From 2002-06-27 John David Anglin <dave@hiauly1.hia.nrc.ca>:
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf 1/* Support for HPPA 64-bit ELF
e92d460e 2 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
15bda425
JL
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
dc810e39 65 long sym_indx;
15bda425
JL
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
90937f86 187 PARAMS ((bfd *, Elf64_Internal_Shdr *, const char *));
15bda425
JL
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
47b7c2db
AM
198static boolean elf64_hppa_mark_milli_and_exported_functions
199 PARAMS ((struct elf_link_hash_entry *, PTR));
200
15bda425
JL
201static boolean elf64_hppa_size_dynamic_sections
202 PARAMS ((bfd *, struct bfd_link_info *));
203
99c79b2e
AJ
204static boolean elf64_hppa_link_output_symbol_hook
205PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
206 Elf_Internal_Sym *, asection *input_sec));
207
15bda425
JL
208static boolean elf64_hppa_finish_dynamic_symbol
209 PARAMS ((bfd *, struct bfd_link_info *,
210 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 211
99c79b2e
AJ
212static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
213
214static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
215
15bda425
JL
216static boolean elf64_hppa_finish_dynamic_sections
217 PARAMS ((bfd *, struct bfd_link_info *));
218
219static boolean elf64_hppa_check_relocs
220 PARAMS ((bfd *, struct bfd_link_info *,
221 asection *, const Elf_Internal_Rela *));
222
223static boolean elf64_hppa_dynamic_symbol_p
224 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
225
226static boolean elf64_hppa_mark_exported_functions
227 PARAMS ((struct elf_link_hash_entry *, PTR));
228
229static boolean elf64_hppa_finalize_opd
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232static boolean elf64_hppa_finalize_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235static boolean allocate_global_data_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238static boolean allocate_global_data_plt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241static boolean allocate_global_data_stub
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244static boolean allocate_global_data_opd
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247static boolean get_reloc_section
248 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
249
250static boolean count_dyn_reloc
251 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
252 int, asection *, int, bfd_vma, bfd_vma));
253
254static boolean allocate_dynrel_entries
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257static boolean elf64_hppa_finalize_dynreloc
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
260static boolean get_opd
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263static boolean get_plt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266static boolean get_dlt
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269static boolean get_stub
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
3fab46d0
AM
272static int elf64_hppa_elf_get_symbol_type
273 PARAMS ((Elf_Internal_Sym *, int));
274
15bda425
JL
275static boolean
276elf64_hppa_dyn_hash_table_init (ht, abfd, new)
277 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 278 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
279 new_hash_entry_func new;
280{
fe8bc63d 281 memset (ht, 0, sizeof (*ht));
15bda425
JL
282 return bfd_hash_table_init (&ht->root, new);
283}
284
285static struct bfd_hash_entry*
286elf64_hppa_new_dyn_hash_entry (entry, table, string)
287 struct bfd_hash_entry *entry;
288 struct bfd_hash_table *table;
289 const char *string;
290{
291 struct elf64_hppa_dyn_hash_entry *ret;
292 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
293
294 /* Allocate the structure if it has not already been allocated by a
295 subclass. */
296 if (!ret)
297 ret = bfd_hash_allocate (table, sizeof (*ret));
298
299 if (!ret)
300 return 0;
301
302 /* Initialize our local data. All zeros, and definitely easier
303 than setting 8 bit fields. */
fe8bc63d 304 memset (ret, 0, sizeof (*ret));
15bda425
JL
305
306 /* Call the allocation method of the superclass. */
307 ret = ((struct elf64_hppa_dyn_hash_entry *)
308 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
309
310 return &ret->root;
311}
312
313/* Create the derived linker hash table. The PA64 ELF port uses this
314 derived hash table to keep information specific to the PA ElF
315 linker (without using static variables). */
316
317static struct bfd_link_hash_table*
318elf64_hppa_hash_table_create (abfd)
319 bfd *abfd;
320{
321 struct elf64_hppa_link_hash_table *ret;
322
dc810e39 323 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
15bda425
JL
324 if (!ret)
325 return 0;
326 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
327 _bfd_elf_link_hash_newfunc))
328 {
329 bfd_release (abfd, ret);
330 return 0;
331 }
332
333 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
334 elf64_hppa_new_dyn_hash_entry))
335 return 0;
336 return &ret->root.root;
337}
338
339/* Look up an entry in a PA64 ELF linker hash table. */
340
341static struct elf64_hppa_dyn_hash_entry *
342elf64_hppa_dyn_hash_lookup(table, string, create, copy)
343 struct elf64_hppa_dyn_hash_table *table;
344 const char *string;
345 boolean create, copy;
346{
347 return ((struct elf64_hppa_dyn_hash_entry *)
348 bfd_hash_lookup (&table->root, string, create, copy));
349}
350
351/* Traverse a PA64 ELF linker hash table. */
352
353static void
354elf64_hppa_dyn_hash_traverse (table, func, info)
355 struct elf64_hppa_dyn_hash_table *table;
356 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
357 PTR info;
358{
359 (bfd_hash_traverse
360 (&table->root,
361 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
362 info));
363}
364\f
365/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
366
367 Additionally we set the default architecture and machine. */
368static boolean
369elf64_hppa_object_p (abfd)
370 bfd *abfd;
371{
24a5e751
L
372 Elf_Internal_Ehdr * i_ehdrp;
373 unsigned int flags;
d9634ba1 374
24a5e751
L
375 i_ehdrp = elf_elfheader (abfd);
376 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
377 {
378 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
379 return false;
380 }
381 else
382 {
383 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
384 return false;
385 }
386
387 flags = i_ehdrp->e_flags;
d9634ba1
AM
388 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
389 {
390 case EFA_PARISC_1_0:
391 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
392 case EFA_PARISC_1_1:
393 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
394 case EFA_PARISC_2_0:
395 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
396 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
397 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
398 }
399 /* Don't be fussy. */
400 return true;
15bda425
JL
401}
402
403/* Given section type (hdr->sh_type), return a boolean indicating
404 whether or not the section is an elf64-hppa specific section. */
405static boolean
406elf64_hppa_section_from_shdr (abfd, hdr, name)
407 bfd *abfd;
408 Elf64_Internal_Shdr *hdr;
90937f86 409 const char *name;
15bda425
JL
410{
411 asection *newsect;
412
413 switch (hdr->sh_type)
414 {
415 case SHT_PARISC_EXT:
416 if (strcmp (name, ".PARISC.archext") != 0)
417 return false;
418 break;
419 case SHT_PARISC_UNWIND:
420 if (strcmp (name, ".PARISC.unwind") != 0)
421 return false;
422 break;
423 case SHT_PARISC_DOC:
424 case SHT_PARISC_ANNOT:
425 default:
426 return false;
427 }
428
429 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
430 return false;
431 newsect = hdr->bfd_section;
432
433 return true;
434}
435
15bda425 436/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 437 name describes what was once potentially anonymous memory. We
15bda425
JL
438 allocate memory as necessary, possibly reusing PBUF/PLEN. */
439
440static const char *
0ba2a60e
AM
441get_dyn_name (sec, h, rel, pbuf, plen)
442 asection *sec;
15bda425
JL
443 struct elf_link_hash_entry *h;
444 const Elf_Internal_Rela *rel;
445 char **pbuf;
446 size_t *plen;
447{
448 size_t nlen, tlen;
449 char *buf;
450 size_t len;
451
452 if (h && rel->r_addend == 0)
453 return h->root.root.string;
454
455 if (h)
456 nlen = strlen (h->root.root.string);
457 else
0ba2a60e
AM
458 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
459 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
460
461 len = *plen;
462 buf = *pbuf;
463 if (len < tlen)
464 {
465 if (buf)
466 free (buf);
467 *pbuf = buf = malloc (tlen);
468 *plen = len = tlen;
469 if (!buf)
470 return NULL;
471 }
472
473 if (h)
474 {
475 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 476 buf[nlen++] = '+';
15bda425
JL
477 sprintf_vma (buf + nlen, rel->r_addend);
478 }
479 else
480 {
0ba2a60e
AM
481 nlen = sprintf (buf, "%x:%lx",
482 sec->id & 0xffffffff,
483 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
484 if (rel->r_addend)
485 {
486 buf[nlen++] = '+';
487 sprintf_vma (buf + nlen, rel->r_addend);
488 }
489 }
490
491 return buf;
492}
493
494/* SEC is a section containing relocs for an input BFD when linking; return
495 a suitable section for holding relocs in the output BFD for a link. */
496
497static boolean
498get_reloc_section (abfd, hppa_info, sec)
499 bfd *abfd;
500 struct elf64_hppa_link_hash_table *hppa_info;
501 asection *sec;
502{
503 const char *srel_name;
504 asection *srel;
505 bfd *dynobj;
506
507 srel_name = (bfd_elf_string_from_elf_section
508 (abfd, elf_elfheader(abfd)->e_shstrndx,
509 elf_section_data(sec)->rel_hdr.sh_name));
510 if (srel_name == NULL)
511 return false;
512
513 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
514 && strcmp (bfd_get_section_name (abfd, sec),
515 srel_name+5) == 0)
516 || (strncmp (srel_name, ".rel", 4) == 0
517 && strcmp (bfd_get_section_name (abfd, sec),
518 srel_name+4) == 0));
519
520 dynobj = hppa_info->root.dynobj;
521 if (!dynobj)
522 hppa_info->root.dynobj = dynobj = abfd;
523
524 srel = bfd_get_section_by_name (dynobj, srel_name);
525 if (srel == NULL)
526 {
527 srel = bfd_make_section (dynobj, srel_name);
528 if (srel == NULL
529 || !bfd_set_section_flags (dynobj, srel,
530 (SEC_ALLOC
531 | SEC_LOAD
532 | SEC_HAS_CONTENTS
533 | SEC_IN_MEMORY
534 | SEC_LINKER_CREATED
535 | SEC_READONLY))
536 || !bfd_set_section_alignment (dynobj, srel, 3))
537 return false;
538 }
539
540 hppa_info->other_rel_sec = srel;
541 return true;
542}
543
fe8bc63d 544/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
545
546 We use this to keep a record of all the FPTR relocations against a
547 particular symbol so that we can create FPTR relocations in the
548 output file. */
549
550static boolean
551count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
552 bfd *abfd;
553 struct elf64_hppa_dyn_hash_entry *dyn_h;
554 int type;
555 asection *sec;
556 int sec_symndx;
557 bfd_vma offset;
558 bfd_vma addend;
559{
560 struct elf64_hppa_dyn_reloc_entry *rent;
561
562 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 563 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425
JL
564 if (!rent)
565 return false;
566
567 rent->next = dyn_h->reloc_entries;
568 rent->type = type;
569 rent->sec = sec;
570 rent->sec_symndx = sec_symndx;
571 rent->offset = offset;
572 rent->addend = addend;
573 dyn_h->reloc_entries = rent;
574
575 return true;
576}
577
578/* Scan the RELOCS and record the type of dynamic entries that each
579 referenced symbol needs. */
580
581static boolean
582elf64_hppa_check_relocs (abfd, info, sec, relocs)
583 bfd *abfd;
584 struct bfd_link_info *info;
585 asection *sec;
586 const Elf_Internal_Rela *relocs;
587{
588 struct elf64_hppa_link_hash_table *hppa_info;
589 const Elf_Internal_Rela *relend;
590 Elf_Internal_Shdr *symtab_hdr;
9ad5cbcf 591 Elf_Internal_Shdr *shndx_hdr;
15bda425
JL
592 const Elf_Internal_Rela *rel;
593 asection *dlt, *plt, *stubs;
594 char *buf;
595 size_t buf_len;
596 int sec_symndx;
597
598 if (info->relocateable)
599 return true;
600
601 /* If this is the first dynamic object found in the link, create
602 the special sections required for dynamic linking. */
603 if (! elf_hash_table (info)->dynamic_sections_created)
604 {
605 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
606 return false;
607 }
608
609 hppa_info = elf64_hppa_hash_table (info);
610 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
611
612 /* If necessary, build a new table holding section symbols indices
613 for this BFD. This is disgusting. */
fe8bc63d 614
15bda425
JL
615 if (info->shared && hppa_info->section_syms_bfd != abfd)
616 {
832d951b 617 unsigned long i;
9ad5cbcf 618 unsigned int highest_shndx;
15bda425
JL
619 Elf_Internal_Sym *local_syms, *isym;
620 Elf64_External_Sym *ext_syms, *esym;
9ad5cbcf 621 Elf_External_Sym_Shndx *shndx_buf, *shndx;
dc810e39 622 bfd_size_type amt;
15bda425
JL
623
624 /* We're done with the old cache of section index to section symbol
625 index information. Free it.
