2006-06-19 Kazuhiro Inaoka <inaoka.kazuhiro@renesas.com>
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf 1/* Support for HPPA 64-bit ELF
66eb6687 2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5a580b3a 3 Free Software Foundation, Inc.
15bda425 4
ae9a127f 5 This file is part of BFD, the Binary File Descriptor library.
15bda425 6
ae9a127f
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
15bda425 11
ae9a127f
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
15bda425 16
ae9a127f
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
15bda425 20
3ef20aaa 21#include "alloca-conf.h"
15bda425
JL
22#include "bfd.h"
23#include "sysdep.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/hppa.h"
27#include "libhppa.h"
28#include "elf64-hppa.h"
29#define ARCH_SIZE 64
30
31#define PLT_ENTRY_SIZE 0x10
32#define DLT_ENTRY_SIZE 0x8
33#define OPD_ENTRY_SIZE 0x20
fe8bc63d 34
15bda425
JL
35#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37/* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50struct elf64_hppa_dyn_hash_entry
51{
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
edd21aca 60 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
dc810e39 66 long sym_indx;
15bda425
JL
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109};
110
111struct elf64_hppa_dyn_hash_table
112{
113 struct bfd_hash_table root;
114};
115
116struct elf64_hppa_link_hash_table
117{
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152};
153
154#define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
15bda425
JL
160static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
161 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
162 const char *string));
163static struct bfd_link_hash_table *elf64_hppa_hash_table_create
164 PARAMS ((bfd *abfd));
165static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
166 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
b34976b6 167 bfd_boolean create, bfd_boolean copy));
15bda425
JL
168static void elf64_hppa_dyn_hash_traverse
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
b34976b6 170 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
171 PTR info));
172
173static const char *get_dyn_name
d63b5ed9 174 PARAMS ((bfd *, struct elf_link_hash_entry *,
0ba2a60e 175 const Elf_Internal_Rela *, char **, size_t *));
15bda425 176
15bda425
JL
177/* This must follow the definitions of the various derived linker
178 hash tables and shared functions. */
179#include "elf-hppa.h"
180
b34976b6 181static bfd_boolean elf64_hppa_object_p
15bda425
JL
182 PARAMS ((bfd *));
183
15bda425
JL
184static void elf64_hppa_post_process_headers
185 PARAMS ((bfd *, struct bfd_link_info *));
186
b34976b6 187static bfd_boolean elf64_hppa_create_dynamic_sections
15bda425
JL
188 PARAMS ((bfd *, struct bfd_link_info *));
189
b34976b6 190static bfd_boolean elf64_hppa_adjust_dynamic_symbol
15bda425
JL
191 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
192
b34976b6 193static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
47b7c2db
AM
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195
b34976b6 196static bfd_boolean elf64_hppa_size_dynamic_sections
15bda425
JL
197 PARAMS ((bfd *, struct bfd_link_info *));
198
b34976b6 199static bfd_boolean elf64_hppa_link_output_symbol_hook
754021d0
AM
200 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
201 asection *, struct elf_link_hash_entry *));
99c79b2e 202
b34976b6 203static bfd_boolean elf64_hppa_finish_dynamic_symbol
15bda425
JL
204 PARAMS ((bfd *, struct bfd_link_info *,
205 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 206
b34976b6
AM
207static int elf64_hppa_additional_program_headers
208 PARAMS ((bfd *));
99c79b2e 209
b34976b6 210static bfd_boolean elf64_hppa_modify_segment_map
c84fca4d 211 PARAMS ((bfd *, struct bfd_link_info *));
99c79b2e 212
5ac81c74
JL
213static enum elf_reloc_type_class elf64_hppa_reloc_type_class
214 PARAMS ((const Elf_Internal_Rela *));
215
b34976b6 216static bfd_boolean elf64_hppa_finish_dynamic_sections
15bda425
JL
217 PARAMS ((bfd *, struct bfd_link_info *));
218
b34976b6 219static bfd_boolean elf64_hppa_check_relocs
15bda425
JL
220 PARAMS ((bfd *, struct bfd_link_info *,
221 asection *, const Elf_Internal_Rela *));
222
b34976b6 223static bfd_boolean elf64_hppa_dynamic_symbol_p
15bda425
JL
224 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
225
b34976b6 226static bfd_boolean elf64_hppa_mark_exported_functions
15bda425
JL
227 PARAMS ((struct elf_link_hash_entry *, PTR));
228
b34976b6 229static bfd_boolean elf64_hppa_finalize_opd
15bda425
JL
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
b34976b6 232static bfd_boolean elf64_hppa_finalize_dlt
15bda425
JL
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
b34976b6 235static bfd_boolean allocate_global_data_dlt
15bda425
JL
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
b34976b6 238static bfd_boolean allocate_global_data_plt
15bda425
JL
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
b34976b6 241static bfd_boolean allocate_global_data_stub
15bda425
JL
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
b34976b6 244static bfd_boolean allocate_global_data_opd
15bda425
JL
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
b34976b6 247static bfd_boolean get_reloc_section
15bda425
JL
248 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
249
b34976b6 250static bfd_boolean count_dyn_reloc
15bda425
JL
251 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
252 int, asection *, int, bfd_vma, bfd_vma));
253
b34976b6 254static bfd_boolean allocate_dynrel_entries
15bda425
JL
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
b34976b6 257static bfd_boolean elf64_hppa_finalize_dynreloc
15bda425
JL
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
b34976b6 260static bfd_boolean get_opd
15bda425
JL
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
b34976b6 263static bfd_boolean get_plt
15bda425
JL
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
b34976b6 266static bfd_boolean get_dlt
15bda425
JL
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
b34976b6 269static bfd_boolean get_stub
15bda425
JL
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
3fab46d0
AM
272static int elf64_hppa_elf_get_symbol_type
273 PARAMS ((Elf_Internal_Sym *, int));
274
b34976b6 275static bfd_boolean
66eb6687
AM
276elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
277 bfd *abfd ATTRIBUTE_UNUSED,
278 new_hash_entry_func new,
279 unsigned int entsize)
15bda425 280{
fe8bc63d 281 memset (ht, 0, sizeof (*ht));
66eb6687 282 return bfd_hash_table_init (&ht->root, new, entsize);
15bda425
JL
283}
284
285static struct bfd_hash_entry*
286elf64_hppa_new_dyn_hash_entry (entry, table, string)
287 struct bfd_hash_entry *entry;
288 struct bfd_hash_table *table;
289 const char *string;
290{
291 struct elf64_hppa_dyn_hash_entry *ret;
292 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
293
294 /* Allocate the structure if it has not already been allocated by a
295 subclass. */
296 if (!ret)
297 ret = bfd_hash_allocate (table, sizeof (*ret));
298
299 if (!ret)
300 return 0;
301
15bda425
JL
302 /* Call the allocation method of the superclass. */
303 ret = ((struct elf64_hppa_dyn_hash_entry *)
304 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
305
336549c1
AM
306 /* Initialize our local data. All zeros. */
307 memset (&ret->dlt_offset, 0,
308 (sizeof (struct elf64_hppa_dyn_hash_entry)
309 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
310
15bda425
JL
311 return &ret->root;
312}
313
314/* Create the derived linker hash table. The PA64 ELF port uses this
315 derived hash table to keep information specific to the PA ElF
316 linker (without using static variables). */
317
318static struct bfd_link_hash_table*
319elf64_hppa_hash_table_create (abfd)
320 bfd *abfd;
321{
322 struct elf64_hppa_link_hash_table *ret;
323
dc810e39 324 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
15bda425
JL
325 if (!ret)
326 return 0;
327 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
66eb6687
AM
328 _bfd_elf_link_hash_newfunc,
329 sizeof (struct elf_link_hash_entry)))
15bda425
JL
330 {
331 bfd_release (abfd, ret);
332 return 0;
333 }
334
335 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
66eb6687
AM
336 elf64_hppa_new_dyn_hash_entry,
337 sizeof (struct elf64_hppa_dyn_hash_entry)))
15bda425
JL
338 return 0;
339 return &ret->root.root;
340}
341
342/* Look up an entry in a PA64 ELF linker hash table. */
343
344static struct elf64_hppa_dyn_hash_entry *
345elf64_hppa_dyn_hash_lookup(table, string, create, copy)
346 struct elf64_hppa_dyn_hash_table *table;
347 const char *string;
b34976b6 348 bfd_boolean create, copy;
15bda425
JL
349{
350 return ((struct elf64_hppa_dyn_hash_entry *)
351 bfd_hash_lookup (&table->root, string, create, copy));
352}
353
354/* Traverse a PA64 ELF linker hash table. */
355
356static void
357elf64_hppa_dyn_hash_traverse (table, func, info)
358 struct elf64_hppa_dyn_hash_table *table;
b34976b6 359 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
15bda425
JL
360 PTR info;
361{
362 (bfd_hash_traverse
363 (&table->root,
b34976b6 364 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
15bda425
JL
365 info));
366}
367\f
368/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
369
370 Additionally we set the default architecture and machine. */
b34976b6 371static bfd_boolean
15bda425
JL
372elf64_hppa_object_p (abfd)
373 bfd *abfd;
374{
24a5e751
L
375 Elf_Internal_Ehdr * i_ehdrp;
376 unsigned int flags;
d9634ba1 377
24a5e751
L
378 i_ehdrp = elf_elfheader (abfd);
379 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
380 {
6c21aa76
NC
381 /* GCC on hppa-linux produces binaries with OSABI=Linux,
382 but the kernel produces corefiles with OSABI=SysV. */
d97a8924
DA
383 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
384 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 385 return FALSE;
24a5e751
L
386 }
387 else
388 {
d97a8924
DA
389 /* HPUX produces binaries with OSABI=HPUX,
390 but the kernel produces corefiles with OSABI=SysV. */
391 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
392 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 393 return FALSE;
24a5e751
L
394 }
395
396 flags = i_ehdrp->e_flags;
d9634ba1
AM
397 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
398 {
399 case EFA_PARISC_1_0:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
401 case EFA_PARISC_1_1:
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
403 case EFA_PARISC_2_0:
d97a8924
DA
404 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
405 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
406 else
407 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
d9634ba1
AM
408 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
409 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
410 }
411 /* Don't be fussy. */
b34976b6 412 return TRUE;
15bda425
JL
413}
414
415/* Given section type (hdr->sh_type), return a boolean indicating
416 whether or not the section is an elf64-hppa specific section. */
b34976b6 417static bfd_boolean
6dc132d9
L
418elf64_hppa_section_from_shdr (bfd *abfd,
419 Elf_Internal_Shdr *hdr,
420 const char *name,
421 int shindex)
15bda425
JL
422{
423 asection *newsect;
424
425 switch (hdr->sh_type)
426 {
427 case SHT_PARISC_EXT:
428 if (strcmp (name, ".PARISC.archext") != 0)
b34976b6 429 return FALSE;
15bda425
JL
430 break;
431 case SHT_PARISC_UNWIND:
432 if (strcmp (name, ".PARISC.unwind") != 0)
b34976b6 433 return FALSE;
15bda425
JL
434 break;
435 case SHT_PARISC_DOC:
436 case SHT_PARISC_ANNOT:
