* Makefile.in: Regenerate.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf 1/* Support for HPPA 64-bit ELF
e92d460e 2 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
15bda425
JL
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
dc810e39 65 long sym_indx;
15bda425
JL
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
90937f86 187 PARAMS ((bfd *, Elf64_Internal_Shdr *, const char *));
15bda425
JL
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
99c79b2e
AJ
201static boolean elf64_hppa_link_output_symbol_hook
202PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
203 Elf_Internal_Sym *, asection *input_sec));
204
15bda425
JL
205static boolean elf64_hppa_finish_dynamic_symbol
206 PARAMS ((bfd *, struct bfd_link_info *,
207 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 208
99c79b2e
AJ
209static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
210
211static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
212
15bda425
JL
213static boolean elf64_hppa_finish_dynamic_sections
214 PARAMS ((bfd *, struct bfd_link_info *));
215
216static boolean elf64_hppa_check_relocs
217 PARAMS ((bfd *, struct bfd_link_info *,
218 asection *, const Elf_Internal_Rela *));
219
220static boolean elf64_hppa_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
222
223static boolean elf64_hppa_mark_exported_functions
224 PARAMS ((struct elf_link_hash_entry *, PTR));
225
226static boolean elf64_hppa_finalize_opd
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229static boolean elf64_hppa_finalize_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232static boolean allocate_global_data_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235static boolean allocate_global_data_plt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238static boolean allocate_global_data_stub
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241static boolean allocate_global_data_opd
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244static boolean get_reloc_section
245 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
246
247static boolean count_dyn_reloc
248 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
249 int, asection *, int, bfd_vma, bfd_vma));
250
251static boolean allocate_dynrel_entries
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254static boolean elf64_hppa_finalize_dynreloc
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257static boolean get_opd
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260static boolean get_plt
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263static boolean get_dlt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266static boolean get_stub
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
3fab46d0
AM
269static int elf64_hppa_elf_get_symbol_type
270 PARAMS ((Elf_Internal_Sym *, int));
271
15bda425
JL
272static boolean
273elf64_hppa_dyn_hash_table_init (ht, abfd, new)
274 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 275 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
276 new_hash_entry_func new;
277{
fe8bc63d 278 memset (ht, 0, sizeof (*ht));
15bda425
JL
279 return bfd_hash_table_init (&ht->root, new);
280}
281
282static struct bfd_hash_entry*
283elf64_hppa_new_dyn_hash_entry (entry, table, string)
284 struct bfd_hash_entry *entry;
285 struct bfd_hash_table *table;
286 const char *string;
287{
288 struct elf64_hppa_dyn_hash_entry *ret;
289 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
290
291 /* Allocate the structure if it has not already been allocated by a
292 subclass. */
293 if (!ret)
294 ret = bfd_hash_allocate (table, sizeof (*ret));
295
296 if (!ret)
297 return 0;
298
299 /* Initialize our local data. All zeros, and definitely easier
300 than setting 8 bit fields. */
fe8bc63d 301 memset (ret, 0, sizeof (*ret));
15bda425
JL
302
303 /* Call the allocation method of the superclass. */
304 ret = ((struct elf64_hppa_dyn_hash_entry *)
305 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
306
307 return &ret->root;
308}
309
310/* Create the derived linker hash table. The PA64 ELF port uses this
311 derived hash table to keep information specific to the PA ElF
312 linker (without using static variables). */
313
314static struct bfd_link_hash_table*
315elf64_hppa_hash_table_create (abfd)
316 bfd *abfd;
317{
318 struct elf64_hppa_link_hash_table *ret;
319
dc810e39 320 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
15bda425
JL
321 if (!ret)
322 return 0;
323 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
324 _bfd_elf_link_hash_newfunc))
325 {
326 bfd_release (abfd, ret);
327 return 0;
328 }
329
330 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
331 elf64_hppa_new_dyn_hash_entry))
332 return 0;
333 return &ret->root.root;
334}
335
336/* Look up an entry in a PA64 ELF linker hash table. */
337
338static struct elf64_hppa_dyn_hash_entry *
339elf64_hppa_dyn_hash_lookup(table, string, create, copy)
340 struct elf64_hppa_dyn_hash_table *table;
341 const char *string;
342 boolean create, copy;
343{
344 return ((struct elf64_hppa_dyn_hash_entry *)
345 bfd_hash_lookup (&table->root, string, create, copy));
346}
347
348/* Traverse a PA64 ELF linker hash table. */
349
350static void
351elf64_hppa_dyn_hash_traverse (table, func, info)
352 struct elf64_hppa_dyn_hash_table *table;
353 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
354 PTR info;
355{
356 (bfd_hash_traverse
357 (&table->root,
358 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
359 info));
360}
361\f
362/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
363
364 Additionally we set the default architecture and machine. */
365static boolean
366elf64_hppa_object_p (abfd)
367 bfd *abfd;
368{
24a5e751
L
369 Elf_Internal_Ehdr * i_ehdrp;
370 unsigned int flags;
d9634ba1 371
24a5e751
L
372 i_ehdrp = elf_elfheader (abfd);
373 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
374 {
375 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
376 return false;
377 }
378 else
379 {
380 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
381 return false;
382 }
383
384 flags = i_ehdrp->e_flags;
d9634ba1
AM
385 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
386 {
387 case EFA_PARISC_1_0:
388 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
389 case EFA_PARISC_1_1:
390 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
391 case EFA_PARISC_2_0:
392 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
393 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
395 }
396 /* Don't be fussy. */
397 return true;
15bda425
JL
398}
399
400/* Given section type (hdr->sh_type), return a boolean indicating
401 whether or not the section is an elf64-hppa specific section. */
402static boolean
403elf64_hppa_section_from_shdr (abfd, hdr, name)
404 bfd *abfd;
405 Elf64_Internal_Shdr *hdr;
90937f86 406 const char *name;
15bda425
JL
407{
408 asection *newsect;
409
410 switch (hdr->sh_type)
411 {
412 case SHT_PARISC_EXT:
413 if (strcmp (name, ".PARISC.archext") != 0)
414 return false;
415 break;
416 case SHT_PARISC_UNWIND:
417 if (strcmp (name, ".PARISC.unwind") != 0)
418 return false;
419 break;
420 case SHT_PARISC_DOC:
421 case SHT_PARISC_ANNOT:
422 default:
423 return false;
424 }
425
426 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
427 return false;
428 newsect = hdr->bfd_section;
429
430 return true;
431}
432
15bda425 433/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 434 name describes what was once potentially anonymous memory. We
15bda425
JL
435 allocate memory as necessary, possibly reusing PBUF/PLEN. */
436
437static const char *
0ba2a60e
AM
438get_dyn_name (sec, h, rel, pbuf, plen)
439 asection *sec;
15bda425
JL
440 struct elf_link_hash_entry *h;
441 const Elf_Internal_Rela *rel;
442 char **pbuf;
443 size_t *plen;
444{
445 size_t nlen, tlen;
446 char *buf;
447 size_t len;
448
449 if (h && rel->r_addend == 0)
450 return h->root.root.string;
451
452 if (h)
453 nlen = strlen (h->root.root.string);
454 else
0ba2a60e
AM
455 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
456 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
457
458 len = *plen;
459 buf = *pbuf;
460 if (len < tlen)
461 {
462 if (buf)
463 free (buf);
464 *pbuf = buf = malloc (tlen);
465 *plen = len = tlen;
466 if (!buf)
467 return NULL;
468 }
469
470 if (h)
471 {
472 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 473 buf[nlen++] = '+';
15bda425
JL
474 sprintf_vma (buf + nlen, rel->r_addend);
475 }
476 else
477 {
0ba2a60e
AM
478 nlen = sprintf (buf, "%x:%lx",
479 sec->id & 0xffffffff,
480 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
481 if (rel->r_addend)
482 {
483 buf[nlen++] = '+';
484 sprintf_vma (buf + nlen, rel->r_addend);
485 }
486 }
487
488 return buf;
489}
490
491/* SEC is a section containing relocs for an input BFD when linking; return
492 a suitable section for holding relocs in the output BFD for a link. */
493
494static boolean
495get_reloc_section (abfd, hppa_info, sec)
496 bfd *abfd;
497 struct elf64_hppa_link_hash_table *hppa_info;
498 asection *sec;
499{
500 const char *srel_name;
501 asection *srel;
502 bfd *dynobj;
503
504 srel_name = (bfd_elf_string_from_elf_section
505 (abfd, elf_elfheader(abfd)->e_shstrndx,
506 elf_section_data(sec)->rel_hdr.sh_name));
507 if (srel_name == NULL)
508 return false;
509
510 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
511 && strcmp (bfd_get_section_name (abfd, sec),
512 srel_name+5) == 0)
513 || (strncmp (srel_name, ".rel", 4) == 0
514 && strcmp (bfd_get_section_name (abfd, sec),
515 srel_name+4) == 0));
516
517 dynobj = hppa_info->root.dynobj;
518 if (!dynobj)
519 hppa_info->root.dynobj = dynobj = abfd;
520
521 srel = bfd_get_section_by_name (dynobj, srel_name);
522 if (srel == NULL)
523 {
524 srel = bfd_make_section (dynobj, srel_name);
525 if (srel == NULL
526 || !bfd_set_section_flags (dynobj, srel,
527 (SEC_ALLOC
528 | SEC_LOAD
529 | SEC_HAS_CONTENTS
530 | SEC_IN_MEMORY
531 | SEC_LINKER_CREATED
532 | SEC_READONLY))
533 || !bfd_set_section_alignment (dynobj, srel, 3))
534 return false;
535 }
536
537 hppa_info->other_rel_sec = srel;
538 return true;
539}
540
fe8bc63d 541/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
542
543 We use this to keep a record of all the FPTR relocations against a
544 particular symbol so that we can create FPTR relocations in the
545 output file. */
546
547static boolean
548count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
549 bfd *abfd;
550 struct elf64_hppa_dyn_hash_entry *dyn_h;
551 int type;
552 asection *sec;
553 int sec_symndx;
554 bfd_vma offset;
555 bfd_vma addend;
556{
557 struct elf64_hppa_dyn_reloc_entry *rent;
558
559 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 560 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425
JL
561 if (!rent)
562 return false;
563
564 rent->next = dyn_h->reloc_entries;
565 rent->type = type;
566 rent->sec = sec;
567 rent->sec_symndx = sec_symndx;
568 rent->offset = offset;
569 rent->addend = addend;
570 dyn_h->reloc_entries = rent;
571
572 return true;
573}
574
575/* Scan the RELOCS and record the type of dynamic entries that each
576 referenced symbol needs. */
577
578static boolean
579elf64_hppa_check_relocs (abfd, info, sec, relocs)
580 bfd *abfd;
581 struct bfd_link_info *info;
582 asection *sec;
583 const Elf_Internal_Rela *relocs;
584{
585 struct elf64_hppa_link_hash_table *hppa_info;
586 const Elf_Internal_Rela *relend;
587 Elf_Internal_Shdr *symtab_hdr;
9ad5cbcf 588 Elf_Internal_Shdr *shndx_hdr;
15bda425
JL
589 const Elf_Internal_Rela *rel;
590 asection *dlt, *plt, *stubs;
591 char *buf;
592 size_t buf_len;
593 int sec_symndx;
594
595 if (info->relocateable)
596 return true;
597
598 /* If this is the first dynamic object found in the link, create
599 the special sections required for dynamic linking. */
600 if (! elf_hash_table (info)->dynamic_sections_created)
601 {
602 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
603 return false;
604 }
605
606 hppa_info = elf64_hppa_hash_table (info);
607 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
608
609 /* If necessary, build a new table holding section symbols indices
610 for this BFD. This is disgusting. */
fe8bc63d 611
15bda425
JL
612 if (info->shared && hppa_info->section_syms_bfd != abfd)
613 {
832d951b 614 unsigned long i;
9ad5cbcf 615 unsigned int highest_shndx;
15bda425
JL
616 Elf_Internal_Sym *local_syms, *isym;
617 Elf64_External_Sym *ext_syms, *esym;
9ad5cbcf 618 Elf_External_Sym_Shndx *shndx_buf, *shndx;
dc810e39 619 bfd_size_type amt;
15bda425
JL
620
621 /* We're done with the old cache of section index to section symbol
622 index information. Free it.
