estimate of the PLT relocation
1423 count, because the sections must be created before the
1424 linker maps input sections to output sections. The
1425 linker does that before size_dynamic_sections, where we
1426 compute the exact size of the PLT, so there may be more
1427 of these sections than are actually needed. */
1428 s->flags |= SEC_EXCLUDE;
1429 }
1430 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1431 {
1432 /* Allocate memory for the section contents. */
eea6121a 1433 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1434 if (s->contents == NULL)
e0001a05
NC
1435 return FALSE;
1436 }
1437 }
1438
1439 if (elf_hash_table (info)->dynamic_sections_created)
1440 {
1441 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1442 known until finish_dynamic_sections, but we need to get the relocs
1443 in place before they are sorted. */
e0001a05
NC
1444 for (chunk = 0; chunk < plt_chunks; chunk++)
1445 {
1446 Elf_Internal_Rela irela;
1447 bfd_byte *loc;
1448
1449 irela.r_offset = 0;
1450 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1451 irela.r_addend = 0;
1452
1453 loc = (srelgot->contents
1454 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1455 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1456 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1457 loc + sizeof (Elf32_External_Rela));
1458 srelgot->reloc_count += 2;
1459 }
1460
1461 /* Add some entries to the .dynamic section. We fill in the
1462 values later, in elf_xtensa_finish_dynamic_sections, but we
1463 must add the entries now so that we get the correct size for
1464 the .dynamic section. The DT_DEBUG entry is filled in by the
1465 dynamic linker and used by the debugger. */
1466#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1467 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1468
ba05963f 1469 if (info->executable)
e0001a05
NC
1470 {
1471 if (!add_dynamic_entry (DT_DEBUG, 0))
1472 return FALSE;
1473 }
1474
1475 if (relplt)
1476 {
c243ad3b 1477 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1478 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1479 || !add_dynamic_entry (DT_JMPREL, 0))
1480 return FALSE;
1481 }
1482
1483 if (relgot)
1484 {
1485 if (!add_dynamic_entry (DT_RELA, 0)
1486 || !add_dynamic_entry (DT_RELASZ, 0)
1487 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1488 return FALSE;
1489 }
1490
c243ad3b
BW
1491 if (!add_dynamic_entry (DT_PLTGOT, 0)
1492 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1493 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1494 return FALSE;
1495 }
1496#undef add_dynamic_entry
1497
1498 return TRUE;
1499}
1500
e0001a05
NC
1501\f
1502/* Perform the specified relocation. The instruction at (contents + address)
1503 is modified to set one operand to represent the value in "relocation". The
1504 operand position is determined by the relocation type recorded in the
1505 howto. */
1506
1507#define CALL_SEGMENT_BITS (30)
7fa3d080 1508#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1509
1510static bfd_reloc_status_type
7fa3d080
BW
1511elf_xtensa_do_reloc (reloc_howto_type *howto,
1512 bfd *abfd,
1513 asection *input_section,
1514 bfd_vma relocation,
1515 bfd_byte *contents,
1516 bfd_vma address,
1517 bfd_boolean is_weak_undef,
1518 char **error_message)
e0001a05 1519{
43cd72b9 1520 xtensa_format fmt;
e0001a05 1521 xtensa_opcode opcode;
e0001a05 1522 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1523 static xtensa_insnbuf ibuff = NULL;
1524 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1525 bfd_vma self_address;
43cd72b9
BW
1526 bfd_size_type input_size;
1527 int opnd, slot;
e0001a05
NC
1528 uint32 newval;
1529
43cd72b9
BW
1530 if (!ibuff)
1531 {
1532 ibuff = xtensa_insnbuf_alloc (isa);
1533 sbuff = xtensa_insnbuf_alloc (isa);
1534 }
1535
1536 input_size = bfd_get_section_limit (abfd, input_section);
1537
1bbb5f21
BW
1538 /* Calculate the PC address for this instruction. */
1539 self_address = (input_section->output_section->vma
1540 + input_section->output_offset
1541 + address);
1542
e0001a05
NC
1543 switch (howto->type)
1544 {
1545 case R_XTENSA_NONE:
43cd72b9
BW
1546 case R_XTENSA_DIFF8:
1547 case R_XTENSA_DIFF16:
1548 case R_XTENSA_DIFF32:
e0001a05
NC
1549 return bfd_reloc_ok;
1550
1551 case R_XTENSA_ASM_EXPAND:
1552 if (!is_weak_undef)
1553 {
1554 /* Check for windowed CALL across a 1GB boundary. */
1555 xtensa_opcode opcode =
1556 get_expanded_call_opcode (contents + address,
43cd72b9 1557 input_size - address, 0);
e0001a05
NC
1558 if (is_windowed_call_opcode (opcode))
1559 {
43cd72b9
BW
1560 if ((self_address >> CALL_SEGMENT_BITS)
1561 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1562 {
1563 *error_message = "windowed longcall crosses 1GB boundary; "
1564 "return may fail";
1565 return bfd_reloc_dangerous;
1566 }
1567 }
1568 }
1569 return bfd_reloc_ok;
1570
1571 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1572 {
e0001a05 1573 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1574 bfd_reloc_status_type retval =
1575 elf_xtensa_do_asm_simplify (contents, address, input_size,
1576 error_message);
e0001a05 1577 if (retval != bfd_reloc_ok)
43cd72b9 1578 return bfd_reloc_dangerous;
e0001a05
NC
1579
1580 /* The CALL needs to be relocated. Continue below for that part. */
1581 address += 3;
c46082c8 1582 self_address += 3;
43cd72b9 1583 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1584 }
1585 break;
1586
1587 case R_XTENSA_32:
1588 case R_XTENSA_PLT:
1589 {
1590 bfd_vma x;
1591 x = bfd_get_32 (abfd, contents + address);
1592 x = x + relocation;
1593 bfd_put_32 (abfd, x, contents + address);
1594 }
1595 return bfd_reloc_ok;
1bbb5f21
BW
1596
1597 case R_XTENSA_32_PCREL:
1598 bfd_put_32 (abfd, relocation - self_address, contents + address);
1599 return bfd_reloc_ok;
e0001a05
NC
1600 }
1601
43cd72b9
BW
1602 /* Only instruction slot-specific relocations handled below.... */
1603 slot = get_relocation_slot (howto->type);
1604 if (slot == XTENSA_UNDEFINED)
e0001a05 1605 {
43cd72b9 1606 *error_message = "unexpected relocation";
e0001a05
NC
1607 return bfd_reloc_dangerous;
1608 }
1609
43cd72b9
BW
1610 /* Read the instruction into a buffer and decode the opcode. */
1611 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1612 input_size - address);
1613 fmt = xtensa_format_decode (isa, ibuff);
1614 if (fmt == XTENSA_UNDEFINED)
e0001a05 1615 {
43cd72b9 1616 *error_message = "cannot decode instruction format";
e0001a05
NC
1617 return bfd_reloc_dangerous;
1618 }
1619
43cd72b9 1620 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1621
43cd72b9
BW
1622 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1623 if (opcode == XTENSA_UNDEFINED)
e0001a05 1624 {
43cd72b9 1625 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1626 return bfd_reloc_dangerous;
1627 }
1628
43cd72b9
BW
1629 /* Check for opcode-specific "alternate" relocations. */
1630 if (is_alt_relocation (howto->type))
1631 {
1632 if (opcode == get_l32r_opcode ())
1633 {
1634 /* Handle the special-case of non-PC-relative L32R instructions. */
1635 bfd *output_bfd = input_section->output_section->owner;
1636 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1637 if (!lit4_sec)
1638 {
1639 *error_message = "relocation references missing .lit4 section";
1640 return bfd_reloc_dangerous;
1641 }
1642 self_address = ((lit4_sec->vma & ~0xfff)
1643 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1644 newval = relocation;
1645 opnd = 1;
1646 }
1647 else if (opcode == get_const16_opcode ())
1648 {
1649 /* ALT used for high 16 bits. */
1650 newval = relocation >> 16;
1651 opnd = 1;
1652 }
1653 else
1654 {
1655 /* No other "alternate" relocations currently defined. */
1656 *error_message = "unexpected relocation";
1657 return bfd_reloc_dangerous;
1658 }
1659 }
1660 else /* Not an "alternate" relocation.... */
1661 {
1662 if (opcode == get_const16_opcode ())
1663 {
1664 newval = relocation & 0xffff;
1665 opnd = 1;
1666 }
1667 else
1668 {
1669 /* ...normal PC-relative relocation.... */
1670
1671 /* Determine which operand is being relocated. */
1672 opnd = get_relocation_opnd (opcode, howto->type);
1673 if (opnd == XTENSA_UNDEFINED)
1674 {
1675 *error_message = "unexpected relocation";
1676 return bfd_reloc_dangerous;
1677 }
1678
1679 if (!howto->pc_relative)
1680 {
1681 *error_message = "expected PC-relative relocation";
1682 return bfd_reloc_dangerous;
1683 }
e0001a05 1684
43cd72b9
BW
1685 newval = relocation;
1686 }
1687 }
e0001a05 1688
43cd72b9
BW
1689 /* Apply the relocation. */
1690 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1691 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1692 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1693 sbuff, newval))
e0001a05 1694 {
2db662be
BW
1695 const char *opname = xtensa_opcode_name (isa, opcode);
1696 const char *msg;
1697
1698 msg = "cannot encode";
1699 if (is_direct_call_opcode (opcode))
1700 {
1701 if ((relocation & 0x3) != 0)
1702 msg = "misaligned call target";
1703 else
1704 msg = "call target out of range";
1705 }
1706 else if (opcode == get_l32r_opcode ())
1707 {
1708 if ((relocation & 0x3) != 0)
1709 msg = "misaligned literal target";
1710 else if (is_alt_relocation (howto->type))
1711 msg = "literal target out of range (too many literals)";
1712 else if (self_address > relocation)
1713 msg = "literal target out of range (try using text-section-literals)";
1714 else
1715 msg = "literal placed after use";
1716 }
1717
1718 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1719 return bfd_reloc_dangerous;
1720 }
1721
43cd72b9 1722 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1723 if (is_direct_call_opcode (opcode)
1724 && is_windowed_call_opcode (opcode))
1725 {
43cd72b9
BW
1726 if ((self_address >> CALL_SEGMENT_BITS)
1727 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1728 {
43cd72b9
BW
1729 *error_message =
1730 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1731 return bfd_reloc_dangerous;
1732 }
1733 }
1734
43cd72b9
BW
1735 /* Write the modified instruction back out of the buffer. */
1736 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1737 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1738 input_size - address);
e0001a05
NC
1739 return bfd_reloc_ok;
1740}
1741
1742
2db662be 1743static char *
7fa3d080 1744vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1745{
1746 /* To reduce the size of the memory leak,
1747 we only use a single message buffer. */
1748 static bfd_size_type alloc_size = 0;
1749 static char *message = NULL;
1750 bfd_size_type orig_len, len = 0;
1751 bfd_boolean is_append;
1752
1753 VA_OPEN (ap, arglen);
1754 VA_FIXEDARG (ap, const char *, origmsg);
1755
1756 is_append = (origmsg == message);
1757
1758 orig_len = strlen (origmsg);
1759 len = orig_len + strlen (fmt) + arglen + 20;
1760 if (len > alloc_size)
1761 {
515ef31d 1762 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
1763 alloc_size = len;
1764 }
515ef31d
NC
1765 if (message != NULL)
1766 {
1767 if (!is_append)
1768 memcpy (message, origmsg, orig_len);
1769 vsprintf (message + orig_len, fmt, ap);
1770 }
e0001a05
NC
1771 VA_CLOSE (ap);
1772 return message;
1773}
1774
1775
e0001a05
NC
1776/* This function is registered as the "special_function" in the
1777 Xtensa howto for handling simplify operations.
1778 bfd_perform_relocation / bfd_install_relocation use it to
1779 perform (install) the specified relocation. Since this replaces the code
1780 in bfd_perform_relocation, it is basically an Xtensa-specific,
1781 stripped-down version of bfd_perform_relocation. */
1782
1783static bfd_reloc_status_type
7fa3d080
BW
1784bfd_elf_xtensa_reloc (bfd *abfd,
1785 arelent *reloc_entry,
1786 asymbol *symbol,
1787 void *data,
1788 asection *input_section,
1789 bfd *output_bfd,
1790 char **error_message)
e0001a05
NC
1791{
1792 bfd_vma relocation;
1793 bfd_reloc_status_type flag;
1794 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1795 bfd_vma output_base = 0;
1796 reloc_howto_type *howto = reloc_entry->howto;
1797 asection *reloc_target_output_section;
1798 bfd_boolean is_weak_undef;
1799
dd1a320b
BW
1800 if (!xtensa_default_isa)
1801 xtensa_default_isa = xtensa_isa_init (0, 0);
1802
1049f94e 1803 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1804 output, and the reloc is against an external symbol, the resulting
1805 reloc will also be against the same symbol. In such a case, we
1806 don't want to change anything about the way the reloc is handled,
1807 since it will all be done at final link time. This test is similar
1808 to what bfd_elf_generic_reloc does except that it lets relocs with
1809 howto->partial_inplace go through even if the addend is non-zero.
1810 (The real problem is that partial_inplace is set for XTENSA_32
1811 relocs to begin with, but that's a long story and there's little we
1812 can do about it now....) */
1813
7fa3d080 1814 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1815 {
1816 reloc_entry->address += input_section->output_offset;
1817 return bfd_reloc_ok;
1818 }
1819
1820 /* Is the address of the relocation really within the section? */
07515404 1821 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1822 return bfd_reloc_outofrange;
1823
4cc11e76 1824 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1825 initial relocation command value. */
1826
1827 /* Get symbol value. (Common symbols are special.) */
1828 if (bfd_is_com_section (symbol->section))
1829 relocation = 0;
1830 else
1831 relocation = symbol->value;
1832
1833 reloc_target_output_section = symbol->section->output_section;
1834
1835 /* Convert input-section-relative symbol value to absolute. */
1836 if ((output_bfd && !howto->partial_inplace)
1837 || reloc_target_output_section == NULL)
1838 output_base = 0;
1839 else
1840 output_base = reloc_target_output_section->vma;
1841
1842 relocation += output_base + symbol->section->output_offset;
1843
1844 /* Add in supplied addend. */
1845 relocation += reloc_entry->addend;
1846
1847 /* Here the variable relocation holds the final address of the
1848 symbol we are relocating against, plus any addend. */
1849 if (output_bfd)
1850 {
1851 if (!howto->partial_inplace)
1852 {
1853 /* This is a partial relocation, and we want to apply the relocation
1854 to the reloc entry rather than the raw data. Everything except
1855 relocations against section symbols has already been handled
1856 above. */
43cd72b9 1857
e0001a05
NC
1858 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1859 reloc_entry->addend = relocation;
1860 reloc_entry->address += input_section->output_offset;
1861 return bfd_reloc_ok;
1862 }
1863 else
1864 {
1865 reloc_entry->address += input_section->output_offset;
1866 reloc_entry->addend = 0;
1867 }
1868 }
1869
1870 is_weak_undef = (bfd_is_und_section (symbol->section)
1871 && (symbol->flags & BSF_WEAK) != 0);
1872 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1873 (bfd_byte *) data, (bfd_vma) octets,
1874 is_weak_undef, error_message);
1875
1876 if (flag == bfd_reloc_dangerous)
1877 {
1878 /* Add the symbol name to the error message. */
1879 if (! *error_message)
1880 *error_message = "";
1881 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1882 strlen (symbol->name) + 17,
70961b9d
AM
1883 symbol->name,
1884 (unsigned long) reloc_entry->addend);
e0001a05
NC
1885 }
1886
1887 return flag;
1888}
1889
1890
1891/* Set up an entry in the procedure linkage table. */
1892
1893static bfd_vma
f0e6fdb2 1894elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
1895 bfd *output_bfd,
1896 unsigned reloc_index)
e0001a05
NC
1897{
1898 asection *splt, *sgotplt;
1899 bfd_vma plt_base, got_base;
1900 bfd_vma code_offset, lit_offset;
1901 int chunk;
1902
1903 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
1904 splt = elf_xtensa_get_plt_section (info, chunk);
1905 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
1906 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1907
1908 plt_base = splt->output_section->vma + splt->output_offset;
1909 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1910
1911 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1912 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1913
1914 /* Fill in the literal entry. This is the offset of the dynamic
1915 relocation entry. */
1916 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1917 sgotplt->contents + lit_offset);
1918
1919 /* Fill in the entry in the procedure linkage table. */
1920 memcpy (splt->contents + code_offset,
1921 (bfd_big_endian (output_bfd)
1922 ? elf_xtensa_be_plt_entry
1923 : elf_xtensa_le_plt_entry),
1924 PLT_ENTRY_SIZE);
1925 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1926 plt_base + code_offset + 3),
1927 splt->contents + code_offset + 4);
1928 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1929 plt_base + code_offset + 6),
1930 splt->contents + code_offset + 7);
1931 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1932 plt_base + code_offset + 9),
1933 splt->contents + code_offset + 10);
1934
1935 return plt_base + code_offset;
1936}
1937
1938
e0001a05 1939/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1940 both relocatable and final links. */
e0001a05
NC
1941
1942static bfd_boolean
7fa3d080
BW
1943elf_xtensa_relocate_section (bfd *output_bfd,
1944 struct bfd_link_info *info,
1945 bfd *input_bfd,
1946 asection *input_section,
1947 bfd_byte *contents,
1948 Elf_Internal_Rela *relocs,
1949 Elf_Internal_Sym *local_syms,
1950 asection **local_sections)
e0001a05 1951{
f0e6fdb2 1952 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1953 Elf_Internal_Shdr *symtab_hdr;
1954 Elf_Internal_Rela *rel;
1955 Elf_Internal_Rela *relend;
1956 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
1957 property_table_entry *lit_table = 0;
1958 int ltblsize = 0;
e0001a05 1959 char *error_message = NULL;
43cd72b9 1960 bfd_size_type input_size;
e0001a05 1961
43cd72b9
BW
1962 if (!xtensa_default_isa)
1963 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 1964
f0e6fdb2 1965 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1966 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1967 sym_hashes = elf_sym_hashes (input_bfd);
1968
88d65ad6
BW
1969 if (elf_hash_table (info)->dynamic_sections_created)
1970 {
1971 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
1972 &lit_table, XTENSA_LIT_SEC_NAME,
1973 TRUE);
88d65ad6
BW
1974 if (ltblsize < 0)
1975 return FALSE;
1976 }
1977
43cd72b9
BW
1978 input_size = bfd_get_section_limit (input_bfd, input_section);
1979
e0001a05
NC
1980 rel = relocs;
1981 relend = relocs + input_section->reloc_count;
1982 for (; rel < relend; rel++)
1983 {
1984 int r_type;
1985 reloc_howto_type *howto;
1986 unsigned long r_symndx;
1987 struct elf_link_hash_entry *h;
1988 Elf_Internal_Sym *sym;
1989 asection *sec;
1990 bfd_vma relocation;
1991 bfd_reloc_status_type r;
1992 bfd_boolean is_weak_undef;
1993 bfd_boolean unresolved_reloc;
9b8c98a4 1994 bfd_boolean warned;
e0001a05
NC
1995
1996 r_type = ELF32_R_TYPE (rel->r_info);
1997 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
1998 || r_type == (int) R_XTENSA_GNU_VTENTRY)
1999 continue;
2000
2001 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2002 {
2003 bfd_set_error (bfd_error_bad_value);
2004 return FALSE;
2005 }
2006 howto = &elf_howto_table[r_type];
2007
2008 r_symndx = ELF32_R_SYM (rel->r_info);
2009
ab96bf03
AM
2010 h = NULL;
2011 sym = NULL;
2012 sec = NULL;
2013 is_weak_undef = FALSE;
2014 unresolved_reloc = FALSE;
2015 warned = FALSE;
2016
2017 if (howto->partial_inplace && !info->relocatable)
2018 {
2019 /* Because R_XTENSA_32 was made partial_inplace to fix some
2020 problems with DWARF info in partial links, there may be
2021 an addend stored in the contents. Take it out of there
2022 and move it back into the addend field of the reloc. */
2023 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2024 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2025 }
2026
2027 if (r_symndx < symtab_hdr->sh_info)
2028 {
2029 sym = local_syms + r_symndx;
2030 sec = local_sections[r_symndx];
2031 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2032 }
2033 else
2034 {
2035 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2036 r_symndx, symtab_hdr, sym_hashes,
2037 h, sec, relocation,
2038 unresolved_reloc, warned);
2039
2040 if (relocation == 0
2041 && !unresolved_reloc
2042 && h->root.type == bfd_link_hash_undefweak)
2043 is_weak_undef = TRUE;
2044 }
2045
2046 if (sec != NULL && elf_discarded_section (sec))
2047 {
2048 /* For relocs against symbols from removed linkonce sections,
2049 or sections discarded by a linker script, we just want the
2050 section contents zeroed. Avoid any special processing. */
2051 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2052 rel->r_info = 0;
2053 rel->r_addend = 0;
2054 continue;
2055 }
2056
1049f94e 2057 if (info->relocatable)
e0001a05 2058 {
43cd72b9 2059 /* This is a relocatable link.
e0001a05
NC
2060 1) If the reloc is against a section symbol, adjust
2061 according to the output section.
2062 2) If there is a new target for this relocation,
2063 the new target will be in the same output section.
2064 We adjust the relocation by the output section
2065 difference. */
2066
2067 if (relaxing_section)
2068 {
2069 /* Check if this references a section in another input file. */
43cd72b9
BW
2070 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2071 contents))
2072 return FALSE;
e0001a05
NC
2073 }
2074
43cd72b9 2075 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2076 {
43cd72b9 2077 char *error_message = NULL;
e0001a05
NC
2078 /* Convert ASM_SIMPLIFY into the simpler relocation
2079 so that they never escape a relaxing link. */
43cd72b9
BW
2080 r = contract_asm_expansion (contents, input_size, rel,
2081 &error_message);
2082 if (r != bfd_reloc_ok)
2083 {
2084 if (!((*info->callbacks->reloc_dangerous)
2085 (info, error_message, input_bfd, input_section,
2086 rel->r_offset)))
2087 return FALSE;
2088 }
e0001a05
NC
2089 r_type = ELF32_R_TYPE (rel->r_info);
2090 }
2091
1049f94e 2092 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2093 anything unless the reloc is against a section symbol,
2094 in which case we have to adjust according to where the
2095 section symbol winds up in the output section. */
2096 if (r_symndx < symtab_hdr->sh_info)
2097 {
2098 sym = local_syms + r_symndx;
2099 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2100 {
2101 sec = local_sections[r_symndx];
2102 rel->r_addend += sec->output_offset + sym->st_value;
2103 }
2104 }
2105
2106 /* If there is an addend with a partial_inplace howto,
2107 then move the addend to the contents. This is a hack
1049f94e 2108 to work around problems with DWARF in relocatable links
e0001a05
NC
2109 with some previous version of BFD. Now we can't easily get
2110 rid of the hack without breaking backward compatibility.... */
2111 if (rel->r_addend)
2112 {
2113 howto = &elf_howto_table[r_type];
2114 if (howto->partial_inplace)
2115 {
2116 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2117 rel->r_addend, contents,
2118 rel->r_offset, FALSE,
2119 &error_message);
2120 if (r != bfd_reloc_ok)
2121 {
2122 if (!((*info->callbacks->reloc_dangerous)
2123 (info, error_message, input_bfd, input_section,
2124 rel->r_offset)))
2125 return FALSE;
2126 }
2127 rel->r_addend = 0;
2128 }
2129 }
2130
1049f94e 2131 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2132 continue;
2133 }
2134
2135 /* This is a final link. */
2136
e0001a05
NC
2137 if (relaxing_section)
2138 {
2139 /* Check if this references a section in another input file. */
43cd72b9
BW
2140 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2141 &relocation);
e0001a05
NC
2142 }
2143
2144 /* Sanity check the address. */
43cd72b9 2145 if (rel->r_offset >= input_size
e0001a05
NC
2146 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2147 {
43cd72b9
BW
2148 (*_bfd_error_handler)
2149 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2150 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2151 bfd_set_error (bfd_error_bad_value);
2152 return FALSE;
2153 }
2154
2155 /* Generate dynamic relocations. */
2156 if (elf_hash_table (info)->dynamic_sections_created)
2157 {
4608f3d9 2158 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 2159
1bbb5f21
BW
2160 if (dynamic_symbol && (is_operand_relocation (r_type)
2161 || r_type == R_XTENSA_32_PCREL))
e0001a05 2162 {
e0001a05 2163 const char *name = h->root.root.string;
1bbb5f21
BW
2164 error_message =
2165 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2166 strlen (name) + 2, name);
e0001a05
NC
2167 if (!((*info->callbacks->reloc_dangerous)
2168 (info, error_message, input_bfd, input_section,
2169 rel->r_offset)))
2170 return FALSE;
d9ab3f29 2171 continue;
e0001a05
NC
2172 }
2173 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2174 && (input_section->flags & SEC_ALLOC) != 0
2175 && (dynamic_symbol || info->shared))
2176 {
2177 Elf_Internal_Rela outrel;
2178 bfd_byte *loc;
2179 asection *srel;
2180
2181 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2182 srel = htab->srelplt;
e0001a05 2183 else
f0e6fdb2 2184 srel = htab->srelgot;
e0001a05
NC
2185
2186 BFD_ASSERT (srel != NULL);
2187
2188 outrel.r_offset =
2189 _bfd_elf_section_offset (output_bfd, info,
2190 input_section, rel->r_offset);
2191
2192 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2193 memset (&outrel, 0, sizeof outrel);
2194 else
2195 {
f0578e28
BW
2196 outrel.r_offset += (input_section->output_section->vma
2197 + input_section->output_offset);
e0001a05 2198
88d65ad6
BW
2199 /* Complain if the relocation is in a read-only section
2200 and not in a literal pool. */
2201 if ((input_section->flags & SEC_READONLY) != 0
2202 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2203 outrel.r_offset))
88d65ad6
BW
2204 {
2205 error_message =
2206 _("dynamic relocation in read-only section");
2207 if (!((*info->callbacks->reloc_dangerous)
2208 (info, error_message, input_bfd, input_section,
2209 rel->r_offset)))
2210 return FALSE;
2211 }
2212
e0001a05
NC
2213 if (dynamic_symbol)
2214 {
2215 outrel.r_addend = rel->r_addend;
2216 rel->r_addend = 0;
2217
2218 if (r_type == R_XTENSA_32)
2219 {
2220 outrel.r_info =
2221 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2222 relocation = 0;
2223 }
2224 else /* r_type == R_XTENSA_PLT */
2225 {
2226 outrel.r_info =
2227 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2228
2229 /* Create the PLT entry and set the initial
2230 contents of the literal entry to the address of
2231 the PLT entry. */
43cd72b9 2232 relocation =
f0e6fdb2 2233 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2234 srel->reloc_count);
2235 }
2236 unresolved_reloc = FALSE;
2237 }
2238 else
2239 {
2240 /* Generate a RELATIVE relocation. */
2241 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2242 outrel.r_addend = 0;
2243 }
2244 }
2245
2246 loc = (srel->contents
2247 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2248 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2249 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2250 <= srel->size);
e0001a05 2251 }
d9ab3f29
BW
2252 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2253 {
2254 /* This should only happen for non-PIC code, which is not
2255 supposed to be used on systems with dynamic linking.
2256 Just ignore these relocations. */
2257 continue;
2258 }
e0001a05
NC
2259 }
2260
2261 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2262 because such sections are not SEC_ALLOC and thus ld.so will
2263 not process them. */
2264 if (unresolved_reloc
2265 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2266 && h->def_dynamic))
bf1747de
BW
2267 {
2268 (*_bfd_error_handler)
2269 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2270 input_bfd,
2271 input_section,
2272 (long) rel->r_offset,
2273 howto->name,
2274 h->root.root.string);
2275 return FALSE;
2276 }
e0001a05
NC
2277
2278 /* There's no point in calling bfd_perform_relocation here.
2279 Just go directly to our "special function". */
2280 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2281 relocation + rel->r_addend,
2282 contents, rel->r_offset, is_weak_undef,
2283 &error_message);
43cd72b9 2284
9b8c98a4 2285 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2286 {
2287 const char *name;
2288
43cd72b9 2289 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2290 BFD_ASSERT (error_message != NULL);
e0001a05 2291
7fa3d080 2292 if (h)
e0001a05
NC
2293 name = h->root.root.string;
2294 else
2295 {
2296 name = bfd_elf_string_from_elf_section
2297 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2298 if (name && *name == '\0')
2299 name = bfd_section_name (input_bfd, sec);
2300 }
2301 if (name)
43cd72b9
BW
2302 {
2303 if (rel->r_addend == 0)
2304 error_message = vsprint_msg (error_message, ": %s",
2305 strlen (name) + 2, name);
2306 else
2307 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2308 strlen (name) + 22,
0fd3a477 2309 name, (int)rel->r_addend);
43cd72b9
BW
2310 }
2311
e0001a05
NC
2312 if (!((*info->callbacks->reloc_dangerous)
2313 (info, error_message, input_bfd, input_section,
2314 rel->r_offset)))
2315 return FALSE;
2316 }
2317 }
2318
88d65ad6
BW
2319 if (lit_table)
2320 free (lit_table);
2321
3ba3bc8c
BW
2322 input_section->reloc_done = TRUE;
2323
e0001a05
NC
2324 return TRUE;
2325}
2326
2327
2328/* Finish up dynamic symbol handling. There's not much to do here since
2329 the PLT and GOT entries are all set up by relocate_section. */
2330
2331static bfd_boolean
7fa3d080
BW
2332elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2333 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2334 struct elf_link_hash_entry *h,
2335 Elf_Internal_Sym *sym)
e0001a05 2336{
bf1747de 2337 if (h->needs_plt && !h->def_regular)
e0001a05
NC
2338 {
2339 /* Mark the symbol as undefined, rather than as defined in
2340 the .plt section. Leave the value alone. */
2341 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
2342 /* If the symbol is weak, we do need to clear the value.
2343 Otherwise, the PLT entry would provide a definition for
2344 the symbol even if the symbol wasn't defined anywhere,
2345 and so the symbol would never be NULL. */
2346 if (!h->ref_regular_nonweak)
2347 sym->st_value = 0;
e0001a05
NC
2348 }
2349
2350 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2351 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2352 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2353 sym->st_shndx = SHN_ABS;
2354
2355 return TRUE;
2356}
2357
2358
2359/* Combine adjacent literal table entries in the output. Adjacent
2360 entries within each input section may have been removed during
2361 relaxation, but we repeat the process here, even though it's too late
2362 to shrink the output section, because it's important to minimize the
2363 number of literal table entries to reduce the start-up work for the
2364 runtime linker. Returns the number of remaining table entries or -1
2365 on error. */
2366
2367static int
7fa3d080
BW
2368elf_xtensa_combine_prop_entries (bfd *output_bfd,
2369 asection *sxtlit,
2370 asection *sgotloc)
e0001a05 2371{
e0001a05
NC
2372 bfd_byte *contents;
2373 property_table_entry *table;
e901de89 2374 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2375 bfd_vma offset;
2376 int n, m, num;
2377
eea6121a 2378 section_size = sxtlit->size;
e0001a05
NC
2379 BFD_ASSERT (section_size % 8 == 0);
2380 num = section_size / 8;
2381
eea6121a 2382 sgotloc_size = sgotloc->size;
e901de89 2383 if (sgotloc_size != section_size)
b536dc1e
BW
2384 {
2385 (*_bfd_error_handler)
43cd72b9 2386 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2387 return -1;
2388 }
e901de89 2389
eea6121a
AM
2390 table = bfd_malloc (num * sizeof (property_table_entry));
2391 if (table == 0)
e0001a05
NC
2392 return -1;
2393
2394 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2395 propagates to the output section, where it doesn't really apply and
eea6121a 2396 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2397 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2398
eea6121a
AM
2399 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2400 {
2401 if (contents != 0)
2402 free (contents);
2403 free (table);
2404 return -1;
2405 }
e0001a05
NC
2406
2407 /* There should never be any relocations left at this point, so this
2408 is quite a bit easier than what is done during relaxation. */
2409
2410 /* Copy the raw contents into a property table array and sort it. */
2411 offset = 0;
2412 for (n = 0; n < num; n++)
2413 {
2414 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2415 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2416 offset += 8;
2417 }
2418 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2419
2420 for (n = 0; n < num; n++)
2421 {
2422 bfd_boolean remove = FALSE;
2423
2424 if (table[n].size == 0)
2425 remove = TRUE;
2426 else if (n > 0 &&
2427 (table[n-1].address + table[n-1].size == table[n].address))
2428 {
2429 table[n-1].size += table[n].size;
2430 remove = TRUE;
2431 }
2432
2433 if (remove)
2434 {
2435 for (m = n; m < num - 1; m++)
2436 {
2437 table[m].address = table[m+1].address;
2438 table[m].size = table[m+1].size;
2439 }
2440
2441 n--;
2442 num--;
2443 }
2444 }
2445
2446 /* Copy the data back to the raw contents. */
2447 offset = 0;
2448 for (n = 0; n < num; n++)
2449 {
2450 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2451 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2452 offset += 8;
2453 }
2454
2455 /* Clear the removed bytes. */
2456 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2457 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2458
e901de89
BW
2459 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2460 section_size))
e0001a05
NC
2461 return -1;
2462
e901de89
BW
2463 /* Copy the contents to ".got.loc". */
2464 memcpy (sgotloc->contents, contents, section_size);
2465
e0001a05 2466 free (contents);
b614a702 2467 free (table);
e0001a05
NC
2468 return num;
2469}
2470
2471
2472/* Finish up the dynamic sections. */
2473
2474static bfd_boolean
7fa3d080
BW
2475elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2476 struct bfd_link_info *info)
e0001a05 2477{
f0e6fdb2 2478 struct elf_xtensa_link_hash_table *htab;
e0001a05 2479 bfd *dynobj;
e901de89 2480 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 2481 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 2482 int num_xtlit_entries = 0;
e0001a05
NC
2483
2484 if (! elf_hash_table (info)->dynamic_sections_created)
2485 return TRUE;
2486
f0e6fdb2 2487 htab = elf_xtensa_hash_table (info);
e0001a05
NC
2488 dynobj = elf_hash_table (info)->dynobj;
2489 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2490 BFD_ASSERT (sdyn != NULL);
2491
2492 /* Set the first entry in the global offset table to the address of
2493 the dynamic section. */
f0e6fdb2 2494 sgot = htab->sgot;
e0001a05
NC
2495 if (sgot)
2496 {
eea6121a 2497 BFD_ASSERT (sgot->size == 4);
e0001a05 2498 if (sdyn == NULL)
7fa3d080 2499 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2500 else
2501 bfd_put_32 (output_bfd,
2502 sdyn->output_section->vma + sdyn->output_offset,
2503 sgot->contents);
2504 }
2505
f0e6fdb2 2506 srelplt = htab->srelplt;
7fa3d080 2507 if (srelplt && srelplt->size != 0)
e0001a05
NC
2508 {
2509 asection *sgotplt, *srelgot, *spltlittbl;
2510 int chunk, plt_chunks, plt_entries;
2511 Elf_Internal_Rela irela;
2512 bfd_byte *loc;
2513 unsigned rtld_reloc;
2514
f0e6fdb2
BW
2515 srelgot = htab->srelgot;
2516 spltlittbl = htab->spltlittbl;
2517 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
2518
2519 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2520 of them follow immediately after.... */
2521 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2522 {
2523 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2524 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2525 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2526 break;
2527 }
2528 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2529
eea6121a 2530 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2531 plt_chunks =
2532 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2533
2534 for (chunk = 0; chunk < plt_chunks; chunk++)
2535 {
2536 int chunk_entries = 0;
2537
f0e6fdb2 2538 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2539 BFD_ASSERT (sgotplt != NULL);
2540
2541 /* Emit special RTLD relocations for the first two entries in
2542 each chunk of the .got.plt section. */
2543
2544 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2545 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2546 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2547 irela.r_offset = (sgotplt->output_section->vma
2548 + sgotplt->output_offset);
2549 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2550 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2551 rtld_reloc += 1;
2552 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2553
2554 /* Next literal immediately follows the first. */
2555 loc += sizeof (Elf32_External_Rela);
2556 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2557 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2558 irela.r_offset = (sgotplt->output_section->vma
2559 + sgotplt->output_offset + 4);
2560 /* Tell rtld to set value to object's link map. */
2561 irela.r_addend = 2;
2562 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2563 rtld_reloc += 1;
2564 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2565
2566 /* Fill in the literal table. */
2567 if (chunk < plt_chunks - 1)
2568 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2569 else
2570 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2571
eea6121a 2572 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2573 bfd_put_32 (output_bfd,
2574 sgotplt->output_section->vma + sgotplt->output_offset,
2575 spltlittbl->contents + (chunk * 8) + 0);
2576 bfd_put_32 (output_bfd,
2577 8 + (chunk_entries * 4),
2578 spltlittbl->contents + (chunk * 8) + 4);
2579 }
2580
2581 /* All the dynamic relocations have been emitted at this point.