626
627 ?!? Note we leak the last section_syms array. Presumably we
628 could free it in one of the later routines in this file. */
629 if (hppa_info->section_syms)
630 free (hppa_info->section_syms);
631
632 /* Allocate memory for the internal and external symbols. */
dc810e39
AM
633 amt = symtab_hdr->sh_info;
634 amt *= sizeof (Elf_Internal_Sym);
635 local_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
15bda425
JL
636 if (local_syms == NULL)
637 return false;
638
dc810e39
AM
639 amt = symtab_hdr->sh_info;
640 amt *= sizeof (Elf64_External_Sym);
641 ext_syms = (Elf64_External_Sym *) bfd_malloc (amt);
15bda425
JL
642 if (ext_syms == NULL)
643 {
644 free (local_syms);
645 return false;
646 }
647
648 /* Read in the local symbols. */
649 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
47b7c2db
AM
650 || bfd_bread (ext_syms, amt, abfd) != amt)
651 {
15bda425 652 free (ext_syms);
9ad5cbcf 653 free (local_syms);
15bda425 654 return false;
47b7c2db 655 }
15bda425 656
9ad5cbcf
AM
657 shndx_buf = NULL;
658 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
659 if (shndx_hdr->sh_size != 0)
660 {
661 amt = symtab_hdr->sh_info;
662 amt *= sizeof (Elf_External_Sym_Shndx);
663 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
664 if (shndx_buf == NULL)
665 {
666 free (ext_syms);
667 free (local_syms);
668 return false;
669 }
670
671 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
672 || bfd_bread (shndx_buf, amt, abfd) != amt)
673 {
674 free (shndx_buf);
675 free (ext_syms);
676 free (local_syms);
677 return false;
678 }
679 }
680
15bda425
JL
681 /* Swap in the local symbols, also record the highest section index
682 referenced by the local symbols. */
15bda425 683 highest_shndx = 0;
9ad5cbcf
AM
684 for (i = 0, isym = local_syms, esym = ext_syms, shndx = shndx_buf;
685 i < symtab_hdr->sh_info;
686 i++, esym++, isym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
15bda425 687 {
f8ecb12b
AM
688 bfd_elf64_swap_symbol_in (abfd, (const PTR) esym, (const PTR) shndx,
689 isym);
15bda425
JL
690 if (isym->st_shndx > highest_shndx)
691 highest_shndx = isym->st_shndx;
692 }
693
694 /* Now we can free the external symbols. */
9ad5cbcf 695 free (shndx_buf);
15bda425
JL
696 free (ext_syms);
697
698 /* Allocate an array to hold the section index to section symbol index
699 mapping. Bump by one since we start counting at zero. */
700 highest_shndx++;
dc810e39
AM
701 amt = highest_shndx;
702 amt *= sizeof (int);
703 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
704
705 /* Now walk the local symbols again. If we find a section symbol,
706 record the index of the symbol into the section_syms array. */
707 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
708 {
709 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
710 hppa_info->section_syms[isym->st_shndx] = i;
711 }
712
713 /* We are finished with the local symbols. Get rid of them. */
714 free (local_syms);
715
716 /* Record which BFD we built the section_syms mapping for. */
717 hppa_info->section_syms_bfd = abfd;
718 }
719
720 /* Record the symbol index for this input section. We may need it for
721 relocations when building shared libraries. When not building shared
722 libraries this value is never really used, but assign it to zero to
723 prevent out of bounds memory accesses in other routines. */
724 if (info->shared)
725 {
726 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
727
728 /* If we did not find a section symbol for this section, then
729 something went terribly wrong above. */
730 if (sec_symndx == -1)
731 return false;
732
733 sec_symndx = hppa_info->section_syms[sec_symndx];
734 }
735 else
736 sec_symndx = 0;
fe8bc63d 737
15bda425
JL
738 dlt = plt = stubs = NULL;
739 buf = NULL;
740 buf_len = 0;
741
742 relend = relocs + sec->reloc_count;
743 for (rel = relocs; rel < relend; ++rel)
744 {
745 enum {
746 NEED_DLT = 1,
747 NEED_PLT = 2,
748 NEED_STUB = 4,
749 NEED_OPD = 8,
750 NEED_DYNREL = 16,
751 };
752
753 struct elf_link_hash_entry *h = NULL;
754 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
755 struct elf64_hppa_dyn_hash_entry *dyn_h;
756 int need_entry;
757 const char *addr_name;
758 boolean maybe_dynamic;
759 int dynrel_type = R_PARISC_NONE;
760 static reloc_howto_type *howto;
761
762 if (r_symndx >= symtab_hdr->sh_info)
763 {
764 /* We're dealing with a global symbol -- find its hash entry
765 and mark it as being referenced. */
766 long indx = r_symndx - symtab_hdr->sh_info;
767 h = elf_sym_hashes (abfd)[indx];
768 while (h->root.type == bfd_link_hash_indirect
769 || h->root.type == bfd_link_hash_warning)
770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
771
772 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
773 }
774
775 /* We can only get preliminary data on whether a symbol is
776 locally or externally defined, as not all of the input files
777 have yet been processed. Do something with what we know, as
778 this may help reduce memory usage and processing time later. */
779 maybe_dynamic = false;
671bae9c
NC
780 if (h && ((info->shared
781 && (!info->symbolic || info->allow_shlib_undefined) )
15bda425
JL
782 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
783 || h->root.type == bfd_link_hash_defweak))
784 maybe_dynamic = true;
785
786 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
787 need_entry = 0;
788 switch (howto->type)
789 {
790 /* These are simple indirect references to symbols through the
791 DLT. We need to create a DLT entry for any symbols which
792 appears in a DLTIND relocation. */
793 case R_PARISC_DLTIND21L:
794 case R_PARISC_DLTIND14R:
795 case R_PARISC_DLTIND14F:
796 case R_PARISC_DLTIND14WR:
797 case R_PARISC_DLTIND14DR:
798 need_entry = NEED_DLT;
799 break;
800
801 /* ?!? These need a DLT entry. But I have no idea what to do with
802 the "link time TP value. */
803 case R_PARISC_LTOFF_TP21L:
804 case R_PARISC_LTOFF_TP14R:
805 case R_PARISC_LTOFF_TP14F:
806 case R_PARISC_LTOFF_TP64:
807 case R_PARISC_LTOFF_TP14WR:
808 case R_PARISC_LTOFF_TP14DR:
809 case R_PARISC_LTOFF_TP16F:
810 case R_PARISC_LTOFF_TP16WF:
811 case R_PARISC_LTOFF_TP16DF:
812 need_entry = NEED_DLT;
813 break;
814
815 /* These are function calls. Depending on their precise target we
816 may need to make a stub for them. The stub uses the PLT, so we
817 need to create PLT entries for these symbols too. */
832d951b 818 case R_PARISC_PCREL12F:
15bda425
JL
819 case R_PARISC_PCREL17F:
820 case R_PARISC_PCREL22F:
821 case R_PARISC_PCREL32:
822 case R_PARISC_PCREL64:
823 case R_PARISC_PCREL21L:
824 case R_PARISC_PCREL17R:
825 case R_PARISC_PCREL17C:
826 case R_PARISC_PCREL14R:
827 case R_PARISC_PCREL14F:
828 case R_PARISC_PCREL22C:
829 case R_PARISC_PCREL14WR:
830 case R_PARISC_PCREL14DR:
831 case R_PARISC_PCREL16F:
832 case R_PARISC_PCREL16WF:
833 case R_PARISC_PCREL16DF:
834 need_entry = (NEED_PLT | NEED_STUB);
835 break;
836
837 case R_PARISC_PLTOFF21L:
838 case R_PARISC_PLTOFF14R:
839 case R_PARISC_PLTOFF14F:
840 case R_PARISC_PLTOFF14WR:
841 case R_PARISC_PLTOFF14DR:
842 case R_PARISC_PLTOFF16F:
843 case R_PARISC_PLTOFF16WF:
844 case R_PARISC_PLTOFF16DF:
845 need_entry = (NEED_PLT);
846 break;
847
848 case R_PARISC_DIR64:
849 if (info->shared || maybe_dynamic)
850 need_entry = (NEED_DYNREL);
851 dynrel_type = R_PARISC_DIR64;
852 break;
853
854 /* This is an indirect reference through the DLT to get the address
855 of a OPD descriptor. Thus we need to make a DLT entry that points
856 to an OPD entry. */
857 case R_PARISC_LTOFF_FPTR21L:
858 case R_PARISC_LTOFF_FPTR14R:
859 case R_PARISC_LTOFF_FPTR14WR:
860 case R_PARISC_LTOFF_FPTR14DR:
861 case R_PARISC_LTOFF_FPTR32:
862 case R_PARISC_LTOFF_FPTR64:
863 case R_PARISC_LTOFF_FPTR16F:
864 case R_PARISC_LTOFF_FPTR16WF:
865 case R_PARISC_LTOFF_FPTR16DF:
866 if (info->shared || maybe_dynamic)
867 need_entry = (NEED_DLT | NEED_OPD);
868 else
869 need_entry = (NEED_DLT | NEED_OPD);
870 dynrel_type = R_PARISC_FPTR64;
871 break;
872
873 /* This is a simple OPD entry. */
874 case R_PARISC_FPTR64:
875 if (info->shared || maybe_dynamic)
876 need_entry = (NEED_OPD | NEED_DYNREL);
877 else
878 need_entry = (NEED_OPD);
879 dynrel_type = R_PARISC_FPTR64;
880 break;
881
882 /* Add more cases as needed. */
883 }
884
885 if (!need_entry)
886 continue;
887
888 /* Collect a canonical name for this address. */
0ba2a60e 889 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
890
891 /* Collect the canonical entry data for this address. */
892 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
893 addr_name, true, true);
894 BFD_ASSERT (dyn_h);
895
896 /* Stash away enough information to be able to find this symbol
897 regardless of whether or not it is local or global. */
898 dyn_h->h = h;
899 dyn_h->owner = abfd;
900 dyn_h->sym_indx = r_symndx;
901
902 /* ?!? We may need to do some error checking in here. */
903 /* Create what's needed. */
904 if (need_entry & NEED_DLT)
905 {
906 if (! hppa_info->dlt_sec
907 && ! get_dlt (abfd, info, hppa_info))
908 goto err_out;
909 dyn_h->want_dlt = 1;
910 }
911
912 if (need_entry & NEED_PLT)
913 {
914 if (! hppa_info->plt_sec
915 && ! get_plt (abfd, info, hppa_info))
916 goto err_out;
917 dyn_h->want_plt = 1;
918 }
919
920 if (need_entry & NEED_STUB)
921 {
922 if (! hppa_info->stub_sec
923 && ! get_stub (abfd, info, hppa_info))
924 goto err_out;
925 dyn_h->want_stub = 1;
926 }
927
928 if (need_entry & NEED_OPD)
929 {
930 if (! hppa_info->opd_sec
931 && ! get_opd (abfd, info, hppa_info))
932 goto err_out;
933
934 dyn_h->want_opd = 1;
935
936 /* FPTRs are not allocated by the dynamic linker for PA64, though
937 it is possible that will change in the future. */
fe8bc63d 938
15bda425
JL
939 /* This could be a local function that had its address taken, in