623
624 ?!? Note we leak the last section_syms array. Presumably we
625 could free it in one of the later routines in this file. */
626 if (hppa_info->section_syms)
627 free (hppa_info->section_syms);
628
629 /* Allocate memory for the internal and external symbols. */
dc810e39
AM
630 amt = symtab_hdr->sh_info;
631 amt *= sizeof (Elf_Internal_Sym);
632 local_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
15bda425
JL
633 if (local_syms == NULL)
634 return false;
635
dc810e39
AM
636 amt = symtab_hdr->sh_info;
637 amt *= sizeof (Elf64_External_Sym);
638 ext_syms = (Elf64_External_Sym *) bfd_malloc (amt);
15bda425
JL
639 if (ext_syms == NULL)
640 {
641 free (local_syms);
642 return false;
643 }
644
645 /* Read in the local symbols. */
646 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
dc810e39 647 || bfd_bread (ext_syms, amt, abfd) != amt)
15bda425 648 {
15bda425 649 free (ext_syms);
9ad5cbcf 650 free (local_syms);
15bda425
JL
651 return false;
652 }
653
9ad5cbcf
AM
654 shndx_buf = NULL;
655 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
656 if (shndx_hdr->sh_size != 0)
657 {
658 amt = symtab_hdr->sh_info;
659 amt *= sizeof (Elf_External_Sym_Shndx);
660 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
661 if (shndx_buf == NULL)
662 {
663 free (ext_syms);
664 free (local_syms);
665 return false;
666 }
667
668 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
669 || bfd_bread (shndx_buf, amt, abfd) != amt)
670 {
671 free (shndx_buf);
672 free (ext_syms);
673 free (local_syms);
674 return false;
675 }
676 }
677
15bda425
JL
678 /* Swap in the local symbols, also record the highest section index
679 referenced by the local symbols. */
15bda425 680 highest_shndx = 0;
9ad5cbcf
AM
681 for (i = 0, isym = local_syms, esym = ext_syms, shndx = shndx_buf;
682 i < symtab_hdr->sh_info;
683 i++, esym++, isym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
15bda425 684 {
f8ecb12b
AM
685 bfd_elf64_swap_symbol_in (abfd, (const PTR) esym, (const PTR) shndx,
686 isym);
15bda425
JL
687 if (isym->st_shndx > highest_shndx)
688 highest_shndx = isym->st_shndx;
689 }
690
691 /* Now we can free the external symbols. */
9ad5cbcf 692 free (shndx_buf);
15bda425
JL
693 free (ext_syms);
694
695 /* Allocate an array to hold the section index to section symbol index
696 mapping. Bump by one since we start counting at zero. */
697 highest_shndx++;
dc810e39
AM
698 amt = highest_shndx;
699 amt *= sizeof (int);
700 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
701
702 /* Now walk the local symbols again. If we find a section symbol,
703 record the index of the symbol into the section_syms array. */
704 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
705 {
706 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
707 hppa_info->section_syms[isym->st_shndx] = i;
708 }
709
710 /* We are finished with the local symbols. Get rid of them. */
711 free (local_syms);
712
713 /* Record which BFD we built the section_syms mapping for. */
714 hppa_info->section_syms_bfd = abfd;
715 }
716
717 /* Record the symbol index for this input section. We may need it for
718 relocations when building shared libraries. When not building shared
719 libraries this value is never really used, but assign it to zero to
720 prevent out of bounds memory accesses in other routines. */
721 if (info->shared)
722 {
723 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
724
725 /* If we did not find a section symbol for this section, then
726 something went terribly wrong above. */
727 if (sec_symndx == -1)
728 return false;
729
730 sec_symndx = hppa_info->section_syms[sec_symndx];
731 }
732 else
733 sec_symndx = 0;
fe8bc63d 734
15bda425
JL
735 dlt = plt = stubs = NULL;
736 buf = NULL;
737 buf_len = 0;
738
739 relend = relocs + sec->reloc_count;
740 for (rel = relocs; rel < relend; ++rel)
741 {
742 enum {
743 NEED_DLT = 1,
744 NEED_PLT = 2,
745 NEED_STUB = 4,
746 NEED_OPD = 8,
747 NEED_DYNREL = 16,
748 };
749
750 struct elf_link_hash_entry *h = NULL;
751 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
752 struct elf64_hppa_dyn_hash_entry *dyn_h;
753 int need_entry;
754 const char *addr_name;
755 boolean maybe_dynamic;
756 int dynrel_type = R_PARISC_NONE;
757 static reloc_howto_type *howto;
758
759 if (r_symndx >= symtab_hdr->sh_info)
760 {
761 /* We're dealing with a global symbol -- find its hash entry
762 and mark it as being referenced. */
763 long indx = r_symndx - symtab_hdr->sh_info;
764 h = elf_sym_hashes (abfd)[indx];
765 while (h->root.type == bfd_link_hash_indirect
766 || h->root.type == bfd_link_hash_warning)
767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
768
769 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
770 }
771
772 /* We can only get preliminary data on whether a symbol is
773 locally or externally defined, as not all of the input files
774 have yet been processed. Do something with what we know, as
775 this may help reduce memory usage and processing time later. */
776 maybe_dynamic = false;
671bae9c
NC
777 if (h && ((info->shared
778 && (!info->symbolic || info->allow_shlib_undefined) )
15bda425
JL
779 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
780 || h->root.type == bfd_link_hash_defweak))
781 maybe_dynamic = true;
782
783 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
784 need_entry = 0;
785 switch (howto->type)
786 {
787 /* These are simple indirect references to symbols through the
788 DLT. We need to create a DLT entry for any symbols which
789 appears in a DLTIND relocation. */
790 case R_PARISC_DLTIND21L:
791 case R_PARISC_DLTIND14R:
792 case R_PARISC_DLTIND14F:
793 case R_PARISC_DLTIND14WR:
794 case R_PARISC_DLTIND14DR:
795 need_entry = NEED_DLT;
796 break;
797
798 /* ?!? These need a DLT entry. But I have no idea what to do with
799 the "link time TP value. */
800 case R_PARISC_LTOFF_TP21L:
801 case R_PARISC_LTOFF_TP14R:
802 case R_PARISC_LTOFF_TP14F:
803 case R_PARISC_LTOFF_TP64:
804 case R_PARISC_LTOFF_TP14WR:
805 case R_PARISC_LTOFF_TP14DR:
806 case R_PARISC_LTOFF_TP16F:
807 case R_PARISC_LTOFF_TP16WF:
808 case R_PARISC_LTOFF_TP16DF:
809 need_entry = NEED_DLT;
810 break;
811
812 /* These are function calls. Depending on their precise target we
813 may need to make a stub for them. The stub uses the PLT, so we
814 need to create PLT entries for these symbols too. */
832d951b 815 case R_PARISC_PCREL12F:
15bda425
JL
816 case R_PARISC_PCREL17F:
817 case R_PARISC_PCREL22F:
818 case R_PARISC_PCREL32:
819 case R_PARISC_PCREL64:
820 case R_PARISC_PCREL21L:
821 case R_PARISC_PCREL17R:
822 case R_PARISC_PCREL17C:
823 case R_PARISC_PCREL14R:
824 case R_PARISC_PCREL14F:
825 case R_PARISC_PCREL22C:
826 case R_PARISC_PCREL14WR:
827 case R_PARISC_PCREL14DR:
828 case R_PARISC_PCREL16F:
829 case R_PARISC_PCREL16WF:
830 case R_PARISC_PCREL16DF:
831 need_entry = (NEED_PLT | NEED_STUB);
832 break;
833
834 case R_PARISC_PLTOFF21L:
835 case R_PARISC_PLTOFF14R:
836 case R_PARISC_PLTOFF14F:
837 case R_PARISC_PLTOFF14WR:
838 case R_PARISC_PLTOFF14DR:
839 case R_PARISC_PLTOFF16F:
840 case R_PARISC_PLTOFF16WF:
841 case R_PARISC_PLTOFF16DF:
842 need_entry = (NEED_PLT);
843 break;
844
845 case R_PARISC_DIR64:
846 if (info->shared || maybe_dynamic)
847 need_entry = (NEED_DYNREL);
848 dynrel_type = R_PARISC_DIR64;
849 break;
850
851 /* This is an indirect reference through the DLT to get the address
852 of a OPD descriptor. Thus we need to make a DLT entry that points
853 to an OPD entry. */
854 case R_PARISC_LTOFF_FPTR21L:
855 case R_PARISC_LTOFF_FPTR14R:
856 case R_PARISC_LTOFF_FPTR14WR:
857 case R_PARISC_LTOFF_FPTR14DR:
858 case R_PARISC_LTOFF_FPTR32:
859 case R_PARISC_LTOFF_FPTR64:
860 case R_PARISC_LTOFF_FPTR16F:
861 case R_PARISC_LTOFF_FPTR16WF:
862 case R_PARISC_LTOFF_FPTR16DF:
863 if (info->shared || maybe_dynamic)
