* dwarf2-frame.c: Fix some comments and whitespace problems.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf 1/* Support for HPPA 64-bit ELF
ae9a127f 2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
15bda425 3
ae9a127f 4 This file is part of BFD, the Binary File Descriptor library.
15bda425 5
ae9a127f
NC
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
15bda425 10
ae9a127f
NC
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15bda425 15
ae9a127f
NC
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
15bda425 19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
dc810e39 65 long sym_indx;
15bda425
JL
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
b34976b6 159static bfd_boolean elf64_hppa_dyn_hash_table_init
15bda425
JL
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
b34976b6 169 bfd_boolean create, bfd_boolean copy));
15bda425
JL
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
b34976b6 172 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
b34976b6 183static bfd_boolean elf64_hppa_object_p
15bda425
JL
184 PARAMS ((bfd *));
185
b34976b6 186static bfd_boolean elf64_hppa_section_from_shdr
947216bf 187 PARAMS ((bfd *, Elf_Internal_Shdr *, const char *));
15bda425
JL
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
b34976b6 192static bfd_boolean elf64_hppa_create_dynamic_sections
15bda425
JL
193 PARAMS ((bfd *, struct bfd_link_info *));
194
b34976b6 195static bfd_boolean elf64_hppa_adjust_dynamic_symbol
15bda425
JL
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
b34976b6 198static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
47b7c2db
AM
199 PARAMS ((struct elf_link_hash_entry *, PTR));
200
b34976b6 201static bfd_boolean elf64_hppa_size_dynamic_sections
15bda425
JL
202 PARAMS ((bfd *, struct bfd_link_info *));
203
b34976b6
AM
204static bfd_boolean elf64_hppa_link_output_symbol_hook
205 PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
206 Elf_Internal_Sym *, asection *input_sec));
99c79b2e 207
b34976b6 208static bfd_boolean elf64_hppa_finish_dynamic_symbol
15bda425
JL
209 PARAMS ((bfd *, struct bfd_link_info *,
210 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 211
b34976b6
AM
212static int elf64_hppa_additional_program_headers
213 PARAMS ((bfd *));
99c79b2e 214
b34976b6 215static bfd_boolean elf64_hppa_modify_segment_map
c84fca4d 216 PARAMS ((bfd *, struct bfd_link_info *));
99c79b2e 217
5ac81c74
JL
218static enum elf_reloc_type_class elf64_hppa_reloc_type_class
219 PARAMS ((const Elf_Internal_Rela *));
220
b34976b6 221static bfd_boolean elf64_hppa_finish_dynamic_sections
15bda425
JL
222 PARAMS ((bfd *, struct bfd_link_info *));
223
b34976b6 224static bfd_boolean elf64_hppa_check_relocs
15bda425
JL
225 PARAMS ((bfd *, struct bfd_link_info *,
226 asection *, const Elf_Internal_Rela *));
227
b34976b6 228static bfd_boolean elf64_hppa_dynamic_symbol_p
15bda425
JL
229 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
230
b34976b6 231static bfd_boolean elf64_hppa_mark_exported_functions
15bda425
JL
232 PARAMS ((struct elf_link_hash_entry *, PTR));
233
b34976b6 234static bfd_boolean elf64_hppa_finalize_opd
15bda425
JL
235 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
236
b34976b6 237static bfd_boolean elf64_hppa_finalize_dlt
15bda425
JL
238 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
239
b34976b6 240static bfd_boolean allocate_global_data_dlt
15bda425
JL
241 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
242
b34976b6 243static bfd_boolean allocate_global_data_plt
15bda425
JL
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
245
b34976b6 246static bfd_boolean allocate_global_data_stub
15bda425
JL
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
248
b34976b6 249static bfd_boolean allocate_global_data_opd
15bda425
JL
250 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
251
b34976b6 252static bfd_boolean get_reloc_section
15bda425
JL
253 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
254
b34976b6 255static bfd_boolean count_dyn_reloc
15bda425
JL
256 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
257 int, asection *, int, bfd_vma, bfd_vma));
258
b34976b6 259static bfd_boolean allocate_dynrel_entries
15bda425
JL
260 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
b34976b6 262static bfd_boolean elf64_hppa_finalize_dynreloc
15bda425
JL
263 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
b34976b6 265static bfd_boolean get_opd
15bda425
JL
266 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
267
b34976b6 268static bfd_boolean get_plt
15bda425
JL
269 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
270
b34976b6 271static bfd_boolean get_dlt
15bda425
JL
272 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
273
b34976b6 274static bfd_boolean get_stub
15bda425
JL
275 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
276
3fab46d0
AM
277static int elf64_hppa_elf_get_symbol_type
278 PARAMS ((Elf_Internal_Sym *, int));
279
b34976b6 280static bfd_boolean
15bda425
JL
281elf64_hppa_dyn_hash_table_init (ht, abfd, new)
282 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 283 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
284 new_hash_entry_func new;
285{
fe8bc63d 286 memset (ht, 0, sizeof (*ht));
15bda425
JL
287 return bfd_hash_table_init (&ht->root, new);
288}
289
290static struct bfd_hash_entry*
291elf64_hppa_new_dyn_hash_entry (entry, table, string)
292 struct bfd_hash_entry *entry;
293 struct bfd_hash_table *table;
294 const char *string;
295{
296 struct elf64_hppa_dyn_hash_entry *ret;
297 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
298
299 /* Allocate the structure if it has not already been allocated by a
300 subclass. */
301 if (!ret)
302 ret = bfd_hash_allocate (table, sizeof (*ret));
303
304 if (!ret)
305 return 0;
306
307 /* Initialize our local data. All zeros, and definitely easier
308 than setting 8 bit fields. */
fe8bc63d 309 memset (ret, 0, sizeof (*ret));
15bda425
JL
310
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_hppa_dyn_hash_entry *)
313 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
314
315 return &ret->root;
316}
317
318/* Create the derived linker hash table. The PA64 ELF port uses this
319 derived hash table to keep information specific to the PA ElF
320 linker (without using static variables). */
321
322static struct bfd_link_hash_table*
323elf64_hppa_hash_table_create (abfd)
324 bfd *abfd;
325{
326 struct elf64_hppa_link_hash_table *ret;
327
dc810e39 328 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
15bda425
JL
329 if (!ret)
330 return 0;
331 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
332 _bfd_elf_link_hash_newfunc))
333 {
334 bfd_release (abfd, ret);
335 return 0;
336 }
337
338 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
339 elf64_hppa_new_dyn_hash_entry))
340 return 0;
341 return &ret->root.root;
342}
343
344/* Look up an entry in a PA64 ELF linker hash table. */
345
346static struct elf64_hppa_dyn_hash_entry *
347elf64_hppa_dyn_hash_lookup(table, string, create, copy)
348 struct elf64_hppa_dyn_hash_table *table;
349 const char *string;
b34976b6 350 bfd_boolean create, copy;
15bda425
JL
351{
352 return ((struct elf64_hppa_dyn_hash_entry *)
353 bfd_hash_lookup (&table->root, string, create, copy));
354}
355
356/* Traverse a PA64 ELF linker hash table. */
357
358static void
359elf64_hppa_dyn_hash_traverse (table, func, info)
360 struct elf64_hppa_dyn_hash_table *table;
b34976b6 361 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
15bda425
JL
362 PTR info;
363{
364 (bfd_hash_traverse
365 (&table->root,
b34976b6 366 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
15bda425
JL
367 info));
368}
369\f
370/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
371
372 Additionally we set the default architecture and machine. */
b34976b6 373static bfd_boolean
15bda425
JL
374elf64_hppa_object_p (abfd)
375 bfd *abfd;
376{
24a5e751
L
377 Elf_Internal_Ehdr * i_ehdrp;
378 unsigned int flags;
d9634ba1 379
24a5e751
L
380 i_ehdrp = elf_elfheader (abfd);
381 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
382 {
6c21aa76
NC
383 /* GCC on hppa-linux produces binaries with OSABI=Linux,
384 but the kernel produces corefiles with OSABI=SysV. */
385 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
386 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 387 return FALSE;
24a5e751
L
388 }
389 else
390 {
391 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
b34976b6 392 return FALSE;
24a5e751
L
393 }
394
395 flags = i_ehdrp->e_flags;
d9634ba1
AM
396 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
397 {
398 case EFA_PARISC_1_0:
399 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
400 case EFA_PARISC_1_1:
401 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
402 case EFA_PARISC_2_0:
403 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
404 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
405 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
406 }
407 /* Don't be fussy. */
b34976b6 408 return TRUE;
15bda425
JL
409}
410
411/* Given section type (hdr->sh_type), return a boolean indicating
412 whether or not the section is an elf64-hppa specific section. */
b34976b6 413static bfd_boolean
15bda425
JL
414elf64_hppa_section_from_shdr (abfd, hdr, name)
415 bfd *abfd;
947216bf 416 Elf_Internal_Shdr *hdr;
90937f86 417 const char *name;
15bda425
JL
418{
419 asection *newsect;
420
421 switch (hdr->sh_type)
422 {
423 case SHT_PARISC_EXT:
424 if (strcmp (name, ".PARISC.archext") != 0)
b34976b6 425 return FALSE;
15bda425
JL
426 break;
427 case SHT_PARISC_UNWIND:
428 if (strcmp (name, ".PARISC.unwind") != 0)
b34976b6 429 return FALSE;
15bda425
JL
430 break;
431 case SHT_PARISC_DOC:
432 case SHT_PARISC_ANNOT:
433 default:
b34976b6 434 return FALSE;
15bda425
JL
435 }
436
437 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 438 return FALSE;
15bda425
JL
439 newsect = hdr->bfd_section;
440
b34976b6 441 return TRUE;
15bda425
JL
442}
443
15bda425 444/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 445 name describes what was once potentially anonymous memory. We
15bda425
JL
446 allocate memory as necessary, possibly reusing PBUF/PLEN. */
447
448static const char *
0ba2a60e
AM
449get_dyn_name (sec, h, rel, pbuf, plen)
450 asection *sec;
15bda425
JL
451 struct elf_link_hash_entry *h;
452 const Elf_Internal_Rela *rel;
453 char **pbuf;
454 size_t *plen;
455{
456 size_t nlen, tlen;
457 char *buf;
458 size_t len;
459
460 if (h && rel->r_addend == 0)
461 return h->root.root.string;
462
463 if (h)
464 nlen = strlen (h->root.root.string);
465 else
0ba2a60e
AM
466 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
467 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
468
469 len = *plen;
470 buf = *pbuf;
471 if (len < tlen)
472 {
473 if (buf)
474 free (buf);
475 *pbuf = buf = malloc (tlen);
476 *plen = len = tlen;
477 if (!buf)
478 return NULL;
479 }
480
481 if (h)
482 {
483 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 484 buf[nlen++] = '+';
15bda425
JL
485 sprintf_vma (buf + nlen, rel->r_addend);
486 }
487 else
488 {
0ba2a60e
AM