2582 Make sure the relocation sections are the correct size. */
eea6121a
AM
2583 if (srelgot->size != (sizeof (Elf32_External_Rela)
2584 * srelgot->reloc_count)
2585 || srelplt->size != (sizeof (Elf32_External_Rela)
2586 * srelplt->reloc_count))
e0001a05
NC
2587 abort ();
2588
2589 /* The .xt.lit.plt section has just been modified. This must
2590 happen before the code below which combines adjacent literal
2591 table entries, and the .xt.lit.plt contents have to be forced to
2592 the output here. */
2593 if (! bfd_set_section_contents (output_bfd,
2594 spltlittbl->output_section,
2595 spltlittbl->contents,
2596 spltlittbl->output_offset,
eea6121a 2597 spltlittbl->size))
e0001a05
NC
2598 return FALSE;
2599 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2600 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2601 }
2602
2603 /* Combine adjacent literal table entries. */
1049f94e 2604 BFD_ASSERT (! info->relocatable);
e901de89 2605 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 2606 sgotloc = htab->sgotloc;
d9ab3f29
BW
2607 BFD_ASSERT (sgotloc);
2608 if (sxtlit)
2609 {
2610 num_xtlit_entries =
2611 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2612 if (num_xtlit_entries < 0)
2613 return FALSE;
2614 }
e0001a05
NC
2615
2616 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2617 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2618 for (; dyncon < dynconend; dyncon++)
2619 {
2620 Elf_Internal_Dyn dyn;
e0001a05
NC
2621
2622 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2623
2624 switch (dyn.d_tag)
2625 {
2626 default:
2627 break;
2628
2629 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2630 dyn.d_un.d_val = num_xtlit_entries;
2631 break;
2632
2633 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 2634 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
2635 break;
2636
e0001a05 2637 case DT_PLTGOT:
e29297b7 2638 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
2639 break;
2640
e0001a05 2641 case DT_JMPREL:
e29297b7 2642 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
2643 break;
2644
2645 case DT_PLTRELSZ:
e29297b7 2646 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
2647 break;
2648
2649 case DT_RELASZ:
2650 /* Adjust RELASZ to not include JMPREL. This matches what
2651 glibc expects and what is done for several other ELF
2652 targets (e.g., i386, alpha), but the "correct" behavior
2653 seems to be unresolved. Since the linker script arranges
2654 for .rela.plt to follow all other relocation sections, we
2655 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 2656 if (htab->srelplt)
e29297b7 2657 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
2658 break;
2659 }
2660
2661 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2662 }
2663
2664 return TRUE;
2665}
2666
2667\f
2668/* Functions for dealing with the e_flags field. */
2669
2670/* Merge backend specific data from an object file to the output
2671 object file when linking. */
2672
2673static bfd_boolean
7fa3d080 2674elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2675{
2676 unsigned out_mach, in_mach;
2677 flagword out_flag, in_flag;
2678
2679 /* Check if we have the same endianess. */
2680 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2681 return FALSE;
2682
2683 /* Don't even pretend to support mixed-format linking. */
2684 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2685 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2686 return FALSE;
2687
2688 out_flag = elf_elfheader (obfd)->e_flags;
2689 in_flag = elf_elfheader (ibfd)->e_flags;
2690
2691 out_mach = out_flag & EF_XTENSA_MACH;
2692 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2693 if (out_mach != in_mach)
e0001a05
NC
2694 {
2695 (*_bfd_error_handler)
43cd72b9 2696 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2697 ibfd, out_mach, in_mach);
e0001a05
NC
2698 bfd_set_error (bfd_error_wrong_format);
2699 return FALSE;
2700 }
2701
2702 if (! elf_flags_init (obfd))
2703 {
2704 elf_flags_init (obfd) = TRUE;
2705 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2706
e0001a05
NC
2707 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2708 && bfd_get_arch_info (obfd)->the_default)
2709 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2710 bfd_get_mach (ibfd));
43cd72b9 2711
e0001a05
NC
2712 return TRUE;
2713 }
2714
43cd72b9
BW
2715 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2716 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2717
43cd72b9
BW
2718 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2719 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2720
2721 return TRUE;
2722}
2723
2724
2725static bfd_boolean
7fa3d080 2726elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2727{
2728 BFD_ASSERT (!elf_flags_init (abfd)
2729 || elf_elfheader (abfd)->e_flags == flags);
2730
2731 elf_elfheader (abfd)->e_flags |= flags;
2732 elf_flags_init (abfd) = TRUE;
2733
2734 return TRUE;
2735}
2736
2737
e0001a05 2738static bfd_boolean
7fa3d080 2739elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2740{
2741 FILE *f = (FILE *) farg;
2742 flagword e_flags = elf_elfheader (abfd)->e_flags;
2743
2744 fprintf (f, "\nXtensa header:\n");
43cd72b9 2745 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2746 fprintf (f, "\nMachine = Base\n");
2747 else
2748 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2749
2750 fprintf (f, "Insn tables = %s\n",
2751 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2752
2753 fprintf (f, "Literal tables = %s\n",
2754 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2755
2756 return _bfd_elf_print_private_bfd_data (abfd, farg);
2757}
2758
2759
2760/* Set the right machine number for an Xtensa ELF file. */
2761
2762static bfd_boolean
7fa3d080 2763elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2764{
2765 int mach;
2766 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2767
2768 switch (arch)
2769 {
2770 case E_XTENSA_MACH:
2771 mach = bfd_mach_xtensa;
2772 break;
2773 default:
2774 return FALSE;
2775 }
2776
2777 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2778 return TRUE;
2779}
2780
2781
2782/* The final processing done just before writing out an Xtensa ELF object
2783 file. This gets the Xtensa architecture right based on the machine
2784 number. */
2785
2786static void
7fa3d080
BW
2787elf_xtensa_final_write_processing (bfd *abfd,
2788 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2789{
2790 int mach;
2791 unsigned long val;
2792
2793 switch (mach = bfd_get_mach (abfd))
2794 {
2795 case bfd_mach_xtensa:
2796 val = E_XTENSA_MACH;
2797 break;
2798 default:
2799 return;
2800 }
2801
2802 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2803 elf_elfheader (abfd)->e_flags |= val;
2804}
2805
2806
2807static enum elf_reloc_type_class
7fa3d080 2808elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2809{
2810 switch ((int) ELF32_R_TYPE (rela->r_info))
2811 {
2812 case R_XTENSA_RELATIVE:
2813 return reloc_class_relative;
2814 case R_XTENSA_JMP_SLOT:
2815 return reloc_class_plt;
2816 default:
2817 return reloc_class_normal;
2818 }
2819}
2820
2821\f
2822static bfd_boolean
7fa3d080
BW
2823elf_xtensa_discard_info_for_section (bfd *abfd,
2824 struct elf_reloc_cookie *cookie,
2825 struct bfd_link_info *info,
2826 asection *sec)
e0001a05
NC
2827{
2828 bfd_byte *contents;
e0001a05 2829 bfd_vma offset, actual_offset;
1d25768e
BW
2830 bfd_size_type removed_bytes = 0;
2831 bfd_size_type entry_size;
e0001a05
NC
2832
2833 if (sec->output_section
2834 && bfd_is_abs_section (sec->output_section))
2835 return FALSE;
2836
1d25768e
BW
2837 if (xtensa_is_proptable_section (sec))
2838 entry_size = 12;
2839 else
2840 entry_size = 8;
2841
a3ef2d63 2842 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
2843 return FALSE;
2844
e0001a05
NC
2845 contents = retrieve_contents (abfd, sec, info->keep_memory);
2846 if (!contents)
2847 return FALSE;
2848
2849 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2850 if (!cookie->rels)
2851 {
2852 release_contents (sec, contents);
2853 return FALSE;
2854 }
2855
1d25768e
BW
2856 /* Sort the relocations. They should already be in order when
2857 relaxation is enabled, but it might not be. */
2858 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2859 internal_reloc_compare);
2860
e0001a05
NC
2861 cookie->rel = cookie->rels;
2862 cookie->relend = cookie->rels + sec->reloc_count;
2863
a3ef2d63 2864 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
2865 {
2866 actual_offset = offset - removed_bytes;
2867
2868 /* The ...symbol_deleted_p function will skip over relocs but it
2869 won't adjust their offsets, so do that here. */
2870 while (cookie->rel < cookie->relend
2871 && cookie->rel->r_offset < offset)
2872 {
2873 cookie->rel->r_offset -= removed_bytes;
2874 cookie->rel++;
2875 }
2876
2877 while (cookie->rel < cookie->relend
2878 && cookie->rel->r_offset == offset)
2879 {
c152c796 2880 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2881 {
2882 /* Remove the table entry. (If the reloc type is NONE, then
2883 the entry has already been merged with another and deleted
2884 during relaxation.) */
2885 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2886 {
2887 /* Shift the contents up. */
a3ef2d63 2888 if (offset + entry_size < sec->size)
e0001a05 2889 memmove (&contents[actual_offset],
1d25768e 2890 &contents[actual_offset + entry_size],
a3ef2d63 2891 sec->size - offset - entry_size);
1d25768e 2892 removed_bytes += entry_size;
e0001a05
NC
2893 }
2894
2895 /* Remove this relocation. */
2896 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2897 }
2898
2899 /* Adjust the relocation offset for previous removals. This
2900 should not be done before calling ...symbol_deleted_p
2901 because it might mess up the offset comparisons there.
2902 Make sure the offset doesn't underflow in the case where
2903 the first entry is removed. */
2904 if (cookie->rel->r_offset >= removed_bytes)
2905 cookie->rel->r_offset -= removed_bytes;
2906 else
2907 cookie->rel->r_offset = 0;
2908
2909 cookie->rel++;
2910 }
2911 }
2912
2913 if (removed_bytes != 0)
2914 {
2915 /* Adjust any remaining relocs (shouldn't be any). */
2916 for (; cookie->rel < cookie->relend; cookie->rel++)
2917 {
2918 if (cookie->rel->r_offset >= removed_bytes)
2919 cookie->rel->r_offset -= removed_bytes;
2920 else
2921 cookie->rel->r_offset = 0;
2922 }
2923
2924 /* Clear the removed bytes. */
a3ef2d63 2925 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
2926
2927 pin_contents (sec, contents);
2928 pin_internal_relocs (sec, cookie->rels);
2929
eea6121a 2930 /* Shrink size. */
a3ef2d63
BW
2931 if (sec->rawsize == 0)
2932 sec->rawsize = sec->size;
2933 sec->size -= removed_bytes;
b536dc1e
BW
2934
2935 if (xtensa_is_littable_section (sec))
2936 {
f0e6fdb2
BW
2937 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2938 if (sgotloc)
2939 sgotloc->size -= removed_bytes;
b536dc1e 2940 }
e0001a05
NC
2941 }
2942 else
2943 {
2944 release_contents (sec, contents);
2945 release_internal_relocs (sec, cookie->rels);
2946 }
2947
2948 return (removed_bytes != 0);
2949}
2950
2951
2952static bfd_boolean
7fa3d080
BW
2953elf_xtensa_discard_info (bfd *abfd,
2954 struct elf_reloc_cookie *cookie,
2955 struct bfd_link_info *info)
e0001a05
NC
2956{
2957 asection *sec;
2958 bfd_boolean changed = FALSE;
2959
2960 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2961 {
2962 if (xtensa_is_property_section (sec))
2963 {
2964 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2965 changed = TRUE;
2966 }
2967 }
2968
2969 return changed;
2970}
2971
2972
2973static bfd_boolean
7fa3d080 2974elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
2975{
2976 return xtensa_is_property_section (sec);
2977}
2978
a77dc2cc
BW
2979
2980static unsigned int
2981elf_xtensa_action_discarded (asection *sec)
2982{
2983 if (strcmp (".xt_except_table", sec->name) == 0)
2984 return 0;
2985
2986 if (strcmp (".xt_except_desc", sec->name) == 0)
2987 return 0;
2988
2989 return _bfd_elf_default_action_discarded (sec);
2990}
2991
e0001a05
NC
2992\f
2993/* Support for core dump NOTE sections. */
2994
2995static bfd_boolean
7fa3d080 2996elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2997{
2998 int offset;
eea6121a 2999 unsigned int size;
e0001a05
NC
3000
3001 /* The size for Xtensa is variable, so don't try to recognize the format
3002 based on the size. Just assume this is GNU/Linux. */
3003
3004 /* pr_cursig */
3005 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3006
3007 /* pr_pid */
3008 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3009
3010 /* pr_reg */
3011 offset = 72;
eea6121a 3012 size = note->descsz - offset - 4;
e0001a05
NC
3013
3014 /* Make a ".reg/999" section. */
3015 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3016 size, note->descpos + offset);
e0001a05
NC
3017}
3018
3019
3020static bfd_boolean
7fa3d080 3021elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3022{
3023 switch (note->descsz)
3024 {
3025 default:
3026 return FALSE;
3027
3028 case 128: /* GNU/Linux elf_prpsinfo */
3029 elf_tdata (abfd)->core_program
3030 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3031 elf_tdata (abfd)->core_command
3032 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3033 }
3034
3035 /* Note that for some reason, a spurious space is tacked
3036 onto the end of the args in some (at least one anyway)
3037 implementations, so strip it off if it exists. */
3038
3039 {
3040 char *command = elf_tdata (abfd)->core_command;
3041 int n = strlen (command);
3042
3043 if (0 < n && command[n - 1] == ' ')
3044 command[n - 1] = '\0';
3045 }
3046
3047 return TRUE;
3048}
3049
3050\f
3051/* Generic Xtensa configurability stuff. */
3052
3053static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3054static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3055static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3056static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3057static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3058static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3059static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3060static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3061
3062static void
7fa3d080 3063init_call_opcodes (void)
e0001a05
NC
3064{
3065 if (callx0_op == XTENSA_UNDEFINED)
3066 {
3067 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3068 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3069 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3070 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3071 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3072 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3073 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3074 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3075 }
3076}
3077
3078
3079static bfd_boolean
7fa3d080 3080is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3081{
3082 init_call_opcodes ();
3083 return (opcode == callx0_op
3084 || opcode == callx4_op
3085 || opcode == callx8_op
3086 || opcode == callx12_op);
3087}
3088
3089
3090static bfd_boolean
7fa3d080 3091is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3092{
3093 init_call_opcodes ();
3094 return (opcode == call0_op
3095 || opcode == call4_op
3096 || opcode == call8_op
3097 || opcode == call12_op);
3098}
3099
3100
3101static bfd_boolean
7fa3d080 3102is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3103{
3104 init_call_opcodes ();
3105 return (opcode == call4_op
3106 || opcode == call8_op
3107 || opcode == call12_op
3108 || opcode == callx4_op
3109 || opcode == callx8_op
3110 || opcode == callx12_op);
3111}
3112
3113
43cd72b9
BW
3114static xtensa_opcode
3115get_const16_opcode (void)
3116{
3117 static bfd_boolean done_lookup = FALSE;
3118 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3119 if (!done_lookup)
3120 {
3121 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3122 done_lookup = TRUE;
3123 }
3124 return const16_opcode;
3125}
3126
3127
e0001a05
NC
3128static xtensa_opcode
3129get_l32r_opcode (void)
3130{
3131 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3132 static bfd_boolean done_lookup = FALSE;
3133
3134 if (!done_lookup)
e0001a05
NC
3135 {
3136 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3137 done_lookup = TRUE;
e0001a05
NC
3138 }
3139 return l32r_opcode;
3140}
3141
3142
3143static bfd_vma
7fa3d080 3144l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3145{
3146 bfd_vma offset;
3147
3148 offset = addr - ((pc+3) & -4);
3149 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3150 offset = (signed int) offset >> 2;
3151 BFD_ASSERT ((signed int) offset >> 16 == -1);
3152 return offset;
3153}
3154
3155
e0001a05 3156static int
7fa3d080 3157get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3158{
43cd72b9
BW
3159 xtensa_isa isa = xtensa_default_isa;
3160 int last_immed, last_opnd, opi;
3161
3162 if (opcode == XTENSA_UNDEFINED)
3163 return XTENSA_UNDEFINED;
3164
3165 /* Find the last visible PC-relative immediate operand for the opcode.
3166 If there are no PC-relative immediates, then choose the last visible
3167 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3168 last_immed = XTENSA_UNDEFINED;
3169 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3170 for (opi = last_opnd - 1; opi >= 0; opi--)
3171 {
3172 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3173 continue;
3174 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3175 {
3176 last_immed = opi;
3177 break;
3178 }
3179 if (last_immed == XTENSA_UNDEFINED
3180 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3181 last_immed = opi;
3182 }
3183 if (last_immed < 0)
3184 return XTENSA_UNDEFINED;
3185
3186 /* If the operand number was specified in an old-style relocation,
3187 check for consistency with the operand computed above. */
3188 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3189 {
3190 int reloc_opnd = r_type - R_XTENSA_OP0;
3191 if (reloc_opnd != last_immed)
3192 return XTENSA_UNDEFINED;
3193 }
3194
3195 return last_immed;
3196}
3197
3198
3199int
7fa3d080 3200get_relocation_slot (int r_type)
43cd72b9
BW
3201{
3202 switch (r_type)
3203 {
3204 case R_XTENSA_OP0:
3205 case R_XTENSA_OP1:
3206 case R_XTENSA_OP2:
3207 return 0;
3208
3209 default:
3210 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3211 return r_type - R_XTENSA_SLOT0_OP;
3212 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3213 return r_type - R_XTENSA_SLOT0_ALT;
3214 break;
3215 }
3216
3217 return XTENSA_UNDEFINED;
e0001a05
NC
3218}
3219
3220
3221/* Get the opcode for a relocation. */
3222
3223static xtensa_opcode
7fa3d080
BW
3224get_relocation_opcode (bfd *abfd,
3225 asection *sec,
3226 bfd_byte *contents,
3227 Elf_Internal_Rela *irel)
e0001a05
NC
3228{
3229 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3230 static xtensa_insnbuf sbuff = NULL;
e0001a05 3231 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3232 xtensa_format fmt;
3233 int slot;
e0001a05
NC
3234
3235 if (contents == NULL)
3236 return XTENSA_UNDEFINED;
3237
43cd72b9 3238 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3239 return XTENSA_UNDEFINED;
3240
3241 if (ibuff == NULL)
43cd72b9
BW
3242 {
3243 ibuff = xtensa_insnbuf_alloc (isa);
3244 sbuff = xtensa_insnbuf_alloc (isa);
3245 }
3246
e0001a05 3247 /* Decode the instruction. */
43cd72b9
BW
3248 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3249 sec->size - irel->r_offset);
3250 fmt = xtensa_format_decode (isa, ibuff);
3251 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3252 if (slot == XTENSA_UNDEFINED)
3253 return XTENSA_UNDEFINED;
3254 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3255 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3256}
3257
3258
3259bfd_boolean
7fa3d080
BW
3260is_l32r_relocation (bfd *abfd,
3261 asection *sec,
3262 bfd_byte *contents,
3263 Elf_Internal_Rela *irel)
e0001a05
NC
3264{
3265 xtensa_opcode opcode;
43cd72b9 3266 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3267 return FALSE;
43cd72b9 3268 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3269 return (opcode == get_l32r_opcode ());
3270}
3271
e0001a05 3272
43cd72b9 3273static bfd_size_type
7fa3d080
BW
3274get_asm_simplify_size (bfd_byte *contents,
3275 bfd_size_type content_len,
3276 bfd_size_type offset)
e0001a05 3277{
43cd72b9 3278 bfd_size_type insnlen, size = 0;
e0001a05 3279
43cd72b9
BW
3280 /* Decode the size of the next two instructions. */
3281 insnlen = insn_decode_len (contents, content_len, offset);
3282 if (insnlen == 0)
3283 return 0;
e0001a05 3284
43cd72b9 3285 size += insnlen;
e0001a05 3286
43cd72b9
BW
3287 insnlen = insn_decode_len (contents, content_len, offset + size);
3288 if (insnlen == 0)
3289 return 0;
e0001a05 3290
43cd72b9
BW
3291 size += insnlen;
3292 return size;
3293}
e0001a05 3294
43cd72b9
BW
3295
3296bfd_boolean
7fa3d080 3297is_alt_relocation (int r_type)
43cd72b9
BW
3298{
3299 return (r_type >= R_XTENSA_SLOT0_ALT
3300 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3301}
3302
3303
43cd72b9 3304bfd_boolean
7fa3d080 3305is_operand_relocation (int r_type)
e0001a05 3306{
43cd72b9
BW
3307 switch (r_type)
3308 {
3309 case R_XTENSA_OP0:
3310 case R_XTENSA_OP1:
3311 case R_XTENSA_OP2:
3312 return TRUE;
e0001a05 3313
43cd72b9
BW
3314 default:
3315 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3316 return TRUE;
3317 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3318 return TRUE;
3319 break;
3320 }
e0001a05 3321
43cd72b9 3322 return FALSE;
e0001a05
NC
3323}
3324
43cd72b9
BW
3325
3326#define MIN_INSN_LENGTH 2
e0001a05 3327
43cd72b9
BW
3328/* Return 0 if it fails to decode. */
3329
3330bfd_size_type
7fa3d080
BW
3331insn_decode_len (bfd_byte *contents,
3332 bfd_size_type content_len,
3333 bfd_size_type offset)
e0001a05 3334{
43cd72b9
BW
3335 int insn_len;
3336 xtensa_isa isa = xtensa_default_isa;
3337 xtensa_format fmt;
3338 static xtensa_insnbuf ibuff = NULL;
e0001a05 3339
43cd72b9
BW
3340 if (offset + MIN_INSN_LENGTH > content_len)
3341 return 0;
e0001a05 3342
43cd72b9
BW
3343 if (ibuff == NULL)
3344 ibuff = xtensa_insnbuf_alloc (isa);
3345 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3346 content_len - offset);
3347 fmt = xtensa_format_decode (isa, ibuff);
3348 if (fmt == XTENSA_UNDEFINED)
3349 return 0;
3350 insn_len = xtensa_format_length (isa, fmt);
3351 if (insn_len == XTENSA_UNDEFINED)
3352 return 0;
3353 return insn_len;
e0001a05
NC
3354}
3355
3356
43cd72b9
BW
3357/* Decode the opcode for a single slot instruction.
3358 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3359
43cd72b9 3360xtensa_opcode
7fa3d080
BW
3361insn_decode_opcode (bfd_byte *contents,
3362 bfd_size_type content_len,
3363 bfd_size_type offset,
3364 int slot)
e0001a05 3365{
e0001a05 3366 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3367 xtensa_format fmt;
3368 static xtensa_insnbuf insnbuf = NULL;
3369 static xtensa_insnbuf slotbuf = NULL;
3370
3371 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3372 return XTENSA_UNDEFINED;
3373
3374 if (insnbuf == NULL)
43cd72b9
BW
3375 {
3376 insnbuf = xtensa_insnbuf_alloc (isa);
3377 slotbuf = xtensa_insnbuf_alloc (isa);
3378 }
3379
3380 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3381 content_len - offset);
3382 fmt = xtensa_format_decode (isa, insnbuf);
3383 if (fmt == XTENSA_UNDEFINED)
e0001a05 3384 return XTENSA_UNDEFINED;
43cd72b9
BW
3385
3386 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3387 return XTENSA_UNDEFINED;
e0001a05 3388
43cd72b9
BW
3389 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3390 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3391}
e0001a05 3392
e0001a05 3393
43cd72b9
BW
3394/* The offset is the offset in the contents.
3395 The address is the address of that offset. */
e0001a05 3396
43cd72b9 3397static bfd_boolean
7fa3d080
BW
3398check_branch_target_aligned (bfd_byte *contents,
3399 bfd_size_type content_length,
3400 bfd_vma offset,
3401 bfd_vma address)
43cd72b9
BW
3402{
3403 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3404 if (insn_len == 0)
3405 return FALSE;
3406 return check_branch_target_aligned_address (address, insn_len);
3407}
e0001a05 3408
e0001a05 3409
43cd72b9 3410static bfd_boolean
7fa3d080
BW
3411check_loop_aligned (bfd_byte *contents,
3412 bfd_size_type content_length,
3413 bfd_vma offset,
3414 bfd_vma address)
e0001a05 3415{
43cd72b9 3416 bfd_size_type loop_len, insn_len;
64b607e6 3417 xtensa_opcode opcode;
e0001a05 3418
64b607e6
BW
3419 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3420 if (opcode == XTENSA_UNDEFINED
3421 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3422 {
3423 BFD_ASSERT (FALSE);
3424 return FALSE;
3425 }
3426
43cd72b9 3427 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 3428 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
3429 if (loop_len == 0 || insn_len == 0)
3430 {
3431 BFD_ASSERT (FALSE);
3432 return FALSE;
3433 }
e0001a05 3434
43cd72b9
BW
3435 return check_branch_target_aligned_address (address + loop_len, insn_len);
3436}
e0001a05 3437
e0001a05
NC
3438
3439static bfd_boolean
7fa3d080 3440check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3441{
43cd72b9
BW
3442 if (len == 8)
3443 return (addr % 8 == 0);
3444 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3445}
3446
43cd72b9
BW
3447\f
3448/* Instruction widening and narrowing. */
e0001a05 3449
7fa3d080
BW
3450/* When FLIX is available we need to access certain instructions only
3451 when they are 16-bit or 24-bit instructions. This table caches
3452 information about such instructions by walking through all the
3453 opcodes and finding the smallest single-slot format into which each
3454 can be encoded. */
3455
3456static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3457
3458
7fa3d080
BW
3459static void
3460init_op_single_format_table (void)
e0001a05 3461{
7fa3d080
BW
3462 xtensa_isa isa = xtensa_default_isa;
3463 xtensa_insnbuf ibuf;
3464 xtensa_opcode opcode;
3465 xtensa_format fmt;
3466 int num_opcodes;
3467
3468 if (op_single_fmt_table)
3469 return;
3470
3471 ibuf = xtensa_insnbuf_alloc (isa);
3472 num_opcodes = xtensa_isa_num_opcodes (isa);
3473
3474 op_single_fmt_table = (xtensa_format *)
3475 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3476 for (opcode = 0; opcode < num_opcodes; opcode++)
3477 {
3478 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3479 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3480 {
3481 if (xtensa_format_num_slots (isa, fmt) == 1
3482 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3483 {
3484 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3485 int fmt_length = xtensa_format_length (isa, fmt);
3486 if (old_fmt == XTENSA_UNDEFINED
3487 || fmt_length < xtensa_format_length (isa, old_fmt))
3488 op_single_fmt_table[opcode] = fmt;
3489 }
3490 }
3491 }
3492 xtensa_insnbuf_free (isa, ibuf);
3493}
3494
3495
3496static xtensa_format
3497get_single_format (xtensa_opcode opcode)
3498{
3499 init_op_single_format_table ();
3500 return op_single_fmt_table[opcode];
3501}
e0001a05 3502
e0001a05 3503
43cd72b9
BW
3504/* For the set of narrowable instructions we do NOT include the
3505 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3506 involved during linker relaxation that may require these to
3507 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3508 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3509
7fa3d080
BW
3510struct string_pair
3511{
3512 const char *wide;
3513 const char *narrow;
3514};
3515
43cd72b9 3516struct string_pair narrowable[] =
e0001a05 3517{
43cd72b9
BW
3518 { "add", "add.n" },
3519 { "addi", "addi.n" },
3520 { "addmi", "addi.n" },
3521 { "l32i", "l32i.n" },
3522 { "movi", "movi.n" },
3523 { "ret", "ret.n" },
3524 { "retw", "retw.n" },
3525 { "s32i", "s32i.n" },
3526 { "or", "mov.n" } /* special case only when op1 == op2 */
3527};
e0001a05 3528
43cd72b9 3529struct string_pair widenable[] =
e0001a05 3530{
43cd72b9
BW
3531 { "add", "add.n" },
3532 { "addi", "addi.n" },
3533 { "addmi", "addi.n" },
3534 { "beqz", "beqz.n" },
3535 { "bnez", "bnez.n" },
3536 { "l32i", "l32i.n" },
3537 { "movi", "movi.n" },
3538 { "ret", "ret.n" },
3539 { "retw", "retw.n" },
3540 { "s32i", "s32i.n" },
3541 { "or", "mov.n" } /* special case only when op1 == op2 */
3542};
e0001a05
NC
3543
3544
64b607e6
BW
3545/* Check if an instruction can be "narrowed", i.e., changed from a standard
3546 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3547 return the instruction buffer holding the narrow instruction. Otherwise,
3548 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
3549 but require some special case operand checks in some cases. */
3550
64b607e6
BW
3551static xtensa_insnbuf
3552can_narrow_instruction (xtensa_insnbuf slotbuf,
3553 xtensa_format fmt,
3554 xtensa_opcode opcode)
e0001a05 3555{
43cd72b9 3556 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3557 xtensa_format o_fmt;
3558 unsigned opi;
e0001a05 3559
43cd72b9
BW
3560 static xtensa_insnbuf o_insnbuf = NULL;
3561 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3562
64b607e6 3563 if (o_insnbuf == NULL)
43cd72b9 3564 {
43cd72b9
BW
3565 o_insnbuf = xtensa_insnbuf_alloc (isa);
3566 o_slotbuf = xtensa_insnbuf_alloc (isa);
3567 }
e0001a05 3568
64b607e6 3569 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
3570 {
3571 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3572
43cd72b9
BW
3573 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3574 {
3575 uint32 value, newval;
3576 int i, operand_count, o_operand_count;
3577 xtensa_opcode o_opcode;
e0001a05 3578
43cd72b9
BW
3579 /* Address does not matter in this case. We might need to
3580 fix it to handle branches/jumps. */
3581 bfd_vma self_address = 0;
e0001a05 3582
43cd72b9
BW
3583 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3584 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3585 return 0;
43cd72b9
BW
3586 o_fmt = get_single_format (o_opcode);
3587 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3588 return 0;
e0001a05 3589
43cd72b9
BW
3590 if (xtensa_format_length (isa, fmt) != 3
3591 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 3592 return 0;
e0001a05 3593
43cd72b9
BW
3594 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3595 operand_count = xtensa_opcode_num_operands (isa, opcode);
3596 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3597
43cd72b9 3598 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3599 return 0;
e0001a05 3600
43cd72b9
BW
3601 if (!is_or)
3602 {
3603 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3604 return 0;
43cd72b9
BW
3605 }
3606 else
3607 {
3608 uint32 rawval0, rawval1, rawval2;
e0001a05 3609
64b607e6
BW
3610 if (o_operand_count + 1 != operand_count
3611 || xtensa_operand_get_field (isa, opcode, 0,
3612 fmt, 0, slotbuf, &rawval0) != 0
3613 || xtensa_operand_get_field (isa, opcode, 1,
3614 fmt, 0, slotbuf, &rawval1) != 0
3615 || xtensa_operand_get_field (isa, opcode, 2,
3616 fmt, 0, slotbuf, &rawval2) != 0
3617 || rawval1 != rawval2
3618 || rawval0 == rawval1 /* it is a nop */)
3619 return 0;
43cd72b9 3620 }
e0001a05 3621
43cd72b9
BW
3622 for (i = 0; i < o_operand_count; ++i)
3623 {
3624 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3625 slotbuf, &value)
3626 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 3627 return 0;
e0001a05 3628
43cd72b9
BW
3629 /* PC-relative branches need adjustment, but
3630 the PC-rel operand will always have a relocation. */
3631 newval = value;
3632 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3633 self_address)
3634 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3635 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3636 o_slotbuf, newval))
64b607e6 3637 return 0;
43cd72b9 3638 }
e0001a05 3639
64b607e6
BW
3640 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3641 return 0;
e0001a05 3642
64b607e6 3643 return o_insnbuf;
43cd72b9
BW
3644 }
3645 }
64b607e6 3646 return 0;
43cd72b9 3647}
e0001a05 3648
e0001a05 3649
64b607e6
BW
3650/* Attempt to narrow an instruction. If the narrowing is valid, perform
3651 the action in-place directly into the contents and return TRUE. Otherwise,
3652 the return value is FALSE and the contents are not modified. */
e0001a05 3653
43cd72b9 3654static bfd_boolean
64b607e6
BW
3655narrow_instruction (bfd_byte *contents,
3656 bfd_size_type content_length,
3657 bfd_size_type offset)
e0001a05 3658{
43cd72b9 3659 xtensa_opcode opcode;
64b607e6 3660 bfd_size_type insn_len;
43cd72b9 3661 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3662 xtensa_format fmt;
3663 xtensa_insnbuf o_insnbuf;
e0001a05 3664
43cd72b9
BW
3665 static xtensa_insnbuf insnbuf = NULL;
3666 static xtensa_insnbuf slotbuf = NULL;
e0001a05 3667
43cd72b9
BW
3668 if (insnbuf == NULL)
3669 {
3670 insnbuf = xtensa_insnbuf_alloc (isa);
3671 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 3672 }
e0001a05 3673
43cd72b9 3674 BFD_ASSERT (offset < content_length);
2c8c90bc 3675
43cd72b9 3676 if (content_length < 2)
e0001a05
NC
3677 return FALSE;
3678
64b607e6 3679 /* We will hand-code a few of these for a little while.