940 which case H will be NULL. */
941 if (h)
942 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
943 }
944
945 /* Add a new dynamic relocation to the chain of dynamic
946 relocations for this symbol. */
947 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
948 {
949 if (! hppa_info->other_rel_sec
950 && ! get_reloc_section (abfd, hppa_info, sec))
951 goto err_out;
952
953 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
954 sec_symndx, rel->r_offset, rel->r_addend))
955 goto err_out;
956
957 /* If we are building a shared library and we just recorded
958 a dynamic R_PARISC_FPTR64 relocation, then make sure the
959 section symbol for this section ends up in the dynamic
960 symbol table. */
961 if (info->shared && dynrel_type == R_PARISC_FPTR64
962 && ! (_bfd_elf64_link_record_local_dynamic_symbol
963 (info, abfd, sec_symndx)))
964 return false;
965 }
966 }
967
968 if (buf)
969 free (buf);
970 return true;
971
972 err_out:
973 if (buf)
974 free (buf);
975 return false;
976}
977
978struct elf64_hppa_allocate_data
979{
980 struct bfd_link_info *info;
981 bfd_size_type ofs;
982};
983
984/* Should we do dynamic things to this symbol? */
985
986static boolean
987elf64_hppa_dynamic_symbol_p (h, info)
988 struct elf_link_hash_entry *h;
989 struct bfd_link_info *info;
990{
991 if (h == NULL)
992 return false;
993
994 while (h->root.type == bfd_link_hash_indirect
995 || h->root.type == bfd_link_hash_warning)
996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
997
998 if (h->dynindx == -1)
999 return false;
1000
1001 if (h->root.type == bfd_link_hash_undefweak
1002 || h->root.type == bfd_link_hash_defweak)
1003 return true;
1004
1005 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
1006 return false;
1007
671bae9c 1008 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
15bda425
JL
1009 || ((h->elf_link_hash_flags
1010 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
1011 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
1012 return true;
1013
1014 return false;
1015}
1016
1017/* Mark all funtions exported by this file so that we can later allocate
1018 entries in .opd for them. */
1019
1020static boolean
1021elf64_hppa_mark_exported_functions (h, data)
1022 struct elf_link_hash_entry *h;
1023 PTR data;
1024{
1025 struct bfd_link_info *info = (struct bfd_link_info *)data;
1026 struct elf64_hppa_link_hash_table *hppa_info;
1027
1028 hppa_info = elf64_hppa_hash_table (info);
1029
e92d460e
AM
1030 if (h->root.type == bfd_link_hash_warning)
1031 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1032
15bda425
JL
1033 if (h
1034 && (h->root.type == bfd_link_hash_defined
1035 || h->root.type == bfd_link_hash_defweak)
1036 && h->root.u.def.section->output_section != NULL
1037 && h->type == STT_FUNC)
1038 {
1039 struct elf64_hppa_dyn_hash_entry *dyn_h;
1040
1041 /* Add this symbol to the PA64 linker hash table. */
1042 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1043 h->root.root.string, true, true);
1044 BFD_ASSERT (dyn_h);
1045 dyn_h->h = h;
1046
1047 if (! hppa_info->opd_sec
1048 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1049 return false;
1050
1051 dyn_h->want_opd = 1;
832d951b
AM
1052 /* Put a flag here for output_symbol_hook. */
1053 dyn_h->st_shndx = -1;
15bda425
JL
1054 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1055 }
1056
1057 return true;
1058}
1059
1060/* Allocate space for a DLT entry. */
1061
1062static boolean
1063allocate_global_data_dlt (dyn_h, data)
1064 struct elf64_hppa_dyn_hash_entry *dyn_h;
1065 PTR data;
1066{
1067 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1068
1069 if (dyn_h->want_dlt)
1070 {
1071 struct elf_link_hash_entry *h = dyn_h->h;
1072
1073 if (x->info->shared)
1074 {
1075 /* Possibly add the symbol to the local dynamic symbol
1076 table since we might need to create a dynamic relocation
1077 against it. */
1078 if (! h
47b7c2db 1079 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
15bda425
JL
1080 {
1081 bfd *owner;
1082 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1083
dc810e39
AM
1084 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1085 (x->info, owner, dyn_h->sym_indx)))
15bda425
JL
1086 return false;
1087 }
1088 }
1089
1090 dyn_h->dlt_offset = x->ofs;
1091 x->ofs += DLT_ENTRY_SIZE;
1092 }
1093 return true;
1094}
1095
1096/* Allocate space for a DLT.PLT entry. */
1097
1098static boolean
1099allocate_global_data_plt (dyn_h, data)
1100 struct elf64_hppa_dyn_hash_entry *dyn_h;
1101 PTR data;
1102{
1103 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1104
1105 if (dyn_h->want_plt
1106 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1107 && !((dyn_h->h->root.type == bfd_link_hash_defined
1108 || dyn_h->h->root.type == bfd_link_hash_defweak)
1109 && dyn_h->h->root.u.def.section->output_section != NULL))
1110 {
1111 dyn_h->plt_offset = x->ofs;
1112 x->ofs += PLT_ENTRY_SIZE;
1113 if (dyn_h->plt_offset < 0x2000)
1114 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1115 }
1116 else
1117 dyn_h->want_plt = 0;
1118
1119 return true;
1120}
1121
1122/* Allocate space for a STUB entry. */
1123
1124static boolean
1125allocate_global_data_stub (dyn_h, data)
1126 struct elf64_hppa_dyn_hash_entry *dyn_h;
1127 PTR data;
1128{
1129 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1130
1131 if (dyn_h->want_stub
1132 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1133 && !((dyn_h->h->root.type == bfd_link_hash_defined
1134 || dyn_h->h->root.type == bfd_link_hash_defweak)
1135 && dyn_h->h->root.u.def.section->output_section != NULL))
1136 {
1137 dyn_h->stub_offset = x->ofs;
1138 x->ofs += sizeof (plt_stub);
1139 }
1140 else
1141 dyn_h->want_stub = 0;
1142 return true;
1143}
1144
1145/* Allocate space for a FPTR entry. */
1146
1147static boolean
1148allocate_global_data_opd (dyn_h, data)
1149 struct elf64_hppa_dyn_hash_entry *dyn_h;
1150 PTR data;
1151{
1152 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1153
1154 if (dyn_h->want_opd)
1155 {
1156 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1157
15bda425
JL
1158 if (h)
1159 while (h->root.type == bfd_link_hash_indirect
1160 || h->root.type == bfd_link_hash_warning)
1161 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1162
1163 /* We never need an opd entry for a symbol which is not
1164 defined by this output file. */
3db4b612
JL
1165 if (h && (h->root.type == bfd_link_hash_undefined
1166 || h->root.u.def.section->output_section == NULL))
15bda425
JL
1167 dyn_h->want_opd = 0;
1168
1169 /* If we are creating a shared library, took the address of a local
1170 function or might export this function from this object file, then
1171 we have to create an opd descriptor. */
1172 else if (x->info->shared
1173 || h == NULL
47b7c2db 1174 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
3db4b612
JL
1175 || (h->root.type == bfd_link_hash_defined
1176 || h->root.type == bfd_link_hash_defweak))
15bda425
JL
1177 {
1178 /* If we are creating a shared library, then we will have to
1179 create a runtime relocation for the symbol to properly
1180 initialize the .opd entry. Make sure the symbol gets
1181 added to the dynamic symbol table. */
1182 if (x->info->shared
1183 && (h == NULL || (h->dynindx == -1)))
1184 {
1185 bfd *owner;
1186 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1187
1188 if (!_bfd_elf64_link_record_local_dynamic_symbol
1189 (x->info, owner, dyn_h->sym_indx))
1190 return false;
1191 }
1192
1193 /* This may not be necessary or desirable anymore now that
1194 we have some support for dealing with section symbols
1195 in dynamic relocs. But name munging does make the result
1196 much easier to debug. ie, the EPLT reloc will reference
1197 a symbol like .foobar, instead of .text + offset. */
1198 if (x->info->shared && h)
1199 {
1200 char *new_name;
1201 struct elf_link_hash_entry *nh;
1202
1203 new_name = alloca (strlen (h->root.root.string) + 2);
1204 new_name[0] = '.';
1205 strcpy (new_name + 1, h->root.root.string);
1206
1207 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1208 new_name, true, true, true);
1209
1210 nh->root.type = h->root.type;
1211 nh->root.u.def.value = h->root.u.def.value;
1212 nh->root.u.def.section = h->root.u.def.section;
1213
1214 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1215 return false;
1216
1217 }
1218 dyn_h->opd_offset = x->ofs;
1219 x->ofs += OPD_ENTRY_SIZE;
1220 }
1221
1222 /* Otherwise we do not need an opd entry. */
1223 else
1224 dyn_h->want_opd = 0;
1225 }
1226 return true;
1227}
1228
1229/* HP requires the EI_OSABI field to be filled in. The assignment to
1230 EI_ABIVERSION may not be strictly necessary. */
1231
1232static void
1233elf64_hppa_post_process_headers (abfd, link_info)
1234 bfd * abfd;
1235 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1236{
1237 Elf_Internal_Ehdr * i_ehdrp;
1238
1239 i_ehdrp = elf_elfheader (abfd);
1240
d952f17a
AM
1241 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1242 {
1243 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1244 }
1245 else
1246 {
1247 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1248 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1249 }
15bda425
JL
1250}
1251
1252/* Create function descriptor section (.opd). This section is called .opd
1253 because it contains "official prodecure descriptors". The "official"
1254 refers to the fact that these descriptors are used when taking the address
1255 of a procedure, thus ensuring a unique address for each procedure. */
1256
1257static boolean
1258get_opd (abfd, info, hppa_info)
1259 bfd *abfd;
edd21aca 1260 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1261 struct elf64_hppa_link_hash_table *hppa_info;
1262{
1263 asection *opd;
1264 bfd *dynobj;
1265
1266 opd = hppa_info->opd_sec;
