Another HAVE_DOS_BASED_FILE_SYSTEM check.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf
AM
1/* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
15bda425
JL
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 unsigned long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
201static boolean elf64_hppa_finish_dynamic_symbol
202 PARAMS ((bfd *, struct bfd_link_info *,
203 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 204
15bda425
JL
205static boolean elf64_hppa_finish_dynamic_sections
206 PARAMS ((bfd *, struct bfd_link_info *));
207
208static boolean elf64_hppa_check_relocs
209 PARAMS ((bfd *, struct bfd_link_info *,
210 asection *, const Elf_Internal_Rela *));
211
212static boolean elf64_hppa_dynamic_symbol_p
213 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
214
215static boolean elf64_hppa_mark_exported_functions
216 PARAMS ((struct elf_link_hash_entry *, PTR));
217
218static boolean elf64_hppa_finalize_opd
219 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
220
221static boolean elf64_hppa_finalize_dlt
222 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
223
224static boolean allocate_global_data_dlt
225 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
226
227static boolean allocate_global_data_plt
228 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
229
230static boolean allocate_global_data_stub
231 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
232
233static boolean allocate_global_data_opd
234 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
235
236static boolean get_reloc_section
237 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
238
239static boolean count_dyn_reloc
240 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
241 int, asection *, int, bfd_vma, bfd_vma));
242
243static boolean allocate_dynrel_entries
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
245
246static boolean elf64_hppa_finalize_dynreloc
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
248
249static boolean get_opd
250 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
251
252static boolean get_plt
253 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
254
255static boolean get_dlt
256 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
257
258static boolean get_stub
259 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
260
3fab46d0
AM
261static int elf64_hppa_elf_get_symbol_type
262 PARAMS ((Elf_Internal_Sym *, int));
263
15bda425
JL
264static boolean
265elf64_hppa_dyn_hash_table_init (ht, abfd, new)
266 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 267 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
268 new_hash_entry_func new;
269{
fe8bc63d 270 memset (ht, 0, sizeof (*ht));
15bda425
JL
271 return bfd_hash_table_init (&ht->root, new);
272}
273
274static struct bfd_hash_entry*
275elf64_hppa_new_dyn_hash_entry (entry, table, string)
276 struct bfd_hash_entry *entry;
277 struct bfd_hash_table *table;
278 const char *string;
279{
280 struct elf64_hppa_dyn_hash_entry *ret;
281 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
282
283 /* Allocate the structure if it has not already been allocated by a
284 subclass. */
285 if (!ret)
286 ret = bfd_hash_allocate (table, sizeof (*ret));
287
288 if (!ret)
289 return 0;
290
291 /* Initialize our local data. All zeros, and definitely easier
292 than setting 8 bit fields. */
fe8bc63d 293 memset (ret, 0, sizeof (*ret));
15bda425
JL
294
295 /* Call the allocation method of the superclass. */
296 ret = ((struct elf64_hppa_dyn_hash_entry *)
297 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
298
299 return &ret->root;
300}
301
302/* Create the derived linker hash table. The PA64 ELF port uses this
303 derived hash table to keep information specific to the PA ElF
304 linker (without using static variables). */
305
306static struct bfd_link_hash_table*
307elf64_hppa_hash_table_create (abfd)
308 bfd *abfd;
309{
310 struct elf64_hppa_link_hash_table *ret;
311
312 ret = bfd_zalloc (abfd, sizeof (*ret));
313 if (!ret)
314 return 0;
315 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
316 _bfd_elf_link_hash_newfunc))
317 {
318 bfd_release (abfd, ret);
319 return 0;
320 }
321
322 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
323 elf64_hppa_new_dyn_hash_entry))
324 return 0;
325 return &ret->root.root;
326}
327
328/* Look up an entry in a PA64 ELF linker hash table. */
329
330static struct elf64_hppa_dyn_hash_entry *
331elf64_hppa_dyn_hash_lookup(table, string, create, copy)
332 struct elf64_hppa_dyn_hash_table *table;
333 const char *string;
334 boolean create, copy;
335{
336 return ((struct elf64_hppa_dyn_hash_entry *)
337 bfd_hash_lookup (&table->root, string, create, copy));
338}
339
340/* Traverse a PA64 ELF linker hash table. */
341
342static void
343elf64_hppa_dyn_hash_traverse (table, func, info)
344 struct elf64_hppa_dyn_hash_table *table;
345 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
346 PTR info;
347{
348 (bfd_hash_traverse
349 (&table->root,
350 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
351 info));
352}
353\f
354/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
355
356 Additionally we set the default architecture and machine. */
357static boolean
358elf64_hppa_object_p (abfd)
359 bfd *abfd;
360{
361 /* Set the right machine number for an HPPA ELF file. */
362 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
363}
364
365/* Given section type (hdr->sh_type), return a boolean indicating
366 whether or not the section is an elf64-hppa specific section. */
367static boolean
368elf64_hppa_section_from_shdr (abfd, hdr, name)
369 bfd *abfd;
370 Elf64_Internal_Shdr *hdr;
371 char *name;
372{
373 asection *newsect;
374
375 switch (hdr->sh_type)
376 {
377 case SHT_PARISC_EXT:
378 if (strcmp (name, ".PARISC.archext") != 0)
379 return false;
380 break;
381 case SHT_PARISC_UNWIND:
382 if (strcmp (name, ".PARISC.unwind") != 0)
383 return false;
384 break;
385 case SHT_PARISC_DOC:
386 case SHT_PARISC_ANNOT:
387 default:
388 return false;
389 }
390
391 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
392 return false;
393 newsect = hdr->bfd_section;
394
395 return true;
396}
397
15bda425 398/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 399 name describes what was once potentially anonymous memory. We
15bda425
JL
400 allocate memory as necessary, possibly reusing PBUF/PLEN. */
401
402static const char *
0ba2a60e
AM
403get_dyn_name (sec, h, rel, pbuf, plen)
404 asection *sec;
15bda425
JL
405 struct elf_link_hash_entry *h;
406 const Elf_Internal_Rela *rel;
407 char **pbuf;
408 size_t *plen;
409{
410 size_t nlen, tlen;
411 char *buf;
412 size_t len;
413
414 if (h && rel->r_addend == 0)
415 return h->root.root.string;
416
417 if (h)
418 nlen = strlen (h->root.root.string);
419 else
0ba2a60e
AM
420 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
421 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
422
423 len = *plen;
424 buf = *pbuf;
425 if (len < tlen)
426 {
427 if (buf)
428 free (buf);
429 *pbuf = buf = malloc (tlen);
430 *plen = len = tlen;
431 if (!buf)
432 return NULL;
433 }
434
435 if (h)
436 {
437 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 438 buf[nlen++] = '+';
15bda425
JL
439 sprintf_vma (buf + nlen, rel->r_addend);
440 }
441 else
442 {
0ba2a60e
AM
443 nlen = sprintf (buf, "%x:%lx",
444 sec->id & 0xffffffff,
445 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
446 if (rel->r_addend)
447 {
448 buf[nlen++] = '+';
449 sprintf_vma (buf + nlen, rel->r_addend);
450 }
451 }
452
453 return buf;
454}
455
456/* SEC is a section containing relocs for an input BFD when linking; return
457 a suitable section for holding relocs in the output BFD for a link. */
458
459static boolean
460get_reloc_section (abfd, hppa_info, sec)
461 bfd *abfd;
462 struct elf64_hppa_link_hash_table *hppa_info;
463 asection *sec;
464{
465 const char *srel_name;
466 asection *srel;
467 bfd *dynobj;
468
469 srel_name = (bfd_elf_string_from_elf_section
470 (abfd, elf_elfheader(abfd)->e_shstrndx,
471 elf_section_data(sec)->rel_hdr.sh_name));
472 if (srel_name == NULL)
473 return false;
474
475 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
476 && strcmp (bfd_get_section_name (abfd, sec),
477 srel_name+5) == 0)
478 || (strncmp (srel_name, ".rel", 4) == 0
479 && strcmp (bfd_get_section_name (abfd, sec),
480 srel_name+4) == 0));
481
482 dynobj = hppa_info->root.dynobj;
483 if (!dynobj)
484 hppa_info->root.dynobj = dynobj = abfd;
485
486 srel = bfd_get_section_by_name (dynobj, srel_name);
487 if (srel == NULL)
488 {
489 srel = bfd_make_section (dynobj, srel_name);
490 if (srel == NULL
491 || !bfd_set_section_flags (dynobj, srel,
492 (SEC_ALLOC
493 | SEC_LOAD
494 | SEC_HAS_CONTENTS
495 | SEC_IN_MEMORY
496 | SEC_LINKER_CREATED
497 | SEC_READONLY))
498 || !bfd_set_section_alignment (dynobj, srel, 3))
499 return false;
500 }
501
502 hppa_info->other_rel_sec = srel;
503 return true;
504}
505
fe8bc63d 506/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
507
508 We use this to keep a record of all the FPTR relocations against a
509 particular symbol so that we can create FPTR relocations in the
510 output file. */
511
512static boolean
513count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
514 bfd *abfd;
515 struct elf64_hppa_dyn_hash_entry *dyn_h;
516 int type;
517 asection *sec;
518 int sec_symndx;
519 bfd_vma offset;
520 bfd_vma addend;
521{
522 struct elf64_hppa_dyn_reloc_entry *rent;
523
524 rent = (struct elf64_hppa_dyn_reloc_entry *)
525 bfd_alloc (abfd, sizeof (*rent));
526 if (!rent)
527 return false;
528
529 rent->next = dyn_h->reloc_entries;
530 rent->type = type;
531 rent->sec = sec;
532 rent->sec_symndx = sec_symndx;
533 rent->offset = offset;
534 rent->addend = addend;
535 dyn_h->reloc_entries = rent;
536
537 return true;
538}
539
540/* Scan the RELOCS and record the type of dynamic entries that each
541 referenced symbol needs. */
542
543static boolean
544elf64_hppa_check_relocs (abfd, info, sec, relocs)
545 bfd *abfd;
546 struct bfd_link_info *info;
547 asection *sec;
548 const Elf_Internal_Rela *relocs;
549{
550 struct elf64_hppa_link_hash_table *hppa_info;
551 const Elf_Internal_Rela *relend;
552 Elf_Internal_Shdr *symtab_hdr;
553 const Elf_Internal_Rela *rel;
554 asection *dlt, *plt, *stubs;
555 char *buf;
556 size_t buf_len;
557 int sec_symndx;
558
559 if (info->relocateable)
560 return true;
561
562 /* If this is the first dynamic object found in the link, create
563 the special sections required for dynamic linking. */
564 if (! elf_hash_table (info)->dynamic_sections_created)
565 {
566 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
567 return false;
568 }
569
570 hppa_info = elf64_hppa_hash_table (info);
571 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
572
573 /* If necessary, build a new table holding section symbols indices
574 for this BFD. This is disgusting. */
fe8bc63d 575
15bda425
JL
576 if (info->shared && hppa_info->section_syms_bfd != abfd)
577 {
832d951b 578 unsigned long i;
0ba2a60e 579 int highest_shndx;
15bda425
JL
580 Elf_Internal_Sym *local_syms, *isym;
581 Elf64_External_Sym *ext_syms, *esym;
582
583 /* We're done with the old cache of section index to section symbol
584 index information. Free it.
