Fixup whitespace
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
15bda425
JL
1/* Generic support for 64-bit ELF
2 Copyright 1999, 2000 Free Software Foundation, Inc.
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
33
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 unsigned long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 boolean (*func)(struct elf64_hppa_dyn_hash_entry *, PTR),
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425
JL
178
179
180/* This must follow the definitions of the various derived linker
181 hash tables and shared functions. */
182#include "elf-hppa.h"
183
184
185static boolean elf64_hppa_object_p
186 PARAMS ((bfd *));
187
188static boolean elf64_hppa_section_from_shdr
189 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
190
191static void elf64_hppa_post_process_headers
192 PARAMS ((bfd *, struct bfd_link_info *));
193
194static boolean elf64_hppa_create_dynamic_sections
195 PARAMS ((bfd *, struct bfd_link_info *));
196
197static boolean elf64_hppa_adjust_dynamic_symbol
198 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
199
200static boolean elf64_hppa_size_dynamic_sections
201 PARAMS ((bfd *, struct bfd_link_info *));
202
203static boolean elf64_hppa_finish_dynamic_symbol
204 PARAMS ((bfd *, struct bfd_link_info *,
205 struct elf_link_hash_entry *, Elf_Internal_Sym *));
206
207static boolean elf64_hppa_finish_dynamic_sections
208 PARAMS ((bfd *, struct bfd_link_info *));
209
210static boolean elf64_hppa_check_relocs
211 PARAMS ((bfd *, struct bfd_link_info *,
212 asection *, const Elf_Internal_Rela *));
213
214static boolean elf64_hppa_dynamic_symbol_p
215 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
216
217static boolean elf64_hppa_mark_exported_functions
218 PARAMS ((struct elf_link_hash_entry *, PTR));
219
220static boolean elf64_hppa_finalize_opd
221 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
222
223static boolean elf64_hppa_finalize_dlt
224 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
225
226static boolean allocate_global_data_dlt
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229static boolean allocate_global_data_plt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232static boolean allocate_global_data_stub
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235static boolean allocate_global_data_opd
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238static boolean get_reloc_section
239 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
240
241static boolean count_dyn_reloc
242 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
243 int, asection *, int, bfd_vma, bfd_vma));
244
245static boolean allocate_dynrel_entries
246 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
247
248static boolean elf64_hppa_finalize_dynreloc
249 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
250
251static boolean get_opd
252 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
253
254static boolean get_plt
255 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
256
257static boolean get_dlt
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260static boolean get_stub
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263static boolean
264elf64_hppa_dyn_hash_table_init (ht, abfd, new)
265 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 266 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
267 new_hash_entry_func new;
268{
269 memset (ht, 0, sizeof(*ht));
270 return bfd_hash_table_init (&ht->root, new);
271}
272
273static struct bfd_hash_entry*
274elf64_hppa_new_dyn_hash_entry (entry, table, string)
275 struct bfd_hash_entry *entry;
276 struct bfd_hash_table *table;
277 const char *string;
278{
279 struct elf64_hppa_dyn_hash_entry *ret;
280 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
281
282 /* Allocate the structure if it has not already been allocated by a
283 subclass. */
284 if (!ret)
285 ret = bfd_hash_allocate (table, sizeof (*ret));
286
287 if (!ret)
288 return 0;
289
290 /* Initialize our local data. All zeros, and definitely easier
291 than setting 8 bit fields. */
292 memset (ret, 0, sizeof(*ret));
293
294 /* Call the allocation method of the superclass. */
295 ret = ((struct elf64_hppa_dyn_hash_entry *)
296 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
297
298 return &ret->root;
299}
300
301/* Create the derived linker hash table. The PA64 ELF port uses this
302 derived hash table to keep information specific to the PA ElF
303 linker (without using static variables). */
304
305static struct bfd_link_hash_table*
306elf64_hppa_hash_table_create (abfd)
307 bfd *abfd;
308{
309 struct elf64_hppa_link_hash_table *ret;
310
311 ret = bfd_zalloc (abfd, sizeof (*ret));
312 if (!ret)
313 return 0;
314 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
315 _bfd_elf_link_hash_newfunc))
316 {
317 bfd_release (abfd, ret);
318 return 0;
319 }
320
321 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
322 elf64_hppa_new_dyn_hash_entry))
323 return 0;
324 return &ret->root.root;
325}
326
327/* Look up an entry in a PA64 ELF linker hash table. */
328
329static struct elf64_hppa_dyn_hash_entry *
330elf64_hppa_dyn_hash_lookup(table, string, create, copy)
331 struct elf64_hppa_dyn_hash_table *table;
332 const char *string;
333 boolean create, copy;
334{
335 return ((struct elf64_hppa_dyn_hash_entry *)
336 bfd_hash_lookup (&table->root, string, create, copy));
337}
338
339/* Traverse a PA64 ELF linker hash table. */
340
341static void
342elf64_hppa_dyn_hash_traverse (table, func, info)
343 struct elf64_hppa_dyn_hash_table *table;
344 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
345 PTR info;
346{
347 (bfd_hash_traverse
348 (&table->root,
349 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
350 info));
351}
352\f
353/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
354
355 Additionally we set the default architecture and machine. */
356static boolean
357elf64_hppa_object_p (abfd)
358 bfd *abfd;
359{
360 /* Set the right machine number for an HPPA ELF file. */
361 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
362}
363
364/* Given section type (hdr->sh_type), return a boolean indicating
365 whether or not the section is an elf64-hppa specific section. */
366static boolean
367elf64_hppa_section_from_shdr (abfd, hdr, name)
368 bfd *abfd;
369 Elf64_Internal_Shdr *hdr;
370 char *name;
371{
372 asection *newsect;
373
374 switch (hdr->sh_type)
375 {
376 case SHT_PARISC_EXT:
377 if (strcmp (name, ".PARISC.archext") != 0)
378 return false;
379 break;
380 case SHT_PARISC_UNWIND:
381 if (strcmp (name, ".PARISC.unwind") != 0)
382 return false;
383 break;
384 case SHT_PARISC_DOC:
385 case SHT_PARISC_ANNOT:
386 default:
387 return false;
388 }
389
390 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
391 return false;
392 newsect = hdr->bfd_section;
393
394 return true;
395}
396
397
398/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
399 name describes what was once potentially anonymous memory. We
400 allocate memory as necessary, possibly reusing PBUF/PLEN. */
401
402static const char *
0ba2a60e
AM
403get_dyn_name (sec, h, rel, pbuf, plen)
404 asection *sec;
15bda425
JL
405 struct elf_link_hash_entry *h;
406 const Elf_Internal_Rela *rel;
407 char **pbuf;
408 size_t *plen;
409{
410 size_t nlen, tlen;
411 char *buf;
412 size_t len;
413
414 if (h && rel->r_addend == 0)
415 return h->root.root.string;
416
417 if (h)
418 nlen = strlen (h->root.root.string);
419 else
0ba2a60e
AM
420 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
421 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
422
423 len = *plen;
424 buf = *pbuf;
425 if (len < tlen)
426 {
427 if (buf)
428 free (buf);
429 *pbuf = buf = malloc (tlen);
430 *plen = len = tlen;
431 if (!buf)
432 return NULL;
433 }
434
435 if (h)
436 {
437 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 438 buf[nlen++] = '+';
15bda425
JL
439 sprintf_vma (buf + nlen, rel->r_addend);
440 }
441 else
442 {
0ba2a60e
AM
443 nlen = sprintf (buf, "%x:%lx",
444 sec->id & 0xffffffff,
445 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
446 if (rel->r_addend)
447 {
448 buf[nlen++] = '+';
449 sprintf_vma (buf + nlen, rel->r_addend);
450 }
451 }
452
453 return buf;
454}
455
456/* SEC is a section containing relocs for an input BFD when linking; return
457 a suitable section for holding relocs in the output BFD for a link. */
458
459static boolean
460get_reloc_section (abfd, hppa_info, sec)
461 bfd *abfd;
462 struct elf64_hppa_link_hash_table *hppa_info;
463 asection *sec;
464{
465 const char *srel_name;
466 asection *srel;
467 bfd *dynobj;
468
469 srel_name = (bfd_elf_string_from_elf_section
470 (abfd, elf_elfheader(abfd)->e_shstrndx,
471 elf_section_data(sec)->rel_hdr.sh_name));
472 if (srel_name == NULL)
473 return false;
474
475 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
476 && strcmp (bfd_get_section_name (abfd, sec),
477 srel_name+5) == 0)
478 || (strncmp (srel_name, ".rel", 4) == 0
479 && strcmp (bfd_get_section_name (abfd, sec),
480 srel_name+4) == 0));
481
482 dynobj = hppa_info->root.dynobj;
483 if (!dynobj)
484 hppa_info->root.dynobj = dynobj = abfd;
485
486 srel = bfd_get_section_by_name (dynobj, srel_name);
487 if (srel == NULL)
488 {
489 srel = bfd_make_section (dynobj, srel_name);
490 if (srel == NULL
491 || !bfd_set_section_flags (dynobj, srel,
492 (SEC_ALLOC
493 | SEC_LOAD
494 | SEC_HAS_CONTENTS
495 | SEC_IN_MEMORY
496 | SEC_LINKER_CREATED
497 | SEC_READONLY))
498 || !bfd_set_section_alignment (dynobj, srel, 3))
499 return false;
500 }
501
502 hppa_info->other_rel_sec = srel;
503 return true;
504}
505
506/* Add a new entry to the list of dynamic relocations against DYN_H.
