Oops, changelog for last patch.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf
AM
1/* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
15bda425
JL
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
dc810e39 65 long sym_indx;
15bda425
JL
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
99c79b2e
AJ
201static boolean elf64_hppa_link_output_symbol_hook
202PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
203 Elf_Internal_Sym *, asection *input_sec));
204
15bda425
JL
205static boolean elf64_hppa_finish_dynamic_symbol
206 PARAMS ((bfd *, struct bfd_link_info *,
207 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 208
99c79b2e
AJ
209static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
210
211static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
212
15bda425
JL
213static boolean elf64_hppa_finish_dynamic_sections
214 PARAMS ((bfd *, struct bfd_link_info *));
215
216static boolean elf64_hppa_check_relocs
217 PARAMS ((bfd *, struct bfd_link_info *,
218 asection *, const Elf_Internal_Rela *));
219
220static boolean elf64_hppa_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
222
223static boolean elf64_hppa_mark_exported_functions
224 PARAMS ((struct elf_link_hash_entry *, PTR));
225
226static boolean elf64_hppa_finalize_opd
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229static boolean elf64_hppa_finalize_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232static boolean allocate_global_data_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235static boolean allocate_global_data_plt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238static boolean allocate_global_data_stub
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241static boolean allocate_global_data_opd
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244static boolean get_reloc_section
245 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
246
247static boolean count_dyn_reloc
248 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
249 int, asection *, int, bfd_vma, bfd_vma));
250
251static boolean allocate_dynrel_entries
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254static boolean elf64_hppa_finalize_dynreloc
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257static boolean get_opd
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260static boolean get_plt
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263static boolean get_dlt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266static boolean get_stub
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
3fab46d0
AM
269static int elf64_hppa_elf_get_symbol_type
270 PARAMS ((Elf_Internal_Sym *, int));
271
15bda425
JL
272static boolean
273elf64_hppa_dyn_hash_table_init (ht, abfd, new)
274 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 275 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
276 new_hash_entry_func new;
277{
fe8bc63d 278 memset (ht, 0, sizeof (*ht));
15bda425
JL
279 return bfd_hash_table_init (&ht->root, new);
280}
281
282static struct bfd_hash_entry*
283elf64_hppa_new_dyn_hash_entry (entry, table, string)
284 struct bfd_hash_entry *entry;
285 struct bfd_hash_table *table;
286 const char *string;
287{
288 struct elf64_hppa_dyn_hash_entry *ret;
289 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
290
291 /* Allocate the structure if it has not already been allocated by a
292 subclass. */
293 if (!ret)
294 ret = bfd_hash_allocate (table, sizeof (*ret));
295
296 if (!ret)
297 return 0;
298
299 /* Initialize our local data. All zeros, and definitely easier
300 than setting 8 bit fields. */
fe8bc63d 301 memset (ret, 0, sizeof (*ret));
15bda425
JL
302
303 /* Call the allocation method of the superclass. */
304 ret = ((struct elf64_hppa_dyn_hash_entry *)
305 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
306
307 return &ret->root;
308}
309
310/* Create the derived linker hash table. The PA64 ELF port uses this
311 derived hash table to keep information specific to the PA ElF
312 linker (without using static variables). */
313
314static struct bfd_link_hash_table*
315elf64_hppa_hash_table_create (abfd)
316 bfd *abfd;
317{
318 struct elf64_hppa_link_hash_table *ret;
319
dc810e39 320 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
15bda425
JL
321 if (!ret)
322 return 0;
323 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
324 _bfd_elf_link_hash_newfunc))
325 {
326 bfd_release (abfd, ret);
327 return 0;
328 }
329
330 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
331 elf64_hppa_new_dyn_hash_entry))
332 return 0;
333 return &ret->root.root;
334}
335
336/* Look up an entry in a PA64 ELF linker hash table. */
337
338static struct elf64_hppa_dyn_hash_entry *
339elf64_hppa_dyn_hash_lookup(table, string, create, copy)
340 struct elf64_hppa_dyn_hash_table *table;
341 const char *string;
342 boolean create, copy;
343{
344 return ((struct elf64_hppa_dyn_hash_entry *)
345 bfd_hash_lookup (&table->root, string, create, copy));
346}
347
348/* Traverse a PA64 ELF linker hash table. */
349
350static void
351elf64_hppa_dyn_hash_traverse (table, func, info)
352 struct elf64_hppa_dyn_hash_table *table;
353 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
354 PTR info;
355{
356 (bfd_hash_traverse
357 (&table->root,
358 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
359 info));
360}
361\f
362/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
363
364 Additionally we set the default architecture and machine. */
365static boolean
366elf64_hppa_object_p (abfd)
367 bfd *abfd;
368{
24a5e751
L
369 Elf_Internal_Ehdr * i_ehdrp;
370 unsigned int flags;
d9634ba1 371
24a5e751
L
372 i_ehdrp = elf_elfheader (abfd);
373 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
374 {
375 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
376 return false;
377 }
378 else
379 {
380 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
381 return false;
382 }
383
384 flags = i_ehdrp->e_flags;
d9634ba1
AM
385 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
386 {
387 case EFA_PARISC_1_0:
388 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
389 case EFA_PARISC_1_1:
390 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
391 case EFA_PARISC_2_0:
392 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
393 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
395 }
396 /* Don't be fussy. */
397 return true;
15bda425
JL
398}
399
400/* Given section type (hdr->sh_type), return a boolean indicating
401 whether or not the section is an elf64-hppa specific section. */
402static boolean
403elf64_hppa_section_from_shdr (abfd, hdr, name)
404 bfd *abfd;
405 Elf64_Internal_Shdr *hdr;
406 char *name;
407{
408 asection *newsect;
409
410 switch (hdr->sh_type)
411 {
412 case SHT_PARISC_EXT:
413 if (strcmp (name, ".PARISC.archext") != 0)
414 return false;
415 break;
416 case SHT_PARISC_UNWIND:
417 if (strcmp (name, ".PARISC.unwind") != 0)
418 return false;
419 break;
420 case SHT_PARISC_DOC:
421 case SHT_PARISC_ANNOT:
422 default:
423 return false;
424 }
425
426 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
427 return false;
428 newsect = hdr->bfd_section;
429
430 return true;
431}
432
15bda425 433/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 434 name describes what was once potentially anonymous memory. We
15bda425
JL
435 allocate memory as necessary, possibly reusing PBUF/PLEN. */
436
437static const char *
0ba2a60e
AM
438get_dyn_name (sec, h, rel, pbuf, plen)
439 asection *sec;
15bda425
JL
440 struct elf_link_hash_entry *h;
441 const Elf_Internal_Rela *rel;
442 char **pbuf;
443 size_t *plen;
444{
445 size_t nlen, tlen;
446 char *buf;
447 size_t len;
448
449 if (h && rel->r_addend == 0)
450 return h->root.root.string;
451
452 if (h)
453 nlen = strlen (h->root.root.string);
454 else
0ba2a60e
AM
455 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
456 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
457
458 len = *plen;
459 buf = *pbuf;
460 if (len < tlen)
461 {
462 if (buf)
463 free (buf);
464 *pbuf = buf = malloc (tlen);
465 *plen = len = tlen;
466 if (!buf)
467 return NULL;
468 }
469
470 if (h)
471 {
472 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 473 buf[nlen++] = '+';
15bda425
JL
474 sprintf_vma (buf + nlen, rel->r_addend);
475 }
476 else
477 {
0ba2a60e
AM
478 nlen = sprintf (buf, "%x:%lx",
479 sec->id & 0xffffffff,
480 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
481 if (rel->r_addend)
482 {
483 buf[nlen++] = '+';
484 sprintf_vma (buf + nlen, rel->r_addend);
485 }
486 }
487
488 return buf;
489}
490
491/* SEC is a section containing relocs for an input BFD when linking; return
492 a suitable section for holding relocs in the output BFD for a link. */
493
494static boolean
495get_reloc_section (abfd, hppa_info, sec)
496 bfd *abfd;
497 struct elf64_hppa_link_hash_table *hppa_info;
498 asection *sec;
499{
500 const char *srel_name;
501 asection *srel;
502 bfd *dynobj;
503
504 srel_name = (bfd_elf_string_from_elf_section
505 (abfd, elf_elfheader(abfd)->e_shstrndx,
506 elf_section_data(sec)->rel_hdr.sh_name));
507 if (srel_name == NULL)
508 return false;
509
510 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
511 && strcmp (bfd_get_section_name (abfd, sec),
512 srel_name+5) == 0)
513 || (strncmp (srel_name, ".rel", 4) == 0
514 && strcmp (bfd_get_section_name (abfd, sec),
515 srel_name+4) == 0));
516
517 dynobj = hppa_info->root.dynobj;
518 if (!dynobj)
519 hppa_info->root.dynobj = dynobj = abfd;
520
521 srel = bfd_get_section_by_name (dynobj, srel_name);
522 if (srel == NULL)
523 {
524 srel = bfd_make_section (dynobj, srel_name);
525 if (srel == NULL
526 || !bfd_set_section_flags (dynobj, srel,
527 (SEC_ALLOC
528 | SEC_LOAD
529 | SEC_HAS_CONTENTS
530 | SEC_IN_MEMORY
531 | SEC_LINKER_CREATED
532 | SEC_READONLY))
533 || !bfd_set_section_alignment (dynobj, srel, 3))
534 return false;
535 }
536
537 hppa_info->other_rel_sec = srel;
538 return true;
539}
540
fe8bc63d 541/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
542
543 We use this to keep a record of all the FPTR relocations against a
544 particular symbol so that we can create FPTR relocations in the
545 output file. */
546
547static boolean
548count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
549 bfd *abfd;
550 struct elf64_hppa_dyn_hash_entry *dyn_h;
551 int type;
552 asection *sec;
553 int sec_symndx;
554 bfd_vma offset;
555 bfd_vma addend;
556{
557 struct elf64_hppa_dyn_reloc_entry *rent;
558
559 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 560 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425
JL
561 if (!rent)
562 return false;
563
564 rent->next = dyn_h->reloc_entries;
565 rent->type = type;
566 rent->sec = sec;
567 rent->sec_symndx = sec_symndx;
568 rent->offset = offset;
569 rent->addend = addend;
570 dyn_h->reloc_entries = rent;
571
572 return true;
573}
574
575/* Scan the RELOCS and record the type of dynamic entries that each
576 referenced symbol needs. */
577
578static boolean
579elf64_hppa_check_relocs (abfd, info, sec, relocs)
580 bfd *abfd;
581 struct bfd_link_info *info;
582 asection *sec;
583 const Elf_Internal_Rela *relocs;
584{
585 struct elf64_hppa_link_hash_table *hppa_info;
586 const Elf_Internal_Rela *relend;
587 Elf_Internal_Shdr *symtab_hdr;
588 const Elf_Internal_Rela *rel;
589 asection *dlt, *plt, *stubs;
590 char *buf;
591 size_t buf_len;
592 int sec_symndx;
593
594 if (info->relocateable)
595 return true;
596
597 /* If this is the first dynamic object found in the link, create
598 the special sections required for dynamic linking. */
599 if (! elf_hash_table (info)->dynamic_sections_created)
600 {
601 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
602 return false;
603 }
604
605 hppa_info = elf64_hppa_hash_table (info);
606 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
607
608 /* If necessary, build a new table holding section symbols indices
609 for this BFD. This is disgusting. */
fe8bc63d 610
15bda425
JL
611 if (info->shared && hppa_info->section_syms_bfd != abfd)
612 {
832d951b 613 unsigned long i;
0ba2a60e 614 int highest_shndx;
15bda425
JL
615 Elf_Internal_Sym *local_syms, *isym;
616 Elf64_External_Sym *ext_syms, *esym;
dc810e39 617 bfd_size_type amt;
15bda425
JL
618
619 /* We're done with the old cache of section index to section symbol
620 index information. Free it.