1267 if (!opd)
1268 {
1269 dynobj = hppa_info->root.dynobj;
1270 if (!dynobj)
1271 hppa_info->root.dynobj = dynobj = abfd;
1272
1273 opd = bfd_make_section (dynobj, ".opd");
1274 if (!opd
1275 || !bfd_set_section_flags (dynobj, opd,
1276 (SEC_ALLOC
1277 | SEC_LOAD
1278 | SEC_HAS_CONTENTS
1279 | SEC_IN_MEMORY
1280 | SEC_LINKER_CREATED))
1281 || !bfd_set_section_alignment (abfd, opd, 3))
1282 {
1283 BFD_ASSERT (0);
1284 return false;
1285 }
1286
1287 hppa_info->opd_sec = opd;
1288 }
1289
1290 return true;
1291}
1292
1293/* Create the PLT section. */
1294
1295static boolean
1296get_plt (abfd, info, hppa_info)
1297 bfd *abfd;
edd21aca 1298 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1299 struct elf64_hppa_link_hash_table *hppa_info;
1300{
1301 asection *plt;
1302 bfd *dynobj;
1303
1304 plt = hppa_info->plt_sec;
1305 if (!plt)
1306 {
1307 dynobj = hppa_info->root.dynobj;
1308 if (!dynobj)
1309 hppa_info->root.dynobj = dynobj = abfd;
1310
1311 plt = bfd_make_section (dynobj, ".plt");
1312 if (!plt
1313 || !bfd_set_section_flags (dynobj, plt,
1314 (SEC_ALLOC
1315 | SEC_LOAD
1316 | SEC_HAS_CONTENTS
1317 | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED))
1319 || !bfd_set_section_alignment (abfd, plt, 3))
1320 {
1321 BFD_ASSERT (0);
1322 return false;
1323 }
1324
1325 hppa_info->plt_sec = plt;
1326 }
1327
1328 return true;
1329}
1330
1331/* Create the DLT section. */
1332
1333static boolean
1334get_dlt (abfd, info, hppa_info)
1335 bfd *abfd;
edd21aca 1336 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1337 struct elf64_hppa_link_hash_table *hppa_info;
1338{
1339 asection *dlt;
1340 bfd *dynobj;
1341
1342 dlt = hppa_info->dlt_sec;
1343 if (!dlt)
1344 {
1345 dynobj = hppa_info->root.dynobj;
1346 if (!dynobj)
1347 hppa_info->root.dynobj = dynobj = abfd;
1348
1349 dlt = bfd_make_section (dynobj, ".dlt");
1350 if (!dlt
1351 || !bfd_set_section_flags (dynobj, dlt,
1352 (SEC_ALLOC
1353 | SEC_LOAD
1354 | SEC_HAS_CONTENTS
1355 | SEC_IN_MEMORY
1356 | SEC_LINKER_CREATED))
1357 || !bfd_set_section_alignment (abfd, dlt, 3))
1358 {
1359 BFD_ASSERT (0);
1360 return false;
1361 }
1362
1363 hppa_info->dlt_sec = dlt;
1364 }
1365
1366 return true;
1367}
1368
1369/* Create the stubs section. */
1370
1371static boolean
1372get_stub (abfd, info, hppa_info)
1373 bfd *abfd;
edd21aca 1374 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1375 struct elf64_hppa_link_hash_table *hppa_info;
1376{
1377 asection *stub;
1378 bfd *dynobj;
1379
1380 stub = hppa_info->stub_sec;
1381 if (!stub)
1382 {
1383 dynobj = hppa_info->root.dynobj;
1384 if (!dynobj)
1385 hppa_info->root.dynobj = dynobj = abfd;
1386
1387 stub = bfd_make_section (dynobj, ".stub");
1388 if (!stub
1389 || !bfd_set_section_flags (dynobj, stub,
1390 (SEC_ALLOC
1391 | SEC_LOAD
1392 | SEC_HAS_CONTENTS
1393 | SEC_IN_MEMORY
1394 | SEC_READONLY
1395 | SEC_LINKER_CREATED))
1396 || !bfd_set_section_alignment (abfd, stub, 3))
1397 {
1398 BFD_ASSERT (0);
1399 return false;
1400 }
1401
1402 hppa_info->stub_sec = stub;
1403 }
1404
1405 return true;
1406}
1407
1408/* Create sections necessary for dynamic linking. This is only a rough
1409 cut and will likely change as we learn more about the somewhat
1410 unusual dynamic linking scheme HP uses.
1411
1412 .stub:
1413 Contains code to implement cross-space calls. The first time one
1414 of the stubs is used it will call into the dynamic linker, later
1415 calls will go straight to the target.
1416
1417 The only stub we support right now looks like
1418
1419 ldd OFFSET(%dp),%r1
1420 bve %r0(%r1)
1421 ldd OFFSET+8(%dp),%dp
1422
1423 Other stubs may be needed in the future. We may want the remove
1424 the break/nop instruction. It is only used right now to keep the
1425 offset of a .plt entry and a .stub entry in sync.
1426
1427 .dlt:
1428 This is what most people call the .got. HP used a different name.
1429 Losers.
1430
1431 .rela.dlt:
1432 Relocations for the DLT.
1433
1434 .plt:
1435 Function pointers as address,gp pairs.
1436
1437 .rela.plt:
1438 Should contain dynamic IPLT (and EPLT?) relocations.
1439
1440 .opd:
fe8bc63d 1441 FPTRS
15bda425
JL
1442
1443 .rela.opd:
1444 EPLT relocations for symbols exported from shared libraries. */
1445
1446static boolean
1447elf64_hppa_create_dynamic_sections (abfd, info)
1448 bfd *abfd;
1449 struct bfd_link_info *info;
1450{
1451 asection *s;
1452
1453 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1454 return false;
1455
1456 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1457 return false;
1458
1459 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1460 return false;
1461
1462 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1463 return false;
1464
1465 s = bfd_make_section(abfd, ".rela.dlt");
1466 if (s == NULL
1467 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1468 | SEC_HAS_CONTENTS
1469 | SEC_IN_MEMORY
1470 | SEC_READONLY
1471 | SEC_LINKER_CREATED))
1472 || !bfd_set_section_alignment (abfd, s, 3))
1473 return false;
1474 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1475
1476 s = bfd_make_section(abfd, ".rela.plt");
1477 if (s == NULL
1478 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1479 | SEC_HAS_CONTENTS
1480 | SEC_IN_MEMORY
1481 | SEC_READONLY
1482 | SEC_LINKER_CREATED))
1483 || !bfd_set_section_alignment (abfd, s, 3))
1484 return false;
1485 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1486
1487 s = bfd_make_section(abfd, ".rela.data");
1488 if (s == NULL
1489 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1490 | SEC_HAS_CONTENTS
1491 | SEC_IN_MEMORY
1492 | SEC_READONLY
1493 | SEC_LINKER_CREATED))
1494 || !bfd_set_section_alignment (abfd, s, 3))
1495 return false;
1496 elf64_hppa_hash_table (info)->other_rel_sec = s;
1497
1498 s = bfd_make_section(abfd, ".rela.opd");
1499 if (s == NULL
1500 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1501 | SEC_HAS_CONTENTS
1502 | SEC_IN_MEMORY
1503 | SEC_READONLY
1504 | SEC_LINKER_CREATED))
1505 || !bfd_set_section_alignment (abfd, s, 3))
1506 return false;
1507 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1508
1509 return true;
1510}
1511
1512/* Allocate dynamic relocations for those symbols that turned out
1513 to be dynamic. */
1514
1515static boolean
1516allocate_dynrel_entries (dyn_h, data)
1517 struct elf64_hppa_dyn_hash_entry *dyn_h;
1518 PTR data;
1519{
1520 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1521 struct elf64_hppa_link_hash_table *hppa_info;
1522 struct elf64_hppa_dyn_reloc_entry *rent;
1523 boolean dynamic_symbol, shared;
1524
1525 hppa_info = elf64_hppa_hash_table (x->info);
1526 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1527 shared = x->info->shared;
1528
1529 /* We may need to allocate relocations for a non-dynamic symbol
1530 when creating a shared library. */
1531 if (!dynamic_symbol && !shared)
1532 return true;
1533
1534 /* Take care of the normal data relocations. */
1535
1536 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1537 {
d663e1cd
JL
1538 /* Allocate one iff we are building a shared library, the relocation
1539 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1540 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1541 continue;
1542
15bda425
JL
1543 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1544
1545 /* Make sure this symbol gets into the dynamic symbol table if it is
1546 not already recorded. ?!? This should not be in the loop since
1547 the symbol need only be added once. */
47b7c2db
AM
1548 if (dyn_h->h == 0
1549 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
15bda425
JL
1550 if (!_bfd_elf64_link_record_local_dynamic_symbol
1551 (x->info, rent->sec->owner, dyn_h->sym_indx))
1552 return false;
1553 }
1554
1555 /* Take care of the GOT and PLT relocations. */
1556
1557 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1558 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1559
1560 /* If we are building a shared library, then every symbol that has an
1561 opd entry will need an EPLT relocation to relocate the symbol's address
1562 and __gp value based on the runtime load address. */
1563 if (shared && dyn_h->want_opd)
1564 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1565
1566 if (dyn_h->want_plt && dynamic_symbol)
1567 {
1568 bfd_size_type t = 0;
1569
1570 /* Dynamic symbols get one IPLT relocation. Local symbols in
1571 shared libraries get two REL relocations. Local symbols in
1572 main applications get nothing. */
1573 if (dynamic_symbol)
1574 t = sizeof (Elf64_External_Rela);
1575 else if (shared)
1576 t = 2 * sizeof (Elf64_External_Rela);
1577
1578 hppa_info->plt_rel_sec->_raw_size += t;
1579 }
1580
1581 return true;
1582}
1583
1584/* Adjust a symbol defined by a dynamic object and referenced by a
1585 regular object. */
1586
1587static boolean
1588elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1589 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1590 struct elf_link_hash_entry *h;
1591{
1592 /* ??? Undefined symbols with PLT entries should be re-defined
1593 to be the PLT entry. */
1594
1595 /* If this is a weak symbol, and there is a real definition, the
1596 processor independent code will have arranged for us to see the
1597 real definition first, and we can just use the same value. */
1598 if (h->weakdef != NULL)
1599 {
1600 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1601 || h->weakdef->root.type == bfd_link_hash_defweak);
1602 h->root.u.def.section = h->weakdef->root.u.def.section;
1603 h->root.u.def.value = h->weakdef->root.u.def.value;
1604 return true;
1605 }
1606
1607 /* If this is a reference to a symbol defined by a dynamic object which
1608 is not a function, we might allocate the symbol in our .dynbss section
1609 and allocate a COPY dynamic relocation.