43cd72b9
BW
3680 These have all been specified in the assembler aleady. */
3681 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3682 content_length - offset);
3683 fmt = xtensa_format_decode (isa, insnbuf);
3684 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3685 return FALSE;
3686
43cd72b9 3687 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3688 return FALSE;
3689
43cd72b9
BW
3690 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3691 if (opcode == XTENSA_UNDEFINED)
e0001a05 3692 return FALSE;
43cd72b9
BW
3693 insn_len = xtensa_format_length (isa, fmt);
3694 if (insn_len > content_length)
3695 return FALSE;
3696
64b607e6
BW
3697 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3698 if (o_insnbuf)
3699 {
3700 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3701 content_length - offset);
3702 return TRUE;
3703 }
3704
3705 return FALSE;
3706}
3707
3708
3709/* Check if an instruction can be "widened", i.e., changed from a 2-byte
3710 "density" instruction to a standard 3-byte instruction. If it is valid,
3711 return the instruction buffer holding the wide instruction. Otherwise,
3712 return 0. The set of valid widenings are specified by a string table
3713 but require some special case operand checks in some cases. */
3714
3715static xtensa_insnbuf
3716can_widen_instruction (xtensa_insnbuf slotbuf,
3717 xtensa_format fmt,
3718 xtensa_opcode opcode)
3719{
3720 xtensa_isa isa = xtensa_default_isa;
3721 xtensa_format o_fmt;
3722 unsigned opi;
3723
3724 static xtensa_insnbuf o_insnbuf = NULL;
3725 static xtensa_insnbuf o_slotbuf = NULL;
3726
3727 if (o_insnbuf == NULL)
3728 {
3729 o_insnbuf = xtensa_insnbuf_alloc (isa);
3730 o_slotbuf = xtensa_insnbuf_alloc (isa);
3731 }
3732
3733 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 3734 {
43cd72b9
BW
3735 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3736 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3737 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3738
43cd72b9
BW
3739 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3740 {
3741 uint32 value, newval;
3742 int i, operand_count, o_operand_count, check_operand_count;
3743 xtensa_opcode o_opcode;
e0001a05 3744
43cd72b9
BW
3745 /* Address does not matter in this case. We might need to fix it
3746 to handle branches/jumps. */
3747 bfd_vma self_address = 0;
e0001a05 3748
43cd72b9
BW
3749 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3750 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3751 return 0;
43cd72b9
BW
3752 o_fmt = get_single_format (o_opcode);
3753 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3754 return 0;
e0001a05 3755
43cd72b9
BW
3756 if (xtensa_format_length (isa, fmt) != 2
3757 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 3758 return 0;
e0001a05 3759
43cd72b9
BW
3760 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3761 operand_count = xtensa_opcode_num_operands (isa, opcode);
3762 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3763 check_operand_count = o_operand_count;
e0001a05 3764
43cd72b9 3765 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3766 return 0;
e0001a05 3767
43cd72b9
BW
3768 if (!is_or)
3769 {
3770 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3771 return 0;
43cd72b9
BW
3772 }
3773 else
3774 {
3775 uint32 rawval0, rawval1;
3776
64b607e6
BW
3777 if (o_operand_count != operand_count + 1
3778 || xtensa_operand_get_field (isa, opcode, 0,
3779 fmt, 0, slotbuf, &rawval0) != 0
3780 || xtensa_operand_get_field (isa, opcode, 1,
3781 fmt, 0, slotbuf, &rawval1) != 0
3782 || rawval0 == rawval1 /* it is a nop */)
3783 return 0;
43cd72b9
BW
3784 }
3785 if (is_branch)
3786 check_operand_count--;
3787
64b607e6 3788 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
3789 {
3790 int new_i = i;
3791 if (is_or && i == o_operand_count - 1)
3792 new_i = i - 1;
3793 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3794 slotbuf, &value)
3795 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 3796 return 0;
43cd72b9
BW
3797
3798 /* PC-relative branches need adjustment, but
3799 the PC-rel operand will always have a relocation. */
3800 newval = value;
3801 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3802 self_address)
3803 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3804 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3805 o_slotbuf, newval))
64b607e6 3806 return 0;
43cd72b9
BW
3807 }
3808
3809 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 3810 return 0;
43cd72b9 3811
64b607e6 3812 return o_insnbuf;
43cd72b9
BW
3813 }
3814 }
64b607e6
BW
3815 return 0;
3816}
3817
3818
3819/* Attempt to widen an instruction. If the widening is valid, perform
3820 the action in-place directly into the contents and return TRUE. Otherwise,
3821 the return value is FALSE and the contents are not modified. */
3822
3823static bfd_boolean
3824widen_instruction (bfd_byte *contents,
3825 bfd_size_type content_length,
3826 bfd_size_type offset)
3827{
3828 xtensa_opcode opcode;
3829 bfd_size_type insn_len;
3830 xtensa_isa isa = xtensa_default_isa;
3831 xtensa_format fmt;
3832 xtensa_insnbuf o_insnbuf;
3833
3834 static xtensa_insnbuf insnbuf = NULL;
3835 static xtensa_insnbuf slotbuf = NULL;
3836
3837 if (insnbuf == NULL)
3838 {
3839 insnbuf = xtensa_insnbuf_alloc (isa);
3840 slotbuf = xtensa_insnbuf_alloc (isa);
3841 }
3842
3843 BFD_ASSERT (offset < content_length);
3844
3845 if (content_length < 2)
3846 return FALSE;
3847
3848 /* We will hand-code a few of these for a little while.
3849 These have all been specified in the assembler aleady. */
3850 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3851 content_length - offset);
3852 fmt = xtensa_format_decode (isa, insnbuf);
3853 if (xtensa_format_num_slots (isa, fmt) != 1)
3854 return FALSE;
3855
3856 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3857 return FALSE;
3858
3859 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3860 if (opcode == XTENSA_UNDEFINED)
3861 return FALSE;
3862 insn_len = xtensa_format_length (isa, fmt);
3863 if (insn_len > content_length)
3864 return FALSE;
3865
3866 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3867 if (o_insnbuf)
3868 {
3869 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3870 content_length - offset);
3871 return TRUE;
3872 }
43cd72b9 3873 return FALSE;
e0001a05
NC
3874}
3875
43cd72b9
BW
3876\f
3877/* Code for transforming CALLs at link-time. */
e0001a05 3878
43cd72b9 3879static bfd_reloc_status_type
7fa3d080
BW
3880elf_xtensa_do_asm_simplify (bfd_byte *contents,
3881 bfd_vma address,
3882 bfd_vma content_length,
3883 char **error_message)
e0001a05 3884{
43cd72b9
BW
3885 static xtensa_insnbuf insnbuf = NULL;
3886 static xtensa_insnbuf slotbuf = NULL;
3887 xtensa_format core_format = XTENSA_UNDEFINED;
3888 xtensa_opcode opcode;
3889 xtensa_opcode direct_call_opcode;
3890 xtensa_isa isa = xtensa_default_isa;
3891 bfd_byte *chbuf = contents + address;
3892 int opn;
e0001a05 3893
43cd72b9 3894 if (insnbuf == NULL)
e0001a05 3895 {
43cd72b9
BW
3896 insnbuf = xtensa_insnbuf_alloc (isa);
3897 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3898 }
e0001a05 3899
43cd72b9
BW
3900 if (content_length < address)
3901 {
3902 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3903 return bfd_reloc_other;
3904 }
e0001a05 3905
43cd72b9
BW
3906 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3907 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3908 if (direct_call_opcode == XTENSA_UNDEFINED)
3909 {
3910 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3911 return bfd_reloc_other;
3912 }
3913
3914 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3915 core_format = xtensa_format_lookup (isa, "x24");
3916 opcode = xtensa_opcode_lookup (isa, "or");
3917 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3918 for (opn = 0; opn < 3; opn++)
3919 {
3920 uint32 regno = 1;
3921 xtensa_operand_encode (isa, opcode, opn, &regno);
3922 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3923 slotbuf, regno);
3924 }
3925 xtensa_format_encode (isa, core_format, insnbuf);
3926 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3927 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3928
43cd72b9
BW
3929 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3930 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3931 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3932
43cd72b9
BW
3933 xtensa_format_encode (isa, core_format, insnbuf);
3934 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3935 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3936 content_length - address - 3);
e0001a05 3937
43cd72b9
BW
3938 return bfd_reloc_ok;
3939}
e0001a05 3940
e0001a05 3941
43cd72b9 3942static bfd_reloc_status_type
7fa3d080
BW
3943contract_asm_expansion (bfd_byte *contents,
3944 bfd_vma content_length,
3945 Elf_Internal_Rela *irel,
3946 char **error_message)
43cd72b9
BW
3947{
3948 bfd_reloc_status_type retval =
3949 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3950 error_message);
e0001a05 3951
43cd72b9
BW
3952 if (retval != bfd_reloc_ok)
3953 return bfd_reloc_dangerous;
e0001a05 3954
43cd72b9
BW
3955 /* Update the irel->r_offset field so that the right immediate and
3956 the right instruction are modified during the relocation. */
3957 irel->r_offset += 3;
3958 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3959 return bfd_reloc_ok;
3960}
e0001a05 3961
e0001a05 3962
43cd72b9 3963static xtensa_opcode
7fa3d080 3964swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3965{
43cd72b9 3966 init_call_opcodes ();
e0001a05 3967
43cd72b9
BW
3968 if (opcode == callx0_op) return call0_op;
3969 if (opcode == callx4_op) return call4_op;
3970 if (opcode == callx8_op) return call8_op;
3971 if (opcode == callx12_op) return call12_op;
e0001a05 3972
43cd72b9
BW
3973 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3974 return XTENSA_UNDEFINED;
3975}
e0001a05 3976
e0001a05 3977
43cd72b9
BW
3978/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3979 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3980 If not, return XTENSA_UNDEFINED. */
e0001a05 3981
43cd72b9
BW
3982#define L32R_TARGET_REG_OPERAND 0
3983#define CONST16_TARGET_REG_OPERAND 0
3984#define CALLN_SOURCE_OPERAND 0
e0001a05 3985
43cd72b9 3986static xtensa_opcode
7fa3d080 3987get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3988{
43cd72b9
BW
3989 static xtensa_insnbuf insnbuf = NULL;
3990 static xtensa_insnbuf slotbuf = NULL;
3991 xtensa_format fmt;
3992 xtensa_opcode opcode;
3993 xtensa_isa isa = xtensa_default_isa;
3994 uint32 regno, const16_regno, call_regno;
3995 int offset = 0;
e0001a05 3996
43cd72b9 3997 if (insnbuf == NULL)
e0001a05 3998 {
43cd72b9
BW
3999 insnbuf = xtensa_insnbuf_alloc (isa);
4000 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4001 }
43cd72b9
BW
4002
4003 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4004 fmt = xtensa_format_decode (isa, insnbuf);
4005 if (fmt == XTENSA_UNDEFINED
4006 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4007 return XTENSA_UNDEFINED;
4008
4009 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4010 if (opcode == XTENSA_UNDEFINED)
4011 return XTENSA_UNDEFINED;
4012
4013 if (opcode == get_l32r_opcode ())
e0001a05 4014 {
43cd72b9
BW
4015 if (p_uses_l32r)
4016 *p_uses_l32r = TRUE;
4017 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4018 fmt, 0, slotbuf, &regno)
4019 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4020 &regno))
4021 return XTENSA_UNDEFINED;
e0001a05 4022 }
43cd72b9 4023 else if (opcode == get_const16_opcode ())
e0001a05 4024 {
43cd72b9
BW
4025 if (p_uses_l32r)
4026 *p_uses_l32r = FALSE;
4027 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4028 fmt, 0, slotbuf, &regno)
4029 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4030 &regno))
4031 return XTENSA_UNDEFINED;
4032
4033 /* Check that the next instruction is also CONST16. */
4034 offset += xtensa_format_length (isa, fmt);
4035 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4036 fmt = xtensa_format_decode (isa, insnbuf);
4037 if (fmt == XTENSA_UNDEFINED
4038 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4039 return XTENSA_UNDEFINED;
4040 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4041 if (opcode != get_const16_opcode ())
4042 return XTENSA_UNDEFINED;
4043
4044 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4045 fmt, 0, slotbuf, &const16_regno)
4046 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4047 &const16_regno)
4048 || const16_regno != regno)
4049 return XTENSA_UNDEFINED;
e0001a05 4050 }
43cd72b9
BW
4051 else
4052 return XTENSA_UNDEFINED;
e0001a05 4053
43cd72b9
BW
4054 /* Next instruction should be an CALLXn with operand 0 == regno. */
4055 offset += xtensa_format_length (isa, fmt);
4056 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4057 fmt = xtensa_format_decode (isa, insnbuf);
4058 if (fmt == XTENSA_UNDEFINED
4059 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4060 return XTENSA_UNDEFINED;
4061 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4062 if (opcode == XTENSA_UNDEFINED
4063 || !is_indirect_call_opcode (opcode))
4064 return XTENSA_UNDEFINED;
e0001a05 4065
43cd72b9
BW
4066 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4067 fmt, 0, slotbuf, &call_regno)
4068 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4069 &call_regno))
4070 return XTENSA_UNDEFINED;
e0001a05 4071
43cd72b9
BW
4072 if (call_regno != regno)
4073 return XTENSA_UNDEFINED;
e0001a05 4074
43cd72b9
BW
4075 return opcode;
4076}
e0001a05 4077
43cd72b9
BW
4078\f
4079/* Data structures used during relaxation. */
e0001a05 4080
43cd72b9 4081/* r_reloc: relocation values. */
e0001a05 4082
43cd72b9
BW
4083/* Through the relaxation process, we need to keep track of the values
4084 that will result from evaluating relocations. The standard ELF
4085 relocation structure is not sufficient for this purpose because we're
4086 operating on multiple input files at once, so we need to know which
4087 input file a relocation refers to. The r_reloc structure thus
4088 records both the input file (bfd) and ELF relocation.
e0001a05 4089
43cd72b9
BW
4090 For efficiency, an r_reloc also contains a "target_offset" field to
4091 cache the target-section-relative offset value that is represented by
4092 the relocation.
4093
4094 The r_reloc also contains a virtual offset that allows multiple
4095 inserted literals to be placed at the same "address" with
4096 different offsets. */
e0001a05 4097
43cd72b9 4098typedef struct r_reloc_struct r_reloc;
e0001a05 4099
43cd72b9 4100struct r_reloc_struct
e0001a05 4101{
43cd72b9
BW
4102 bfd *abfd;
4103 Elf_Internal_Rela rela;
e0001a05 4104 bfd_vma target_offset;
43cd72b9 4105 bfd_vma virtual_offset;
e0001a05
NC
4106};
4107
e0001a05 4108
43cd72b9
BW
4109/* The r_reloc structure is included by value in literal_value, but not
4110 every literal_value has an associated relocation -- some are simple
4111 constants. In such cases, we set all the fields in the r_reloc
4112 struct to zero. The r_reloc_is_const function should be used to
4113 detect this case. */
e0001a05 4114
43cd72b9 4115static bfd_boolean
7fa3d080 4116r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4117{
43cd72b9 4118 return (r_rel->abfd == NULL);
e0001a05
NC
4119}
4120
4121
43cd72b9 4122static bfd_vma
7fa3d080 4123r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4124{
43cd72b9
BW
4125 bfd_vma target_offset;
4126 unsigned long r_symndx;
e0001a05 4127
43cd72b9
BW
4128 BFD_ASSERT (!r_reloc_is_const (r_rel));
4129 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4130 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4131 return (target_offset + r_rel->rela.r_addend);
4132}
e0001a05 4133
e0001a05 4134
43cd72b9 4135static struct elf_link_hash_entry *
7fa3d080 4136r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4137{
43cd72b9
BW
4138 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4139 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4140}
e0001a05 4141
43cd72b9
BW
4142
4143static asection *
7fa3d080 4144r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4145{
4146 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4147 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4148}
e0001a05
NC
4149
4150
4151static bfd_boolean
7fa3d080 4152r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4153{
43cd72b9
BW
4154 asection *sec;
4155 if (r_rel == NULL)
e0001a05 4156 return FALSE;
e0001a05 4157
43cd72b9
BW
4158 sec = r_reloc_get_section (r_rel);
4159 if (sec == bfd_abs_section_ptr
4160 || sec == bfd_com_section_ptr
4161 || sec == bfd_und_section_ptr)
4162 return FALSE;
4163 return TRUE;
e0001a05
NC
4164}
4165
4166
7fa3d080
BW
4167static void
4168r_reloc_init (r_reloc *r_rel,
4169 bfd *abfd,
4170 Elf_Internal_Rela *irel,
4171 bfd_byte *contents,
4172 bfd_size_type content_length)
4173{
4174 int r_type;
4175 reloc_howto_type *howto;
4176
4177 if (irel)
4178 {
4179 r_rel->rela = *irel;
4180 r_rel->abfd = abfd;
4181 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4182 r_rel->virtual_offset = 0;
4183 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4184 howto = &elf_howto_table[r_type];
4185 if (howto->partial_inplace)
4186 {
4187 bfd_vma inplace_val;
4188 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4189
4190 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4191 r_rel->target_offset += inplace_val;
4192 }
4193 }
4194 else
4195 memset (r_rel, 0, sizeof (r_reloc));
4196}
4197
4198
43cd72b9
BW
4199#if DEBUG
4200
e0001a05 4201static void
7fa3d080 4202print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4203{
43cd72b9
BW
4204 if (r_reloc_is_defined (r_rel))
4205 {
4206 asection *sec = r_reloc_get_section (r_rel);
4207 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4208 }
4209 else if (r_reloc_get_hash_entry (r_rel))
4210 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4211 else
4212 fprintf (fp, " ?? + ");
e0001a05 4213
43cd72b9
BW
4214 fprintf_vma (fp, r_rel->target_offset);
4215 if (r_rel->virtual_offset)
4216 {
4217 fprintf (fp, " + ");
4218 fprintf_vma (fp, r_rel->virtual_offset);
4219 }
4220
4221 fprintf (fp, ")");
4222}
e0001a05 4223
43cd72b9 4224#endif /* DEBUG */
e0001a05 4225
43cd72b9
BW
4226\f
4227/* source_reloc: relocations that reference literals. */
e0001a05 4228
43cd72b9
BW
4229/* To determine whether literals can be coalesced, we need to first
4230 record all the relocations that reference the literals. The
4231 source_reloc structure below is used for this purpose. The
4232 source_reloc entries are kept in a per-literal-section array, sorted
4233 by offset within the literal section (i.e., target offset).
e0001a05 4234
43cd72b9
BW
4235 The source_sec and r_rel.rela.r_offset fields identify the source of
4236 the relocation. The r_rel field records the relocation value, i.e.,
4237 the offset of the literal being referenced. The opnd field is needed
4238 to determine the range of the immediate field to which the relocation
4239 applies, so we can determine whether another literal with the same
4240 value is within range. The is_null field is true when the relocation
4241 is being removed (e.g., when an L32R is being removed due to a CALLX
4242 that is converted to a direct CALL). */
e0001a05 4243
43cd72b9
BW
4244typedef struct source_reloc_struct source_reloc;
4245
4246struct source_reloc_struct
e0001a05 4247{
43cd72b9
BW
4248 asection *source_sec;
4249 r_reloc r_rel;
4250 xtensa_opcode opcode;
4251 int opnd;
4252 bfd_boolean is_null;
4253 bfd_boolean is_abs_literal;
4254};
e0001a05 4255
e0001a05 4256
e0001a05 4257static void
7fa3d080
BW
4258init_source_reloc (source_reloc *reloc,
4259 asection *source_sec,
4260 const r_reloc *r_rel,
4261 xtensa_opcode opcode,
4262 int opnd,
4263 bfd_boolean is_abs_literal)
e0001a05 4264{
43cd72b9
BW
4265 reloc->source_sec = source_sec;
4266 reloc->r_rel = *r_rel;
4267 reloc->opcode = opcode;
4268 reloc->opnd = opnd;
4269 reloc->is_null = FALSE;
4270 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4271}
4272
e0001a05 4273
43cd72b9
BW
4274/* Find the source_reloc for a particular source offset and relocation
4275 type. Note that the array is sorted by _target_ offset, so this is
4276 just a linear search. */
e0001a05 4277
43cd72b9 4278static source_reloc *
7fa3d080
BW
4279find_source_reloc (source_reloc *src_relocs,
4280 int src_count,
4281 asection *sec,
4282 Elf_Internal_Rela *irel)
e0001a05 4283{
43cd72b9 4284 int i;
e0001a05 4285
43cd72b9
BW
4286 for (i = 0; i < src_count; i++)
4287 {
4288 if (src_relocs[i].source_sec == sec
4289 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4290 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4291 == ELF32_R_TYPE (irel->r_info)))
4292 return &src_relocs[i];
4293 }
e0001a05 4294
43cd72b9 4295 return NULL;
e0001a05
NC
4296}
4297
4298
43cd72b9 4299static int
7fa3d080 4300source_reloc_compare (const void *ap, const void *bp)
e0001a05 4301{
43cd72b9
BW
4302 const source_reloc *a = (const source_reloc *) ap;
4303 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4304
43cd72b9
BW
4305 if (a->r_rel.target_offset != b->r_rel.target_offset)
4306 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4307
43cd72b9
BW
4308 /* We don't need to sort on these criteria for correctness,
4309 but enforcing a more strict ordering prevents unstable qsort
4310 from behaving differently with different implementations.
4311 Without the code below we get correct but different results
4312 on Solaris 2.7 and 2.8. We would like to always produce the
4313 same results no matter the host. */
4314
4315 if ((!a->is_null) - (!b->is_null))
4316 return ((!a->is_null) - (!b->is_null));
4317 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4318}
4319
43cd72b9
BW
4320\f
4321/* Literal values and value hash tables. */
e0001a05 4322
43cd72b9
BW
4323/* Literals with the same value can be coalesced. The literal_value
4324 structure records the value of a literal: the "r_rel" field holds the
4325 information from the relocation on the literal (if there is one) and
4326 the "value" field holds the contents of the literal word itself.
e0001a05 4327
43cd72b9
BW
4328 The value_map structure records a literal value along with the
4329 location of a literal holding that value. The value_map hash table
4330 is indexed by the literal value, so that we can quickly check if a
4331 particular literal value has been seen before and is thus a candidate
4332 for coalescing. */
e0001a05 4333
43cd72b9
BW
4334typedef struct literal_value_struct literal_value;
4335typedef struct value_map_struct value_map;
4336typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4337
43cd72b9 4338struct literal_value_struct
e0001a05 4339{
43cd72b9
BW
4340 r_reloc r_rel;
4341 unsigned long value;
4342 bfd_boolean is_abs_literal;
4343};
4344
4345struct value_map_struct
4346{
4347 literal_value val; /* The literal value. */
4348 r_reloc loc; /* Location of the literal. */
4349 value_map *next;
4350};
4351
4352struct value_map_hash_table_struct
4353{
4354 unsigned bucket_count;
4355 value_map **buckets;
4356 unsigned count;
4357 bfd_boolean has_last_loc;
4358 r_reloc last_loc;
4359};
4360
4361
e0001a05 4362static void
7fa3d080
BW
4363init_literal_value (literal_value *lit,
4364 const r_reloc *r_rel,
4365 unsigned long value,
4366 bfd_boolean is_abs_literal)
e0001a05 4367{
43cd72b9
BW
4368 lit->r_rel = *r_rel;
4369 lit->value = value;
4370 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4371}
4372
4373
43cd72b9 4374static bfd_boolean
7fa3d080
BW
4375literal_value_equal (const literal_value *src1,
4376 const literal_value *src2,
4377 bfd_boolean final_static_link)
e0001a05 4378{
43cd72b9 4379 struct elf_link_hash_entry *h1, *h2;
e0001a05 4380
43cd72b9
BW
4381 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4382 return FALSE;
e0001a05 4383
43cd72b9
BW
4384 if (r_reloc_is_const (&src1->r_rel))
4385 return (src1->value == src2->value);
e0001a05 4386
43cd72b9
BW
4387 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4388 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4389 return FALSE;
e0001a05 4390
43cd72b9
BW
4391 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4392 return FALSE;
4393
4394 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4395 return FALSE;
4396
4397 if (src1->value != src2->value)
4398 return FALSE;
4399
4400 /* Now check for the same section (if defined) or the same elf_hash
4401 (if undefined or weak). */
4402 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4403 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4404 if (r_reloc_is_defined (&src1->r_rel)
4405 && (final_static_link
4406 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4407 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4408 {
4409 if (r_reloc_get_section (&src1->r_rel)
4410 != r_reloc_get_section (&src2->r_rel))
4411 return FALSE;
4412 }
4413 else
4414 {
4415 /* Require that the hash entries (i.e., symbols) be identical. */
4416 if (h1 != h2 || h1 == 0)
4417 return FALSE;
4418 }
4419
4420 if (src1->is_abs_literal != src2->is_abs_literal)
4421 return FALSE;
4422
4423 return TRUE;
e0001a05
NC
4424}
4425
e0001a05 4426
43cd72b9
BW
4427/* Must be power of 2. */
4428#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4429
43cd72b9 4430static value_map_hash_table *
7fa3d080 4431value_map_hash_table_init (void)
43cd72b9
BW
4432{
4433 value_map_hash_table *values;
e0001a05 4434
43cd72b9
BW
4435 values = (value_map_hash_table *)
4436 bfd_zmalloc (sizeof (value_map_hash_table));
4437 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4438 values->count = 0;
4439 values->buckets = (value_map **)
4440 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4441 if (values->buckets == NULL)
4442 {
4443 free (values);
4444 return NULL;
4445 }
4446 values->has_last_loc = FALSE;
4447
4448 return values;
4449}
4450
4451
4452static void
7fa3d080 4453value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4454{
43cd72b9
BW
4455 free (table->buckets);
4456 free (table);
4457}
4458
4459
4460static unsigned
7fa3d080 4461hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4462{
4463 return (val >> 2) + (val >> 10);
4464}
4465
4466
4467static unsigned
7fa3d080 4468literal_value_hash (const literal_value *src)
43cd72b9
BW
4469{
4470 unsigned hash_val;
e0001a05 4471
43cd72b9
BW
4472 hash_val = hash_bfd_vma (src->value);
4473 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4474 {
43cd72b9
BW
4475 void *sec_or_hash;
4476
4477 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4478 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4479 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4480
4481 /* Now check for the same section and the same elf_hash. */
4482 if (r_reloc_is_defined (&src->r_rel))
4483 sec_or_hash = r_reloc_get_section (&src->r_rel);
4484 else
4485 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4486 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4487 }
43cd72b9
BW
4488 return hash_val;
4489}
e0001a05 4490
e0001a05 4491
43cd72b9 4492/* Check if the specified literal_value has been seen before. */
e0001a05 4493
43cd72b9 4494static value_map *
7fa3d080
BW
4495value_map_get_cached_value (value_map_hash_table *map,
4496 const literal_value *val,
4497 bfd_boolean final_static_link)
43cd72b9
BW
4498{
4499 value_map *map_e;
4500 value_map *bucket;
4501 unsigned idx;
4502
4503 idx = literal_value_hash (val);
4504 idx = idx & (map->bucket_count - 1);
4505 bucket = map->buckets[idx];
4506 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4507 {
43cd72b9
BW
4508 if (literal_value_equal (&map_e->val, val, final_static_link))
4509 return map_e;
4510 }
4511 return NULL;
4512}
e0001a05 4513
e0001a05 4514
43cd72b9
BW
4515/* Record a new literal value. It is illegal to call this if VALUE
4516 already has an entry here. */
4517
4518static value_map *
7fa3d080
BW
4519add_value_map (value_map_hash_table *map,
4520 const literal_value *val,
4521 const r_reloc *loc,
4522 bfd_boolean final_static_link)
43cd72b9
BW
4523{
4524 value_map **bucket_p;
4525 unsigned idx;
4526
4527 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4528 if (val_e == NULL)
4529 {
4530 bfd_set_error (bfd_error_no_memory);
4531 return NULL;
e0001a05
NC
4532 }
4533
43cd72b9
BW
4534 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4535 val_e->val = *val;
4536 val_e->loc = *loc;
4537
4538 idx = literal_value_hash (val);
4539 idx = idx & (map->bucket_count - 1);
4540 bucket_p = &map->buckets[idx];
4541
4542 val_e->next = *bucket_p;
4543 *bucket_p = val_e;
4544 map->count++;
4545 /* FIXME: Consider resizing the hash table if we get too many entries. */
4546
4547 return val_e;
e0001a05
NC
4548}
4549
43cd72b9
BW
4550\f
4551/* Lists of text actions (ta_) for narrowing, widening, longcall
4552 conversion, space fill, code & literal removal, etc. */
4553
4554/* The following text actions are generated:
4555
4556 "ta_remove_insn" remove an instruction or instructions
4557 "ta_remove_longcall" convert longcall to call
4558 "ta_convert_longcall" convert longcall to nop/call
4559 "ta_narrow_insn" narrow a wide instruction
4560 "ta_widen" widen a narrow instruction
4561 "ta_fill" add fill or remove fill
4562 removed < 0 is a fill; branches to the fill address will be
4563 changed to address + fill size (e.g., address - removed)
4564 removed >= 0 branches to the fill address will stay unchanged
4565 "ta_remove_literal" remove a literal; this action is
4566 indicated when a literal is removed
4567 or replaced.
4568 "ta_add_literal" insert a new literal; this action is
4569 indicated when a literal has been moved.
4570 It may use a virtual_offset because
4571 multiple literals can be placed at the
4572 same location.