489 nlen = sprintf (buf, "%x:%lx",
490 sec->id & 0xffffffff,
491 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
492 if (rel->r_addend)
493 {
494 buf[nlen++] = '+';
495 sprintf_vma (buf + nlen, rel->r_addend);
496 }
497 }
498
499 return buf;
500}
501
502/* SEC is a section containing relocs for an input BFD when linking; return
503 a suitable section for holding relocs in the output BFD for a link. */
504
b34976b6 505static bfd_boolean
15bda425
JL
506get_reloc_section (abfd, hppa_info, sec)
507 bfd *abfd;
508 struct elf64_hppa_link_hash_table *hppa_info;
509 asection *sec;
510{
511 const char *srel_name;
512 asection *srel;
513 bfd *dynobj;
514
515 srel_name = (bfd_elf_string_from_elf_section
516 (abfd, elf_elfheader(abfd)->e_shstrndx,
517 elf_section_data(sec)->rel_hdr.sh_name));
518 if (srel_name == NULL)
b34976b6 519 return FALSE;
15bda425
JL
520
521 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
522 && strcmp (bfd_get_section_name (abfd, sec),
523 srel_name+5) == 0)
524 || (strncmp (srel_name, ".rel", 4) == 0
525 && strcmp (bfd_get_section_name (abfd, sec),
526 srel_name+4) == 0));
527
528 dynobj = hppa_info->root.dynobj;
529 if (!dynobj)
530 hppa_info->root.dynobj = dynobj = abfd;
531
532 srel = bfd_get_section_by_name (dynobj, srel_name);
533 if (srel == NULL)
534 {
535 srel = bfd_make_section (dynobj, srel_name);
536 if (srel == NULL
537 || !bfd_set_section_flags (dynobj, srel,
538 (SEC_ALLOC
539 | SEC_LOAD
540 | SEC_HAS_CONTENTS
541 | SEC_IN_MEMORY
542 | SEC_LINKER_CREATED
543 | SEC_READONLY))
544 || !bfd_set_section_alignment (dynobj, srel, 3))
b34976b6 545 return FALSE;
15bda425
JL
546 }
547
548 hppa_info->other_rel_sec = srel;
b34976b6 549 return TRUE;
15bda425
JL
550}
551
fe8bc63d 552/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
553
554 We use this to keep a record of all the FPTR relocations against a
555 particular symbol so that we can create FPTR relocations in the
556 output file. */
557
b34976b6 558static bfd_boolean
15bda425
JL
559count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
560 bfd *abfd;
561 struct elf64_hppa_dyn_hash_entry *dyn_h;
562 int type;
563 asection *sec;
564 int sec_symndx;
565 bfd_vma offset;
566 bfd_vma addend;
567{
568 struct elf64_hppa_dyn_reloc_entry *rent;
569
570 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 571 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425 572 if (!rent)
b34976b6 573 return FALSE;
15bda425
JL
574
575 rent->next = dyn_h->reloc_entries;
576 rent->type = type;
577 rent->sec = sec;
578 rent->sec_symndx = sec_symndx;
579 rent->offset = offset;
580 rent->addend = addend;
581 dyn_h->reloc_entries = rent;
582
b34976b6 583 return TRUE;
15bda425
JL
584}
585
586/* Scan the RELOCS and record the type of dynamic entries that each
587 referenced symbol needs. */
588
b34976b6 589static bfd_boolean
15bda425
JL
590elf64_hppa_check_relocs (abfd, info, sec, relocs)
591 bfd *abfd;
592 struct bfd_link_info *info;
593 asection *sec;
594 const Elf_Internal_Rela *relocs;
595{
596 struct elf64_hppa_link_hash_table *hppa_info;
597 const Elf_Internal_Rela *relend;
598 Elf_Internal_Shdr *symtab_hdr;
599 const Elf_Internal_Rela *rel;
600 asection *dlt, *plt, *stubs;
601 char *buf;
602 size_t buf_len;
603 int sec_symndx;
604
1049f94e 605 if (info->relocatable)
b34976b6 606 return TRUE;
15bda425
JL
607
608 /* If this is the first dynamic object found in the link, create
609 the special sections required for dynamic linking. */
610 if (! elf_hash_table (info)->dynamic_sections_created)
611 {
45d6a902 612 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
b34976b6 613 return FALSE;
15bda425
JL
614 }
615
616 hppa_info = elf64_hppa_hash_table (info);
617 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
618
619 /* If necessary, build a new table holding section symbols indices
6cdc0ccc 620 for this BFD. */
fe8bc63d 621
15bda425
JL
622 if (info->shared && hppa_info->section_syms_bfd != abfd)
623 {
832d951b 624 unsigned long i;
9ad5cbcf 625 unsigned int highest_shndx;
6cdc0ccc
AM
626 Elf_Internal_Sym *local_syms = NULL;
627 Elf_Internal_Sym *isym, *isymend;
dc810e39 628 bfd_size_type amt;
15bda425
JL
629
630 /* We're done with the old cache of section index to section symbol
631 index information. Free it.
632
633 ?!? Note we leak the last section_syms array. Presumably we
634 could free it in one of the later routines in this file. */
635 if (hppa_info->section_syms)
636 free (hppa_info->section_syms);
637
6cdc0ccc
AM
638 /* Read this BFD's local symbols. */
639 if (symtab_hdr->sh_info != 0)
47b7c2db 640 {
6cdc0ccc
AM
641 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
642 if (local_syms == NULL)
643 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
644 symtab_hdr->sh_info, 0,
645 NULL, NULL, NULL);
646 if (local_syms == NULL)
b34976b6 647 return FALSE;
9ad5cbcf
AM
648 }
649
6cdc0ccc 650 /* Record the highest section index referenced by the local symbols. */
15bda425 651 highest_shndx = 0;
6cdc0ccc
AM
652 isymend = local_syms + symtab_hdr->sh_info;
653 for (isym = local_syms; isym < isymend; isym++)
15bda425 654 {
15bda425
JL
655 if (isym->st_shndx > highest_shndx)
656 highest_shndx = isym->st_shndx;
657 }
658
15bda425
JL
659 /* Allocate an array to hold the section index to section symbol index
660 mapping. Bump by one since we start counting at zero. */
661 highest_shndx++;
dc810e39
AM
662 amt = highest_shndx;
663 amt *= sizeof (int);
664 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
665
666 /* Now walk the local symbols again. If we find a section symbol,
667 record the index of the symbol into the section_syms array. */
6cdc0ccc 668 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
15bda425
JL
669 {
670 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
671 hppa_info->section_syms[isym->st_shndx] = i;
672 }
673
6cdc0ccc
AM
674 /* We are finished with the local symbols. */
675 if (local_syms != NULL
676 && symtab_hdr->contents != (unsigned char *) local_syms)
677 {
678 if (! info->keep_memory)
679 free (local_syms);
680 else
681 {
682 /* Cache the symbols for elf_link_input_bfd. */
683 symtab_hdr->contents = (unsigned char *) local_syms;
684 }
685 }
15bda425
JL
686
687 /* Record which BFD we built the section_syms mapping for. */
688 hppa_info->section_syms_bfd = abfd;
689 }
690
691 /* Record the symbol index for this input section. We may need it for
692 relocations when building shared libraries. When not building shared
693 libraries this value is never really used, but assign it to zero to
694 prevent out of bounds memory accesses in other routines. */
695 if (info->shared)
696 {
697 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
698
699 /* If we did not find a section symbol for this section, then
700 something went terribly wrong above. */
701 if (sec_symndx == -1)
b34976b6 702 return FALSE;
15bda425
JL
703
704 sec_symndx = hppa_info->section_syms[sec_symndx];
705 }
706 else
707 sec_symndx = 0;
fe8bc63d 708
15bda425
JL
709 dlt = plt = stubs = NULL;
710 buf = NULL;
711 buf_len = 0;
712
713 relend = relocs + sec->reloc_count;
714 for (rel = relocs; rel < relend; ++rel)
715 {
560e09e9
NC
716 enum
717 {
718 NEED_DLT = 1,
719 NEED_PLT = 2,
720 NEED_STUB = 4,
721 NEED_OPD = 8,
722 NEED_DYNREL = 16,
723 };
15bda425
JL
724
725 struct elf_link_hash_entry *h = NULL;
726 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
727 struct elf64_hppa_dyn_hash_entry *dyn_h;
728 int need_entry;
729 const char *addr_name;
b34976b6 730 bfd_boolean maybe_dynamic;
15bda425
JL
731 int dynrel_type = R_PARISC_NONE;
732 static reloc_howto_type *howto;
733
734 if (r_symndx >= symtab_hdr->sh_info)
735 {
736 /* We're dealing with a global symbol -- find its hash entry
737 and mark it as being referenced. */
738 long indx = r_symndx - symtab_hdr->sh_info;
739 h = elf_sym_hashes (abfd)[indx];
740 while (h->root.type == bfd_link_hash_indirect
741 || h->root.type == bfd_link_hash_warning)
742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
743
744 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
745 }
746
747 /* We can only get preliminary data on whether a symbol is
748 locally or externally defined, as not all of the input files
749 have yet been processed. Do something with what we know, as
750 this may help reduce memory usage and processing time later. */
b34976b6 751 maybe_dynamic = FALSE;
671bae9c 752 if (h && ((info->shared
560e09e9 753 && (!info->symbolic || info->unresolved_syms_in_shared_libs == RM_IGNORE))
15bda425
JL
754 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
755 || h->root.type == bfd_link_hash_defweak))
b34976b6 756 maybe_dynamic = TRUE;
15bda425
JL
757
758 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
759 need_entry = 0;
760 switch (howto->type)
761 {
762 /* These are simple indirect references to symbols through the
763 DLT. We need to create a DLT entry for any symbols which
764 appears in a DLTIND relocation. */
765 case R_PARISC_DLTIND21L:
766 case R_PARISC_DLTIND14R:
767 case R_PARISC_DLTIND14F:
768 case R_PARISC_DLTIND14WR:
769 case R_PARISC_DLTIND14DR:
770 need_entry = NEED_DLT;
771 break;
772
773 /* ?!? These need a DLT entry. But I have no idea what to do with
774 the "link time TP value. */
775 case R_PARISC_LTOFF_TP21L:
776 case R_PARISC_LTOFF_TP14R:
777 case R_PARISC_LTOFF_TP14F:
778 case R_PARISC_LTOFF_TP64:
779 case R_PARISC_LTOFF_TP14WR:
780 case R_PARISC_LTOFF_TP14DR:
781 case R_PARISC_LTOFF_TP16F:
782 case R_PARISC_LTOFF_TP16WF:
783 case R_PARISC_LTOFF_TP16DF:
784 need_entry = NEED_DLT;
785 break;
786
787 /* These are function calls. Depending on their precise target we
788 may need to make a stub for them. The stub uses the PLT, so we
789 need to create PLT entries for these symbols too. */
832d951b 790 case R_PARISC_PCREL12F:
15bda425
JL
791 case R_PARISC_PCREL17F:
792 case R_PARISC_PCREL22F:
793 case R_PARISC_PCREL32:
794 case R_PARISC_PCREL64:
795 case R_PARISC_PCREL21L:
796 case R_PARISC_PCREL17R:
797 case R_PARISC_PCREL17C:
798 case R_PARISC_PCREL14R:
799 case R_PARISC_PCREL14F:
800 case R_PARISC_PCREL22C:
801 case R_PARISC_PCREL14WR:
802 case R_PARISC_PCREL14DR:
803 case R_PARISC_PCREL16F:
804 case R_PARISC_PCREL16WF:
805 case R_PARISC_PCREL16DF:
806 need_entry = (NEED_PLT | NEED_STUB);
807 break;
808
809 case R_PARISC_PLTOFF21L:
810 case R_PARISC_PLTOFF14R:
811 case R_PARISC_PLTOFF14F:
812 case R_PARISC_PLTOFF14WR:
813 case R_PARISC_PLTOFF14DR:
814 case R_PARISC_PLTOFF16F:
815 case R_PARISC_PLTOFF16WF:
816 case R_PARISC_PLTOFF16DF:
817 need_entry = (NEED_PLT);
818 break;
819
820 case R_PARISC_DIR64:
821 if (info->shared || maybe_dynamic)
822 need_entry = (NEED_DYNREL);
823 dynrel_type = R_PARISC_DIR64;
824 break;
825
826 /* This is an indirect reference through the DLT to get the address
827 of a OPD descriptor. Thus we need to make a DLT entry that points
828 to an OPD entry. */
829 case R_PARISC_LTOFF_FPTR21L:
830 case R_PARISC_LTOFF_FPTR14R:
831 case R_PARISC_LTOFF_FPTR14WR:
832 case R_PARISC_LTOFF_FPTR14DR:
833 case R_PARISC_LTOFF_FPTR32:
834 case R_PARISC_LTOFF_FPTR64:
835 case R_PARISC_LTOFF_FPTR16F:
836 case R_PARISC_LTOFF_FPTR16WF:
837 case R_PARISC_LTOFF_FPTR16DF:
838 if (info->shared || maybe_dynamic)
839 need_entry = (NEED_DLT | NEED_OPD);
840 else
841 need_entry = (NEED_DLT | NEED_OPD);
842 dynrel_type = R_PARISC_FPTR64;
843 break;
844
845 /* This is a simple OPD entry. */
846 case R_PARISC_FPTR64:
847 if (info->shared || maybe_dynamic)
848 need_entry = (NEED_OPD | NEED_DYNREL);
849 else
850 need_entry = (NEED_OPD);
851 dynrel_type = R_PARISC_FPTR64;
852 break;
853
854 /* Add more cases as needed. */
855 }
856
857 if (!need_entry)
858 continue;
859
860 /* Collect a canonical name for this address. */
0ba2a60e 861 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
862
863 /* Collect the canonical entry data for this address. */
864 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 865 addr_name, TRUE, TRUE);
15bda425
JL
866 BFD_ASSERT (dyn_h);
867
868 /* Stash away enough information to be able to find this symbol
869 regardless of whether or not it is local or global. */
870 dyn_h->h = h;
871 dyn_h->owner = abfd;
872 dyn_h->sym_indx = r_symndx;
873
874 /* ?!? We may need to do some error checking in here. */
875 /* Create what's needed. */
876 if (need_entry & NEED_DLT)
877 {
878 if (! hppa_info->dlt_sec
879 && ! get_dlt (abfd, info, hppa_info))
880 goto err_out;
881 dyn_h->want_dlt = 1;
882 }
883
884 if (need_entry & NEED_PLT)
885 {
886 if (! hppa_info->plt_sec
887 && ! get_plt (abfd, info, hppa_info))
888 goto err_out;
889 dyn_h->want_plt = 1;
890 }
891
892 if (need_entry & NEED_STUB)
893 {
894 if (! hppa_info->stub_sec
895 && ! get_stub (abfd, info, hppa_info))
896 goto err_out;
897 dyn_h->want_stub = 1;
898 }
899
900 if (need_entry & NEED_OPD)
901 {
902 if (! hppa_info->opd_sec
903 && ! get_opd (abfd, info, hppa_info))
904 goto err_out;
905
906 dyn_h->want_opd = 1;
907
908 /* FPTRs are not allocated by the dynamic linker for PA64, though
909 it is possible that will change in the future. */
fe8bc63d 910
15bda425
JL
911 /* This could be a local function that had its address taken, in
912 which case H will be NULL. */
913 if (h)
914 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
915 }
916
917 /* Add a new dynamic relocation to the chain of dynamic
918 relocations for this symbol. */
919 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
920 {
921 if (! hppa_info->other_rel_sec
922 && ! get_reloc_section (abfd, hppa_info, sec))
923 goto err_out;
924
925 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
926 sec_symndx, rel->r_offset, rel->r_addend))
927 goto err_out;
928
929 /* If we are building a shared library and we just recorded
930 a dynamic R_PARISC_FPTR64 relocation, then make sure the
931 section symbol for this section ends up in the dynamic
932 symbol table. */
933 if (info->shared && dynrel_type == R_PARISC_FPTR64
934 && ! (_bfd_elf64_link_record_local_dynamic_symbol
935 (info, abfd, sec_symndx)))
b34976b6 936 return FALSE;
15bda425
JL
937 }
938 }
939
940 if (buf)
941 free (buf);
b34976b6 942 return TRUE;
15bda425
JL
943
944 err_out:
945 if (buf)
946 free (buf);
b34976b6 947 return FALSE;
15bda425
JL
948}
949
950struct elf64_hppa_allocate_data
951{
952 struct bfd_link_info *info;
953 bfd_size_type ofs;
954};
955
956/* Should we do dynamic things to this symbol? */
957
b34976b6 958static bfd_boolean
15bda425
JL
959elf64_hppa_dynamic_symbol_p (h, info)
960 struct elf_link_hash_entry *h;
961 struct bfd_link_info *info;
962{
986a241f
RH
963 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
964 and relocations that retrieve a function descriptor? Assume the
965 worst for now. */
966 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
967 {
968 /* ??? Why is this here and not elsewhere is_local_label_name. */
969 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
970 return FALSE;
15bda425 971
986a241f
RH
972 return TRUE;
973 }
974 else
b34976b6 975 return FALSE;
15bda425
JL
976}
977
978/* Mark all funtions exported by this file so that we can later allocate
979 entries in .opd for them. */
980
b34976b6 981static bfd_boolean
15bda425
JL
982elf64_hppa_mark_exported_functions (h, data)
983 struct elf_link_hash_entry *h;
984 PTR data;
985{
986 struct bfd_link_info *info = (struct bfd_link_info *)data;
987 struct elf64_hppa_link_hash_table *hppa_info;
988
989 hppa_info = elf64_hppa_hash_table (info);
990
e92d460e
AM
991 if (h->root.type == bfd_link_hash_warning)
992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
993
15bda425
JL
994 if (h
995 && (h->root.type == bfd_link_hash_defined
996 || h->root.type == bfd_link_hash_defweak)
997 && h->root.u.def.section->output_section != NULL
998 && h->type == STT_FUNC)
999 {
1000 struct elf64_hppa_dyn_hash_entry *dyn_h;
1001
1002 /* Add this symbol to the PA64 linker hash table. */
1003 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1004 h->root.root.string, TRUE, TRUE);
15bda425
JL
1005 BFD_ASSERT (dyn_h);
1006 dyn_h->h = h;
1007
1008 if (! hppa_info->opd_sec
1009 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
b34976b6 1010 return FALSE;
15bda425
JL
1011
1012 dyn_h->want_opd = 1;
832d951b
AM
1013 /* Put a flag here for output_symbol_hook. */
1014 dyn_h->st_shndx = -1;
15bda425
JL
1015 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1016 }
1017
b34976b6 1018 return TRUE;
15bda425
JL
1019}
1020
1021/* Allocate space for a DLT entry. */
1022
b34976b6 1023static bfd_boolean
15bda425
JL
1024allocate_global_data_dlt (dyn_h, data)
1025 struct elf64_hppa_dyn_hash_entry *dyn_h;
1026 PTR data;
1027{
1028 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1029
1030 if (dyn_h->want_dlt)
1031 {
1032 struct elf_link_hash_entry *h = dyn_h->h;
1033
1034 if (x->info->shared)
1035 {
1036 /* Possibly add the symbol to the local dynamic symbol
1037 table since we might need to create a dynamic relocation
1038 against it. */
1039 if (! h
47b7c2db 1040 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
15bda425
JL
1041 {
1042 bfd *owner;
1043 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1044
dc810e39
AM
1045 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1046 (x->info, owner, dyn_h->sym_indx)))
b34976b6 1047 return FALSE;
15bda425
JL
1048 }
1049 }
1050
1051 dyn_h->dlt_offset = x->ofs;
1052 x->ofs += DLT_ENTRY_SIZE;
1053 }
b34976b6 1054 return TRUE;
15bda425
JL
1055}
1056
1057/* Allocate space for a DLT.PLT entry. */
1058
b34976b6 1059static bfd_boolean
15bda425
JL
1060allocate_global_data_plt (dyn_h, data)
1061 struct elf64_hppa_dyn_hash_entry *dyn_h;
1062 PTR data;
1063{
1064 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1065
1066 if (dyn_h->want_plt
1067 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1068 && !((dyn_h->h->root.type == bfd_link_hash_defined
1069 || dyn_h->h->root.type == bfd_link_hash_defweak)
1070 && dyn_h->h->root.u.def.section->output_section != NULL))
1071 {
1072 dyn_h->plt_offset = x->ofs;
1073 x->ofs += PLT_ENTRY_SIZE;
1074 if (dyn_h->plt_offset < 0x2000)
1075 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1076 }
1077 else
1078 dyn_h->want_plt = 0;
1079
b34976b6 1080 return TRUE;
15bda425
JL
1081}
1082
1083/* Allocate space for a STUB entry. */
1084
b34976b6 1085static bfd_boolean
15bda425
JL
1086allocate_global_data_stub (dyn_h, data)
1087 struct elf64_hppa_dyn_hash_entry *dyn_h;
1088 PTR data;
1089{
1090 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1091
1092 if (dyn_h->want_stub
1093 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1094 && !((dyn_h->h->root.type == bfd_link_hash_defined
1095 || dyn_h->h->root.type == bfd_link_hash_defweak)
1096 && dyn_h->h->root.u.def.section->output_section != NULL))
1097 {
1098 dyn_h->stub_offset = x->ofs;
1099 x->ofs += sizeof (plt_stub);
1100 }
1101 else
1102 dyn_h->want_stub = 0;
b34976b6 1103 return TRUE;
15bda425
JL
1104}
1105
1106/* Allocate space for a FPTR entry. */
1107
b34976b6 1108static bfd_boolean
15bda425
JL
1109allocate_global_data_opd (dyn_h, data)
1110 struct elf64_hppa_dyn_hash_entry *dyn_h;
1111 PTR data;
1112{
1113 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1114
1115 if (dyn_h->want_opd)
1116 {
1117 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1118
15bda425
JL
1119 if (h)
1120 while (h->root.type == bfd_link_hash_indirect
1121 || h->root.type == bfd_link_hash_warning)
1122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1123
1124 /* We never need an opd entry for a symbol which is not
1125 defined by this output file. */
3db4b612
JL
1126 if (h && (h->root.type == bfd_link_hash_undefined
1127 || h->root.u.def.section->output_section == NULL))
15bda425
JL
1128 dyn_h->want_opd = 0;
1129
1130 /* If we are creating a shared library, took the address of a local
1131 function or might export this function from this object file, then
1132 we have to create an opd descriptor. */
1133 else if (x->info->shared
1134 || h == NULL
47b7c2db 1135 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
3db4b612
JL
1136 || (h->root.type == bfd_link_hash_defined
1137 || h->root.type == bfd_link_hash_defweak))
15bda425
JL
1138 {
1139 /* If we are creating a shared library, then we will have to
1140 create a runtime relocation for the symbol to properly
1141 initialize the .opd entry. Make sure the symbol gets
1142 added to the dynamic symbol table. */
1143 if (x->info->shared
1144 && (h == NULL || (h->dynindx == -1)))
1145 {
1146 bfd *owner;
1147 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1148
1149 if (!_bfd_elf64_link_record_local_dynamic_symbol
1150 (x->info, owner, dyn_h->sym_indx))
b34976b6 1151 return FALSE;
15bda425
JL
1152 }
1153
1154 /* This may not be necessary or desirable anymore now that
1155 we have some support for dealing with section symbols
1156 in dynamic relocs. But name munging does make the result
1157 much easier to debug. ie, the EPLT reloc will reference
1158 a symbol like .foobar, instead of .text + offset. */
1159 if (x->info->shared && h)
1160 {
1161 char *new_name;
1162 struct elf_link_hash_entry *nh;
1163
1164 new_name = alloca (strlen (h->root.root.string) + 2);
1165 new_name[0] = '.';
1166 strcpy (new_name + 1, h->root.root.string);
1167
1168 nh = elf_link_hash_lookup (elf_hash_table (x->info),
b34976b6 1169 new_name, TRUE, TRUE, TRUE);
15bda425
JL
1170
1171 nh->root.type = h->root.type;
1172 nh->root.u.def.value = h->root.u.def.value;
1173 nh->root.u.def.section = h->root.u.def.section;
1174
1175 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
b34976b6 1176 return FALSE;
15bda425
JL
1177
1178 }
1179 dyn_h->opd_offset = x->ofs;
1180 x->ofs += OPD_ENTRY_SIZE;
1181 }
1182
1183 /* Otherwise we do not need an opd entry. */
1184 else
1185 dyn_h->want_opd = 0;
1186 }
b34976b6 1187 return TRUE;
15bda425
JL
1188}
1189
1190/* HP requires the EI_OSABI field to be filled in. The assignment to
1191 EI_ABIVERSION may not be strictly necessary. */
1192
1193static void
1194elf64_hppa_post_process_headers (abfd, link_info)
1195 bfd * abfd;
1196 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1197{
1198 Elf_Internal_Ehdr * i_ehdrp;
1199
1200 i_ehdrp = elf_elfheader (abfd);
1201
d952f17a
AM
1202 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1203 {