585
586 ?!? Note we leak the last section_syms array. Presumably we
587 could free it in one of the later routines in this file. */
588 if (hppa_info->section_syms)
589 free (hppa_info->section_syms);
590
591 /* Allocate memory for the internal and external symbols. */
592 local_syms
593 = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
594 * sizeof (Elf_Internal_Sym));
595 if (local_syms == NULL)
596 return false;
597
598 ext_syms
599 = (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
600 * sizeof (Elf64_External_Sym));
601 if (ext_syms == NULL)
602 {
603 free (local_syms);
604 return false;
605 }
606
607 /* Read in the local symbols. */
608 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
609 || bfd_read (ext_syms, 1,
610 (symtab_hdr->sh_info
611 * sizeof (Elf64_External_Sym)), abfd)
612 != (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
613 {
614 free (local_syms);
615 free (ext_syms);
616 return false;
617 }
618
619 /* Swap in the local symbols, also record the highest section index
620 referenced by the local symbols. */
621 isym = local_syms;
622 esym = ext_syms;
623 highest_shndx = 0;
624 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
625 {
626 bfd_elf64_swap_symbol_in (abfd, esym, isym);
627 if (isym->st_shndx > highest_shndx)
628 highest_shndx = isym->st_shndx;
629 }
630
631 /* Now we can free the external symbols. */
632 free (ext_syms);
633
634 /* Allocate an array to hold the section index to section symbol index
635 mapping. Bump by one since we start counting at zero. */
636 highest_shndx++;
637 hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
638 * sizeof (int));
639
640 /* Now walk the local symbols again. If we find a section symbol,
641 record the index of the symbol into the section_syms array. */
642 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
643 {
644 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
645 hppa_info->section_syms[isym->st_shndx] = i;
646 }
647
648 /* We are finished with the local symbols. Get rid of them. */
649 free (local_syms);
650
651 /* Record which BFD we built the section_syms mapping for. */
652 hppa_info->section_syms_bfd = abfd;
653 }
654
655 /* Record the symbol index for this input section. We may need it for
656 relocations when building shared libraries. When not building shared
657 libraries this value is never really used, but assign it to zero to
658 prevent out of bounds memory accesses in other routines. */
659 if (info->shared)
660 {
661 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
662
663 /* If we did not find a section symbol for this section, then
664 something went terribly wrong above. */
665 if (sec_symndx == -1)
666 return false;
667
668 sec_symndx = hppa_info->section_syms[sec_symndx];
669 }
670 else
671 sec_symndx = 0;
fe8bc63d 672
15bda425
JL
673 dlt = plt = stubs = NULL;
674 buf = NULL;
675 buf_len = 0;
676
677 relend = relocs + sec->reloc_count;
678 for (rel = relocs; rel < relend; ++rel)
679 {
680 enum {
681 NEED_DLT = 1,
682 NEED_PLT = 2,
683 NEED_STUB = 4,
684 NEED_OPD = 8,
685 NEED_DYNREL = 16,
686 };
687
688 struct elf_link_hash_entry *h = NULL;
689 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
690 struct elf64_hppa_dyn_hash_entry *dyn_h;
691 int need_entry;
692 const char *addr_name;
693 boolean maybe_dynamic;
694 int dynrel_type = R_PARISC_NONE;
695 static reloc_howto_type *howto;
696
697 if (r_symndx >= symtab_hdr->sh_info)
698 {
699 /* We're dealing with a global symbol -- find its hash entry
700 and mark it as being referenced. */
701 long indx = r_symndx - symtab_hdr->sh_info;
702 h = elf_sym_hashes (abfd)[indx];
703 while (h->root.type == bfd_link_hash_indirect
704 || h->root.type == bfd_link_hash_warning)
705 h = (struct elf_link_hash_entry *) h->root.u.i.link;
706
707 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
708 }
709
710 /* We can only get preliminary data on whether a symbol is
711 locally or externally defined, as not all of the input files
712 have yet been processed. Do something with what we know, as
713 this may help reduce memory usage and processing time later. */
714 maybe_dynamic = false;
715 if (h && ((info->shared && ! info->symbolic)
716 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
717 || h->root.type == bfd_link_hash_defweak))
718 maybe_dynamic = true;
719
720 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
721 need_entry = 0;
722 switch (howto->type)
723 {
724 /* These are simple indirect references to symbols through the
725 DLT. We need to create a DLT entry for any symbols which
726 appears in a DLTIND relocation. */
727 case R_PARISC_DLTIND21L:
728 case R_PARISC_DLTIND14R:
729 case R_PARISC_DLTIND14F:
730 case R_PARISC_DLTIND14WR:
731 case R_PARISC_DLTIND14DR:
732 need_entry = NEED_DLT;
733 break;
734
735 /* ?!? These need a DLT entry. But I have no idea what to do with
736 the "link time TP value. */
737 case R_PARISC_LTOFF_TP21L:
738 case R_PARISC_LTOFF_TP14R:
739 case R_PARISC_LTOFF_TP14F:
740 case R_PARISC_LTOFF_TP64:
741 case R_PARISC_LTOFF_TP14WR:
742 case R_PARISC_LTOFF_TP14DR:
743 case R_PARISC_LTOFF_TP16F:
744 case R_PARISC_LTOFF_TP16WF:
745 case R_PARISC_LTOFF_TP16DF:
746 need_entry = NEED_DLT;
747 break;
748
749 /* These are function calls. Depending on their precise target we
750 may need to make a stub for them. The stub uses the PLT, so we
751 need to create PLT entries for these symbols too. */
832d951b 752 case R_PARISC_PCREL12F:
15bda425
JL
753 case R_PARISC_PCREL17F:
754 case R_PARISC_PCREL22F:
755 case R_PARISC_PCREL32:
756 case R_PARISC_PCREL64:
757 case R_PARISC_PCREL21L:
758 case R_PARISC_PCREL17R:
759 case R_PARISC_PCREL17C:
760 case R_PARISC_PCREL14R:
761 case R_PARISC_PCREL14F:
762 case R_PARISC_PCREL22C:
763 case R_PARISC_PCREL14WR:
764 case R_PARISC_PCREL14DR:
765 case R_PARISC_PCREL16F:
766 case R_PARISC_PCREL16WF:
767 case R_PARISC_PCREL16DF:
768 need_entry = (NEED_PLT | NEED_STUB);
769 break;
770
771 case R_PARISC_PLTOFF21L:
772 case R_PARISC_PLTOFF14R:
773 case R_PARISC_PLTOFF14F:
774 case R_PARISC_PLTOFF14WR:
775 case R_PARISC_PLTOFF14DR:
776 case R_PARISC_PLTOFF16F:
777 case R_PARISC_PLTOFF16WF:
778 case R_PARISC_PLTOFF16DF:
779 need_entry = (NEED_PLT);
780 break;
781
782 case R_PARISC_DIR64:
783 if (info->shared || maybe_dynamic)
784 need_entry = (NEED_DYNREL);
785 dynrel_type = R_PARISC_DIR64;
786 break;
787
788 /* This is an indirect reference through the DLT to get the address
789 of a OPD descriptor. Thus we need to make a DLT entry that points
790 to an OPD entry. */
791 case R_PARISC_LTOFF_FPTR21L:
792 case R_PARISC_LTOFF_FPTR14R:
793 case R_PARISC_LTOFF_FPTR14WR:
794 case R_PARISC_LTOFF_FPTR14DR:
795 case R_PARISC_LTOFF_FPTR32:
796 case R_PARISC_LTOFF_FPTR64:
797 case R_PARISC_LTOFF_FPTR16F:
798 case R_PARISC_LTOFF_FPTR16WF:
799 case R_PARISC_LTOFF_FPTR16DF:
800 if (info->shared || maybe_dynamic)
801 need_entry = (NEED_DLT | NEED_OPD);
802 else
803 need_entry = (NEED_DLT | NEED_OPD);
804 dynrel_type = R_PARISC_FPTR64;
805 break;
806
807 /* This is a simple OPD entry. */
808 case R_PARISC_FPTR64:
809 if (info->shared || maybe_dynamic)
810 need_entry = (NEED_OPD | NEED_DYNREL);
811 else
812 need_entry = (NEED_OPD);
813 dynrel_type = R_PARISC_FPTR64;
814 break;
815
816 /* Add more cases as needed. */
817 }
818
819 if (!need_entry)
820 continue;
821
822 /* Collect a canonical name for this address. */
0ba2a60e 823 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
824
825 /* Collect the canonical entry data for this address. */
826 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
827 addr_name, true, true);
828 BFD_ASSERT (dyn_h);
829
830 /* Stash away enough information to be able to find this symbol
831 regardless of whether or not it is local or global. */
832 dyn_h->h = h;
833 dyn_h->owner = abfd;
834 dyn_h->sym_indx = r_symndx;
835
836 /* ?!? We may need to do some error checking in here. */
837 /* Create what's needed. */
838 if (need_entry & NEED_DLT)
839 {
840 if (! hppa_info->dlt_sec
841 && ! get_dlt (abfd, info, hppa_info))
842 goto err_out;
843 dyn_h->want_dlt = 1;
844 }
845
846 if (need_entry & NEED_PLT)
847 {
848 if (! hppa_info->plt_sec
849 && ! get_plt (abfd, info, hppa_info))
850 goto err_out;
851 dyn_h->want_plt = 1;
852 }
853
854 if (need_entry & NEED_STUB)
855 {
856 if (! hppa_info->stub_sec
857 && ! get_stub (abfd, info, hppa_info))
858 goto err_out;
859 dyn_h->want_stub = 1;
860 }
861
862 if (need_entry & NEED_OPD)
863 {
864 if (! hppa_info->opd_sec
865 && ! get_opd (abfd, info, hppa_info))
866 goto err_out;
867
868 dyn_h->want_opd = 1;
869
870 /* FPTRs are not allocated by the dynamic linker for PA64, though
871 it is possible that will change in the future. */
fe8bc63d 872
15bda425
JL
873 /* This could be a local function that had its address taken, in
874 which case H will be NULL. */
875 if (h)
876 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
877 }
878
879 /* Add a new dynamic relocation to the chain of dynamic
880 relocations for this symbol. */
881 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
882 {
883 if (! hppa_info->other_rel_sec
884 && ! get_reloc_section (abfd, hppa_info, sec))
885 goto err_out;
886
887 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
888 sec_symndx, rel->r_offset, rel->r_addend))
889 goto err_out;
890