507
508 We use this to keep a record of all the FPTR relocations against a
509 particular symbol so that we can create FPTR relocations in the
510 output file. */
511
512static boolean
513count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
514 bfd *abfd;
515 struct elf64_hppa_dyn_hash_entry *dyn_h;
516 int type;
517 asection *sec;
518 int sec_symndx;
519 bfd_vma offset;
520 bfd_vma addend;
521{
522 struct elf64_hppa_dyn_reloc_entry *rent;
523
524 rent = (struct elf64_hppa_dyn_reloc_entry *)
525 bfd_alloc (abfd, sizeof (*rent));
526 if (!rent)
527 return false;
528
529 rent->next = dyn_h->reloc_entries;
530 rent->type = type;
531 rent->sec = sec;
532 rent->sec_symndx = sec_symndx;
533 rent->offset = offset;
534 rent->addend = addend;
535 dyn_h->reloc_entries = rent;
536
537 return true;
538}
539
540/* Scan the RELOCS and record the type of dynamic entries that each
541 referenced symbol needs. */
542
543static boolean
544elf64_hppa_check_relocs (abfd, info, sec, relocs)
545 bfd *abfd;
546 struct bfd_link_info *info;
547 asection *sec;
548 const Elf_Internal_Rela *relocs;
549{
550 struct elf64_hppa_link_hash_table *hppa_info;
551 const Elf_Internal_Rela *relend;
552 Elf_Internal_Shdr *symtab_hdr;
553 const Elf_Internal_Rela *rel;
554 asection *dlt, *plt, *stubs;
555 char *buf;
556 size_t buf_len;
557 int sec_symndx;
558
559 if (info->relocateable)
560 return true;
561
562 /* If this is the first dynamic object found in the link, create
563 the special sections required for dynamic linking. */
564 if (! elf_hash_table (info)->dynamic_sections_created)
565 {
566 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
567 return false;
568 }
569
570 hppa_info = elf64_hppa_hash_table (info);
571 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
572
573 /* If necessary, build a new table holding section symbols indices
574 for this BFD. This is disgusting. */
575
576 if (info->shared && hppa_info->section_syms_bfd != abfd)
577 {
832d951b 578 unsigned long i;
0ba2a60e 579 int highest_shndx;
15bda425
JL
580 Elf_Internal_Sym *local_syms, *isym;
581 Elf64_External_Sym *ext_syms, *esym;
582
583 /* We're done with the old cache of section index to section symbol
584 index information. Free it.
585
586 ?!? Note we leak the last section_syms array. Presumably we
587 could free it in one of the later routines in this file. */
588 if (hppa_info->section_syms)
589 free (hppa_info->section_syms);
590
591 /* Allocate memory for the internal and external symbols. */
592 local_syms
593 = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
594 * sizeof (Elf_Internal_Sym));
595 if (local_syms == NULL)
596 return false;
597
598 ext_syms
599 = (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
600 * sizeof (Elf64_External_Sym));
601 if (ext_syms == NULL)
602 {
603 free (local_syms);
604 return false;
605 }
606
607 /* Read in the local symbols. */
608 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
609 || bfd_read (ext_syms, 1,
610 (symtab_hdr->sh_info
611 * sizeof (Elf64_External_Sym)), abfd)
612 != (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
613 {
614 free (local_syms);
615 free (ext_syms);
616 return false;
617 }
618
619 /* Swap in the local symbols, also record the highest section index
620 referenced by the local symbols. */
621 isym = local_syms;
622 esym = ext_syms;
623 highest_shndx = 0;
624 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
625 {
626 bfd_elf64_swap_symbol_in (abfd, esym, isym);
627 if (isym->st_shndx > highest_shndx)
628 highest_shndx = isym->st_shndx;
629 }
630
631 /* Now we can free the external symbols. */
632 free (ext_syms);
633
634 /* Allocate an array to hold the section index to section symbol index
635 mapping. Bump by one since we start counting at zero. */
636 highest_shndx++;
637 hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
638 * sizeof (int));
639
640 /* Now walk the local symbols again. If we find a section symbol,
641 record the index of the symbol into the section_syms array. */
642 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
643 {
644 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
645 hppa_info->section_syms[isym->st_shndx] = i;
646 }
647
648 /* We are finished with the local symbols. Get rid of them. */
649 free (local_syms);
650
651 /* Record which BFD we built the section_syms mapping for. */
652 hppa_info->section_syms_bfd = abfd;
653 }
654
655 /* Record the symbol index for this input section. We may need it for
656 relocations when building shared libraries. When not building shared
657 libraries this value is never really used, but assign it to zero to
658 prevent out of bounds memory accesses in other routines. */
659 if (info->shared)
660 {
661 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
662
663 /* If we did not find a section symbol for this section, then
664 something went terribly wrong above. */
665 if (sec_symndx == -1)
666 return false;
667
668 sec_symndx = hppa_info->section_syms[sec_symndx];
669 }
670 else
671 sec_symndx = 0;
672
673 dlt = plt = stubs = NULL;
674 buf = NULL;
675 buf_len = 0;
676
677 relend = relocs + sec->reloc_count;
678 for (rel = relocs; rel < relend; ++rel)
679 {
680 enum {
681 NEED_DLT = 1,
682 NEED_PLT = 2,
683 NEED_STUB = 4,
684 NEED_OPD = 8,
685 NEED_DYNREL = 16,
686 };
687
688 struct elf_link_hash_entry *h = NULL;
689 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
690 struct elf64_hppa_dyn_hash_entry *dyn_h;
691 int need_entry;
692 const char *addr_name;
693 boolean maybe_dynamic;
694 int dynrel_type = R_PARISC_NONE;
695 static reloc_howto_type *howto;
696
697 if (r_symndx >= symtab_hdr->sh_info)
698 {
699 /* We're dealing with a global symbol -- find its hash entry
700 and mark it as being referenced. */
701 long indx = r_symndx - symtab_hdr->sh_info;
702 h = elf_sym_hashes (abfd)[indx];
703 while (h->root.type == bfd_link_hash_indirect
704 || h->root.type == bfd_link_hash_warning)
705 h = (struct elf_link_hash_entry *) h->root.u.i.link;
706
707 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
708 }
709
710 /* We can only get preliminary data on whether a symbol is
711 locally or externally defined, as not all of the input files
712 have yet been processed. Do something with what we know, as
713 this may help reduce memory usage and processing time later. */
714 maybe_dynamic = false;
715 if (h && ((info->shared && ! info->symbolic)
716 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
717 || h->root.type == bfd_link_hash_defweak))
718 maybe_dynamic = true;
719
720 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
721 need_entry = 0;
722 switch (howto->type)
723 {
724 /* These are simple indirect references to symbols through the
725 DLT. We need to create a DLT entry for any symbols which
726 appears in a DLTIND relocation. */
727 case R_PARISC_DLTIND21L:
728 case R_PARISC_DLTIND14R:
729 case R_PARISC_DLTIND14F:
730 case R_PARISC_DLTIND14WR:
731 case R_PARISC_DLTIND14DR:
732 need_entry = NEED_DLT;
733 break;
734
735 /* ?!? These need a DLT entry. But I have no idea what to do with
736 the "link time TP value. */
737 case R_PARISC_LTOFF_TP21L:
738 case R_PARISC_LTOFF_TP14R:
739 case R_PARISC_LTOFF_TP14F:
740 case R_PARISC_LTOFF_TP64:
741 case R_PARISC_LTOFF_TP14WR:
742 case R_PARISC_LTOFF_TP14DR:
743 case R_PARISC_LTOFF_TP16F:
744 case R_PARISC_LTOFF_TP16WF:
745 case R_PARISC_LTOFF_TP16DF:
746 need_entry = NEED_DLT;
747 break;
748
749 /* These are function calls. Depending on their precise target we
750 may need to make a stub for them. The stub uses the PLT, so we
751 need to create PLT entries for these symbols too. */
832d951b 752 case R_PARISC_PCREL12F:
15bda425
JL
753 case R_PARISC_PCREL17F:
754 case R_PARISC_PCREL22F:
755 case R_PARISC_PCREL32:
756 case R_PARISC_PCREL64:
757 case R_PARISC_PCREL21L:
758 case R_PARISC_PCREL17R:
759 case R_PARISC_PCREL17C:
760 case R_PARISC_PCREL14R:
761 case R_PARISC_PCREL14F:
762 case R_PARISC_PCREL22C:
763 case R_PARISC_PCREL14WR:
764 case R_PARISC_PCREL14DR:
765 case R_PARISC_PCREL16F:
766 case R_PARISC_PCREL16WF:
767 case R_PARISC_PCREL16DF:
768 need_entry = (NEED_PLT | NEED_STUB);
769 break;
770
771 case R_PARISC_PLTOFF21L:
772 case R_PARISC_PLTOFF14R:
773 case R_PARISC_PLTOFF14F:
774 case R_PARISC_PLTOFF14WR:
775 case R_PARISC_PLTOFF14DR:
776 case R_PARISC_PLTOFF16F:
777 case R_PARISC_PLTOFF16WF:
778 case R_PARISC_PLTOFF16DF:
779 need_entry = (NEED_PLT);
780 break;
781
782 case R_PARISC_DIR64:
783 if (info->shared || maybe_dynamic)
784 need_entry = (NEED_DYNREL);
785 dynrel_type = R_PARISC_DIR64;
786 break;
787
788 /* This is an indirect reference through the DLT to get the address
789 of a OPD descriptor. Thus we need to make a DLT entry that points
790 to an OPD entry. */
791 case R_PARISC_LTOFF_FPTR21L:
792 case R_PARISC_LTOFF_FPTR14R:
793 case R_PARISC_LTOFF_FPTR14WR:
794 case R_PARISC_LTOFF_FPTR14DR:
795 case R_PARISC_LTOFF_FPTR32:
796 case R_PARISC_LTOFF_FPTR64:
797 case R_PARISC_LTOFF_FPTR16F:
798 case R_PARISC_LTOFF_FPTR16WF:
799 case R_PARISC_LTOFF_FPTR16DF:
800 if (info->shared || maybe_dynamic)
801 need_entry = (NEED_DLT | NEED_OPD);
802 else
803 need_entry = (NEED_DLT | NEED_OPD);
804 dynrel_type = R_PARISC_FPTR64;
805 break;
806
807 /* This is a simple OPD entry. */
808 case R_PARISC_FPTR64:
809 if (info->shared || maybe_dynamic)
810 need_entry = (NEED_OPD | NEED_DYNREL);
811 else
812 need_entry = (NEED_OPD);
813 dynrel_type = R_PARISC_FPTR64;
814 break;
815
816 /* Add more cases as needed. */
817 }
818
819 if (!need_entry)
820 continue;
821
822 /* Collect a canonical name for this address. */
0ba2a60e 823 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
824
825 /* Collect the canonical entry data for this address. */
826 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
827 addr_name, true, true);
828 BFD_ASSERT (dyn_h);
829
830 /* Stash away enough information to be able to find this symbol
831 regardless of whether or not it is local or global. */
832 dyn_h->h = h;
833 dyn_h->owner = abfd;
834 dyn_h->sym_indx = r_symndx;
835
836 /* ?!? We may need to do some error checking in here. */
837 /* Create what's needed. */
838 if (need_entry & NEED_DLT)
839 {
840 if (! hppa_info->dlt_sec
841 && ! get_dlt (abfd, info, hppa_info))
842 goto err_out;
843 dyn_h->want_dlt = 1;
844 }
845
846 if (need_entry & NEED_PLT)
847 {
848 if (! hppa_info->plt_sec
849 && ! get_plt (abfd, info, hppa_info))
850 goto err_out;
851 dyn_h->want_plt = 1;
852 }
853
854 if (need_entry & NEED_STUB)
855 {
856 if (! hppa_info->stub_sec
857 && ! get_stub (abfd, info, hppa_info))
858 goto err_out;
859 dyn_h->want_stub = 1;
860 }
861
862 if (need_entry & NEED_OPD)
863 {
864 if (! hppa_info->opd_sec
865 && ! get_opd (abfd, info, hppa_info))
866 goto err_out;
867
868 dyn_h->want_opd = 1;
869
870 /* FPTRs are not allocated by the dynamic linker for PA64, though
871 it is possible that will change in the future. */
872
873 /* This could be a local function that had its address taken, in
874 which case H will be NULL. */
875 if (h)
876 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
877 }
878
879 /* Add a new dynamic relocation to the chain of dynamic
880 relocations for this symbol. */
881 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
882 {
883 if (! hppa_info->other_rel_sec
884 && ! get_reloc_section (abfd, hppa_info, sec))
885 goto err_out;
886
887 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
888 sec_symndx, rel->r_offset, rel->r_addend))
889 goto err_out;
890
891 /* If we are building a shared library and we just recorded
892 a dynamic R_PARISC_FPTR64 relocation, then make sure the
893 section symbol for this section ends up in the dynamic
894 symbol table. */
895 if (info->shared && dynrel_type == R_PARISC_FPTR64
896 && ! (_bfd_elf64_link_record_local_dynamic_symbol
897 (info, abfd, sec_symndx)))
898 return false;
899 }
900 }
901
902 if (buf)
903 free (buf);
904 return true;
905
906 err_out:
907 if (buf)
908 free (buf);
909 return false;
910}
911
912struct elf64_hppa_allocate_data
913{
914 struct bfd_link_info *info;
915 bfd_size_type ofs;
916};
917
918/* Should we do dynamic things to this symbol? */
919
920static boolean
921elf64_hppa_dynamic_symbol_p (h, info)
922 struct elf_link_hash_entry *h;
923 struct bfd_link_info *info;
924{
925 if (h == NULL)
926 return false;
927
928 while (h->root.type == bfd_link_hash_indirect
929 || h->root.type == bfd_link_hash_warning)
930 h = (struct elf_link_hash_entry *) h->root.u.i.link;
931
932 if (h->dynindx == -1)
933 return false;
934
935 if (h->root.type == bfd_link_hash_undefweak
936 || h->root.type == bfd_link_hash_defweak)
937 return true;
938
939 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
940 return false;
941
942 if ((info->shared && !info->symbolic)
943 || ((h->elf_link_hash_flags
944 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
945 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
946 return true;
947
948 return false;
949}
950
951/* Mark all funtions exported by this file so that we can later allocate
952 entries in .opd for them. */
953
954static boolean
955elf64_hppa_mark_exported_functions (h, data)
956 struct elf_link_hash_entry *h;
957 PTR data;
958{
959 struct bfd_link_info *info = (struct bfd_link_info *)data;
960 struct elf64_hppa_link_hash_table *hppa_info;
961
962 hppa_info = elf64_hppa_hash_table (info);
963
964 if (h
965 && (h->root.type == bfd_link_hash_defined
966 || h->root.type == bfd_link_hash_defweak)
967 && h->root.u.def.section->output_section != NULL
968 && h->type == STT_FUNC)
969 {
970 struct elf64_hppa_dyn_hash_entry *dyn_h;
971
972 /* Add this symbol to the PA64 linker hash table. */
973 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
974 h->root.root.string, true, true);
975 BFD_ASSERT (dyn_h);
976 dyn_h->h = h;
977
978 if (! hppa_info->opd_sec
979 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
980 return false;
981
982 dyn_h->want_opd = 1;
832d951b
AM
983 /* Put a flag here for output_symbol_hook. */
984 dyn_h->st_shndx = -1;
15bda425
JL
985 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
986 }
987
988 return true;
989}
990
991/* Allocate space for a DLT entry. */
992
993static boolean
994allocate_global_data_dlt (dyn_h, data)
995 struct elf64_hppa_dyn_hash_entry *dyn_h;
996 PTR data;
997{
998 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
999
1000 if (dyn_h->want_dlt)
1001 {
1002 struct elf_link_hash_entry *h = dyn_h->h;
1003
1004 if (x->info->shared)
1005 {
1006 /* Possibly add the symbol to the local dynamic symbol
1007 table since we might need to create a dynamic relocation
1008 against it. */
1009 if (! h
1010 || (h && h->dynindx == -1))
1011 {
1012 bfd *owner;
1013 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1014
1015 if (!_bfd_elf64_link_record_local_dynamic_symbol
1016 (x->info, owner, dyn_h->sym_indx))
1017 return false;
1018 }
1019 }
1020
1021 dyn_h->dlt_offset = x->ofs;
1022 x->ofs += DLT_ENTRY_SIZE;
1023 }
1024 return true;
1025}
1026
1027/* Allocate space for a DLT.PLT entry. */
1028
1029static boolean
1030allocate_global_data_plt (dyn_h, data)
1031 struct elf64_hppa_dyn_hash_entry *dyn_h;
1032 PTR data;
1033{
1034 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1035
1036 if (dyn_h->want_plt
1037 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1038 && !((dyn_h->h->root.type == bfd_link_hash_defined
1039 || dyn_h->h->root.type == bfd_link_hash_defweak)
1040 && dyn_h->h->root.u.def.section->output_section != NULL))
1041 {
1042 dyn_h->plt_offset = x->ofs;
1043 x->ofs += PLT_ENTRY_SIZE;
1044 if (dyn_h->plt_offset < 0x2000)
1045 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1046 }
1047 else
1048 dyn_h->want_plt = 0;
1049
1050 return true;
1051}
1052
1053/* Allocate space for a STUB entry. */
1054
1055static boolean
1056allocate_global_data_stub (dyn_h, data)
1057 struct elf64_hppa_dyn_hash_entry *dyn_h;
1058 PTR data;
1059{
1060 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1061
1062 if (dyn_h->want_stub
1063 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1064 && !((dyn_h->h->root.type == bfd_link_hash_defined