1204 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1205 }
1206 else
1207 {
1208 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1209 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1210 }
15bda425
JL
1211}
1212
1213/* Create function descriptor section (.opd). This section is called .opd
1214 because it contains "official prodecure descriptors". The "official"
1215 refers to the fact that these descriptors are used when taking the address
1216 of a procedure, thus ensuring a unique address for each procedure. */
1217
b34976b6 1218static bfd_boolean
15bda425
JL
1219get_opd (abfd, info, hppa_info)
1220 bfd *abfd;
edd21aca 1221 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1222 struct elf64_hppa_link_hash_table *hppa_info;
1223{
1224 asection *opd;
1225 bfd *dynobj;
1226
1227 opd = hppa_info->opd_sec;
1228 if (!opd)
1229 {
1230 dynobj = hppa_info->root.dynobj;
1231 if (!dynobj)
1232 hppa_info->root.dynobj = dynobj = abfd;
1233
1234 opd = bfd_make_section (dynobj, ".opd");
1235 if (!opd
1236 || !bfd_set_section_flags (dynobj, opd,
1237 (SEC_ALLOC
1238 | SEC_LOAD
1239 | SEC_HAS_CONTENTS
1240 | SEC_IN_MEMORY
1241 | SEC_LINKER_CREATED))
1242 || !bfd_set_section_alignment (abfd, opd, 3))
1243 {
1244 BFD_ASSERT (0);
b34976b6 1245 return FALSE;
15bda425
JL
1246 }
1247
1248 hppa_info->opd_sec = opd;
1249 }
1250
b34976b6 1251 return TRUE;
15bda425
JL
1252}
1253
1254/* Create the PLT section. */
1255
b34976b6 1256static bfd_boolean
15bda425
JL
1257get_plt (abfd, info, hppa_info)
1258 bfd *abfd;
edd21aca 1259 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1260 struct elf64_hppa_link_hash_table *hppa_info;
1261{
1262 asection *plt;
1263 bfd *dynobj;
1264
1265 plt = hppa_info->plt_sec;
1266 if (!plt)
1267 {
1268 dynobj = hppa_info->root.dynobj;
1269 if (!dynobj)
1270 hppa_info->root.dynobj = dynobj = abfd;
1271
1272 plt = bfd_make_section (dynobj, ".plt");
1273 if (!plt
1274 || !bfd_set_section_flags (dynobj, plt,
1275 (SEC_ALLOC
1276 | SEC_LOAD
1277 | SEC_HAS_CONTENTS
1278 | SEC_IN_MEMORY
1279 | SEC_LINKER_CREATED))
1280 || !bfd_set_section_alignment (abfd, plt, 3))
1281 {
1282 BFD_ASSERT (0);
b34976b6 1283 return FALSE;
15bda425
JL
1284 }
1285
1286 hppa_info->plt_sec = plt;
1287 }
1288
b34976b6 1289 return TRUE;
15bda425
JL
1290}
1291
1292/* Create the DLT section. */
1293
b34976b6 1294static bfd_boolean
15bda425
JL
1295get_dlt (abfd, info, hppa_info)
1296 bfd *abfd;
edd21aca 1297 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1298 struct elf64_hppa_link_hash_table *hppa_info;
1299{
1300 asection *dlt;
1301 bfd *dynobj;
1302
1303 dlt = hppa_info->dlt_sec;
1304 if (!dlt)
1305 {
1306 dynobj = hppa_info->root.dynobj;
1307 if (!dynobj)
1308 hppa_info->root.dynobj = dynobj = abfd;
1309
1310 dlt = bfd_make_section (dynobj, ".dlt");
1311 if (!dlt
1312 || !bfd_set_section_flags (dynobj, dlt,
1313 (SEC_ALLOC
1314 | SEC_LOAD
1315 | SEC_HAS_CONTENTS
1316 | SEC_IN_MEMORY
1317 | SEC_LINKER_CREATED))
1318 || !bfd_set_section_alignment (abfd, dlt, 3))
1319 {
1320 BFD_ASSERT (0);
b34976b6 1321 return FALSE;
15bda425
JL
1322 }
1323
1324 hppa_info->dlt_sec = dlt;
1325 }
1326
b34976b6 1327 return TRUE;
15bda425
JL
1328}
1329
1330/* Create the stubs section. */
1331
b34976b6 1332static bfd_boolean
15bda425
JL
1333get_stub (abfd, info, hppa_info)
1334 bfd *abfd;
edd21aca 1335 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1336 struct elf64_hppa_link_hash_table *hppa_info;
1337{
1338 asection *stub;
1339 bfd *dynobj;
1340
1341 stub = hppa_info->stub_sec;
1342 if (!stub)
1343 {
1344 dynobj = hppa_info->root.dynobj;
1345 if (!dynobj)
1346 hppa_info->root.dynobj = dynobj = abfd;
1347
1348 stub = bfd_make_section (dynobj, ".stub");
1349 if (!stub
1350 || !bfd_set_section_flags (dynobj, stub,
1351 (SEC_ALLOC
1352 | SEC_LOAD
1353 | SEC_HAS_CONTENTS
1354 | SEC_IN_MEMORY
1355 | SEC_READONLY
1356 | SEC_LINKER_CREATED))
1357 || !bfd_set_section_alignment (abfd, stub, 3))
1358 {
1359 BFD_ASSERT (0);
b34976b6 1360 return FALSE;
15bda425
JL
1361 }
1362
1363 hppa_info->stub_sec = stub;
1364 }
1365
b34976b6 1366 return TRUE;
15bda425
JL
1367}
1368
1369/* Create sections necessary for dynamic linking. This is only a rough
1370 cut and will likely change as we learn more about the somewhat
1371 unusual dynamic linking scheme HP uses.
1372
1373 .stub:
1374 Contains code to implement cross-space calls. The first time one
1375 of the stubs is used it will call into the dynamic linker, later
1376 calls will go straight to the target.
1377
1378 The only stub we support right now looks like
1379
1380 ldd OFFSET(%dp),%r1
1381 bve %r0(%r1)
1382 ldd OFFSET+8(%dp),%dp
1383
1384 Other stubs may be needed in the future. We may want the remove
1385 the break/nop instruction. It is only used right now to keep the
1386 offset of a .plt entry and a .stub entry in sync.
1387
1388 .dlt:
1389 This is what most people call the .got. HP used a different name.
1390 Losers.
1391
1392 .rela.dlt:
1393 Relocations for the DLT.
1394
1395 .plt:
1396 Function pointers as address,gp pairs.
1397
1398 .rela.plt:
1399 Should contain dynamic IPLT (and EPLT?) relocations.
1400
1401 .opd:
fe8bc63d 1402 FPTRS
15bda425
JL
1403
1404 .rela.opd:
1405 EPLT relocations for symbols exported from shared libraries. */
1406
b34976b6 1407static bfd_boolean
15bda425
JL
1408elf64_hppa_create_dynamic_sections (abfd, info)
1409 bfd *abfd;
1410 struct bfd_link_info *info;
1411{
1412 asection *s;
1413
1414 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1415 return FALSE;
15bda425
JL
1416
1417 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1418 return FALSE;
15bda425
JL
1419
1420 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1421 return FALSE;
15bda425
JL
1422
1423 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1424 return FALSE;
15bda425
JL
1425
1426 s = bfd_make_section(abfd, ".rela.dlt");
1427 if (s == NULL
1428 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1429 | SEC_HAS_CONTENTS
1430 | SEC_IN_MEMORY
1431 | SEC_READONLY
1432 | SEC_LINKER_CREATED))
1433 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1434 return FALSE;
15bda425
JL
1435 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1436
1437 s = bfd_make_section(abfd, ".rela.plt");
1438 if (s == NULL
1439 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1440 | SEC_HAS_CONTENTS
1441 | SEC_IN_MEMORY
1442 | SEC_READONLY
1443 | SEC_LINKER_CREATED))
1444 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1445 return FALSE;
15bda425
JL
1446 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1447
1448 s = bfd_make_section(abfd, ".rela.data");
1449 if (s == NULL
1450 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1451 | SEC_HAS_CONTENTS
1452 | SEC_IN_MEMORY
1453 | SEC_READONLY
1454 | SEC_LINKER_CREATED))
1455 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1456 return FALSE;
15bda425
JL
1457 elf64_hppa_hash_table (info)->other_rel_sec = s;
1458
1459 s = bfd_make_section(abfd, ".rela.opd");
1460 if (s == NULL
1461 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1462 | SEC_HAS_CONTENTS
1463 | SEC_IN_MEMORY
1464 | SEC_READONLY
1465 | SEC_LINKER_CREATED))
1466 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1467 return FALSE;
15bda425
JL
1468 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1469
b34976b6 1470 return TRUE;
15bda425
JL
1471}
1472
1473/* Allocate dynamic relocations for those symbols that turned out
1474 to be dynamic. */
1475
b34976b6 1476static bfd_boolean
15bda425
JL
1477allocate_dynrel_entries (dyn_h, data)
1478 struct elf64_hppa_dyn_hash_entry *dyn_h;
1479 PTR data;
1480{
1481 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1482 struct elf64_hppa_link_hash_table *hppa_info;
1483 struct elf64_hppa_dyn_reloc_entry *rent;
b34976b6 1484 bfd_boolean dynamic_symbol, shared;
15bda425
JL
1485
1486 hppa_info = elf64_hppa_hash_table (x->info);
1487 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1488 shared = x->info->shared;
1489
1490 /* We may need to allocate relocations for a non-dynamic symbol
1491 when creating a shared library. */
1492 if (!dynamic_symbol && !shared)
b34976b6 1493 return TRUE;
15bda425
JL
1494
1495 /* Take care of the normal data relocations. */
1496
1497 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1498 {
d663e1cd
JL
1499 /* Allocate one iff we are building a shared library, the relocation
1500 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1501 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1502 continue;
1503
15bda425
JL
1504 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1505
1506 /* Make sure this symbol gets into the dynamic symbol table if it is
1507 not already recorded. ?!? This should not be in the loop since
1508 the symbol need only be added once. */
47b7c2db
AM
1509 if (dyn_h->h == 0
1510 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
15bda425
JL
1511 if (!_bfd_elf64_link_record_local_dynamic_symbol
1512 (x->info, rent->sec->owner, dyn_h->sym_indx))
b34976b6 1513 return FALSE;
15bda425
JL
1514 }
1515
1516 /* Take care of the GOT and PLT relocations. */
1517
1518 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1519 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1520
1521 /* If we are building a shared library, then every symbol that has an
1522 opd entry will need an EPLT relocation to relocate the symbol's address
1523 and __gp value based on the runtime load address. */
1524 if (shared && dyn_h->want_opd)
1525 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1526
1527 if (dyn_h->want_plt && dynamic_symbol)
1528 {
1529 bfd_size_type t = 0;
1530
1531 /* Dynamic symbols get one IPLT relocation. Local symbols in
1532 shared libraries get two REL relocations. Local symbols in
1533 main applications get nothing. */
1534 if (dynamic_symbol)
1535 t = sizeof (Elf64_External_Rela);
1536 else if (shared)
1537 t = 2 * sizeof (Elf64_External_Rela);
1538
1539 hppa_info->plt_rel_sec->_raw_size += t;
1540 }
1541
b34976b6 1542 return TRUE;
15bda425
JL
1543}
1544
1545/* Adjust a symbol defined by a dynamic object and referenced by a
1546 regular object. */
1547
b34976b6 1548static bfd_boolean
15bda425 1549elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1550 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1551 struct elf_link_hash_entry *h;
1552{
1553 /* ??? Undefined symbols with PLT entries should be re-defined
1554 to be the PLT entry. */
1555
1556 /* If this is a weak symbol, and there is a real definition, the
1557 processor independent code will have arranged for us to see the
1558 real definition first, and we can just use the same value. */
1559 if (h->weakdef != NULL)
1560 {
1561 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1562 || h->weakdef->root.type == bfd_link_hash_defweak);
1563 h->root.u.def.section = h->weakdef->root.u.def.section;
1564 h->root.u.def.value = h->weakdef->root.u.def.value;
b34976b6 1565 return TRUE;
15bda425
JL
1566 }
1567
1568 /* If this is a reference to a symbol defined by a dynamic object which
1569 is not a function, we might allocate the symbol in our .dynbss section
1570 and allocate a COPY dynamic relocation.