621
622 ?!? Note we leak the last section_syms array. Presumably we
623 could free it in one of the later routines in this file. */
624 if (hppa_info->section_syms)
625 free (hppa_info->section_syms);
626
627 /* Allocate memory for the internal and external symbols. */
dc810e39
AM
628 amt = symtab_hdr->sh_info;
629 amt *= sizeof (Elf_Internal_Sym);
630 local_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
15bda425
JL
631 if (local_syms == NULL)
632 return false;
633
dc810e39
AM
634 amt = symtab_hdr->sh_info;
635 amt *= sizeof (Elf64_External_Sym);
636 ext_syms = (Elf64_External_Sym *) bfd_malloc (amt);
15bda425
JL
637 if (ext_syms == NULL)
638 {
639 free (local_syms);
640 return false;
641 }
642
643 /* Read in the local symbols. */
644 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
dc810e39 645 || bfd_bread (ext_syms, amt, abfd) != amt)
15bda425
JL
646 {
647 free (local_syms);
648 free (ext_syms);
649 return false;
650 }
651
652 /* Swap in the local symbols, also record the highest section index
653 referenced by the local symbols. */
654 isym = local_syms;
655 esym = ext_syms;
656 highest_shndx = 0;
657 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
658 {
659 bfd_elf64_swap_symbol_in (abfd, esym, isym);
660 if (isym->st_shndx > highest_shndx)
661 highest_shndx = isym->st_shndx;
662 }
663
664 /* Now we can free the external symbols. */
665 free (ext_syms);
666
667 /* Allocate an array to hold the section index to section symbol index
668 mapping. Bump by one since we start counting at zero. */
669 highest_shndx++;
dc810e39
AM
670 amt = highest_shndx;
671 amt *= sizeof (int);
672 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
673
674 /* Now walk the local symbols again. If we find a section symbol,
675 record the index of the symbol into the section_syms array. */
676 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
677 {
678 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
679 hppa_info->section_syms[isym->st_shndx] = i;
680 }
681
682 /* We are finished with the local symbols. Get rid of them. */
683 free (local_syms);
684
685 /* Record which BFD we built the section_syms mapping for. */
686 hppa_info->section_syms_bfd = abfd;
687 }
688
689 /* Record the symbol index for this input section. We may need it for
690 relocations when building shared libraries. When not building shared
691 libraries this value is never really used, but assign it to zero to
692 prevent out of bounds memory accesses in other routines. */
693 if (info->shared)
694 {
695 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
696
697 /* If we did not find a section symbol for this section, then
698 something went terribly wrong above. */
699 if (sec_symndx == -1)
700 return false;
701
702 sec_symndx = hppa_info->section_syms[sec_symndx];
703 }
704 else
705 sec_symndx = 0;
fe8bc63d 706
15bda425
JL
707 dlt = plt = stubs = NULL;
708 buf = NULL;
709 buf_len = 0;
710
711 relend = relocs + sec->reloc_count;
712 for (rel = relocs; rel < relend; ++rel)
713 {
714 enum {
715 NEED_DLT = 1,
716 NEED_PLT = 2,
717 NEED_STUB = 4,
718 NEED_OPD = 8,
719 NEED_DYNREL = 16,
720 };
721
722 struct elf_link_hash_entry *h = NULL;
723 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
724 struct elf64_hppa_dyn_hash_entry *dyn_h;
725 int need_entry;
726 const char *addr_name;
727 boolean maybe_dynamic;
728 int dynrel_type = R_PARISC_NONE;
729 static reloc_howto_type *howto;
730
731 if (r_symndx >= symtab_hdr->sh_info)
732 {
733 /* We're dealing with a global symbol -- find its hash entry
734 and mark it as being referenced. */
735 long indx = r_symndx - symtab_hdr->sh_info;
736 h = elf_sym_hashes (abfd)[indx];
737 while (h->root.type == bfd_link_hash_indirect
738 || h->root.type == bfd_link_hash_warning)
739 h = (struct elf_link_hash_entry *) h->root.u.i.link;
740
741 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
742 }
743
744 /* We can only get preliminary data on whether a symbol is
745 locally or externally defined, as not all of the input files
746 have yet been processed. Do something with what we know, as
747 this may help reduce memory usage and processing time later. */
748 maybe_dynamic = false;
671bae9c
NC
749 if (h && ((info->shared
750 && (!info->symbolic || info->allow_shlib_undefined) )
15bda425
JL
751 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
752 || h->root.type == bfd_link_hash_defweak))
753 maybe_dynamic = true;
754
755 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
756 need_entry = 0;
757 switch (howto->type)
758 {
759 /* These are simple indirect references to symbols through the
760 DLT. We need to create a DLT entry for any symbols which
761 appears in a DLTIND relocation. */
762 case R_PARISC_DLTIND21L:
763 case R_PARISC_DLTIND14R:
764 case R_PARISC_DLTIND14F:
765 case R_PARISC_DLTIND14WR:
766 case R_PARISC_DLTIND14DR:
767 need_entry = NEED_DLT;
768 break;
769
770 /* ?!? These need a DLT entry. But I have no idea what to do with
771 the "link time TP value. */
772 case R_PARISC_LTOFF_TP21L:
773 case R_PARISC_LTOFF_TP14R:
774 case R_PARISC_LTOFF_TP14F:
775 case R_PARISC_LTOFF_TP64:
776 case R_PARISC_LTOFF_TP14WR:
777 case R_PARISC_LTOFF_TP14DR:
778 case R_PARISC_LTOFF_TP16F:
779 case R_PARISC_LTOFF_TP16WF:
780 case R_PARISC_LTOFF_TP16DF:
781 need_entry = NEED_DLT;
782 break;
783
784 /* These are function calls. Depending on their precise target we
785 may need to make a stub for them. The stub uses the PLT, so we
786 need to create PLT entries for these symbols too. */
832d951b 787 case R_PARISC_PCREL12F:
15bda425
JL
788 case R_PARISC_PCREL17F:
789 case R_PARISC_PCREL22F:
790 case R_PARISC_PCREL32:
791 case R_PARISC_PCREL64:
792 case R_PARISC_PCREL21L:
793 case R_PARISC_PCREL17R:
794 case R_PARISC_PCREL17C:
795 case R_PARISC_PCREL14R:
796 case R_PARISC_PCREL14F:
797 case R_PARISC_PCREL22C:
798 case R_PARISC_PCREL14WR:
799 case R_PARISC_PCREL14DR:
800 case R_PARISC_PCREL16F:
801 case R_PARISC_PCREL16WF:
802 case R_PARISC_PCREL16DF:
803 need_entry = (NEED_PLT | NEED_STUB);
804 break;
805
806 case R_PARISC_PLTOFF21L:
807 case R_PARISC_PLTOFF14R:
808 case R_PARISC_PLTOFF14F:
809 case R_PARISC_PLTOFF14WR:
810 case R_PARISC_PLTOFF14DR:
811 case R_PARISC_PLTOFF16F:
812 case R_PARISC_PLTOFF16WF:
813 case R_PARISC_PLTOFF16DF:
814 need_entry = (NEED_PLT);
815 break;
816
817 case R_PARISC_DIR64:
818 if (info->shared || maybe_dynamic)
819 need_entry = (NEED_DYNREL);
820 dynrel_type = R_PARISC_DIR64;
821 break;
822
823 /* This is an indirect reference through the DLT to get the address
824 of a OPD descriptor. Thus we need to make a DLT entry that points
825 to an OPD entry. */
826 case R_PARISC_LTOFF_FPTR21L:
827 case R_PARISC_LTOFF_FPTR14R:
828 case R_PARISC_LTOFF_FPTR14WR:
829 case R_PARISC_LTOFF_FPTR14DR:
830 case R_PARISC_LTOFF_FPTR32:
831 case R_PARISC_LTOFF_FPTR64:
832 case R_PARISC_LTOFF_FPTR16F:
833 case R_PARISC_LTOFF_FPTR16WF:
834 case R_PARISC_LTOFF_FPTR16DF:
835 if (info->shared || maybe_dynamic)
836 need_entry = (NEED_DLT | NEED_OPD);
837 else
838 need_entry = (NEED_DLT | NEED_OPD);
839 dynrel_type = R_PARISC_FPTR64;
840 break;
841
842 /* This is a simple OPD entry. */
843 case R_PARISC_FPTR64:
844 if (info->shared || maybe_dynamic)
845 need_entry = (NEED_OPD | NEED_DYNREL);
846 else
847 need_entry = (NEED_OPD);
848 dynrel_type = R_PARISC_FPTR64;
849 break;
850
851 /* Add more cases as needed. */
852 }
853
854 if (!need_entry)
855 continue;
856
857 /* Collect a canonical name for this address. */
0ba2a60e 858 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
859
860 /* Collect the canonical entry data for this address. */
861 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
862 addr_name, true, true);
863 BFD_ASSERT (dyn_h);
864
865 /* Stash away enough information to be able to find this symbol
866 regardless of whether or not it is local or global. */
867 dyn_h->h = h;
868 dyn_h->owner = abfd;
869 dyn_h->sym_indx = r_symndx;
870
871 /* ?!? We may need to do some error checking in here. */
872 /* Create what's needed. */
873 if (need_entry & NEED_DLT)
874 {
875 if (! hppa_info->dlt_sec
876 && ! get_dlt (abfd, info, hppa_info))
877 goto err_out;
878 dyn_h->want_dlt = 1;
879 }
880
881 if (need_entry & NEED_PLT)
882 {
883 if (! hppa_info->plt_sec
884 && ! get_plt (abfd, info, hppa_info))
885 goto err_out;
886 dyn_h->want_plt = 1;
887 }
888
889 if (need_entry & NEED_STUB)
890 {
891 if (! hppa_info->stub_sec
892 && ! get_stub (abfd, info, hppa_info))
893 goto err_out;
894 dyn_h->want_stub = 1;
895 }
896
897 if (need_entry & NEED_OPD)
898 {
899 if (! hppa_info->opd_sec
900 && ! get_opd (abfd, info, hppa_info))
901 goto err_out;
902
903 dyn_h->want_opd = 1;
904
905 /* FPTRs are not allocated by the dynamic linker for PA64, though
906 it is possible that will change in the future. */
fe8bc63d 907
15bda425
JL
908 /* This could be a local function that had its address taken, in
909 which case H will be NULL. */
910 if (h)
911 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
912 }
913
914 /* Add a new dynamic relocation to the chain of dynamic
915 relocations for this symbol. */
916 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
917 {
918 if (! hppa_info->other_rel_sec
919 && ! get_reloc_section (abfd, hppa_info, sec))
920 goto err_out;
921
922 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