891 /* If we are building a shared library and we just recorded
892 a dynamic R_PARISC_FPTR64 relocation, then make sure the
893 section symbol for this section ends up in the dynamic
894 symbol table. */
895 if (info->shared && dynrel_type == R_PARISC_FPTR64
896 && ! (_bfd_elf64_link_record_local_dynamic_symbol
897 (info, abfd, sec_symndx)))
898 return false;
899 }
900 }
901
902 if (buf)
903 free (buf);
904 return true;
905
906 err_out:
907 if (buf)
908 free (buf);
909 return false;
910}
911
912struct elf64_hppa_allocate_data
913{
914 struct bfd_link_info *info;
915 bfd_size_type ofs;
916};
917
918/* Should we do dynamic things to this symbol? */
919
920static boolean
921elf64_hppa_dynamic_symbol_p (h, info)
922 struct elf_link_hash_entry *h;
923 struct bfd_link_info *info;
924{
925 if (h == NULL)
926 return false;
927
928 while (h->root.type == bfd_link_hash_indirect
929 || h->root.type == bfd_link_hash_warning)
930 h = (struct elf_link_hash_entry *) h->root.u.i.link;
931
932 if (h->dynindx == -1)
933 return false;
934
935 if (h->root.type == bfd_link_hash_undefweak
936 || h->root.type == bfd_link_hash_defweak)
937 return true;
938
939 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
940 return false;
941
942 if ((info->shared && !info->symbolic)
943 || ((h->elf_link_hash_flags
944 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
945 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
946 return true;
947
948 return false;
949}
950
951/* Mark all funtions exported by this file so that we can later allocate
952 entries in .opd for them. */
953
954static boolean
955elf64_hppa_mark_exported_functions (h, data)
956 struct elf_link_hash_entry *h;
957 PTR data;
958{
959 struct bfd_link_info *info = (struct bfd_link_info *)data;
960 struct elf64_hppa_link_hash_table *hppa_info;
961
962 hppa_info = elf64_hppa_hash_table (info);
963
964 if (h
965 && (h->root.type == bfd_link_hash_defined
966 || h->root.type == bfd_link_hash_defweak)
967 && h->root.u.def.section->output_section != NULL
968 && h->type == STT_FUNC)
969 {
970 struct elf64_hppa_dyn_hash_entry *dyn_h;
971
972 /* Add this symbol to the PA64 linker hash table. */
973 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
974 h->root.root.string, true, true);
975 BFD_ASSERT (dyn_h);
976 dyn_h->h = h;
977
978 if (! hppa_info->opd_sec
979 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
980 return false;
981
982 dyn_h->want_opd = 1;
832d951b
AM
983 /* Put a flag here for output_symbol_hook. */
984 dyn_h->st_shndx = -1;
15bda425
JL
985 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
986 }
987
988 return true;
989}
990
991/* Allocate space for a DLT entry. */
992
993static boolean
994allocate_global_data_dlt (dyn_h, data)
995 struct elf64_hppa_dyn_hash_entry *dyn_h;
996 PTR data;
997{
998 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
999
1000 if (dyn_h->want_dlt)
1001 {
1002 struct elf_link_hash_entry *h = dyn_h->h;
1003
1004 if (x->info->shared)
1005 {
1006 /* Possibly add the symbol to the local dynamic symbol
1007 table since we might need to create a dynamic relocation
1008 against it. */
1009 if (! h
1010 || (h && h->dynindx == -1))
1011 {
1012 bfd *owner;
1013 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1014
1015 if (!_bfd_elf64_link_record_local_dynamic_symbol
1016 (x->info, owner, dyn_h->sym_indx))
1017 return false;
1018 }
1019 }
1020
1021 dyn_h->dlt_offset = x->ofs;
1022 x->ofs += DLT_ENTRY_SIZE;
1023 }
1024 return true;
1025}
1026
1027/* Allocate space for a DLT.PLT entry. */
1028
1029static boolean
1030allocate_global_data_plt (dyn_h, data)
1031 struct elf64_hppa_dyn_hash_entry *dyn_h;
1032 PTR data;
1033{
1034 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1035
1036 if (dyn_h->want_plt
1037 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1038 && !((dyn_h->h->root.type == bfd_link_hash_defined
1039 || dyn_h->h->root.type == bfd_link_hash_defweak)
1040 && dyn_h->h->root.u.def.section->output_section != NULL))
1041 {
1042 dyn_h->plt_offset = x->ofs;
1043 x->ofs += PLT_ENTRY_SIZE;
1044 if (dyn_h->plt_offset < 0x2000)
1045 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1046 }
1047 else
1048 dyn_h->want_plt = 0;
1049
1050 return true;
1051}
1052
1053/* Allocate space for a STUB entry. */
1054
1055static boolean
1056allocate_global_data_stub (dyn_h, data)
1057 struct elf64_hppa_dyn_hash_entry *dyn_h;
1058 PTR data;
1059{
1060 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1061
1062 if (dyn_h->want_stub
1063 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1064 && !((dyn_h->h->root.type == bfd_link_hash_defined
1065 || dyn_h->h->root.type == bfd_link_hash_defweak)
1066 && dyn_h->h->root.u.def.section->output_section != NULL))
1067 {
1068 dyn_h->stub_offset = x->ofs;
1069 x->ofs += sizeof (plt_stub);
1070 }
1071 else
1072 dyn_h->want_stub = 0;
1073 return true;
1074}
1075
1076/* Allocate space for a FPTR entry. */
1077
1078static boolean
1079allocate_global_data_opd (dyn_h, data)
1080 struct elf64_hppa_dyn_hash_entry *dyn_h;
1081 PTR data;
1082{
1083 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1084
1085 if (dyn_h->want_opd)
1086 {
1087 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1088
15bda425
JL
1089 if (h)
1090 while (h->root.type == bfd_link_hash_indirect
1091 || h->root.type == bfd_link_hash_warning)
1092 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1093
1094 /* We never need an opd entry for a symbol which is not
1095 defined by this output file. */
1096 if (h && h->root.type == bfd_link_hash_undefined)
1097 dyn_h->want_opd = 0;
1098
1099 /* If we are creating a shared library, took the address of a local
1100 function or might export this function from this object file, then
1101 we have to create an opd descriptor. */
1102 else if (x->info->shared
1103 || h == NULL
1104 || h->dynindx == -1
1105 || ((h->root.type == bfd_link_hash_defined
1106 || h->root.type == bfd_link_hash_defweak)
1107 && h->root.u.def.section->output_section != NULL))
1108 {
1109 /* If we are creating a shared library, then we will have to
1110 create a runtime relocation for the symbol to properly
1111 initialize the .opd entry. Make sure the symbol gets
1112 added to the dynamic symbol table. */
1113 if (x->info->shared
1114 && (h == NULL || (h->dynindx == -1)))
1115 {
1116 bfd *owner;
1117 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1118
1119 if (!_bfd_elf64_link_record_local_dynamic_symbol
1120 (x->info, owner, dyn_h->sym_indx))
1121 return false;
1122 }
1123
1124 /* This may not be necessary or desirable anymore now that
1125 we have some support for dealing with section symbols
1126 in dynamic relocs. But name munging does make the result
1127 much easier to debug. ie, the EPLT reloc will reference
1128 a symbol like .foobar, instead of .text + offset. */
1129 if (x->info->shared && h)
1130 {
1131 char *new_name;
1132 struct elf_link_hash_entry *nh;
1133
1134 new_name = alloca (strlen (h->root.root.string) + 2);
1135 new_name[0] = '.';
1136 strcpy (new_name + 1, h->root.root.string);
1137
1138 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1139 new_name, true, true, true);
1140
1141 nh->root.type = h->root.type;
1142 nh->root.u.def.value = h->root.u.def.value;
1143 nh->root.u.def.section = h->root.u.def.section;
1144
1145 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1146 return false;
1147
1148 }
1149 dyn_h->opd_offset = x->ofs;
1150 x->ofs += OPD_ENTRY_SIZE;
1151 }
1152
1153 /* Otherwise we do not need an opd entry. */
1154 else
1155 dyn_h->want_opd = 0;
1156 }
1157 return true;
1158}
1159
1160/* HP requires the EI_OSABI field to be filled in. The assignment to
1161 EI_ABIVERSION may not be strictly necessary. */
1162
1163static void
1164elf64_hppa_post_process_headers (abfd, link_info)
1165 bfd * abfd;
1166 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1167{
1168 Elf_Internal_Ehdr * i_ehdrp;
1169
1170 i_ehdrp = elf_elfheader (abfd);
1171
d952f17a
AM
1172 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1173 {
1174 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1175 }
1176 else
1177 {
1178 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1179 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1180 }
15bda425
JL
1181}
1182
1183/* Create function descriptor section (.opd). This section is called .opd
1184 because it contains "official prodecure descriptors". The "official"
1185 refers to the fact that these descriptors are used when taking the address
1186 of a procedure, thus ensuring a unique address for each procedure. */
1187
1188static boolean
1189get_opd (abfd, info, hppa_info)
1190 bfd *abfd;
edd21aca 1191 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1192 struct elf64_hppa_link_hash_table *hppa_info;
1193{
1194 asection *opd;
1195 bfd *dynobj;
1196
1197 opd = hppa_info->opd_sec;
1198 if (!opd)
1199 {
1200 dynobj = hppa_info->root.dynobj;
1201 if (!dynobj)
1202 hppa_info->root.dynobj = dynobj = abfd;
1203
1204 opd = bfd_make_section (dynobj, ".opd");
1205 if (!opd
1206 || !bfd_set_section_flags (dynobj, opd,
1207 (SEC_ALLOC
1208 | SEC_LOAD
1209 | SEC_HAS_CONTENTS
1210 | SEC_IN_MEMORY
1211 | SEC_LINKER_CREATED))
1212 || !bfd_set_section_alignment (abfd, opd, 3))
1213 {
1214 BFD_ASSERT (0);
1215 return false;
1216 }
1217
1218 hppa_info->opd_sec = opd;