1610
1611 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1612 of hackery. */
1613
1614 return true;
1615}
1616
47b7c2db
AM
1617/* This function is called via elf_link_hash_traverse to mark millicode
1618 symbols with a dynindx of -1 and to remove the string table reference
1619 from the dynamic symbol table. If the symbol is not a millicode symbol,
1620 elf64_hppa_mark_exported_functions is called. */
1621
1622static boolean
1623elf64_hppa_mark_milli_and_exported_functions (h, data)
1624 struct elf_link_hash_entry *h;
1625 PTR data;
1626{
1627 struct bfd_link_info *info = (struct bfd_link_info *)data;
1628 struct elf_link_hash_entry *elf = h;
1629
1630 if (elf->root.type == bfd_link_hash_warning)
1631 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1632
1633 if (elf->type == STT_PARISC_MILLI)
1634 {
1635 if (elf->dynindx != -1)
1636 {
1637 elf->dynindx = -1;
1638 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1639 elf->dynstr_index);
1640 }
1641 return true;
1642 }
1643
1644 return elf64_hppa_mark_exported_functions (h, data);
1645}
1646
15bda425
JL
1647/* Set the final sizes of the dynamic sections and allocate memory for
1648 the contents of our special sections. */
1649
1650static boolean
1651elf64_hppa_size_dynamic_sections (output_bfd, info)
1652 bfd *output_bfd;
1653 struct bfd_link_info *info;
1654{
1655 bfd *dynobj;
1656 asection *s;
1657 boolean plt;
1658 boolean relocs;
1659 boolean reltext;
15bda425
JL
1660 struct elf64_hppa_allocate_data data;
1661 struct elf64_hppa_link_hash_table *hppa_info;
1662
1663 hppa_info = elf64_hppa_hash_table (info);
1664
1665 dynobj = elf_hash_table (info)->dynobj;
1666 BFD_ASSERT (dynobj != NULL);
1667
47b7c2db
AM
1668 /* Mark each function this program exports so that we will allocate
1669 space in the .opd section for each function's FPTR. If we are
1670 creating dynamic sections, change the dynamic index of millicode
1671 symbols to -1 and remove them from the string table for .dynstr.
1672
1673 We have to traverse the main linker hash table since we have to
1674 find functions which may not have been mentioned in any relocs. */
1675 elf_link_hash_traverse (elf_hash_table (info),
1676 (elf_hash_table (info)->dynamic_sections_created
1677 ? elf64_hppa_mark_milli_and_exported_functions
1678 : elf64_hppa_mark_exported_functions),
1679 info);
1680
15bda425
JL
1681 if (elf_hash_table (info)->dynamic_sections_created)
1682 {
1683 /* Set the contents of the .interp section to the interpreter. */
1684 if (! info->shared)
1685 {
1686 s = bfd_get_section_by_name (dynobj, ".interp");
1687 BFD_ASSERT (s != NULL);
1688 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1689 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1690 }
1691 }
1692 else
1693 {
1694 /* We may have created entries in the .rela.got section.
1695 However, if we are not creating the dynamic sections, we will
1696 not actually use these entries. Reset the size of .rela.dlt,
1697 which will cause it to get stripped from the output file
1698 below. */
1699 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1700 if (s != NULL)
1701 s->_raw_size = 0;
1702 }
1703
1704 /* Allocate the GOT entries. */
1705
1706 data.info = info;
1707 if (elf64_hppa_hash_table (info)->dlt_sec)
1708 {
1709 data.ofs = 0x0;
1710 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1711 allocate_global_data_dlt, &data);
1712 hppa_info->dlt_sec->_raw_size = data.ofs;
1713
1714 data.ofs = 0x0;
1715 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1716 allocate_global_data_plt, &data);
1717 hppa_info->plt_sec->_raw_size = data.ofs;
1718
1719 data.ofs = 0x0;
1720 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1721 allocate_global_data_stub, &data);
1722 hppa_info->stub_sec->_raw_size = data.ofs;
1723 }
1724
15bda425
JL
1725 /* Allocate space for entries in the .opd section. */
1726 if (elf64_hppa_hash_table (info)->opd_sec)
1727 {
1728 data.ofs = 0;
1729 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1730 allocate_global_data_opd, &data);
1731 hppa_info->opd_sec->_raw_size = data.ofs;
1732 }
1733
1734 /* Now allocate space for dynamic relocations, if necessary. */
1735 if (hppa_info->root.dynamic_sections_created)
1736 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1737 allocate_dynrel_entries, &data);
1738
1739 /* The sizes of all the sections are set. Allocate memory for them. */
1740 plt = false;
1741 relocs = false;
1742 reltext = false;
1743 for (s = dynobj->sections; s != NULL; s = s->next)
1744 {
1745 const char *name;
1746 boolean strip;
1747
1748 if ((s->flags & SEC_LINKER_CREATED) == 0)
1749 continue;
1750
1751 /* It's OK to base decisions on the section name, because none
1752 of the dynobj section names depend upon the input files. */
1753 name = bfd_get_section_name (dynobj, s);
1754
1755 strip = 0;
1756
1757 if (strcmp (name, ".plt") == 0)
1758 {
d663e1cd 1759 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1760 if (s->_raw_size == 0)
1761 {
15bda425
JL
1762 strip = true;
1763 }
1764 else
1765 {
1766 /* Remember whether there is a PLT. */
1767 plt = true;
1768 }
1769 }
1770 else if (strcmp (name, ".dlt") == 0)
1771 {
d663e1cd 1772 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1773 if (s->_raw_size == 0)
1774 {
15bda425
JL
1775 strip = true;
1776 }
1777 }
1778 else if (strcmp (name, ".opd") == 0)
1779 {
d663e1cd 1780 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1781 if (s->_raw_size == 0)
1782 {
15bda425
JL
1783 strip = true;
1784 }
1785 }
d663e1cd 1786 else if (strncmp (name, ".rela", 5) == 0)
15bda425 1787 {
d663e1cd
JL
1788 /* If we don't need this section, strip it from the output file.