923 sec_symndx, rel->r_offset, rel->r_addend))
924 goto err_out;
925
926 /* If we are building a shared library and we just recorded
927 a dynamic R_PARISC_FPTR64 relocation, then make sure the
928 section symbol for this section ends up in the dynamic
929 symbol table. */
930 if (info->shared && dynrel_type == R_PARISC_FPTR64
931 && ! (_bfd_elf64_link_record_local_dynamic_symbol
932 (info, abfd, sec_symndx)))
933 return false;
934 }
935 }
936
937 if (buf)
938 free (buf);
939 return true;
940
941 err_out:
942 if (buf)
943 free (buf);
944 return false;
945}
946
947struct elf64_hppa_allocate_data
948{
949 struct bfd_link_info *info;
950 bfd_size_type ofs;
951};
952
953/* Should we do dynamic things to this symbol? */
954
955static boolean
956elf64_hppa_dynamic_symbol_p (h, info)
957 struct elf_link_hash_entry *h;
958 struct bfd_link_info *info;
959{
960 if (h == NULL)
961 return false;
962
963 while (h->root.type == bfd_link_hash_indirect
964 || h->root.type == bfd_link_hash_warning)
965 h = (struct elf_link_hash_entry *) h->root.u.i.link;
966
967 if (h->dynindx == -1)
968 return false;
969
970 if (h->root.type == bfd_link_hash_undefweak
971 || h->root.type == bfd_link_hash_defweak)
972 return true;
973
974 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
975 return false;
976
671bae9c 977 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
15bda425
JL
978 || ((h->elf_link_hash_flags
979 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
980 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
981 return true;
982
983 return false;
984}
985
986/* Mark all funtions exported by this file so that we can later allocate
987 entries in .opd for them. */
988
989static boolean
990elf64_hppa_mark_exported_functions (h, data)
991 struct elf_link_hash_entry *h;
992 PTR data;
993{
994 struct bfd_link_info *info = (struct bfd_link_info *)data;
995 struct elf64_hppa_link_hash_table *hppa_info;
996
997 hppa_info = elf64_hppa_hash_table (info);
998
999 if (h
1000 && (h->root.type == bfd_link_hash_defined
1001 || h->root.type == bfd_link_hash_defweak)
1002 && h->root.u.def.section->output_section != NULL
1003 && h->type == STT_FUNC)
1004 {
1005 struct elf64_hppa_dyn_hash_entry *dyn_h;
1006
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1009 h->root.root.string, true, true);
1010 BFD_ASSERT (dyn_h);
1011 dyn_h->h = h;
1012
1013 if (! hppa_info->opd_sec
1014 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1015 return false;
1016
1017 dyn_h->want_opd = 1;
832d951b
AM
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h->st_shndx = -1;
15bda425
JL
1020 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1021 }
1022
1023 return true;
1024}
1025
1026/* Allocate space for a DLT entry. */
1027
1028static boolean
1029allocate_global_data_dlt (dyn_h, data)
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031 PTR data;
1032{
1033 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1034
1035 if (dyn_h->want_dlt)
1036 {
1037 struct elf_link_hash_entry *h = dyn_h->h;
1038
1039 if (x->info->shared)
1040 {
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1043 against it. */
1044 if (! h
1045 || (h && h->dynindx == -1))
1046 {
1047 bfd *owner;
1048 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1049
dc810e39
AM
1050 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1051 (x->info, owner, dyn_h->sym_indx)))
15bda425
JL
1052 return false;
1053 }
1054 }
1055
1056 dyn_h->dlt_offset = x->ofs;
1057 x->ofs += DLT_ENTRY_SIZE;
1058 }
1059 return true;
1060}
1061
1062/* Allocate space for a DLT.PLT entry. */
1063
1064static boolean
1065allocate_global_data_plt (dyn_h, data)
1066 struct elf64_hppa_dyn_hash_entry *dyn_h;
1067 PTR data;
1068{
1069 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1070
1071 if (dyn_h->want_plt
1072 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1073 && !((dyn_h->h->root.type == bfd_link_hash_defined
1074 || dyn_h->h->root.type == bfd_link_hash_defweak)
1075 && dyn_h->h->root.u.def.section->output_section != NULL))
1076 {
1077 dyn_h->plt_offset = x->ofs;
1078 x->ofs += PLT_ENTRY_SIZE;
1079 if (dyn_h->plt_offset < 0x2000)
1080 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1081 }
1082 else
1083 dyn_h->want_plt = 0;
1084
1085 return true;
1086}
1087
1088/* Allocate space for a STUB entry. */
1089
1090static boolean
1091allocate_global_data_stub (dyn_h, data)
1092 struct elf64_hppa_dyn_hash_entry *dyn_h;
1093 PTR data;
1094{
1095 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1096
1097 if (dyn_h->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1099 && !((dyn_h->h->root.type == bfd_link_hash_defined
1100 || dyn_h->h->root.type == bfd_link_hash_defweak)
1101 && dyn_h->h->root.u.def.section->output_section != NULL))
1102 {
1103 dyn_h->stub_offset = x->ofs;
1104 x->ofs += sizeof (plt_stub);
1105 }
1106 else
1107 dyn_h->want_stub = 0;
1108 return true;
1109}
1110
1111/* Allocate space for a FPTR entry. */
1112
1113static boolean
1114allocate_global_data_opd (dyn_h, data)
1115 struct elf64_hppa_dyn_hash_entry *dyn_h;
1116 PTR data;
1117{
1118 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1119
1120 if (dyn_h->want_opd)
1121 {
1122 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1123
15bda425
JL
1124 if (h)
1125 while (h->root.type == bfd_link_hash_indirect
1126 || h->root.type == bfd_link_hash_warning)
1127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1128
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
1131 if (h && h->root.type == bfd_link_hash_undefined)
1132 dyn_h->want_opd = 0;
1133
1134 /* If we are creating a shared library, took the address of a local
1135 function or might export this function from this object file, then
1136 we have to create an opd descriptor. */
1137 else if (x->info->shared
1138 || h == NULL
1139 || h->dynindx == -1
1140 || ((h->root.type == bfd_link_hash_defined
1141 || h->root.type == bfd_link_hash_defweak)
1142 && h->root.u.def.section->output_section != NULL))
1143 {
1144 /* If we are creating a shared library, then we will have to
1145 create a runtime relocation for the symbol to properly
1146 initialize the .opd entry. Make sure the symbol gets
1147 added to the dynamic symbol table. */
1148 if (x->info->shared
1149 && (h == NULL || (h->dynindx == -1)))
1150 {
1151 bfd *owner;
1152 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1153
1154 if (!_bfd_elf64_link_record_local_dynamic_symbol
1155 (x->info, owner, dyn_h->sym_indx))
1156 return false;
1157 }
1158
1159 /* This may not be necessary or desirable anymore now that
1160 we have some support for dealing with section symbols
1161 in dynamic relocs. But name munging does make the result
1162 much easier to debug. ie, the EPLT reloc will reference
1163 a symbol like .foobar, instead of .text + offset. */
1164 if (x->info->shared && h)
1165 {
1166 char *new_name;
1167 struct elf_link_hash_entry *nh;
1168
1169 new_name = alloca (strlen (h->root.root.string) + 2);
1170 new_name[0] = '.';
1171 strcpy (new_name + 1, h->root.root.string);
1172
1173 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1174 new_name, true, true, true);
1175
1176 nh->root.type = h->root.type;
1177 nh->root.u.def.value = h->root.u.def.value;
1178 nh->root.u.def.section = h->root.u.def.section;
1179
1180 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1181 return false;
1182
1183 }
1184 dyn_h->opd_offset = x->ofs;
1185 x->ofs += OPD_ENTRY_SIZE;
1186 }
1187
1188 /* Otherwise we do not need an opd entry. */
1189 else
1190 dyn_h->want_opd = 0;
1191 }
1192 return true;
1193}
1194
1195/* HP requires the EI_OSABI field to be filled in. The assignment to
1196 EI_ABIVERSION may not be strictly necessary. */
1197
1198static void
1199elf64_hppa_post_process_headers (abfd, link_info)
1200 bfd * abfd;
1201 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1202{
1203 Elf_Internal_Ehdr * i_ehdrp;
1204
1205 i_ehdrp = elf_elfheader (abfd);
1206
d952f17a
AM
1207 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1208 {
1209 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1210 }
1211 else
1212 {
1213 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1214 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1215 }
15bda425
JL
1216}
1217
1218/* Create function descriptor section (.opd). This section is called .opd
1219 because it contains "official prodecure descriptors". The "official"
1220 refers to the fact that these descriptors are used when taking the address
1221 of a procedure, thus ensuring a unique address for each procedure. */
1222
1223static boolean
1224get_opd (abfd, info, hppa_info)
1225 bfd *abfd;
edd21aca 1226 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1227 struct elf64_hppa_link_hash_table *hppa_info;
1228{
1229 asection *opd;
1230 bfd *dynobj;
1231
1232 opd = hppa_info->opd_sec;
1233 if (!opd)
1234 {
1235 dynobj = hppa_info->root.dynobj;
1236 if (!dynobj)
1237 hppa_info->root.dynobj = dynobj = abfd;
1238
1239 opd = bfd_make_section (dynobj, ".opd");
1240 if (!opd
1241 || !bfd_set_section_flags (dynobj, opd,
1242 (SEC_ALLOC
1243 | SEC_LOAD
1244 | SEC_HAS_CONTENTS
1245 | SEC_IN_MEMORY
1246 | SEC_LINKER_CREATED))
1247 || !bfd_set_section_alignment (abfd, opd, 3))
1248 {
1249 BFD_ASSERT (0);
1250 return false;
1251 }
1252
1253 hppa_info->opd_sec = opd;