864 need_entry = (NEED_DLT | NEED_OPD);
865 else
866 need_entry = (NEED_DLT | NEED_OPD);
867 dynrel_type = R_PARISC_FPTR64;
868 break;
869
870 /* This is a simple OPD entry. */
871 case R_PARISC_FPTR64:
872 if (info->shared || maybe_dynamic)
873 need_entry = (NEED_OPD | NEED_DYNREL);
874 else
875 need_entry = (NEED_OPD);
876 dynrel_type = R_PARISC_FPTR64;
877 break;
878
879 /* Add more cases as needed. */
880 }
881
882 if (!need_entry)
883 continue;
884
885 /* Collect a canonical name for this address. */
0ba2a60e 886 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
887
888 /* Collect the canonical entry data for this address. */
889 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
890 addr_name, true, true);
891 BFD_ASSERT (dyn_h);
892
893 /* Stash away enough information to be able to find this symbol
894 regardless of whether or not it is local or global. */
895 dyn_h->h = h;
896 dyn_h->owner = abfd;
897 dyn_h->sym_indx = r_symndx;
898
899 /* ?!? We may need to do some error checking in here. */
900 /* Create what's needed. */
901 if (need_entry & NEED_DLT)
902 {
903 if (! hppa_info->dlt_sec
904 && ! get_dlt (abfd, info, hppa_info))
905 goto err_out;
906 dyn_h->want_dlt = 1;
907 }
908
909 if (need_entry & NEED_PLT)
910 {
911 if (! hppa_info->plt_sec
912 && ! get_plt (abfd, info, hppa_info))
913 goto err_out;
914 dyn_h->want_plt = 1;
915 }
916
917 if (need_entry & NEED_STUB)
918 {
919 if (! hppa_info->stub_sec
920 && ! get_stub (abfd, info, hppa_info))
921 goto err_out;
922 dyn_h->want_stub = 1;
923 }
924
925 if (need_entry & NEED_OPD)
926 {
927 if (! hppa_info->opd_sec
928 && ! get_opd (abfd, info, hppa_info))
929 goto err_out;
930
931 dyn_h->want_opd = 1;
932
933 /* FPTRs are not allocated by the dynamic linker for PA64, though
934 it is possible that will change in the future. */
fe8bc63d 935
15bda425
JL
936 /* This could be a local function that had its address taken, in
937 which case H will be NULL. */
938 if (h)
939 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
940 }
941
942 /* Add a new dynamic relocation to the chain of dynamic
943 relocations for this symbol. */
944 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
945 {
946 if (! hppa_info->other_rel_sec
947 && ! get_reloc_section (abfd, hppa_info, sec))
948 goto err_out;
949
950 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
951 sec_symndx, rel->r_offset, rel->r_addend))
952 goto err_out;
953
954 /* If we are building a shared library and we just recorded
955 a dynamic R_PARISC_FPTR64 relocation, then make sure the
956 section symbol for this section ends up in the dynamic
957 symbol table. */
958 if (info->shared && dynrel_type == R_PARISC_FPTR64
959 && ! (_bfd_elf64_link_record_local_dynamic_symbol
960 (info, abfd, sec_symndx)))
961 return false;
962 }
963 }
964
965 if (buf)
966 free (buf);
967 return true;
968
969 err_out:
970 if (buf)
971 free (buf);
972 return false;
973}
974
975struct elf64_hppa_allocate_data
976{
977 struct bfd_link_info *info;
978 bfd_size_type ofs;
979};
980
981/* Should we do dynamic things to this symbol? */
982
983static boolean
984elf64_hppa_dynamic_symbol_p (h, info)
985 struct elf_link_hash_entry *h;
986 struct bfd_link_info *info;
987{
988 if (h == NULL)
989 return false;
990
991 while (h->root.type == bfd_link_hash_indirect
992 || h->root.type == bfd_link_hash_warning)
993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
994
995 if (h->dynindx == -1)
996 return false;
997
998 if (h->root.type == bfd_link_hash_undefweak
999 || h->root.type == bfd_link_hash_defweak)
1000 return true;
1001
1002 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
1003 return false;
1004
671bae9c 1005 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
15bda425
JL
1006 || ((h->elf_link_hash_flags
1007 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
1008 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
1009 return true;
1010
1011 return false;
1012}
1013
1014/* Mark all funtions exported by this file so that we can later allocate
1015 entries in .opd for them. */
1016
1017static boolean
1018elf64_hppa_mark_exported_functions (h, data)
1019 struct elf_link_hash_entry *h;
1020 PTR data;
1021{
1022 struct bfd_link_info *info = (struct bfd_link_info *)data;
1023 struct elf64_hppa_link_hash_table *hppa_info;
1024
1025 hppa_info = elf64_hppa_hash_table (info);
1026
e92d460e
AM
1027 if (h->root.type == bfd_link_hash_warning)
1028 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1029
15bda425
JL
1030 if (h
1031 && (h->root.type == bfd_link_hash_defined
1032 || h->root.type == bfd_link_hash_defweak)
1033 && h->root.u.def.section->output_section != NULL
1034 && h->type == STT_FUNC)
1035 {
1036 struct elf64_hppa_dyn_hash_entry *dyn_h;
1037
1038 /* Add this symbol to the PA64 linker hash table. */
1039 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1040 h->root.root.string, true, true);
1041 BFD_ASSERT (dyn_h);
1042 dyn_h->h = h;
1043
1044 if (! hppa_info->opd_sec
1045 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1046 return false;
1047
1048 dyn_h->want_opd = 1;
832d951b
AM
1049 /* Put a flag here for output_symbol_hook. */
1050 dyn_h->st_shndx = -1;
15bda425
JL
1051 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1052 }
1053
1054 return true;
1055}
1056
1057/* Allocate space for a DLT entry. */
1058
1059static boolean
1060allocate_global_data_dlt (dyn_h, data)
1061 struct elf64_hppa_dyn_hash_entry *dyn_h;
1062 PTR data;
1063{
1064 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1065
1066 if (dyn_h->want_dlt)
1067 {
1068 struct elf_link_hash_entry *h = dyn_h->h;
1069
1070 if (x->info->shared)
1071 {
1072 /* Possibly add the symbol to the local dynamic symbol
1073 table since we might need to create a dynamic relocation
1074 against it. */
1075 if (! h
1076 || (h && h->dynindx == -1))
1077 {
1078 bfd *owner;
1079 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1080
dc810e39
AM
1081 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1082 (x->info, owner, dyn_h->sym_indx)))
15bda425
JL
1083 return false;
1084 }
1085 }
1086
1087 dyn_h->dlt_offset = x->ofs;
1088 x->ofs += DLT_ENTRY_SIZE;
1089 }
1090 return true;
1091}
1092
1093/* Allocate space for a DLT.PLT entry. */
1094
1095static boolean
1096allocate_global_data_plt (dyn_h, data)
1097 struct elf64_hppa_dyn_hash_entry *dyn_h;
1098 PTR data;
1099{
1100 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1101
1102 if (dyn_h->want_plt
1103 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1104 && !((dyn_h->h->root.type == bfd_link_hash_defined
1105 || dyn_h->h->root.type == bfd_link_hash_defweak)
1106 && dyn_h->h->root.u.def.section->output_section != NULL))
1107 {
1108 dyn_h->plt_offset = x->ofs;
1109 x->ofs += PLT_ENTRY_SIZE;
1110 if (dyn_h->plt_offset < 0x2000)
1111 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1112 }
1113 else
1114 dyn_h->want_plt = 0;
1115
1116 return true;
1117}
1118
1119/* Allocate space for a STUB entry. */
1120
1121static boolean
1122allocate_global_data_stub (dyn_h, data)
1123 struct elf64_hppa_dyn_hash_entry *dyn_h;
1124 PTR data;
1125{
1126 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1127
1128 if (dyn_h->want_stub
1129 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1130 && !((dyn_h->h->root.type == bfd_link_hash_defined
1131 || dyn_h->h->root.type == bfd_link_hash_defweak)
1132 && dyn_h->h->root.u.def.section->output_section != NULL))
1133 {
1134 dyn_h->stub_offset = x->ofs;
1135 x->ofs += sizeof (plt_stub);
1136 }
1137 else
1138 dyn_h->want_stub = 0;
1139 return true;
1140}
1141
1142/* Allocate space for a FPTR entry. */
1143
1144static boolean
1145allocate_global_data_opd (dyn_h, data)
1146 struct elf64_hppa_dyn_hash_entry *dyn_h;
1147 PTR data;
1148{