4573
4574 For each of these text actions, we also record the number of bytes
4575 removed by performing the text action. In the case of a "ta_widen"
4576 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4577
4578typedef struct text_action_struct text_action;
4579typedef struct text_action_list_struct text_action_list;
4580typedef enum text_action_enum_t text_action_t;
4581
4582enum text_action_enum_t
4583{
4584 ta_none,
4585 ta_remove_insn, /* removed = -size */
4586 ta_remove_longcall, /* removed = -size */
4587 ta_convert_longcall, /* removed = 0 */
4588 ta_narrow_insn, /* removed = -1 */
4589 ta_widen_insn, /* removed = +1 */
4590 ta_fill, /* removed = +size */
4591 ta_remove_literal,
4592 ta_add_literal
4593};
e0001a05 4594
e0001a05 4595
43cd72b9
BW
4596/* Structure for a text action record. */
4597struct text_action_struct
e0001a05 4598{
43cd72b9
BW
4599 text_action_t action;
4600 asection *sec; /* Optional */
4601 bfd_vma offset;
4602 bfd_vma virtual_offset; /* Zero except for adding literals. */
4603 int removed_bytes;
4604 literal_value value; /* Only valid when adding literals. */
e0001a05 4605
43cd72b9
BW
4606 text_action *next;
4607};
e0001a05 4608
e0001a05 4609
43cd72b9
BW
4610/* List of all of the actions taken on a text section. */
4611struct text_action_list_struct
4612{
4613 text_action *head;
4614};
e0001a05 4615
e0001a05 4616
7fa3d080
BW
4617static text_action *
4618find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4619{
4620 text_action **m_p;
4621
4622 /* It is not necessary to fill at the end of a section. */
4623 if (sec->size == offset)
4624 return NULL;
4625
7fa3d080 4626 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4627 {
4628 text_action *t = *m_p;
4629 /* When the action is another fill at the same address,
4630 just increase the size. */
4631 if (t->offset == offset && t->action == ta_fill)
4632 return t;
4633 }
4634 return NULL;
4635}
4636
4637
4638static int
7fa3d080
BW
4639compute_removed_action_diff (const text_action *ta,
4640 asection *sec,
4641 bfd_vma offset,
4642 int removed,
4643 int removable_space)
43cd72b9
BW
4644{
4645 int new_removed;
4646 int current_removed = 0;
4647
7fa3d080 4648 if (ta)
43cd72b9
BW
4649 current_removed = ta->removed_bytes;
4650
4651 BFD_ASSERT (ta == NULL || ta->offset == offset);
4652 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4653
4654 /* It is not necessary to fill at the end of a section. Clean this up. */
4655 if (sec->size == offset)
4656 new_removed = removable_space - 0;
4657 else
4658 {
4659 int space;
4660 int added = -removed - current_removed;
4661 /* Ignore multiples of the section alignment. */
4662 added = ((1 << sec->alignment_power) - 1) & added;
4663 new_removed = (-added);
4664
4665 /* Modify for removable. */
4666 space = removable_space - new_removed;
4667 new_removed = (removable_space
4668 - (((1 << sec->alignment_power) - 1) & space));
4669 }
4670 return (new_removed - current_removed);
4671}
4672
4673
7fa3d080
BW
4674static void
4675adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4676{
4677 ta->removed_bytes += fill_diff;
4678}
4679
4680
4681/* Add a modification action to the text. For the case of adding or
4682 removing space, modify any current fill and assume that
4683 "unreachable_space" bytes can be freely contracted. Note that a
4684 negative removed value is a fill. */
4685
4686static void
7fa3d080
BW
4687text_action_add (text_action_list *l,
4688 text_action_t action,
4689 asection *sec,
4690 bfd_vma offset,
4691 int removed)
43cd72b9
BW
4692{
4693 text_action **m_p;
4694 text_action *ta;
4695
4696 /* It is not necessary to fill at the end of a section. */
4697 if (action == ta_fill && sec->size == offset)
4698 return;
4699
4700 /* It is not necessary to fill 0 bytes. */
4701 if (action == ta_fill && removed == 0)
4702 return;
4703
7fa3d080 4704 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4705 {
4706 text_action *t = *m_p;
4707 /* When the action is another fill at the same address,
4708 just increase the size. */
4709 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4710 {
4711 t->removed_bytes += removed;
4712 return;
4713 }
4714 }
4715
4716 /* Create a new record and fill it up. */
4717 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4718 ta->action = action;
4719 ta->sec = sec;
4720 ta->offset = offset;
4721 ta->removed_bytes = removed;
4722 ta->next = (*m_p);
4723 *m_p = ta;
4724}
4725
4726
4727static void
7fa3d080
BW
4728text_action_add_literal (text_action_list *l,
4729 text_action_t action,
4730 const r_reloc *loc,
4731 const literal_value *value,
4732 int removed)
43cd72b9
BW
4733{
4734 text_action **m_p;
4735 text_action *ta;
4736 asection *sec = r_reloc_get_section (loc);
4737 bfd_vma offset = loc->target_offset;
4738 bfd_vma virtual_offset = loc->virtual_offset;
4739
4740 BFD_ASSERT (action == ta_add_literal);
4741
4742 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4743 {
4744 if ((*m_p)->offset > offset
4745 && ((*m_p)->offset != offset
4746 || (*m_p)->virtual_offset > virtual_offset))
4747 break;
4748 }
4749
4750 /* Create a new record and fill it up. */
4751 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4752 ta->action = action;
4753 ta->sec = sec;
4754 ta->offset = offset;
4755 ta->virtual_offset = virtual_offset;
4756 ta->value = *value;
4757 ta->removed_bytes = removed;
4758 ta->next = (*m_p);
4759 *m_p = ta;
4760}
4761
4762
03669f1c
BW
4763/* Find the total offset adjustment for the relaxations specified by
4764 text_actions, beginning from a particular starting action. This is
4765 typically used from offset_with_removed_text to search an entire list of
4766 actions, but it may also be called directly when adjusting adjacent offsets
4767 so that each search may begin where the previous one left off. */
4768
4769static int
4770removed_by_actions (text_action **p_start_action,
4771 bfd_vma offset,
4772 bfd_boolean before_fill)
43cd72b9
BW
4773{
4774 text_action *r;
4775 int removed = 0;
4776
03669f1c
BW
4777 r = *p_start_action;
4778 while (r)
43cd72b9 4779 {
03669f1c
BW
4780 if (r->offset > offset)
4781 break;
4782
4783 if (r->offset == offset
4784 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
4785 break;
4786
4787 removed += r->removed_bytes;
4788
4789 r = r->next;
43cd72b9
BW
4790 }
4791
03669f1c
BW
4792 *p_start_action = r;
4793 return removed;
4794}
4795
4796
4797static bfd_vma
4798offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4799{
4800 text_action *r = action_list->head;
4801 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
4802}
4803
4804
03e94c08
BW
4805static unsigned
4806action_list_count (text_action_list *action_list)
4807{
4808 text_action *r = action_list->head;
4809 unsigned count = 0;
4810 for (r = action_list->head; r != NULL; r = r->next)
4811 {
4812 count++;
4813 }
4814 return count;
4815}
4816
4817
43cd72b9
BW
4818/* The find_insn_action routine will only find non-fill actions. */
4819
7fa3d080
BW
4820static text_action *
4821find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4822{
4823 text_action *t;
4824 for (t = action_list->head; t; t = t->next)
4825 {
4826 if (t->offset == offset)
4827 {
4828 switch (t->action)
4829 {
4830 case ta_none:
4831 case ta_fill:
4832 break;
4833 case ta_remove_insn:
4834 case ta_remove_longcall:
4835 case ta_convert_longcall:
4836 case ta_narrow_insn:
4837 case ta_widen_insn:
4838 return t;
4839 case ta_remove_literal:
4840 case ta_add_literal:
4841 BFD_ASSERT (0);
4842 break;
4843 }
4844 }
4845 }
4846 return NULL;
4847}
4848
4849
4850#if DEBUG
4851
4852static void
7fa3d080 4853print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4854{
4855 text_action *r;
4856
4857 fprintf (fp, "Text Action\n");
4858 for (r = action_list->head; r != NULL; r = r->next)
4859 {
4860 const char *t = "unknown";
4861 switch (r->action)
4862 {
4863 case ta_remove_insn:
4864 t = "remove_insn"; break;
4865 case ta_remove_longcall:
4866 t = "remove_longcall"; break;
4867 case ta_convert_longcall:
c46082c8 4868 t = "convert_longcall"; break;
43cd72b9
BW
4869 case ta_narrow_insn:
4870 t = "narrow_insn"; break;
4871 case ta_widen_insn:
4872 t = "widen_insn"; break;
4873 case ta_fill:
4874 t = "fill"; break;
4875 case ta_none:
4876 t = "none"; break;
4877 case ta_remove_literal:
4878 t = "remove_literal"; break;
4879 case ta_add_literal:
4880 t = "add_literal"; break;
4881 }
4882
4883 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4884 r->sec->owner->filename,
4885 r->sec->name, r->offset, t, r->removed_bytes);
4886 }
4887}
4888
4889#endif /* DEBUG */
4890
4891\f
4892/* Lists of literals being coalesced or removed. */
4893
4894/* In the usual case, the literal identified by "from" is being
4895 coalesced with another literal identified by "to". If the literal is
4896 unused and is being removed altogether, "to.abfd" will be NULL.
4897 The removed_literal entries are kept on a per-section list, sorted
4898 by the "from" offset field. */
4899
4900typedef struct removed_literal_struct removed_literal;
4901typedef struct removed_literal_list_struct removed_literal_list;
4902
4903struct removed_literal_struct
4904{
4905 r_reloc from;
4906 r_reloc to;
4907 removed_literal *next;
4908};
4909
4910struct removed_literal_list_struct
4911{
4912 removed_literal *head;
4913 removed_literal *tail;
4914};
4915
4916
43cd72b9
BW
4917/* Record that the literal at "from" is being removed. If "to" is not
4918 NULL, the "from" literal is being coalesced with the "to" literal. */
4919
4920static void
7fa3d080
BW
4921add_removed_literal (removed_literal_list *removed_list,
4922 const r_reloc *from,
4923 const r_reloc *to)
43cd72b9
BW
4924{
4925 removed_literal *r, *new_r, *next_r;
4926
4927 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4928
4929 new_r->from = *from;
4930 if (to)
4931 new_r->to = *to;
4932 else
4933 new_r->to.abfd = NULL;
4934 new_r->next = NULL;
4935
4936 r = removed_list->head;
4937 if (r == NULL)
4938 {
4939 removed_list->head = new_r;
4940 removed_list->tail = new_r;
4941 }
4942 /* Special check for common case of append. */
4943 else if (removed_list->tail->from.target_offset < from->target_offset)
4944 {
4945 removed_list->tail->next = new_r;
4946 removed_list->tail = new_r;
4947 }
4948 else
4949 {
7fa3d080 4950 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4951 {
4952 r = r->next;
4953 }
4954 next_r = r->next;
4955 r->next = new_r;
4956 new_r->next = next_r;
4957 if (next_r == NULL)
4958 removed_list->tail = new_r;
4959 }
4960}
4961
4962
4963/* Check if the list of removed literals contains an entry for the
4964 given address. Return the entry if found. */
4965
4966static removed_literal *
7fa3d080 4967find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4968{
4969 removed_literal *r = removed_list->head;
4970 while (r && r->from.target_offset < addr)
4971 r = r->next;
4972 if (r && r->from.target_offset == addr)
4973 return r;
4974 return NULL;
4975}
4976
4977
4978#if DEBUG
4979
4980static void
7fa3d080 4981print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4982{
4983 removed_literal *r;
4984 r = removed_list->head;
4985 if (r)
4986 fprintf (fp, "Removed Literals\n");
4987 for (; r != NULL; r = r->next)
4988 {
4989 print_r_reloc (fp, &r->from);
4990 fprintf (fp, " => ");
4991 if (r->to.abfd == NULL)
4992 fprintf (fp, "REMOVED");
4993 else
4994 print_r_reloc (fp, &r->to);
4995 fprintf (fp, "\n");
4996 }
4997}
4998
4999#endif /* DEBUG */
5000
5001\f
5002/* Per-section data for relaxation. */
5003
5004typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5005
5006struct xtensa_relax_info_struct
5007{
5008 bfd_boolean is_relaxable_literal_section;
5009 bfd_boolean is_relaxable_asm_section;
5010 int visited; /* Number of times visited. */
5011
5012 source_reloc *src_relocs; /* Array[src_count]. */
5013 int src_count;
5014 int src_next; /* Next src_relocs entry to assign. */
5015
5016 removed_literal_list removed_list;
5017 text_action_list action_list;
5018
5019 reloc_bfd_fix *fix_list;
5020 reloc_bfd_fix *fix_array;
5021 unsigned fix_array_count;
5022
5023 /* Support for expanding the reloc array that is stored
5024 in the section structure. If the relocations have been
5025 reallocated, the newly allocated relocations will be referenced
5026 here along with the actual size allocated. The relocation
5027 count will always be found in the section structure. */
5028 Elf_Internal_Rela *allocated_relocs;
5029 unsigned relocs_count;
5030 unsigned allocated_relocs_count;
5031};
5032
5033struct elf_xtensa_section_data
5034{
5035 struct bfd_elf_section_data elf;
5036 xtensa_relax_info relax_info;
5037};
5038
43cd72b9
BW
5039
5040static bfd_boolean
7fa3d080 5041elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5042{
f592407e
AM
5043 if (!sec->used_by_bfd)
5044 {
5045 struct elf_xtensa_section_data *sdata;
5046 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5047
f592407e
AM
5048 sdata = bfd_zalloc (abfd, amt);
5049 if (sdata == NULL)
5050 return FALSE;
5051 sec->used_by_bfd = sdata;
5052 }
43cd72b9
BW
5053
5054 return _bfd_elf_new_section_hook (abfd, sec);
5055}
5056
5057
7fa3d080
BW
5058static xtensa_relax_info *
5059get_xtensa_relax_info (asection *sec)
5060{
5061 struct elf_xtensa_section_data *section_data;
5062
5063 /* No info available if no section or if it is an output section. */
5064 if (!sec || sec == sec->output_section)
5065 return NULL;
5066
5067 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5068 return &section_data->relax_info;
5069}
5070
5071
43cd72b9 5072static void
7fa3d080 5073init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5074{
5075 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5076
5077 relax_info->is_relaxable_literal_section = FALSE;
5078 relax_info->is_relaxable_asm_section = FALSE;
5079 relax_info->visited = 0;
5080
5081 relax_info->src_relocs = NULL;
5082 relax_info->src_count = 0;
5083 relax_info->src_next = 0;
5084
5085 relax_info->removed_list.head = NULL;
5086 relax_info->removed_list.tail = NULL;
5087
5088 relax_info->action_list.head = NULL;
5089
5090 relax_info->fix_list = NULL;
5091 relax_info->fix_array = NULL;
5092 relax_info->fix_array_count = 0;
5093
5094 relax_info->allocated_relocs = NULL;
5095 relax_info->relocs_count = 0;
5096 relax_info->allocated_relocs_count = 0;
5097}
5098
43cd72b9
BW
5099\f
5100/* Coalescing literals may require a relocation to refer to a section in
5101 a different input file, but the standard relocation information
5102 cannot express that. Instead, the reloc_bfd_fix structures are used
5103 to "fix" the relocations that refer to sections in other input files.
5104 These structures are kept on per-section lists. The "src_type" field
5105 records the relocation type in case there are multiple relocations on
5106 the same location. FIXME: This is ugly; an alternative might be to
5107 add new symbols with the "owner" field to some other input file. */
5108
5109struct reloc_bfd_fix_struct
5110{
5111 asection *src_sec;
5112 bfd_vma src_offset;
5113 unsigned src_type; /* Relocation type. */
5114
43cd72b9
BW
5115 asection *target_sec;
5116 bfd_vma target_offset;
5117 bfd_boolean translated;
5118
5119 reloc_bfd_fix *next;
5120};
5121
5122
43cd72b9 5123static reloc_bfd_fix *
7fa3d080
BW
5124reloc_bfd_fix_init (asection *src_sec,
5125 bfd_vma src_offset,
5126 unsigned src_type,
7fa3d080
BW
5127 asection *target_sec,
5128 bfd_vma target_offset,
5129 bfd_boolean translated)
43cd72b9
BW
5130{
5131 reloc_bfd_fix *fix;
5132
5133 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5134 fix->src_sec = src_sec;
5135 fix->src_offset = src_offset;
5136 fix->src_type = src_type;
43cd72b9
BW
5137 fix->target_sec = target_sec;
5138 fix->target_offset = target_offset;
5139 fix->translated = translated;
5140
5141 return fix;
5142}
5143
5144
5145static void
7fa3d080 5146add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5147{
5148 xtensa_relax_info *relax_info;
5149
5150 relax_info = get_xtensa_relax_info (src_sec);
5151 fix->next = relax_info->fix_list;
5152 relax_info->fix_list = fix;
5153}
5154
5155
5156static int
7fa3d080 5157fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5158{
5159 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5160 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5161
5162 if (a->src_offset != b->src_offset)
5163 return (a->src_offset - b->src_offset);
5164 return (a->src_type - b->src_type);
5165}
5166
5167
5168static void
7fa3d080 5169cache_fix_array (asection *sec)
43cd72b9
BW
5170{
5171 unsigned i, count = 0;
5172 reloc_bfd_fix *r;
5173 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5174
5175 if (relax_info == NULL)
5176 return;
5177 if (relax_info->fix_list == NULL)
5178 return;
5179
5180 for (r = relax_info->fix_list; r != NULL; r = r->next)
5181 count++;
5182
5183 relax_info->fix_array =
5184 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5185 relax_info->fix_array_count = count;
5186
5187 r = relax_info->fix_list;
5188 for (i = 0; i < count; i++, r = r->next)
5189 {
5190 relax_info->fix_array[count - 1 - i] = *r;
5191 relax_info->fix_array[count - 1 - i].next = NULL;
5192 }
5193
5194 qsort (relax_info->fix_array, relax_info->fix_array_count,
5195 sizeof (reloc_bfd_fix), fix_compare);
5196}
5197
5198
5199static reloc_bfd_fix *
7fa3d080 5200get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5201{
5202 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5203 reloc_bfd_fix *rv;
5204 reloc_bfd_fix key;
5205
5206 if (relax_info == NULL)
5207 return NULL;
5208 if (relax_info->fix_list == NULL)
5209 return NULL;
5210
5211 if (relax_info->fix_array == NULL)
5212 cache_fix_array (sec);
5213
5214 key.src_offset = offset;
5215 key.src_type = type;
5216 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5217 sizeof (reloc_bfd_fix), fix_compare);
5218 return rv;
5219}
5220
5221\f
5222/* Section caching. */
5223
5224typedef struct section_cache_struct section_cache_t;
5225
5226struct section_cache_struct
5227{
5228 asection *sec;
5229
5230 bfd_byte *contents; /* Cache of the section contents. */
5231 bfd_size_type content_length;
5232
5233 property_table_entry *ptbl; /* Cache of the section property table. */
5234 unsigned pte_count;
5235
5236 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5237 unsigned reloc_count;
5238};
5239
5240
7fa3d080
BW
5241static void
5242init_section_cache (section_cache_t *sec_cache)
5243{
5244 memset (sec_cache, 0, sizeof (*sec_cache));
5245}
43cd72b9
BW
5246
5247
5248static void
7fa3d080 5249clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5250{
7fa3d080
BW
5251 if (sec_cache->sec)
5252 {
5253 release_contents (sec_cache->sec, sec_cache->contents);
5254 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5255 if (sec_cache->ptbl)
5256 free (sec_cache->ptbl);
5257 memset (sec_cache, 0, sizeof (sec_cache));
5258 }
43cd72b9
BW
5259}
5260
5261
5262static bfd_boolean
7fa3d080
BW
5263section_cache_section (section_cache_t *sec_cache,
5264 asection *sec,
5265 struct bfd_link_info *link_info)
43cd72b9
BW
5266{
5267 bfd *abfd;
5268 property_table_entry *prop_table = NULL;
5269 int ptblsize = 0;
5270 bfd_byte *contents = NULL;
5271 Elf_Internal_Rela *internal_relocs = NULL;
5272 bfd_size_type sec_size;
5273
5274 if (sec == NULL)
5275 return FALSE;
5276 if (sec == sec_cache->sec)
5277 return TRUE;
5278
5279 abfd = sec->owner;
5280 sec_size = bfd_get_section_limit (abfd, sec);
5281
5282 /* Get the contents. */
5283 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5284 if (contents == NULL && sec_size != 0)
5285 goto err;
5286
5287 /* Get the relocations. */
5288 internal_relocs = retrieve_internal_relocs (abfd, sec,
5289 link_info->keep_memory);
5290
5291 /* Get the entry table. */
5292 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5293 XTENSA_PROP_SEC_NAME, FALSE);
5294 if (ptblsize < 0)
5295 goto err;
5296
5297 /* Fill in the new section cache. */
5298 clear_section_cache (sec_cache);
5299 memset (sec_cache, 0, sizeof (sec_cache));
5300
5301 sec_cache->sec = sec;
5302 sec_cache->contents = contents;
5303 sec_cache->content_length = sec_size;
5304 sec_cache->relocs = internal_relocs;
5305 sec_cache->reloc_count = sec->reloc_count;
5306 sec_cache->pte_count = ptblsize;
5307 sec_cache->ptbl = prop_table;
5308
5309 return TRUE;
5310
5311 err:
5312 release_contents (sec, contents);
5313 release_internal_relocs (sec, internal_relocs);
5314 if (prop_table)
5315 free (prop_table);
5316 return FALSE;
5317}
5318
43cd72b9
BW
5319\f
5320/* Extended basic blocks. */
5321
5322/* An ebb_struct represents an Extended Basic Block. Within this
5323 range, we guarantee that all instructions are decodable, the
5324 property table entries are contiguous, and no property table
5325 specifies a segment that cannot have instructions moved. This
5326 structure contains caches of the contents, property table and
5327 relocations for the specified section for easy use. The range is
5328 specified by ranges of indices for the byte offset, property table
5329 offsets and relocation offsets. These must be consistent. */
5330
5331typedef struct ebb_struct ebb_t;
5332
5333struct ebb_struct
5334{
5335 asection *sec;
5336
5337 bfd_byte *contents; /* Cache of the section contents. */
5338 bfd_size_type content_length;
5339
5340 property_table_entry *ptbl; /* Cache of the section property table. */
5341 unsigned pte_count;
5342
5343 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5344 unsigned reloc_count;
5345
5346 bfd_vma start_offset; /* Offset in section. */
5347 unsigned start_ptbl_idx; /* Offset in the property table. */
5348 unsigned start_reloc_idx; /* Offset in the relocations. */
5349
5350 bfd_vma end_offset;
5351 unsigned end_ptbl_idx;
5352 unsigned end_reloc_idx;
5353
5354 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5355
5356 /* The unreachable property table at the end of this set of blocks;
5357 NULL if the end is not an unreachable block. */
5358 property_table_entry *ends_unreachable;
5359};
5360
5361
5362enum ebb_target_enum
5363{
5364 EBB_NO_ALIGN = 0,
5365 EBB_DESIRE_TGT_ALIGN,
5366 EBB_REQUIRE_TGT_ALIGN,
5367 EBB_REQUIRE_LOOP_ALIGN,
5368 EBB_REQUIRE_ALIGN
5369};
5370
5371
5372/* proposed_action_struct is similar to the text_action_struct except
5373 that is represents a potential transformation, not one that will
5374 occur. We build a list of these for an extended basic block
5375 and use them to compute the actual actions desired. We must be
5376 careful that the entire set of actual actions we perform do not
5377 break any relocations that would fit if the actions were not
5378 performed. */
5379
5380typedef struct proposed_action_struct proposed_action;
5381
5382struct proposed_action_struct
5383{
5384 enum ebb_target_enum align_type; /* for the target alignment */
5385 bfd_vma alignment_pow;
5386 text_action_t action;
5387 bfd_vma offset;
5388 int removed_bytes;
5389 bfd_boolean do_action; /* If false, then we will not perform the action. */
5390};
5391
5392
5393/* The ebb_constraint_struct keeps a set of proposed actions for an
5394 extended basic block. */
5395
5396typedef struct ebb_constraint_struct ebb_constraint;
5397
5398struct ebb_constraint_struct
5399{
5400 ebb_t ebb;
5401 bfd_boolean start_movable;
5402
5403 /* Bytes of extra space at the beginning if movable. */
5404 int start_extra_space;
5405
5406 enum ebb_target_enum start_align;
5407
5408 bfd_boolean end_movable;
5409
5410 /* Bytes of extra space at the end if movable. */
5411 int end_extra_space;
5412
5413 unsigned action_count;
5414 unsigned action_allocated;
5415
5416 /* Array of proposed actions. */
5417 proposed_action *actions;
5418
5419 /* Action alignments -- one for each proposed action. */
5420 enum ebb_target_enum *action_aligns;
5421};
5422
5423
43cd72b9 5424static void
7fa3d080 5425init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5426{
5427 memset (c, 0, sizeof (ebb_constraint));
5428}
5429
5430
5431static void
7fa3d080 5432free_ebb_constraint (ebb_constraint *c)
43cd72b9 5433{
7fa3d080 5434 if (c->actions)
43cd72b9
BW
5435 free (c->actions);
5436}
5437
5438
5439static void
7fa3d080
BW
5440init_ebb (ebb_t *ebb,
5441 asection *sec,
5442 bfd_byte *contents,
5443 bfd_size_type content_length,
5444 property_table_entry *prop_table,
5445 unsigned ptblsize,
5446 Elf_Internal_Rela *internal_relocs,
5447 unsigned reloc_count)
43cd72b9
BW
5448{
5449 memset (ebb, 0, sizeof (ebb_t));
5450 ebb->sec = sec;
5451 ebb->contents = contents;
5452 ebb->content_length = content_length;
5453 ebb->ptbl = prop_table;
5454 ebb->pte_count = ptblsize;
5455 ebb->relocs = internal_relocs;
5456 ebb->reloc_count = reloc_count;
5457 ebb->start_offset = 0;
5458 ebb->end_offset = ebb->content_length - 1;
5459 ebb->start_ptbl_idx = 0;
5460 ebb->end_ptbl_idx = ptblsize;
5461 ebb->start_reloc_idx = 0;
5462 ebb->end_reloc_idx = reloc_count;
5463}
5464
5465
5466/* Extend the ebb to all decodable contiguous sections. The algorithm
5467 for building a basic block around an instruction is to push it
5468 forward until we hit the end of a section, an unreachable block or
5469 a block that cannot be transformed. Then we push it backwards
5470 searching for similar conditions. */
5471
7fa3d080
BW
5472static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5473static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5474static bfd_size_type insn_block_decodable_len
5475 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5476
43cd72b9 5477static bfd_boolean
7fa3d080 5478extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5479{
5480 if (!extend_ebb_bounds_forward (ebb))
5481 return FALSE;
5482 if (!extend_ebb_bounds_backward (ebb))
5483 return FALSE;
5484 return TRUE;
5485}
5486
5487
5488static bfd_boolean
7fa3d080 5489extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5490{
5491 property_table_entry *the_entry, *new_entry;
5492
5493 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5494
5495 /* Stop when (1) we cannot decode an instruction, (2) we are at
5496 the end of the property tables, (3) we hit a non-contiguous property
5497 table entry, (4) we hit a NO_TRANSFORM region. */
5498
5499 while (1)
5500 {
5501 bfd_vma entry_end;
5502 bfd_size_type insn_block_len;
5503
5504 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5505 insn_block_len =
5506 insn_block_decodable_len (ebb->contents, ebb->content_length,
5507 ebb->end_offset,
5508 entry_end - ebb->end_offset);
5509 if (insn_block_len != (entry_end - ebb->end_offset))
5510 {
5511 (*_bfd_error_handler)
5512 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5513 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5514 return FALSE;
5515 }
5516 ebb->end_offset += insn_block_len;
5517
5518 if (ebb->end_offset == ebb->sec->size)
5519 ebb->ends_section = TRUE;
5520
5521 /* Update the reloc counter. */
5522 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5523 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5524 < ebb->end_offset))
5525 {
5526 ebb->end_reloc_idx++;
5527 }
5528
5529 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5530 return TRUE;
5531
5532 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5533 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 5534 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5535 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5536 break;
5537
5538 if (the_entry->address + the_entry->size != new_entry->address)
5539 break;
5540
5541 the_entry = new_entry;
5542 ebb->end_ptbl_idx++;
5543 }
5544
5545 /* Quick check for an unreachable or end of file just at the end. */
5546 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5547 {
5548 if (ebb->end_offset == ebb->content_length)
5549 ebb->ends_section = TRUE;
5550 }
5551 else
5552 {
5553 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5554 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5555 && the_entry->address + the_entry->size == new_entry->address)
5556 ebb->ends_unreachable = new_entry;
5557 }
5558
5559 /* Any other ending requires exact alignment. */
5560 return TRUE;
5561}
5562
5563
5564static bfd_boolean
7fa3d080 5565extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5566{
5567 property_table_entry *the_entry, *new_entry;
5568
5569 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5570
5571 /* Stop when (1) we cannot decode the instructions in the current entry.