1254 }
1255
1256 return true;
1257}
1258
1259/* Create the PLT section. */
1260
1261static boolean
1262get_plt (abfd, info, hppa_info)
1263 bfd *abfd;
edd21aca 1264 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1265 struct elf64_hppa_link_hash_table *hppa_info;
1266{
1267 asection *plt;
1268 bfd *dynobj;
1269
1270 plt = hppa_info->plt_sec;
1271 if (!plt)
1272 {
1273 dynobj = hppa_info->root.dynobj;
1274 if (!dynobj)
1275 hppa_info->root.dynobj = dynobj = abfd;
1276
1277 plt = bfd_make_section (dynobj, ".plt");
1278 if (!plt
1279 || !bfd_set_section_flags (dynobj, plt,
1280 (SEC_ALLOC
1281 | SEC_LOAD
1282 | SEC_HAS_CONTENTS
1283 | SEC_IN_MEMORY
1284 | SEC_LINKER_CREATED))
1285 || !bfd_set_section_alignment (abfd, plt, 3))
1286 {
1287 BFD_ASSERT (0);
1288 return false;
1289 }
1290
1291 hppa_info->plt_sec = plt;
1292 }
1293
1294 return true;
1295}
1296
1297/* Create the DLT section. */
1298
1299static boolean
1300get_dlt (abfd, info, hppa_info)
1301 bfd *abfd;
edd21aca 1302 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1303 struct elf64_hppa_link_hash_table *hppa_info;
1304{
1305 asection *dlt;
1306 bfd *dynobj;
1307
1308 dlt = hppa_info->dlt_sec;
1309 if (!dlt)
1310 {
1311 dynobj = hppa_info->root.dynobj;
1312 if (!dynobj)
1313 hppa_info->root.dynobj = dynobj = abfd;
1314
1315 dlt = bfd_make_section (dynobj, ".dlt");
1316 if (!dlt
1317 || !bfd_set_section_flags (dynobj, dlt,
1318 (SEC_ALLOC
1319 | SEC_LOAD
1320 | SEC_HAS_CONTENTS
1321 | SEC_IN_MEMORY
1322 | SEC_LINKER_CREATED))
1323 || !bfd_set_section_alignment (abfd, dlt, 3))
1324 {
1325 BFD_ASSERT (0);
1326 return false;
1327 }
1328
1329 hppa_info->dlt_sec = dlt;
1330 }
1331
1332 return true;
1333}
1334
1335/* Create the stubs section. */
1336
1337static boolean
1338get_stub (abfd, info, hppa_info)
1339 bfd *abfd;
edd21aca 1340 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1341 struct elf64_hppa_link_hash_table *hppa_info;
1342{
1343 asection *stub;
1344 bfd *dynobj;
1345
1346 stub = hppa_info->stub_sec;
1347 if (!stub)
1348 {
1349 dynobj = hppa_info->root.dynobj;
1350 if (!dynobj)
1351 hppa_info->root.dynobj = dynobj = abfd;
1352
1353 stub = bfd_make_section (dynobj, ".stub");
1354 if (!stub
1355 || !bfd_set_section_flags (dynobj, stub,
1356 (SEC_ALLOC
1357 | SEC_LOAD
1358 | SEC_HAS_CONTENTS
1359 | SEC_IN_MEMORY
1360 | SEC_READONLY
1361 | SEC_LINKER_CREATED))
1362 || !bfd_set_section_alignment (abfd, stub, 3))
1363 {
1364 BFD_ASSERT (0);
1365 return false;
1366 }
1367
1368 hppa_info->stub_sec = stub;
1369 }
1370
1371 return true;
1372}
1373
1374/* Create sections necessary for dynamic linking. This is only a rough
1375 cut and will likely change as we learn more about the somewhat
1376 unusual dynamic linking scheme HP uses.
1377
1378 .stub:
1379 Contains code to implement cross-space calls. The first time one
1380 of the stubs is used it will call into the dynamic linker, later
1381 calls will go straight to the target.
1382
1383 The only stub we support right now looks like
1384
1385 ldd OFFSET(%dp),%r1
1386 bve %r0(%r1)
1387 ldd OFFSET+8(%dp),%dp
1388
1389 Other stubs may be needed in the future. We may want the remove
1390 the break/nop instruction. It is only used right now to keep the
1391 offset of a .plt entry and a .stub entry in sync.
1392
1393 .dlt:
1394 This is what most people call the .got. HP used a different name.
1395 Losers.
1396
1397 .rela.dlt:
1398 Relocations for the DLT.
1399
1400 .plt:
1401 Function pointers as address,gp pairs.
1402
1403 .rela.plt:
1404 Should contain dynamic IPLT (and EPLT?) relocations.
1405
1406 .opd:
fe8bc63d 1407 FPTRS
15bda425
JL
1408
1409 .rela.opd:
1410 EPLT relocations for symbols exported from shared libraries. */
1411
1412static boolean
1413elf64_hppa_create_dynamic_sections (abfd, info)
1414 bfd *abfd;
1415 struct bfd_link_info *info;
1416{
1417 asection *s;
1418
1419 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1420 return false;
1421
1422 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1423 return false;
1424
1425 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1426 return false;
1427
1428 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1429 return false;
1430
1431 s = bfd_make_section(abfd, ".rela.dlt");
1432 if (s == NULL
1433 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1434 | SEC_HAS_CONTENTS
1435 | SEC_IN_MEMORY
1436 | SEC_READONLY
1437 | SEC_LINKER_CREATED))
1438 || !bfd_set_section_alignment (abfd, s, 3))
1439 return false;
1440 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1441
1442 s = bfd_make_section(abfd, ".rela.plt");
1443 if (s == NULL
1444 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1445 | SEC_HAS_CONTENTS
1446 | SEC_IN_MEMORY
1447 | SEC_READONLY
1448 | SEC_LINKER_CREATED))
1449 || !bfd_set_section_alignment (abfd, s, 3))
1450 return false;
1451 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1452
1453 s = bfd_make_section(abfd, ".rela.data");
1454 if (s == NULL
1455 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1456 | SEC_HAS_CONTENTS
1457 | SEC_IN_MEMORY
1458 | SEC_READONLY
1459 | SEC_LINKER_CREATED))
1460 || !bfd_set_section_alignment (abfd, s, 3))
1461 return false;
1462 elf64_hppa_hash_table (info)->other_rel_sec = s;
1463
1464 s = bfd_make_section(abfd, ".rela.opd");
1465 if (s == NULL
1466 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1467 | SEC_HAS_CONTENTS
1468 | SEC_IN_MEMORY
1469 | SEC_READONLY
1470 | SEC_LINKER_CREATED))
1471 || !bfd_set_section_alignment (abfd, s, 3))
1472 return false;
1473 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1474
1475 return true;
1476}
1477
1478/* Allocate dynamic relocations for those symbols that turned out
1479 to be dynamic. */
1480
1481static boolean
1482allocate_dynrel_entries (dyn_h, data)
1483 struct elf64_hppa_dyn_hash_entry *dyn_h;
1484 PTR data;
1485{
1486 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1487 struct elf64_hppa_link_hash_table *hppa_info;
1488 struct elf64_hppa_dyn_reloc_entry *rent;
1489 boolean dynamic_symbol, shared;
1490
1491 hppa_info = elf64_hppa_hash_table (x->info);
1492 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1493 shared = x->info->shared;
1494
1495 /* We may need to allocate relocations for a non-dynamic symbol
1496 when creating a shared library. */
1497 if (!dynamic_symbol && !shared)
1498 return true;
1499
1500 /* Take care of the normal data relocations. */
1501
1502 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1503 {
1504 switch (rent->type)
1505 {
1506 case R_PARISC_FPTR64:
1507 /* Allocate one iff we are not building a shared library and
1508 !want_opd, which by this point will be true only if we're
1509 actually allocating one statically in the main executable. */
1510 if (!x->info->shared && dyn_h->want_opd)
1511 continue;
1512 break;
1513 }
1514 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1515
1516 /* Make sure this symbol gets into the dynamic symbol table if it is
1517 not already recorded. ?!? This should not be in the loop since
1518 the symbol need only be added once. */
1519 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1520 if (!_bfd_elf64_link_record_local_dynamic_symbol
1521 (x->info, rent->sec->owner, dyn_h->sym_indx))
1522 return false;
1523 }
1524
1525 /* Take care of the GOT and PLT relocations. */
1526
1527 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1528 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1529
1530 /* If we are building a shared library, then every symbol that has an
1531 opd entry will need an EPLT relocation to relocate the symbol's address
1532 and __gp value based on the runtime load address. */
1533 if (shared && dyn_h->want_opd)
1534 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1535
1536 if (dyn_h->want_plt && dynamic_symbol)
1537 {
1538 bfd_size_type t = 0;
1539
1540 /* Dynamic symbols get one IPLT relocation. Local symbols in
1541 shared libraries get two REL relocations. Local symbols in
1542 main applications get nothing. */
1543 if (dynamic_symbol)
1544 t = sizeof (Elf64_External_Rela);
1545 else if (shared)
1546 t = 2 * sizeof (Elf64_External_Rela);
1547
1548 hppa_info->plt_rel_sec->_raw_size += t;
1549 }
1550
1551 return true;
1552}
1553
1554/* Adjust a symbol defined by a dynamic object and referenced by a
1555 regular object. */
1556
1557static boolean
1558elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1559 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1560 struct elf_link_hash_entry *h;
1561{
1562 /* ??? Undefined symbols with PLT entries should be re-defined
1563 to be the PLT entry. */
1564
1565 /* If this is a weak symbol, and there is a real definition, the
1566 processor independent code will have arranged for us to see the
1567 real definition first, and we can just use the same value. */
1568 if (h->weakdef != NULL)
1569 {
1570 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1571 || h->weakdef->root.type == bfd_link_hash_defweak);
1572 h->root.u.def.section = h->weakdef->root.u.def.section;
1573 h->root.u.def.value = h->weakdef->root.u.def.value;
1574 return true;
1575 }
1576
1577 /* If this is a reference to a symbol defined by a dynamic object which
1578 is not a function, we might allocate the symbol in our .dynbss section
1579 and allocate a COPY dynamic relocation.