1571
1572 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1573 of hackery. */
1574
b34976b6 1575 return TRUE;
15bda425
JL
1576}
1577
47b7c2db
AM
1578/* This function is called via elf_link_hash_traverse to mark millicode
1579 symbols with a dynindx of -1 and to remove the string table reference
1580 from the dynamic symbol table. If the symbol is not a millicode symbol,
1581 elf64_hppa_mark_exported_functions is called. */
1582
b34976b6 1583static bfd_boolean
47b7c2db
AM
1584elf64_hppa_mark_milli_and_exported_functions (h, data)
1585 struct elf_link_hash_entry *h;
1586 PTR data;
1587{
1588 struct bfd_link_info *info = (struct bfd_link_info *)data;
1589 struct elf_link_hash_entry *elf = h;
1590
1591 if (elf->root.type == bfd_link_hash_warning)
1592 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1593
1594 if (elf->type == STT_PARISC_MILLI)
1595 {
1596 if (elf->dynindx != -1)
1597 {
1598 elf->dynindx = -1;
1599 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1600 elf->dynstr_index);
1601 }
b34976b6 1602 return TRUE;
47b7c2db
AM
1603 }
1604
1605 return elf64_hppa_mark_exported_functions (h, data);
1606}
1607
15bda425
JL
1608/* Set the final sizes of the dynamic sections and allocate memory for
1609 the contents of our special sections. */
1610
b34976b6 1611static bfd_boolean
15bda425
JL
1612elf64_hppa_size_dynamic_sections (output_bfd, info)
1613 bfd *output_bfd;
1614 struct bfd_link_info *info;
1615{
1616 bfd *dynobj;
1617 asection *s;
b34976b6
AM
1618 bfd_boolean plt;
1619 bfd_boolean relocs;
1620 bfd_boolean reltext;
15bda425
JL
1621 struct elf64_hppa_allocate_data data;
1622 struct elf64_hppa_link_hash_table *hppa_info;
1623
1624 hppa_info = elf64_hppa_hash_table (info);
1625
1626 dynobj = elf_hash_table (info)->dynobj;
1627 BFD_ASSERT (dynobj != NULL);
1628
47b7c2db
AM
1629 /* Mark each function this program exports so that we will allocate
1630 space in the .opd section for each function's FPTR. If we are
1631 creating dynamic sections, change the dynamic index of millicode
1632 symbols to -1 and remove them from the string table for .dynstr.
1633
1634 We have to traverse the main linker hash table since we have to
1635 find functions which may not have been mentioned in any relocs. */
1636 elf_link_hash_traverse (elf_hash_table (info),
1637 (elf_hash_table (info)->dynamic_sections_created
1638 ? elf64_hppa_mark_milli_and_exported_functions
1639 : elf64_hppa_mark_exported_functions),
1640 info);
1641
15bda425
JL
1642 if (elf_hash_table (info)->dynamic_sections_created)
1643 {
1644 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1645 if (info->executable)
15bda425
JL
1646 {
1647 s = bfd_get_section_by_name (dynobj, ".interp");
1648 BFD_ASSERT (s != NULL);
1649 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1650 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1651 }
1652 }
1653 else
1654 {
1655 /* We may have created entries in the .rela.got section.
1656 However, if we are not creating the dynamic sections, we will
1657 not actually use these entries. Reset the size of .rela.dlt,
1658 which will cause it to get stripped from the output file
1659 below. */
1660 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1661 if (s != NULL)
1662 s->_raw_size = 0;
1663 }
1664
1665 /* Allocate the GOT entries. */
1666
1667 data.info = info;
1668 if (elf64_hppa_hash_table (info)->dlt_sec)
1669 {
1670 data.ofs = 0x0;
1671 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1672 allocate_global_data_dlt, &data);
1673 hppa_info->dlt_sec->_raw_size = data.ofs;
1674
1675 data.ofs = 0x0;
1676 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1677 allocate_global_data_plt, &data);
1678 hppa_info->plt_sec->_raw_size = data.ofs;
1679
1680 data.ofs = 0x0;
1681 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1682 allocate_global_data_stub, &data);
1683 hppa_info->stub_sec->_raw_size = data.ofs;
1684 }
1685
15bda425
JL
1686 /* Allocate space for entries in the .opd section. */
1687 if (elf64_hppa_hash_table (info)->opd_sec)
1688 {
1689 data.ofs = 0;
1690 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1691 allocate_global_data_opd, &data);
1692 hppa_info->opd_sec->_raw_size = data.ofs;
1693 }
1694
1695 /* Now allocate space for dynamic relocations, if necessary. */
1696 if (hppa_info->root.dynamic_sections_created)
1697 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1698 allocate_dynrel_entries, &data);
1699
1700 /* The sizes of all the sections are set. Allocate memory for them. */
b34976b6
AM
1701 plt = FALSE;
1702 relocs = FALSE;
1703 reltext = FALSE;
15bda425
JL
1704 for (s = dynobj->sections; s != NULL; s = s->next)
1705 {
1706 const char *name;
b34976b6 1707 bfd_boolean strip;
15bda425
JL
1708
1709 if ((s->flags & SEC_LINKER_CREATED) == 0)
1710 continue;
1711
1712 /* It's OK to base decisions on the section name, because none
1713 of the dynobj section names depend upon the input files. */
1714 name = bfd_get_section_name (dynobj, s);
1715
1716 strip = 0;
1717
1718 if (strcmp (name, ".plt") == 0)
1719 {
d663e1cd 1720 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1721 if (s->_raw_size == 0)
1722 {
b34976b6 1723 strip = TRUE;
15bda425
JL
1724 }
1725 else
1726 {
1727 /* Remember whether there is a PLT. */
b34976b6 1728 plt = TRUE;
15bda425
JL
1729 }
1730 }
1731 else if (strcmp (name, ".dlt") == 0)
1732 {
d663e1cd 1733 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1734 if (s->_raw_size == 0)
1735 {
b34976b6 1736 strip = TRUE;
15bda425
JL
1737 }
1738 }
1739 else if (strcmp (name, ".opd") == 0)
1740 {
d663e1cd 1741 /* Strip this section if we don't need it; see the comment below. */
15bda425
JL
1742 if (s->_raw_size == 0)
1743 {
b34976b6 1744 strip = TRUE;
15bda425
JL
1745 }
1746 }
d663e1cd 1747 else if (strncmp (name, ".rela", 5) == 0)
15bda425 1748 {
d663e1cd
JL
1749 /* If we don't need this section, strip it from the output file.
1750 This is mostly to handle .rela.bss and .rela.plt. We must
1751 create both sections in create_dynamic_sections, because they
1752 must be created before the linker maps input sections to output
1753 sections. The linker does that before adjust_dynamic_symbol
1754 is called, and it is that function which decides whether
1755 anything needs to go into these sections. */
15bda425
JL
1756 if (s->_raw_size == 0)
1757 {
1758 /* If we don't need this section, strip it from the
1759 output file. This is mostly to handle .rela.bss and
1760 .rela.plt. We must create both sections in
1761 create_dynamic_sections, because they must be created
1762 before the linker maps input sections to output
1763 sections. The linker does that before
1764 adjust_dynamic_symbol is called, and it is that
1765 function which decides whether anything needs to go
1766 into these sections. */
b34976b6 1767 strip = TRUE;
15bda425
JL
1768 }
1769 else
1770 {
1771 asection *target;
1772
1773 /* Remember whether there are any reloc sections other
1774 than .rela.plt. */
1775 if (strcmp (name, ".rela.plt") != 0)
1776 {
1777 const char *outname;
1778
b34976b6 1779 relocs = TRUE;
15bda425
JL
1780
1781 /* If this relocation section applies to a read only
1782 section, then we probably need a DT_TEXTREL
1783 entry. The entries in the .rela.plt section
1784 really apply to the .got section, which we
1785 created ourselves and so know is not readonly. */
1786 outname = bfd_get_section_name (output_bfd,
1787 s->output_section);
1788 target = bfd_get_section_by_name (output_bfd, outname + 4);
1789 if (target != NULL
1790 && (target->flags & SEC_READONLY) != 0
1791 && (target->flags & SEC_ALLOC) != 0)
b34976b6 1792 reltext = TRUE;
15bda425
JL
1793 }
1794
1795 /* We use the reloc_count field as a counter if we need
1796 to copy relocs into the output file. */
1797 s->reloc_count = 0;
1798 }
1799 }
1800 else if (strncmp (name, ".dlt", 4) != 0
1801 && strcmp (name, ".stub") != 0
1802 && strcmp (name, ".got") != 0)
1803 {
1804 /* It's not one of our sections, so don't allocate space. */
1805 continue;
1806 }
1807
1808 if (strip)
1809 {
1810 _bfd_strip_section_from_output (info, s);
1811 continue;
1812 }
1813
1814 /* Allocate memory for the section contents if it has not
832d951b
AM
1815 been allocated already. We use bfd_zalloc here in case
1816 unused entries are not reclaimed before the section's
1817 contents are written out. This should not happen, but this
1818 way if it does, we get a R_PARISC_NONE reloc instead of
1819 garbage. */
15bda425
JL
1820 if (s->contents == NULL)
1821 {
7a9af8c4 1822 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425 1823 if (s->contents == NULL && s->_raw_size != 0)
b34976b6 1824 return FALSE;
15bda425
JL
1825 }
1826 }
1827
1828 if (elf_hash_table (info)->dynamic_sections_created)
1829 {
1830 /* Always create a DT_PLTGOT. It actually has nothing to do with
1831 the PLT, it is how we communicate the __gp value of a load
1832 module to the dynamic linker. */
dc810e39
AM
1833#define add_dynamic_entry(TAG, VAL) \
1834 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1835
1836 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1837 || !add_dynamic_entry (DT_PLTGOT, 0))
b34976b6 1838 return FALSE;
15bda425
JL
1839
1840 /* Add some entries to the .dynamic section. We fill in the
1841 values later, in elf64_hppa_finish_dynamic_sections, but we
1842 must add the entries now so that we get the correct size for
1843 the .dynamic section. The DT_DEBUG entry is filled in by the
1844 dynamic linker and used by the debugger. */
1845 if (! info->shared)
1846 {
dc810e39
AM
1847 if (!add_dynamic_entry (DT_DEBUG, 0)
1848 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1849 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
b34976b6 1850 return FALSE;
15bda425
JL
1851 }
1852
f2482cb2
NC
1853 /* Force DT_FLAGS to always be set.