437 default:
b34976b6 438 return FALSE;
15bda425
JL
439 }
440
6dc132d9 441 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 442 return FALSE;
15bda425
JL
443 newsect = hdr->bfd_section;
444
b34976b6 445 return TRUE;
15bda425
JL
446}
447
15bda425 448/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 449 name describes what was once potentially anonymous memory. We
15bda425
JL
450 allocate memory as necessary, possibly reusing PBUF/PLEN. */
451
452static const char *
d63b5ed9
DA
453get_dyn_name (abfd, h, rel, pbuf, plen)
454 bfd *abfd;
15bda425
JL
455 struct elf_link_hash_entry *h;
456 const Elf_Internal_Rela *rel;
457 char **pbuf;
458 size_t *plen;
459{
d63b5ed9 460 asection *sec = abfd->sections;
15bda425
JL
461 size_t nlen, tlen;
462 char *buf;
463 size_t len;
464
465 if (h && rel->r_addend == 0)
466 return h->root.root.string;
467
468 if (h)
469 nlen = strlen (h->root.root.string);
470 else
0ba2a60e
AM
471 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
472 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
473
474 len = *plen;
475 buf = *pbuf;
476 if (len < tlen)
477 {
478 if (buf)
479 free (buf);
480 *pbuf = buf = malloc (tlen);
481 *plen = len = tlen;
482 if (!buf)
483 return NULL;
484 }
485
486 if (h)
487 {
488 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 489 buf[nlen++] = '+';
15bda425
JL
490 sprintf_vma (buf + nlen, rel->r_addend);
491 }
492 else
493 {
0ba2a60e
AM
494 nlen = sprintf (buf, "%x:%lx",
495 sec->id & 0xffffffff,
496 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
497 if (rel->r_addend)
498 {
499 buf[nlen++] = '+';
500 sprintf_vma (buf + nlen, rel->r_addend);
501 }
502 }
503
504 return buf;
505}
506
507/* SEC is a section containing relocs for an input BFD when linking; return
508 a suitable section for holding relocs in the output BFD for a link. */
509
b34976b6 510static bfd_boolean
15bda425
JL
511get_reloc_section (abfd, hppa_info, sec)
512 bfd *abfd;
513 struct elf64_hppa_link_hash_table *hppa_info;
514 asection *sec;
515{
516 const char *srel_name;
517 asection *srel;
518 bfd *dynobj;
519
520 srel_name = (bfd_elf_string_from_elf_section
521 (abfd, elf_elfheader(abfd)->e_shstrndx,
522 elf_section_data(sec)->rel_hdr.sh_name));
523 if (srel_name == NULL)
b34976b6 524 return FALSE;
15bda425
JL
525
526 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
527 && strcmp (bfd_get_section_name (abfd, sec),
528 srel_name+5) == 0)
529 || (strncmp (srel_name, ".rel", 4) == 0
530 && strcmp (bfd_get_section_name (abfd, sec),
531 srel_name+4) == 0));
532
533 dynobj = hppa_info->root.dynobj;
534 if (!dynobj)
535 hppa_info->root.dynobj = dynobj = abfd;
536
537 srel = bfd_get_section_by_name (dynobj, srel_name);
538 if (srel == NULL)
539 {
3496cb2a
L
540 srel = bfd_make_section_with_flags (dynobj, srel_name,
541 (SEC_ALLOC
542 | SEC_LOAD
543 | SEC_HAS_CONTENTS
544 | SEC_IN_MEMORY
545 | SEC_LINKER_CREATED
546 | SEC_READONLY));
15bda425 547 if (srel == NULL
15bda425 548 || !bfd_set_section_alignment (dynobj, srel, 3))
b34976b6 549 return FALSE;
15bda425
JL
550 }
551
552 hppa_info->other_rel_sec = srel;
b34976b6 553 return TRUE;
15bda425
JL
554}
555
fe8bc63d 556/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
557
558 We use this to keep a record of all the FPTR relocations against a
559 particular symbol so that we can create FPTR relocations in the
560 output file. */
561
b34976b6 562static bfd_boolean
15bda425
JL
563count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
564 bfd *abfd;
565 struct elf64_hppa_dyn_hash_entry *dyn_h;
566 int type;
567 asection *sec;
568 int sec_symndx;
569 bfd_vma offset;
570 bfd_vma addend;
571{
572 struct elf64_hppa_dyn_reloc_entry *rent;
573
574 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 575 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425 576 if (!rent)
b34976b6 577 return FALSE;
15bda425
JL
578
579 rent->next = dyn_h->reloc_entries;
580 rent->type = type;
581 rent->sec = sec;
582 rent->sec_symndx = sec_symndx;
583 rent->offset = offset;
584 rent->addend = addend;
585 dyn_h->reloc_entries = rent;
586
b34976b6 587 return TRUE;
15bda425
JL
588}
589
590/* Scan the RELOCS and record the type of dynamic entries that each
591 referenced symbol needs. */
592
b34976b6 593static bfd_boolean
15bda425
JL
594elf64_hppa_check_relocs (abfd, info, sec, relocs)
595 bfd *abfd;
596 struct bfd_link_info *info;
597 asection *sec;
598 const Elf_Internal_Rela *relocs;
599{
600 struct elf64_hppa_link_hash_table *hppa_info;
601 const Elf_Internal_Rela *relend;
602 Elf_Internal_Shdr *symtab_hdr;
603 const Elf_Internal_Rela *rel;
604 asection *dlt, *plt, *stubs;
605 char *buf;
606 size_t buf_len;
607 int sec_symndx;
608
1049f94e 609 if (info->relocatable)
b34976b6 610 return TRUE;
15bda425
JL
611
612 /* If this is the first dynamic object found in the link, create
613 the special sections required for dynamic linking. */
614 if (! elf_hash_table (info)->dynamic_sections_created)
615 {
45d6a902 616 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
b34976b6 617 return FALSE;
15bda425
JL
618 }
619
620 hppa_info = elf64_hppa_hash_table (info);
621 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
622
623 /* If necessary, build a new table holding section symbols indices
6cdc0ccc 624 for this BFD. */
fe8bc63d 625
15bda425
JL
626 if (info->shared && hppa_info->section_syms_bfd != abfd)
627 {
832d951b 628 unsigned long i;
9ad5cbcf 629 unsigned int highest_shndx;
6cdc0ccc
AM
630 Elf_Internal_Sym *local_syms = NULL;
631 Elf_Internal_Sym *isym, *isymend;
dc810e39 632 bfd_size_type amt;
15bda425
JL
633
634 /* We're done with the old cache of section index to section symbol
635 index information. Free it.
636
637 ?!? Note we leak the last section_syms array. Presumably we
638 could free it in one of the later routines in this file. */
639 if (hppa_info->section_syms)
640 free (hppa_info->section_syms);
641
6cdc0ccc
AM
642 /* Read this BFD's local symbols. */
643 if (symtab_hdr->sh_info != 0)
47b7c2db 644 {
6cdc0ccc
AM
645 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
646 if (local_syms == NULL)
647 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
648 symtab_hdr->sh_info, 0,
649 NULL, NULL, NULL);
650 if (local_syms == NULL)
b34976b6 651 return FALSE;
9ad5cbcf
AM
652 }
653
6cdc0ccc 654 /* Record the highest section index referenced by the local symbols. */
15bda425 655 highest_shndx = 0;
6cdc0ccc
AM
656 isymend = local_syms + symtab_hdr->sh_info;
657 for (isym = local_syms; isym < isymend; isym++)
15bda425 658 {
15bda425
JL
659 if (isym->st_shndx > highest_shndx)
660 highest_shndx = isym->st_shndx;
661 }
662
15bda425
JL
663 /* Allocate an array to hold the section index to section symbol index
664 mapping. Bump by one since we start counting at zero. */
665 highest_shndx++;
dc810e39
AM
666 amt = highest_shndx;
667 amt *= sizeof (int);
668 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
669
670 /* Now walk the local symbols again. If we find a section symbol,
671 record the index of the symbol into the section_syms array. */
6cdc0ccc 672 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
15bda425
JL
673 {
674 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
675 hppa_info->section_syms[isym->st_shndx] = i;
676 }
677
6cdc0ccc
AM
678 /* We are finished with the local symbols. */
679 if (local_syms != NULL
680 && symtab_hdr->contents != (unsigned char *) local_syms)
681 {
682 if (! info->keep_memory)
683 free (local_syms);
684 else
685 {
686 /* Cache the symbols for elf_link_input_bfd. */
687 symtab_hdr->contents = (unsigned char *) local_syms;
688 }
689 }
15bda425
JL
690
691 /* Record which BFD we built the section_syms mapping for. */
692 hppa_info->section_syms_bfd = abfd;
693 }
694
695 /* Record the symbol index for this input section. We may need it for
696 relocations when building shared libraries. When not building shared
697 libraries this value is never really used, but assign it to zero to
698 prevent out of bounds memory accesses in other routines. */
699 if (info->shared)
700 {
701 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
702
703 /* If we did not find a section symbol for this section, then
704 something went terribly wrong above. */
705 if (sec_symndx == -1)
b34976b6 706 return FALSE;
15bda425
JL
707
708 sec_symndx = hppa_info->section_syms[sec_symndx];
709 }
710 else
711 sec_symndx = 0;
fe8bc63d 712
15bda425
JL
713 dlt = plt = stubs = NULL;
714 buf = NULL;
715 buf_len = 0;
716
717 relend = relocs + sec->reloc_count;
718 for (rel = relocs; rel < relend; ++rel)
719 {
560e09e9
NC
720 enum
721 {
722 NEED_DLT = 1,
723 NEED_PLT = 2,
724 NEED_STUB = 4,
725 NEED_OPD = 8,
726 NEED_DYNREL = 16,
727 };
15bda425
JL
728
729 struct elf_link_hash_entry *h = NULL;
730 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
731 struct elf64_hppa_dyn_hash_entry *dyn_h;
732 int need_entry;
733 const char *addr_name;
b34976b6 734 bfd_boolean maybe_dynamic;
15bda425
JL
735 int dynrel_type = R_PARISC_NONE;
736 static reloc_howto_type *howto;
737
738 if (r_symndx >= symtab_hdr->sh_info)
739 {
740 /* We're dealing with a global symbol -- find its hash entry
741 and mark it as being referenced. */
742 long indx = r_symndx - symtab_hdr->sh_info;
743 h = elf_sym_hashes (abfd)[indx];
744 while (h->root.type == bfd_link_hash_indirect
745 || h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747
f5385ebf 748 h->ref_regular = 1;
15bda425
JL
749 }
750
751 /* We can only get preliminary data on whether a symbol is
752 locally or externally defined, as not all of the input files
753 have yet been processed. Do something with what we know, as
754 this may help reduce memory usage and processing time later. */
b34976b6 755 maybe_dynamic = FALSE;
671bae9c 756 if (h && ((info->shared
f5385ebf
AM
757 && (!info->symbolic
758 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
759 || !h->def_regular
15bda425 760 || h->root.type == bfd_link_hash_defweak))
b34976b6 761 maybe_dynamic = TRUE;
15bda425
JL
762
763 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
764 need_entry = 0;
765 switch (howto->type)
766 {
767 /* These are simple indirect references to symbols through the
768 DLT. We need to create a DLT entry for any symbols which
769 appears in a DLTIND relocation. */
770 case R_PARISC_DLTIND21L:
771 case R_PARISC_DLTIND14R:
772 case R_PARISC_DLTIND14F:
773 case R_PARISC_DLTIND14WR:
774 case R_PARISC_DLTIND14DR:
775 need_entry = NEED_DLT;
776 break;
777
778 /* ?!? These need a DLT entry. But I have no idea what to do with
779 the "link time TP value. */
780 case R_PARISC_LTOFF_TP21L:
781 case R_PARISC_LTOFF_TP14R:
782 case R_PARISC_LTOFF_TP14F:
783 case R_PARISC_LTOFF_TP64:
784 case R_PARISC_LTOFF_TP14WR:
785 case R_PARISC_LTOFF_TP14DR:
786 case R_PARISC_LTOFF_TP16F:
787 case R_PARISC_LTOFF_TP16WF:
788 case R_PARISC_LTOFF_TP16DF:
789 need_entry = NEED_DLT;
790 break;
791
792 /* These are function calls. Depending on their precise target we
793 may need to make a stub for them. The stub uses the PLT, so we
794 need to create PLT entries for these symbols too. */
832d951b 795 case R_PARISC_PCREL12F:
15bda425
JL
796 case R_PARISC_PCREL17F:
797 case R_PARISC_PCREL22F:
798 case R_PARISC_PCREL32:
799 case R_PARISC_PCREL64:
800 case R_PARISC_PCREL21L:
801 case R_PARISC_PCREL17R:
802 case R_PARISC_PCREL17C:
803 case R_PARISC_PCREL14R:
804 case R_PARISC_PCREL14F:
805 case R_PARISC_PCREL22C:
806 case R_PARISC_PCREL14WR:
807 case R_PARISC_PCREL14DR:
808 case R_PARISC_PCREL16F:
809 case R_PARISC_PCREL16WF:
810 case R_PARISC_PCREL16DF:
811 need_entry = (NEED_PLT | NEED_STUB);
812 break;
813
814 case R_PARISC_PLTOFF21L:
815 case R_PARISC_PLTOFF14R:
816 case R_PARISC_PLTOFF14F:
817 case R_PARISC_PLTOFF14WR:
818 case R_PARISC_PLTOFF14DR:
819 case R_PARISC_PLTOFF16F:
820 case R_PARISC_PLTOFF16WF:
821 case R_PARISC_PLTOFF16DF:
822 need_entry = (NEED_PLT);
823 break;
824
825 case R_PARISC_DIR64:
826 if (info->shared || maybe_dynamic)
827 need_entry = (NEED_DYNREL);
828 dynrel_type = R_PARISC_DIR64;
829 break;
830
831 /* This is an indirect reference through the DLT to get the address
832 of a OPD descriptor. Thus we need to make a DLT entry that points
833 to an OPD entry. */
834 case R_PARISC_LTOFF_FPTR21L:
835 case R_PARISC_LTOFF_FPTR14R:
836 case R_PARISC_LTOFF_FPTR14WR:
837 case R_PARISC_LTOFF_FPTR14DR:
838 case R_PARISC_LTOFF_FPTR32:
839 case R_PARISC_LTOFF_FPTR64:
840 case R_PARISC_LTOFF_FPTR16F:
841 case R_PARISC_LTOFF_FPTR16WF:
842 case R_PARISC_LTOFF_FPTR16DF:
843 if (info->shared || maybe_dynamic)
844 need_entry = (NEED_DLT | NEED_OPD);
845 else
846 need_entry = (NEED_DLT | NEED_OPD);
847 dynrel_type = R_PARISC_FPTR64;
848 break;
849
850 /* This is a simple OPD entry. */
851 case R_PARISC_FPTR64:
852 if (info->shared || maybe_dynamic)
853 need_entry = (NEED_OPD | NEED_DYNREL);
854 else
855 need_entry = (NEED_OPD);
856 dynrel_type = R_PARISC_FPTR64;
857 break;
858
859 /* Add more cases as needed. */
860 }
861
862 if (!need_entry)
863 continue;
864
865 /* Collect a canonical name for this address. */
d63b5ed9 866 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
15bda425
JL
867
868 /* Collect the canonical entry data for this address. */
869 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 870 addr_name, TRUE, TRUE);
15bda425
JL
871 BFD_ASSERT (dyn_h);
872
873 /* Stash away enough information to be able to find this symbol
874 regardless of whether or not it is local or global. */
875 dyn_h->h = h;
876 dyn_h->owner = abfd;
877 dyn_h->sym_indx = r_symndx;
878
879 /* ?!? We may need to do some error checking in here. */
880 /* Create what's needed. */
881 if (need_entry & NEED_DLT)
882 {
883 if (! hppa_info->dlt_sec
884 && ! get_dlt (abfd, info, hppa_info))
885 goto err_out;
886 dyn_h->want_dlt = 1;
887 }
888
889 if (need_entry & NEED_PLT)
890 {
891 if (! hppa_info->plt_sec
892 && ! get_plt (abfd, info, hppa_info))
893 goto err_out;
894 dyn_h->want_plt = 1;
895 }
896
897 if (need_entry & NEED_STUB)
898 {
899 if (! hppa_info->stub_sec
900 && ! get_stub (abfd, info, hppa_info))
901 goto err_out;
902 dyn_h->want_stub = 1;
903 }
904
905 if (need_entry & NEED_OPD)
906 {
907 if (! hppa_info->opd_sec
908 && ! get_opd (abfd, info, hppa_info))
909 goto err_out;
910
911 dyn_h->want_opd = 1;
912
913 /* FPTRs are not allocated by the dynamic linker for PA64, though
914 it is possible that will change in the future. */
fe8bc63d 915
15bda425
JL
916 /* This could be a local function that had its address taken, in
917 which case H will be NULL. */
918 if (h)
f5385ebf 919 h->needs_plt = 1;
15bda425
JL
920 }
921
922 /* Add a new dynamic relocation to the chain of dynamic
923 relocations for this symbol. */
924 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
925 {
926 if (! hppa_info->other_rel_sec
927 && ! get_reloc_section (abfd, hppa_info, sec))
928 goto err_out;
929
930 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
931 sec_symndx, rel->r_offset, rel->r_addend))
932 goto err_out;
933
934 /* If we are building a shared library and we just recorded
935 a dynamic R_PARISC_FPTR64 relocation, then make sure the
936 section symbol for this section ends up in the dynamic
937 symbol table. */
938 if (info->shared && dynrel_type == R_PARISC_FPTR64
c152c796 939 && ! (bfd_elf_link_record_local_dynamic_symbol
15bda425 940 (info, abfd, sec_symndx)))
b34976b6 941 return FALSE;
15bda425
JL
942 }
943 }
944
945 if (buf)
946 free (buf);
b34976b6 947 return TRUE;
15bda425
JL
948
949 err_out:
950 if (buf)
951 free (buf);
b34976b6 952 return FALSE;
15bda425
JL
953}
954
955struct elf64_hppa_allocate_data
956{
957 struct bfd_link_info *info;
958 bfd_size_type ofs;
959};
960
961/* Should we do dynamic things to this symbol? */
962
b34976b6 963static bfd_boolean
15bda425
JL
964elf64_hppa_dynamic_symbol_p (h, info)
965 struct elf_link_hash_entry *h;
966 struct bfd_link_info *info;
967{
986a241f
RH
968 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
969 and relocations that retrieve a function descriptor? Assume the
970 worst for now. */
971 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
972 {
973 /* ??? Why is this here and not elsewhere is_local_label_name. */
974 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
975 return FALSE;
15bda425 976
986a241f
RH
977 return TRUE;
978 }
979 else
b34976b6 980 return FALSE;
15bda425
JL
981}
982
4cc11e76 983/* Mark all functions exported by this file so that we can later allocate
15bda425
JL
984 entries in .opd for them. */
985
b34976b6 986static bfd_boolean
15bda425
JL
987elf64_hppa_mark_exported_functions (h, data)
988 struct elf_link_hash_entry *h;
989 PTR data;
990{
991 struct bfd_link_info *info = (struct bfd_link_info *)data;
992 struct elf64_hppa_link_hash_table *hppa_info;
993
994 hppa_info = elf64_hppa_hash_table (info);
995
e92d460e
AM
996 if (h->root.type == bfd_link_hash_warning)
997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
998
15bda425
JL
999 if (h
1000 && (h->root.type == bfd_link_hash_defined
1001 || h->root.type == bfd_link_hash_defweak)
1002 && h->root.u.def.section->output_section != NULL
1003 && h->type == STT_FUNC)
1004 {
1005 struct elf64_hppa_dyn_hash_entry *dyn_h;
1006
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1009 h->root.root.string, TRUE, TRUE);
15bda425
JL
1010 BFD_ASSERT (dyn_h);
1011 dyn_h->h = h;
1012
1013 if (! hppa_info->opd_sec
1014 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
b34976b6 1015 return FALSE;
15bda425
JL
1016
1017 dyn_h->want_opd = 1;
832d951b
AM
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h->st_shndx = -1;
f5385ebf 1020 h->needs_plt = 1;
15bda425
JL
1021 }
1022
b34976b6 1023 return TRUE;
15bda425
JL
1024}
1025
1026/* Allocate space for a DLT entry. */
1027
b34976b6 1028static bfd_boolean
15bda425
JL
1029allocate_global_data_dlt (dyn_h, data)
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031 PTR data;
1032{
1033 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1034
1035 if (dyn_h->want_dlt)
1036 {
1037 struct elf_link_hash_entry *h = dyn_h->h;
1038
1039 if (x->info->shared)
1040 {
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1043 against it. */
1044 if (! h
47b7c2db 1045 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
15bda425
JL
1046 {
1047 bfd *owner;
1048 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1049
c152c796 1050 if (! (bfd_elf_link_record_local_dynamic_symbol
dc810e39 1051 (x->info, owner, dyn_h->sym_indx)))
b34976b6 1052 return FALSE;
15bda425
JL
1053 }
1054 }
1055
1056 dyn_h->dlt_offset = x->ofs;
1057 x->ofs += DLT_ENTRY_SIZE;
1058 }
b34976b6 1059 return TRUE;
15bda425
JL
1060}
1061
1062/* Allocate space for a DLT.PLT entry. */
1063
b34976b6 1064static bfd_boolean
15bda425
JL
1065allocate_global_data_plt (dyn_h, data)
1066 struct elf64_hppa_dyn_hash_entry *dyn_h;
1067 PTR data;
1068{
1069 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1070
1071 if (dyn_h->want_plt
1072 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1073 && !((dyn_h->h->root.type == bfd_link_hash_defined
1074 || dyn_h->h->root.type == bfd_link_hash_defweak)
1075 && dyn_h->h->root.u.def.section->output_section != NULL))
1076 {
1077 dyn_h->plt_offset = x->ofs;
1078 x->ofs += PLT_ENTRY_SIZE;
1079 if (dyn_h->plt_offset < 0x2000)
1080 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1081 }
1082 else
1083 dyn_h->want_plt = 0;
1084
b34976b6 1085 return TRUE;
15bda425
JL
1086}
1087
1088/* Allocate space for a STUB entry. */
1089
b34976b6 1090static bfd_boolean
15bda425
JL
1091allocate_global_data_stub (dyn_h, data)
1092 struct elf64_hppa_dyn_hash_entry *dyn_h;
1093 PTR data;
1094{
1095 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1096
1097 if (dyn_h->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1099 && !((dyn_h->h->root.type == bfd_link_hash_defined
1100 || dyn_h->h->root.type == bfd_link_hash_defweak)
1101 && dyn_h->h->root.u.def.section->output_section != NULL))
1102 {
1103 dyn_h->stub_offset = x->ofs;
1104 x->ofs += sizeof (plt_stub);
1105 }
1106 else
1107 dyn_h->want_stub = 0;
b34976b6 1108 return TRUE;
15bda425
JL
1109}
1110
1111/* Allocate space for a FPTR entry. */
1112
b34976b6 1113static bfd_boolean
15bda425
JL
1114allocate_global_data_opd (dyn_h, data)
1115 struct elf64_hppa_dyn_hash_entry *dyn_h;
1116 PTR data;
1117{
1118 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1119
1120 if (dyn_h->want_opd)
1121 {
1122 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1123
15bda425
JL
1124 if (h)
1125 while (h->root.type == bfd_link_hash_indirect
1126 || h->root.type == bfd_link_hash_warning)
1127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1128
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
3db4b612 1131 if (h && (h->root.type == bfd_link_hash_undefined
af7cfa33 1132 || h->root.type == bfd_link_hash_undefweak
3db4b612 1133 || h->root.u.def.section->output_section == NULL))
15bda425
JL
1134 dyn_h->want_opd = 0;
1135
1136 /* If we are creating a shared library, took the address of a local
1137 function or might export this function from this object file, then
1138 we have to create an opd descriptor. */
1139 else if (x->info->shared
1140 || h == NULL
47b7c2db 1141 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
3db4b612
JL
1142 || (h->root.type == bfd_link_hash_defined
1143 || h->root.type == bfd_link_hash_defweak))
15bda425
JL
1144 {
1145 /* If we are creating a shared library, then we will have to
1146 create a runtime relocation for the symbol to properly
1147 initialize the .opd entry. Make sure the symbol gets
1148 added to the dynamic symbol table. */
1149 if (x->info->shared
1150 && (h == NULL || (h->dynindx == -1)))
1151 {
1152 bfd *owner;
1153 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1154
c152c796 1155 if (!bfd_elf_link_record_local_dynamic_symbol
15bda425 1156 (x->info, owner, dyn_h->sym_indx))
b34976b6 1157 return FALSE;
15bda425
JL
1158 }
1159
1160 /* This may not be necessary or desirable anymore now that
1161 we have some support for dealing with section symbols
1162 in dynamic relocs. But name munging does make the result
1163 much easier to debug. ie, the EPLT reloc will reference
1164 a symbol like .foobar, instead of .text + offset. */
1165 if (x->info->shared && h)
1166 {
1167 char *new_name;
1168 struct elf_link_hash_entry *nh;
1169
1170 new_name = alloca (strlen (h->root.root.string) + 2);
1171 new_name[0] = '.';
1172 strcpy (new_name + 1, h->root.root.string);
1173
1174 nh = elf_link_hash_lookup (elf_hash_table (x->info),
b34976b6 1175 new_name, TRUE, TRUE, TRUE);
15bda425
JL
1176
1177 nh->root.type = h->root.type;
1178 nh->root.u.def.value = h->root.u.def.value;
1179 nh->root.u.def.section = h->root.u.def.section;
1180
c152c796 1181 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
b34976b6 1182 return FALSE;
15bda425
JL
1183
1184 }
1185 dyn_h->opd_offset = x->ofs;
1186 x->ofs += OPD_ENTRY_SIZE;
1187 }
1188
1189 /* Otherwise we do not need an opd entry. */
1190 else
1191 dyn_h->want_opd = 0;
1192 }
b34976b6 1193 return TRUE;
15bda425
JL
1194}
1195
1196/* HP requires the EI_OSABI field to be filled in. The assignment to
1197 EI_ABIVERSION may not be strictly necessary. */