1580
1581 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1582 of hackery. */
1583
1584 return true;
1585}
1586
1587/* Set the final sizes of the dynamic sections and allocate memory for
1588 the contents of our special sections. */
1589
1590static boolean
1591elf64_hppa_size_dynamic_sections (output_bfd, info)
1592 bfd *output_bfd;
1593 struct bfd_link_info *info;
1594{
1595 bfd *dynobj;
1596 asection *s;
1597 boolean plt;
1598 boolean relocs;
1599 boolean reltext;
15bda425
JL
1600 struct elf64_hppa_allocate_data data;
1601 struct elf64_hppa_link_hash_table *hppa_info;
1602
1603 hppa_info = elf64_hppa_hash_table (info);
1604
1605 dynobj = elf_hash_table (info)->dynobj;
1606 BFD_ASSERT (dynobj != NULL);
1607
1608 if (elf_hash_table (info)->dynamic_sections_created)
1609 {
1610 /* Set the contents of the .interp section to the interpreter. */
1611 if (! info->shared)
1612 {
1613 s = bfd_get_section_by_name (dynobj, ".interp");
1614 BFD_ASSERT (s != NULL);
1615 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1616 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1617 }
1618 }
1619 else
1620 {
1621 /* We may have created entries in the .rela.got section.
1622 However, if we are not creating the dynamic sections, we will
1623 not actually use these entries. Reset the size of .rela.dlt,
1624 which will cause it to get stripped from the output file
1625 below. */
1626 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1627 if (s != NULL)
1628 s->_raw_size = 0;
1629 }
1630
1631 /* Allocate the GOT entries. */
1632
1633 data.info = info;
1634 if (elf64_hppa_hash_table (info)->dlt_sec)
1635 {
1636 data.ofs = 0x0;
1637 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1638 allocate_global_data_dlt, &data);
1639 hppa_info->dlt_sec->_raw_size = data.ofs;
1640
1641 data.ofs = 0x0;
1642 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1643 allocate_global_data_plt, &data);
1644 hppa_info->plt_sec->_raw_size = data.ofs;
1645
1646 data.ofs = 0x0;
1647 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1648 allocate_global_data_stub, &data);
1649 hppa_info->stub_sec->_raw_size = data.ofs;
1650 }
1651
1652 /* Mark each function this program exports so that we will allocate
1653 space in the .opd section for each function's FPTR.
1654
1655 We have to traverse the main linker hash table since we have to
1656 find functions which may not have been mentioned in any relocs. */
1657 elf_link_hash_traverse (elf_hash_table (info),
1658 elf64_hppa_mark_exported_functions,
1659 info);
1660
1661 /* Allocate space for entries in the .opd section. */
1662 if (elf64_hppa_hash_table (info)->opd_sec)
1663 {
1664 data.ofs = 0;
1665 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1666 allocate_global_data_opd, &data);
1667 hppa_info->opd_sec->_raw_size = data.ofs;
1668 }
1669
1670 /* Now allocate space for dynamic relocations, if necessary. */
1671 if (hppa_info->root.dynamic_sections_created)
1672 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1673 allocate_dynrel_entries, &data);
1674
1675 /* The sizes of all the sections are set. Allocate memory for them. */
1676 plt = false;
1677 relocs = false;
1678 reltext = false;
1679 for (s = dynobj->sections; s != NULL; s = s->next)
1680 {
1681 const char *name;
1682 boolean strip;
1683
1684 if ((s->flags & SEC_LINKER_CREATED) == 0)
1685 continue;
1686
1687 /* It's OK to base decisions on the section name, because none
1688 of the dynobj section names depend upon the input files. */
1689 name = bfd_get_section_name (dynobj, s);
1690
1691 strip = 0;
1692
1693 if (strcmp (name, ".plt") == 0)
1694 {
1695 if (s->_raw_size == 0)
1696 {
1697 /* Strip this section if we don't need it; see the
1698 comment below. */
1699 strip = true;
1700 }
1701 else
1702 {
1703 /* Remember whether there is a PLT. */
1704 plt = true;
1705 }
1706 }
1707 else if (strcmp (name, ".dlt") == 0)
1708 {
1709 if (s->_raw_size == 0)
1710 {
1711 /* Strip this section if we don't need it; see the
1712 comment below. */
1713 strip = true;
1714 }
1715 }
1716 else if (strcmp (name, ".opd") == 0)
1717 {
1718 if (s->_raw_size == 0)
1719 {
1720 /* Strip this section if we don't need it; see the
1721 comment below. */
1722 strip = true;
1723 }
1724 }
1725 else if (strncmp (name, ".rela", 4) == 0)
1726 {
1727 if (s->_raw_size == 0)
1728 {
1729 /* If we don't need this section, strip it from the
1730 output file. This is mostly to handle .rela.bss and
1731 .rela.plt. We must create both sections in
1732 create_dynamic_sections, because they must be created
1733 before the linker maps input sections to output
1734 sections. The linker does that before
1735 adjust_dynamic_symbol is called, and it is that
1736 function which decides whether anything needs to go
1737 into these sections. */
1738 strip = true;
1739 }
1740 else
1741 {
1742 asection *target;
1743
1744 /* Remember whether there are any reloc sections other
1745 than .rela.plt. */
1746 if (strcmp (name, ".rela.plt") != 0)
1747 {
1748 const char *outname;
1749
1750 relocs = true;
1751
1752 /* If this relocation section applies to a read only
1753 section, then we probably need a DT_TEXTREL
1754 entry. The entries in the .rela.plt section
1755 really apply to the .got section, which we
1756 created ourselves and so know is not readonly. */
1757 outname = bfd_get_section_name (output_bfd,
1758 s->output_section);
1759 target = bfd_get_section_by_name (output_bfd, outname + 4);
1760 if (target != NULL
1761 && (target->flags & SEC_READONLY) != 0
1762 && (target->flags & SEC_ALLOC) != 0)
1763 reltext = true;
1764 }
1765
1766 /* We use the reloc_count field as a counter if we need
1767 to copy relocs into the output file. */
1768 s->reloc_count = 0;
1769 }
1770 }
1771 else if (strncmp (name, ".dlt", 4) != 0
1772 && strcmp (name, ".stub") != 0
1773 && strcmp (name, ".got") != 0)
1774 {
1775 /* It's not one of our sections, so don't allocate space. */
1776 continue;
1777 }
1778
1779 if (strip)
1780 {
1781 _bfd_strip_section_from_output (info, s);
1782 continue;
1783 }
1784
1785 /* Allocate memory for the section contents if it has not
832d951b
AM
1786 been allocated already. We use bfd_zalloc here in case
1787 unused entries are not reclaimed before the section's
1788 contents are written out. This should not happen, but this
1789 way if it does, we get a R_PARISC_NONE reloc instead of
1790 garbage. */
15bda425
JL
1791 if (s->contents == NULL)
1792 {
7a9af8c4 1793 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1794 if (s->contents == NULL && s->_raw_size != 0)
1795 return false;
1796 }
1797 }
1798
1799 if (elf_hash_table (info)->dynamic_sections_created)
1800 {
1801 /* Always create a DT_PLTGOT. It actually has nothing to do with
1802 the PLT, it is how we communicate the __gp value of a load
1803 module to the dynamic linker. */
dc810e39
AM
1804#define add_dynamic_entry(TAG, VAL) \
1805 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1806
1807 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1808 || !add_dynamic_entry (DT_PLTGOT, 0))
15bda425
JL
1809 return false;
1810
1811 /* Add some entries to the .dynamic section. We fill in the
1812 values later, in elf64_hppa_finish_dynamic_sections, but we
1813 must add the entries now so that we get the correct size for
1814 the .dynamic section. The DT_DEBUG entry is filled in by the
1815 dynamic linker and used by the debugger. */
1816 if (! info->shared)
1817 {
dc810e39
AM
1818 if (!add_dynamic_entry (DT_DEBUG, 0)
1819 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1820 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
15bda425
JL
1821 return false;
1822 }
1823
1824 if (plt)
1825 {
dc810e39
AM
1826 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1827 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1828 || !add_dynamic_entry (DT_JMPREL, 0))
15bda425
JL
1829 return false;
1830 }
1831
1832 if (relocs)
1833 {
dc810e39
AM
1834 if (!add_dynamic_entry (DT_RELA, 0)
1835 || !add_dynamic_entry (DT_RELASZ, 0)
1836 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
15bda425
JL
1837 return false;
1838 }
1839
1840 if (reltext)
1841 {
dc810e39 1842 if (!add_dynamic_entry (DT_TEXTREL, 0))
15bda425 1843 return false;
d6cf2879 1844 info->flags |= DF_TEXTREL;
15bda425
JL
1845 }
1846 }
dc810e39 1847#undef add_dynamic_entry
15bda425
JL
1848
1849 return true;
1850}
1851
1852/* Called after we have output the symbol into the dynamic symbol
1853 table, but before we output the symbol into the normal symbol
1854 table.