1149 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1150
1151 if (dyn_h->want_opd)
1152 {
1153 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1154
15bda425
JL
1155 if (h)
1156 while (h->root.type == bfd_link_hash_indirect
1157 || h->root.type == bfd_link_hash_warning)
1158 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1159
1160 /* We never need an opd entry for a symbol which is not
1161 defined by this output file. */
3db4b612
JL
1162 if (h && (h->root.type == bfd_link_hash_undefined
1163 || h->root.u.def.section->output_section == NULL))
15bda425
JL
1164 dyn_h->want_opd = 0;
1165
1166 /* If we are creating a shared library, took the address of a local
1167 function or might export this function from this object file, then
1168 we have to create an opd descriptor. */
1169 else if (x->info->shared
1170 || h == NULL
1171 || h->dynindx == -1
3db4b612
JL
1172 || (h->root.type == bfd_link_hash_defined
1173 || h->root.type == bfd_link_hash_defweak))
15bda425
JL
1174 {
1175 /* If we are creating a shared library, then we will have to
1176 create a runtime relocation for the symbol to properly
1177 initialize the .opd entry. Make sure the symbol gets
1178 added to the dynamic symbol table. */
1179 if (x->info->shared
1180 && (h == NULL || (h->dynindx == -1)))
1181 {
1182 bfd *owner;
1183 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1184
1185 if (!_bfd_elf64_link_record_local_dynamic_symbol
1186 (x->info, owner, dyn_h->sym_indx))
1187 return false;
1188 }
1189
1190 /* This may not be necessary or desirable anymore now that
1191 we have some support for dealing with section symbols
1192 in dynamic relocs. But name munging does make the result
1193 much easier to debug. ie, the EPLT reloc will reference
1194 a symbol like .foobar, instead of .text + offset. */
1195 if (x->info->shared && h)
1196 {
1197 char *new_name;
1198 struct elf_link_hash_entry *nh;
1199
1200 new_name = alloca (strlen (h->root.root.string) + 2);
1201 new_name[0] = '.';
1202 strcpy (new_name + 1, h->root.root.string);
1203
1204 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1205 new_name, true, true, true);
1206
1207 nh->root.type = h->root.type;
1208 nh->root.u.def.value = h->root.u.def.value;
1209 nh->root.u.def.section = h->root.u.def.section;
1210
1211 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1212 return false;
1213
1214 }
1215 dyn_h->opd_offset = x->ofs;
1216 x->ofs += OPD_ENTRY_SIZE;
1217 }
1218
1219 /* Otherwise we do not need an opd entry. */
1220 else
1221 dyn_h->want_opd = 0;
1222 }
1223 return true;
1224}
1225
1226/* HP requires the EI_OSABI field to be filled in. The assignment to
1227 EI_ABIVERSION may not be strictly necessary. */
1228
1229static void
1230elf64_hppa_post_process_headers (abfd, link_info)
1231 bfd * abfd;
1232 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1233{
1234 Elf_Internal_Ehdr * i_ehdrp;
1235
1236 i_ehdrp = elf_elfheader (abfd);
1237
d952f17a
AM
1238 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1239 {
1240 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1241 }
1242 else
1243 {
1244 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1245 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1246 }
15bda425
JL
1247}
1248
1249/* Create function descriptor section (.opd). This section is called .opd
1250 because it contains "official prodecure descriptors". The "official"
1251 refers to the fact that these descriptors are used when taking the address
1252 of a procedure, thus ensuring a unique address for each procedure. */
1253
1254static boolean
1255get_opd (abfd, info, hppa_info)
1256 bfd *abfd;
edd21aca 1257 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1258 struct elf64_hppa_link_hash_table *hppa_info;
1259{
1260 asection *opd;
1261 bfd *dynobj;
1262
1263 opd = hppa_info->opd_sec;
1264 if (!opd)
1265 {
1266 dynobj = hppa_info->root.dynobj;
1267 if (!dynobj)
1268 hppa_info->root.dynobj = dynobj = abfd;
1269
1270 opd = bfd_make_section (dynobj, ".opd");
1271 if (!opd
1272 || !bfd_set_section_flags (dynobj, opd,
1273 (SEC_ALLOC
1274 | SEC_LOAD
1275 | SEC_HAS_CONTENTS
1276 | SEC_IN_MEMORY
1277 | SEC_LINKER_CREATED))
1278 || !bfd_set_section_alignment (abfd, opd, 3))
1279 {
1280 BFD_ASSERT (0);
1281 return false;
1282 }
1283
1284 hppa_info->opd_sec = opd;
1285 }
1286
1287 return true;
1288}
1289
1290/* Create the PLT section. */
1291
1292static boolean
1293get_plt (abfd, info, hppa_info)
1294 bfd *abfd;
edd21aca 1295 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1296 struct elf64_hppa_link_hash_table *hppa_info;
1297{
1298 asection *plt;
1299 bfd *dynobj;
1300
1301 plt = hppa_info->plt_sec;
1302 if (!plt)
1303 {
1304 dynobj = hppa_info->root.dynobj;
1305 if (!dynobj)
1306 hppa_info->root.dynobj = dynobj = abfd;
1307
1308 plt = bfd_make_section (dynobj, ".plt");
1309 if (!plt
1310 || !bfd_set_section_flags (dynobj, plt,
1311 (SEC_ALLOC
1312 | SEC_LOAD
1313 | SEC_HAS_CONTENTS
1314 | SEC_IN_MEMORY
1315 | SEC_LINKER_CREATED))
1316 || !bfd_set_section_alignment (abfd, plt, 3))
1317 {
1318 BFD_ASSERT (0);
1319 return false;
1320 }
1321
1322 hppa_info->plt_sec = plt;
1323 }
1324
1325 return true;
1326}
1327
1328/* Create the DLT section. */
1329
1330static boolean
1331get_dlt (abfd, info, hppa_info)
1332 bfd *abfd;
edd21aca 1333 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1334 struct elf64_hppa_link_hash_table *hppa_info;
1335{
1336 asection *dlt;
1337 bfd *dynobj;
1338
1339 dlt = hppa_info->dlt_sec;
1340 if (!dlt)
1341 {
1342 dynobj = hppa_info->root.dynobj;
1343 if (!dynobj)
1344 hppa_info->root.dynobj = dynobj = abfd;
1345
1346 dlt = bfd_make_section (dynobj, ".dlt");
1347 if (!dlt
1348 || !bfd_set_section_flags (dynobj, dlt,
1349 (SEC_ALLOC
1350 | SEC_LOAD
1351 | SEC_HAS_CONTENTS
1352 | SEC_IN_MEMORY
1353 | SEC_LINKER_CREATED))
1354 || !bfd_set_section_alignment (abfd, dlt, 3))
1355 {
1356 BFD_ASSERT (0);
1357 return false;
1358 }
1359
1360 hppa_info->dlt_sec = dlt;
1361 }
1362
1363 return true;
1364}
1365
1366/* Create the stubs section. */
1367
1368static boolean
1369get_stub (abfd, info, hppa_info)
1370 bfd *abfd;
edd21aca 1371 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1372 struct elf64_hppa_link_hash_table *hppa_info;
1373{
1374 asection *stub;
1375 bfd *dynobj;
1376
1377 stub = hppa_info->stub_sec;
1378 if (!stub)
1379 {
1380 dynobj = hppa_info->root.dynobj;
1381 if (!dynobj)
1382 hppa_info->root.dynobj = dynobj = abfd;
1383
1384 stub = bfd_make_section (dynobj, ".stub");
1385 if (!stub
1386 || !bfd_set_section_flags (dynobj, stub,
1387 (SEC_ALLOC
1388 | SEC_LOAD
1389 | SEC_HAS_CONTENTS
1390 | SEC_IN_MEMORY
1391 | SEC_READONLY
1392 | SEC_LINKER_CREATED))
1393 || !bfd_set_section_alignment (abfd, stub, 3))
1394 {
1395 BFD_ASSERT (0);
1396 return false;
1397 }
1398
1399 hppa_info->stub_sec = stub;
1400 }
1401
1402 return true;
1403}
1404
1405/* Create sections necessary for dynamic linking. This is only a rough
1406 cut and will likely change as we learn more about the somewhat
1407 unusual dynamic linking scheme HP uses.
1408
1409 .stub:
1410 Contains code to implement cross-space calls. The first time one
1411 of the stubs is used it will call into the dynamic linker, later
1412 calls will go straight to the target.
1413
1414 The only stub we support right now looks like
1415
1416 ldd OFFSET(%dp),%r1
1417 bve %r0(%r1)
1418 ldd OFFSET+8(%dp),%dp
1419
1420 Other stubs may be needed in the future. We may want the remove
1421 the break/nop instruction. It is only used right now to keep the
1422 offset of a .plt entry and a .stub entry in sync.
1423
1424 .dlt:
1425 This is what most people call the .got. HP used a different name.
1426 Losers.
1427
1428 .rela.dlt:
1429 Relocations for the DLT.
1430
1431 .plt:
1432 Function pointers as address,gp pairs.
1433
1434 .rela.plt:
1435 Should contain dynamic IPLT (and EPLT?) relocations.
1436
1437 .opd:
fe8bc63d 1438 FPTRS
15bda425
JL
1439
1440 .rela.opd:
1441 EPLT relocations for symbols exported from shared libraries. */
1442
1443static boolean
1444elf64_hppa_create_dynamic_sections (abfd, info)
1445 bfd *abfd;
1446 struct bfd_link_info *info;
1447{
1448 asection *s;
1449
1450 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1451 return false;
1452
1453 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1454 return false;
1455
1456 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1457 return false;
1458
1459 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1460 return false;
1461
1462 s = bfd_make_section(abfd, ".rela.dlt");
1463 if (s == NULL
1464 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1465 | SEC_HAS_CONTENTS
1466 | SEC_IN_MEMORY
1467 | SEC_READONLY
1468 | SEC_LINKER_CREATED))
1469 || !bfd_set_section_alignment (abfd, s, 3))
1470 return false;
1471 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1472
1473 s = bfd_make_section(abfd, ".rela.plt");
1474 if (s == NULL
1475 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1476 | SEC_HAS_CONTENTS
1477 | SEC_IN_MEMORY
1478 | SEC_READONLY
1479 | SEC_LINKER_CREATED))
1480 || !bfd_set_section_alignment (abfd, s, 3))
1481 return false;
1482 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1483
1484 s = bfd_make_section(abfd, ".rela.data");
1485 if (s == NULL
1486 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1487 | SEC_HAS_CONTENTS
1488 | SEC_IN_MEMORY
1489 | SEC_READONLY
1490 | SEC_LINKER_CREATED))
1491 || !bfd_set_section_alignment (abfd, s, 3))
1492 return false;
1493 elf64_hppa_hash_table (info)->other_rel_sec = s;
1494
1495 s = bfd_make_section(abfd, ".rela.opd");
1496 if (s == NULL
1497 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1498 | SEC_HAS_CONTENTS
1499 | SEC_IN_MEMORY
1500 | SEC_READONLY
1501 | SEC_LINKER_CREATED))
1502 || !bfd_set_section_alignment (abfd, s, 3))
1503 return false;
1504 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1505
1506 return true;
1507}
1508
1509/* Allocate dynamic relocations for those symbols that turned out
1510 to be dynamic. */
1511
1512static boolean
1513allocate_dynrel_entries (dyn_h, data)
1514 struct elf64_hppa_dyn_hash_entry *dyn_h;
1515 PTR data;
1516{
1517 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1518 struct elf64_hppa_link_hash_table *hppa_info;
1519 struct elf64_hppa_dyn_reloc_entry *rent;
1520 boolean dynamic_symbol, shared;
1521
1522 hppa_info = elf64_hppa_hash_table (x->info);
1523 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1524 shared = x->info->shared;
1525
1526 /* We may need to allocate relocations for a non-dynamic symbol
1527 when creating a shared library. */
1528 if (!dynamic_symbol && !shared)
1529 return true;
1530
1531 /* Take care of the normal data relocations. */
1532
1533 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1534 {
d663e1cd
JL
1535 /* Allocate one iff we are building a shared library, the relocation
1536 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1537 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1538 continue;
1539
15bda425
JL
1540 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1541
1542 /* Make sure this symbol gets into the dynamic symbol table if it is
1543 not already recorded. ?!? This should not be in the loop since
1544 the symbol need only be added once. */
1545 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1546 if (!_bfd_elf64_link_record_local_dynamic_symbol
1547 (x->info, rent->sec->owner, dyn_h->sym_indx))
1548 return false;
1549 }
1550
1551 /* Take care of the GOT and PLT relocations. */
1552
1553 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1554 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1555
1556 /* If we are building a shared library, then every symbol that has an
1557 opd entry will need an EPLT relocation to relocate the symbol's address
1558 and __gp value based on the runtime load address. */
1559 if (shared && dyn_h->want_opd)
1560 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1561
1562 if (dyn_h->want_plt && dynamic_symbol)
1563 {
1564 bfd_size_type t = 0;
1565
1566 /* Dynamic symbols get one IPLT relocation. Local symbols in
1567 shared libraries get two REL relocations. Local symbols in
1568 main applications get nothing. */
1569 if (dynamic_symbol)
1570 t = sizeof (Elf64_External_Rela);
1571 else if (shared)
1572 t = 2 * sizeof (Elf64_External_Rela);
1573
1574 hppa_info->plt_rel_sec->_raw_size += t;
1575 }
1576
1577 return true;
1578}
1579
1580/* Adjust a symbol defined by a dynamic object and referenced by a
1581 regular object. */
1582
1583static boolean
1584elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1585 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1586 struct elf_link_hash_entry *h;
1587{
1588 /* ??? Undefined symbols with PLT entries should be re-defined
1589 to be the PLT entry. */
1590
1591 /* If this is a weak symbol, and there is a real definition, the
1592 processor independent code will have arranged for us to see the
1593 real definition first, and we can just use the same value. */
1594 if (h->weakdef != NULL)
1595 {
1596 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1597 || h->weakdef->root.type == bfd_link_hash_defweak);
1598 h->root.u.def.section = h->weakdef->root.u.def.section;
1599 h->root.u.def.value = h->weakdef->root.u.def.value;
1600 return true;
1601 }
1602
1603 /* If this is a reference to a symbol defined by a dynamic object which
1604 is not a function, we might allocate the symbol in our .dynbss section
1605 and allocate a COPY dynamic relocation.
1606
1607 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1608 of hackery. */
1609
1610 return true;
1611}
1612
1613/* Set the final sizes of the dynamic sections and allocate memory for
1614 the contents of our special sections. */
1615
1616static boolean
1617elf64_hppa_size_dynamic_sections (output_bfd, info)
1618 bfd *output_bfd;
1619 struct bfd_link_info *info;
1620{
1621 bfd *dynobj;
1622 asection *s;
1623 boolean plt;
1624 boolean relocs;
1625 boolean reltext;
15bda425
JL
1626 struct elf64_hppa_allocate_data data;
1627 struct elf64_hppa_link_hash_table *hppa_info;
1628
1629 hppa_info = elf64_hppa_hash_table (info);
1630
1631 dynobj = elf_hash_table (info)->dynobj;
1632 BFD_ASSERT (dynobj != NULL);
1633
1634 if (elf_hash_table (info)->dynamic_sections_created)
1635 {
1636 /* Set the contents of the .interp section to the interpreter. */
1637 if (! info->shared)
1638 {
1639 s = bfd_get_section_by_name (dynobj, ".interp");
1640 BFD_ASSERT (s != NULL);
1641 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1642 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1643 }
1644 }
1645 else
1646 {
1647 /* We may have created entries in the .rela.got section.
1648 However, if we are not creating the dynamic sections, we will
1649 not actually use these entries. Reset the size of .rela.dlt,
1650 which will cause it to get stripped from the output file
1651 below. */
1652 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1653 if (s != NULL)
1654 s->_raw_size = 0;
1655 }
1656
1657 /* Allocate the GOT entries. */
1658
1659 data.info = info;
1660 if (elf64_hppa_hash_table (info)->dlt_sec)
1661 {
1662 data.ofs = 0x0;
1663 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1664 allocate_global_data_dlt, &data);
1665 hppa_info->dlt_sec->_raw_size = data.ofs;
1666
1667 data.ofs = 0x0;
1668 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1669 allocate_global_data_plt, &data);
1670 hppa_info->plt_sec->_raw_size = data.ofs;
1671
1672 data.ofs = 0x0;
1673 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1674 allocate_global_data_stub, &data);
1675 hppa_info->stub_sec->_raw_size = data.ofs;
1676 }
1677
1678 /* Mark each function this program exports so that we will allocate
1679 space in the .opd section for each function's FPTR.
1680
1681 We have to traverse the main linker hash table since we have to
1682 find functions which may not have been mentioned in any relocs. */
1683 elf_link_hash_traverse (elf_hash_table (info),
1684 elf64_hppa_mark_exported_functions,
1685 info);
1686
1687 /* Allocate space for entries in the .opd section. */
1688 if (elf64_hppa_hash_table (info)->opd_sec)
1689 {
1690 data.ofs = 0;
1691 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1692 allocate_global_data_opd, &data);
1693 hppa_info->opd_sec->_raw_size = data.ofs;
1694 }
1695
1696 /* Now allocate space for dynamic relocations, if necessary. */
1697 if (hppa_info->root.dynamic_sections_created)
1698 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1699 allocate_dynrel_entries, &data);
1700
1701 /* The sizes of all the sections are set. Allocate memory for them. */
1702 plt = false;
1703 relocs = false;
1704 reltext = false;
1705 for (s = dynobj->sections; s != NULL; s = s->next)
1706 {
1707 const char *name;
1708 boolean strip;
1709
1710 if ((s->flags & SEC_LINKER_CREATED) == 0)
1711 continue;
1712
1713 /* It's OK to base decisions on the section name, because none
1714 of the dynobj section names depend upon the input files. */
1715 name = bfd_get_section_name (dynobj, s);
1716
1717 strip = 0;
1718
1719 if (strcmp (name, ".plt") == 0)
1720 {
d663e1cd 1721 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1722 if (s->_raw_size == 0)
1723 {
15bda425
JL
1724 strip = true;
1725 }
1726 else
1727 {
1728 /* Remember whether there is a PLT. */
1729 plt = true;
1730 }
1731 }
1732 else if (strcmp (name, ".dlt") == 0)
1733 {
d663e1cd 1734 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1735 if (s->_raw_size == 0)
1736 {
15bda425
JL
1737 strip = true;
1738 }
1739 }
1740 else if (strcmp (name, ".opd") == 0)
1741 {
d663e1cd 1742 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1743 if (s->_raw_size == 0)
1744 {
15bda425
JL
1745 strip = true;
1746 }
1747 }
d663e1cd 1748 else if (strncmp (name, ".rela", 5) == 0)
15bda425 1749 {
d663e1cd
JL
1750 /* If we don't need this section, strip it from the output file.
1751 This is mostly to handle .rela.bss and .rela.plt. We must
1752 create both sections in create_dynamic_sections, because they
1753 must be created before the linker maps input sections to output
1754 sections. The linker does that before adjust_dynamic_symbol
1755 is called, and it is that function which decides whether
1756 anything needs to go into these sections. */
15bda425
JL
1757 if (s->_raw_size == 0)
1758 {
1759 /* If we don't need this section, strip it from the
1760 output file. This is mostly to handle .rela.bss and
1761 .rela.plt. We must create both sections in
1762 create_dynamic_sections, because they must be created
1763 before the linker maps input sections to output
1764 sections. The linker does that before
1765 adjust_dynamic_symbol is called, and it is that
1766 function which decides whether anything needs to go
1767 into these sections. */
1768 strip = true;
1769 }
1770 else
1771 {
1772 asection *target;
1773
1774 /* Remember whether there are any reloc sections other
1775 than .rela.plt. */
1776 if (strcmp (name, ".rela.plt") != 0)
1777 {
1778 const char *outname;
1779
1780 relocs = true;
1781
1782 /* If this relocation section applies to a read only
1783 section, then we probably need a DT_TEXTREL
1784 entry. The entries in the .rela.plt section
1785 really apply to the .got section, which we
1786 created ourselves and so know is not readonly. */
1787 outname = bfd_get_section_name (output_bfd,
1788 s->output_section);
1789 target = bfd_get_section_by_name (output_bfd, outname + 4);
1790 if (target != NULL
1791 && (target->flags & SEC_READONLY) != 0
1792 && (target->flags & SEC_ALLOC) != 0)
1793 reltext = true;
1794 }
1795
1796 /* We use the reloc_count field as a counter if we need
1797 to copy relocs into the output file. */
1798 s->reloc_count = 0;
1799 }
1800 }
1801 else if (strncmp (name, ".dlt", 4) != 0
1802 && strcmp (name, ".stub") != 0
1803 && strcmp (name, ".got") != 0)
1804 {
1805 /* It's not one of our sections, so don't allocate space. */
1806 continue;
1807 }
1808
1809 if (strip)
1810 {
1811 _bfd_strip_section_from_output (info, s);
1812 continue;
1813 }
1814
1815 /* Allocate memory for the section contents if it has not
832d951b
AM
1816 been allocated already. We use bfd_zalloc here in case
1817 unused entries are not reclaimed before the section's
1818 contents are written out. This should not happen, but this
1819 way if it does, we get a R_PARISC_NONE reloc instead of
1820 garbage. */
15bda425
JL
1821 if (s->contents == NULL)
1822 {
7a9af8c4 1823 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1824 if (s->contents == NULL && s->_raw_size != 0)
1825 return false;
1826 }
1827 }
1828
1829 if (elf_hash_table (info)->dynamic_sections_created)
1830 {
1831 /* Always create a DT_PLTGOT. It actually has nothing to do with
1832 the PLT, it is how we communicate the __gp value of a load
1833 module to the dynamic linker. */
dc810e39
AM
1834#define add_dynamic_entry(TAG, VAL) \
1835 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1836
1837 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1838 || !add_dynamic_entry (DT_PLTGOT, 0))
15bda425
JL
1839 return false;
1840
1841 /* Add some entries to the .dynamic section. We fill in the
1842 values later, in elf64_hppa_finish_dynamic_sections, but we
1843 must add the entries now so that we get the correct size for
1844 the .dynamic section. The DT_DEBUG entry is filled in by the
1845 dynamic linker and used by the debugger. */
1846 if (! info->shared)
1847 {
dc810e39
AM
1848 if (!add_dynamic_entry (DT_DEBUG, 0)
1849 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1850 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
15bda425
JL
1851 return false;
1852 }
1853
1854 if (plt)
1855 {
dc810e39
AM
1856 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1857 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1858 || !add_dynamic_entry (DT_JMPREL, 0))
15bda425
JL
1859 return false;
1860 }
1861
1862 if (relocs)
1863 {
dc810e39
AM
1864 if (!add_dynamic_entry (DT_RELA, 0)
1865 || !add_dynamic_entry (DT_RELASZ, 0)
1866 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
15bda425
JL
1867 return false;
1868 }
1869
1870 if (reltext)
1871 {
dc810e39 1872 if (!add_dynamic_entry (DT_TEXTREL, 0))
15bda425 1873 return false;
d6cf2879 1874 info->flags |= DF_TEXTREL;
15bda425
JL
1875 }
1876 }
dc810e39 1877#undef add_dynamic_entry
15bda425
JL
1878
1879 return true;
1880}
1881
1882/* Called after we have output the symbol into the dynamic symbol
1883 table, but before we output the symbol into the normal symbol
1884 table.