1198
1199static void
1200elf64_hppa_post_process_headers (abfd, link_info)
1201 bfd * abfd;
1202 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1203{
1204 Elf_Internal_Ehdr * i_ehdrp;
1205
1206 i_ehdrp = elf_elfheader (abfd);
1207
d952f17a
AM
1208 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1209 {
1210 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1211 }
1212 else
1213 {
1214 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1215 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1216 }
15bda425
JL
1217}
1218
1219/* Create function descriptor section (.opd). This section is called .opd
4cc11e76 1220 because it contains "official procedure descriptors". The "official"
15bda425
JL
1221 refers to the fact that these descriptors are used when taking the address
1222 of a procedure, thus ensuring a unique address for each procedure. */
1223
b34976b6 1224static bfd_boolean
15bda425
JL
1225get_opd (abfd, info, hppa_info)
1226 bfd *abfd;
edd21aca 1227 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1228 struct elf64_hppa_link_hash_table *hppa_info;
1229{
1230 asection *opd;
1231 bfd *dynobj;
1232
1233 opd = hppa_info->opd_sec;
1234 if (!opd)
1235 {
1236 dynobj = hppa_info->root.dynobj;
1237 if (!dynobj)
1238 hppa_info->root.dynobj = dynobj = abfd;
1239
3496cb2a
L
1240 opd = bfd_make_section_with_flags (dynobj, ".opd",
1241 (SEC_ALLOC
1242 | SEC_LOAD
1243 | SEC_HAS_CONTENTS
1244 | SEC_IN_MEMORY
1245 | SEC_LINKER_CREATED));
15bda425 1246 if (!opd
15bda425
JL
1247 || !bfd_set_section_alignment (abfd, opd, 3))
1248 {
1249 BFD_ASSERT (0);
b34976b6 1250 return FALSE;
15bda425
JL
1251 }
1252
1253 hppa_info->opd_sec = opd;
1254 }
1255
b34976b6 1256 return TRUE;
15bda425
JL
1257}
1258
1259/* Create the PLT section. */
1260
b34976b6 1261static bfd_boolean
15bda425
JL
1262get_plt (abfd, info, hppa_info)
1263 bfd *abfd;
edd21aca 1264 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1265 struct elf64_hppa_link_hash_table *hppa_info;
1266{
1267 asection *plt;
1268 bfd *dynobj;
1269
1270 plt = hppa_info->plt_sec;
1271 if (!plt)
1272 {
1273 dynobj = hppa_info->root.dynobj;
1274 if (!dynobj)
1275 hppa_info->root.dynobj = dynobj = abfd;
1276
3496cb2a
L
1277 plt = bfd_make_section_with_flags (dynobj, ".plt",
1278 (SEC_ALLOC
1279 | SEC_LOAD
1280 | SEC_HAS_CONTENTS
1281 | SEC_IN_MEMORY
1282 | SEC_LINKER_CREATED));
15bda425 1283 if (!plt
15bda425
JL
1284 || !bfd_set_section_alignment (abfd, plt, 3))
1285 {
1286 BFD_ASSERT (0);
b34976b6 1287 return FALSE;
15bda425
JL
1288 }
1289
1290 hppa_info->plt_sec = plt;
1291 }
1292
b34976b6 1293 return TRUE;
15bda425
JL
1294}
1295
1296/* Create the DLT section. */
1297
b34976b6 1298static bfd_boolean
15bda425
JL
1299get_dlt (abfd, info, hppa_info)
1300 bfd *abfd;
edd21aca 1301 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1302 struct elf64_hppa_link_hash_table *hppa_info;
1303{
1304 asection *dlt;
1305 bfd *dynobj;
1306
1307 dlt = hppa_info->dlt_sec;
1308 if (!dlt)
1309 {
1310 dynobj = hppa_info->root.dynobj;
1311 if (!dynobj)
1312 hppa_info->root.dynobj = dynobj = abfd;
1313
3496cb2a
L
1314 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1315 (SEC_ALLOC
1316 | SEC_LOAD
1317 | SEC_HAS_CONTENTS
1318 | SEC_IN_MEMORY
1319 | SEC_LINKER_CREATED));
15bda425 1320 if (!dlt
15bda425
JL
1321 || !bfd_set_section_alignment (abfd, dlt, 3))
1322 {
1323 BFD_ASSERT (0);
b34976b6 1324 return FALSE;
15bda425
JL
1325 }
1326
1327 hppa_info->dlt_sec = dlt;
1328 }
1329
b34976b6 1330 return TRUE;
15bda425
JL
1331}
1332
1333/* Create the stubs section. */
1334
b34976b6 1335static bfd_boolean
15bda425
JL
1336get_stub (abfd, info, hppa_info)
1337 bfd *abfd;
edd21aca 1338 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1339 struct elf64_hppa_link_hash_table *hppa_info;
1340{
1341 asection *stub;
1342 bfd *dynobj;
1343
1344 stub = hppa_info->stub_sec;
1345 if (!stub)
1346 {
1347 dynobj = hppa_info->root.dynobj;
1348 if (!dynobj)
1349 hppa_info->root.dynobj = dynobj = abfd;
1350
3496cb2a
L
1351 stub = bfd_make_section_with_flags (dynobj, ".stub",
1352 (SEC_ALLOC | SEC_LOAD
1353 | SEC_HAS_CONTENTS
1354 | SEC_IN_MEMORY
1355 | SEC_READONLY
1356 | SEC_LINKER_CREATED));
15bda425 1357 if (!stub
15bda425
JL
1358 || !bfd_set_section_alignment (abfd, stub, 3))
1359 {
1360 BFD_ASSERT (0);
b34976b6 1361 return FALSE;
15bda425
JL
1362 }
1363
1364 hppa_info->stub_sec = stub;
1365 }
1366
b34976b6 1367 return TRUE;
15bda425
JL
1368}
1369
1370/* Create sections necessary for dynamic linking. This is only a rough
1371 cut and will likely change as we learn more about the somewhat
1372 unusual dynamic linking scheme HP uses.
1373
1374 .stub:
1375 Contains code to implement cross-space calls. The first time one
1376 of the stubs is used it will call into the dynamic linker, later
1377 calls will go straight to the target.
1378
1379 The only stub we support right now looks like
1380
1381 ldd OFFSET(%dp),%r1
1382 bve %r0(%r1)
1383 ldd OFFSET+8(%dp),%dp
1384
1385 Other stubs may be needed in the future. We may want the remove
1386 the break/nop instruction. It is only used right now to keep the
1387 offset of a .plt entry and a .stub entry in sync.
1388
1389 .dlt:
1390 This is what most people call the .got. HP used a different name.
1391 Losers.
1392
1393 .rela.dlt:
1394 Relocations for the DLT.
1395
1396 .plt:
1397 Function pointers as address,gp pairs.
1398
1399 .rela.plt:
1400 Should contain dynamic IPLT (and EPLT?) relocations.
1401
1402 .opd:
fe8bc63d 1403 FPTRS
15bda425
JL
1404
1405 .rela.opd:
1406 EPLT relocations for symbols exported from shared libraries. */
1407
b34976b6 1408static bfd_boolean
15bda425
JL
1409elf64_hppa_create_dynamic_sections (abfd, info)
1410 bfd *abfd;
1411 struct bfd_link_info *info;
1412{
1413 asection *s;
1414
1415 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1416 return FALSE;
15bda425
JL
1417
1418 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1419 return FALSE;
15bda425
JL
1420
1421 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1422 return FALSE;
15bda425
JL
1423
1424 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1425 return FALSE;
15bda425 1426
3496cb2a
L
1427 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1428 (SEC_ALLOC | SEC_LOAD
1429 | SEC_HAS_CONTENTS
1430 | SEC_IN_MEMORY
1431 | SEC_READONLY
1432 | SEC_LINKER_CREATED));
15bda425 1433 if (s == NULL
15bda425 1434 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1435 return FALSE;
15bda425
JL
1436 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1437
3496cb2a
L
1438 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1439 (SEC_ALLOC | SEC_LOAD
1440 | SEC_HAS_CONTENTS
1441 | SEC_IN_MEMORY
1442 | SEC_READONLY
1443 | SEC_LINKER_CREATED));
15bda425 1444 if (s == NULL
15bda425 1445 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1446 return FALSE;
15bda425
JL
1447 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1448
3496cb2a
L
1449 s = bfd_make_section_with_flags (abfd, ".rela.data",
1450 (SEC_ALLOC | SEC_LOAD
1451 | SEC_HAS_CONTENTS
1452 | SEC_IN_MEMORY
1453 | SEC_READONLY
1454 | SEC_LINKER_CREATED));
15bda425 1455 if (s == NULL
15bda425 1456 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1457 return FALSE;
15bda425
JL
1458 elf64_hppa_hash_table (info)->other_rel_sec = s;
1459
3496cb2a
L
1460 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1461 (SEC_ALLOC | SEC_LOAD
1462 | SEC_HAS_CONTENTS
1463 | SEC_IN_MEMORY
1464 | SEC_READONLY
1465 | SEC_LINKER_CREATED));
15bda425 1466 if (s == NULL
15bda425 1467 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1468 return FALSE;
15bda425
JL
1469 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1470
b34976b6 1471 return TRUE;
15bda425
JL
1472}
1473
1474/* Allocate dynamic relocations for those symbols that turned out
1475 to be dynamic. */
1476
b34976b6 1477static bfd_boolean
15bda425
JL
1478allocate_dynrel_entries (dyn_h, data)
1479 struct elf64_hppa_dyn_hash_entry *dyn_h;
1480 PTR data;
1481{
1482 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1483 struct elf64_hppa_link_hash_table *hppa_info;
1484 struct elf64_hppa_dyn_reloc_entry *rent;
b34976b6 1485 bfd_boolean dynamic_symbol, shared;
15bda425
JL
1486
1487 hppa_info = elf64_hppa_hash_table (x->info);
1488 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1489 shared = x->info->shared;
1490
1491 /* We may need to allocate relocations for a non-dynamic symbol
1492 when creating a shared library. */
1493 if (!dynamic_symbol && !shared)
b34976b6 1494 return TRUE;
15bda425
JL
1495
1496 /* Take care of the normal data relocations. */
1497
1498 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1499 {
d663e1cd
JL
1500 /* Allocate one iff we are building a shared library, the relocation
1501 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1502 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1503 continue;
1504
eea6121a 1505 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1506
1507 /* Make sure this symbol gets into the dynamic symbol table if it is
1508 not already recorded. ?!? This should not be in the loop since
1509 the symbol need only be added once. */
47b7c2db
AM
1510 if (dyn_h->h == 0
1511 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
c152c796 1512 if (!bfd_elf_link_record_local_dynamic_symbol
15bda425 1513 (x->info, rent->sec->owner, dyn_h->sym_indx))
b34976b6 1514 return FALSE;
15bda425
JL
1515 }
1516
1517 /* Take care of the GOT and PLT relocations. */
1518
1519 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
eea6121a 1520 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1521
1522 /* If we are building a shared library, then every symbol that has an
1523 opd entry will need an EPLT relocation to relocate the symbol's address
1524 and __gp value based on the runtime load address. */
1525 if (shared && dyn_h->want_opd)
eea6121a 1526 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1527
1528 if (dyn_h->want_plt && dynamic_symbol)
1529 {
1530 bfd_size_type t = 0;
1531
1532 /* Dynamic symbols get one IPLT relocation. Local symbols in
1533 shared libraries get two REL relocations. Local symbols in
1534 main applications get nothing. */
1535 if (dynamic_symbol)
1536 t = sizeof (Elf64_External_Rela);
1537 else if (shared)
1538 t = 2 * sizeof (Elf64_External_Rela);
1539
eea6121a 1540 hppa_info->plt_rel_sec->size += t;
15bda425
JL
1541 }
1542
b34976b6 1543 return TRUE;
15bda425
JL
1544}
1545
1546/* Adjust a symbol defined by a dynamic object and referenced by a
1547 regular object. */
1548
b34976b6 1549static bfd_boolean
15bda425 1550elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1551 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1552 struct elf_link_hash_entry *h;
1553{
1554 /* ??? Undefined symbols with PLT entries should be re-defined
1555 to be the PLT entry. */
1556
1557 /* If this is a weak symbol, and there is a real definition, the
1558 processor independent code will have arranged for us to see the
1559 real definition first, and we can just use the same value. */
f6e332e6 1560 if (h->u.weakdef != NULL)
15bda425 1561 {
f6e332e6
AM
1562 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1563 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1564 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1565 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 1566 return TRUE;
15bda425
JL
1567 }
1568
1569 /* If this is a reference to a symbol defined by a dynamic object which
1570 is not a function, we might allocate the symbol in our .dynbss section
1571 and allocate a COPY dynamic relocation.