1219 }
1220
1221 return true;
1222}
1223
1224/* Create the PLT section. */
1225
1226static boolean
1227get_plt (abfd, info, hppa_info)
1228 bfd *abfd;
edd21aca 1229 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1230 struct elf64_hppa_link_hash_table *hppa_info;
1231{
1232 asection *plt;
1233 bfd *dynobj;
1234
1235 plt = hppa_info->plt_sec;
1236 if (!plt)
1237 {
1238 dynobj = hppa_info->root.dynobj;
1239 if (!dynobj)
1240 hppa_info->root.dynobj = dynobj = abfd;
1241
1242 plt = bfd_make_section (dynobj, ".plt");
1243 if (!plt
1244 || !bfd_set_section_flags (dynobj, plt,
1245 (SEC_ALLOC
1246 | SEC_LOAD
1247 | SEC_HAS_CONTENTS
1248 | SEC_IN_MEMORY
1249 | SEC_LINKER_CREATED))
1250 || !bfd_set_section_alignment (abfd, plt, 3))
1251 {
1252 BFD_ASSERT (0);
1253 return false;
1254 }
1255
1256 hppa_info->plt_sec = plt;
1257 }
1258
1259 return true;
1260}
1261
1262/* Create the DLT section. */
1263
1264static boolean
1265get_dlt (abfd, info, hppa_info)
1266 bfd *abfd;
edd21aca 1267 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1268 struct elf64_hppa_link_hash_table *hppa_info;
1269{
1270 asection *dlt;
1271 bfd *dynobj;
1272
1273 dlt = hppa_info->dlt_sec;
1274 if (!dlt)
1275 {
1276 dynobj = hppa_info->root.dynobj;
1277 if (!dynobj)
1278 hppa_info->root.dynobj = dynobj = abfd;
1279
1280 dlt = bfd_make_section (dynobj, ".dlt");
1281 if (!dlt
1282 || !bfd_set_section_flags (dynobj, dlt,
1283 (SEC_ALLOC
1284 | SEC_LOAD
1285 | SEC_HAS_CONTENTS
1286 | SEC_IN_MEMORY
1287 | SEC_LINKER_CREATED))
1288 || !bfd_set_section_alignment (abfd, dlt, 3))
1289 {
1290 BFD_ASSERT (0);
1291 return false;
1292 }
1293
1294 hppa_info->dlt_sec = dlt;
1295 }
1296
1297 return true;
1298}
1299
1300/* Create the stubs section. */
1301
1302static boolean
1303get_stub (abfd, info, hppa_info)
1304 bfd *abfd;
edd21aca 1305 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1306 struct elf64_hppa_link_hash_table *hppa_info;
1307{
1308 asection *stub;
1309 bfd *dynobj;
1310
1311 stub = hppa_info->stub_sec;
1312 if (!stub)
1313 {
1314 dynobj = hppa_info->root.dynobj;
1315 if (!dynobj)
1316 hppa_info->root.dynobj = dynobj = abfd;
1317
1318 stub = bfd_make_section (dynobj, ".stub");
1319 if (!stub
1320 || !bfd_set_section_flags (dynobj, stub,
1321 (SEC_ALLOC
1322 | SEC_LOAD
1323 | SEC_HAS_CONTENTS
1324 | SEC_IN_MEMORY
1325 | SEC_READONLY
1326 | SEC_LINKER_CREATED))
1327 || !bfd_set_section_alignment (abfd, stub, 3))
1328 {
1329 BFD_ASSERT (0);
1330 return false;
1331 }
1332
1333 hppa_info->stub_sec = stub;
1334 }
1335
1336 return true;
1337}
1338
1339/* Create sections necessary for dynamic linking. This is only a rough
1340 cut and will likely change as we learn more about the somewhat
1341 unusual dynamic linking scheme HP uses.
1342
1343 .stub:
1344 Contains code to implement cross-space calls. The first time one
1345 of the stubs is used it will call into the dynamic linker, later
1346 calls will go straight to the target.
1347
1348 The only stub we support right now looks like
1349
1350 ldd OFFSET(%dp),%r1
1351 bve %r0(%r1)
1352 ldd OFFSET+8(%dp),%dp
1353
1354 Other stubs may be needed in the future. We may want the remove
1355 the break/nop instruction. It is only used right now to keep the
1356 offset of a .plt entry and a .stub entry in sync.
1357
1358 .dlt:
1359 This is what most people call the .got. HP used a different name.
1360 Losers.
1361
1362 .rela.dlt:
1363 Relocations for the DLT.
1364
1365 .plt:
1366 Function pointers as address,gp pairs.
1367
1368 .rela.plt:
1369 Should contain dynamic IPLT (and EPLT?) relocations.
1370
1371 .opd:
fe8bc63d 1372 FPTRS
15bda425
JL
1373
1374 .rela.opd:
1375 EPLT relocations for symbols exported from shared libraries. */
1376
1377static boolean
1378elf64_hppa_create_dynamic_sections (abfd, info)
1379 bfd *abfd;
1380 struct bfd_link_info *info;
1381{
1382 asection *s;
1383
1384 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1385 return false;
1386
1387 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1388 return false;
1389
1390 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1391 return false;
1392
1393 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1394 return false;
1395
1396 s = bfd_make_section(abfd, ".rela.dlt");
1397 if (s == NULL
1398 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1399 | SEC_HAS_CONTENTS
1400 | SEC_IN_MEMORY
1401 | SEC_READONLY
1402 | SEC_LINKER_CREATED))
1403 || !bfd_set_section_alignment (abfd, s, 3))
1404 return false;
1405 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1406
1407 s = bfd_make_section(abfd, ".rela.plt");
1408 if (s == NULL
1409 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1410 | SEC_HAS_CONTENTS
1411 | SEC_IN_MEMORY
1412 | SEC_READONLY
1413 | SEC_LINKER_CREATED))
1414 || !bfd_set_section_alignment (abfd, s, 3))
1415 return false;
1416 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1417
1418 s = bfd_make_section(abfd, ".rela.data");
1419 if (s == NULL
1420 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1421 | SEC_HAS_CONTENTS
1422 | SEC_IN_MEMORY
1423 | SEC_READONLY
1424 | SEC_LINKER_CREATED))
1425 || !bfd_set_section_alignment (abfd, s, 3))
1426 return false;
1427 elf64_hppa_hash_table (info)->other_rel_sec = s;
1428
1429 s = bfd_make_section(abfd, ".rela.opd");
1430 if (s == NULL
1431 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1432 | SEC_HAS_CONTENTS
1433 | SEC_IN_MEMORY
1434 | SEC_READONLY
1435 | SEC_LINKER_CREATED))
1436 || !bfd_set_section_alignment (abfd, s, 3))
1437 return false;
1438 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1439
1440 return true;
1441}
1442
1443/* Allocate dynamic relocations for those symbols that turned out
1444 to be dynamic. */
1445
1446static boolean
1447allocate_dynrel_entries (dyn_h, data)
1448 struct elf64_hppa_dyn_hash_entry *dyn_h;
1449 PTR data;
1450{
1451 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1452 struct elf64_hppa_link_hash_table *hppa_info;
1453 struct elf64_hppa_dyn_reloc_entry *rent;
1454 boolean dynamic_symbol, shared;
1455
1456 hppa_info = elf64_hppa_hash_table (x->info);
1457 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1458 shared = x->info->shared;
1459
1460 /* We may need to allocate relocations for a non-dynamic symbol
1461 when creating a shared library. */
1462 if (!dynamic_symbol && !shared)
1463 return true;
1464
1465 /* Take care of the normal data relocations. */
1466
1467 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1468 {
1469 switch (rent->type)
1470 {
1471 case R_PARISC_FPTR64:
1472 /* Allocate one iff we are not building a shared library and
1473 !want_opd, which by this point will be true only if we're
1474 actually allocating one statically in the main executable. */
1475 if (!x->info->shared && dyn_h->want_opd)
1476 continue;
1477 break;
1478 }
1479 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1480
1481 /* Make sure this symbol gets into the dynamic symbol table if it is
1482 not already recorded. ?!? This should not be in the loop since
1483 the symbol need only be added once. */
1484 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1485 if (!_bfd_elf64_link_record_local_dynamic_symbol
1486 (x->info, rent->sec->owner, dyn_h->sym_indx))
1487 return false;
1488 }
1489
1490 /* Take care of the GOT and PLT relocations. */
1491
1492 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1493 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1494
1495 /* If we are building a shared library, then every symbol that has an
1496 opd entry will need an EPLT relocation to relocate the symbol's address
1497 and __gp value based on the runtime load address. */
1498 if (shared && dyn_h->want_opd)
1499 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1500
1501 if (dyn_h->want_plt && dynamic_symbol)
1502 {
1503 bfd_size_type t = 0;
1504
1505 /* Dynamic symbols get one IPLT relocation. Local symbols in
1506 shared libraries get two REL relocations. Local symbols in
1507 main applications get nothing. */
1508 if (dynamic_symbol)
1509 t = sizeof (Elf64_External_Rela);
1510 else if (shared)
1511 t = 2 * sizeof (Elf64_External_Rela);
1512
1513 hppa_info->plt_rel_sec->_raw_size += t;
1514 }
1515
1516 return true;
1517}
1518
1519/* Adjust a symbol defined by a dynamic object and referenced by a
1520 regular object. */
1521
1522static boolean
1523elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1524 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1525 struct elf_link_hash_entry *h;
1526{
1527 /* ??? Undefined symbols with PLT entries should be re-defined
1528 to be the PLT entry. */
1529
1530 /* If this is a weak symbol, and there is a real definition, the
1531 processor independent code will have arranged for us to see the
1532 real definition first, and we can just use the same value. */
1533 if (h->weakdef != NULL)
1534 {
1535 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1536 || h->weakdef->root.type == bfd_link_hash_defweak);
1537 h->root.u.def.section = h->weakdef->root.u.def.section;
1538 h->root.u.def.value = h->weakdef->root.u.def.value;
1539 return true;
1540 }
1541
1542 /* If this is a reference to a symbol defined by a dynamic object which
1543 is not a function, we might allocate the symbol in our .dynbss section
1544 and allocate a COPY dynamic relocation.