1065 || dyn_h->h->root.type == bfd_link_hash_defweak)
1066 && dyn_h->h->root.u.def.section->output_section != NULL))
1067 {
1068 dyn_h->stub_offset = x->ofs;
1069 x->ofs += sizeof (plt_stub);
1070 }
1071 else
1072 dyn_h->want_stub = 0;
1073 return true;
1074}
1075
1076/* Allocate space for a FPTR entry. */
1077
1078static boolean
1079allocate_global_data_opd (dyn_h, data)
1080 struct elf64_hppa_dyn_hash_entry *dyn_h;
1081 PTR data;
1082{
1083 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1084
1085 if (dyn_h->want_opd)
1086 {
1087 struct elf_link_hash_entry *h = dyn_h->h;
1088
1089 if (h)
1090 while (h->root.type == bfd_link_hash_indirect
1091 || h->root.type == bfd_link_hash_warning)
1092 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1093
1094 /* We never need an opd entry for a symbol which is not
1095 defined by this output file. */
1096 if (h && h->root.type == bfd_link_hash_undefined)
1097 dyn_h->want_opd = 0;
1098
1099 /* If we are creating a shared library, took the address of a local
1100 function or might export this function from this object file, then
1101 we have to create an opd descriptor. */
1102 else if (x->info->shared
1103 || h == NULL
1104 || h->dynindx == -1
1105 || ((h->root.type == bfd_link_hash_defined
1106 || h->root.type == bfd_link_hash_defweak)
1107 && h->root.u.def.section->output_section != NULL))
1108 {
1109 /* If we are creating a shared library, then we will have to
1110 create a runtime relocation for the symbol to properly
1111 initialize the .opd entry. Make sure the symbol gets
1112 added to the dynamic symbol table. */
1113 if (x->info->shared
1114 && (h == NULL || (h->dynindx == -1)))
1115 {
1116 bfd *owner;
1117 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1118
1119 if (!_bfd_elf64_link_record_local_dynamic_symbol
1120 (x->info, owner, dyn_h->sym_indx))
1121 return false;
1122 }
1123
1124 /* This may not be necessary or desirable anymore now that
1125 we have some support for dealing with section symbols
1126 in dynamic relocs. But name munging does make the result
1127 much easier to debug. ie, the EPLT reloc will reference
1128 a symbol like .foobar, instead of .text + offset. */
1129 if (x->info->shared && h)
1130 {
1131 char *new_name;
1132 struct elf_link_hash_entry *nh;
1133
1134 new_name = alloca (strlen (h->root.root.string) + 2);
1135 new_name[0] = '.';
1136 strcpy (new_name + 1, h->root.root.string);
1137
1138 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1139 new_name, true, true, true);
1140
1141 nh->root.type = h->root.type;
1142 nh->root.u.def.value = h->root.u.def.value;
1143 nh->root.u.def.section = h->root.u.def.section;
1144
1145 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1146 return false;
1147
1148 }
1149 dyn_h->opd_offset = x->ofs;
1150 x->ofs += OPD_ENTRY_SIZE;
1151 }
1152
1153 /* Otherwise we do not need an opd entry. */
1154 else
1155 dyn_h->want_opd = 0;
1156 }
1157 return true;
1158}
1159
1160/* HP requires the EI_OSABI field to be filled in. The assignment to
1161 EI_ABIVERSION may not be strictly necessary. */
1162
1163static void
1164elf64_hppa_post_process_headers (abfd, link_info)
1165 bfd * abfd;
1166 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1167{
1168 Elf_Internal_Ehdr * i_ehdrp;
1169
1170 i_ehdrp = elf_elfheader (abfd);
1171
1172 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1173 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1174}
1175
1176/* Create function descriptor section (.opd). This section is called .opd
1177 because it contains "official prodecure descriptors". The "official"
1178 refers to the fact that these descriptors are used when taking the address
1179 of a procedure, thus ensuring a unique address for each procedure. */
1180
1181static boolean
1182get_opd (abfd, info, hppa_info)
1183 bfd *abfd;
edd21aca 1184 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1185 struct elf64_hppa_link_hash_table *hppa_info;
1186{
1187 asection *opd;
1188 bfd *dynobj;
1189
1190 opd = hppa_info->opd_sec;
1191 if (!opd)
1192 {
1193 dynobj = hppa_info->root.dynobj;
1194 if (!dynobj)
1195 hppa_info->root.dynobj = dynobj = abfd;
1196
1197 opd = bfd_make_section (dynobj, ".opd");
1198 if (!opd
1199 || !bfd_set_section_flags (dynobj, opd,
1200 (SEC_ALLOC
1201 | SEC_LOAD
1202 | SEC_HAS_CONTENTS
1203 | SEC_IN_MEMORY
1204 | SEC_LINKER_CREATED))
1205 || !bfd_set_section_alignment (abfd, opd, 3))
1206 {
1207 BFD_ASSERT (0);
1208 return false;
1209 }
1210
1211 hppa_info->opd_sec = opd;
1212 }
1213
1214 return true;
1215}
1216
1217/* Create the PLT section. */
1218
1219static boolean
1220get_plt (abfd, info, hppa_info)
1221 bfd *abfd;
edd21aca 1222 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1223 struct elf64_hppa_link_hash_table *hppa_info;
1224{
1225 asection *plt;
1226 bfd *dynobj;
1227
1228 plt = hppa_info->plt_sec;
1229 if (!plt)
1230 {
1231 dynobj = hppa_info->root.dynobj;
1232 if (!dynobj)
1233 hppa_info->root.dynobj = dynobj = abfd;
1234
1235 plt = bfd_make_section (dynobj, ".plt");
1236 if (!plt
1237 || !bfd_set_section_flags (dynobj, plt,
1238 (SEC_ALLOC
1239 | SEC_LOAD
1240 | SEC_HAS_CONTENTS
1241 | SEC_IN_MEMORY
1242 | SEC_LINKER_CREATED))
1243 || !bfd_set_section_alignment (abfd, plt, 3))
1244 {
1245 BFD_ASSERT (0);
1246 return false;
1247 }
1248
1249 hppa_info->plt_sec = plt;
1250 }
1251
1252 return true;
1253}
1254
1255/* Create the DLT section. */
1256
1257static boolean
1258get_dlt (abfd, info, hppa_info)
1259 bfd *abfd;
edd21aca 1260 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1261 struct elf64_hppa_link_hash_table *hppa_info;
1262{
1263 asection *dlt;
1264 bfd *dynobj;
1265
1266 dlt = hppa_info->dlt_sec;
1267 if (!dlt)
1268 {
1269 dynobj = hppa_info->root.dynobj;
1270 if (!dynobj)
1271 hppa_info->root.dynobj = dynobj = abfd;
1272
1273 dlt = bfd_make_section (dynobj, ".dlt");
1274 if (!dlt
1275 || !bfd_set_section_flags (dynobj, dlt,
1276 (SEC_ALLOC
1277 | SEC_LOAD
1278 | SEC_HAS_CONTENTS
1279 | SEC_IN_MEMORY
1280 | SEC_LINKER_CREATED))
1281 || !bfd_set_section_alignment (abfd, dlt, 3))
1282 {
1283 BFD_ASSERT (0);
1284 return false;
1285 }
1286
1287 hppa_info->dlt_sec = dlt;
1288 }
1289
1290 return true;
1291}
1292
1293/* Create the stubs section. */
1294
1295static boolean
1296get_stub (abfd, info, hppa_info)
1297 bfd *abfd;
edd21aca 1298 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1299 struct elf64_hppa_link_hash_table *hppa_info;
1300{
1301 asection *stub;
1302 bfd *dynobj;
1303
1304 stub = hppa_info->stub_sec;
1305 if (!stub)
1306 {
1307 dynobj = hppa_info->root.dynobj;
1308 if (!dynobj)
1309 hppa_info->root.dynobj = dynobj = abfd;
1310
1311 stub = bfd_make_section (dynobj, ".stub");
1312 if (!stub
1313 || !bfd_set_section_flags (dynobj, stub,
1314 (SEC_ALLOC
1315 | SEC_LOAD
1316 | SEC_HAS_CONTENTS
1317 | SEC_IN_MEMORY
1318 | SEC_READONLY
1319 | SEC_LINKER_CREATED))
1320 || !bfd_set_section_alignment (abfd, stub, 3))
1321 {
1322 BFD_ASSERT (0);
1323 return false;
1324 }
1325
1326 hppa_info->stub_sec = stub;
1327 }
1328
1329 return true;
1330}
1331
1332/* Create sections necessary for dynamic linking. This is only a rough
1333 cut and will likely change as we learn more about the somewhat
1334 unusual dynamic linking scheme HP uses.
1335
1336 .stub:
1337 Contains code to implement cross-space calls. The first time one
1338 of the stubs is used it will call into the dynamic linker, later
1339 calls will go straight to the target.
1340
1341 The only stub we support right now looks like
1342
1343 ldd OFFSET(%dp),%r1
1344 bve %r0(%r1)
1345 ldd OFFSET+8(%dp),%dp
1346
1347 Other stubs may be needed in the future. We may want the remove
1348 the break/nop instruction. It is only used right now to keep the
1349 offset of a .plt entry and a .stub entry in sync.
1350
1351 .dlt:
1352 This is what most people call the .got. HP used a different name.
1353 Losers.
1354
1355 .rela.dlt:
1356 Relocations for the DLT.
1357
1358 .plt:
1359 Function pointers as address,gp pairs.
1360
1361 .rela.plt:
1362 Should contain dynamic IPLT (and EPLT?) relocations.
1363
1364 .opd:
1365 FPTRS
1366
1367 .rela.opd:
1368 EPLT relocations for symbols exported from shared libraries. */
1369
1370static boolean
1371elf64_hppa_create_dynamic_sections (abfd, info)
1372 bfd *abfd;
1373 struct bfd_link_info *info;
1374{
1375 asection *s;
1376
1377 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1378 return false;
1379
1380 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1381 return false;
1382
1383 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1384 return false;
1385
1386 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1387 return false;
1388
1389 s = bfd_make_section(abfd, ".rela.dlt");
1390 if (s == NULL
1391 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1392 | SEC_HAS_CONTENTS
1393 | SEC_IN_MEMORY
1394 | SEC_READONLY
1395 | SEC_LINKER_CREATED))
1396 || !bfd_set_section_alignment (abfd, s, 3))
1397 return false;
1398 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1399
1400 s = bfd_make_section(abfd, ".rela.plt");
1401 if (s == NULL
1402 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1403 | SEC_HAS_CONTENTS
1404 | SEC_IN_MEMORY
1405 | SEC_READONLY
1406 | SEC_LINKER_CREATED))
1407 || !bfd_set_section_alignment (abfd, s, 3))
1408 return false;
1409 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1410
1411 s = bfd_make_section(abfd, ".rela.data");
1412 if (s == NULL
1413 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1414 | SEC_HAS_CONTENTS
1415 | SEC_IN_MEMORY
1416 | SEC_READONLY
1417 | SEC_LINKER_CREATED))
1418 || !bfd_set_section_alignment (abfd, s, 3))
1419 return false;
1420 elf64_hppa_hash_table (info)->other_rel_sec = s;
1421
1422 s = bfd_make_section(abfd, ".rela.opd");
1423 if (s == NULL
1424 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1425 | SEC_HAS_CONTENTS
1426 | SEC_IN_MEMORY
1427 | SEC_READONLY
1428 | SEC_LINKER_CREATED))
1429 || !bfd_set_section_alignment (abfd, s, 3))
1430 return false;
1431 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1432
1433 return true;
1434}
1435
1436/* Allocate dynamic relocations for those symbols that turned out
1437 to be dynamic. */
1438
1439static boolean
1440allocate_dynrel_entries (dyn_h, data)
1441 struct elf64_hppa_dyn_hash_entry *dyn_h;
1442 PTR data;
1443{
1444 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1445 struct elf64_hppa_link_hash_table *hppa_info;
1446 struct elf64_hppa_dyn_reloc_entry *rent;
1447 boolean dynamic_symbol, shared;
1448
1449 hppa_info = elf64_hppa_hash_table (x->info);
1450 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1451 shared = x->info->shared;
1452
1453 /* We may need to allocate relocations for a non-dynamic symbol
1454 when creating a shared library. */
1455 if (!dynamic_symbol && !shared)
1456 return true;
1457
1458 /* Take care of the normal data relocations. */
1459
1460 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1461 {
1462 switch (rent->type)
1463 {
1464 case R_PARISC_FPTR64:
1465 /* Allocate one iff we are not building a shared library and
1466 !want_opd, which by this point will be true only if we're
1467 actually allocating one statically in the main executable. */
1468 if (!x->info->shared && dyn_h->want_opd)
1469 continue;
1470 break;
1471 }
1472 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1473
1474 /* Make sure this symbol gets into the dynamic symbol table if it is
1475 not already recorded. ?!? This should not be in the loop since
1476 the symbol need only be added once. */
1477 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1478 if (!_bfd_elf64_link_record_local_dynamic_symbol
1479 (x->info, rent->sec->owner, dyn_h->sym_indx))
1480 return false;
1481 }
1482
1483 /* Take care of the GOT and PLT relocations. */
1484
1485 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1486 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1487
1488 /* If we are building a shared library, then every symbol that has an
1489 opd entry will need an EPLT relocation to relocate the symbol's address
1490 and __gp value based on the runtime load address. */
1491 if (shared && dyn_h->want_opd)
1492 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1493
1494 if (dyn_h->want_plt && dynamic_symbol)
1495 {
1496 bfd_size_type t = 0;
1497
1498 /* Dynamic symbols get one IPLT relocation. Local symbols in
1499 shared libraries get two REL relocations. Local symbols in
1500 main applications get nothing. */
1501 if (dynamic_symbol)
1502 t = sizeof (Elf64_External_Rela);
1503 else if (shared)
1504 t = 2 * sizeof (Elf64_External_Rela);
1505
1506 hppa_info->plt_rel_sec->_raw_size += t;
1507 }
1508
1509 return true;
1510}
1511
1512/* Adjust a symbol defined by a dynamic object and referenced by a
1513 regular object. */
1514
1515static boolean
1516elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1517 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1518 struct elf_link_hash_entry *h;
1519{
1520 /* ??? Undefined symbols with PLT entries should be re-defined
1521 to be the PLT entry. */
1522
1523 /* If this is a weak symbol, and there is a real definition, the
1524 processor independent code will have arranged for us to see the
1525 real definition first, and we can just use the same value. */
1526 if (h->weakdef != NULL)
1527 {
1528 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1529 || h->weakdef->root.type == bfd_link_hash_defweak);
1530 h->root.u.def.section = h->weakdef->root.u.def.section;
1531 h->root.u.def.value = h->weakdef->root.u.def.value;
1532 return true;
1533 }
1534
1535 /* If this is a reference to a symbol defined by a dynamic object which
1536 is not a function, we might allocate the symbol in our .dynbss section
1537 and allocate a COPY dynamic relocation.
1538
1539 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1540 of hackery. */
1541
1542 return true;
1543}
1544
1545/* Set the final sizes of the dynamic sections and allocate memory for
1546 the contents of our special sections. */
1547
1548static boolean
1549elf64_hppa_size_dynamic_sections (output_bfd, info)
1550 bfd *output_bfd;
1551 struct bfd_link_info *info;
1552{
1553 bfd *dynobj;
1554 asection *s;
1555 boolean plt;
1556 boolean relocs;
1557 boolean reltext;
15bda425
JL
1558 struct elf64_hppa_allocate_data data;
1559 struct elf64_hppa_link_hash_table *hppa_info;
1560
1561 hppa_info = elf64_hppa_hash_table (info);
1562
1563 dynobj = elf_hash_table (info)->dynobj;
1564 BFD_ASSERT (dynobj != NULL);
1565
1566 if (elf_hash_table (info)->dynamic_sections_created)
1567 {
1568 /* Set the contents of the .interp section to the interpreter. */
1569 if (! info->shared)
1570 {
1571 s = bfd_get_section_by_name (dynobj, ".interp");
1572 BFD_ASSERT (s != NULL);
1573 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1574 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1575 }
1576 }
1577 else
1578 {
1579 /* We may have created entries in the .rela.got section.
1580 However, if we are not creating the dynamic sections, we will
1581 not actually use these entries. Reset the size of .rela.dlt,
1582 which will cause it to get stripped from the output file
1583 below. */
1584 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1585 if (s != NULL)
1586 s->_raw_size = 0;
1587 }
1588
1589 /* Allocate the GOT entries. */
1590
1591 data.info = info;
1592 if (elf64_hppa_hash_table (info)->dlt_sec)
1593 {
1594 data.ofs = 0x0;
1595 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1596 allocate_global_data_dlt, &data);
1597 hppa_info->dlt_sec->_raw_size = data.ofs;
1598
1599 data.ofs = 0x0;
1600 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1601 allocate_global_data_plt, &data);
1602 hppa_info->plt_sec->_raw_size = data.ofs;
1603
1604 data.ofs = 0x0;
1605 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1606 allocate_global_data_stub, &data);
1607 hppa_info->stub_sec->_raw_size = data.ofs;
1608 }
1609
1610 /* Mark each function this program exports so that we will allocate
1611 space in the .opd section for each function's FPTR.
1612
1613 We have to traverse the main linker hash table since we have to
1614 find functions which may not have been mentioned in any relocs. */
1615 elf_link_hash_traverse (elf_hash_table (info),
1616 elf64_hppa_mark_exported_functions,
1617 info);
1618
1619 /* Allocate space for entries in the .opd section. */
1620 if (elf64_hppa_hash_table (info)->opd_sec)
1621 {
1622 data.ofs = 0;
1623 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1624 allocate_global_data_opd, &data);
1625 hppa_info->opd_sec->_raw_size = data.ofs;
1626 }
1627
1628 /* Now allocate space for dynamic relocations, if necessary. */
1629 if (hppa_info->root.dynamic_sections_created)
1630 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1631 allocate_dynrel_entries, &data);
1632
1633 /* The sizes of all the sections are set. Allocate memory for them. */
1634 plt = false;
1635 relocs = false;
1636 reltext = false;
1637 for (s = dynobj->sections; s != NULL; s = s->next)
1638 {
1639 const char *name;
1640 boolean strip;
1641
1642 if ((s->flags & SEC_LINKER_CREATED) == 0)
1643 continue;
1644
1645 /* It's OK to base decisions on the section name, because none
1646 of the dynobj section names depend upon the input files. */
1647 name = bfd_get_section_name (dynobj, s);
1648
1649 strip = 0;
1650
1651 if (strcmp (name, ".plt") == 0)
1652 {
1653 if (s->_raw_size == 0)
1654 {
1655 /* Strip this section if we don't need it; see the
1656 comment below. */
1657 strip = true;
1658 }
1659 else
1660 {
1661 /* Remember whether there is a PLT. */
1662 plt = true;
1663 }
1664 }
1665 else if (strcmp (name, ".dlt") == 0)
1666 {
1667 if (s->_raw_size == 0)
1668 {
1669 /* Strip this section if we don't need it; see the
1670 comment below. */
1671 strip = true;
1672 }
1673 }
1674 else if (strcmp (name, ".opd") == 0)
1675 {
1676 if (s->_raw_size == 0)
1677 {
1678 /* Strip this section if we don't need it; see the
1679 comment below. */
1680 strip = true;
1681 }
1682 }
1683 else if (strncmp (name, ".rela", 4) == 0)
1684 {
1685 if (s->_raw_size == 0)
1686 {
1687 /* If we don't need this section, strip it from the
1688 output file. This is mostly to handle .rela.bss and
1689 .rela.plt. We must create both sections in
1690 create_dynamic_sections, because they must be created
1691 before the linker maps input sections to output
1692 sections. The linker does that before
1693 adjust_dynamic_symbol is called, and it is that
1694 function which decides whether anything needs to go
1695 into these sections. */
1696 strip = true;
1697 }
1698 else
1699 {
1700 asection *target;
1701
1702 /* Remember whether there are any reloc sections other
1703 than .rela.plt. */
1704 if (strcmp (name, ".rela.plt") != 0)
1705 {
1706 const char *outname;
1707
1708 relocs = true;
1709
1710 /* If this relocation section applies to a read only
1711 section, then we probably need a DT_TEXTREL
1712 entry. The entries in the .rela.plt section
1713 really apply to the .got section, which we
1714 created ourselves and so know is not readonly. */
1715 outname = bfd_get_section_name (output_bfd,
1716 s->output_section);
1717 target = bfd_get_section_by_name (output_bfd, outname + 4);
1718 if (target != NULL
1719 && (target->flags & SEC_READONLY) != 0
1720 && (target->flags & SEC_ALLOC) != 0)
1721 reltext = true;
1722 }
1723
1724 /* We use the reloc_count field as a counter if we need
1725 to copy relocs into the output file. */
1726 s->reloc_count = 0;
1727 }
1728 }
1729 else if (strncmp (name, ".dlt", 4) != 0
1730 && strcmp (name, ".stub") != 0
1731 && strcmp (name, ".got") != 0)
1732 {
1733 /* It's not one of our sections, so don't allocate space. */
1734 continue;
1735 }
1736
1737 if (strip)
1738 {
1739 _bfd_strip_section_from_output (info, s);
1740 continue;
1741 }
1742
1743 /* Allocate memory for the section contents if it has not
832d951b
AM
1744 been allocated already. We use bfd_zalloc here in case
1745 unused entries are not reclaimed before the section's
1746 contents are written out. This should not happen, but this
1747 way if it does, we get a R_PARISC_NONE reloc instead of
1748 garbage. */
15bda425
JL
1749 if (s->contents == NULL)
1750 {
7a9af8c4 1751 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1752 if (s->contents == NULL && s->_raw_size != 0)
1753 return false;
1754 }
1755 }
1756
1757 if (elf_hash_table (info)->dynamic_sections_created)
1758 {
1759 /* Always create a DT_PLTGOT. It actually has nothing to do with
1760 the PLT, it is how we communicate the __gp value of a load
1761 module to the dynamic linker. */
1762 if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
1763 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
1764 return false;
1765
1766 /* Add some entries to the .dynamic section. We fill in the
1767 values later, in elf64_hppa_finish_dynamic_sections, but we
1768 must add the entries now so that we get the correct size for
1769 the .dynamic section. The DT_DEBUG entry is filled in by the
1770 dynamic linker and used by the debugger. */
1771 if (! info->shared)
1772 {
1773 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
1774 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
1775 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
1776 return false;
1777 }
1778
1779 if (plt)
1780 {
1781 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1782 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1783 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1784 return false;
1785 }
1786
1787 if (relocs)
1788 {
1789 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1792 sizeof (Elf64_External_Rela)))
1793 return false;
1794 }
1795
1796 if (reltext)
1797 {
1798 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1799 return false;
d6cf2879 1800 info->flags |= DF_TEXTREL;
15bda425
JL
1801 }
1802 }
1803
1804 return true;
1805}
1806
1807/* Called after we have output the symbol into the dynamic symbol
1808 table, but before we output the symbol into the normal symbol
1809 table.