1572
1573 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1574 of hackery. */
1575
b34976b6 1576 return TRUE;
15bda425
JL
1577}
1578
47b7c2db
AM
1579/* This function is called via elf_link_hash_traverse to mark millicode
1580 symbols with a dynindx of -1 and to remove the string table reference
1581 from the dynamic symbol table. If the symbol is not a millicode symbol,
1582 elf64_hppa_mark_exported_functions is called. */
1583
b34976b6 1584static bfd_boolean
47b7c2db
AM
1585elf64_hppa_mark_milli_and_exported_functions (h, data)
1586 struct elf_link_hash_entry *h;
1587 PTR data;
1588{
1589 struct bfd_link_info *info = (struct bfd_link_info *)data;
1590 struct elf_link_hash_entry *elf = h;
1591
1592 if (elf->root.type == bfd_link_hash_warning)
1593 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1594
1595 if (elf->type == STT_PARISC_MILLI)
1596 {
1597 if (elf->dynindx != -1)
1598 {
1599 elf->dynindx = -1;
1600 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1601 elf->dynstr_index);
1602 }
b34976b6 1603 return TRUE;
47b7c2db
AM
1604 }
1605
1606 return elf64_hppa_mark_exported_functions (h, data);
1607}
1608
15bda425
JL
1609/* Set the final sizes of the dynamic sections and allocate memory for
1610 the contents of our special sections. */
1611
b34976b6 1612static bfd_boolean
15bda425
JL
1613elf64_hppa_size_dynamic_sections (output_bfd, info)
1614 bfd *output_bfd;
1615 struct bfd_link_info *info;
1616{
1617 bfd *dynobj;
1618 asection *s;
b34976b6
AM
1619 bfd_boolean plt;
1620 bfd_boolean relocs;
1621 bfd_boolean reltext;
15bda425
JL
1622 struct elf64_hppa_allocate_data data;
1623 struct elf64_hppa_link_hash_table *hppa_info;
1624
1625 hppa_info = elf64_hppa_hash_table (info);
1626
1627 dynobj = elf_hash_table (info)->dynobj;
1628 BFD_ASSERT (dynobj != NULL);
1629
47b7c2db
AM
1630 /* Mark each function this program exports so that we will allocate
1631 space in the .opd section for each function's FPTR. If we are
1632 creating dynamic sections, change the dynamic index of millicode
1633 symbols to -1 and remove them from the string table for .dynstr.
1634
1635 We have to traverse the main linker hash table since we have to
1636 find functions which may not have been mentioned in any relocs. */
1637 elf_link_hash_traverse (elf_hash_table (info),
1638 (elf_hash_table (info)->dynamic_sections_created
1639 ? elf64_hppa_mark_milli_and_exported_functions
1640 : elf64_hppa_mark_exported_functions),
1641 info);
1642
15bda425
JL
1643 if (elf_hash_table (info)->dynamic_sections_created)
1644 {
1645 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1646 if (info->executable)
15bda425
JL
1647 {
1648 s = bfd_get_section_by_name (dynobj, ".interp");
1649 BFD_ASSERT (s != NULL);
eea6121a 1650 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15bda425
JL
1651 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1652 }
1653 }
1654 else
1655 {
1656 /* We may have created entries in the .rela.got section.
1657 However, if we are not creating the dynamic sections, we will
1658 not actually use these entries. Reset the size of .rela.dlt,
1659 which will cause it to get stripped from the output file
1660 below. */
1661 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1662 if (s != NULL)
eea6121a 1663 s->size = 0;
15bda425
JL
1664 }
1665
1666 /* Allocate the GOT entries. */
1667
1668 data.info = info;
1669 if (elf64_hppa_hash_table (info)->dlt_sec)
1670 {
1671 data.ofs = 0x0;
1672 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1673 allocate_global_data_dlt, &data);
eea6121a 1674 hppa_info->dlt_sec->size = data.ofs;
15bda425
JL
1675
1676 data.ofs = 0x0;
1677 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1678 allocate_global_data_plt, &data);
eea6121a 1679 hppa_info->plt_sec->size = data.ofs;
15bda425
JL
1680
1681 data.ofs = 0x0;
1682 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1683 allocate_global_data_stub, &data);
eea6121a 1684 hppa_info->stub_sec->size = data.ofs;
15bda425
JL
1685 }
1686
15bda425
JL
1687 /* Allocate space for entries in the .opd section. */
1688 if (elf64_hppa_hash_table (info)->opd_sec)
1689 {
1690 data.ofs = 0;
1691 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1692 allocate_global_data_opd, &data);
eea6121a 1693 hppa_info->opd_sec->size = data.ofs;
15bda425
JL
1694 }
1695
1696 /* Now allocate space for dynamic relocations, if necessary. */
1697 if (hppa_info->root.dynamic_sections_created)
1698 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1699 allocate_dynrel_entries, &data);
1700
1701 /* The sizes of all the sections are set. Allocate memory for them. */
b34976b6
AM
1702 plt = FALSE;
1703 relocs = FALSE;
1704 reltext = FALSE;
15bda425
JL
1705 for (s = dynobj->sections; s != NULL; s = s->next)
1706 {
1707 const char *name;
15bda425
JL
1708
1709 if ((s->flags & SEC_LINKER_CREATED) == 0)
1710 continue;
1711
1712 /* It's OK to base decisions on the section name, because none
1713 of the dynobj section names depend upon the input files. */
1714 name = bfd_get_section_name (dynobj, s);
1715
15bda425
JL
1716 if (strcmp (name, ".plt") == 0)
1717 {
c456f082
AM
1718 /* Remember whether there is a PLT. */
1719 plt = s->size != 0;
15bda425 1720 }
c456f082
AM
1721 else if (strcmp (name, ".opd") == 0
1722 || strncmp (name, ".dlt", 4) == 0
1723 || strcmp (name, ".stub") == 0
1724 || strcmp (name, ".got") == 0)
15bda425 1725 {
d663e1cd 1726 /* Strip this section if we don't need it; see the comment below. */
15bda425 1727 }
d663e1cd 1728 else if (strncmp (name, ".rela", 5) == 0)
15bda425 1729 {
c456f082 1730 if (s->size != 0)
15bda425
JL
1731 {
1732 asection *target;
1733
1734 /* Remember whether there are any reloc sections other
1735 than .rela.plt. */
1736 if (strcmp (name, ".rela.plt") != 0)
1737 {
1738 const char *outname;
1739
b34976b6 1740 relocs = TRUE;
15bda425
JL
1741
1742 /* If this relocation section applies to a read only
1743 section, then we probably need a DT_TEXTREL
1744 entry. The entries in the .rela.plt section
1745 really apply to the .got section, which we
1746 created ourselves and so know is not readonly. */
1747 outname = bfd_get_section_name (output_bfd,
1748 s->output_section);
1749 target = bfd_get_section_by_name (output_bfd, outname + 4);
1750 if (target != NULL
1751 && (target->flags & SEC_READONLY) != 0
1752 && (target->flags & SEC_ALLOC) != 0)
b34976b6 1753 reltext = TRUE;
15bda425
JL
1754 }
1755
1756 /* We use the reloc_count field as a counter if we need
1757 to copy relocs into the output file. */
1758 s->reloc_count = 0;
1759 }
1760 }
c456f082 1761 else
15bda425
JL
1762 {
1763 /* It's not one of our sections, so don't allocate space. */
1764 continue;
1765 }
1766
c456f082 1767 if (s->size == 0)
15bda425 1768 {
c456f082
AM
1769 /* If we don't need this section, strip it from the
1770 output file. This is mostly to handle .rela.bss and
1771 .rela.plt. We must create both sections in
1772 create_dynamic_sections, because they must be created
1773 before the linker maps input sections to output
1774 sections. The linker does that before
1775 adjust_dynamic_symbol is called, and it is that
1776 function which decides whether anything needs to go
1777 into these sections. */
8423293d 1778 s->flags |= SEC_EXCLUDE;
15bda425
JL
1779 continue;
1780 }
1781
c456f082
AM
1782 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1783 continue;
1784
15bda425 1785 /* Allocate memory for the section contents if it has not
832d951b
AM
1786 been allocated already. We use bfd_zalloc here in case
1787 unused entries are not reclaimed before the section's
1788 contents are written out. This should not happen, but this
1789 way if it does, we get a R_PARISC_NONE reloc instead of
1790 garbage. */
15bda425
JL
1791 if (s->contents == NULL)
1792 {
eea6121a 1793 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1794 if (s->contents == NULL)
b34976b6 1795 return FALSE;
15bda425
JL
1796 }
1797 }
1798
1799 if (elf_hash_table (info)->dynamic_sections_created)
1800 {
1801 /* Always create a DT_PLTGOT. It actually has nothing to do with
1802 the PLT, it is how we communicate the __gp value of a load
1803 module to the dynamic linker. */
dc810e39 1804#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1805 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39
AM
1806
1807 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1808 || !add_dynamic_entry (DT_PLTGOT, 0))
b34976b6 1809 return FALSE;
15bda425
JL
1810
1811 /* Add some entries to the .dynamic section. We fill in the
1812 values later, in elf64_hppa_finish_dynamic_sections, but we
1813 must add the entries now so that we get the correct size for
1814 the .dynamic section. The DT_DEBUG entry is filled in by the
1815 dynamic linker and used by the debugger. */
1816 if (! info->shared)
1817 {
dc810e39
AM
1818 if (!add_dynamic_entry (DT_DEBUG, 0)
1819 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1820 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
b34976b6 1821 return FALSE;
15bda425
JL
1822 }
1823
f2482cb2
NC
1824 /* Force DT_FLAGS to always be set.