1545
1546 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1547 of hackery. */
1548
1549 return true;
1550}
1551
1552/* Set the final sizes of the dynamic sections and allocate memory for
1553 the contents of our special sections. */
1554
1555static boolean
1556elf64_hppa_size_dynamic_sections (output_bfd, info)
1557 bfd *output_bfd;
1558 struct bfd_link_info *info;
1559{
1560 bfd *dynobj;
1561 asection *s;
1562 boolean plt;
1563 boolean relocs;
1564 boolean reltext;
15bda425
JL
1565 struct elf64_hppa_allocate_data data;
1566 struct elf64_hppa_link_hash_table *hppa_info;
1567
1568 hppa_info = elf64_hppa_hash_table (info);
1569
1570 dynobj = elf_hash_table (info)->dynobj;
1571 BFD_ASSERT (dynobj != NULL);
1572
1573 if (elf_hash_table (info)->dynamic_sections_created)
1574 {
1575 /* Set the contents of the .interp section to the interpreter. */
1576 if (! info->shared)
1577 {
1578 s = bfd_get_section_by_name (dynobj, ".interp");
1579 BFD_ASSERT (s != NULL);
1580 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1581 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1582 }
1583 }
1584 else
1585 {
1586 /* We may have created entries in the .rela.got section.
1587 However, if we are not creating the dynamic sections, we will
1588 not actually use these entries. Reset the size of .rela.dlt,
1589 which will cause it to get stripped from the output file
1590 below. */
1591 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1592 if (s != NULL)
1593 s->_raw_size = 0;
1594 }
1595
1596 /* Allocate the GOT entries. */
1597
1598 data.info = info;
1599 if (elf64_hppa_hash_table (info)->dlt_sec)
1600 {
1601 data.ofs = 0x0;
1602 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1603 allocate_global_data_dlt, &data);
1604 hppa_info->dlt_sec->_raw_size = data.ofs;
1605
1606 data.ofs = 0x0;
1607 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1608 allocate_global_data_plt, &data);
1609 hppa_info->plt_sec->_raw_size = data.ofs;
1610
1611 data.ofs = 0x0;
1612 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1613 allocate_global_data_stub, &data);
1614 hppa_info->stub_sec->_raw_size = data.ofs;
1615 }
1616
1617 /* Mark each function this program exports so that we will allocate
1618 space in the .opd section for each function's FPTR.
1619
1620 We have to traverse the main linker hash table since we have to
1621 find functions which may not have been mentioned in any relocs. */
1622 elf_link_hash_traverse (elf_hash_table (info),
1623 elf64_hppa_mark_exported_functions,
1624 info);
1625
1626 /* Allocate space for entries in the .opd section. */
1627 if (elf64_hppa_hash_table (info)->opd_sec)
1628 {
1629 data.ofs = 0;
1630 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1631 allocate_global_data_opd, &data);
1632 hppa_info->opd_sec->_raw_size = data.ofs;
1633 }
1634
1635 /* Now allocate space for dynamic relocations, if necessary. */
1636 if (hppa_info->root.dynamic_sections_created)
1637 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1638 allocate_dynrel_entries, &data);
1639
1640 /* The sizes of all the sections are set. Allocate memory for them. */
1641 plt = false;
1642 relocs = false;
1643 reltext = false;
1644 for (s = dynobj->sections; s != NULL; s = s->next)
1645 {
1646 const char *name;
1647 boolean strip;
1648
1649 if ((s->flags & SEC_LINKER_CREATED) == 0)
1650 continue;
1651
1652 /* It's OK to base decisions on the section name, because none
1653 of the dynobj section names depend upon the input files. */
1654 name = bfd_get_section_name (dynobj, s);
1655
1656 strip = 0;
1657
1658 if (strcmp (name, ".plt") == 0)
1659 {
1660 if (s->_raw_size == 0)
1661 {
1662 /* Strip this section if we don't need it; see the
1663 comment below. */
1664 strip = true;
1665 }
1666 else
1667 {
1668 /* Remember whether there is a PLT. */
1669 plt = true;
1670 }
1671 }
1672 else if (strcmp (name, ".dlt") == 0)
1673 {
1674 if (s->_raw_size == 0)
1675 {
1676 /* Strip this section if we don't need it; see the
1677 comment below. */
1678 strip = true;
1679 }
1680 }
1681 else if (strcmp (name, ".opd") == 0)
1682 {
1683 if (s->_raw_size == 0)
1684 {
1685 /* Strip this section if we don't need it; see the
1686 comment below. */
1687 strip = true;
1688 }
1689 }
1690 else if (strncmp (name, ".rela", 4) == 0)
1691 {
1692 if (s->_raw_size == 0)
1693 {
1694 /* If we don't need this section, strip it from the
1695 output file. This is mostly to handle .rela.bss and
1696 .rela.plt. We must create both sections in
1697 create_dynamic_sections, because they must be created
1698 before the linker maps input sections to output
1699 sections. The linker does that before
1700 adjust_dynamic_symbol is called, and it is that
1701 function which decides whether anything needs to go
1702 into these sections. */
1703 strip = true;
1704 }
1705 else
1706 {
1707 asection *target;
1708
1709 /* Remember whether there are any reloc sections other
1710 than .rela.plt. */
1711 if (strcmp (name, ".rela.plt") != 0)
1712 {
1713 const char *outname;
1714
1715 relocs = true;
1716
1717 /* If this relocation section applies to a read only
1718 section, then we probably need a DT_TEXTREL
1719 entry. The entries in the .rela.plt section
1720 really apply to the .got section, which we
1721 created ourselves and so know is not readonly. */
1722 outname = bfd_get_section_name (output_bfd,
1723 s->output_section);
1724 target = bfd_get_section_by_name (output_bfd, outname + 4);
1725 if (target != NULL
1726 && (target->flags & SEC_READONLY) != 0
1727 && (target->flags & SEC_ALLOC) != 0)
1728 reltext = true;
1729 }
1730
1731 /* We use the reloc_count field as a counter if we need
1732 to copy relocs into the output file. */
1733 s->reloc_count = 0;
1734 }
1735 }
1736 else if (strncmp (name, ".dlt", 4) != 0
1737 && strcmp (name, ".stub") != 0
1738 && strcmp (name, ".got") != 0)
1739 {
1740 /* It's not one of our sections, so don't allocate space. */
1741 continue;
1742 }
1743
1744 if (strip)
1745 {
1746 _bfd_strip_section_from_output (info, s);
1747 continue;
1748 }
1749
1750 /* Allocate memory for the section contents if it has not
832d951b
AM
1751 been allocated already. We use bfd_zalloc here in case
1752 unused entries are not reclaimed before the section's
1753 contents are written out. This should not happen, but this
1754 way if it does, we get a R_PARISC_NONE reloc instead of
1755 garbage. */
15bda425
JL
1756 if (s->contents == NULL)
1757 {
7a9af8c4 1758 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1759 if (s->contents == NULL && s->_raw_size != 0)
1760 return false;
1761 }
1762 }
1763
1764 if (elf_hash_table (info)->dynamic_sections_created)
1765 {
1766 /* Always create a DT_PLTGOT. It actually has nothing to do with
1767 the PLT, it is how we communicate the __gp value of a load
1768 module to the dynamic linker. */
1769 if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
1770 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
1771 return false;
1772
1773 /* Add some entries to the .dynamic section. We fill in the
1774 values later, in elf64_hppa_finish_dynamic_sections, but we
1775 must add the entries now so that we get the correct size for
1776 the .dynamic section. The DT_DEBUG entry is filled in by the
1777 dynamic linker and used by the debugger. */
1778 if (! info->shared)
1779 {
1780 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
1781 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
1782 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
1783 return false;
1784 }
1785
1786 if (plt)
1787 {
1788 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1789 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1791 return false;
1792 }
1793
1794 if (relocs)
1795 {
1796 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1797 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1798 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1799 sizeof (Elf64_External_Rela)))
1800 return false;
1801 }
1802
1803 if (reltext)
1804 {
1805 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1806 return false;
d6cf2879 1807 info->flags |= DF_TEXTREL;
15bda425
JL
1808 }
1809 }
1810
1811 return true;
1812}
1813
1814/* Called after we have output the symbol into the dynamic symbol
1815 table, but before we output the symbol into the normal symbol
1816 table.