1885
1886 For some symbols we had to change their address when outputting
1887 the dynamic symbol table. We undo that change here so that
1888 the symbols have their expected value in the normal symbol
1889 table. Ick. */
1890
1891static boolean
1892elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1893 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1894 struct bfd_link_info *info;
1895 const char *name;
1896 Elf_Internal_Sym *sym;
edd21aca 1897 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1898{
1899 struct elf64_hppa_link_hash_table *hppa_info;
1900 struct elf64_hppa_dyn_hash_entry *dyn_h;
1901
1902 /* We may be called with the file symbol or section symbols.
1903 They never need munging, so it is safe to ignore them. */
1904 if (!name)
1905 return true;
1906
1907 /* Get the PA dyn_symbol (if any) associated with NAME. */
1908 hppa_info = elf64_hppa_hash_table (info);
1909 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1910 name, false, false);
1911
832d951b
AM
1912 /* Function symbols for which we created .opd entries *may* have been
1913 munged by finish_dynamic_symbol and have to be un-munged here.
1914
1915 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1916 into non-dynamic ones, so we initialize st_shndx to -1 in
1917 mark_exported_functions and check to see if it was overwritten
1918 here instead of just checking dyn_h->h->dynindx. */
1919 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1920 {
1921 /* Restore the saved value and section index. */
1922 sym->st_value = dyn_h->st_value;
fe8bc63d 1923 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1924 }
1925
1926 return true;
1927}
1928
1929/* Finish up dynamic symbol handling. We set the contents of various
1930 dynamic sections here. */
1931
1932static boolean
1933elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1934 bfd *output_bfd;
1935 struct bfd_link_info *info;
1936 struct elf_link_hash_entry *h;
1937 Elf_Internal_Sym *sym;
1938{
1939 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1940 struct elf64_hppa_link_hash_table *hppa_info;
1941 struct elf64_hppa_dyn_hash_entry *dyn_h;
1942
1943 hppa_info = elf64_hppa_hash_table (info);
1944 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1945 h->root.root.string, false, false);
1946
1947 stub = hppa_info->stub_sec;
1948 splt = hppa_info->plt_sec;
1949 sdlt = hppa_info->dlt_sec;
1950 sopd = hppa_info->opd_sec;
1951 spltrel = hppa_info->plt_rel_sec;
1952 sdltrel = hppa_info->dlt_rel_sec;
1953
15bda425
JL
1954 /* Incredible. It is actually necessary to NOT use the symbol's real
1955 value when building the dynamic symbol table for a shared library.
1956 At least for symbols that refer to functions.
1957
1958 We will store a new value and section index into the symbol long
1959 enough to output it into the dynamic symbol table, then we restore
1960 the original values (in elf64_hppa_link_output_symbol_hook). */
1961 if (dyn_h && dyn_h->want_opd)
1962 {
d663e1cd
JL
1963 BFD_ASSERT (sopd != NULL)
1964
15bda425
JL
1965 /* Save away the original value and section index so that we
1966 can restore them later. */
1967 dyn_h->st_value = sym->st_value;
1968 dyn_h->st_shndx = sym->st_shndx;
1969
1970 /* For the dynamic symbol table entry, we want the value to be
1971 address of this symbol's entry within the .opd section. */
1972 sym->st_value = (dyn_h->opd_offset
1973 + sopd->output_offset
1974 + sopd->output_section->vma);
1975 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1976 sopd->output_section);
1977 }
1978
1979 /* Initialize a .plt entry if requested. */
1980 if (dyn_h && dyn_h->want_plt
1981 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1982 {
1983 bfd_vma value;
1984 Elf_Internal_Rela rel;
1985
d663e1cd
JL
1986 BFD_ASSERT (splt != NULL && spltrel != NULL)
1987
15bda425
JL
1988 /* We do not actually care about the value in the PLT entry
1989 if we are creating a shared library and the symbol is
1990 still undefined, we create a dynamic relocation to fill
1991 in the correct value. */
1992 if (info->shared && h->root.type == bfd_link_hash_undefined)
1993 value = 0;
1994 else
1995 value = (h->root.u.def.value + h->root.u.def.section->vma);
1996
fe8bc63d 1997 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1998
1999 The format of a plt entry is
fe8bc63d 2000 <funcaddr> <__gp>.
15bda425
JL
2001
2002 plt_offset is the offset within the PLT section at which to
fe8bc63d 2003 install the PLT entry.
15bda425
JL
2004
2005 We are modifying the in-memory PLT contents here, so we do not add
2006 in the output_offset of the PLT section. */
2007
2008 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2009 value = _bfd_get_gp_value (splt->output_section->owner);
2010 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2011
2012 /* Create a dynamic IPLT relocation for this entry.
2013
2014 We are creating a relocation in the output file's PLT section,
2015 which is included within the DLT secton. So we do need to include
2016 the PLT's output_offset in the computation of the relocation's
2017 address. */
2018 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2019 + splt->output_section->vma);
2020 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2021 rel.r_addend = 0;
2022
2023 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
2024 (((Elf64_External_Rela *)
2025 spltrel->contents)
2026 + spltrel->reloc_count));
2027 spltrel->reloc_count++;
2028 }
2029
2030 /* Initialize an external call stub entry if requested. */
2031 if (dyn_h && dyn_h->want_stub
2032 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2033 {
2034 bfd_vma value;
2035 int insn;
b352eebf 2036 unsigned int max_offset;
15bda425 2037
d663e1cd
JL
2038 BFD_ASSERT (stub != NULL)
2039
15bda425
JL
2040 /* Install the generic stub template.
2041
2042 We are modifying the contents of the stub section, so we do not
2043 need to include the stub section's output_offset here. */
2044 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2045
2046 /* Fix up the first ldd instruction.
2047
2048 We are modifying the contents of the STUB section in memory,
fe8bc63d 2049 so we do not need to include its output offset in this computation.
15bda425
JL
2050
2051 Note the plt_offset value is the value of the PLT entry relative to
2052 the start of the PLT section. These instructions will reference
2053 data relative to the value of __gp, which may not necessarily have
2054 the same address as the start of the PLT section.
2055
2056 gp_offset contains the offset of __gp within the PLT section. */
2057 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2058
15bda425 2059 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2060 if (output_bfd->arch_info->mach >= 25)
2061 {
2062 /* Wide mode allows 16 bit offsets. */
2063 max_offset = 32768;
2064 insn &= ~ 0xfff1;
dc810e39 2065 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2066 }
2067 else
2068 {
2069 max_offset = 8192;
2070 insn &= ~ 0x3ff1;
dc810e39 2071 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2072 }
2073
2074 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2075 {
2076 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2077 dyn_h->root.string,
2078 (long) value);
2079 return false;
2080 }
2081
dc810e39 2082 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2083 stub->contents + dyn_h->stub_offset);
2084
2085 /* Fix up the second ldd instruction. */
b352eebf 2086 value += 8;
15bda425 2087 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2088 if (output_bfd->arch_info->mach >= 25)
2089 {
2090 insn &= ~ 0xfff1;
dc810e39 2091 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2092 }
2093 else
2094 {
2095 insn &= ~ 0x3ff1;
dc810e39 2096 insn |= re_assemble_14 ((int) value);
b352eebf 2097 }
dc810e39 2098 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2099 stub->contents + dyn_h->stub_offset + 8);
2100 }
2101
2102 /* Millicode symbols should not be put in the dynamic
2103 symbol table under any circumstances. */
2104 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2105 h->dynindx = -1;
2106
2107 return true;
2108}
2109
2110/* The .opd section contains FPTRs for each function this file
2111 exports. Initialize the FPTR entries. */
2112
2113static boolean
2114elf64_hppa_finalize_opd (dyn_h, data)
2115 struct elf64_hppa_dyn_hash_entry *dyn_h;
2116 PTR data;
2117{
2118 struct bfd_link_info *info = (struct bfd_link_info *)data;
2119 struct elf64_hppa_link_hash_table *hppa_info;
3db4b612 2120 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2121 asection *sopd;
2122 asection *sopdrel;
2123
2124 hppa_info = elf64_hppa_hash_table (info);
2125 sopd = hppa_info->opd_sec;
2126 sopdrel = hppa_info->opd_rel_sec;
2127
3db4b612 2128 if (h && dyn_h->want_opd)
15bda425
JL
2129 {
2130 bfd_vma value;
2131
fe8bc63d 2132 /* The first two words of an .opd entry are zero.