1789 This is mostly to handle .rela.bss and .rela.plt. We must
1790 create both sections in create_dynamic_sections, because they
1791 must be created before the linker maps input sections to output
1792 sections. The linker does that before adjust_dynamic_symbol
1793 is called, and it is that function which decides whether
1794 anything needs to go into these sections. */
15bda425
JL
1795 if (s->_raw_size == 0)
1796 {
1797 /* If we don't need this section, strip it from the
1798 output file. This is mostly to handle .rela.bss and
1799 .rela.plt. We must create both sections in
1800 create_dynamic_sections, because they must be created
1801 before the linker maps input sections to output
1802 sections. The linker does that before
1803 adjust_dynamic_symbol is called, and it is that
1804 function which decides whether anything needs to go
1805 into these sections. */
1806 strip = true;
1807 }
1808 else
1809 {
1810 asection *target;
1811
1812 /* Remember whether there are any reloc sections other
1813 than .rela.plt. */
1814 if (strcmp (name, ".rela.plt") != 0)
1815 {
1816 const char *outname;
1817
1818 relocs = true;
1819
1820 /* If this relocation section applies to a read only
1821 section, then we probably need a DT_TEXTREL
1822 entry. The entries in the .rela.plt section
1823 really apply to the .got section, which we
1824 created ourselves and so know is not readonly. */
1825 outname = bfd_get_section_name (output_bfd,
1826 s->output_section);
1827 target = bfd_get_section_by_name (output_bfd, outname + 4);
1828 if (target != NULL
1829 && (target->flags & SEC_READONLY) != 0
1830 && (target->flags & SEC_ALLOC) != 0)
1831 reltext = true;
1832 }
1833
1834 /* We use the reloc_count field as a counter if we need
1835 to copy relocs into the output file. */
1836 s->reloc_count = 0;
1837 }
1838 }
1839 else if (strncmp (name, ".dlt", 4) != 0
1840 && strcmp (name, ".stub") != 0
1841 && strcmp (name, ".got") != 0)
1842 {
1843 /* It's not one of our sections, so don't allocate space. */
1844 continue;
1845 }
1846
1847 if (strip)
1848 {
1849 _bfd_strip_section_from_output (info, s);
1850 continue;
1851 }
1852
1853 /* Allocate memory for the section contents if it has not
832d951b
AM
1854 been allocated already. We use bfd_zalloc here in case
1855 unused entries are not reclaimed before the section's
1856 contents are written out. This should not happen, but this
1857 way if it does, we get a R_PARISC_NONE reloc instead of
1858 garbage. */
15bda425
JL
1859 if (s->contents == NULL)
1860 {
7a9af8c4 1861 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1862 if (s->contents == NULL && s->_raw_size != 0)
1863 return false;
1864 }
1865 }
1866
1867 if (elf_hash_table (info)->dynamic_sections_created)
1868 {
1869 /* Always create a DT_PLTGOT. It actually has nothing to do with
1870 the PLT, it is how we communicate the __gp value of a load
1871 module to the dynamic linker. */
dc810e39
AM
1872#define add_dynamic_entry(TAG, VAL) \
1873 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1874
1875 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1876 || !add_dynamic_entry (DT_PLTGOT, 0))
15bda425
JL
1877 return false;
1878
1879 /* Add some entries to the .dynamic section. We fill in the
1880 values later, in elf64_hppa_finish_dynamic_sections, but we
1881 must add the entries now so that we get the correct size for
1882 the .dynamic section. The DT_DEBUG entry is filled in by the
1883 dynamic linker and used by the debugger. */
1884 if (! info->shared)
1885 {
dc810e39
AM
1886 if (!add_dynamic_entry (DT_DEBUG, 0)
1887 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1888 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
15bda425
JL
1889 return false;
1890 }
1891
1892 if (plt)
1893 {
dc810e39
AM
1894 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1895 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1896 || !add_dynamic_entry (DT_JMPREL, 0))
15bda425
JL
1897 return false;
1898 }
1899
1900 if (relocs)
1901 {
dc810e39
AM
1902 if (!add_dynamic_entry (DT_RELA, 0)
1903 || !add_dynamic_entry (DT_RELASZ, 0)
1904 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
15bda425
JL
1905 return false;
1906 }
1907
1908 if (reltext)
1909 {
dc810e39 1910 if (!add_dynamic_entry (DT_TEXTREL, 0))
15bda425 1911 return false;
d6cf2879 1912 info->flags |= DF_TEXTREL;
15bda425
JL
1913 }
1914 }
dc810e39 1915#undef add_dynamic_entry
15bda425
JL
1916
1917 return true;
1918}
1919
1920/* Called after we have output the symbol into the dynamic symbol
1921 table, but before we output the symbol into the normal symbol
1922 table.
1923
1924 For some symbols we had to change their address when outputting
1925 the dynamic symbol table. We undo that change here so that
1926 the symbols have their expected value in the normal symbol
1927 table. Ick. */
1928
1929static boolean
1930elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1931 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1932 struct bfd_link_info *info;
1933 const char *name;
1934 Elf_Internal_Sym *sym;
edd21aca 1935 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1936{
1937 struct elf64_hppa_link_hash_table *hppa_info;
1938 struct elf64_hppa_dyn_hash_entry *dyn_h;
1939
1940 /* We may be called with the file symbol or section symbols.
1941 They never need munging, so it is safe to ignore them. */
1942 if (!name)
1943 return true;
1944
1945 /* Get the PA dyn_symbol (if any) associated with NAME. */
1946 hppa_info = elf64_hppa_hash_table (info);
1947 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1948 name, false, false);
1949
832d951b
AM
1950 /* Function symbols for which we created .opd entries *may* have been
1951 munged by finish_dynamic_symbol and have to be un-munged here.
1952
1953 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1954 into non-dynamic ones, so we initialize st_shndx to -1 in
1955 mark_exported_functions and check to see if it was overwritten
1956 here instead of just checking dyn_h->h->dynindx. */
1957 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1958 {
1959 /* Restore the saved value and section index. */
1960 sym->st_value = dyn_h->st_value;
fe8bc63d 1961 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1962 }
1963
1964 return true;
1965}
1966
1967/* Finish up dynamic symbol handling. We set the contents of various
1968 dynamic sections here. */
1969
1970static boolean
1971elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1972 bfd *output_bfd;
1973 struct bfd_link_info *info;
1974 struct elf_link_hash_entry *h;
1975 Elf_Internal_Sym *sym;
1976{
1977 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1978 struct elf64_hppa_link_hash_table *hppa_info;
1979 struct elf64_hppa_dyn_hash_entry *dyn_h;
1980
1981 hppa_info = elf64_hppa_hash_table (info);
1982 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1983 h->root.root.string, false, false);
1984
1985 stub = hppa_info->stub_sec;
1986 splt = hppa_info->plt_sec;
1987 sdlt = hppa_info->dlt_sec;
1988 sopd = hppa_info->opd_sec;
1989 spltrel = hppa_info->plt_rel_sec;
1990 sdltrel = hppa_info->dlt_rel_sec;
1991
15bda425
JL
1992 /* Incredible. It is actually necessary to NOT use the symbol's real
1993 value when building the dynamic symbol table for a shared library.
1994 At least for symbols that refer to functions.
1995
1996 We will store a new value and section index into the symbol long
1997 enough to output it into the dynamic symbol table, then we restore
1998 the original values (in elf64_hppa_link_output_symbol_hook). */
1999 if (dyn_h && dyn_h->want_opd)
2000 {
d663e1cd
JL
2001 BFD_ASSERT (sopd != NULL)
2002
15bda425
JL
2003 /* Save away the original value and section index so that we
2004 can restore them later. */
2005 dyn_h->st_value = sym->st_value;
2006 dyn_h->st_shndx = sym->st_shndx;
2007
2008 /* For the dynamic symbol table entry, we want the value to be
2009 address of this symbol's entry within the .opd section. */
2010 sym->st_value = (dyn_h->opd_offset
2011 + sopd->output_offset
2012 + sopd->output_section->vma);
2013 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
2014 sopd->output_section);
2015 }
2016
2017 /* Initialize a .plt entry if requested. */
2018 if (dyn_h && dyn_h->want_plt
2019 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2020 {
2021 bfd_vma value;
2022 Elf_Internal_Rela rel;
2023
d663e1cd
JL
2024 BFD_ASSERT (splt != NULL && spltrel != NULL)
2025
15bda425
JL
2026 /* We do not actually care about the value in the PLT entry
2027 if we are creating a shared library and the symbol is
2028 still undefined, we create a dynamic relocation to fill
2029 in the correct value. */
2030 if (info->shared && h->root.type == bfd_link_hash_undefined)
2031 value = 0;
2032 else
2033 value = (h->root.u.def.value + h->root.u.def.section->vma);
2034
fe8bc63d 2035 /* Fill in the entry in the procedure linkage table.
15bda425
JL
2036
2037 The format of a plt entry is
fe8bc63d 2038 <funcaddr> <__gp>.
15bda425
JL
2039
2040 plt_offset is the offset within the PLT section at which to
fe8bc63d 2041 install the PLT entry.
15bda425
JL
2042
2043 We are modifying the in-memory PLT contents here, so we do not add
2044 in the output_offset of the PLT section. */
2045
2046 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2047 value = _bfd_get_gp_value (splt->output_section->owner);
2048 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2049
2050 /* Create a dynamic IPLT relocation for this entry.
2051
2052 We are creating a relocation in the output file's PLT section,
2053 which is included within the DLT secton. So we do need to include
2054 the PLT's output_offset in the computation of the relocation's
2055 address. */
2056 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2057 + splt->output_section->vma);
2058 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2059 rel.r_addend = 0;
2060
2061 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
2062 (((Elf64_External_Rela *)
2063 spltrel->contents)
2064 + spltrel->reloc_count));
2065 spltrel->reloc_count++;
2066 }
2067
2068 /* Initialize an external call stub entry if requested. */
2069 if (dyn_h && dyn_h->want_stub
2070 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2071 {
2072 bfd_vma value;
2073 int insn;
b352eebf 2074 unsigned int max_offset;
15bda425 2075
d663e1cd
JL
2076 BFD_ASSERT (stub != NULL)
2077
15bda425
JL
2078 /* Install the generic stub template.
2079
2080 We are modifying the contents of the stub section, so we do not
2081 need to include the stub section's output_offset here. */
2082 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2083
2084 /* Fix up the first ldd instruction.
2085
2086 We are modifying the contents of the STUB section in memory,
fe8bc63d 2087 so we do not need to include its output offset in this computation.
15bda425
JL
2088
2089 Note the plt_offset value is the value of the PLT entry relative to
2090 the start of the PLT section. These instructions will reference
2091 data relative to the value of __gp, which may not necessarily have
2092 the same address as the start of the PLT section.
2093
2094 gp_offset contains the offset of __gp within the PLT section. */
2095 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2096
15bda425 2097 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2098 if (output_bfd->arch_info->mach >= 25)
2099 {
2100 /* Wide mode allows 16 bit offsets. */
2101 max_offset = 32768;
2102 insn &= ~ 0xfff1;
dc810e39 2103 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2104 }
2105 else
2106 {
2107 max_offset = 8192;
2108 insn &= ~ 0x3ff1;
dc810e39 2109 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2110 }
2111
2112 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2113 {
2114 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2115 dyn_h->root.string,
2116 (long) value);
2117 return false;
2118 }
2119
dc810e39 2120 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2121 stub->contents + dyn_h->stub_offset);
2122
2123 /* Fix up the second ldd instruction. */
b352eebf 2124 value += 8;
15bda425 2125 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2126 if (output_bfd->arch_info->mach >= 25)
2127 {
2128 insn &= ~ 0xfff1;
dc810e39 2129 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2130 }
2131 else
2132 {
2133 insn &= ~ 0x3ff1;
dc810e39 2134 insn |= re_assemble_14 ((int) value);
b352eebf 2135 }
dc810e39 2136 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2137 stub->contents + dyn_h->stub_offset + 8);
2138 }
2139
15bda425
JL
2140 return true;
2141}
2142
2143/* The .opd section contains FPTRs for each function this file
2144 exports. Initialize the FPTR entries. */
2145
2146static boolean
2147elf64_hppa_finalize_opd (dyn_h, data)
2148 struct elf64_hppa_dyn_hash_entry *dyn_h;
2149 PTR data;
2150{
2151 struct bfd_link_info *info = (struct bfd_link_info *)data;
2152 struct elf64_hppa_link_hash_table *hppa_info;
3db4b612 2153 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2154 asection *sopd;
2155 asection *sopdrel;
2156
2157 hppa_info = elf64_hppa_hash_table (info);
2158 sopd = hppa_info->opd_sec;
2159 sopdrel = hppa_info->opd_rel_sec;
2160
3db4b612 2161 if (h && dyn_h->want_opd)
15bda425
JL
2162 {
2163 bfd_vma value;
2164
fe8bc63d 2165 /* The first two words of an .opd entry are zero.