1817
1818 For some symbols we had to change their address when outputting
1819 the dynamic symbol table. We undo that change here so that
1820 the symbols have their expected value in the normal symbol
1821 table. Ick. */
1822
1823static boolean
1824elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1825 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1826 struct bfd_link_info *info;
1827 const char *name;
1828 Elf_Internal_Sym *sym;
edd21aca 1829 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1830{
1831 struct elf64_hppa_link_hash_table *hppa_info;
1832 struct elf64_hppa_dyn_hash_entry *dyn_h;
1833
1834 /* We may be called with the file symbol or section symbols.
1835 They never need munging, so it is safe to ignore them. */
1836 if (!name)
1837 return true;
1838
1839 /* Get the PA dyn_symbol (if any) associated with NAME. */
1840 hppa_info = elf64_hppa_hash_table (info);
1841 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1842 name, false, false);
1843
832d951b
AM
1844 /* Function symbols for which we created .opd entries *may* have been
1845 munged by finish_dynamic_symbol and have to be un-munged here.
1846
1847 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1848 into non-dynamic ones, so we initialize st_shndx to -1 in
1849 mark_exported_functions and check to see if it was overwritten
1850 here instead of just checking dyn_h->h->dynindx. */
1851 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1852 {
1853 /* Restore the saved value and section index. */
1854 sym->st_value = dyn_h->st_value;
fe8bc63d 1855 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1856 }
1857
1858 return true;
1859}
1860
1861/* Finish up dynamic symbol handling. We set the contents of various
1862 dynamic sections here. */
1863
1864static boolean
1865elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1866 bfd *output_bfd;
1867 struct bfd_link_info *info;
1868 struct elf_link_hash_entry *h;
1869 Elf_Internal_Sym *sym;
1870{
1871 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1872 struct elf64_hppa_link_hash_table *hppa_info;
1873 struct elf64_hppa_dyn_hash_entry *dyn_h;
1874
1875 hppa_info = elf64_hppa_hash_table (info);
1876 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1877 h->root.root.string, false, false);
1878
1879 stub = hppa_info->stub_sec;
1880 splt = hppa_info->plt_sec;
1881 sdlt = hppa_info->dlt_sec;
1882 sopd = hppa_info->opd_sec;
1883 spltrel = hppa_info->plt_rel_sec;
1884 sdltrel = hppa_info->dlt_rel_sec;
1885
1886 BFD_ASSERT (stub != NULL && splt != NULL
1887 && sopd != NULL && sdlt != NULL)
1888
1889 /* Incredible. It is actually necessary to NOT use the symbol's real
1890 value when building the dynamic symbol table for a shared library.
1891 At least for symbols that refer to functions.
1892
1893 We will store a new value and section index into the symbol long
1894 enough to output it into the dynamic symbol table, then we restore
1895 the original values (in elf64_hppa_link_output_symbol_hook). */
1896 if (dyn_h && dyn_h->want_opd)
1897 {
1898 /* Save away the original value and section index so that we
1899 can restore them later. */
1900 dyn_h->st_value = sym->st_value;
1901 dyn_h->st_shndx = sym->st_shndx;
1902
1903 /* For the dynamic symbol table entry, we want the value to be
1904 address of this symbol's entry within the .opd section. */
1905 sym->st_value = (dyn_h->opd_offset
1906 + sopd->output_offset
1907 + sopd->output_section->vma);
1908 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1909 sopd->output_section);
1910 }
1911
1912 /* Initialize a .plt entry if requested. */
1913 if (dyn_h && dyn_h->want_plt
1914 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1915 {
1916 bfd_vma value;
1917 Elf_Internal_Rela rel;
1918
1919 /* We do not actually care about the value in the PLT entry
1920 if we are creating a shared library and the symbol is
1921 still undefined, we create a dynamic relocation to fill
1922 in the correct value. */
1923 if (info->shared && h->root.type == bfd_link_hash_undefined)
1924 value = 0;
1925 else
1926 value = (h->root.u.def.value + h->root.u.def.section->vma);
1927
fe8bc63d 1928 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1929
1930 The format of a plt entry is
fe8bc63d 1931 <funcaddr> <__gp>.
15bda425
JL
1932
1933 plt_offset is the offset within the PLT section at which to
fe8bc63d 1934 install the PLT entry.
15bda425
JL
1935
1936 We are modifying the in-memory PLT contents here, so we do not add
1937 in the output_offset of the PLT section. */
1938
1939 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1940 value = _bfd_get_gp_value (splt->output_section->owner);
1941 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1942
1943 /* Create a dynamic IPLT relocation for this entry.
1944
1945 We are creating a relocation in the output file's PLT section,
1946 which is included within the DLT secton. So we do need to include
1947 the PLT's output_offset in the computation of the relocation's
1948 address. */
1949 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1950 + splt->output_section->vma);
1951 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1952 rel.r_addend = 0;
1953
1954 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1955 (((Elf64_External_Rela *)
1956 spltrel->contents)
1957 + spltrel->reloc_count));
1958 spltrel->reloc_count++;
1959 }
1960
1961 /* Initialize an external call stub entry if requested. */
1962 if (dyn_h && dyn_h->want_stub
1963 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1964 {
1965 bfd_vma value;
1966 int insn;
b352eebf 1967 unsigned int max_offset;
15bda425
JL
1968
1969 /* Install the generic stub template.
1970
1971 We are modifying the contents of the stub section, so we do not
1972 need to include the stub section's output_offset here. */
1973 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
1974
1975 /* Fix up the first ldd instruction.
1976
1977 We are modifying the contents of the STUB section in memory,
fe8bc63d 1978 so we do not need to include its output offset in this computation.
15bda425
JL
1979
1980 Note the plt_offset value is the value of the PLT entry relative to
1981 the start of the PLT section. These instructions will reference
1982 data relative to the value of __gp, which may not necessarily have
1983 the same address as the start of the PLT section.
1984
1985 gp_offset contains the offset of __gp within the PLT section. */
1986 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 1987
15bda425 1988 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
1989 if (output_bfd->arch_info->mach >= 25)
1990 {
1991 /* Wide mode allows 16 bit offsets. */
1992 max_offset = 32768;
1993 insn &= ~ 0xfff1;
1994 insn |= re_assemble_16 (value);
1995 }
1996 else
1997 {
1998 max_offset = 8192;
1999 insn &= ~ 0x3ff1;
2000 insn |= re_assemble_14 (value);
2001 }
2002
2003 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2004 {
2005 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2006 dyn_h->root.string,
2007 (long) value);
2008 return false;
2009 }
2010
2011 bfd_put_32 (stub->owner, insn,
15bda425
JL
2012 stub->contents + dyn_h->stub_offset);
2013
2014 /* Fix up the second ldd instruction. */
b352eebf 2015 value += 8;
15bda425 2016 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2017 if (output_bfd->arch_info->mach >= 25)
2018 {
2019 insn &= ~ 0xfff1;
2020 insn |= re_assemble_16 (value);
2021 }
2022 else
2023 {
2024 insn &= ~ 0x3ff1;
2025 insn |= re_assemble_14 (value);
2026 }
2027 bfd_put_32 (stub->owner, insn,
15bda425
JL
2028 stub->contents + dyn_h->stub_offset + 8);
2029 }
2030
2031 /* Millicode symbols should not be put in the dynamic
2032 symbol table under any circumstances. */
2033 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2034 h->dynindx = -1;
2035
2036 return true;
2037}
2038
2039/* The .opd section contains FPTRs for each function this file
2040 exports. Initialize the FPTR entries. */
2041
2042static boolean
2043elf64_hppa_finalize_opd (dyn_h, data)
2044 struct elf64_hppa_dyn_hash_entry *dyn_h;
2045 PTR data;
2046{
2047 struct bfd_link_info *info = (struct bfd_link_info *)data;
2048 struct elf64_hppa_link_hash_table *hppa_info;
2049 struct elf_link_hash_entry *h = dyn_h->h;
2050 asection *sopd;
2051 asection *sopdrel;
2052
2053 hppa_info = elf64_hppa_hash_table (info);
2054 sopd = hppa_info->opd_sec;
2055 sopdrel = hppa_info->opd_rel_sec;
2056
2057 if (h && dyn_h && dyn_h->want_opd)
2058 {
2059 bfd_vma value;
2060
fe8bc63d 2061 /* The first two words of an .opd entry are zero.
15bda425
JL
2062
2063 We are modifying the contents of the OPD section in memory, so we
2064 do not need to include its output offset in this computation. */
2065 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2066
2067 value = (h->root.u.def.value
2068 + h->root.u.def.section->output_section->vma
2069 + h->root.u.def.section->output_offset);
2070
2071 /* The next word is the address of the function. */
2072 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2073
2074 /* The last word is our local __gp value. */
2075 value = _bfd_get_gp_value (sopd->output_section->owner);
2076 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2077 }
2078
2079 /* If we are generating a shared library, we must generate EPLT relocations
2080 for each entry in the .opd, even for static functions (they may have
2081 had their address taken). */
2082 if (info->shared && dyn_h && dyn_h->want_opd)
2083 {
2084 Elf64_Internal_Rela rel;
15bda425
JL
2085 int dynindx;
2086
2087 /* We may need to do a relocation against a local symbol, in
2088 which case we have to look up it's dynamic symbol index off
2089 the local symbol hash table. */
2090 if (h && h->dynindx != -1)
2091 dynindx = h->dynindx;
2092 else
2093 dynindx
2094 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2095 dyn_h->sym_indx);
2096
2097 /* The offset of this relocation is the absolute address of the
2098 .opd entry for this symbol. */
2099 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2100 + sopd->output_section->vma);
2101
2102 /* If H is non-null, then we have an external symbol.