15bda425
JL
2133
2134 We are modifying the contents of the OPD section in memory, so we
2135 do not need to include its output offset in this computation. */
2136 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2137
2138 value = (h->root.u.def.value
2139 + h->root.u.def.section->output_section->vma
2140 + h->root.u.def.section->output_offset);
2141
2142 /* The next word is the address of the function. */
2143 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2144
2145 /* The last word is our local __gp value. */
2146 value = _bfd_get_gp_value (sopd->output_section->owner);
2147 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2148 }
2149
2150 /* If we are generating a shared library, we must generate EPLT relocations
2151 for each entry in the .opd, even for static functions (they may have
2152 had their address taken). */
2153 if (info->shared && dyn_h && dyn_h->want_opd)
2154 {
2155 Elf64_Internal_Rela rel;
15bda425
JL
2156 int dynindx;
2157
2158 /* We may need to do a relocation against a local symbol, in
2159 which case we have to look up it's dynamic symbol index off
2160 the local symbol hash table. */
2161 if (h && h->dynindx != -1)
2162 dynindx = h->dynindx;
2163 else
2164 dynindx
2165 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2166 dyn_h->sym_indx);
2167
2168 /* The offset of this relocation is the absolute address of the
2169 .opd entry for this symbol. */
2170 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2171 + sopd->output_section->vma);
2172
2173 /* If H is non-null, then we have an external symbol.
2174
2175 It is imperative that we use a different dynamic symbol for the
2176 EPLT relocation if the symbol has global scope.
2177
2178 In the dynamic symbol table, the function symbol will have a value
2179 which is address of the function's .opd entry.
2180
2181 Thus, we can not use that dynamic symbol for the EPLT relocation
2182 (if we did, the data in the .opd would reference itself rather
2183 than the actual address of the function). Instead we have to use
2184 a new dynamic symbol which has the same value as the original global
fe8bc63d 2185 function symbol.
15bda425
JL
2186
2187 We prefix the original symbol with a "." and use the new symbol in
2188 the EPLT relocation. This new symbol has already been recorded in
2189 the symbol table, we just have to look it up and use it.
2190
2191 We do not have such problems with static functions because we do
2192 not make their addresses in the dynamic symbol table point to
2193 the .opd entry. Ultimately this should be safe since a static
2194 function can not be directly referenced outside of its shared
2195 library.
2196
2197 We do have to play similar games for FPTR relocations in shared
2198 libraries, including those for static symbols. See the FPTR
2199 handling in elf64_hppa_finalize_dynreloc. */
2200 if (h)
2201 {
2202 char *new_name;
2203 struct elf_link_hash_entry *nh;
2204
2205 new_name = alloca (strlen (h->root.root.string) + 2);
2206 new_name[0] = '.';
2207 strcpy (new_name + 1, h->root.root.string);
2208
2209 nh = elf_link_hash_lookup (elf_hash_table (info),
2210 new_name, false, false, false);
2211
2212 /* All we really want from the new symbol is its dynamic
2213 symbol index. */
2214 dynindx = nh->dynindx;
2215 }
2216
2217 rel.r_addend = 0;
2218 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2219
2220 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2221 (((Elf64_External_Rela *)
2222 sopdrel->contents)
2223 + sopdrel->reloc_count));
2224 sopdrel->reloc_count++;
2225 }
2226 return true;
2227}
2228
2229/* The .dlt section contains addresses for items referenced through the
2230 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2231 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2232
2233static boolean
2234elf64_hppa_finalize_dlt (dyn_h, data)
2235 struct elf64_hppa_dyn_hash_entry *dyn_h;
2236 PTR data;
2237{
2238 struct bfd_link_info *info = (struct bfd_link_info *)data;
2239 struct elf64_hppa_link_hash_table *hppa_info;
2240 asection *sdlt, *sdltrel;
3db4b612 2241 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2242
2243 hppa_info = elf64_hppa_hash_table (info);
2244
2245 sdlt = hppa_info->dlt_sec;
2246 sdltrel = hppa_info->dlt_rel_sec;
2247
2248 /* H/DYN_H may refer to a local variable and we know it's
2249 address, so there is no need to create a relocation. Just install
2250 the proper value into the DLT, note this shortcut can not be
2251 skipped when building a shared library. */
3db4b612 2252 if (! info->shared && h && dyn_h->want_dlt)
15bda425
JL
2253 {
2254 bfd_vma value;
2255
2256 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2257 to point to the FPTR entry in the .opd section.
15bda425
JL
2258
2259 We include the OPD's output offset in this computation as
2260 we are referring to an absolute address in the resulting
2261 object file. */
2262 if (dyn_h->want_opd)
2263 {
2264 value = (dyn_h->opd_offset
2265 + hppa_info->opd_sec->output_offset
2266 + hppa_info->opd_sec->output_section->vma);
2267 }
3db4b612 2268 else if (h->root.u.def.section)
15bda425 2269 {
3db4b612 2270 value = h->root.u.def.value + h->root.u.def.section->output_offset;
15bda425
JL
2271 if (h->root.u.def.section->output_section)
2272 value += h->root.u.def.section->output_section->vma;
2273 else
2274 value += h->root.u.def.section->vma;
2275 }
3db4b612
JL
2276 else
2277 /* We have an undefined function reference. */
2278 value = 0;
15bda425
JL
2279
2280 /* We do not need to include the output offset of the DLT section
2281 here because we are modifying the in-memory contents. */
2282 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2283 }
2284
2285 /* Create a relocation for the DLT entry assocated with this symbol.
2286 When building a shared library the symbol does not have to be dynamic. */
2287 if (dyn_h->want_dlt
2288 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2289 {
2290 Elf64_Internal_Rela rel;
2291 int dynindx;
2292
2293 /* We may need to do a relocation against a local symbol, in
2294 which case we have to look up it's dynamic symbol index off
2295 the local symbol hash table. */
2296 if (h && h->dynindx != -1)
2297 dynindx = h->dynindx;
2298 else
2299 dynindx
2300 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2301 dyn_h->sym_indx);
2302
15bda425
JL
2303 /* Create a dynamic relocation for this entry. Do include the output
2304 offset of the DLT entry since we need an absolute address in the
2305 resulting object file. */
2306 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2307 + sdlt->output_section->vma);
2308 if (h && h->type == STT_FUNC)
2309 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2310 else
2311 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2312 rel.r_addend = 0;
2313
2314 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2315 (((Elf64_External_Rela *)
2316 sdltrel->contents)
2317 + sdltrel->reloc_count));
2318 sdltrel->reloc_count++;
2319 }
2320 return true;
2321}
2322
2323/* Finalize the dynamic relocations. Specifically the FPTR relocations
2324 for dynamic functions used to initialize static data. */
2325
2326static boolean
2327elf64_hppa_finalize_dynreloc (dyn_h, data)
2328 struct elf64_hppa_dyn_hash_entry *dyn_h;
2329 PTR data;
2330{
2331 struct bfd_link_info *info = (struct bfd_link_info *)data;
2332 struct elf64_hppa_link_hash_table *hppa_info;
2333 struct elf_link_hash_entry *h;
2334 int dynamic_symbol;
2335
2336 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2337
2338 if (!dynamic_symbol && !info->shared)
2339 return true;
2340
2341 if (dyn_h->reloc_entries)
2342 {
2343 struct elf64_hppa_dyn_reloc_entry *rent;
2344 int dynindx;
2345
2346 hppa_info = elf64_hppa_hash_table (info);
2347 h = dyn_h->h;
2348
2349 /* We may need to do a relocation against a local symbol, in
2350 which case we have to look up it's dynamic symbol index off
2351 the local symbol hash table. */
2352 if (h && h->dynindx != -1)
2353 dynindx = h->dynindx;
2354 else
2355 dynindx
2356 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2357 dyn_h->sym_indx);
2358
2359 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2360 {
2361 Elf64_Internal_Rela rel;
2362
d663e1cd
JL
2363 /* Allocate one iff we are building a shared library, the relocation
2364 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2365 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2366 continue;
15bda425 2367
fe8bc63d 2368 /* Create a dynamic relocation for this entry.
15bda425
JL
2369
2370 We need the output offset for the reloc's section because
2371 we are creating an absolute address in the resulting object
2372 file. */
2373 rel.r_offset = (rent->offset + rent->sec->output_offset
2374 + rent->sec->output_section->vma);
2375
2376 /* An FPTR64 relocation implies that we took the address of
2377 a function and that the function has an entry in the .opd
2378 section. We want the FPTR64 relocation to reference the
2379 entry in .opd.
2380
2381 We could munge the symbol value in the dynamic symbol table
2382 (in fact we already do for functions with global scope) to point
2383 to the .opd entry. Then we could use that dynamic symbol in
2384 this relocation.
2385
2386 Or we could do something sensible, not munge the symbol's
2387 address and instead just use a different symbol to reference
2388 the .opd entry. At least that seems sensible until you
2389 realize there's no local dynamic symbols we can use for that
2390 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2391
15bda425
JL
2392 We use a section symbol recorded by check_relocs as the
2393 base symbol for the relocation. The addend is the difference
2394 between the section symbol and the address of the .opd entry. */
3db4b612 2395 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
15bda425
JL
2396 {
2397 bfd_vma value, value2;
15bda425
JL
2398
2399 /* First compute the address of the opd entry for this symbol. */
2400 value = (dyn_h->opd_offset
2401 + hppa_info->opd_sec->output_section->vma
2402 + hppa_info->opd_sec->output_offset);
2403
2404 /* Compute the value of the start of the section with
2405 the relocation. */
2406 value2 = (rent->sec->output_section->vma
2407 + rent->sec->output_offset);
2408
2409 /* Compute the difference between the start of the section
2410 with the relocation and the opd entry. */
2411 value -= value2;
fe8bc63d 2412
15bda425
JL
2413 /* The result becomes the addend of the relocation. */
2414 rel.r_addend = value;
2415
2416 /* The section symbol becomes the symbol for the dynamic
2417 relocation. */
2418 dynindx
2419 = _bfd_elf_link_lookup_local_dynindx (info,
2420 rent->sec->owner,
2421 rent->sec_symndx);
2422 }
2423 else
2424 rel.r_addend = rent->addend;
2425
2426 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2427
2428 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2429 &rel,
2430 (((Elf64_External_Rela *)
2431 hppa_info->other_rel_sec->contents)
2432 + hppa_info->other_rel_sec->reloc_count));
2433 hppa_info->other_rel_sec->reloc_count++;
2434 }
2435 }
2436
2437 return true;
2438}
2439
2440/* Finish up the dynamic sections. */
2441
2442static boolean
2443elf64_hppa_finish_dynamic_sections (output_bfd, info)
2444 bfd *output_bfd;
2445 struct bfd_link_info *info;
2446{
2447 bfd *dynobj;
2448 asection *sdyn;
2449 struct elf64_hppa_link_hash_table *hppa_info;
2450
2451 hppa_info = elf64_hppa_hash_table (info);
2452
2453 /* Finalize the contents of the .opd section. */
2454 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2455 elf64_hppa_finalize_opd,
2456 info);
2457
2458 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2459 elf64_hppa_finalize_dynreloc,
2460 info);
2461
2462 /* Finalize the contents of the .dlt section. */
2463 dynobj = elf_hash_table (info)->dynobj;
2464 /* Finalize the contents of the .dlt section. */
2465 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2466 elf64_hppa_finalize_dlt,
2467 info);
2468
15bda425
JL
2469 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2470
2471 if (elf_hash_table (info)->dynamic_sections_created)
2472 {
2473 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2474
2475 BFD_ASSERT (sdyn != NULL);
2476
2477 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2478 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2479 for (; dyncon < dynconend; dyncon++)
2480 {
2481 Elf_Internal_Dyn dyn;
2482 asection *s;
2483
2484 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2485
2486 switch (dyn.d_tag)
2487 {
2488 default:
2489 break;
2490
2491 case DT_HP_LOAD_MAP:
2492 /* Compute the absolute address of 16byte scratchpad area
2493 for the dynamic linker.