1855
1856 For some symbols we had to change their address when outputting
1857 the dynamic symbol table. We undo that change here so that
1858 the symbols have their expected value in the normal symbol
1859 table. Ick. */
1860
1861static boolean
1862elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1863 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1864 struct bfd_link_info *info;
1865 const char *name;
1866 Elf_Internal_Sym *sym;
edd21aca 1867 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1868{
1869 struct elf64_hppa_link_hash_table *hppa_info;
1870 struct elf64_hppa_dyn_hash_entry *dyn_h;
1871
1872 /* We may be called with the file symbol or section symbols.
1873 They never need munging, so it is safe to ignore them. */
1874 if (!name)
1875 return true;
1876
1877 /* Get the PA dyn_symbol (if any) associated with NAME. */
1878 hppa_info = elf64_hppa_hash_table (info);
1879 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1880 name, false, false);
1881
832d951b
AM
1882 /* Function symbols for which we created .opd entries *may* have been
1883 munged by finish_dynamic_symbol and have to be un-munged here.
1884
1885 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1886 into non-dynamic ones, so we initialize st_shndx to -1 in
1887 mark_exported_functions and check to see if it was overwritten
1888 here instead of just checking dyn_h->h->dynindx. */
1889 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1890 {
1891 /* Restore the saved value and section index. */
1892 sym->st_value = dyn_h->st_value;
fe8bc63d 1893 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1894 }
1895
1896 return true;
1897}
1898
1899/* Finish up dynamic symbol handling. We set the contents of various
1900 dynamic sections here. */
1901
1902static boolean
1903elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1904 bfd *output_bfd;
1905 struct bfd_link_info *info;
1906 struct elf_link_hash_entry *h;
1907 Elf_Internal_Sym *sym;
1908{
1909 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1910 struct elf64_hppa_link_hash_table *hppa_info;
1911 struct elf64_hppa_dyn_hash_entry *dyn_h;
1912
1913 hppa_info = elf64_hppa_hash_table (info);
1914 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1915 h->root.root.string, false, false);
1916
1917 stub = hppa_info->stub_sec;
1918 splt = hppa_info->plt_sec;
1919 sdlt = hppa_info->dlt_sec;
1920 sopd = hppa_info->opd_sec;
1921 spltrel = hppa_info->plt_rel_sec;
1922 sdltrel = hppa_info->dlt_rel_sec;
1923
1924 BFD_ASSERT (stub != NULL && splt != NULL
1925 && sopd != NULL && sdlt != NULL)
1926
1927 /* Incredible. It is actually necessary to NOT use the symbol's real
1928 value when building the dynamic symbol table for a shared library.
1929 At least for symbols that refer to functions.
1930
1931 We will store a new value and section index into the symbol long
1932 enough to output it into the dynamic symbol table, then we restore
1933 the original values (in elf64_hppa_link_output_symbol_hook). */
1934 if (dyn_h && dyn_h->want_opd)
1935 {
1936 /* Save away the original value and section index so that we
1937 can restore them later. */
1938 dyn_h->st_value = sym->st_value;
1939 dyn_h->st_shndx = sym->st_shndx;
1940
1941 /* For the dynamic symbol table entry, we want the value to be
1942 address of this symbol's entry within the .opd section. */
1943 sym->st_value = (dyn_h->opd_offset
1944 + sopd->output_offset
1945 + sopd->output_section->vma);
1946 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1947 sopd->output_section);
1948 }
1949
1950 /* Initialize a .plt entry if requested. */
1951 if (dyn_h && dyn_h->want_plt
1952 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1953 {
1954 bfd_vma value;
1955 Elf_Internal_Rela rel;
1956
1957 /* We do not actually care about the value in the PLT entry
1958 if we are creating a shared library and the symbol is
1959 still undefined, we create a dynamic relocation to fill
1960 in the correct value. */
1961 if (info->shared && h->root.type == bfd_link_hash_undefined)
1962 value = 0;
1963 else
1964 value = (h->root.u.def.value + h->root.u.def.section->vma);
1965
fe8bc63d 1966 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1967
1968 The format of a plt entry is
fe8bc63d 1969 <funcaddr> <__gp>.
15bda425
JL
1970
1971 plt_offset is the offset within the PLT section at which to
fe8bc63d 1972 install the PLT entry.
15bda425
JL
1973
1974 We are modifying the in-memory PLT contents here, so we do not add
1975 in the output_offset of the PLT section. */
1976
1977 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1978 value = _bfd_get_gp_value (splt->output_section->owner);
1979 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1980
1981 /* Create a dynamic IPLT relocation for this entry.
1982
1983 We are creating a relocation in the output file's PLT section,
1984 which is included within the DLT secton. So we do need to include
1985 the PLT's output_offset in the computation of the relocation's
1986 address. */
1987 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1988 + splt->output_section->vma);
1989 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1990 rel.r_addend = 0;
1991
1992 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1993 (((Elf64_External_Rela *)
1994 spltrel->contents)
1995 + spltrel->reloc_count));
1996 spltrel->reloc_count++;
1997 }
1998
1999 /* Initialize an external call stub entry if requested. */
2000 if (dyn_h && dyn_h->want_stub
2001 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2002 {
2003 bfd_vma value;
2004 int insn;
b352eebf 2005 unsigned int max_offset;
15bda425
JL
2006
2007 /* Install the generic stub template.
2008
2009 We are modifying the contents of the stub section, so we do not
2010 need to include the stub section's output_offset here. */
2011 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2012
2013 /* Fix up the first ldd instruction.
2014
2015 We are modifying the contents of the STUB section in memory,
fe8bc63d 2016 so we do not need to include its output offset in this computation.
15bda425
JL
2017
2018 Note the plt_offset value is the value of the PLT entry relative to
2019 the start of the PLT section. These instructions will reference
2020 data relative to the value of __gp, which may not necessarily have
2021 the same address as the start of the PLT section.
2022
2023 gp_offset contains the offset of __gp within the PLT section. */
2024 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2025
15bda425 2026 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2027 if (output_bfd->arch_info->mach >= 25)
2028 {
2029 /* Wide mode allows 16 bit offsets. */
2030 max_offset = 32768;
2031 insn &= ~ 0xfff1;
dc810e39 2032 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2033 }
2034 else
2035 {
2036 max_offset = 8192;
2037 insn &= ~ 0x3ff1;
dc810e39 2038 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2039 }
2040
2041 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2042 {
2043 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2044 dyn_h->root.string,
2045 (long) value);
2046 return false;
2047 }
2048
dc810e39 2049 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2050 stub->contents + dyn_h->stub_offset);
2051
2052 /* Fix up the second ldd instruction. */
b352eebf 2053 value += 8;
15bda425 2054 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2055 if (output_bfd->arch_info->mach >= 25)
2056 {
2057 insn &= ~ 0xfff1;
dc810e39 2058 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2059 }
2060 else
2061 {
2062 insn &= ~ 0x3ff1;
dc810e39 2063 insn |= re_assemble_14 ((int) value);
b352eebf 2064 }
dc810e39 2065 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2066 stub->contents + dyn_h->stub_offset + 8);
2067 }
2068
2069 /* Millicode symbols should not be put in the dynamic
2070 symbol table under any circumstances. */
2071 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2072 h->dynindx = -1;
2073
2074 return true;
2075}
2076
2077/* The .opd section contains FPTRs for each function this file
2078 exports. Initialize the FPTR entries. */
2079
2080static boolean
2081elf64_hppa_finalize_opd (dyn_h, data)
2082 struct elf64_hppa_dyn_hash_entry *dyn_h;
2083 PTR data;
2084{
2085 struct bfd_link_info *info = (struct bfd_link_info *)data;
2086 struct elf64_hppa_link_hash_table *hppa_info;
2087 struct elf_link_hash_entry *h = dyn_h->h;
2088 asection *sopd;
2089 asection *sopdrel;
2090
2091 hppa_info = elf64_hppa_hash_table (info);
2092 sopd = hppa_info->opd_sec;
2093 sopdrel = hppa_info->opd_rel_sec;
2094
2095 if (h && dyn_h && dyn_h->want_opd)
2096 {
2097 bfd_vma value;
2098
fe8bc63d 2099 /* The first two words of an .opd entry are zero.
15bda425
JL
2100
2101 We are modifying the contents of the OPD section in memory, so we
2102 do not need to include its output offset in this computation. */
2103 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2104
2105 value = (h->root.u.def.value
2106 + h->root.u.def.section->output_section->vma
2107 + h->root.u.def.section->output_offset);
2108
2109 /* The next word is the address of the function. */
2110 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2111
2112 /* The last word is our local __gp value. */
2113 value = _bfd_get_gp_value (sopd->output_section->owner);
2114 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2115 }
2116
2117 /* If we are generating a shared library, we must generate EPLT relocations
2118 for each entry in the .opd, even for static functions (they may have
2119 had their address taken). */
2120 if (info->shared && dyn_h && dyn_h->want_opd)
2121 {
2122 Elf64_Internal_Rela rel;
15bda425
JL
2123 int dynindx;
2124
2125 /* We may need to do a relocation against a local symbol, in
2126 which case we have to look up it's dynamic symbol index off
2127 the local symbol hash table. */
2128 if (h && h->dynindx != -1)
2129 dynindx = h->dynindx;
2130 else
2131 dynindx
2132 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2133 dyn_h->sym_indx);
2134
2135 /* The offset of this relocation is the absolute address of the
2136 .opd entry for this symbol. */
2137 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2138 + sopd->output_section->vma);
2139
2140 /* If H is non-null, then we have an external symbol.