1810
1811 For some symbols we had to change their address when outputting
1812 the dynamic symbol table. We undo that change here so that
1813 the symbols have their expected value in the normal symbol
1814 table. Ick. */
1815
1816static boolean
1817elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1818 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1819 struct bfd_link_info *info;
1820 const char *name;
1821 Elf_Internal_Sym *sym;
edd21aca 1822 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1823{
1824 struct elf64_hppa_link_hash_table *hppa_info;
1825 struct elf64_hppa_dyn_hash_entry *dyn_h;
1826
1827 /* We may be called with the file symbol or section symbols.
1828 They never need munging, so it is safe to ignore them. */
1829 if (!name)
1830 return true;
1831
1832 /* Get the PA dyn_symbol (if any) associated with NAME. */
1833 hppa_info = elf64_hppa_hash_table (info);
1834 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1835 name, false, false);
1836
832d951b
AM
1837 /* Function symbols for which we created .opd entries *may* have been
1838 munged by finish_dynamic_symbol and have to be un-munged here.
1839
1840 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1841 into non-dynamic ones, so we initialize st_shndx to -1 in
1842 mark_exported_functions and check to see if it was overwritten
1843 here instead of just checking dyn_h->h->dynindx. */
1844 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1845 {
1846 /* Restore the saved value and section index. */
1847 sym->st_value = dyn_h->st_value;
1848 sym->st_shndx = dyn_h->st_shndx;
1849 }
1850
1851 return true;
1852}
1853
1854/* Finish up dynamic symbol handling. We set the contents of various
1855 dynamic sections here. */
1856
1857static boolean
1858elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1859 bfd *output_bfd;
1860 struct bfd_link_info *info;
1861 struct elf_link_hash_entry *h;
1862 Elf_Internal_Sym *sym;
1863{
1864 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1865 struct elf64_hppa_link_hash_table *hppa_info;
1866 struct elf64_hppa_dyn_hash_entry *dyn_h;
1867
1868 hppa_info = elf64_hppa_hash_table (info);
1869 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1870 h->root.root.string, false, false);
1871
1872 stub = hppa_info->stub_sec;
1873 splt = hppa_info->plt_sec;
1874 sdlt = hppa_info->dlt_sec;
1875 sopd = hppa_info->opd_sec;
1876 spltrel = hppa_info->plt_rel_sec;
1877 sdltrel = hppa_info->dlt_rel_sec;
1878
1879 BFD_ASSERT (stub != NULL && splt != NULL
1880 && sopd != NULL && sdlt != NULL)
1881
1882 /* Incredible. It is actually necessary to NOT use the symbol's real
1883 value when building the dynamic symbol table for a shared library.
1884 At least for symbols that refer to functions.
1885
1886 We will store a new value and section index into the symbol long
1887 enough to output it into the dynamic symbol table, then we restore
1888 the original values (in elf64_hppa_link_output_symbol_hook). */
1889 if (dyn_h && dyn_h->want_opd)
1890 {
1891 /* Save away the original value and section index so that we
1892 can restore them later. */
1893 dyn_h->st_value = sym->st_value;
1894 dyn_h->st_shndx = sym->st_shndx;
1895
1896 /* For the dynamic symbol table entry, we want the value to be
1897 address of this symbol's entry within the .opd section. */
1898 sym->st_value = (dyn_h->opd_offset
1899 + sopd->output_offset
1900 + sopd->output_section->vma);
1901 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1902 sopd->output_section);
1903 }
1904
1905 /* Initialize a .plt entry if requested. */
1906 if (dyn_h && dyn_h->want_plt
1907 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1908 {
1909 bfd_vma value;
1910 Elf_Internal_Rela rel;
1911
1912 /* We do not actually care about the value in the PLT entry
1913 if we are creating a shared library and the symbol is
1914 still undefined, we create a dynamic relocation to fill
1915 in the correct value. */
1916 if (info->shared && h->root.type == bfd_link_hash_undefined)
1917 value = 0;
1918 else
1919 value = (h->root.u.def.value + h->root.u.def.section->vma);
1920
1921 /* Fill in the entry in the procedure linkage table.
1922
1923 The format of a plt entry is
1924 <funcaddr> <__gp>.
1925
1926 plt_offset is the offset within the PLT section at which to
1927 install the PLT entry.
1928
1929 We are modifying the in-memory PLT contents here, so we do not add
1930 in the output_offset of the PLT section. */
1931
1932 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1933 value = _bfd_get_gp_value (splt->output_section->owner);
1934 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1935
1936 /* Create a dynamic IPLT relocation for this entry.
1937
1938 We are creating a relocation in the output file's PLT section,
1939 which is included within the DLT secton. So we do need to include
1940 the PLT's output_offset in the computation of the relocation's
1941 address. */
1942 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1943 + splt->output_section->vma);
1944 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1945 rel.r_addend = 0;
1946
1947 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1948 (((Elf64_External_Rela *)
1949 spltrel->contents)
1950 + spltrel->reloc_count));
1951 spltrel->reloc_count++;
1952 }
1953
1954 /* Initialize an external call stub entry if requested. */
1955 if (dyn_h && dyn_h->want_stub
1956 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1957 {
1958 bfd_vma value;
1959 int insn;
1960
1961 /* Install the generic stub template.
1962
1963 We are modifying the contents of the stub section, so we do not
1964 need to include the stub section's output_offset here. */
1965 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
1966
1967 /* Fix up the first ldd instruction.
1968
1969 We are modifying the contents of the STUB section in memory,
1970 so we do not need to include its output offset in this computation.
1971
1972 Note the plt_offset value is the value of the PLT entry relative to
1973 the start of the PLT section. These instructions will reference
1974 data relative to the value of __gp, which may not necessarily have
1975 the same address as the start of the PLT section.
1976
1977 gp_offset contains the offset of __gp within the PLT section. */
1978 value = dyn_h->plt_offset - hppa_info->gp_offset;
1979
1980 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
1981 insn &= 0xffffc00e;
1982 insn |= ((value & 0x2000) >> 13);
1983 value &= 0x1ff8;
1984 value <<= 1;
1985 bfd_put_32 (stub->owner, (insn | value),
1986 stub->contents + dyn_h->stub_offset);
1987
1988 /* Fix up the second ldd instruction. */
1989 value = dyn_h->plt_offset - hppa_info->gp_offset + 8;
1990
1991 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
1992 insn &= 0xffffc00e;
1993 insn |= ((value & 0x2000) >> 13);
1994 value &= 0x1ff8;
1995 value <<= 1;
1996 bfd_put_32 (stub->owner, (insn | value),
1997 stub->contents + dyn_h->stub_offset + 8);
1998 }
1999
2000 /* Millicode symbols should not be put in the dynamic
2001 symbol table under any circumstances. */
2002 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2003 h->dynindx = -1;
2004
2005 return true;
2006}
2007
2008/* The .opd section contains FPTRs for each function this file
2009 exports. Initialize the FPTR entries. */
2010
2011static boolean
2012elf64_hppa_finalize_opd (dyn_h, data)
2013 struct elf64_hppa_dyn_hash_entry *dyn_h;
2014 PTR data;
2015{
2016 struct bfd_link_info *info = (struct bfd_link_info *)data;
2017 struct elf64_hppa_link_hash_table *hppa_info;
2018 struct elf_link_hash_entry *h = dyn_h->h;
2019 asection *sopd;
2020 asection *sopdrel;
2021
2022 hppa_info = elf64_hppa_hash_table (info);
2023 sopd = hppa_info->opd_sec;
2024 sopdrel = hppa_info->opd_rel_sec;
2025
2026 if (h && dyn_h && dyn_h->want_opd)
2027 {
2028 bfd_vma value;
2029
2030 /* The first two words of an .opd entry are zero.