2103
2104 It is imperative that we use a different dynamic symbol for the
2105 EPLT relocation if the symbol has global scope.
2106
2107 In the dynamic symbol table, the function symbol will have a value
2108 which is address of the function's .opd entry.
2109
2110 Thus, we can not use that dynamic symbol for the EPLT relocation
2111 (if we did, the data in the .opd would reference itself rather
2112 than the actual address of the function). Instead we have to use
2113 a new dynamic symbol which has the same value as the original global
fe8bc63d 2114 function symbol.
15bda425
JL
2115
2116 We prefix the original symbol with a "." and use the new symbol in
2117 the EPLT relocation. This new symbol has already been recorded in
2118 the symbol table, we just have to look it up and use it.
2119
2120 We do not have such problems with static functions because we do
2121 not make their addresses in the dynamic symbol table point to
2122 the .opd entry. Ultimately this should be safe since a static
2123 function can not be directly referenced outside of its shared
2124 library.
2125
2126 We do have to play similar games for FPTR relocations in shared
2127 libraries, including those for static symbols. See the FPTR
2128 handling in elf64_hppa_finalize_dynreloc. */
2129 if (h)
2130 {
2131 char *new_name;
2132 struct elf_link_hash_entry *nh;
2133
2134 new_name = alloca (strlen (h->root.root.string) + 2);
2135 new_name[0] = '.';
2136 strcpy (new_name + 1, h->root.root.string);
2137
2138 nh = elf_link_hash_lookup (elf_hash_table (info),
2139 new_name, false, false, false);
2140
2141 /* All we really want from the new symbol is its dynamic
2142 symbol index. */
2143 dynindx = nh->dynindx;
2144 }
2145
2146 rel.r_addend = 0;
2147 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2148
2149 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2150 (((Elf64_External_Rela *)
2151 sopdrel->contents)
2152 + sopdrel->reloc_count));
2153 sopdrel->reloc_count++;
2154 }
2155 return true;
2156}
2157
2158/* The .dlt section contains addresses for items referenced through the
2159 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2160 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2161
2162static boolean
2163elf64_hppa_finalize_dlt (dyn_h, data)
2164 struct elf64_hppa_dyn_hash_entry *dyn_h;
2165 PTR data;
2166{
2167 struct bfd_link_info *info = (struct bfd_link_info *)data;
2168 struct elf64_hppa_link_hash_table *hppa_info;
2169 asection *sdlt, *sdltrel;
2170 struct elf_link_hash_entry *h = dyn_h->h;
2171
2172 hppa_info = elf64_hppa_hash_table (info);
2173
2174 sdlt = hppa_info->dlt_sec;
2175 sdltrel = hppa_info->dlt_rel_sec;
2176
2177 /* H/DYN_H may refer to a local variable and we know it's
2178 address, so there is no need to create a relocation. Just install
2179 the proper value into the DLT, note this shortcut can not be
2180 skipped when building a shared library. */
2181 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2182 {
2183 bfd_vma value;
2184
2185 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2186 to point to the FPTR entry in the .opd section.
15bda425
JL
2187
2188 We include the OPD's output offset in this computation as
2189 we are referring to an absolute address in the resulting
2190 object file. */
2191 if (dyn_h->want_opd)
2192 {
2193 value = (dyn_h->opd_offset
2194 + hppa_info->opd_sec->output_offset
2195 + hppa_info->opd_sec->output_section->vma);
2196 }
2197 else
2198 {
2199 value = (h->root.u.def.value
2200 + h->root.u.def.section->output_offset);
2201
2202 if (h->root.u.def.section->output_section)
2203 value += h->root.u.def.section->output_section->vma;
2204 else
2205 value += h->root.u.def.section->vma;
2206 }
2207
2208 /* We do not need to include the output offset of the DLT section
2209 here because we are modifying the in-memory contents. */
2210 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2211 }
2212
2213 /* Create a relocation for the DLT entry assocated with this symbol.
2214 When building a shared library the symbol does not have to be dynamic. */
2215 if (dyn_h->want_dlt
2216 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2217 {
2218 Elf64_Internal_Rela rel;
2219 int dynindx;
2220
2221 /* We may need to do a relocation against a local symbol, in
2222 which case we have to look up it's dynamic symbol index off
2223 the local symbol hash table. */
2224 if (h && h->dynindx != -1)
2225 dynindx = h->dynindx;
2226 else
2227 dynindx
2228 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2229 dyn_h->sym_indx);
2230
15bda425
JL
2231 /* Create a dynamic relocation for this entry. Do include the output
2232 offset of the DLT entry since we need an absolute address in the
2233 resulting object file. */
2234 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2235 + sdlt->output_section->vma);
2236 if (h && h->type == STT_FUNC)
2237 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2238 else
2239 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2240 rel.r_addend = 0;
2241
2242 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2243 (((Elf64_External_Rela *)
2244 sdltrel->contents)
2245 + sdltrel->reloc_count));
2246 sdltrel->reloc_count++;
2247 }
2248 return true;
2249}
2250
2251/* Finalize the dynamic relocations. Specifically the FPTR relocations
2252 for dynamic functions used to initialize static data. */
2253
2254static boolean
2255elf64_hppa_finalize_dynreloc (dyn_h, data)
2256 struct elf64_hppa_dyn_hash_entry *dyn_h;
2257 PTR data;
2258{
2259 struct bfd_link_info *info = (struct bfd_link_info *)data;
2260 struct elf64_hppa_link_hash_table *hppa_info;
2261 struct elf_link_hash_entry *h;
2262 int dynamic_symbol;
2263
2264 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2265
2266 if (!dynamic_symbol && !info->shared)
2267 return true;
2268
2269 if (dyn_h->reloc_entries)
2270 {
2271 struct elf64_hppa_dyn_reloc_entry *rent;
2272 int dynindx;
2273
2274 hppa_info = elf64_hppa_hash_table (info);
2275 h = dyn_h->h;
2276
2277 /* We may need to do a relocation against a local symbol, in
2278 which case we have to look up it's dynamic symbol index off
2279 the local symbol hash table. */
2280 if (h && h->dynindx != -1)
2281 dynindx = h->dynindx;
2282 else
2283 dynindx
2284 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2285 dyn_h->sym_indx);
2286
2287 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2288 {
2289 Elf64_Internal_Rela rel;
2290
2291 switch (rent->type)
2292 {
2293 case R_PARISC_FPTR64:
2294 /* Allocate one iff we are not building a shared library and
2295 !want_opd, which by this point will be true only if we're
2296 actually allocating one statically in the main executable. */
2297 if (!info->shared && dyn_h->want_opd)
2298 continue;
2299 break;
2300 }
2301
fe8bc63d 2302 /* Create a dynamic relocation for this entry.
15bda425
JL
2303
2304 We need the output offset for the reloc's section because
2305 we are creating an absolute address in the resulting object
2306 file. */
2307 rel.r_offset = (rent->offset + rent->sec->output_offset
2308 + rent->sec->output_section->vma);
2309
2310 /* An FPTR64 relocation implies that we took the address of
2311 a function and that the function has an entry in the .opd
2312 section. We want the FPTR64 relocation to reference the
2313 entry in .opd.
2314
2315 We could munge the symbol value in the dynamic symbol table
2316 (in fact we already do for functions with global scope) to point
2317 to the .opd entry. Then we could use that dynamic symbol in
2318 this relocation.
2319
2320 Or we could do something sensible, not munge the symbol's
2321 address and instead just use a different symbol to reference
2322 the .opd entry. At least that seems sensible until you
2323 realize there's no local dynamic symbols we can use for that
2324 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2325
15bda425
JL
2326 We use a section symbol recorded by check_relocs as the
2327 base symbol for the relocation. The addend is the difference
2328 between the section symbol and the address of the .opd entry. */
2329 if (info->shared && rent->type == R_PARISC_FPTR64)
2330 {
2331 bfd_vma value, value2;
15bda425
JL
2332
2333 /* First compute the address of the opd entry for this symbol. */
2334 value = (dyn_h->opd_offset
2335 + hppa_info->opd_sec->output_section->vma
2336 + hppa_info->opd_sec->output_offset);
2337
2338 /* Compute the value of the start of the section with
2339 the relocation. */
2340 value2 = (rent->sec->output_section->vma
2341 + rent->sec->output_offset);
2342
2343 /* Compute the difference between the start of the section
2344 with the relocation and the opd entry. */
2345 value -= value2;
fe8bc63d 2346
15bda425
JL
2347 /* The result becomes the addend of the relocation. */
2348 rel.r_addend = value;
2349
2350 /* The section symbol becomes the symbol for the dynamic
2351 relocation. */
2352 dynindx
2353 = _bfd_elf_link_lookup_local_dynindx (info,
2354 rent->sec->owner,
2355 rent->sec_symndx);
2356 }
2357 else
2358 rel.r_addend = rent->addend;
2359
2360 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2361
2362 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2363 &rel,
2364 (((Elf64_External_Rela *)
2365 hppa_info->other_rel_sec->contents)
2366 + hppa_info->other_rel_sec->reloc_count));
2367 hppa_info->other_rel_sec->reloc_count++;
2368 }
2369 }
2370
2371 return true;
2372}
2373
2374/* Finish up the dynamic sections. */
2375
2376static boolean
2377elf64_hppa_finish_dynamic_sections (output_bfd, info)
2378 bfd *output_bfd;
2379 struct bfd_link_info *info;
2380{
2381 bfd *dynobj;
2382 asection *sdyn;
2383 struct elf64_hppa_link_hash_table *hppa_info;
2384
2385 hppa_info = elf64_hppa_hash_table (info);
2386
2387 /* Finalize the contents of the .opd section. */
2388 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2389 elf64_hppa_finalize_opd,
2390 info);
2391
2392 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2393 elf64_hppa_finalize_dynreloc,
2394 info);
2395
2396 /* Finalize the contents of the .dlt section. */
2397 dynobj = elf_hash_table (info)->dynobj;
2398 /* Finalize the contents of the .dlt section. */
2399 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2400 elf64_hppa_finalize_dlt,
2401 info);
2402
15bda425
JL
2403 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2404
2405 if (elf_hash_table (info)->dynamic_sections_created)
2406 {
2407 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2408
2409 BFD_ASSERT (sdyn != NULL);
2410
2411 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2412 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2413 for (; dyncon < dynconend; dyncon++)
2414 {
2415 Elf_Internal_Dyn dyn;
2416 asection *s;
2417
2418 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2419
2420 switch (dyn.d_tag)
2421 {
2422 default:
2423 break;
2424
2425 case DT_HP_LOAD_MAP:
2426 /* Compute the absolute address of 16byte scratchpad area
2427 for the dynamic linker.