1854 Required by HPUX 11.00 patch PHSS_26559. */
1855 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
b34976b6 1856 return FALSE;
f2482cb2 1857
15bda425
JL
1858 if (plt)
1859 {
dc810e39
AM
1860 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1861 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1862 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 1863 return FALSE;
15bda425
JL
1864 }
1865
1866 if (relocs)
1867 {
dc810e39
AM
1868 if (!add_dynamic_entry (DT_RELA, 0)
1869 || !add_dynamic_entry (DT_RELASZ, 0)
1870 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
b34976b6 1871 return FALSE;
15bda425
JL
1872 }
1873
1874 if (reltext)
1875 {
dc810e39 1876 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 1877 return FALSE;
d6cf2879 1878 info->flags |= DF_TEXTREL;
15bda425
JL
1879 }
1880 }
dc810e39 1881#undef add_dynamic_entry
15bda425 1882
b34976b6 1883 return TRUE;
15bda425
JL
1884}
1885
1886/* Called after we have output the symbol into the dynamic symbol
1887 table, but before we output the symbol into the normal symbol
1888 table.
1889
1890 For some symbols we had to change their address when outputting
1891 the dynamic symbol table. We undo that change here so that
1892 the symbols have their expected value in the normal symbol
1893 table. Ick. */
1894
b34976b6 1895static bfd_boolean
15bda425 1896elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1897 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1898 struct bfd_link_info *info;
1899 const char *name;
1900 Elf_Internal_Sym *sym;
edd21aca 1901 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1902{
1903 struct elf64_hppa_link_hash_table *hppa_info;
1904 struct elf64_hppa_dyn_hash_entry *dyn_h;
1905
1906 /* We may be called with the file symbol or section symbols.
1907 They never need munging, so it is safe to ignore them. */
1908 if (!name)
b34976b6 1909 return TRUE;
15bda425
JL
1910
1911 /* Get the PA dyn_symbol (if any) associated with NAME. */
1912 hppa_info = elf64_hppa_hash_table (info);
1913 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1914 name, FALSE, FALSE);
15bda425 1915
832d951b
AM
1916 /* Function symbols for which we created .opd entries *may* have been
1917 munged by finish_dynamic_symbol and have to be un-munged here.
1918
1919 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1920 into non-dynamic ones, so we initialize st_shndx to -1 in
1921 mark_exported_functions and check to see if it was overwritten
1922 here instead of just checking dyn_h->h->dynindx. */
1923 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1924 {
1925 /* Restore the saved value and section index. */
1926 sym->st_value = dyn_h->st_value;
fe8bc63d 1927 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1928 }
1929
b34976b6 1930 return TRUE;
15bda425
JL
1931}
1932
1933/* Finish up dynamic symbol handling. We set the contents of various
1934 dynamic sections here. */
1935
b34976b6 1936static bfd_boolean
15bda425
JL
1937elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1938 bfd *output_bfd;
1939 struct bfd_link_info *info;
1940 struct elf_link_hash_entry *h;
1941 Elf_Internal_Sym *sym;
1942{
1943 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1944 struct elf64_hppa_link_hash_table *hppa_info;
1945 struct elf64_hppa_dyn_hash_entry *dyn_h;
1946
1947 hppa_info = elf64_hppa_hash_table (info);
1948 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1949 h->root.root.string, FALSE, FALSE);
15bda425
JL
1950
1951 stub = hppa_info->stub_sec;
1952 splt = hppa_info->plt_sec;
1953 sdlt = hppa_info->dlt_sec;
1954 sopd = hppa_info->opd_sec;
1955 spltrel = hppa_info->plt_rel_sec;
1956 sdltrel = hppa_info->dlt_rel_sec;
1957
15bda425
JL
1958 /* Incredible. It is actually necessary to NOT use the symbol's real
1959 value when building the dynamic symbol table for a shared library.
1960 At least for symbols that refer to functions.
1961
1962 We will store a new value and section index into the symbol long
1963 enough to output it into the dynamic symbol table, then we restore
1964 the original values (in elf64_hppa_link_output_symbol_hook). */
1965 if (dyn_h && dyn_h->want_opd)
1966 {
d663e1cd
JL
1967 BFD_ASSERT (sopd != NULL)
1968
15bda425
JL
1969 /* Save away the original value and section index so that we
1970 can restore them later. */
1971 dyn_h->st_value = sym->st_value;
1972 dyn_h->st_shndx = sym->st_shndx;
1973
1974 /* For the dynamic symbol table entry, we want the value to be
1975 address of this symbol's entry within the .opd section. */
1976 sym->st_value = (dyn_h->opd_offset
1977 + sopd->output_offset
1978 + sopd->output_section->vma);
1979 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1980 sopd->output_section);
1981 }
1982
1983 /* Initialize a .plt entry if requested. */
1984 if (dyn_h && dyn_h->want_plt
1985 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1986 {
1987 bfd_vma value;
1988 Elf_Internal_Rela rel;
947216bf 1989 bfd_byte *loc;
15bda425 1990
d663e1cd
JL
1991 BFD_ASSERT (splt != NULL && spltrel != NULL)
1992
15bda425
JL
1993 /* We do not actually care about the value in the PLT entry
1994 if we are creating a shared library and the symbol is
1995 still undefined, we create a dynamic relocation to fill
1996 in the correct value. */
1997 if (info->shared && h->root.type == bfd_link_hash_undefined)
1998 value = 0;
1999 else
2000 value = (h->root.u.def.value + h->root.u.def.section->vma);
2001
fe8bc63d 2002 /* Fill in the entry in the procedure linkage table.
15bda425
JL
2003
2004 The format of a plt entry is
fe8bc63d 2005 <funcaddr> <__gp>.
15bda425
JL
2006
2007 plt_offset is the offset within the PLT section at which to
fe8bc63d 2008 install the PLT entry.
15bda425
JL
2009
2010 We are modifying the in-memory PLT contents here, so we do not add
2011 in the output_offset of the PLT section. */
2012
2013 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2014 value = _bfd_get_gp_value (splt->output_section->owner);
2015 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2016
2017 /* Create a dynamic IPLT relocation for this entry.
2018
2019 We are creating a relocation in the output file's PLT section,
2020 which is included within the DLT secton. So we do need to include
2021 the PLT's output_offset in the computation of the relocation's
2022 address. */
2023 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2024 + splt->output_section->vma);
2025 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2026 rel.r_addend = 0;
2027
947216bf
AM
2028 loc = spltrel->contents;
2029 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2030 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
15bda425
JL
2031 }
2032
2033 /* Initialize an external call stub entry if requested. */
2034 if (dyn_h && dyn_h->want_stub
2035 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2036 {
2037 bfd_vma value;
2038 int insn;
b352eebf 2039 unsigned int max_offset;
15bda425 2040
d663e1cd
JL
2041 BFD_ASSERT (stub != NULL)
2042
15bda425
JL
2043 /* Install the generic stub template.
2044
2045 We are modifying the contents of the stub section, so we do not
2046 need to include the stub section's output_offset here. */
2047 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2048
2049 /* Fix up the first ldd instruction.
2050
2051 We are modifying the contents of the STUB section in memory,
fe8bc63d 2052 so we do not need to include its output offset in this computation.
15bda425
JL
2053
2054 Note the plt_offset value is the value of the PLT entry relative to
2055 the start of the PLT section. These instructions will reference
2056 data relative to the value of __gp, which may not necessarily have
2057 the same address as the start of the PLT section.
2058
2059 gp_offset contains the offset of __gp within the PLT section. */
2060 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2061
15bda425 2062 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2063 if (output_bfd->arch_info->mach >= 25)
2064 {
2065 /* Wide mode allows 16 bit offsets. */
2066 max_offset = 32768;
2067 insn &= ~ 0xfff1;
dc810e39 2068 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2069 }
2070 else
2071 {
2072 max_offset = 8192;
2073 insn &= ~ 0x3ff1;
dc810e39 2074 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2075 }
2076
2077 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2078 {
2079 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2080 dyn_h->root.string,
2081 (long) value);
b34976b6 2082 return FALSE;
b352eebf
AM
2083 }
2084
dc810e39 2085 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2086 stub->contents + dyn_h->stub_offset);
2087
2088 /* Fix up the second ldd instruction. */
b352eebf 2089 value += 8;
15bda425 2090 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2091 if (output_bfd->arch_info->mach >= 25)
2092 {
2093 insn &= ~ 0xfff1;
dc810e39 2094 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2095 }
2096 else
2097 {
2098 insn &= ~ 0x3ff1;
dc810e39 2099 insn |= re_assemble_14 ((int) value);
b352eebf 2100 }
dc810e39 2101 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2102 stub->contents + dyn_h->stub_offset + 8);
2103 }
2104
b34976b6 2105 return TRUE;
15bda425
JL
2106}
2107
2108/* The .opd section contains FPTRs for each function this file
2109 exports. Initialize the FPTR entries. */
2110
b34976b6 2111static bfd_boolean
15bda425
JL
2112elf64_hppa_finalize_opd (dyn_h, data)
2113 struct elf64_hppa_dyn_hash_entry *dyn_h;
2114 PTR data;
2115{
2116 struct bfd_link_info *info = (struct bfd_link_info *)data;
2117 struct elf64_hppa_link_hash_table *hppa_info;
3db4b612 2118 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2119 asection *sopd;
2120 asection *sopdrel;
2121
2122 hppa_info = elf64_hppa_hash_table (info);
2123 sopd = hppa_info->opd_sec;
2124 sopdrel = hppa_info->opd_rel_sec;
2125
3db4b612 2126 if (h && dyn_h->want_opd)
15bda425
JL
2127 {
2128 bfd_vma value;
2129
fe8bc63d 2130 /* The first two words of an .opd entry are zero.