2031
2032 We are modifying the contents of the OPD section in memory, so we
2033 do not need to include its output offset in this computation. */
2034 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2035
2036 value = (h->root.u.def.value
2037 + h->root.u.def.section->output_section->vma
2038 + h->root.u.def.section->output_offset);
2039
2040 /* The next word is the address of the function. */
2041 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2042
2043 /* The last word is our local __gp value. */
2044 value = _bfd_get_gp_value (sopd->output_section->owner);
2045 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2046 }
2047
2048 /* If we are generating a shared library, we must generate EPLT relocations
2049 for each entry in the .opd, even for static functions (they may have
2050 had their address taken). */
2051 if (info->shared && dyn_h && dyn_h->want_opd)
2052 {
2053 Elf64_Internal_Rela rel;
15bda425
JL
2054 int dynindx;
2055
2056 /* We may need to do a relocation against a local symbol, in
2057 which case we have to look up it's dynamic symbol index off
2058 the local symbol hash table. */
2059 if (h && h->dynindx != -1)
2060 dynindx = h->dynindx;
2061 else
2062 dynindx
2063 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2064 dyn_h->sym_indx);
2065
2066 /* The offset of this relocation is the absolute address of the
2067 .opd entry for this symbol. */
2068 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2069 + sopd->output_section->vma);
2070
2071 /* If H is non-null, then we have an external symbol.
2072
2073 It is imperative that we use a different dynamic symbol for the
2074 EPLT relocation if the symbol has global scope.
2075
2076 In the dynamic symbol table, the function symbol will have a value
2077 which is address of the function's .opd entry.
2078
2079 Thus, we can not use that dynamic symbol for the EPLT relocation
2080 (if we did, the data in the .opd would reference itself rather
2081 than the actual address of the function). Instead we have to use
2082 a new dynamic symbol which has the same value as the original global
2083 function symbol.
2084
2085 We prefix the original symbol with a "." and use the new symbol in
2086 the EPLT relocation. This new symbol has already been recorded in
2087 the symbol table, we just have to look it up and use it.
2088
2089 We do not have such problems with static functions because we do
2090 not make their addresses in the dynamic symbol table point to
2091 the .opd entry. Ultimately this should be safe since a static
2092 function can not be directly referenced outside of its shared
2093 library.
2094
2095 We do have to play similar games for FPTR relocations in shared
2096 libraries, including those for static symbols. See the FPTR
2097 handling in elf64_hppa_finalize_dynreloc. */
2098 if (h)
2099 {
2100 char *new_name;
2101 struct elf_link_hash_entry *nh;
2102
2103 new_name = alloca (strlen (h->root.root.string) + 2);
2104 new_name[0] = '.';
2105 strcpy (new_name + 1, h->root.root.string);
2106
2107 nh = elf_link_hash_lookup (elf_hash_table (info),
2108 new_name, false, false, false);
2109
2110 /* All we really want from the new symbol is its dynamic
2111 symbol index. */
2112 dynindx = nh->dynindx;
2113 }
2114
2115 rel.r_addend = 0;
2116 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2117
2118 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2119 (((Elf64_External_Rela *)
2120 sopdrel->contents)
2121 + sopdrel->reloc_count));
2122 sopdrel->reloc_count++;
2123 }
2124 return true;
2125}
2126
2127/* The .dlt section contains addresses for items referenced through the
2128 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2129 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2130
2131static boolean
2132elf64_hppa_finalize_dlt (dyn_h, data)
2133 struct elf64_hppa_dyn_hash_entry *dyn_h;
2134 PTR data;
2135{
2136 struct bfd_link_info *info = (struct bfd_link_info *)data;
2137 struct elf64_hppa_link_hash_table *hppa_info;
2138 asection *sdlt, *sdltrel;
2139 struct elf_link_hash_entry *h = dyn_h->h;
2140
2141 hppa_info = elf64_hppa_hash_table (info);
2142
2143 sdlt = hppa_info->dlt_sec;
2144 sdltrel = hppa_info->dlt_rel_sec;
2145
2146 /* H/DYN_H may refer to a local variable and we know it's
2147 address, so there is no need to create a relocation. Just install
2148 the proper value into the DLT, note this shortcut can not be
2149 skipped when building a shared library. */
2150 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2151 {
2152 bfd_vma value;
2153
2154 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2155 to point to the FPTR entry in the .opd section.
2156
2157 We include the OPD's output offset in this computation as
2158 we are referring to an absolute address in the resulting
2159 object file. */
2160 if (dyn_h->want_opd)
2161 {
2162 value = (dyn_h->opd_offset
2163 + hppa_info->opd_sec->output_offset
2164 + hppa_info->opd_sec->output_section->vma);
2165 }
2166 else
2167 {
2168 value = (h->root.u.def.value
2169 + h->root.u.def.section->output_offset);
2170
2171 if (h->root.u.def.section->output_section)
2172 value += h->root.u.def.section->output_section->vma;
2173 else
2174 value += h->root.u.def.section->vma;
2175 }
2176
2177 /* We do not need to include the output offset of the DLT section
2178 here because we are modifying the in-memory contents. */
2179 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2180 }
2181
2182 /* Create a relocation for the DLT entry assocated with this symbol.
2183 When building a shared library the symbol does not have to be dynamic. */
2184 if (dyn_h->want_dlt
2185 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2186 {
2187 Elf64_Internal_Rela rel;
2188 int dynindx;
2189
2190 /* We may need to do a relocation against a local symbol, in
2191 which case we have to look up it's dynamic symbol index off
2192 the local symbol hash table. */
2193 if (h && h->dynindx != -1)
2194 dynindx = h->dynindx;
2195 else
2196 dynindx
2197 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2198 dyn_h->sym_indx);
2199
2200
2201 /* Create a dynamic relocation for this entry. Do include the output
2202 offset of the DLT entry since we need an absolute address in the
2203 resulting object file. */
2204 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2205 + sdlt->output_section->vma);
2206 if (h && h->type == STT_FUNC)
2207 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2208 else
2209 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2210 rel.r_addend = 0;
2211
2212 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2213 (((Elf64_External_Rela *)
2214 sdltrel->contents)
2215 + sdltrel->reloc_count));
2216 sdltrel->reloc_count++;
2217 }
2218 return true;
2219}
2220
2221/* Finalize the dynamic relocations. Specifically the FPTR relocations
2222 for dynamic functions used to initialize static data. */
2223
2224static boolean
2225elf64_hppa_finalize_dynreloc (dyn_h, data)
2226 struct elf64_hppa_dyn_hash_entry *dyn_h;
2227 PTR data;
2228{
2229 struct bfd_link_info *info = (struct bfd_link_info *)data;
2230 struct elf64_hppa_link_hash_table *hppa_info;
2231 struct elf_link_hash_entry *h;
2232 int dynamic_symbol;
2233
2234 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2235
2236 if (!dynamic_symbol && !info->shared)
2237 return true;
2238
2239 if (dyn_h->reloc_entries)
2240 {
2241 struct elf64_hppa_dyn_reloc_entry *rent;
2242 int dynindx;
2243
2244 hppa_info = elf64_hppa_hash_table (info);
2245 h = dyn_h->h;
2246
2247 /* We may need to do a relocation against a local symbol, in
2248 which case we have to look up it's dynamic symbol index off
2249 the local symbol hash table. */
2250 if (h && h->dynindx != -1)
2251 dynindx = h->dynindx;
2252 else
2253 dynindx
2254 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2255 dyn_h->sym_indx);
2256
2257 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2258 {
2259 Elf64_Internal_Rela rel;
2260
2261 switch (rent->type)
2262 {
2263 case R_PARISC_FPTR64:
2264 /* Allocate one iff we are not building a shared library and
2265 !want_opd, which by this point will be true only if we're
2266 actually allocating one statically in the main executable. */
2267 if (!info->shared && dyn_h->want_opd)
2268 continue;
2269 break;
2270 }
2271
2272 /* Create a dynamic relocation for this entry.
2273
2274 We need the output offset for the reloc's section because
2275 we are creating an absolute address in the resulting object
2276 file. */
2277 rel.r_offset = (rent->offset + rent->sec->output_offset
2278 + rent->sec->output_section->vma);
2279
2280 /* An FPTR64 relocation implies that we took the address of
2281 a function and that the function has an entry in the .opd
2282 section. We want the FPTR64 relocation to reference the
2283 entry in .opd.
2284
2285 We could munge the symbol value in the dynamic symbol table
2286 (in fact we already do for functions with global scope) to point
2287 to the .opd entry. Then we could use that dynamic symbol in
2288 this relocation.
2289
2290 Or we could do something sensible, not munge the symbol's
2291 address and instead just use a different symbol to reference
2292 the .opd entry. At least that seems sensible until you
2293 realize there's no local dynamic symbols we can use for that
2294 purpose. Thus the hair in the check_relocs routine.
2295
2296 We use a section symbol recorded by check_relocs as the
2297 base symbol for the relocation. The addend is the difference
2298 between the section symbol and the address of the .opd entry. */
2299 if (info->shared && rent->type == R_PARISC_FPTR64)
2300 {
2301 bfd_vma value, value2;
15bda425
JL
2302
2303 /* First compute the address of the opd entry for this symbol. */
2304 value = (dyn_h->opd_offset
2305 + hppa_info->opd_sec->output_section->vma
2306 + hppa_info->opd_sec->output_offset);
2307
2308 /* Compute the value of the start of the section with
2309 the relocation. */
2310 value2 = (rent->sec->output_section->vma
2311 + rent->sec->output_offset);
2312
2313 /* Compute the difference between the start of the section
2314 with the relocation and the opd entry. */
2315 value -= value2;
2316
2317 /* The result becomes the addend of the relocation. */
2318 rel.r_addend = value;
2319
2320 /* The section symbol becomes the symbol for the dynamic
2321 relocation. */
2322 dynindx
2323 = _bfd_elf_link_lookup_local_dynindx (info,
2324 rent->sec->owner,
2325 rent->sec_symndx);
2326 }
2327 else
2328 rel.r_addend = rent->addend;
2329
2330 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2331
2332 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2333 &rel,
2334 (((Elf64_External_Rela *)
2335 hppa_info->other_rel_sec->contents)
2336 + hppa_info->other_rel_sec->reloc_count));
2337 hppa_info->other_rel_sec->reloc_count++;
2338 }
2339 }
2340
2341 return true;
2342}
2343
2344/* Finish up the dynamic sections. */
2345
2346static boolean
2347elf64_hppa_finish_dynamic_sections (output_bfd, info)
2348 bfd *output_bfd;
2349 struct bfd_link_info *info;
2350{
2351 bfd *dynobj;
2352 asection *sdyn;
2353 struct elf64_hppa_link_hash_table *hppa_info;
2354
2355 hppa_info = elf64_hppa_hash_table (info);
2356
2357 /* Finalize the contents of the .opd section. */
2358 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2359 elf64_hppa_finalize_opd,
2360 info);
2361
2362 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2363 elf64_hppa_finalize_dynreloc,
2364 info);
2365
2366 /* Finalize the contents of the .dlt section. */
2367 dynobj = elf_hash_table (info)->dynobj;
2368 /* Finalize the contents of the .dlt section. */
2369 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2370 elf64_hppa_finalize_dlt,
2371 info);
2372
2373
2374 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2375
2376 if (elf_hash_table (info)->dynamic_sections_created)
2377 {
2378 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2379
2380 BFD_ASSERT (sdyn != NULL);
2381
2382 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2383 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2384 for (; dyncon < dynconend; dyncon++)
2385 {
2386 Elf_Internal_Dyn dyn;
2387 asection *s;
2388
2389 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2390
2391 switch (dyn.d_tag)
2392 {
2393 default:
2394 break;
2395
2396 case DT_HP_LOAD_MAP:
2397 /* Compute the absolute address of 16byte scratchpad area
2398 for the dynamic linker.