2428
2429 By convention the linker script will allocate the scratchpad
2430 area at the start of the .data section. So all we have to
2431 to is find the start of the .data section. */
2432 s = bfd_get_section_by_name (output_bfd, ".data");
2433 dyn.d_un.d_ptr = s->vma;
2434 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2435 break;
2436
2437 case DT_PLTGOT:
2438 /* HP's use PLTGOT to set the GOT register. */
2439 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2440 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2441 break;
2442
2443 case DT_JMPREL:
2444 s = hppa_info->plt_rel_sec;
2445 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2446 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2447 break;
2448
2449 case DT_PLTRELSZ:
2450 s = hppa_info->plt_rel_sec;
2451 dyn.d_un.d_val = s->_raw_size;
2452 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2453 break;
2454
2455 case DT_RELA:
2456 s = hppa_info->other_rel_sec;
2457 if (! s)
2458 s = hppa_info->dlt_rel_sec;
2459 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2460 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2461 break;
2462
2463 case DT_RELASZ:
2464 s = hppa_info->other_rel_sec;
2465 dyn.d_un.d_val = s->_raw_size;
2466 s = hppa_info->dlt_rel_sec;
2467 dyn.d_un.d_val += s->_raw_size;
2468 s = hppa_info->opd_rel_sec;
2469 dyn.d_un.d_val += s->_raw_size;
2470 /* There is some question about whether or not the size of
2471 the PLT relocs should be included here. HP's tools do
2472 it, so we'll emulate them. */
2473 s = hppa_info->plt_rel_sec;
2474 dyn.d_un.d_val += s->_raw_size;
2475 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2476 break;
2477
2478 }
2479 }
2480 }
2481
2482 return true;
2483}
2484
15bda425
JL
2485/* Return the number of additional phdrs we will need.
2486
2487 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2488 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2489
2490 This routine indicates that the backend needs one additional program
2491 header for that case.
2492
2493 Note we do not have access to the link info structure here, so we have
2494 to guess whether or not we are building a shared library based on the
2495 existence of a .interp section. */
2496
2497static int
2498elf64_hppa_additional_program_headers (abfd)
2499 bfd *abfd;
2500{
2501 asection *s;
2502
2503 /* If we are creating a shared library, then we have to create a
2504 PT_PHDR segment. HP's dynamic linker chokes without it. */
2505 s = bfd_get_section_by_name (abfd, ".interp");
2506 if (! s)
2507 return 1;
2508 return 0;
2509}
2510
2511/* Allocate and initialize any program headers required by this
2512 specific backend.
2513
2514 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2515 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2516
2517 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2518 for the HP linker.
15bda425
JL
2519
2520 Note we do not have access to the link info structure here, so we have
2521 to guess whether or not we are building a shared library based on the
2522 existence of a .interp section. */
2523
2524static boolean
2525elf64_hppa_modify_segment_map (abfd)
2526 bfd *abfd;
2527{
edd21aca 2528 struct elf_segment_map *m;
15bda425
JL
2529 asection *s;
2530
2531 s = bfd_get_section_by_name (abfd, ".interp");
2532 if (! s)
2533 {
2534 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2535 if (m->p_type == PT_PHDR)
2536 break;
2537 if (m == NULL)
2538 {
2539 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
2540 if (m == NULL)
2541 return false;
2542
2543 m->p_type = PT_PHDR;
2544 m->p_flags = PF_R | PF_X;
2545 m->p_flags_valid = 1;
2546 m->p_paddr_valid = 1;
2547 m->includes_phdrs = 1;
2548
2549 m->next = elf_tdata (abfd)->segment_map;
2550 elf_tdata (abfd)->segment_map = m;
2551 }
2552 }
2553
2554 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2555 if (m->p_type == PT_LOAD)
2556 {
0ba2a60e 2557 unsigned int i;
15bda425
JL
2558
2559 for (i = 0; i < m->count; i++)
2560 {
2561 /* The code "hint" is not really a hint. It is a requirement
2562 for certain versions of the HP dynamic linker. Worse yet,
2563 it must be set even if the shared library does not have
2564 any code in its "text" segment (thus the check for .hash
2565 to catch this situation). */
2566 if (m->sections[i]->flags & SEC_CODE
2567 || (strcmp (m->sections[i]->name, ".hash") == 0))
2568 m->p_flags |= (PF_X | PF_HP_CODE);
2569 }
2570 }
2571
2572 return true;
2573}
2574
3fab46d0
AM
2575/* Called when writing out an object file to decide the type of a
2576 symbol. */
2577static int
2578elf64_hppa_elf_get_symbol_type (elf_sym, type)
2579 Elf_Internal_Sym *elf_sym;
2580 int type;
2581{
2582 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2583 return STT_PARISC_MILLI;
2584 else
2585 return type;
2586}
2587
15bda425
JL
2588/* The hash bucket size is the standard one, namely 4. */
2589
2590const struct elf_size_info hppa64_elf_size_info =
2591{
2592 sizeof (Elf64_External_Ehdr),
2593 sizeof (Elf64_External_Phdr),
2594 sizeof (Elf64_External_Shdr),
2595 sizeof (Elf64_External_Rel),
2596 sizeof (Elf64_External_Rela),
2597 sizeof (Elf64_External_Sym),
2598 sizeof (Elf64_External_Dyn),
2599 sizeof (Elf_External_Note),
2600 4,
2601 1,
2602 64, 8,
2603 ELFCLASS64, EV_CURRENT,
2604 bfd_elf64_write_out_phdrs,
2605 bfd_elf64_write_shdrs_and_ehdr,
2606 bfd_elf64_write_relocs,
2607 bfd_elf64_swap_symbol_out,
2608 bfd_elf64_slurp_reloc_table,
2609 bfd_elf64_slurp_symbol_table,
2610 bfd_elf64_swap_dyn_in,
2611 bfd_elf64_swap_dyn_out,
2612 NULL,
2613 NULL,
2614 NULL,
2615 NULL
2616};
2617
2618#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2619#define TARGET_BIG_NAME "elf64-hppa"
2620#define ELF_ARCH bfd_arch_hppa
2621#define ELF_MACHINE_CODE EM_PARISC
2622/* This is not strictly correct. The maximum page size for PA2.0 is
2623 64M. But everything still uses 4k. */
2624#define ELF_MAXPAGESIZE 0x1000
2625#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2626#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2627#define elf_info_to_howto elf_hppa_info_to_howto
2628#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2629
2630#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2631#define elf_backend_object_p elf64_hppa_object_p
2632#define elf_backend_final_write_processing \
2633 elf_hppa_final_write_processing
2634#define elf_backend_fake_sections elf_hppa_fake_sections
2635#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2636
2637#define elf_backend_relocate_section elf_hppa_relocate_section
2638
2639#define bfd_elf64_bfd_final_link elf_hppa_final_link
2640
2641#define elf_backend_create_dynamic_sections \
2642 elf64_hppa_create_dynamic_sections
2643#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2644
2645#define elf_backend_adjust_dynamic_symbol \
2646 elf64_hppa_adjust_dynamic_symbol
2647
2648#define elf_backend_size_dynamic_sections \
2649 elf64_hppa_size_dynamic_sections
2650
2651#define elf_backend_finish_dynamic_symbol \
2652 elf64_hppa_finish_dynamic_symbol
2653#define elf_backend_finish_dynamic_sections \
2654 elf64_hppa_finish_dynamic_sections
2655
2656/* Stuff for the BFD linker: */
2657#define bfd_elf64_bfd_link_hash_table_create \
2658 elf64_hppa_hash_table_create
2659
2660#define elf_backend_check_relocs \
2661 elf64_hppa_check_relocs
2662
2663#define elf_backend_size_info \
2664 hppa64_elf_size_info
2665
2666#define elf_backend_additional_program_headers \
2667 elf64_hppa_additional_program_headers
2668
2669#define elf_backend_modify_segment_map \
2670 elf64_hppa_modify_segment_map
2671
2672#define elf_backend_link_output_symbol_hook \
2673 elf64_hppa_link_output_symbol_hook
2674
15bda425
JL
2675#define elf_backend_want_got_plt 0
2676#define elf_backend_plt_readonly 0
2677#define elf_backend_want_plt_sym 0
2678#define elf_backend_got_header_size 0
2679#define elf_backend_plt_header_size 0
2680#define elf_backend_type_change_ok true
3fab46d0 2681#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
15bda425
JL
2682
2683#include "elf64-target.h"
d952f17a
AM
2684
2685#undef TARGET_BIG_SYM
2686#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2687#undef TARGET_BIG_NAME
2688#define TARGET_BIG_NAME "elf64-hppa-linux"
2689
2690#define INCLUDED_TARGET_FILE 1
2691#include "elf64-target.h"
This page took 0.145069 seconds and 4 git commands to generate.