15bda425
JL
2166
2167 We are modifying the contents of the OPD section in memory, so we
2168 do not need to include its output offset in this computation. */
2169 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2170
2171 value = (h->root.u.def.value
2172 + h->root.u.def.section->output_section->vma
2173 + h->root.u.def.section->output_offset);
2174
2175 /* The next word is the address of the function. */
2176 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2177
2178 /* The last word is our local __gp value. */
2179 value = _bfd_get_gp_value (sopd->output_section->owner);
2180 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2181 }
2182
2183 /* If we are generating a shared library, we must generate EPLT relocations
2184 for each entry in the .opd, even for static functions (they may have
2185 had their address taken). */
2186 if (info->shared && dyn_h && dyn_h->want_opd)
2187 {
2188 Elf64_Internal_Rela rel;
15bda425
JL
2189 int dynindx;
2190
2191 /* We may need to do a relocation against a local symbol, in
2192 which case we have to look up it's dynamic symbol index off
2193 the local symbol hash table. */
2194 if (h && h->dynindx != -1)
2195 dynindx = h->dynindx;
2196 else
2197 dynindx
2198 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2199 dyn_h->sym_indx);
2200
2201 /* The offset of this relocation is the absolute address of the
2202 .opd entry for this symbol. */
2203 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2204 + sopd->output_section->vma);
2205
2206 /* If H is non-null, then we have an external symbol.
2207
2208 It is imperative that we use a different dynamic symbol for the
2209 EPLT relocation if the symbol has global scope.
2210
2211 In the dynamic symbol table, the function symbol will have a value
2212 which is address of the function's .opd entry.
2213
2214 Thus, we can not use that dynamic symbol for the EPLT relocation
2215 (if we did, the data in the .opd would reference itself rather
2216 than the actual address of the function). Instead we have to use
2217 a new dynamic symbol which has the same value as the original global
fe8bc63d 2218 function symbol.
15bda425
JL
2219
2220 We prefix the original symbol with a "." and use the new symbol in
2221 the EPLT relocation. This new symbol has already been recorded in
2222 the symbol table, we just have to look it up and use it.
2223
2224 We do not have such problems with static functions because we do
2225 not make their addresses in the dynamic symbol table point to
2226 the .opd entry. Ultimately this should be safe since a static
2227 function can not be directly referenced outside of its shared
2228 library.
2229
2230 We do have to play similar games for FPTR relocations in shared
2231 libraries, including those for static symbols. See the FPTR
2232 handling in elf64_hppa_finalize_dynreloc. */
2233 if (h)
2234 {
2235 char *new_name;
2236 struct elf_link_hash_entry *nh;
2237
2238 new_name = alloca (strlen (h->root.root.string) + 2);
2239 new_name[0] = '.';
2240 strcpy (new_name + 1, h->root.root.string);
2241
2242 nh = elf_link_hash_lookup (elf_hash_table (info),
2243 new_name, false, false, false);
2244
2245 /* All we really want from the new symbol is its dynamic
2246 symbol index. */
2247 dynindx = nh->dynindx;
2248 }
2249
2250 rel.r_addend = 0;
2251 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2252
2253 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2254 (((Elf64_External_Rela *)
2255 sopdrel->contents)
2256 + sopdrel->reloc_count));
2257 sopdrel->reloc_count++;
2258 }
2259 return true;
2260}
2261
2262/* The .dlt section contains addresses for items referenced through the
2263 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2264 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2265
2266static boolean
2267elf64_hppa_finalize_dlt (dyn_h, data)
2268 struct elf64_hppa_dyn_hash_entry *dyn_h;
2269 PTR data;
2270{
2271 struct bfd_link_info *info = (struct bfd_link_info *)data;
2272 struct elf64_hppa_link_hash_table *hppa_info;
2273 asection *sdlt, *sdltrel;
3db4b612 2274 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2275
2276 hppa_info = elf64_hppa_hash_table (info);
2277
2278 sdlt = hppa_info->dlt_sec;
2279 sdltrel = hppa_info->dlt_rel_sec;
2280
2281 /* H/DYN_H may refer to a local variable and we know it's
2282 address, so there is no need to create a relocation. Just install
2283 the proper value into the DLT, note this shortcut can not be
2284 skipped when building a shared library. */
3db4b612 2285 if (! info->shared && h && dyn_h->want_dlt)
15bda425
JL
2286 {
2287 bfd_vma value;
2288
2289 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2290 to point to the FPTR entry in the .opd section.
15bda425
JL
2291
2292 We include the OPD's output offset in this computation as
2293 we are referring to an absolute address in the resulting
2294 object file. */
2295 if (dyn_h->want_opd)
2296 {
2297 value = (dyn_h->opd_offset
2298 + hppa_info->opd_sec->output_offset
2299 + hppa_info->opd_sec->output_section->vma);
2300 }
3db4b612 2301 else if (h->root.u.def.section)
15bda425 2302 {
3db4b612 2303 value = h->root.u.def.value + h->root.u.def.section->output_offset;
15bda425
JL
2304 if (h->root.u.def.section->output_section)
2305 value += h->root.u.def.section->output_section->vma;
2306 else
2307 value += h->root.u.def.section->vma;
2308 }
3db4b612
JL
2309 else
2310 /* We have an undefined function reference. */
2311 value = 0;
15bda425
JL
2312
2313 /* We do not need to include the output offset of the DLT section
2314 here because we are modifying the in-memory contents. */
2315 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2316 }
2317
2318 /* Create a relocation for the DLT entry assocated with this symbol.
2319 When building a shared library the symbol does not have to be dynamic. */
2320 if (dyn_h->want_dlt
2321 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2322 {
2323 Elf64_Internal_Rela rel;
2324 int dynindx;
2325
2326 /* We may need to do a relocation against a local symbol, in
2327 which case we have to look up it's dynamic symbol index off
2328 the local symbol hash table. */
2329 if (h && h->dynindx != -1)
2330 dynindx = h->dynindx;
2331 else
2332 dynindx
2333 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2334 dyn_h->sym_indx);
2335
15bda425
JL
2336 /* Create a dynamic relocation for this entry. Do include the output
2337 offset of the DLT entry since we need an absolute address in the
2338 resulting object file. */
2339 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2340 + sdlt->output_section->vma);
2341 if (h && h->type == STT_FUNC)
2342 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2343 else
2344 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2345 rel.r_addend = 0;
2346
2347 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2348 (((Elf64_External_Rela *)
2349 sdltrel->contents)
2350 + sdltrel->reloc_count));
2351 sdltrel->reloc_count++;
2352 }
2353 return true;
2354}
2355
2356/* Finalize the dynamic relocations. Specifically the FPTR relocations
2357 for dynamic functions used to initialize static data. */
2358
2359static boolean
2360elf64_hppa_finalize_dynreloc (dyn_h, data)
2361 struct elf64_hppa_dyn_hash_entry *dyn_h;
2362 PTR data;
2363{
2364 struct bfd_link_info *info = (struct bfd_link_info *)data;
2365 struct elf64_hppa_link_hash_table *hppa_info;
2366 struct elf_link_hash_entry *h;
2367 int dynamic_symbol;
2368
2369 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2370
2371 if (!dynamic_symbol && !info->shared)
2372 return true;
2373
2374 if (dyn_h->reloc_entries)
2375 {
2376 struct elf64_hppa_dyn_reloc_entry *rent;
2377 int dynindx;
2378
2379 hppa_info = elf64_hppa_hash_table (info);
2380 h = dyn_h->h;
2381
2382 /* We may need to do a relocation against a local symbol, in
2383 which case we have to look up it's dynamic symbol index off
2384 the local symbol hash table. */
2385 if (h && h->dynindx != -1)
2386 dynindx = h->dynindx;
2387 else
2388 dynindx
2389 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2390 dyn_h->sym_indx);
2391
2392 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2393 {
2394 Elf64_Internal_Rela rel;
2395
d663e1cd
JL
2396 /* Allocate one iff we are building a shared library, the relocation
2397 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2398 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2399 continue;
15bda425 2400
fe8bc63d 2401 /* Create a dynamic relocation for this entry.
15bda425
JL
2402
2403 We need the output offset for the reloc's section because
2404 we are creating an absolute address in the resulting object
2405 file. */
2406 rel.r_offset = (rent->offset + rent->sec->output_offset
2407 + rent->sec->output_section->vma);
2408
2409 /* An FPTR64 relocation implies that we took the address of
2410 a function and that the function has an entry in the .opd
2411 section. We want the FPTR64 relocation to reference the
2412 entry in .opd.
2413
2414 We could munge the symbol value in the dynamic symbol table
2415 (in fact we already do for functions with global scope) to point
2416 to the .opd entry. Then we could use that dynamic symbol in
2417 this relocation.