2399
2400 By convention the linker script will allocate the scratchpad
2401 area at the start of the .data section. So all we have to
2402 to is find the start of the .data section. */
2403 s = bfd_get_section_by_name (output_bfd, ".data");
2404 dyn.d_un.d_ptr = s->vma;
2405 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2406 break;
2407
2408 case DT_PLTGOT:
2409 /* HP's use PLTGOT to set the GOT register. */
2410 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2411 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2412 break;
2413
2414 case DT_JMPREL:
2415 s = hppa_info->plt_rel_sec;
2416 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2417 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2418 break;
2419
2420 case DT_PLTRELSZ:
2421 s = hppa_info->plt_rel_sec;
2422 dyn.d_un.d_val = s->_raw_size;
2423 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2424 break;
2425
2426 case DT_RELA:
2427 s = hppa_info->other_rel_sec;
2428 if (! s)
2429 s = hppa_info->dlt_rel_sec;
2430 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2431 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2432 break;
2433
2434 case DT_RELASZ:
2435 s = hppa_info->other_rel_sec;
2436 dyn.d_un.d_val = s->_raw_size;
2437 s = hppa_info->dlt_rel_sec;
2438 dyn.d_un.d_val += s->_raw_size;
2439 s = hppa_info->opd_rel_sec;
2440 dyn.d_un.d_val += s->_raw_size;
2441 /* There is some question about whether or not the size of
2442 the PLT relocs should be included here. HP's tools do
2443 it, so we'll emulate them. */
2444 s = hppa_info->plt_rel_sec;
2445 dyn.d_un.d_val += s->_raw_size;
2446 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2447 break;
2448
2449 }
2450 }
2451 }
2452
2453 return true;
2454}
2455
2456
2457/* Return the number of additional phdrs we will need.
2458
2459 The generic ELF code only creates PT_PHDRs for executables. The HP
2460 dynamic linker requires PT_PHDRs for dynamic libraries too.
2461
2462 This routine indicates that the backend needs one additional program
2463 header for that case.
2464
2465 Note we do not have access to the link info structure here, so we have
2466 to guess whether or not we are building a shared library based on the
2467 existence of a .interp section. */
2468
2469static int
2470elf64_hppa_additional_program_headers (abfd)
2471 bfd *abfd;
2472{
2473 asection *s;
2474
2475 /* If we are creating a shared library, then we have to create a
2476 PT_PHDR segment. HP's dynamic linker chokes without it. */
2477 s = bfd_get_section_by_name (abfd, ".interp");
2478 if (! s)
2479 return 1;
2480 return 0;
2481}
2482
2483/* Allocate and initialize any program headers required by this
2484 specific backend.
2485
2486 The generic ELF code only creates PT_PHDRs for executables. The HP
2487 dynamic linker requires PT_PHDRs for dynamic libraries too.
2488
2489 This allocates the PT_PHDR and initializes it in a manner suitable
2490 for the HP linker.
2491
2492 Note we do not have access to the link info structure here, so we have
2493 to guess whether or not we are building a shared library based on the
2494 existence of a .interp section. */
2495
2496static boolean
2497elf64_hppa_modify_segment_map (abfd)
2498 bfd *abfd;
2499{
edd21aca 2500 struct elf_segment_map *m;
15bda425
JL
2501 asection *s;
2502
2503 s = bfd_get_section_by_name (abfd, ".interp");
2504 if (! s)
2505 {
2506 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2507 if (m->p_type == PT_PHDR)
2508 break;
2509 if (m == NULL)
2510 {
2511 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
2512 if (m == NULL)
2513 return false;
2514
2515 m->p_type = PT_PHDR;
2516 m->p_flags = PF_R | PF_X;
2517 m->p_flags_valid = 1;
2518 m->p_paddr_valid = 1;
2519 m->includes_phdrs = 1;
2520
2521 m->next = elf_tdata (abfd)->segment_map;
2522 elf_tdata (abfd)->segment_map = m;
2523 }
2524 }
2525
2526 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2527 if (m->p_type == PT_LOAD)
2528 {
0ba2a60e 2529 unsigned int i;
15bda425
JL
2530
2531 for (i = 0; i < m->count; i++)
2532 {
2533 /* The code "hint" is not really a hint. It is a requirement
2534 for certain versions of the HP dynamic linker. Worse yet,
2535 it must be set even if the shared library does not have
2536 any code in its "text" segment (thus the check for .hash
2537 to catch this situation). */
2538 if (m->sections[i]->flags & SEC_CODE
2539 || (strcmp (m->sections[i]->name, ".hash") == 0))
2540 m->p_flags |= (PF_X | PF_HP_CODE);
2541 }
2542 }
2543
2544 return true;
2545}
2546
2547/* The hash bucket size is the standard one, namely 4. */
2548
2549const struct elf_size_info hppa64_elf_size_info =
2550{
2551 sizeof (Elf64_External_Ehdr),
2552 sizeof (Elf64_External_Phdr),
2553 sizeof (Elf64_External_Shdr),
2554 sizeof (Elf64_External_Rel),
2555 sizeof (Elf64_External_Rela),
2556 sizeof (Elf64_External_Sym),
2557 sizeof (Elf64_External_Dyn),
2558 sizeof (Elf_External_Note),
2559 4,
2560 1,
2561 64, 8,
2562 ELFCLASS64, EV_CURRENT,
2563 bfd_elf64_write_out_phdrs,
2564 bfd_elf64_write_shdrs_and_ehdr,
2565 bfd_elf64_write_relocs,
2566 bfd_elf64_swap_symbol_out,
2567 bfd_elf64_slurp_reloc_table,
2568 bfd_elf64_slurp_symbol_table,
2569 bfd_elf64_swap_dyn_in,
2570 bfd_elf64_swap_dyn_out,
2571 NULL,
2572 NULL,
2573 NULL,
2574 NULL
2575};
2576
2577#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2578#define TARGET_BIG_NAME "elf64-hppa"
2579#define ELF_ARCH bfd_arch_hppa
2580#define ELF_MACHINE_CODE EM_PARISC
2581/* This is not strictly correct. The maximum page size for PA2.0 is
2582 64M. But everything still uses 4k. */
2583#define ELF_MAXPAGESIZE 0x1000
2584#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2585#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2586#define elf_info_to_howto elf_hppa_info_to_howto
2587#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2588
2589#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2590#define elf_backend_object_p elf64_hppa_object_p
2591#define elf_backend_final_write_processing \
2592 elf_hppa_final_write_processing
2593#define elf_backend_fake_sections elf_hppa_fake_sections
2594#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2595
2596#define elf_backend_relocate_section elf_hppa_relocate_section
2597
2598#define bfd_elf64_bfd_final_link elf_hppa_final_link
2599
2600#define elf_backend_create_dynamic_sections \
2601 elf64_hppa_create_dynamic_sections
2602#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2603
2604#define elf_backend_adjust_dynamic_symbol \
2605 elf64_hppa_adjust_dynamic_symbol
2606
2607#define elf_backend_size_dynamic_sections \
2608 elf64_hppa_size_dynamic_sections
2609
2610#define elf_backend_finish_dynamic_symbol \
2611 elf64_hppa_finish_dynamic_symbol
2612#define elf_backend_finish_dynamic_sections \
2613 elf64_hppa_finish_dynamic_sections
2614
2615/* Stuff for the BFD linker: */
2616#define bfd_elf64_bfd_link_hash_table_create \
2617 elf64_hppa_hash_table_create
2618
2619#define elf_backend_check_relocs \
2620 elf64_hppa_check_relocs
2621
2622#define elf_backend_size_info \
2623 hppa64_elf_size_info
2624
2625#define elf_backend_additional_program_headers \
2626 elf64_hppa_additional_program_headers
2627
2628#define elf_backend_modify_segment_map \
2629 elf64_hppa_modify_segment_map
2630
2631#define elf_backend_link_output_symbol_hook \
2632 elf64_hppa_link_output_symbol_hook
2633
2634
2635#define elf_backend_want_got_plt 0
2636#define elf_backend_plt_readonly 0
2637#define elf_backend_want_plt_sym 0
2638#define elf_backend_got_header_size 0
2639#define elf_backend_plt_header_size 0
2640#define elf_backend_type_change_ok true
2641
2642#include "elf64-target.h"
This page took 0.170806 seconds and 4 git commands to generate.