2494
2495 By convention the linker script will allocate the scratchpad
2496 area at the start of the .data section. So all we have to
2497 to is find the start of the .data section. */
2498 s = bfd_get_section_by_name (output_bfd, ".data");
2499 dyn.d_un.d_ptr = s->vma;
2500 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2501 break;
2502
2503 case DT_PLTGOT:
2504 /* HP's use PLTGOT to set the GOT register. */
2505 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2506 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2507 break;
2508
2509 case DT_JMPREL:
2510 s = hppa_info->plt_rel_sec;
2511 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2512 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2513 break;
2514
2515 case DT_PLTRELSZ:
2516 s = hppa_info->plt_rel_sec;
2517 dyn.d_un.d_val = s->_raw_size;
2518 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2519 break;
2520
2521 case DT_RELA:
2522 s = hppa_info->other_rel_sec;
2523 if (! s)
2524 s = hppa_info->dlt_rel_sec;
2525 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2526 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2527 break;
2528
2529 case DT_RELASZ:
2530 s = hppa_info->other_rel_sec;
2531 dyn.d_un.d_val = s->_raw_size;
2532 s = hppa_info->dlt_rel_sec;
2533 dyn.d_un.d_val += s->_raw_size;
2534 s = hppa_info->opd_rel_sec;
2535 dyn.d_un.d_val += s->_raw_size;
2536 /* There is some question about whether or not the size of
2537 the PLT relocs should be included here. HP's tools do
2538 it, so we'll emulate them. */
2539 s = hppa_info->plt_rel_sec;
2540 dyn.d_un.d_val += s->_raw_size;
2541 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2542 break;
2543
2544 }
2545 }
2546 }
2547
2548 return true;
2549}
2550
15bda425
JL
2551/* Return the number of additional phdrs we will need.
2552
2553 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2554 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2555
2556 This routine indicates that the backend needs one additional program
2557 header for that case.
2558
2559 Note we do not have access to the link info structure here, so we have
2560 to guess whether or not we are building a shared library based on the
2561 existence of a .interp section. */
2562
2563static int
2564elf64_hppa_additional_program_headers (abfd)
2565 bfd *abfd;
2566{
2567 asection *s;
2568
2569 /* If we are creating a shared library, then we have to create a
2570 PT_PHDR segment. HP's dynamic linker chokes without it. */
2571 s = bfd_get_section_by_name (abfd, ".interp");
2572 if (! s)
2573 return 1;
2574 return 0;
2575}
2576
2577/* Allocate and initialize any program headers required by this
2578 specific backend.
2579
2580 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2581 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2582
2583 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2584 for the HP linker.
15bda425
JL
2585
2586 Note we do not have access to the link info structure here, so we have
2587 to guess whether or not we are building a shared library based on the
2588 existence of a .interp section. */
2589
2590static boolean
2591elf64_hppa_modify_segment_map (abfd)
2592 bfd *abfd;
2593{
edd21aca 2594 struct elf_segment_map *m;
15bda425
JL
2595 asection *s;
2596
2597 s = bfd_get_section_by_name (abfd, ".interp");
2598 if (! s)
2599 {
2600 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2601 if (m->p_type == PT_PHDR)
2602 break;
2603 if (m == NULL)
2604 {
dc810e39
AM
2605 m = ((struct elf_segment_map *)
2606 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425
JL
2607 if (m == NULL)
2608 return false;
2609
2610 m->p_type = PT_PHDR;
2611 m->p_flags = PF_R | PF_X;
2612 m->p_flags_valid = 1;
2613 m->p_paddr_valid = 1;
2614 m->includes_phdrs = 1;
2615
2616 m->next = elf_tdata (abfd)->segment_map;
2617 elf_tdata (abfd)->segment_map = m;
2618 }
2619 }
2620
2621 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2622 if (m->p_type == PT_LOAD)
2623 {
0ba2a60e 2624 unsigned int i;
15bda425
JL
2625
2626 for (i = 0; i < m->count; i++)
2627 {
2628 /* The code "hint" is not really a hint. It is a requirement
2629 for certain versions of the HP dynamic linker. Worse yet,
2630 it must be set even if the shared library does not have
2631 any code in its "text" segment (thus the check for .hash
2632 to catch this situation). */
2633 if (m->sections[i]->flags & SEC_CODE
2634 || (strcmp (m->sections[i]->name, ".hash") == 0))
2635 m->p_flags |= (PF_X | PF_HP_CODE);
2636 }
2637 }
2638
2639 return true;
2640}
2641
3fab46d0
AM
2642/* Called when writing out an object file to decide the type of a
2643 symbol. */
2644static int
2645elf64_hppa_elf_get_symbol_type (elf_sym, type)
2646 Elf_Internal_Sym *elf_sym;
2647 int type;
2648{
2649 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2650 return STT_PARISC_MILLI;
2651 else
2652 return type;
2653}
2654
15bda425
JL
2655/* The hash bucket size is the standard one, namely 4. */
2656
2657const struct elf_size_info hppa64_elf_size_info =
2658{
2659 sizeof (Elf64_External_Ehdr),
2660 sizeof (Elf64_External_Phdr),
2661 sizeof (Elf64_External_Shdr),
2662 sizeof (Elf64_External_Rel),
2663 sizeof (Elf64_External_Rela),
2664 sizeof (Elf64_External_Sym),
2665 sizeof (Elf64_External_Dyn),
2666 sizeof (Elf_External_Note),
2667 4,
2668 1,
2669 64, 8,
2670 ELFCLASS64, EV_CURRENT,
2671 bfd_elf64_write_out_phdrs,
2672 bfd_elf64_write_shdrs_and_ehdr,
2673 bfd_elf64_write_relocs,
73ff0d56 2674 bfd_elf64_swap_symbol_in,
15bda425
JL
2675 bfd_elf64_swap_symbol_out,
2676 bfd_elf64_slurp_reloc_table,
2677 bfd_elf64_slurp_symbol_table,
2678 bfd_elf64_swap_dyn_in,
2679 bfd_elf64_swap_dyn_out,
2680 NULL,
2681 NULL,
2682 NULL,
2683 NULL
2684};
2685
2686#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2687#define TARGET_BIG_NAME "elf64-hppa"
2688#define ELF_ARCH bfd_arch_hppa
2689#define ELF_MACHINE_CODE EM_PARISC
2690/* This is not strictly correct. The maximum page size for PA2.0 is
2691 64M. But everything still uses 4k. */
2692#define ELF_MAXPAGESIZE 0x1000
2693#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2694#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2695#define elf_info_to_howto elf_hppa_info_to_howto
2696#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2697
2698#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2699#define elf_backend_object_p elf64_hppa_object_p
2700#define elf_backend_final_write_processing \
2701 elf_hppa_final_write_processing
99c79b2e 2702#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2703#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2704
2705#define elf_backend_relocate_section elf_hppa_relocate_section
2706
2707#define bfd_elf64_bfd_final_link elf_hppa_final_link
2708
2709#define elf_backend_create_dynamic_sections \
2710 elf64_hppa_create_dynamic_sections
2711#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2712
2713#define elf_backend_adjust_dynamic_symbol \
2714 elf64_hppa_adjust_dynamic_symbol
2715
2716#define elf_backend_size_dynamic_sections \
2717 elf64_hppa_size_dynamic_sections
2718
2719#define elf_backend_finish_dynamic_symbol \
2720 elf64_hppa_finish_dynamic_symbol
2721#define elf_backend_finish_dynamic_sections \
2722 elf64_hppa_finish_dynamic_sections
2723
2724/* Stuff for the BFD linker: */
2725#define bfd_elf64_bfd_link_hash_table_create \
2726 elf64_hppa_hash_table_create
2727
2728#define elf_backend_check_relocs \
2729 elf64_hppa_check_relocs
2730
2731#define elf_backend_size_info \
2732 hppa64_elf_size_info
2733
2734#define elf_backend_additional_program_headers \
2735 elf64_hppa_additional_program_headers
2736
2737#define elf_backend_modify_segment_map \
2738 elf64_hppa_modify_segment_map
2739
2740#define elf_backend_link_output_symbol_hook \
2741 elf64_hppa_link_output_symbol_hook
2742
15bda425
JL
2743#define elf_backend_want_got_plt 0
2744#define elf_backend_plt_readonly 0
2745#define elf_backend_want_plt_sym 0
2746#define elf_backend_got_header_size 0
2747#define elf_backend_plt_header_size 0
2748#define elf_backend_type_change_ok true
3fab46d0 2749#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
15bda425
JL
2750
2751#include "elf64-target.h"
d952f17a
AM
2752
2753#undef TARGET_BIG_SYM
2754#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2755#undef TARGET_BIG_NAME
2756#define TARGET_BIG_NAME "elf64-hppa-linux"
2757
2758#define INCLUDED_TARGET_FILE 1
2759#include "elf64-target.h"
This page took 0.344668 seconds and 4 git commands to generate.