1825 Required by HPUX 11.00 patch PHSS_26559. */
1826 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
b34976b6 1827 return FALSE;
f2482cb2 1828
15bda425
JL
1829 if (plt)
1830 {
dc810e39
AM
1831 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1832 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1833 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 1834 return FALSE;
15bda425
JL
1835 }
1836
1837 if (relocs)
1838 {
dc810e39
AM
1839 if (!add_dynamic_entry (DT_RELA, 0)
1840 || !add_dynamic_entry (DT_RELASZ, 0)
1841 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
b34976b6 1842 return FALSE;
15bda425
JL
1843 }
1844
1845 if (reltext)
1846 {
dc810e39 1847 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 1848 return FALSE;
d6cf2879 1849 info->flags |= DF_TEXTREL;
15bda425
JL
1850 }
1851 }
dc810e39 1852#undef add_dynamic_entry
15bda425 1853
b34976b6 1854 return TRUE;
15bda425
JL
1855}
1856
1857/* Called after we have output the symbol into the dynamic symbol
1858 table, but before we output the symbol into the normal symbol
1859 table.
1860
1861 For some symbols we had to change their address when outputting
1862 the dynamic symbol table. We undo that change here so that
1863 the symbols have their expected value in the normal symbol
1864 table. Ick. */
1865
b34976b6 1866static bfd_boolean
754021d0 1867elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
15bda425
JL
1868 struct bfd_link_info *info;
1869 const char *name;
1870 Elf_Internal_Sym *sym;
edd21aca 1871 asection *input_sec ATTRIBUTE_UNUSED;
754021d0 1872 struct elf_link_hash_entry *h;
15bda425
JL
1873{
1874 struct elf64_hppa_link_hash_table *hppa_info;
1875 struct elf64_hppa_dyn_hash_entry *dyn_h;
1876
1877 /* We may be called with the file symbol or section symbols.
1878 They never need munging, so it is safe to ignore them. */
1879 if (!name)
b34976b6 1880 return TRUE;
15bda425
JL
1881
1882 /* Get the PA dyn_symbol (if any) associated with NAME. */
1883 hppa_info = elf64_hppa_hash_table (info);
1884 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1885 name, FALSE, FALSE);
ac7bbf74 1886 if (!dyn_h || dyn_h->h != h)
754021d0 1887 return TRUE;
15bda425 1888
832d951b
AM
1889 /* Function symbols for which we created .opd entries *may* have been
1890 munged by finish_dynamic_symbol and have to be un-munged here.
1891
1892 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1893 into non-dynamic ones, so we initialize st_shndx to -1 in
1894 mark_exported_functions and check to see if it was overwritten
1895 here instead of just checking dyn_h->h->dynindx. */
ac7bbf74 1896 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1897 {
1898 /* Restore the saved value and section index. */
1899 sym->st_value = dyn_h->st_value;
fe8bc63d 1900 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1901 }
1902
b34976b6 1903 return TRUE;
15bda425
JL
1904}
1905
1906/* Finish up dynamic symbol handling. We set the contents of various
1907 dynamic sections here. */
1908
b34976b6 1909static bfd_boolean
15bda425
JL
1910elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1911 bfd *output_bfd;
1912 struct bfd_link_info *info;
1913 struct elf_link_hash_entry *h;
1914 Elf_Internal_Sym *sym;
1915{
1916 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1917 struct elf64_hppa_link_hash_table *hppa_info;
1918 struct elf64_hppa_dyn_hash_entry *dyn_h;
1919
1920 hppa_info = elf64_hppa_hash_table (info);
1921 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1922 h->root.root.string, FALSE, FALSE);
15bda425
JL
1923
1924 stub = hppa_info->stub_sec;
1925 splt = hppa_info->plt_sec;
1926 sdlt = hppa_info->dlt_sec;
1927 sopd = hppa_info->opd_sec;
1928 spltrel = hppa_info->plt_rel_sec;
1929 sdltrel = hppa_info->dlt_rel_sec;
1930
15bda425
JL
1931 /* Incredible. It is actually necessary to NOT use the symbol's real
1932 value when building the dynamic symbol table for a shared library.
1933 At least for symbols that refer to functions.
1934
1935 We will store a new value and section index into the symbol long
1936 enough to output it into the dynamic symbol table, then we restore
1937 the original values (in elf64_hppa_link_output_symbol_hook). */
1938 if (dyn_h && dyn_h->want_opd)
1939 {
f12123c0 1940 BFD_ASSERT (sopd != NULL);
d663e1cd 1941
15bda425
JL
1942 /* Save away the original value and section index so that we
1943 can restore them later. */
1944 dyn_h->st_value = sym->st_value;
1945 dyn_h->st_shndx = sym->st_shndx;
1946
1947 /* For the dynamic symbol table entry, we want the value to be
1948 address of this symbol's entry within the .opd section. */
1949 sym->st_value = (dyn_h->opd_offset
1950 + sopd->output_offset
1951 + sopd->output_section->vma);
1952 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1953 sopd->output_section);
1954 }
1955
1956 /* Initialize a .plt entry if requested. */
1957 if (dyn_h && dyn_h->want_plt
1958 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1959 {
1960 bfd_vma value;
1961 Elf_Internal_Rela rel;
947216bf 1962 bfd_byte *loc;
15bda425 1963
f12123c0 1964 BFD_ASSERT (splt != NULL && spltrel != NULL);
d663e1cd 1965
15bda425
JL
1966 /* We do not actually care about the value in the PLT entry
1967 if we are creating a shared library and the symbol is
1968 still undefined, we create a dynamic relocation to fill
1969 in the correct value. */
1970 if (info->shared && h->root.type == bfd_link_hash_undefined)
1971 value = 0;
1972 else
1973 value = (h->root.u.def.value + h->root.u.def.section->vma);
1974
fe8bc63d 1975 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1976
1977 The format of a plt entry is
fe8bc63d 1978 <funcaddr> <__gp>.
15bda425
JL
1979
1980 plt_offset is the offset within the PLT section at which to
fe8bc63d 1981 install the PLT entry.
15bda425
JL
1982
1983 We are modifying the in-memory PLT contents here, so we do not add
1984 in the output_offset of the PLT section. */
1985
1986 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1987 value = _bfd_get_gp_value (splt->output_section->owner);
1988 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1989
1990 /* Create a dynamic IPLT relocation for this entry.
1991
1992 We are creating a relocation in the output file's PLT section,
1993 which is included within the DLT secton. So we do need to include
1994 the PLT's output_offset in the computation of the relocation's
1995 address. */
1996 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1997 + splt->output_section->vma);
1998 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1999 rel.r_addend = 0;
2000
947216bf
AM
2001 loc = spltrel->contents;
2002 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2003 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
15bda425
JL
2004 }
2005
2006 /* Initialize an external call stub entry if requested. */
2007 if (dyn_h && dyn_h->want_stub
2008 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2009 {
2010 bfd_vma value;
2011 int insn;
b352eebf 2012 unsigned int max_offset;
15bda425 2013
f12123c0 2014 BFD_ASSERT (stub != NULL);
d663e1cd 2015
15bda425
JL
2016 /* Install the generic stub template.
2017
2018 We are modifying the contents of the stub section, so we do not
2019 need to include the stub section's output_offset here. */
2020 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2021
2022 /* Fix up the first ldd instruction.
2023
2024 We are modifying the contents of the STUB section in memory,
fe8bc63d 2025 so we do not need to include its output offset in this computation.
15bda425
JL
2026
2027 Note the plt_offset value is the value of the PLT entry relative to
2028 the start of the PLT section. These instructions will reference
2029 data relative to the value of __gp, which may not necessarily have
2030 the same address as the start of the PLT section.
2031
2032 gp_offset contains the offset of __gp within the PLT section. */
2033 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2034
15bda425 2035 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2036 if (output_bfd->arch_info->mach >= 25)
2037 {
2038 /* Wide mode allows 16 bit offsets. */
2039 max_offset = 32768;
2040 insn &= ~ 0xfff1;
dc810e39 2041 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2042 }
2043 else
2044 {
2045 max_offset = 8192;
2046 insn &= ~ 0x3ff1;
dc810e39 2047 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2048 }
2049
2050 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2051 {
2052 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2053 dyn_h->root.string,
2054 (long) value);
b34976b6 2055 return FALSE;
b352eebf
AM
2056 }
2057
dc810e39 2058 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2059 stub->contents + dyn_h->stub_offset);
2060
2061 /* Fix up the second ldd instruction. */
b352eebf 2062 value += 8;
15bda425 2063 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2064 if (output_bfd->arch_info->mach >= 25)
2065 {
2066 insn &= ~ 0xfff1;
dc810e39 2067 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2068 }
2069 else
2070 {
2071 insn &= ~ 0x3ff1;
dc810e39 2072 insn |= re_assemble_14 ((int) value);
b352eebf 2073 }
dc810e39 2074 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2075 stub->contents + dyn_h->stub_offset + 8);
2076 }
2077
b34976b6 2078 return TRUE;
15bda425
JL
2079}
2080
2081/* The .opd section contains FPTRs for each function this file
2082 exports. Initialize the FPTR entries. */
2083
b34976b6 2084static bfd_boolean
15bda425
JL
2085elf64_hppa_finalize_opd (dyn_h, data)
2086 struct elf64_hppa_dyn_hash_entry *dyn_h;
2087 PTR data;
2088{
2089 struct bfd_link_info *info = (struct bfd_link_info *)data;
2090 struct elf64_hppa_link_hash_table *hppa_info;
3db4b612 2091 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2092 asection *sopd;
2093 asection *sopdrel;
2094
2095 hppa_info = elf64_hppa_hash_table (info);
2096 sopd = hppa_info->opd_sec;
2097 sopdrel = hppa_info->opd_rel_sec;
2098
3db4b612 2099 if (h && dyn_h->want_opd)
15bda425
JL
2100 {
2101 bfd_vma value;
2102
fe8bc63d 2103 /* The first two words of an .opd entry are zero.
15bda425
JL
2104
2105 We are modifying the contents of the OPD section in memory, so we
2106 do not need to include its output offset in this computation. */
2107 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2108
2109 value = (h->root.u.def.value
2110 + h->root.u.def.section->output_section->vma
2111 + h->root.u.def.section->output_offset);
2112
2113 /* The next word is the address of the function. */
2114 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2115
2116 /* The last word is our local __gp value. */
2117 value = _bfd_get_gp_value (sopd->output_section->owner);
2118 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2119 }
2120
2121 /* If we are generating a shared library, we must generate EPLT relocations
2122 for each entry in the .opd, even for static functions (they may have
2123 had their address taken). */
2124 if (info->shared && dyn_h && dyn_h->want_opd)
2125 {
947216bf
AM
2126 Elf_Internal_Rela rel;
2127 bfd_byte *loc;
15bda425
JL
2128 int dynindx;
2129
2130 /* We may need to do a relocation against a local symbol, in
2131 which case we have to look up it's dynamic symbol index off
2132 the local symbol hash table. */
2133 if (h && h->dynindx != -1)
2134 dynindx = h->dynindx;
2135 else
2136 dynindx
2137 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2138 dyn_h->sym_indx);
2139
2140 /* The offset of this relocation is the absolute address of the
2141 .opd entry for this symbol. */
2142 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2143 + sopd->output_section->vma);
2144
2145 /* If H is non-null, then we have an external symbol.
2146
2147 It is imperative that we use a different dynamic symbol for the
2148 EPLT relocation if the symbol has global scope.
2149
2150 In the dynamic symbol table, the function symbol will have a value
2151 which is address of the function's .opd entry.
2152
2153 Thus, we can not use that dynamic symbol for the EPLT relocation
2154 (if we did, the data in the .opd would reference itself rather
2155 than the actual address of the function). Instead we have to use
2156 a new dynamic symbol which has the same value as the original global
fe8bc63d 2157 function symbol.
15bda425
JL
2158
2159 We prefix the original symbol with a "." and use the new symbol in
2160 the EPLT relocation. This new symbol has already been recorded in
2161 the symbol table, we just have to look it up and use it.
2162
2163 We do not have such problems with static functions because we do
2164 not make their addresses in the dynamic symbol table point to
2165 the .opd entry. Ultimately this should be safe since a static
2166 function can not be directly referenced outside of its shared
2167 library.