15bda425
JL
2131
2132 We are modifying the contents of the OPD section in memory, so we
2133 do not need to include its output offset in this computation. */
2134 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2135
2136 value = (h->root.u.def.value
2137 + h->root.u.def.section->output_section->vma
2138 + h->root.u.def.section->output_offset);
2139
2140 /* The next word is the address of the function. */
2141 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2142
2143 /* The last word is our local __gp value. */
2144 value = _bfd_get_gp_value (sopd->output_section->owner);
2145 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2146 }
2147
2148 /* If we are generating a shared library, we must generate EPLT relocations
2149 for each entry in the .opd, even for static functions (they may have
2150 had their address taken). */
2151 if (info->shared && dyn_h && dyn_h->want_opd)
2152 {
947216bf
AM
2153 Elf_Internal_Rela rel;
2154 bfd_byte *loc;
15bda425
JL
2155 int dynindx;
2156
2157 /* We may need to do a relocation against a local symbol, in
2158 which case we have to look up it's dynamic symbol index off
2159 the local symbol hash table. */
2160 if (h && h->dynindx != -1)
2161 dynindx = h->dynindx;
2162 else
2163 dynindx
2164 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2165 dyn_h->sym_indx);
2166
2167 /* The offset of this relocation is the absolute address of the
2168 .opd entry for this symbol. */
2169 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2170 + sopd->output_section->vma);
2171
2172 /* If H is non-null, then we have an external symbol.
2173
2174 It is imperative that we use a different dynamic symbol for the
2175 EPLT relocation if the symbol has global scope.
2176
2177 In the dynamic symbol table, the function symbol will have a value
2178 which is address of the function's .opd entry.
2179
2180 Thus, we can not use that dynamic symbol for the EPLT relocation
2181 (if we did, the data in the .opd would reference itself rather
2182 than the actual address of the function). Instead we have to use
2183 a new dynamic symbol which has the same value as the original global
fe8bc63d 2184 function symbol.
15bda425
JL
2185
2186 We prefix the original symbol with a "." and use the new symbol in
2187 the EPLT relocation. This new symbol has already been recorded in
2188 the symbol table, we just have to look it up and use it.
2189
2190 We do not have such problems with static functions because we do
2191 not make their addresses in the dynamic symbol table point to
2192 the .opd entry. Ultimately this should be safe since a static
2193 function can not be directly referenced outside of its shared
2194 library.
2195
2196 We do have to play similar games for FPTR relocations in shared
2197 libraries, including those for static symbols. See the FPTR
2198 handling in elf64_hppa_finalize_dynreloc. */
2199 if (h)
2200 {
2201 char *new_name;
2202 struct elf_link_hash_entry *nh;
2203
2204 new_name = alloca (strlen (h->root.root.string) + 2);
2205 new_name[0] = '.';
2206 strcpy (new_name + 1, h->root.root.string);
2207
2208 nh = elf_link_hash_lookup (elf_hash_table (info),
b34976b6 2209 new_name, FALSE, FALSE, FALSE);
15bda425
JL
2210
2211 /* All we really want from the new symbol is its dynamic
2212 symbol index. */
2213 dynindx = nh->dynindx;
2214 }
2215
2216 rel.r_addend = 0;
2217 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2218
947216bf
AM
2219 loc = sopdrel->contents;
2220 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2221 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
15bda425 2222 }
b34976b6 2223 return TRUE;
15bda425
JL
2224}
2225
2226/* The .dlt section contains addresses for items referenced through the
2227 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2228 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2229
b34976b6 2230static bfd_boolean
15bda425
JL
2231elf64_hppa_finalize_dlt (dyn_h, data)
2232 struct elf64_hppa_dyn_hash_entry *dyn_h;
2233 PTR data;
2234{
2235 struct bfd_link_info *info = (struct bfd_link_info *)data;
2236 struct elf64_hppa_link_hash_table *hppa_info;
2237 asection *sdlt, *sdltrel;
3db4b612 2238 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2239
2240 hppa_info = elf64_hppa_hash_table (info);
2241
2242 sdlt = hppa_info->dlt_sec;
2243 sdltrel = hppa_info->dlt_rel_sec;
2244
2245 /* H/DYN_H may refer to a local variable and we know it's
2246 address, so there is no need to create a relocation. Just install
2247 the proper value into the DLT, note this shortcut can not be
2248 skipped when building a shared library. */
3db4b612 2249 if (! info->shared && h && dyn_h->want_dlt)
15bda425
JL
2250 {
2251 bfd_vma value;
2252
2253 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2254 to point to the FPTR entry in the .opd section.
15bda425
JL
2255
2256 We include the OPD's output offset in this computation as
2257 we are referring to an absolute address in the resulting
2258 object file. */
2259 if (dyn_h->want_opd)
2260 {
2261 value = (dyn_h->opd_offset
2262 + hppa_info->opd_sec->output_offset
2263 + hppa_info->opd_sec->output_section->vma);
2264 }
37f4508b
AM
2265 else if ((h->root.type == bfd_link_hash_defined
2266 || h->root.type == bfd_link_hash_defweak)
2267 && h->root.u.def.section)
15bda425 2268 {
3db4b612 2269 value = h->root.u.def.value + h->root.u.def.section->output_offset;
15bda425
JL
2270 if (h->root.u.def.section->output_section)
2271 value += h->root.u.def.section->output_section->vma;
2272 else
2273 value += h->root.u.def.section->vma;
2274 }
3db4b612
JL
2275 else
2276 /* We have an undefined function reference. */
2277 value = 0;
15bda425
JL
2278
2279 /* We do not need to include the output offset of the DLT section
2280 here because we are modifying the in-memory contents. */
2281 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2282 }
2283
2284 /* Create a relocation for the DLT entry assocated with this symbol.
2285 When building a shared library the symbol does not have to be dynamic. */
2286 if (dyn_h->want_dlt
2287 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2288 {
947216bf
AM
2289 Elf_Internal_Rela rel;
2290 bfd_byte *loc;
15bda425
JL
2291 int dynindx;
2292
2293 /* We may need to do a relocation against a local symbol, in
2294 which case we have to look up it's dynamic symbol index off
2295 the local symbol hash table. */
2296 if (h && h->dynindx != -1)
2297 dynindx = h->dynindx;
2298 else
2299 dynindx
2300 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2301 dyn_h->sym_indx);
2302
15bda425
JL
2303 /* Create a dynamic relocation for this entry. Do include the output
2304 offset of the DLT entry since we need an absolute address in the
2305 resulting object file. */
2306 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2307 + sdlt->output_section->vma);
2308 if (h && h->type == STT_FUNC)
2309 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2310 else
2311 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2312 rel.r_addend = 0;
2313
947216bf
AM
2314 loc = sdltrel->contents;
2315 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2316 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
15bda425 2317 }
b34976b6 2318 return TRUE;
15bda425
JL
2319}
2320
2321/* Finalize the dynamic relocations. Specifically the FPTR relocations
2322 for dynamic functions used to initialize static data. */
2323
b34976b6 2324static bfd_boolean
15bda425
JL
2325elf64_hppa_finalize_dynreloc (dyn_h, data)
2326 struct elf64_hppa_dyn_hash_entry *dyn_h;
2327 PTR data;
2328{
2329 struct bfd_link_info *info = (struct bfd_link_info *)data;
2330 struct elf64_hppa_link_hash_table *hppa_info;
2331 struct elf_link_hash_entry *h;
2332 int dynamic_symbol;
2333
2334 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2335
2336 if (!dynamic_symbol && !info->shared)
b34976b6 2337 return TRUE;
15bda425
JL
2338
2339 if (dyn_h->reloc_entries)
2340 {
2341 struct elf64_hppa_dyn_reloc_entry *rent;
2342 int dynindx;
2343
2344 hppa_info = elf64_hppa_hash_table (info);
2345 h = dyn_h->h;
2346
2347 /* We may need to do a relocation against a local symbol, in
2348 which case we have to look up it's dynamic symbol index off
2349 the local symbol hash table. */
2350 if (h && h->dynindx != -1)
2351 dynindx = h->dynindx;
2352 else
2353 dynindx
2354 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2355 dyn_h->sym_indx);
2356
2357 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2358 {
947216bf
AM
2359 Elf_Internal_Rela rel;
2360 bfd_byte *loc;
15bda425 2361
d663e1cd
JL
2362 /* Allocate one iff we are building a shared library, the relocation
2363 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2364 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2365 continue;
15bda425 2366
fe8bc63d 2367 /* Create a dynamic relocation for this entry.
15bda425
JL
2368
2369 We need the output offset for the reloc's section because
2370 we are creating an absolute address in the resulting object
2371 file. */
2372 rel.r_offset = (rent->offset + rent->sec->output_offset
2373 + rent->sec->output_section->vma);
2374
2375 /* An FPTR64 relocation implies that we took the address of
2376 a function and that the function has an entry in the .opd
2377 section. We want the FPTR64 relocation to reference the
2378 entry in .opd.
2379
2380 We could munge the symbol value in the dynamic symbol table
2381 (in fact we already do for functions with global scope) to point
2382 to the .opd entry. Then we could use that dynamic symbol in
2383 this relocation.
2384
2385 Or we could do something sensible, not munge the symbol's
2386 address and instead just use a different symbol to reference
2387 the .opd entry. At least that seems sensible until you
2388 realize there's no local dynamic symbols we can use for that
2389 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2390
15bda425
JL
2391 We use a section symbol recorded by check_relocs as the
2392 base symbol for the relocation. The addend is the difference
2393 between the section symbol and the address of the .opd entry. */
3db4b612 2394 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
15bda425
JL
2395 {
2396 bfd_vma value, value2;
15bda425
JL
2397
2398 /* First compute the address of the opd entry for this symbol. */
2399 value = (dyn_h->opd_offset
2400 + hppa_info->opd_sec->output_section->vma
2401 + hppa_info->opd_sec->output_offset);
2402
2403 /* Compute the value of the start of the section with
2404 the relocation. */
2405 value2 = (rent->sec->output_section->vma
2406 + rent->sec->output_offset);
2407
2408 /* Compute the difference between the start of the section
2409 with the relocation and the opd entry. */
2410 value -= value2;
fe8bc63d 2411
15bda425
JL
2412 /* The result becomes the addend of the relocation. */
2413 rel.r_addend = value;
2414
2415 /* The section symbol becomes the symbol for the dynamic
2416 relocation. */
2417 dynindx
2418 = _bfd_elf_link_lookup_local_dynindx (info,
2419 rent->sec->owner,
2420 rent->sec_symndx);
2421 }
2422 else
2423 rel.r_addend = rent->addend;
2424
2425 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2426
947216bf
AM
2427 loc = hppa_info->other_rel_sec->contents;
2428 loc += (hppa_info->other_rel_sec->reloc_count++
2429 * sizeof (Elf64_External_Rela));
15bda425 2430 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
947216bf 2431 &rel, loc);
15bda425
JL
2432 }
2433 }
2434
b34976b6 2435 return TRUE;
15bda425
JL
2436}
2437
5ac81c74
JL
2438/* Used to decide how to sort relocs in an optimal manner for the
2439 dynamic linker, before writing them out. */
2440
2441static enum elf_reloc_type_class
2442elf64_hppa_reloc_type_class (rela)
2443 const Elf_Internal_Rela *rela;
2444{
2445 if (ELF64_R_SYM (rela->r_info) == 0)
2446 return reloc_class_relative;
2447
2448 switch ((int) ELF64_R_TYPE (rela->r_info))
2449 {
2450 case R_PARISC_IPLT:
2451 return reloc_class_plt;
2452 case R_PARISC_COPY:
2453 return reloc_class_copy;
2454 default:
2455 return reloc_class_normal;
2456 }
2457}
2458
15bda425
JL
2459/* Finish up the dynamic sections. */
2460
b34976b6 2461static bfd_boolean
15bda425
JL
2462elf64_hppa_finish_dynamic_sections (output_bfd, info)
2463 bfd *output_bfd;
2464 struct bfd_link_info *info;
2465{
2466 bfd *dynobj;
2467 asection *sdyn;
2468 struct elf64_hppa_link_hash_table *hppa_info;
2469
2470 hppa_info = elf64_hppa_hash_table (info);
2471
2472 /* Finalize the contents of the .opd section. */
2473 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2474 elf64_hppa_finalize_opd,
2475 info);
2476
2477 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2478 elf64_hppa_finalize_dynreloc,
2479 info);
2480
2481 /* Finalize the contents of the .dlt section. */
2482 dynobj = elf_hash_table (info)->dynobj;
2483 /* Finalize the contents of the .dlt section. */
2484 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2485 elf64_hppa_finalize_dlt,
2486 info);
2487
15bda425
JL
2488 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2489
2490 if (elf_hash_table (info)->dynamic_sections_created)
2491 {
2492 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2493
2494 BFD_ASSERT (sdyn != NULL);
2495
2496 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2497 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2498 for (; dyncon < dynconend; dyncon++)
2499 {
2500 Elf_Internal_Dyn dyn;
2501 asection *s;
2502
2503 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2504
2505 switch (dyn.d_tag)
2506 {
2507 default:
2508 break;
2509
2510 case DT_HP_LOAD_MAP:
2511 /* Compute the absolute address of 16byte scratchpad area
2512 for the dynamic linker.