2141
2142 It is imperative that we use a different dynamic symbol for the
2143 EPLT relocation if the symbol has global scope.
2144
2145 In the dynamic symbol table, the function symbol will have a value
2146 which is address of the function's .opd entry.
2147
2148 Thus, we can not use that dynamic symbol for the EPLT relocation
2149 (if we did, the data in the .opd would reference itself rather
2150 than the actual address of the function). Instead we have to use
2151 a new dynamic symbol which has the same value as the original global
fe8bc63d 2152 function symbol.
15bda425
JL
2153
2154 We prefix the original symbol with a "." and use the new symbol in
2155 the EPLT relocation. This new symbol has already been recorded in
2156 the symbol table, we just have to look it up and use it.
2157
2158 We do not have such problems with static functions because we do
2159 not make their addresses in the dynamic symbol table point to
2160 the .opd entry. Ultimately this should be safe since a static
2161 function can not be directly referenced outside of its shared
2162 library.
2163
2164 We do have to play similar games for FPTR relocations in shared
2165 libraries, including those for static symbols. See the FPTR
2166 handling in elf64_hppa_finalize_dynreloc. */
2167 if (h)
2168 {
2169 char *new_name;
2170 struct elf_link_hash_entry *nh;
2171
2172 new_name = alloca (strlen (h->root.root.string) + 2);
2173 new_name[0] = '.';
2174 strcpy (new_name + 1, h->root.root.string);
2175
2176 nh = elf_link_hash_lookup (elf_hash_table (info),
2177 new_name, false, false, false);
2178
2179 /* All we really want from the new symbol is its dynamic
2180 symbol index. */
2181 dynindx = nh->dynindx;
2182 }
2183
2184 rel.r_addend = 0;
2185 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2186
2187 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2188 (((Elf64_External_Rela *)
2189 sopdrel->contents)
2190 + sopdrel->reloc_count));
2191 sopdrel->reloc_count++;
2192 }
2193 return true;
2194}
2195
2196/* The .dlt section contains addresses for items referenced through the
2197 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2198 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2199
2200static boolean
2201elf64_hppa_finalize_dlt (dyn_h, data)
2202 struct elf64_hppa_dyn_hash_entry *dyn_h;
2203 PTR data;
2204{
2205 struct bfd_link_info *info = (struct bfd_link_info *)data;
2206 struct elf64_hppa_link_hash_table *hppa_info;
2207 asection *sdlt, *sdltrel;
2208 struct elf_link_hash_entry *h = dyn_h->h;
2209
2210 hppa_info = elf64_hppa_hash_table (info);
2211
2212 sdlt = hppa_info->dlt_sec;
2213 sdltrel = hppa_info->dlt_rel_sec;
2214
2215 /* H/DYN_H may refer to a local variable and we know it's
2216 address, so there is no need to create a relocation. Just install
2217 the proper value into the DLT, note this shortcut can not be
2218 skipped when building a shared library. */
2219 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2220 {
2221 bfd_vma value;
2222
2223 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2224 to point to the FPTR entry in the .opd section.
15bda425
JL
2225
2226 We include the OPD's output offset in this computation as
2227 we are referring to an absolute address in the resulting
2228 object file. */
2229 if (dyn_h->want_opd)
2230 {
2231 value = (dyn_h->opd_offset
2232 + hppa_info->opd_sec->output_offset
2233 + hppa_info->opd_sec->output_section->vma);
2234 }
2235 else
2236 {
2237 value = (h->root.u.def.value
2238 + h->root.u.def.section->output_offset);
2239
2240 if (h->root.u.def.section->output_section)
2241 value += h->root.u.def.section->output_section->vma;
2242 else
2243 value += h->root.u.def.section->vma;
2244 }
2245
2246 /* We do not need to include the output offset of the DLT section
2247 here because we are modifying the in-memory contents. */
2248 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2249 }
2250
2251 /* Create a relocation for the DLT entry assocated with this symbol.
2252 When building a shared library the symbol does not have to be dynamic. */
2253 if (dyn_h->want_dlt
2254 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2255 {
2256 Elf64_Internal_Rela rel;
2257 int dynindx;
2258
2259 /* We may need to do a relocation against a local symbol, in
2260 which case we have to look up it's dynamic symbol index off
2261 the local symbol hash table. */
2262 if (h && h->dynindx != -1)
2263 dynindx = h->dynindx;
2264 else
2265 dynindx
2266 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2267 dyn_h->sym_indx);
2268
15bda425
JL
2269 /* Create a dynamic relocation for this entry. Do include the output
2270 offset of the DLT entry since we need an absolute address in the
2271 resulting object file. */
2272 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2273 + sdlt->output_section->vma);
2274 if (h && h->type == STT_FUNC)
2275 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2276 else
2277 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2278 rel.r_addend = 0;
2279
2280 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2281 (((Elf64_External_Rela *)
2282 sdltrel->contents)
2283 + sdltrel->reloc_count));
2284 sdltrel->reloc_count++;
2285 }
2286 return true;
2287}
2288
2289/* Finalize the dynamic relocations. Specifically the FPTR relocations
2290 for dynamic functions used to initialize static data. */
2291
2292static boolean
2293elf64_hppa_finalize_dynreloc (dyn_h, data)
2294 struct elf64_hppa_dyn_hash_entry *dyn_h;
2295 PTR data;
2296{
2297 struct bfd_link_info *info = (struct bfd_link_info *)data;
2298 struct elf64_hppa_link_hash_table *hppa_info;
2299 struct elf_link_hash_entry *h;
2300 int dynamic_symbol;
2301
2302 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2303
2304 if (!dynamic_symbol && !info->shared)
2305 return true;
2306
2307 if (dyn_h->reloc_entries)
2308 {
2309 struct elf64_hppa_dyn_reloc_entry *rent;
2310 int dynindx;
2311
2312 hppa_info = elf64_hppa_hash_table (info);
2313 h = dyn_h->h;
2314
2315 /* We may need to do a relocation against a local symbol, in
2316 which case we have to look up it's dynamic symbol index off
2317 the local symbol hash table. */
2318 if (h && h->dynindx != -1)
2319 dynindx = h->dynindx;
2320 else
2321 dynindx
2322 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2323 dyn_h->sym_indx);
2324
2325 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2326 {
2327 Elf64_Internal_Rela rel;
2328
2329 switch (rent->type)
2330 {
2331 case R_PARISC_FPTR64:
2332 /* Allocate one iff we are not building a shared library and
2333 !want_opd, which by this point will be true only if we're
2334 actually allocating one statically in the main executable. */
2335 if (!info->shared && dyn_h->want_opd)
2336 continue;
2337 break;
2338 }
2339
fe8bc63d 2340 /* Create a dynamic relocation for this entry.
15bda425
JL
2341
2342 We need the output offset for the reloc's section because
2343 we are creating an absolute address in the resulting object
2344 file. */
2345 rel.r_offset = (rent->offset + rent->sec->output_offset
2346 + rent->sec->output_section->vma);
2347
2348 /* An FPTR64 relocation implies that we took the address of
2349 a function and that the function has an entry in the .opd
2350 section. We want the FPTR64 relocation to reference the
2351 entry in .opd.
2352
2353 We could munge the symbol value in the dynamic symbol table
2354 (in fact we already do for functions with global scope) to point
2355 to the .opd entry. Then we could use that dynamic symbol in
2356 this relocation.
2357
2358 Or we could do something sensible, not munge the symbol's
2359 address and instead just use a different symbol to reference
2360 the .opd entry. At least that seems sensible until you
2361 realize there's no local dynamic symbols we can use for that
2362 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2363
15bda425
JL
2364 We use a section symbol recorded by check_relocs as the
2365 base symbol for the relocation. The addend is the difference
2366 between the section symbol and the address of the .opd entry. */
2367 if (info->shared && rent->type == R_PARISC_FPTR64)
2368 {
2369 bfd_vma value, value2;
15bda425
JL
2370
2371 /* First compute the address of the opd entry for this symbol. */
2372 value = (dyn_h->opd_offset
2373 + hppa_info->opd_sec->output_section->vma
2374 + hppa_info->opd_sec->output_offset);
2375
2376 /* Compute the value of the start of the section with
2377 the relocation. */
2378 value2 = (rent->sec->output_section->vma
2379 + rent->sec->output_offset);
2380
2381 /* Compute the difference between the start of the section
2382 with the relocation and the opd entry. */
2383 value -= value2;
fe8bc63d 2384
15bda425
JL
2385 /* The result becomes the addend of the relocation. */
2386 rel.r_addend = value;
2387
2388 /* The section symbol becomes the symbol for the dynamic
2389 relocation. */
2390 dynindx
2391 = _bfd_elf_link_lookup_local_dynindx (info,
2392 rent->sec->owner,
2393 rent->sec_symndx);
2394 }
2395 else
2396 rel.r_addend = rent->addend;
2397
2398 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2399
2400 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2401 &rel,
2402 (((Elf64_External_Rela *)
2403 hppa_info->other_rel_sec->contents)
2404 + hppa_info->other_rel_sec->reloc_count));
2405 hppa_info->other_rel_sec->reloc_count++;
2406 }
2407 }
2408
2409 return true;
2410}
2411
2412/* Finish up the dynamic sections. */
2413
2414static boolean
2415elf64_hppa_finish_dynamic_sections (output_bfd, info)
2416 bfd *output_bfd;
2417 struct bfd_link_info *info;
2418{
2419 bfd *dynobj;
2420 asection *sdyn;
2421 struct elf64_hppa_link_hash_table *hppa_info;
2422
2423 hppa_info = elf64_hppa_hash_table (info);
2424
2425 /* Finalize the contents of the .opd section. */
2426 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2427 elf64_hppa_finalize_opd,
2428 info);
2429
2430 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2431 elf64_hppa_finalize_dynreloc,
2432 info);
2433
2434 /* Finalize the contents of the .dlt section. */
2435 dynobj = elf_hash_table (info)->dynobj;
2436 /* Finalize the contents of the .dlt section. */
2437 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2438 elf64_hppa_finalize_dlt,
2439 info);
2440
15bda425
JL
2441 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2442
2443 if (elf_hash_table (info)->dynamic_sections_created)
2444 {
2445 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2446
2447 BFD_ASSERT (sdyn != NULL);
2448
2449 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2450 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2451 for (; dyncon < dynconend; dyncon++)
2452 {
2453 Elf_Internal_Dyn dyn;
2454 asection *s;
2455
2456 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2457
2458 switch (dyn.d_tag)
2459 {
2460 default:
2461 break;
2462
2463 case DT_HP_LOAD_MAP:
2464 /* Compute the absolute address of 16byte scratchpad area
2465 for the dynamic linker.