2168
2169 We do have to play similar games for FPTR relocations in shared
2170 libraries, including those for static symbols. See the FPTR
2171 handling in elf64_hppa_finalize_dynreloc. */
2172 if (h)
2173 {
2174 char *new_name;
2175 struct elf_link_hash_entry *nh;
2176
2177 new_name = alloca (strlen (h->root.root.string) + 2);
2178 new_name[0] = '.';
2179 strcpy (new_name + 1, h->root.root.string);
2180
2181 nh = elf_link_hash_lookup (elf_hash_table (info),
b34976b6 2182 new_name, FALSE, FALSE, FALSE);
15bda425
JL
2183
2184 /* All we really want from the new symbol is its dynamic
2185 symbol index. */
2186 dynindx = nh->dynindx;
2187 }
2188
2189 rel.r_addend = 0;
2190 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2191
947216bf
AM
2192 loc = sopdrel->contents;
2193 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2194 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
15bda425 2195 }
b34976b6 2196 return TRUE;
15bda425
JL
2197}
2198
2199/* The .dlt section contains addresses for items referenced through the
2200 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2201 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2202
b34976b6 2203static bfd_boolean
15bda425
JL
2204elf64_hppa_finalize_dlt (dyn_h, data)
2205 struct elf64_hppa_dyn_hash_entry *dyn_h;
2206 PTR data;
2207{
2208 struct bfd_link_info *info = (struct bfd_link_info *)data;
2209 struct elf64_hppa_link_hash_table *hppa_info;
2210 asection *sdlt, *sdltrel;
3db4b612 2211 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2212
2213 hppa_info = elf64_hppa_hash_table (info);
2214
2215 sdlt = hppa_info->dlt_sec;
2216 sdltrel = hppa_info->dlt_rel_sec;
2217
2218 /* H/DYN_H may refer to a local variable and we know it's
2219 address, so there is no need to create a relocation. Just install
2220 the proper value into the DLT, note this shortcut can not be
2221 skipped when building a shared library. */
3db4b612 2222 if (! info->shared && h && dyn_h->want_dlt)
15bda425
JL
2223 {
2224 bfd_vma value;
2225
2226 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2227 to point to the FPTR entry in the .opd section.
15bda425
JL
2228
2229 We include the OPD's output offset in this computation as
2230 we are referring to an absolute address in the resulting
2231 object file. */
2232 if (dyn_h->want_opd)
2233 {
2234 value = (dyn_h->opd_offset
2235 + hppa_info->opd_sec->output_offset
2236 + hppa_info->opd_sec->output_section->vma);
2237 }
37f4508b
AM
2238 else if ((h->root.type == bfd_link_hash_defined
2239 || h->root.type == bfd_link_hash_defweak)
2240 && h->root.u.def.section)
15bda425 2241 {
3db4b612 2242 value = h->root.u.def.value + h->root.u.def.section->output_offset;
15bda425
JL
2243 if (h->root.u.def.section->output_section)
2244 value += h->root.u.def.section->output_section->vma;
2245 else
2246 value += h->root.u.def.section->vma;
2247 }
3db4b612
JL
2248 else
2249 /* We have an undefined function reference. */
2250 value = 0;
15bda425
JL
2251
2252 /* We do not need to include the output offset of the DLT section
2253 here because we are modifying the in-memory contents. */
2254 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2255 }
2256
4cc11e76 2257 /* Create a relocation for the DLT entry associated with this symbol.
15bda425
JL
2258 When building a shared library the symbol does not have to be dynamic. */
2259 if (dyn_h->want_dlt
2260 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2261 {
947216bf
AM
2262 Elf_Internal_Rela rel;
2263 bfd_byte *loc;
15bda425
JL
2264 int dynindx;
2265
2266 /* We may need to do a relocation against a local symbol, in
2267 which case we have to look up it's dynamic symbol index off
2268 the local symbol hash table. */
2269 if (h && h->dynindx != -1)
2270 dynindx = h->dynindx;
2271 else
2272 dynindx
2273 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2274 dyn_h->sym_indx);
2275
15bda425
JL
2276 /* Create a dynamic relocation for this entry. Do include the output
2277 offset of the DLT entry since we need an absolute address in the
2278 resulting object file. */
2279 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2280 + sdlt->output_section->vma);
2281 if (h && h->type == STT_FUNC)
2282 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2283 else
2284 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2285 rel.r_addend = 0;
2286
947216bf
AM
2287 loc = sdltrel->contents;
2288 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2289 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
15bda425 2290 }
b34976b6 2291 return TRUE;
15bda425
JL
2292}
2293
2294/* Finalize the dynamic relocations. Specifically the FPTR relocations
2295 for dynamic functions used to initialize static data. */
2296
b34976b6 2297static bfd_boolean
15bda425
JL
2298elf64_hppa_finalize_dynreloc (dyn_h, data)
2299 struct elf64_hppa_dyn_hash_entry *dyn_h;
2300 PTR data;
2301{
2302 struct bfd_link_info *info = (struct bfd_link_info *)data;
2303 struct elf64_hppa_link_hash_table *hppa_info;
2304 struct elf_link_hash_entry *h;
2305 int dynamic_symbol;
2306
2307 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2308
2309 if (!dynamic_symbol && !info->shared)
b34976b6 2310 return TRUE;
15bda425
JL
2311
2312 if (dyn_h->reloc_entries)
2313 {
2314 struct elf64_hppa_dyn_reloc_entry *rent;
2315 int dynindx;
2316
2317 hppa_info = elf64_hppa_hash_table (info);
2318 h = dyn_h->h;
2319
2320 /* We may need to do a relocation against a local symbol, in
2321 which case we have to look up it's dynamic symbol index off
2322 the local symbol hash table. */
2323 if (h && h->dynindx != -1)
2324 dynindx = h->dynindx;
2325 else
2326 dynindx
2327 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2328 dyn_h->sym_indx);
2329
2330 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2331 {
947216bf
AM
2332 Elf_Internal_Rela rel;
2333 bfd_byte *loc;
15bda425 2334
d663e1cd
JL
2335 /* Allocate one iff we are building a shared library, the relocation
2336 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2337 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2338 continue;
15bda425 2339
fe8bc63d 2340 /* Create a dynamic relocation for this entry.
15bda425
JL
2341
2342 We need the output offset for the reloc's section because
2343 we are creating an absolute address in the resulting object
2344 file. */
2345 rel.r_offset = (rent->offset + rent->sec->output_offset
2346 + rent->sec->output_section->vma);
2347
2348 /* An FPTR64 relocation implies that we took the address of
2349 a function and that the function has an entry in the .opd
2350 section. We want the FPTR64 relocation to reference the
2351 entry in .opd.
2352
2353 We could munge the symbol value in the dynamic symbol table
2354 (in fact we already do for functions with global scope) to point
2355 to the .opd entry. Then we could use that dynamic symbol in
2356 this relocation.
2357
2358 Or we could do something sensible, not munge the symbol's
2359 address and instead just use a different symbol to reference
2360 the .opd entry. At least that seems sensible until you
2361 realize there's no local dynamic symbols we can use for that
2362 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2363
15bda425
JL
2364 We use a section symbol recorded by check_relocs as the
2365 base symbol for the relocation. The addend is the difference
2366 between the section symbol and the address of the .opd entry. */
3db4b612 2367 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
15bda425
JL
2368 {
2369 bfd_vma value, value2;
15bda425
JL
2370
2371 /* First compute the address of the opd entry for this symbol. */
2372 value = (dyn_h->opd_offset
2373 + hppa_info->opd_sec->output_section->vma
2374 + hppa_info->opd_sec->output_offset);
2375
2376 /* Compute the value of the start of the section with
2377 the relocation. */
2378 value2 = (rent->sec->output_section->vma
2379 + rent->sec->output_offset);
2380
2381 /* Compute the difference between the start of the section
2382 with the relocation and the opd entry. */
2383 value -= value2;
fe8bc63d 2384
15bda425
JL
2385 /* The result becomes the addend of the relocation. */
2386 rel.r_addend = value;
2387
2388 /* The section symbol becomes the symbol for the dynamic
2389 relocation. */
2390 dynindx
2391 = _bfd_elf_link_lookup_local_dynindx (info,
2392 rent->sec->owner,
2393 rent->sec_symndx);
2394 }
2395 else
2396 rel.r_addend = rent->addend;
2397
2398 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2399
947216bf
AM
2400 loc = hppa_info->other_rel_sec->contents;
2401 loc += (hppa_info->other_rel_sec->reloc_count++
2402 * sizeof (Elf64_External_Rela));
15bda425 2403 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
947216bf 2404 &rel, loc);
15bda425
JL
2405 }
2406 }
2407
b34976b6 2408 return TRUE;
15bda425
JL
2409}
2410
5ac81c74
JL
2411/* Used to decide how to sort relocs in an optimal manner for the
2412 dynamic linker, before writing them out. */
2413
2414static enum elf_reloc_type_class
2415elf64_hppa_reloc_type_class (rela)
2416 const Elf_Internal_Rela *rela;
2417{
2418 if (ELF64_R_SYM (rela->r_info) == 0)
2419 return reloc_class_relative;
2420
2421 switch ((int) ELF64_R_TYPE (rela->r_info))
2422 {
2423 case R_PARISC_IPLT:
2424 return reloc_class_plt;
2425 case R_PARISC_COPY:
2426 return reloc_class_copy;
2427 default:
2428 return reloc_class_normal;
2429 }
2430}
2431
15bda425
JL
2432/* Finish up the dynamic sections. */
2433
b34976b6 2434static bfd_boolean
15bda425
JL
2435elf64_hppa_finish_dynamic_sections (output_bfd, info)
2436 bfd *output_bfd;
2437 struct bfd_link_info *info;
2438{
2439 bfd *dynobj;
2440 asection *sdyn;
2441 struct elf64_hppa_link_hash_table *hppa_info;
2442
2443 hppa_info = elf64_hppa_hash_table (info);
2444
2445 /* Finalize the contents of the .opd section. */
2446 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2447 elf64_hppa_finalize_opd,
2448 info);
2449
2450 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2451 elf64_hppa_finalize_dynreloc,
2452 info);
2453
2454 /* Finalize the contents of the .dlt section. */
2455 dynobj = elf_hash_table (info)->dynobj;
2456 /* Finalize the contents of the .dlt section. */
2457 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2458 elf64_hppa_finalize_dlt,
2459 info);
2460
15bda425
JL
2461 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2462
2463 if (elf_hash_table (info)->dynamic_sections_created)
2464 {
2465 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2466
2467 BFD_ASSERT (sdyn != NULL);
2468
2469 dyncon = (Elf64_External_Dyn *) sdyn->contents;
eea6121a 2470 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15bda425
JL
2471 for (; dyncon < dynconend; dyncon++)
2472 {
2473 Elf_Internal_Dyn dyn;
2474 asection *s;
2475
2476 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2477
2478 switch (dyn.d_tag)
2479 {
2480 default:
2481 break;
2482
2483 case DT_HP_LOAD_MAP:
2484 /* Compute the absolute address of 16byte scratchpad area
2485 for the dynamic linker.