2513
2514 By convention the linker script will allocate the scratchpad
2515 area at the start of the .data section. So all we have to
2516 to is find the start of the .data section. */
2517 s = bfd_get_section_by_name (output_bfd, ".data");
2518 dyn.d_un.d_ptr = s->vma;
2519 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2520 break;
2521
2522 case DT_PLTGOT:
2523 /* HP's use PLTGOT to set the GOT register. */
2524 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2525 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2526 break;
2527
2528 case DT_JMPREL:
2529 s = hppa_info->plt_rel_sec;
2530 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2531 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2532 break;
2533
2534 case DT_PLTRELSZ:
2535 s = hppa_info->plt_rel_sec;
2536 dyn.d_un.d_val = s->_raw_size;
2537 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2538 break;
2539
2540 case DT_RELA:
2541 s = hppa_info->other_rel_sec;
5ac81c74 2542 if (! s || ! s->_raw_size)
15bda425 2543 s = hppa_info->dlt_rel_sec;
5ac81c74
JL
2544 if (! s || ! s->_raw_size)
2545 s = hppa_info->opd_rel_sec;
15bda425
JL
2546 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2547 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2548 break;
2549
2550 case DT_RELASZ:
2551 s = hppa_info->other_rel_sec;
2552 dyn.d_un.d_val = s->_raw_size;
2553 s = hppa_info->dlt_rel_sec;
2554 dyn.d_un.d_val += s->_raw_size;
2555 s = hppa_info->opd_rel_sec;
2556 dyn.d_un.d_val += s->_raw_size;
2557 /* There is some question about whether or not the size of
2558 the PLT relocs should be included here. HP's tools do
2559 it, so we'll emulate them. */
2560 s = hppa_info->plt_rel_sec;
2561 dyn.d_un.d_val += s->_raw_size;
2562 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2563 break;
2564
2565 }
2566 }
2567 }
2568
b34976b6 2569 return TRUE;
15bda425
JL
2570}
2571
15bda425
JL
2572/* Return the number of additional phdrs we will need.
2573
2574 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2575 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2576
2577 This routine indicates that the backend needs one additional program
2578 header for that case.
2579
2580 Note we do not have access to the link info structure here, so we have
2581 to guess whether or not we are building a shared library based on the
2582 existence of a .interp section. */
2583
2584static int
2585elf64_hppa_additional_program_headers (abfd)
2586 bfd *abfd;
2587{
2588 asection *s;
2589
2590 /* If we are creating a shared library, then we have to create a
2591 PT_PHDR segment. HP's dynamic linker chokes without it. */
2592 s = bfd_get_section_by_name (abfd, ".interp");
2593 if (! s)
2594 return 1;
2595 return 0;
2596}
2597
2598/* Allocate and initialize any program headers required by this
2599 specific backend.
2600
2601 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2602 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2603
2604 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2605 for the HP linker.
15bda425
JL
2606
2607 Note we do not have access to the link info structure here, so we have
2608 to guess whether or not we are building a shared library based on the
2609 existence of a .interp section. */
2610
b34976b6 2611static bfd_boolean
c84fca4d 2612elf64_hppa_modify_segment_map (abfd, info)
15bda425 2613 bfd *abfd;
c84fca4d 2614 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425 2615{
edd21aca 2616 struct elf_segment_map *m;
15bda425
JL
2617 asection *s;
2618
2619 s = bfd_get_section_by_name (abfd, ".interp");
2620 if (! s)
2621 {
2622 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2623 if (m->p_type == PT_PHDR)
2624 break;
2625 if (m == NULL)
2626 {
dc810e39
AM
2627 m = ((struct elf_segment_map *)
2628 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425 2629 if (m == NULL)
b34976b6 2630 return FALSE;
15bda425
JL
2631
2632 m->p_type = PT_PHDR;
2633 m->p_flags = PF_R | PF_X;
2634 m->p_flags_valid = 1;
2635 m->p_paddr_valid = 1;
2636 m->includes_phdrs = 1;
2637
2638 m->next = elf_tdata (abfd)->segment_map;
2639 elf_tdata (abfd)->segment_map = m;
2640 }
2641 }
2642
2643 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2644 if (m->p_type == PT_LOAD)
2645 {
0ba2a60e 2646 unsigned int i;
15bda425
JL
2647
2648 for (i = 0; i < m->count; i++)
2649 {
2650 /* The code "hint" is not really a hint. It is a requirement
2651 for certain versions of the HP dynamic linker. Worse yet,
2652 it must be set even if the shared library does not have
2653 any code in its "text" segment (thus the check for .hash
2654 to catch this situation). */
2655 if (m->sections[i]->flags & SEC_CODE
2656 || (strcmp (m->sections[i]->name, ".hash") == 0))
2657 m->p_flags |= (PF_X | PF_HP_CODE);
2658 }
2659 }
2660
b34976b6 2661 return TRUE;
15bda425
JL
2662}
2663
3fab46d0
AM
2664/* Called when writing out an object file to decide the type of a
2665 symbol. */
2666static int
2667elf64_hppa_elf_get_symbol_type (elf_sym, type)
2668 Elf_Internal_Sym *elf_sym;
2669 int type;
2670{
2671 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2672 return STT_PARISC_MILLI;
2673 else
2674 return type;
2675}
2676
2f89ff8d
L
2677static struct bfd_elf_special_section const elf64_hppa_special_sections[]=
2678{
7dcb9820
AM
2679 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2680 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2681 { NULL, 0, 0, 0, 0 }
2f89ff8d
L
2682};
2683
15bda425
JL
2684/* The hash bucket size is the standard one, namely 4. */
2685
2686const struct elf_size_info hppa64_elf_size_info =
2687{
2688 sizeof (Elf64_External_Ehdr),
2689 sizeof (Elf64_External_Phdr),
2690 sizeof (Elf64_External_Shdr),
2691 sizeof (Elf64_External_Rel),
2692 sizeof (Elf64_External_Rela),
2693 sizeof (Elf64_External_Sym),
2694 sizeof (Elf64_External_Dyn),
2695 sizeof (Elf_External_Note),
2696 4,
2697 1,
45d6a902 2698 64, 3,
15bda425
JL
2699 ELFCLASS64, EV_CURRENT,
2700 bfd_elf64_write_out_phdrs,
2701 bfd_elf64_write_shdrs_and_ehdr,
2702 bfd_elf64_write_relocs,
73ff0d56 2703 bfd_elf64_swap_symbol_in,
15bda425
JL
2704 bfd_elf64_swap_symbol_out,
2705 bfd_elf64_slurp_reloc_table,
2706 bfd_elf64_slurp_symbol_table,
2707 bfd_elf64_swap_dyn_in,
2708 bfd_elf64_swap_dyn_out,
947216bf
AM
2709 bfd_elf64_swap_reloc_in,
2710 bfd_elf64_swap_reloc_out,
2711 bfd_elf64_swap_reloca_in,
2712 bfd_elf64_swap_reloca_out
15bda425
JL
2713};
2714
2715#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2716#define TARGET_BIG_NAME "elf64-hppa"
2717#define ELF_ARCH bfd_arch_hppa
2718#define ELF_MACHINE_CODE EM_PARISC
2719/* This is not strictly correct. The maximum page size for PA2.0 is
2720 64M. But everything still uses 4k. */
2721#define ELF_MAXPAGESIZE 0x1000
2722#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2723#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2724#define elf_info_to_howto elf_hppa_info_to_howto
2725#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2726
2727#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2728#define elf_backend_object_p elf64_hppa_object_p
2729#define elf_backend_final_write_processing \
2730 elf_hppa_final_write_processing
99c79b2e 2731#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2732#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2733
f0fe0e16 2734#define elf_backend_relocate_section elf_hppa_relocate_section
15bda425
JL
2735
2736#define bfd_elf64_bfd_final_link elf_hppa_final_link
2737
2738#define elf_backend_create_dynamic_sections \
2739 elf64_hppa_create_dynamic_sections
2740#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2741
2742#define elf_backend_adjust_dynamic_symbol \
2743 elf64_hppa_adjust_dynamic_symbol
2744
2745#define elf_backend_size_dynamic_sections \
2746 elf64_hppa_size_dynamic_sections
2747
2748#define elf_backend_finish_dynamic_symbol \
2749 elf64_hppa_finish_dynamic_symbol
2750#define elf_backend_finish_dynamic_sections \
2751 elf64_hppa_finish_dynamic_sections
2752
2753/* Stuff for the BFD linker: */
2754#define bfd_elf64_bfd_link_hash_table_create \
2755 elf64_hppa_hash_table_create
2756
2757#define elf_backend_check_relocs \
2758 elf64_hppa_check_relocs
2759
2760#define elf_backend_size_info \
2761 hppa64_elf_size_info
2762
2763#define elf_backend_additional_program_headers \
2764 elf64_hppa_additional_program_headers
2765
2766#define elf_backend_modify_segment_map \
2767 elf64_hppa_modify_segment_map
2768
2769#define elf_backend_link_output_symbol_hook \
2770 elf64_hppa_link_output_symbol_hook
2771
15bda425
JL
2772#define elf_backend_want_got_plt 0
2773#define elf_backend_plt_readonly 0
2774#define elf_backend_want_plt_sym 0
2775#define elf_backend_got_header_size 0
b34976b6
AM
2776#define elf_backend_type_change_ok TRUE
2777#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2778#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2779#define elf_backend_rela_normal 1
2f89ff8d 2780#define elf_backend_special_sections elf64_hppa_special_sections
15bda425
JL
2781
2782#include "elf64-target.h"
d952f17a
AM
2783
2784#undef TARGET_BIG_SYM
2785#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2786#undef TARGET_BIG_NAME
2787#define TARGET_BIG_NAME "elf64-hppa-linux"
2788
2f89ff8d
L
2789#undef elf_backend_special_sections
2790
d952f17a
AM
2791#define INCLUDED_TARGET_FILE 1
2792#include "elf64-target.h"
This page took 0.334392 seconds and 4 git commands to generate.