5572 (2) we are at the beginning of the property tables, (3) we hit a
5573 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5574
5575 while (1)
5576 {
5577 bfd_vma block_begin;
5578 bfd_size_type insn_block_len;
5579
5580 block_begin = the_entry->address - ebb->sec->vma;
5581 insn_block_len =
5582 insn_block_decodable_len (ebb->contents, ebb->content_length,
5583 block_begin,
5584 ebb->start_offset - block_begin);
5585 if (insn_block_len != ebb->start_offset - block_begin)
5586 {
5587 (*_bfd_error_handler)
5588 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5589 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5590 return FALSE;
5591 }
5592 ebb->start_offset -= insn_block_len;
5593
5594 /* Update the reloc counter. */
5595 while (ebb->start_reloc_idx > 0
5596 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5597 >= ebb->start_offset))
5598 {
5599 ebb->start_reloc_idx--;
5600 }
5601
5602 if (ebb->start_ptbl_idx == 0)
5603 return TRUE;
5604
5605 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5606 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 5607 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5608 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5609 return TRUE;
5610 if (new_entry->address + new_entry->size != the_entry->address)
5611 return TRUE;
5612
5613 the_entry = new_entry;
5614 ebb->start_ptbl_idx--;
5615 }
5616 return TRUE;
5617}
5618
5619
5620static bfd_size_type
7fa3d080
BW
5621insn_block_decodable_len (bfd_byte *contents,
5622 bfd_size_type content_len,
5623 bfd_vma block_offset,
5624 bfd_size_type block_len)
43cd72b9
BW
5625{
5626 bfd_vma offset = block_offset;
5627
5628 while (offset < block_offset + block_len)
5629 {
5630 bfd_size_type insn_len = 0;
5631
5632 insn_len = insn_decode_len (contents, content_len, offset);
5633 if (insn_len == 0)
5634 return (offset - block_offset);
5635 offset += insn_len;
5636 }
5637 return (offset - block_offset);
5638}
5639
5640
5641static void
7fa3d080 5642ebb_propose_action (ebb_constraint *c,
7fa3d080 5643 enum ebb_target_enum align_type,
288f74fa 5644 bfd_vma alignment_pow,
7fa3d080
BW
5645 text_action_t action,
5646 bfd_vma offset,
5647 int removed_bytes,
5648 bfd_boolean do_action)
43cd72b9 5649{
b08b5071 5650 proposed_action *act;
43cd72b9 5651
43cd72b9
BW
5652 if (c->action_allocated <= c->action_count)
5653 {
b08b5071 5654 unsigned new_allocated, i;
823fc61f 5655 proposed_action *new_actions;
b08b5071
BW
5656
5657 new_allocated = (c->action_count + 2) * 2;
823fc61f 5658 new_actions = (proposed_action *)
43cd72b9
BW
5659 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5660
5661 for (i = 0; i < c->action_count; i++)
5662 new_actions[i] = c->actions[i];
7fa3d080 5663 if (c->actions)
43cd72b9
BW
5664 free (c->actions);
5665 c->actions = new_actions;
5666 c->action_allocated = new_allocated;
5667 }
b08b5071
BW
5668
5669 act = &c->actions[c->action_count];
5670 act->align_type = align_type;
5671 act->alignment_pow = alignment_pow;
5672 act->action = action;
5673 act->offset = offset;
5674 act->removed_bytes = removed_bytes;
5675 act->do_action = do_action;
5676
43cd72b9
BW
5677 c->action_count++;
5678}
5679
5680\f
5681/* Access to internal relocations, section contents and symbols. */
5682
5683/* During relaxation, we need to modify relocations, section contents,
5684 and symbol definitions, and we need to keep the original values from
5685 being reloaded from the input files, i.e., we need to "pin" the
5686 modified values in memory. We also want to continue to observe the
5687 setting of the "keep-memory" flag. The following functions wrap the
5688 standard BFD functions to take care of this for us. */
5689
5690static Elf_Internal_Rela *
7fa3d080 5691retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5692{
5693 Elf_Internal_Rela *internal_relocs;
5694
5695 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5696 return NULL;
5697
5698 internal_relocs = elf_section_data (sec)->relocs;
5699 if (internal_relocs == NULL)
5700 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5701 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5702 return internal_relocs;
5703}
5704
5705
5706static void
7fa3d080 5707pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5708{
5709 elf_section_data (sec)->relocs = internal_relocs;
5710}
5711
5712
5713static void
7fa3d080 5714release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5715{
5716 if (internal_relocs
5717 && elf_section_data (sec)->relocs != internal_relocs)
5718 free (internal_relocs);
5719}
5720
5721
5722static bfd_byte *
7fa3d080 5723retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5724{
5725 bfd_byte *contents;
5726 bfd_size_type sec_size;
5727
5728 sec_size = bfd_get_section_limit (abfd, sec);
5729 contents = elf_section_data (sec)->this_hdr.contents;
5730
5731 if (contents == NULL && sec_size != 0)
5732 {
5733 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5734 {
7fa3d080 5735 if (contents)
43cd72b9
BW
5736 free (contents);
5737 return NULL;
5738 }
5739 if (keep_memory)
5740 elf_section_data (sec)->this_hdr.contents = contents;
5741 }
5742 return contents;
5743}
5744
5745
5746static void
7fa3d080 5747pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5748{
5749 elf_section_data (sec)->this_hdr.contents = contents;
5750}
5751
5752
5753static void
7fa3d080 5754release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5755{
5756 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5757 free (contents);
5758}
5759
5760
5761static Elf_Internal_Sym *
7fa3d080 5762retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5763{
5764 Elf_Internal_Shdr *symtab_hdr;
5765 Elf_Internal_Sym *isymbuf;
5766 size_t locsymcount;
5767
5768 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5769 locsymcount = symtab_hdr->sh_info;
5770
5771 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5772 if (isymbuf == NULL && locsymcount != 0)
5773 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5774 NULL, NULL, NULL);
5775
5776 /* Save the symbols for this input file so they won't be read again. */
5777 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5778 symtab_hdr->contents = (unsigned char *) isymbuf;
5779
5780 return isymbuf;
5781}
5782
5783\f
5784/* Code for link-time relaxation. */
5785
5786/* Initialization for relaxation: */
7fa3d080 5787static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5788static bfd_boolean find_relaxable_sections
7fa3d080 5789 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5790static bfd_boolean collect_source_relocs
7fa3d080 5791 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5792static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5793 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5794 bfd_boolean *);
43cd72b9 5795static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5796 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5797static bfd_boolean compute_text_actions
7fa3d080
BW
5798 (bfd *, asection *, struct bfd_link_info *);
5799static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5800static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5801static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5802 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5803 const xtensa_opcode *);
7fa3d080 5804static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5805static void text_action_add_proposed
7fa3d080
BW
5806 (text_action_list *, const ebb_constraint *, asection *);
5807static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5808
5809/* First pass: */
5810static bfd_boolean compute_removed_literals
7fa3d080 5811 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5812static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5813 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5814static bfd_boolean is_removable_literal
99ded152
BW
5815 (const source_reloc *, int, const source_reloc *, int, asection *,
5816 property_table_entry *, int);
43cd72b9 5817static bfd_boolean remove_dead_literal
7fa3d080
BW
5818 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5819 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5820static bfd_boolean identify_literal_placement
5821 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5822 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5823 source_reloc *, property_table_entry *, int, section_cache_t *,
5824 bfd_boolean);
5825static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5826static bfd_boolean coalesce_shared_literal
7fa3d080 5827 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5828static bfd_boolean move_shared_literal
7fa3d080
BW
5829 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5830 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5831
5832/* Second pass: */
7fa3d080
BW
5833static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5834static bfd_boolean translate_section_fixes (asection *);
5835static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 5836static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 5837static void shrink_dynamic_reloc_sections
7fa3d080 5838 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5839static bfd_boolean move_literal
7fa3d080
BW
5840 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5841 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5842static bfd_boolean relax_property_section
7fa3d080 5843 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5844
5845/* Third pass: */
7fa3d080 5846static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5847
5848
5849static bfd_boolean
7fa3d080
BW
5850elf_xtensa_relax_section (bfd *abfd,
5851 asection *sec,
5852 struct bfd_link_info *link_info,
5853 bfd_boolean *again)
43cd72b9
BW
5854{
5855 static value_map_hash_table *values = NULL;
5856 static bfd_boolean relocations_analyzed = FALSE;
5857 xtensa_relax_info *relax_info;
5858
5859 if (!relocations_analyzed)
5860 {
5861 /* Do some overall initialization for relaxation. */
5862 values = value_map_hash_table_init ();
5863 if (values == NULL)
5864 return FALSE;
5865 relaxing_section = TRUE;
5866 if (!analyze_relocations (link_info))
5867 return FALSE;
5868 relocations_analyzed = TRUE;
5869 }
5870 *again = FALSE;
5871
5872 /* Don't mess with linker-created sections. */
5873 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5874 return TRUE;
5875
5876 relax_info = get_xtensa_relax_info (sec);
5877 BFD_ASSERT (relax_info != NULL);
5878
5879 switch (relax_info->visited)
5880 {
5881 case 0:
5882 /* Note: It would be nice to fold this pass into
5883 analyze_relocations, but it is important for this step that the
5884 sections be examined in link order. */
5885 if (!compute_removed_literals (abfd, sec, link_info, values))
5886 return FALSE;
5887 *again = TRUE;
5888 break;
5889
5890 case 1:
5891 if (values)
5892 value_map_hash_table_delete (values);
5893 values = NULL;
5894 if (!relax_section (abfd, sec, link_info))
5895 return FALSE;
5896 *again = TRUE;
5897 break;
5898
5899 case 2:
5900 if (!relax_section_symbols (abfd, sec))
5901 return FALSE;
5902 break;
5903 }
5904
5905 relax_info->visited++;
5906 return TRUE;
5907}
5908
5909\f
5910/* Initialization for relaxation. */
5911
5912/* This function is called once at the start of relaxation. It scans
5913 all the input sections and marks the ones that are relaxable (i.e.,
5914 literal sections with L32R relocations against them), and then
5915 collects source_reloc information for all the relocations against
5916 those relaxable sections. During this process, it also detects
5917 longcalls, i.e., calls relaxed by the assembler into indirect
5918 calls, that can be optimized back into direct calls. Within each
5919 extended basic block (ebb) containing an optimized longcall, it
5920 computes a set of "text actions" that can be performed to remove
5921 the L32R associated with the longcall while optionally preserving
5922 branch target alignments. */
5923
5924static bfd_boolean
7fa3d080 5925analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5926{
5927 bfd *abfd;
5928 asection *sec;
5929 bfd_boolean is_relaxable = FALSE;
5930
5931 /* Initialize the per-section relaxation info. */
5932 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5934 {
5935 init_xtensa_relax_info (sec);
5936 }
5937
5938 /* Mark relaxable sections (and count relocations against each one). */
5939 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5940 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5941 {
5942 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5943 return FALSE;
5944 }
5945
5946 /* Bail out if there are no relaxable sections. */
5947 if (!is_relaxable)
5948 return TRUE;
5949
5950 /* Allocate space for source_relocs. */
5951 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5952 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5953 {
5954 xtensa_relax_info *relax_info;
5955
5956 relax_info = get_xtensa_relax_info (sec);
5957 if (relax_info->is_relaxable_literal_section
5958 || relax_info->is_relaxable_asm_section)
5959 {
5960 relax_info->src_relocs = (source_reloc *)
5961 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5962 }
25c6282a
BW
5963 else
5964 relax_info->src_count = 0;
43cd72b9
BW
5965 }
5966
5967 /* Collect info on relocations against each relaxable section. */
5968 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5969 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5970 {
5971 if (!collect_source_relocs (abfd, sec, link_info))
5972 return FALSE;
5973 }
5974
5975 /* Compute the text actions. */
5976 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5977 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5978 {
5979 if (!compute_text_actions (abfd, sec, link_info))
5980 return FALSE;
5981 }
5982
5983 return TRUE;
5984}
5985
5986
5987/* Find all the sections that might be relaxed. The motivation for
5988 this pass is that collect_source_relocs() needs to record _all_ the
5989 relocations that target each relaxable section. That is expensive
5990 and unnecessary unless the target section is actually going to be
5991 relaxed. This pass identifies all such sections by checking if
5992 they have L32Rs pointing to them. In the process, the total number
5993 of relocations targeting each section is also counted so that we
5994 know how much space to allocate for source_relocs against each
5995 relaxable literal section. */
5996
5997static bfd_boolean
7fa3d080
BW
5998find_relaxable_sections (bfd *abfd,
5999 asection *sec,
6000 struct bfd_link_info *link_info,
6001 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6002{
6003 Elf_Internal_Rela *internal_relocs;
6004 bfd_byte *contents;
6005 bfd_boolean ok = TRUE;
6006 unsigned i;
6007 xtensa_relax_info *source_relax_info;
25c6282a 6008 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6009
6010 internal_relocs = retrieve_internal_relocs (abfd, sec,
6011 link_info->keep_memory);
6012 if (internal_relocs == NULL)
6013 return ok;
6014
6015 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6016 if (contents == NULL && sec->size != 0)
6017 {
6018 ok = FALSE;
6019 goto error_return;
6020 }
6021
6022 source_relax_info = get_xtensa_relax_info (sec);
6023 for (i = 0; i < sec->reloc_count; i++)
6024 {
6025 Elf_Internal_Rela *irel = &internal_relocs[i];
6026 r_reloc r_rel;
6027 asection *target_sec;
6028 xtensa_relax_info *target_relax_info;
6029
6030 /* If this section has not already been marked as "relaxable", and
6031 if it contains any ASM_EXPAND relocations (marking expanded
6032 longcalls) that can be optimized into direct calls, then mark
6033 the section as "relaxable". */
6034 if (source_relax_info
6035 && !source_relax_info->is_relaxable_asm_section
6036 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6037 {
6038 bfd_boolean is_reachable = FALSE;
6039 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6040 link_info, &is_reachable)
6041 && is_reachable)
6042 {
6043 source_relax_info->is_relaxable_asm_section = TRUE;
6044 *is_relaxable_p = TRUE;
6045 }
6046 }
6047
6048 r_reloc_init (&r_rel, abfd, irel, contents,
6049 bfd_get_section_limit (abfd, sec));
6050
6051 target_sec = r_reloc_get_section (&r_rel);
6052 target_relax_info = get_xtensa_relax_info (target_sec);
6053 if (!target_relax_info)
6054 continue;
6055
6056 /* Count PC-relative operand relocations against the target section.
6057 Note: The conditions tested here must match the conditions under
6058 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6059 is_l32r_reloc = FALSE;
6060 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6061 {
6062 xtensa_opcode opcode =
6063 get_relocation_opcode (abfd, sec, contents, irel);
6064 if (opcode != XTENSA_UNDEFINED)
6065 {
6066 is_l32r_reloc = (opcode == get_l32r_opcode ());
6067 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6068 || is_l32r_reloc)
6069 target_relax_info->src_count++;
6070 }
6071 }
43cd72b9 6072
25c6282a 6073 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6074 {
6075 /* Mark the target section as relaxable. */
6076 target_relax_info->is_relaxable_literal_section = TRUE;
6077 *is_relaxable_p = TRUE;
6078 }
6079 }
6080
6081 error_return:
6082 release_contents (sec, contents);
6083 release_internal_relocs (sec, internal_relocs);
6084 return ok;
6085}
6086
6087
6088/* Record _all_ the relocations that point to relaxable sections, and
6089 get rid of ASM_EXPAND relocs by either converting them to
6090 ASM_SIMPLIFY or by removing them. */
6091
6092static bfd_boolean
7fa3d080
BW
6093collect_source_relocs (bfd *abfd,
6094 asection *sec,
6095 struct bfd_link_info *link_info)
43cd72b9
BW
6096{
6097 Elf_Internal_Rela *internal_relocs;
6098 bfd_byte *contents;
6099 bfd_boolean ok = TRUE;
6100 unsigned i;
6101 bfd_size_type sec_size;
6102
6103 internal_relocs = retrieve_internal_relocs (abfd, sec,
6104 link_info->keep_memory);
6105 if (internal_relocs == NULL)
6106 return ok;
6107
6108 sec_size = bfd_get_section_limit (abfd, sec);
6109 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6110 if (contents == NULL && sec_size != 0)
6111 {
6112 ok = FALSE;
6113 goto error_return;
6114 }
6115
6116 /* Record relocations against relaxable literal sections. */
6117 for (i = 0; i < sec->reloc_count; i++)
6118 {
6119 Elf_Internal_Rela *irel = &internal_relocs[i];
6120 r_reloc r_rel;
6121 asection *target_sec;
6122 xtensa_relax_info *target_relax_info;
6123
6124 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6125
6126 target_sec = r_reloc_get_section (&r_rel);
6127 target_relax_info = get_xtensa_relax_info (target_sec);
6128
6129 if (target_relax_info
6130 && (target_relax_info->is_relaxable_literal_section
6131 || target_relax_info->is_relaxable_asm_section))
6132 {
6133 xtensa_opcode opcode = XTENSA_UNDEFINED;
6134 int opnd = -1;
6135 bfd_boolean is_abs_literal = FALSE;
6136
6137 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6138 {
6139 /* None of the current alternate relocs are PC-relative,
6140 and only PC-relative relocs matter here. However, we
6141 still need to record the opcode for literal
6142 coalescing. */
6143 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6144 if (opcode == get_l32r_opcode ())
6145 {
6146 is_abs_literal = TRUE;
6147 opnd = 1;
6148 }
6149 else
6150 opcode = XTENSA_UNDEFINED;
6151 }
6152 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6153 {
6154 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6155 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6156 }
6157
6158 if (opcode != XTENSA_UNDEFINED)
6159 {
6160 int src_next = target_relax_info->src_next++;
6161 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6162
6163 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6164 is_abs_literal);
6165 }
6166 }
6167 }
6168
6169 /* Now get rid of ASM_EXPAND relocations. At this point, the
6170 src_relocs array for the target literal section may still be
6171 incomplete, but it must at least contain the entries for the L32R
6172 relocations associated with ASM_EXPANDs because they were just
6173 added in the preceding loop over the relocations. */
6174
6175 for (i = 0; i < sec->reloc_count; i++)
6176 {
6177 Elf_Internal_Rela *irel = &internal_relocs[i];
6178 bfd_boolean is_reachable;
6179
6180 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6181 &is_reachable))
6182 continue;
6183
6184 if (is_reachable)
6185 {
6186 Elf_Internal_Rela *l32r_irel;
6187 r_reloc r_rel;
6188 asection *target_sec;
6189 xtensa_relax_info *target_relax_info;
6190
6191 /* Mark the source_reloc for the L32R so that it will be
6192 removed in compute_removed_literals(), along with the
6193 associated literal. */
6194 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6195 irel, internal_relocs);
6196 if (l32r_irel == NULL)
6197 continue;
6198
6199 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6200
6201 target_sec = r_reloc_get_section (&r_rel);
6202 target_relax_info = get_xtensa_relax_info (target_sec);
6203
6204 if (target_relax_info
6205 && (target_relax_info->is_relaxable_literal_section
6206 || target_relax_info->is_relaxable_asm_section))
6207 {
6208 source_reloc *s_reloc;
6209
6210 /* Search the source_relocs for the entry corresponding to
6211 the l32r_irel. Note: The src_relocs array is not yet
6212 sorted, but it wouldn't matter anyway because we're
6213 searching by source offset instead of target offset. */
6214 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6215 target_relax_info->src_next,
6216 sec, l32r_irel);
6217 BFD_ASSERT (s_reloc);
6218 s_reloc->is_null = TRUE;
6219 }
6220
6221 /* Convert this reloc to ASM_SIMPLIFY. */
6222 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6223 R_XTENSA_ASM_SIMPLIFY);
6224 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6225
6226 pin_internal_relocs (sec, internal_relocs);
6227 }
6228 else
6229 {
6230 /* It is resolvable but doesn't reach. We resolve now
6231 by eliminating the relocation -- the call will remain
6232 expanded into L32R/CALLX. */
6233 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6234 pin_internal_relocs (sec, internal_relocs);
6235 }
6236 }
6237
6238 error_return:
6239 release_contents (sec, contents);
6240 release_internal_relocs (sec, internal_relocs);
6241 return ok;
6242}
6243
6244
6245/* Return TRUE if the asm expansion can be resolved. Generally it can
6246 be resolved on a final link or when a partial link locates it in the
6247 same section as the target. Set "is_reachable" flag if the target of
6248 the call is within the range of a direct call, given the current VMA
6249 for this section and the target section. */
6250
6251bfd_boolean
7fa3d080
BW
6252is_resolvable_asm_expansion (bfd *abfd,
6253 asection *sec,
6254 bfd_byte *contents,
6255 Elf_Internal_Rela *irel,
6256 struct bfd_link_info *link_info,
6257 bfd_boolean *is_reachable_p)
43cd72b9
BW
6258{
6259 asection *target_sec;
6260 bfd_vma target_offset;
6261 r_reloc r_rel;
6262 xtensa_opcode opcode, direct_call_opcode;
6263 bfd_vma self_address;
6264 bfd_vma dest_address;
6265 bfd_boolean uses_l32r;
6266 bfd_size_type sec_size;
6267
6268 *is_reachable_p = FALSE;
6269
6270 if (contents == NULL)
6271 return FALSE;
6272
6273 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6274 return FALSE;
6275
6276 sec_size = bfd_get_section_limit (abfd, sec);
6277 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6278 sec_size - irel->r_offset, &uses_l32r);
6279 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6280 if (!uses_l32r)
6281 return FALSE;
6282
6283 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6284 if (direct_call_opcode == XTENSA_UNDEFINED)
6285 return FALSE;
6286
6287 /* Check and see that the target resolves. */
6288 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6289 if (!r_reloc_is_defined (&r_rel))
6290 return FALSE;
6291
6292 target_sec = r_reloc_get_section (&r_rel);
6293 target_offset = r_rel.target_offset;
6294
6295 /* If the target is in a shared library, then it doesn't reach. This
6296 isn't supposed to come up because the compiler should never generate
6297 non-PIC calls on systems that use shared libraries, but the linker
6298 shouldn't crash regardless. */
6299 if (!target_sec->output_section)
6300 return FALSE;
6301
6302 /* For relocatable sections, we can only simplify when the output
6303 section of the target is the same as the output section of the
6304 source. */
6305 if (link_info->relocatable
6306 && (target_sec->output_section != sec->output_section
6307 || is_reloc_sym_weak (abfd, irel)))
6308 return FALSE;
6309
6310 self_address = (sec->output_section->vma
6311 + sec->output_offset + irel->r_offset + 3);
6312 dest_address = (target_sec->output_section->vma
6313 + target_sec->output_offset + target_offset);
6314
6315 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6316 self_address, dest_address);
6317
6318 if ((self_address >> CALL_SEGMENT_BITS) !=
6319 (dest_address >> CALL_SEGMENT_BITS))
6320 return FALSE;
6321
6322 return TRUE;
6323}
6324
6325
6326static Elf_Internal_Rela *
7fa3d080
BW
6327find_associated_l32r_irel (bfd *abfd,
6328 asection *sec,
6329 bfd_byte *contents,
6330 Elf_Internal_Rela *other_irel,
6331 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6332{
6333 unsigned i;
e0001a05 6334
43cd72b9
BW
6335 for (i = 0; i < sec->reloc_count; i++)
6336 {
6337 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6338
43cd72b9
BW
6339 if (irel == other_irel)
6340 continue;
6341 if (irel->r_offset != other_irel->r_offset)
6342 continue;
6343 if (is_l32r_relocation (abfd, sec, contents, irel))
6344 return irel;
6345 }
6346
6347 return NULL;
e0001a05
NC
6348}
6349
6350
cb337148
BW
6351static xtensa_opcode *
6352build_reloc_opcodes (bfd *abfd,
6353 asection *sec,
6354 bfd_byte *contents,
6355 Elf_Internal_Rela *internal_relocs)
6356{
6357 unsigned i;
6358 xtensa_opcode *reloc_opcodes =
6359 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6360 for (i = 0; i < sec->reloc_count; i++)
6361 {
6362 Elf_Internal_Rela *irel = &internal_relocs[i];
6363 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6364 }
6365 return reloc_opcodes;
6366}
6367
6368
43cd72b9
BW
6369/* The compute_text_actions function will build a list of potential
6370 transformation actions for code in the extended basic block of each
6371 longcall that is optimized to a direct call. From this list we
6372 generate a set of actions to actually perform that optimizes for
6373 space and, if not using size_opt, maintains branch target
6374 alignments.
e0001a05 6375
43cd72b9
BW
6376 These actions to be performed are placed on a per-section list.
6377 The actual changes are performed by relax_section() in the second
6378 pass. */
6379
6380bfd_boolean
7fa3d080
BW
6381compute_text_actions (bfd *abfd,
6382 asection *sec,
6383 struct bfd_link_info *link_info)
e0001a05 6384{
cb337148 6385 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6386 xtensa_relax_info *relax_info;
e0001a05 6387 bfd_byte *contents;
43cd72b9 6388 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6389 bfd_boolean ok = TRUE;
6390 unsigned i;
43cd72b9
BW
6391 property_table_entry *prop_table = 0;
6392 int ptblsize = 0;
6393 bfd_size_type sec_size;
43cd72b9 6394
43cd72b9
BW
6395 relax_info = get_xtensa_relax_info (sec);
6396 BFD_ASSERT (relax_info);
25c6282a
BW
6397 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6398
6399 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
6400 if (!relax_info->is_relaxable_asm_section)
6401 return ok;
e0001a05
NC
6402
6403 internal_relocs = retrieve_internal_relocs (abfd, sec,
6404 link_info->keep_memory);
e0001a05 6405
43cd72b9
BW
6406 if (internal_relocs)
6407 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6408 internal_reloc_compare);
6409
6410 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6411 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6412 if (contents == NULL && sec_size != 0)
e0001a05
NC
6413 {
6414 ok = FALSE;
6415 goto error_return;
6416 }
6417
43cd72b9
BW
6418 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6419 XTENSA_PROP_SEC_NAME, FALSE);
6420 if (ptblsize < 0)
6421 {
6422 ok = FALSE;
6423 goto error_return;
6424 }
6425
6426 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6427 {
6428 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6429 bfd_vma r_offset;
6430 property_table_entry *the_entry;
6431 int ptbl_idx;
6432 ebb_t *ebb;
6433 ebb_constraint ebb_table;
6434 bfd_size_type simplify_size;
6435
6436 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6437 continue;
6438 r_offset = irel->r_offset;
e0001a05 6439
43cd72b9
BW
6440 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6441 if (simplify_size == 0)
6442 {
6443 (*_bfd_error_handler)
6444 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6445 sec->owner, sec, r_offset);
6446 continue;
6447 }
e0001a05 6448
43cd72b9
BW
6449 /* If the instruction table is not around, then don't do this
6450 relaxation. */
6451 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6452 sec->vma + irel->r_offset);
6453 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6454 {
6455 text_action_add (&relax_info->action_list,
6456 ta_convert_longcall, sec, r_offset,
6457 0);
6458 continue;
6459 }
6460
6461 /* If the next longcall happens to be at the same address as an
6462 unreachable section of size 0, then skip forward. */
6463 ptbl_idx = the_entry - prop_table;
6464 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6465 && the_entry->size == 0
6466 && ptbl_idx + 1 < ptblsize
6467 && (prop_table[ptbl_idx + 1].address
6468 == prop_table[ptbl_idx].address))
6469 {
6470 ptbl_idx++;
6471 the_entry++;
6472 }
e0001a05 6473
99ded152 6474 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
6475 /* NO_REORDER is OK */
6476 continue;
e0001a05 6477
43cd72b9
BW
6478 init_ebb_constraint (&ebb_table);
6479 ebb = &ebb_table.ebb;
6480 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6481 internal_relocs, sec->reloc_count);
6482 ebb->start_offset = r_offset + simplify_size;
6483 ebb->end_offset = r_offset + simplify_size;
6484 ebb->start_ptbl_idx = ptbl_idx;
6485 ebb->end_ptbl_idx = ptbl_idx;
6486 ebb->start_reloc_idx = i;
6487 ebb->end_reloc_idx = i;
6488
cb337148
BW
6489 /* Precompute the opcode for each relocation. */
6490 if (reloc_opcodes == NULL)
6491 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6492 internal_relocs);
6493
43cd72b9
BW
6494 if (!extend_ebb_bounds (ebb)
6495 || !compute_ebb_proposed_actions (&ebb_table)
6496 || !compute_ebb_actions (&ebb_table)
6497 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6498 internal_relocs, &ebb_table,
6499 reloc_opcodes)
43cd72b9 6500 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6501 {
43cd72b9
BW
6502 /* If anything goes wrong or we get unlucky and something does
6503 not fit, with our plan because of expansion between
6504 critical branches, just convert to a NOP. */
6505
6506 text_action_add (&relax_info->action_list,
6507 ta_convert_longcall, sec, r_offset, 0);
6508 i = ebb_table.ebb.end_reloc_idx;
6509 free_ebb_constraint (&ebb_table);
6510 continue;
e0001a05 6511 }
43cd72b9
BW
6512
6513 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6514
6515 /* Update the index so we do not go looking at the relocations
6516 we have already processed. */
6517 i = ebb_table.ebb.end_reloc_idx;
6518 free_ebb_constraint (&ebb_table);
e0001a05
NC
6519 }
6520
43cd72b9 6521#if DEBUG
7fa3d080 6522 if (relax_info->action_list.head)
43cd72b9
BW
6523 print_action_list (stderr, &relax_info->action_list);
6524#endif
6525
6526error_return:
e0001a05
NC
6527 release_contents (sec, contents);
6528 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6529 if (prop_table)
6530 free (prop_table);
cb337148
BW
6531 if (reloc_opcodes)
6532 free (reloc_opcodes);
43cd72b9 6533
e0001a05
NC
6534 return ok;
6535}
6536
6537
64b607e6
BW
6538/* Do not widen an instruction if it is preceeded by a
6539 loop opcode. It might cause misalignment. */
6540
6541static bfd_boolean
6542prev_instr_is_a_loop (bfd_byte *contents,
6543 bfd_size_type content_length,
6544 bfd_size_type offset)
6545{
6546 xtensa_opcode prev_opcode;
6547
6548 if (offset < 3)
6549 return FALSE;
6550 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6551 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6552}
6553
6554
43cd72b9 6555/* Find all of the possible actions for an extended basic block. */
e0001a05 6556
43cd72b9 6557bfd_boolean
7fa3d080 6558compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6559{
43cd72b9
BW
6560 const ebb_t *ebb = &ebb_table->ebb;
6561 unsigned rel_idx = ebb->start_reloc_idx;
6562 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
6563 bfd_vma offset = 0;
6564 xtensa_isa isa = xtensa_default_isa;
6565 xtensa_format fmt;
6566 static xtensa_insnbuf insnbuf = NULL;
6567 static xtensa_insnbuf slotbuf = NULL;
6568
6569 if (insnbuf == NULL)
6570 {
6571 insnbuf = xtensa_insnbuf_alloc (isa);
6572 slotbuf = xtensa_insnbuf_alloc (isa);
6573 }
e0001a05 6574
43cd72b9
BW
6575 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6576 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6577
43cd72b9 6578 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6579 {
64b607e6 6580 bfd_vma start_offset, end_offset;
43cd72b9 6581 bfd_size_type insn_len;
e0001a05 6582
43cd72b9
BW
6583 start_offset = entry->address - ebb->sec->vma;
6584 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6585
43cd72b9
BW
6586 if (entry == start_entry)
6587 start_offset = ebb->start_offset;
6588 if (entry == end_entry)
6589 end_offset = ebb->end_offset;
6590 offset = start_offset;
e0001a05 6591
43cd72b9
BW
6592 if (offset == entry->address - ebb->sec->vma
6593 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6594 {
6595 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6596 BFD_ASSERT (offset != end_offset);
6597 if (offset == end_offset)
6598 return FALSE;
e0001a05 6599
43cd72b9
BW
6600 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6601 offset);
43cd72b9 6602 if (insn_len == 0)
64b607e6
BW
6603 goto decode_error;
6604
43cd72b9
BW
6605 if (check_branch_target_aligned_address (offset, insn_len))
6606 align_type = EBB_REQUIRE_TGT_ALIGN;
6607
6608 ebb_propose_action (ebb_table, align_type, 0,
6609 ta_none, offset, 0, TRUE);
6610 }
6611
6612 while (offset != end_offset)
e0001a05 6613 {
43cd72b9 6614 Elf_Internal_Rela *irel;
e0001a05 6615 xtensa_opcode opcode;
e0001a05 6616
43cd72b9
BW
6617 while (rel_idx < ebb->end_reloc_idx
6618 && (ebb->relocs[rel_idx].r_offset < offset
6619 || (ebb->relocs[rel_idx].r_offset == offset
6620 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6621 != R_XTENSA_ASM_SIMPLIFY))))
6622 rel_idx++;
6623
6624 /* Check for longcall. */
6625 irel = &ebb->relocs[rel_idx];
6626 if (irel->r_offset == offset
6627 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6628 {
6629 bfd_size_type simplify_size;
e0001a05 6630
43cd72b9
BW
6631 simplify_size = get_asm_simplify_size (ebb->contents,
6632 ebb->content_length,
6633 irel->r_offset);
6634 if (simplify_size == 0)
64b607e6 6635 goto decode_error;
43cd72b9
BW
6636
6637 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6638 ta_convert_longcall, offset, 0, TRUE);
6639
6640 offset += simplify_size;
6641 continue;
6642 }
e0001a05 6643
64b607e6
BW
6644 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6645 goto decode_error;
6646 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6647 ebb->content_length - offset);
6648 fmt = xtensa_format_decode (isa, insnbuf);
6649 if (fmt == XTENSA_UNDEFINED)
6650 goto decode_error;
6651 insn_len = xtensa_format_length (isa, fmt);
6652 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6653 goto decode_error;
6654
6655 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 6656 {
64b607e6
BW
6657 offset += insn_len;
6658 continue;
43cd72b9 6659 }
64b607e6
BW
6660
6661 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6662 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6663 if (opcode == XTENSA_UNDEFINED)
6664 goto decode_error;
6665
43cd72b9 6666 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 6667 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 6668 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
6669 {
6670 /* Add an instruction narrow action. */
6671 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6672 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 6673 }
99ded152 6674 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
6675 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6676 && ! prev_instr_is_a_loop (ebb->contents,
6677 ebb->content_length, offset))
43cd72b9
BW
6678 {
6679 /* Add an instruction widen action. */
6680 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6681 ta_widen_insn, offset, 0, FALSE);
43cd72b9 6682 }
64b607e6 6683 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
6684 {
6685 /* Check for branch targets. */
6686 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6687 ta_none, offset, 0, TRUE);
43cd72b9
BW
6688 }
6689
6690 offset += insn_len;
e0001a05
NC
6691 }
6692 }
6693
43cd72b9
BW
6694 if (ebb->ends_unreachable)
6695 {
6696 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6697 ta_fill, ebb->end_offset, 0, TRUE);
6698 }
e0001a05 6699
43cd72b9 6700 return TRUE;
64b607e6
BW
6701
6702 decode_error:
6703 (*_bfd_error_handler)
6704 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6705 ebb->sec->owner, ebb->sec, offset);
6706 return FALSE;
43cd72b9
BW
6707}
6708
6709
6710/* After all of the information has collected about the
6711 transformations possible in an EBB, compute the appropriate actions
6712 here in compute_ebb_actions. We still must check later to make
6713 sure that the actions do not break any relocations. The algorithm
6714 used here is pretty greedy. Basically, it removes as many no-ops
6715 as possible so that the end of the EBB has the same alignment
6716 characteristics as the original. First, it uses narrowing, then
6717 fill space at the end of the EBB, and finally widenings. If that
6718 does not work, it tries again with one fewer no-op removed. The
6719 optimization will only be performed if all of the branch targets
6720 that were aligned before transformation are also aligned after the
6721 transformation.
6722
6723 When the size_opt flag is set, ignore the branch target alignments,
6724 narrow all wide instructions, and remove all no-ops unless the end
6725 of the EBB prevents it. */
6726
6727bfd_boolean
7fa3d080 6728compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6729{
6730 unsigned i = 0;
6731 unsigned j;
6732 int removed_bytes = 0;
6733 ebb_t *ebb = &ebb_table->ebb;
6734 unsigned seg_idx_start = 0;
6735 unsigned seg_idx_end = 0;
6736
6737 /* We perform this like the assembler relaxation algorithm: Start by
6738 assuming all instructions are narrow and all no-ops removed; then
6739 walk through.... */
6740
6741 /* For each segment of this that has a solid constraint, check to
6742 see if there are any combinations that will keep the constraint.