2466
2467 By convention the linker script will allocate the scratchpad
2468 area at the start of the .data section. So all we have to
2469 to is find the start of the .data section. */
2470 s = bfd_get_section_by_name (output_bfd, ".data");
2471 dyn.d_un.d_ptr = s->vma;
2472 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2473 break;
2474
2475 case DT_PLTGOT:
2476 /* HP's use PLTGOT to set the GOT register. */
2477 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2478 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2479 break;
2480
2481 case DT_JMPREL:
2482 s = hppa_info->plt_rel_sec;
2483 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2484 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2485 break;
2486
2487 case DT_PLTRELSZ:
2488 s = hppa_info->plt_rel_sec;
2489 dyn.d_un.d_val = s->_raw_size;
2490 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2491 break;
2492
2493 case DT_RELA:
2494 s = hppa_info->other_rel_sec;
2495 if (! s)
2496 s = hppa_info->dlt_rel_sec;
2497 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2498 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2499 break;
2500
2501 case DT_RELASZ:
2502 s = hppa_info->other_rel_sec;
2503 dyn.d_un.d_val = s->_raw_size;
2504 s = hppa_info->dlt_rel_sec;
2505 dyn.d_un.d_val += s->_raw_size;
2506 s = hppa_info->opd_rel_sec;
2507 dyn.d_un.d_val += s->_raw_size;
2508 /* There is some question about whether or not the size of
2509 the PLT relocs should be included here. HP's tools do
2510 it, so we'll emulate them. */
2511 s = hppa_info->plt_rel_sec;
2512 dyn.d_un.d_val += s->_raw_size;
2513 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2514 break;
2515
2516 }
2517 }
2518 }
2519
2520 return true;
2521}
2522
15bda425
JL
2523/* Return the number of additional phdrs we will need.
2524
2525 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2526 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2527
2528 This routine indicates that the backend needs one additional program
2529 header for that case.
2530
2531 Note we do not have access to the link info structure here, so we have
2532 to guess whether or not we are building a shared library based on the
2533 existence of a .interp section. */
2534
2535static int
2536elf64_hppa_additional_program_headers (abfd)
2537 bfd *abfd;
2538{
2539 asection *s;
2540
2541 /* If we are creating a shared library, then we have to create a
2542 PT_PHDR segment. HP's dynamic linker chokes without it. */
2543 s = bfd_get_section_by_name (abfd, ".interp");
2544 if (! s)
2545 return 1;
2546 return 0;
2547}
2548
2549/* Allocate and initialize any program headers required by this
2550 specific backend.
2551
2552 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2553 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2554
2555 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2556 for the HP linker.
15bda425
JL
2557
2558 Note we do not have access to the link info structure here, so we have
2559 to guess whether or not we are building a shared library based on the
2560 existence of a .interp section. */
2561
2562static boolean
2563elf64_hppa_modify_segment_map (abfd)
2564 bfd *abfd;
2565{
edd21aca 2566 struct elf_segment_map *m;
15bda425
JL
2567 asection *s;
2568
2569 s = bfd_get_section_by_name (abfd, ".interp");
2570 if (! s)
2571 {
2572 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2573 if (m->p_type == PT_PHDR)
2574 break;
2575 if (m == NULL)
2576 {
dc810e39
AM
2577 m = ((struct elf_segment_map *)
2578 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425
JL
2579 if (m == NULL)
2580 return false;
2581
2582 m->p_type = PT_PHDR;
2583 m->p_flags = PF_R | PF_X;
2584 m->p_flags_valid = 1;
2585 m->p_paddr_valid = 1;
2586 m->includes_phdrs = 1;
2587
2588 m->next = elf_tdata (abfd)->segment_map;
2589 elf_tdata (abfd)->segment_map = m;
2590 }
2591 }
2592
2593 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2594 if (m->p_type == PT_LOAD)
2595 {
0ba2a60e 2596 unsigned int i;
15bda425
JL
2597
2598 for (i = 0; i < m->count; i++)
2599 {
2600 /* The code "hint" is not really a hint. It is a requirement
2601 for certain versions of the HP dynamic linker. Worse yet,
2602 it must be set even if the shared library does not have
2603 any code in its "text" segment (thus the check for .hash
2604 to catch this situation). */
2605 if (m->sections[i]->flags & SEC_CODE
2606 || (strcmp (m->sections[i]->name, ".hash") == 0))
2607 m->p_flags |= (PF_X | PF_HP_CODE);
2608 }
2609 }
2610
2611 return true;
2612}
2613
3fab46d0
AM
2614/* Called when writing out an object file to decide the type of a
2615 symbol. */
2616static int
2617elf64_hppa_elf_get_symbol_type (elf_sym, type)
2618 Elf_Internal_Sym *elf_sym;
2619 int type;
2620{
2621 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2622 return STT_PARISC_MILLI;
2623 else
2624 return type;
2625}
2626
15bda425
JL
2627/* The hash bucket size is the standard one, namely 4. */
2628
2629const struct elf_size_info hppa64_elf_size_info =
2630{
2631 sizeof (Elf64_External_Ehdr),
2632 sizeof (Elf64_External_Phdr),
2633 sizeof (Elf64_External_Shdr),
2634 sizeof (Elf64_External_Rel),
2635 sizeof (Elf64_External_Rela),
2636 sizeof (Elf64_External_Sym),
2637 sizeof (Elf64_External_Dyn),
2638 sizeof (Elf_External_Note),
2639 4,
2640 1,
2641 64, 8,
2642 ELFCLASS64, EV_CURRENT,
2643 bfd_elf64_write_out_phdrs,
2644 bfd_elf64_write_shdrs_and_ehdr,
2645 bfd_elf64_write_relocs,
2646 bfd_elf64_swap_symbol_out,
2647 bfd_elf64_slurp_reloc_table,
2648 bfd_elf64_slurp_symbol_table,
2649 bfd_elf64_swap_dyn_in,
2650 bfd_elf64_swap_dyn_out,
2651 NULL,
2652 NULL,
2653 NULL,
2654 NULL
2655};
2656
2657#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2658#define TARGET_BIG_NAME "elf64-hppa"
2659#define ELF_ARCH bfd_arch_hppa
2660#define ELF_MACHINE_CODE EM_PARISC
2661/* This is not strictly correct. The maximum page size for PA2.0 is
2662 64M. But everything still uses 4k. */
2663#define ELF_MAXPAGESIZE 0x1000
2664#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2665#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2666#define elf_info_to_howto elf_hppa_info_to_howto
2667#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2668
2669#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2670#define elf_backend_object_p elf64_hppa_object_p
2671#define elf_backend_final_write_processing \
2672 elf_hppa_final_write_processing
99c79b2e 2673#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2674#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2675
2676#define elf_backend_relocate_section elf_hppa_relocate_section
2677
2678#define bfd_elf64_bfd_final_link elf_hppa_final_link
2679
2680#define elf_backend_create_dynamic_sections \
2681 elf64_hppa_create_dynamic_sections
2682#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2683
2684#define elf_backend_adjust_dynamic_symbol \
2685 elf64_hppa_adjust_dynamic_symbol
2686
2687#define elf_backend_size_dynamic_sections \
2688 elf64_hppa_size_dynamic_sections
2689
2690#define elf_backend_finish_dynamic_symbol \
2691 elf64_hppa_finish_dynamic_symbol
2692#define elf_backend_finish_dynamic_sections \
2693 elf64_hppa_finish_dynamic_sections
2694
2695/* Stuff for the BFD linker: */
2696#define bfd_elf64_bfd_link_hash_table_create \
2697 elf64_hppa_hash_table_create
2698
2699#define elf_backend_check_relocs \
2700 elf64_hppa_check_relocs
2701
2702#define elf_backend_size_info \
2703 hppa64_elf_size_info
2704
2705#define elf_backend_additional_program_headers \
2706 elf64_hppa_additional_program_headers
2707
2708#define elf_backend_modify_segment_map \
2709 elf64_hppa_modify_segment_map
2710
2711#define elf_backend_link_output_symbol_hook \
2712 elf64_hppa_link_output_symbol_hook
2713
15bda425
JL
2714#define elf_backend_want_got_plt 0
2715#define elf_backend_plt_readonly 0
2716#define elf_backend_want_plt_sym 0
2717#define elf_backend_got_header_size 0
2718#define elf_backend_plt_header_size 0
2719#define elf_backend_type_change_ok true
3fab46d0 2720#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
15bda425
JL
2721
2722#include "elf64-target.h"
d952f17a
AM
2723
2724#undef TARGET_BIG_SYM
2725#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2726#undef TARGET_BIG_NAME
2727#define TARGET_BIG_NAME "elf64-hppa-linux"
2728
2729#define INCLUDED_TARGET_FILE 1
2730#include "elf64-target.h"
This page took 0.210964 seconds and 4 git commands to generate.