2486
2487 By convention the linker script will allocate the scratchpad
2488 area at the start of the .data section. So all we have to
2489 to is find the start of the .data section. */
2490 s = bfd_get_section_by_name (output_bfd, ".data");
2491 dyn.d_un.d_ptr = s->vma;
2492 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2493 break;
2494
2495 case DT_PLTGOT:
2496 /* HP's use PLTGOT to set the GOT register. */
2497 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2498 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2499 break;
2500
2501 case DT_JMPREL:
2502 s = hppa_info->plt_rel_sec;
2503 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2504 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2505 break;
2506
2507 case DT_PLTRELSZ:
2508 s = hppa_info->plt_rel_sec;
eea6121a 2509 dyn.d_un.d_val = s->size;
15bda425
JL
2510 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2511 break;
2512
2513 case DT_RELA:
2514 s = hppa_info->other_rel_sec;
eea6121a 2515 if (! s || ! s->size)
15bda425 2516 s = hppa_info->dlt_rel_sec;
eea6121a 2517 if (! s || ! s->size)
5ac81c74 2518 s = hppa_info->opd_rel_sec;
15bda425
JL
2519 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2520 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2521 break;
2522
2523 case DT_RELASZ:
2524 s = hppa_info->other_rel_sec;
eea6121a 2525 dyn.d_un.d_val = s->size;
15bda425 2526 s = hppa_info->dlt_rel_sec;
eea6121a 2527 dyn.d_un.d_val += s->size;
15bda425 2528 s = hppa_info->opd_rel_sec;
eea6121a 2529 dyn.d_un.d_val += s->size;
15bda425
JL
2530 /* There is some question about whether or not the size of
2531 the PLT relocs should be included here. HP's tools do
2532 it, so we'll emulate them. */
2533 s = hppa_info->plt_rel_sec;
eea6121a 2534 dyn.d_un.d_val += s->size;
15bda425
JL
2535 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2536 break;
2537
2538 }
2539 }
2540 }
2541
b34976b6 2542 return TRUE;
15bda425
JL
2543}
2544
235ecfbc
NC
2545/* Support for core dump NOTE sections. */
2546
2547static bfd_boolean
2548elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2549{
2550 int offset;
2551 size_t size;
2552
2553 switch (note->descsz)
2554 {
2555 default:
2556 return FALSE;
2557
2558 case 760: /* Linux/hppa */
2559 /* pr_cursig */
2560 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2561
2562 /* pr_pid */
2563 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2564
2565 /* pr_reg */
2566 offset = 112;
2567 size = 640;
2568
2569 break;
2570 }
2571
2572 /* Make a ".reg/999" section. */
2573 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2574 size, note->descpos + offset);
2575}
2576
2577static bfd_boolean
2578elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2579{
2580 char * command;
2581 int n;
2582
2583 switch (note->descsz)
2584 {
2585 default:
2586 return FALSE;
2587
2588 case 136: /* Linux/hppa elf_prpsinfo. */
2589 elf_tdata (abfd)->core_program
2590 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2591 elf_tdata (abfd)->core_command
2592 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2593 }
2594
2595 /* Note that for some reason, a spurious space is tacked
2596 onto the end of the args in some (at least one anyway)
2597 implementations, so strip it off if it exists. */
2598 command = elf_tdata (abfd)->core_command;
2599 n = strlen (command);
2600
2601 if (0 < n && command[n - 1] == ' ')
2602 command[n - 1] = '\0';
2603
2604 return TRUE;
2605}
2606
15bda425
JL
2607/* Return the number of additional phdrs we will need.
2608
2609 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2610 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2611
2612 This routine indicates that the backend needs one additional program
2613 header for that case.
2614
2615 Note we do not have access to the link info structure here, so we have
2616 to guess whether or not we are building a shared library based on the
2617 existence of a .interp section. */
2618
2619static int
2620elf64_hppa_additional_program_headers (abfd)
2621 bfd *abfd;
2622{
2623 asection *s;
2624
2625 /* If we are creating a shared library, then we have to create a
2626 PT_PHDR segment. HP's dynamic linker chokes without it. */
2627 s = bfd_get_section_by_name (abfd, ".interp");
2628 if (! s)
2629 return 1;
2630 return 0;
2631}
2632
2633/* Allocate and initialize any program headers required by this
2634 specific backend.
2635
2636 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2637 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2638
2639 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2640 for the HP linker.
15bda425
JL
2641
2642 Note we do not have access to the link info structure here, so we have
2643 to guess whether or not we are building a shared library based on the
2644 existence of a .interp section. */
2645
b34976b6 2646static bfd_boolean
c84fca4d 2647elf64_hppa_modify_segment_map (abfd, info)
15bda425 2648 bfd *abfd;
c84fca4d 2649 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425 2650{
edd21aca 2651 struct elf_segment_map *m;
15bda425
JL
2652 asection *s;
2653
2654 s = bfd_get_section_by_name (abfd, ".interp");
2655 if (! s)
2656 {
2657 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2658 if (m->p_type == PT_PHDR)
2659 break;
2660 if (m == NULL)
2661 {
dc810e39
AM
2662 m = ((struct elf_segment_map *)
2663 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425 2664 if (m == NULL)
b34976b6 2665 return FALSE;
15bda425
JL
2666
2667 m->p_type = PT_PHDR;
2668 m->p_flags = PF_R | PF_X;
2669 m->p_flags_valid = 1;
2670 m->p_paddr_valid = 1;
2671 m->includes_phdrs = 1;
2672
2673 m->next = elf_tdata (abfd)->segment_map;
2674 elf_tdata (abfd)->segment_map = m;
2675 }
2676 }
2677
2678 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2679 if (m->p_type == PT_LOAD)
2680 {
0ba2a60e 2681 unsigned int i;
15bda425
JL
2682
2683 for (i = 0; i < m->count; i++)
2684 {
2685 /* The code "hint" is not really a hint. It is a requirement
2686 for certain versions of the HP dynamic linker. Worse yet,
2687 it must be set even if the shared library does not have
2688 any code in its "text" segment (thus the check for .hash
2689 to catch this situation). */
2690 if (m->sections[i]->flags & SEC_CODE
2691 || (strcmp (m->sections[i]->name, ".hash") == 0))
2692 m->p_flags |= (PF_X | PF_HP_CODE);
2693 }
2694 }
2695
b34976b6 2696 return TRUE;
15bda425
JL
2697}
2698
3fab46d0
AM
2699/* Called when writing out an object file to decide the type of a
2700 symbol. */
2701static int
2702elf64_hppa_elf_get_symbol_type (elf_sym, type)
2703 Elf_Internal_Sym *elf_sym;
2704 int type;
2705{
2706 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2707 return STT_PARISC_MILLI;
2708 else
2709 return type;
2710}
2711
d97a8924
DA
2712/* Support HP specific sections for core files. */
2713static bfd_boolean
2714elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2715 const char *typename)
2716{
927e625f
MK
2717 if (hdr->p_type == PT_HP_CORE_KERNEL)
2718 {
2719 asection *sect;
2720
2721 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2722 return FALSE;
2723
2724 sect = bfd_make_section_anyway (abfd, ".kernel");
2725 if (sect == NULL)
2726 return FALSE;
2727 sect->size = hdr->p_filesz;
2728 sect->filepos = hdr->p_offset;
2729 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2730 return TRUE;
2731 }
2732
d97a8924
DA
2733 if (hdr->p_type == PT_HP_CORE_PROC)
2734 {
2735 int sig;
2736
2737 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2738 return FALSE;
2739 if (bfd_bread (&sig, 4, abfd) != 4)
2740 return FALSE;
2741
2742 elf_tdata (abfd)->core_signal = sig;
2743
927e625f 2744 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
d97a8924 2745 return FALSE;
927e625f
MK
2746
2747 /* GDB uses the ".reg" section to read register contents. */
2748 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2749 hdr->p_offset);
d97a8924
DA
2750 }
2751
2752 if (hdr->p_type == PT_HP_CORE_LOADABLE
2753 || hdr->p_type == PT_HP_CORE_STACK
2754 || hdr->p_type == PT_HP_CORE_MMF)
2755 hdr->p_type = PT_LOAD;
2756
2757 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2758}
2759
b35d266b 2760static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2f89ff8d 2761{
4fc35ca9
DA
2762 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2763 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2764 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2765 { ".dlt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2766 { ".sdata", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2767 { ".sbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
a2199086 2768 { ".tbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
4fc35ca9 2769 { NULL, 0, 0, 0, 0 }
2f89ff8d
L
2770};
2771
15bda425
JL
2772/* The hash bucket size is the standard one, namely 4. */
2773
2774const struct elf_size_info hppa64_elf_size_info =
2775{
2776 sizeof (Elf64_External_Ehdr),
2777 sizeof (Elf64_External_Phdr),
2778 sizeof (Elf64_External_Shdr),
2779 sizeof (Elf64_External_Rel),
2780 sizeof (Elf64_External_Rela),
2781 sizeof (Elf64_External_Sym),
2782 sizeof (Elf64_External_Dyn),
2783 sizeof (Elf_External_Note),
2784 4,
2785 1,
45d6a902 2786 64, 3,
15bda425
JL
2787 ELFCLASS64, EV_CURRENT,
2788 bfd_elf64_write_out_phdrs,
2789 bfd_elf64_write_shdrs_and_ehdr,
2790 bfd_elf64_write_relocs,
73ff0d56 2791 bfd_elf64_swap_symbol_in,
15bda425
JL
2792 bfd_elf64_swap_symbol_out,
2793 bfd_elf64_slurp_reloc_table,
2794 bfd_elf64_slurp_symbol_table,
2795 bfd_elf64_swap_dyn_in,
2796 bfd_elf64_swap_dyn_out,
947216bf
AM
2797 bfd_elf64_swap_reloc_in,
2798 bfd_elf64_swap_reloc_out,
2799 bfd_elf64_swap_reloca_in,
2800 bfd_elf64_swap_reloca_out
15bda425
JL
2801};
2802
2803#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2804#define TARGET_BIG_NAME "elf64-hppa"
2805#define ELF_ARCH bfd_arch_hppa
2806#define ELF_MACHINE_CODE EM_PARISC
2807/* This is not strictly correct. The maximum page size for PA2.0 is
2808 64M. But everything still uses 4k. */
2809#define ELF_MAXPAGESIZE 0x1000
2810#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2811#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2812#define elf_info_to_howto elf_hppa_info_to_howto
2813#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2814
2815#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2816#define elf_backend_object_p elf64_hppa_object_p
2817#define elf_backend_final_write_processing \
2818 elf_hppa_final_write_processing
99c79b2e 2819#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2820#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2821
f0fe0e16 2822#define elf_backend_relocate_section elf_hppa_relocate_section
15bda425
JL
2823
2824#define bfd_elf64_bfd_final_link elf_hppa_final_link
2825
2826#define elf_backend_create_dynamic_sections \
2827 elf64_hppa_create_dynamic_sections
2828#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2829
2830#define elf_backend_adjust_dynamic_symbol \
2831 elf64_hppa_adjust_dynamic_symbol
2832
2833#define elf_backend_size_dynamic_sections \
2834 elf64_hppa_size_dynamic_sections
2835
2836#define elf_backend_finish_dynamic_symbol \
2837 elf64_hppa_finish_dynamic_symbol
2838#define elf_backend_finish_dynamic_sections \
2839 elf64_hppa_finish_dynamic_sections
235ecfbc
NC
2840#define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
2841#define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
2842
15bda425
JL
2843/* Stuff for the BFD linker: */
2844#define bfd_elf64_bfd_link_hash_table_create \
2845 elf64_hppa_hash_table_create
2846
2847#define elf_backend_check_relocs \
2848 elf64_hppa_check_relocs
2849
2850#define elf_backend_size_info \
2851 hppa64_elf_size_info
2852
2853#define elf_backend_additional_program_headers \
2854 elf64_hppa_additional_program_headers
2855
2856#define elf_backend_modify_segment_map \
2857 elf64_hppa_modify_segment_map
2858
2859#define elf_backend_link_output_symbol_hook \
2860 elf64_hppa_link_output_symbol_hook
2861
15bda425
JL
2862#define elf_backend_want_got_plt 0
2863#define elf_backend_plt_readonly 0
2864#define elf_backend_want_plt_sym 0
2865#define elf_backend_got_header_size 0
b34976b6
AM
2866#define elf_backend_type_change_ok TRUE
2867#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2868#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2869#define elf_backend_rela_normal 1
29ef7005 2870#define elf_backend_special_sections elf64_hppa_special_sections
8a696751 2871#define elf_backend_action_discarded elf_hppa_action_discarded
d97a8924 2872#define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
15bda425
JL
2873
2874#include "elf64-target.h"
d952f17a
AM
2875
2876#undef TARGET_BIG_SYM
2877#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2878#undef TARGET_BIG_NAME
2879#define TARGET_BIG_NAME "elf64-hppa-linux"
2880
2881#define INCLUDED_TARGET_FILE 1
2882#include "elf64-target.h"
This page took 0.472005 seconds and 4 git commands to generate.