6743 If so, use it. */
6744 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6745 {
43cd72b9
BW
6746 bfd_boolean requires_text_end_align = FALSE;
6747 unsigned longcall_count = 0;
6748 unsigned longcall_convert_count = 0;
6749 unsigned narrowable_count = 0;
6750 unsigned narrowable_convert_count = 0;
6751 unsigned widenable_count = 0;
6752 unsigned widenable_convert_count = 0;
e0001a05 6753
43cd72b9
BW
6754 proposed_action *action = NULL;
6755 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6756
43cd72b9 6757 seg_idx_start = seg_idx_end;
e0001a05 6758
43cd72b9
BW
6759 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6760 {
6761 action = &ebb_table->actions[i];
6762 if (action->action == ta_convert_longcall)
6763 longcall_count++;
6764 if (action->action == ta_narrow_insn)
6765 narrowable_count++;
6766 if (action->action == ta_widen_insn)
6767 widenable_count++;
6768 if (action->action == ta_fill)
6769 break;
6770 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6771 break;
6772 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6773 && !elf32xtensa_size_opt)
6774 break;
6775 }
6776 seg_idx_end = i;
e0001a05 6777
43cd72b9
BW
6778 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6779 requires_text_end_align = TRUE;
e0001a05 6780
43cd72b9
BW
6781 if (elf32xtensa_size_opt && !requires_text_end_align
6782 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6783 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6784 {
6785 longcall_convert_count = longcall_count;
6786 narrowable_convert_count = narrowable_count;
6787 widenable_convert_count = 0;
6788 }
6789 else
6790 {
6791 /* There is a constraint. Convert the max number of longcalls. */
6792 narrowable_convert_count = 0;
6793 longcall_convert_count = 0;
6794 widenable_convert_count = 0;
e0001a05 6795
43cd72b9 6796 for (j = 0; j < longcall_count; j++)
e0001a05 6797 {
43cd72b9
BW
6798 int removed = (longcall_count - j) * 3 & (align - 1);
6799 unsigned desire_narrow = (align - removed) & (align - 1);
6800 unsigned desire_widen = removed;
6801 if (desire_narrow <= narrowable_count)
6802 {
6803 narrowable_convert_count = desire_narrow;
6804 narrowable_convert_count +=
6805 (align * ((narrowable_count - narrowable_convert_count)
6806 / align));
6807 longcall_convert_count = (longcall_count - j);
6808 widenable_convert_count = 0;
6809 break;
6810 }
6811 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6812 {
6813 narrowable_convert_count = 0;
6814 longcall_convert_count = longcall_count - j;
6815 widenable_convert_count = desire_widen;
6816 break;
6817 }
6818 }
6819 }
e0001a05 6820
43cd72b9
BW
6821 /* Now the number of conversions are saved. Do them. */
6822 for (i = seg_idx_start; i < seg_idx_end; i++)
6823 {
6824 action = &ebb_table->actions[i];
6825 switch (action->action)
6826 {
6827 case ta_convert_longcall:
6828 if (longcall_convert_count != 0)
6829 {
6830 action->action = ta_remove_longcall;
6831 action->do_action = TRUE;
6832 action->removed_bytes += 3;
6833 longcall_convert_count--;
6834 }
6835 break;
6836 case ta_narrow_insn:
6837 if (narrowable_convert_count != 0)
6838 {
6839 action->do_action = TRUE;
6840 action->removed_bytes += 1;
6841 narrowable_convert_count--;
6842 }
6843 break;
6844 case ta_widen_insn:
6845 if (widenable_convert_count != 0)
6846 {
6847 action->do_action = TRUE;
6848 action->removed_bytes -= 1;
6849 widenable_convert_count--;
6850 }
6851 break;
6852 default:
6853 break;
e0001a05 6854 }
43cd72b9
BW
6855 }
6856 }
e0001a05 6857
43cd72b9
BW
6858 /* Now we move on to some local opts. Try to remove each of the
6859 remaining longcalls. */
e0001a05 6860
43cd72b9
BW
6861 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6862 {
6863 removed_bytes = 0;
6864 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6865 {
43cd72b9
BW
6866 int old_removed_bytes = removed_bytes;
6867 proposed_action *action = &ebb_table->actions[i];
6868
6869 if (action->do_action && action->action == ta_convert_longcall)
6870 {
6871 bfd_boolean bad_alignment = FALSE;
6872 removed_bytes += 3;
6873 for (j = i + 1; j < ebb_table->action_count; j++)
6874 {
6875 proposed_action *new_action = &ebb_table->actions[j];
6876 bfd_vma offset = new_action->offset;
6877 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6878 {
6879 if (!check_branch_target_aligned
6880 (ebb_table->ebb.contents,
6881 ebb_table->ebb.content_length,
6882 offset, offset - removed_bytes))
6883 {
6884 bad_alignment = TRUE;
6885 break;
6886 }
6887 }
6888 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6889 {
6890 if (!check_loop_aligned (ebb_table->ebb.contents,
6891 ebb_table->ebb.content_length,
6892 offset,
6893 offset - removed_bytes))
6894 {
6895 bad_alignment = TRUE;
6896 break;
6897 }
6898 }
6899 if (new_action->action == ta_narrow_insn
6900 && !new_action->do_action
6901 && ebb_table->ebb.sec->alignment_power == 2)
6902 {
6903 /* Narrow an instruction and we are done. */
6904 new_action->do_action = TRUE;
6905 new_action->removed_bytes += 1;
6906 bad_alignment = FALSE;
6907 break;
6908 }
6909 if (new_action->action == ta_widen_insn
6910 && new_action->do_action
6911 && ebb_table->ebb.sec->alignment_power == 2)
6912 {
6913 /* Narrow an instruction and we are done. */
6914 new_action->do_action = FALSE;
6915 new_action->removed_bytes += 1;
6916 bad_alignment = FALSE;
6917 break;
6918 }
5c5d6806
BW
6919 if (new_action->do_action)
6920 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
6921 }
6922 if (!bad_alignment)
6923 {
6924 action->removed_bytes += 3;
6925 action->action = ta_remove_longcall;
6926 action->do_action = TRUE;
6927 }
6928 }
6929 removed_bytes = old_removed_bytes;
6930 if (action->do_action)
6931 removed_bytes += action->removed_bytes;
e0001a05
NC
6932 }
6933 }
6934
43cd72b9
BW
6935 removed_bytes = 0;
6936 for (i = 0; i < ebb_table->action_count; ++i)
6937 {
6938 proposed_action *action = &ebb_table->actions[i];
6939 if (action->do_action)
6940 removed_bytes += action->removed_bytes;
6941 }
6942
6943 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6944 && ebb->ends_unreachable)
6945 {
6946 proposed_action *action;
6947 int br;
6948 int extra_space;
6949
6950 BFD_ASSERT (ebb_table->action_count != 0);
6951 action = &ebb_table->actions[ebb_table->action_count - 1];
6952 BFD_ASSERT (action->action == ta_fill);
6953 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6954
6955 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6956 br = action->removed_bytes + removed_bytes + extra_space;
6957 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6958
6959 action->removed_bytes = extra_space - br;
6960 }
6961 return TRUE;
e0001a05
NC
6962}
6963
6964
03e94c08
BW
6965/* The xlate_map is a sorted array of address mappings designed to
6966 answer the offset_with_removed_text() query with a binary search instead
6967 of a linear search through the section's action_list. */
6968
6969typedef struct xlate_map_entry xlate_map_entry_t;
6970typedef struct xlate_map xlate_map_t;
6971
6972struct xlate_map_entry
6973{
6974 unsigned orig_address;
6975 unsigned new_address;
6976 unsigned size;
6977};
6978
6979struct xlate_map
6980{
6981 unsigned entry_count;
6982 xlate_map_entry_t *entry;
6983};
6984
6985
6986static int
6987xlate_compare (const void *a_v, const void *b_v)
6988{
6989 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6990 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6991 if (a->orig_address < b->orig_address)
6992 return -1;
6993 if (a->orig_address > (b->orig_address + b->size - 1))
6994 return 1;
6995 return 0;
6996}
6997
6998
6999static bfd_vma
7000xlate_offset_with_removed_text (const xlate_map_t *map,
7001 text_action_list *action_list,
7002 bfd_vma offset)
7003{
7004 xlate_map_entry_t tmp;
7005 void *r;
7006 xlate_map_entry_t *e;
7007
7008 if (map == NULL)
7009 return offset_with_removed_text (action_list, offset);
7010
7011 if (map->entry_count == 0)
7012 return offset;
7013
7014 tmp.orig_address = offset;
7015 tmp.new_address = offset;
7016 tmp.size = 1;
7017
7018 r = bsearch (&offset, map->entry, map->entry_count,
7019 sizeof (xlate_map_entry_t), &xlate_compare);
7020 e = (xlate_map_entry_t *) r;
7021
7022 BFD_ASSERT (e != NULL);
7023 if (e == NULL)
7024 return offset;
7025 return e->new_address - e->orig_address + offset;
7026}
7027
7028
7029/* Build a binary searchable offset translation map from a section's
7030 action list. */
7031
7032static xlate_map_t *
7033build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7034{
7035 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7036 text_action_list *action_list = &relax_info->action_list;
7037 unsigned num_actions = 0;
7038 text_action *r;
7039 int removed;
7040 xlate_map_entry_t *current_entry;
7041
7042 if (map == NULL)
7043 return NULL;
7044
7045 num_actions = action_list_count (action_list);
7046 map->entry = (xlate_map_entry_t *)
7047 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7048 if (map->entry == NULL)
7049 {
7050 free (map);
7051 return NULL;
7052 }
7053 map->entry_count = 0;
7054
7055 removed = 0;
7056 current_entry = &map->entry[0];
7057
7058 current_entry->orig_address = 0;
7059 current_entry->new_address = 0;
7060 current_entry->size = 0;
7061
7062 for (r = action_list->head; r != NULL; r = r->next)
7063 {
7064 unsigned orig_size = 0;
7065 switch (r->action)
7066 {
7067 case ta_none:
7068 case ta_remove_insn:
7069 case ta_convert_longcall:
7070 case ta_remove_literal:
7071 case ta_add_literal:
7072 break;
7073 case ta_remove_longcall:
7074 orig_size = 6;
7075 break;
7076 case ta_narrow_insn:
7077 orig_size = 3;
7078 break;
7079 case ta_widen_insn:
7080 orig_size = 2;
7081 break;
7082 case ta_fill:
7083 break;
7084 }
7085 current_entry->size =
7086 r->offset + orig_size - current_entry->orig_address;
7087 if (current_entry->size != 0)
7088 {
7089 current_entry++;
7090 map->entry_count++;
7091 }
7092 current_entry->orig_address = r->offset + orig_size;
7093 removed += r->removed_bytes;
7094 current_entry->new_address = r->offset + orig_size - removed;
7095 current_entry->size = 0;
7096 }
7097
7098 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7099 - current_entry->orig_address);
7100 if (current_entry->size != 0)
7101 map->entry_count++;
7102
7103 return map;
7104}
7105
7106
7107/* Free an offset translation map. */
7108
7109static void
7110free_xlate_map (xlate_map_t *map)
7111{
7112 if (map && map->entry)
7113 free (map->entry);
7114 if (map)
7115 free (map);
7116}
7117
7118
43cd72b9
BW
7119/* Use check_section_ebb_pcrels_fit to make sure that all of the
7120 relocations in a section will fit if a proposed set of actions
7121 are performed. */
e0001a05 7122
43cd72b9 7123static bfd_boolean
7fa3d080
BW
7124check_section_ebb_pcrels_fit (bfd *abfd,
7125 asection *sec,
7126 bfd_byte *contents,
7127 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7128 const ebb_constraint *constraint,
7129 const xtensa_opcode *reloc_opcodes)
e0001a05 7130{
43cd72b9
BW
7131 unsigned i, j;
7132 Elf_Internal_Rela *irel;
03e94c08
BW
7133 xlate_map_t *xmap = NULL;
7134 bfd_boolean ok = TRUE;
43cd72b9 7135 xtensa_relax_info *relax_info;
e0001a05 7136
43cd72b9 7137 relax_info = get_xtensa_relax_info (sec);
e0001a05 7138
03e94c08
BW
7139 if (relax_info && sec->reloc_count > 100)
7140 {
7141 xmap = build_xlate_map (sec, relax_info);
7142 /* NULL indicates out of memory, but the slow version
7143 can still be used. */
7144 }
7145
43cd72b9
BW
7146 for (i = 0; i < sec->reloc_count; i++)
7147 {
7148 r_reloc r_rel;
7149 bfd_vma orig_self_offset, orig_target_offset;
7150 bfd_vma self_offset, target_offset;
7151 int r_type;
7152 reloc_howto_type *howto;
7153 int self_removed_bytes, target_removed_bytes;
e0001a05 7154
43cd72b9
BW
7155 irel = &internal_relocs[i];
7156 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7157
43cd72b9
BW
7158 howto = &elf_howto_table[r_type];
7159 /* We maintain the required invariant: PC-relative relocations
7160 that fit before linking must fit after linking. Thus we only
7161 need to deal with relocations to the same section that are
7162 PC-relative. */
1bbb5f21
BW
7163 if (r_type == R_XTENSA_ASM_SIMPLIFY
7164 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7165 || !howto->pc_relative)
7166 continue;
e0001a05 7167
43cd72b9
BW
7168 r_reloc_init (&r_rel, abfd, irel, contents,
7169 bfd_get_section_limit (abfd, sec));
e0001a05 7170
43cd72b9
BW
7171 if (r_reloc_get_section (&r_rel) != sec)
7172 continue;
e0001a05 7173
43cd72b9
BW
7174 orig_self_offset = irel->r_offset;
7175 orig_target_offset = r_rel.target_offset;
e0001a05 7176
43cd72b9
BW
7177 self_offset = orig_self_offset;
7178 target_offset = orig_target_offset;
7179
7180 if (relax_info)
7181 {
03e94c08
BW
7182 self_offset =
7183 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7184 orig_self_offset);
7185 target_offset =
7186 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7187 orig_target_offset);
43cd72b9
BW
7188 }
7189
7190 self_removed_bytes = 0;
7191 target_removed_bytes = 0;
7192
7193 for (j = 0; j < constraint->action_count; ++j)
7194 {
7195 proposed_action *action = &constraint->actions[j];
7196 bfd_vma offset = action->offset;
7197 int removed_bytes = action->removed_bytes;
7198 if (offset < orig_self_offset
7199 || (offset == orig_self_offset && action->action == ta_fill
7200 && action->removed_bytes < 0))
7201 self_removed_bytes += removed_bytes;
7202 if (offset < orig_target_offset
7203 || (offset == orig_target_offset && action->action == ta_fill
7204 && action->removed_bytes < 0))
7205 target_removed_bytes += removed_bytes;
7206 }
7207 self_offset -= self_removed_bytes;
7208 target_offset -= target_removed_bytes;
7209
7210 /* Try to encode it. Get the operand and check. */
7211 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7212 {
7213 /* None of the current alternate relocs are PC-relative,
7214 and only PC-relative relocs matter here. */
7215 }
7216 else
7217 {
7218 xtensa_opcode opcode;
7219 int opnum;
7220
cb337148
BW
7221 if (reloc_opcodes)
7222 opcode = reloc_opcodes[i];
7223 else
7224 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7225 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7226 {
7227 ok = FALSE;
7228 break;
7229 }
43cd72b9
BW
7230
7231 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7232 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7233 {
7234 ok = FALSE;
7235 break;
7236 }
43cd72b9
BW
7237
7238 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7239 {
7240 ok = FALSE;
7241 break;
7242 }
43cd72b9
BW
7243 }
7244 }
7245
03e94c08
BW
7246 if (xmap)
7247 free_xlate_map (xmap);
7248
7249 return ok;
43cd72b9
BW
7250}
7251
7252
7253static bfd_boolean
7fa3d080 7254check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7255{
7256 int removed = 0;
7257 unsigned i;
7258
7259 for (i = 0; i < constraint->action_count; i++)
7260 {
7261 const proposed_action *action = &constraint->actions[i];
7262 if (action->do_action)
7263 removed += action->removed_bytes;
7264 }
7265 if (removed < 0)
e0001a05
NC
7266 return FALSE;
7267
7268 return TRUE;
7269}
7270
7271
43cd72b9 7272void
7fa3d080
BW
7273text_action_add_proposed (text_action_list *l,
7274 const ebb_constraint *ebb_table,
7275 asection *sec)
e0001a05
NC
7276{
7277 unsigned i;
7278
43cd72b9 7279 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7280 {
43cd72b9 7281 proposed_action *action = &ebb_table->actions[i];
e0001a05 7282
43cd72b9 7283 if (!action->do_action)
e0001a05 7284 continue;
43cd72b9
BW
7285 switch (action->action)
7286 {
7287 case ta_remove_insn:
7288 case ta_remove_longcall:
7289 case ta_convert_longcall:
7290 case ta_narrow_insn:
7291 case ta_widen_insn:
7292 case ta_fill:
7293 case ta_remove_literal:
7294 text_action_add (l, action->action, sec, action->offset,
7295 action->removed_bytes);
7296 break;
7297 case ta_none:
7298 break;
7299 default:
7300 BFD_ASSERT (0);
7301 break;
7302 }
e0001a05 7303 }
43cd72b9 7304}
e0001a05 7305
43cd72b9
BW
7306
7307int
7fa3d080 7308compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7309{
7310 int fill_extra_space;
7311
7312 if (!entry)
7313 return 0;
7314
7315 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7316 return 0;
7317
7318 fill_extra_space = entry->size;
7319 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7320 {
7321 /* Fill bytes for alignment:
7322 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7323 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7324 int nsm = (1 << pow) - 1;
7325 bfd_vma addr = entry->address + entry->size;
7326 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7327 fill_extra_space += align_fill;
7328 }
7329 return fill_extra_space;
e0001a05
NC
7330}
7331
43cd72b9 7332\f
e0001a05
NC
7333/* First relaxation pass. */
7334
43cd72b9
BW
7335/* If the section contains relaxable literals, check each literal to
7336 see if it has the same value as another literal that has already
7337 been seen, either in the current section or a previous one. If so,
7338 add an entry to the per-section list of removed literals. The
e0001a05
NC
7339 actual changes are deferred until the next pass. */
7340
7341static bfd_boolean
7fa3d080
BW
7342compute_removed_literals (bfd *abfd,
7343 asection *sec,
7344 struct bfd_link_info *link_info,
7345 value_map_hash_table *values)
e0001a05
NC
7346{
7347 xtensa_relax_info *relax_info;
7348 bfd_byte *contents;
7349 Elf_Internal_Rela *internal_relocs;
43cd72b9 7350 source_reloc *src_relocs, *rel;
e0001a05 7351 bfd_boolean ok = TRUE;
43cd72b9
BW
7352 property_table_entry *prop_table = NULL;
7353 int ptblsize;
7354 int i, prev_i;
7355 bfd_boolean last_loc_is_prev = FALSE;
7356 bfd_vma last_target_offset = 0;
7357 section_cache_t target_sec_cache;
7358 bfd_size_type sec_size;
7359
7360 init_section_cache (&target_sec_cache);
e0001a05
NC
7361
7362 /* Do nothing if it is not a relaxable literal section. */
7363 relax_info = get_xtensa_relax_info (sec);
7364 BFD_ASSERT (relax_info);
e0001a05
NC
7365 if (!relax_info->is_relaxable_literal_section)
7366 return ok;
7367
7368 internal_relocs = retrieve_internal_relocs (abfd, sec,
7369 link_info->keep_memory);
7370
43cd72b9 7371 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7372 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7373 if (contents == NULL && sec_size != 0)
e0001a05
NC
7374 {
7375 ok = FALSE;
7376 goto error_return;
7377 }
7378
7379 /* Sort the source_relocs by target offset. */
7380 src_relocs = relax_info->src_relocs;
7381 qsort (src_relocs, relax_info->src_count,
7382 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7383 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7384 internal_reloc_compare);
e0001a05 7385
43cd72b9
BW
7386 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7387 XTENSA_PROP_SEC_NAME, FALSE);
7388 if (ptblsize < 0)
7389 {
7390 ok = FALSE;
7391 goto error_return;
7392 }
7393
7394 prev_i = -1;
e0001a05
NC
7395 for (i = 0; i < relax_info->src_count; i++)
7396 {
e0001a05 7397 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7398
7399 rel = &src_relocs[i];
43cd72b9
BW
7400 if (get_l32r_opcode () != rel->opcode)
7401 continue;
e0001a05
NC
7402 irel = get_irel_at_offset (sec, internal_relocs,
7403 rel->r_rel.target_offset);
7404
43cd72b9
BW
7405 /* If the relocation on this is not a simple R_XTENSA_32 or
7406 R_XTENSA_PLT then do not consider it. This may happen when
7407 the difference of two symbols is used in a literal. */
7408 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7409 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7410 continue;
7411
e0001a05
NC
7412 /* If the target_offset for this relocation is the same as the
7413 previous relocation, then we've already considered whether the
7414 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7415 if (i != 0 && prev_i != -1
7416 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7417 continue;
43cd72b9
BW
7418 prev_i = i;
7419
7420 if (last_loc_is_prev &&
7421 last_target_offset + 4 != rel->r_rel.target_offset)
7422 last_loc_is_prev = FALSE;
e0001a05
NC
7423
7424 /* Check if the relocation was from an L32R that is being removed
7425 because a CALLX was converted to a direct CALL, and check if
7426 there are no other relocations to the literal. */
99ded152
BW
7427 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7428 sec, prop_table, ptblsize))
e0001a05 7429 {
43cd72b9
BW
7430 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7431 irel, rel, prop_table, ptblsize))
e0001a05 7432 {
43cd72b9
BW
7433 ok = FALSE;
7434 goto error_return;
e0001a05 7435 }
43cd72b9 7436 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7437 continue;
7438 }
7439
43cd72b9
BW
7440 if (!identify_literal_placement (abfd, sec, contents, link_info,
7441 values,
7442 &last_loc_is_prev, irel,
7443 relax_info->src_count - i, rel,
7444 prop_table, ptblsize,
7445 &target_sec_cache, rel->is_abs_literal))
e0001a05 7446 {
43cd72b9
BW
7447 ok = FALSE;
7448 goto error_return;
7449 }
7450 last_target_offset = rel->r_rel.target_offset;
7451 }
e0001a05 7452
43cd72b9
BW
7453#if DEBUG
7454 print_removed_literals (stderr, &relax_info->removed_list);
7455 print_action_list (stderr, &relax_info->action_list);
7456#endif /* DEBUG */
7457
7458error_return:
7459 if (prop_table) free (prop_table);
7460 clear_section_cache (&target_sec_cache);
7461
7462 release_contents (sec, contents);
7463 release_internal_relocs (sec, internal_relocs);
7464 return ok;
7465}
7466
7467
7468static Elf_Internal_Rela *
7fa3d080
BW
7469get_irel_at_offset (asection *sec,
7470 Elf_Internal_Rela *internal_relocs,
7471 bfd_vma offset)
43cd72b9
BW
7472{
7473 unsigned i;
7474 Elf_Internal_Rela *irel;
7475 unsigned r_type;
7476 Elf_Internal_Rela key;
7477
7478 if (!internal_relocs)
7479 return NULL;
7480
7481 key.r_offset = offset;
7482 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7483 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7484 if (!irel)
7485 return NULL;
7486
7487 /* bsearch does not guarantee which will be returned if there are
7488 multiple matches. We need the first that is not an alignment. */
7489 i = irel - internal_relocs;
7490 while (i > 0)
7491 {
7492 if (internal_relocs[i-1].r_offset != offset)
7493 break;
7494 i--;
7495 }
7496 for ( ; i < sec->reloc_count; i++)
7497 {
7498 irel = &internal_relocs[i];
7499 r_type = ELF32_R_TYPE (irel->r_info);
7500 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7501 return irel;
7502 }
7503
7504 return NULL;
7505}
7506
7507
7508bfd_boolean
7fa3d080
BW
7509is_removable_literal (const source_reloc *rel,
7510 int i,
7511 const source_reloc *src_relocs,
99ded152
BW
7512 int src_count,
7513 asection *sec,
7514 property_table_entry *prop_table,
7515 int ptblsize)
43cd72b9
BW
7516{
7517 const source_reloc *curr_rel;
99ded152
BW
7518 property_table_entry *entry;
7519
43cd72b9
BW
7520 if (!rel->is_null)
7521 return FALSE;
7522
99ded152
BW
7523 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7524 sec->vma + rel->r_rel.target_offset);
7525 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7526 return FALSE;
7527
43cd72b9
BW
7528 for (++i; i < src_count; ++i)
7529 {
7530 curr_rel = &src_relocs[i];
7531 /* If all others have the same target offset.... */
7532 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7533 return TRUE;
7534
7535 if (!curr_rel->is_null
7536 && !xtensa_is_property_section (curr_rel->source_sec)
7537 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7538 return FALSE;
7539 }
7540 return TRUE;
7541}
7542
7543
7544bfd_boolean
7fa3d080
BW
7545remove_dead_literal (bfd *abfd,
7546 asection *sec,
7547 struct bfd_link_info *link_info,
7548 Elf_Internal_Rela *internal_relocs,
7549 Elf_Internal_Rela *irel,
7550 source_reloc *rel,
7551 property_table_entry *prop_table,
7552 int ptblsize)
43cd72b9
BW
7553{
7554 property_table_entry *entry;
7555 xtensa_relax_info *relax_info;
7556
7557 relax_info = get_xtensa_relax_info (sec);
7558 if (!relax_info)
7559 return FALSE;
7560
7561 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7562 sec->vma + rel->r_rel.target_offset);
7563
7564 /* Mark the unused literal so that it will be removed. */
7565 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7566
7567 text_action_add (&relax_info->action_list,
7568 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7569
7570 /* If the section is 4-byte aligned, do not add fill. */
7571 if (sec->alignment_power > 2)
7572 {
7573 int fill_extra_space;
7574 bfd_vma entry_sec_offset;
7575 text_action *fa;
7576 property_table_entry *the_add_entry;
7577 int removed_diff;
7578
7579 if (entry)
7580 entry_sec_offset = entry->address - sec->vma + entry->size;
7581 else
7582 entry_sec_offset = rel->r_rel.target_offset + 4;
7583
7584 /* If the literal range is at the end of the section,
7585 do not add fill. */
7586 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7587 entry_sec_offset);
7588 fill_extra_space = compute_fill_extra_space (the_add_entry);
7589
7590 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7591 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7592 -4, fill_extra_space);
7593 if (fa)
7594 adjust_fill_action (fa, removed_diff);
7595 else
7596 text_action_add (&relax_info->action_list,
7597 ta_fill, sec, entry_sec_offset, removed_diff);
7598 }
7599
7600 /* Zero out the relocation on this literal location. */
7601 if (irel)
7602 {
7603 if (elf_hash_table (link_info)->dynamic_sections_created)
7604 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7605
7606 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7607 pin_internal_relocs (sec, internal_relocs);
7608 }
7609
7610 /* Do not modify "last_loc_is_prev". */
7611 return TRUE;
7612}
7613
7614
7615bfd_boolean
7fa3d080
BW
7616identify_literal_placement (bfd *abfd,
7617 asection *sec,
7618 bfd_byte *contents,
7619 struct bfd_link_info *link_info,
7620 value_map_hash_table *values,
7621 bfd_boolean *last_loc_is_prev_p,
7622 Elf_Internal_Rela *irel,
7623 int remaining_src_rels,
7624 source_reloc *rel,
7625 property_table_entry *prop_table,
7626 int ptblsize,
7627 section_cache_t *target_sec_cache,
7628 bfd_boolean is_abs_literal)
43cd72b9
BW
7629{
7630 literal_value val;
7631 value_map *val_map;
7632 xtensa_relax_info *relax_info;
7633 bfd_boolean literal_placed = FALSE;
7634 r_reloc r_rel;
7635 unsigned long value;
7636 bfd_boolean final_static_link;
7637 bfd_size_type sec_size;
7638
7639 relax_info = get_xtensa_relax_info (sec);
7640 if (!relax_info)
7641 return FALSE;
7642
7643 sec_size = bfd_get_section_limit (abfd, sec);
7644
7645 final_static_link =
7646 (!link_info->relocatable
7647 && !elf_hash_table (link_info)->dynamic_sections_created);
7648
7649 /* The placement algorithm first checks to see if the literal is
7650 already in the value map. If so and the value map is reachable
7651 from all uses, then the literal is moved to that location. If
7652 not, then we identify the last location where a fresh literal was
7653 placed. If the literal can be safely moved there, then we do so.
7654 If not, then we assume that the literal is not to move and leave
7655 the literal where it is, marking it as the last literal
7656 location. */
7657
7658 /* Find the literal value. */
7659 value = 0;
7660 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7661 if (!irel)
7662 {
7663 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7664 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7665 }
7666 init_literal_value (&val, &r_rel, value, is_abs_literal);
7667
7668 /* Check if we've seen another literal with the same value that
7669 is in the same output section. */
7670 val_map = value_map_get_cached_value (values, &val, final_static_link);
7671
7672 if (val_map
7673 && (r_reloc_get_section (&val_map->loc)->output_section
7674 == sec->output_section)
7675 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7676 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7677 {
7678 /* No change to last_loc_is_prev. */
7679 literal_placed = TRUE;
7680 }
7681
7682 /* For relocatable links, do not try to move literals. To do it
7683 correctly might increase the number of relocations in an input
7684 section making the default relocatable linking fail. */
7685 if (!link_info->relocatable && !literal_placed
7686 && values->has_last_loc && !(*last_loc_is_prev_p))
7687 {
7688 asection *target_sec = r_reloc_get_section (&values->last_loc);
7689 if (target_sec && target_sec->output_section == sec->output_section)
7690 {
7691 /* Increment the virtual offset. */
7692 r_reloc try_loc = values->last_loc;
7693 try_loc.virtual_offset += 4;
7694
7695 /* There is a last loc that was in the same output section. */
7696 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7697 && move_shared_literal (sec, link_info, rel,
7698 prop_table, ptblsize,
7699 &try_loc, &val, target_sec_cache))
e0001a05 7700 {
43cd72b9
BW
7701 values->last_loc.virtual_offset += 4;
7702 literal_placed = TRUE;
7703 if (!val_map)
7704 val_map = add_value_map (values, &val, &try_loc,
7705 final_static_link);
7706 else
7707 val_map->loc = try_loc;
e0001a05
NC
7708 }
7709 }
43cd72b9
BW
7710 }
7711
7712 if (!literal_placed)
7713 {
7714 /* Nothing worked, leave the literal alone but update the last loc. */
7715 values->has_last_loc = TRUE;
7716 values->last_loc = rel->r_rel;
7717 if (!val_map)
7718 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7719 else
43cd72b9
BW
7720 val_map->loc = rel->r_rel;
7721 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7722 }
7723
43cd72b9 7724 return TRUE;
e0001a05
NC
7725}
7726
7727
7728/* Check if the original relocations (presumably on L32R instructions)
7729 identified by reloc[0..N] can be changed to reference the literal
7730 identified by r_rel. If r_rel is out of range for any of the
7731 original relocations, then we don't want to coalesce the original
7732 literal with the one at r_rel. We only check reloc[0..N], where the
7733 offsets are all the same as for reloc[0] (i.e., they're all
7734 referencing the same literal) and where N is also bounded by the
7735 number of remaining entries in the "reloc" array. The "reloc" array
7736 is sorted by target offset so we know all the entries for the same
7737 literal will be contiguous. */
7738
7739static bfd_boolean
7fa3d080
BW
7740relocations_reach (source_reloc *reloc,
7741 int remaining_relocs,
7742 const r_reloc *r_rel)
e0001a05
NC
7743{
7744 bfd_vma from_offset, source_address, dest_address;
7745 asection *sec;
7746 int i;
7747
7748 if (!r_reloc_is_defined (r_rel))
7749 return FALSE;
7750
7751 sec = r_reloc_get_section (r_rel);
7752 from_offset = reloc[0].r_rel.target_offset;
7753
7754 for (i = 0; i < remaining_relocs; i++)
7755 {
7756 if (reloc[i].r_rel.target_offset != from_offset)
7757 break;
7758
7759 /* Ignore relocations that have been removed. */
7760 if (reloc[i].is_null)
7761 continue;
7762
7763 /* The original and new output section for these must be the same
7764 in order to coalesce. */
7765 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7766 != sec->output_section)
7767 return FALSE;
7768
d638e0ac
BW
7769 /* Absolute literals in the same output section can always be
7770 combined. */
7771 if (reloc[i].is_abs_literal)
7772 continue;
7773
43cd72b9
BW
7774 /* A literal with no PC-relative relocations can be moved anywhere. */
7775 if (reloc[i].opnd != -1)
e0001a05
NC
7776 {
7777 /* Otherwise, check to see that it fits. */
7778 source_address = (reloc[i].source_sec->output_section->vma
7779 + reloc[i].source_sec->output_offset
7780 + reloc[i].r_rel.rela.r_offset);
7781 dest_address = (sec->output_section->vma
7782 + sec->output_offset
7783 + r_rel->target_offset);
7784
43cd72b9
BW
7785 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7786 source_address, dest_address))
e0001a05
NC
7787 return FALSE;
7788 }
7789 }
7790
7791 return TRUE;
7792}
7793
7794
43cd72b9
BW
7795/* Move a literal to another literal location because it is
7796 the same as the other literal value. */
e0001a05 7797
43cd72b9 7798static bfd_boolean
7fa3d080
BW
7799coalesce_shared_literal (asection *sec,
7800 source_reloc *rel,
7801 property_table_entry *prop_table,
7802 int ptblsize,
7803 value_map *val_map)
e0001a05 7804{
43cd72b9
BW
7805 property_table_entry *entry;
7806 text_action *fa;
7807 property_table_entry *the_add_entry;
7808 int removed_diff;
7809 xtensa_relax_info *relax_info;
7810
7811 relax_info = get_xtensa_relax_info (sec);
7812 if (!relax_info)
7813 return FALSE;
7814
7815 entry = elf_xtensa_find_property_entry
7816 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 7817 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
7818 return TRUE;
7819
7820 /* Mark that the literal will be coalesced. */
7821 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7822
7823 text_action_add (&relax_info->action_list,
7824 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7825
7826 /* If the section is 4-byte aligned, do not add fill. */
7827 if (sec->alignment_power > 2)
e0001a05 7828 {
43cd72b9
BW
7829 int fill_extra_space;
7830 bfd_vma entry_sec_offset;
7831
7832 if (entry)
7833 entry_sec_offset = entry->address - sec->vma + entry->size;
7834 else
7835 entry_sec_offset = rel->r_rel.target_offset + 4;
7836
7837 /* If the literal range is at the end of the section,
7838 do not add fill. */
7839 fill_extra_space = 0;
7840 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7841 entry_sec_offset);
7842 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7843 fill_extra_space = the_add_entry->size;
7844
7845 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7846 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7847 -4, fill_extra_space);
7848 if (fa)
7849 adjust_fill_action (fa, removed_diff);
7850 else
7851 text_action_add (&relax_info->action_list,
7852 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7853 }
43cd72b9
BW
7854
7855 return TRUE;
7856}
7857
7858
7859/* Move a literal to another location. This may actually increase the
7860 total amount of space used because of alignments so we need to do
7861 this carefully. Also, it may make a branch go out of range. */
7862
7863static bfd_boolean
7fa3d080
BW
7864move_shared_literal (asection *sec,
7865 struct bfd_link_info *link_info,
7866 source_reloc *rel,
7867 property_table_entry *prop_table,
7868 int ptblsize,
7869 const r_reloc *target_loc,
7870 const literal_value *lit_value,
7871 section_cache_t *target_sec_cache)
43cd72b9
BW
7872{
7873 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7874 text_action *fa, *target_fa;
7875 int removed_diff;
7876 xtensa_relax_info *relax_info, *target_relax_info;
7877 asection *target_sec;
7878 ebb_t *ebb;
7879 ebb_constraint ebb_table;
7880 bfd_boolean relocs_fit;
7881
7882 /* If this routine always returns FALSE, the literals that cannot be
7883 coalesced will not be moved. */
7884 if (elf32xtensa_no_literal_movement)
7885 return FALSE;
7886
7887 relax_info = get_xtensa_relax_info (sec);
7888 if (!relax_info)
7889 return FALSE;
7890
7891 target_sec = r_reloc_get_section (target_loc);
7892 target_relax_info = get_xtensa_relax_info (target_sec);
7893
7894 /* Literals to undefined sections may not be moved because they
7895 must report an error. */
7896 if (bfd_is_und_section (target_sec))
7897 return FALSE;
7898
7899 src_entry = elf_xtensa_find_property_entry
7900 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7901
7902 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7903 return FALSE;
7904
7905 target_entry = elf_xtensa_find_property_entry
7906 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7907 target_sec->vma + target_loc->target_offset);
7908
7909 if (!target_entry)
7910 return FALSE;
7911
7912 /* Make sure that we have not broken any branches. */
7913 relocs_fit = FALSE;
7914
7915 init_ebb_constraint (&ebb_table);
7916 ebb = &ebb_table.ebb;
7917 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7918 target_sec_cache->content_length,
7919 target_sec_cache->ptbl, target_sec_cache->pte_count,
7920 target_sec_cache->relocs, target_sec_cache->reloc_count);
7921
7922 /* Propose to add 4 bytes + worst-case alignment size increase to
7923 destination. */
7924 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7925 ta_fill, target_loc->target_offset,
7926 -4 - (1 << target_sec->alignment_power), TRUE);
7927
7928 /* Check all of the PC-relative relocations to make sure they still fit. */
7929 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7930 target_sec_cache->contents,
7931 target_sec_cache->relocs,
cb337148 7932 &ebb_table, NULL);
43cd72b9
BW
7933
7934 if (!relocs_fit)
7935 return FALSE;
7936
7937 text_action_add_literal (&target_relax_info->action_list,
7938 ta_add_literal, target_loc, lit_value, -4);
7939
7940 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7941 {
7942 /* May need to add or remove some fill to maintain alignment. */
7943 int fill_extra_space;
7944 bfd_vma entry_sec_offset;
7945
7946 entry_sec_offset =
7947 target_entry->address - target_sec->vma + target_entry->size;
7948
7949 /* If the literal range is at the end of the section,
7950 do not add fill. */
7951 fill_extra_space = 0;
7952 the_add_entry =
7953 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7954 target_sec_cache->pte_count,
7955 entry_sec_offset);
7956 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7957 fill_extra_space = the_add_entry->size;
7958
7959 target_fa = find_fill_action (&target_relax_info->action_list,
7960 target_sec, entry_sec_offset);
7961 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7962 entry_sec_offset, 4,
7963 fill_extra_space);
7964 if (target_fa)
7965 adjust_fill_action (target_fa, removed_diff);
7966 else
7967 text_action_add (&target_relax_info->action_list,
7968 ta_fill, target_sec, entry_sec_offset, removed_diff);
7969 }
7970
7971 /* Mark that the literal will be moved to the new location. */
7972 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7973
7974 /* Remove the literal. */
7975 text_action_add (&relax_info->action_list,
7976 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7977
7978 /* If the section is 4-byte aligned, do not add fill. */
7979 if (sec->alignment_power > 2 && target_entry != src_entry)
7980 {
7981 int fill_extra_space;
7982 bfd_vma entry_sec_offset;
7983
7984 if (src_entry)
7985 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7986 else
7987 entry_sec_offset = rel->r_rel.target_offset+4;
7988
7989 /* If the literal range is at the end of the section,
7990 do not add fill. */
7991 fill_extra_space = 0;
7992 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7993 entry_sec_offset);
7994 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7995 fill_extra_space = the_add_entry->size;
7996
7997 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7998 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7999 -4, fill_extra_space);
8000 if (fa)
8001 adjust_fill_action (fa, removed_diff);
8002 else
8003 text_action_add (&relax_info->action_list,
8004 ta_fill, sec, entry_sec_offset, removed_diff);
8005 }
8006
8007 return TRUE;
e0001a05
NC
8008}
8009
8010\f
8011/* Second relaxation pass. */
8012
8013/* Modify all of the relocations to point to the right spot, and if this
8014 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8015 section size. */
e0001a05 8016
43cd72b9 8017bfd_boolean
7fa3d080 8018relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8019{
8020 Elf_Internal_Rela *internal_relocs;
8021 xtensa_relax_info *relax_info;
8022 bfd_byte *contents;
8023 bfd_boolean ok = TRUE;
8024 unsigned i;
43cd72b9
BW
8025 bfd_boolean rv = FALSE;
8026 bfd_boolean virtual_action;
8027 bfd_size_type sec_size;
e0001a05 8028
43cd72b9 8029 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8030 relax_info = get_xtensa_relax_info (sec);
8031 BFD_ASSERT (relax_info);
8032
43cd72b9
BW
8033 /* First translate any of the fixes that have been added already. */
8034 translate_section_fixes (sec);
8035
e0001a05
NC
8036 /* Handle property sections (e.g., literal tables) specially. */
8037 if (xtensa_is_property_section (sec))
8038 {
8039 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8040 return relax_property_section (abfd, sec, link_info);
8041 }
8042
43cd72b9
BW
8043 internal_relocs = retrieve_internal_relocs (abfd, sec,
8044 link_info->keep_memory);
8045 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8046 if (contents == NULL && sec_size != 0)
8047 {
8048 ok = FALSE;
8049 goto error_return;
8050 }
8051
8052 if (internal_relocs)
8053 {
8054 for (i = 0; i < sec->reloc_count; i++)
8055 {
8056 Elf_Internal_Rela *irel;
8057 xtensa_relax_info *target_relax_info;
8058 bfd_vma source_offset, old_source_offset;
8059 r_reloc r_rel;
8060 unsigned r_type;
8061 asection *target_sec;
8062
8063 /* Locally change the source address.