2418
2419 Or we could do something sensible, not munge the symbol's
2420 address and instead just use a different symbol to reference
2421 the .opd entry. At least that seems sensible until you
2422 realize there's no local dynamic symbols we can use for that
2423 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2424
15bda425
JL
2425 We use a section symbol recorded by check_relocs as the
2426 base symbol for the relocation. The addend is the difference
2427 between the section symbol and the address of the .opd entry. */
3db4b612 2428 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
15bda425
JL
2429 {
2430 bfd_vma value, value2;
15bda425
JL
2431
2432 /* First compute the address of the opd entry for this symbol. */
2433 value = (dyn_h->opd_offset
2434 + hppa_info->opd_sec->output_section->vma
2435 + hppa_info->opd_sec->output_offset);
2436
2437 /* Compute the value of the start of the section with
2438 the relocation. */
2439 value2 = (rent->sec->output_section->vma
2440 + rent->sec->output_offset);
2441
2442 /* Compute the difference between the start of the section
2443 with the relocation and the opd entry. */
2444 value -= value2;
fe8bc63d 2445
15bda425
JL
2446 /* The result becomes the addend of the relocation. */
2447 rel.r_addend = value;
2448
2449 /* The section symbol becomes the symbol for the dynamic
2450 relocation. */
2451 dynindx
2452 = _bfd_elf_link_lookup_local_dynindx (info,
2453 rent->sec->owner,
2454 rent->sec_symndx);
2455 }
2456 else
2457 rel.r_addend = rent->addend;
2458
2459 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2460
2461 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2462 &rel,
2463 (((Elf64_External_Rela *)
2464 hppa_info->other_rel_sec->contents)
2465 + hppa_info->other_rel_sec->reloc_count));
2466 hppa_info->other_rel_sec->reloc_count++;
2467 }
2468 }
2469
2470 return true;
2471}
2472
2473/* Finish up the dynamic sections. */
2474
2475static boolean
2476elf64_hppa_finish_dynamic_sections (output_bfd, info)
2477 bfd *output_bfd;
2478 struct bfd_link_info *info;
2479{
2480 bfd *dynobj;
2481 asection *sdyn;
2482 struct elf64_hppa_link_hash_table *hppa_info;
2483
2484 hppa_info = elf64_hppa_hash_table (info);
2485
2486 /* Finalize the contents of the .opd section. */
2487 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2488 elf64_hppa_finalize_opd,
2489 info);
2490
2491 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2492 elf64_hppa_finalize_dynreloc,
2493 info);
2494
2495 /* Finalize the contents of the .dlt section. */
2496 dynobj = elf_hash_table (info)->dynobj;
2497 /* Finalize the contents of the .dlt section. */
2498 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2499 elf64_hppa_finalize_dlt,
2500 info);
2501
15bda425
JL
2502 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2503
2504 if (elf_hash_table (info)->dynamic_sections_created)
2505 {
2506 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2507
2508 BFD_ASSERT (sdyn != NULL);
2509
2510 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2511 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2512 for (; dyncon < dynconend; dyncon++)
2513 {
2514 Elf_Internal_Dyn dyn;
2515 asection *s;
2516
2517 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2518
2519 switch (dyn.d_tag)
2520 {
2521 default:
2522 break;
2523
2524 case DT_HP_LOAD_MAP:
2525 /* Compute the absolute address of 16byte scratchpad area
2526 for the dynamic linker.
2527
2528 By convention the linker script will allocate the scratchpad
2529 area at the start of the .data section. So all we have to
2530 to is find the start of the .data section. */
2531 s = bfd_get_section_by_name (output_bfd, ".data");
2532 dyn.d_un.d_ptr = s->vma;
2533 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2534 break;
2535
2536 case DT_PLTGOT:
2537 /* HP's use PLTGOT to set the GOT register. */
2538 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2539 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2540 break;
2541
2542 case DT_JMPREL:
2543 s = hppa_info->plt_rel_sec;
2544 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2545 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2546 break;
2547
2548 case DT_PLTRELSZ:
2549 s = hppa_info->plt_rel_sec;
2550 dyn.d_un.d_val = s->_raw_size;
2551 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2552 break;
2553
2554 case DT_RELA:
2555 s = hppa_info->other_rel_sec;
2556 if (! s)
2557 s = hppa_info->dlt_rel_sec;
2558 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2559 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2560 break;
2561
2562 case DT_RELASZ:
2563 s = hppa_info->other_rel_sec;
2564 dyn.d_un.d_val = s->_raw_size;
2565 s = hppa_info->dlt_rel_sec;
2566 dyn.d_un.d_val += s->_raw_size;
2567 s = hppa_info->opd_rel_sec;
2568 dyn.d_un.d_val += s->_raw_size;
2569 /* There is some question about whether or not the size of
2570 the PLT relocs should be included here. HP's tools do
2571 it, so we'll emulate them. */
2572 s = hppa_info->plt_rel_sec;
2573 dyn.d_un.d_val += s->_raw_size;
2574 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2575 break;
2576
2577 }
2578 }
2579 }
2580
2581 return true;
2582}
2583
15bda425
JL
2584/* Return the number of additional phdrs we will need.
2585
2586 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2587 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2588
2589 This routine indicates that the backend needs one additional program
2590 header for that case.
2591
2592 Note we do not have access to the link info structure here, so we have
2593 to guess whether or not we are building a shared library based on the
2594 existence of a .interp section. */
2595
2596static int
2597elf64_hppa_additional_program_headers (abfd)
2598 bfd *abfd;
2599{
2600 asection *s;
2601
2602 /* If we are creating a shared library, then we have to create a
2603 PT_PHDR segment. HP's dynamic linker chokes without it. */
2604 s = bfd_get_section_by_name (abfd, ".interp");
2605 if (! s)
2606 return 1;
2607 return 0;
2608}
2609
2610/* Allocate and initialize any program headers required by this
2611 specific backend.
2612
2613 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2614 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2615
2616 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2617 for the HP linker.
15bda425
JL
2618
2619 Note we do not have access to the link info structure here, so we have
2620 to guess whether or not we are building a shared library based on the
2621 existence of a .interp section. */
2622
2623static boolean
2624elf64_hppa_modify_segment_map (abfd)
2625 bfd *abfd;
2626{
edd21aca 2627 struct elf_segment_map *m;
15bda425
JL
2628 asection *s;
2629
2630 s = bfd_get_section_by_name (abfd, ".interp");
2631 if (! s)
2632 {
2633 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2634 if (m->p_type == PT_PHDR)
2635 break;
2636 if (m == NULL)
2637 {
dc810e39
AM
2638 m = ((struct elf_segment_map *)
2639 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425
JL
2640 if (m == NULL)
2641 return false;
2642
2643 m->p_type = PT_PHDR;
2644 m->p_flags = PF_R | PF_X;
2645 m->p_flags_valid = 1;
2646 m->p_paddr_valid = 1;
2647 m->includes_phdrs = 1;
2648
2649 m->next = elf_tdata (abfd)->segment_map;
2650 elf_tdata (abfd)->segment_map = m;
2651 }
2652 }
2653
2654 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2655 if (m->p_type == PT_LOAD)
2656 {
0ba2a60e 2657 unsigned int i;
15bda425
JL
2658
2659 for (i = 0; i < m->count; i++)
2660 {
2661 /* The code "hint" is not really a hint. It is a requirement
2662 for certain versions of the HP dynamic linker. Worse yet,
2663 it must be set even if the shared library does not have
2664 any code in its "text" segment (thus the check for .hash
2665 to catch this situation). */
2666 if (m->sections[i]->flags & SEC_CODE
2667 || (strcmp (m->sections[i]->name, ".hash") == 0))
2668 m->p_flags |= (PF_X | PF_HP_CODE);
2669 }
2670 }
2671
2672 return true;
2673}
2674
3fab46d0
AM
2675/* Called when writing out an object file to decide the type of a
2676 symbol. */
2677static int
2678elf64_hppa_elf_get_symbol_type (elf_sym, type)
2679 Elf_Internal_Sym *elf_sym;
2680 int type;
2681{
2682 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2683 return STT_PARISC_MILLI;
2684 else
2685 return type;
2686}
2687
15bda425
JL
2688/* The hash bucket size is the standard one, namely 4. */
2689
2690const struct elf_size_info hppa64_elf_size_info =
2691{
2692 sizeof (Elf64_External_Ehdr),
2693 sizeof (Elf64_External_Phdr),
2694 sizeof (Elf64_External_Shdr),
2695 sizeof (Elf64_External_Rel),
2696 sizeof (Elf64_External_Rela),
2697 sizeof (Elf64_External_Sym),
2698 sizeof (Elf64_External_Dyn),
2699 sizeof (Elf_External_Note),
2700 4,
2701 1,
2702 64, 8,
2703 ELFCLASS64, EV_CURRENT,
2704 bfd_elf64_write_out_phdrs,
2705 bfd_elf64_write_shdrs_and_ehdr,
2706 bfd_elf64_write_relocs,
73ff0d56 2707 bfd_elf64_swap_symbol_in,
15bda425
JL
2708 bfd_elf64_swap_symbol_out,
2709 bfd_elf64_slurp_reloc_table,
2710 bfd_elf64_slurp_symbol_table,
2711 bfd_elf64_swap_dyn_in,
2712 bfd_elf64_swap_dyn_out,
2713 NULL,
2714 NULL,
2715 NULL,
2716 NULL
2717};
2718
2719#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2720#define TARGET_BIG_NAME "elf64-hppa"
2721#define ELF_ARCH bfd_arch_hppa
2722#define ELF_MACHINE_CODE EM_PARISC
2723/* This is not strictly correct. The maximum page size for PA2.0 is
2724 64M. But everything still uses 4k. */
2725#define ELF_MAXPAGESIZE 0x1000
2726#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2727#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2728#define elf_info_to_howto elf_hppa_info_to_howto
2729#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2730
2731#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2732#define elf_backend_object_p elf64_hppa_object_p
2733#define elf_backend_final_write_processing \
2734 elf_hppa_final_write_processing
99c79b2e 2735#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2736#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2737
2738#define elf_backend_relocate_section elf_hppa_relocate_section
2739
2740#define bfd_elf64_bfd_final_link elf_hppa_final_link
2741
2742#define elf_backend_create_dynamic_sections \
2743 elf64_hppa_create_dynamic_sections
2744#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2745
2746#define elf_backend_adjust_dynamic_symbol \
2747 elf64_hppa_adjust_dynamic_symbol
2748
2749#define elf_backend_size_dynamic_sections \
2750 elf64_hppa_size_dynamic_sections
2751
2752#define elf_backend_finish_dynamic_symbol \
2753 elf64_hppa_finish_dynamic_symbol
2754#define elf_backend_finish_dynamic_sections \
2755 elf64_hppa_finish_dynamic_sections
2756
2757/* Stuff for the BFD linker: */
2758#define bfd_elf64_bfd_link_hash_table_create \
2759 elf64_hppa_hash_table_create
2760
2761#define elf_backend_check_relocs \
2762 elf64_hppa_check_relocs
2763
2764#define elf_backend_size_info \
2765 hppa64_elf_size_info
2766
2767#define elf_backend_additional_program_headers \
2768 elf64_hppa_additional_program_headers
2769
2770#define elf_backend_modify_segment_map \
2771 elf64_hppa_modify_segment_map
2772
2773#define elf_backend_link_output_symbol_hook \
2774 elf64_hppa_link_output_symbol_hook
2775
15bda425
JL
2776#define elf_backend_want_got_plt 0
2777#define elf_backend_plt_readonly 0
2778#define elf_backend_want_plt_sym 0
2779#define elf_backend_got_header_size 0
2780#define elf_backend_plt_header_size 0
2781#define elf_backend_type_change_ok true
3fab46d0 2782#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
15bda425
JL
2783
2784#include "elf64-target.h"
d952f17a
AM
2785
2786#undef TARGET_BIG_SYM
2787#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2788#undef TARGET_BIG_NAME
2789#define TARGET_BIG_NAME "elf64-hppa-linux"
2790
2791#define INCLUDED_TARGET_FILE 1
2792#include "elf64-target.h"
This page took 0.27305 seconds and 4 git commands to generate.