8064 Translate the target to the new target address.
8065 If it points to this section and has been removed,
8066 NULLify it.
8067 Write it back. */
8068
8069 irel = &internal_relocs[i];
8070 source_offset = irel->r_offset;
8071 old_source_offset = source_offset;
8072
8073 r_type = ELF32_R_TYPE (irel->r_info);
8074 r_reloc_init (&r_rel, abfd, irel, contents,
8075 bfd_get_section_limit (abfd, sec));
8076
8077 /* If this section could have changed then we may need to
8078 change the relocation's offset. */
8079
8080 if (relax_info->is_relaxable_literal_section
8081 || relax_info->is_relaxable_asm_section)
8082 {
9b7f5d20
BW
8083 pin_internal_relocs (sec, internal_relocs);
8084
43cd72b9
BW
8085 if (r_type != R_XTENSA_NONE
8086 && find_removed_literal (&relax_info->removed_list,
8087 irel->r_offset))
8088 {
8089 /* Remove this relocation. */
8090 if (elf_hash_table (link_info)->dynamic_sections_created)
8091 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8092 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8093 irel->r_offset = offset_with_removed_text
8094 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8095 continue;
8096 }
8097
8098 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8099 {
8100 text_action *action =
8101 find_insn_action (&relax_info->action_list,
8102 irel->r_offset);
8103 if (action && (action->action == ta_convert_longcall
8104 || action->action == ta_remove_longcall))
8105 {
8106 bfd_reloc_status_type retval;
8107 char *error_message = NULL;
8108
8109 retval = contract_asm_expansion (contents, sec_size,
8110 irel, &error_message);
8111 if (retval != bfd_reloc_ok)
8112 {
8113 (*link_info->callbacks->reloc_dangerous)
8114 (link_info, error_message, abfd, sec,
8115 irel->r_offset);
8116 goto error_return;
8117 }
8118 /* Update the action so that the code that moves
8119 the contents will do the right thing. */
8120 if (action->action == ta_remove_longcall)
8121 action->action = ta_remove_insn;
8122 else
8123 action->action = ta_none;
8124 /* Refresh the info in the r_rel. */
8125 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8126 r_type = ELF32_R_TYPE (irel->r_info);
8127 }
8128 }
8129
8130 source_offset = offset_with_removed_text
8131 (&relax_info->action_list, irel->r_offset);
8132 irel->r_offset = source_offset;
8133 }
8134
8135 /* If the target section could have changed then
8136 we may need to change the relocation's target offset. */
8137
8138 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8139
ae326da8
BW
8140 /* For a reference to a discarded section from a DWARF section,
8141 i.e., where action_discarded is PRETEND, the symbol will
8142 eventually be modified to refer to the kept section (at least if
8143 the kept and discarded sections are the same size). Anticipate
8144 that here and adjust things accordingly. */
8145 if (! elf_xtensa_ignore_discarded_relocs (sec)
8146 && elf_xtensa_action_discarded (sec) == PRETEND
8147 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8148 && target_sec != NULL
8149 && elf_discarded_section (target_sec))
8150 {
8151 /* It would be natural to call _bfd_elf_check_kept_section
8152 here, but it's not exported from elflink.c. It's also a
8153 fairly expensive check. Adjusting the relocations to the
8154 discarded section is fairly harmless; it will only adjust
8155 some addends and difference values. If it turns out that
8156 _bfd_elf_check_kept_section fails later, it won't matter,
8157 so just compare the section names to find the right group
8158 member. */
8159 asection *kept = target_sec->kept_section;
8160 if (kept != NULL)
8161 {
8162 if ((kept->flags & SEC_GROUP) != 0)
8163 {
8164 asection *first = elf_next_in_group (kept);
8165 asection *s = first;
8166
8167 kept = NULL;
8168 while (s != NULL)
8169 {
8170 if (strcmp (s->name, target_sec->name) == 0)
8171 {
8172 kept = s;
8173 break;
8174 }
8175 s = elf_next_in_group (s);
8176 if (s == first)
8177 break;
8178 }
8179 }
8180 }
8181 if (kept != NULL
8182 && ((target_sec->rawsize != 0
8183 ? target_sec->rawsize : target_sec->size)
8184 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8185 target_sec = kept;
8186 }
8187
8188 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
8189 if (target_relax_info
8190 && (target_relax_info->is_relaxable_literal_section
8191 || target_relax_info->is_relaxable_asm_section))
8192 {
8193 r_reloc new_reloc;
9b7f5d20 8194 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
8195
8196 if (r_type == R_XTENSA_DIFF8
8197 || r_type == R_XTENSA_DIFF16
8198 || r_type == R_XTENSA_DIFF32)
8199 {
8200 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8201
8202 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8203 {
8204 (*link_info->callbacks->reloc_dangerous)
8205 (link_info, _("invalid relocation address"),
8206 abfd, sec, old_source_offset);
8207 goto error_return;
8208 }
8209
8210 switch (r_type)
8211 {
8212 case R_XTENSA_DIFF8:
8213 diff_value =
8214 bfd_get_8 (abfd, &contents[old_source_offset]);
8215 break;
8216 case R_XTENSA_DIFF16:
8217 diff_value =
8218 bfd_get_16 (abfd, &contents[old_source_offset]);
8219 break;
8220 case R_XTENSA_DIFF32:
8221 diff_value =
8222 bfd_get_32 (abfd, &contents[old_source_offset]);
8223 break;
8224 }
8225
8226 new_end_offset = offset_with_removed_text
8227 (&target_relax_info->action_list,
8228 r_rel.target_offset + diff_value);
8229 diff_value = new_end_offset - new_reloc.target_offset;
8230
8231 switch (r_type)
8232 {
8233 case R_XTENSA_DIFF8:
8234 diff_mask = 0xff;
8235 bfd_put_8 (abfd, diff_value,
8236 &contents[old_source_offset]);
8237 break;
8238 case R_XTENSA_DIFF16:
8239 diff_mask = 0xffff;
8240 bfd_put_16 (abfd, diff_value,
8241 &contents[old_source_offset]);
8242 break;
8243 case R_XTENSA_DIFF32:
8244 diff_mask = 0xffffffff;
8245 bfd_put_32 (abfd, diff_value,
8246 &contents[old_source_offset]);
8247 break;
8248 }
8249
8250 /* Check for overflow. */
8251 if ((diff_value & ~diff_mask) != 0)
8252 {
8253 (*link_info->callbacks->reloc_dangerous)
8254 (link_info, _("overflow after relaxation"),
8255 abfd, sec, old_source_offset);
8256 goto error_return;
8257 }
8258
8259 pin_contents (sec, contents);
8260 }
dc96b90a
BW
8261
8262 /* If the relocation still references a section in the same
8263 input file, modify the relocation directly instead of
8264 adding a "fix" record. */
8265 if (target_sec->owner == abfd)
8266 {
8267 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
8268 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
8269 irel->r_addend = new_reloc.rela.r_addend;
8270 pin_internal_relocs (sec, internal_relocs);
8271 }
9b7f5d20
BW
8272 else
8273 {
dc96b90a
BW
8274 bfd_vma addend_displacement;
8275 reloc_bfd_fix *fix;
8276
8277 addend_displacement =
8278 new_reloc.target_offset + new_reloc.virtual_offset;
8279 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
8280 target_sec,
8281 addend_displacement, TRUE);
8282 add_fix (sec, fix);
9b7f5d20 8283 }
43cd72b9 8284 }
43cd72b9
BW
8285 }
8286 }
8287
8288 if ((relax_info->is_relaxable_literal_section
8289 || relax_info->is_relaxable_asm_section)
8290 && relax_info->action_list.head)
8291 {
8292 /* Walk through the planned actions and build up a table
8293 of move, copy and fill records. Use the move, copy and
8294 fill records to perform the actions once. */
8295
43cd72b9
BW
8296 int removed = 0;
8297 bfd_size_type final_size, copy_size, orig_insn_size;
8298 bfd_byte *scratch = NULL;
8299 bfd_byte *dup_contents = NULL;
a3ef2d63 8300 bfd_size_type orig_size = sec->size;
43cd72b9
BW
8301 bfd_vma orig_dot = 0;
8302 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8303 orig dot in physical memory. */
8304 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8305 bfd_vma dup_dot = 0;
8306
8307 text_action *action = relax_info->action_list.head;
8308
8309 final_size = sec->size;
8310 for (action = relax_info->action_list.head; action;
8311 action = action->next)
8312 {
8313 final_size -= action->removed_bytes;
8314 }
8315
8316 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8317 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8318
8319 /* The dot is the current fill location. */
8320#if DEBUG
8321 print_action_list (stderr, &relax_info->action_list);
8322#endif
8323
8324 for (action = relax_info->action_list.head; action;
8325 action = action->next)
8326 {
8327 virtual_action = FALSE;
8328 if (action->offset > orig_dot)
8329 {
8330 orig_dot += orig_dot_copied;
8331 orig_dot_copied = 0;
8332 orig_dot_vo = 0;
8333 /* Out of the virtual world. */
8334 }
8335
8336 if (action->offset > orig_dot)
8337 {
8338 copy_size = action->offset - orig_dot;
8339 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8340 orig_dot += copy_size;
8341 dup_dot += copy_size;
8342 BFD_ASSERT (action->offset == orig_dot);
8343 }
8344 else if (action->offset < orig_dot)
8345 {
8346 if (action->action == ta_fill
8347 && action->offset - action->removed_bytes == orig_dot)
8348 {
8349 /* This is OK because the fill only effects the dup_dot. */
8350 }
8351 else if (action->action == ta_add_literal)
8352 {
8353 /* TBD. Might need to handle this. */
8354 }
8355 }
8356 if (action->offset == orig_dot)
8357 {
8358 if (action->virtual_offset > orig_dot_vo)
8359 {
8360 if (orig_dot_vo == 0)
8361 {
8362 /* Need to copy virtual_offset bytes. Probably four. */
8363 copy_size = action->virtual_offset - orig_dot_vo;
8364 memmove (&dup_contents[dup_dot],
8365 &contents[orig_dot], copy_size);
8366 orig_dot_copied = copy_size;
8367 dup_dot += copy_size;
8368 }
8369 virtual_action = TRUE;
8370 }
8371 else
8372 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8373 }
8374 switch (action->action)
8375 {
8376 case ta_remove_literal:
8377 case ta_remove_insn:
8378 BFD_ASSERT (action->removed_bytes >= 0);
8379 orig_dot += action->removed_bytes;
8380 break;
8381
8382 case ta_narrow_insn:
8383 orig_insn_size = 3;
8384 copy_size = 2;
8385 memmove (scratch, &contents[orig_dot], orig_insn_size);
8386 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 8387 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
8388 BFD_ASSERT (rv);
8389 memmove (&dup_contents[dup_dot], scratch, copy_size);
8390 orig_dot += orig_insn_size;
8391 dup_dot += copy_size;
8392 break;
8393
8394 case ta_fill:
8395 if (action->removed_bytes >= 0)
8396 orig_dot += action->removed_bytes;
8397 else
8398 {
8399 /* Already zeroed in dup_contents. Just bump the
8400 counters. */
8401 dup_dot += (-action->removed_bytes);
8402 }
8403 break;
8404
8405 case ta_none:
8406 BFD_ASSERT (action->removed_bytes == 0);
8407 break;
8408
8409 case ta_convert_longcall:
8410 case ta_remove_longcall:
8411 /* These will be removed or converted before we get here. */
8412 BFD_ASSERT (0);
8413 break;
8414
8415 case ta_widen_insn:
8416 orig_insn_size = 2;
8417 copy_size = 3;
8418 memmove (scratch, &contents[orig_dot], orig_insn_size);
8419 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 8420 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
8421 BFD_ASSERT (rv);
8422 memmove (&dup_contents[dup_dot], scratch, copy_size);
8423 orig_dot += orig_insn_size;
8424 dup_dot += copy_size;
8425 break;
8426
8427 case ta_add_literal:
8428 orig_insn_size = 0;
8429 copy_size = 4;
8430 BFD_ASSERT (action->removed_bytes == -4);
8431 /* TBD -- place the literal value here and insert
8432 into the table. */
8433 memset (&dup_contents[dup_dot], 0, 4);
8434 pin_internal_relocs (sec, internal_relocs);
8435 pin_contents (sec, contents);
8436
8437 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8438 relax_info, &internal_relocs, &action->value))
8439 goto error_return;
8440
8441 if (virtual_action)
8442 orig_dot_vo += copy_size;
8443
8444 orig_dot += orig_insn_size;
8445 dup_dot += copy_size;
8446 break;
8447
8448 default:
8449 /* Not implemented yet. */
8450 BFD_ASSERT (0);
8451 break;
8452 }
8453
43cd72b9
BW
8454 removed += action->removed_bytes;
8455 BFD_ASSERT (dup_dot <= final_size);
8456 BFD_ASSERT (orig_dot <= orig_size);
8457 }
8458
8459 orig_dot += orig_dot_copied;
8460 orig_dot_copied = 0;
8461
8462 if (orig_dot != orig_size)
8463 {
8464 copy_size = orig_size - orig_dot;
8465 BFD_ASSERT (orig_size > orig_dot);
8466 BFD_ASSERT (dup_dot + copy_size == final_size);
8467 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8468 orig_dot += copy_size;
8469 dup_dot += copy_size;
8470 }
8471 BFD_ASSERT (orig_size == orig_dot);
8472 BFD_ASSERT (final_size == dup_dot);
8473
8474 /* Move the dup_contents back. */
8475 if (final_size > orig_size)
8476 {
8477 /* Contents need to be reallocated. Swap the dup_contents into
8478 contents. */
8479 sec->contents = dup_contents;
8480 free (contents);
8481 contents = dup_contents;
8482 pin_contents (sec, contents);
8483 }
8484 else
8485 {
8486 BFD_ASSERT (final_size <= orig_size);
8487 memset (contents, 0, orig_size);
8488 memcpy (contents, dup_contents, final_size);
8489 free (dup_contents);
8490 }
8491 free (scratch);
8492 pin_contents (sec, contents);
8493
a3ef2d63
BW
8494 if (sec->rawsize == 0)
8495 sec->rawsize = sec->size;
43cd72b9
BW
8496 sec->size = final_size;
8497 }
8498
8499 error_return:
8500 release_internal_relocs (sec, internal_relocs);
8501 release_contents (sec, contents);
8502 return ok;
8503}
8504
8505
8506static bfd_boolean
7fa3d080 8507translate_section_fixes (asection *sec)
43cd72b9
BW
8508{
8509 xtensa_relax_info *relax_info;
8510 reloc_bfd_fix *r;
8511
8512 relax_info = get_xtensa_relax_info (sec);
8513 if (!relax_info)
8514 return TRUE;
8515
8516 for (r = relax_info->fix_list; r != NULL; r = r->next)
8517 if (!translate_reloc_bfd_fix (r))
8518 return FALSE;
e0001a05 8519
43cd72b9
BW
8520 return TRUE;
8521}
e0001a05 8522
e0001a05 8523
43cd72b9
BW
8524/* Translate a fix given the mapping in the relax info for the target
8525 section. If it has already been translated, no work is required. */
e0001a05 8526
43cd72b9 8527static bfd_boolean
7fa3d080 8528translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8529{
8530 reloc_bfd_fix new_fix;
8531 asection *sec;
8532 xtensa_relax_info *relax_info;
8533 removed_literal *removed;
8534 bfd_vma new_offset, target_offset;
e0001a05 8535
43cd72b9
BW
8536 if (fix->translated)
8537 return TRUE;
e0001a05 8538
43cd72b9
BW
8539 sec = fix->target_sec;
8540 target_offset = fix->target_offset;
e0001a05 8541
43cd72b9
BW
8542 relax_info = get_xtensa_relax_info (sec);
8543 if (!relax_info)
8544 {
8545 fix->translated = TRUE;
8546 return TRUE;
8547 }
e0001a05 8548
43cd72b9 8549 new_fix = *fix;
e0001a05 8550
43cd72b9
BW
8551 /* The fix does not need to be translated if the section cannot change. */
8552 if (!relax_info->is_relaxable_literal_section
8553 && !relax_info->is_relaxable_asm_section)
8554 {
8555 fix->translated = TRUE;
8556 return TRUE;
8557 }
e0001a05 8558
43cd72b9
BW
8559 /* If the literal has been moved and this relocation was on an
8560 opcode, then the relocation should move to the new literal
8561 location. Otherwise, the relocation should move within the
8562 section. */
8563
8564 removed = FALSE;
8565 if (is_operand_relocation (fix->src_type))
8566 {
8567 /* Check if the original relocation is against a literal being
8568 removed. */
8569 removed = find_removed_literal (&relax_info->removed_list,
8570 target_offset);
e0001a05
NC
8571 }
8572
43cd72b9 8573 if (removed)
e0001a05 8574 {
43cd72b9 8575 asection *new_sec;
e0001a05 8576
43cd72b9
BW
8577 /* The fact that there is still a relocation to this literal indicates
8578 that the literal is being coalesced, not simply removed. */
8579 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8580
43cd72b9
BW
8581 /* This was moved to some other address (possibly another section). */
8582 new_sec = r_reloc_get_section (&removed->to);
8583 if (new_sec != sec)
e0001a05 8584 {
43cd72b9
BW
8585 sec = new_sec;
8586 relax_info = get_xtensa_relax_info (sec);
8587 if (!relax_info ||
8588 (!relax_info->is_relaxable_literal_section
8589 && !relax_info->is_relaxable_asm_section))
e0001a05 8590 {
43cd72b9
BW
8591 target_offset = removed->to.target_offset;
8592 new_fix.target_sec = new_sec;
8593 new_fix.target_offset = target_offset;
8594 new_fix.translated = TRUE;
8595 *fix = new_fix;
8596 return TRUE;
e0001a05 8597 }
e0001a05 8598 }
43cd72b9
BW
8599 target_offset = removed->to.target_offset;
8600 new_fix.target_sec = new_sec;
e0001a05 8601 }
43cd72b9
BW
8602
8603 /* The target address may have been moved within its section. */
8604 new_offset = offset_with_removed_text (&relax_info->action_list,
8605 target_offset);
8606
8607 new_fix.target_offset = new_offset;
8608 new_fix.target_offset = new_offset;
8609 new_fix.translated = TRUE;
8610 *fix = new_fix;
8611 return TRUE;
e0001a05
NC
8612}
8613
8614
8615/* Fix up a relocation to take account of removed literals. */
8616
9b7f5d20
BW
8617static asection *
8618translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 8619{
e0001a05
NC
8620 xtensa_relax_info *relax_info;
8621 removed_literal *removed;
9b7f5d20
BW
8622 bfd_vma target_offset, base_offset;
8623 text_action *act;
e0001a05
NC
8624
8625 *new_rel = *orig_rel;
8626
8627 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 8628 return sec ;
e0001a05
NC
8629
8630 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
8631 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
8632 || relax_info->is_relaxable_asm_section));
e0001a05 8633
43cd72b9
BW
8634 target_offset = orig_rel->target_offset;
8635
8636 removed = FALSE;
8637 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8638 {
8639 /* Check if the original relocation is against a literal being
8640 removed. */
8641 removed = find_removed_literal (&relax_info->removed_list,
8642 target_offset);
8643 }
8644 if (removed && removed->to.abfd)
e0001a05
NC
8645 {
8646 asection *new_sec;
8647
8648 /* The fact that there is still a relocation to this literal indicates
8649 that the literal is being coalesced, not simply removed. */
8650 BFD_ASSERT (removed->to.abfd != NULL);
8651
43cd72b9
BW
8652 /* This was moved to some other address
8653 (possibly in another section). */
e0001a05
NC
8654 *new_rel = removed->to;
8655 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8656 if (new_sec != sec)
e0001a05
NC
8657 {
8658 sec = new_sec;
8659 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8660 if (!relax_info
8661 || (!relax_info->is_relaxable_literal_section
8662 && !relax_info->is_relaxable_asm_section))
9b7f5d20 8663 return sec;
e0001a05 8664 }
43cd72b9 8665 target_offset = new_rel->target_offset;
e0001a05
NC
8666 }
8667
9b7f5d20
BW
8668 /* Find the base offset of the reloc symbol, excluding any addend from the
8669 reloc or from the section contents (for a partial_inplace reloc). Then
8670 find the adjusted values of the offsets due to relaxation. The base
8671 offset is needed to determine the change to the reloc's addend; the reloc
8672 addend should not be adjusted due to relaxations located before the base
8673 offset. */
8674
8675 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
8676 act = relax_info->action_list.head;
8677 if (base_offset <= target_offset)
8678 {
8679 int base_removed = removed_by_actions (&act, base_offset, FALSE);
8680 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
8681 new_rel->target_offset = target_offset - base_removed - addend_removed;
8682 new_rel->rela.r_addend -= addend_removed;
8683 }
8684 else
8685 {
8686 /* Handle a negative addend. The base offset comes first. */
8687 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
8688 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
8689 new_rel->target_offset = target_offset - tgt_removed;
8690 new_rel->rela.r_addend += addend_removed;
8691 }
e0001a05 8692
9b7f5d20 8693 return sec;
e0001a05
NC
8694}
8695
8696
8697/* For dynamic links, there may be a dynamic relocation for each
8698 literal. The number of dynamic relocations must be computed in
8699 size_dynamic_sections, which occurs before relaxation. When a
8700 literal is removed, this function checks if there is a corresponding
8701 dynamic relocation and shrinks the size of the appropriate dynamic
8702 relocation section accordingly. At this point, the contents of the
8703 dynamic relocation sections have not yet been filled in, so there's
8704 nothing else that needs to be done. */
8705
8706static void
7fa3d080
BW
8707shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8708 bfd *abfd,
8709 asection *input_section,
8710 Elf_Internal_Rela *rel)
e0001a05 8711{
f0e6fdb2 8712 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
8713 Elf_Internal_Shdr *symtab_hdr;
8714 struct elf_link_hash_entry **sym_hashes;
8715 unsigned long r_symndx;
8716 int r_type;
8717 struct elf_link_hash_entry *h;
8718 bfd_boolean dynamic_symbol;
8719
f0e6fdb2 8720 htab = elf_xtensa_hash_table (info);
e0001a05
NC
8721 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8722 sym_hashes = elf_sym_hashes (abfd);
8723
8724 r_type = ELF32_R_TYPE (rel->r_info);
8725 r_symndx = ELF32_R_SYM (rel->r_info);
8726
8727 if (r_symndx < symtab_hdr->sh_info)
8728 h = NULL;
8729 else
8730 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8731
4608f3d9 8732 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
8733
8734 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8735 && (input_section->flags & SEC_ALLOC) != 0
8736 && (dynamic_symbol || info->shared))
8737 {
e0001a05
NC
8738 asection *srel;
8739 bfd_boolean is_plt = FALSE;
8740
e0001a05
NC
8741 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8742 {
f0e6fdb2 8743 srel = htab->srelplt;
e0001a05
NC
8744 is_plt = TRUE;
8745 }
8746 else
f0e6fdb2 8747 srel = htab->srelgot;
e0001a05
NC
8748
8749 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 8750 BFD_ASSERT (srel != NULL);
eea6121a
AM
8751 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8752 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8753
8754 if (is_plt)
8755 {
8756 asection *splt, *sgotplt, *srelgot;
8757 int reloc_index, chunk;
8758
8759 /* Find the PLT reloc index of the entry being removed. This
8760 is computed from the size of ".rela.plt". It is needed to
8761 figure out which PLT chunk to resize. Usually "last index
8762 = size - 1" since the index starts at zero, but in this
8763 context, the size has just been decremented so there's no
8764 need to subtract one. */
eea6121a 8765 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8766
8767 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
8768 splt = elf_xtensa_get_plt_section (info, chunk);
8769 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
8770 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8771
8772 /* Check if an entire PLT chunk has just been eliminated. */
8773 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8774 {
8775 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 8776 srelgot = htab->srelgot;
e0001a05
NC
8777 BFD_ASSERT (srelgot != NULL);
8778 srelgot->reloc_count -= 2;
eea6121a
AM
8779 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8780 sgotplt->size -= 8;
e0001a05
NC
8781
8782 /* There should be only one entry left (and it will be
8783 removed below). */
eea6121a
AM
8784 BFD_ASSERT (sgotplt->size == 4);
8785 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8786 }
8787
eea6121a
AM
8788 BFD_ASSERT (sgotplt->size >= 4);
8789 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8790
eea6121a
AM
8791 sgotplt->size -= 4;
8792 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8793 }
8794 }
8795}
8796
8797
43cd72b9
BW
8798/* Take an r_rel and move it to another section. This usually
8799 requires extending the interal_relocation array and pinning it. If
8800 the original r_rel is from the same BFD, we can complete this here.
8801 Otherwise, we add a fix record to let the final link fix the
8802 appropriate address. Contents and internal relocations for the
8803 section must be pinned after calling this routine. */
8804
8805static bfd_boolean
7fa3d080
BW
8806move_literal (bfd *abfd,
8807 struct bfd_link_info *link_info,
8808 asection *sec,
8809 bfd_vma offset,
8810 bfd_byte *contents,
8811 xtensa_relax_info *relax_info,
8812 Elf_Internal_Rela **internal_relocs_p,
8813 const literal_value *lit)
43cd72b9
BW
8814{
8815 Elf_Internal_Rela *new_relocs = NULL;
8816 size_t new_relocs_count = 0;
8817 Elf_Internal_Rela this_rela;
8818 const r_reloc *r_rel;
8819
8820 r_rel = &lit->r_rel;
8821 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8822
8823 if (r_reloc_is_const (r_rel))
8824 bfd_put_32 (abfd, lit->value, contents + offset);
8825 else
8826 {
8827 int r_type;
8828 unsigned i;
8829 asection *target_sec;
8830 reloc_bfd_fix *fix;
8831 unsigned insert_at;
8832
8833 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8834 target_sec = r_reloc_get_section (r_rel);
8835
8836 /* This is the difficult case. We have to create a fix up. */
8837 this_rela.r_offset = offset;
8838 this_rela.r_info = ELF32_R_INFO (0, r_type);
8839 this_rela.r_addend =
8840 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8841 bfd_put_32 (abfd, lit->value, contents + offset);
8842
8843 /* Currently, we cannot move relocations during a relocatable link. */
8844 BFD_ASSERT (!link_info->relocatable);
0f5f1638 8845 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
8846 r_reloc_get_section (r_rel),
8847 r_rel->target_offset + r_rel->virtual_offset,
8848 FALSE);
8849 /* We also need to mark that relocations are needed here. */
8850 sec->flags |= SEC_RELOC;
8851
8852 translate_reloc_bfd_fix (fix);
8853 /* This fix has not yet been translated. */
8854 add_fix (sec, fix);
8855
8856 /* Add the relocation. If we have already allocated our own
8857 space for the relocations and we have room for more, then use
8858 it. Otherwise, allocate new space and move the literals. */
8859 insert_at = sec->reloc_count;
8860 for (i = 0; i < sec->reloc_count; ++i)
8861 {
8862 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8863 {
8864 insert_at = i;
8865 break;
8866 }
8867 }
8868
8869 if (*internal_relocs_p != relax_info->allocated_relocs
8870 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8871 {
8872 BFD_ASSERT (relax_info->allocated_relocs == NULL
8873 || sec->reloc_count == relax_info->relocs_count);
8874
8875 if (relax_info->allocated_relocs_count == 0)
8876 new_relocs_count = (sec->reloc_count + 2) * 2;
8877 else
8878 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8879
8880 new_relocs = (Elf_Internal_Rela *)
8881 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8882 if (!new_relocs)
8883 return FALSE;
8884
8885 /* We could handle this more quickly by finding the split point. */
8886 if (insert_at != 0)
8887 memcpy (new_relocs, *internal_relocs_p,
8888 insert_at * sizeof (Elf_Internal_Rela));
8889
8890 new_relocs[insert_at] = this_rela;
8891
8892 if (insert_at != sec->reloc_count)
8893 memcpy (new_relocs + insert_at + 1,
8894 (*internal_relocs_p) + insert_at,
8895 (sec->reloc_count - insert_at)
8896 * sizeof (Elf_Internal_Rela));
8897
8898 if (*internal_relocs_p != relax_info->allocated_relocs)
8899 {
8900 /* The first time we re-allocate, we can only free the
8901 old relocs if they were allocated with bfd_malloc.
8902 This is not true when keep_memory is in effect. */
8903 if (!link_info->keep_memory)
8904 free (*internal_relocs_p);
8905 }
8906 else
8907 free (*internal_relocs_p);
8908 relax_info->allocated_relocs = new_relocs;
8909 relax_info->allocated_relocs_count = new_relocs_count;
8910 elf_section_data (sec)->relocs = new_relocs;
8911 sec->reloc_count++;
8912 relax_info->relocs_count = sec->reloc_count;
8913 *internal_relocs_p = new_relocs;
8914 }
8915 else
8916 {
8917 if (insert_at != sec->reloc_count)
8918 {
8919 unsigned idx;
8920 for (idx = sec->reloc_count; idx > insert_at; idx--)
8921 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8922 }
8923 (*internal_relocs_p)[insert_at] = this_rela;
8924 sec->reloc_count++;
8925 if (relax_info->allocated_relocs)
8926 relax_info->relocs_count = sec->reloc_count;
8927 }
8928 }
8929 return TRUE;
8930}
8931
8932
e0001a05
NC
8933/* This is similar to relax_section except that when a target is moved,
8934 we shift addresses up. We also need to modify the size. This
8935 algorithm does NOT allow for relocations into the middle of the
8936 property sections. */
8937
43cd72b9 8938static bfd_boolean
7fa3d080
BW
8939relax_property_section (bfd *abfd,
8940 asection *sec,
8941 struct bfd_link_info *link_info)
e0001a05
NC
8942{
8943 Elf_Internal_Rela *internal_relocs;
8944 bfd_byte *contents;
1d25768e 8945 unsigned i;
e0001a05 8946 bfd_boolean ok = TRUE;
43cd72b9
BW
8947 bfd_boolean is_full_prop_section;
8948 size_t last_zfill_target_offset = 0;
8949 asection *last_zfill_target_sec = NULL;
8950 bfd_size_type sec_size;
1d25768e 8951 bfd_size_type entry_size;
e0001a05 8952
43cd72b9 8953 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8954 internal_relocs = retrieve_internal_relocs (abfd, sec,
8955 link_info->keep_memory);
8956 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8957 if (contents == NULL && sec_size != 0)
e0001a05
NC
8958 {
8959 ok = FALSE;
8960 goto error_return;
8961 }
8962
1d25768e
BW
8963 is_full_prop_section = xtensa_is_proptable_section (sec);
8964 if (is_full_prop_section)
8965 entry_size = 12;
8966 else
8967 entry_size = 8;
43cd72b9
BW
8968
8969 if (internal_relocs)
e0001a05 8970 {
43cd72b9 8971 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8972 {
8973 Elf_Internal_Rela *irel;
8974 xtensa_relax_info *target_relax_info;
e0001a05
NC
8975 unsigned r_type;
8976 asection *target_sec;
43cd72b9
BW
8977 literal_value val;
8978 bfd_byte *size_p, *flags_p;
e0001a05
NC
8979
8980 /* Locally change the source address.
8981 Translate the target to the new target address.
8982 If it points to this section and has been removed, MOVE IT.
8983 Also, don't forget to modify the associated SIZE at
8984 (offset + 4). */
8985
8986 irel = &internal_relocs[i];
8987 r_type = ELF32_R_TYPE (irel->r_info);
8988 if (r_type == R_XTENSA_NONE)
8989 continue;
8990
43cd72b9
BW
8991 /* Find the literal value. */
8992 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8993 size_p = &contents[irel->r_offset + 4];
8994 flags_p = NULL;
8995 if (is_full_prop_section)
1d25768e
BW
8996 flags_p = &contents[irel->r_offset + 8];
8997 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 8998
43cd72b9 8999 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
9000 target_relax_info = get_xtensa_relax_info (target_sec);
9001
9002 if (target_relax_info
43cd72b9
BW
9003 && (target_relax_info->is_relaxable_literal_section
9004 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9005 {
9006 /* Translate the relocation's destination. */
03669f1c
BW
9007 bfd_vma old_offset = val.r_rel.target_offset;
9008 bfd_vma new_offset;
e0001a05 9009 long old_size, new_size;
03669f1c
BW
9010 text_action *act = target_relax_info->action_list.head;
9011 new_offset = old_offset -
9012 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9013
9014 /* Assert that we are not out of bounds. */
43cd72b9 9015 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9016 new_size = old_size;
43cd72b9
BW
9017
9018 if (old_size == 0)
9019 {
9020 /* Only the first zero-sized unreachable entry is
9021 allowed to expand. In this case the new offset
9022 should be the offset before the fill and the new
9023 size is the expansion size. For other zero-sized
9024 entries the resulting size should be zero with an
9025 offset before or after the fill address depending
9026 on whether the expanding unreachable entry
9027 preceeds it. */
03669f1c
BW
9028 if (last_zfill_target_sec == 0
9029 || last_zfill_target_sec != target_sec
9030 || last_zfill_target_offset != old_offset)
43cd72b9 9031 {
03669f1c
BW
9032 bfd_vma new_end_offset = new_offset;
9033
9034 /* Recompute the new_offset, but this time don't
9035 include any fill inserted by relaxation. */
9036 act = target_relax_info->action_list.head;
9037 new_offset = old_offset -
9038 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9039
9040 /* If it is not unreachable and we have not yet
9041 seen an unreachable at this address, place it
9042 before the fill address. */
03669f1c
BW
9043 if (flags_p && (bfd_get_32 (abfd, flags_p)
9044 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9045 {
03669f1c
BW
9046 new_size = new_end_offset - new_offset;
9047
43cd72b9 9048 last_zfill_target_sec = target_sec;
03669f1c 9049 last_zfill_target_offset = old_offset;
43cd72b9
BW
9050 }
9051 }
9052 }
9053 else
03669f1c
BW
9054 new_size -=
9055 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9056
e0001a05
NC
9057 if (new_size != old_size)
9058 {
9059 bfd_put_32 (abfd, new_size, size_p);
9060 pin_contents (sec, contents);
9061 }
43cd72b9 9062
03669f1c 9063 if (new_offset != old_offset)
e0001a05 9064 {
03669f1c 9065 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9066 irel->r_addend += diff;
9067 pin_internal_relocs (sec, internal_relocs);
9068 }
9069 }
9070 }
9071 }
9072
9073 /* Combine adjacent property table entries. This is also done in
9074 finish_dynamic_sections() but at that point it's too late to
9075 reclaim the space in the output section, so we do this twice. */
9076
43cd72b9 9077 if (internal_relocs && (!link_info->relocatable
1d25768e 9078 || xtensa_is_littable_section (sec)))
e0001a05
NC
9079 {
9080 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9081 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9082 int removed_bytes = 0;
1d25768e 9083 bfd_vma offset;
43cd72b9
BW
9084 flagword predef_flags;
9085
43cd72b9 9086 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9087
1d25768e 9088 /* Walk over memory and relocations at the same time.
e0001a05
NC
9089 This REQUIRES that the internal_relocs be sorted by offset. */
9090 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9091 internal_reloc_compare);
e0001a05
NC
9092
9093 pin_internal_relocs (sec, internal_relocs);
9094 pin_contents (sec, contents);
9095
1d25768e
BW
9096 next_rel = internal_relocs;
9097 rel_end = internal_relocs + sec->reloc_count;
9098
a3ef2d63 9099 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9100
a3ef2d63 9101 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9102 {
1d25768e 9103 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9104 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9105 bfd_boolean remove_this_rel;
43cd72b9 9106 flagword flags;
e0001a05 9107
1d25768e
BW
9108 /* Find the first relocation for the entry at the current offset.
9109 Adjust the offsets of any extra relocations for the previous
9110 entry. */
9111 offset_rel = NULL;
9112 if (next_rel)
9113 {
9114 for (irel = next_rel; irel < rel_end; irel++)
9115 {
9116 if ((irel->r_offset == offset
9117 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9118 || irel->r_offset > offset)
9119 {
9120 offset_rel = irel;
9121 break;
9122 }
9123 irel->r_offset -= removed_bytes;
1d25768e
BW
9124 }
9125 }
e0001a05 9126
1d25768e
BW
9127 /* Find the next relocation (if there are any left). */
9128 extra_rel = NULL;
9129 if (offset_rel)
e0001a05 9130 {
1d25768e 9131 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9132 {
1d25768e
BW
9133 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9134 {
9135 extra_rel = irel;
9136 break;
9137 }
e0001a05 9138 }
e0001a05
NC
9139 }
9140
1d25768e
BW
9141 /* Check if there are relocations on the current entry. There
9142 should usually be a relocation on the offset field. If there
9143 are relocations on the size or flags, then we can't optimize
9144 this entry. Also, find the next relocation to examine on the
9145 next iteration. */
9146 if (offset_rel)
e0001a05 9147 {
1d25768e 9148 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9149 {
1d25768e
BW
9150 next_rel = offset_rel;
9151 /* There are no relocations on the current entry, but we
9152 might still be able to remove it if the size is zero. */
9153 offset_rel = NULL;
9154 }
9155 else if (offset_rel->r_offset > offset
9156 || (extra_rel
9157 && extra_rel->r_offset < offset + entry_size))
9158 {
9159 /* There is a relocation on the size or flags, so we can't
9160 do anything with this entry. Continue with the next. */
9161 next_rel = offset_rel;
9162 continue;
9163 }
9164 else
9165 {
9166 BFD_ASSERT (offset_rel->r_offset == offset);
9167 offset_rel->r_offset -= removed_bytes;
9168 next_rel = offset_rel + 1;
e0001a05 9169 }
e0001a05 9170 }
1d25768e
BW
9171 else
9172 next_rel = NULL;
e0001a05 9173
1d25768e 9174 remove_this_rel = FALSE;
e0001a05
NC
9175 bytes_to_remove = 0;
9176 actual_offset = offset - removed_bytes;
9177 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9178
43cd72b9
BW
9179 if (is_full_prop_section)
9180 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9181 else
9182 flags = predef_flags;
9183
1d25768e
BW
9184 if (size == 0
9185 && (flags & XTENSA_PROP_ALIGN) == 0
9186 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9187 {
43cd72b9
BW
9188 /* Always remove entries with zero size and no alignment. */
9189 bytes_to_remove = entry_size;
1d25768e
BW
9190 if (offset_rel)
9191 remove_this_rel = TRUE;
e0001a05 9192 }
1d25768e
BW
9193 else if (offset_rel
9194 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 9195 {
1d25768e 9196 if (last_irel)
e0001a05 9197 {
1d25768e
BW
9198 flagword old_flags;
9199 bfd_vma old_size =
9200 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9201 bfd_vma old_address =
9202 (last_irel->r_addend
9203 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9204 bfd_vma new_address =
9205 (offset_rel->r_addend
9206 + bfd_get_32 (abfd, &contents[actual_offset]));
9207 if (is_full_prop_section)
9208 old_flags = bfd_get_32
9209 (abfd, &contents[last_irel->r_offset + 8]);
9210 else
9211 old_flags = predef_flags;
9212
9213 if ((ELF32_R_SYM (offset_rel->r_info)
9214 == ELF32_R_SYM (last_irel->r_info))
9215 && old_address + old_size == new_address
9216 && old_flags == flags
9217 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9218 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9219 {
1d25768e
BW
9220 /* Fix the old size. */
9221 bfd_put_32 (abfd, old_size + size,
9222 &contents[last_irel->r_offset + 4]);
9223 bytes_to_remove = entry_size;
9224 remove_this_rel = TRUE;
e0001a05
NC
9225 }
9226 else
1d25768e 9227 last_irel = offset_rel;
e0001a05 9228 }
1d25768e
BW
9229 else
9230 last_irel = offset_rel;
e0001a05
NC
9231 }
9232
1d25768e 9233 if (remove_this_rel)
e0001a05 9234 {
1d25768e
BW
9235 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9236 /* In case this is the last entry, move the relocation offset
9237 to the previous entry, if there is one. */
9238 if (offset_rel->r_offset >= bytes_to_remove)
9239 offset_rel->r_offset -= bytes_to_remove;
9240 else
9241 offset_rel->r_offset = 0;
e0001a05
NC
9242 }
9243
9244 if (bytes_to_remove != 0)
9245 {
9246 removed_bytes += bytes_to_remove;
a3ef2d63 9247 if (offset + bytes_to_remove < sec->size)
e0001a05 9248 memmove (&contents[actual_offset],
43cd72b9 9249 &contents[actual_offset + bytes_to_remove],
a3ef2d63 9250 sec->size - offset - bytes_to_remove);
e0001a05
NC
9251 }
9252 }
9253
43cd72b9 9254 if (removed_bytes)
e0001a05 9255 {
1d25768e
BW
9256 /* Fix up any extra relocations on the last entry. */
9257 for (irel = next_rel; irel < rel_end; irel++)
9258 irel->r_offset -= removed_bytes;
9259
e0001a05 9260 /* Clear the removed bytes. */
a3ef2d63 9261 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 9262
a3ef2d63
BW
9263 if (sec->rawsize == 0)
9264 sec->rawsize = sec->size;
9265 sec->size -= removed_bytes;
e901de89
BW
9266
9267 if (xtensa_is_littable_section (sec))
9268 {
f0e6fdb2
BW
9269 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9270 if (sgotloc)
9271 sgotloc->size -= removed_bytes;
e901de89 9272 }
e0001a05
NC
9273 }
9274 }
e901de89 9275
e0001a05
NC
9276 error_return:
9277 release_internal_relocs (sec, internal_relocs);
9278 release_contents (sec, contents);
9279 return ok;
9280}
9281
9282\f
9283/* Third relaxation pass. */
9284
9285/* Change symbol values to account for removed literals. */
9286
43cd72b9 9287bfd_boolean
7fa3d080 9288relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9289{
9290 xtensa_relax_info *relax_info;
9291 unsigned int sec_shndx;
9292 Elf_Internal_Shdr *symtab_hdr;
9293 Elf_Internal_Sym *isymbuf;
9294 unsigned i, num_syms, num_locals;
9295
9296 relax_info = get_xtensa_relax_info (sec);
9297 BFD_ASSERT (relax_info);
9298
43cd72b9
BW
9299 if (!relax_info->is_relaxable_literal_section
9300 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9301 return TRUE;
9302
9303 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9304
9305 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9306 isymbuf = retrieve_local_syms (abfd);
9307
9308 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9309 num_locals = symtab_hdr->sh_info;
9310
9311 /* Adjust the local symbols defined in this section. */
9312 for (i = 0; i < num_locals; i++)
9313 {
9314 Elf_Internal_Sym *isym = &isymbuf[i];
9315
9316 if (isym->st_shndx == sec_shndx)
9317 {
03669f1c
BW
9318 text_action *act = relax_info->action_list.head;
9319 bfd_vma orig_addr = isym->st_value;
43cd72b9 9320
03669f1c 9321 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 9322
03669f1c
BW
9323 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9324 isym->st_size -=
9325 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
9326 }
9327 }
9328
9329 /* Now adjust the global symbols defined in this section. */
9330 for (i = 0; i < (num_syms - num_locals); i++)
9331 {
9332 struct elf_link_hash_entry *sym_hash;
9333
9334 sym_hash = elf_sym_hashes (abfd)[i];
9335
9336 if (sym_hash->root.type == bfd_link_hash_warning)
9337 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9338
9339 if ((sym_hash->root.type == bfd_link_hash_defined
9340 || sym_hash->root.type == bfd_link_hash_defweak)
9341 && sym_hash->root.u.def.section == sec)
9342 {
03669f1c
BW
9343 text_action *act = relax_info->action_list.head;
9344 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 9345
03669f1c
BW
9346 sym_hash->root.u.def.value -=
9347 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 9348
03669f1c
BW
9349 if (sym_hash->type == STT_FUNC)
9350 sym_hash->size -=
9351 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
9352 }
9353 }
9354
9355 return TRUE;
9356}
9357
9358\f
9359/* "Fix" handling functions, called while performing relocations. */
9360
43cd72b9 9361static bfd_boolean
7fa3d080
BW
9362do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9363 bfd *input_bfd,
9364 asection *input_section,
9365 bfd_byte *contents)
e0001a05
NC
9366{
9367 r_reloc r_rel;
9368 asection *sec, *old_sec;
9369 bfd_vma old_offset;
9370 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9371 reloc_bfd_fix *fix;
9372
9373 if (r_type == R_XTENSA_NONE)
43cd72b9 9374 return TRUE;
e0001a05 9375
43cd72b9
BW
9376 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9377 if (!fix)
9378 return TRUE;
e0001a05 9379
43cd72b9
BW
9380 r_reloc_init (&r_rel, input_bfd, rel, contents,
9381 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9382 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9383 old_offset = r_rel.target_offset;
9384
9385 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9386 {
43cd72b9
BW
9387 if (r_type != R_XTENSA_ASM_EXPAND)
9388 {
9389 (*_bfd_error_handler)
9390 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9391 input_bfd, input_section, rel->r_offset,
9392 elf_howto_table[r_type].name);
9393 return FALSE;
9394 }
e0001a05
NC
9395 /* Leave it be. Resolution will happen in a later stage. */
9396 }
9397 else
9398 {
9399 sec = fix->target_sec;
9400 rel->r_addend += ((sec->output_offset + fix->target_offset)
9401 - (old_sec->output_offset + old_offset));
9402 }
43cd72b9 9403 return TRUE;
e0001a05
NC
9404}
9405
9406
9407static void
7fa3d080
BW
9408do_fix_for_final_link (Elf_Internal_Rela *rel,
9409 bfd *input_bfd,
9410 asection *input_section,
9411 bfd_byte *contents,
9412 bfd_vma *relocationp)
e0001a05
NC
9413{
9414 asection *sec;
9415 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9416 reloc_bfd_fix *fix;
43cd72b9 9417 bfd_vma fixup_diff;
e0001a05
NC
9418
9419 if (r_type == R_XTENSA_NONE)
9420 return;
9421
43cd72b9
BW
9422 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9423 if (!fix)
e0001a05
NC
9424 return;
9425
9426 sec = fix->target_sec;
43cd72b9
BW
9427
9428 fixup_diff = rel->r_addend;
9429 if (elf_howto_table[fix->src_type].partial_inplace)
9430 {
9431 bfd_vma inplace_val;
9432 BFD_ASSERT (fix->src_offset
9433 < bfd_get_section_limit (input_bfd, input_section));
9434 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9435 fixup_diff += inplace_val;
9436 }
9437
e0001a05
NC
9438 *relocationp = (sec->output_section->vma
9439 + sec->output_offset
43cd72b9 9440 + fix->target_offset - fixup_diff);
e0001a05
NC
9441}
9442
9443\f
9444/* Miscellaneous utility functions.... */
9445
9446static asection *
f0e6fdb2 9447elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 9448{
f0e6fdb2
BW
9449 struct elf_xtensa_link_hash_table *htab;
9450 bfd *dynobj;
e0001a05
NC
9451 char plt_name[10];
9452
9453 if (chunk == 0)
f0e6fdb2
BW
9454 {
9455 htab = elf_xtensa_hash_table (info);
9456 return htab->splt;
9457 }
e0001a05 9458
f0e6fdb2 9459 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9460 sprintf (plt_name, ".plt.%u", chunk);
9461 return bfd_get_section_by_name (dynobj, plt_name);
9462}
9463
9464
9465static asection *
f0e6fdb2 9466elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 9467{
f0e6fdb2
BW
9468 struct elf_xtensa_link_hash_table *htab;
9469 bfd *dynobj;
e0001a05
NC
9470 char got_name[14];
9471
9472 if (chunk == 0)
f0e6fdb2
BW
9473 {
9474 htab = elf_xtensa_hash_table (info);
9475 return htab->sgotplt;
9476 }
e0001a05 9477
f0e6fdb2 9478 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9479 sprintf (got_name, ".got.plt.%u", chunk);
9480 return bfd_get_section_by_name (dynobj, got_name);
9481}
9482
9483
9484/* Get the input section for a given symbol index.
9485 If the symbol is:
9486 . a section symbol, return the section;
9487 . a common symbol, return the common section;
9488 . an undefined symbol, return the undefined section;
9489 . an indirect symbol, follow the links;
9490 . an absolute value, return the absolute section. */
9491
9492static asection *
7fa3d080 9493get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9494{
9495 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9496 asection *target_sec = NULL;
43cd72b9 9497 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9498 {
9499 Elf_Internal_Sym *isymbuf;
9500 unsigned int section_index;
9501
9502 isymbuf = retrieve_local_syms (abfd);
9503 section_index = isymbuf[r_symndx].st_shndx;
9504
9505 if (section_index == SHN_UNDEF)
9506 target_sec = bfd_und_section_ptr;
e0001a05
NC
9507 else if (section_index == SHN_ABS)
9508 target_sec = bfd_abs_section_ptr;
9509 else if (section_index == SHN_COMMON)
9510 target_sec = bfd_com_section_ptr;
43cd72b9 9511 else
cb33740c 9512 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
9513 }
9514 else
9515 {
9516 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9517 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9518
9519 while (h->root.type == bfd_link_hash_indirect
9520 || h->root.type == bfd_link_hash_warning)
9521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9522
9523 switch (h->root.type)
9524 {
9525 case bfd_link_hash_defined:
9526 case bfd_link_hash_defweak:
9527 target_sec = h->root.u.def.section;
9528 break;
9529 case bfd_link_hash_common:
9530 target_sec = bfd_com_section_ptr;
9531 break;
9532 case bfd_link_hash_undefined:
9533 case bfd_link_hash_undefweak:
9534 target_sec = bfd_und_section_ptr;
9535 break;
9536 default: /* New indirect warning. */
9537 target_sec = bfd_und_section_ptr;
9538 break;
9539 }
9540 }
9541 return target_sec;
9542}
9543
9544
9545static struct elf_link_hash_entry *
7fa3d080 9546get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9547{
9548 unsigned long indx;
9549 struct elf_link_hash_entry *h;
9550 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9551
9552 if (r_symndx < symtab_hdr->sh_info)
9553 return NULL;
43cd72b9 9554
e0001a05
NC
9555 indx = r_symndx - symtab_hdr->sh_info;
9556 h = elf_sym_hashes (abfd)[indx];
9557 while (h->root.type == bfd_link_hash_indirect
9558 || h->root.type == bfd_link_hash_warning)
9559 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9560 return h;
9561}
9562
9563
9564/* Get the section-relative offset for a symbol number. */
9565
9566static bfd_vma
7fa3d080 9567get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9568{
9569 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9570 bfd_vma offset = 0;
9571
43cd72b9 9572 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9573 {
9574 Elf_Internal_Sym *isymbuf;
9575 isymbuf = retrieve_local_syms (abfd);
9576 offset = isymbuf[r_symndx].st_value;
9577 }
9578 else
9579 {
9580 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9581 struct elf_link_hash_entry *h =
9582 elf_sym_hashes (abfd)[indx];
9583
9584 while (h->root.type == bfd_link_hash_indirect
9585 || h->root.type == bfd_link_hash_warning)
9586 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9587 if (h->root.type == bfd_link_hash_defined
9588 || h->root.type == bfd_link_hash_defweak)
9589 offset = h->root.u.def.value;
9590 }
9591 return offset;
9592}
9593
9594
9595static bfd_boolean
7fa3d080 9596is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9597{
9598 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9599 struct elf_link_hash_entry *h;
9600
9601 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9602 if (h && h->root.type == bfd_link_hash_defweak)
9603 return TRUE;
9604 return FALSE;
9605}
9606
9607
9608static bfd_boolean
7fa3d080
BW
9609pcrel_reloc_fits (xtensa_opcode opc,
9610 int opnd,
9611 bfd_vma self_address,
9612 bfd_vma dest_address)
e0001a05 9613{
43cd72b9
BW
9614 xtensa_isa isa = xtensa_default_isa;
9615 uint32 valp = dest_address;
9616 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9617 || xtensa_operand_encode (isa, opc, opnd, &valp))
9618 return FALSE;
9619 return TRUE;
e0001a05
NC
9620}
9621
9622
9623static bfd_boolean
7fa3d080 9624xtensa_is_property_section (asection *sec)
e0001a05 9625{
1d25768e
BW
9626 if (xtensa_is_insntable_section (sec)
9627 || xtensa_is_littable_section (sec)
9628 || xtensa_is_proptable_section (sec))
b614a702 9629 return TRUE;
e901de89 9630
1d25768e
BW
9631 return FALSE;
9632}
9633
9634
9635static bfd_boolean
9636xtensa_is_insntable_section (asection *sec)
9637{
9638 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9639 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
9640 return TRUE;
9641
e901de89
BW
9642 return FALSE;
9643}
9644
9645
9646static bfd_boolean
7fa3d080 9647xtensa_is_littable_section (asection *sec)
e901de89 9648{
1d25768e
BW
9649 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9650 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 9651 return TRUE;
e901de89 9652
1d25768e
BW
9653 return FALSE;
9654}
9655
9656
9657static bfd_boolean
9658xtensa_is_proptable_section (asection *sec)
9659{
9660 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9661 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 9662 return TRUE;
e0001a05 9663
e901de89 9664 return FALSE;
e0001a05
NC
9665}
9666
9667
43cd72b9 9668static int
7fa3d080 9669internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9670{
43cd72b9
BW
9671 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9672 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9673
9674 if (a->r_offset != b->r_offset)
9675 return (a->r_offset - b->r_offset);
9676
9677 /* We don't need to sort on these criteria for correctness,
9678 but enforcing a more strict ordering prevents unstable qsort
9679 from behaving differently with different implementations.
9680 Without the code below we get correct but different results
9681 on Solaris 2.7 and 2.8. We would like to always produce the
9682 same results no matter the host. */
9683
9684 if (a->r_info != b->r_info)
9685 return (a->r_info - b->r_info);
9686
9687 return (a->r_addend - b->r_addend);
e0001a05
NC
9688}
9689
9690
9691static int
7fa3d080 9692internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9693{
9694 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9695 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9696
43cd72b9
BW
9697 /* Check if one entry overlaps with the other; this shouldn't happen
9698 except when searching for a match. */
e0001a05
NC
9699 return (a->r_offset - b->r_offset);
9700}
9701
9702
74869ac7
BW
9703/* Predicate function used to look up a section in a particular group. */
9704
9705static bfd_boolean
9706match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9707{
9708 const char *gname = inf;
9709 const char *group_name = elf_group_name (sec);
9710
9711 return (group_name == gname
9712 || (group_name != NULL
9713 && gname != NULL
9714 && strcmp (group_name, gname) == 0));
9715}
9716
9717
1d25768e
BW
9718static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9719
51c8ebc1
BW
9720static char *
9721xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 9722{
74869ac7
BW
9723 const char *suffix, *group_name;
9724 char *prop_sec_name;
74869ac7
BW
9725
9726 group_name = elf_group_name (sec);
9727 if (group_name)
9728 {
9729 suffix = strrchr (sec->name, '.');
9730 if (suffix == sec->name)
9731 suffix = 0;
9732 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9733 + (suffix ? strlen (suffix) : 0));
9734 strcpy (prop_sec_name, base_name);
9735 if (suffix)
9736 strcat (prop_sec_name, suffix);
9737 }
9738 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9739 {
43cd72b9 9740 char *linkonce_kind = 0;
b614a702
BW
9741
9742 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9743 linkonce_kind = "x.";
b614a702 9744 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9745 linkonce_kind = "p.";
43cd72b9
BW
9746 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9747 linkonce_kind = "prop.";
e0001a05 9748 else
b614a702
BW
9749 abort ();
9750
43cd72b9
BW
9751 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9752 + strlen (linkonce_kind) + 1);
b614a702 9753 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9754 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9755
9756 suffix = sec->name + linkonce_len;
096c35a7 9757 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 9758 the new linkonce_kind (but not for "prop" sections). */
0112cd26 9759 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
9760 suffix += 2;
9761 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
9762 }
9763 else
9764 prop_sec_name = strdup (base_name);
9765
51c8ebc1
BW
9766 return prop_sec_name;
9767}
9768
9769
9770static asection *
9771xtensa_get_property_section (asection *sec, const char *base_name)
9772{
9773 char *prop_sec_name;
9774 asection *prop_sec;
9775
9776 prop_sec_name = xtensa_property_section_name (sec, base_name);
9777 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9778 match_section_group,
9779 (void *) elf_group_name (sec));
9780 free (prop_sec_name);
9781 return prop_sec;
9782}
9783
9784
9785asection *
9786xtensa_make_property_section (asection *sec, const char *base_name)
9787{
9788 char *prop_sec_name;
9789 asection *prop_sec;
9790
74869ac7 9791 /* Check if the section already exists. */
51c8ebc1 9792 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
9793 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9794 match_section_group,
51c8ebc1 9795 (void *) elf_group_name (sec));
74869ac7
BW
9796 /* If not, create it. */
9797 if (! prop_sec)
9798 {
9799 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9800 flags |= (bfd_get_section_flags (sec->owner, sec)
9801 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9802
9803 prop_sec = bfd_make_section_anyway_with_flags
9804 (sec->owner, strdup (prop_sec_name), flags);
9805 if (! prop_sec)
9806 return 0;
b614a702 9807
51c8ebc1 9808 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
9809 }
9810
74869ac7
BW
9811 free (prop_sec_name);
9812 return prop_sec;
e0001a05
NC
9813}
9814
43cd72b9
BW
9815
9816flagword
7fa3d080 9817xtensa_get_property_predef_flags (asection *sec)
43cd72b9 9818{
1d25768e 9819 if (xtensa_is_insntable_section (sec))
43cd72b9 9820 return (XTENSA_PROP_INSN
99ded152 9821 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9822 | XTENSA_PROP_INSN_NO_REORDER);
9823
9824 if (xtensa_is_littable_section (sec))
9825 return (XTENSA_PROP_LITERAL
99ded152 9826 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9827 | XTENSA_PROP_INSN_NO_REORDER);
9828
9829 return 0;
9830}
9831
e0001a05
NC
9832\f
9833/* Other functions called directly by the linker. */
9834
9835bfd_boolean
7fa3d080
BW
9836xtensa_callback_required_dependence (bfd *abfd,
9837 asection *sec,
9838 struct bfd_link_info *link_info,
9839 deps_callback_t callback,
9840 void *closure)
e0001a05
NC
9841{
9842 Elf_Internal_Rela *internal_relocs;
9843 bfd_byte *contents;
9844 unsigned i;
9845 bfd_boolean ok = TRUE;
43cd72b9
BW
9846 bfd_size_type sec_size;
9847
9848 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9849
9850 /* ".plt*" sections have no explicit relocations but they contain L32R
9851 instructions that reference the corresponding ".got.plt*" sections. */
9852 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 9853 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
9854 {
9855 asection *sgotplt;
9856
9857 /* Find the corresponding ".got.plt*" section. */
9858 if (sec->name[4] == '\0')
9859 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9860 else
9861 {
9862 char got_name[14];
9863 int chunk = 0;
9864
9865 BFD_ASSERT (sec->name[4] == '.');
9866 chunk = strtol (&sec->name[5], NULL, 10);
9867
9868 sprintf (got_name, ".got.plt.%u", chunk);
9869 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9870 }
9871 BFD_ASSERT (sgotplt);
9872
9873 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9874 section referencing a literal at the very beginning of
9875 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9876 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9877 }
9878
13161072
BW
9879 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9880 when building uclibc, which runs "ld -b binary /dev/null". */
9881 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9882 return ok;
9883
e0001a05
NC
9884 internal_relocs = retrieve_internal_relocs (abfd, sec,
9885 link_info->keep_memory);
9886 if (internal_relocs == NULL
43cd72b9 9887 || sec->reloc_count == 0)
e0001a05
NC
9888 return ok;
9889
9890 /* Cache the contents for the duration of this scan. */
9891 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9892 if (contents == NULL && sec_size != 0)
e0001a05
NC
9893 {
9894 ok = FALSE;
9895 goto error_return;
9896 }
9897
43cd72b9
BW
9898 if (!xtensa_default_isa)
9899 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9900
43cd72b9 9901 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9902 {
9903 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9904 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9905 {
9906 r_reloc l32r_rel;
9907 asection *target_sec;
9908 bfd_vma target_offset;
43cd72b9
BW
9909
9910 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9911 target_sec = NULL;
9912 target_offset = 0;
9913 /* L32Rs must be local to the input file. */
9914 if (r_reloc_is_defined (&l32r_rel))
9915 {
9916 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9917 target_offset = l32r_rel.target_offset;
e0001a05
NC
9918 }
9919 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9920 closure);
9921 }
9922 }
9923
9924 error_return:
9925 release_internal_relocs (sec, internal_relocs);
9926 release_contents (sec, contents);
9927 return ok;
9928}
9929
2f89ff8d
L
9930/* The default literal sections should always be marked as "code" (i.e.,
9931 SHF_EXECINSTR). This is particularly important for the Linux kernel
9932 module loader so that the literals are not placed after the text. */
b35d266b 9933static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9934{
0112cd26
NC
9935 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9936 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9937 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 9938 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 9939 { NULL, 0, 0, 0, 0 }
7f4d3958 9940};
e0001a05
NC
9941\f
9942#ifndef ELF_ARCH
9943#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9944#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9945#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9946#define TARGET_BIG_NAME "elf32-xtensa-be"
9947#define ELF_ARCH bfd_arch_xtensa
9948
4af0a1d8
BW
9949#define ELF_MACHINE_CODE EM_XTENSA
9950#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9951
9952#if XCHAL_HAVE_MMU
9953#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9954#else /* !XCHAL_HAVE_MMU */
9955#define ELF_MAXPAGESIZE 1
9956#endif /* !XCHAL_HAVE_MMU */
9957#endif /* ELF_ARCH */
9958
9959#define elf_backend_can_gc_sections 1
9960#define elf_backend_can_refcount 1
9961#define elf_backend_plt_readonly 1
9962#define elf_backend_got_header_size 4
9963#define elf_backend_want_dynbss 0
9964#define elf_backend_want_got_plt 1
9965
9966#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9967
e0001a05
NC
9968#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9969#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9970#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9971#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9972#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
9973#define bfd_elf32_bfd_reloc_name_lookup \
9974 elf_xtensa_reloc_name_lookup
e0001a05 9975#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 9976#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
9977
9978#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9979#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9980#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9981#define elf_backend_discard_info elf_xtensa_discard_info
9982#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9983#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9984#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9985#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9986#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9987#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9988#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9989#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 9990#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
9991#define elf_backend_object_p elf_xtensa_object_p
9992#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9993#define elf_backend_relocate_section elf_xtensa_relocate_section
9994#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
74541ad4
AM
9995#define elf_backend_omit_section_dynsym \
9996 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 9997#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 9998#define elf_backend_action_discarded elf_xtensa_action_discarded
e0001a05
NC
9999
10000#include "elf32-target.h"
This page took 0.804332 seconds and 4 git commands to generate.